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Abstract

Today, smartphones have become an important part of our day to day life. Every day,

practically every one of us wakes up in the morning hearing the sound of an alarm

coming from our smartphone. First thing in the morning, we see the LED flashing on

the phone and we have the urge to check all the notifications we got during the night.

We unplug our phone from the charger. We read some notifications, we ignore some,

we reply to some. Finally, we get out of the bed. We use it all day for everything:

replying to emails, text messages and social networking. Finally, we go to bed, plug

it back into the charger cable. We touch it until our eyelids close for the night’s

sleep. We have this routine usage of our smartphone almost every day. Every user

uses his/her phone in his/her own way. Not all the people are the same. Not all the

people have the same routine of life. But our smartphone is not really smart enough

to learn our routine and adapt to us.

Our smartphone does not understand our needs. Either it just performs on its

own or it performs only after we ask. There is a lot of areas that need automatic

adaptation. Smartphones are the devices that perform tasks equal to a laptop or a

desktop machine but with limited resources like battery, memory, screen size, etc.

Unlike laptop users, smartphone users do not carry chargers with them all the time.

Considering smartphone’s limited battery as a serious concern, the battery would be

the main area that needs automatic adaptation. Smartphones should know the user’s

recharge cycle and use the available energy efficiently by spending when it is in excess

and reserving when it is in shortage.

Computation complexity has been doubling every couple of years. But, the battery

capacity has been doubling every 10 years [6]. So, it is our responsibility to use the

energy efficiently without a compromise in user experience. We propose ENDLESS

(Energy Distribution Through Lifetime Estimation and Smartphone Usage Patterns)

to determine if energy is to be saved for future use or if it can be consumed for present

use according to the estimations of the next recharge time, applications and services

that might be used in the near future and how much battery would be needed.

ix
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Chapter 1

Introduction

Smartphones have become an essential part of our life in today’s world. Most of us,

especially college students, teenagers and young adults use our phone as if it is our

sixth finger. Smartphones are mobile devices that are capable of performing both tele-

phony and computing services. Telephony services include basic voice calls over GSM

carriers and sending/receiving text messages. Computing services include Emailing,

social networking, keeping up with appointments through calendar, browsing websites

and much more.

1.1 Evolution of Smartphone

Smartphones have a long history dating back to 1973 when Martin Cooper, head

of Motorola Research and Development, invented the first mobile device [6]. The

device was huge and was not called as smartphone. However, it was able to serve the

purpose of voice calling. The phone named DynaTAC was released to the public in

1983 by Motorola for USD 4000.

Since then, many software corporations started investing in smartphone research

and made an enormous progress. In 1992, IBM started developing its first smartphone

Figure 1.1: IBM Simon Personal Communicator

1
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Figure 1.2: BlackBerry Smartphones

“Simon Personal Communicator”. They launched their device into the market on

August 16, 1994. Simon combined the functionalities of both cellphone and PDA.

In 1996, Nokia released its first smartphone called “Nokia Communicator”. In the

evolution of smartphone, BlackBerry phones have a remarkable role. BlackBerry

Limited (formerly Research In Motion Limited) started making mobile devices in

1996. Their first device was Interactive Pagers with monochrome display, a thumb

wheel for scrolling, and a thumb keyboard. The device was capable of emailing and

minimal HTML browsing. Then they developed Java based monochrome display

phones in 2002, color phones in 2003, consumer models in 2008. Throughout their

journey in the smartphone industry, they concentrated wholly on enterprise businesses

until the introduction of Apple’s iPhone.

When Apple introduced its first smartphone in 2007, the definition of smartphone

was changed. They designed it in such a way that the whole phone could be the

same size as its display. They introduced their patented feature multi touch display

in it. Due to the extra ordinary design and marketing of the iPhone, a lot of other

competitors increased their speed and tried to make equivalent phones. One of the

main players, Samsung, a South Korean giant, has now captured a huge share in the

world smartphone market. When BlackBerry began running their own proprietary

operating system BB 5.x, 6.x, 7.x and now BB10 and iPhone began running Apple’s

iOS, Samsung leaned over to Google’s open source mobile operating system called

Android.

Almost at the same time when Apple introduced its iPhone, Google announced

their open source operating system Android. As they made it an open source, it
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Figure 1.3: Smartphones in 2014

Figure 1.4: Global Sales Feature Phones vs Smartphones

encouraged numerous hardware manufacturers and desktop/laptop manufacturers to

get into the smartphone business. Some of the companies that made use of the

Android operating system were Samsung, LG, HTC and Sony.

When we look at the recent surveys on smartphone and feature phone sales, smart-

phone penetration into global market is growing year by year. A survey conducted

by Gartner [23] shows that the percentage of smartphones has outnumbered the per-

centage of feature phones in 2013. Figure 1.4 clearly shows that the growth in the

smartphone market share has been gradual since 2008 to 2010. But then it has taken

a steep up since then. In 2013, out of 1.8 billion mobile devices sold, 968 million were

smartphones.
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1.2 Mobile Operating Systems

Smartphones being capable of performing most tasks that a desktop or laptop can do,

it needs a well versed operating system to take care of various services like network-

ing, application management, resource management, storage management, security,

etc. Few mobile manufacturers have their own proprietary operating system. Apple

iPhone runs their own iOS, BlackBerry runs their own BBOS and Microsoft phone

runs their Windows Mobile OS. But most of other manufacturers like Samsung, LG,

Sony and HTC opt for Google’s open source operating system Android. These man-

ufactures make devices with other platforms as well. For example, Samsung Galaxy

ATIV runs Windows and HTC sells a device called HTC Windows Phone 8x. Earlier

to Microsoft acquisition of Nokia mobile division, Nokia phones were running on the

Symbian operating system.

1.2.1 Smartphone Market Share by Operating Systems

Since the introduction of Google’s Android and Apple’s iPhone in 2007, the evolution

of the smartphone has taken a huge leap. Numerous statistical studies show that in

recent years, the leadership of the smartphone market was taken over by Android

from Symbian which held 50.3% of the world smartphone market share in 2009 [27].

As per the study by Canalys on Global Smarpthone sales in 2009, Symbian was at

the top of the table with 50.3%, BlackBerry in second place with 20.9% followed by

Apple’s iPhone with 13.7%. Microsoft Windows Mobile with 9.0% and Android with

2.8% were the minor players.

Operating System Global Market Share

Nokia Symbian 50.3%
BlackBerry 20.9%

Apple iPhone 13.7%
Microsoft Windows Mobile 9.0%

Google Android 2.8%
Other (E.g. Palm OS, Linux) 3.3%

Table 1.1: Canalys Study - Global Smartphone Sales in 2009

Within a year, in 2010, according to Canalys’ study on Global Smartphone Sales

[9], Google Android has taken the lead with a total market share of 32.9%, BlackBerry
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Figure 1.5: Canalys Study - Global Smartphone Sales in 2009

with 14.4% market share, went to fourth position in 2010 from second position in 2009.

Fortunately, Apple was able to keep its third position with 16.0%. All other platforms

slipped a position. Nokia Symbian had dropped to second position with 30.6% and

Microsoft was holding just 3.1% market share.

Operating System Global Market Share

Google Android 32.9%
Nokia Symbian 30.6%

Apple iPhone 16.0%
BlackBerry 14.4%

Microsoft Windows Mobile 3.1%
Other (E.g. Palm OS, Linux) 3.0%

Table 1.2: Canalys Study - Global Smartphone Sales in 2010

If we compare Figure 1.5 and Figure 1.7, it is obvious that Android’s growth

was enormous. To date, Android is successful in dominating the world smartphone

market. According to the study by Canalys on Global smartphone sales in 2013 [1],

Google Android has captured 79% market share. Apple’s iPhone has moved up from

third to second position. But when we compare it with 2012 sales, it has lost 5%

share in 2013. Since the acquisition of Nokia mobile division by Microsoft, Symbian

platform is out of the table. Even with the Nokia hardware manufacturing unit,

Microsoft is able to barely survive in this smartphone market. Throughout these five

years, Microsoft Windows Mobile is consistent in its 3% share. In this whole market
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Figure 1.6: Canalys Study - Global Smartphone Sales in 2010

shift, unfortunately BlackBerry has taken a deep decline from 20.9% in 2009 to 2%

in 2013. BlackBerry is almost bottom of the table now.

Operating System Global Market Share

Google Android 79%
Apple iPhone 15%

Microsoft Windows Mobile 3%
BlackBerry 2%

Others 1%

Table 1.3: Canalys Study - Global Smartphone Sales in 2013

As we look at the global market share by various platforms, it is clearly visible

that Google Android has emerged as the most dominant platform. We shall men-

tion a few reasons for Android being top of the table for the past four years. The

main reason is its open source model that attracted a large number of mobile device

manufacturers and a huge number of software application developers which in turn

resulted in hundreds of thousands of mobile apps on its application store (Google Play

Store). Because of the large number of Android mobile applications available, sales

of Android mobile devices are growing. And due to the large user base, application

developers are interested in making as many Android applications as possible in order

to make higher profits. This has become a continuous cycle that keeps growing day

by day.

Due to the various factors which include market share dominance, open source
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Figure 1.7: Canalys Study - Global Smartphone Sales in 2013

Figure 1.8: Canalys Study - Global Smartphone Sales
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model, various supporting platforms (Linux, Mac, Windows) for application develop-

ment, simple and powerful SDK, flexibility in experimenting various functionalities

of an operating system, we chose Android platform to implement our methodology

and tested on our Android powered mobile device, Google LG Nexus 4.

1.3 Batteries in Mobile Devices

We know that smartphones are limited in resources such as memory, processor speed,

screen size and battery. If we consider the desktop computers, they are always con-

nected to AC power and no need of any battery. But when we think about the

capability of performing tasks by these smartphone devices, they almost perform as

a mini computer. At the same time, smartphones offer convenience and portability.

We can easily carry our smartphones in our pockets. We can use it wherever we want

and whenever we want. Unlike laptop users, most smartphone users do not carry

their mobile chargers with them [28]. Therefore, the smartphone users expect their

mobile device to run at least for a day until they recharge their battery. But the real

problem is that whether these batteries used in today’s mobile devices evolved to be

in line with the smartphone’s functionality and features evolution. The answer is no.

The smartphone features and functionalities are increasing rapidly. But we use the

same Lithium-ion batteries which we used a few years back. According to Perucci et

al. [25], Computation complexity doubles every two years whereas battery capacity

doubles only every decade. We have not yet reached the technology with which we

can access our mobile devices without any battery or the technology with which the

battery recharges itself from the atmospheric energy. Until then, it becomes the re-

sponsibilities of software engineers to use the battery as efficiently and effectively as

possible.

1.3.1 Common types of batteries

The battery is the blood of our mobile devices. As we know that one size does not

fit all, the batteries as well are of different types according to the device needs and

specifications. The common types of batteries used today in mobile devices are [21]:

1. Nickel Cadmium (NiCd)
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2. Nickel Metal Hydride (NiMH)

3. Lithium Ion (Li-Ion)

4. Lithium Polymer (Li-Poly)

NiCd Batteries: These are of very old technology. They are cheap in cost and so it

helps to bring down the overall selling price of the device. The disposal of Cadmium

waste is actually an environmental issue. The other problem with these types of

batteries is that recharging should only start after the complete drain. Otherwise,

battery life would be an issue.

NiMH Batteries: These types of batteries are of slightly newer technology com-

pared to NiCd. This beats NiCd batteries by addressing Cadmium’s environmental

issue. That is, no cadmium used in these batteries. Also, they offer higher capacity

in consideration of its size and weight. These batteries should also be drained before

the recharge. But the consequence of not doing so is lesser compared to NiCd.

Li-Ion Batteries: This is the most common type of batteries used today. Most

smartphones carry this battery because of it longer battery life and lighter weight.

But these batteries are expensive which affects the overall mobile device cost. Li-Ion

batteries are prone to damage if they are plugged into the charger for a long period.

Li-Poly Batteries: This is a very new technology for mobile device batteries. So

they are not very popular. These batteries deliver a longer battery life compared to

all other and are very thin and light in weight. Only very few smartphones carry

Li-Poly batteries. E.g. Lenovo K900.

1.3.2 Smartphone needs and Battery types

Mobile device manufacturers carefully decide which type of battery is used in their

smartphone considering various factors. The important factors one should consider

are

1. Battery Size and Weight

2. Battery Cost

3. Battery Capacity
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Battery Size and Weight: Manufacturers design their mobile devices according to

the market needs. Some devices may be thin and small, some may be thin but with

bigger screens, some may have slide form factor and so on. Manufacturers go for

certain type of batteries according to the form factor and size of their device.

Battery Capacity: Manufacturers make mobile devices for all types of users rang-

ing from low end to high end. Low end phones feature only basic voice calls and text

messaging whereas mid-level phones access the internet through browser applications

and limited multimedia features. On the other hand, high level phones run heavy

operating systems that are capable of high speed data connection with large number

of applications and services running at the same time. So, according to the capability

of the mobile device, battery capacity needs will vary.

Battery Cost: Mobile devices are sold in a wide variety of prices. The cheap mobile

phones have lower specification like no Camera, no Wifi, etc. and costly devices have

higher specification like 4G high speed data connection, bigger touch screen, etc.

According to the selling price of devices, manufacturers decide the battery type.

The rest of this thesis is organised as follows.

The second chapter discusses the background information that is required to un-

derstand the rest of this thesis. It also gives an introduction of smartphone battery

technology, battery consumption by various services and battery saving techniques.

In the third chapter, we explain our methodology with our Android application.

The following chapter gives the detailed information on implementation of our

proposed methodology. We also discuss the Android application’s features with its

screenshots.

The fifth chapter reports our evaluation scheme and the test results.

We end the report with a conclusion and future work.



Chapter 2

Background and Literature Survey

2.1 User’s Adaptation to Smartphone

Smartphone users use their smartphone for almost everything in their day-to-day life.

Today’s smartphone offers a lot more features including a high definition camera,

high speed data connection, a huge number of applications, social networking, video

conferencing, etc. But not all users use all the features their smartphones possess.

The users who are addicted to social networking, have the apps like BBM, Facebook,

Instagram, Twitter, etc. on all the time. The users who talk a lot, use their phone

application more often. The users who travel frequently, have their data connection

on. So, various users use their smartphone features and applications at various levels.

Smartphone user interface varies according to the platform (operating system) and

the manufacturer. For example, Apple’s iPhone has only one hardware button called

“Home”. So to switch between the applications, the user has to press the “Home”

button to come out of the current application and tap on a new application to open

it. In BlackBerry 10, the users can minimize their apps and all the minimized apps

will be shown on the first page. So users can swipe up from any application to access

this opened application list. But in Android, most recent smartphones have a soft

button “Recent application”. When users tap this button, a list of recent applications

are shown and the users can switch easily. Another example is the “Back” button

that is used to navigate within an application. BlackBerry and Android phones

carry “Back” button at the bottom left corner which is available almost all the time.

But in iPhone, the application developers should implement their back buttons for

navigation and the button should be on top left corner. If we consider BlackBerry and

iPhone, the phones are made by only themselves BlackBerry Limited and Apple Inc.

respectively. But the Android phones are made by a lot of different manufacturers

like Samsung, LG, Sony, Lenovo, etc. Each manufacturer alter the user interface to a

small extent according to their design and their targeted users. So, the user interface

11
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Figure 2.1: User’s adaption of smartphone

on a smartphone varies according to the platforms and manufacturers.

Smartphones also vary by features and functionalities. Some phones have cameras

and some do not. Some phones use 4G LTE data connection, some use HSPA+ and

some still use 3G. Some phones are capable of video recording and some are not. So,

the users adapt themselves to their smartphone features as much as possible to their

capability.

The users who use the same phone for a long time, he/she gets used to its interface

and tends to navigate through the screens and applications much faster. As the user

knows what is what and what is where, he/she gets things done quicker and effectively.

So, as the users use their phones more, they adapt to their devices.

The users moving from one phone to another find it difficult to use the phone

at first. It takes time for them to become familiar with the user interface and fea-

tures. According to Gafni et al. in “Generation Y versus Generation X: Differences

in Smartphone Adaptation” [24], this adaptation differs also by age. The paper in-

vestigates the generation gap in this adaptation to various smartphones through the

usage of mobile data services by various users. They find that the young generation

users use the service less at first but with time, they start using more. On the other

hand, with the older generation, there is not much difference in usage of services.

Figure 2.1 shows the tendency of generation Y and generation X to use a smart-

phone for Internet application when there is a personal computer available nearby, as

a function of the smartphone’s period of ownership. The authors name the younger
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generation (aged 20-30) as generation Y and the older generation (aged 31-59) as

generation X.

Overall, we can understand that there is a certain portion of users who adapt to

their phones very easily as the period of ownership increases.

2.2 Smartphone’s Adaptation to User

Smartphone users use their smartphone for anything and everything in their day-to-

day life. But, it is very important to deeply investigate how well the smartphone

has learned from its user. When a user buys any smartphone available in the market

(Android, Blackberry, iPhone, etc.), it is very new without any information of the

user. The phone comes with the factory operating system and preloaded apps like

Text Messaging, Email, Phone, Calendar, etc. Once he/she starts using it, the device

gets a few information from the user’s input. For example, the user’s name, email

address, location, time zone, etc. As the time passes by, the user has become well

adapted to his/her phone but the phone has not adapted to the user. The smartphone

is not really smart enough to learn from its user about his/her needs and daily routine.

For example, if a person walks from his/her home to work daily in the morning using

the same route, he/she walks exactly in the same way taking the same turns even if

he/she is thinking about something else. That is how the human brains work. But

our smartphones do not work in this way. If the user goes to a library daily and turns

his/her cell phone to silent mode as soon as he or she walks in, the device should

actually remember this routine and do this automatically after a certain period. But

even after a year or two or three, it will remain the same and the user has to continue

to do it himself/herself.

As most of the users use their smartphones frequently for everything in their day-

to-day life, it has become a vital concern if the device is learning from the user and

makes his/her life easier and smoother. The smartphone industry is showing keen

interest into this personalisation area to attract more and more customers. Due to

various factors, although the corporate giants and academic researchers have put in

a lot of effort into this, they have only achieved to a certain extent. The important

factors are considered to be limited resources in smartphones which prohibits the

heavy processing of data mining algorithms, user’s privacy concerns which do not
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(a) BlackBerry 10.2 (b) Android 4.2

Figure 2.2: User Adaptive Keyboard on Smartphones

let user data be processed remotely and so on. Considering these limitations, we

identified a few smartphone functionalities that needs personalisation:

1. Keyboard

2. Location aware Profile change

3. Time based Profile change

4. Battery Consumption

2.2.1 Keyboard

The smartphone users are of different age groups and different professional levels. It

is a well-known fact that most teenagers and students often chat a lot on messaging

applications like BBM, WhatsApp, Viber, WeChat, etc. and most of the working

professionals especially mid-level and senior-level managers use Email a great deal on

their smartphones. No matter what language the users use and what characters they

use to write in their language, they do tend to write the same sentences more often.

Today, smartphones remember the words users type and adds them to the dictio-

nary and displays them as suggestions or to do auto correction. But most phones fail
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Figure 2.3: Android’s Personalized Suggestions

to predict the next word because they did not learn the entire sentence. BlackBerry

10 platform has achieved the prediction of words in their keyboard to a great ex-

tent and are still working on the improvements in upcoming versions. Figure 2.2(a)

shows a screen shot of Foursquare application on BlackBerry 10. When I entered

1065 (street number), based on my previous typing, the keyboard showed “BLAND”

(street name) on top of the key “B”. But the same application on Android did not

show anything after I typed “1065”. So as I continued typing “1065 B”, the key board

showed some suggestive words that starts with “B” on top of the keyboard: “By”

and “But”. Google also provides personalized suggestions based on the users input on

google apps and services. Figure 2.3 shows the information dialog regarding Google’s

personalized suggestion. We hope for the benefit of smartphone users, BlackBerry

improves their prediction mechanism and other platforms like Android and iOS start

providing predictions instead of suggestions.

2.2.2 Location aware Profile change

It is a common rule in all libraries that the people should put their cell phone in

silent mode or turn off the devices when they are inside their building. Consider
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(a) BlackBerry 10.2 (b) Android 4.2

Figure 2.4: Profile Management on Smartphones

a situation where a smartphone user goes to the library every weekend and turns

his/her cellphone to silent or vibration mode. When the smartphone user changes

the profile continously, it makes sense for the smartphone to do it automatically.

The smartphone may prompt the user after a certain period that if he/she wants the

device turn to silent or vibration modes automatically when the GPS detects that

the user is inside this library. On user’s permission, the smartphone may do this

automatically until the user changes his/her settings. Same logic goes for hospitals

as well. But none of the smartphone platform provides this functionality. We hope

that in time any of the leading smartphone manufacturers concentrate on this area

and introduce the same or similar functionality.

2.2.3 Time based Profile change

Most of the people in this world follow the same routine: wake up in the morning,

go to work, come back from work, do some hobbies and go to the bed. The routine

may vary person to person and even for the same person, the routine may vary as

he/she grows old. But for a significant period of time, the routine for a student or a

working professional would remain the same. For example, if a smartphone user goes

to bed at around 11 pm every night and he or she turns his/her phone to “Phone
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Calls Only” mode, the device should keep track of this for a certain period of time

it should alert the user asking if he/she wants this profile change to be automatic. If

the user permits this action, the smartphone should start doing it immediately. This

functionality is currently not available in any of the platforms: Android, BlackBerry,

iOS, Windows, etc. Figure 2.4(a) shows the manual profile change on BB10 device

(BlackBerry Z10) and Figure 2.4(b) shows the manual sound settings screen on an

Android device (Google Nexus 4). If we compare these two screenshots, we understand

that BlackBerry is ahead of Android in profile management. BlackBerry users can

have different notification settings for different apps and combine them into a single

profile that shall be activated on a single tap. But Android users should change the

sound settings individually. There is no profile management in Android. We hope

that smartphone industry will look into this and provide a suitable solution.

2.2.4 Battery Consumption

In a smartphone or any other mobile devices, battery consumption by individual

apps and OS services are always a big concern. As the mobile devices are of limited

resources and the users expect a longer battery lifetime for a single recharging cycle,

it becomes very important for the platform designers and independent application

developers to consume the battery as least as possible. Each platform (Android,

BlackBerry, iOS, etc.) and each smartphone manufacturer (Samsung, LG, Sony,

BlackBerry, Nokia, etc.) deploy their own mechanism and threshold values to switch

off various services (E.g. Mobile Data Connection, Wifi, etc.) and minimize some

services (E.g. Screen Brightness) at various battery levels. Even though a single

manufacturer (e.g. Samsung) makes smartphones with the same platform (Android),

their devices are of wide variety ranging across different specification.

Each smartphone model’s threshold values and mechanisms vary according to their

device battery type, battery capacity, needs, features and design. But the problem

with this strategy is that the user is not taken into account in fixing these threshold

values. Banerjee et al. [28] states that the battery consumption and recharging

patterns varies greatly across users and platforms. But the phone does not try to

learn what the apps are the user is frequently using, at what battery level he/she is

using them or how much battery those sessions consume, etc. In result of that, even if
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(a) Brightness Setting (b) Battery Monitor

Figure 2.5: Android Energy Consumption at Maximum Brightness

the user wanted to use some services in the background, the devices switches them off

automatically without the user’s knowledge. So, in this thesis, we try to address the

smartphone adaptation to user on battery consumption by tracking their usage and

battery recharging patterns. The following sections will explain the existing strategies

and our proposed methodology in detail.

2.3 Battery Saving Techniques

2.3.1 Default

Most smartphones have built-in power saving mode that may or may not be config-

urable by the users. Power saving mode may decrease the screen brightness, shut

down services like mobile data, WiFi, etc. depending on the manufacturer’s design

and platform. Among all the services and apps running on a smartphone, the LCD

screen always consumes higher energy.

We set one of our devices Google’s LG Nexus 4 (OS: Android 4.2 JellyBean) to

maximum brightness and tested the energy consumption by various entities of the
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(a) Brightness Setting (b) Battery Monitor

Figure 2.6: BlackBerry Energy Consumption at Maximum Brightness

smartphone. Figure 2.5(a) shows the screenshot of the brightness setting and Figure

2.5(b) shows the battery consumption by various services and applications. In 3

hours 21 minutes and 46 seconds, the phone had reached 61% battery level from its

original 100%. The device had lost 39% of battery out of which 22.62% of the total

battery capacity, that is, 58% of the current energy loss, is actually consumed by

the screen. According to this test run, media server is the second highest energy

consuming service. It has consumed 7% of the current energy loss, that is, 2.73% of

the total battery capacity. This clearly confirms that no service or application is even

close to the screen consumption.

Figure 2.7 shows a snippet from the open source Android code: Power.java [5]

that defines the values for power management variables. Full brightness is set to 255

and no brightness is set to 0. From the line 72, we infer that 10% battery level is

considered as low battery. And the line 66 says at low battery, the screen brightness

will be set to 10.

To understand the effect of brightness on battery consumption, we set our Nexus

4 device to minimum brightness and monitored the battery consumption. To be

consistent with our test results we recharged the phone to 100% battery level and

started using it for the same time as in Figure 2.8. In 3 hours 21 minutes and 46
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Figure 2.7: Threshold value for Low Battery Level on Android

seconds, the device has lost 22% of its total energy out of which only 5.5% (25% of

the current energy loss) was consumed by the display screen. This is much lesser

when compared to Figure 2.5 that shows 58% battery consumption by the screen.

Android also provides an option for users to set their device screen to “Automatic

Brightness” which adjusts the brightness of the screen according to the room light.

That is, when the room light is bright like a sunny day on the streets, the brightness

on the device is set to a higher value so the users will be able to read from the

screen easily and if the room light is dark, the brightness is set to a lower value

to save battery consumption. In Figure 2.8(a) and Figure 2.5(a) we see there is

a check box “Automatic Brightness”. When the user enables this option, Android

will immediately adjust the screen brightness according to the room light and will

continue doing so until the user disables “Automatic Brightness”.

2.3.2 Static Solutions

Apart from platform’s default battery saving techniques, there is a lot of static solu-

tions proposed by academic and industry researchers from various parts of the globe.

Some of the those solution are available as commercial applications on app stores like
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(a) Brightness Setting (b) Battery Monitor

Figure 2.8: Android Energy Consumption at Minimum Brightness

Google Play Store, Amazon Appstore for Android, BlackBerry World, etc. By the

term “static”, we mean that the solutions remain the same irrespective of the device

and user. They consider the usual battery consuming services and try to provide a

longer battery life time. We have identified a few important solutions from research

articles, journals and also a few applications that are available on app stores.

1. Battery Life Time Extension Method Using Selective Data Reception on Smart-

phone [26]

2. Battery Life Time Extension Method By Using Signalling Interval Control [30]

3. Battery Doctor [2]

4. Juice Defender [12]

5. Go Power Master [8]
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Battery Life Time Extension Method Using Selective Data Reception on

Smartphone

This paper presents a solution to our battery consumption problem by analysing

different types of applications that drain the smartphone’s battery. The authors of

this paper [26] identify social networking applications like MyPeople, Google Talk,

Never-Talk and Yahoo Messenger as a significant influence on battery consumption.

So, they propose a model to address this problem by building a SNS (Social Network-

ing Service) application server that would receive battery state from the smartphones

and decide if the smartphone has enough energy to receive huge data. The data

from various social networks are actually routed to the smartphones through the SNS

application server.

Figure 2.9 shows the complete work flow of the SNS application server that

illustrates how data received from various social networking services are transmitted

to smartphones. The SNS application server has two threshold values: Threshold

I is packet size and Threshold II is battery state. The packet size threshold value

helps to determine the type of data that has been received: text or picture or video.

The battery state threshold is to determine if the smartphone has enough energy to

receive this data type. So, when a data packet is received by SNS application server,

it verifies if the packet size is greater than Threshold I. If not, the server transmits

the packet immediately. Otherwise, it verifies if the battery state of the smartphone

is less than Threshold II. If no, again the server transmits the data immediately.

Otherwise, the packet transmission is rejected and ready to listen to a new packet.

The authors of this paper [26] evaluated their method in both 3G (UMTS) and

WiFi (IEEE 802.11) environment. They compared their selective mode reception with

normal mode and found that their selective mode has a longer battery life. Figure

2.10(a) and Figure 2.10(b) show their evaluation results in 3G and WiFi modes

respectively.

Battery Life Time Extension Method By Using Signalling Interval

Control

This paper, from the same authors of “Battery Life Time Extension Method Using

Selective Data Reception on smartphone” [26], presents another solution for the
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Figure 2.9: Flowchart of Selective Data Transmission in SNS Application Server

(a) 3G Mode (b) WiFi Mode

Figure 2.10: SDR - Power Consumption Comparison
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same problem of battery consumption by SNS applications. Here, the authors have

taken different approach of developin the solution within the smartphone instead of an

intermediate application server. In this particular paper [30], they discuss the signal

exchange between smartphone and the SNS agent server and also its effect on battery

consumption. When any SNS application is installed on a smartphone and logged

in, the application sends “Keep-Alive” messages to its SNS agent server to maintain

the user information. These signalling messages are exchanged on a constant interval

irrespective of the smartphone’s battery level. As this traffic is not very important to

the user, the signalling can be delayed to save some battery and extend its life time.

Figure 2.11 shows the complete workflow of the signalling interval control (SIC)

method. The SIC application is constantly looking at outgoing packets and verifies if

it is a SNS Keep-Alive message. If not, the message is transmitted. Otherwise, as a

next step, the SIC application checks the battery level if it is less than the threshold

value. If not, SIC application assumes that the smartphone has enough battery and so

it operates in the normal mode by allowing the transmission immediately. However,

if the battery level is less than the threshold, the SIC application switches itself to

battery saving mode and calculates the time to be delayed based on exponential

back off equation in [22]. After the delay time, SIC application transmits the signal

message to SNS agent server and starts verifying the next packets.

The signalling interval control method was evaluated by comparing the battery

consumption by Keep Alive Messages (KAM) in Battery Saving mode against Normal

Mode. The authors tested their solution on both 3G (UMTS) and WiFi environments.

As the battery level goes down, their signal interval becomes higher and so the battery

consumption by the KAM in battery save mode is very low whereas in normal mode,

irrespective of the battery level, KAM consumes same energy. Figure 2.12 shows their

performance analysis by comparing power consumption by KAM in normal mode and

battery saving mode.

Battery Doctor

One of the most popular battery saving application available on Google Play Store

(https://play.google.com/store) is Battery Doctor. The application is downloaded by

more than 50 million users and has been rated on an average of 4.5 out of 5.0 by
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Figure 2.11: Flowchart of Signalling Interval Control Method

(a) 3G Mode (b) WiFi Mode

Figure 2.12: SIC - Power Consumption Comparison
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(a) Charging (b) Discharging

Figure 2.13: Battery Doctor

over 2 million users [12]. The application helps to improve the battery health by

addressing memory effect. That is, Battery Doctor reminds the user when the battery

is getting over charged and also it monitors and manages the energy consumption. In

addition, it helps the battery to get charged in 3 stages - speed when low, continuous

when moderate and trickle when high. The application offers great features like fixing

schedules for work, sleep, etc., brightness, WiFi, Data connection settings for each

mode or schedule, individual task killer, etc. Primarily, it kills the battery draining

applications as an energy saving mechanism. When the battery is in the charging

state, it notifies the users of the approximate time left to fully charge and when the

battery is in the discharging state, it notifies the users how long the battery will last

until it completely drains out. Figure 2.13(a) and Figure 2.13(b) displays screenshots

of the Battery Doctor application in charging and discharging states respectively.

Battery Doctor claims to extend the battery life up to 50%. We evaluated the

application’s performance by measuring the smartphone’s total time to reach zero

battery level from 100%. We compared it against the condition of the device without

Battery Doctor application installed.
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Battery Doctor ON Battery Doctor OFF

17 hrs 53 mins 16 hrs 40 mins

Table 2.1: Battery Doctor Performance - Total Battery Lifetime

Juice Defender

Another important battery saving application available on Google Play Store (https://play.google.com/store)

is Juice Defender. The application is downloaded by more than 10 million users and

rated on an average of 4.4 out of 5.0 by more than 250 thousand users [2]. Unlike

other battery saving applications, Juice Defender is not a task killer. It just opti-

mizes the energy consumption by letting the smartphone run at its full capacity when

needed and save the battery otherwise. It manages the power consumption by mon-

itoring battery draining services like WiFi, 3G/4G high speed data connection, etc.

Juice Defender comes with a few preset modes - balanced, aggressive and extreme.

Each mode has a predefined setting. For example, screen brightness value, 3G/4G

data connectivity switch to turn on/off, etc. In the balanced mode, when the screen

is off, the application delays the background synchronization by 15 minute intervals

and when the screen is on, the application does not touch anything. In the aggressive

mode, the delay is extended to 30 minutes for background connections and when the

battery becomes really low, the application disables the background processes com-

pletely even if the screen is on. The extreme profile turns off the connectivity by

default but offers users to enable it for particular apps of their interest.

Juice Defender also offers users flexibility to customize the modes according to

their individual needs. Notable customizations are Mobile data switch, WiFi switch,

Location switch and Background synchronization interval. Figure 2.14 shows a

screenshot of the application’s home screen. Juice Defender is designed primarily

for the user’s convenience and offers great interface that helps users manage their

settings effectively.

We evaluated the application’s performance by measuring the smartphone’s total

time to reach zero battery level from 100%. We compared it against the normal

condition of the device without Juice Defender application installed.
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Figure 2.14: Juice Defender

Juice Defender ON Juice Defender OFF

18 hrs 18 mins 16 hrs 40 mins

Table 2.2: Juice Defender Performance - Total Battery Lifetime

Go Power Master

Another notable battery saving application available in Google Play Store is Go Power

Master which has been downloaded by over 10 million users and rated 4.4 (average)

out of 5.0 by over 180 thousand users [8]. Go Power Master is almost similar to the

two application we previously discussed except that it offers battery life estimation in

case of switching down any service like WiFi, 3G/4G data connection, etc. Therefore,

the users will be able to decide if switching down any service will be helpful to

them. Figure 2.15(a) shows the screenshot of Go Power Master application’s home

screen. The application also tells the user how long the battery will last if any

particular service is used throughout. Figure 2.15(b) shows the endurance time

of different features. Like the other two applications, Go Power Master has three

modes of operation - General, Super and Extreme. The user interface is not as

easy as the previous ones but it perfectly delivers the necessary features of shutting
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(a) Home Screen (b) Endurance Time

Figure 2.15: Go Power Master

down unnecessary services and the customization of modes according to user needs.

Go Power Master also provides options to manage different components within the

application using which users will be able to turn on/off WiFi, Data Connection,

Bluetooth, etc. very easily.

We evaluated the application’s performance by measuring the smartphone’s total

time to reach zero battery level from 100%. We compared it against the normal

condition of the device without Go Power Master application installed.

Go Power Master ON Go Power Master OFF

16 hrs 58 mins 16 hrs 40 mins

Table 2.3: Go Power Master Performance - Total Battery Lifetime

2.3.3 Dynamic Solutions

Academic and industry researchers have also been working on user adaptive energy

management. These techniques are considered as dynamic solutions as they consider

users and the usage patterns. That is, the same solution yields different results based
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on various factors - devices, platforms, users and usage patterns. Unlike default

and static solutions, this dynamic approach concentrates on improving the quality of

experience instead of just extending the battery lifetime. According to Banerjee et al.

[28], their tool Llama improves the user experience by providing a brighter display

and continuous connectivity without significant compromise in battery lifetime. We

also identified a few popular applications on app stores that take a dynamic approach

in solving energy consumption concerns. So far proposed solutions by researchers

that are very important for our thesis work are discussed below.

1. Users and Batteries: Interactions and Adaptive Energy Management in Mobile

Systems [28]

2. Context-aware Battery Management for Mobile Phones [29]

3. Snapdragon BatteryGuru [18]

4. Battery Drain Analyzer [3]

Users and Batteries: Interactions and Adaptive Energy Management in

Mobile Systems

This research work is a very intensive study on user adaptive energy management.

This paper was published in the year 2007 when the smartphone evolution became

exponential. The authors have done a detailed study on how user’s usage pattern

and recharge cycle impact the battery lifetime. They also present interesting results

from their analysis of collected data, user interviews and in situ survey. Banerjee et

all [28] listed three findings from their study:

1. Users recharge their phones mostly when they have significant energy left.

2. Users recharge their phones mostly by context like location, time, etc. and

battery levels.

3. There is a significant difference in recharging behaviour and battery usage

among various users and devices.
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Figure 2.16: Adaptive Energy Management - In situ survey results

These three findings especially the first one motivated the authors to concentrate on

adaptive energy management approach in solving battery consumption concerns. If

the users recharge their phones at higher battery levels, it is unnecessary to switch

down services. That is, if we estimate the battery level the user will recharge his/her

phone at, then we can substantially increase the quality of service and thereby the

user experience. Figure 2.16 shows their in situ survey results. Only 28% of recharge

happened by low battery alarm whereas 49% happened by context like location, time,

synchronization need, etc.

But when the system tries to consume the excess battery by offering better user

experience, the smartphone may start losing energy faster resulting in a quicker drain.

Also, users may recharge their phone sooner as a result of faster battery drain. This

becomes a feedback loop. The authors identified three important recharging be-

haviour - context, battery level and low battery conditions. When users recharge

their smartphone by context based like location and time, the adaptive approach

may have little or no significant effect noticeable by users. But when they charge

based on battery levels, as adaptive approach tries to consume extra energy, the bat-

tery level decreased sooner result in users tending to recharge frequently. However,

the main concern is when they recharge based on true low level battery. So, as a

dynamic user centric approach in solving energy consumption issues, Banerjee et al

[28] designed a system named Llama to manage the battery energy addressing all the

concerns including feedback loop.
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Figure 2.17: Llama: Energy Adaptive Algorithm

Llama learns usage patterns from its users rather than some preset knowledge of

expected battery lifetime. The basic concept behind Llama is very simple. When

the system detects excess energy until the expected next recharging, it increases the

user experience by allotting energy to noncritical tasks and delivers brighter screen,

shorter synchronization cycle, website caching, etc.

Figure 2.17 shows the energy adaptive algorithm used in Llama. The authors

use probabilistic algorithm to estimate excess energy and for allotment to non-critical

services so that the impact of decreased battery time is only minimal. Llama also

takes into consideration of both short term and long term behaviour changes in usage

patterns. The system efficiently predicts extra energy by using histogram of previous

energy usages and current battery level. The algorithm is iterative and so Llama

predicts periodically and adapts to new results so that battery will not be drained

anytime sooner than expected.

Llama uses mean of past recharge times to calculate the time before next recharge

may happen. The above algorithm calculates probability distribution of previous

recharges to estimate excess energy that can be allotted to Llama applications. For

evaluation of this system, the authors implemented this algorithm and deployed it

on 10 Windows based mobile phones. They also built a remote server to collect data

from the phones. They also took the energy consumption for this data transfer into

calculation so that their evaluation will be accurate. Figure 2.18 and Table 2.4

show their evaluation results with respect to recharging behaviour change. From the

table we clearly understand that the post Llama, users have attempted less number

of recharges per week compared to pre Llama. The authors also presented their user

study conducted before and after Llama was installed.
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Figure 2.18: Cumulative Distribution of All Recharges before and after Llama Instal-
lation

Before Llama After Llama

10.1 8.9

Table 2.4: Llama - Average charge attempts per week

Context-aware Battery Management for Mobile Phones

Ravi et al. in this paper concentrates on user centric approach in solving energy

consumption issues. The authors designed a system called CABMAN (Context Aware

Battery MANagement) to warn the user if it predicts that the battery may drain

before his/her usual recharge time. Their algorithms finds the next recharge time

by using the past data, how much calls he/she may make during the current battery

discharging period, how much energy is needed for those calls and how long the

battery will be available if the current applications and services continue to run at

same energy rate.

Figure 2.19 shows the system architecture of CABMAN. The authors designed the

whole system in a modular approach designating each module to a single specific task.

If we look at the level just above operating system, we have four monitors with specific

assigned tasks. Context monitor helps the system to predict next recharge time by

using the cell ID of the mobile network the phone is connected to. Alternatively,

WiFi access points and GPS shall also be used to find the users location and the

recharging opportunity. The algorithm keeps track of the location and time when
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Figure 2.19: CABMAN System Architecture

user charges his/her phone and uses this data for prediction. The probable time until

next recharge is found by averaging the time difference between the time of entry into

current cell and the time of entry into the probable charging cell.

The call monitor assists the system to predict probable call time needed by the

user until the next recharge opportunity. The authors discussed three different options

to perform this task. First, prompting the user to tell us how much call time he/she

expects to take which is not very efficient and it will also irritate the user. Second

tracing the call history by time of day and call duration time at that particular

hour. Third approach is to combine call trace with users feedback which is more

accurate than the previous two. The battery monitor periodically provides battery

state information to the system that is useful in predicting its battery lifetime taking

application usage into consideration.

The authors evaluated their individual module in the CABMAN system by calcu-

lating the prediction errors. First, as shown in Figure 2.20, in evaluation of recharging

opportunity prediction, as the sample size increases, the prediction error decreases.

That clearly says, the system will perform better day by day as it collects more data.

Ravi et al. also evaluated the other predictions by different parameters that can be

found in [29].
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Figure 2.20: CABMAN - Recharging Opportunity Prediction Error

Snapdragon BatteryGuru

One of the recent and excellent battery saving applications that takes user centric

approach is Snapdragon BatteryGuru [18] published by Qualcomm Connected Ex-

periences Inc., a Qualcomm company. Qualcomm is the leading mobile device chip

manufacturer and plays a vital role in this smartphone industry. A subsidiary com-

pany Qualcomm Connected Experience Inc. is working on software and hardware

optimization technologies that improve overall user experience. Snapdragon Bat-

teryGuru application is available on Google Play Store for free. It has been down-

loaded by over one million users and rated on an average of 4.1 on a one-to-five scale

by over 30 thousand users. The reason behind the smaller number of ratings and

reviews by users compared to the applications we discussed in previous sections, is

that the application is very new to the market and will catch up down the line.

The goal of BatteryGuru is to extend the battery life and improve the user expe-

rience by optimizing the devices functionality features. This application works only

on mobile devices that carry Snapdragon mobile processors. As this application has

direct access to the processor chip, they claim that their calculation of energy con-

sumption by various services and applications and estimation of battery life time are

almost more accurate than any other third party applications that are available on

app stores in plenty. The basic concept behind BatteryGuru is that it learns how the

user uses his/her mobile device (with Snapdragon mobile processor) and optimizes
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(a) App Refresh Setting (b) Activity Screen

Figure 2.21: Snapdragon BatteryGuru

various energy consuming services without disabling its functionalities. The app does

not require any user input and is completely automatic. However, on user’s prefer-

ence, it offers flexible customization. For example, if the user desired BatteryGuru

not to manage any of his/her application, he/she can opt out. The application has

three main screens - Status, Apps and Actvitiy. In status tab, the app shows the es-

timated battery life time until next probable recharge and few tips. Apps tab shows

a list of apps that are managed by BatteryGuru and allows the user to change the

way they are managed. Figure 2.21(a) shows a screenshot of the options that are

available to users. The application also shows a detailed data of various activities

like WiFi, App refresh, Battery Level etc. Figure 2.21(b) shows the activity tab of

BatteryGuru application.

Unlike our previous straight forward evaluations, we cannot calculate the total

battery life time a smartphone has got after the app installation. As this application

provides a dynamic and user centric solution, the performance will vary over time.

So Table 2.5 shows average discharge time of BatteryGuru.
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BatteryGuru ON BatteryGuru OFF

18 hrs 36 mins 16 hrs 40 mins

Table 2.5: BatterGuru Performance - Total Battery Lifetime

Battery Drain Analyzer

One another important battery saving application that tracks users’ usage pattern and

application centric battery life estimation is Battery Drain Analyzer. The application

has been downloaded by over hundred thousand users from Google Play Store and

has been rated on an average of 4.1 out of 5.0 by more than 1000 users. Battery Drain

Analyzer is a simple and powerful application that offers efficient battery management

through users’ recharging behaviour. That is, the application tracks the time when

the smartphone user usually recharges his/her phone and uses that information in

predicting current battery lifetime until next recharge. It also provides a screen with

a list of applications and their battery consumptions as shown in Figure 2.22(b).

However, the application does not try to control or manage those battery draining

applications. It just provides the information to the user. One of the greatest features

is that it shows the energy consumption by various applications and services in a day

(free app) and in the past one month (premium app) as a graph that is easy to

understand and interpret by the user. Battery Drain analyzer also provides buttons

to easily enable and disable the services like WiFi, Airplane Mode, Bluetooth, Mobile

Data, etc. The toggle buttons, estimated battery life time and the current battery

status are all available on the application’s home screen as shown in Figure 2.22(a).

Although Battery Drain Analyzer uses application centric dynamic approach to

predict current battery life time, its solution for extension is static by having three

simple profiles - Day, Night and Save. These profiles can be activated either automat-

ically on time basis or manually by the users. As we evaluated the other applications,

we evaluated Battery Drain Analyzer. We recharged our Nexus 4 device to 100% and

allowed the battery to drain completely on a normal day-to-day usage. We evaluated

the app with 3 profiles activated on time basis (8hrs Day, 8hrs Night and 8hrs Save).

The results are shown in Table 2.6.
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(a) Home Screen (b) Analyzer Screen

Figure 2.22: Battery Drain Analyzer

Battery Drain Analyzer ON Battery Drain Analyzer OFF

18 hrs 26 mins 16 hrs 40 mins

Table 2.6: Battery Drain Analyzer - Total Battery Lifetime

2.4 Energy Consumption on iOS

All the mobile platforms, like Android, suffer from energy consumption issues. As

iOS being the second most popular mobile operating system, next to Android, it

becomes necessity to research on the available battery saving solutions on iOS plat-

form and point out the differences between Android and iOS energy consumption

issues. The two entirely different mobile operating systems cannot be compared to

each other directly for various reasons such as the difference in displays, difference

in hardware capabilities, difference in sensors, etc. Moreover, there are thousands

of devices manufactured on Android platform and iOS devices are made in various

form factor with different funtionalities. As per an article in BGR [11], eight flagship

phones were compared for battery lifetime including iPhone 5S and iPhone 5C. With

respect to voice call, Samsung Galaxy S4 aced the competition with 1051 minutes
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and HTC One took second place with 771 minutes. With respect to internet use,

again Samsung Galaxy S4 aced it with 405 minutes and its sibling Samsung Galaxy

S4 mini captured second slot with 394 minutes. In both the aspects, iPhone 5S and

5C’s performance seems bad. However, this can be justified by the high defeinition

displays, fine hardware and rich user experience offered by iOS devices.

A lot of battery saving applications are available on Apple’s Appstore (iTunes)

ranging from simple service toggle applications to complex mechanisms. Of all the

five different applications discussed earlier on Android platform, only Battery Doctor

available on iTunes. The application page on iTunes claims the application is used

by over 50 million iOS users. The iOS version of Battery Doctor offers same features

as the Android version such as discharge rate and remaining time estimation. More

information on iOS and other mobile platform’s ennergy consumption is out of the

scope of this thesis As mentioned earlier in the section 1.2.1.

2.5 Motivation and Research Problem

The primary motivation of our thesis is the findings from Banerjee et al. [28] -

users mostly recharge their devices when there’s a significant energy left, most of

the recharges are context driven and there is a great difference in users’ recharge

behaviour and usage pattern. And also as per Perrucci et al. [25], the processing

power of mobile devices doubles every two years whereas battery capacity doubles

only in a decade. So, it is necessary that limited energy resource available in mobile

devices must be used efficiently and optimized according to the user needs.

We understand that the “One size fits all” solution does not apply here. All the

default and static techniques we discussed try to extend the battery life time by shut-

ting down the services at low battery levels. Thereby, users are unable to use their

critical tasks and in turn overall user experience declines. From our literature sur-

vey, it is very clear that the user centric approach benefits users both by improving

overall user experience and by extending their battery lifetime. But the user centric

approaches we discussed in our previous sections are mostly dynamic in their learn-

ing but static in their solutions. For example, Battery Drain Analyzer shows how

much the battery is consumed by various applications. But it does not use this data

to optimize the energy distribution. Likewise, Snapdragon BatteryGuru application
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provides information about users’ activities and manages app refresh intervals. But

it fails to get the user’s preference on priorities of his/her apps and services. Addi-

tionally, the app only works on the Snapdragon powered mobile devices. Although,

Banerjee et al. [28] solves the energy consumption issue through a user centric ap-

proach, they consider only the user’s recharge behaviour but not his/her app and

service usage pattern.

Considering pot holes in all the solutions and approaches we discussed, in this

thesis, we try to find an optimum line between user’s overall experience and battery

lifetime extension by determining if energy is to be saved for future use or if energy can

be consumed for current need according to the estimations of next probable recharge,

applications and services that have high probability of using in near future and how

much energy will be consumed by those applications or services.



Chapter 3

Methodology

3.1 Overview

In this chapter, we propose our methodology that solves energy management issue in

dynamic approach. The basic concept behind our approach is that user profiling with

respect to time and duration of each user’s application session varies significantly as

found out by [28]. In brief, our whole methodology consists of two phases - learning

phase and activated phase.

1. Learning Phase: We monitor user’s activities and record the data locally on

his/her smartphone for a significant period. We do not apply any energy saving

mechanism throughout this phase. As shown in Figure 3.1, Logger records the

data in the device local database. The other two modules are inactive during

this Learning phase.

2. Activated Phase: We use the data that is collected in estimating future values

and apply it to our unique approach to enhance the user experience and try

to extend the battery life per recharge cycle. We also keep recording the data

to make our algorithm work better. As shown in Figure 3.2, Logger continues

to store the data by monitoring user’s recharge cycle and usage activities. In

addition, the Estimator module and Distributor module become active to save

and distribute the energy efficiently. These modules are explained in detail of

how they work in corresponding sections.

As shown in our solution architecture Figures 3.1 and 3.2, our approach contains

three modules - Logger, Estimator and Distributor. These three modules combined

work together with the smartphone operating system and its associated database

to achieve our goal in solving energy management in a user centric approach. As

shown in Figure 3.1, the Logger module is the entry point. For a significant period

41
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Figure 3.1: Solution Architecture - Learning Phase

Figure 3.2: Solution Architecture - Activated Phase
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of time, Logger collects the necessary data from the user’s recharge behaviour and

usage activity on his/her device. This significant period of time is called the Learning

Phase. Logger stores all the data locally in the smartphone and provides access to the

Estimator module. Logger continues collecting data after the Learning phase to make

the solution better with the data. As we have seen in our literature survey, Figure

2.20, it is evident that increase in sample size minimizes the prediction error. So,

Logger continues to collect data in the Activated Phase. Once the device enters the

Activated Phase, the Estimator module fetches the data from local storage and uses

them to estimate various items like, Next probable recharge time, the applications or

services that may be launched before next recharge and the energy required by those

applications or services and the battery life time until the next recharge. Then these

estimated values and some definite values from the operating system are used by the

Distributor module to make decisions as to what applications or services are allowed.

In following sub sections, each module is described in detail of what they do, how

they work independently and all together.

3.2 Logger

In our proposed solution, the Logger module collects all the necessary data and stores

them in the device’s local database that is accessible by the other two modules - Esti-

mator and Distributor. Logger is the entry point of our approach and runs indepen-

dently for a significant period of time before the other two modules become active.

To track a user’s recharge cycle and usage behaviour, it is important to know his/her

daily routine. As most of the people in most parts of the world study or work five

days in a week and take two days off from their routine life, we fixed this significant

period as seven days (Monday to Sunday). So, after the solution is deployed on a

smartphone, the Logger starts monitoring the recharge cycle and user’s application

and service activities and stores them in the local database for the first seven days.

After seven days, the Estimator and Distributor modules become active and starts

their operation. But, Logger continues to monitor the usage activities and stores the

data in a local database to improvize the estimation accuracy and thereby resulting

in overall higher battery lifetime extension and enhanced user experience.

Logger is triggered by the following events and in turn the module records various
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data that are necessary for our approach in solving energy management issue:

1. When smartphone is plugged into a charger (AC or USB)

2. When smartphone is unplugged from the charger

3. On a regular interval of 1 minute

4. On any service switched on/off

Logger helps to track two areas of a user’s activities - Recharge cycle and Appli-

cation usage pattern. To monitor the recharge cycle, we need to know when the user

recharges his/her smartphone daily, what is the energy level of its battery before and

after recharge happens and how often he/she recharges his/her device. So when the

smartphone is plugged into a charger, the following information is stored in the local

database.

1. Day Type (DT)

2. Recharge Start Time (RST)

3. Energy Level at RST (ELST)

4. Recharge Mode (RM)

5. Time After Previous Recharge (TAPR)

The recharge cycle may differ in weekdays and weekends. So, the first item in the

database record is the day type which is a boolean value of 0 if it is weekday and 1

if it is a weekend. For the readability purpose, we show the user ’D’ for Weekday

and ’E’ for Weekend. The next item is the actual time of the day when recharge

starts. We also store the energy level at the begining of recharge. Recharge mode

is used to determine if the charging is slow or fast and helps to estimate the time

frame to reach 100% energy level. Logger also calculates the time difference between

current recharge and previous recharge which helps in estimating the next recharge

time. When the smartphone is unplugged from the charger, the current database

record is filled with the following information.

1. Recharge End Time (RET)
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2. Energy Level at RET (ELET)

When the user plugs his/her smartphone into the charger, leaves it until atleast

30% energy level and unplugs it, the Logger creates one record in the recharge statis-

tics table and stores them in the device’s local database. Table 3.1 is a sample that

shows how recharge cycle data is stored in the user’s smartphone.

DT RST RET ELST ELET TAPR RM NRE

D 22:53 02:34 26.0 100.0 12h32m42s AC 21:45
E 13:25 16:42 14.0 53.0 10h28m37s USB 14:29

Table 3.1: Logger - Recharge Statistics Sample Data

In addition to the recharge cycle, we also need to record the user’s daily usage

pattern on applications and services. In order to predict the probable application

launches and their energy consumption, we need to analyze his/her past usage details.

To do this, we designed two tables in the same device’s local database namely App

Usage and Service Usage. As per [10], on an average a user spends 1 minute 15

seconds on an app per session although it varies widely ranging from few seconds

(e.g. Whether application) to several minutes (e.g. social network application). As a

conservative method, to capture most of the application sessions, we set the interval

as 1 minute. So, for every 1 minute, the Logger wakes up, checks the foreground

application and records the following data:

1. Day Type (DT)

2. Date (DATE)

3. Time of the Day (TIME)

4. Application Name (APPNAME)

5. Package Name (PACKNAME)

6. Number of Hits (NoH)

7. Energy Consumption (EC)
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The first column, Day Type identifies if the database record deals with a weekday

or weekend. Then, the date is noted down for future verification purposes. Time of

the day is necessary data in order to calculate the number of hits. For example, if

the Logger creates a record for “Facebook” app at 09:20 and if it identifies the same

facebook app open at 09:21, the Logger will not create a new record. Instead, it

will increase the “Number of Hits” count. To minimize the data storage, we create

records per app per hour and thereby calculating the number of hits and the energy

consumption by that particular app. This table is used by the Estimator module to

predict the probable application launch and estimate energy consumption. Sample

App Usage records are shown in Table 3.2.

DT DATE TIME APPNAME PACKNAME NoH EC

D 2014-08-13 08:00 Facebook com.facebook.katana 20 5
D 2014-08-13 08:00 Gmail com.google.android.gm 5 1

Table 3.2: Logger - Application Usage Sample Data

Services like WiFi, Bluetooth, GPS, 3G/4G data services, etc consume significant

energy. But, smartphone and its applications need one or more services to perform

various actions like sending an Email, making a phone call, browsing a website, send-

ing a file to a nearby phone, etc. Some users may use WiFi more than any other

service and some users may use GPS more than anything else. As we mentioned

earlier, users show a significant variance in their usage pattern. In order to know

the priorities of the user for these services, we need to know how long these services

are switched on or off throughout a day. For our solution, we have taken all the

important services into consideration such as WiFi, 3G/4G Data Services, Location,

Accelerometer, Mobile Network, Bluetooth and NFC. Whenever these services turned

on We store the following data except End Time (ET) in Service Usage table.

1. Day Type (DT)

2. Date (DATE)

3. Service Start Time (SST)

4. Service End Time (SET)
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5. Service Name (SERVNAME)

When the service is switched off, the End Time (ET) is filled in the current record.

This switching off and on may be by the user or the operating system itself. We store

this data on both circumstances. Sample data is shown in Table 3.3.

DT DATE SST SET SERVNAME

D 2014-08-16 08:03 18:45 Mobile Data
D 2014-08-16 18:45 07:28 WiFi

Table 3.3: Logger - Service Usage Sample Data

Logger starts recording this data for the first seven days after deployment and

after the Estimator and Distributor modules become active, Logger continues to do

its task until the user stops or resets.

3.3 Estimator

The Estimator module collects the data that the Logger module has recorded so far

and tries to estimate a series of information as efficient as possible that are critical in

managing the available energy until the battery dies. The following information are

the derived by the Estimator from the log table:

1. The next probable recharge time

2. The applications that may be launched or run in background within the time

frame

3. The energy required by high priority applications

The Estimator thread runs in the background all the time and is ready to serve the

Distributor when the information is seeked. The Estimator has a bidirectional access

to the local database. Thus meaning, the Estimator reads the necessary data and

writes back its current evaluation to keep the database updated. The most significant

table that the Estimator accesses in write mode is the Priority table. Tables 3.4 and

3.5 show how the data is stored in a local database. Priority numbers are assigned

in such a way that the lesser the number is the higher the priority is. That is, the
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application or service with priority 1 will have the highest priority than the others.

These tables are updated continously by the Estimator on time and date type basis.

For example, during the day on a weekday, Email might have a higher priority than

BBM. But on a weekend, the application may lose its priority completely.

PACKNAME PRIORITY

com.bbm 6
com.facebook.katana 25
com.google.android.apps.docs 1
com.google.android.gm 2
com.whatsapp 30

Table 3.4: Estimator - Priority for Applications

SERVNAME PRIORITY

Accelerometer 05
Bluetooth 04
Data 02
Location 03
WiFi 01

Table 3.5: Estimator - Priority for Services

We also have other tables that maintain user’s priority for applications and ser-

vices. When the user wants certain applications and services to have higher priority

than others, they can set it up through the application’s user interface and the main

thread writes that information in the tables. The tables 3.6 and 3.7 show sample

data. Users can also mention some applications or services that they do not care

about them. They are recorded into whitelist. We will explain in detail how the users

are allowed to set these values in Chapter 4. For now, these tables are in datebase

to override the priorities set by our application to any application or service.

As we listed earlier, the Estimator analyses the available information and estimates

the items (NRE, PAL and PER) as efficient and as accurate as possible. The following

sections explain in detail how the information are derived and estimated.

3.3.1 Next Recharge Estimate (NRE)

Next Recharge Estimate (NRE) is a time quantity that identifies the next probable

recharge start time. Its value can be anything in between 00:00 and 23:59. When the



49

PACKNAME USERPRIORITY

com.bbm 3
com.facebook.katana 5
com.google.android.apps.docs 1
com.google.android.gm 2
com.whatsapp 4

Table 3.6: Estimator - User Priority for Applications

SERVNAME USERPRIORITY

Accelerometer 5
Bluetooth 4
Data 02
Location 03
WiFi 01

Table 3.7: Estimator - User Priority for Services

user unplugs his/her smartphone from the charger, Estimator calculates NRE and

fills out the open or latest record’s NRE column in Table 3.1.

NRE is calculated in two methods and the maximum of those values is stored in

the recharge statistics table of our local database. When we have two values for the

next recharge time, as a conservative measure, we assume that the next recharge will

happen in the later time (i.e. Max of NRE) rather than an earlier one.

In the first method, recharge start time (RST) and date type (DT) are considered.

If the current day is a weekend, only the records related to the weekends are considered

and if the current day is a weekday, only the records related to the weekdays are

considered. Then, K-Means (where K = 2) operation is performed on the RST column

of those records extracted. The simplest and cost efficient method to find NRE would

be mean of all past RST or TAPR. But it will result in a single recharge start time

that is inappropriate in most case. Most of the smartphones do not offer 24 hours of

a battery lifetime under normal cicumstances. Considering other cluster algorithms

will incur higher cost in memory and processing time that will result in higher energy

consumption by our own solution. So, the optimum method to find NRE is to use

K-Means. We fixed K as 2, because in smartphones battery lasts minimum of 8 hrs

and average of more than 12 hours. So, ideally, users do not have a need to recharge

their smartphones more than twice a day. Thus, we created 2 clusters of Recharge
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Start Time. Forming two clusters results in two centroid values. That is, two usual

recharge start time values. The one that comes first is refferred to as NRE1 and the

respective cluster is ClusterNRE1. For example, if the current time is 12:30 and the

usual recharge start times are 10:35 and 22:43, then our NRE1 is 22:43.

In the second method, time after previous recharge (TAPR) and date type (DT)

are considered. TAPR values of corresponding DT are extracted and then avaerage

of all TAPR within ClusterNRE is calculated as TAPRavg. Adding TAPRavg to the

current time will give us NRE2. As we mentioned earlier, the maximum of two

values NRE1 and NRE2 is the Next Recharge Estimate (NRE). Figure 3.3 shows the

complete work flow of the Estimator module.

3.3.2 Potential Application Launch

Given the current time and the next recharge estimate, our next goal is to find the

applications that have high possibility of launching by the user or any background

process. We also estimate the battery lifetime based on the current discharge rate.

If battery lifetime is sooner than our NRE, then the time at which the battery dies

is called TimeLife. Otherwise, NRE is called TimeLife. We extract the application

names and NoH from the application usage table by querying application’s launch

time that lies in between current time and TimeLife and keep the list in the main

memory for an easy access to the Distributor module. We use the number of hits of

the extracted application to update the priority table we mentioned in the previous

section. Figure 3.4 shows the complete workflow of how we determine the probable

or potential applications that may be launched by user or any background process.

We also use the same technique to find potential service use (PSU) from the service

usage table.

3.3.3 Probable Energy Required

The final item for the Estimator to find is energy required by those potential appli-

cations found in previous sections. From the potential application launch, we know

the applications that have high probability of launching within the timed frame until

next recharge or until battery lasts. From this applications usage table, we also know
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Figure 3.3: Next Recharge Estimate Flowchart
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Figure 3.4: Potential Application Launch Flowchart
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the energy consumption by those applications during those sessions. We copy the ap-

plication names and corresponding energy consumption values to the main memory

for easy access by the Distributor. We consolidate the records by application names

and adding energy consumption by those applications. This value is called probable

energy required (PER) We also use the same technique to find probable energy re-

quired by different services. Tables 3.8 and 3.9 show how the energy consumption

by different potential applications are summed and consolidated for Probable Energy

Required (PER). For example, there are two Gmail sessions, one with 2% and the

other with 1% energy consumptions. So PER for Gmail is 3%. Like wise, Facebook

has two sessions within the timeframe and the total PER for Facebook is 7%.

NO PACKNAME EC

1 com.google.android.gm 2
2 com.facebook.katana 5
3 com.bbm 2
4 com.facebook.katana 2
5 com.google.android.gm 1

Table 3.8: Enerygy Consumption by Potential Applications

PACKNAME PER

com.bbm 2
com.facebook.katana 7
com.google.android.gm 3

Table 3.9: Estimator - Probable Energy Required (PER)

3.4 Distributor

The final module in our architecture is the Distributor which helps in analysing the

Estimator’s output and makes decisions on where to spend the energy and where it

needs to be saved. The primary goal of our research work is to distribute the limited

energy available in our smartphone as efficient as possible. Efficient in the sense,

the energy should be saved from unnecessary background services and foreground

applications and be spent on user’s much needed tasks. Logger records each and every

user activity on applications, services and recharge behaviour which in turn helps the
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Estimator to predict usual recharge time and usual application usage time, duration

and energy consumption. Based on the Estimator’s prediction, the Distributor is

capable of making the decision whether energy is sufficient until the battery lasts or

until the next recharge time. As a first step, the Distributor calls the Estimator and

initializes the Battery’s current lifetime to TimeLife and calls the operating system to

know Energyavailable, the total energy available at the moment. The Distributor also

identifies the current app on forground launched by the user if the smartphone is in

use or background applications that are running if the smartphone is idle. The second

step for the Distributor is to calculate the energy required by potential applications

and services that might be used in near future within TimeLife. Again, the Distributor

calls the Estimator for a list of services and energy required by them. The sum of

energy required by all those services is EnergySERVICES. Likewise, the Distributor also

calls the Estimator for a list of potential applications that may be launched in the near

future within TimeLife and that have a higher priority than the current application on

foreground or background. As we described in section 3.3, the Estimator knows the

energy required by the applications based on the day type and time of day. That is,

energy required by the same applications and services may be different for different

sessions. So, the total energy needed EnergyNeeded is nothing but the sum of energy

required by potental services EnergySERVICES and the energy required by potential

applications EnergyPAL. Then the Distributor verifies if Energyavailable is less than

EnergyNeeded. If it is true, the Distributor notifies the user to close the current app

to save energy for more necessary applications and services in the future and closes

the application if it is on background. If EnergyNeeded is less than Energyavailable, the

Distibutor goes to sleep doing nothing and wakes up at next interval. This whole

process is repeated on an interval of 1 minute. This interval is set to 1 minuted based

on the same logic we mentioned in the Logger section as per the article [10]. The

Algorithm 1 shows the whole process of the Distibutor’s decision making.

The Distributor does not switch on or off any service by itself. Our solution logs

and tracks the service usage only for calculation purposes and to notify the user of

his/her usual activities.

The next chapter “Implementation” explains in detail how this proposed solution

is implemented on Android platform. The chapter also describes different key features
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Algorithm 1 Distributor for Applications (On regular interval)

TimeLife ← Battery’s current lifetime (from Estimator)

Energyavailable ← Energy available (from operating system)

Appcurr ← Current foreground or background app

SERV ICES ← The services that may be used within TimeLife

EnergySERVICES 0

for each service S in SERV ICES do

EnergyS ← Energy required by S

EnergySERVICES = EnergySERVICES + EnergyS

end for

PAL← The applications that have possibility of launch within TimeLife and that

have priorities higher than Appcurr

EnergyPAL 0

for each app A in PAL do

EnergyA ← Energy required by A

EnergyPAL = EnergyPAL + EnergyA

end for

EnergyNeeded = EnergySERVICES + EnergyPAL

if Energyavailable < EnergyNeeded then

if Appcurr is Foreground then

Notify user that he/she needs to close the app to save energy for much needed

apps in future

else

Close the app immediately.

end if

end if



56

that are used in our implementation and deployment.



Chapter 4

Implementation

Our proposed solution has been implemented on the Android platform using Java as

the primary programming language and XML for user interface. As we mentioned

in the section 1.2.1, due to various factors that include a huge user base and market

share by sales, powerful sdk for development, flexibility and ease of access to operating

system calls, We inclined towards Android and we successfully implemented, deployed

and evaluated our solution. In this chapter, we discuss the solution in two parts -

user interface and the key concepts that were used behind the scenes in our imple-

mentation. We also explain the limitations in our implementation and the direction

to overcome the limitations in future.

The development environment used in our implementation is as follows:

Programming Language(s) Java
User Interface XML
Primary SDK Android 4.2.2 (API 17)
Other Libraries None
IDE Eclipse (Juno)
Device(s) used Nexus 4 and different emulators
Development Platform Windows 8.1
Deployment Platform Android 4.2 (Jelly Bean)

Table 4.1: Development Environment

4.1 User Interface

The Logger, Estimator and Distributor modules have been integrated into one single

application called ENDLESS which is the title of our thesis - Energy Distribution

through Lifetime Estimation and Smartphone usage patterns. We implemented our

solution in a more user centric approach that is intuitive and interactive. Users can

see every element that the application logs, estimates and controls other applications

through our Energy Distributor. The application also offers users the total control of
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the data collected and managed. In this section, we describe each and every screen

that the users able to view and manage. In the Android perspective, a screen is

called “Activity” and a portion of the screen that is reused in multiple circumstances

is called “Fragment”. An activity is like a container that may or may not embed one

or more fragments. Throughout this section, we will use the terms “Activity” for

screens and a wide range of Android terminologies for various user interface controls.

To understand these terms, we encourage you to go through the Android developer

website [7] before continuing with the following sections. The user interface controls

like labels, buttons, lists, etc may also be placed directly on the activity.

4.1.1 Home

When the application is installed and launched for the first time, the home activ-

ity would look like Figure 4.1(a). All the static information that are not related

to our Logger are displayed for the first seven days. As we have discussed earlier,

the first seven days are fixed as the learning phase in which the Logger logs the

neccessary data in a local database. So, the estimation values like Next Recharge

Estimate (NRE), probable battery lifetime, etc are not displayed until the applica-

tion goes into the activated phase. In the activated phase, the home activity is filled

completely with all the basic information and users have access to other activities.

Figure 4.1(b) shows the home activity in the Activated phase. The home activity

contains three parts of information - Battery Status, Estimation and Running Apps.

Battery status contains the current battery level and the time when the user plugged

his/her smartphone into the charger or unplugged it from the charger. It also shows

the charging rate in percentage per hour if the smartphone is in charge mode and

otherwise it shows the discharging rate. All this information is directly pulled from

the Android operating system. Battery status information is hown to the user since

day one of installation. That is, battery status is available in both the learning and

activated phases. Estimation shows Next Recharge Estimate that is calculated by

the Estimator module based on the logged data to date. It also shows how long the

battery will last in the discharging mode and how long the battery will take to reach

100% if it is in the charging mode. The last section shows currently running apps

and with the user’s direction, ENDLESS application is capable of placing a process
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(a) Learning Phase (b) Activated Phase

Figure 4.1: Home Activity

termination request to Android for that particular app. Running apps information is

also available in both the learning and activated phases.

4.1.2 Preferences

The Preferences activity lets the user set his/her own application preferences. The

activity is accessible from the Home activity’s action bar. As shown in Figure 4.2(a),

there are five options available for the user within the Preferences activity. First, the

usual recharge reminder that reminds the user at Next Recharge Estimate (NRE)

time. The reminder is sent to the user from the application using Android Notifi-

cations [14]. From the preferences activity, the users can turn on or turn off this

feature. By turning it off, the user will no longer receive these notifications. This is

a small feature that helps the user maintain his/her recharge cycle consistent. The

second option is the Whitelist Apps that lets the user add his/her favourite apps that

should not be interrupted during any circumstance by our ENDLESS applications.

Any application listed in this category will not be closed regardless of the battery

level. Figure 4.2(b) shows how the apps are added to Whitelist. The third one is
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(a) Various Options (b) Whitelist Apps (c) Prioritize Apps

Figure 4.2: Preferences Activities

to prioritize apps. Apart from our ENDLESS application’s prioritization by track-

ing the usage, users are allowed to set their own priorities for the apps. The user’s

priority overrides our calculated priorities. Furthermore, the apps that are added to

Whitelist will not be shown here for user prioritization. This is due to the fact that

all the apps that are whitelisted will be priority 1 automatically. Figure 4.2(c) shows

the prioritization of apps by user. When the user taps on the up arrow nearby each

application, the app would move up gaining a higher priority. For example if the app

has a priority of 10 and the user taps on its up arrow, it would result in priority 9.

The app that was in priority 9 would move down to 10. The fourth option is to pause

and resume logging. For example, if the user goes on a vacation, his/her whole usage

and recharge cycle is going to be different and he/she might want to discard those

behaviours. In that case, the user can pause the logging and resume it when he/she

wishes. The last option is to clear the log completely and start over. When the user

clears the log, the application erases all the data that has been logged and turns into

the learning phase considering it as day 1 after installation.
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Figure 4.3: LogCat Activity

4.1.3 LogCat

LogCat is a debugging tool that is built into the Android Operating System. It helps

to collect and display the data of what is really happening in the system. Our LogCat

activity invokes this LogCat tool and displays the output for the user. This is helpful

for both the user and us to understand the current state of the smartphone especially

running processes and their resource utilization. For further reading on LogCat,

please visit the link in [13]. Figure 4.3 shows a screenshot of LogCat activity.

4.1.4 Logger

The Logger Module contains two activities namely Recharge Statistics and App Us-

age. Both of these activities are display panels for the Logger database. All the data

that is stored in database by the Logger module are displayed to the user in these

activities. Figures 4.4(a) and 4.4(b) show the complete log of recharge statistics

and app usage behaviour. They are read only and the user has no ability to edit or

delete any particular record. However, users can export the log to their computer or
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(a) Recharge Statistics (b) Application Usage

Figure 4.4: Logger Activities

any other device using Email or any other sharing application. These activities are

helpful for the user to know his/her own smartphone usage patterns and helpful for

us to debug.

4.1.5 Estimator

The Estimator acts as an interface between the Logger and Distributor. Therefore,

the Estimator does not have its own user interface screen. The module pulls the data

from the database, then calculates and estimates certain parameters and provide

results to the Distributor. However, the Next Recharge Estimate (NRE) is pulled

from the database and displayed it on the Home screen as shown in Figure 4.1(b).

4.1.6 Distributor

The Distributor module helps to decide if the energy is sufficient enough to last until

the battery drains out or the next recharge happens. It makes a call to the Estimator

to find the next recharge time, the potential application launch, their priority and

their energy consumption. Based on the estimated values, the Distributor verifies if
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the foreground application is of higher priority to consume the energy. When there

is enough energy left before the next recharge happens or battery drains out, the

Distributor does nothing but sleeps for a minute and wakes up again. There is no

user interface in this case. However, if there is not much energy left, the Distributor

finds out if the current application is on foreground or background. In the case

the application is on background, it is closed immediately and the user is notified

through the Android notification system as shown in Figure 4.5(a). This message

does not need any input or confirmation from the user. But, if the application is on

the foreground,the Distributor sends a notification to the user that it needs his/her

attention as shown in Figure 4.5(b). When the user taps on this notification, an

activity is popped up with detailed information as shown in the Figure 4.6(a). This

information contains the name of the application that must be closed in order to save

energy for the future. The activity contains two buttons - “Yes, please!” and “No,

thanks!”. When the “Yes, please!” button is tapped, ENDLESS energy application

sends a request to the Android operating system to terminate the corresponding

application. When the application is killed completely, the user is notified again that

the termination is successful as shown in Figure 4.6(b). But, if the user decides

to keep the app open and taps on “No, thanks!”, the Distributor closes the current

activity, sleeps for a minute and continues to run in the background.

4.2 Behind the Screen

In this section, we explain the key concepts and techniques that are used in this

application. Apart from application’s interactions with the user, there is a lot of

background processes and activities running to provide various functionalities to the

solution and ensure its accuracy and efficiency. Such concepts are discussed in detail

in the following subtopics.

4.2.1 Shared Preferences

Shared Preferences is an Android facility provided by Google through public Java-

class SharedPreferences [16]. The third party Android developers make use of this

class to store and retrieve key value pairs that may be shared across various ap-

plications or activities within a single application. The Shared Preferences space
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(a) Background Application (b) Foreground Application

Figure 4.5: Notification for Application Kill

(a) User Prompt to Kill (b) App Kill Confirmation

Figure 4.6: Foreground Application Kill
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should be created either as public or private. Any space that is created private

will be accessible only by the application that created the space. On the other

hand, the public space is accessible by any aplication that has access. The “shared

preferences” is created and accessed through Android public api public abstract

SharedPreferences getSharedPreferences (String name, int mode) in which the first

parameter “name” identifies the preferences file that the developer is trying to ac-

cess and “mode” identifies the the access level of that particular space. Mode can be

MODE PRIVATE, MODE WORLD READABLE, MODE WORLD WRITABLE or

MODE MULTI PROCESS. As we do not have a need to share our data with any other

process or application, our shared preferences file is always private. We also have a

subclass called Editor [17] that helps us get an access to store new value to a key or

modify the value of an existing key.

Listing 4.1: Create or get Shared Preferences and a corresponding Editor objects

SharedPreferences preferences =

getSharedPreferences("andhamil_endlessenergy_preferences",

Context.MODE_PRIVATE);

SharedPreferences.Editor prefEditor = preferences.edit();

In our implementation, we extensively use this Shared Preferences to access and

modify various data such as the application installation date, user’s preference on

usual recharge reminder, etc. The data can be stored to and retireved from Shared

preferences in any Java supporting data type. That is it can be either string, integer,

boolean, float or long. To achieve this, the Shared Preferences class and its nested

member class Editor provide various public methods like putBoolean, getBoolean,

putString, getString, etc. The following code snippets show an example of how we

store and retrieve the application installation date as a string.

Listing 4.2: Retireve application installation date

String strInstalledDate = preferences.getString("INSTALLED_DATE", "");

Listing 4.3: Store current date as application installation date

prefEditor.putString("INSTALLED_DATE",

dateFormat.format(dateCurrent));
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prefEditor.commit();

4.2.2 SQLite Database

Android has an built-in SQLite database management system that can be used by the

operating system and various applications to create and access their data in tables

of rows and columns. This SQLite database can be used in the same way as any one

use on a desktop machine. Android provides a public class SQLiteDatabase [19] and

a public helper class SQLiteOpenHelper [20] for developer to use all the database

functionilities like creating a database, creating tables, adding records and executeing

any sql command. In most cases, we do not need the class SQLiteDatabase. All the

functionalities that we need can be achieved by deriving SQLiteOpenHelper class. In

our application, we implemented the class DBHelper by deriving SQLiteHelper. This

class contains the database version, table names and column names as its member

variables. When there’s a change in the database or table structure, we need to

increase the database version that helps reset the data. The following snippet shows

the declaration of class and few of its member variables. We have implemented

many tables for various purposes. For the purpose of understanding how database is

accessed, we explain through the table called “APPPRIORITY” that helps to store

user’s prioirty values for various applications. In the subsequent paragraph we will

discuss how this table is created and used.

Listing 4.4: DBHelper class to access SQLite database of our application

public class DBHelper extends SQLiteOpenHelper

{

private static DBHelper mInstance = null;

private static final int DATABASE_VERSION = 1;

private static final String DATABASE_NAME = "DB_ENDLESS_ENERGY";

private static final String TABLE_APP_PRIORITY =

"TABLE_APP_PRIORITY";

private static final String COLUMN_APP_PRIORITY_ID = "ID";
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private static final String COLUMN_APP_PRIORITY_PACKAGE_NAME =

"PACKAGE_NAME";

private static final String COLUMN_APP_PRIORITY_PRIORITY =

"PRIORITY";

}

SQLite database like any other database works on the lock and use method. That

is two threads cannot write into the same database at the same time. It is not a

good practice to create a new object everytime we need to access the database. So

we implemented a method to get current instance of the class as shown below.

Listing 4.5: getInstance() method to return current instance of DBHelper class

public static DBHelper getInstance(Context ctx)

{

if (mInstance == null)

mInstance = new DBHelper(ctx.getApplicationContext());

return mInstance;

}

We create all the tables by overriding onCreate method of SQLiteOpenHelper

class. This method is executed only once until there is a change in the database ver-

sion. Creating and accessing the tables is very straight foward by executing respective

SQL commands. To create the APPPRIORITY table, we execute CREATE TABLE

sql command with the column names and their data types as shown below.

Listing 4.6: onCreate() method to do one time activities like creating tables

public void onCreate(SQLiteDatabase db)

{

String CREATE_TABLE_APP_PRIORITY = "CREATE TABLE " +

TABLE_APP_PRIORITY

+ "(" +

/* 00 */COLUMN_APP_PRIORITY_ID

+ " INTEGER PRIMARY KEY AUTOINCREMENT," +

/* 01 */COLUMN_APP_PRIORITY_PACKAGE_NAME + " TEXT

UNIQUE," +
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/* 02 */COLUMN_APP_PRIORITY_PRIORITY + " INTEGER" +

")";

db.execSQL(CREATE_TABLE_APP_PRIORITY);

}

After the creation of tables, we need some public methods to be accessible by

various classes of the application to add, update and delete records in any of the

tables we created. To add an app to the priority list, we first get SQLiteDatabase

object in read mode to find the lowest priority app. We get another SQliteDatabase

object in write mode. We increase the prioirty number by 1 and add the record by

calling the insert method. We use ContentValues a key value pair for the field names

and values of the current record. Likewise, to retrieve the priority of an app, we

execute SELECT statement and use the cursor to traverse across the return record.

The following code snippets show how the priority is added and retrieved by respective

methods.

Listing 4.7: addAppPriority() method to add an app to the priority list at the end

public boolean addAppPriority(String strPackageName)

{

boolean bReturn = false;

int nPriority = 0;

String countQuery = "SELECT MAX(" + COLUMN_APP_PRIORITY_PRIORITY

+ ") FROM " + TABLE_APP_PRIORITY;

SQLiteDatabase dbRead = this.getReadableDatabase();

Cursor cursorRead = dbRead.rawQuery(countQuery, null);

if (cursorRead.moveToFirst())

nPriority = cursorRead.getInt(0) + 1;

if (!cursorRead.isClosed())

cursorRead.close();

if (dbRead.isOpen())

dbRead.close();

SQLiteDatabase db = this.getWritableDatabase();

ContentValues values = new ContentValues();

values.put(COLUMN_APP_PRIORITY_PACKAGE_NAME, strPackageName);
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values.put(COLUMN_APP_PRIORITY_PRIORITY, nPriority);

long lResult = db.insert(TABLE_APP_PRIORITY, null, values);

if (lResult >= 0)

bReturn = true;

if (db.isOpen())

db.close();

return bReturn;

}

Listing 4.8: getAppPriority() method to retrieve the priority value of an app

public int getAppPriority(String strPackageName)

{

int nReturn = -1;

String strQuery = "SELECT " + COLUMN_APP_PRIORITY_PRIORITY + " FROM

"

+ TABLE_APP_PRIORITY + " WHERE "

+ COLUMN_APP_PRIORITY_PACKAGE_NAME + "=" + "’" +

strPackageName

+ "’;";

SQLiteDatabase db = this.getReadableDatabase();

Cursor cursor = db.rawQuery(strQuery, null);

if (cursor.moveToFirst())

nReturn = cursor.getInt(0);

if (!cursor.isClosed())

cursor.close();

if (db.isOpen())

db.close();

return nReturn;

}

As these public methods are defined in DBHElper class, they can be accessed

through any class in our application. As in our example App prioirty, the Prioritize

Apps activity calls these methods. When a user clicks on the up arrow next to an

app, the current app moves up and the above app moves down. That is, the two apps
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exchange their priority values. The following code snippet is an implementation of

on click event that is triggered by a user’s tap on the arrow button. In this method,

we get priorities from the database and write back with new values.

Listing 4.9: onClick() to modify the pripority values in APP PRIORITY table

public void onClick(View v)

{

DBHelper dbHelper = DBHelper.getInstance(mContext);

int nCurrentAppPriority = dbHelper.getAppPriority(

Utils.malInstalledApps.get(position).getPackageName());

int nUpstairsAppPriority = dbHelper.getAppPriority(

Utils.malInstalledApps.get(position - 1).getPackageName());

dbHelper.updateAppPriority(strCurrentPackageName,

nUpstairsAppPriority);

dbHelper.updateAppPriority(strUpstairsPackageName,

nCurrentAppPriority);

Utils.malInstalledApps.get(position)

.setAppPriority(nUpstairsAppPriority);

Utils.malInstalledApps.get(position - 1)

.setAppPriority(nCurrentAppPriority);

Utils.sortInstalledAppsByPriority();

notifyDataSetChanged();

}

4.2.3 Broadcast Receiver

Broadcast Receivers is a methodology to receive intents sent by either the Android

operating system or other applications installed on the device. To receive any in-

tent, the application should register for a corresponding event either dynamically in

the Java code or statically in manifest xml file. After the registration, application

must derive the class“BroadcastReceiver” and override “onReceive” method to im-

plement the event handler. In our application, we need to receive two broadcast
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messages - one is to be received when the user plugs-in or unplugs his/her smart-

phone from the charger and the other is to be received when there is a change in the

battery level. Android sends out broadcast message for every 1 percent change in the

battery level. As shown in the following snippet, we registered for these broadcast

messages at the end of “AndroidManifest.xml”. ACTION POWER CONNECTED

and ACTION POWER DISCONNECTED are intent names for charger plug in and

charger plug out respectively. ACTION BATTERY CHANGED is the intent name

for battery level change. These registrations are intended to receive broadcast mes-

sage from the Android operating system. However, the other applications installed

on the device may also send these broadcast message if they have permission. As per

our implementation, the Android sends the message to “EnReceiverOnPlug” derived

class’ onReceive method for the charger plug in and plug out event whereas the an-

droid sends the message to “EnReceiverOnBatterChange” derived class’ onReceive

method for the battery change event.

Listing 4.10: Broadcast Receiver registration on AndroidManifext.xml

<receiver

android:name="andhamil.endlessenergy.custom.EnReceiverOnPlug" >

<intent-filter>

<action

android:name="android.intent.action.ACTION_POWER_CONNECTED"

/>

<action

android:name="android.intent.action.ACTION_POWER_DISCONNECTED"

/>

</intent-filter>

</receiver>

<receiver

android:name="andhamil.endlessenergy.custom.EnReceiverOnBatterChange"

>

<intent-filter>
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<action

android:name="android.intent.action.ACTION_BATTERY_CHANGED"

/>

</intent-filter>

</receiver>

Both the derived classes “EnReceiverOnPlug” and “EnReceiverOnBatterChange”

override onReceive method to implement the necessary handler. The following code

snippets show the implementation of both receivers. When the user plugs in or plugs

out his/her smartphone to or from the charger, we record the recharge statistic de-

tails like start time, end time, battery level at the start and finish times, etc. in the

database and update the user interface of home activity. When the “EnReceiverOn-

BatteryChange” class receives a battery change broadcast message, the “onReceive

method” records the charging or discharging rate and updates the user interface of

home activity.

Listing 4.11: BroadcastReceiver for charger plug-in and plug-out events

public class EnReceiverOnPlug extends BroadcastReceiver

{

@Override

public void onReceive(Context context, Intent intent)

{

UtilsDB.recordDeviceRechargeStatistics(context);

Utils.recordChargeOrDischargeStartTime(context);

ActivityHome.updateBatteryInfo(context);

}

}

Listing 4.12: BroadcastReceiver for battery level change event

public class EnReceiverOnBatteryChange extends BroadcastReceiver

{

@Override

public void onReceive(Context context, Intent intent)
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{

Utils.recordChargeOrDischargeRate(context);

ActivityHome.updateBatteryInfo(context);

}

}

The “Broadcast Receivers” methodology is very helpful in implementing handlers

for various events occurring in the device hardware especially the battery. As shown

above, we are able to detect and handle the battery status change in a few lines of

Java code. For a detailed reading on Broadcast receivers, please visit the link in [4].

4.3 Limitations

During our implementation, we had very few notable limitations regarding technology

and access level. In Android, the most sophisticated development platform is Java.

The applications developed using Java run on top of JVM (Java Virtual Machine)

which is a part of both old Android’s Dalvik system and new ART (Android Run

Time) system. So, our application itself consumes a noticeable energy. But if our

solution is embedded within the operating system and just the user interface runs on

JVM, we believe there will be a reduction in energy consumption. However, within

our scope it is difficult to implement our solution in the operating system level. The

another limitation we had was accessing energy consumption by different applications

installed. For calculating individual application energy consumption, we followed the

guidelines and documents released by Google [15]. Until the Android 4.2 Jelly Bean,

the APIs were public and available for third party developers. But, since the Android

4.3 Kit Kat, Google made them private and so, to deploy our solution on a device, it

is necessary that our ENDLESS Energy application has a root access granted by the

user. As we evaluated our solution on Nexus 4 with Android 4.1.2 operating system,

we did not have the necessity for device rooting.



Chapter 5

Evaluation

This chapter presents the evaluation of our proposed system by comparing smart-

phone battery lifetime with all the solutions we discussed in Chapter 2. We also

compared various features of the solutions. For example, a few solutions turn off the

mobile data to save battery and some solutions increase the sync interval. Then, we

tested the battery consumption by each application and compared with eachother.

We evaluted ENDLESS for the accuracy of its next recharge estimate and also com-

pared the number of recharge attempts against Llama [28]. We present the detailed

results in the following sections.

5.1 Battery Lifetime Comparison

We recorded battery life time when the smartphone is managed by our solution -

ENDLESS and compare the same with all other solutions we discussed earlier. To be

consistent and as accurate as possible, we used the same device (Google LG Nexus

4) running the same operating system (Android 4.1.2). The battery lifetime is cal-

culated as time taken by the battery to reach 1% energy level from 100%. Also we

developed a small tool that records the battery lifetime. When the battery reaches

0%, the system will completely shut down and it will become impossible to record the

battery drain time accurately. So we use the next nearest integer 1% to calculate our

battery life time. For accuracy in our evaluation, we allowed the battery to drain out

completely before next recharge. To be fair to all the solutions under our evaluation,

the smartphone usage should not vary to a greater extent. So we tracked a single day

smartphone usage and automated it to occur daily during our testing period. That

is, we automated Email, SMS and Calls and fixed some time period for the game and

social network applications that cannot be automated. During both the automated

and manual testing, we kept the display on. Table 5.1 shows values and times for our

fixed applications. The Email, SMS and Phone calls were automated and the others
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were manually executed.

Application Value
Email 20
SMS 10
Phone Call 5 with duration 5 Minutes and 5 with duration 15 Minutes
Facebook 5 sessions of 10 minutes each
Twitter 3 sessions of 10 minutes each
Temple Run 1 session of 20 minutes
Subway Surf 2 sessions of 15 minutes each
BBM 5 sessions of 5 minutes each
WhatsApp 5 sessions of 10 minutes each
YouTube 1 session of 30 minutes

Table 5.1: Fixed Parameters for Battery Lifetime Comparison

The data from our testing results is shown in Table 5.2. We tested each applica-

tion individually for two weeks and compared with each other. When one application

is managing the smartphone, the others are completely uninstalled and have no influ-

ence over the device. That is, at any point of time, only one of these applications is

installed. All the values in the table are in minutes. For example on the day 1 (Sun-

day) the default battery lifetime was 1024 minutes (17 hours and 4 minutes). The first

column represents default battery lifetime (without any battery saving application in-

stalled). The second column represents the battery lifetime when the smartphone is

managed by Battery Doctor application. And the last column represents battery

lifetime when the device is managed by our proposed solution ENDLESS. We also

calculated the average of all two week values and show in the last two rows. The last

but one row shows the average battery lifetime in minutes derived from the applica-

tions. The last row shows the same average in hours and minutes for good readability.

From the average, we found that the battery lifetime of our smartphone Nexus 4 was

increased significantly by our proposed solution ENDLESS. When we compared each

other, the ENDLESS battery lifetime is higher than any other solution and the de-

fault battery lifetime. And also, the other applications yield battery lifetime higher

than the default. Figure 5.1 shows the line chart of Table 5.2. For the whole two

weeks period, the battery lifetime by ENDLESS is always higher than any other so-

lution and the default battery lifetime is always lower than any other solution. We

also found that the battery lifetime on weekends is higher than the weekdays. So,
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having a dynamic mechanism to save energy will yield better results. This chart lets

us conclude that these solutions extend battery lifetime significantly and ENDLESS

is better than any of the solutions we discussed. Figure 5.2 shows the column chart

of the average battery lifetime offered by the solution in two weeks.

Default Battery
Doctor

Juice De-
fender

Go
Power
Master

Battery
Guru

Battery
Drain
Analyzer

ENDLESS

in mins in mins in mins in mins in mins in mins in mins

Sun 1024 1106 1144 1044 1163 1156 1191
Mon 996 1102 1103 999 1124 1117 1129
Tue 938 1013 1069 967 1086 1065 1105
Wed 969 993 1067 1006 1090 1073 1140
Thu 994 1026 1054 1011 1073 1054 1093
Fri 1040 1124 1108 1039 1131 1129 1134
Sat 1048 1168 1135 1083 1141 1135 1201
Sun 1047 1124 1164 1072 1187 1171 1203
Mon 965 1078 1115 978 1132 1136 1147
Tue 979 986 1035 982 1064 1044 1089
Wed 962 1011 1087 979 1102 1092 1136
Thu 980 1008 1028 992 1061 1046 1082
Fri 1028 1112 1119 1048 1126 1120 1143
Sat 1036 1176 1146 1062 1157 1153 1217

Avg
mins

1000.43 1073.36 1098.14 1018.71 1116.93 1106.50 1143.57

Avg
hh:mm

16:40 17:53 18:18 16:58 18:36 18:26 19:03

Table 5.2: Battery Lifetime Comparison

5.1.1 Static Solutions Vs. Dynamic Solutions

The applications that we tested shall be listed in 3 broad categories - Default, Static

and Dynamic. As we discussed in Chapter 2, the applications - Battery Doctor,

Juice Defender and Go Power Master fall under Static Solution category. Snap-

dragon BatteryGuru, Battery Drain Analyzer and ENDLESS applications are Dy-

namic Solutions. As our solution ENDLESS yields different results based on the

user’s smartphone usage pattern and recharge behavior, it is categorized as Dynamic

solution. There is no similarity between ENDLESS and the other static solutions we
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Figure 5.1: Battery Lifetime Comparison

Figure 5.2: Average Battery Lifetime Comparison
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Figure 5.3: Battery Lifetime (Static Solutions Vs. Dynamic Solutions)

discussed except that both try to achieve the same goal - extending battery lifetime.

From Table 5.2, we categorized these applications and derieved Table 5.3. The table

shows the average battery lifetime of our Nexus 4 device yielded by default, static

and dynamic solutions in the respective columns. Figure 5.3 shows the pictorial

representation of this derived data. From the chart, it becomes obvious that the

battery lifetime offered by static solution are higher than the default battery lifetime

but the battery lifetime offered by dynamic solutions are significantly higher than

that offered by static solutions. So, we are convinced that extending battery lifetime

through tracking user’s usage activities and recharge behaviour yields better results.

For a clear understanding of ENDLESS’ performance over the other solutions within

the dynamic category, we created the chart shown in figure 5.4. As we previously

mentioned all dynamic solutions offer longer battery life time than the static solutions

and also within the dynamic category, ENDLESS offer longer battery than the other

solutions.

Default Static Dynamic

Average Battery Lifetime (in mins.) 1000.43 1063.40 1122.33
Average Battery Lifetime (in hh:mm) 16:40 17:43 18:42

Table 5.3: Battery Lifetime (Static Solutions Vs. Dynamic Solutions)
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Figure 5.4: Battery Lifetime (Static Vs. Dynamic) - Dynamic Solutions Expanded

5.1.2 Difference within two consecutive Weeks

The battery life time estimation and extension over time can be well understood by

analyzing the progress of these applications. Our ENDLESS solution records the data

on Weekend and Weekday basis. From Figure 5.1, we clearly see that the battery

lifetime on weekends are higher than that on weekdays. So, classifying the records

into weekdays and weekends is really helpful to efficiently extend the battery life.

We compared week 1 data with week 2 data as shown in Figure 5.5. Each block

represents the difference in values of a particular day on week 1 and week 2. For

example, The blue blocks shows difference in battery lifetime on sundays. When we

measure the whole week difference, the default and static solutions differ by more

than 120 minutes (2 hours). But the dynamic solutions differ from 80 to 110 minutes

which is significantly lower than the static solutions. Therefore we understand that

tracking users usage and recharge behaviour yields consistency in the results. The

difference measured by ENDLESS is lesser than the other two dynamic solutions we

discussed. This is because, we classify all our logs into weekends and weekdays to

better understand and estimate energy consumption on various days and routines. If

we classify the data into seven specific days, the results may be even better but it will

result in higher processing and delay that would lead to higher energy consumption

by the solution itself. So, for the scope of this thesis, we limited ourselves to two

categories - weekdays and weekends. In the future, this shall be extended to specific
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Figure 5.5: Battery Lifetime (Difference within two consecutive Weeks)

day classification at a minimal cost on processing and energy consumption.

5.2 Feature Comparison

Smartphones offer a wide range of features from sending/receiving text messages to

automatically synchronizing cloud data that may contain contacts or files of any type.

Here, the term “Feature” represents the functionalities offered by the platform that is

visible to the users. For example, Bluetooth is a feature used by the users to transfer

the files. Features may be a background service started by the operating system or

an application like Google Drive, Dropbox (Cloud Sync Feature). The alterations in

features may directly impact the user experience. As a battery saving mechanism, the

solutions or applications alter the features to minimize processing. The alteration may

involve delaying the synchrinoziation interval or completely shutting down a service.

In this section, we present the comparison of feature alteration by the applications

we discussed earlier.

The following is a list of abbreviations for the terms used in Table 5.4.

1. UT - Untouched. Solution has no influence on the feature.

2. OFF - Solution turns OFF the feature.

3. OFF(L) - Solution turns OFF the feature on LOW Battery.
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Feature Default Battery
Doctor

Juice
De-
fender

Go
Power
Master

Battery
Guru

Battery
Drain
Analyzer

ENDLESS

Accelero-
meter

UT UT UT UT UT UT UT

Blue-
tooth

UT OFF OFF OFF(L) OFF OFF UT

WiFi UT OFF(L) OFF(L) OFF(L) UT UT UT
Mobile
Data

UT OFF(L) OFF(L) OFF(W) OFF(L) OFF(L) UT

Email
Sync

UT OFF OFF OFF DOAU OFF(L) DOAU

Cloud
Sync

UT OFF OFF OFF DOAU OFF(L) DOAU

Bright-
ness

LOW(10) LOW(L) LOW(L) LOW(L) UT UT UT

Table 5.4: Feature Comparison

4. OFF(W) - Solution turns OFF the feature when Smartphone is in WiFi.

5. DOAU - Depends on Application Usage.

Table 5.4 clearly shows that the default Android system does not turn on or off

any feature except “Brightness”. As we already discussed in Chapter 2, Android

operating system reduces the brightness to 10 when the battery reaches 10% battery

level. We can also infer from the table that the static solutions turn off almost

all the features as battery saving mechanism irrespective of user needs. So, they

certainly affect user experience. On the other hand, the dynamic solutions especially

Battery Guru and our proposed ENDLESS, delay Email and Cloud sync based on

user’s app usage statistics. Thus, dynamic solutions extend battery lifetime without

compromising user experience.

5.3 Energy Consumption by Itself

The energy consumption by the application or solution is a critical concern in design-

ing an energy saving mechanism. When we propose a new methodology in extending

battery lifetime, consuming energy significantly more than any other application or

service will compromise the primary goal. So, the designers constantly deploy their
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solution and test for its battery consumption throughout the implementation phase.

We tested our proposed ENDLESS solution and the other applications under our

consideration for their energy consumption. We performed the test for a two week

period in the same way as we did in Battery Lifetime comparison. When one appli-

cation is installed on our device, all other battery saving applications are uninstalled

for accuracy. We used the same device Google Nexus 4 for this testing. At the

end of our testing, our result shows that ENDLESS and all the other battery sav-

ing applications under our comparison - Battery Doctor, Juice Defender, Go Power

Master, Snapdragon BatteryGuru and Battery Drain Analyzer consume less than

1% battery per discharge cycle. That is, in a single discharge cycle or one complete

battery lifetime, the battery saving applications consumed less than 1% of the total

energy available. This proves that our ENDLESS is inline with other battery saving

mechanisms in self energy consumption. Table 5.5 shows the complete data of bat-

tery consumption by each battery saving application. This table clearly conveys the

fact ENDLESS is inline with other battery saving applications and infact it consumes

lesser energy than few of them. Figures 5.6 and 5.7 show the pictorial representation

of Table 5.5.

Battery
Doctor

Juice
Defender

Go Power
Master

Battery
Guru

Battery
Drain
Analyzer

ENDLESS

Sun 0.9 0.8 0.9 0.7 0.9 0.8
Mon 0.8 0.7 0.8 0.7 0.8 0.8
Tue 0.9 0.9 0.7 0.8 0.8 0.8
Wed 0.7 0.8 0.8 0.7 0.8 0.7
Thu 0.9 0.7 0.9 0.7 0.9 0.7
Fri 0.7 0.8 0.8 0.9 0.9 0.9
Sat 0.9 0.8 0.9 0.8 0.9 0.9
Sun 0.8 0.8 0.9 0.9 0.9 0.9
Mon 0.8 0.9 0.9 0.7 0.7 0.8
Tue 0.8 0.9 0.7 0.8 0.7 0.7
Wed 0.9 0.7 0.8 0.8 0.8 0.7
Thu 0.7 0.8 0.7 0.8 0.9 0.8
Fri 0.8 0.7 0.9 0.9 0.9 0.9
Sat 0.9 0.8 0.9 0.9 0.9 0.9

Avg 0.82 0.79 0.83 0.79 0.84 0.81

Table 5.5: Battery Consumption by Itself
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Figure 5.6: Battery Consumption by Itself

5.4 Next Recharge Estimate Accuracy

ENDLESS manages and distributes the energy based on logged data, calculations and

estimations. The most important estimation is the battery life time in the current

discharge cycle. NRE (Next Recharge Estimate) plays a vital role in determining the

approximate battery life time. As we discussed in Chapter 3, NRE is calculated based

on past Recharge Start Times (RSTs) and Time After Previous Recharges (TAPRs).

The performance of our ENDLESS solution highly depends on the accuracy of our

estimated recharge start time (NRE). The purity of NRE clusters can be justified by

evaluating the accuracy of individual records. If the accuracy of each record is higher,

then the cluster is highly pure. To evaluate the accuracy, we cleared all the past data

and deployed ENDLESS freshly on our Nexus 4 device. After the learning phase, we

started monitoring estimated NRE and actual RST for a period of one month. Figure

5.8 shows a pictorial representation of the difference between estimated and actual

recharge start time over 1 month period. During the first week after the learning

phase, the estimations were deviated highly from the actual RST and stumbled in

consistency. As it gained more data, during the second and third week, the difference

has been reduced. As shown in Figure 5.8, the line is steeply declining but consistent.

During the fourth week, we noticed the difference is consistent around 10 minutes.
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Figure 5.7: Average Battery Consumption by Itself

This might be higher when the user’s recharge behaviour changes drastically and this

might be lower when the user’s recharge behaviour is consistent. But in any case, as

the sample data increases the difference decreases and results in the increase of NRE

accuracy.

5.5 Against Llama

Llama is user driven energy management algorithm designed and published by Baner-

jee et al. in [28]. The findings from Llama is the primary motivation for our proposal

in the user centric direction. So, it becomes neccessary to evaluate our ENDLESS

performance against our base research paper [28]. The authors deployed their algo-

rithm on Windows Mobile phones and evaluated the number of recharges per week.

As we implemented our ENDLESS for Android platform, we cannot compare the

absolute result against Llama. Therefore, we evaluated the difference in number of

recharges between the before solution deployment and after solution deployment and

finally compared the differences. Difference is the actual parameter that conveys how

better the solution is on its own platform. We calculated the number of recharges

that happened in a 30 day period before and after ENDLESS deployment and found

them to be 43 and 38 respectively. As shown in Table 5.6, in Windows Mobile,
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Figure 5.8: Next Recharge Estimate Accuracy)

the number of recharges per week were 10.1 before Llama deployment and 8.9 after

Llama. On the other hand, in Android, the number of recharges were 10.03 before

ENDLESS deployment and 8.87 after ENDLESS. In other words, Llama reduced the

number of recharges by 11.88% Windows Mobile and ENDLESS reduced the number

of recharges by 11.57% in an Android smartphone. Thus the performance of END-

LESS is almost equal to Llama and varies only by 0.31%. From this evaluation, we are

able to prove that it is possible to extend the battery lifetime without compromising

much feature alteration. Llama concentrates only on user’s recharge behaviour to ex-

tend the battery lifetime whereas ENDLESS concentrates on both recharge behaviour

and the app and service usage statistics to extend the battery lifetime as well as to

improve the user experience by saving or releasing energy for necessary applications.

Before After

Llama 10.1 8.9
ENDLESS 10.03 8.87

Table 5.6: ENDLESS Vs. Llama (Recharge attempts per week)
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Conclusion

Smartphones have become and integral part of our life and help us get connected with

the world all the time. Although smartphones possess high end hardware and offer

amazing functionalities, the limited battery energy limits their capability. Battery

saving and extension has always been challenging for researchers and smartphone

manufacturers. This thesis discussed the evolution of smartphones, various smart-

phone operating systems and various types of batteries that are used in smartphones.

We explained the best existing solutions and how they differ from each other. There

is always more than one solution to any problem in the world. A solution is consid-

ered best when it achieves maximum performance with minimal cost. The battery

saving mechanisms try to extend the battery lifetime without much compromise in

the user experience. We categorised the solutions into static and dynamic depending

on their consideration of users’ usage patterns. In our evaluation, it is clear that the

solutions that consider user needs and behaviour yield better results than the static

solutions. Among the dynamic solutions we discussed, ENDLESS out performed in

battery lifetime with negligible prediction errors. By rigorously testing ENDLESS for

a significant period, we proved the performance of ENDLESS is better and consistent.

The following summarizes our findings through this thesis.

1. User centric approach in extending the battery yields significantly better results

compared to the static solutions.

2. Smartphone users use their devices different based on daily routine.

3. Tracking users’ usage patterns by weekend/weekday basis yields better results

than the other dynamic solutions.

4. As the log data increases over time, accuracy of the estimation increases.

86
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6.1 Future Work

The good solutions to a problem is always good at present and have ways to improve

for future. In the real world, all problems change over a period and so does the

solution. In section 4.3, we have listed the limitations in our ENDLESS solution and

the interested researchers can extend this thesis by addressing them. In this thesis,

we assumed that the users may not recharge their devices more than twice a day and

so we fixed K = 2 in K-Means estimation of NRE (Next Recharge Estimate). In the

future, we shall make the K dynamic so that the solution will adapt to the user’s

recharge behaviour if it happens more than two times in a day. In our solution’s

design and implementation, we categorized the data into weekday/weekend and the

evaluation showed the difference in smartphone usage pattern which in turn helped

distribute the available energy efficiently. In future, if it is categorized further into

each day or in a multi dimensional attribute, for example in addition to every day

categorization, if we add holiday/workday categorization or something similar to that,

it may have potential to find a pattern and distribute the energy more efficiantly.

Also, as we implemented and deployed our ENDLESS only on Android platform,

there is an opportunity to extend the solution to other platforms. We believe that

after optimizing the implementation, deploying the solution on other platforms and

testing it on other devices it will provide interesting facts and results.
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