

Remotely Controlled Video Surveillance Monitoring

System Using Microsoft Robotics Studio

by

Saeed Nikbakht

Submitted in partial fulfilment of the requirements

for the degree of Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

December 2014

© Copyright by Saeed Nikbakht, 2014

ii

To my dear parents, Mohsen and Shahla

iii

TABLE OF CONTENTS

LIST OF TABLES ... vi

LIST OF FIGURES ... vii

ABSTRACT .. x

LIST OF ABBREVIATIONS USED ... xi

ACKNOWLEDGEMENTS .. xii

Chapter 1 INTRODUCTION .. 1

1.1 Purpose Of This Study ... 1

1.2 Significance Of This Study .. 2

1.3 Approach .. 2

1.4 Thesis Organization .. 2

Chapter 2 BACKGROUND .. 4

2.1 Robotic Development Environment ... 4

2.2 Popular Robotics Frameworks ... 5

2.2.1 ROS .. 5

2.2.2 Player/Stage/Gazebo .. 6

2.2.3 Lego Mindstorms ... 6

2.2.4 MRDS .. 6

2.3 Selecting The Right Framework .. 8

2.4 Microsoft Robotics Framework ... 9

2.4.1 Core Features ... 10

2.5 Simulator and VPL ... 12

Chapter 3 THE PILOT PROJECT .. 15

3.1 Software Implementation ... 15

3.2 Hardware implementation .. 20

iv

3.2.1 iRobot Create Robot .. 20

3.2.2 Onsite PC ... 21

3.2.3 Operator PC ... 22

3.3 Demonstration scenario .. 22

3.4 Conclusion .. 23

Chapter 4 PAN-TILT CAMERA SURVEILLANCE SYSTEM .. 25

4.1 The Actual Pan-tilt Camera .. 25

4.2 The Simulated Model ... 27

4.3 Implement Services .. 28

4.3.1 Articulated Arm Drive Services ... 30

4.3.2 Dashboard Service ... 34

4.4 Program Execution and Operation ... 37

4.5 Challenges and Future Work .. 40

4.6 Conclusion and Summary .. 43

Chapter 5 WIRE-SUSPENDED VIDEO SURVEILLANCE SYSTEM................................. 44

5.1 Kinematics of The System ... 45

5.1.1 Testing the Algorithm .. 49

5.2 Designing The Simulation .. 52

5.3 Hardware Design .. 55

5.4 Installation of The System .. 57

5.4.1 Linear Winches .. 57

5.4.2 Electronics boards .. 59

5.4.3 Overall view of the actual WireCam ... 61

5.5 Implementation of Services And Execution of the Program .. 62

5.5.1 Simulated WireCam Drive Service .. 64

5.5.2 WireCam Drive Service ... 66

v

5.6 Challenges During Implementation and Execution .. 70

Chapter 6 CONCLUSION ... 72

BIBLIOGRAPHY ... 75

vi

LIST OF TABLES

Table 2-1 Characteristics of Open-Source Robotic Simulation Software Systems

(Staranowicz & Mariottini, 2011) ..8

vii

LIST OF FIGURES

Figure 2.1. Relation of CCR and DSS with services in an example of a robot

implementation. DSS and CCR are shown in the same level as services can

make direct calls to CCR (Johns & Taylor, 2008). ..11

Figure 2.2. All components of services in DSS (Johns & Taylor, 2008)12

Figure 2.3. A simulated scene in edit mode and list of entities on left side menu

(Microsoft, 2012) ...13

Figure 2.4. Example of a VPL program (Microsoft, 2012) ...14

Figure 3.1. Top view of the simulated scene showing the iRobot Create as a gray

circle ...16

Figure 3.2. UpdateAxes notifications sent to Generic Differential Drive services set

the power of wheels. ..17

Figure 3.3. Data connection of the messaging connection between GameController

and one of the GDD services ...18

Figure 3.4. The VPL program running on the Operator PC ..19

Figure 3.5. The VPL program running on the Onsite PC ..20

Figure 3.6. Hardware implementation of the pilot project...21

Figure 3.7. Left side image shows the area in Robotics Lab. In this picture iRobot

Create (1), the wireless webcam and the Bluetooth device (2), and a virtual wall

(3) can be seen. The right side image shows the simulated robot in the

simulation of the scene. This simulation was running on the Operator PC.22

Figure 3.8 Video streaming windows on the Operator PC. On the left is the Operator

PC pane which is displaying the actual image from the webcam on the iRobot

Create. On the right is the simulated image. ..23

Figure 4.1. The schematic diagram of the actual pan-tilt camera26

Figure 4.2. SSC-32 servo controller board (Lynxmotion, 2007)26

Figure 4.3. Pulse-Widths (in milliseconds) and their corresponding servo angles

(Lynxmotion, 2007) ...27

viii

Figure 4.4. The physics view (left image) and the final simulated model after adding

the mesh (right image) ...28

Figure 4.5. Pan-tilt camera services and their relations ...29

Figure 4.6. Dashboard user interface lets the operator control the cameras and move

the pan and tilt joints separately by setting their angles manually, as noted in the

Articulated Arm section. ..35

Figure 4.7. Settings can be modified in the Options window, accessible from the

Dashboard menu. ...36

Figure 4.8. Schematic of the system for controlling the pan-tilt camera38

Figure 4.9. A screenshot of Operator PC shows the Dashboard, Simulated Webcam,

and Actual Webcam windows. A top view of the notepad and part of the

mounting stand is captured by both webcams. ..39

Figure 4.10. Pan-tilt camera mounted to the mounting stand ..40

Figure 5.1. Onsite setup of the wire-suspended video surveillance system44

Figure 5.2. Setup of servos in a room and their labels illustrated in this figure. P

represents the current location of the Flying-Base and P’ is the next position

calculated based on the latest inputs. ...46

Figure 5.3. Flowchart of the algorithm used to drive the Flying-Base in 3 dimensions47

Figure 5.4. The test application allows users to try out the algorithm. Sampling

Interval represents the time between each position recalculation.50

Figure 5.5. The model of the gamepad used in this thesis, Logitech Rumblepad 2,

has two analog sticks. One of them is used to move the WireCam in X-Y

direction and another one is for controlling the pan-tilt camera. The wire-

suspended system is moved in Z direction using the right shoulder button pair.51

Figure 5.6. View of the simulated room from one of the corners. The pan-tilt camera

can be seen in the middle of the room, mounted to the Flying-Base.53

Figure 5.7. A top-down view of the simulated room. The flying part of the robot, the

Flying-Base, is seen in the middle of the room with four wires connecting it to

four servos winches..54

Figure 5.8. Schematics of the hardware design of the WireCam.......................................56

Figure 5.9. Prototype of the linear winch used in this robotics system58

file:///C:/Documents%20and%20Settings/saeed/My%20Documents/Google%20Drive/University/Thesis/Documents/Chapters/Nikbakht,%20Saeed,%20MASc,%20PEAS,%20December%202014.docx%23_Toc406105324
file:///C:/Documents%20and%20Settings/saeed/My%20Documents/Google%20Drive/University/Thesis/Documents/Chapters/Nikbakht,%20Saeed,%20MASc,%20PEAS,%20December%202014.docx%23_Toc406105328
file:///C:/Documents%20and%20Settings/saeed/My%20Documents/Google%20Drive/University/Thesis/Documents/Chapters/Nikbakht,%20Saeed,%20MASc,%20PEAS,%20December%202014.docx%23_Toc406105328
file:///C:/Documents%20and%20Settings/saeed/My%20Documents/Google%20Drive/University/Thesis/Documents/Chapters/Nikbakht,%20Saeed,%20MASc,%20PEAS,%20December%202014.docx%23_Toc406105328

ix

Figure 5.10. Mounted winch, its controller board, and the power & data cables59

Figure 5.11. PIC-Servo SC motor controller at the top of a winch60

Figure 5.12. Connections of data and power cables ..61

Figure 5.13. The actual WireCam with the Flying-Base in the middle and one of the

winches in the left background ..62

Figure 5.14. Schematic of the full system services, including the Pan-tilt camera

services. ..63

Figure 5.15. Control layers of PIC-Servo SC (Kerr, PIC-SERVO Motion Control).........67

Figure 5.16. A screenshot of Operator PC during remote control of the WireCam70

x

ABSTRACT

Robots consist of several mechanical and electronics parts. To accomplish a task,

concurrency and coordination between these parts are required. The complexity of this

combination makes programming of a robot complicated and time consuming. Robotic

development environments (RDEs) were introduced to address this issue by providing a

framework for robotics developers, which consists of programming tools, program

components, and solutions to common robotics challenges. Robotic programmers can

take advantage of the tools shipped with an RDE and use already developed components

in their programs. These robotic frameworks offer some solutions such as teleoperation,

distribution of processes, and predictive display. Some of them also provide a simulation

environment where developers can test their codes on a simulated model of a robot,

without creating or purchasing the actual robot.

 In this thesis, some of the most popular RDEs are briefly reviewed and one is

selected. Microsoft Robotics Development Studio (MRDS) is the RDE that was chosen to

program an existing wire-suspended video monitoring surveillance robotic system. The

service-oriented architecture of MRDS makes all programs developed in this framework

capable of working with the network and using the Internet as an infrastructure for

teleoperation. Also, the same architecture allows distribution of processes (services)

between multiple computers. In addition, the powerful simulation environment of MRDS

could be used as a predictive display, allowing operators to predict and monitor the

reaction to their commands; when the simulated model of the robot responds to the

operator's commands at the same time as the actual robot. The goal of this thesis was to

validate several solutions of MRDS and examine its ease of use and its helpfulness in

speeding up the implementation of robotics programs.

 Despite the capabilities these RDEs provide, they present unique challenges for

programmers. This experiment was completed by developing new MRDS services, using

the existing components, and customizing the existing codes. Some of the features of

MRDS are demonstrated in the final project, letting the operator control the robot over

the Internet simultaneously with the simulated model of the robot. Also, distribution of

processes between several computers is tested successfully. The experiment showed that

the selected RDE has powerful capabilities and helpful tools for developers but it has a

long learning curve due to its complexity which also slows down the development of

services and hence the delivery of the final product.

xi

LIST OF ABBREVIATIONS USED

2D Two Dimensional

3D Three Dimensional

BAM Bluetooth Adaptor Module

BSD Berkeley Software Distribution

CCR Concurrency and Coordination Runtime

DLL Dynamic Link Library

DSS Decentralized Software Services

GDD Generic Differential Drive

MRDS Microsoft Robotics Development Studio

NMC Network Modular Control

PID Proportional Integral Derivative

RC Radio Controlled

RDE Robotic Development Environment

VPL Visual Programming Language

VSE Visual Simulation Environment

xii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Dr. Ken Wilkie, for the

encouragements, his assistance and guidance, useful comments, and for providing all

resources and materials through the learning process of this master thesis. I thank Dr.

Watts, Dr. Gu and Dr. Kerhmanshahi-Pour for their interest and willingness to be part of

my guidance committee.

Furthermore, I would like to thank my brother-in-law, Dr. Ramin Sadeghi, for setting

me on the right path to finish my thesis and my wife, Mehrafrooz, for her support.

1

CHAPTER 1

INTRODUCTION

1.1 PURPOSE OF THIS STUDY

Robotics is finding its way more than ever into all aspects of our lives. There are more

innovations and research happening in this field as people find an increased number of uses

for robots in different areas. From self-driving cars (Google is to start building its own self-

driving cars, 2014) to pizza delivery drones (Russian pizza chain claims to deliver by drone,

2014) to placement of robot avatars for absent fans in stadiums (Korean baseball team fills

stands with 'Fanbots', 2014), every day there is something new about how robots are being

used. To keep up with the fast paced innovations, it is important for robotics researchers to be

able to quickly and inexpensively prototype their new ideas. Development of a robotics

system is a multidisciplinary task. A functional robot consists of mechanical structures,

electronics parts and circuits, computer programming, and maybe logic for artificial

intelligence. It is important to be able to design the system's prototype quickly and cheaply

(Zoppi, 2012). One of the most time consuming processes in robotics development is

programming of the robot, often from scratch. In order to reduce the development time and

cost, the solution is to set a standard and make reusable modules so developers can

concentrate on adding new modules rather than recreating the old ones.

The objective of this study is to develop the software and control systems to demonstrate

remote control of a robotic surveillance system using one of the new solutions for robotics

development. The robotic system used in this study is a wire-suspended video surveillance

system developed by Dr. Ken Wilkie. The original controlling program of the robot was

developed in LabWindows/CVI, a language based on ANSI C and distributed by National

Instruments. Robotics Development Environments (RDEs) appeared to be a suitable

approach by providing standards and ready to use features for rapid development of robots.

The goal was to redevelop the program using an RDE in such a way that it would make the

2

robot accessible via the Internet, allowing operators to remotely control the robot with an

Internet connection.

1.2 SIGNIFICANCE OF THIS STUDY

This work highlights some of the pros and cons of an RDE during a practical exercise of

the implementation of a custom robot. After some research, an RDE developed by Microsoft,

Microsoft Robotics Development Studio (MRDS), was selected. This development

environment was new, at the start of this thesis, and it was based on C# language, a popular

and powerful language with support from Microsoft. The initial tutorials and articles

published by Microsoft looked promising and it seemed to be the right choice of an RDE for

the goals of this study. MRDS is a service-oriented development environment so by design

the processes are accessible through the network. The simulation environment can simulate

the real world as the physics rules are applied to it and has ability to be associated to a

service, letting the simulated model to be controlled the same way the actual robot is

controlled.

1.3 APPROACH

In order to become more familiar with the framework, first a test system was

programmed using the ‘out of the box’ Microsoft Robotics Development Studio (MRDS)

services. After a successful test, the main project was started. Step by step, new services and

3D simulated models were implemented and tested to get the whole system ready and

executable in MRDS. Development of the program to control the custom robot required

several features and abilities of MRDS to be tested.

1.4 THESIS ORGANIZATION

The background of the Robotic Development Environments (RDEs) and their impact on

robotics are reviewed in Chapter 2. The chapter continues by reviewing some popular

3

robotics software platforms, and previous works completed using them are compared. In

Chapter 3, a demonstration project in MRDS is presented and the results of the testing are

discussed. A pan-tilt camera is implemented in Chapter 4 and its architecture and services are

explained in detail. In Chapter 5, the implementation of hardware of the actual robotic

surveillance system as well as its simulating model, and how it is manipulated by MRDS are

discussed. The study’s conclusions are given in Chapter 6 where recommendations for future

work are also discussed.

4

CHAPTER 2

BACKGROUND

2.1 ROBOTIC DEVELOPMENT ENVIRONMENT

Robotics is a field whose time has not quite arrived, but it is expected that dramatic

growth in this field will soon occur. The current state of robotics has been compared to that

of the PC industry 30 years ago (Gates, 2007). Due to its relative immaturity, the field

of robotics still faces many challenges. One of these is the lack of standards for both

hardware and software. This lack of standards has led robotics researchers to recognize the

need to develop what Kramer and Scheutz (2007) call Robotic Development Environments

or RDEs.

RDEs consist of ready to use components that minimize the need of coding. Among these

features there is a simulation environment that allows developers to design and test the robot

before creating the physical prototype. Robots used to be shipped with their control software

mostly locked in by the manufacturer. The licensed software made it impossible to change

the code and it has always been a challenge for developers to change or extend these software

applications as they usually required access to the code and low-level programming. Other

challenges which have slowed down improvement in the robotics industry are inflexibility,

complexity and lack of portability, scalability, and extendibility of robot software

applications. Software applications developed for specific hardware systems could not be

reused in other robots. Since these software applications were mostly not object-oriented and

were not developed as independent components, any changes requires modification in the

original code which, often without good documentation, could further increase the

complexity of code. The old robotic software systems were also missing support for

teleoperation, multi-robot application and distributed tasks.

 Over time, developers and researchers in robotics looked for a solution. They needed

a software which could be reusable on different robots and hardware, speed up the

development by letting developers use already-developed components, and does not require

5

them to develop software programs from scratch for every new robot. The result was a

framework, also referred to as RDE.

2.2 POPULAR ROBOTICS FRAMEWORKS

There are several companies and research teams working on robotics frameworks, but not

all of them are active or accepted by the community. Some of the most popular frameworks

are Robot Operating System (ROS) by Willow Garage; Player/Stage/Gazebo, which is an

open-source project developed at University of Southern California; LEGO Mindstorms by

LEGO; and Microsoft Robotics Development Studio (MRDS) by Microsoft.

In this section, the above robotics frameworks will be first briefly overviewed before

reviewing some of the studies that have compared them.

2.2.1 ROS

Published first in 2007, it is a BSD (Berkeley Software Distribution) open-source license

robotics framework that can run on UNIX, OS X and Windows operating systems (ROS

Tutorials, 2013). ROS could gradually attract many developers in robotics and it now has an

active community.

Similar to operating systems, ROS provides message passing between modules. By

defining a standard format of messages and leaving serialization and deserialization of

messages to ROS, it can support communications of modules developed in different

languages. ROS libraries are available in several languages: C++, Python, Java, LISP,

Octave, and Lua (Quigley, et al., 2009).

Nodes, messages, topics, and services are the main principles of ROS. In ROS, nodes

represent processes, e.g. camera node is a module that could process all visual data, and

topics are what nodes communicate based on them. A node can publish a topic and another

node can subscribe to that topic to receive messages sent by the other node. Services are

another way for nodes to communicate by sending requests and receiving responses

(Quigley, et al., 2009).

6

2.2.2 Player/Stage/Gazebo

Player is a free open source software application that provides tools for controlling single

or multiple robots. It first became available to the public on the Interaction Lab web site in

2000. Player can work with any type of controller over a network as long as the controller

can communicate through a TCP socket.

Player was designed to be language and platform independent and it has tools for

different robots and devices. Player has APIs in different languages and the community

contributes to it by expanding a number of supported languages. The Player server can run on

Windows, Linux and Mac OSX (Biggs, Rusu, Collett, Brian, & Vaughan, 2012).

Stage is the 2D simulator which became available with Player before Gazebo, the 3D

simulator, became available. Stage is designed to simulate a high population of robots with

low fidelity. It simulates robot platforms and sensors and allows hundreds or thousands of

robots to be simulated at the same time. It provides collision avoidance and map generation

and can run on Linux and Mac OSX (Gerkey, Vaughan, & Howard, 2003).

Gazebo is the 3D simulator of this robotics framework. It is compatible with Stage

programs allowing all code execution with no change. Gazebo allows developers to create

3D environment as well as 3D robots. All objects have mass, friction, and other attributes

which allow their simulation be closer to reality. Gazebo is designed to simulate a low

population of robots with high fidelity (Koenig & Howard, 2004).

2.2.3 Lego Mindstorms

It is a graphical programming language created based on National Instrument's LabView

program. There are blocks for reading sensors, controlling motors and programming is done

by dragging blocks and connecting them to each other. It was created for children so

simplicity was one of the goals which results in limitation (Griffin, 2010).

2.2.4 MRDS

It is a robotics framework by Microsoft that was released in December 2006 to address

challenges in robotics programming by introducing new technologies for managing

7

concurrent operations and distributed processes. It was designed to facilitate communications

between decoupled software modules and hardware components. MRDS provides a powerful

3D simulator and simple programming method called Visual Programming Language (VPL)

and similar to most of Microsoft products it only runs on the Windows operating system. The

framework is developed based on .Net and it supports C#, Visual Basic, Managed C++, and

IronPython programming languages (Jackson, 2007).

A systematic review conducted by University of São Paulo (Oliveira, L. B. and Osório, F.

S. and Nakagawa, E. Y., 2012) studied some of the robotics system tools based on Service-

Oriented Architecture (SOA). In their study, MRDS was found as the most cited service-

oriented robotics development system. However, the authors of the review believed that the

popularity of ROS has started to rise and that it will more than likely become the most

popular.

Another study done on commercial and open-source robotics simulator software systems

was conducted by Staranowicz and Mariottini (2011). Some of the characteristics of these

simulators are listed in a table making it easier to compare them (Table 2-1).

Parameters used in their research were (1) Operating System: which OS is supported by

the software system, (2) Simulator type: whether it is a 3D or 2D environment, (3)

Programming language (4) Documentation: level of documentation ready by the software (5)

Tutorial: whether examples and step-by-step instruction is provided or not. Limited means

help exist but it is not enough. (6) Portability: if yes then the simulation code is separated

from the platform tool (7) Sensor: list of supported sensors between most requested ones. (8)

Debugging/Logging (9) Graphical User Interface: describes if it is possible to change objects

and the environment during run-time and/or program functions in a development

environment.

8

Table 2-1. Characteristics of Open-Source Robotic Simulation Software Systems (Staranowicz &

Mariottini, 2011)

2.3 SELECTING THE RIGHT FRAMEWORK

When the first research on finding the right development tool was done for this project in

2007, Microsoft recently introduced its new robotics framework Microsoft Robotics

Development Studio (MRDS). At the time there was no book published on this topic and the

main source of information was mostly the tutorials and videos provided by Microsoft.

Based on the available information, the future of this framework seemed bright especially

as it was created by a major software company with years of experience in development of

enterprise applications. The new technologies used as the core of this framework were

powerful and intelligent solutions for addressing robotics challenges. The framework was

also delivered with a powerful simulator that benefited from a powerful simulation engine

(PhysX) which is used in major 3D video games. Another parameter which made this

framework very attractive was the fact that it has been offered free so the budget was not a

show stopper to start using it.

9

Microsoft attracted many famous large companies and worked with them to support their

products in MRDS. The services and simulated models of some of these robots like iRobot

Create, Lego NXT, and Kuka articulated arm are included in the framework. The author

found working with out-of-the-box standard robots was initially straight forward; however

challenges increased as the project continued and he tried to use the framework for

developing a custom robot.

2.4 MICROSOFT ROBOTICS FRAMEWORK

MRDS was first introduced in 2006. The application got more attention after publication

of an article by Bill Gates in Scientific American magazine (Gates, 2007), where he

explained his vision on the future of robotics and its growing use in the home. The article

explained that MRDS was designed in response to the demand of a framework tool and

standardization of robotic programming to facilitate faster improvement in this field. Gates

stated that the time was similar to the 70’s when many companies were developing their own

Personal Computers and Operating Systems until Windows OS was introduced and

dominated the world.

 Since its release, MRDS has been used in several applications including non-robotics

applications. ABB, a leading supplier of industrial robots and robotics software, is one of the

first companies that took advantage of MRDS. ABB provided a connector, ABB Connect,

which allows students to design and implement virtual robots and build controllers for them

(Microsoft, 2008). Some other examples of the commercial use of this framework are

robuBox (D. Salle, 2007) by Robosoft, which “is a software for the design of generic robotics

controllers implementing advanced robotics functions and behaviors”, and the MySpace site

which used the main component of MRDS, CCR, for a non-robotic purpose solution to

improve functionality of their web application. Another example is SAFAR (Software

Architecture For Agricultural Robots), a software for agricultural robot simulation which was

developed by combining MRDS with Google Earth (SAFAR, 2012).

Like Microsoft’s experience with Windows, the similar marketing strategy might help to

guarantee the future of MRDS by making it a profitable product for the company. In an

article published in 2007 in IEEE Spectrum magazine (Cherry, 2007), the author explains

about Microsoft’s plan to make profit on this framework by charging the users for licensing

10

copies of this software however that strategy has been halted after release of MRDS 2008

and so far the new versions are accessible free of charge. Although in the same article the

author talks about the licensing charge in future commercial robots, which are built based on

MRDS; something similar to Microsoft license fee for PCs sold with the Windows OS. He

concluded that one could predict more support from Microsoft in this field and possibly more

growth in improvement of this framework.

2.4.1 Core Features

Microsoft robotics framework is powered by two very advanced technologies,

Concurrency and Coordination Runtime (CCR) and Decentralized Software Services (DSS).

These .NET libraries were first released with MRDS toolkit but due to their usefulness in

other applications they were later issued separately and since then they have been used in

several commercial and academic applications.

In robotics programming managing of I/O communications with sensors and actuators

concurrently and at the same time being responsive to events in shortest time are essentials.

Threading has been used for this type of system but it could cause a lot of complexity due to

the nature of this method of programming. Known issues such as deadlock, race and handling

errors are some of the challenges developers face in thread programming.

Concurrency and Coordination Runtime (CCR) library was first designed to take

advantage of multicore multiprocessor systems but it was later considered as a solution for

robotics programming (Gates, 2007). CCR focuses on solutions for concurrency,

coordination of asynchronous applications to simplify complexity of such programs and

improve the performance of applications (Johns & Taylor, 2008). Using this solution requires

a new way of programming different to traditional threading programs. In CCR processes can

run parallel and communicate the results with each other. This is made possible by

messaging which is the basis of programming with CCR.

11

Figure 2.1. Relation of CCR and DSS with services in an example of a robot implementation. DSS

and CCR are shown in the same level as services can make direct calls to CCR (Johns & Taylor,

2008).

Decentralized Software Services (DSS) adds another layer to CCR. It lets CCR multiple

task processes run as services. Services are processes enabled to receive messages (aka

requests) and send structured data in response over the network. Each service has a state

associated with it and this state can be changed based on the type of messages the service

receives. The service can also send additional messages or notifications to other services.

Services can subscribe to other services to be notified once the state of a service changes.

Services can also partner with other services to send message and receive responses from

them (Johns & Taylor, 2008). DSS also provides distribution of these services on different

machines so no matter what machine hosts a service it can communicate with other services

via the network. DSS is designed based on REST model which makes services available to

other applications or services and as result low coupling become possible in MRDS.

12

Figure 2.2. All components of services in DSS (Johns & Taylor, 2008)

DSS allows processes to be taken out of the robot and run on PCs. Therefore robots can

be built as inexpensive devices that wirelessly communicate with PCs that provide all the

intelligence required for the robot. DSS also make this possible for human operators to

connect to the robot over the network using Web Applications.

2.5 SIMULATOR AND VPL

Microsoft Robotics Developer Studio includes a simulation environment using a physics

engine developed by Ageia (Johns & Taylor, 2008). The tool comes with some indoor and

outdoor scenes. It also includes several simulated robots such as LEGO NXT, iRobot Create

and KUKA LBR3 robotics arm. The editor of the simulator allows users to prototype custom

robots and to add objects like doors, walls, and furniture to the scenes. This tool allows

developers to simulate their robots and debug their algorithms in the simulated environment

before creating the real robot.

13

Figure 2.3. A simulated scene in edit mode and list of entities on left side menu (Microsoft, 2012)

Simulation scenes are built of entities. Entities are objects with mass, size, and other

physical attributes. An entity can be as simple as a box or a sphere. Entities can have a mesh

associated with them that make them look more realistic. The simulation engine applies

forces like gravity and friction to entities and it can detect collisions between entities.

14

Figure 2.4. Example of a VPL program (Microsoft, 2012)

The other component introduced with this toolkit was Visual Programming Language

(VPL). It is a solution for developing scenarios without coding. This graphical language, that

is included in MRDS, allows developers to create orchestration services, which are a

combination of low level services, by defining how data is transferred between services. Still

coding is required for low level services that mostly interface directly with hardware but for

the orchestration service it is sometimes possible to use only graphical diagrams in VPL

(Figure 2.4).

15

CHAPTER 3

THE PILOT PROJECT

The idea behind this preparation phase was to get hands-on experience with MRDS on an

experimental setup similar to the final project but on a smaller scale. The simulated robot and

all services used in this experiment were out of the box services delivered by MRDS. This

would help to get a better understanding about how the main project could be accomplished

in a shorter period of time. In addition, some of the services and entities used in this phase,

for instance the webcam service and the gamepad service, were later used in the final project.

3.1 SOFTWARE IMPLEMENTATION

The demonstration project was started by creation of the simulation scene. Since the

simulation of the selected robot, iRobot Create, was already included in MRDS, the first step

was to create a simulated scene, add an entity of the robot to the scene and then to write a

simple VPL program to drive it around. The idea was to make the scene an exact replica of

where the actual robot was going to be tested. An area in Dalhousie Biorobotics Lab was

selected for this experiment. The area was measured and the Maze Simulator was used to

create the simulated scene. The Maze Simulator is a community-developed MRDS service,

which allows the user to create a scene of different walls using a bitmap file. Although this

tool helps to develop a scene faster, it is able to add only a few types of basic entities to the

simulated scene. In order to make the created scene more realistic, additional edits were

required. Door entities (shown in green) and the virtual wall entity (shown in red), and wall

and floor textures were later added to the scene using Microsoft Visual Simulation

Environment (VSE).

16

Figure 3.1. Top view of the simulated scene showing the iRobot Create as a gray circle

VPL was selected for programming because it was less complex and programming by

this language was quicker. Since this experiment did not need development of any new

services, VPL could cover the requirements for the development of this pilot project. In VPL,

there is a generic contract (e.g. abstract service) for Differential Drive that specifies a

programming interface for driving a robot regardless of its type. The implementation of the

drive service for a specific robot can then be assigned to the service by changing its manifest

(a list of all the required services and their partnerships). The Create is a two-wheeled robot

and like many other mobile robots, it has a differential drive which lets each of its wheels be

driven independently. By powering each wheel properly, the robot can move forward and

backward, turn left and right, or rotate on a spot without changing its position. In this

experiment, a gamepad was used to control the robot. As the gamepad axes change, X and Y

axes of the gamepad are set to an integer number between -1000 to 1000.

17

Figure 3.2. UpdateAxes notifications sent to Generic Differential Drive services set the power of

wheels.

To drive the simulated robot, a Generic Differential Drive (GDD) service was used. The

manifest of the simulated scene was then associated to the GDD service so when it is

executed the service is automatically assigned to the differential drive of the simulated Create

in the scene. For the actual Create robot there is already a service in VPL called iRobot

Generic Drive. The manifest of this service was not changed as it is already set to the right

manifest by default. To control both simulated and actual robots simultaneously the same

Game Controller service was partnered with both drive services. In the VPL program, by

connecting the GameController service block to the GDD block, GDD service subscribes

to GameController service to receive notifications sent by this service. As illustrated in the

following figure (Figure 3.3), UpdateAxes notification triggers SetDrivePower operation

on both drive services. GDD services expect a number between -1 and +1 for setting the

power of the wheels. Therefore, the received values of X and Y axes are converted in the

following equations before they are sent to set the power of each wheel:

LeftWheelPower = (-Y + X) / 1000

RightWheelPower = (-Y - X) / 1000

18

Figure 3.3. Data connection of the messaging connection between GameController and one of the

GDD services

For the actual robot programming, more VPL blocks were required to let the operator

control the robot via the GUI controller (DirectionDialog Service) in addition to the

gamepad. This option was added to let the operator move the actual robot without moving the

simulated robot. As a result, the actual robot’s position could be adjusted to the simulated

robot’s position before starting the synchronized drive test.

19

Figure 3.4. The VPL program running on the Operator PC

 The above figure (Figure 3.4) illustrates the complete VPL program that ran on the

remote computer used by the operator (Operator PC). The drive service of the Create robot,

iRobotCreateDrive, is only added to define its partnership with the GameController

service but the service itself was not hosted on the Operator PC. In the manifest file of this

VPL, the URL of iRobotCreateDrive service was manually changed to point to the IP

address of the computer located on the site where the robot is located (Onsite PC). This is the

computer that hosted iRobotCreateDrive service (Figure 3.5).

 On the Onsite PC the following VPL was executed to launch the Webcam and

iRobotCreateDrive services on the PC.

20

Figure 3.5. The VPL program running on the Onsite PC

3.2 HARDWARE IMPLEMENTATION

3.2.1 iRobot Create Robot

As mentioned above, iRobot Create was selected as the hardware platform for this

experiment. This robot was first introduced in 2007 after iRobot realized the interest of

robotics researchers in its commercial robot, Roomba. The Create is a programmable mobile

robot with two motor driven wheels, left and right bumper sensors, and edge detectors. This

platform is inexpensive, durable, and extendible.

This robot is one of the supported robots by MRDS. So the simulated model and its

services are already included in the toolkit. Among other MRDS supported mobile robots,

the Create was selected because its strong platform is steady enough to support the webcam

and the wireless transmitter required for this experiment. The cost constraints of this project

were also a concern. Weiss and Overcast studied a couple of popular robots to be used for

educational purpose (2008). In this study they concluded that the Create is a good choice

where durability and affordability are the main factors.

Two components were mounted to the robot, one for communication with the robot and

one for streaming out videos. The first component, the Bluetooth Adaptor Module (BAM),

was a Create accessory used for communication between computers and the robot. BAM

connects to the serial port of Create and allows applications running on a computer to

wirelessly communicate with the robot through a Bluetooth connection. The second

component was a standard analog surveillance camera connected to an Audio/Video radio

transmitter. The transmitter converts the Audio/Video data to 2.4 GHz radio signals. For

streaming video there was an alternative of using an IP camera; however, this camera was

very expensive at the time of this experiment, and it was decided to use a cheaper solution to

stay on budget.

21

Internet/Intranet

Monitor & Control Station

USB to

Bluetooth

Controller

Onsite PC
Video to

USB

Controller

USB Video

Reveiver

Wireless

Gamepad

RF

Ethernet

Operator Control & Display Console

Receiver

Operator

PC

Gamepad

Service

USB

USB

iRobot Create

BAM

Controller

Camera

Video

Transmitter

2.4 GHz

Bluetooth

Simulation

Ethernet

Figure 3.6. Hardware implementation of the pilot project

3.2.2 Onsite PC

 The Onsite PC was the computer located in the same location as the robot. It was

used to operate and communicate with the robot wirelessly. This computer received video

streams from the robot. This PC was a Windows XP computer with MRDS running on it

hosting iRobot Create Differential Drive service (for driving the robot) and Webcam service

(for streaming videos). The PC did not have embedded Bluetooth so a Bluetooth USB

adaptor was hooked to it to let it communicate with the robot. Also a 2.4 GHz wireless

Audio/Video receiver was used to receive streams from the camera on the robot. This

22

receiver was connected to an Audio/Video adaptor to convert analog outputs of the receiver

to digital and send them to the computer through the USB port.

3.2.3 Operator PC

The operator PC was the PC used by the operator to send commands to the robot. The PC

was connected to the Onsite PC by the Internet and commands received from a wireless

gamepad were sent to the Differential Drive service running on the Onsite PC. The operator

was receiving video streams from the Onsite PC and at the same time could match them to

the streams of the simulated environment. MRDS was also running on the Operator PC to

host the simulated environment and the gamepad service.

3.3 DEMONSTRATION SCENARIO

The scenario was to drive a mobile robot with a mounted camera in an area in Dalhousie

Biorobotics Lab. The operator remained in the demonstration room (ie. a location remote

from the robot) and controlled the robot through the Internet. Also, the operator had the

option to run the simulation of the test on his/her workstation (Operator PC) at the same time

as he/she was controlling the robot in the lab (Figure 3.7).

Figure 3.7. Left side image shows the area in Robotics Lab. In this picture iRobot Create (1), the

wireless webcam and the Bluetooth device (2), and a virtual wall (3) can be seen. The right side

image shows the simulated robot in the simulation of the scene. This simulation was running on the

Operator PC.

23

On the Operator PC, the operator could see the video stream from the actual robot at the

same time of the video stream from the simulator. So, for instance, when the robot got close

to a door it appeared in both video-streaming windows. This helped the operator to have a

better understanding of the robot’s location when there was latency in receiving video

streams from the robot. In other words, the simulation provided feedback about operator’s

commands, which allowed him/her to know when to turn, slow down or stop the robot

(Figure 3.8).

Figure 3.8 Video streaming windows on the Operator PC. On the left is the Operator PC pane which

is displaying the actual image from the webcam on the iRobot Create. On the right is the simulated

image.

3.4 CONCLUSION

This experiment revealed some challenges and issues but none of them were an obstacle

to further progress. At the time of this phase there were no MRDS books published and

online materials were not enough to cover all challenges and unexpected errors. The major

challenge was to learn MRDS using limited available learning materials and rely more on

trial and error. As a result, some issues were delaying the project for days.

The first issue happened when the VPL program was tested on the Onsite PC. There were

not enough resources on the PC (CPU and Memory) to support VPL and the program

24

crashed. To overcome this issue the VPL program was converted to a service and directly

launched. There is a built in tool in VPL that allows programs developed in VPL to be

compiled as a service.

The other issue was synchronization of the actual robot and its simulated model. The

speed over the ground of the actual robot could not be accurately synchronized with the

speed of the simulated robot especially when the robot was operated at its full speed. So after

a while the actual robot ended up in a different position than the simulated robot. A possible

solution proposed was to read the position of the actual robot and update the simulated robot

in a constant time interval. However this was not pursued at the time.

Overall, the experiment was successful and at this point it was concluded that MRDS was

a good choice for implementation of a more advanced robotics project.

25

CHAPTER 4

PAN-TILT CAMERA SURVEILLANCE SYSTEM

In this chapter the process of developing the first part of the main project is explained.

Similar to the pilot project from chapter 3, a hardware component and its simulated model

were designed to be controlled simultaneously by an operator. This chapter explains how a

pan-tilt camera and its simulated model can work together through MRDS. In the final

project the goal was to mount the pan-tilt camera to a cable-suspended robot and stream its

video to the operator.

This project required a simulated model of the camera to first be created because MRDS

does not include a simulated pan-tilt camera. The model was built based on a standard pan-

tilt camera, which is used in this project. A MRDS service was already available for the

controller board of the actual pan-tilt camera, so to control the actual pan-tilt camera it only

required development of a drive service. In addition, a drive service was developed to control

the simulated pan-tilt camera.

 4.1 THE ACTUAL PAN-TILT CAMERA

A pan-tilt camera was used in this project. The pan-tilt camera is an articulated, motor-

driven arm with two Radio Controlled (R/C) servos, which give the camera two degrees of

freedom. This system (Figure 4.1) includes a wireless webcam at the end of the arm. The

camera has a built-in antenna that streams out videos as 2.4 GHz radio waves.

26

Pan-Tilt Camera

XBee

Camera
Video

Transmitter

RC Servo

Controller

Tilt

RC Servo

Pan

RC Servo

2.4 Ghz

2.4 GHz

Figure 4.1. The schematic diagram of the actual pan-tilt camera

Figure 4.2. SSC-32 servo controller board (Lynxmotion, 2007)

 The servos used in this camera are controlled by a SSC-32 controller board (Figure 4.2).

The SSC-32 is a servo controller board manufactured by Lynxmotion that can control up to

32 servos. This controller can rotate radio-controlled (R/C) servos with positioning resolution

of 0.09°/unit (180°/2000). The minimum position value 500 corresponds to 0.50ms pulse (-

90°), and the maximum position value 2500 corresponds to a 2.50ms pulse (+90°). The

servos are centered at a position value of 1500. A one unit change in position value produces

a 1us (microsecond) change in pulse-width, which represents 0.09°. PW (Pulse Width)

commands are sent to this controller via a RS232 port (Lynxmotion, 2007).

27

Figure 4.3. Pulse-Widths (in milliseconds) and their corresponding servo angles (Lynxmotion, 2007)

This project used a ZigBee module (XBee) to wirelessly connect the PC to the Pan-tilt

camera. XBee module is a cost-effective solution for wireless connectivity to devices in a

ZigBee mesh network (Digi International Inc., 2014).

4.2 THE SIMULATED MODEL

The simulated model of this articulated arm was created in the C# language. The main

components of this model are its joints and how they are defined and attached to the other

parts of the articulated arm. Both pan and tilt joints are defined as simple sphere joints with a

single angular degree of freedom unlocked. As illustrated in the physics view of the

simulated model (Figure 4.4), the pan-tilt camera entity consists of two joints, two segments

(simple capsule shapes), a fixed base, and a sphere at the end of the second segment, which

represents the body of the wireless camera.

28

Figure 4.4. The physics view (left image) and the final simulated model after adding the mesh (right

image)

In the next step a mesh was associated to every part of the pan-tilt camera to give it a

more realistic look. The simulated model was created based on the primary actual pan-tilt

camera. However, the actual pan-tilt camera has been redesigned, so the camera used in the

final project looked different than the primary design.

As the last step in creating the simulation, a camera entity was added to the arm, and its

point of view, angle of view and other properties adjusted to make its video output similar to

the video output of the actual camera.

4.3 IMPLEMENT SERVICES

After both the simulated and actual pan-tilt cameras were setup, services for controlling

them were implemented in the C# language. Services used in this application are shown in

the following diagram (Figure 4.5). The core services are drive services for the actual pan-tilt

camera (PanTiltArmDrive), and simulated pan-tilt camera (SimPanTiltArmDrive). The

first service communicates with the actual pan-tilt camera through the SSC32 service, which

translates the requests to commands known to the controller board of the pan-tilt camera. The

latter service interprets the requests to alter the orientation of simulated joints and render the

simulated arm accordingly.

29

SimPanTiltArmDrive

Service

PanTiltArmDrive

Service

Gamepad

Service

Dashboard

Service

CombinedDrive

Service

Drive

Commands

Drive

Commands

Move

SimPanTilt

Move

PanTilt Request

Notification

SSC-32

Service

SimPanTiltArm

Entity

Figure 4.5. Pan-tilt camera services and their relations

Both services are implementations of the Generic Articulated Arm service. Use of this

generic service allows the other services to communicate with pan-tilt drive services

independent of implementation of their operation handling methods. This implementation

allows the same drive commands to be forwarded to both drive services without

consideration of how the handler methods are implemented in each service.

The CombinedDrive service is also an implementation of the Generic Articulated Arm.

Upon changes in state of the Gamepad service or the Dashboard service, a notification is

sent to the CombinedDrive service (Figure 4.5). As a result, a request is sent to both drive

services to update the position of joints based on the new state of the Gamepad or

30

Dashboard. In return, notifications are triggered from the drive services, sending back the

new state of pan and tilt joints to the CombinedDrive service.

4.3.1 Articulated Arm Drive Services

SetJointTargetPose is the operation message that is sent to both drive services. This

message carries the orientation of each joint and in each drive service a handler method is

implemented to use this information and update the joints accordingly. The rotation scale of

both drive services is set in a configuration file, which is editable through the Dashboard. In

the next section Dashboard and its options are explained in more details.

In PanTiltArmDrive, the requested angle of each joint is first converted to a servo

angle then a pulse width before it is sent as a command to the SSC32 service.

Code snippet 4-1 implementation of SetJointTargetPose Handler method in PanTiltArmDrive:

/// <summary>
/// Set Joint Pose
/// </summary>
/// <param name="update"></param>
/// <returns></returns>
/// <remarks>Sets the pose of a single joint (in most cases this is just an angle)</remarks>
private IEnumerator<ITask> SetJointPoseHandler(armproxy.SetJointTargetPose update)
{
 // Find out which channel it is, based on the joint name
 string name = update.Body.JointName;
 int index = _channelLookup[name];

 // Figure out the desired angle in degrees
 AxisAngle orientation = update.Body.TargetOrientation;
 float orientationAngle = -orientation.Angle * Math.Sign(orientation.Axis.X);
 float jointAngle = Conversions.RadiansToDegrees(orientationAngle);
 int moveTime = 1000;

 // Get the joint
 // Throws an exception if the name does not exist
 Joint j = _jointLookup[name];

 int servoAngle = JointAngleToServoAngle(index, (int)(orientationAngle * 180 / Math.PI));
 int pulseWidth = AngleToPulseWidth(servoAngle);

 ssc32.SSC32ServoMove moveCommand = new ssc32.SSC32ServoMove();
 moveCommand.Channels = new int[1] { index };
 moveCommand.PulseWidths = new int[1] { pulseWidth };

31

 moveCommand.Speeds = new int[1] {(int) physicalmodel.Vector3.Length(
ProxyConversion.FromProxy(j.State.Angular.DriveTargetVelocity))};
 // Always apply some sort of reasonable time so that the arm does
 // not move suddenly
 moveCommand.Time = moveTime;

 ssc32.SendSSC32Command command = new ssc32.SendSSC32Command(moveCommand);
 _ssc32Port.Post(command);
 yield return Arbiter.Choice(command.ResponsePort,
 delegate(ssc32.SSC32ResponseType response)
 {
 update.ResponsePort.Post(DefaultUpdateResponseType.Instance);
 },
 delegate(Fault fault)
 {
 update.ResponsePort.Post(fault);
 }
);

 yield break;
 }

In the SimPanTiltArmDrive service, a task that sets the new angle of the simulated

joint is posted to DeferredTaskQueue after converting from radians to degrees so it can be

executed when the next entity’s Update method runs again. To understand the purpose of

posting this task the definition of frames in the Microsoft Visual Simulation Environment

must be first reviewed.

The simulator divides time into separate chunks called frames. At the start of each frame,

the simulator calculates the simulator time for that frame. First, the simulator retrieves the

previous frame results from the physics engine, the simulation engine used in VSE to solve

object dynamics and collisions. Then the Update method is called for every entity in the

scene. After all of the Update methods have completed, the scene is rendered once for each

real-time camera in the scene. Finally, the scene is rendered from the eyepoint of the Main

Camera, and the physics engine, begins processing the next frame (Johns & Taylor, 2008).

In the Microsoft Visual Simulation Environment, the Update method of an entity is

called when the physics engine is not processing the frame. So this is the only time it can be

guaranteed that physics engine is not busy and its methods such as SetPose,

SetLinearVelocity, SetAngularVelocity, ApplyForce, and ApplyTorque can be

32

called. In SimPanTiltArmDrive service since the angles of the joints have to be updated

outside of Update method, first a task was created to take care of this change and this task

was added to DeferredTaskQueue. Tasks of this queue are executed when the Update

method is called. With this technique tasks that are dependent on the physics engine’s

methods can be called anywhere in the program but execution of them will be deferred to the

time when the physics engine is not busy.

Code snippet 4-2 Implementation of SetJointTargetPose Handler method in SimPanTiltArmDrive:

/// <summary>
/// Set Joint Pose
/// </summary>
/// <param name="jointPose"></param>
/// <returns></returns>
/// <remarks>Sets the pose of a single joint</remarks>
[ServiceHandler(PortFieldName = "_articulatedArmPort")]
public void SetJointTargetPoseHandler(articulatedarm.SetJointTargetPose jointPose)
{
 DOFDesc dof = _state.JointDir[jointPose.Body.JointName];
 JointDesc desc = dof.Description;
 switch (dof.Type)
 {
 case DOFType.Twist: desc.TwistAngle = (float)(jointPose.Body.TargetOrientation.Angle * 180 /
Math.PI); break;
 case DOFType.Swing1: desc.Swing1Angle = (float)(jointPose.Body.TargetOrientation.Angle *
180 / Math.PI); break;
 case DOFType.Swing2: desc.Swing2Angle = (float)(jointPose.Body.TargetOrientation.Angle *
180 / Math.PI); break;
 }

 PhysicsJoint thisJoint = (PhysicsJoint)desc.JointEntity.ParentJoint;

 // A task with the joint information is created then posted to
 // DefferdTaskQueue, letting the entity to update the joint, by
 // calling SetDriveInternal method, once the physics engine is stopped.
 Task<PhysicsJoint, Quaternion, Vector3> deferredTask =
 new Task<PhysicsJoint, Quaternion, Vector3>(thisJoint, desc.JointOrientation,
desc.JointPosition, SetDriveInternal);
 _entity.DeferredTaskQueue.Post(deferredTask);
}

/// <summary>
/// Set Drive Internal
/// </summary>

33

/// <remarks>Sets the position and orientation of a joint</remarks>
void SetDriveInternal(PhysicsJoint joint, Quaternion orientation, Vector3 position)
{
 if (joint.State.Angular != null)
 joint.SetAngularDriveOrientation(orientation);
 if (joint.State.Linear != null)
 joint.SetLinearDrivePosition(position);
}

As mentioned earlier, the CombinedDrive service receives operation messages and

forwards them to both pan-tilt drive services. The following code shows how this was

implemented.

Code snippet 4-3 Implementation of SetJointTargetPose Handler method in CombinedDrive:

[ServiceHandler(PortFieldName = "_articulatedArmPort")]
public virtual IEnumerator<ITask> SetJointTargetPoseHandler(articulatedarm.SetJointTargetPose
onApply)
{

 for (int i = 0; i < _drivePorts.Count; i++)
 {
 _drivePorts[i].Post(onApply);
 }

 yield break;
}

In this code, _drivePorts is a list of the ArticulatedArmOperations containing

ports for both Pan-tilt drive services.

On another matter, services working with Microsoft Visual Simulation Environment are

dependent on the existence of entities in the simulated scene. In this case, the simulated pan-

tilt drive service is dependent on the existence of the simulated joints to initialize its state by

reading the properties of the simulated joints such as their names and types.

In writing the simulated pan-tilt drive this point is considered and unlike regular services

this drive service is not started right after it is called. The service waits until the simulated

engine notifies it that the pan-tilt simulated entity is inserted into the scene then it starts. If

this is not considered in implementation the drive service does not load successfully.

34

4.3.2 Dashboard Service

The Dashboard service is a modified version of the Simple Dashboard service,

supplied with MRDS. The service has a user interface that helps the operator to communicate

with drive services of robots and modify some of the control settings. This service can

communicate with any implementation of Generic Articulated Arm service. It can connect to

a host where MRDS is running on, detect any generic drive services and list them for the

operator. The operator can then select a drive service and send control commands to it using

the trackball or arrow keys on the Dashboard window, or via a Gamepad. The Gamepad

service is launched by the Dashboard service as soon as the service is started.

35

Figure 4.6. Dashboard user interface lets the operator control the cameras and move the pan and tilt

joints separately by setting their angles manually, as noted in the Articulated Arm section.

Under the Tools menu the operator can select Options to access the settings. As

illustrated in Figure 4.7, under Pan-tilt Arm, the operator can set the max pan and tilt

angles of pan and tilt joints as well as the rotation scale (in degrees) and rotation speed (in

milliseconds).

36

Figure 4.7. Settings can be modified in the Options window, accessible from the Dashboard menu.

The right analog stick is the stick dedicated to control of the Pan-Tilt Camera in this

project. As it is explained in the next chapter, the left analog stick, which generates values of

X and Y axes, is selected to control the wire-suspended robot.

The Max Pan Angle and Max Tilt Angle are used to set thresholds on rotation

angles of Pan and Tilt joints. In the Dashboard service these thresholds are checked when

the rotation angles of joints are incremented or decremented. Once a threshold is reached, the

service ceases incrementing or decrementing that angle.

The other options used in this project are dead zones, under Trackball. The dead zone

is a region where the movement of the gamepad’s analog stick has no effect. The values of

both X and Y axes can be an integer number between -1000 to +1000. By setting the dead

zones to a number greater than 0 any received value lower than the dead zone values are

going to be ignored. This is especially helpful for use of gamepads that do not return to zero

when their sticks are released. In the above example (Figure 4.7), DeadZone X is set to 90.

That means any received input from the gamepad on X axis is going to be considered as 0

unless it is greater than 90 or less than -90.

37

Once the OK button is pressed, the new settings take effect in both the simulated and

actual pan-tilt cameras on the fly.

4.4 PROGRAM EXECUTION AND OPERATION

The following schematic diagram shows how the system was set up (Figure 4.8). The

operator was at the Operator PC and could see the camera view from both the actual camera

at the site and the camera in the Visual Simulation Environment at the same time. The

Dashboard running on the Operator’s PC allowed the operator to control both cameras

simultaneously. Also the operator has the option to use a wireless Gamepad to move the pan-

tilt cameras.

Control commands were sent to the drive service that is running on the Onsite PC

(PanTiltArmDrive) and from there they are forwarded to the Pan-tilt camera through an

XBee module. The Onsite PC also received video streams from the scene, through the

Webcam service, and transferred them to the Operator PC. The distribution of service was

demonstrated by running PanTiltArmDrive and Webcam services on the Onsite PC.

38

Internet/Intranet

Ethernet

Monitor & Control Station

XBee Onsite PC
Video to

USB

Controller

RS232 Video

Reveiver

Wireless

Gamepad

RF

Ethernet

Operator Control & Display Console

Receiver

Operator

PC

Dashboard

USB

USB

Pan-Tilt Camera

XBee

Camera
Video

Transmitter

2.4 GHz2.4 GHz

Simulator

RC Servo

Controller

Tilt

RC Servo

Pan

RC Servo

Figure 4.8. Schematic of the system for controlling the pan-tilt camera

The following images (Figure 4.9) illustrate what the operator could see on the Operator

PC. The operator has two camera windows open next to the Dashboard User Interface. The

operator also has an option to select either the actual or the simulated drive service, one at a

time, to control one of them only without moving the other. This option can help for testing

and adjusting purposes.

39

Figure 4.9. A screenshot of Operator PC shows the Dashboard, Simulated Webcam, and Actual

Webcam windows. A top view of the notepad and part of the mounting stand is captured by both

webcams.

By turning left, right, up and down the operator can look around. The following images

(Figure 4.10) illustrate the actual and simulated scenes.

40

Figure 4.10. Pan-tilt camera mounted to the mounting stand

4.5 CHALLENGES AND FUTURE WORK

One of the challenges was the hard coded settings defined inside of the SSC-32 service.

This service did not have an option to save its configuration settings in an external file,

requiring recompiling the code every time the settings had to be changed. To avoid the

requirement of recompilation, the code was modified to support this option. The standard

configuration method of .NET framework does not work on DSS so the state of service was

saved in an XML file. The state also was retrieved from the same XML file and replaced

with the current state of the service anywhere in the code it was required.

Code snippet 4-4 Implementation of a solution to save state of the service in a configuration file:

// Enabling use of Configuration file
System.Uri InitialStateUri(string initialStateString)
{
 System.Uri storeAddr = new System.Uri(new Uri("http://localhost/"), ServicePaths.MountPoint +
"/");
 return new System.Uri(storeAddr, initialStateString);
}

// Saving state to a config file
void SaveStateToFile(string filename)
{
 //first find the partner that holds your state service
 PartnerType pt = FindPartner(
 Microsoft.Dss.ServiceModel.Dssp.Partners.StateService,
 ServiceInfo.PartnerList);

41

 //create mount point uri:
 System.Uri thisUri = InitialStateUri(filename);

 //using the URI above, issue a Replace to the mount service.
 // You can also modify this uri to create various back-ups when you think it is appropriate.
 // So instead of SaveState(), just issue the Replace directly to the mount service using the URI/file.
 mount.MountServiceOperations port =
ServiceForwarder<mount.MountServiceOperations>(thisUri.AbsoluteUri);

 DsspDefaultReplace replace = new DsspDefaultReplace(_state);
 port.Post(replace);
}

There is no standard solution for synchronized driving in MRDS. In this project a third

drive service is used as a repeater of drive commands to the simulated and actual drive

services, allowing them to move simultaneously. The drive service is called the

CombinedDrive and, as it was explained in the previous part, it is an implementation of

Generic Articulated Arm only to forward controlling commands. ServiceForwarder was

used in the implementation of this service to establish ports for communication with pan-tilt

drive services.

Code snippet 4-5 During initialization, ConnectDrive is called for every Articulated Arm Drive

service

foreach (ServiceInfoType info in list)
{
 // If this service is an Articulated Arm Drive and it is not this service then add it to the list of ports
 if (info.Contract == articulatedarm.Contract.Identifier &&
!info.Service.Contains("combineddrive"))
 {
 // Connect to the drive and add it to the list of ports
 yield return Arbiter.ExecuteToCompletion(
 Environment.TaskQueue,
 new IterativeTask<string>(info.Service, ConnectDrive)
);
 }
 }

Code snippet 4-6 ConnectDrive adds the port of the Articulated Arm Drive service to the list of all

found services` ports, _drivePorts.

/// <summary>
/// Connect to a Generic Articulated Arm Drive service

42

/// </summary>
/// <param name="service"></param>
/// <returns>Updates the global _drivePorts list</returns>
IEnumerator<ITask> ConnectDrive(string service)
{
 articulatedarm.ArticulatedArmOperations drivePort = null;

 // Get a new articulated arm drive port
 drivePort = ServiceForwarder<articulatedarm.ArticulatedArmOperations>(service);

 if (drivePort != null)
 {
 // Record the service URI so the user can see it
 LogInfo(LogGroups.Console, "Connected to Drive " + service);

 // Remember the port
 _drivePorts.Add(drivePort);

 }
 yield break;
}

Debugging of services codes were also challenging. As Martin Fowler warned in his

book, loosely coupled services can easily become “An architect’s dream and a developer’s

nightmare” (Fowler, 2002). Due to the use of loosely coupled services in programming under

MRDS and involvement of several services in this project to accomplish a task, a bug in one

service could affect the final result. To find the bug it was required to trace the issue back

between several services until it could be found. An example is the issue that happened in

one of the functionalities of the Dashboard service. Upon selecting an articulated arm drive

in the Dashboard, all joints of the arm are supposed to be listed under Active Joints text box

(Figure 4.6). It stayed blank when the first PanTiltArmDrive was selected. After several

hours of debugging it turned out that there was a problem in the Pan-tilt camera circuit board

and the query command sent to the SSC-32 controller was returned Null. The Dashboard

service sends a Get message to the articulated drive, requesting its state. This request then is

sent to SSC32 service and then to the SSC-32 controller. In this example, the error happened

at the last service.

43

One of the things that should be implemented in future for a more accurate result is to

update the SSC32 config file every time that the SSC32 service’s state is changed, for each

servo move. Therefore the simulator can read the file and sync up if it is not synchronized.

4.6 CONCLUSION AND SUMMARY

By the end of this part of the project, development of full customized MRDS services

was done successfully. The pan-tilt drive services and the simulated camera entity were

developed in C# from scratch. Development of services for MRDS was challenging and it

required learning the MRDS fundamentals in detail. No out of box solutions were available

for some of the functionalities required in this phase and it was required to reach out to

MRDS forums for help.

Synchronized move of the simulated pan-tilt camera and the actual pan-tilt camera was

the other feature of MRDS which was tested successfully in this phase. This could happen by

sending the same control commands and adjusting the speed of movement of the simulated

joints and the RC servos.

In the end, another important feature of MRDS, distribution of services, was also tested

by running the PanTiltArmDrive and Webcam services on the Onsite PC while other

services were loaded on the Operator PC.

44

CHAPTER 5

WIRE-SUSPENDED VIDEO SURVEILLANCE SYSTEM

After the successful development and testing of the pan-tilt camera video surveillance

system, the wire-suspended video surveillance system (WireCam) was implemented in the

final project. The WireCam consists of four DC servo motors, four motor driven winches,

four wires and a flying base, which the pan-tilt camera, from the previous chapter, is

mounted to.

The system, illustrated in Figure 5.1, can be set up in a room with the four winches

mounted in the four corners. Each servo drives an attached winch to wind or unwind a

string/wire wrapped around the threaded drum. All four cables are hooked to a platform (the

Flying-Base) which moves the mounted pan-tilt camera in a three dimensional space.

Figure 5.1. Onsite setup of the wire-suspended video surveillance system

Flying Base

Pan-tilt camera

Wireless camera

Room

Servo and

winch

Wire

Fixed Base

Onsite PC

Wireless

connection

45

Unlike the control board used in the pan-tilt camera (the SSC-32), there was no MRDS

service available for the controller boards used in this system to drive the winches. Therefore,

in addition to creating MRDS drive services for both the simulated and actual WireCam, a

service was created to communicate with the controller board.

Similar to the implementation method used in the past two chapters, before getting to the

actual hardware implementation the simulated model of the system was first implemented.

However, since this system required a kinematic algorithm the algorithm was first tested in a

C# test program as the initial step before any implementation in MRDS.

 5.1 KINEMATICS OF THE SYSTEM

Before explaining the algorithm it is best to review some of the terms used in this section.

In general, servo motors (aka servos) are closed system DC motors with built in encoders and

control circuitries, which allow monitoring the angular position of each motor’s shaft at

anytime. Counts from the shaft encoder counter make it possible to measure the angle of

rotation of the winch drum and hence length of wire out (McComb, 2011) . The constant

number of Count_per_meter represents the counts of the shaft encoder per one meter of

traveling distance. In this project, the Flying-Base refers to a platform that the pan-tilt camera

is mounted on and is movable by wires connecting it to the servo driven winches in each

corner of the room labeled as A, B, C and D.

46

B

C

A

D

P0
P

P’

Figure 5.2. Setup of servos in a room and their labels illustrated in this figure. P represents the current

location of the Flying-Base and P’ is the next position calculated based on the latest inputs.

In a nutshell, this algorithm calculates the next position of the Flying-Base based on its

current position and the inputs received from an input device like gamepad or a software

application. The assumption is that the time for each travel is constant (T_interval) so inputs

with greater values increase the velocity of the Flying-Base.

As illustrated in the following flowchart (Figure 5.3), initially the position of the Flying-

Base is set to the home position, P0, which is in the middle of the room horizontally and in

the highest position vertically. In the next step the distances of the Flying-Base to each servo

at four corners of the room (Ap, Bp, Cp, and Dp) are calculated.

Y

X

Z

47

Now based on the inputs received from the controller device or the application the next

position of the Flying-Base, P’(Xnext, Ynext, Znext), after T_inteval seconds is calculated.

Set the current

position, P, to the

Home position, P0

Find the distance of each

servo to the Home

position, P0

Calculate the next

distances of P` from each

servo

Get the inputs from the

Gamepad

Calculate the next point

(P’) based on the inputs

and T_interval

Calculate the next

velocity of each servo

Run for T_interval

time

Find the current count of

each servo

Set P to the current point

Figure 5.3. Flowchart of the algorithm used to drive the Flying-Base in 3 dimensions

48

In the following equations Xinput, Yinput, and Zinput are the values of axes received

from the input device. X_INPUT_MAX, Y_INPUT_MAX, and Z_INPUT_MAX are the

maximum values that each axis can take. X_MAX, Y_MAX, and Z_MAX are the maximum

distances the Flying-Base can travel in each direction in T_interval seconds when the input

axis of that direction is set to the maximum. Xnext, Ynext, and Znext represent the

coordinates of the next position of the Flying-Base after T_interval seconds. Finally, the

T_inteval is the constant time allowed for the Flying-Base to move with the

calculated/assigned velocity from the current position (P) to the next position (P’).

At this point the current and next distances of the Flying-Base to each of the servos in the

four corners of the room can be found. Distance of the Flying-Base to each servo is

calculated by a linear algebra method implemented by using a computerized displacement

measuring system modified from a paper published by Das and Kozey (1994). In this method

by providing the coordinates of the Flying-Base and based on the measurements of the room,

distances of the Flying-Base to each servo is determined.

Using these distances the velocity of each servo can be now calculated:

49

On the other hand, another method, again based on Das and Kozey (1994), is used to find

the current coordinates of the Flying-Base in three-dimensional position by knowing its

distances from three points with known coordinates, A, B and C. As the location of the

Flying-Base depends on the length of wires connecting it to servos, servos’ angular positions

must be changed to change the position of the Flying-Base. The encoder count of each servo

can be requested to be used to find the length of wires.

5.1.1 Testing the Algorithm

Before starting to implement the algorithm in MRDS services, a test application was

developed in C# language to check the accuracy of the algorithm without getting other

factors interfering.

The test application consists of a controller where inputs similar to what is received from

the real gamepad are generated and the position of the Flying-Base in two coordinate planes

is plotted, one representing X-Y coordinates and another one X-Z coordinates. Once the

Gamepad Simulator is started, real-time data is updated in the text boxes to make it possible

to examine them at any time to compare them with input data at the time of sampling, and to

evaluate the algorithm (Figure 5.4).

The first graph is the top view of a room showing attached servos to each corner with A,

B, C and D labels. Having that assumption in mind, the second graph would be the front view

of the room. The red asterisks in these graphs represent the current or past location of the

Flying-Base so as it moves its path would be traceable.

50

Figure 5.4. The test application allows users to try out the algorithm. Sampling Interval represents the

time between each position recalculation.

The Gamepad Simulator simulates inputs generated by the real Gamepad for X and Y

axes ranging from -1000 to 1000. As the plan for the main project is to control Z-axis

direction by two gamepad buttons therefore in this application Z can be set to -1, 0, or 1 to

decrease, stop, or increase Z-axis respectively.

51

Figure 5.5. The model of the gamepad used in this thesis, Logitech Rumblepad 2, has two analog

sticks. One of them is used to move the WireCam in X-Y direction and another one is for controlling

the pan-tilt camera. The wire-suspended system is moved in Z direction using the right shoulder

button pair.

In the Gamepad Simulator section there are two textboxes for each axis that let the

examiner test different scenarios that could be created by a real gamepad. The user enters a

starting value in the Start Inputs textboxes and the maximum values in End Inputs

textboxes. For instance, to simulate sliding of analog stick on the gamepad from home

position to the end corner on the X axis positive direction then the first textbox of X Input

has to be set to 0 and the second one set to 1000.

Now once the user clicks on Go! button value of X Input starts increasing from 0 to

1000 gradually until the user halts the process by clicking on Stop button. X and Y axes in

the gamepad can have values between -1000 to 1000. This is set differently for Z Input

(values between -1 and 1) to match it with the implementation of the application which

instead of the analog stick shoulder buttons on front side of the gamepad are going to control

the robot’s moves in Z direction.

The next section on this panel, Current and Next Positions and Distances,

shows the current (Ap, Bp, Cp, Dp) and next (Ap’, Bp’, Cp’, Dp’) distances of the Flying-

Base from each servo plus its current and next position of itself (p(X, Y, Z) and p’(X’, Y’,

Z’) points). By default p(X, Y, Z) is set to the middle of the room at the highest position

X-Y Axes Pan-tilt Camera Z Axis

52

vertically (Zmax) however the examiner can modify the home position by setting p(X,Y,Z)

to different values. Two next textbox groups continuously represent the current velocity and

encoder count of each servo. Servo #1 is located at corner A and #2 at corner B and so on.

The last section, Plots Controls, has two Buttons, one for clearing the plots so the

user can rerun a test and other to spot values of p(X,Y,Z) in plots. The Flying-Base speed is

updated in textboxes in this group pad and Samp. Interval is located here to control the

sampling time interval of positioning calculations.

Several test scenarios were performed on this application including, but not limited to,

running the system with single axis input, with combination of axes inputs, and with positive

and negative inputs. Run Once option also made it possible to examine all numbers by

setting the inputs and current coordinates of the Flying-Base and calculate the next

coordiates. Finally, the traceable path of the Flying-Base on the plots helped to try some tests

and visually examine the result of algorithm. The tests proved that the kinematics and the

algorithm were working as expected.

5.2 DESIGNING THE SIMULATION

Once the algorithm was tested successfully it was time to use it in action with the

simulation of the system. The simulation of the WireCam was first created as a separate

entity then it was added to a scene. The scene was the simulation of a room where the system

was going to be installed.

A room in the iDLab, at Dalhousie University, was selected for this purpose. The first

step was to design a scene, which consists of the main objects in the room so the video

streams from the actual camera could be matched with what was returned from the simulated

webcam. The main objects of this room were three desks, a door, a window, and a

whiteboard, which were all added to the simulated scene in roughly the same sizes (Figure

 5.6 and Figure 5.7).

53

Figure 5.6. View of the simulated room from one of the corners. The pan-tilt camera can be seen in

the middle of the room, mounted to the Flying-Base.

54

The main part of the simulated WireCam is its platform, also referred to as the Flying-

Base, the part that the pan-tilt camera is mounted to. In this project lines are drawn to

represent the wires, as no entity for wire is available in Microsoft Visual Simulation

Environment. Therefore, nothing could hold the Flying-Base against the force of gravity. As

a workaround solution, the Flying-Base entity is defined as a static entity. Gravity and other

kind of forces do not impact on a static entity and that allows setting the position of this

entity programmatically, based on the inputs and the algorithm explained in the previous

section. Setting of the positioning of the Flying-Base will be explained in more details later

under the section of implementation of MRDS services.

Figure 5.7. A top-down view of the simulated room. The flying part of the robot, the Flying-Base,

is seen in the middle of the room with four wires connecting it to four servos winches

55

5.3 HARDWARE DESIGN

As illustrated in Figure 5.8, the architecture of the WireCam is the same as what was

explained in the previous chapter for the pan-tilt camera with an additional part for motor

controller boards and DC Servo Motors. So now the Onsite PC, in addition to the pan-tilt

camera, also communicates with the servo motors through a wired connection.

The WireCam uses PIC-SERVO SC controllers, designed by J R Kerr Automation

Engineering, to drive four DC servo motors. This controller is based on a PIC18F2331 which

is a single chip solution for control of servo motors with incremental encoder feedback.

Control of several PIC-SERVO SC controller boards is made possible by using a RS485

serial interface. This interface allows up to 32 control modules to communicate from a single

serial port. In order to connect the network of controllers to a PC, as shown in Figure 5.8, a

RS232-RS485 convertor (Z232-485) is used (Kerr, PIC-SERVO SC Motion Control Board).

The PIC_SERVO SC controller has a built in Network Modular Control (NMC)

Communications protocol which manages the communication with all PIC-SERVO SC

modules and the PC. There are a dedicated pair of transmit wires to send commands from the

PC to the controller boards and a pair of wires to receive their feedback. Communications

with the boards are based on their assigned addresses which are assigned to them

automatically upon the initialization stage (Kerr, PIC-SERVO SC Motion Control Board). In

this network, the last controller board in the line gets address 0, the board marked as A in

Figure 5.8, assigned to and the addresses are assigned incrementally to the rest of the boards

with the highest assigned to the very first board, board D in Figure 5.8.

This controller works in five operating modes but raw PWM output mode is the only one

used in this project.

56

Monitor & Control Station

XBee Onsite PC
Video to

USB

Controller

RS232
Video

Reveiver
USB

Pan-Tilt Camera on the Flying-Base

XBee

Camera
Video

Transmitter

2.4 GHz

2.4 GHz

RC Servo

Controller

Tilt

RC Servo

Pan

RC Servo

ABCD

DC

Servo

DC

Servo

DC

Servo

DC

Servo

RS232 to

RS485

RS485

RS232

Ethernet

Motor

Controllers

Figure 5.8. Schematics of the hardware design of the WireCam

Unlike the SSC-32 board from the previous chapter, there is no MRDS service for PIC-

Servo controller boards. Using the libraries provided by J R Kerr Automation Engineering,

an MRDS service was developed from scratch to make it possible to communicate with PIC-

Servo controller boards using MRDS.

57

This MRDS service, ServoNetwork, takes care of initialization of the network of

controllers, setting servos to their initial positions and speeds. Initialization of servo motors is

another initialization performed by this service. The service sets the servo gains: Kp, Kd, and

Ki. These gains are used in PID (proportional-integral-derivative) filter, which is the control

filter used by the PIC-SERVO, to optimize the performance of particular motor used in this

robotics system. The service also allows other MRDS services to rotate every servo in

clockwise or counter clockwise directions with a variable velocity. It also manages to move

all servos at a time to their preset position or velocity.

During the initialization step, first the Serial connection is established then the network of

PIC-Servo controllers is initialized. At this stage addresses are assigned to each controller

and the number of controllers in the network is counted.

5.4 INSTALLATION OF THE SYSTEM

5.4.1 Linear Winches

The most vital part of the hardware for this robotics system are its winches. The winch

designed for this system is a linear drum type winch. Each winch comprises a DC servo

motor, which includes an incremental shaft encoder, a threaded rod, a threaded drum, a

drawer slide, and a fixed guide (Figure 5.9). The rod is attached to the shaft of the servo at

one end and to the drum at the other end. The rod and drum are machined with the same

pitch. A fixed threaded block through which the rod passes is attached to the base of the

winch and thus the fixed half of the drawer slide. The servo, rod, and drum assembly is

mounted to the movable half of the drawer slide. The wire is wrapped around the drum and

as the rod and drum spin, the assembly slides back and forth and thus pays out or draws in

the wire through the fixed guide.

58

Figure 5.9. Prototype of the linear winch used in this robotics system

In this special design, the ratio of the servo’s rotation to linear movement of the wire is

constant. As a result, the length of wire moved per each revolution of the servo stays the

same, independent to the angular position of the servo.

DC Servo

Threaded Rod

Threaded Drum

Drawer Slide

Fixed Guide

Threaded Block

59

Figure 5.10. Mounted winch, its controller board, and the power & data cables

The pictures above illustrate the setup of one of the winches (Alpha) at the top corner of

the Onsite room. Each winch has a control board to allow manual operation of the winch.

The controller has to be switched to manual (Man) first, then using the toggle switch, labeled

“Out” and “In”, an operator can manually wind in and out the wire.

5.4.2 Electronics boards

As mentioned in the previous section, the DC servo used in each winch is controlled by a

PIC-Servo SC controller board. This board is installed at the top of the winch and connects to

the PC, and other motor controllers, by a RS485 cable (Figure 5.11).

Wire

Power & data

cables

RS485 cable

Control board

60

Figure 5.11. PIC-Servo SC motor controller at the top of a winch

The other electronics board, the Z232-485, converts the serial port RS232 standard,

connected to the OnSite PC, to RS485 standard, which is connected to the motor controllers.

Figure 5.12 shows how the connections are made for power and data. The black cable carries

power for the DC servos and the controller boards, and data for the controller board. A power

supply provides 5 Vdc for the motor controllers and 12 Vdc for the DC motors. The

commands are received from the Onsite PC through the RS232 cable and sent to the motor

controllers after conversion to the RS485 standard.

RS485 Cable

61

Figure 5.12. Connections of data and power cables

5.4.3 Overall view of the actual WireCam

The overall view of the robotics system (aka. WireCam) is shown in the Figure 5.13. The

power and data cable is first connected to D winch and from there to C, B, and A winches in

series. The Flying-Base is located in the middle of the room and is connected to each of the

winches through a wire. As explained in chapter 4, the pan-tilt camera, mounted to the

Flying-Base, is a wireless system and no wire is connected to it for transmission of data. A

7.2 Vdc battery is used to power the pan-tilt motors, the control board, and the Xbee module.

RS232 Cable Z232-485 Convertor

Power supply

62

Figure 5.13. The actual WireCam with the Flying-Base in the middle and one of the winches in the

left background

5.5 IMPLEMENTATION OF SERVICES AND EXECUTION OF THE PROGRAM

Once the simulated model and the actual system were ready it was time to run them in

MRDS. The following block diagram, Figure 5.14, is an overall view of MRDS services used

in this system and their relationships.

63

SimPanTiltArmDrive

Service

PanTiltArmDrive

Service

Gamepad

Service
Dashboard

Service

Drive

Commands

Drive

Commands

SSC-32

Service

SimPanTiltArm

Entity
SimWireCamDrive

Service

WireCamDrive

Service

ServoNetwork

Service

SimWireCam

Entity

PanTiltCombine

dDrive

Service

WireCamCombi

nedDrive

Service

S
u

rv
e

il
la

n
c

e
S

y
s

te
m

S
e

rv
ic

e

Request /

Response

Notification

Figure 5.14. Schematic of the full system services, including the Pan-tilt camera services.

As can be seen in the figure above, all services from the chapter 4 (Pan-Tilt Camera

services) are used in the WireCam. Five new services are added to the system to control the

servos. WireCamDrive service is a service to control the WireCam. It communicates to the

motor controller board through ServoNetwork service, which is an MRDS wrapper to the

NMC Modules Dynamic Link Library (DLL). NMC Modules DLL is a Windows DLL

provided by the manufacture of the controller boards and includes functions for

communicating with the PIC-SERVO, PIC-STEP and PIC-I/O modules. In this project only

PIC-SERVO module is used.

WireCamDrive service is an implementation of the Generic WireCam Drive. Similar to

Pan-Tilt Camera Drive Service, extending drive services from a generic service allows us to

communicate with multiple implementations of the generic service; a feature that was used in

64

this project to move the WireCam robot and its simulated model synchronously. The Generic

WireCam Drive service was created from scratch and its support logics were then added to

the Dashboard service.

 SimWireCamDrive service is also an implementation of the Generic WireCam Drive

service and controls the simulated WireCam entity. Both drive services receive posted

requests from WireCamCombinedDrive service, which is a repeater service that receives

inputs from the gamepad or dashboard services. The functionality of this service is the same

as PanTiltCombinedDrive, explained in detail in chapter 4. The last service is

SurveillanceSystem service. It is an orchestration service that calls all services required

to run the system. It loads the Dashboard, PanTiltCombinedDrive, and

WireCamcombinedDrive services and the other services are loaded by these three services.

5.5.1 Simulated WireCam Drive Service

Although the Simulated WireCam Drive (SimWireCamDrive) service uses the same

algorithm as the WireCam Drive, there is one step further required in the simulated drive

service: calculating the speed of the Flying-Base. As explained earlier, there is no entity for

wire in Microsoft Visual Simulation Environment and therefore the position of the simulated

Flying-Base does not change based on the tension of wires and spin of servos. Servos and

wires in this simulated model are not really functional but they are there to make the

simulated model look more realistic. However, the servo properties such as their velocities

and encoder counts are the same in both drive services. These properties are used in the

simulated drive service to find the real-time position of the Flying-Base.

Code snippet 5-1 SimWireCamDrive.SetFlyingBaseVelocityHandler method

public IEnumerator<ITask> SetFlyingBaseVelocityHandler(drive. SetFlyingBaseVelocity setVelocity)
{
 if (_entity == null)
 throw new InvalidOperationException("Simulation entity not registered with service");

 if (_entity != null & _entity.servoA !=null)
 {
 float delta_z;

65

 float x_now = _entity.Position.X;
 float y_now = _entity.Position.Y;
 float z_now = _entity.Position.Z;

 double to_P0 = Math.Sqrt(Math.Pow(((CONSTANTS.Xmax / 2.0)), 2) +
Math.Pow(((CONSTANTS.Ymax / 2.0)), 2));

 // Z speed is controlled in another method
 delta_z = (float)CONSTANTS.Z_MAX * _entity.flyingBase.Speed_z;

 // Find the next coordination: P'(x,y,z)
 float x_next = (float)(((setVelocity.Body.X * CONSTANTS.X_MAX) /
(double)CONSTANTS.X_INPUT_MAX) + x_now);
 float y_next = (float)(((setVelocity.Body.Y * CONSTANTS.Y_MAX) /
(double)CONSTANTS.Y_INPUT_MAX) + y_now);
 float z_next = z_now + delta_z;

 //Current Distances
 double[] distances_now = Kinematics.inverse(x_now, y_now, z_now);

 //Next Distances
 double[] distances_next = Kinematics.inverse(x_next, y_next, z_next);

 // Find the current velocity of each servo
 _entity.servoA.Velocity = (float)((distances_next[0] - distances_now[0]) *
CONSTANTS.COUNTS_per_METER / CONSTANTS.T_default);
 _entity.servoB.Velocity = (float)((distances_next[1] - distances_now[1]) *
CONSTANTS.COUNTS_per_METER / CONSTANTS.T_default);
 _entity.servoC.Velocity = (float)((distances_next[2] - distances_now[2]) *
CONSTANTS.COUNTS_per_METER / CONSTANTS.T_default);
 _entity.servoD.Velocity = (float)((distances_next[3] - distances_now[3]) *
CONSTANTS.COUNTS_per_METER / CONSTANTS.T_default);

 // Find the current Count of each servo
 _entity.servoA.Encoder_count = (float)((distances_now[0] - to_P0) *
CONSTANTS.COUNTS_per_METER);
 _entity.servoB.Encoder_count = (float)((distances_now[1] - to_P0) *
CONSTANTS.COUNTS_per_METER);
 _entity.servoC.Encoder_count = (float)((distances_now[2] - to_P0) *
CONSTANTS.COUNTS_per_METER);
 _entity.servoD.Encoder_count = (float)((distances_now[3] - to_P0) *
CONSTANTS.COUNTS_per_METER);

 // Find the velocity of the P on each Axis

66

 _entity.flyingBase.Speed_x = (float)((setVelocity.Body.X * CONSTANTS.X_MAX) /
((double)CONSTANTS.X_INPUT_MAX * CONSTANTS.T_default));
 // multiplied by -1 to match the motion direction with the simulator's coordination
system
 _entity.flyingBase.Speed_y = -1f*(float)((setVelocity.Body.Y * CONSTANTS.Y_MAX) /
((double)CONSTANTS.Y_INPUT_MAX * CONSTANTS.T_default));

 }
 setVelocity.ResponsePort.Post(DefaultUpdateResponseType.Instance);

 // send update notification for entire state
 _subMgrPort.Post(new submgr.Submit(_state, DsspActions.UpdateRequest));
 yield break;
}

In the above code from the SimWireCamDrive service, _entity is a reference to the

WireCam entity. The purpose of this method is to find the new velocity of the Flying-Base in

X and Y directions, based on the algorithm explained in the previous sections, and set it in

the entity. These numbers will then be used in the Update method of the Flying-Base entity

to render it in the simulated scene at the right position.

Code snippet 5-2 FlyingBase.Update method

public override void Update(FrameUpdate update)
{
 base.Update(update);

 // Update the position of the Flying-Base based on the current speed
 xna.Vector3 new_pose;
 new_pose.X = this.State.Pose.Position.X + (float)(Speed_x * update.ElapsedTime);
 new_pose.Y = this.State.Pose.Position.Y + (float)(Speed_y * update.ElapsedTime);
 new_pose.Z = this.State.Pose.Position.Z + (float)(Speed_z * update.ElapsedTime);

 PhysicsEntity.SetPose(new Pose(TypeConversion.FromXNA(new_pose)));
}

5.5.2 WireCam Drive Service

In the WireCam Drive Service the algorithm used to calculate the position of the Flying-

Base is the same as what was used in the simulated drive without the additional step of

finding the velocity of the Flying-base. The PIC-Servo SC controller module has several

67

layers of control modes of operation (Figure 5.15) and based on requirements it can operate

in any of these layers (Kerr, PIC-SERVO Motion Control). The velocity mode is the

operation mode selected for this application. In this mode, as the input changes, the velocity

of servos increases or decreases slowly, which creates smooth motions on the servos.

Figure 5.15. Control layers of PIC-Servo SC (Kerr, PIC-SERVO Motion Control)

To run in Velocity Mode, the trajectory of each servo has to be first loaded with the value

of the velocity and the Start_Now flag, basically makes the servo start to move right away.

Code snippet 5-3 ServoLib.SetServoTraj method

/// <summary>
/// Set trajectory for a servo but no move until GroupMove is called
/// </summary>
/// <param name="addr">Address of servo</param>
/// <param name="counterClockwise">If false then direction=clockwise else, other
direction</param>
/// <param name="vel">servo velocity</param>
public static void SetServoTraj(byte addr, bool clockwise, int vel)
{
 byte mode;
 int pos, acc;
 byte pwm;
 bool result;

 byte current_status;

68

 int move_complete = 0;

 mode = (byte)(Constants.LOAD_VEL | Constants.LOAD_ACC | Constants.ENABLE_SERVO |
Constants.VEL_MODE | Constants.START_NOW);
 pos = 0;
 acc = 100;
 pwm = 0;

 NMCLIB.ServoLoadTraj(addr, mode, pos, vel, acc, pwm); // start the motion
 if (!result)
 {
 Console.Out.WriteLine("Failed to load trajectory to servo #" + addr);
 }

 int counter = 0;
 //wait for the status
 while (move_complete == 0) //wait for MOVE_DONE bit to go HIGH
 {
 NMCLIB.NmcNoOp(addr); //poll controller to get current status data
 current_status = NMCLIB.NmcGetStat(addr);
 move_complete = current_status & Constants.MOVE_DONE;

 // Don't wait forever. Eventually we have to give up!
 counter++;
 if (counter > 30)
 {
 Console.Out.WriteLine("MOVE_DONE hasn't been set to HIGH in servo #" + addr);
 break;
 }
 }
}

The algorithm of WireCam drive is implemented as follow. First, the current position of

the Flying-Base is calculated based on its distance from each servo. Second, the desired

direction of each servo is determined. Now, based on the received input the destination

position and the new distances to each servo are calculated. The next step is to determine the

velocity of each servo and their directions. Once all is determined, the new velocities and

directions of all servos are loaded, using SetServoTraj method, to the control board and a

group move command is sent out to make all servos update their velocities. The process

waits at this state and does not accept any new input until the group move is completed.

69

Code snippet 5-4 ServoLib.GroupMove method

public static void GroupMove()
{
 NMCLIB.NmcSynchOutput(0xFF, 0x00);
}

The two methods mentioned above are from ServoLib class. Inside each of these

methods NMCLIB’s methods are called. NMCLIB class makes NMC DLL’s functions

available to ServoLib class. In general, a managed code cannot call functionalities outside

of the .NET framework. DLLs are one example of unmanaged codes that are usually written

in C++ language. DllImport is a solution provided in .NET to solve this problem (Roof &

Fergus, 2003). In the NMCLIB class this solution is implemented to call the methods of the

NMC Modules DLL (NMCLIB04.dll). The following example from NMCLIB class shows

how ServoLoadTraj method from NMCLIB04 library is imported to the C# code.

Code snippet 5-5 NMCLIB.ServoLoadTraj method

[DllImport("NMCLIB04.dll", EntryPoint = "ServoLoadTraj", CharSet = CharSet.Unicode)]
public static extern bool ServoLoadTraj(byte addr, byte mode, int pos, int vel, int acc, byte pwm);

The following image (Figure 5.16) is a screenshot of the Operator PC screen. The

operator can see the stream of the actual webcam received from the Onsite PC, where the

WireCam system is installed, along with the video stream from the simulated scene. In this

screenshot the entrance door of the Onsite and virtual rooms and part of the mounted

whiteboard are captured in both webcams.

70

Figure 5.16. A screenshot of Operator PC during remote control of the WireCam

5.6 CHALLENGES DURING IMPLEMENTATION AND EXECUTION

Several issues and challenges arose during the implementation and testing of this

chapter’s application causing an unexpected delay in completion of the project. One of the

major challenges was declaration of a pointer in C# which was required in order to work with

the manufacturer’s provided DLL library, NMCLIB04.dll.

 The PIC-SERVO SC Motion Control Board comes with an open source software

package and documentations. The DLL provided for this board was developed in C++ which

lets developers get the DC motor up and running by calling the package's methods instead of

sending commands directly to the board.

The initialization method of the C++ DLL, NmcInit, requires a parameter as pointer data

type which is not a standard data type in C#. After several days of unsuccessful search for a

workaround the decision was made to develop the C++ DLL package in C# from scratch.

That attempt required detailed study of the datasheet and documentations of the board. After

71

some progress was made on the implementation of the DLL functions in C#, a solution was

found to use pointers in C# and the implementation of the package in C# was no longer

required.

Code snippet 5-6 NMCLIB04.dll’s function using a pointer

//---//
// Function Name: NmcInit //
// Return Value: Returns the number of controller found on network //
// Parameters: portname: name of COM port ("COMn:", where n=1-8) //
// baudrate: 19200, 57600, 115200, 230400 (PIC-SERVO only) //
// Description: Initialize the network of controllers with sequential //
// addresses starting at 1. //
//--//
extern "C" WINAPI __declspec(dllexport) int NmcInit(char *portname, unsigned int baudrate)

Code snippet 5-7 StringBuilder is the solution for pointer used in NMCLIB.NmcLib

//Initialization and shutdown
[DllImport("NMCLIB04.dll", EntryPoint = "NmcInit", CharSet = CharSet.Ansi)]
public static extern int NmcInit(StringBuilder portname, int baudrate);

In the design of the simulator, a couple of challenges arose. The first was the fact that

there is not a standard solution to define an entity for wire. Searching for an alternative

solution was finally finished by excluding the wire and the dependency of the Flying-Base to

it and instead drawing lines only for illustration to the operator. Again drawing a line in the

Microsoft Visual Simulation Environment is not supported and extra coding was required to

make that happen.

For this chapter more coding was required as there were services required to be

developed from scratch. Also similar to the last chapter it was required to alter the open

source codes of MRDS. Some of the codes are complicated and in order to add a new

functionality to them it is first required to study and analyse them. This process was quite

time consuming and it involved a lot of debugging.

72

CHAPTER 6

CONCLUSION

The objective of this research was to review popular RDEs, select one, and try out its

features for the robotics world in a practical robotics project. Microsoft Robotics

Development Studio (MRDS) was selected for this research and step by step its capabilities

were tried toward the goal which was implementation and demonstration of a wire-suspended

surveillance system. The robot was first designed, implemented and tested in the Microsoft

Visual Simulation Environment and was then built and simultaneously demonstrated

successfully with its simulated model.

The experience proved that MRDS is a powerful RDE with capability to provide a lot of

solutions. However, MRDS has a long learning curve and the complexity of its advanced

features impacts its helpfulness in speeding up the accomplishment of a project. This robotics

development environment has a wide range of features to learn which makes it hard to master

and refreshing one’s mind on its subjects is required from time to time.

Working with MRDS is a lot easier if the project could be limited to what this

environment offers out of the box. Fewer challenges would be faced if the project goals could

be accomplished by using the existing MRDS services and the Visual Programming

Language (VPL). The services and simulated entities that come with MRDS are still limited.

Not many projects could be completed without a need to implement custom services.

Implementation of some of the fundamental solutions in MRDS is not straightforward.

Two examples of what was experienced in this project are the distribution of services and

synchronized control of the actual robot and its simulated model. Both are not supported in

the MRDS’s standard dashboard service and are not covered in tutorials and documentation

of this framework.

There are things that can be improved or changed for future work on this project:

73

1. In the current implementation both Pan-tilt and WireCam systems cannot be

controlled at the same time due to a limitation in the design of the standard

dashboard as mentioned above. In the current design only one drive service can be

selected at a time. This was an issue during the implementation of each of the

above systems for controlling the actual system and the simulated model of a

system but it was resolved by introducing a repeater service (Combined Drive

Services). However, in this additional unsolved challenge, the drive services of

both systems are already extended different generic services so it is not possible

to apply the same solution here. A possible solution would involve a new service

that partners with both Combined Drive Services and listens to request types of

both generic services and upon receiving one of them posts it to the right generic

drive port. This service should have its own contract identification which is

different from other generic services and recognition of it will be added to the

Dashboard service. It should also cover all operations of both generic services.

2. Instead of the inexpensive wireless camera used in this project a better quality

wireless IP camera could be used. IP cameras were expensive when this project

first started but now with the improvement of the technology there are many

inexpensive IP cameras available. One can even build a unit with Raspberry Pi for

a cost of around $100 (Buenger, 2014).

3. As a recommendation for a future work, using one of the available 3D

reconstruction applications for building 3D objects from the 2D photos of the

object (e.g. Eos Systems Inc's PhotoModeler Scanner, and AgiSoft's PhotoScan),

the simulated scene could have been built automatically. The idea is to let the

WireCam scan the room as an initiation task right after installation in a room and

create the simulated scene based on the images it takes. This would eliminate the

need for measuring the room and programmatically adding objects to the scene.

4. It would also be advantageous to have an algorithm added to the current

application to avoid collisions. Due to the delay and unexpected errors, images

74

from the scene might not reach the operator, and even with the simulator in place

collisions might occur. However, by adding intelligence to the service to avoid

collisions with objects it will be guaranteed that network issues and operator

mistakes could not cause a collision.

75

BIBLIOGRAPHY

Biggs, G., Rusu, R. B., Collett, T., Brian, G., & Vaughan, R. (2012). And all the robots merely Players.

IEEE Robotics & Automation Magazine .

Buenger, C. (2014, May 11). Raspberry Pi as low-cost HD surveillance camera. Retrieved August 5,

2014, from Code Project: http://www.codeproject.com/Articles/665518/Raspberry-Pi-as-low-cost-

HD-surveillance-camera

Cherry, S. (2007, Aug). Robots, Incorporated. IEEE Spectrum , 24 - 29.

D. Salle, M. T. (2007). Using Microsoft Robotics Studio for the design of generic robotic controllers:

the robuBOX Software.

Das, B. and Kozey, J. (1994). A computerized potentiometric system for structural and functional

anthropometric measurements. Ergonomics , 37 (6), 1031.

Digi International Inc. (2014). XBee® ZB RF modules utilizing the ZigBee PRO Feature Set. Retrieved

04 18, 2014, from Digi: http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-

rf-modules/zigbee-mesh-module/xbee-zb-module#overview

Fowler, M. (2002). Patterns of Enterprise Application Architecture.

Gates, B. (2007). A robot in every home. Scientific American , 296 (1), 58-65.

Gerkey, B. P., Vaughan, R. T., & Howard, A. (2003). The player/stage project: Tools for multi-robot

and distributed sensor systems. In Proceedings of the 11th international conference on advanced

robotics, 1, pp. 317-323. Coimbra,Portugal.

Google is to start building its own self-driving cars. (2014, May 27). Retrieved September 19, 2014,

from BBC News: http://www.bbc.com/news/technology-27587558

Griffin, T. (2010). The Art of LEGO MINDSTORMS NXT-G Programming. (pp. 5-6). No Starch Press.

Jackson, J. (2007). Microsoft robotics studio: A technical introduction. IEEE robotics automation

magazine , 82.

Johns, K., & Taylor, T. (2008). Professional Microsoft Robotics Developer Studio. Wrox.

Kerr, J. (n.d.). PIC-SERVO Motion Control. Retrieved 07 25, 2014, from PIC-SERVO Motion Control,

Jeffery Kerr, LLC: www.jrkerr.com/picsrvsc.pdf

Kerr, J. (n.d.). PIC-SERVO SC Motion Control Board. Retrieved Mar 23, 2012, from PIC-SERVO Motion

Control: http://www.jrkerr.com/pssc_bd.pdf

76

Koenig, N., & Howard, A. (2004). Design and Use Paradigms for Gazebo, An Open-Source Multi-

Robot Simulator. Proceedings 01 2004 IEEE!RSJ International Conference on Intelligent Robots and

Systems. Sendai, Japan.

Korean baseball team fills stands with 'Fanbots'. (2014, July 29). Retrieved September 19, 2014, from

CTV News: http://www.ctvnews.ca/sci-tech/korean-baseball-team-fills-stands-with-fanbots-

1.1936686

Kramer, J., & Scheutz, M. (2007). Development Environments for Mobile Autonomous Robots: A

Survey. Autonomous Robots , 22, 101-132.

Lynxmotion. (2007, Jan 31). SSC-32 Ver 2.0. Retrieved Mar 20, 2012, from

http://www.lynxmotion.com/images/data/ssc-32.pdf

McComb, G. (2011). The Robot Builder’s Bonanza. New York: McGraw-Hill/TAB Electronics.

Microsoft. (2008, Nov 17). Microsoft Unveils Microsoft Robotics Developer Studio 2008. Retrieved

Apr 9, 2012, from Microsoft News Center:

http://www.microsoft.com/presspass/press/2008/nov08/11-17robodevelopmentpr.mspx

Microsoft. (2012). Robotics Tutorial 4 (VPL) - Drive-By-Wire. Retrieved Feb 10, 2014, from MSDN:

http://msdn.microsoft.com/en-us/library/bb483038.aspx

Microsoft. (2012). Welcome to Robotics Developer Studio. Retrieved Feb 10, 2014, from MSDN:

http://msdn.microsoft.com/en-ca/library/bb648760.aspx

Oliveira, L. B. and Osório, F. S. and Nakagawa, E. Y. (2012). A Systematic Review on Service-Oriented

Robotic Systems Development. University of São Paulo.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). ROS: an open-source

Robot Operating System. ICRA Workshop on Open Source Software , 3 (3.2).

Roof, L., & Fergus, D. (2003). Working with Unmanaged Code. In The Definitive Guide to the .NET

Compact Framework (pp. 689-734). Apress.

ROS Tutorials. (2013, 09 28). Retrieved Feb 21, 2014, from ROS Wiki: http://www.ros.org/

Russian pizza chain claims to deliver by drone. (2014, June 23). Retrieved September 19, 2014, from

CBC News: http://www.cbc.ca/news/russian-pizza-chain-claims-to-deliver-by-drone-1.2684763

SAFAR. (2012). Retrieved Jan 22, 2012, from MobotSoft: http://www.mobotsoft.com/?page_id=82

Staranowicz, A., & Mariottini, G. L. (2011). A survey and comparison of commercial and open-source

robotic simulator software. in Proceedings of the 4th International Conference on PErvasive

Technologies Related to Assistive Environments (PETRA'11). Crete: ACM.

77

Weiss, R., & Overcast, I. (2008). Finding your bot-mate: criteria for evaluating robot kits for use in

undergraduate computer science education. Journal of Computing Sciences in Colleges , 24 (2), 43-

49.

Zoppi, A. (2012). A Lightweight Open-source Communication Framework for Native Integration of

Resource-onstrained Robotics Devices with ROS. Milan: Politecnico di Milano.

