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ABSTRACT 

The peak position of wide angle x-ray diffraction patterns of nanocrystalline 

triacylglycerols is affected by the temperature. To observe this effect quantitatively, pure 

triacylglycerols and triacylglycerol mixtures were crystallized in a desired polymorph in 

capillaries or a Couette system. The crystallized samples were kept at different 

temperatures and shear rates. The detailed WAXD patterns were obtained using in-house 

x-ray and synchrotron x-ray sources. When the temperature increased, the d-spacing for 

the peaks with small d-spacing increased as well. However, the d-spacing for other peaks 

remained unchanged or just had a very small change. The relationship between differences 

of d-spacing for the peaks with small d-spacing and temperature can be used to estimate 

the real sample temperature, especially under higher shear rate. This provides a new way to 

monitor and control the temperature of the system under study and the effect of high shear 

rate on nanocrystalline triacylglycerol crystallization. 
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CHAPTER 1 INTRODUCTION 

With the development of society, people have never lost their interest in finding  novel 

methods to prepare food. People expect food to bring more pleasure to their lives. 

Therefore, food scientists and technologists devote themselves to advance the science of 

food and ensure a safe and abundant food supply. The food industry is doing its best to 

satisfy the need of providing good texture and taste of  food products. The understanding 

of food ingredients and the methods to modify and manipulate the ingredients to get 

better food are more and more important. Luckily, food science provides us with a large 

platform to achieve better food. 

Dietary fat is one of the main nutrients for humans. Dietary fat provides people with 

energy storage resources. More importantly, it provides essential fatty acids to help 

regulate body functions and carry the fat-soluble vitamins. From the point of view of 

food, dietary fat is also an important ingredient in many daily foods, such as chocolate, 

margarine, butter, spreads and baked products. Dietary fat provides a creamy texture and 

special mouth feel of the products. It also plays a critical role in food structures. Fat 

crystallization, the formation of solid fat crystals, always occurs during the industrial 

manufacturing and the storage of the fat-based foods. It has a great impact in the texture, 

shelf life and food quality of the fat-based foods (Metin and Hartel, 2005). In order to 

improve the quality and the ability of fat-based foods to meet the current market 

demands, a better understanding of the fat crystallization process of dietary fat from 

physics, chemistry and biochemistry is needed (Sato et al., 1999). 

Many researches show that the sensorial attributes of many common fat-based foods are 

derived from the network structure of the crystalline fat (Narine and Marangoni, 1999, 



2  

Wright et al., 2000, Mazzanti et al., 2005). Many sensorial attributes, such as texture, 

spread ability and mouthfeel, are dependent on the mechanical strength of the fat crystal 

network (Narine and Marangoni, 1999). Some factors play an important role in 

determining the crystallized fat structure, such as the solid fat content, microstructure of 

the crystal and the types of polymorph. The processing conditions, such as crystallization 

temperatures, shear rates and cooling rates, have great effects on the fat crystallization. 

The complexity of natural fats in the fat-based foods limits the accuracy of 

manufacturing and results in uncertain quality of the products. This research aims to 

observe the behaviour of nanostructure during the lipid crystallization process under 

several constant temperatures and shear rates using x-ray diffraction techniques. It was 

noticed in previous studies that the peak position of wide angle x-ray diffraction 

(WAXD) patterns is affected by the temperature (Mazzanti, unpublished). In order to 

observe this effect quantitatively, crystallization of different kinds of triacylglycerols 

(TAGs) and their mixtures, which are normally the main or critical components of the 

food products, are studied at different controlled temperatures and shear flow. This thesis 

describes how different WAXD peaks change their position as the temperature changes 

and provides a new attempt to study the change of sample temperature when a shear rate 

is applied. It is particularly interesting that the anisotropy of the nanocrystals is evident 

by these changes. The findings of this research should help future studies of academic 

researchers and the food industry to develop a deeper knowledge of lipid crystallization, 

leading to better products and manufacturing procedures. 

 

1.1 Objectives 

The general research aim of our lab is to gain a better and wider understanding of the 
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characteristics of the triacylglycerols crystallizing under different temperatures and shear 

rates. 

The specific objectives of this Thesis are: 

 To study how different WAXD peaks of the pure triacylglycerol crystals change their 

position as the temperature changes. 

 To observe how different WAXD peaks of triacylglycerol mixture crystals with 

difference proportions change their position when the temperature changes. 

 To investigate how the WAXD peaks of triacylglycerol crystals change their position 

under shear when the temperature changes under different shear rates. 

 To compare the change of WAXD peaks of triacylglycerol crystals with and without 

shear. 

 To utilize WAXD vs. temperature as an intrinsic thermometer to study the 

thermomechanical increase of temperature at high shear rates.  
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CHAPTER 2        LITERATURE REVIEW 

2.1. Fat Crystallization 

In the food industry, fat crystallization has been applied in two ways: one is to process fat 

crystal containing products, such as chocolates and margarine; the other one is to separate 

specific fats and liquid materials from natural resources (Sato, 2001). Fat molecules 

rearrange themselves to form a solid crystalline lattice from a supersaturated liquid or 

solution. Fat crystallization is a kinetic process in which the lipid melt must be significantly 

supercooled to start crystallization. 

As shown in Figure 2-1, triacylglycerol (TAG) molecules crystallize from the melt via 

mass and heat transfer to form crystals which then aggregate to particles, larger clusters, 

until a three dimensional space filling network forms (Acevedo and Marangoni, 2010).  

  
Figure 2 - 1    Schematic representation of the different levels of structure in a bulk fat 

(Acevedo and Marangoni, 2010). 
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2.1.1 Triacylglycerols 

Triacylglycerol molecules (TAG), which have a complex polymorphism, are the main 

component of edible fats. Triacylglycerols constitute more than 95% of the edible fat 

composition. They are composed by three fatty acids esterified to one glycerol unit. There 

are several kinds of TAGs. One is called monoacid TAGs or simple TAGs, which means 

that there is just one type of fatty acids attached to the glycerol unit, such as trilaurin and 

tristearin. The other is called mixed-acid TAGs or mixed TAGs. Two or three types of fatty 

acids are attached to the glycerol unit. FA can be saturated (no C=C double bonds) or 

unsaturated (C=C double bonds). 

 

Figure 2 - 2    The structure of typical saturated triacylglycerol molecules (Metin and 

Hartel, 2005) 

 

2.1.2 Polymorphism 

Polymorphism is the ability of a molecule to crystallize in more than one crystalline form. 

The crystalline form is dependent on the arrangement within the crystal lattice (Metin and 

Hartel, 2005). Polymorphic forms are crystalline phases with different structural 

characteristics, but with identical chemical compositions when melted in their liquid state. 

In lipids, differences in hydrocarbon chain packing and the tilt angle of the packing are the 

cause of different polymorphs. The formation of one polymorph or another is mainly 
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influenced by the molecular structure and the external factors, such as temperature, 

pressure, impurities and shear rate. The rate of crystallization can also affect polymorph 

formation (Sato, 2001).   

 

2.1.2.1 Polymorphic Types and Sub-Cell Structures 

The chain length structure produces a repetitive sequence of the acyl chains involved in a 

unit cell lamella along the long-chain axis. This plays an important role in the phase 

behavior of different types of TAGs in a solid phase. A double chain length (DCL) 

structure is formed when the chemical properties of the three fatty acids are the same or 

similar. A triple chain length (TCL) structure is formed when the chemical properties of 

one or two of the three fatty acids are largely different from others (Sato, 2001). 

A special sub-cell structure is defined as a lateral cross-sectional packing mode of the 

hydrocarbon chains of TAGs (Vand and Bell, 1951; Hagemann and Rothfus, 1993; van 

Langevelde et al. 1999). The subcells are described by a capital letter and a symbol. The 

letter indicates the symmetry (e.g., O for orthorhombic, T for triclinic, M for Monoclinic) 

and the symbol indicates either a parallel (//) or perpendicular (⊥) position between the 

zigzag planes of the different chains. In crystalline fat there are 10 types of sub-cell 

structures that have been revealed. Among these five sub-cell structures are predominant: 

H, O⊥, O’//, T//, and M//.  

In the hexagonal (H) subcell structure, the two-dimensional lattice is hexagonal and gives a 

broad 0.41 nm wide-angle x-ray diffraction pattern. The carbon atoms rotate several 

degrees and form disordered conformations of hydrocarbon chains. This is why the chain 

packing of the hexagonal (H) subcell structure is loose and the specific chain-chain 

interactions are lost. In the orthorhombic perpendicular (O⊥) subcell structure, the two 
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dimensional lattice is rectangular. This means a tightly packed lattice with specific chain-

chain interactions. This subcell structure is characterized by strong wide angle x-ray 

diffraction patterns at 0.37 nm and 0.41 nm. The triclinic parallel subcell structure (T//) has 

an oblique two-dimensional lattice. There is strong specific chain-chain interaction because 

of the tightly packed chains. This T// subcell structure is characterized by a strong wide-

angle XRD pattern at 0.46 nm and week patterns at 0.39 nm and 0.38 nm. Two sub-cells of 

O’// and M// contain the zigzag aliphatic chains and are arranged in a parallel manner. 

There are several other sub-cell structures and some of them belong either to O⊥ or to T// 

(Sato and Ueno, 2005). 

Natural fats display complex polymorphisms during crystallization because they contain a 

huge number and variety of fatty acids. There are three main fat crystal polymorphs: α 

(hexagonal sub-cell) is an unstable form; β′ (orthorhombic perpendicular sub-cell) is a 

metastable form and hydrocarbon chains that are inclined with respect to the basal plane 

by about 108 degrees; and β (triclinic sub-cell) is the most stable form and has a triclinic 

parallel sub-cell with the hydrocarbon chains inclined at about 128 degrees (Takeuchi et 

al., 2003).   

 

Figure 2 - 3    (a). Chain-length packing structure in TAG. (b). The polymorph sub-cell 

structure (Himawan et al., 2006). 
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2.1.2.2. Polymorphic Transition 

Since the β polymorph is the most stable form, all other forms of crystals tend to 

transform to β in the end. Figure 2-4 shows the difference of the Gibbs energy of 

formation of the three major polymorphic forms (α, β′, and β). The hypothetical transition 

starts from the initial free energy G of the liquid to the three main polymorphic types. The 

transition depends on the energy barrier ΔG∗(α), ΔG∗(β′), and ΔG∗(β) also the free energy 

of formation ΔGf(α), ΔGf(β′), and ΔGf(β). ΔG should be negative for a spontaneous 

transformation. A higher degree of undercooling below the melting point is required to 

form a more stable polymorphic form like β, while a lower degree of undercooling is 

enough to form a metastable form like α (Rousset, 2002). 

 
                                                                  (a) 

 
                                                                  (b) 

Figure 2 - 4    Energy barrier diagram for the 3 main polymorphic forms of a TAG at a 

given condition below their melting temperatures. (a) General concept (Rousset, 2002), 

(b) Calculated specifically for trimyristin at 273 K. 
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The polymorphic transitions happen monotropically from less stable polymorphic forms to 

more stable polymorphic forms (Ostwald’s step rule) because TAG molecules tend to 

form the most stable subcell and arrange to accomplish the most efficient space-filling 

close-packing (Marangoni & Wesdorp, 2013). Figure 2-5 shows that the polymorphic 

transition within the solid phase could occur from α to β’ and β or from α to β directly. 

And all polymorphic forms can be crystallized directly from a hypothetical liquid crystal 

structure (Sato, 1993). The recrystallization of a more stable phase from the melting of a 

less stable phase can reduce the total activation energy of polymorphic transition if the 

liquid retains some organization (Sato, 1993). The transition of β’ to β sometimes takes 

place in the solid state. The hydrocarbon chain packing changes to T// with end group 

panes (1/3, 0, 1) from O⊥ with end groups (1,1,1). The overall packing is improved and 

the stability relation between β’ and β can be explained (Larsson, 1972).  

 
Figure 2 - 5    Polymorphic transition pathway in fat (Marangoni and Wesdorp, 2013) 

 

2.1.2.3 Basic Methods for Studying the Polymorphism of Fats 

There are many methods we can use to study the polymorphism of fats, such as DSC, x-ray 

diffraction and NMR. DSC analysis is the basic tool providing the data of temperatures, 
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enthalpy and entropy values of melting, crystallization, and polymorphic transitions. DSC 

analysis is a prerequisite for isolation of individual polymorphic forms and determination 

of their thermal properties and stability. XRD gives us the chance to study the molecular 

structural information. Small-angle diffraction patterns tell us the lamellar distance (long 

spacing) while wide-angle diffraction patterns reveal the subcell structure (short spacing) 

of the crystals. SAXD patterns give information about the number of phases formed and 

the amount of each phase formed as crystallization proceeds. WAXD patterns give 

information about the lateral distances between hydrocarbon chains in a crystal, which are 

characteristic of a particular polymorph. NMR is also a powerful tool for studying the 

molecular conformations of the TAGs in a crystalline state. Adam-Berret et al. proved that 

TD-NMR could evaluate triacylglycerol polymorphism, independently from temperature 

and chain length. T2 measurements are known to be a method for the determination of 

different properties of TAGs (Adam-Berret et al, 2008). Cross-polarization and magic-

angle spinning NMR (CP/MAS NMR), is helpful for studying the molecular conformations 

of the TAGs in a crystalline state (Arishima et al, 1996). 

 

2.1.3 Mechanisms of Crystallization 

Three different events are involved during lipid crystallization. They are the induction of 

crystallization, also called nucleation, crystal growth and crystal perfection or crystal 

ripening (Vazque, et al, 2001). Because of the continuous variation of the thermodynamic 

conditions in a crystallization process, such as supersaturation or supercooling, these events 

occur simultaneously and at different rates. 

In order to study crystallization, several mechanistic models have been developed. The 

Fisher-Turnbull model describes the nucleation and molecular diffusion by establishing the 
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dependence of nucleation rate on the activation free energy. The Avrami model is famous 

for describing the mechanism of crystal growth and the overall crystallization rate (Toro-

Vazquez et al, 2001). The application of these mechanistic models to simple and complex 

lipids has given us lots of helpful information to study and understand TAG crystallization 

(Metin and Hartel, 2005).  

In this study it was necessary to have a basic understanding of these mechanisms, to be 

able to develop temperature-time protocols that produced the target polymorphic forms that 

were sought. 

 

2.1.3.1. Nucleation 

When the temperature of a liquid fat decreases under the melting point of the highest 

melting TAG in the mixture, the melt becomes supersaturated. This undercooling or 

supercooling below the melting temperature of the crystallizing species forms the 

thermodynamic driving force for changing from liquid to solid. The occurrence of 

supercooling or supersaturation is a requirement to develop nucleation (Marangoni and 

Rousseau, 1999). This thermodynamic drive brings the molecules into a “liquid structure,” 

until a critical size of monomers aggregates and then thermodynamically stable solid nuclei 

are formed (Toro-Vazquez, 2002). A nucleus is the smallest crystal that can exist in a 

solution in equilibrium at a certain temperature. The formation of a nucleus from the liquid 

phase requires the molecules to organize into a crystal lattice. Fats usually have to be 

undercooled by at least 5°C to 10°C before they start to crystallize. For a few degrees 

below the melting point, the melt exists in a metastable region and the molecules begin to 

aggregate into tiny clusters called embryos. Embryos continuously form and breakdown, 

but do not persist to form stable nuclei. The energy of interaction between TAG molecules 
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has to be greater than the thermal energy of the molecules in the melt to overcome 

Brownian effects. As the undercooling is increased, stable nuclei of a specific critical size 

are formed (Marangoni and Wesdorp, 2013).  

The nucleation rate is the major determining factor in the number and size of crystals 

formed, their polymorphic form, and the ultimate distribution of crystalline solids (Metin 

and Hartel, 2005). There are three most common types of nucleation: primary 

homogeneous nucleation, primary heterogeneous nucleation and secondary nucleation.  

 

Homogeneous Nucleation 

The primary homogeneous nucleation occurs in pure solutions where the foreign interfaces 

are absent and may occur in a melt when there is significant undercooling. The accretion of 

molecules in the liquid phase is the base of the homogeneous nucleation.  

Depending on temperature and supersaturation, an accumulation process occurs and 

continues until a stable nucleus forms. Firstly, single molecules get together to form dimers. 

By adding a molecule, dimers become trimers and eventually the nuclei form.  

The creation of a solid-liquid interface requires energy, leading to an increase in the free 

energy of the system; however, the creation of a nucleus also causes a decrease in the free 

energy of the system (Marangoni and Wesdorp, 2013). The balance of these two energies 

determines the critical size of a nucleus, and its mathematical expression is known as the 

Gibbs-Thomson equation.  

 

Heterogeneous Nucleation 

In practice, nucleation often occurs in the presence of foreign particles or interfaces. The 

presence of foreign particles, such as dust particles or vessel walls, reduces the free energy 
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required for nucleation. Foreign particles reduce the effective surface free energy because 

the foreign surface makes the crystal-melt interfacial tension lower and the foreign surface 

also provides some energy needed to overcome the formation of the crystal surface (Metin 

and Hartel, 2005). Therefore, primary heterogeneous nucleation requires a much lower 

driving force (supersaturation or subcooling) than homogeneous nucleation. Heterogeneous 

nucleation is likely the result of interaction at the interface between the solid particle and 

the fluid that is supersaturated (Marangoni and Wesdorp, 2013). 

 

Secondary Nucleation  

Secondary nucleation is the process where new crystal nuclei form contacts with existing 

crystals or crystal fragments (Metin and Hartel, 2005). It normally proceeds once some 

primary homogeneous or heterogeneous nucleation has happened. 

Secondary nucleation is affected by many parameters. They include the driving force of 

crystallization, temperature, foreign matter, agitation, the size and number of existing 

crystals, and the roughness of crystal surface. When crystal slurry is agitated in a vessel, 

the crystals contact with vessel walls, other crystals and the stirrer may lead to fractures of 

the existing crystal structure and finally the formation of secondary nuclei (Metin and 

Hartel, 2005). Secondary nucleation may also occur when microscopic crystalline elements 

are separated from an existing crystal surface. 

Like primary homogeneous and heterogeneous nucleation, secondary nucleation also 

depends on the crystallization driving force (supersaturation or subcooling). At higher 

supersaturation there are more stable nuclei being formed (Marangoni and Wesdorp, 2013). 
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2.1.3.2 Crystal Growth 

Once nuclei have formed and reached the critical size, they grow by incorporating other 

TAG molecules from the liquid phase. The correct configuration and the correct location 

on the crystal surface are determinants of the binding into a lattice when a new TAG 

molecule migrates from the liquid phase to the existing nuclei (Marangoni & Wesdorp, 

2013). 

For crystal growth to take place, the TAG molecules must migrate from the liquid phase to 

the crystal surface. A growth unit, which is either an individual molecule or a cluster of 

molecules, migrates to the surface of crystal until there is an appropriate site for 

incorporation into the lattice. Crystal growth keeps going as long as the driving force for 

crystallization exists. There is a release of latent heat when the growth unit has been 

incorporated. This energy diffuses away from the growing surface and makes the 

temperature of the whole system increase if the system is isolated. When the whole system 

is either fully crystallized or it reaches phase equilibrium, no further overall crystal growth 

can occur (Metin and Hartel, 2005). If the system is kept isothermal, the heat will be 

removed until the system reaches phase equilibrium. 

The rate of crystal growth depends on several factors. They include the degree of 

supercooling, the structure of the crystal surface, the rate of the molecular diffusion to the 

crystal surface, the nature of the surface of crystal-melt and the difference between the rate 

of the attachment and the detachment of the molecule on the interface (Fisher and Kurz, 

1992). The crystal growth is also affected by lipid composition, temperatures, and shear 

rates (Mazzanti et al., 2005). 
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2.2 Principles of X-Ray Diffraction 

An x-ray beam is an electromagnetic wave characterized by an electric field whose strength 

varies sinusoidally with time at any one point in the beam (Cullity, 1956). 

X-ray diffraction is widely used in structure analysis. X-ray diffraction can be used to 

determine the structure of a compound and phase, identify a phase by comparison with a 

data base, follow the formation and reactivity of a phase, observe changes in lattice 

constants under stress/change and obtain a microscopic image of phases in a heterogeneous 

sample. Bragg's law established a relationship between nanostructural distances and the 

measurable x-ray diffraction angle (Bragg, 1913). Thus, by using x-rays of known 

wavelength λ and measuring θ, the spacing d of various planes in a crystal can be 

determined (Cullity, 1956). 

The x-ray used for XRD has just one wavelength after passing the monochromator. When a 

beam of x-rays passes through the sample and hits a crystal, most of the x-rays go through, 

but some x-rays are scattered by the crystals in the sample, due to interaction with the 

electrons of the atoms. When scattered, the single beam of x-rays is split and the x-rays 

come out of the sample in several beams at different angles to the sample. The beams can 

form constructive or destructive interference, depending on the scattering angles. The 

detected position and strength of these constructive interferences is called the diffraction 

pattern. 

Each polymorphism and phase diffracts x-rays differently and has a different x-ray 

diffraction pattern. The pattern of a mixture is made up by all the patterns of each 

compound. Viewed as different sets of planes in the crystal, the geometry of the x-ray 

diffraction is shown in Figure 2-6. For a given set of lattice plane with an inter-plane 

distance of d, the condition for a diffraction peak can be written as: (Bragg, 1913) 
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nλ = 2dsinθ                                                                     (1)               

where λ is the wavelength of the x-ray, θ is the scattering angle and n is an integer 

representing the order of the diffraction peak. In the Bragg law, firstly, the incident beam, 

the normal to the reflecting plane, and the diffracted beam are always coplanar. Secondly, 

the angle between the diffracted beam and the transmitted beam is always 2θ (Cullity, 

1956). 

It is more convenient to use the reciprocal lattice spacing q rather than the diffraction angle 

2θ when analyzing x-ray diffraction data. According to Bragg’s law,  

q = 4π/(nλ)*sinθ                                                           (2) 

Therefore, q =2π/d. Because the value of q is independent of wavelength λ, the x-ray 

diffraction patterns taken at different wavelengths can be compared directly. 

 
Figure 2 - 6    Geometry of the reflection of x-rays from crystal planes used in the 

derivation of Bragg’s law (Marangoni & Wesdorp, 2013). 

 

2.2.1 Miller Indices 

Miller indices, a workable symbolism for the orientation of a plane in a lattice, are defined 

as the reciprocals of the fractional intercepts which the plane makes with the 
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crystallographic axes. If the Miller Indices of a plane are (hkl), then the plane makes 

fractional intercepts of 1/h, 1/k, 1/l with the axes, and if the axial lengths are a, b and c, the 

plane makes actual intercepts of a/h, b/k, c/l (Cullity and Stock, 2001). 

The Miller indices are very useful in calculating the separation of the planes (Marangoni 

and Wesdorp, 2013). The value of d, the distance between adjacent planes in the set (hkl), 

may be found from the following equations (Cullity and Stock, 2001). 

Hexagonal:     
1

𝑑2
=

4

3
(

ℎ2+ℎ𝑘+𝑘2

𝑎2
) +

𝑙2

𝑐2
                                                                     (3) 

Orthorhombic:      
1

𝑑2 =
ℎ2

𝑎2 +
𝑘2

𝑏2 +
𝑙2

𝑐2                                                                       (4) 

Triclinic:   
1

𝑑2 =
1

𝑉2 (𝑆11ℎ2 + 𝑆22𝑘2 + 𝑆33𝑙2 + 2𝑆12ℎ𝑘 + 2𝑆23𝑘𝑙 + 2𝑆13ℎ𝑙)                 (5) 

In the equation, V is the volume of the unit cell. 

          V=𝑎𝑏𝑐√1 − 𝑐𝑜𝑠2𝛼 − 𝑐𝑜𝑠2𝛽 − 𝑐𝑜𝑠2𝛾 + 2𝑐𝑜𝑠𝛼 𝑐𝑜𝑠𝛽 𝑐𝑜𝑠𝛾                              (6)                                                    

          S11=b2c2sin2α,                                                                                             (7) 

          S22=a2c2sin2β,                                                                                             (8) 

          S33=a2b2sin2γ,                                                                                             (9) 

          S12=abc2(cosα cos β – cosγ)                                                                         (10) 

          S23=a2bc (cos β cos γ – cosα)                                                                        (11) 

          S13=ab2c (cosγ cos α – cos β)                                                                        (12) 

These equations will be used later to estimate the changes in (a,b,c) and crystal volume due 

to the temperature change. 

 

2.2.2 Wide Angle X-Ray Diffraction (WAXD) 

WAXS or WAXD can be used to determine the crystal structure, crystallinity and to study 

the molecular orientation in a crystal. Compared to the small-angle x-ray diffraction 
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(SAXD), Wide-angle x-ray diffraction is the same technique except the distance from 

sample to the detector is much shorter and the diffraction maxima at larger angles are 

observed (Bower, 2002).  

In lipid crystallization, the wide-angle x-ray diffraction (“short-spacing” region) patterns 

give information about the lateral distances between two hydrocarbon chains in a crystal. 

The number and position of the peaks permit the identification of the different polymorphic 

forms of TAGs, which was discovered by Malkin in 1934 (Marangoni and Wesdorp, 

2013). In the small-angle region (or “long spacing” region), the position of the peaks 

provides information on the size of the TAG chain length and the angle of tilt of the TAG 

chains relative to the normal. It gives the information about the number of phases formed 

and the amount of each phase formed as crystallization proceeds (Acevedo and Marangoni, 

2010).  

Vand & Bell (1951) succeeded in determining the hydrocarbon chains of a TAG. Jensen & 

Mabis (1963) determined the structure of β form tricaprin (CCC) which has an asymmetric 

“tuning-fork” conformation and got the cell parameters of β-CCC. Larsson (1965) present 

the crystal structure of β-LLL and Gibon et al. (1984) further refined the β-LLL structure. 

Skoda et al. (1967) and De Jong & Van Soest (1978) also contributed to the determination 

of the unit cell of β-SSS. Van Langevelde et al. (1999) summarized the cell parameters of 

different β mono-acid even-numbered triacylglycerols which were determined by different 

researchers. They also present the cell parameters for β form PPP and transformed the 

experimental cells of β-CCC, β-LLL and β-PPP to the same reference axes, which made 

the comparison of homologous series of triacylglycerols possible. With the cell parameters 

present in the paper published by Van Langevelde et al. we can estimate the changes in 

density due to the temperature using the Miller indices equations of triclinic crystal cell 
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(Van Langevelde et al, 1999). 

The nucleation and growth processes determine the type of polymorphic structure formed, 

but also determine the size of the nano-platelets and the ‘perfection’ of the crystals formed 

(Acevedo et al, 2011). The thickness of the nanoplatelets can be estimated from the 

widening of the SAXD peaks (Mazzanti et al, 2005). On the other hand, an increase in the 

correlation length in the ‘a’ and ‘b’ directions reduces the width of the WAXD scattering 

peaks.  

  

2.2.3 Temperature Effect on the X-Ray Diffraction Peaks 

As a powerful tool, x-ray techniques, including wide/small angle x-ray scattering and 

wide/small angle x-ray diffraction, are widely used in different research areas. In the 

membrane science, WAXS analysis and molecular modeling were carried out for 

interpreting d-spacings in 6FDA-based polyimide (Shimazu et al, 2000). Koberl et al. 

(1998) characterized the polymorphic behavior of glycolipid model membranes as a 

function of temperature using wide and small angle synchrotron x-ray scattering (Koberl et 

al, 1998). 

Sirelli et al. (2006) studied the structural changes in the crystalline and amorphous phases 

of polyethylene terephthalate (PET) samples using wide angle x-ray diffraction. The 

crystallite sizes in the a and b directions slightly increased. The results indicated a growth 

in the crystal lateral dimensions, while in the c direction practically no variation was 

observed. Due to the thermal expansion, the volume of unit cell had a discrete increase and 

its density decreased (Sirelli et al. 2006).  

In lipid crystallization, many scientists have studied the effect of temperature and other 

important factors on lipid crystallization using x-ray techniques. Mazzanti et al. (2005) 
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discovered that the small angle x-ray diffraction peak positions of palm oil at 22 °C were 

higher than at 17 °C for the same shear rate. Mazzanti et al. (2005) also found the peak 

positions of Small-angle x-ray were correlated to compositional variation of crystals in  

milk fat. (Mazzanti et al., 2004). MacMillan and Roberts (2002) found that in situ small-

angle x-ray scattering (SAXS) polymorphisms change in cocoa butter samples was 

correlated with temperature, and these findings were later expanded by Himawan (2006) 

and by Mazzanti (2007). However, for triacylglycerols and edible fats, the wide angle x-ray 

diffraction variation with temperature has not been methodically studied. 

 

2.3 Crystallization under Shear 

2.3.1 Shear Effect on Fat Crystallization 

Shearing, as a regular industrial manufacturing process, is widely used in the food industry 

during the fat crystallization process. One of the famous examples is the production of 

chocolate. The quality of chocolate is highly dependent on the proper application of  

tempering and shearing. Stapley et al. (1999) found the higher melting polymorphic form 

predominated when the shear rate was high enough and the temper time was long enough 

in the crystallization of chocolate. Also, shearing is one of the factors affecting the 

consistency and spreadability of butter and margarine (Mazzanti, 2005). Therefore, 

understanding the effect of shear on fat crystallization plays an important role in process 

and equipment design for the entire food industry. 

Studies show shear flow increases the speed of crystalline orientation and reduces the 

phase transition time of polymorphic forms when it is applied to crystallizing lipid 

systems (Mazzanti et al, 2003). Shear can also alter the phase composition of the final 

product. Mazzanti et al. (2004) also reported the existence of a new phase (phase X) of 
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cocoa butter, which was not observed under static conditions previously, as well as the 

previously unreported existence of the phase IV structured under shear.  

Dhonsi and Stapley (2006) tested shear rates ranging from 1 to 50 s-1 at four different 

isothermal temperatures on the tempering of cocoa butter. At 23 °C, induction times were 

shear dependent, with higher shear rates producing higher melting samples, suggestive of 

higher melting polymorphs. 

Mazzanti et al. (2005) studied the shear effect on the crystallization of palm oil in a 

Couette cell using a synchrotron beamline and found that shear induced the acceleration of 

the phase transition from α to β′. The α nuclei form many distinct small crystallites and 

can easily transform to β′ form. The increased shear rate could promote the crystallization 

of the higher melting fraction and affect the composition of the crystallites.  

The effect of shear on solid fat content (SFC) was also studied by Mazzanti’s research 

group using Rheo-NMR system. The viscous heat generation produced by the shear energy 

may lead to the lower SFC at higher shear rate. A combination of direct and indirect 

methods had been developed to estimate the temperature increase due to viscous heating 

(Mazzanti et al. 2008). Above a limiting value, the increase in shear starts delaying the 

onset of crystallization, perhaps due to generation of viscous heat. Shear is also likely to 

produce a significant enhancement of heat transfer and to foster crystallite collisions  

(Mazzanti et al, 2005). 

 

2.3.2 Studies on Shear Effect on the X-Ray Diffraction 

Mudge and Mazzanti (2009) studied crystallization of cocoa butter, and applied shear rates 

between 45 and 720 s-1 which were shown to have accelerated phase transitions compared 

to static experiments. A shear rate of 720 s-1 delayed phase transitions, likely due to viscous 
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heating of the sample (Mudge and Mazzanti, 2009). 

Mazzanti et al. (2009) found that the applied shear affected the composition trajectory of 

the crystallization by changing the lamellar thickness calculated from the peak positions. 

At higher shear rates the values of d tended to be larger and the values of d are 0.03 nm 

larger under shear than under static conditions. The application of shear favors the 

crystallization of longer molecules belonging to the higher melting point fraction. Higher 

levels of shear reduce the concentration gradient across the boundary layer, and may also 

cause an increase in temperature due to viscous heating (Mazzanti et al, 2009). 

Shear flow affects the kinetics of crystallization and modifies the composition of the solid 

and liquid phases obtained during crystallization. Synchrotron x-ray diffraction patterns 

were captured and showed the integrated intensity, average thickness, and average lamellar 

spacing of the crystalline nanoplatelets were modified by the shear rate step. Thickness and 

crystalline orientation increased, evidently after the shear rate step-up  (Mazzanti et al. 

2011). 

The shear flow also affects the temperature of the fat samples and crystallization process 

due to the viscous heating effect. Because the viscosity of most liquids and soft materials is 

highly temperature dependent, viscous heating is a common source of error under high 

shear rates. For example, under high shear rates the temperature set for the sample holder 

does not match the actual temperature of the sample. The heat produced by the 

intermolecular friction under high shear rate is unavoidable. In practice, the temperature of 

the sample during crystallization of triacylglycerols cannot be measured directly because 

the gap between the sample tube and the rotating shaft is too small to insert any 

temperature measuring devices, and an immersed measuring device would distort the flow 

(Wang and Mazzanti, 2011).   
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Devices have been developed to study the crystallization behaviour of triacylglycerols 

using Rheo-NMR and Rheo-XRD (Mudge and Mazzanti, 2009; Mazzanti and Mudge, 

2008; Mazzanti et al, 2008). If the temperature of samples can be estimated through the 

changes of x-ray diffraction peaks, it provides a great chance to combine these two systems 

together to get a more complete picture of the crystallization of triacylglycerols under shear 

flow. 

  



24  

CHAPTER 3        EXPERIMENTAL METHODS AND MATERIALS 

3.1 Materials 

3.1.1 Sample Preparation 

Trilaurin (LLL), trimyristin (MMM), tripalmitin (PPP) and tristearin (SSS) were 

purchased from Sigma-Aldrich Chemical Co. and had a purity of at least 99%. No further 

purification was carried out.  

The binary mixtures (dry blends) were prepared by mixing the weighted samples in 

composition on a weight per weight basis. For example, the LLL: MMM ratios were 

30:70, 50:50 and 70:30, denoted as 3L7M, 5L5M and 7L3M. In this research, 3L7M, 

5L5M, 7L3M, 3M7P, 5M5P, 7M3P, 3P7S, 5P5S, 7P3S and 5L5S were prepared.  

The samples mentioned above were melted at approximately 100 °C using a hot plate 

(Cole-Parmer, USA). 20-30 μL of sample was transferred to the x-ray capillary (Charles 

Supper Co., 1.5 mm diameter, 10 μm wall) by using a preheated disposable capillary tube 

with a wire plunger (Drummond Scientific Company, Wiretrol® II, Cat. Number 5-000-

2010, 5 μL and l0 μL) and sealed by fire. 

Cocoa butter and the commercial product, 99% dark chocolate, were also used in this 

research. Cocoa butter was stored at -20 °C in the fridge for a long time and it was 

crystallized in the β form. 99% dark chocolate was purchased in the local supermarket and 

the chocolate was crystallized in β form (V phase). The solid cocoa butter and 99% dark 

chocolate were chopped into tiny pieces and put into the capillaries without melting and 

sealed by fire.  

For the experiments with shear flow, 6B4P and 6B4S were prepared as samples. Since the 

amount of sample needed in the mini Couette Cell was much larger than the capillary cell, 
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in this case BBB acted as a solvent to dissolve PPP and SSS. These samples were also 

prepared by mixing the weighted samples in composition on a weight per weight basis. 

The BBB: PPP ratio and the BBB: SSS ratio was 60:40. The samples were melted and 

placed in the sample tubes, which fitted the mini Couette cell. 

 

3.2 In-House Wide Angle X-Ray Diffraction Measurements 

The in-house WAXD experimental set up is shown in Figure 3- 1. The x-ray generator 

had a Commercial GeniX x-ray source (Xenocs Corporation, Sassenage, France), which 

produced 0.7093 Å wavelength Mo Kα radiation. The x-rays were focused by a mirror and 

then collimated by two sets of scatterless slits which were aligned on a small diameter 

vacuum fly-path.  

 
Figure 3 - 1    In-house XRD set up. 

 

The x-ray beam was projected to the sample capillary right after it passed the fly-path. 

The beam size at the sample was approximately 0.4 mm x 0.5 mm. 

The detector used in our in-house x-ray experimental set up was XRI-UNO/Si 2D x-ray 

detector (XRAY-IMATEK, Barcelona, Spain). The detector was built as a single chip 
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array of silicon sensors and its active area was 14 mm × 14 mm. The pixel size (ps) was 

0.055 mm ×0.055 mm. The detector camera was controlled and all the images were 

collected by software named ‘XRI-UNO’. 

There was an enclosure around the whole x-ray system to isolate the surroundings and 

minimize the danger of x-ray exposure. 

 

3.2.1 Centering the Diffraction Patterns 

The detector needs to be moved to the center position where both x-axis and y-axis are 0 

before putting the sample capillary into the capillary holder. The center location is used to 

calculate the distance from the sample holder to the detector. This centering allows the 

better calculation of the scattering vector q and d-spacing. A short x-ray exposure (10 s) 

was taken and the beam spot was captured by the detector. In ImageJ program, the beam 

spot was located in a 256×256 pixel image and the center position should be (128, 128). 

The detector was moved to -22.02 mm horizontally and the final center location should 

take this -22.02/0.055 pixel into account. The XY coordinate in pixels for the center for in 

this WXRD experiment was (-270.06, 127.11). 

 

3.2.2 Detector Distance Calibration 

The distance from sample holder to the detector was calibrated using Al2O3 that has 

known d-spacings. A radial plot of Al2O3 was obtained by using the ImageJ plug-in 

program XR2D (developed by Mazzanti and Idziak), which gave the pixel location (cpx) 

of each diffraction pattern. No matter what the detector distance was, the angular location 

difference between each diffraction pattern was kept constant. According to Bragg’s law,  
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λ = 2dsinθ                                                          (13) 

θ=sin-1(λ/2d)                                                         (14) 

yd=ps*cpx/tan(2θ)                                                     (15) 

Since λ was constant (0.7093 Å), a measured detector distance (yd) and known Al2O3 d-

spacings were used to calculate the ps*cpx values of each pattern. The difference between 

each patterns of calculated ps*cpx values, and similarly experimental ps*cpx values could 

be obtained. Using Excel solver, the difference between calculated and experimental 

values was minimized by changing the yd value and the cpx value. The final yd value was 

the calibrated distance, and cpx was the refined center point. In this WAXD experiment, 

the distance from the sample to the detector was 130.36 mm. 

 
Figure 3 - 2    Explanation of distance calibration. 

 

3.2.3 Experimental Procedure 

The sample was first melted at high temperature to erase the crystal memory and then 

tempered to crystallize in the capillary. After getting the expected polymorphic form, the 

sample was kept at different temperatures according to the melting temperature shown in 

Table 3-1. Since the intensity of the in-house x-ray was low, a long exposure time was 

necessary to acquire images with good resolution and the sample was kept for 100 

minutes at each temperature. Instead of taking a single image for a long exposure time, an 
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image was taken every 75 seconds and there were approximately 80 images for each 

temperature. In this way partial images were saved and the previous acquisition would not 

be lost if an interruption occurred in the experiment. 

 
Figure 3 - 3    Temperature - time profile of in-house WXRD experiment for β LLL 

 

Taking LLL as an example, the temperature profile is shown in Figure 3-3. 

There are three parts in a temperature profile: melting temperature, cooling rate and final 

temperature, and the corresponding holding time at each temperature. All the samples 

were initially melted at 70°C or 80°C for 10 min to make a homogeneous liquid mixture. 

For β polymorph, the liquid sample was cooled down at a cooling rate of 20°C/min to 0°C 

where the crystallization takes place. The samples were heated up at a heating rate of 

20°C/min to a temperature a little bit higher than the α form melting point to melt the α 

form crystals. And then the same procedure was done to melt the β’ form crystals. After 

getting the β form crystallized triacylglycerol by cooling down the sample at a cooling 

rate of 2°C/min, the sample was kept from -20 °C to the temperature set according to its β 
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form melting point which is shown in Table 3-1. After tempering to get β polymorph, SSS 

was also crystallized at -20°C, 0°C, 20°C, 40°C, 20°C, 0°C for 5 times to test the 

reversibility of the WAXD peaks. For α polymorph, all the three samples (MMM, PPP, 

SSS) were crystallized by cooling down at a cooling rate of 20°C/min to -20°C and then 

the samples were kept from -20 °C to the temperature set according to their α form 

melting points which are shown in Table 3-1. For β’ polymorph, the tempering procedure 

to melt the α form crystals was the same as that for β polymorph. The sample was cooled 

down at a cooling rate of 20°C/min and kept from -20 °C to the temperature set according 

to its β’ form melting point.  

Table 3 - 1     The melting point of each polymorphic form for LLL, MMM, PPP and 

SSS (Takeuchi et al, 2003). 

 α β’ β 

LLL 15.6°C  35.1°C 45.7°C 

MMM 32.6°C 45.9°C 57.1°C 

PPP 44.7°C 55.7°C 65.9°C 

SSS 54.7°C 64.3°C 72.5°C 

 

For cocoa butter and 99% dark chocolate, the sample capillaries were placed into the 

capillary holder when the temperature was 20°C to avoid melting. And then the sample 

capillaries were cooled down at a cooling rate of 20°C/min and kept from -20 °C to 20°C 

since the melting point of Phase V cocoa butter is 33.8°C. 

Table 3 - 2     The melting point of each phase for cocoa butter (Garti and Widlak. 

2012).  

Phase I II III IV V VI 

M.P. 17.3°C 23.3°C 25.5°C 27.5°C 33.8°C 36.3°C 

 

A LabView program developed by Dr. Gianfranco Mazzanti and Dr. Stefan Idziak, and 

upgraded by Pavan K. Batchu, was used to control the temperature of the capillary cell. 

This program has a graphical user interface (GUI), which permits the user to input the 

temperature profile. LabView program also allows the user to create a log file to record 
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the time, actual temperature and set point temperature of the capillary cell for each 

temperature cycle. The capillary holder is isolated to minimize the temperature 

interference from the ambient environment. 

 
Figure 3 - 4   A GUI interface of the capillary cell temperature control program (Provided 

by Pavan K. Batchu) 

 

Normalizing images 

Since the number of images taken at different temperatures varies, it is necessary to 

normalize the images to get reliable results. The images, which were taken at the same 

temperature, were opened as a stack (a series of images that share a single window) of 8-

bit raw images with size 256 X 256 pixels in ImageJ software. The images were added 

together to form a single image by using Z project, then converted to 32-bit, multiplied by 

1000 and divided by the number of images added together. At last the image was saved as 

a 16-bit image which is suitable for creating the radial plot. 
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Creating radial plots 

The XR2D plug-in program for ImageJ, which was developed by Stefan Idziak, 

Gianfranco Mazzanti, Maochen Hannah Wang and Kisun Park, is used to create the radial 

plots for further analysis in Igor Pro. The XR2D plug-in program was used to reduce the 

XRD 2D images to 1D plots of intensity as function of scattering vector q. It also allows 

for contrast manipulation and the definition of a region of interest (ROI).  

The radial plots were created by taking a radial average of intensity at increasing value of 

q or pixel values on a diffraction pattern. The radial plot provides information about the 

peak position, the x-ray scattering intensity and the full width at half maximum (FWHM). 

Normalized images of one sample were first opened as a stack of 16 bit unsigned images 

of size 256 X 256 pixels. The parameters used to extract radial plots from the images were 

λ = 0.7093 Å, distance = 130.36 mm, centreX = -270. 06 and centreY = 127.11 pixels. The 

ROI boundaries x Left = 6.0, x Right = 249. 0, y Up = 6.0 and y Down = 249.0 were used 

for each image stack. This ROI was chosen to exclude noise outside the specified 

boundary, produced by the edges of the silicon chip. The analysis of images was 

performed using just the pixels within this specified boundary. A starting radius 

corresponding to q = 1.1 Å-1 and an ending radius for q = 1.85 Å-1 were chosen to create 

the radial plot because this region included all of the necessary data. The radial plot 

information was saved in “text image format” (standard tab delimited ASCII text file) for 

further analysis. 
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(a) 

 
(b) 

Figure 3 - 5    (a) Original x-ray image and (b) radial plot of 3L7M 

 

3.2.4 Data Processing 

3.2.4.1 Peak Fitting by Igor Pro 

Igor Pro 6.0, produced by Wavemetrics Inc., is scientific data analysis software designed 

for curve fitting and peak fitting. All the peak fittings in this research were done by using 

Igor Pro.  

 

Baseline calibration 

The peak fitting will only be accurate if the background is accounted for. There are five 
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different baseline options provided by the Igor Pro 6.0 peak fitting program: Constant, 

Linear, Cubic, logCubic and logPoly5. Linear or cubic background functions were chosen 

to fit be the baselines. 

 

Peak fitting 

Multi-peak Fit 2, a package of Igor Pro, was used to fit the WAXD peaks in this research. 

There is a function named “auto locate peaks” which can automatically locate any positive 

positioned peak in one curve file. However, the type of baseline needed to be first set as 

“linear” or “cubic” manually, and also the type of each peak had to be defined. All the 

peaks started with the Gauss type and were changed to other kinds of function manually if 

needed. Using this Multi-peak Fit 2 program, the peaks were fitted by minimizing the 

error with a fixed baseline and defined peak types. The “peak results” functionality 

reported several parameters such as peak location, amplitude, area, and FWHM. 

 
Figure 3 - 6    User interface for Igor Pro Multi-peak fit displaying a curve plot 

corresponding to WAXD of 3L7M. 
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3.2.4.2 Types of function (Voigt, Gauss, Lorentzian) 

Three kinds of function (Voigt, Gauss, Lorentzian) were used in fitting the WAXD peaks 

in this research. 

The Gauss distribution with a characteristic bell shape is defined by two parameters: the 

frequency from line center (x) and variance (σ2), expressed as:  

 

G(x;  σ) =
1

σ√2𝜋
𝑒𝑥𝑝[−

1

2
(

𝑞−𝑞0

σ
)2]                                         (16) 

Where 

q is the reciprocal lattice spacing 

σ is the standard deviation of the distribution function. 

The Lorentzian distribution is a continuous symmetric probability distribution with a 

width characterized by its full width at half maximum (γ). The Lorentzian probability 

function is defined as:  

L(q − q0;  γ)  =
𝛾

𝜋((𝑞−𝑞0)2+𝛾2)
                                            (17) 

The Voigt profile is a convolution of a Lorentzian and a Gauss profile. The Voigt profile 

can be expressed as: 

                   V(x;  σ, γ)  = ∫ G(x′;  σ)L(x –  x′;  γ)dx′
∞

−∞
                                  (18) 

 

3.2.4.3 Calculation of d-spacing 

The d-spacing of each WAXD peak was calculated in Microsoft Excel according to the 

Bragg’s Law from the reciprocal lattice spacing q obtained by Igor Pro: 

d = 2π/q                                                                       (19) 
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3.2.4.4. Uncertainty of the experiment data 

The first kind of uncertainty of the experiment data is the sigma of the location obtained 

from the peak fitting by Igor Pro, as shown in Figure 3-7. The sigma of the location shows 

the error range of the peak locations due to uncertainties in the fit. 

The second kind of uncertainty is observed when experiments are repeated with the same 

sample, and the third kind when they are repeated with another sample of the same 

material. The third kind includes and is expected to be larger than the third kind.  

There is a fourth kind of uncertainty, which is associated with different samples and 

different peaks. Overall, this fourth kind of uncertainty is expected to be the largest one. 

The statistical evaluation of these uncertainties will be discussed along with the results, 

since the methods depend on the magnitude of the variations observed in the data. 

 
Figure 3 - 7    The location, amplitude, area and FWHM information of the fitted WAXD 

peaks provided by Igor Pro (5L5S). 
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3.3 Synchrotron Wide Angle X-Ray Diffraction Measurements 

3.3.1 Synchrotron X-Ray Beamline Information 

The synchrotron wide angle x-ray diffraction measurements were performed at beamline 

5-ID-D of the Advanced Photon Source (APS) at the Argonne National Laboratory (ANL) 

located in Argonne, Illinois. The x-rays at beamline 5-ID-D are generated by the 3.3 

Undulator (Undulator A). The energy range of x-rays at beamline 5-ID-D is between 6-

17.5 keV. A Si (111) monochromator is used to further adjust the wavelength of the 

incoming radiation to a certain value. In this experiment, the wavelength was adjusted to 

0.7293 Å and the beam size was 0.08860 mm × 0.08860 mm. The distance from Sample 

to detector was 255.9 mm and the calibration was performed using the geometry 

calibration standard LaB6 SRM660a ("Argonne National Laboratory").
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Figure 3 - 8    Floor plan of the Advanced Photon Source (APS) at ANL showing storage 

rings and beam lines. x-rays originating from Sector 5 - Insertion Device Beamline are 

further split into three beam lines 5-ID-B, 5-ID-C and 5-ID-D ("Argonne National 

Laboratory"). 

 

3.3.2 Experimental Setup 

3.3.2.1 Temperature Control System 

 



38  

A schematic diagram of the experimental system is shown in Figure 3-9. The temperature 

control system used in this research comprised a temperature controller, a water bath, a 

heat exchanger, a Galden reservoir, a peristaltic pump (Cole-Parmer Instrument 

Company®, Model: Masterflex® Tubing Pump) for Galden fluid, three fiber optic 

thermistors, and a temperature sensor (Neoptix).  

 
Figure 3 - 9    Schematic figures of the temperature control system configuration (Li, 

2011). 

 

Temperature controller 

The temperature controller connected to the computer allows communication between the 

software and the temperature control system. In this experiment, it was controlled via 

LabVIEW, which was programmed by Dr. Gianfranco Mazzanti. The LabVIEW gave 

commands to the temperature control system and recorded the set and real temperature. 

 

Water Bath 
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The water was connected to the heat unit for transferring the thermal energy. The 

temperature of the water bath was set at 0°C. The pipes between the water bath and the 

heat unit were insulated for minimizing thermal loss.  

 

Active heat exchanger 

The active heat exchanger was connected to the temperature controller and followed its 

commands to heat or cool down the Galden. There were six thermoelectric elements 

built in the heat unit for heat transfer between the water and Galden fluids. These 

thermoelectric elements controlled the temperature of the Couette system precisely. 

The thermoelectric elements were assembled with Bismuth Telluride semiconductor 

material and thermally conductive Aluminum Oxide ceramics (Wright et al., 2000). 

They were connected in the system in parallel with a 24-volt power supply. They were 

manufactured by Laird Technologies inc., MO, US. 

 

Galden heat transfer fluid system 

Galden heat transfer fluid is a perfluorinated polyether without hydrogen. Galden 

HT135 (Solvay-Solexis) was chosen in this research because its low viscosity and wide 

operating temperature range, which was from -50 to 125°C with a boiling point at 

135°C. This permitted it to act as the heat transfer liquid in our experiment 

temperatures (-20 to 80°C). The Galden fluid was kept in a stainless steel thermos. A 

glass condenser was installed on the top to avoid evaporation of the Galden and 

pressurization of the system. The Galden fluid was pumped by a peristaltic pump (Cole 

Parmer, US), went through the heat exchanger and finally reached the sample holder. 

The Galden fluid went back to the container after flowing though the outside cylinder 
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of the sample holder. The three Two Reflex fiber optic sensors (Neoptix, QC, Canada) 

were placed at the Galden inlet and outlet in the magnet cell, the Galden in and the 

Galden out of the sample holder to measure the temperature of Galden fluid. The pipes 

between the heat exchanger to the sample holder were insulated to minimize the 

thermal loss. A 15 kΩ thermistor (Oven Industries, US) was used to monitor the Galden 

temperature at the outset of the active heat exchanger and to provide the signal for the 

temperature controller.  

 

Fiber optic temperature sensor 

Fiber Optic Temperature Sensor was chosen for three reasons. First of all, there is no 

metal part in the sensor. It means there is no electrical power going through it. Second, 

the Fiber Optic Temperature sensors could be located at the bottom and the upper side 

of the sample holder to detect the temperature of Galden fluid because of the small size 

of the sensors. Third, it is readable from a computer. The computer reads the 

temperature as a voltage signal (0 to 10 V), and then converts it to temperature (-20 to 

100°C). 

 

3.3.2.2 Couette System Configuration 

The Rheo-XRD system was composed of a mini Couette cell, an Anton Paar DSR301 

Rheometer head held by a controllable support, Rheometer control box, and connected 

to the temperature control system. The Rheometer control box was connected to the 

computer with the manufacturer’s software Rheoplus® to control the rheometer head to 

provide different shear rates. The rheometer head was equipped with a powerful, 

synchronous EC motor and high-precision air bearing technology. A long shaft made of 
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titanium with a Teflon end was connected to the Rheometer head to spin at a given 

shear rate to provide shear effect. 

The mini Couette cell used in this research is shown in Figure 3-10. It was composed 

by a sample tube and the Galden tube which was made by Lexan because it allowed x-

rays to go through. The red colour indicates the shaft connected to the Rheometer head 

to provide shear to the samples. The yellow part indicates the sample gap between the 

shaft and the wall of the sample tube. The Galden went in from the bottom of the 

Galden tube. After the whole Galden tube was filled with Galden, the Galden came out 

from the upper side. There were two fiber optic temperature sensors to test the 

temperature of Galden in and Galden out. 

 
Figure 3 - 10    The mini-Couette cell used in APS. (Provided by Cendy Wang.) 

 

3.3.3 Experimental Procedure 

6B4P was initially melted at 80°C for 10 min to make a homogeneous liquid mixture. 

The liquid sample was cooled down at a cooling rate of 20°C/min to -5°C. The 

crystallized 6B4P was kept at 0°C, 10°C, 20°C, 30°C, 40°C and 50°C. No shear was 
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applied for 6B4P in this experiment.  

6B4S was initially melted at 80°C for 10 min to make a homogeneous liquid mixture. 

The liquid sample was cooled down at a cooling rate of 20°C/min to -5°C. The 

crystallized 6B4S was kept at 0°C, 10°C, 20°C, 30°C, 40°C and 50°C with a constant 

shear rate. Two rotational speeds, 40 r/s and 50 r/s, were applied for 6B4P in this 

experiment.  

When the temperature was stable, the WAXD patterns were captured by custom 

Rayonix fast frame-transfer CCD detector. An image was also taken every 1 second 

and the exposure time was 1 second. In total 120 images were captured at each 

temperature and shear rate.  

 

3.3.4 Data Processing 

The WAXD peak information, including the intensity and peak position, was saved in a 

text file at the same time when the WAXD pattern of the sample was saved and could 

be retrieved by Igor Pro directly. A starting radius  of q = 0.6 Å-1 and an ending radius 

of q =  2.0 Å-1 were chosen to do the multi-peak fitting because this region included all 

of the necessary data. The data processing procedure which followed afterwards is the 

same as Part 3.2.4 in this thesis. 
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CHAPTER 4        RESULTS AND DISCUSSION – I - EFFECT OF 

TEMPERATURE ON WAXD OF PURE TRIACYLGLYCEROLS 

4.1 Effect of Temperature on d-Spacing of WAXD Peaks 

4.1.1 Effect of Temperature on d-spacing of β Form WAXD Peaks 

The polymorph WAXD patterns fitted using the software Igor Pro were almost the same 

as the β form in the literature.  The β form crystal is arranged in a triclinic subcell packing 

and it is identified by a very strong reflection at 4.6 Å, and the other two strong reflections 

at 3.85 Å and 3.7 Å (Kellens et al, 1990).  

 
Figure 4 - 1      β, β’ and α form WAXD Peaks in the literature (Kellens et al, 1990) 
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Figure 4 - 2     Radial plot for the four pure triacylglycerol samples (LLL, MMM, PPP and 

SSS) at -20°C  

 

 
Figure 4 - 3 The fitted Wide Angle Diffraction patterns of β form LLL at -20 °C by Igor 

Pro. 

 

In Figure 4-3, these three characteristic peaks are peak 4, peak 9 and peak 10. Among all 

the WAXD patterns of pure materials under different temperatures, there are at least 10 

peaks when analyzing with Igor Pro. The upper part of Figure 4-3 shows that the residual 
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error of the fitting is less than 0.5% at the top of the largest peak. The middle part shows 

the original wide angle x-ray peaks of β form LLL and the intensity of the peaks. The 

green line is the base line of the fitting. The lower part shows the fitted wide angle x-ray 

peaks of β form LLL and the intensity of each peak. 

Six main peaks for the β polymorph, which have higher intensity than others, were chosen 

to reveal the effect of temperature on d-spacing. These stronger peaks would be easier to 

observe in cases where a small percent of the material is crystalline. These six peaks are 

compared and discussed according to their general location: 1. Large d-spacing; 2. 

Medium d-spacing. 3. Small d-spacing. 

The changes of the d-spacings with the temperature may not be obvious when plotting the 

d-spacings of the WAXD peaks versus temperature. Therefore, -20°C was taken as a 

reference temperature, and the differences of d-spacings at each temperature were 

calculated by subtracting the d-spacing at -20°C.  

 
(a) 



46  

 
(b) 

 
(c) 
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(d) 

Figure 4 - 4    Differences of d-spacings with temperature for pure TAGs. (a) LLL. (b) 

MMM. (c) PPP. (d) SSS.  

 

For the peaks with large d-spacing, when the temperature increases the d-spacings remain 

almost the same as that under the reference temperature (-20°C). The differences of d-

spacings for peak 0 and peak 1 are quite small and can be regarded as 0.  This means that 

the temperature does not affect the d-spacing and therefore the reciprocal lattice spacing q 

observed is not changed.  

For the peaks with medium d-spacing, when the temperature increased to 10°C, the d-

spacings are about 1 picometer larger than the original one. When the temperature 

continues to increase, the increase of the d-spacings is negligible. This means that there is 

a relaxation limit to these d-spacings trend. It is likely that one of the main reasons that the 

data points fluctuate from a smooth trend is the difficulty of fitting two peaks that overlap 

each other: it is hard for the software to separate them in a unique unambiguous way.  

For the peaks with small d-spacing, when the temperature increases the d-spacings keep 

increasing. The effect of temperature on the d-spacings of the peaks with small d-spacing 
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is much stronger than the effect of temperature on other peaks. This same result is found 

in the four pure triacylglycerols. 

When the temperature increases, the energy distributed between the atoms of the 

molecules in nanocrystalline triacylglycerols changes. However, it does not have the same 

effect in all directions. The energy needed to change the position of the peaks with large 

d-spacing is largest, compared to the energy needed to change other peaks in the wide 

angle diffraction patterns. The energy needed for changing the position of the peaks with 

small d-spacing is much smaller than the energy needed to change peaks with large d-

spacing, so the d-spacing is easier to change. The energy needed for the peaks with 

medium d-spacing is between the large d-spacing and the small d-spacing. As the result of 

an increase in temperature, thermal vibration of the atoms increases. The unit cell expands 

and causes changes in periodicity d and therefore in 2θ positions of the diffraction lines. If 

the positions of one or more lines are measured as a function of temperature, the thermal 

expansion coefficient of the specimen can be determined by x-ray diffraction (Cullity and 

Stock, 2001) 

 

 



49  

4.1.2 Effect of Temperature on d-spacing of β’ Form WAXD Peaks 

 
Figure 4 - 5    The fitted Wide Angle Diffraction patterns of β’ form PPP by Igor Pro. 

Broad peaks are often associated with form β’ one. 

 

The β’ form is identified by an orthorhombic subcell packing, which results in two strong 

reflections around 4.2 Å and 3.8 Å (Kellens et al., 1990). In Figure 4-5, these two 

characteristic peaks are peak 1 and peak 3. 

 
(a) 
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(b) 

 
(c) 
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(d) 

Figure 4 - 6    Differences of d-spacings with temperature of β’ form WAXD Peaks. (a) 

LLL. (b) MMM. (c) PPP. (d) SSS. 

 

When the temperature increases, the d-spacings of both characteristic peaks of β’ form 

WAXD patterns also increase. Even though the two characteristic peaks of β’ form change 

with temperature, the temperature effect on the peaks with small d-spacing is stronger, and 

of about the same order as was observed for beta, about 9 pm from -20 to 50 °C. From 

Figure 4-6 it is obvious that the d-spacings of the peak with small d-spacing (3.8 Å) 

increase with temperature much faster than the peak with large d-spacing (4.2 Å).  

The similarity of this observation with the beta structure suggests that similar 

intermolecular forces are affected.  
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4.1.3 Effect of Temperature on d-spacing of α Form WAXD Peaks 

 
Figure 4 - 7    The fitted Wide Angle Diffraction patterns of α form PPP by Igor Pro. 

 

The α form is characterized by a single strong reflection at 4.15 Å of the hexagonal 

packing (Kellens et al., 1990). In Figure 4-7, this characteristic peak is peak 0.  Since it 

was hard for LLL to crystallize in α form, just three pure triacylglycerols (MMM, PPP, 

SSS) were used to produce the WAXD patterns. The α phase peak is very broad because 

this phase lacks long-range order in the rotational degree of freedom of the molecules 

about their long axes. The enhanced chain mobility in the metastable hexagonal phase 

may cause lamellar thickening (Sirota and Herhold, 2000). 
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Figure 4 - 8    Differences of d-spacings with temperature of α form WAXD Peaks. 

 

For MMM and PPP, the d-spacings of the characteristic peak increase with the 

temperature, as was found for β’ and β form. However, for SSS, the d-spacings first 

decrease when the temperature increases from -20 °C to 10 °C. When the temperature 

keeps increasing from 10 °C to 40 °C, the d-spacings increase. It is not obvious why such 

behavior would happen, since it would mean that alpha has a negative expansion 

coefficient in the direction of the hexagonal lattice at temperatures below 10 °C. Since the 

SAXS have not been measured, it is not possible to know if the overall density of the 

nanocrystals increased or decreased. A possible reason is that SSS may have formed 

rather “imperfect” alpha crystals due to the fast cooling rate and its large size, and these 

crystals annealed to a closer packed lattice as temperature increased. Above 10 °C the 

lattice may be stable, and it expands with temperature. These conjectures need to be 

further tested by cooling back the alpha phase formed.  
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4.2 Reversibility of d-spacing of WAXD Peaks of β Form 

In Figure 4-9, d-spacings of the crystallized WAXD peaks show reversibility, especially 

peaks with small d-spacing. When the temperature increases, the d-spacings keep 

increasing and when the temperature decreases, the d-spacings go back to their original 

value. Since the energy needed for the peaks with small d-spacing to change is much 

smaller, the reversibility is much more obvious than other peaks. In Figure 4-10, for the 

peaks with small d-spacing (Peak 7 and Peak 9), the differences of d-spacings show the 

same changing trend with the temperature. The difference of d-spacing is highest when the 

temperature reaches 40 °C and it is almost back to 0 when the temperature goes back 

to -20 °C. These results all show that the change of the d-spacing is reversible. The 

reversibility of d-spacing of WAXD peaks indicates that the temperature effect on the 

WAXD peaks of nanocrystalline triacylglycerols can occur not just in one single 

experiment or circumstance. The temperature effect always exists in the experiment and 

affects the samples. This observation is very important for the intended use of the small d-

spacings as potential intrinsic thermometers for experiments of crystallization under shear 

flow. 
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Figure 4 - 9    d-spacings of WAXD peaks versus sequence (SSS). 

 

 
Figure 4 - 10    Differences of d-spacings of WAXD peaks with small d-spacing (SSS). 
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Figure 4 - 11    Differences of d-spacings of WAXD peaks with small d-spacing (SSS) 

versus temperature in the case where the temperature was cycled up and down.   

 

4.3 Estimation of Temperature from Difference of d-spacing 

Since the differences of d-spacings for the peaks with small d-spacing increase as the 

temperature increases, we can find some mathematical relationship between the difference 

of d-spacing and the crystallization temperature. After the mathematical relationship 

between temperature and difference of d-spacing is known, the real sample temperature 

can be calculated by measuring the difference of the d-spacing using x-ray techniques. In 

the actual experiment circumstance, there is a gap between the set temperature and the real 

sample temperature and many factors can affect the sample temperature, such as the 

interference of the ambient temperature and especially the viscous heat generated. It is 

hard for experimenters to measure the real sample temperature and it adds difficulty to 

study the effect of temperature on the crystallization process. Measurement of the small d-

spacing change gives researchers a chance to estimate the real sample temperature and 

make more accurate discussion of the temperature effects. It provides a new way to 
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monitor and control the temperature of the system under study and the effect of high shear 

rate on nanocrystalline triacylglycerols crystallization. 

As shown in Figure 4-12, there are mathematical relationships between the temperature 

and the differences of d-spacings for the pure materials. Taking the LLL as example, 

differences of d-spacings of peak 9 and peak 10 increase with the temperature increase. 

We can calculate the sample temperature using the equation shown in Figure 4-12 (a). 

Although the calculated temperature is still an estimated temperature, it is much closer to 

the real sample temperature and gives us a better understanding for the temperature 

change of the system and the effect of high shear rate.  

 
(a) 
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(b) 

 
(c) 
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(d) 

 
(e) 

Figure 4 - 12  Temperature versus differences of d-spacings for peaks with small d-

spacing. (a) LLL. (b) MMM. (c) PPP. (d) SSS. (e) SSS Circle. 
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(a) 

  
(b) 
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(c) 

Figure 4 - 13    Temperature versus differences of d-spacings for peaks with small d-

spacing (All β form pure triacylglycerols samples). (a) Peaks with small d-spacing at 3.85 

Å. (b) Peaks with small d-spacing at 3.7 Å. (c) Regression of peaks with small d-spacing 

at 3.7 Å with 95% confidence interval. 

 

 
Figure 4 - 14       Δd 3.7 vs  Δd 3.85 of four pure TAGs 

 

The trends in the differences of these d-spacings of all the pure triacylglycerol samples 

versus temperatures show great consistency. It is likely that a single mathematical 
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function may describe the relationship of d-spacing with temperature, especially the 

characteristic peak with small d-spacing at 3.7 Å (the red square in Figure 4-12). This 

means that there may be one mathematical equation or model that can be applied to 

estimate the temperature of all the four pure triacylglycerol samples. According the 

confidence interval in Figure 4-13 (c), the equation shows high reliability. The differences 

of d-spacings for the peaks with small d-spacing at 3.7 Å may be the best peak for β form 

pure triacylglycerols samples to estimate the real sample temperatures in future studies. In 

Figure 4-14, for all the four pure triacylglycerol samples, the difference of d-spacings for 

the peaks with small d-spacing at 3.7 Å change with the difference of d-spacings for the 

peaks with small d-spacing at 3.85 Å. It indicates the change of one WAXD peak can be 

estimated from the change of another peak. The dependency means that measuring both 

peaks could provide a “safeguard” to the estimate of temperature, but one could focus on 

the 3.7 Å peak exclusively. 

 

4.4 Calculation of Unit Cell Values of β form TAGs from the d-spacings 

 
Figure 4 - 15 Crystal structure of β form TAGs with the acyl chains perpendicular to the 

plane of paper Van Langevelde et al. (1999). 
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From the do in Table 4-1 and the lattice planes shown in Figure 4-15, the change in the 

peaks with d-spacing at 4.6 Å, 3.85 Å and 3.7 Å in this research corresponds to change of 

d(1 0 1), d(2 0 -1) and d(3 -1 0). In order to understand the reason why the d-spacing of 

WAXD peaks change in different ways, the unit cell value of β form TAGs needs to be 

understood. 

In Figure 4-4 it can be seen that a change in temperature from -20°C to 60°C represents a 

change in d 3.7 of 12 pm. To calculate the expansion percentage, the increase of d-spacing 

is divided by the original d-spacing for each peak. This is approximately 12/0.37 = 3.3%. 

The change for the 3.85 peak can be estimated from Figure 4-4 5.5 pm. Thus 5.5/0.385 = 

1.4 %. The change for the 4.6 peak is very small, around 1 pm 1/0.46  = 0.2%. 

 
Figure 4 - 16 Triclinic unit cell of β form PPP with the acyl chains, with the cell values 

from Van Langevelde et al. (1999) 

 

Using the equation (5) to (12) in Part 2.2.1, the value of d, the distance between adjacent 

planes in the set (hkl), of β form crystals can be calculated. The results are shown in Table 

4-1. After comparing with the d0 in the literature, d-spacing of peak 3.75 Å, peak 3.8 Å 

and peak 4.58 Å expand 3.30%, 1.27% and 0.101% respectively. In order to get how the 

a, b, c parameters change, the Excel solver is applied and the percentages of change are 

set for each peak: 3.0%, 1.5% and 0.1%.  The result (Table 4-2) shows a parameter 
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increases about 3.5% and the increase of b parameter even exceeds the limit set. But the c 

parameter decreases slightly. It means in a and b direction, the crystal expands but in c 

direction the crystal contracts a little bit. Since we lack small angle x-ray diffraction data, 

how much b parameter really change remains unknown.  

The change in volume is 6.9 %, and the average expansion coefficient of this crystal 

would be  

𝜷 =
 𝝏(

𝚫𝑽

𝑽
)

𝝏𝑻
=8.6 E-04 K-1 

This expansion coefficient values are similar to those of many organic liquids, but are 

orders of magnitude larger than those of urea (~10-5) or benzophenone (~10-7) (Hammond 

et al, 2005). Thus it seems that the relative strength of the forces holding the TAGs 

molecules together are much weaker than those of smaller organic crystals (Templin, 

1956).  

 

Table 4 - 1 Characteristic d-spacing (Å) for the β TAGs 

 d(1 0 1) d(2 0 -1) d(3 -1 0) 

h 1 2 3 

k 0 0 -1 

l 1 -1 0 

do 4.5844 3.8131 3.6387 

dcal 4.5890 3.8615 3.7587 

Ratio of change 

(%) 

1.01E-03 1.27E-02 3.30E-02 

Target change 

(%) 

1.00E-03 1.50E-02 3.00E-02 

do is the d spacing from Van Langevelde et al. (1999). 
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Table 4 - 2 Cell parameters of β TAGs 

 Cell parameters 

from Van 

Langevelde et al. 

(1999) 

Cell parameters 

calculated using 

Excel Solver 

% Expansion 

a (Å) 11.95 12.2626 2.616 

b (Å) 46.84 48.7136 4.000 (limit set) 

c (Å) 5.4514 5.4437 -0.142 

V(Å3) 2581.0 2750.6 6.571 
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CHAPTER 5   RESULTS AND DISCUSSION – II - EFFECT OF 

TEMPERATURE ON WAXD OF TRIACYLGLYCEROLS 

MIXTURES 

5.1 Effect of Temperature on d-spacing of WAXD Peaks 

5.1.1 Effect of Temperature on d-spacing of β Form WAXD Peaks (Dry Blends) 

Figure 5-1 shows the original wide angle x-ray peaks of β form 3L7M and the intensity of 

the peaks, as they were fitted using Igor Pro. The very strong reflection at about 4.6 Å and 

the other two strong reflections at about 3.85 Å and 3.7 Å show that 3L7M had 

crystallized in β form. The green line is the base line of the fitting. The upper part shows 

the error of the fitting is less than 0.5%. The lower part shows the fitted wide angle x-ray 

peaks of β form 3L7M and the intensity of each peak.  

There are six or seven main peaks in the WAXD patterns which have higher intensity than 

others. To reveal the effect of temperature on d-spacings of dry blend samples, for the β 

polymorph, these peaks are also compared and discussed according to their locations: 1. 

Large d-spacing; 2. Medium d-spacing. 3. Small d-spacing.  
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Figure 5 - 1    The fitted wide angle diffraction patterns of β form 3L7M by Igor Pro. 

 

 
(a) 
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(b) 

 
(c) 

Figure 5 - 2    Differences of d-spacings with temperature. (a) 3P7S. (b) 5P5S. (c) 7P3S. 
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(a) 

 
(b) 
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(c) 

Figure 5 - 3    Differences of d-spacings with temperature. (a) 3M7P. (b) 5M5P. (c) 7M3P. 

 

 
(a) 
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(b) 

 
(c) 

Figure 5 - 4    Difference of d-spacing with temperature. (a) 3L7M. (b) 5L5M. (c) 7L3M. 

 

The same results are found in triacylglycerol mixtures as in the pure triacylglycerols. For 

the peaks with large d-spacing, when the temperature increases the d-spacing remains 

essentially the same as that under the reference temperature (-20°C).  

For the peaks with medium d-spacing, when the temperature increased to 10°C, the d-
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spacing is about 1 pm larger than the original one. When the temperature continues to 

increase, the increase of the d-spacings stops. The peak with d-spacing 4.6 Å is formed by 

two peaks overlapping each other so it is hard for Igor Pro to separate them, and the points 

of these two peaks in Figure 5-2, 5-3, 5-4 fluctuate a little bit.  

For the peaks with small d-spacing, when the temperature rises the d-spacing keeps 

increasing. The position of the peaks with small d-spacing is affected by temperature 

much more than other peaks. This result can apply to all triacylglycerols mixtures (dry 

blends). 

 
Figure 5 - 5    The fitted Wide Angle Diffraction patterns of β form 5L5S by Igor Pro. 



73  

 
Figure 5 - 6    Difference of d-spacing with temperature of 5L5S. 

 

There is a difference between the fitted WAXD patterns of 5L5S and 5M5P and the fitted 

WAXD patterns of other dry blend samples.  In 5L5S and 5M5P (Figure 5-6 and Figure 5-

3 (b)), one of the peaks with small d-spacing is combined by two peaks. And when the 

temperature exceeds the melting point of composition with lower melting point, 45.7°C 

for LLL and 57.1°C for MMM, one of the peaks disappears and the fitted WAXD patterns 

become the same as other dry blend samples. 

. 
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5.1.2 Effect of Temperature on d-spacing of β Form WAXD Peaks from Complex 

Triacylglycerols Mixtures. 

 
Figure 5 - 7    Wide Angle x-ray Diffraction Patterns (short spacing) of six polymorphs of 

cocoa butter (Garti and Widlak. 2012). 

 

 
Figure 5 - 8    The fitted Wide Angle Diffraction patterns of β form cocoa butter by Igor 

Pro. 
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Figure 5 - 9    The fitted Wide Angle Diffraction patterns of β form 99% dark chocolate by 

Igor Pro. 

 

After calculating the d-spacing of the peaks of cocoa butter and 99% dark chocolate and 

comparing with the WAXD patterns of six polymorphs of cocoa butter shown in Figure 5-

8, the samples crystallized as β form (form V) with d-spacings of the characteristic peaks 

at 0.458 Å, 0.398 Å and 0.367 Å. As described by Guthrie et al. (2005), when examining 

lower-sugar content dark chocolates (i.e. with sugar content less than 30%), the intensity 

of the cocoa butter peaks in the wide angle region can be observed directly since the peaks 

are distinct from nearby sucrose diffraction peaks. Thus it is unnecessary to remove the 

sugar in order to observe these peaks (Guthrie et al, 2005).   

Given the complexity of the triacylglycerol composition of cocoa butter, it is much harder 

to see the change of d-spacings than in other samples studied here, even without the 

interference of sugar or other minor compounds. The WAXD patterns of cocoa butter and 

chocolate are much more complex than the WAXD patterns of pure triacylglycerols and 

dry blend samples.  
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Figure 5 - 10    Difference of d-spacing with temperature (Cocoa butter). 

 

Consistently with the methodology of this study, three kinds of peaks for cocoa butter 

were chosen to study the temperature effect on the WAXD patterns: the peaks with large 

d-spacing (peak 0 and peak 1), the peaks with medium d-spacing (peak 3 and peak 4) and 

the peaks with small d-spacing (peak 8, peak 9, peak 10 and peak 11). For the peaks with 

large and medium d-spacing, when the temperature increases, the increase of d-spacings is 

less than 1 pm. The differences of d-spacings of peak 1, peak 3 and peak 4 are about 1 pm 

and the differences of d-spacings of peak 0 are close to 0. Temperature does not have 

significant influence on the peaks with large and medium d-spacing. For the peaks with 

small d-spacing, the difference of d-spacing for all the four peaks get higher when the 

samples were heated up. But the increase of d-spacings for peak 8 and peak 9 is smaller 

than the increase of d-spacings for peak 10 and peak 11.The magnitude of the change 

from -20 °C to 20 °C is similar to that observed in pure triglycerides and dry blends, of the 

order of 5 pm.  
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Figure 5 - 11    Differences of d-spacings with temperature (99% dark chocolate). 

 

For 99% dark chocolate, the peaks to be compared are selected by the same way as cocoa 

butter. The d-spacings of peak 3 and peak 4 are about 1 pm larger than the d-spacing 

under the reference temperature and the differences of d-spacings of peak 0 is close to 0. 

As in the result of cocoa butter, temperature does not have significant influence on the 

peaks with large and medium d-spacing. For the peaks with small d-spacing (peak 6, peak 

7, peak 8 and peak 9), the differences of d-spacings for all the four peaks get higher when 

the samples were heated up. But the increase of d-spacings for peak 6 and peak 7 is 

smaller than the increase of d-spacings for peak 8 and peak 9. Peak 8 and peak 9 depend 

much more strongly on temperature than other peaks. It is shown that temperature affects 

the WAXD patterns of 99% dark chocolate in the same way as the temperature effect on 

cocoa butter.  However, the observed increase in Δd is smaller than in the other materials, 

between 3 and 4 pm. 
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5.2 Estimation of Temperature from Difference of d-spacing 

As with pure triacylglycerols, we can estimate the real sample temperature of the 

triacylglycerol mixtures using the differences of d-spacings for the peaks with small d-

spacing. 

 
Figure 5 - 12    Temperature versus differences of d-spacings for peaks with small d-

spacing (3P7S). 

 

For the dry blends, taking the 3P7S as example, differences of d-spacings of peak 7 and 

peak 8 increase with the temperature increase. We can calculate the sample temperature 

using the polynomial equations showed in Figure 5-12. Though the calculated temperature 

is still an estimated temperature, it is much closer to the real sample temperature. We 

expect, thus, to gain a better understanding of the temperature effects by monitoring the 

temperature of sheared systems.  

Using the differences of d-spacing to estimate the real sample temperature can be applied 

to most of the dry blend samples except 5M5P and 5L5S. Taking 5L5S as example, when 

temperature reaches 50°C, peak 7 disappear and the d-spacings of peak 8 become much 
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larger than the d-spacings at previous temperature. The mathematical equations for 

differences of d-spacings for peak 7 and peak 8 found in this situation are not accurate to 

calculate the sample temperature.   

 
(a) 

 
(b) 
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(c) 

Figure 5 - 13    Temperature versus differences of d-spacings for peaks with small d-

spacing at 3.85 Å. (a) Triacylglycerol mixture composed by PPP and SSS. (b) 

Triacylglycerol mixture composed by MMM and PPP. (c) Triacylglycerol mixture 

composed by LLL and MMM. 

 

 
(a) 
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(b) 

 
(c) 

Figure 5 - 14    Temperature versus differences of d-spacings for peaks with small d-

spacing at 3.7 Å. (a) Triacylglycerol mixture composed by PPP and SSS. (b) 

Triacylglycerol mixture composed by MMM and PPP. (c) Triacylglycerol mixture 

composed by LLL and MMM. 
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Figure 5 - 15      Temperature versus differences of d-spacings for peaks with small d-

spacing at 3.7 Å (all dry blend samples and pure TAGs). 

In order to have a better understanding of the estimation of temperature from the 

differences of d-spacings for the peaks with small d-spacing of the triacylglycerol 

mixtures, the differences of d-spacings for the peaks with small d-spacing versus 

temperature from the samples with the same composition but different proportion are 

plotted together in Figure 5-13 and Figure 5-14. These figures show that the peaks with 

smaller d-spacing have greater consistency. After plotting the differences of d-spacings for 

peaks with small d-spacing (3.85 Å) (blue diamonds in Figure 5-10, 5-11 and 5-12) into 

one graph (Figure 5-13), it is clear that the mathematic equation changes a little bit with 

the change of the sample composition. For the peak with small d-spacing (3.7 Å) (red 

squares in Figure 5-10, 5-11 and 5-12), the mathematic equations present higher 

consistency. For the samples with the same composition but different proportion, it is 

reliable to have one mathematic equation to estimate the real sample temperature using the 

differences of d-spacings of the characteristic peak (3.7 Å). In Figure 5-15, the 

mathematic equations of dry blends with different composition and the pure 
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triacylglycerols also show good consistency, except the dry blend samples composed by 

LLL and MMM. 
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CHAPTER 6   RESULTS AND DISCUSSION – III - EFFECT OF 

TEMPERATURE ON WAXD OF TRIACYLGLYCEROLS 

MIXTURES UNDER SHEAR FLOW 

6.1 Effect of Temperature on d-spacing of WAXD Peaks 

6.1.1 Effect of Temperature on d-spacing of β Form WAXD Peaks without Shear in 

the Mini Couette Cell 

In Figure 6-1, peak 4, peak 7 and peak 8 show that PPP crystallized in β form in the mini 

Couette cell and the large peak 1 shows the solvent BBB is still in liquid form. The large 

liquid peak makes the peak fitting much harder since it easily affects the peak position, 

amplitude, width and the baseline. 

 
(a) 
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(b) 

Figure 6 - 1    The fitted Wide Angle Diffraction patterns of 6B4P without shear by Igor 

Pro. (a) Whole diffraction patterns. (b) Re-fitting for peak 7 and peak 8 at the reciprocal 

lattice spacing range from 1.5 to 1.8. 

 

 
Figure 6 - 2    Differences of d-spacings with temperature (6B4P without shear). 

 

Since the minimum temperature that the water bath in APS can reach is -5°C the results of 

Δd are presented in this chapter using -5°C as the reference temperature, i.e. the 
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differences of d-spacings are calculated by subtracting the d-spacing under -5°C. 

From Figure 6-2, the differences of d-spacing for the peaks with large d-spacing (peak 0 

and peak 2) scarcely change when the temperature increases. For the peak with medium d-

spacing (peak 4), the d-spacings increase only minimally when the temperature increases. 

It is hard to tell how d-spacings of peak 5 changes with temperature because of the fitting 

of peak 5. The overlapping with peak 4 and the large liquid peak makes it hard to get an 

accurate d-spacing of peak 5. For the peaks with small d-spacing (peak 7 and peak 8), the 

differences of d-spacing keep increasing when the temperature increases. But the increase 

of peak 7 is much smaller than the increase of peak 8. The general trends of results of 

6B4P in the mini Couette cell without shear are similar to the results from pure 

triacylglycerols in capillary cells using in-house x-rays. This means that the d-spacings of 

the crystallized samples change in the same way using different experimental setups. 
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6.1.2 Effect of Temperature on d-Spacing of β Form WAXD Peaks with 40 r/s 

Rotational Speed 

 
(a) 

 
(b) 

Figure 6 - 3    The fitted Wide Angle Diffraction patterns of 6B4S under 40 r/s rotational 

speed at 0 °C by Igor Pro. (a) Whole diffraction patterns. (b) Re-fitting for peak 3 and 

peak 4 Re-fiting for peak 7 and peak 8 at the reciprocal lattice spacing range from 1.5 to 

1.8. 
 

Following the same temperature profile as 6B4P, the WAXD patterns of 6B4S were 
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captured under rotational speed 40 revolution per second (r/s) which yields an 

approximate average shear rate of 940 s-1. Compared to the 6B4P without shear flow, 

Figure 6-3 shows the 6B4S crystallized but the degree of crystallization is small and the 

intensity of the crystal peaks is much lower. BBB as solvent did not crystallize so there is 

a broad liquid peak (peak 1). After calculating the d-spacings of peak 2, peak 3 and peak 4, 

it indicates SSS crystallized in β form. Fitting the WAXD patterns from the reciprocal 

lattice spacing 1.5 to 1.8 can avoid artificial peak shifting due to the large amorphous 

peaks. 

 
Figure 6 - 4    Difference of d-spacing with temperature (6B4S with 40r/s rotational speed) 
 

The differences of d-spacings of peak 2 are approximately 0 when the temperature 

increases from -5°C to 50°C. This indicates the d-spacings remain the same as that under 

reference temperature (-5°C). The differences of d-spacings of peak 3 and peak 4 keep 

increasing when the temperature is getting higher and the differences of d-spacing of peak 

4 is increasing much faster than the differences of d-spacing of peak 3. Under the same 

temperature, the change of d-spacings of peaks with small d-spacing is larger than the 
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peaks with large d-spacing. 

 

6.1.3 Effect Of Temperature on d-spacing of β Form WAXD Peaks with 50 r/s 

Rotational Speed 

 
(a) 

 
(b) 

Figure 6 - 5    The fitted Wide Angle Diffraction patterns of 6B4S with 50 r/s rotational 

speed at 0 °C by Igor Pro. (a) Whole diffraction patterns. (b) Re-fitting for peak 3 and 

peak 4 Re-fiting for peak 7 and peak 8 at the reciprocal lattice spacing range from 1.5 to 

1.8. 
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Figure 6 - 6    Difference of d-spacing with temperature (6B4S with 50r/s rotational speed) 

 

From Figure 6-5, the fitted wide angle diffraction pattern of 6B4S with 50 r/s rotational 

speed which yields an approximate average shear rate of 1200 s-1 by Igor Pro, is similar 

with that at 40 r/s rotational speed. Peak 1 is a large liquid peak and shows that BBB as 

solvent did not crystallize. The d-spacings of peak 2, peak 3 and peak 4 is calculated from 

the reciprocal lattice spacing q and show SSS crystallized in β form. But compared to the 

WAXD pattern of 6B4S with 40 r/s rotational speed, there is less crystal formed under 50 

r/s rotational speed. The crystal peaks are much harder to identify for fitting and the d-

spacings of the WAXD peaks is harder to determine. 

The differences of d-spacing of peak 2 is close to 0 when the temperature rises from -5°C 

to 50°C. This indicates that the d-spacings remain the same as that under reference 

temperature (-5°C). The differences of d-spacings of peak 3 and peak 4 keep increasing 

when the temperature increases and the differences of d-spacing of peak 4 increase much 

faster than the difference of d-spacing. Under the same temperature, the change of d-
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spacings of peaks with small d-spacing is larger than the peaks with large d-spacing. 

These results are similar as that at 40 r/s rotational speed described in Section 7.1.2. 

 

6.2 Estimation of Temperature from Difference of d-spacing 

At high shear rate a lot of factors will affect the temperature of the samples, such as 

viscous heat, the temperature of the sample in the mini Couette Cell is always higher than 

the set temperature. Because of the configuration of the mini Couette Cell System, it is 

hard to measure and record the sample temperature using a thermistor. Both temperature 

and shear can have a great influence on fat crystallization so it is difficult to study the real 

effect of different shear rates on the fat crystallization when the temperature cannot be 

determined. It is necessary to find a way to measure or estimate the real sample 

temperature under shear. Only after that, the effect of shear flow on the fat crystallization 

can be understood. 

The same as the pure materials crystallized in the capillary cells, for the sample 6B4P 

without applying shear, the differences of d-spacings of peak 7 and peak 8 increase as the 

temperature increases. We can calculate the sample temperature in the mini Couette 

System using the equations shown in Figure 6-7. Even though the calculated temperature 

is still an estimated temperature, it gives us a better understanding for the temperature of 

the mini Couette system without applying shear flow. 
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(a) 

 
(b) 
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(c) 

Figure 6 - 7    Temperatures versus differences of d-spacings for peaks with small d-

spacing. (a) 6B4P without shear. (b) 6B4S with 940 s-1 shear rate (40r/s rotational speed). 

(c) 6B4S with with 1200 s-1 shear rate (50r/s rotational speed). 

 

For the sample 6B4S with 40 r/s and 50 r/s rotational speed, the sample temperature can 

also be estimated by calculating the temperature from the differences of d-spacings for the 

peaks with small d-spacing, which the d-spacing is 3.85 Å and 3.7 Å. As shown in Figure 

6-7, the real sample temperature can be calculated from the differences of d-spacings of 

peak 3 and peak 4. 
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6.3 Comparison of the Difference of d-spacing with Different Shear Rate 

 
(a) 

 
(b) 

Figure 6 - 8    Difference of d-spacings versus rotational speed for peaks with small d-

spacing. (a) Peak with small d-spacing at 3.85 Å. (b) Peak with small d-spacing at 3.7 Å 

 

To compare the change of d-spacing with different shear rates, the differences of d-

spacings under six experiment temperatures are plotted versus shear rates in Figure 6-8. 

For the WAXD peaks at 3.7 Å (Figure 6-8 (b)), the differences of d-spacings are larger at 
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higher shear rate under the same temperature. The difference of d-spacing at 50 r/s 

rotational speed is higher than the difference of d-spacing at 40 r/s rotational speed. For 

the WAXD peaks at 3.85 Å (Figure 6-8 (a)), the change of the d-spacings is not as 

obvious as the peaks at 3.7 Å with different shear rates since the temperature effect on      

d(2 0 -1) is weaker than d(3 -1 0) in the triacylglycerol crystals. At the temperature 20°C 

to 40°C, the difference of d-spacing with 50 r/s rotational speed is smaller than the 

difference of d-spacing with 40 r/s rotational speed. But at the lower temperature (0°C and 

10°C) and the high temperature (50°C), the difference of d-spacing changes in an opposite 

way. From Figure 6-8, the differences of d-spacings without shear are largest and when 

the shear flow is applied to the sample, the differences of d-spacings decrease. But since 

the lack of data of lower shear rate, it is hard to draw a conclusion about how different 

shear rate affect the d-spacing at the same experiment temperature. 

 
Figure 6 - 9    Change of difference of d-spacing with temperature using in-house x-ray 

and synchrotron x-ray. 

 

In order to compare the shear effect on the d-spacings of WAXD patterns, the differences 

of d-spacings obtained using the in-house x-ray and synchrotron x-ray are compared in 
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Figure 6-9. According to the d-spacings of WAXD peaks, peak 7 of SSS using in-house x-

ray without shear is corresponding to peak 3 using synchrotron x-ray with shear flow. 

Peak 8 of SSS using in-house x-ray without shear is corresponding to peak 4 using 

synchrotron x-ray with shear. The differences of d-spacings of 6B4S peak 3 with 40 r/s 

and 50 r/s are smaller than the differences of SSS peak 7 without shear. The same result 

can be found by comparing the differences of d-spacings of 6B4S peak 4 with 40 r/s and 

50 r/s and the differences of SSS peak 8 without shear. 

 
Figure 6 - 10    Change of difference of d-spacing with temperature with and without shear. 

 

The experimental results obtained by using the synchrotron x-ray are compared in Figure 

6-10. Since all the experiments with and without shear were done in the mini-Couette 

System and using the synchrotron x-ray, the error caused by using different sample 

holding systems and experiment setups can be minimized. According to the d-spacings of 

WAXD peaks, peak 7 of 6B4S without shear is corresponding to peak 3 using with shear. 

Peak 8 of 6B4S without shear is corresponding to peak 4 using with shear. As we could 

see in Figure 6-10, the differences of d-spacings of 6B4S peak 3 with 40 r/s and 50 r/s are 
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smaller than the difference of 6B4P peak 7 without shear. The same result can be found by 

comparing the differences of d-spacings of 6B4S peak 4 with 40 r/s and 50 r/s and the 

differences of 6B4P peak 8 without shear. Both Figure 6-9 and Figure 6-10 lead to the 

same conclusion: the differences of d-spacings under shear are smaller than that without 

shear, especially at the higher temperature. 
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CHAPTER 7        CONCLUSION AND FUTURE WORK 
 

The primary goal of this research was to investigate the temperature effect on the WAXD 

patterns of the nanocrystalline triacylglycerols, especially the effect on the d-spacings. 

The secondary purpose was to conduct preliminary tests for its use as intrinsic 

thermometers in shear cell. Pure triacylglycerols and triacylglycerol mixtures were 

crystallized in a desired polymorph in capillaries or mini Couette system, under different 

temperatures and shear rates. The WAXD patterns were obtained using in-house x-ray and 

synchrotron radiation x-ray at a beamline in APS. How the d-spacings of WAXD peaks of 

the nanocrystalline triacylglycerols changed with the different temperatures and shear 

rates was studied and compared in detail. 

The materials are described in section 3.1 in this thesis. Four kinds of samples were 

studied, including the pure triacylglycerols, dry blends by mixing two pure 

triacylglycerols with different proportions, complex triacylglycerols mixtures and pure 

triacylglycerols dissolved in BBB. 

For the samples under static environment, when the temperature increases the d-spacings 

for the peaks with small d-spacing increase. In the β form, for the peaks at 3.7 Å, the d-

spacings increased by 7 pm to 12 pm for different triacylglycerol samples. For the peaks at 

3.85 Å, the d-spacings increased by 4 pm to 6 pm as well. However, the d-spacings for 

other peaks remain unchanged or just have very small changes. This result can be found in 

β, β’ and α polymorphs of triacylglycerols. It means that the energy between the molecules 

in nanocrystalline triacylglycerols changes but not in the same way in all directions. The 

positions and d-spacings of WAXD peaks are reversible with temperature. The 

reversibility of d-spacings of WAXD peaks indicates that the temperature effect on the 

WAXD peaks of nanocrystalline triacylglycerols can occur not just in one single 
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experiment or circumstance. For the complex triacylglycerol mixtures like cocoa butter 

and 99% dark chocolate, these phenomena can also be observed. Due to the complexity of 

cocoa butter and chocolate the changes of d-spacings are harder to distinguish than the 

pure triacylglycerols and dry blends. 

The unit cell values of β form TAGs from the d-spacings are calculated using the Miller 

indices to understand the reason why the d-spacing of WAXD peaks change in different 

ways. It shows in a and b direction, the crystal expands but in c direction the crystal 

contracts a little bit. Due to the lack of small angle x-ray diffraction data, how much b 

parameter really change remains unknown. 

The intrinsic temperature of the triacylglycerol can be estimated from the differences of 

the d-spacings. It provides a new way to monitor and control the temperature of the 

system under study and the effect of high shear rate on nanocrystalline triacylglycerols 

crystallization. This will be useful to calculate the temperature of the triacylglycerol 

samples in different researches, especially the experiments applied high shear rate where 

the sample temperature is affected greatly by the viscous heat. It is particularly remarkable 

that the temperature dependency of Δd at 3.7 Å is identical for all the pure samples and for 

most of the dry blends. A simple quadratic function has been used to describe this 

relationship, as shown in Figure 4-13 and Figure 5-15. It is also useful that Δd at 3.85 Å 

depends on Δd at 3.7 Å. This can improve the quality of the fit of the peaks, since the 

relative position of the peaks can be estimated. 

For the samples under shear flow, d-spacings of the peaks with small d-spacing also show 

a great dependence on temperature. The d-spacings keep increasing when the temperature 

increases. But at higher shear rate, the crystallization is not as obvious as that at lower 

shear rate.  
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The differences of d-spacings under static environment were compared with Δd obtained 

under shear flow. The differences of d-spacings under shear flow are smaller than that 

under static environment. When the shear flow is applied to the sample, the differences of 

d-spacings decrease. After comparing the differences of d-spacing under different shear 

rate, the differences of d-spacings are larger at higher shear rate under the same 

temperature, especially the WAXD peaks at 3.7 Å. But since the lack of data of lower 

shear rate, it is hard to draw a conclusion about how different shear rate affect the d-

spacing at the same experiment temperature. The differences of d-spacings at 50 r/s shear 

rate are higher than the differences of d-spacings at 40 r/s shear rate. This can be used to 

estimate the increase in temperature. This is a considerable progress, even though it is 

necessary to improve the method. 

As what has been found under static environment, when the shear is applied to the 

crystallized samples, the temperature is a function of the differences of d-spacings of the 

peaks with small d-spacing mathematically. It provides a new way to estimate the 

temperature and the effect of high shear rate on nanocrystalline triacylglycerols 

crystallization. 

From the experiment data, it is clear that not only d-spacing, but also the FWHM of 

WAXD peaks change with temperature. In order to get a better understanding of the 

temperature effect on WAXD peaks, deeper study on the FWHM of WAXD peaks must 

be done in the future. To reveal how the TAG crystal lattices expand, more experiments 

using the small angle of x-ray diffraction must be done as well in the future. With the 

combination of wide and small angle x-ray diffraction, the change of different structure 

parameters of TAG crystal lattices can be fully understood. This temperature dependence 

studies will shed additional light on the nanostructural characteristics of these crystalline 
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materials. 
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APPENDIX A      WAXD PATTERN FITTINGS AND CALIBRATIONS 

 
Centering the capillary 

After putting the capillary into the holder, we need to center the capillary to make sure it is 

in the middle of the detector to get the most accurate image. 

First, move the detector to where the x-ray beam pass through and immobilize the detector. 

Turn on the detector and adjust the voltage to the level of 9000V. 

Second, use the instruction code “so” to turn on the x-ray shutter, generate the x-ray and get 

the graph of x-ray intensity, shown as Figure A-A-1. The position where we get the lower 

intensity of the x-ray is the center of the capillary. 

Third, after we get the center of the capillary, use the instruction code “umv” to move the 

motor to the center of the capillary. 

 
Figure A - 1 Center of the capillary of β form 5M5P. 


