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Abstract

Text document clustering has broad applications in practice. For instance, a conference
chair should place accepted papers into meaningful sessions. Students writing a thesis,
or professors writing a proposal or planning a reading course need to organize their
reference papers. Organizing documents into folders on a personal computer, or
grouping emails into multiple inboxes are other instances of document clustering.
Unsupervised document clustering algorithms require no user effort, but the obtained
partitionings may be far from what the user intended to generate. User-supervised
clustering algorithms involve the user in the clustering process and let her decide
on the number and topics of document clusters. Generating useful clusters with
minimum user cffort is the main challenge in this mode. To address this challenge,
we propose a user-supervised clustering algorithm, designed in three stages. First,
we design a novel unsupervised clustering algorithm that can be easily extended into
a user-supervised algorithm, thanks to its double clustering approach. We evaluate
its performance against state-of-the-art clustering algorithms in unsupervised mode.
We also extend this algorithm into an ensemble algorithm to incorporate Wikipedia
concepts in document representation. We demonstrate that the integration can improve
the quality of document clusters even though representing documents by Wikipedia
concepts solely, may result in inferior clusterings to bag of words representation.
Second, we propose three user-supervised versions for our clusterer based on term
supervision (in the form of term labeling), document supervision, and dual supervision.
We then demonstrate that with a comparable amount of simulated user effort, our
proposed term labeling is more effective than a baseline term selection method. Third,
we propose a graphical interface to support our term-supervised clusterer in interaction
with human users. We then conduct a user study to evaluate the interface and its
underlying clusterer. Analyzing the participants’ opinions and comments reveals the

usefulness of the proposed term-supervised clustering algorithm.

xxi



Chapter 1

Introduction

1.1 Motivation

Clustering is an unsupervised machine learning method which provides insight into
a collection by generating groups of objects with similar characteristics. It has
many applications in practice. For instance, clustering in microarray analysis helps
researchers to extract correlated genes under certain conditions or disease [108]. Image
retrieval process is boosted after clustering similar images in databases [64]. Moving-
object data is clustered so as to find similar trajectories or sub-trajectories in satellites
and tracking facilities [73]. It is widely used in analyzing marketing data in order to
group consumers, target markets, or shopping items [1, 81]. Tt is also used in analyzing
climatology data and weather forecasting [47].

Clustering is an important step preceding browsing in a text collection. The
problem of clustering is widely studied in the data mining literature and numerous
algorithms have been proposed [2]. Grouping similar documents brings forward
precious information about the text topics in many applications. For instance, the
output of search engines is clustered in order to help users in query refinement and
knowledge extraction [38, 92]. Or, it is used in grouping similar sentences in mining
customer opinions [40].

Traditionally, an unsupervised text clustering algorithm generates the same parti-
tioning of a collection for every user. No user effort is required in this case and the
user has no way to interact with the clustering algorithm if the partitionings obtained
automatically are far from what she intended to generate.

Unsupervised clustering approaches thus cannot be used when the user likes to
cluster documents according to her point of view [4, 54]. A user may cven like to
generate different partitionings of the same collection at different times. On the other
hand, there is no ground truth for many collections in practice and it is the user who

evaluates the quality of clusterings. These issues require the involvement of the users
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Figure 1.1: A partitioning of a document collection with five clusters

in the clustering process.

The following example will show why it is better to involve the users in the
clustering process. Three different partitionings of a document collection are shown in
Fig. 1.1 to Fig. 1.3. Based on the ground truth, there are five classes (topics) in this
collection including: cook, restaurant, music, movie, and radio. A clustering algorithm
generates the partitioning shown in Fig. 1.1 for user A. User A is satisfied with the
output. However, user B likes to have three clusters like what are shown in Fig. 1.2; a
cluster of food as a merge of the clusters cook and restaurant, a cluster of music-radio
and the cluster of movie. There is also a user C who likes to have only two clusters as
shown in Fig. 1.3; a cluster of food including the clusters cook and restaurant, and a
cluster of entertainment including the clusters music, movie, radio. This scenario may
also happen for the same user in different times. Hence, a user needs to specify the
number and topics of document clusters in this example.

A possible solution to this problem is that a clustering algorithm is run with different
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numbers of clusters. The number of clusters is usually a user-defined parameter in
text clustering. The user is asked to specify the number of clusters a priori and the
clustering algorithm generates the same number of clusters. Although the number
of clusters is what the user wants to have, but she has no control over the topics
of clusters and there is no guarantee that the algorithm generates the same clusters
as she intends to generate. For instance, k-means always generates three clusters of
cook, music, and movie if the user asks for three clusters in above-mentioned example.
However, she might like to generate three clusters of movie, music, and radio or three
clusters of cook, restaurant, and movie-music-radio.

The user should thus be able to specify not only the number of clusters but also the
topics of clusters. To address this problem, user-supervised clustering algorithms have
been proposed [54, 90]. These algorithms involve the user in the clustering process
in an interactive mode so as to generate her desired partitionings. A user-desired

partitioning has two characteristics:

e User-desired number of clusters: the user interactively tries different numbers of

clusters to determine her desired number.

e User-desired topics of clusters: the user decides about the topics of the document

clusters based on information provided about the clusters obtained interactively.

1.2 User Supervision

Document and term supervision are two kinds of interaction used in text clustering.
Labeling documents, or specifying “must-link” or “cannot-link” pairwise constraints
among documents has been proposed in the traditional semi-supervised algorithms as
document supervision [9, 10, 15, 25, 30, 65, 106, 110] .

Traditional semi-supervised algorithms usually involve users’ preferences as prior
knowledge in the clustering process. After a supervision phase, user’s knowledge is
incorporated in the clustering process to generate clusters matching her preferences.

This approach of collecting user preferences raises the following questions:

1. What is the best way to select a set of documents in order to elicit users’

preferences? Is random selection a reliable approach for this purpose?
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2. Most existing semi-supervised algorithms simulate user’s supervision as a noise-
free and consistent input [9, 10, 15, 25, 30, 65, 106, 110]. However, the users
may make mistakes in supervising documents with similar topics. The accuracy
of the input knowledge is dependent on the users’ expertness and also on the
selection method used to collect documents for supervision. How much do noisy

user inputs affect the quality of clusterings?

3. Term labeling is used in the classification problem to incorporate user expec-
tations [36, 95]. The user is asked to label important terms for classes. It has
been demonstrated that term labeling is effective in document classification. Is

term labeling a good approach in text document clustering?

The other way of involving users in text clustering is term supervision. Compared
to document supervision, fewer studies have been done on term supervision. Term
supervision (in the form of term selection) is used in [53, 54] to actively form a feature
set for document clustering. The user is asked to specify discriminative terms during
a phase of document supervision. A feature space is then formed including the terms
specified as discriminative. The discriminative terms may also have higher weights in
the feature space.

The term labeling approach proposed in this thesis lets the user not only specify
discriminative terms but also organize them into preferred groups. Each preferred
group of discriminative terms acts then as a cluster of keyterms specifying a topic in the
document collection. Based on the topic keyterms, terms that exist in the collection
are clustered. Our algorithm then extracts seed documents of each term cluster. The
final document clusters will be generated based on the distance of documents to the

seed documents.

1.3 Owur Goals

Our hypothesis in this thesis is that term labeling is an effective way to involve
users’ knowledge in text clustering. We believe that term labeling is more effective
than term selection and document labeling in user-supervised clustering. With a
comparable amount of human effort, the user can provide more details about clusters

by term labeling than specifying discriminative terms (term selection) or labeling
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training documents (document labeling). Term labeling helps the underlying clustering

algorithm to generate better clusters matching the user’s preferences.

To evaluate our hypotheses, we first propose a novel unsupervised text clustering
algorithm that can be easily adapted for interactive use. We compare the algorithm
to state-of-the-art clustering algorithms in order to demonstrate its performance. We
then propose three user-supervised versions for this algorithm based on term labeling,

document labeling, and dual labeling.

We compare our term labeling and document labeling algorithms to determine
whether term labeling is more effective than document labeling. To determine whether
term labeling is better than term selection, we compare our term labeling approach to

a baseline term selection approach.

In the baseline term selection approach, the user is asked to specify discriminative
terms. A list of potential keyterms, extracted from the current document clusters, is
presented to the user. The user then supervises the list by selecting discriminative
terms. A feature set is then formed from the selected terms and document clustering
is performed in the corresponding feature space in the next iteration. The user’s
feedback is only based on the presented single keyterms, and no information about the
relevance of keyterms to the document clusters would be provided. She interacts for a
few iterations until she chooses to terminate. She has the freedom to select different

discriminative terms in each iteration.

In our proposed term labeling approach, the user is asked to perform term labeling.
The top keyterms of each document cluster are presented to the user in the form of a
term cloud. The user then modifies term clouds by relocating terms among them. The
supervised term clouds are subsequently used to re-cluster documents. The advantage
of this approach is that rather than presenting single terms to the user, it provides a
potential association of terms with document clusters in form of term clouds. The
term clouds help the user to identify an irrelevant keyterm and remove it from a cloud,
or relocate it to a different cloud, which has relevant keyterms. She has the freedom

to generate different term clouds in each iteration.

We compare the term selection approach to the term labeling approach with
different parameter settings. Our experiments determine whether term labeling is

more effective than term selection in terms of improving quality of clusters compared
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to unsupervised mode. The amount of human effort is almost the same in both
methods since the same number of terms are presented to the users in each experiment.
The only difference is that the user should specify the label of terms in our approach,
which we believe it is not very time consuming if related terms are presented in form
of term clouds.

We anticipate that our interactive text clustering algorithm helps the user to
generate clusters according to her point of view. Not only does presenting keyterms in
the form of term clouds provide invaluable insights into the topics of clusters, it also
enables users to decide on their desired number of document clusters through merging,
splitting, or removing term clouds. Finding a desired number of document clusters is
a key feature of the graphical interface implemented to support our proposed term
labeling clustering algorithm. We also provide a document view panel in the interface.
The panel helps the users in exploring the documents related to a focused term cloud
in order to provide a deeper view about the topics.

Our graphical interface is based on term cloud representation. By selecting a
document cluster, its corresponding term cloud is shown to the user. The term cloud
includes the top keyterms of the document cluster. The user relocates terms among
term clouds to specify the topics of document clusters. She also decides on the number

of term clouds. This number specifies the number of document clusters.

1.4 Our Contributions

The main contributions of this thesis are summarized in this section. The contributions

include the following;:

1. We proposed an evolutionary algorithm to cluster text document collections [88,
89]. The main novelty of the algorithm is a multi-objective genetic algorithm
which distills term clusters in order to remove non-discriminative terms. We
also proposed a heuristic approach to find seed documents from the distilled
term clusters. We conducted several experiments and the results demonstrated
that this algorithm can outperform state-of-the-art double and co-clustering
algorithms. The heuristic approach to find seed documents and the idea of
distilling term clusters are used in the other clustering algorithms proposed in

this thesis.
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2. We proposed lexical double clustering algorithm (LDC) [90]. The novelty of
the algorithm is in a greedy method which removes non-discriminative terms
of term clusters by utilizing a feature selection method. The main advantage
of this algorithm is that we can incorporate user interaction in the clustering
process easily later. We have conducted several experiments to compare our
clusterer, in unsupervised mode, with state-of-the-art text clustering algorithms
like the LDA model [17]. Our experiments show that the proposed clusterer can

generate comparable results to the LDA model.

3. We extended LDC into a new ensemble clustering algorithm in order to incorpo-
rate Wikipedia concepts in the document representation [91]. The novelty of the
algorithm is in the consensus method. Two clusterings of a collection are first
generated based on term-document and concept-document representations. The
consensus method then combines the clusterings to generate an aggregated clus-
tering. The documents with the same clusters in both clusterings are extracted
for this purpose. These documents are then used to train a classifier. After the
training, the classifier classifies the remaining documents. The experimental
results show that this ensemble algorithm can successfully integrate Wikipedia
concepts and significant improvements have been obtained even though the

concepts alone resulted in poor clusterings.

4. We proposed three user-supervised versions of LDC based on term supervision
(in the form of term labeling), document supervision, and dual supervision.
We have conducted several experiments using simulated users to evaluate the
user-supervised algorithms. The experimental results show that the quality
of clusters is improved significantly compared to the unsupervised mode. We
also compared our term labeling to a baseline term selection method. The
experiments show that our term labeling is more effective than the term selection

method with a comparable amount of simulated user effort.

5. We finally proposed a graphical interface to support the term-supervised LDC
algorithm in interaction with human users. Our interface lets the user generate
her preferred document clusters in terms of the number and topics of document

clusters. Document clusters are represented as term clouds in the interface.



9

Creating a new term cloud, removing the existing ones, splitting two clouds
or merging them are the available options in the interface. We also conducted
a user study using a group of 30 participants. Analysis of the participants’
opinions and comments provides an evaluation of the proposed interface and its

underlying term-supervised clusterer.

1.5 Outline of the Thesis

The remainder of this thesis is organized as follows. We review related work in the
area of text clustering in Chapter 2. A few feature selection methods proposed for
text data are first introduced. We then review some important works performed in the
field of double clustering, co-clustering and topic modeling. Enhancing text document
clustering by using external resources like Wikipedia and WordNet is also covered in
this chapter. We finally review some related interactive text clustering algorithms.
We explain advantages and disadvantages of their graphical interfaces.

We explain the setup of our empirical experiments in Chapter 3. First, we review
the text datasets used in our experiments and their characteristics. We explain how
these datasets are pre-processed using Natural Language Processing methods. We
then describe the evaluation measures used in this thesis.

Our evolutionary text clustering algorithm is described in Chapter 4. We first give
a motivation about the double clustering and the contributions of our work in this area.
We then describe our evolutionary algorithm in detail. Experiments performed in
order to compare our algorithm to the well-known double clusterers and co-clusterers
are reported. Finally, there are conclusions about the proposed evolutionary algorithm
and future work.

Chapter 5 presents LDC' in which the evolutionary module of the algorithm of
Chapter 4 is replaced by a greedy feature selection method. Several experimental
results are reported in this chapter. The quality of clusters obtained by the evolutionary
algorithm and LDC' is compared first. A comparison between LDC and the LDA
model is then reported. We finally report a comparison to see whether the Google
distance [61] is better than Cosine similarity in term clustering.

An ensemble approach for text document clustering based on Wikipedia concepts

is proposed in Chapter 6. We propose a new consensus method to combine the
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clusterings generated by using Wikipedia concepts and document terms. Experimental
results reveal that we cannot ignore document terms from the clustering process.

We propose three user-supervised versions of LDC in Chapter 7. Experiments are
conducted to evaluate the performance of the user-supervised algorithms. A comparison
between our proposed term labeling and a baseline term selection algorithm is also
reported in this chapter. Experimental results reveal that the term labeling is more
effective than the term selection in our experiments.

We describe our graphical interface and the user study in Chapter 8. The detail of
our user study and the obtained results are reported in this chapter. The analysis of
the user study confirms our claims about the proposed term labeling approach.

A summary of the thesis with the final conclusions are presented in Chapter 9.
We review the workflow of this thesis from proposing an evolutionary clusterer to the
interactive term-supervised clustering interface. Proposed future work in the area of

text clustering concludes this thesis.



Chapter 2

Related Work

Feature selection methods and clustering algorithms proposed for text data are reviewed
in this chapter. Four unsupervised and two supervised feature selection methods are
reviewed first. We review distance metrics used in text clustering algorithms. We then
review some clustering methods well-known in the area of text clustering. The methods
include a partitional clustering algorithm, some double and co-clustering algorithms,
and two probabilistic topic modeling approaches. We then explain how users can
interact with the document clustering process and related research is reviewed. Finally,
we review some graphical user interface implemented for interactive text document

clustering.

2.1 Feature Selection

In text clustering, a document collection is usually represented as a document-term
matrix in the bag of words (BOW) model [2]. The rows of the matrix correspond
to documents and the columns correspond to terms. Each entry of the matrix is a
feature value, usually term frequency—inverse document frequency! (TFIDF), which
indicates the importance of a term in the respective document. The dimensionality of
this representation is very large and the underlying matrix is typically sparse. This is
mainly because each document has a small fraction of terms that exist in a corpus.
The respective document vector has thus numerous zero values corresponding to the
terms that exist in the corpus but not in the document. It has been shown that the
performance of text clustering declines as the dimensionality of this representation
increases [105]. This is mainly because some terms are too general to discriminate
topics. These non-discriminative terms act as noisy attributes in document cluster-
ing. Therefore, it is desirable to reduce the dimensionality of the BOW document

representation by keeping only discriminative terms.

http://en.wikipedia.org/wiki/Tf-idf

11



12

There are two common solutions for this problem: feature transformation and
feature selection. Feature transformation techniques project the data objects from the
original high dimensional space into a lower dimensional space. In this space, each
feature is a linear or non-linear combination of the original features. Commonly used
feature transformation techniques for text data are Latent Semantic Indexing [32],
Independent Component Analysis [60], and Random Projection [16]. Feature transfor-
mation has the drawback that the newly generated features are not real words and it
is not easy to interpret the obtained clusterings. Moreover, we cannot use the new
features in our interactive text clustering since they are not real words. Hence, we

have used only feature selection techniques in this thesis.

Feature selection techniques select a subset of features, which seem more important
than the others according to some criteria. Since no projection (mapping) is performed
on the features, it is easier to interpret the clusterings obtained by these techniques.
In this section, we review four unsupervised and two supervised feature selection
methods that are widely used for text data. Each method assigns a score to each
term (feature). The terms with higher scores can be selected to form a new lower

dimensional feature space.

2.1.1 Supervised Feature Selection

Supervised feature selection methods are often used for classification problems where
the class labels of instances are known. However, they can be used in clustering as well.
Treating the current document clusters as classes, these methods can be used to find the
most important terms of clusters. We use these methods in our interactive clustering
so as to extract topic (cluster) keyterms. There are two well-known supervised feature

selection methods for text data [75].

Information Gain (IG)

Information Gain measures the amount of information we get about the label of a

document if a term appears or does not appear in it [116]. Given the classes of the
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instances, {c,}*_,, the information gain of term t is computed as [116]:
k
IG(t) = =) P(cs)log P(c,)
s=1
k
+P(t) Y P(cs|t)log P(c,lt) (2.1)
s=1
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where |d| is the number of documents in ¢;, |d;| is the number of documents the term
t appeared in, |dg| is the number of documents in ¢, where the term ¢ appeared in, ¢
means any term except ¢, and N is the number of documents in the collection. The

goodness of ¢ is directly proportional to the value of IG.

x? Statistic

The y? Statistic measures the dependency between a term t; and a class ¢, using the

following formula [39]:
X2<ti7cs) - P(tw CS)P(t_i? C_s) - P(tzvc_s)P(t_’u CS) (23)

where P(t;,cs) is the probability that the term ¢; appears in a random document d
that belongs to ¢,. The probability values are estimated by counting. The goodness of

t; in a collection can be computed as the maximum of x?(#;, ;) values over all classes.

2.1.2 Unsupervised Feature Selection

Unsupervised feature selection methods are widely used for text clustering since no

information about class labels is available a priori. These methods can be directly
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applied on the document-term matrix of a text collection so as to remove non-
discriminative terms and decrease the dimensionality of the presentation. Among all
feature selection methods proposed in Machine Learning, the following four methods

are widely used for text corpora [75].

Mean-TFIDF

Similar to the document vectors, each term is represented as a vector of documents in
the BOW model. Each entry of this vector indicates the degree of importance of the
term in the respective document. For each term t;, the mean value of its TFIDF' over

all documents is measured using the following equation [105]:
L
Mean-TFIDF(1;) = Y TFIDF; (2.4)
i=1

where TFIDF;; is the feature value of term ¢; in document d; and N is the number of
documents in the corpus. The higher the mean-TFIDF (MT) score, the better suited
the term to be included in the new feature space. The computational complexity of

this technique is O(N) for each term.

Var-TFIDF

Instead of using the mean value, the variance of TFIDF over all documents is computed
in this method [67]. Using Eq. (2.4), the var-TFIDF (VT) score is computed using
the following formula:
.
Var-TFIDF (1) = - Y (TFIDF;; — Mean-TFIDF(t;))’ (2.5)
i=1
Discriminating terms have higher var- TFIDF' scores. The computational complexity

of this technique is O(N) for each term.

Entropy Rank

In this method, the quality of each term is measured by the entropy reduction when

the term is removed [29]. Terms are removed in turn and then the entropy is measured.



15

If removing a term results in the maximum entropy, the term is the most important

one. The entropy of term t is measured using the following formula:

Entropy(t) = =Y Y [y +log(Sy) + (1= Siy) -log(1 = S)]  (26)

i=1 j=1
where S;; is the similarity between documents d; and d; when term ¢ is removed and

is computed by the following formula:

In(0.5)

Sz'j _ e—a-dzst,;]-’ a=— :
dist

(2.7)

where dist;; is the distance between documents d; and d; and dist is the average
distance among all documents after term ¢ is removed. The time complexity of Entropy
Rank (ER) is O(N?M) for each term, where M is the number of terms. Using this

score is impractical when there is a large number of documents in a corpus [75].

Term Contribution

In this method, the quality of each term is computed as its overall contribution to the

document similarities [75]. The Term Contribution (TC) score of term ¢ is defined as:

= > f(t,d) - f(t,dy) (2.8)
§,j ]
where f(t,d;) is the feature value of term ¢ in document d;, which is TFIDF in this
work. The time complexity of this method is O(N?) for each term.
Once only the presence of terms in documents are important, we set f(¢,d) = 1

if term t appeared in document d and zero otherwise. This results in a binary

representation of a corpus. In this case, the value of T'C' can be rewritten as:

TC(t) = DF(t)(DF(t) — 1) (2.9)

where DF'(t) is the document frequency of the term ¢. Despite of its simplicity, DF(t)
is an effective feature selection in text categorization [116]. Equation (2.9) shows that
DF(t) is a special case of Term Contribution.

We use these unsupervised feature selection methods not only for reducing the

dimensionality of our dataset document-term matrices, but also to distill our term
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clusters. After term clusters are generated, we perform unsupervised feature selection
on each term cluster to remove its non-discriminative terms. Feature selection is thus
applied globally on the dataset matrices and locally on the term clusters in our work.
We have also reported an experiment to compare the above-mentioned unsupervised

feature selection techniques in Section 5.2.5.

2.2 Distance Metrics

In this section, we review some distance (similarity) measures which are widely used
in partitional text document clustering algorithms. We assume that documents are
represented as a vector of terms 7, where each entry of the vector specifies the degree

of relevance of a term in the respective document.

Euclidean Distance

2

— —
Given two documents d, and dp, the Euclidean distance® is measured as:

— =
Dp(dg, dy) = Zma—w (2.10)

_>
where [}, is the feature value of term ¢ in document d,. The minimum value of this

measure is zero.

Cosine Similarity

— —
The cosine of the angle between two document vectors d, and d, is used in this
measure. Cosine similarity® is measured using the following formula:
— =
d—> — d, - dy

SINIC( as db) - = = (211)
|da]|dy |

This measure is independent of document length and its value is bounded in [0 1].
When the angle between two documents is zero, they have the maximum cosine

similarity.

’http://en.wikipedia.org/wiki/Euclidean_distance
Shttp://en.wikipedia.org/wiki/Cosine_similarity
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Jaccard Coefficient

This similarity metric is defined as the sum weight of common terms to the sum weight
of terms that appear in either of documents but not in the common terms. Jaccard
Coefficient is defined as [56]:

— =

d, - dy

SIM,(d,, dy) = (2.12)
2+ |do|2 — d, - dy

This measure has the minimum value of zero and the maximum value of 1.

Pearson Correlation Coefficient

— —
The similarity between two documents d, and dj, is measured by the following formula

in this metric [56]:

- = MM Fyx Fy—TF,xTF
SIM,(d,, dy) = Zt Lt X Cth B
[M Zt 1 -TF ]05 X [M[ Zt 1Ft2b TFb]O'S

(2.13)

where TF, = th\i1 Fi,and TF, = Zi\il F;p. The range of this measure is from +1
to -1.

Kullback-Leibler Divergence

Treating cach document as a probability distribution of terms, the Kullback-Leibler

Divergence, or the relative entropy, is defined as a distance metric as [56]:

Dyer( d ||dz7 Zﬂa x log( ta) (2.14)

The minimum value of this measure is zero.

A comprehensive evaluation based on the above-mentioned similarity (distance)
measures is performed in [56]. The conclusion of this evaluation is that the performance
of Cosine similarity, Jaccard Coefficient, and Pearson Correlation Coefficient is very
close and is significantly better than Euclidean distance. Clusterings obtained based
on Kullback-Leibler Divergence have similar quality compared to the results of other
measures.

The underlying clustering algorithm in this evaluation is k-means. The quality of

clusterings is measured using entropy. The entropy of cluster C; with size n; is defined
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as [56]:

1 n n'
EC) =— -+ — 2.15
() logKhz:;ni Ogni ( )

where n!* is the number of documents from the hth class in cluster C;.

We also perform a similar evaluation based on the clustering algorithm proposed in
this thesis in Section 5.2.6. Our evaluation shows that Euclidean distance can generate
comparable results to Cosine similarity metric. This is mainly because Euclidean

distance is related to Cosine similarity if the length of documents is normalized by L2

norm:
- = 7
Dp(das dy) = (Y |Fra — Ful*)"?
t=1

- = :
Di?(dq, dy) = (Z |Fia = Fral?)

M
—>—>
Dp2(d,, dy) = Z|Fta| + (O IFP)
- (2.16)

2.3 Unsupervised Clustering

This section reviews double and co-clustering, topic modeling, and some greedy

clustering algorithms that have been proposed for text clustering.

2.3.1 Double Clustering

Besides dimensionality reduction techniques, the other solution to address the problem
of high dimensionality in text document representation is term clustering. Terms that
exist in a corpus are clustered. Each document is then presented as a vector of term

clusters instead of a vector of terms. Document clustering is thus performed in a lower
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dimensional space. In general, there are two main approaches using term clusters in
document clustering: double clustering and co-clustering.

Double clustering refers to algorithms that perform term clustering before document
clustering [78, 102]. Given the term clusters, the document-term matrix can be
represented in a more compact way based on the presence of the term clusters in the
documents [102]. Besides, term clusters can be used in finding topic keyterms [89, 90].
In our proposed term labeling approach, these topic keyterms can help users to guide
the clustering process toward their desired clusters. We propose our interactive term
labeling based document clustering algorithm in Chapter 7.

Simultancous clustering of terms and documents is referred to as co-clustering in
the literature [7, 23, 34]. It may also be refereed to as bi-clustering [66, 100], two-mode
clustering [82, 45], or subspace clustering [109]. A co-clusterer maps documents to
document clusters and terms to term clusters simultaneously. The document-term
matrix is viewed as an empirical joint distribution between two variables, the set of
documents and the set of terms [102]. A co-cluster is then defined as a subset of
documents associated with a subset of terms. The optimal solution is typically the
one that has minimum loss of mutual information between documents and terms after
co-clustering. We review top double clustering and co-clustering algorithms in the
rest of this section.

A double clusterer for text data is proposed in [102]. The idea behind this algorithm
is that instead of clustering documents by their terms, it is better to cluster them by
using term clusters. The algorithm first clusters terms such that the term clusters
preserve most of the mutual information on documents. The document-term matrix
is then replaced by a document-term-cluster matrix. The algorithm subsequently
clusters documents such that the document clusters preserve most of the information
on term clusters. Suppose that D is the set of documents and 7' is the set of terms.
For each document of the collection, one can compute term conditional distribution
using the following equation:

n(t|d) 1

pitld) === "y ™ P =1

where n(t|d) is the occurrence frequency of term ¢ in document d, and |D| is the

(2.17)

number of documents in the collection. The mutual information between D and T is
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also defined as:

Ty = o Pt
I(D;T) = > p(d)p(t|d)log 5 (2.18)

deD,teT ()
In the first stage, the algorithm starts from |T| term clusters £. Each of these term
clusters contains only one term. At each step, two term clusters are merged such that

it causes the minimum loss of mutual information I(D;T). After generating term

clusters, each document is represented by its term clusters conditional distribution:

C Ywepnlld) Yy Yo n(tld)

Following the same approach, document clustering is performed such that at each step

merging two document clusters result in minimum loss of mutual information I (15; T)
Experimental results show that double clustering reveals the structure of document
clusters better than direct document clustering without any term clustering [102].

The main issue about the above clusterer is that it is not known when one should
stop the hierarchical term clustering. No method is proposed to find the optimal
number of term clusters. In the evaluation part of the paper, different numbers of
term clusters are used to find the best results based on document class labels. The
other issue is how to use the double clustering algorithm in partitional clustering
approaches. It has been shown that the partitional clustering approach generates
better text document clusters than the hierarchical clustering approach [52, 56, 119].

We will propose a partitional double clustering algorithm in Chapter 5. We remove
general terms from term clusters using a feature selection method. We also make a
simplifying assumption that the number of term clusters should be the same as the
number of document clusters. Based on the experiments on some real text corpora,
our algorithm outperforms the above clustering algorithm.

A double clusterer is proposed as a semi-supervised document clustering in [78].
The algorithm is based on the assumption that an expert provides a few labeled
documents for each topic (cluster). Fuzzy c-means [13] is initialized by using the
keyterms of the labeled documents so as to cluster terms. The documents are then
clustered based on the contribution of their terms in the term clusters using the

following formula:

M
diec if j= argmaXpi(tl,di)upl (2.20)

=1
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where M is the number of terms in the dataset, wu, is the membership value of
term ¢; in term cluster ¢,, and f(¢,d;) is the document-term matrix value of term
t; in document d;. Compared to this algorithm, we cluster documents using the
seed documents extracted from term clusters. We will show in Section 4.3 that our
evolutionary clustering algorithm outperforms this algorithm on some real document
collections.

A double clustering algorithm based on topic keyterm clusters is proposed in [20].
Each document is first pre-processed so as to identify meaningful phrases (multi-word
keyterms). All the extracted phrases are then used to form a weighted undirected
graph. Each node of this graph corresponds to a keyterm and the weight of edges are
derived from keyterm correlations using the following equation:

fr(tint;)
max(fr{t:), r(5,))

where fr(t; Nt;) is the number of documents in which keyterms ¢; and ¢; co-occur.

correlation(t;, t;) = (2.21)

The assumption of this study is that highly co-occurring terms can characterize topics.

The average edge weight of the graph is first computed and used as a threshold to
remove all the edges with low weights. Central keyterms are then extracted from the
graph. A central keyterm v; has high composite weight which is calculated using the

following formula:
1 m
compositeWeight (v;) %: + p- ;rj (2.22)

where d; is a document that keyterm v; appears in, m is the degree of node v; in
the graph, and r;; is the weight of edge (v;, v;). The k nearest neighbor algorithm is
then applied on the central keyterms to create central keyterms clusters. The cosine
similarity between keyterms of the clusters and document contents are finally used to
cluster documents. This part of the algorithm is not explained clearly in the respective
paper. It is also not mentioned how the value of k in k-nearest neighbor algorithm
affects the quality of clusterings. Moreover, the algorithm is not compared with any
double clustering algorithm and no implementation is available for comparison.

A co-clustering algorithm based on mutual information is proposed in [34]. Informa-
tion-Theoretic Co-clustering views a data matrix as an empirical joint distribution

of two random variables, the set of rows and the set of columns. The goal is to
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preserve the mutual information between these two variables as much as possible due
to clustering rows and columns. Given a co-clustering, one reorders the rows of the
matrix in a way that all rows belonging to the first row-cluster come first, followed by
those of the second cluster, and so on. The columns of the matrix are reordered in a
similar way. This reordering divides the joint distribution into blocks or co-clusters.
Hence, the joint distribution is represented as a joint distribution of the blocks. The
loss in mutual information before co-clustering and after co-clustering is computed

using the following formula:
I(D;T) — I(D;T) (2.23)

where D is a row partitioning and 7" is a column partitioning. Since I (D;T) is fixed,
a good co-clustering that maximize [ (ﬁ, T) is desired. Given the joint distribution
p(D,T), it has been proved that finding the best co-clustering is equivalent to finding
the closest distribution ¢ to p in Kullback-Leibler divergence [34]:

a(d,t) = p(d. Dp(dldp(t1) (2:21)
) =SS p(d ) pd) =S p(d) plad) = 2D (2.25)
ded tet ded (d)

where d is a cluster in row partitioning D. Given the above formulas, the row-cluster
prototypes ¢(T|d) and column-cluster prototypes ¢(D|f) are formulated. Given the
joint probability distribution p(D,T), the number of row clusters &, and the number
of column clusters [, the partitional algorithm generates co-clusters in the following

way:
1. Create initial row and column partitionings randomly.
2. Compute row cluster prototypes ¢(T)|d) for 1 < d < k.
3. Re-cluster rows based on the ¢(7T'|d).

4. Compute column cluster prototypes q(D|t) for 1 < < 1.

5. Re-cluster columns based on the q(D|t).
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6. Stop if D(p || ¢¥) — D(p || ¢*=) is smaller than threshold o, otherwise go to
step 2.

The algorithm can be applied on the document-term matrices of text. The main issue
about the algorithm is that there is no way to find the optimal number of column
clusters [. In the evaluation part of the paper, the value of k is set as the true number
of document classes and different values for [ are considered to find the best results.
We will show in Section 4.3 that our evolutionary algorithm outperforms this algorithm
on some real text datasets.

An output of a microarray experiment can be represented as a gene-condition matrix.
The rows of the matrix correspond to genes and the columns are the environmental
conditions. Each entry of the matrix is a number, representing the activity of a
gene under a certain condition. A co-cluster of this matrix reveals a pattern of a
group of genes under certain conditions. Two partitional co-clustering algorithms for
gene expression data are presented in [23]. The co-clustering problem is defined as
a co-clustering of rows and columns of the data matrix. Given a co-clustering, two

squared residue measures are defined to compute its homogeneity:

e The first measure is the sum of squared distances between each entry of a

co-cluster and the mean of the co-cluster.

e The second measure is the sum of squared distances between each entry of a
co-cluster and the corresponding row mean and column mean that entry belongs
in.

In order to find the minimum values of these two measures, two co-clustering algorithms
similar to k-means are proposed. At each iteration of the algorithms, columns are
re-clustered into [ column clusters. Hence, rows are re-clustered into k& row clusters
based on the column clusters just created. Like the algorithm mentioned above, no
method to find the optimal number of term clusters is provided in this algorithm.
Please refer to Section 4 of the paper for more details.

A general framework for matrix approximation is presented in [7]. The framework
is a generalization of the algorithms proposed in [34, 23] The co-clustering problem is
viewed as a special case of matrix approximation of an input data matrix where the

quality of co-clustering is obtained by an approximation error. The best co-clustering
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generates an approximation of the input matrix with minimum error. The error is
measured using Bregman divergences like I-Divergence, Squared Fuclidean Distance,

and Itakura-Saito Distance.

Six different co-clustering bases are introduced to form an approximation matrix
in this work. Each basis is like a constraint that preserves different summary statistics
of the input data matrix. Given a co-clustering, the rows and columns of the input
matrix are first reordered such that the rows of each row-cluster and the columns of
cach column-cluster sit next to each other. Each co-cluster looks like a block of the

input matrix. An approximation matrix is then created based on the selected basis.

One way of approximation, for instance basis C'2, is that each entry of the ap-
proximate matrix is the mean of all entries existing in the corresponding block. In
this way the approximation preserves the co-cluster means. In basis C5, average
row and column means are also preserved beside the co-cluster means. For more
information about the basis and the approximation schemes, please refer to Section 4
of [7]. The dimensionality of the approximate matrix is k by [, where k is the number
of row-clusters and [ is the number of column-clusters. It has been mentioned in the
paper that two bases C2 and C5 are appropriate for text clustering [7]. We have
compared our evolutionary clustering algorithm with four algorithms of this framework

in Section 4.3.

All the double clustering and co-clustering algorithms reviewed in this section
are based on hard partitioning. Moreover, the numbers of row-clusters and column-
clusters are assumed independent and user-defined. To address these issues, two
clustering algorithms are proposed in [112] based on information bottleneck clusterings
proposed in [34, 102]: Information Bottleneck Co-Clustering (IBCC) and agglomerative
Information Bottleneck Co-Clustering (aIBCC).

Similar to the ITCC algorithm [34], IBCC' is a partitional co-clustering algorithm.
The main difference between these two algorithms is that, I'TCC is based on hard
partitioning but IBCC' is based on soft partitioning. This benefit is achieved by
defining a different objective function for IBCC. IBCC is also enhanced by a simulated

annealing approach to bypass local minima.

Compared to the agglomerative double clustering algorithm proposed in [102],

alBCC' is a co-clustering agglomerative algorithm. In each iteration of alBCC, either
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two document clusters or two term-clusters are merged based on a merge cost. It has
been claimed in [112] that this mechanism captures the relation between the numbers

of document clusters and term clusters.

2.3.2 Greedy Direct Clustering

A greedy unsupervised clustering algorithm similar to k-means is proposed in [118]
for text documents. The algorithm starts with random selection of k seed documents.
Each document is then assigned to the cluster with the most similar seed. After this
initial clustering, an iterative refinement phase starts. In each iteration of this phase,
documents are revisited randomly and each one is moved to a new cluster provided
that the reassignment improves the value of the criterion function. The refinement
stage stops if no improvement could be made in an iteration.

A bisecting version of the algorithm is also proposed. The bisecting clustering
algorithm initially bisects the entire collection. One of the two clusters is then selected
and bisected to generate three clusters. This process is repeated until a total number
of k clusters are generated. We used four algorithms of this work, which are efficient in
text clustering based on our experiments. They include two direct and two bisecting

methods based on the following I, and H, criteria:

k
I5: maximize Z Z cos(d;, 1) (2.26)

p=1 d;eC)
k
E;: minimize an cos(p, i) (2.27)
p=1
.y
Hy: maximize — (2.28)
Ey
| X
S d; 2.29
p= ; (2.29)

where 11, is the centroid of document cluster C), n, is the number of documents in C,,
i is the centroid of all documents, and N is the number of documents in a dataset.
No term clustering is used in these direct clustering algorithms. We have compared
our proposed clustering algorithms to these algorithms in order to see whether term

clustering is always effective in text document clustering.
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2.3.3 Topic Modeling

Probabilistic models are widely used in different areas of text mining such as document
clustering [17, 97], document classification [17, 62, 104], summarization [3, 21], tag
recommendation [94], information retrieval [68, 115], and dimensionality reduction [27].
A well-known probabilistic model for text document clustering is Topic Modeling.
Topic Modeling creates a generative process in order to generate the terms in the
documents of a collection. The main assumption behind any topic modeling is that a
document belongs to multiple topics with different degrees of membership. Similarly,
cach term is related to multiple topics with different degrees. Topic Modeling finds
the latent topics, which correspond to the document clusters in the underlying corpus.
The output of the model is in the form of probability values: the probability that
a document belongs to a topic, and the probability that a term related to a topic.
Based on the probability values, a soft or hard partitioning of the documents along
with their keyterms can be created. Two well-known Topic Models are Probabilistic
Latent Semantic Indexing (PLSI) [48] and Latent Dirichlet Allocation (LDA) [17].

Probabilistic Latent Semantic Indexing

PLSI is an extension of the feature transformation method proposed in [32] as Latent
Semantic Indexing (LSI). As the LSI method projects documents and terms into a
lower dimensional space, PLSI projects them into a latent topics (semantic) space.
The generative process of PLSI for each word w in document d is based the following

steps [48]:
1. Select a document based on the multinomial distribution p(d)

2. Select a topic i € 1,2,.., k based on the topic distribution p(z = i|d)

3. Sample a word v based on p(w = v|z = 1)

where k is number of clusters or topics specified by the user in advance, and the joint

probability distribution p(v,d) is expressed as:

p(v,d) = p(vld)p(d) and p(v|d) = > p(z = ild)p(v]z = i) (2.30)
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The other way to express the joint distribution [27], which reveals the connection of

PLSI to LSI is defined as:
k

p(v,d) =Y p(z = i)p(d|z = i)p(v]z = i) (2.31)

i=1
where p(d|z = i) and p(v|z = i) are the projections of documents and terms into the
latent topics space.

Given a document-term matrix X with N rows (document vectors) and M columns
(term vectors) as the observed data, a log-likelihood of the model can be expressed
as [27]:

N M k
L= walog) plw=uvlz=i)p(z=ild)p(d) (2.32)
i=1

d=1 v=1
where 4, is the feature value of the word v in the document d, and p(d), p(z|d), and

p(v|z) are the parameters to be estimated. The parameter estimation or learning of
the model is then performed for instance by maximizing the log-likelihood function

using the expectation-maximization approach [33].

Latent Dirichlet Allocation

The idea behind LDA is that a document can be viewed as a probability distribution
over latent topics and each topic in turn is viewed as a probability distribution over
terms. Given the document-term matrix, and parameters k£ and «a, the output of the
model are two matrices: a document-topic matrix with dimensionality N by k£ and a
topic-term matrix with dimensionality k& by M.

A graphical model of the LDA is shown in Fig. 2.1. Each random variable is
represented by a circle. The only observed variable, which is term, is shaded. Each
arrow in the model indicates that the value of the pointed variable depends on the
value of the pointing variable. Each plate and the value inside it indicate the number of
times the sampling should be performed. Based on the graphical model, the generative

process of LDA is performed in the following way [17]:

e For each document, the probability distribution over topics is a Multinomial

distribution drawn from a Dirichlet distribution with parameter «.

e For each topic, the probability distribution over terms is a Multinomial distribu-

tion drawn from a Dirichlet distribution with parameter .
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Figure 2.1: The LDA graphical Model [17]

e For each term in a document:

1. A topic is chosen based on the document topic distribution.

2. The term is chosen based on the topic term distribution.

The idea behind the generative process is based on the co-occurrence of terms in
the documents [17]. It means that if the probability of term ¢; for topic ¢ is high and
term t; co-occurs with term ¢; frequently, the term ¢; is more likely related to the
topic ¢;. Using the co-occurrence of terms helps LDA to find the latent topics, but it
has a disadvantage. LDA will favor generating a topic including all the sub-topics if
the sub-topics share similar keyterms [17]. For example LDA will favor generating a
cluster of sport instead of generating four clusters of baseball, basketball, football, and
volleyball if they share common sport terms.

Another probabilistic generative model for text document clustering is proposed
in [59]. The idea behind this model is that only some of the terms in a document
are related to its cluster (topic keyterms), and the other terms follow a general term
distribution shared among documents (general terms). Therefore, each document is
modeled as a mixture of two multinomial distributions, one for its cluster and the
other shared in the corpus. Moreover, a document is not modeled as a distribution
over topics but it is associated with a single topic.

We have compared our partitional clustering algorithm to the LDA model proposed
in [17]. The experimental results have been reported in Section 5.2.2.

Probabilistic models are also used for co-clustering [99, 111]. Almost all existing
co-clustering algorithms like those reviewed in Section 2.3.1, are based on hard

partitioning of rows and columns. Each row is assigned to one row-cluster and each
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column is assigned to one column-cluster. However, probabilistic model based co-
clustering approaches consider a probability distribution membership in a row- and
column-cluster [99, 111]. Dirichlet distribution is used for prior distributions of row-
and column-clusters.

Given an N x M document-term matrix, k; row clusters {z; = i, [i]"'}, and k,
column clusters {z; = 7, [j]¥}, the generative process of Bayesian co-clustering [99] is

as follows:

1. For each row d, the probabilistic distribution is drawn from a Dirichlet distribu-

tion with parameter oy, mi4.

2. For each column ¢, the probabilistic distribution is drawn from a Dirichlet

distribution with parameter am, mo.
3. The entry x4 in row d and column ¢ of the matrix is generated as:

e choose z; from discrete distribution Disc(mq)
e choose z; from discrete distribution Disc(mo;)

e choose x4 from p(x|0,,.,)

where 6, ., is the parameter of the model for co-cluster(zy, z3). A variational EM-based
algorithm is proposed for inference and parameter estimation in this model.

Latent Dirichlet Bayesian co-clustering [111] smooths the Bayesian co-clustering
model [99] by introducing a prior for 6,,,,. The prior is drawn from a Dirichlet
distribution with parameter 5. Given an N x M document-term matrix, ki row
clusters {z; =4, [i]"}, and ky column clusters {25 = j, [j]¥}, the generative process of

Latent Dirichlet Bayesian co-clustering is as follows[111]:

1. For each row d, the probabilistic distribution is drawn from a Dirichlet distribu-

tion with parameter oy, mi4.

2. For each column t, the probabilistic distribution is drawn from a Dirichlet

distribution with parameter ay, my;.
3. The entry x4 in row d and column t of the matrix is generated as:

e choose z; from discrete distribution Disc(mq4)
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e choose z; from discrete distribution Disc(mo;)
e choose 0,,,, from a Dirichlet distribution with parameter

e choose x4 from p(x|z1, 29,0.,.,)

where 6,,., is the parameter of the model for co-cluster(zy, z2). A collapse Gibbs
sampling and a collapse variational inference are proposed for parameter estimation
in this model.

Similar to these two model based co-clusterers, our double clustering algorithm
(LDC) which is proposed in Chapter 5, is based on soft partitioning of terms and
documents. A soft partitioning of terms is first generated by fuzzy c-means and a
defuzzification method. Seed documents of each term cluster are then extracted and
used to generate document centroids. Each document is finally assigned to each
document cluster with a membership value. The membership values are computed
based on the similarities of documents to the document centroids.

Different from these model based co-clusterers, LDC' is based on double clustering
approach and no probabilistic model is used to generate term or document clusterings.

LDC is a partitional double algorithm proposed for text document clustering.

2.4 Enhancing Text Clustering using Wikipedia

Several research works have been proposed to integrate Wikipedia in text document
clustering. We review some of these works related to our research in this section.
Traditional document content similarity is leveraged by integrating Wikipedia
based semantic relations in [51]. A concept thesaurus is first created from Wikipedia
articles. It includes semantic relations like synonymy, polysemy, hypernymy, and
associative relations extracted from anchor texts, disambiguation pages, categories,
and hyperlinks in Wikipedia. Given a document, its text content is first mapped
to the most relevant Wikipedia articles. The category hierarchy of those articles
is then used to form a category vector. A concept vector is also created based on
the concepts mentioned in the relevant articles using the thesaurus synonym and

associative relations. The document similarity measure is then defined as:

Scombination = (1 - — B)Scontent + Q/Scat + /BSconc (233)
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where, Scontent 18 the cosine similarity based on content vectors, S, is based on
the category vectors, and S..,. is based on the concept vectors. Equal weights
(aw = B = 1/3) are considered in empirical experiments. Given a few labeled documents,
a parameter optimization is also performed to find the optimal values for o and /.
The optimal weights could improve the clustering performance further.

A similar approach is proposed to enrich the document representation using
Wikipedia concepts in [52]. A document collection is represented as a document-
term matrix, a document-concept matrix, and a document-category matrix. The
traditional document cosine similarity is then enhanced by using the concept and

category matrices as:
sim(d;,d;) = sim(d;, d;)*"™ + asim(d;, d;)°"*

(2.34)
—l—ﬁszm(dz, dj)category

where d; and d; are two documents. No optimization method is proposed to find the
optimal values for @ and 3. After using different values, the best improvement is
reported in experimental results. Compared to the method proposed in [51], lower
weights are considered for concepts and categories. An interesting observation in
experimental results is that document-concept and document-category representations
used alone never outperform the document-term representation in partitional document
clustering.

A concept based similarity measure is proposed in [58], which considers the semantic
relatedness among concepts. The semantic similarity between two documents d; and
d; is defined as:

Z%q w(cg, di)w(cy, dj)SIM (cg, )
Y ene Wier, di)w(ar, dj)

where STM (cg, ¢;) is the semantic relatedness between two concepts ¢ and ¢; extracted

SiTH(di,dj)sem = (235)

from Wikipedia articles, and w(cy,d;) is the weight of concept ¢ in vector d; in
document-concept representation. The overall document similarity is then defined as
the linear combination of the semantic similarity and the cosine similarity based on
document contents. Lower weights are considered for semantic similarity compared
to content similarity. The main contribution of the work is in Eq. (2.35), where the
semantic similarity between documents is enhanced by using the semantic relatedness

between concepts (STM (¢, ¢)).
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Wikipedia categories are also used in [96] to enhance text document clustering.

Four different document representation techniques are evaluated for this purpose:
1. A document is represented in the BOW model
2. A document is represented using Wikipedia categories

3. A document is represented only by the top 20 keyterms with the highest weight

values

4. A document is represented as a combination of the categories and the top 20

keyterms.

The worst results are obtained when documents are only represented by Wikipedia
categories. The BOW model and the combined representation result in the same
clusters and no significant improvement is achieved by integrating Wikipedia categories.

The titles of relevant Wikipedia articles are appended to the content of documents
in [8]. The BOW model is then used to represent documents with doubling the weights
of the terms appearing in the titles. The proposed clustering method is applied on
short texts and significant improvement is obtained after integrating the Wikipedia
articles. An interesting observation is that the weight of Wikipedia title terms is
double, while a lower or at most equal weights are considered in the other methods
reviewed so far. The work demonstrated that integrating Wikipedia in document
representation can be very effective, when documents are in the form of short texts
like tweets or snippets.

A random walk model is proposed in [117] to measure the semantic relatedness
among documents. Wikipedia articles are first mapped to a graph, where nodes
correspond to articles and edges derived from either hyperlinks among articles or the
cosine similarity among the articles” text. A document is then mapped to the 10
closest nodes (articles) based on the cosine similarity of its content and the articles’
text. The semantic relatedness among documents is then computed as a Visiting
probability of a random walk on the graph. The Visiting probability is computed
using the probability of transition ¢;; between nodes s; and s; and is defined as:

W)

P(ti;) = m (2.36)
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where n is the number of nodes in the article graph, and W (i, j) is the weight of
the edge between s; and s;. A document similarity matrix is then formed by using
the Visiting probability computed on the graph. The similarity matrix is fed into a
relational k-means algorithm to cluster documents. The best improvement is obtained
by computing the Visiting probability over a combination of the hyperlinks and the
lexical similarity among the articles’ text.

A conceptual hierarchical clustering using the relevant concepts extracted from
Wikipedia is proposed in [103]. Given a document, its noun-phrases are initially
mapped to the relevant Wikipedia concepts. Besides concepts, relevant Wikipedia

articles are also extracted in order to define the following conceptual features:
e The frequency of a concept in a document.

e The number of common links presented in the article of a relevant concept and

in the articles of all relevant concepts.
e The cosine similarity between the document content and the article text.
e The position of a relevant concept in the document.

e The importance of a concept in Wikipedia regardless of the document referred

to.

A linear combination of the above features is then used to measure the importance of
a particular concept in the respective document. Given the conceptual representation,
a hierarchical clustering algorithm is used to cluster documents.

We have also proposed an ensemble approach in Chapter 6 to integrate Wikipedia
concepts in document clustering. Our experimental results show the effectiveness of
our approach even when the quality of clusters generated by the Wikipedia concepts

is poor.

2.5 User Supervised Clustering

Finding the best clustering algorithm to partition a document collection is not a
trivial task in practice. No ground truth about the collection is usually available and

there is no guarantee that the automatically-generated clustering matches the user’s
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preferences. We need to involve users in the clustering process and let them evaluate
the generated clusters. We have reviewed some user-supervised document clustering

algorithms in this section.

2.5.1 Document Level Supervision

The input of the COP-KMEANS algorithm is a dataset plus some must-link or
cannot-link pairwise constraints [110]. A must-link constraint specifies that a pair
of instances must be in same cluster. Two instances with a cannot-link constraint
must be always in different clusters. COP-KMEANS is similar to k-means except in
assigning instances to the closest centers. During the steps of COP-KMEANS, the
constraints are never broken. For each constrained instance, COP-KMEANS tries
to assign it to the closest centers such that none of the constraints are violated. An
empty partitioning will be returned if there is no way of preserving constraints. The
constraints can be determined either by asking directly from users or by eliciting them

from the seed documents labeled by users.

Two semi-supervised variants of k-means are proposed in [9]. A set of training
documents is chosen and the user is asked to label them. The labeled documents
are then used in the k-means algorithm as seed documents to initialize the cluster
centers. In one algorithm, seed documents are only used to initialize k-means and
the label of seed documents might change in the subsequent steps. In the other one,
after initialization by the seed documents, their labels never re-computed during the
clustering process. The algorithm preserves the label of sced documents during the
step of assigning instances to the cluster centers. No method is proposed to actively
select the training documents. The user supervision is limited to the initial supervision

and no further interaction is considered.

The MPCK-MEANS algorithm allows violation of the must-link and cannot-link
constraints [15]. Each violation has a penalty cost, which is added to the objective
function of k-means. Let ML be a set of must-link and C'L be a set of cannot-link
constraints. Moreover, w and w are the sets of penalty costs for violating constraints

in ML and CL, respectively. The objective function of the algorithm is then defined
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as:

= Nmi—pe P+ D wy+ > @y (2.37)

ziw €ML,citc; 2i,2;€CL,ci=c;
The penalty costs are independent of the distance of instances given the above objective
function. For instance, the same penalty cost is considered for two close instances and
two far instances.

The MPCK-MEANS algorithm considers the distance of instances in case a
constraint violation occurs. If a must-link constraint is broken and the instances are
far apart, there is a larger penalty cost. If a cannot-link constraint is broken and
the instances are so close, there is a larger penalty cost. The violation costs are thus
multiplied by the distance of instances from cach other. The strength of the algorithm
is that it is not restricted to preserve all the constraints. However, no method is
proposed to specify the penalty costs w and w a priori.

An active method is proposed in [10] to select the best pairs of instances to elicit
pair-wise constraints from users. The method is based on a farthest-first policy. A
starting instance is first selected randomly and added to the supervision set. The
next instance, which is the farthest from the set is then selected and added to the
set. The distance of an instance to the set is the minimum distance of the instance to
the instances that exist in the set. This process stops after a pre-defined number of
instances are selected.

The user is then asked to label the selected instances. The method then generates
a sct of must-link and cannot-link constraints from the seed instances. The constraints
are then combined in the objective function of the k-means algorithm, Eq. (2.37),
where violation is allowed in exchange of penalty cost. The strength of the algorithm is
that there is an active selection method to create a training set. However, the method
is sensitive to the outliers, which are often far from the other instances. The user
interaction is limited to the initial supervision and no further interaction is considered
in this algorithm.

Pairwise constraints are also used to adjust the distance metric in [25, 65]. The idea
behind adjusting the distance metric is that if documents d; and d; are constrained to
be in the same cluster but the clustering algorithm puts them into separate clusters,
we need to decrease the distance between d; and d; such that they fall into the same

cluster. Similarly, if documents d; and d; must be in separate clusters, we need to
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increase the distance between them if they fall in the same cluster by the algorithm.

The Constrained Complete-link algorithm [65] adjusts the pairwise document
distance matrix to ensure the constraints. All the respective must-link entries are set
to zero and the cannot-link entries are set to the maximum value of the matrix plus
one. A hierarchical clustering algorithm is used to cluster instances.

A semi-supervised version of the EM algorithm is proposed in [25] so as to involve
the pairwise constraints in the distance metric. Each term has a weight in the distance
between documents d; and d;. Once the algorithm encounter a constraint imposed
between d; and d;, the terms’ weights are adjusted in order to increase or decrease
the respective distance.

The pairwise constraints are also used for dimensionality reduction in the clustering
algorithm proposed in [106]. The instances are projected into a lower dimensional
space provided that the instances involved in the cannot-link constraints get farther
and the instances involved in the must-link constraints get closer. The objective

function that should be maximized for this purpose is defined as:

f= 3 W @i—a) P = > I F@—a) I (2.38)
@i,z €CL @z ;EML
where F7 is the projection matrix that should be learned, C'L is the set of cannot-link
constraints, and M L is the set of must-link constraints.

Given the instances in the lower dimensional space, a constrained k-means algorithm
clusters the instances such that violation is prohibited. A greedy approach is used in
the k-means algorithm. First, all must-link constraints are replaced by some equivalent
cannot-link constraints. Hence, for each pair of instances (z;, ;) in C'L, two clusters

s, i are chosen such that the following sum is maximized:
cos(z4, p1;) + cos(x;, i) (2.39)

the other instances are assigned to the closest cluster. The optimal dimensionality of
the projected space is not discussed in the paper.

The other kind of user feedbacks used in text document clustering are in the form
of split/merge requests [6]. Starting with a cluster including all instances, the user
either requests to split a cluster into two, or she requests to merge two clusters into

one cluster. In another version of the proposed method, the user starts with one
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cluster for each instance and iteratively creates a hierarchy of the clusters with split
or merge requests.

The strength of the split/merge requests is that the supervision is not limited
to the starting point of the clustering and the user can interact with the clustering
process until the end. However, it would be more useful to include other kind of
interactions to the algorithm, like changing the cluster of an instance or creating a

new cluster.

2.5.2 Term Level Supervision

An active text document clustering algorithm based on frequent itemsets is proposed
in [80]. A frequent itemset consists of those terms, which co-occur in documents
more than a threshold value called minimum support. For a data collection with
D = {d;,ds,...,dy} documents, a set of itemsets F' = {fi, fo, ..., f,} is obtained

initially. Fach itemset f is represented using the following formula:
fo = ! > d (2.40)
v T S .

where S is the set of documents in which the itemset f occurred. Given the above

presentation, the algorithms clusters documents through the following two steps:

1. The k-means algorithm is first used so as to cluster the frequent itemsets. The

center c of a frequent itemsets cluster C' is computed using the following formula:

1
=17 S f (2.41)

Vf,eC

2. In the second step, an active learning method is used to refine the frequent
itemsets clusters. For each cluster, a list of top itemsets is extracted and the
user is asked to select the best itemset from the list. The itemsets of a cluster

are ranked based on their distances to the cluster center and the size of S¢:
score( fy, c) = |S¢| cos(fy, c) (2.42)

where cos is the cosine similarity. The center of the cluster is then adjusted

based on the selected itemset. For this purpose, the center of the cluster is
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adjusted using the following formula:
cew — Colcl + f”selected_ltemset (243)

After refining step is over, each document is assigned to the nearest frequent

itemsets cluster using the cosine similarity.

A noise-free oracle is presented in the evaluation of this algorithm to simulate
user interactions. From the top itemsets of each cluster, the oracle returns the best
itemset based on the true label of documents. The strength of the algorithm is that
the users can adjust the cluster centers based on the desired itemsets. It means that
the users are allowed to change the clusters based on the keyterms of the selected
itemset. However, the users cannot create a new itemset or change their keyterms.
The simulated users are assumed to never make any mistake and no experiment is
provided in the paper to evaluate the effect of noisy user feedback. It is also not
discussed how sensitive the quality of clusters is to the value of minimum support.

In our interactive clustering algorithm proposed in Chapters 7 and 8, we represent
each group of related keyterms as a term cloud. The advantage of our approach is that
the user can change the keyterms of a term cloud or even create a cloud anew. We
let the user choose her desired number of document clusters. The supervised number
of term clouds specifies the number document clusters in our algorithm. We have
provided a comprehensive experiment to evaluate the performance of our algorithm in
case of noisy user feedback.

A text clustering algorithm is proposed in [28], which is capable of producing
multiple clusterings of the same collection based on different points of view. The
clusterings are generated using the following way. Following a spectral clustering
algorithm [101], a Laplacian matrix is generated using the cosine similarity among
documents:

L=D"%(D-8)D% (2.44)

J

S;; = cos(d;, d;) (2.46)
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where D is a diagonal matrix, S is the pairwise document similarity matrix, and
D7%5 means each entry of D is raised to the power of (—0.5). It has already been
proposed that clustering the second eigenvector of L would generate a two-cluster
partitioning [87] . The contribution of this paper is that it is not limited to the second
eigenvector. The assumption is that clustering each eigenvector of matrix L creates a
suboptimal partitioning of the documents.

Eigenvectors corresponding to the smallest second to (m + 1)-th eigenvalues of the
matrix are thus computed for this purpose. The k-means algorithm with k£ = 2 is
applied on each of m eigenvectors to produce m two-cluster partitionings. For each
partitioning, the top terms associated with each of two clusters are then extracted
and displayed to the user. The score of each term in each cluster is computed using

the following formula:
P(t|C;))

P(t;|~C;)

where the probabilities are computed using term frequencies.

P(t;|C;) log (2.47)

The user is then asked to inspect these terms and select those eigenvectors that
resulted in meaningful clusters. The combination of the accepted eigenvectors are
subsequently used to generate document clusterings. The main steps of the algorithm

are given below:
1. Create the Laplacian matrix L.

2. Compute E = {eg, €3, ..., €mi1}, the smallest second to (m + 1)-th eigenvectors
of L.

3. Apply k-means with £ = 2 on each e; so as to generate two clusters.
4. Extract the keyterms of the clusters using Eq. (2.47).
5. Ask the user to select a subset E’ of E based on the extracted top keyterms.

6. Apply k-means with & = 2 on the documents in the space formed by the

eigenvectors of E'.

The main contribution of the algorithm is that a new feature space can be generated
for document clustering. In other words, the user can indirectly select the discriminative

terms that should be involved in the clustering process. However, this interaction
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is limited to accept or reject an eigenvector. There is no way to directly specify
discriminative terms. The other issue is that the algorithm is evaluated only for
bi-clustering (k = 2). No experiment provided in the paper in case of clustering to
more than two clusters.

Our proposed algorithm lets the user directly specify the keyterms of clusters
instead of just accepting or rejecting them. She can even create a new term cloud and
ask the algorithm to create a corresponding document cluster.

An interactive feature selection framework for text document clustering is proposed
in [53]. Given the document clusters of the current iteration, their top keyterms are
extracted and displayed to the user. The user specifies discriminative ones and a
feature space is subsequently formed to cluster documents in the next iteration. The

main steps of the algorithm are given below:

1. Initial document clusters are obtained using k-means with the top m terms
selected by the mean-TFIDF method. The mean-TFIDF is an unsupervised

feature selection method described in Section 2.1.2.

2. Treating the current document clusters as classes, the x? statistic is then used

to create a ranked list of terms.

3. The top terms of this list are then presented to the user for supervision. The

user gives one of two answers regarding each term presented:

(a) She accepts the term as a discriminative one

(b) She says “I do not know”

4. The feature set of the next iteration consists of m terms including those terms

accepted by the user and the remaining top terms from the ranked list.

A noiseless feature oracle is used to simulate user interactions in this paper. Using
the class label of documents, a reference feature set is first formed. The reference set
consists of the top m terms based on the y? statistic. The simulated user gives the
answer “accept” if the term is in the reference set. Otherwise, the answer is “I do not
know”.

The strength of the framework is that the user can form her desired feature space

by specifying discriminative terms. The user is also involved in whole clustering
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process from beginning till the end. The only issue with the proposed framework
is that the simulated users are assumed to never make any mistake. However, the
user may specify a noisy term as discriminative or ignore a discriminative term in
practice. Therefore, an experiment is needed to evaluate the sensitivity of the proposed
framework in presence of noisy feedbacks.

A feature (term) selection method to enhance semi-supervised document clustering
algorithm is proposed in [54]. The user is asked to specify discriminative terms during
the phase of document supervision. The supervised documents with the selected
discriminative terms are then used to guide the clustering algorithm. The supervised
documents are used either as seed documents to initialize k-means or they are used to
extract some must-link and cannot-link constraints. The discriminative terms are in
turn used to form a feature space for k-means. A feature re-weighting method is also
used to bold the importance of the discriminative terms:

TFIDF; x g if t; is discriminative

TFIDF; = (2.48)
TFIDF; otherwise

where TFIDF; are the feature values of term j in documents, and g is a user-defined
parameter.

The strength of this algorithm is that the users have a chance for dual supervision,
document level and term level supervision. Moreover, a probabilistic feature oracle is
used in the evaluation of the algorithm, which simulates the user’s possible mistakes in
supervision. However, there are two issues regarding the proposed supervised approach.
First, similar to most semi-supervised algorithms [9, 10, 15, 25, 30, 65, 106, 110], the
feature selection of this algorithm is just performed once in the beginning of the
clustering process and the users do not have any chance to interact with the process
ever after. Second, the training terms are exposed to the user one by one. It would be
better if the training terms are displayed in groups. A group of terms better reveals
the topics of documents and the supervision would be in turn easier.

The experiments in Chapter 7 show that with a comparable amount of user effort,
our proposed term labeling is more effective than the term selection method mentioned
above.

Our work is also different from multi-view clustering approach [71, 22, 14]. Multi-

view clustering is applicable to the collections where multiple views of data are available.
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For instance, it can be used in clustering web pages or Wikipedia articles where one
view is textual contents and the other view is hyperlinks [22]. Or, it can be used in
clustering a document collection where documents’ contents are available in multiple
languages [71].

The idea behind multi-view clustering is that multiple independent feature spaces
are available to represent data objects such that each feature space independently
suffices for clustering [14]. For instance, if documents of a collection are available in
multiple languages, each document can then be represented by the terms that exist in
the respective language.

The input of our clustering algorithms in this thesis is a set of text documents, each
represented based on the Bag of Words model. The importance of terms in documents
are also measured using TFIDF. Documents are thus represented in one feature space
formed by the terms that exist in the collection. We propose a graphical interface
in Chapter 8 based on a user-supervised algorithm, which is proposed in Chapter 7.
Using the interface, users are able to generate clusterings based on different points of

view by specifying the topics of desired clusters in the form of term clouds.

2.5.3 Interactive Clustering Visualization

In this section, we review some graphical interfaces, which have been proposed for
interactive text document clustering.

An interface to support semi-supervised clustering is proposed in [77]. The back-
ground algorithm of the interface is the semi-supervised clustering algorithm [10]
reviewed in Section 2.5.1. The user should specify pairwise constraints between in-
stances. These constraints are then formulated in the objective function of k-means,
Eq. (2.37), where violation is penalized with pre-defined costs. The user interaction

consists of the following steps:

e All instances of the collection are displayed to the user as shown in Fig. 2.2. The
user starts moving the instances on the screen. Each time a pair of instances is
selected and moved. The screen distance between the instances is then computed.
If the distance is greater than «, a cannot-link constraint is created. If the
distance is less than 3, a must-link constraint is created. The constrained

clustering algorithm begins after the user has moved two instances.
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Figure 2.2: A snapshot of the interface implemented to elicit pairwise constraints
between instances [77]. The user selects a pair of instances and moves them on
the screen. The screen distance between the instances indicates whether a pairwise
constraint should be generated.

e The clustering algorithm with the generated constraints is run.

e The screen is then updated based on the obtained clusters. The center of clusters
are first mapped to the screen. All the instances are then mapped based on

their distances to the centers.

The main contribution of the interface is that the user can easily generate the
pairwise constraints by moving the instances on the screen. We believe that this is
the easiest way to elicit pairwise constraints from users. However, it is not clear what
kind of metadata is displayed on each instance in Fig. 2.2. It is necessary to show
some information about the selected instances, for example their keyterms in case of
document clustering.

iVisclustering is a visualization interface proposed in [44] to support document
level and term level supervisions. The background clustering algorithm of this interface
is the LDA model, reviewed in Section 2.3.3. Several views are embedded in the
interface so as to provide a complete insight into a document collection. A snapshot
of the interface is shown in Fig. 2.3. The interface is updated based on the clusters

generated by LDA:

e Part A of the interface is a cluster relation view representing a hard clustering
of documents. Each node of the graph is a document, which is connected to
the other similar documents. Edge weights are computed based on the cosine
similarity among document contents. Each color in this graph corresponds to a

document cluster. Top keyterms of each cluster are shown on top of each cluster.
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e Part B of the interface shows a hierarchy of the clusters as a folder tree. The
root of the tree contains all the documents and each subtree presents a cluster.
The user can merge two clusters by drag and dropping them in a same subtree.
The user can also make a new subtree or delete them. This view lets the user

change the number of document clusters that she prefers to generate.

e Part C of the interface shows the top keyterms of each cluster. Whenever the user
clicks on a rectangle in this view, all the documents assigned to the respective
cluster will be shown in Part G. The term weights in the respective document

cluster is also shown in part E.

e Given the term weights in part E, the user can perform term level supervision.

The user can increase or decrease the weight of terms in different clusters.

e Part G shows all the documents assigned to the selected cluster along with their

contents. The top keyterms of the clusters are highlighted in the content.

e The Parallel Coordinate view in part D shows the membership of documents
in the clusters. The horizontal axis presents the document clusters, and the
vertical axis, which is scaled between zero and one presents the membership of
documents in clusters. Each line in this view is a document. By selecting a line
in this view, the user can easily figure out the membership of the document in

different clusters.

e After user supervision, the LDA model is re-learned and the interface is updated
based on the new clusters. Part F of the interface depicts the changes made
in the clusters after user supervision. Each entry 75 of the matrix consists of
documents that were in cluster ¢ before user supervision, and they are now in
cluster j after user supervision. This view helps the user to find out which

documents changed their clusters after supervision.

Although there is no novelty in the interface and the background clustering algo-
rithm has already been proposed, this interface is the best visualization implemented
for interactive text document clustering based on our knowledge. It easily lets the user
perform document and term level supervision simultaneously. By changing the tree

view of Part B, the user can also change the number of document clusters. We believe
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Figure 2.3: iVisClustering: A visual interface to support LDA topic modeling [44]

that the interface would be more useful if the keyterms of clusters were displayed in

another way like in the form of term clouds.

The latent topics of the LDA model are visualized by using term clouds in [41, 35,
74]. The probability distribution of terms in each topic is used for this purpose. The
user can explore the topics and gather information about their documents. However,
no interactive clustering algorithm is proposed and the visualizations are only designed

to display and explore the latent topics

A matrix view representation technique is used to display the topic-term distribu-
tion of LDA in Termite [24]. Rows of the matrix correspond to terms and columns
correspond to topics. The term probabilities are then displayed as circle in this matrix
as shown in Fig. 2.4. The user selects a topic and the interface visualizes its terms’
frequencies along with the most representative documents. The interface is designed

solely to display the latent topics and no interactive clustering algorithm is proposed.

A visualization interface to support semi-supervised document clustering algorithms
is proposed in [55]. The interface elicits the user’s preferences through both document
and term level supervisions. A snapshot of the interface is shown in Fig. 2.5. The

interface is divided into four view panels:
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Figure 2.4: Termite: A visual interface to display topic-term distribution of the LDA
model [24]

1. Supervision Panel on the top left side is a circle to show the labeled documents.
Each sector of this circle is a document cluster where each yellow slice is a
document. A sector named New Cluster provided in this circle to let the user
create a new cluster. The user can drag a document from the top right panel
and drop it into this sector to make a new cluster. The user can also merge two
clusters by dragging a sector into another. A document can also be moved from
one sector into another. There is also a sector named Trash, where the user
puts outlier documents in. This panel helps the user to label documents in the

document supervision phase of semi-supervised clustering algorithms.

2. To be Labeled Document View on the top right side of the interface displays all
the documents, which are not assigned to any cluster yet. The panel shows the
important keyterms of each document in red color along with its text content.
The user is able to select a term and make it a keyterm or she can click on
a keyterm and make it non-keyterm. By dragging the document into one of
the sectors in the Supervision Panel, the user provides a seed document for the

clustering algorithm.

3. The user can select a document from a cluster by clicking on a yellow line inside



47

a sector in the Supervision Panel. The interface then shows the content and
the keyterms of the selected document in the Labeled Document View in the
bottom right panel. The user can add or remove the keyterms of the selected

document in this panel.

4. The user can select a cluster from the circle by clicking on a sector. The interface
then shows the keyterms of the selected cluster in the Cluster View in the
bottom left panel. The user can add or remove the keyterms of the selected

cluster in this panel.

The strength of the interface is that the user can specify the keyterms during
document labeling. The keyterms are then used to form a feature space for the
clustering algorithm. Moreover, this visualization easily lets the user specify her
desired number of clusters by dragging and dropping documents or clusters in the
circle provided in the interface.

This visualization is not an iterative clustering interface. The interface is designed
only to elicit the user’s preferences and no interaction is provided ever after.

An interactive visualization to explore text document collections and sense making
is proposed in [43]. Text mining techniques like document clustering, document
summarization, and sentiment analysis are integrated in this visualization. The k-
means algorithm based on cosine distance is used as the clustering algorithm. The
user specifies the number of clusters and she may also choose initial seed documents.
The output document clusters are labeled with three most-occurring terms in clusters
as shown in Fig. 2.6. The user selects documents in this view and sees their contents
and related metadata in the document view as shown in Fig. 2.7. This visualization is
not designed as an iterative clustering interface and no interaction is provided after
initializing k-means.

Word cloud visualization is equipped with natural language processing technique
in Word Cloud Explorer [46]. The visualization is not designed for clustering text
data but it is useful in extracting information from a single document. After a
text document is loaded, tokenization, sentence segmentation, part-of-speech tagging,
lemmatization, and name-entity recognition are performed in pre-processing steps. A
word cloud is then created based on the frequencies of terms within the document

as shown in Fig. 2.8. Information and filter panels in this visualization let the user
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cluster is assigned a color along with three most-occurred terms in its documents.
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Figure 2.7: The document view of the visualization proposed in [43]. The selected
documents are listed in this view. A one-sentence summary along with text content
and metadata are presented for each document. A word cloud shows the most-occurred
terms in the selected documents on the top side.

extract information from the document. The visualization consists of the following

panels:

e Panel ’a’: The term cloud is shown in this panel. The user can hover over a
term to highlight its related terms. Two terms are related if they co-occur in
the same sentence. Related terms are highlighted in yellow. The user can select
terms by clicking on them. The selected terms are then added to panel 'b’, term

filter panel.

e Panel 'b’: This panel includes filter terms. The word cloud only displays those

terms that are related to the filter terms.

e Panel '¢’: This is the search panel. The user can search for a term and add it to

the term filter list. If the term is in the cloud, it will be highlighted too.

e Panel 'd”: This panel is the term statistics panel. It shows the frequency of
the focused term in the document, its frequency in the filtered sentences, the
number of terms in the cloud, the number of terms in the document, and the

number of sentences in which the term occurs.

e Panel ’e’: This is the term info panel. It shows different forms of the focus term
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Figure 2.8: Word Cloud Explorer consists of a word cloud visualization along with
filter and information panels [46].

in the document along with their frequencies. It also shows the part-of-speech

tags and name-entity types of the term.

Panel ’f’: This is the linguistic filter panel. It enables the user to determine her

desired part-of-speech tags or name-entity types. The terms within the term

cloud are filtered based on the selected tags and types.

Panel ’g’: This is the text view panel. It shows all the sentences in which the

focus term or its different forms occur.

Panel 'h’: This is the stopword list panel. The user can edit the list of stopwords.

Panel 'i’: This is the control panel. The user specifies the maximum number of

terms in the cloud, the minimum frequencies of terms, and the maximum font

size.
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To the best of our knowledge, no one has used term clouds in interactive text
document clustering. We have proposed an interactive interface for text document
clustering in Chapter 8. The interface lets the user specify a document cluster by
creating a term cloud. The keyterms inside the term cloud should reflect the topic
of the document cluster for this purpose. The user can explore document contents
or use the list of keyterms extracted from the collection to create term clouds in this
interface. The number of term clouds created by the user specifies her desired number

of document clusters.



Chapter 3

Experiment Setup

We review characteristics of the datasets used in experiments of this thesis in this
chapter. We explain how the datasets are pre-processed using Natural Language
Processing methods. The evaluation methods used to measure the quality of clusterings

are also presented in this chapter.

3.1 Datasets

Eight document collections are used in our experiments so as to compare clustering
algorithms. From these collections, fifteen datasets with different dimensionality and
number of clusters are generated. We give a brief review along with a list of datasets

generated from each collection in below:

1. 20Newsgroups: This dataset consists of approximately 20000 news articles
grouped into 20 different topics'. We removed all articles duplicated in multiple
groups. We then created six datasets from this collection according to the
experiments performed in [11, 54]. Each dataset is created by selecting a subset
of the whole collection. The characteristics of the datasets are mentioned below
and also summarized in Table 3.1. The Reduced No. of Terms column is number
of terms after a pre-processing step. The second last column of the tables in

this section show the percentage of zero values that exists in the datasets.
e News-sim3 includes all articles in three similar classes (topics) including
comp.graphics, comp.os.ms-windows.misc, and comp.windows.x.

o News-rel3 includes all articles in three related topics including talk-politics-

misc, talk-politics-guns, and talk-politics-mideast.

e There are articles with seven topics in News-multi7 including alt.atheism,

http://qwone. com/~jason/20Newsgroups/

52
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Table 3.1: Summary of the text datasets generated from 20Newsgroups collection

Dataset No. of No. of Reduced No. of No. of Sparsity Stemmed
Name Documents Terms Terms Classes Percentage

News-sim3 2924 20753 4697 3 99.7% v
News-rel3 2624 21659 4947 3 98.20% v
News-multi7 6632 33469 7006 7 99.09% v
News-multil0 9586 43620 8827 10 99.30% v
20ng-subset 7528 58814 12780 20 99.43% v
20ng-whole 18821 92587 18045 20 99.13% %

comp.sys.mac.hardware, misc.forsale, rec.sport.hockey, sci.crypt, alt.politic-

s.guns, and soc.religion.Christian. All the articles in the mentioned topics

are included in the dataset.

o News-multi10 includes all articles with ten topics including alt-atheism,

comp-sys-mac-hardware, misc-forsale, rec-autos, rec-sport-hockey, sci-crypt,

sci-med, sci-electronics, sci-space, and talk-politics-guns.

e 20ng-subset is a subset of the whole collection including all topics. Only 40

percent of documents of each topic are included in the dataset.

e 20ng-whole includes all the documents in all topics.

2. Reuters-21578: The documents in the Reuters-21578% dataset appeared on the

Reuters newswire in 1987 and labeled manually. We created two datasets by

selecting a subset of topics in the collection. The characteristics of the datasets

are mentioned below and also summarized in Table 3.2.

e ReutersS-subset is a subset of Reuters-21578 dataset consisting of docu-

ments in eight categories including acq, crude, earn, grain, interest, money-fz,

ship, and trade. Only 70 percent of documents in each category is included.

e ReutersS8-whole is the same subset as Reuters8-subset but all the documents

in the eight categories are included.

3. SMART data repository ® contains abstracts of papers about medical, informa-

tion retrieval, aerodynamics, and computing algorithms. Two datasets created

2http://www.daviddlewis.com/resources/testcollections/reuters21578/

3ftp://ftp.cs.cornell.edu/pub/smart/



Dataset No. of No. of Reduced No. of No. of Sparsity Stemmed

Name Documents Terms Terms Classes Percentage
Reuters8-subset 5485 19367 4519 8 99.26% %
Reuters8-whole 7674 22750 5101 8 99.43% ®

Dataset No. of No. of Reduced No. of No. of Sparsity Stemmed
Name Documents Terms Terms Classes Percentage

Classic4 7095 41681 5099 4 99.5% RV

Cacmcisi 4663 14409 2528 2 99.4% v

o4

Table 3.2: Summary of the text datasets generated from the Reuters-21578 collection

Table 3.3: Summary of the text datasets generated from SMART data repository

from this repository and used in our experiments. The characteristics of the

datasets are summarized in Table 3.3.

e (lassic4 includes all the abstracts in medical, information retrieval, aerody-
namics, and computing algorithms. We have stemmed and non-stemmed

versions of this dataset in our experiments.

e Cacmcisi includes all the abstracts in computing algorithms and information

retrieval only.

4. LA-Times consists of newspaper articles in Los Angeles Times with six topics
including Financial, Foreign, National, Metro, Sports, and Entertainment. The
dataset is created from the TREC-9 newspaper collection*. The characteristic

of the dataset is summarized in Table 3.4.

5. WebKB consists of webpages collected from four computer science departments
in Cornell, Texas, Washington, Wisconsin universities. The collection is created
in the World Wide Knowledge Base (Web-Kb) project in the CMU text learning
group®. The webpages are manually labeled into seven categories: student, fac-
ulty, staff, departments, course, project, other. We selected only four categories
of student, faculty, course, and project which have more documents than the

other categories. The characteristic of the dataset is summarized in Table 3.4.

‘http://trec.nist.gov/data/qa/t9_qgadata.html
Shttp://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
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Table 3.4: Summary of the datasets LA-Times, WebKB, SMS, Cade, and Reviews

Dataset No. of No. of Reduced No. of No. of Sparsity Stemmed
Name Documents Terms Terms Classes Percentage
LA Times 6279 31472 6845 6 98.23% (4
WebKB 4168 7675 2106 4 99.48% v
SMS 5479 7288 1676 2 99.26% x
Cade 13644 100105 16431 12 98.45% v
Reviews 4069 36746 7724 5 97.9% (4

6. SMS Spam Collection consists of a public set of text messages labeled as spam
or non-spam. The collection is used in experiments of the algorithm proposed
in [26] and is publicly availableS. The characteristic of the dataset is summarized

in Table 3.4.

7. Reviews includes news articles about movies, food, restaurants, music, and radio
gathered from San Jose Mercury News’. The characteristics of this dataset are

summarized in Table 3.4.

8. Cade is gathered from the content of Brazilian web pages. The web pages are in
the Portuguese language. A pre-processed version of the dataset® is generated
by the Universidade Federal de Minas Gerais in Brazil and is used in [18]. The

dataset is labeled by human experts.

Non-stemmed datasets are used in integrating Wikipedia concepts in document
clustering in Chapter 6. This is mainly because Wikipedia articles are not stemmed

and wikify methods require non-stemmed text as input.

3.2 Pre-processing

After extracting document contents (terms), we pre-process them in the following

steps:

1. All the stop words are removed from the document contents.

Shttp://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
"http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
8http://web.ist.utl.pt/~acardoso/datasets/
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2. Porter stemming [93] is applied on the vocabulary of the collection. This
process is not performed on datasets SMS, ReutersS-subset, Reuters8-whole,

and 20ng-whole. We also have stemmed and non-stemmed versions of Classic4.

3. Each document is then presented as a vector of terms based on the BOW model.

The importance of terms in documents are measured using TFIDF.
4. The whole collection is then represented as a document-term matrix.

5. The dimensionality reduction step, described in Section 3.4, is performed on the

matrix.

6. The effect of document length is finally reduced by using the L2 norm to

normalize the length of document vectors to one.

3.3 Evaluation Measures

The clusterings obtained in the experiments of this thesis are evaluated based on the
pre-defined class labels of documents. All text datasets in this thesis are labeled by
human experts. This kind of evaluation demonstrates whether the clusterings are
consistent with the human understanding of the document collections [56]. Besides,
since we simulate user interactions in user-supervised algorithms of Chapter 7 based
on the class labels, it is meaningful to use the class labels in performance evaluations.

On the other hand, no ground truth is usually available about class labels of
documents in practice, as in our user study. In this case, the performance of clustering
algorithms can be evaluated using intrinsic measures like cluster coherence in the
form of within-cluster distances and between-clusters separations [86]. However,
good performance based on intrinsic measures does not necessarily guarantee good
performance in practice [79]. Instead of using intrinsic measures in this case, we use
human judgments about document clusters in our user study. We asked the participants
how consistent the topics of document clusters are with their understanding of the
document collections.

Except for the user study, evaluation of document clusterings is performed in

the following way in this thesis. A confusion matrix is formed after each clustering
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process. Each element of this matrix shows the number of common documents between
the corresponding cluster and class. The confusion matrix is used to compute two

evaluation measures:

1. Fmeasure [72] is a commonly used measure in information retrieval. We used

its balanced version which is the harmonic mean of precision and recall:

P 2% Precisionx Recall (3.1)
measure = )
Precision + Recall

The maximum value of Fmeasure is desired.

2. Normalized Mutual Information (NMI) measures the amount of information we
get about classes if we have clusters [79]. It has a maximum value of one when
the clustering process recreates classes perfectly and it has a minimum of zero.

In this study we used the following formula mentioned in [79]:

N1 = G e .
(W, C) = Zk: ZJ: [y ; il g ]\ﬂi":' I(;Tj | (3.3)
W) = 3 1l g 2] (3.4)
() = — 37 18 1og %) (35)
k

where W = {wq, ws, .., w} and C' = {cy, o, ..., ¢ } denote clusters and classes
respectively, |wy N ¢;| is the number of common instances between wy and c;,

and N is the number of documents.

3.4 Dimensionality Reduction

Document representation based on the BOW model results in a high-dimensional

document-term matrix. We use feature selection technique in order to reduce the
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Table 3.5: The dimensionality of the datasets after dimensionality reduction steps

Dataset No. of No. of Terms before No. of Terms after
Name Documents | dimensionality reduction | dimensionality reduction
Reviews 4069 36746 7724
Classic4 7095 41681 5099
Cacmcisi 4663 14409 2528
News-sim3 2924 20753 4697
News-multi7 6632 33469 7006

dimensionality of this matrix. Among all terms of a collection, we keep only high-
variance ones. The Var-TFIDF feature selection method describe in Section 2.1.2 is

used for this purpose. Our dimensionality reduction approach has three steps:
1. Var-TFIDF assigns a score to each term using Eq. (2.5).

2. An average score is then computed for the collection using the following formula:

M
1
avgVar = — ; Var-TFIDF; (3.6)
3. Those terms whose scores are larger than avgVar are kept and the remaining

terms are discarded from document contents.

To measure the effect of our dimensionality reduction method, we have conducted
an experiment by using the Naive Bayes classifier implemented in WEKA °. We have
run the classifier on the datasets of Table 3.5 before and after dimensionality reduction.
On average 80% of the terms are removed from these datasets. The quality of classes
obtained based on 10-fold cross validation method are measured by the NMI criterion
and are reported in Table 3.6.

The dimensionality reduction method improved the performance of the classifier in
this experiment except for the dataset Reviews, where the NMI values are the same.
The largest improvements obtained for datasets News-sim3 and News-multi7.

The conclusion of this section is that we can reduce the dimensionality of our
document-term matrices, by removing those terms whose scores are smaller than the

mean-score of all terms that exist in the collection, and still get the same or better

Shttp://www.cs.waikato.ac.nz/ml/weka/
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Table 3.6: Average NMIs obtained by running Naive Bayes classifier on the datasets
of Table 3.5 before and after dimensionality reduction.

Dataset Before Removing After Removing
Name Low-variance Terms | Low-variance Terms
Reviews 0.651 0.651
Classic4 0.918 0.958
Cacmcisi 0.903 0.944
News-sim3 0.292 0.539
News-multi7 0.668 0.833

classes in terms of quality. This is consistent with the experiments performed in [75],
where around 90% percent of terms are removed with either improvement or no loss
in clustering performance. This reduction can lead to a significant speed up in the

clustering algorithms as well.



Chapter 4

Evolutionary Double Clustering

An instance of a clustering problem is described by a two-dimensional matrix. The
rows of the matrix correspond to the objects to be clustered. The columns correspond
to attributes. The entries of the matrix are numerical values that indicate the degree
of presence of an attribute in the respective object. For a matrix with N rows and M
columns, each object corresponds to a point in M-dimensional attribute space. The
goal of clustering is to partition the objects into groups such that objects within a
group are similar so that they have short pairwise distances from each other, while
objects in different groups are separated by large distances.

If the number of attributes M is large, then basic clustering techniques, such as
k-means, may fail to generate useful results. Meaningful groups of objects may be
identified by the presence or absence of a few relevant attributes. The objects are
close in the subspace corresponding to those attributes. However, that proximity fails
to register if distances are computed in the full-dimensional space as it is hidden in

the noise from the remaining attributes [69, 85].

The number of terms in a text corpus is typically large. Each topic of the corpus
can be represented by some keyterms. The other terms are usually too general to
discriminate topics and act as noisy attributes in document clustering. Therefore, it
might be beneficial to first focus on term clusters and the keyterms that represent
topics. There are two general approaches to use term clusters in document clustering:

Double Clustering and Co-clustering.

Double clustering refers to algorithms that perform term clustering before document
clustering [78, 102]. Simultaneous clustering of terms and documents is referred to

co-clustering in the literature [7, 23, 34].

The number of document clusters is usually fixed to the original number of classes
in experimental evaluations of double and co-clustering algorithms [7, 23, 34, 102].

However, finding an optimal number of term clusters is not a trivial task [34]. No

60
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solution to find the optimal number of terms clusters is proposed in these algorithms.
For this reason, the quality of clusters are analyzed for different numbers of term
clusters using the ground truth [7, 23, 34, 102, 112]. This method of finding the

number of term clusters raises the following questions:

1. What range of numbers should be tested in order to find an optimal number of

term clusters?

2. How should one find a good value for this parameter when no ground truth is

available?

3. Since the dimensionality of document-term matrices is often large, is it practical
to run algorithms multiple times on each dataset to find the best value for this

parameter?

We propose a new way of clustering that does not attempt to find the optimal
number of term clusters. The proposed Feature Selective Double Clustering (FSDC')
algorithm outperformed the competitive co-clusterers and double clusterers in our
experiments.

On the other hand, term clusters are used in the co-clustering algorithms without
any pre-analysis [7, 23, 34, 102, 112]. We used a MultiObjective Genetic Algorithm
(MOGA) to find topic keyterms that exist in each term cluster. The evolutionary
module distills term clusters by keeping only discriminative terms.

FSDC clusters documents in the following way. Terms that exist in the corpus
are first clustered. The term clusters are then distilled to keep only discriminative
terms. Representative documents are then extracted for each distilled term cluster.
The representative documents are then used as seeds to cluster documents.

In detail, the main contributions of this work are mentioned below:

1. We propose a new way to extract topic keyterms. An evolutionary module is

used to distill a term cluster by removing its non-discriminative terms.

2. Given the distilled term clusters, we then propose a method to find their
representative documents, which are used later as seeds to cluster document.
In our clustering algorithm, there is no need to evaluate the quality of clusters

multiple times in order to find the optimal number of term clusters.
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3. We finally propose a user-supervised version of FSDC. The keyterms of term
clusters are extracted and shown to the users. The users are then asked to
interactively label the keyterms. The labeled keyterms are then fed into the
term clusterer to re-cluster terms. The user supervision is repeated for a few

iterations until the term clusters match the user’s preferences.

The remainder of this chapter is organized as follows. Section 4.1 provide a
background about the proposed evolutionary algorithm. Section 4.2 explains the
algorithm in detail. Experimental results on some real text datasets are shown in
Section 4.3. Section 4.4 explains the user-supervised version of the algorithm and
experimental results. Section 4.5 presents conclusions and future work. It is better to
mention that the terms “representative” and “seed” might be used interchangeably in

the rest of this report.

4.1 Background

The fuzzy c-means algorithm [13] is used in this chapter for term clustering. We review
this algorithm in the first part of this section along with its benefit over k-means. We
then explain how a probabilistic cluster assignment can be generated for documents
in partitional clustering algorithm like k-means. In the second part of this section, we
propose a new method to extract seed documents of each term cluster. We explain

how zero values in document-term matrices are used for this purpose.

4.1.1 Fuzzy c-means

In classical set theory, each element either belongs or does not belong to a set. The set
is called crisp and the membership value of an element is either zero or one. On the
other hand, there is fuzzy set theory. In fuzzy set theory, each element has a degree of
membership in a fuzzy set. The set is called fuzzy and the membership value of an
element is a value between zero and one.

The idea behind fuzzy c-means is that an instance might be related to multiple
clusters with different degrees of membership. In each iteration, the membership of
an instance is computed based on its distances to the cluster centers. The degrees of

membership are subsequently used in computing the cluster centers.
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Instances around a center have more contribution than farther ones in computing
the center. An instance between two centers have equal contribution in both centers.
This is the main advantage of fuzzy c-means over k-means, where even outliers have
the same contribution as close instances in computing centers.

Let T = {t1,ta, ..., tpr } denote the data set and t; = {¢;,,t;,, ..., t; } is an instance
presented in an N-dimensional space. Fuzzy c-means generate k clusters {TCp}5_,

such that the following objective function is locally minimized [13]:

Mk
F, = Z Z ufpdistz(ti, tp) (4.1)

=1 p=1

where z is a real number larger than 1, u;, is the degree of membership of ¢; in T'C,,
and g, is the centroid of T'C,. The matrix U = {u;p }ar«k is the membership matrix

of the algorithm with the following assumption:
k
» wp=1 for Vi=1,2.,M (4.2)
p=1

where a binary U converts fuzzy c-means to the k-means algorithm.
During each iteration of fuzzy c-means, the membership matrix U and the centroids

{1, } are updated using the following formula:

k . 2/(1-z)
dist(t;,
Uip = (M) (4.3)

= dZSt(tl, ,u,])

M
D Uz, ti
M
dim1 Uz,

where those instances with higher membership w;, have more contribution than outliers

Hp = (4.4)

or far instances in y,. The steps of fuzzy c-means is shown in Algorithm 1.

The final matrix U is fed to a defuzzification module in order to generate a soft or
hard partitioning. There are many method for defuzzification [13]. An instance can
be assigned to the cluster with the largest membership value so as to generate a hard
partitioning. To generate a soft partitioning, the instance can be assigned to multiple
clusters if its membership values are larger than a threshold.

The same membership matrix can be generated from the output of a partitional

clustering algorithm, like k-means. Given the clusters {T° Cp}’]jzl, we compute the
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Algorithm 1 Fuzzy c-means clustering algorithm
Input: a document-term matric Mpr, k> 1, 2 > 1

Output: membership matriz U
1: Initialize the membership matrix U randomly.

2: Compute the cluster centroids i, using:
A{ ’uf t;
Hp = Z?wll UZ
i= ip
3: Update the membership matriz U using:
2/(1-=2)

o k dist(ts,pp)
Uip = 2jmt \ otta )

4: If || Us—Us—1 ||< & or the mazimum number of iterations is reached stop, otherwise

go to step 2.

probability of cluster T'C', given ¢; using the following formula:

Sim(tia iup)

P(TC,|t;) =
TColts) 2?:1 sim(t;, f15)

(4.5)

where 41, is the center of cluster 7'C',, and ij:l P(TC,|t;) = 1. The P(T'C,|t;) values
can be used to generate a soft partitioning of the terms or to show how related a term
is to the term clusters. A similar approach can be used for documents in document

clusters.

4.1.2 Extracting Representative (Seed) Documents

In any partitional clustering algorithm like the one we have proposed in Chapter 5,
finding a good set of seed documents is crucial. We conducted an experiment to
see whether zero values in a document-term matrix can be used for this purpose.
It is worthy to mention that on average more than 95 percent of entries of the
document-term matrices in our experiments are zero.

The experiment is performed in the following way. We created a dataset by
selecting documents from four classes of the 20Newsgroups collection. Given the class
labels of the documents, we used the x? statistic to find the top 20 keyterms of each
class. We then create a document-term matrix given the keyterms. Documents of the
same class sit next to each other in this matrix. The dimensionality of this matrix is

N, x 80, where N; = 400 is the number of documents, 100 documents from each class.
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Figure 4.1: The document-centroid matrix is mapped to a gray-scale image. The block
structure of the representative documents (light areas) is clear in this image.

Given the document-term matrix, we created another matrix with dimensionality
of Ng x 4, where each column of the new matrix is the column average of 20 respective
keyterms. Each column of this matrix is like a centroid of the respective keyterms.
We call this matrix, document-centroid matrix in the rest of this section.

A gray-scale image is then generated based on the TFIDF values of the document-
centroid matrix. The maximum TFIDF value in this matrix is mapped to a white
pixel (g = 255), and the minimum value is mapped to a black pixel (¢ = 0). The
other values are scaled to a gray pixel (g € [I 255]). The obtained image is shown in
Fig. 4.1, where the documents of each class are reordered to sit next to each other.

Each column of the image consists of a dark area along with a light area. Each
light area corresponds to the representative documents of a class in which the re-
spective keyterms have larger TFIDF values. The dark areas corresponds to the
non-representative documents in which the respective keyterms have near-zero TFIDF
values. By grouping TFIDF values of each column into two clusters, one can extract
the representative documents. One cluster includes instances with near-zero values
and the other one includes instances with larger values.

We extract seed documents in our partitional clustering algorithms in the following

way:

1. Given the term clusters, we apply the k-means algorithm with & = 2 on each

term centroid of term clusters to partition its elements into two clusters.

2. We then find the clusters with the larger values to extract the representative

documents.
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It is noteworthy to mention that a representative document might be extracted from
multiple term clusters. It means that the document is related to multiple topics in
the corpus.

At first glance, having zero values in the document-term matrices seem troublesome.
However, we have shown how to utilize these zero values so as to extract seed documents
provided that there is a way to extract the keyterms. We have used this method in

our proposed algorithms in this thesis.

4.2 Methodology

The proposed evolutionary algorithm (FSDC) is based on the idea that before finding
document clusters, it is better to focus on term clusters and try to find the keyterms
representing their topics. Having the keyterms, representative documents for each
term cluster are extracted using the method proposed in Section 4.1.2. The represen-
tative documents are subsequently used as seeds to cluster documents. Document
representation is based on the BOW model in this algorithm. The structure of FSDC
and its main steps are depicted in Fig. 4.2 and Algorithm 2, respectively. FSDC

consists of the following phases:

1. Term clustering: In this phase, fuzzy c-means is used to cluster terms (columns
of the document-term matrix). Fuzzy c-means groups the terms into k term
clusters. The value of k is user-defined. We suppose that the number of document
clusters and term clusters is the same. The output of this phase is thus k term

clusters.

2. Topic keyterm selection: The number of keyterms needed to present a topic
depends on the clustering algorithm and the dataset [20]. This value is not
known in advance. In this phase, a multiobjective genetic algorithm is used to
select the keyterms of each term cluster. The MOGA module are applied on
the term clusters independently. The output of each module are several distilled
clusters (corresponding to non-dominated solutions on the Pareto front) with
different numbers of keyterms inside them. These distilled term clusters are the

input of Phase 3. The goal of Phase 3 is to select the best distilled term clusters.
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Figure 4.2: The main steps of (user-supervised) FSDC. Fuzzy c-means is used for term
clustering. The MOGA modules distills term cluster to remove non-discriminative
terms. Distilled term clusters are then used to extract seed documents and cluster
documents.

3. Document clustering: Given the distilled term clusters, their representative
documents are extracted in this phase. A document centroid is then computed
for each distilled term cluster. A single-objective genetic algorithm (GA) finally

chooses the best k document centroids to cluster documents.

4.2.1 Term Clustering

Having similar topics is a common case in text clustering. Similar topics share
common terms and each term usually belongs to multiple topics with different degrees
of relevance. This is a key issue in term clustering.

The integration of the fuzzy paradigm with the simplicity and efficiency of k-means,
make fuzzy c-means a good candidate for term clustering. Given a document-term

matrix, we apply fuzzy c-means on the term vectors to generate k term clusters.
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Algorithm 2 Feature Selective Double Clustering (FSDC)

Input: a document-term matrizc Mpr, k

Output: k document clusters {W,}r_,

—_

10:
11:
12:
15:

1:

use fuzzy c-means, Algorithm 1, to generate k term clusters {TC’p};jzl

: for each term cluster TC', do
apply the MOGA to prune non-discriminative terms
for each non-dominated solution (distilled term cluster) do
extract the representative documents rep,
compute a document centroid over its representative documents dc,
end for
end for

apply the GA to identify the best document centroids dc
cluster documents using the selected document centroids:
for each document in the dataset d; do

measure its similarities to the document centroids

assign the document to each document centroid with a membership value:
P(Wp|dl) o Sim(di,de)

- E§=1 sim(dy;,dcj)
end for
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After fuzzy clustering is done, we use the maximum method to defuzzify the obtained

membership matrix [13]. The maximum method assigns each term to the cluster

with the largest membership value. The output of this method is thus a hard term

clustering. This phase of the algorithm has time complexity of O(NMK?I), where I

is the maximum number of iterations of fuzzy c-means [42].

4.2.2 Topic Keyterm Selection

The input of this phase are k£ term clusters. We propose a multiobjective genetic

algorithm in this section so as to distill term clusters and get rid of general terms.

The algorithm is inspired by the Genetic algorithms proposed in [88, 109]. We explain

the components of this genetic algorithm in the following.

e An integer representation is used for individuals. Each individual includes a

subset of terms that exist in a term cluster in the form of:
Z?’Ldz = (tl, tQ, ceey tTl) (46)

where ¢; is the column number of a term vector in the document-term matrix,

and 7} is the number of terms used in the i** individual.

Since it is not clear how many keyterms should be used to represent a topic,
a variable-length integer representation is considered for individuals. This
representation lets the genetic algorithm find the number of keyterms. However,
variable-length representations suffer from bloating, the uncontrolled growth of
the length of individuals [76]. We thus restricted the length of individuals to a

value between 20 and  size_of(term cluster).

The goodness of an individual depends on the goodness of the subspace spanned
by its terms. Finding a good subspace can be defined as a multiobjective task

using the following criteria:

1. The number of similar documents in the subspace.

2. The degree of similarity between the documents and the size of subspace

in which similarities are measured.
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The best subspace has the minimum number of terms while characterizing
the maximum number of similar documents. We call these similar documents,
representative documents in the rest of this chapter. Representative documents

are extracted based on the method proposed in Section 4.1.2 as given below:

1. A term-centroid is computed for each individual. A term-centroid is the
average of the column vectors corresponding to the terms included in an
individual. A term-centroid is a vector with dimensionality equal to the

number of documents.

2. The k-means algorithm with k = 2 is applied on each term-centroid (in
a one-dimensional space) to partition its elements into two clusters. One
cluster includes elements with near-zero values and the other one includes
elements with larger values. The cluster with the larger values includes the

representative documents.

After finding the representative documents of each individual, two objective

function values are computed for fitness assignment:

1. Number of representative documents: the number of representative doc-
uments of an individual. This objective should be maximized since we
use the representative documents as seeds to cluster all documents later.
Having a larger number of these documents results in better document

clusters.

2. Distortion: The representative documents of an individual should be similar
to each other. Distortion or intra-cluster variation is a common criterion
used to evaluate the quality of clusterings [78, 109]. The distortion of the

i'" individual is computed as:

1
Distortion(ind;) = — > lldy = dei |5, (4.7)

t dj€Erep;
where rep; is the set of representative documents associated with the ‘"
individual, dc; is the document-centroid computed over the documents of

rep;, and S P; is the feature space spanned by the terms of the i** individual.
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The distances are normalized by the size of subspace T;. This objective

function should be minimized.

e Individuals are initialized by using the high-variance terms (Eq. 2.5). The
initial size of individuals is chosen randomly. Parent selection is performed by
tournament selection[83] and population size is fixed to 50. The probability
of uniform crossover [50] is 0.7 and we perform the following mutations on all

offspring:

1. Add-term: this operator increases the length of an individual by 1 and

adds a new randomly selected term.

2. Remove-term: this operator decreases the length of an individual by 1 and

removes a randomly selected term.

3. Replace-term: this operator randomly replaces a term by a new term.

The output of each MOGA module is a set of distilled term clusters with different
numbers of terms. The goal of the next phase, Document Clustering, is to determine
the best term clusters from these distilled term clusters.

A sample output of this phase is shown in Fig. 4.3. In this figure, terms are already
clustered into two term clusters. The topic of the first term cluster is Electrical and
the topic of the second one is Car. Some terms in this example are too general to
discriminate a topic like Canada, September, Please, and Number. We applied the
MOGA on each term cluster individually to remove these general terms.

FSDC is independent of the multiobjective optimization algorithm and any kind of
multiobjective method can be used. In this study, we used a Matlab implementation!
of NSGA-II [31]. It is also noteworthy to mention that this phase of F'SDC can be
run independently on each term cluster in parallel as shown in Fig. 4.2.

This phase has time complexity of O(PNM K I+ P*K1I), where P is the population
size. The time complexity of NSGA-II in forming Pareto fronts in case of two objective
functions is O(P?) [31].

thttp://www.mathworks.com/matlabcentral /fileexchange/10429-nsga-ii-a-multi-objective
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Figure 4.3: A sample output of Phase 2 (Topic keyterm selection). Two term clusters
are fed into the MOGA so as to prune non-discriminative terms. Each output is a
distilled term cluster including some keyterms.

4.2.3 Document Clustering

Multiple distilled term clusters are obtained for each term cluster in Phase 2. In this

phase, we want to identify the best distilled term clusters.

Each distilled term cluster characterizes a set of representative documents. We
compute a document centroid over the representative documents of each distilled term
cluster. A document centroid is the row average of document vectors corresponding to
the representative documents. Since MOGA produces multiple distilled term clusters,
there are multiple document centroids for each term cluster. We need to choose only

k document centroids to cluster all documents.

Suppose that the number of document centroids of the i*" term cluster is tk;. To
find the best document centroids, we need to examine tky X thky X ... X tky cases. This

is very time-consuming where k or the number of distilled term clusters is large.

To search for the best document centroids, a single-objective GA is used in this
phase. In this GA, the length of individuals is fixed to k. Each entry of an individual
is dedicated to one term cluster. The value of an entry indicates one of the document

centroids of the respective distilled term cluster.

For fitness assignment, all documents are assigned to the nearest document centroids

indicated in an individual to generate k clusters {C;}*_,. We then compute the
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Figure 4.4: A sample output of Phase 3 (Document clustering). The GA identified
the best distilled term clusters, which are used to cluster documents.

Separation (inter-cluster distances) of the clusters as the fitness value of the individual:

Separation = Z | i — g |12 (4.8)

Hislj
where pi; is the centroid of cluster C;. After a predefined number of iterations, the
best individual in the population generates k document clusters.

Parent selection is performed by tournament selection and no crossover is considered.
The population size is fixed to 25. The only genetic operator is a replacement mutator
which randomly replaces one document centroid with another one. The number of
iterations is 50 in this algorithm.

A sample output of this phase is shown in Fig. 4.4. As shown in this figure, from
all distilled term clusters, the third distilled clusters of term clusters are chosen for
document clustering.

This phase has time complexity of O(PNM KT+ PM K?I). If we assume the same
number [ of iterations for Genetic algorithms and fuzzy c-means, the time complexity
of FSDC is O(NMK?*I + PNMKI + PMK?I + P?KT).

4.3 Experimental Results

This section provides performance comparisons of some co-clustering and direct
clustering algorithms. We show the benefits of FSDC' as compared to seven co-

clustering algorithms introduced in Section 2.3.1:
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Information-Theoretic Co-clustering (ITCC) [34],

Euclidean Co-clustering (ECC) [23],

Minimum Sum-squared Residue Co-clustering (MSRCC) [23],

Square Euclidean co-clustering and I-divergence co-clustering with bases C'2 and
Cb5 (SECC2, SECC5, IdivCC2, IdivCC5) (7],

We did not include the clusterer of [102] in our experiments since it is shown that ITCC
outperforms the clusterer on some subsets of the 20-Newsgroups dataset [34]. We
also performed some experiments using the following direct (without term clustering)

clustering algorithms:
e Standard k-means,
e Fuzzy c-means (FCM) [13],

e Four greedy direct clustering algorithms described in Section 2.3.2 called:

Bisecting 12 (BI2),

Bisecting H2 (BH2),

Direct 12 (DI2),

— Direct H2 (DH2)

e The unsupervised version of the clustering algorithm proposed in [78] (UVFCM).

4.3.1 Evaluation Measures and Datasets

Given the class labels of documents, we measure the quality of clusterings using
Fmeasure (Eq. 3.1) and NMI (Eq. 3.2). We used five text datasets whose characteristics
are summarized in Table 4.1.

We use Euclidean distance to cluster document vectors since their length are

normalized to one and Cosine similarity to cluster term vectors.
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Table 4.1: Summary of the text datasets used in our experiments

Dataset No. of Reduced No. of No. of Sparsity
Name Documents Terms Classes
Reviews 4069 7724 5 97.9%
Classic4 7095 5099 4 99.5%
Cacmcisi 4663 2528 2 99.4%
News-sim3 2924 4697 3 99.7%
News-multi7 6632 7006 7 99.8%

Table 4.2: Characteristics of the competitors used in our experiments

Clustering Term Number of Number of
Algorithm Clustering | Document Cluster | Term Cluster
FSDC v k k
UVFCM 4 k k
ITCC v k variable
ECC 4 k variable
MSRCC 4 k variable
SECC2 4 k variable
SECC5 v k variable
IdivCC2 v k variable
1divCC5 v k variable
BI2 b 3 k ®
BH2 k b 3
DI2 b 3 k ®
DH2 3 k x
k-means x k %
FCM t 4 k b 4

4.3.2 Results and Discussion

We have evaluated the performance of 15 clustering algorithms on five datasets using
two evaluation measures. Nine algorithms including FSDC, UVFCM, and seven
co-clusterers (ITCC, ECC, MSRCC, SECC2, SECC5, IdivCC2, IdivCC5) use term
clustering to generate document clusters as shown in Table 4.2. The number of term
clusters for FSDC and UVFCM is the same as the number of document clusters.
For the co-clustering algorithms, we used different numbers of term clusters. For
ITCC, ECC, and MSRCC the number of term clusters are 1,2, 4,8, ..., 128 as suggested
in [34]. These numbers are 5,10, 15, ..., 50 for SECC2, SECC, IdivCC2, and IdivCC5

as in the experiments performed in [7].



76

Table 4.3: Standard deviations of NMIs obtained for the competitors in 20 runs

Cacmcisi | Reviews | Classic4 | News-sim3 | News-multi7

FSDC 2x107% | 5x10~* 0.005 0.003 2x 1074
UVFCM 0.162 0.003 0.004 0.05 0.09

ITCC 0.0063 0.0228 0.0423 0.0017 0.0246

ECC 0.0060 0.0197 0.0656 0.0057 0.0225
MSRCC 0.0098 0.0139 0.0245 0.0079 0.0061
SECC2 0.0626 0.0740 0.0168 0.0179 0.0530
SECC5 0.0022 0.0656 0.0121 0.0604 0.0346
IdivCC2 0.1480 0.0331 0.0623 0.0093 0.0351
IdivCC5 0.0337 0.0610 0.0531 0.0228 0.0331

We first compared FSDC' to the co-clustering algorithms. For each dataset, we
ran the experiments in the following way. Each co-clusterer is run 20 times for each
number of term clusters and the average Fmeasure and NMI of these 20 runs are
computed. The other algorithms are also run 20 times and the average Fmeasure
and NMI are shown in Fig. 4.5 to Fig. 4.9. The number of term clusters in FSDC
and UVFCM is fixed and their average results are thus shown as horizontal lines
in the plots. The standard deviations of NMIs are also shown in Table 4.3. The
standard deviations of the co-clusterers regarding the best number of term clusters

are computed for this purpose.

Our experimental results reveal that FSDC outperformed the competitors on all
the datasets. This is more evident on Classic4, and News-sim3. It is noteworthy to
mention that News-sim3 is the most difficult dataset to cluster in our experiments
since it includes three similar topics. FSDC has also the lowest standard deviations
in most cases as shown in Table 4.3. This observation confirms that the number of
term clusters being selected as equal to the number of document clusters is a rational
assumption and no further attempts for finding this number is needed for FSDC' in
this experiment. Documents in the datasets of this experiment are single-labeled.
This assumption is thus rational in this case since each document is related to only
one topic. However, further analysis is required in order to evaluate FSDC in case of
multi-labeled documents.

An important observation in our experiments is that the outputs of the co-clusterers
are sometimes sensitive to the number of term clusters. It is quite noticeable for
datasets Reviews and Classic4. Even though it is suggested in [34, 102] to increase

the number of term clusters in order to get better results, it did not happen on some
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Figure 4.5: The quality of clusters for FSDC and the co-clusterers on Cacmcisi. FSDC
outperformed the co-clusterers. The algorithms ECC, SECC2 and SECCS could
generate comparable results. The quality of clusters of IdivC'C2 decreases as the
number of term clusters increases.

datasets in our experiments.

We have also compared FSDC' to the direct clustering algorithms. These algorithm
are run 20 times and the average of these 20 runs are summarized in Tables 4.4 and 4.5.
Each entry in these tables shows the quality of obtained clusters on average along
with the standard deviation. The standard deviation of the co-clustering algorithms
shows the variation in the quality of clusters with respect to the best numbers of term
clusters. For the other algorithms, the standard deviation shows the variation that
exists in the quality of clusterings in 20 runs. The average running times of these

algorithms in this experiment are shown in Table 4.6.

The quality of clusterings obtained based on the Cacmcisi dataset show that FSDC
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Table 4.4: Averaged Fmeasures and standard deviations obtained for the competitors
in 20 runs. FSDC is the best clusterer for all datasets in our experiment except
for News-multi7. Direct clusterers (BI2, BH2, DI2, DH2) outperformed the other
competitors on News-multi7.

Cacmcisi Reviews Classic4 News-sim3 News-multi7

FSDC 0.97 + 106 0.714+2 x 10~4 0.95 £ 0.003 0.77 4 0.002 0.78 £ 0.002
UVFCM 0.86 £+ 0.105 0.68 £ 0.003 0.87 £ 0.004 0.60 £ 0.07 0.72 £ 0.057
ITCC 0.79 £ 0.029 0.62 £+ 0.089 0.73 £0.116 0.47 £ 0.036 0.73 £0.18
ECC 0.96 4 0.013 0.53 +0.081 0.73 £ 0.058 0.42 £0.011 0.68 £0.15
MSRCC 0.93 £0.116 0.57 £ 0.015 0.67 £0.051 0.56 £ 0.031 0.73 £0.016
SECC2 0.96 £ 0.003 0.60 4 0.041 0.82 +0.051 0.47 £0.019 0.62 £ 0.061
SECC5 0.96 4 0.003 0.64 +0.028 0.87 £ 0.047 0.62 £ 0.041 0.68 £ 0.042
IdivCC2 0.92 £ 0.032 0.59 £ 0.051 0.85 £ 0.057 0.41 £0.01 0.68 £+ 0.087
1divCC5 0.79 £0.017 0.68 £+ 0.02 0.78 £0.044 0.45 £0.012 0.79 £ 0.045
BI2 0.62 £ 0.009 0.70 £ 0.025 0.69 £ 0.047 0.61 £ 0.09 0.82 £ 0.032

BH2 0.74 £ 0.005 0.71 £ 0.024 0.71 +£0.029 0.66 £+ 0.098 0.85 4 0.057
DI2 0.62 £ 0.006 0.70 £ 0.057 0.68 £ 0.033 0.62 £+ 0.085 0.84 £ 0.053
DH2 0.74 £ 0.004 0.71 4+ 0.036 0.73 £ 0.036 0.60+0.113 0.84 £ 0.063
k-means 0.92 £0.149 0.65 £ 0.054 0.70 £ 0.09 0.52 £ 0.054 0.68 £ 0.05
FCM 0.81 £ 0.088 0.58 £ 0.029 0.64 £ 0.064 0.53 £0.072 0.57 £ 0.086
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Table 4.5: Averaged NMIs and standard deviations obtained for the competitors
in 20 runs. FSDC is the best clusterer for all datasets in our experiment except
for News-multi7. Direct clusterers (BI2, BH2, DI2, DH2) outperformed the other
competitors on News-multi7.

Cacmcisi Reviews Classic4 News-sim3 News-multi7
FSDC 0.76 £2 x 10~3 0.57 £ 5 x 10~4 0.82 + 0.005 0.36 + 0.003 0.714+2x 10~
UVFCM 0.48 £ 0.162 0.50 + 0.003 0.70 % 0.004 0.240.05 0.67 £ 0.09
ITCC 0.37 £ 0.0063 0.39 + 0.0228 0.52 + 0.0423 0.02 £ 0.0017 0.66 =+ 0.0246
ECC 0.76 % 0.0060 0.3340.0197 0.56 & 0.0656 0.02 £ 0.0057 0.57 £ 0.0225
MSRCC 0.61 + 0.0098 0.37 £ 0.0139 0.53 + 0.0245 0.17 £ 0.0079 0.59 =+ 0.0061
SECC2 0.74 £ 0.0626 0.43 £ 0.0740 0.69 + 0.0168 0.05 £ 0.0179 0.52 + 0.0530
SECC5 0.72 + 0.0022 0.48 + 0.0656 0.73 £ 0.0121 0.22 + 0.0604 0.58 + 0.0346
IdivCC2 0.65 £ 0.148 0.39 £ 0.0331 0.73 £ 0.0623 0.02 + 0.0093 0.59 + 0.0351
IdivCC5 0.39 £ 0.0337 0.49 + 0.061 0.60 + 0.0531 0.04 + 0.0228 0.71 £ 0.031
BI2 0.23 £ 0.004 0.52 £ 0.025 0.6 & 0.057 0.24 £0.11 0.76 + 0.02
BH2 0.32 £ 0.005 0.57 + 0.017 0.59 + 0.028 0.27 £0.11 0.73 £ 0.059
DI2 0.23 + 0.004 0.55 + 0.063 0.58 £ 0.05 0.24 + 0.091 0.76 £ 0.03
DH2 0.32 £ 0.005 0.56 =+ 0.052 0.60 % 0.028 0.22 +0.104 0.75 £ 0.038
k-means 0.58 + 0.31 0.45 + 0.069 0.56 % 0.093 0.14 + 0.060 0.58 + 0.056
FCM 0.42 £ 0.156 0.34 £ 0.035 0.43 + 0.059 0.13 + 0.065 0.41 £0.21
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Table 4.6: The averaged running times of the methods in the experiments in 20 runs

are reported in seconds.

Cacmcisi | Reviews | Classic4 | News-sim3 | News-multi7
FSDC 304.8 612.2 560.6 356 981.7
UVFCM 8.4 32 28.4 22.5 48
ITCC 5.8 12.8 15.8 5.3 20.3
ECC 5.4 11.8 15.5 4.8 19.2
MSRCC 5.2 11.7 16.2 4.9 19.6
SECC2 188.3 827.1 752.8 315.8 1416.8
SECC5 287.5 921.4 864.2 345.3 1200.4
IdivCC2 139.5 345.1 344.9 205 378.2
IdivCC5 189.2 514.6 525.6 264.4 532
BI2 5.4 20.2 28 7.8 31.7
BH2 5.9 25.2 29.6 8.4 33.2
DI2 5.1 17.2 20 5.4 26.6
DH2 5.5 19.6 21.1 5.9 27.8
k-means 3 20.7 22.8 11.4 75
FCM 5 32.8 27.2 18 54.4
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and some co-clustering algorithms outperform the direct clusterers. This fact implies
that term clustering can enhance the performance of document clustering for Cacmcisi.
K-means and FCM are the best algorithms among the direct clusterers. FSDC and

ECC have generated similar results but ECC has a lower running time.

The quality of clusterings obtained based on Reviews leads us to a contrary
conclusion. For this dataset, most direct clusterers (BI2, BH2, DI2, and DH2)
outperform the co-clustering algorithms. This means that direct clustering is a better
choice for this dataset. FSDC and BH2 have generated similar clusters but BH2 has

a lower running time.

Experiments on Classic4 return the superiority to the algorithms that use term
clustering. Based on NMI and Fmeasure the best algorithms for this dataset use term
clustering. FSDC significantly outperformed the other competitors but its running

time is larger than the others except for SECC2 and SECCS5.

FSDC significantly outperformed the other algorithms on News-sim3 but it has
the largest running time. The documents of this dataset have similar topics. Direct

clusterers generate better clusters in this case.

Four direct clusterers (BI2, BH2, DI2, and DH2) outperform the other algorithms on
News-multi7. They have lower running times compared to FSDC. The main difficulty
of clustering this dataset is in separating the two classes comp.sys.mac.hardware and
misc.forsale. Most co-clustering algorithms put these two classes into a single cluster.
This difficulty for FSDC originates from term clustering, where fuzzy c-means clusters

keyterms of these two classes into one term cluster.

We conjecture that the advantage of the clusterers BI2, BH2, DI2, and DH2, in
clustering News-multi7, come from their iterative refinement phase [118]. During
this phase, each document is revisited and moved to another cluster provided that it

results in an improvement in the criterion function.

Overall, we had 15 algorithms in our experiments. Nine algorithms use term
clustering and six algorithms cluster documents directly. There is no clusterer that can
outperform the others on all datasets. Besides, co-clustering and double clustering, or
using term clusters in general do not result in better clusterings in all cases. Despite
the fact that term clusters can improve the quality of clusters for some datasets, there

are other datasets where using direct clustering is a better option. The experimental
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results confirm the fact that “there is no best clustering algorithm” [63].

4.4 User-Supervised FSDC

In this section, we want to show how term labeling is effective in clustering News-multi7.
As mentioned in the previous section, most clustering algorithms have difficulty in
separating two classes of News-multi7. Experimental results of this section demonstrate
that the quality of clusterings obtained by FSDC can be improved with a few iterations
of term labeling.

We first show how FSDC can be used interactively in the form of term labeling.
The interaction phase starts after term clusters are generated as shown in Fig. 4.2.
Top keyterms of the term clusters are extracted and displayed to the user and she
labels the keyterms (groups them in meaningful clusters). The labeled keyterms are
then fed into fuzzy c-means to re-cluster terms. This interaction can be performed for
a few iterations until the user decides to terminate.

We choose f high-variance terms from each term cluster to make a list of candidate
terms. The list is shown to the user and she labels the terms using the following

actions:

1. Assign a term to a cluster correctly
2. Assign a term to a cluster randomly

3. Remove a term from the list

The labeled terms are then fed into fuzzy c-means to re-cluster terms. The
labeled terms are used to initialize the membership matrix U of fuzzy c-means . The
membership matrix U has M rows corresponding to the M term and k columns
corresponding to the k term clusters in this case.

We initialize the membership matrix in a way that all entries are set randomly
except for the labeled terms. We set the corresponding entry of a labeled term and
its cluster to one in the matrix. The initialized matrix is then used to re-run fuzzy
c-means. We perform term labeling for a few iterations until term clusters match the

user’s preferences.
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To evaluate the user-supervised FSDC, we use the oracle introduced in [54]. The
oracle knows the true label of terms based on the y? statistic. These labels are

computed in the following way:

1. Given the class label of documents, the x? statistic computes the relevance of

cach term in cach class.

2. Each term is then assigned to the class with maximum relevance and the class

label is saved in the oracle.

The oracle has a parameter P.,, that indicates the degree of user’s expertness.
Based on this parameter, the user cither labels a term correctly or she says “I do not
know”. She might remove the term from the list or assign it to another class randomly
in case of “I do not know”. The probability of remove is set to 0.5 and the probability
of random assignment is set to 0.5/k. The main steps of the simulated term labeling

are shown in Algorithm 3.

Algorithm 3 Simulated term labeling
1: for each term on the list do

2:  if rand[0,1] < P,,, then
3: assign label correctly
4:  else if rand[0,1] < 0.5 then

remove the term from the list

(@2

6: else

7: generate a random number between 1 and k
8 assign the random label

9:  end if

10: end for

In the first experiment we evaluated the effect of P.,, on the quality of clusters.
The results of this experiment are shown in Fig. 4.10. For each value of P, the
algorithm is run 20 times and the average NMIs and Fmeasures are reported. The
plots of quality measures show that a user with minimum expertness of 0.5 can improve
the quality of clusters in this case. The number of iterations is set to three, and the

number of keyterms of each term cluster is set to 20 in this experiment.
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Figure 4.10: The effect of the degree of user expertness (P.,,) on the quality of clusters.
The minimum expertness of 0.5 results in an stable improvement.
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Figure 4.11: The effect of the number of keyterms extracted from each term cluster
(f) for term labeling. 15 to 20 keyterms are enough to improve the quality of clusters
for News-multi7.

In the second experiment, we evaluated the effect of f (the number of keyterms of
each term cluster) on the quality of clusters. The results are shown in Fig. 4.11. For
each value of f, the algorithm is run 20 times and the average NMIs and Fmeasures
are reported. As shown in this figure, 15 to 20 keyterms are enough for term labeling
of News-multi7. The number of iteration is set to three and P, is set to 0.5 in this
experiment.

In the third experiment, we examined the number of iterations needed to get the
best results. The number of keyterms (f) is set to 20 and P, is set to 0.5 in this
experiment. The effect of different numbers of iterations is shown in Fig. 4.12. For

each number of iterations, the algorithm is run 20 times and the average measures are
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Figure 4.12: The quality of clusters after different number of rounds of user supervision.
Evan after one iteration of supervision, the quality of clusters increases.

reported. We can see that even after one iteration FSDC generates better results for
News-multi7. It means that Fuzzy c-means can learn the user’s desired term clustering
after one iteration in this case.

The conclusion we get from these experiments is that if the degree of simulated
user’s expertness is at least 0.5 and 15 to 20 keyterms are extracted from each term
cluster, the simulated user can improve the quality of clusters for News-multi7 even
after one iteration of term labeling.

We have used the conclusions of these experiments to propose a user-supervised

partitional algorithm. The algorithm is explained in detail in Chapter 7.

4.5 Conclusion

We proposed a multiobjective genetic algorithm so as to distill term clusters. For
each term cluster, the algorithm keeps only those terms whose subspace includes the
maximum number of representative documents.

To find the representative documents, we proposed a method based on the nature
of text datasets. We take advantage of zero values that exist in most entries of
document-term matrices. For this purpose, the k-means algorithm is applied on the
centroids of distilled term clusters.

The output of the multiobjective algorithm is a set of non-dominated solutions

for each term cluster. Each non-dominated solution corresponds to a distilled term
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cluster. The representative documents of these distilled term clusters are used as seeds
to cluster documents. Only one distilled term cluster of each term cluster is needed for
this purpose. To find the best distilled clusters, we used a standard genetic algorithm.

Our experimental results demonstrated that distilling term clusters can result in
better document clusters compared to the competitors in which term clusters are used
without any prior analysis.

A user-supervised algorithm is also proposed in this chapter. The experimental
results show that with a few iterations of term labeling, the simulated users can improve
the quality of document clusters when the unsupervised algorithm has difficulty in
separating classes.

The main drawback of FSDC is that the supervision is based on the terms
extracted from term clusters not from document clusters. It would provide a better
insight into the topics of a collection if the terms are extracted from the document
clusters. We propose an interactive clustering algorithm in Chapter 7 along with more
comprehensive experiments to show the effectiveness of term labeling in document

clustering.



Chapter 5

Partitional Double Clustering

We propose a non-evolutionary partitional clustering algorithm in this chapter. Com-
pared to the evolutionary algorithm (FSDC') proposed in Chapter 4, this partitional
algorithm has the following benefits:

e A greedy approach is used to distill term clusters instead of using the MOGA mod-
ule described in Section 4.2.2. The greedy approach removes non-discriminative
terms using a feature selection method. This change decreases the running time

of LDC significantly.

e A soft term clustering is generated in the partitional algorithm, while a hard
term clustering is used in F'SDC. We use a different defuzzification method for
this purpose. Since similar topics share common terms, a term can be related to

multiple term clusters in this way.

e The weight of seed documents in document clusters is not considered in FSDC.
A seed document might be related to multiple document clusters as described in

Section 4.1.2. We use the weight of seeds in computing document centroids.

e Since the MOGA module is replaced by a greedy approach, there is only one
distilled term cluster for each term cluster in the partitional algorithm. Therefore,
the genetic algorithm used in F'SDC, to find the best non-dominated solutions,

is not needed in this algorithm.

Removing the genetic algorithms from our clustering method results in a significant
improvement in running time. We have conducted an experiment to compare the
proposed partitional clustering to FSDC. The experiment reveals how much the
quality of clusterings is deteriorated due to replacing the MOGA module by the greedy
approach.

The remainder of this chapter is organized as follows. Section 5.1 explains the

proposed algorithm in detail. Section 5.2 covers the experiments performed to evaluate

91
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this algorithm. This section includes the experiments performed to compare this
algorithm to FSDC. It also includes the experiments performed to compare this
algorithm to the LDA model. The experiments conducted to compare Google based
distance and TFIDF based cosine similarity are also reported in this section. We

conclude this chapter with conclusions and future work.

5.1 Methodology

A text corpus is represented as a document-term matrix using the BOW model in
this algorithm. The importance of terms in documents are computed using TFIDF.

The proposed partitional algorithm consists of the following three phases:
1. Term clustering and topic keyterm selection
2. Finding lexical seed documents
3. Document clustering

The main steps of the algorithm are depicted in Fig. 5.1 and Algorithm 4. Since
the algorithm is based only on document contents, we call it Lexical Double Clustering
(LDC) in the rest of this report.

LDC clusters documents in the following way. Fuzzy c-means groups the terms
into k term clusters. It then removes general terms from the term clusters since these
terms deteriorate the performance of our clustering algorithm [90]. We consider the
remaining terms in term clusters as topic keyterms.

Given the topic keyterms as the input in Phase 2, it extracts the representative
documents, which are used as seeds to cluster all documents later.

In Phase 3, a document centroid is computed based on the seed documents of
each term cluster. The distances among documents and the centroids are then used
to cluster documents. The time complexity of LDC' is O(NM K?I), where I is the

maximum number of iterations of fuzzy c-means, which is fixed to 50 in this thesis.

5.1.1 Term Clustering and Topic Keyterm Selection

Given a document-term matrix, we apply fuzzy c-means on the term vectors to generate

k term clusters. After fuzzy c-means is done, each term cluster includes only terms
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Figure 5.1: The structure of the lexical clustering algorithm, Algorithm 4. Fuzzy
c-means is used for term clustering. A greedy approach distills the term clusters
through feature selection in order to remove non-discriminative terms. Representative
documents associated with each term cluster are then extracted and used as seeds
to cluster all documents. No user interaction is involved and document clustering is
unsupervised.
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Algorithm 4 Lexical Double Clustering (LDC)

Input: a document-term matric Mpr, k

Output: k document clusters {W,}r_,

1

10:

: use fuzzy c-means, Algorithm 1, to generate k term clusters {TC’p}zzl

remove non-discriminative terms from the term clusters
for each distilled term cluster T'C,, do
extract lexical representative (seed) documents

compute a document centroid for the representative documents:

Zdi €lericalSeeds(TCp) wikd;
|lezicalSeeds(T'Ch)|

lezical Centroid, =
end for
for each document in the dataset d; do
measure its similarities to the document centroids

assign the document to each document centroid with a membership value:

N sim(d;,lexical Centroidy)
P(Wpldz) - Ele stm(dy,lexical Centroid;)

end for

whose memberships are greater than 1/k. This defuzzification method results in a soft

term clustering. The value of 1/k makes sense here since if a term is equally related to

all clusters, it would have the same membership value of 1/k in all clusters. The time

complexity of fuzzy c-means is O(NM K?2I), where I is the number of iterations [42].

We assume that only a few terms represent topics and the other terms are non-

discriminative [67]. We propose a greedy approach to extract these topic keyterms.

Our greedy approach consists of the following steps:

1. For each term, we first compute its score using the Var-TFIDF feature selection

method described in Section 2.1.2.

2. We then compute an average score for each term cluster. The average score is

the mean of scores of terms that exist in a term cluster.

3. In each term cluster, those terms whose scores are smaller than the cluster average
score arc removed. The remaining terms are considered as topic keyterms and

used in the next phase.

The time complexity of computing Var-TFIDF scores is O(NM). The output of this
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phase are k term clusters distilled by the greedy approach and it has a time complexity
of O(NMK™>I).

5.1.2 Finding Lexical Seed Documents

The input of this phase consists of k distilled term clusters, each including a set of
topic keyterms. Each set characterizes a set of seed documents. The seed documents
are those documents that are close to each other in the subspace spanned by the topic
keyterms. We extract the seed documents of each term cluster using the method

described in 4.1.2. The method consists of the following steps:

1. A term-centroid is first generated for each term cluster based on the document-
term matrix representation. The term-centroid is the column average of the
term vectors corresponding to the terms included in a term cluster. It is a vector
with dimensionality equal to the number of documents. The time complexity
of this step is O(NM K), where M is the number of terms in the distilled term

clusters.

2. The k-means algorithm with k£ = 2 is then applied on the term-centroid (treated
as a one-dimensional space) to partition its elements into two clusters. One
cluster includes elements with near-zero values and the other cluster includes
elements with larger non-zero values. The near-zero values correspond to the
documents in which the terms of a term cluster have low frequencies. The
elements with larger non-zero values correspond to the seed documents. The

time complexity of this step is O(NK).

It is noteworthy to mention that a seed document can be linked with more than
one term cluster in this phase. However, the TFIDF value of the document in a
term-centroid indicates the weight of the document in each term cluster. We use these
weight values in computing document centroids. These extracted seed documents are
called lexical seeds in the rest of the report. The time complexity of this phase is
O(NFK + NKI).
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5.1.3 Document Clustering

The input of this phase is the lexical seed documents of the term clusters. Given the

lexical seeds, we use the following steps to cluster documents:

1. For each term cluster T'C,, we compute a document centroid over its sced
documents. A document centroid is the row average of the document vectors

corresponding to the seed documents:

Z:d,;E1exicalSeeds(TC’p) w; * d7
|lexicalSeeds(T'C))|

lexicalCentroid, = (5.1)

where w; is the averaged TFIDF value of d; in the term-centroid of T'C),, and ||
indicates the cardinality of a set. The time complexity of this step is O(NMK).

2. The distances of each document to the lexical centroids are then computed.
The memberships of documents in document clusters are then measured as the
inverse of these distances. In this way, each document has a membership value

in each document cluster. The time complexity of this step is also O(NMK).

A hard partitioning of a collection can be generated by assigning each document to

the closest centroid. The time complexity of this Phase is O(NMK).

5.2 Experimental Results

We have conducted several experiments to evaluate the performance of LDC' algorithm.
We have compared LDC' to the FSDC algorithm proposed in Chapter 4. We have
then compared LDC to the LDA model. An experiment has also been conducted to
see whether a Google Ngram based distance is better than Cosine similarity in term
clustering. We have evaluated the performance of LDC based on different feature
selection methods described in Section 2.1.2. We have finally compared Euclidean

distance to Cosine similarity metric based on LDC.

5.2.1 Comparison to the FSDC Algorithm

The experiment of this section reveals whether replacing the MOGA module with the

feature selection technique in distilling term clusters, results in deterioration in the
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Table 5.1: Comparison between the LDC and the FSDC' algorithms. Each algorithm
is run 20 times on datasets Cacmcisi, Reviews, Classic4, News-multi7, and News-sim3.
The average quality of clusterings in 20 runs are reported in the form of Fmeasures
(NMIs).

Cacmcisi Reviews Classic4 News-multi7 News-sim3
FSDC | 0.97(0.76) | 0.71(0.57) 0.95 (0.82) 0.78 (0.71) 0.77 (0.36)
LDC 0.96(0.73) | 0.68(0.53) 0.93 (0.81) 0.77 (0.69) 0.68 (0.29)

Table 5.2: Comparison between the LDC and the FSDC' algorithms based on running
times. Each algorithm is run 20 times on datasets Cacmcisi, Reviews, Classic4, News-
multi7, and News-sim3. The average running times of these algorithms in 20 runs are
reported in seconds.

Cacmcisi | Reviews | Classic4 | News-multi7 | News-sim3
FSDC 304.8 612.2 560.6 981.7 356
LDC 8.2 48.3 34.2 59.4 21

quality of clusterings. We have run FSDC and LDC 20 times on five datasets. The
average performance of algorithms are reported in Table 5.1.

The experiment demonstrates that the FSDC algorithm always outperforms LDC
especially on the dataset News-sim3, which has three similar topics. This confirms
that the MOGA module is better than the feature selection method used in LDC in
order to distill term clusters. This advantage is because that a population of solutions
is iteratively evolved in evolutionary algorithms. However, LDC' is faster than FSDC
since no evolutionary algorithms are used in. The average running times of these
algorithms are shown in Table 5.2. On average, LDC'is 21 times faster than FSDC' in
this experiment. The other advantage of LDC is that it can be easily enhanced with

user supervisions as proposed in Chapter 7.

5.2.2 Comparison to the LDA Model

We compare LDC' to the LDA model using eight text datasets. Since the generative
process of LDA is based on the co-occurrence of terms in the documents [17], LDA is
run on a version of datasets which are only preprocessed by stop-word removal and

stemming steps. No feature selection is performed on the datasets for LDA. We used
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a C+4-+ implementation! of this model in this experiment. The number of iterations
for the model is set to 10,000 and the number of topics is set to k. The value of k is
user-defined. After 10,000 iterations, we assign each document to the topic (cluster)
with maximum probability. The maximum number of iterations for fuzzy c-means is
set to 50 in LDC. Each document is similarly assigned to the closest cluster in LDC
(hard partitioning).

We also measured the running time of LDC' for each dataset in the worst case
when fuzzy c-means is run for all 50 iterations. We then let the LDA model run for
these running times instead of 10,000 iterations. We call this algorithm LDA[RelTime]
in experimental results. By running both algorithms for the same time on the same
machine, we provided a more fair performance comparison. We have run these
algorithms 50 times. The average and the standard deviation of NMIs and Fmeasures
in these 50 runs are depicted in Fig. 5.2 and Fig. 5.3.

This experiment clearly demonstrated the performance of LDC. LDC can create
similar clusterings to the state-of-the-art text clustering method, the LDA model.
There is no significant difference in the quality of clusterings except for two datasets,
Cade and SMS. Based on NMI, LDA models significantly outperformed LDC on
Cade. On the other hand, LDC significantly outperformed LDA models on dataset
SMS based on Fmeasure and NMI. Based on the empirical results obtained in this
experiment, we can conclude that LDC' and the LDA model generate similar results,
especially if they run for the same time. The time complexity of LDC' is O(NM K?I)
and the time complexity of Gibbs sampling based LDA is O(KVT) [107, 114], where V'
is the number of terms (tokens) in a collection and [ is the number of iterations. The
number of iterations in LDC' is the maximum number of iterations of fuzzy c-means,

which is fixed to 50 in this thesis.

5.2.3 Google Ngram Distance vs. Cosine Distance

We compare two distance functions for term clustering in this experiment. The first
distance function is the cosine distance based on TFIDF that has been used so far in
our work. The second distance function is based on the Google Corpus [61]. We use

these distances only for term clustering, Phase 1 of the LDC' algorithm. The goal of

thttp://gibbslda.sourceforge.net/
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Figure 5.2: The quality of clusters obtained from LDC, Algorithm 4 and the LDA
models in 50 runs. None of the algorithms in this experiment outperforms the others
on all datasets.
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Figure 5.3: The quality of clusters obtained from LDC, Algorithm 4 and the LDA
models in 50 runs. LDC outperforms both LDA models on the SMS dataset, where
documents are short. Otherwise, they generate similar clusters.
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this experiment is that we like to find out whether a similarity based on an external
source (the Google Ngrams) results in a better term clustering than the document
vector representation of terms.

A method is proposed in [61] to measure the similarity of texts using Google word
Ngrams. The novelty of the proposed method is in measuring the similarity of a pair
of words based on the Google Corpus. The idea is based on the frequency of the
tri-grams that start and end with the given pair of words. The tri-gram frequency is
then normalized by the frequencies of uni-grams. Given a pair of words (w,, wy), the

similarity Sim(w,,ws) € [0,1] is measured using the following formula:

( ,u('wa,nl,wb,nQ)Cz
108 Crwayelwy) min(c(wa),o(wg)) if p(wa,n1,wp,n2)C? > 1
—2xlog %Mwb)) c(wa)c(wp) min(c(wa ),c(wy))
S’Lm w, Q.Ub - IOg(lol) 3 l"(w(l:nlvwb:nQ)CQ 52
(e wy) —~24log M) c(wp)) if c(wa)e(wp) min(c(wa),c(wp)) — 1 (52)
\0 if pu(we, ny, wy,n2) =0
1 ni no
p(Wa, iy, Wy, Ng) = 5( E c(wawiwy) + E c(wpwiw,)) (5.3)
i=1 i=1

where C'is the maximum frequency among all Google uni-grams, ¢(w) is the frequency
of word w in Google uni-grams, n; is the number of tri-grams start with w, and
end with wy, and ng is the number of tri-grams start with w;, and end with w,. The
distance between w, and wj is computed as 1 — Sim(w,, w;). We use this distance

function in fuzzy c-means to generate term clusters.

According to the formula of the objective function of fuzzy c-means (Eq. 4.1), the
Google Ngram distance cannot be used directly in term clustering. This is simply
because the centroid (i) of each term cluster is not a real term itself (Eq. 4.4). It is a
weighted mean vector of term vectors. It is thus impossible to compute the Google

Negram distance of a term to a centroid using Eq. 5.2.

On solution is to use fuzzy c-medoids instead of fuzzy c-means. The fuzzy c-
medoids algorithm [70] is a version of fuzzy c-means, where each cluster is represented
by an instance (medoid) instead of an average mean vector (centroid). Rather than
computing the distances of instances to centroids, the distances of instances to medoids

are computed. The fuzzy c-medoids algorithm locally minimizes the following function:
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uZ dist*(ti, v,) (5.4)

wp

M;r

M
i=1 p=1

where v, is an representation instance (medoid) of cluster C,,.
Given the membership matrix U, those instances that minimize Eq. 5.4 are selected
as medoids in each iteration. The new membership matrix is then computed based on

the selected medoids using the following formula:

o — (dist(@i, 0))07Y (5.5)
ij 2221 (dist(mi, Up))Q/(l_z) .

Using the fuzzy c-medoids algorithm, we can use the Google distance function in
term clustering since the representative of a term cluster is itself a real word. However,
a single term should not be used as a medoid in term clustering. This is because a
single term does not contain enough data to represent a term cluster [2]. This is due
to the nature of text, where each term may appear only in a fraction of all documents
that exist in a corpus.

A solution of this problem is multi-medoids representation. A cluster can be
represented by multiple instances instead of one instance. It seems more reasonable to
represent each term cluster by multiple terms. Instead of using the distance of a term
to a single medoid, its average distance to medoids is used in this case. Therefore, the

distance term of Eq. 5.4 and Eq. 5.5 is replaced by the following formula:

mp

dist(t;,v,) = Zdzst ti, Up;) (5.6)

My 120
where m,, is the number of medoids used to represent C,, and vy, is its [ medoid.
We have used this fuzzy c-medoids algorithm in order to examine Google distance
function in term clustering in the following way.

We have run LDC 50 times using fuzzy c-medoids once based on Google Ngram
distance and once based on Cosine similarity. Different number of medoids is used in
this experiment for Google Ngram based distance, m, = {10, 20, ...,150}. We have
run LDC 50 times for each value of m,. The average and standard deviation of the
evaluation measures obtained in this experiment are depicted in Fig. 5.4 to Fig. 5.8 and
in Fig. A.1 to Fig. A.3. Eight datasets are used in this experiment, where six datasets

are stemmed and two datasets ReutersS-subset and 20ng-subset are non-stemmed.
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Figure 5.4: The quality of clusters obtained from LDC using fuzzy c-medoids on
News-rel3. The Cosine similarity generate better results than the Google Ngram
distance.

The evident observation in this experiment is that the Cosine similarity based
clusterings are superior to the Google Ngram distance based clusterings, regardless of
the similarity of text topics or the number of document clusters.

According to the experiments performed in this section, we can conclude that the
proposed text clustering algorithm (LDC') generates better clusterings by using the
TFIDF-based Cosine similarity than the Google Ngram based distance. We have
also tried to combine these two distances but no improvement is obtained in our

experiments.

5.2.4 Fuzzy c-means vs. Fuzzy c-medoids

In this experiment, we evaluate the performance of LDC using two fuzzy term
clusterers: fuzzy c-means and fuzzy c-medoids. The TFIDF-based Cosine similarity
is used for term clustering. The goal of this experiment is that we intend to figure

whether representing term clusters by single terms results in better term clusters than
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Figure 5.5: The quality of clusters obtained from LDC using fuzzy c-medoids on
News-multi10. Clustering based on Cosine similarity are superior to the clustering

based on the Google Ngram distance.
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Figure 5.6: The quality of clusters obtained from LDC using fuzzy c-medoids on
News-multi7. Cosine similarity results in better clustering than the Google Ngram
distance and its standard deviations are smaller.
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Figure 5.7: The quality of clusters obtained from LDC using fuzzy c-medoids on
Reuters8-subset. The TFIDF-based Cosine similarity results in better clustering than
the Google Ngram based distance.
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Figure 5.8: The quality of clusters obtained from LDC using fuzzy c-medoids on
20ng-subset. The clusterings obtained based on the Google Ngram distance is better
than those obtained based on Cosine similarity if the number of medoids is less than
40. As the number of medoids increases from 40 to 150, the TFIDF-based Cosine
similarity results in better clusterings.
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representing them by term centroids.

The outputs of this experiment are plotted in Fig. 5.9 to Fig. 5.12 and in Fig. B.1
to Fig. B.4. LDC is run 50 times on each dataset using fuzzy c-means and the average
Fmeasures are depicted as a horizontal line with a standard deviation as the error bar.
It is also run 50 times using fuzzy c-medoids with different number of medoids. The
average Fmeasures and standard deviations of the respective number of medoids are

depicted in the plots.

The main observation in this experiment is that as the number of medoids increases,
the quality of clusters obtained from fuzzy c-medoids increases. However, fuzzy c-
means results in better document clusters than fuzzy c-medoids in terms of quality in
most cases. Fuzzy c-medoids outperforms fuzzy c-means only on Reuters§-subset and
on News-rel3, where the number of medoids is more than 100. We can conclude that
representing term clusters by centroids is better than representing them by medoids
in this experiment. This is due to the nature of text where a single term alone is not

a good representative for a term cluster.

5.2.5 Evaluating Feature Selection Methods

The goal of this experiment is to evaluate the performance of LDC based on the
feature selection methods described in Section 2.1.2. Feature selection is used in Phase

1 of LDC so as to distill term clusters by removing low-score terms.

We have run LDC 50 times for different feature selection methods. The average
and standard deviation of the quality of clusterings obtained are reported in Table 5.3.
The first value in each cell corresponds to the average of Fmeasures and the second

one corresponds to the average of NMTs.

Entropy Rank and Var-TFIDF resulted in the best clusterings in this experiment,
based on the mean values of evaluation measures. The time complexity of Entropy
Rank is O(N?M?) while Var-TFIDF has O(NM) time complexity. The obvious
conclusion of this experiment is that either method can be used for distilling term
clusters in LDC' if the running time is not a big concern. Otherwise, Var- TFIDF is

the better method in case of large datasets.
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Figure 5.9: The quality of clusters obtained from LDC using fuzzy c-means and fuzzy
c-medoids on Classic4. As the number of medoids increases to 100, fuzzy c-medoids
generates comparable results and the standard deviations are smaller.

Table 5.3: Average and standard deviation of the quality of clusterings generated by
LDC in 50 runs based on different feature selection methods. The first value in each
cell corresponds to the average of Fmeasures and the second one corresponds to the

average of NMIs.

Mean-TFIDF Var-TFIDF Entropy Rank Term Contribution
Classic4 0.93 £ 0.07 0.94 £+ 0.04 0.93 +0.08 0.93 + 0.06
0.81 +0.08 0.82 £+ 0.04 0.81 £ 0.08 0.80 + 0.07
LA Times 0.65 +0.04 0.66 £ 0.03 0.66 + 0.02 0.65 £ 0.02
0.48 £ 0.04 0.49 £+ 0.03 0.50 £+ 0.03 0.48 +£0.03
News-sim3 0.70 £ 0.07 0.72 £ 0.06 0.70 +0.08 0.70 +0.07
0.31 +0.07 0.32 £+ 0.06 0.30 £ 0.08 0.30 £ 0.06
News-rel3 0.65 + 0.05 0.66 + 0.05 0.66 £+ 0.06 0.64 + 0.07
0.37 £ 0.07 0.40 4 0.06 0.38 + 0.08 0.35 4+ 0.09
News-multi7 | 0.75 £ 0.04 0.76 £ 0.04 0.78 £ 0.03 0.75 £+ 0.04
0.68 + 0.03 0.69 + 0.02 0.72 + 0.02 0.67 + 0.02
News-multil0 | 0.74 + 0.03 0.76 +0.03 0.77 £+ 0.03 0.73 +0.03
0.66 + 0.01 0.67 £ 0.01 0.70 + 0.02 0.65 + 0.01
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Figure 5.10: The quality of clusters obtained from LDC using fuzzy c-means and
fuzzy c-medoids on News-rel3. The fuzzy c-medoids term clusterer outperforms fuzzy
c-means if the number of medoids are greater than 100. Its standard deviations are

also smaller after 100 medoids.
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Figure 5.11: The quality of clusters obtained from LDC using fuzzy c-means and
fuzzy c-medoids on News-multi7. The fuzzy c-medoids generates better results if the
number of medoids is around 100. The standard deviation of the quality of clusters
obtained by using fuzzy c-medoids is smaller.
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Figure 5.12: The quality of clusters obtained from LDC using fuzzy c-means and fuzzy
c-medoids on ReutersS-subset. Fuzzy c-medoids generates better clusters regardless of
the number of medoids.
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Figure 5.13: The quality of clusters obtained from LDC using Euclidean distance
and Cosine distance based on Fmeasure. Based on paired-sample T-test, there is no
statistically significant difference between the quality of clusterings on each dataset.

5.2.6 Euclidean Distance vs. Cosine Similarity

The goal of this experiment is to evaluate the performance of LDC when the document
similarity is measured based on Euclidean distance and Cosine distance. Term
clustering is still based on Cosine distance in this experiment.

We have run LDC' 50 times based on these two distance metrics. The average and

standard deviation of the quality of clusterings obtained are shown in Fig. 5.13 and
Fig. 5.14.

The observation of this experiment is that there is no significant difference in the
quality of clusterings in this experiment and LDC generates similar results based on

these two distance metrics.

5.3 Conclusion

We proposed a novel partitional text clustering algorithm in this chapter. The main
novelty of this algorithm is that a feature selection method distills term clusters so as
to remove non-discriminative terms. The main advantage of this algorithm is that we

can easily involve user supervision in the clustering process as proposed in Chapter 7.
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Figure 5.14: The quality of clusters obtained from LDC using Euclidean distance and
Cosine distance based on NMI. Based on paired-sample T-test, there is no statistically
significant difference between the quality of clusterings on each dataset.

We have conducted several experiments to evaluate the performance of this clus-
tering algorithm. The experimental results showed that the proposed algorithm can
generate comparable results to the LDA model, which is one of the top document
clustering approaches in the literature.

We have then compared Google Ngram based similarity to the TFIDF-based
Cosine similarity in term clustering. The experimental results demonstrated that
TFIDF-based Cosine similarity is a better similarity metric in this algorithm.

An experiment has also been conducted to evaluate the performance of the proposed
algorithm based on two fuzzy term clustering algorithms, fuzzy c-means and fuzzy
c-medoids. The experimental results revealed that it is better to represent a term
cluster by term centroid instead of single terms.

We have finally compared the performance of our proposed algorithm based on
different feature selection methods. Var-TFIDF was the winner of this experiment

based on the computational time complexity and the quality of the clusterings obtained.



Chapter 6

Integrating Wikipedia Concepts in Text Clustering

Traditional text clustering algorithms usually represent a document collection as a
document-term matrix in the bag of words (BOW') model. The model is based on
the idea that related documents have common terms, while unrelated documents
are formed by different vocabulary barely share any terms. The representation is
limited to the term frequencies in documents and no semantic relation among terms is
considered. For instance, two documents with the same topic would sit in two different
clusters if they are formed by different but semantically related terms. One solution to
this problem is to enrich the document representation by using the external resources

like WordNet and Wikipedia.

Several research works have exploited Wikipedia in text clustering. The document
representation of BOW is augmented in [8] utilizing top relevant Wikipedia articles.
The title of selected articles are appended to the content of documents and the best
performance is obtained by doubling the weights of terms appearing in the titles. A
framework is proposed in [51] to enhance the traditional document similarity measures
using the semantic relations extracted from Wikipedia. Different combinations of the
semantic relations (synonyms, hypernyms, and associated relations) with traditional
similarity measures are evaluated in experimental results. A linear combination of
cosine similarities based on document-term representation and document-concept
representation is also proposed in [58] to enhance the document similarity measure.
A similar approach is proposed in [52] to enhance the document similarity measure.
Document contents are first mapped to Wikipedia concepts and categories in this
algorithm. The document cosine similarity measure is then combined with cosine
similarities of document concepts and categories. No significant improvement is
obtained for the partitional text clustering and the approach is more effective in

hierarchical text clustering.

Wikipedia categories are also used in [96] to enrich document representation.
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Experimental results demonstrate that document-category representation is not as good
as document-term representation in partitional text clustering. Some improvements
are obtained only when a combination of document contents and Wikipedia categories
are used.

Wikipedia concepts are used in [57] to actively find pair-wise constraints for a semi-
supervised clustering algorithm. A document-concept representation is first created
for the collection. All the extracted concepts are then clustered. Those documents
with higher weights in concept clusters are then submitted to a noise-free oracle to
form must-link and cannot-link constraints.

A framework to label document clusters is proposed in [19]. The application of the
framework is in interactive text clustering, where an interface is provided for users.
Instead of representing a document cluster by its top keyterms, the framework exploits
categories and titles of the relevant Wikipedia articles to assign a label.

A graph based distance among Wikipedia articles is presented in [117]. Nodes
of the graph are articles and edges are weighted by their content or link similarity.
The documents are mapped to the nodes based on the cosine similarity among their
contents and articles’ text. A random walk model is then proposed to measure node
distance. Node distance is then used to measure document distance.

The BOW document representation is replaced by a concept model representation
using the features extracted from Wikipedia articles in [103]. The concept model
representation is then used in a hierarchical algorithm to cluster the documents.

Document representation is also enriched by using WordNet. Synonyms and
hypernyms extracted from WordNet are used in [49] to represent documents instead of
(or in combination with) their contents. However, the coverage of WordNet is limited
and it is not comprehensive enough to find all the concepts mentioned in a document
collection [52].

Overall, there are three approaches to enrich document representation of the BOW

model:
1. The BOW model is completely replaced by a conceptual model.

2. The BOW model is enriched by the information extracted from an external

source, like relevant concepts added to the content of documents.
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3. The document similarity measure based on BOW is enhanced by a similarity

measure based on a conceptual model.

To the best of our knowledge, no one has proposed an ensemble clustering algorithm
to combine the clusterings generated based on document terms and concepts. This
work shows that we can improve the quality of clusters using the proposed ensemble
algorithm even when representing documents by Wikipedia concepts solely, results in
poor clusterings.

We propose a new framework in order to integrate the Wikipedia concepts in
partitional document clustering. We use the method proposed in Section 4.1.2 to find
lexical seed documents based on document terms. We propose another method to find
semantic seed documents based on concepts. We then generate two clusterings of a
collection based on semantic and lexical seeds. An ensemble module finally combines
the clusters generated by these seed documents. To evaluate the performance of
our method, we performed empirical experiments on some real text datasets. Our
experimental results show that the quality of clusters is significantly improved by
utilizing Wikipedia concepts.

The remainder of this chapter is organized as follows. Section 6.1.1 describes a
partitional clustering algorithm based on Wikipedia concepts. Section 6.1.2 explains
our ensemble clustering algorithm. Experimental results on some real text datasets

are reported in Section 6.2. Section 6.3 presents conclusions.

6.1 Methodology

In this section, we first show how LDC algorithm can be applied on document concepts.

We then propose our ensemble clustering algorithm.

6.1.1 Semantic Double Clustering

Besides the document-term representation, we represent a document as a bag of
concepts (BOC) extracted from Wikipedia. The wikified concepts are the titles of
the relevant articles. Each entry of the document-concept matrix is a feature value
computed based on TFIDF. Given the document-concept matrix, we can use the LDC

algorithm proposed in Section 5.1 to cluster documents. The semantic clustering
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algorithm consists of the following steps:

1. Concept Clustering: Fuzzy c-means is used to cluster concepts (columns of

the document-concept matrix). It groups the concepts into k concept clusters.
After concept clustering is done, each concept cluster includes only concepts
whose memberships are greater than 1/k. This method of defuzzification results
in a soft clustering. Non-discriminative concepts are then removed from the

concept clusters using the greedy approach proposed in Section 5.1.1

. Finding Seed Documents: Given the distilled concept clusters, seed docu-

ments are extracted using the method described in Section 5.1.2.

. Document Clustering: For cach distilled concept cluster, we compute a

document centroid over its seed documents. The distances of each document to

the centroids are then used for document clustering.

The algorithm is quite similar to the LDC algorithm where terms are replaced by

concepts. The main steps of this Semantic Double Clustering (SDC) are shown in

Algorithm 5.

Algorithm 5 Semantic Double Clustering (SDC)

Input: a document-concept matriz Mpc, k

Output: k document clusters {W,}r_,

1:

10:

use fuzzy c-means, Algorithm 1, to generate k concept clusters {C’Cp};j:l
remove non-discriminative concepts from the concept clusters

for each distilled concept cluster CC), do

extract conceptual representative (seed) documents

compute a document centroid over the representative documents:

zdi € conceptSeeds(CCp) wi*d;
|conceptSeeds(CCl)|

conceptCentroid, =

end for

for each document in the dataset d; do

measure its similarities to the document centroids

assign the document to each document centroivd with a membership value:

sim(d;,conceptCentroid,,)
P(Wp|dz) - Sk sim(ds,conceptCentroid
=1 i ptCentroi ]-)

end for
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6.1.2 Ensemble Lexical-Semantic Double Clustering

Given the documents in the BOW and BOC models, our ensemble algorithm clusters

a document collection in the following phases:
1. Term clustering and topic keyterm selection
2. Finding lexical seed documents
3. Finding semantic seed documents
4. Document clustering using the consensus method

Phases 1 and 2 are the same as Phases 1 and 2 of our partitional algorithm,
Section 5.1.1 and Section 5.1.2. Fuzzy c-means clusters terms (columns of the document-
term matrix) into k groups. The Var-TFIDF feature selection method distills term
clusters by removing non-discriminative terms. The lexical seed documents are then
extracted based on the document-term representations. Given the lexical seeds, we
compute the lexical document centroids using Eq. (5.1).

In Phase 3, we present a method to semantically find seed documents. We first
extract the relevant Wikipedia concepts of each distilled term cluster by wikifying its
terms. We also have the Wikipedia concepts of each document. We thus check to
sce if any document has a common concept with the concepts of a term cluster. We
consider these documents as semantic seeds. The number of common concepts is also
considered as the weight of the semantic seed documents. Document centroids are
then computed as the weighted mean of the semantic seed documents. We call these
document centroids, semantic centroids in the rest of this chapter. Hence, the output
of Phases 2 and 3 are two document centroids, lexical and semantic, for each distilled
term cluster.

Given the lexical and semantic centroids, we generate two clusterings of the
documents in Phase 4. The first clustering is generated by only using the lexical
centroids and the second one is generated by using the semantic centroids.

Reconciling the generated clusters reveals that some documents sit in the same
clusters in these two clusterings. It means that these documents belong to the same
clusters based on the lexical and conceptual relatedness. We treat these documents

as a training set to learn a text classifier. After training the classifier, the remaining
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documents are classified. The main steps of this ensemble lexical-semantic double
clustering (ELSDC) algorithm are shown in Algorithm 6 and Fig. 6.1. The following

sections explain Phase 3 and Phase 4 of the ensemble algorithm in detail.

Finding Semantic Seed Documents

The input of this phase are k distilled term clusters. We extract semantic seed
documents based on the concepts extracted for documents and for distilled term
clusters. The idea is that the semantic seed documents share common concepts with
the distilled term clusters. The semantic seed documents of term cluster T'C,, are

extracted using the following equation:

semanticSeeds(T'C,) = {(d;, w;)| w; = |wikify(d;)N

=1 (6.1)
wikify(T'C,)| AND w; > 0}

where w; is the weight of seed document d;. The input of wikify is a set of terms
or a document’s terms and its output is a set of Wikipedia concepts. The semantic

centroid of T'C), is then computed using the following equation:

ZdiesemanticSeeds(TCp) w; * di
|semanticSeeds(T'C,,)|

semanticCentroid, = (6.2)

where d; is the vector of the i** document in BOW.

Consensus Method

The input of this phase are two document centroids for each term cluster, a lexical
centroid and a semantic centroid. We cluster documents once based on the lexical
centroids and once based on the semantic centroids using the method of Section 5.1.3.
We then combine the generated clusters to form the final clusters.

The idea behind our aggregation is that if a document in both clusterings belongs
to the same clusters, it is more likely that the document is clustered correctly. We
find all these documents and treat them as a training set to train a classifier. After
training is done, the remaining documents are classified. The algorithm of this phase

has the following steps:

e Cluster documents using the lexical centroids
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e Cluster documents using the semantic centroids

e Find the documents with the same clusters in both clusterings
e Treat these documents as a training set to train a classifier

e (lassify the remaining documents

It is worth mentioning that two clusterings are generated based on the same set of
term clusters (or their semantic mappings). So, there is a correspondence between the
clusters of the two clusterings by the structure of our ensemble algorithm. In other
words, if a document is assigned to the respective document clusters of a term cluster,
both lexically and semantically, we say that the document sits in the same clusters.
We used the Naive Bayes classifier available in the Matlab statistical toolbox as the
text classifier in our experiments.

The idea behind this consensus module may fail to take effect if documents are
similar based on bag of words model but dissimilar based on bag of concepts. For
instance, document d; is about Computer Networks and document d; is about Social
Networks. These two documents share some terms but their concepts may be different.
If this case happens for many pairs of documents, there is no guarantee to have

sufficient training data for the text classifier and ELSDC may fail.

6.2 Experimental Results

We show the benefits of integrating Wikipedia concepts in document clustering by
comparing three algorithms LDC, Algorithm 4, SDC, Algorithm 5, and the proposed
ensemble algorithm (ELSDC), Algorithm 6. Three non-stemmed datasets ReutersS-
whole, 20ng-whole, and Classicj are used in these experiments. Non-stemmed datasets
are used since the Wikipedia articles are not stemmed and input of wikify methods are
non-stemmed texts. We used the wikify method proposed in [84] to extract Wikipedia
concepts’.

We first show that BOW is much better than BOC in terms of clustering quality.
For this purpose, we compared LDC to SDC using the document-term and the

document-concept matrices. We ran the algorithms 50 times on each dataset. The

'http://wikipedia-miner.cms.waikato.ac.nz/
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Algorithm 6 Ensemble Lexical-Semantic Double Clustering (ELSDC)

Input: a document collection, k

Output: k document clusters {W,}r_,

1:

—_
_= O

12:
13:

14:
15:
16:
17:

18:
19:

for each document d; do
extract relevant Wikipedia concepts

end for

use fuzzy c-means, Algorithm 1, to generate k term clusters {TC’p}ﬁz1

remove non-discriminative terms from the term clusters
for each distilled term cluster T'C,, do
extract relevant Wikipedia concepts
end for
for each distilled term cluster TC), do
find the seed documents based on the BOW model

compute the lexical document centroids:

2 d; lericalSecds(TCp) Witdi
|lezicalSeeds(T'Chp)|

find the seed documents based on the BOC model

compute the semantic document centroids:

Zdz‘ €semanticSeed5(TCp) W; *di
|semanticSeeds(T'Cp)|

lexical Centroid, =

semanticCentroid, =
end for
cluster the document collection using the lexical centroids

cluster the document collection using the semantic centroids

aggregate the clusterings by finding the documents with the same clusters in both

clusterings
treat these documents as a training set and train o classifier

classify the remaining documents using the classifier
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Figure 6.1: The structure of the ensemble lexical-semantic double clustering algorithm,
Algorithm 6. BOW and BOC are used to represent documents. The wikify module
extracts relevant concepts from Wikipedia. The consensus method consists of a
Naive Bayes classifier, which is trained by using the documents that belong to the
same clusters in both clusterings. The final clustering is generated by classifying
the remaining documents. The wikify module proposed in [84] is used to extract
Wikipedia concepts in this algorithm.

average NMIs and Fmeasures of these 50 runs are shown in Table 6.1. Significant
improvements according to paired-sample T-test with p < 0.05 are indicated by “*”.

We then show that combining the BOW and BOC models in the ensemble
algorithm (ELSDC) generates better results than using BOW alone. For this purpose,
we compared LDC' to the proposed ELSDC algorithm. We ran the algorithms 50
times on each dataset. The average NMIs and Fmeasures of these 50 runs are shown
in Table 6.2. Based on the empirical results obtained in this experiment, we observed

that:

1. We cannot ignore document terms from the clustering process. The comparison
between the BOW and BOC models reveals that the quality of clusters deteri-
orates significantly if document contents are replaced by Wikipedia concepts.
The first cause originates from term polysemy. A term like “tree” has different
meanings in different contexts. Finding the best sense of the disambiguated
terms is still a challenging task in extracting semantic relatedness [84]. The
second reason is that there are many discriminative terms in document contents

that are not shown in the output of wikify modules. Eliminating those terms
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Table 6.1: Comparing the BOW and BOC models by using the lexical document
clustering (LDC') and the semantic document clustering (SDC') algorithms. Each
algorithm is run 50 times and the average NMIs and Fmeasures are shown. The first
value in each cell is Fmeasure and the second one is NMI. The document representation
in BOW generates significantly better results in our experiments. This observation is
consistent with the results obtained in [52].

Datasets

LDC

SDC

20ng-whole

0.6203 £ 0.0213*
0.6328 + 0.0105*

0.4315 £ 0.0176
0.4143 £0.0173

Reuters8-whole

0.6505 + 0.0498*
0.5381 + 0.0289*

0.5166 £ 0.0229
0.2663 £ 0.0282

Classic4

0.9268 + 0.0333*
0.8145 + 0.0302*

0.6729 £ 0.0466
0.4695 £ 0.0528

Table 6.2: Comparison between the proposed ensemble algorithm (ELSDC') and the
lexical document clustering algorithm (LDC). LDC is based on the BOW model, while
a consensus method is used in ELSDC to combine the results obtained from BOW and
BOC. Each algorithm is run 50 times and the average NMIs and Fmeasures are shown.
The first value in each cell is Fmeasure and the second one is NMI. Integrating document
concepts extracted from Wikipedia improves the quality of clusters significantly except
on two datasets 20ng-whole and Classic4 based on Fmeasure.

Datasets

LDC

ELSDC

20ng-whole

0.6203 £ 0.0213
0.6328 £ 0.0105

0.6301 £ 0.0448
0.6695 + 0.0223*

Reuters8-whole

0.6505 £ 0.0498
0.5381 £ 0.0289

0.7213 + 0.0417*
0.5861 + 0.0222*

Classic4

0.9268 £ 0.0333
0.8145 £ 0.0302

0.9387 1+ 0.0326
0.8370 + 0.0184*

was not compensated for by adding Wikipedia concepts in our experiments.

2. The proposed ensemble algorithm (ELSDC') has successfully integrated concepts
in document clustering. Improvements have been obtained even though the

BOC model alone resulted in poor clusters in our experiments.

Overall, we conclude that the ELSDC algorithm is an effective way to integrate
Wikipedia concepts in our partitional clustering algorithm. Besides, no parameter
setting is needed in ELSDC, compared to the algorithms reviewed in Section 2.4. The
proposed consensus method can be used with any partitional clustering algorithm if

term clustering is performed before document clustering.
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6.3 Conclusion

We proposed a new framework for partitional document clustering to integrate
Wikipedia concepts in the BOW model. Our framework consists of an ensemble
algorithm which combines the clusterings generated from BOW and BOC. The docu-
ments with the same labels in the clusterings are used as a training set to train a text
classifier. The trained classifier clusters the remaining documents.

We proposed a method in the framework to extract seed documents semantically.
Semantic seed documents are extracted from term clusters and Wikipedia concepts.
Documents that share Wikipedia concepts with term clusters are considered as semantic
seeds.

Our experimental results demonstrate that the proposed ensemble algorithm
can improve the quality of document clusters even if the clusters obtained from
the document-concept representation alone are inferior to those obtained from the
document-term representation.

The other conclusion is that we should not ignore the documents’ terms in text
document clustering.

As future work, our work can be extended to integrate other information like the

Wikipedia categories or the semantic relatedness among Wikipedia articles.



Chapter 7

User-supervised Document Clustering

One advantage of the clustering algorithms presented in the previous chapters is that
they can be easily adapted for interactive use. We propose three user-supervised

versions of LDC; Algorithm 4, in this chapter:

1. Document-supervised LDC" A set of documents is selected randomly from the
collection and the user is asked to label them, i.e. assign them to a set of classes.
Given the labeled documents, keyterms of each class are extracted using the
x? statistic. The keyterms are then used to initialize the term clusterer, fuzzy

c-means.

2. Term-supervised LDC: A document partitioning of the collection is first generated
and the keyterms of each cluster are then extracted using the x? statistic. The
user is then asked to label the keyterms, i.e. assign them to a set of classes. The

labeled keyterms are then used to initialize the term clusterer and re-run LDC.

3. Dual-supervised LDC" This algorithm is the combination of the Document and
Term supervised algorithms. A set of documents is selected randomly from the
collection and the user is asked to label them. Given the labeled documents,
keyterms of each class are extracted using the x? statistic. The keyterms are
then used to initialize the term clusterer. After generating the document clusters,
their top keyterms are extracted using the x? statistic. The user is then asked
to label the keyterms. The labeled keyterms are then used to initialize the term

clusterer for the next round.

The block structure of unsupervised LDC is depicted in Fig. 7.1. No user supervi-
sion is involved in LDC' and the term clusterer is initialized randomly. We use this
block structure to present the user-supervised versions of LDC.

We have compared the proposed user-supervised algorithms so as to find out which

type of supervision is most appropriate for LDC.

126
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Doc Collection

Random Initializer

Term Clustering

Doc Clustering

Figure 7.1: LDC: The structure of the LDC algorithm. Fuzzy c-means is used for term
clustering. The term clusters are then used to cluster documents. A greedy approach
distills the term clusters in order to remove non-discriminative terms. Representative
documents associated with each term cluster are then extracted and used as seeds to
cluster all documents.
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The remainder of this chapter is organized as follows. Section 7.1 explains the
user-supervised clustering algorithms in detail. Experimental results on some real text
datasets are reported in Section 7.2. This section includes the experiment performed
to compare term labeling with a baseline term selection, and also the experiments
performed to compare different supervision approaches proposed for LDC. Section 7.3

presents conclusions.

7.1 Methodology

In this section, we present three approaches to involve users in document clustering
by using the LDC' algorithm. The amount of user effort needed in each approach is

also discussed.

7.1.1 Document-Supervised LDC

Document-supervised LDC is quite similar to the semi-supervised partitional clustering
algorithms [9, 10], which ask the user to provide seed documents in advance. Semi-
supervised clustering is usually performed in the following way. Before starting the
clustering process, a set of documents is selected from the collection and the user
groups similar documents and assigns a label to each group. Each document is assigned
only to one group. The labeled documents are then used as seeds to initialize the
clustering algorithm. For instance, the documents are used to generate initial centroids
of k-means [9] or generate “must-link” or “cannot-link” pairwise constraints [10].

Labeled documents cannot be used directly in LDC' since term clustering precedes
document clustering as shown in Fig. 7.1. Hence, we need to use the labeled documents
in a different way. For this purpose, we extract the keyterms of the labeled documents
using the x? statistic. The keyterms are used to initialize the term clusterer, fuzzy
c-means, as shown in Fig. 7.2.

The membership of terms in term clusters are stored in a membership matrix in
fuzzy c-means as explained in Section 4.1.1. The membership matrix has k£ columns
corresponding to the k term clusters, and M rows corresponding to the M terms of
the collection.

The matrix is initialized randomly in unsupervised LDC. In Document-supervised

LDC; the keyterms extracted from the labeled documents are used to initialize the
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Doc Collection

Document Labeling

Keyterm Fxtraction

|

Term Clustering

Doc Clustering

Doc Partitioning

Figure 7.2: Document-supervised LDC": The structure of Document-supervised
LDC. The user provides some labeled documents. The respective keyterms of the
labeled documents are then extracted using the x? statistic. The keyterms are used
to initialize the term clusterer. Term clustering and document clustering are then
performed to generate a document partitioning.

matrix. For those keyterms, their corresponding entries of term cluster are set to one.
The entries of the other terms are initialized randomly. The initialized membership

matrix is then fed into fuzzy c-means to generate term clusters.

The user of this algorithm should read at least the title or the first few lines
of the documents and should have enough background knowledge to organize them
in meaningful clusters. The user effort thus includes 1) reading documents and 2)
grouping similar documents into clusters. The interaction is limited to the initialization
step in this algorithm. After labeling the documents, the user has no chance to interact
with the clustering process. The main steps of Document-supervised LDC' are shown

in Algorithm 7.
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Algorithm 7 Document-supervised LDC
Input: a document-term matriz Mpr, k

Output: k document clusters {W,}r_,
1: generate a training set by randomly selecting documents
ask the user to group the training documents
extract the keyterms of the labeled training documents using the x* statistic

initialize the term clusterer, fuzzy c-means, using the extracted keyterms

obtain k document clusters using LDC, Algorithm /

7.1.2 Term-Supervised LDC

The user supervision is in the form of term labeling in Term-supervised LDC. Term
labeling starts after document clustering is done as shown in the main steps of Term-
supervised LDC in Fig. 7.3. A hard partitioning of documents is first generated using
unsupervised LDC. Treating document clusters as true classes, the x? statistic is then
used to extract top keyterms. For each document cluster, we sort the y? values in
descending order. The first f terms are then considered as the top keyterms of the
document cluster.

A term cloud is subsequently created for each document cluster using its respective
top keyterms. The term clouds are displayed to the user and she performs term
labeling. Term labeling is in the form of modifying term clouds using the following

options:
1. Remove a term from a term cloud.
2. Assign a term to another term cloud.
3. Assign a term to multiple term clouds.

It is also possible to merge two or more term clouds, split or even remove them. In
this way, the user can specify the number of document clusters she prefers to generate.
After term labeling is done, we use the supervised term clouds to initialize a
membership matrix for fuzzy c-means. The matrix is initialized randomly except for
those keyterms that exist in the supervised term clouds. For those keyterms, only their

corresponding entries of the term clouds are set to one. The initialized membership
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Dac Collection
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Kevterm Extraction Term Labeling -

Figure 7.3: Term-supervised LDC: The structure of Term-supervised LDC. LDC
generates a document partitioning. The top keyterms of the current document
clusters are then extracted and displayed to the user in the form of term clouds. The
user performs term labeling on the term clouds. The supervised term clouds are
subsequently used to initialize the term clusterer to re-cluster the terms.

matrix is then fed into fuzzy c-means to re-initialize LDC' and obtain new document

clusters.

We perform these interactions for a few iterations until the term clouds of document
clusters satisfy the user. It is necessary to mention that the number of term clouds,

term clusters, and document clusters is the same in user-supervised LDC' algorithms.

The user of this algorithm can continue to interact until the end of the clustering
process. The user effort includes only relocating terms among term clouds. She should
have enough background knowledge to group terms in meaningful clouds. The main

steps of Term-supervised LDC' is shown in Algorithm 8.
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Algorithm 8 Term-supervised LDC
Input: a document-term matriz Mpr, k

Output: k document clusters {W,}r_,
1: obtain initial k document clusters using LDC, Algorithm /
repeat

for each document cluster do

2:
3
4: generate a term cloud using its f top terms based on the x? values
5. end for

6:  perform term labeling

7. wuse the supervised term clouds to re-initialize LDC and obtain k document
clusters

8: until the mazimum number of iterations is reached or the user chooses to terminate

7.1.3 Dual-Supervised LDC

A combination of document and term supervisions is used in Dual-supervised LDC.
Rather than using random initialization in term clustering, the user labels a subset
of documents. Given the labeled documents, the x? statistic is used to extract their

keyterms. The keyterms are then used to initialize the term clusterer.

After generating a document partitioning, the top keyterms of document clusters
are extracted. The user is then asked to label terms by relocating them among term
clouds. The keyterms in supervised clouds are then used to initialize the term clusterer

to re-cluster terms. The block structure of Dual-supervised LDC is shown in Fig. 7.4.

The user of this algorithm can continue to interact until the end of the clustering
process. The user effort includes the user effort of Term-supervised LDC' and the
user effort of Document-supervised LDC. The user should have enough background
knowledge to group terms into meaningful clouds and documents into meaningful

clusters. The main steps of Dual-supervised LDC' is shown in Algorithm 9.

The type of user effort for all these three user-supervised clustering algorithms is
shown in Table. 7.1. Term labeling has the minimum effort since the user should only
relocate terms among term clouds. Document labeling needs more effort since the
user should read at least a few lines of training documents and cluster them properly.

Dual supervision needs the most effort since the user should supervise terms and
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Figure 7.4: Dual-supervised LDC: The structure of Dual-supervised LDC. The user
provides some labeled documents. The respective keyterms of the labeled documents
are then extracted using the x? statistic. The keyterms are used to initialize the term
clusterer. LDC generates a document partitioning. The top keyterms of the current
document clusters are then extracted and displayed to the user in the form of term
clouds. The user performs term labeling on the term clouds. The supervised term
clouds are subsequently used to initialize the term clusterer to re-cluster the terms.
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Algorithm 9 Dual-supervised LDC
Input: a document-term matric Mpr, k

Output: k document clusters {W,}r_,

1: generate a training set by randomly selecting documents

2: ask the user to label the training documents

3: extract the keyterms of the labeled training documents using the x? statistic

4: initialize the term clusterer, fuzzy c-means, using the extracted keyterms

5. obtain k document clusters using LDC, Algorithm /

6: repeat

7. for each document cluster do

8: generate a term cloud using its f top terms based on the x* values

9:  end for

10:  perform term labeling

11:  use the supervised term clouds to re-initialize LDC' and obtain k document

clusters

12: until the mazimum number of iterations is reached or the user chooses to terminate

Table 7.1: The type of user effort needed in Term-supervised, Document-supervised,
and Dual-supervised LDC

Algorithm User Effort

Document-supervised LDC | Labeling documents: reading a few lines of each document + clustering them

Term-supervised LDC Labeling terms: relocating terms among term clouds
Dual-supervised Labeling documents + Labeling terms
documents.

7.1.4 Supervision Oracles

We used supervision oracles to simulate user interactions and evaluate our algorithms
in this chapter. Although the user profiles considered in the oracles may be different
from the real users’ interactions, we can provide a comprehensive comparison among
the algorithms with different parameter settings. Two supervision oracles are generated

from class label of documents for this purpose:

1. Document Labeling oracle: This oracle knows the class label of documents.
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2. Term Labeling oracle: This oracle knows the label of terms, which are computed

from the class labels based on the y? statistic.

Document Labeling Oracle

The input of the Document Labeling oracle is a document and the output is its class
label. This is analogous to the case that the real user never makes any mistake in
labeling the training documents. She put documents with the same class labels in
same clusters. However, users may make mistake especially when the documents
come from similar topics. To include these cases in simulated user interactions, the
Document Labeling oracle has a parameter P, that indicates the degree of user’s
expertness. F,;, = 1 corresponds to the perfect user who never makes any mistake,
and P.;, = 0 mecans no supervision is performed. Any value between zero and one
indicates the level of user’s knowledge about the dataset.

Based on this parameter, the simulated user either assigns a label to a document
correctly or she says “I do not know”. In the latter case, she might remove the
document from the training set or assign it to a random cluster. The probability of
removal is set to 0.5 and the probability of random assignment is set to 0.5/k in this

case. The main steps of the Document Labeling oracle are shown in Algorithm 10.

Algorithm 10 Document Labeling Oracle
Input: training documents

Output: training documents with labels
1: for each document do
if rand/0,1] < P.,, then
assign the document to the true cluster

else if rand/0,1] < 0.5 then

2:
3
4
5: remove the document from the training set
6: else

7 generate a random number between 1 and k
8 assign the document to the random cluster
9: end if

10: end for
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The amount of user effort of the Document Labeling can be measured using the

following formula:

UserEffort = sizeOf(trainingSet) * time(labeling a document) (7.1)

Term Labeling Oracle

Term Labeling oracle knows the label of terms based on document class labels using
the following process. Given the true class of documents, the y? statistic is computed
and each term is then assigned to the class with the largest y? value. The main steps
of this process are shown in Algorithm 11

Since users may make mistakes in supervision, this oracle has a parameter P, too
that indicates the degree of user’s expertness. P.,, = 1 corresponds to the perfect user
who never makes any mistake, and F.,, = 0 means no supervision is performed. Any
value between zero and one indicates the level of user’s knowledge about the dataset.
Based on this parameter the simulated user either assigns a term to a term cloud
(cluster) correctly or she says “I do not know”. In the latter case, she might remove
the term from a cloud or assign it to a random cloud by mistake. The probability of
removal is set to 0.5 and the probability of random assignment is set to 0.5/k in this

case. The main steps of the term labeling oracle are shown in Algorithm 12.

Algorithm 11 Generating term class labels
Input: A document collection, document true class labels

Output: term class labels
1: for each term t; do
compute the x* values using Eq. (2.3)
end for
for each term t; do
assign t; to the class with the largest x* value:

label(t;) < argmax, x2(t;, ¢)

end for

The amount of user effort of Term Labeling can be measured using the following

formula:

UserEffort = k * f x time(labeling a term) * (numberOflterations) (7.2)
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Algorithm 12 Term Labeling Oracle
Input: k term clouds

Output: £ supervised term clouds

1: for each term cloud do

2:  for each term in the term cloud do

3 if rand[0,1] < P,,, then

4 assign the term to the true cloud

5 else if rand/0,1] < 0.5 then

6: remove the term from the term cloud

7 else
8 generate a random number between 1 and k
9 assign the term to the random term cloud
10: end if
11:  end for

12: end for

where f is the number of terms in each term cloud before supervision, and k is the

number of term clouds.

7.2 Experimental Results

In this section, we first show the benefits of term labeling as compared to a baseline
user-supervised term selection method, which is inspired by the document clustering
algorithms proposed in [53, 54]. We then perform some experiments to find out the
best supervision approach for LDC in terms of the quality of clusters and the amount
of user effort. We also compare Term-supervised LDC' to some greedy direct clusterers,

which neither use any term clustering nor any supervision in document clustering.

7.2.1 Term Labeling vs. Term Selection

To show the benefits of term labeling over term selection in document clustering, we
compare two term-supervised document clustering algorithms. The main steps of the
term labeling clusterer (TLC) and the term selection clusterer (T'SC) are shown in

Algorithm 13 and Algorithm 14, respectively.
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Table 7.2: Definition of the variables used in the simulated term supervised algorithms
Variable | Definition

k the number of document clusters

the number of term clusters
the number of term clouds

the number of classes

f the number of keyterms in

each term cloud before user supervision

m the size of feature set used for

document clustering

g the coefficient used for re-weighting
terms in FeatureSet

Pezyp the degree of user expertness
B oracle budget (kxf)

Term labeling clusterer, Algorithm 13, calls the Term Labeling oracle, Algorithm 12,
in order to simulate user interactions. This oracle knows the true label of terms as

mentioned above.

The baseline term selection clusterer, Algorithm 14, calls the Term Selection oracle,
Algorithm 15, in order to simulate user interactions. In this oracle, the simulated
user accepts a term as discriminative if the term was among the top m terms of the
dataset [53, 54]. A reference list of the top m terms is generated a priori using the true
classes of documents. The average of x? values of each term in all document classes is
computed for this purpose. The top m terms corresponding to the top average values

form the reference list. The value of m is user-defined.

The user may make mistakes in specifying discriminative terms. She may accept a
term while the term is not discriminative and vice versa. To simulate these mistakes
in Algorithm 15, the Term Selection oracle randomly picks a term from the bottom

half of T', which is considered as a noisy term, and adds it to the current FeatureSet.

It is worth mentioning that the number of queries submitted to both Term Labeling
and Selection oracles are the same in our simulations. The definitions of all variables

used in the simulations are shown in Table 7.2.

All terms are used for document clustering in the Term-supervised LDC, Fig. 7.3.
However, only the best m terms are used in TLC, Algorithm 13. We considered this
change to make TLC fairly comparable to TSC, Algorithm 14.
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Algorithm 13 Term Labeling Clusterer (TLC)

Input: a document-term matric Mpr, k, m

Output: k document clusters {W,}r_,

1: obtain initial k document clusters using LDC, Algorithm 4 with the m best terms

extracted by using the mean-TFIDF term Selection method, Eq. (2.4)

2: repeat

3:

compute x? values for all terms using the current document clusters
sort all terms according to their average x* values in document clusters and
obtain the ordered list T
for each document cluster do
generate a term cloud using its f top terms based on the x? values
end for
perform term labeling by using Algorithm 12
use the term clouds to re-initialize LDC and obtain k document clusters with
the terms included in the term clouds and m - numberOfTerms(termClouds)

best terms of T

10: until the mazimum number of iterations is reached or the user chooses to terminate

Algorithm 14 Term Selection Clusterer (TSC)

Input: a document-term matric Mpr, k, m

Output: k document clusters {W,}r_,

1: obtain initial k document clusters using k-means with m best terms extracted by

using the mean-TFIDF term selection method

2: repeat

3. compute x? values for all terms using the current document clusters

4:  sort all terms according to their average x* values in document clusters and
obtain the ordered list T

5. perform term selection using Algorithm 15 and the ordered list T(1: B)

6:  perform term re-weighting using Algorithm 16

7. obtain k document clusters using k-means with the terms of the FeatureSet and

m - sizeOf(FeatureSet) best terms of T

8: until the mazimum number of iterations is reached or the user chooses to terminate
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Algorithm 15 Term Selection Oracle
Input: an ordered list T

Output: FeatureSet
1: FeatureSet = []

2: for each term in T do

3:  present the term to the user and get reply

4. if rand[0,1] < P,,, then

5: if the user accepts the term then

6 add the term to the current FeatureSet

7 end if

8: else if rand[0,1] < 0.5 then

9 randomly pick a term from the bottom half of T and add it to the current
FeatureSet

10:  end if

11: end for

Algorithm 16 Term Re-weighting
Input: a document-term matriz, FeatureSet, g

Output: a re-weighted document-term matriz

1: for each term in the FeatureSet do

2

multiply its corresponding term vector by g
3: end for

4: normalize all the document vectors using L2 norm
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Figure 7.5: The quality of clusters based on feature (term) labeling (FL) and feature
(term) selection (FS) on Classic4. Neither term labeling nor term selection could
improve the quality of clusters significantly. This is because classes of Classicj are
well separated [56] and term selection and labeling are not able to improve the quality
of clusterings further.

Results and Discussion

We evaluated the performance of two term-supervised clusterers, TLC and TSC, on
six datasets using two evaluation measures. For each dataset, we ran the algorithms

in the following way:

e Each term-supervised algorithm is run 50 times for each degree of expertness

P.., ={0,0.1,0.2, ..., 1.0} and each size of feature set m = {500, 1000, 1500, 2000}

e The average Fmeasures and NMIs of these 50 runs are depicted in Fig. 7.5
to Fig. 7.8 and in Fig. C.1 to Fig. C.2. Standard deviations of the evaluation

measures are not shown to avoid clutter.

e The number of terms in each term cloud before supervision, f, is set to 20. Only
two iterations of term supervision are considered in our experiments. The term

re-weighting coefficient in Algorithm 16, g, is set to 10.

The experimental results show that our term labeling outperformed the baseline
term selection method in most cases. This is more evident when the topics of document

clusters are similar, specifically in News-sim3 and News-rel3.
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Figure 7.6: The quality of clusters based on term labeling (FL) and term selection
(FS) on LA Times. Both term labeling and term selection methods improved the
quality of clusters. The quality of the clusterings obtained by the algorithms is similar
based on NMI.
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Figure 7.7: The quality of clusters based on term labeling (FL) and term selection
(F'S) on News-sim3. Term labeling algorithm significantly outperformed the term
selection algorithm. As the degree of expertness increases, the quality of clusters
obtained by term labeling clusterer improves more.
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Figure 7.8: The quality of clusters based on term labeling (FL) and term selection
(FS) on News-rel3. Feature labeling is much more effective than the term selection
method in improving the quality of clusterings. Unlike term labeling, there is not
much improvement in the results of term selection.

Except for Classic/ where neither term supervision methods could improve the
quality of clusters, our term labeling method generates much better clusters as the
user expertness increases.

The experiments also reveal that the LDC algorithm outperformed k-means in all
cases. This fact can be observed in Fig. 7.5 to Fig. 7.8 when no user supervision is
involved (Peyp = 0).

As the size of term set, m, increases from 500 to 2000, the quality of clusters
mostly increases for both algorithms, regardless of the degree of user expertness.
This observation indicates that it is more useful to focus on term labeling than term
selection and use all the terms that exist in a dataset in our experiments.

Another observation in the plots of Fig. 7.5 to Fig. 7.8 is that term labelling
sometimes reduces the quality of the clusters, compared to the unsupervised mode,
when P, is as low as 0.1. This is because making almost random replacements (P,
near zero) may tend to deteriorate the quality of term clusters by forming a bad

initialization for fuzzy c-means.

7.2.2 Term-Supervised LDC vs. Document-Supervised LDC

In this experiment, we compare Term-supervised LDC, Algorithm 8, to Document-

supervised LDC, Algorithm 7. The goal of this experiment is to find out which type of
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Figure 7.9: The quality of clusters obtained from Term-supervised LDC and Document-
supervised LDC on News-rel3. Term-supervised LDC' significantly outperforms
Document-supervised LDC when f is 30 or more.

supervision improves the quality of clusters better, document labeling or term labeling.

To simulate user interactions, Term-supervised LDC calls the Term Labeling oracle,
Algorithm 12, and Document-supervised LDC' calls the Document Labeling oracle,
Algorithm 10. We also assume that the user of this experiment has comprehensive

knowledge about the datasets, Py, = 1.0.

Results and Discussion

Five datasets are used in this experiment. For each dataset, we ran the user-supervised

algorithms in the following way:

1. Each algorithm is run 50 times for each value of f = {0, 10,20, ...,100} and
the average Fmeasures and NMIs are depicted in Fig. 7.10 to Fig. 7.13. The
run with f = 0 corresponds to the case when LDC algorithm is run with no

supervision. The size of training set is k * f in Document-Supervised LDC.

2. The standard deviations are computed for each value of f in 50 runs and are

shown as error bars in the plots.

3. Only one round of supervision is used for Term-supervised LDC to perform a

fair comparison.
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Document-supervised LDC on News-sim3. Term-supervised LDC significantly outper-
forms Document-supervised LDC.
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Figure 7.11: The quality of clusters obtained from Term-supervised LDC and
Document-supervised LDC' on Reuters8-whole. The quality of clusters are simi-
lar and neither of algorithms could outperform significantly the other one. The error
bars of Term-supervised LDC are smaller and it shows that this algorithm is more
reliable.
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The main observation in this experiment is that Document-supervised LDC could
never significantly outperform Term-supervised LDC. However, Term-supervised LDC
significantly outperformed Document-supervised LDC' in most cases. On the other
hand, Term-supervised LDC' was more reliable in this experiment by having smaller
standard deviation in quality of clusters. Moreover, labeling a document basically
needs more time and user effort than labeling a term. We can thus conclude that the

term supervision is a better interaction approach than the document supervision for
LDC.

7.2.3 Term-Supervised LDC vs. Dual-Supervised LDC

In this experiment, we compare Term-supervised LDC; Algorithm 8, to Dual-supervised
LDC, Algorithm 9. The goal of this experiment is to find out whether adding document
supervision to Term-supervised LDC would improve the quality of clusters further.
To simulate user interactions, Dual-supervised LDC calls the Document Labeling
and Term Labeling oracles, Algorithm 10 and Algorithm 12, and Term-supervised
LDC calls the Term Labeling oracle. We also assume that the user of this experiment

has comprehensive knowledge about the datasets, P, = 1.0.

Results and Discussion

Five datasets are used in this experiment. For each dataset, we ran the user-supervised

algorithms in the following way:

1. Each algorithm is run 50 times for each value of f = {0, 10,20, ...,100} and
the average Fmeasures and NMIs are depicted in Fig. 7.14 to Fig. 7.16 and in
Fig. D.1 to Fig. D.2. The run with f = 0 corresponds to the case when LDC

algorithm is run with no supervision.

2. The standard deviations are computed for each value of f in 50 runs and are

shown as error bars in the plots.
3. Only one round of supervision is used for term supervision.

The main observation of this experiment is that no significant improvement is

obtained after adding document supervision to Term-supervised LDC.
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Figure 7.14: The quality of clusters obtained from Term-supervised LDC' and Dual-
supervised LDC on News-rel3. No significant improvement is obtained after adding
document supervision to Term-supervised LDC.
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On the other hand, dual supervision clearly needs more time and effort than term
supervision. We can thus conclude that term supervision is sufficient for LDC and no

significant improvement can be obtained after adding document supervision.

7.2.4 Noisy-Supervised LDC

The goal of this experiment is to show the benefit of different user supervision
approaches when the simulated user makes mistakes. The underlying clustering
algorithm is LDC' and we compare document-supervised, term-supervised, and dual-
supervised versions of this algorithm in this experiment.

To simulate user interactions, Dual-supervised LDC, Algorithm 9, calls the
Document Labeling and Term Labeling oracles, Algorithm 10 and Algorithm 12,
Term-supervised LDC, Algorithm &, calls the Term Labeling oracle, and Document-
supervised LDC, Algorithm 7, calls the Document Labeling oracle. We assume that

the number of queries per cluster submitted to oracles, f is fixed to 20.

Results and Discussion

Five datasets are used in this experiment. For each dataset, we ran the user-supervised

algorithms in the following way:

1. Each algorithm is run 50 times for each value of P.,, = {0,0.1,0.2,...,1.0} and
the average Fmeasures and NMIs are depicted in Fig. 7.17 to Fig. 7.19 and in
Fig. E.1 to Fig. E.2. The run with P.;, = 0 corresponds to the case when LDC

algorithm is run without supervision.
2. Only one round of supervision is used in this experiment.

The first observation of this experiment is that Term-supervised LDC and Dual-
supervised LDC generate similar results independent of the degree of user expertness.
It means that document labeling could not improve the performance of term labeling
for LDC in this experiment.

The second observation is that the quality of clusterings, obtained from Document-
supervised LDC] is either similar to Term-supervised LDC and Dual-supervised LDC

or it is inferior to theirs. We believe that Document-supervised LDC cannot improve
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Figure 7.17: The quality of clusters obtained from the user-supervised LDC algorithms
on News-rel3 when the user’s degree of expertness is variable. User-supervised
algorithms generate similar results.

the quality of clusterings in case of user’s noisy feedback as Term-supervised LDC
can do.

Overall, we conclude that Term labeling is more effective than document labeling
in our experiments if we consider user efforts as well. Document labeling is most

effective when the user’s feedback is noiseless.

7.2.5 Document-Supervised LDC vs. Seeded K-means

The goal of this experiment is to show the benefit of Document-supervised LDC over
a semi-supervised clustering algorithm. The closest semi-supervised algorithm to
the Document-supervised LDC is Seeded k-means [9], reviewed in Section 2.5.1. We
compare this algorithm to LDC based on document labeling approach.

The user supervision is based on document labeling in both algorithms. A subset
of documents is first randomly selected and the user is asked to label them. The
labeled training documents are then used to generate initial centroids of k-means
in Seeded k-means. After the initialization, the user has no interaction with the

clustering process like in Document-supervised LDC. We also assume that the user
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Figure 7.18: The quality of clusters obtained from the user-supervised LDC' algorithms
on News-sim3 when the user’s degree of expertness is variable. Term-supervised and
Dual-supervised LDC outperform Document-supervised LDC' regardless of the degree
of user expertness.
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Figure 7.19: The quality of clusters obtained from the user-supervised LDC' algorithms
on SMS when the user’s degree of expertness is variable. User-supervised algorithms
generate similar results.
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Figure 7.20: The quality of clusters obtained from Seeded k-means and Document-
supervised LDC on News-rel3. Document-supervised LDC' significantly outperforms
Seeded k-means when f is 20 or more. In case of no supervision, the average quality
of clusters obtained by LDC is better than k-means.

of this experiment has comprehensive knowledge about the datasets, P.,, = 1.0. In

other words, the simulate user never makes mistake in labeling documents.

Results and Discussion

Five datasets are used in this experiment. For each dataset, we ran the algorithms in

the following way:

1. Algorithm are run 50 times for each value of f = {0,10,20,...,100} and the
average Fmeaures and NMIs are depicted in Fig. 7.20 to Fig. 7.24. The run

with f = 0 corresponds to the case when no supervision is used.

2. The standard deviations are computed for each value of f in 50 runs and are

shown as error bars in the plots.

The main observation of this experiment is that Document-supervised LDC' out-

performed Seeded k-means on all datasets. LDC has time complexity of O(NM K>I)
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Figure 7.21: The quality of clusters obtained from Seeded k-means and Document-
supervised LDC on News-sim3. Document-supervised LDC outperforms Seeded
k-means significantly. LDC significantly outperforms k-means as well.
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Figure 7.22: The quality of clusters obtained from Seeded k-means and Document-
supervised LDC on Reuters8-whole. Document-supervised LDC is significantly better
than Seeded k-means in most cases.
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and k-means has the time complexity of O(NM KT). Since the number of clusters, K,
is much smaller than N and M, and the number of iterations I is a constant in exper-
iments, we can conclude that Document-supervised LDC' is a better semi-supervised
algorithm than Seeded k-means in this experiment.

In the final experiment of this chapter, we compare Term-supervised LDC to
some direct unsupervised clustering algorithms. No supervision is used in the direct

clusterers and document clustering is performed without term clustering.

7.2.6 Term-Supervised LDC vs. Unsupervised Direct Clustering

In this section we compare Term-supervised LDC, Algorithm 8, to four unsupervised
direct clustering algorithms. Term labeling is simulated using the Term Labeling oracle,
Algorithm 12. We used four unsupervised clustering algorithms from [118] in this
experiment, including Bisecting 12 (BI2), Bisecting H2 (BH2), Direct 12 (DI2), and
Direct H2 (DH2). The objective functions of these algorithms 12, H2 are introduced
in Section 2.3.2.

Results and Discussion

Five datasets are used in this experiment. For each dataset, we ran the algorithms in

the following way:

1. Each unsupervised algorithm is run 50 times and the average Fmeasures are

shown as horizontal lines in Fig. 7.25 to Fig. 7.32.

2. Term-supervised LDC is also run 50 times for each value of P.,, = {0,0.1,..., 1.0}

and the average Fmeasures are depicted in the plots.

3. The standard deviations are also shown as error bars. The standard deviation

of Term-supervised LDC is computed for each value of P.,, in 50 runs.
4. Only two rounds of supervision used in this experiment.
The main observations of this experiment include the following:

1. LDC significantly outperformed the direct clusterers even without term labeling

on datasets Classic4, SMS, and Reuters8-whole.
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Figure 7.25: The quality of clusters obtained from the unsupervised clusterers, Bi-
secting 12 (BI2), Bisecting H2 (BH2), Direct 12 (DI2), and Direct H2 (DH2)), and
Term-supervised LDC (Interactive) on Classic. LDC significantly outperforms the
direct clusterers in unsupervised mode (P.,, = 0) and also with term labeling. Term
labeling cannot improve the quality of clusters since classes of Classic/ are well
separated. Only 10 terms are used for supervision (f = 10).
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Figure 7.26: The quality of clusters obtained from the unsupervised clusterers, Bi-
secting 12 (BI2), Bisecting H2 (BH2), Direct 12 (DI2), and Direct H2 (DH2)), and
Term-supervised LDC (Interactive) on News-rel3. LDC generates similar results to
the direct clusterers in unsupervised mode (P, = 0). Once the level of user’s expert-
ness reaches 0.3, LDC outperforms the direct clusterers. The standard deviations of
Term-supervised LDC' decreases as the level of user’s expertness increases. Only 10
terms are used for supervision (f = 10).
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Figure 7.27: The quality of clusters obtained from the unsupervised clusterers, Bi-
secting 12 (BI2), Bisecting H2 (BH2), Direct 12 (DI2), and Direct H2 (DH2)), and
Term-supervised LDC (Interactive) on News-sim3. LDC outperforms the direct clus-
terers in unsupervised mode (P.;, = 0) but not significantly. Term-supervised LDC
has the smallest standard deviations. This is more evident when the level of user’s
expertness increases from 0.6 to 1.0. Only 10 terms are used for supervision (f = 10).
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Figure 7.28: The quality of clusters obtained from the unsupervised clusterers, Bi-
secting 12 (BI2), Bisecting H2 (BH2), Direct 12 (DI2), and Direct H2 (DH2)), and
Term-supervised LDC (Interactive) on SMS. LDC significantly outperforms BH2, DI2,
and DH2 in unsupervised mode (P, = 0). Once the level of user’s expertness reaches
0.4, LDC significantly outperforms the direct clusterers. The number of terms for
term labeling is 20 (f = 20).
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Figure 7.29: The quality of clusters obtained from the unsupervised clusterers, Bi-
secting 12 (BI2), Bisecting H2 (BH2), Direct 12 (DI2), and Direct H2 (DH2)), and
Term-supervised LDC' (Interactive) on WebKB. LDC outperforms the direct clusterers
in unsupervised mode (P.,, = 0) but not significantly. Once the level of user’s expert-
ness reaches 0.4, LDC significantly outperforms the direct clusterers. The number of
terms for term labeling is 20 (f = 20).
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Figure 7.30: The quality of clusters obtained from the unsupervised clusterers, Bi-
secting 12 (BI2), Bisecting H2 (BH2), Direct 12 (DI2), and Direct H2 (DH2)), and
Term-supervised LDC' (Interactive) on Reuters§-whole. LDC significantly outperforms
the direct clusterers in unsupervised mode (P, = 0) and also with term labeling.
The number of terms for term labeling is 20 (f = 20).

2. LDC in unsupervised mode generated similar results to the direct clusterers on
datasets News-sim3, News-rel3, and WebKB. Once LDC is enhanced by term

labeling, it significantly outperformed the competitors.

3. On two datasets LA-Times and News-multi7, the direct clusterers outperformed
unsupervised LDC. BH2 significantly outperformed unsupervised LDC on LA
Times and BI2 significantly outperformed it on News-multi7. For these two
datasets, we needed more term labeling to generate similar results to the direct

clusterers.

The conclusion of this section is that LDC can either outperform the direct
clusterers even without supervision or its term-supervised version can be used to
generate similar results. However, more term labeling might be needed on some
datasets in order to generate comparable results to the direct clusterers. For instance,
fuzzy c-means puts keyterms of two classes comp.sys.mac.hardware and misc.forsale
of News-multi7, and two classes Foreign and National of LA Times in one cluster. In
order to separate the subspaces of these classes and extract seed documents, we need

more term labeling. One benefit of LDC over the direct clusterers is that the user
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Figure 7.31: The quality of clusters obtained from the unsupervised clusterers, Bi-
secting 12 (BI2), Bisecting H2 (BH2), Direct 12 (DI2), and Direct H2 (DH2)), and
Term-supervised LDC' (Interactive) on LA Times. The direct clusterers outperform
LDC in unsupervised mode (FP,,, = 0) and it is significant for BH2. Once the level of
user’s expertness reaches 0.7, LDC generates similar results to the direct clusterers.
However, we need to label more terms for this dataset (f = 50).
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Figure 7.32: The quality of clusters obtained from the unsupervised clusterers, Bi-
secting 12 (BI2), Bisecting H2 (BH2), Direct 12 (DI2), and Direct H2 (DH2)), and
Term-supervised LDC (Interactive) on News-multi7. The direct clusterers outperform
LDC in unsupervised mode (P.,, = 0) and it is significant for BI2. Once the level of
user’s expertness reaches 0.4, LDC generates similar results to the direct clusterers.
However, we need to label more terms for this dataset (f = 40).
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can be involved in the clustering process with different types of user-supervision. In
our graphical interface, the user can search for keyterms and make subspaces in these

cases provided that she has background knowledge about the collections.

7.3 Conclusion

We proposed three user-supervised versions of LDC, Document-supervised, Term-
supervised, and Dual supervised. The document-supervised algorithm is similar to
semi-supervised clustering algorithms. Labeling a set of training documents is first
performed by the user. The labeled documents are then used to initialize LDC.

Term-supervised LDC is an interactive clustering algorithm. After document
clustering is done, the top keyterms associated with each document cluster will be
displayed to the user in the form of a term cloud. The user reorganizes the terms
among the term clouds in order to determine her preferred topics of document clusters.
She can also increase or decrease the number of clouds. In this way, the user adjusts
her desired number of document clusters interactively. We did not examine this option
in our simulations. This is because the true number of classes in benchmark datasets
is used for evaluation in this work. This feature is available in the visual interface of
Chapter 8.

Dual-supervised LDC' has a combination of the document and term supervisions.
Labeling document is performed once in advance and term labeling can be performed
interactively till the end of LDC.

Based on the experiments reported in this chapter we can get the following

conclusions:

1. We demonstrated that with a comparable amount of simulated user interactions,
the proposed term labeling approach is more effective than the baseline term
selection approach. This observation suggests that term labeling is a more

effective interactive method in text document clustering.

2. Based on the experiments performed in this chapter, term-supervised LDC could
not improve the quality of clusterings for Classic4, compared to the quality of
clusterings obtained from LDC in the unsupervised mode as shown in Fig. 7.5 and

Fig. 7.25. This is mainly because the classes of this dataset are well separated [56]
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and term labeling cannot improve the quality of clusterings further. The main
advantage of term labeling is in clustering document collections which have
similar topics like News-sim3 and News-rel3. Term labeling helps to separate the
subspaces of similar topics, which in turn improves our proposed seed documents

extraction approach and document clustering.

. We demonstrated that term supervision is better than document supervision for
LDC. No significant improvement is obtained after adding document supervision

to Term-supervised LDC.

. We compared Document-supervised LDC to Seeded k-means. The experiment
revealed that semi-supervision based on LDC is significantly better than semi-

supervision based on k-means in this case.

. We also compared Term-supervised LDC to some unsupervised direct clusterers.
LDC can either outperform the direct clusterers even without supervision or its
term-supervised version can be used to generate similar results. However, more
term labeling might be needed on some datasets in order to generate comparable
results to the direct clusterers. One benefit of LDC over the direct clusterers is
that the user can be involved in the clustering process with different types of

user-supervision.



Chapter 8

Personalized Document Clustering by Term Clouds

The best clustering is the one which reflects the user’s point of view. Personalized
document clustering aims to elicit the user’s preferences with minimum effort and
generate clusterings matching her point of view. It has broad applications in practice
and anyone who has a document collection confronts this problem at least once.
For instance, students writing a thesis, professors writing a proposal or planning a
reading course, or a conference chair organizing sessions of a conference. It can help
in organizing files into folders on a laptop or PC, or grouping personal emails into

multiple inboxes.

We propose a visual interface for interactive clustering of text document collections
in this chapter. Interaction is in the form of term labeling and the underlying clustering
method is the Term-supervised LDC algorithm proposed in Chapter 7. The interactive
clustering is performed in the following way. The keyterms of document clusters are
displayed as term clouds in the interface. The user is then asked to label keyterms by
relocating them among the clouds. Making new clouds, removing them, splitting or
merging them are the other available operations in the interface. The supervised term

clouds are then used to initialize Term-supervised LDC to re-cluster documents.

We have conducted a user study to evaluate the interface and its underlying
algorithm. Analysis of the data gathered through the user study reveals that different
users have different points of view in clustering the same collection. The effectiveness of
using term clouds in clustering text corpora is also evaluated through users’ comments.
The comments confirm that presenting the topics of document clusters in the form of
term clouds is effective in exploring text corpora. Participants also agreed that they

could generate their desired number of clusters by using the interface.

The remainder of this chapter is organized as follows. Section 8.1 explains the user
interface implemented to support Term-supervised LDC. Section 8.2 explains how

users interact with the interface. The user study performed to evaluate the interface

169
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is reviewed in Section 8.3. Section 8.4 reviews the comments and data gathered in

user study. Section 8.5 presents conclusions and future work.

8.1 User Interface

The interface is implemented as a client-server web application and the interaction
is through a web browser. The interface consists of three main panels as shown in

Fig. 8.1:

e Insight Panel: This panel includes utility buttons, a drop-down menu, and
some miniature term clouds. Each miniature term cloud shows four to five
important keywords of each document cluster. The number of clouds is the
same as the number of document clusters and this number is initially asked from
the user. Miniature term clouds give the user a broad insight into the topics of

document clusters. The following utility buttons are considered in this panel:

— button +: It creates a new term cluster. The cluster has no terms or related
documents initially and is considered empty. The user can assign terms to

the cluster and create its term cloud.

— button O: It redraws the miniature term clouds. The position of terms in

the clouds is selected randomly.

— button C" It shows the fixed term clouds of the current session. Each run
of the interface is a session. After term labeling, the participant should fix

the clouds.

— button U: It opens the upload page. The users can upload their PDF

documents from that page.

— button S: It saves all the fixed term clouds of the current session into the
server. The user can fix a term cloud in the current session, but fixed clouds
are not saved permanently in the system unless the user saves them with
this button. The sessions are saved based on the system date and time and
will be kept in the user’s profile. The drop-down menu of the panel shows
the list of saved sessions. By selecting a session, its corresponding fixed

term clouds are shown in a pop-up window as depicted in Fig. 8.2. The
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term clouds can be loaded from the pop-up window into the Interaction
Panel. If the user does not fix a cloud, it means that she does not like the

respective cluster and it should be removed.

— button 7: It opens the user-guide page. The main steps of the interactive
document clustering along with some videos and pictures are provided in

this page.

e Interaction Panel: Term labeling is performed in this panel. The user selects
two clusters every time. For each selected cluster, a document view and a
keyterm tree view are displayed. The document view lets the user see the
content of the documents. She also can download the respective PDF files of
documents through the links provided. The number of documents in the selected

cluster is also shown on top of document view.

The tree view includes top 150 keyterms of the selected cluster computed based
on the current partitioning by using the y? Statistic. There is a white panel
between two clusters. User-selected terms of the left cluster are in blue and
those of the right cluster are in green. The terms in red belong to neither of the
selected clusters. The main duty of the user is to select the important keyterms
of each cluster and put them into the white panel. The following operations are

provided for this white panel:

—_

. Adding terms to the panel by clicking on terms in tree views.
2. Adding terms to the panel by clicking on terms in document content view.
3. Removing terms from this panel by double-click.

4. Drag and dropping terms to left or right of the white panel to relocate

them between the clusters.

5. Drag and dropping terms to change their vertical positions. The vertical
position of the terms show their relevance to the respective clusters. The

term at the top of the panel is the most relevant one.

The buttons in the Interaction Panel have the following functionalities:
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— button ’Cloud’: It re-create the term cloud based on the top 20 to 25 terms
of the respective tree view. The keyterms in a tree view are descendingly

sorted based on their relevance to the respective cluster.

— button "My cloud’: It creates a cloud based on the blue or green terms.

This is the cloud generated based on the user-selected terms.
— button 'Clear Cloud’: It removes the terms from the cloud.

— button 'Clear Terms’: It removes the blue or green terms from the white

panel.

— button 'Fix’: It fixes the cloud generated from blue or green terms. The

fixed clouds are saved in the current session.

— button ’Send’: Tt sends the fixed term clouds of the current session to the
Term-supervised LDC' algorithm on the server so as to re-cluster documents
based on the user’s term labeling. The number of fixed term clouds specifies
the number of document clusters. The terms in the term clouds are used
to initialize the term clusterer of Term-supervised LDC. The most relevant
term will get a value of 1 in the membership matrix of fuzzy c-means. The
membership value of the least relevant term is 0.5 and the other terms have
a value between 0.5 and 1 based on the following formula:

0.5
M; -1

Membership(t;) = 1 — (1—1) (8.1)

where M; is the number of terms selected for a cluster by user, and 7 is the
position of term ¢; in the white panel. The position of the most relevant

term is 1.

There are four drop-down menus in the Interaction Panel. Two menus are
used to select the clusters and the other two are used to explore the content of
documents. There is also a filter option in each document view. This option
lets the users search for the documents based on the terms they select from tree

Views.

e Cloud Panel: This panel consists of two sub panels to show term clouds. Each

cloud shows at most 25 keyterms of each cluster. The font size and transparency
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Figure 8.1: The visual interface implemented to support Term-supervised LDC. Insight
Panel provides a broad insight into the topics of document clusters. The term labeling
is performed through the Interaction Panel. Could Panel shows the term clouds the
system generated or the term clouds generated based on the user-selected terms.

of terms in the clouds indicate their relevance in the respective cluster. The
vertical position of the blue or green terms in the white panel are used for this

purpose.

The Term-supervised LDC' algorithm is implemented in Python'. Uploading PDF
documents into server is performed using Uploadify module? . The content of PDF
documents are extracted using XPDF module®. All the pre-processing steps are
implemented in Perl*. The main interface is implemented using HTML and JavaScript

libraries like JQuery®, D3, and ExtJs".

'https://www.python.org/
2http://www.uploadify.com/
3http://www.foolabs.com/xpdf/Theco.html
‘http://www.perl.org/
Shttp://jquery.com/

Shttp://d3js.org/
"http://www.sencha.com/products/extjs/
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Figure 8.2: A sample of a saved session. Three term clouds are fixed in this session.
The user can load the save clouds from this page into the white panel of the Interaction
Panel by clicking on “Load Cloud”. The drop-down menus next to the buttons let the
user select in which side of the white panel the terms should be loaded.

8.2 User Interaction

In this section, we present the main steps of the user interaction. We also present the
best scenario to generate user-desired clusters by using our interface.

The whole user interaction consists of the following three main steps:

1. The user uploads her documents in PDF format. The contents of the documents

are pre-processed and then a document-term matrix is generated.
2. The user interacts with the interface so as to generate her preferred partitioning.

3. The underlying clustering algorithm generates a clustering based on the user’s
preferences. The generated clustering is provided in Zip format and she can

download the clusters from the links provided in the interface.

To generate a desired document clustering, the participant needs to send her fixed
term clouds to the server. The term clouds are used to guide Term-supervised LDC.

Based on our experiences, the best scenario to perform this task includes two phases:

1. Exploration Phase: The user runs the clusterer multiple times with different
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numbers of document clusters. Each run corresponds to a session. In each

session, the user performs term labeling in the following way:

(a) The user explores the automatically generated document clusters.
(b) If she likes a cluster:

e She should create a term cloud by selecting the best keyterms rep-
resenting the respective topic. Keyterms of tree view or document

contents can be used for this purpose.

e She also decides on the relevance of keyterms by tuning their vertical
positions.

e She fixes the respective cloud.

(c) After fixing keyterms of interesting clusters, she saves the fixed clouds of

the session.

2. Closure Phase: In this phase, the user has explored the collection and decided
on the number of document clusters she likes to generate. The user should now
send the fixed term clouds to Term-supervised LDC on the server. She just
needs to have all the fixed term clouds in a session and click on ’Send’ button.
For this purpose, she can use the fixed term clouds of the current session, or load
the clouds of the saved sessions. She either loads a saved cloud into a new empty
cluster or into an existing cluster whose terms are not fixed. After loading all
desired term clouds in the current session, the user sends them to the server to
generate a new clustering. She can also go back to the Exploration Phase to

modify her term clouds.

8.3 User Study

A group of 30 computer science students have participated in the user study. There
was no restriction on the amount of time they spent on the study and they could do
the study anywhere at any time. We have considered the following assumptions about

a participant:

1. She is familiar with the concept of document clustering in general.



176

2. She has read scientific papers and knows the concept of keyterms.

3. She has enough background knowledge to cluster her document collection. In
other words, she should be able to organize her documents in folders on her

computer.

The user study is performed in two modes. In the first mode, a participant
clusters her own document collection. In the second mode, a document collection is
shared among multiple participants, but each participant must cluster the collection
individually. The only difference is that a collection is shared in the second mode.

More information about these two modes is provided below:

1. Individual participation: Each participant has her own document collection.
She uploads her documents into the system and performs the interactive clus-
tering. After the user study, she fills out a questionnaire so as to rate her
satisfaction with the interface. 21 individual participants have interacted with

the interface in this mode.

2. Group participation: In this mode, we have a group of individual participants
who are asked to cluster a document collection. Each participant must generate
a partitioning individually. After document clustering, each participant fills out
a questionnaire and provides some comments. The purpose of this participation
is to find out whether the participants have different points of view in clustering
the same collection. A group of 9 participants with research interest in text
mining has clustered a collection of 300 scientific papers in this mode. The
participants are the members of a study group who meet weekly to discuss
scientific papers. The collection includes all the papers they have discussed

already.

We create operation logs to find out the most frequent operations used during the

interactions with the interface.

8.4 Results and Discussion

In this section, we analyze the data obtained from the user study. The analysis is based

on the questionnaires the participants filled out and the system logs generated during
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Table 8.1: The participants’ ratings in the questionnaire

Rate Label
1 “Strongly Disagree”
2 “Somewhat Disagree”
3 “Neutral”
4 “Somewhat Agree”
5 “Strongly Agree”

their interactions with the interface. There are 20 statements in the questionnaire and
the participants have rated them by a value between one and five. The label of the

rates are shown in Table 8.1.

Different Points of View

The aim of this analysis is to find out whether the participants of the group participation
mode have different points of view in clustering the collection. We created the
collection for these participants. Each participant then clustered the collection without
collaboration with the other participants of the group.

The maximum number of clusters generated is 7 and the minimum number is 3
as shown in Fig. 8.3. The top five keyterms of clusters generated by participants are
shown in Table. 8.2.

Users 1 and 3 have generated three clusters with almost similar topics: Visualiza-
tion, Subspace Projection, and Semantic Analysis. Users 5, 6 and 7 have generated
five clusters. Four clusters are common among them including Sentiment analysis,
Visualization, Subspace Projection, and Semantic analysis. Users 8 and 9 have gener-
ated four clusters with similar topics: Sentiment Analysis, Visualization, Subspace
Projection, and Semantic Analysis. User 4 has generated six clusters with topics:
Sentiment Analysis, Visualization, Subspace Projection , Semantic Analysis, Super-
vised Learning, Document Summarization. User 2 has generated seven clusters. He
has generated a cluster about Topic Modeling (LDA) which has not been seen in the

others’ clusterings.
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Number of Document Clusters

Figure 8.3: Different numbers of document clusters are generated in a group of 9
participants. The average number of clusters is 4.66 and its standard deviation is 1.32.
The collection includes 300 scientific papers in the area of text mining.

The number of generated clusters and their topics in this case confirm that different
users may generate different partitionings of the same collection even in a small group
of participants in this user study.

We also analyzed the amount of time spent by the participants. The analysis
shows that there is no correlation between the number of obtained clusters and the
interaction time, based on Spearman® and Kendall® correlation tests. For instance,
users 3 and 6 have both interacted between one and two hours, while user 3 has
generated three but user 6 has generated six clusters. Or, users 5, 6, 7 have spent

different times but generated the same number of clusters.

User-supervised clustering

We analyze the participants’ opinions about being able to change the number of
clusters and their topics in this section. Three statements are considered in the

questionnaire for this purpose:

1. The automatically generated clusters are far from what you desired.

8http ://en.wikipedia.org/wiki/Spearman’s_rank_correlation_coefficient
Yhttp://en.wikipedia.org/wiki/Kendall’s_tau
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Table 8.2: The top five keyterms of the clusters generated in the group participation.
Different numbers of clusters with different topics are generated.

User ID | Top keyterms

visual,displays,visualizations,visualization,visually
1 subspaces,subspace,projected,projections,principal
gabrilovich,lexical,disambiguation,wordnet,markovitch

gabrilovich,markovitch,strube,ponzetto,staab
duc,multidocument,summarizer,marcu,radev
visual,infovis,displays,graphics,visually,displayed

9 subspaces,projections,partitioning,variance,gaussian
tweet,twitter,tweets,friends,celebrities
icio,lda,dirichlet,blei,erences
polarity,pang,subjectivity,neutral,wiebe

visual,visualization,displays,visualizations, visually
3 gaussian,dimensional,variance,subspaces,criterion
lexical,wordnet,acl,linguistic,sentence

sentiment,polarity,opinion,pang,sentiments
visual,visualization,visualizations,visually,displays
gabrilovich,markovitch,wikipedia,disambiguation,staab
4 multidocument,duc,summarizer,marcu,rouge
subspaces,subspace,principal,projected,orthogonal
mccallum,icml,cohn,neural,learner

sentiment,polarity,opinion,pang,twitter
scientometrics,citations,chairs,citespace,fronts

5 visual,displays,visualization,displayed,exploration
subspaces,gaussian,subspace,variance,projections
lexical,wordnet,gabrilovich,senses,ontology

principal,subspaces,subspace,projections,pca
mccallum,generative,duc,cohn,supervised

6 polarity,sentiment,opinion,pang,sentiments
gabrilovich,markovitch,disambiguation,wordnet,ontology
visual,visualization,visualizations,visualizing,interfaces

gausslan,variance,subspaces,subspace,projections
betweenness,velardi,citations,paths,cited

e visual,visualization,displays,displayed,infovis
polarity,pang,opinion,sentiment,sentiments
gabrilovich,markovitch,disambiguation,milne,relatedness

subspaces,centroids,subspace,projections,projections
pang,polarity,opinions,sentiments,twitter

8 gabrilovich,disambiguation,wordnet,markovitch,ontology
visual,visualizations,visualization,displays,layout

opinion,polarity,sentiment,opinions,pang
visual,displays,visualizations,visualization,visually
9 lexical,wordnet,gabrilovich,senses,disambiguation
subspaces,variance,gaussian,dimensional,subspace
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2. It is necessary to be able to change the number of clusters.

3. It is necessary to be able to change the topics of document clusters generated

automatically.

Dependency tests based on Spearman and Kendall correlations reveal that:

e Statements 2 and 3 are independent of statement 1. This means that the partic-
ipants like to be involved in the clustering process no matter the quality of the
clusters generated automatically. Regarding the first statement, four participants
selected “Somewhat Agree”, eight selected “Neutral”, fifteen selected “Somewhat
Disagree”, and three participants selected “Strongly Disagree”. Therefore, 13%
of participants did not like the automatically generated clusters and for the

other 87%, the clusters generated by LDC are close to what they expected.

e Statements 2 and 3 are dependent on each other. This means that if a participant
likes to change the number of clusters, she also likes to change the topics of
clusters and vice versa. Hence, tuning the clustering algorithms with different
numbers of clusters is not sufficient and the participants like to be able to change
the topics of document clusters as well. In the 30 questionnaires, only two
participants disagree with the second statement and three participants disagree

with the third one.

e The participants’ ratings to these three statements are independent of the amount

of time they spent on clustering.

The main observation of this analysis is that even though LDC can generate
clusterings which are close to what participants like to generate, they still like to
interact with the clustering process in order to generate their desired clusters.

In the following two analyses, we try to find out whether the visual interface was
successful in generating user-desired clusters. We intend to evaluate the role of term
clouds in exploring a collection and generating document clusters in user-desired topics.

We also evaluate the interface in generating desired number of document clusters.
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Topics of document clusters

The aim of this analysis is to evaluate the presentation of document clusters topics
in the form of term clouds. We considered the following three statements in the

questionnaire for this purpose:
1. Term cloud visualization is a useful way in exploring the topics of a collection.

2. Term cloud visualization and term labeling is a useful way in generating desired

cluster topics.

3. It is easy to identify the topic of a document cluster from the keyterms in the

corresponding term cloud.
Our analysis reveals the following facts about the statements:
e These statements are independent of the amount of interaction time.

e Only one participant somewhat disagreed, two participants were neutral and

the remaining 90% of participants agreed with the first statement.

e Regarding the second statement, only one participant somewhat disagreed, one

participant was neutral, and the remaining 93% of participants agreed.

e Regarding the third statement, two participants somewhat disagreed and three
were neutral. Around 83% of participants agreed that it is easy to understand

the topics of clusters from the keyterms included in the term clouds.

The participants’ feedback confirms that term clouds visualization is an effective
way of presenting topics of document clusters. It is also effective in generating
clusters in desired topics. This observation also confirms that Term-supervised LDC
was successful in generating clusters matching users’ preferences. In other words,
initializing fuzzy c-means based on the supervised term clouds is an effective way of

involving users’ feedback in the clustering process.

Number of document clusters

In order to evaluate the role of the interface in generating the user-desired number of

clusters, we considered two statements in the questionnaire:
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1. Term cloud visualization is a useful way to find a desired number of clusters.

2. Tt is casy to determine a desired number of clusters.

Based on the analysis performed, we found the following results:

e Dependency tests based on Spearman and Kendall correlations reveal that the
first statement is independent of the interaction time, but the second one has

an inverse correlation as shown in Fig. 8.4.

e Only 6.6% of participants disagreed with the first statement and 20 participants

agreed that the visualization is useful to find a desired number of clusters.

e Regarding the second statement, only two participants disagreed as shown in

Fig. 8.4.

— Participant A also believes that the term cloud visualization is not a useful
way to find desired number of clusters, the first statement of this analysis.
She also somewhat disagreed with the statement “the interface is fast
enough as an interactive system.” However, she is either neutral or agreed
with the other statements of the questionnaire. For instance, she somewhat
disagreed with the statement “The automatically generated clusters are far

from what you desired.”

— Participant B never agreed with any statement of the questionnaire. Her
opinion about the statement “The automatically generated clusters are far
from what you desired” is also neutral. She also believes that the interface

is not fast enough to be used interactively.

The dependency tests show that there is no correlation among these two partici-
pants’ ratings in the questionnaire. Besides the statements of this analysis, the
other common point between these two participants is that the system is not
fast enough to be used interactively. We thus evaluate the users’ rating to the
statement “The user interface is fast enough as an interactive system” for this

purpose.
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Statement: It is easy to determine a desired number of clusters.
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Figure 8.4: The participants’ ratings to the statement “It is easy to determine a desired
number of clusters.” The ratings have an inverse correlation with the interaction time
the participants spent in the study.

The statement is independent of the interaction time. Out of 30 participants,
27 participants agreed that the system is fast and only 3 participants disagreed.

Hence, the running time of the interface was acceptable to 90% of participants.

One possibility is that our server was busy during the user study of participants
A and B since participant A gave us the following comment:
“If it runs on a local machine, I imagine it’d be faster, but running the clustering

algorithm on a server seemed to be slow more often than I wanted.”

Overall, we could not find out why participant B had difficulties in clustering
her collection. Her only comment in the questionnaire is that “From the point
of the view of aesthetics, the user interface is not very pretty. Maybe a new

design can be conducted to the layout and the colors combination.”
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Document Content View

A document content view is considered for each document cluster in the interface.
This view helps the user in exploring the content of documents and getting better
insight into the clusters. They can also add a term to a term cloud from the content
of documents. In this analysis, we try to evaluate the role of this view in document

clustering. Two statements are considered in the questionnaire for this purpose:

1. It is useful to have document content views in the user interface.

2. It is easy to select a keyterm and add it to a cluster from document content

views.
The following facts are obtained in this analysis:

e The participants’ ratings to these two statements are independent of the inter-

action time.

e Only three participants did not find the document view useful and seven partici-
pants are neutral. Around 67% of participants mentioned that this view was

useful.

e Three participants mentioned that it was not easy to add a term from content
view and two participants are neutral in this case. Therefore, 83% of participants

did not have difficulties in adding terms from this views

These results confirm that the participants may like to take a look at the contents
even though the underlying clustering algorithm, Term-supervised LDC] is based on
term labeling. Besides, a participant gave a comment that “Visualization of document
clusters in addition to terms” should be added to the visualization. Based on the
operation logs, we will later show that the participants rather explore the document
clusters and make sure that they have generated a good cluster than selecting terms

from documents’ contents.

Document Clustering Tool

In this experiment we evaluate the participants’ opinions about our visual interface in

general. We put two statements in the questionnaire for this purpose:
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1. The user interface is a useful tool for document clustering in general.
2. With proper documentation, I would like to use the interface in the future.
We get the following facts from the ratings:

e The participants’ opinions respective to these statements are independent of the

Interaction time.

e One participant somewhat disagreed with the first statement and two participants
were neutral. Hence, 90% of participants believe that the interface is a useful

tool in document clustering.

e Regarding the second statement, one participant somewhat disagreed and six
participants were neutral. Around 77% of participants would like to use the

interface in the future provided proper documentation.

These results confirm that the visual interface was successful in involving user

interaction in the clustering process and generating user-desired clusters in this study.

Frequency of Interface Operations

We have created a log from the participants’ interactions with the interface. During
the user study, 15834 operations are recorded in the log. The list of operations along
with their frequency percentage is shown in Table 8.3. The log of the interface reveals

the following facts about the interactions:

e The most frequent operation is “Relocating a term” which includes assigning
a term from one cluster into another, or changing the relevance of a term in a

cluster.

e The four most frequent operations are related to term labeling including: Relocate
a term, Remove all terms, Add a term from terms tree view, and Remove a

term.

e Even though our analysis confirms the usefulness of document content views, the
system log shows that the participants prefer to add a term from tree views than

content views. The frequency of adding a term from tree views is nine times
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Table 8.3: The participants’ operations in the user study

Operation Frequency Percentage

Add a new cluster 0.36%

Fix the selected terms 4.7%
Remove a term 7.19%
Remove all terms 12.69%

Add a term from document contents 1%
Add a term from terms tree view 9.10%
Relocate a term 46.34%
Filter documents by terms 0.49%
Save a session 0.71%
Open a saved session 1.48%
Load a cloud from a saved session 1.66%
Send the fixed clouds to server (re-clustering) 0.57%

larger than adding from document contents. It reveals that the participants
browse the document contents to get more insight about the clusters than finding

an informative term.

e The frequency of re-clustering is 91 and its percentage is 0.57% in the system log.
Since we had 30 participants in the user study, three rounds of term labeling is

performed on average by each participant.

e The frequency of removing all terms is larger than the frequencies of adding terms.
This is simply because all the terms in the white panel should be removed when
participant switches to the other clusters or refreshes the interface. Therefore,

we cannot make any conclusion based on this frequency count.

Participants’ Comments

We present a few comments the participants mentioned in the questionnaires:



187

e “There are some terms like name of authors in term cloud which T found
disturbing. They can easily be identified and removed in a pre-processing step.”
We believe that sometimes a name of an author is discriminative enough to
be used as a keyterm of a cluster. For instance, when “Gabrilovich” and
“Markovitch” are keyterms of a cluster, the cluster is probably related to semantic
analysis. However, we agree that the Pdf2Text module sometimes outputs some
words which are not in any dictionary. In the pre-processing step, we should

have removed this kind of terms.

e “Some sort of stemming or lemmatization would reduce the number of very
similar keyterms (e.g. disambiguate and disambiguation).”
We first believed that it is easier for the participants to see the terms without
any lemmatization. However, we observed in the user study that there are some
clusters whose top keyterms are very similar, e.g. visual, visualized, visualization,

and visually. It is thus much better to perform stemming or lemmatization.

e “I really liked being able to control the importance of a term in a cluster,
and being able to place a term into multiple clusters. The workflow was well
explained with good videos and documentation.”

This comment shows the importance of soft term clustering for this participant.

e “It might be useful to see the editable term clouds for all your clusters at once.
This would give a good overview, and allow relabeling terms with far fewer
clicks.”

“I used left side more than two together.”
We totally agree that presenting two clusters every time is not the best way for

presenting term clouds.

e A participant mentioned that “Highlighting terms in documents” should be

added to the interface. We totally agree with this comment.

e “Searching an arbitrary keyword (not existing in the extracted keyterms) and
see if it exists in the corpus or not e.g. I wanted to search for Neural Networks

in the set of documents. Being able to search or filter multi-term keywords could
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be useful too.”

We agree with this comment that a global search in the corpus is useful too.

“The final results of clustering is very good in terms of categorization quality
but the keywords that it finds (and put in the final clouds) are far away from
the keywords that I defined (and I think they should be). T don’t know if this a
big issue or not.”

This is simply because the keyterms in the supervised term clouds are fed into
the term clusterer, but the keyterms we display in the interface are extracted
from the document clusters. These keyterms are not necessarily identical for
some clusters since a keyterm might be very discriminative but the participant

did not put it in the clouds.

“The system is designed very well, The cloud visualization of words is interesting
and it will really help some company for big data. The interface is also nice.”
We will later mention in the Future Work how our Term-supervised LDC

algorithm can be extended to collaborative clustering of big data.

“It is a great interactive user interface which I have worked with. It has lot of
options and buttons to help users in terms of interaction and also it is neat using
cloud to the clusters’ topic and keyterms. To be honest, I guess the coloring in
main interface isn’t much desirable, but using the tree view of keyterms is an
excellent idea and would help users to interact with system well.”

“The system works good and the operation was acceptable for me, but the user
interface was not user friendly. Adding more animation or color in cluster part
would be useful.”

These comments also indicate that we still need to work on the aesthetic aspects

of the interface.

“In my opinion, the system is well designed and works perfectly with words. i
think it is better to have capabilities related to phrase processing or combination
of two or three words.”

“ A lot of the keyterms for my clusters have multiple words, so it would be nice

to extend the algorithm to detect multi-word terms.”
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We totally agree with the comments since presenting multi-word terms provide
more insight into a document collection. We also mention later in the Future

Work how the semantic of keyterms can be presented in the interface.

e “I liked too much the intelligence behind the proposed system. Linking topics of
research and generating documents quickly. Processing the changes in clusters
too quickly. Mainly the cloud, very useful. Anyway, in the end the possibility to
download the articles generated from the topics of research makes it upon super
interesting and useful for the user researcher.”

“The term cloud visualization is a very useful and intuitive way to cluster
documents. The interface of the system provides great user experience. Besides,
some functions are really helpful, such as adding a new cluster, and can compare
with another cluster at the same time.”

“The idea of using keyterm clouds for document clustering is very interesting and
useful.”

These participants liked the idea of using term clouds and found it useful in the

interface.

Reviewing the participants’ comments reveal that most participants are satisfied
with the idea of using term clouds in presenting topics of document clusters. They
also did not complain about the underlying clustering algorithm, LDC. However,
they mentioned that the user interface should have been implemented in a more user

friendly way and its aesthetic aspects should be improved.

8.5 Conclusion

We proposed a visual interface to support our Term-supervised LDC algorithm. The
interface is based on presenting document clusters by their keyterms using term clouds.
Each term cloud includes the keyterms of a document cluster in this interface. The
operations of the interface let the user perform term labeling in the form of relocating
terms among clouds or making a new one, or merging the existing ones.

A wuser study is then conducted to evaluate the interface and its underlying
clustering algorithm. By analyzing the questionnaires filled out by participants and

reviewing their comments, we conclude that:
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. Regardless of the quality of the clusters generated automatically, the participants
like to be involved in the clustering process. 87% of participants mentioned that
it is necessary to be able to change the number of document clusters and only

10% of participants did not agree that it is necessary to change their topics.
. Different users have different points of view in clustering text documents.

. Term cloud based visualization is an effective way in presenting topics of docu-

ment clusters and most participants liked this idea.

. The participants did browsing into the content of documents of a cluster mostly
to get a deeper insight into the cluster. They preferred to use the keyterms we
have extracted from the document clusters to create their own term clouds. This

is because it needs less effort.

. Around 84% of participants found the interface a useful tool in document
clustering and would like to use it in the future. This fact confirms that Term-
supervised LDC was successful in generating user-desired clusters. However,

some improvements are needed in order to make the interface more user-friendly.

. Except one participant, the other participants mentioned that it was easy to

perform term labeling in general.



Chapter 9

Conclusion and Future Work

The research focus of this thesis is interactive personalized text document clustering.
The main challenge of the resecarch is to involve the user in the clustering process, in
order to generate her desired clusters, with minimum effort. To address this challenge,
we first proposed a novel unsupervised text clustering algorithm. One advantage of the
proposed algorithm is that it can be easily adapted for interactive clustering, thanks to
its double clustering approach. It can also generate soft document clusterings. We then
proposed three user-supervised versions of the algorithm based on term supervision,
document supervision, and dual supervision. The user-supervised algorithms are
first evaluated by supervision oracles. Oracles are generated based on the document
class labels so as to simulate user interactions. We then proposed a user interface
and conducted a user study to evaluate the proposed algorithm in interaction with
human users. Document clusters are represented by term clouds in this interface.
Participants of the user study are asked to generate personalized document clusters
and evaluate the proposed interface and its underlying clustering algorithm. In detail,

the contributions of this thesis include the following.

First, we proposed an unsupervised evolutionary algorithm to cluster text document
corpora. There are two novelties in the algorithm: (1) We used an evolutionary
module to distill non-discriminative terms from term clusters. (2) We proposed a
heuristic approach to extract lexical seed documents from distilled term clusters. We
demonstrated the benefits of the algorithm over double and co-clustering algorithms

in our experiments.

Second, we proposed an unsupervised non-evolutionary algorithm to cluster text
documents. The Lexical Double Clustering (LDC') algorithm uses a feature selection
method locally to remove non-discriminative terms from term clusters. This is the
main novelty of the proposed algorithm. We conducted comprehensive experiments to

evaluate the performance of LDC against state-of-the-art clustering algorithms. The
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experimental results demonstrated that LDC can generate comparable clusterings
to the LDA model. The main advantage of LDC is that it can be easily extended
to involve users in the clustering process. It has a computation time complexity of
O(NMK?I), where N is the number of documents, M is the number of terms, K is
the number of document clusters, and [ is the maximum number of iterations of fuzzy

c-means.

Third, we proposed LDC based on Google NGram similarity instead of cosine
similarity. We then performed an experiment to evaluate LDC using Google NGram
similarity metric. The results showed that TFIDF based cosine similarity is better

than Google NGram based similarity in our experiments.

Fourth, we extended LDC' into an ensemble clustering algorithm to incorporate
Wikipedia concepts in the document representation. The novelty of the ensemble
algorithm is its consensus module, which aggregates the clusterings generated lexically
and semantically. The main component of the module is a Naive Bayes classifier. The
classifier is trained by the documents which sit in the same clusters generated lexically
and semantically. Our experimental results demonstrated that the proposed ensemble
algorithm can improve the quality of document clusters even if the clusters obtained
from the document-concept representation alone are inferior to those obtained from
the document-term representation. In our experiments, the quality of clusters obtained
from Wikipedia concept representation is always inferior to those obtained from term

representation.

Fifth, we proposed three user-supervised versions of LDC': Document-supervised,
Term-supervised, and Dual supervised. Term supervision is in the form of term
labeling. Document supervision is similar to the document labeling approach used
in semi-supervised text clustering algorithms. Dual supervision includes both term
labeling and document labeling. We performed several experiments to evaluate
the user-supervised algorithms by using supervision oracles. We first demonstrated
that term labeling is more effective than document labeling in terms of improving
quality of clusterings compared to unsupervised mode. This is more evident when
the user feedback is noisy. We then demonstrated that no significant improvement
can be obtained after adding document supervision to Term-supervised LDC in our

experiments. We also demonstrated that with a comparable amount of simulated user
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interactions, the proposed term labeling approach is more effective than a baseline
term selection approach. We can conclude that term labeling is more effective than
both document labeling and term selection based on the LDC' algorithm. We finally
demonstrated that Document-supervised LDC can outperform seeded k-means, which
is a semi-supervised algorithm based on document labeling.

Finally, we proposed a graphical interface to support our term supervised clustering
algorithm in interaction with human users. The graphical interface is based on term
cloud visualization. We conducted a user study to evaluate the interface and its
underlying clustering algorithm, Term-supervised LDC. Analyzing the data gathered
from the questionnaires and comments revealed that the proposed interface is useful
in text document clustering. Most participants mentioned that they would like to use
the interface in the future. The comments also demonstrated that the participants

liked the idea of representing document clusters by term clouds.

Future Work

In this section, we provide the following future work based on the clustering algorithms

proposed in this thesis:

1. Clustering big data is one of the main challenges in text mining. The size of
a collection in big data is too large for a user to be able to cluster documents
individually. On the other hand, clustering big data with the fastest clustering
algorithm still takes too long time to be performed interactively. One solution is
to divide the collection into smaller corpora and ask multiple users to cluster them.
Each user clusters a corpus and an aggregation module combines the obtained
clusters finally. As a future work, our idea of using term cloud visualization can

be used as a collaborative big data clustering in the following way:
e Each user clusters a subset of collection interactively and her desired term
clouds are saved in the system.
e A visualization displays all the term clouds obtained from the collection.

e The users can then discuss and make an agreement about their desired

term clouds.
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e Given the desired aggregated term clouds, we can extract lexical seed

documents as proposed in Section 5.1.2.

e The seed documents can then be used to cluster the collection.

The other possible scenario is based on ensemble clustering approach:

Each user clusters a subset of collection interactively and her desired term

clouds are saved in the system.

A visualization displays all the term clouds generated from the collection.

The users can then discuss and make an agreement about their desired

term clouds.

Ensemble clustering approaches can be used to find a consensus document

partitioning, e.g. by voting, provided that the subsets are overlapped.

2. Multiple users may also help with clustering smaller collections where consensus
is required, e.g. when a program committee is clustering the accepted papers of
a conference. Term-supervised LDC' based on term cloud visualization can be

used in this case.

3. A possible future work is to use Wikipedia concepts in the interface. Instead of
representing topics by terms, their related Wikipedia concepts can be displayed
as concept clouds. Given the keyterms of each cluster, it is possible to wikify
their top related topics from Wikipedia. The user then interacts with the concept
clouds instead of term clouds. A user study can then clarify which representation

the participants prefer to use; term clouds or concept clouds.

4. Another future work is to use multi-word terms in the clustering process and
the visualization. A text processing module extracts multi-word terms from
documents. An experiment will then show whether single terms, multi-word
terms, or their combination result in better clusters in terms of quality. A user
study can also clarify which presentation the participants prefer to use: single
terms, multi-word terms, or their combination. Multi-word terms are also related
to concepts, and they can be considered in conjunction with concepts extracted

from Wikipedia.
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5. The other future work is to extend the Term-supervised LDC' in order to generate
hierarchical clusterings. Each document cluster can be treated as a document
collection to generate more specific clusters. Representing document clusters by
term clouds helps the user to figure whether a document cluster includes other
specific clusters or not. The final hierarchical clusters can be used to create a

visualization like a mind map.

6. One active research area in data clustering is multi-view clustering!. As future
work, LDC' can be extended to a multi-view clustering algorithm [71, 22, 14].
Text documents can be represented based on Wikipedia concepts, document
terms, or multi-word terms. The clustering obtained from one feature space can
be used to bootstrap the clustering process in the other spaces. Even though we
have proposed an ensemble algorithm in Chapter 6 to aggregate the clusterings
obtained from BOW and BOC models, further analysis is required to compare

multi-view clustering algorithms to our proposed ensemble algorithm.

Limitations

This section enumerates cases in which further evaluations on the proposed clustering

algorithms of this thesis are required:

1. Further analysis is required in order to evaluate the performance of FSDC' in

case of multi-labeled document clustering.

2. Some experiments on significantly larger datasets should also be performed in
order to evaluate the performance of LDC. Further evaluations on document

similarity metrics are also required, specifically on semantic text similarity.

3. We need to compare LDC to density-based clustering algorithms [12, 5, 98]. The
key idea behind these algorithms is that neighboring data points which form a
dense region in the feature space should be grouped into one cluster. We believe
that density-based algorithms like DBSCAN [37] cannot be directly applied
on text document collections. Document-term matrices of text collections are

sparse and algorithms like DBSCAN fail in clustering sparse datasets [98]. This

http://dl.acm.org/citation.cfm?id=2501006
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is mainly because proximity fails to register if neighborhood is computed in high-
dimensional spaces. A solution to this problem is proposed in [12]. A feature
transformation technique is used to map documents into a lower dimensional
space and then neighboring data points are found in this space. This algorithm
is evaluated on synthetic datasets and further evaluations on real text document

collections are needed.

. We need to compare FSDC' and LDC to probabilistic model based co-clustering
algorithms [99, 111]. Even though LDC is based on soft term clustering and
it can generate a soft clustering of documents, further analysis is required to

evaluate its performance against these model based co-clusterers.

. Further analysis is required to evaluate the performance of FSDC' against
the Information Bottleneck co-clustering algorithm proposed in [112]. The
co-clusterer is based on soft partitioning of documents and terms, while hard

partitioning is assumed in FSDC.

. We should compare our proposed ensemble algorithm (ELSDC) to Nonparametric
Bayesian clustering ensemble [113]. The main advantage of this model-based
ensemble algorithm is in discovering the number of clusters in the consensus
clustering [113]. Even though the number of consensus clusters is fixed in ELSDC
to integrate concept and term representations, further analysis is required to

evaluate the performance of ELSDC' against this ensemble algorithm.
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Appendix A

Google Ngram vs. TFIDF Cosine Plots

To improve the readability of the thesis, some of the plots of Section 5.2.3 are shown

here.
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Figure A.1: The quality of clusters obtained from LDC using fuzzy c-medoids on
Classic4. Not only Cosine similarity results in better clusters, its standard deviations
decrease as the number of medoids increases.
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Figure A.2: The quality of clusters obtained from LDC using fuzzy c-medoids on
News-sim3. Cosine similarity generates better clusters, but the standard deviations
are much greater than those of Google Ngrams based distances.
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Appendix B

Fuzzy c-means vs. Fuzzy c-medoids Plots

To improve the readability of the thesis, some of the plots of Section 5.2.4 are shown

here.
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Figure B.1: The quality of clusters obtained from LDC using fuzzy c-means and fuzzy
c-medoids on News-sim3. The fuzzy c-means clusterer outperforms fuzzy c-medoids.
The standard deviations are mostly similar for different number of medoids.
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Figure B.2: The quality of clusters obtained from LDC using fuzzy c-means and fuzzy
c-medoids on LA Times. The result of fuzzy c-means is slightly better and its standard
deviations are small.
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Figure B.3: The quality of clusters obtained from LDC using fuzzy c-means and fuzzy
c-medoids on News-multi1(0. As the number of medoids increases to 100, the quality
of clusterings obtained by using cither term clusterer is similar.
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Appendix C

Term Labeling vs. Term Selection Plots

To improve the readability of the thesis, some of the plots of Section 7.2.1 are shown

here.
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Figure C.1: The quality of clusters based on term labeling (FL) and term selection
(F'S) on News-multi7. Both term labeling and term selection methods improved the
quality of clusters. Feature labeling generates better results compared to the term
selection.
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quality of clusters. Feature labeling outperformed the term selection.



Appendix D

Term- vs. Dual-Supervised LDC Plots

To improve the readability of the thesis, some of the plots of Section 7.2.3 are shown

here.
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Figure D.1: The quality of clusters obtained from Term-supervised LDC and Dual-
supervised LDC on SMS. Neither of algorithms could outperform significantly the
other one.
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Appendix E

Noisy-Supervised LDC Plots

To improve the readability of the thesis, some of the plots of Section 7.2.4 are shown

here.
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Figure E.1: The quality of clusters obtained from the user-supervised LDC' algorithms

on Reuters§8-whole when the user’s degree of expertness is variable.

Document-

supervised LDC could not generate comparable results to the other user-supervised

algorithms in most cases.
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Figure E.2: The quality of clusters obtained from the user-supervised LDC' algorithms
on WebKB when the user’s degree of expertness is variable. Document-supervised
LDC is outperformed by the other user-supervised algorithms when the degree of user
expertness is more than 0.3.



