INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

COMBINING SEMI-FORMAL AND FORMAL NOTATIONS
IN SOFTWARE SPECIFICATION: AN APPROACH TO

MODELLING TIME-CONSTRAINED SYSTEMS

by

Sergiu-Mihai Dascalu

Submitted
in partial fulfillment of the requirements

for the degree of
DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

at

DALHOUSIE UNIVERSITY

Halifax, Nova Scotia

© by Sergiu-Mihai Dascalu, 2001

September, 2001

il

National Library

of Canada du Canada
Acquisitions and Acquisitions et
Bibliographic Services

395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

Your e Votre réldrence

Our Kie Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-63474-4

Canada

Dalhousie University
Faculty of Computer Science

The undersigned hereby certify that they have examined, and recommend to the Faculty of
Graduate Studies for acceptance, the thesis entitled “Combining Semi-Formal and Formal
Notations in Software Specification: An Approach to Modelling Time-Constrained Systems”
by Sergiu-Mihai Dascalu in partial fulfillment of the requirements for the degree of the

Doctor of Philosophy.
Dated : E&}MMM 1, 704
Supervisor: 1
Dr. PETER HITCHCOCK
External Examiner:
Drﬁ(EGORY BUTLER
Examiners:

Dr. PETER BODJORIK

Dr. TREVOR SMEDLEY

1

Dalhousie University

Faculty of Computer Science

DATE: September 14, 2001

AUTHOR: Sergiu-Mihai Dascalu

TITLE: Combining Semi-Formal and Formal Notations in Software
Specification: An Approach to Modelling Time-Constrained Systems

MAJOR SUBJECT: Computer Science

DEGREE: Doctor of Philosophy

CONVOCATION: October, 2001

Permission is herewith granted to Dalhousie University to circulate and to have copied for
non-commercial purposes, at its discretion, the above thesis upon the request of individuals
or institutions.

Signature of Author

The author reserves other publication rights, and neither the thesis nor extensive extracts
from it may be printed or otherwise reproduced without the author’s written permission.

The author attests the permission has been obrained for the use of any copyrighted material
appearing in this thesis (other than brief excerpts requiring only proper acknowledgement in
scholarly writing), and that all such use is clearly acknowledged.

i

To my daughter Diana, my wife Alexandra,

and my parents Niculina and Vasile

v

LiST Of TabIES.....ueeeeeeiiieeeeiceeceee ettt e et e e e e esa e e e e e eeseeaeeesneeaesanen X
LiST Of FIGUEIES <. uetieiieeiieieeeeetrtete e snte e see e e etestesae et e e e eae e e sae s et nesens e e snesneeneen xi
LiSt Of ADDIEVIATIONS ...evveiieeneeeiiieiceie et cete st e ee e emne e eeeaseeennesenas XV
Acknowledgementsccoeeiiiniiinieeeeee et xvi
ADSTEACT . cc.eeiiieeicceeeeeeeeeeeee ettt ee e e e e re e e e e e e bt ees et eee et aeeaaeeaeeeaeeeeenenenaeaans xviii
I IntrOAUCHION eeeeeeee e ettt e m e e e e e eeme e mameeesaas 1
1.1 Three Paradigms and a View of the Fieldcccccovereiriiiniieiiieecceeeceeece, 1
1.1.1 The First Paradigm or Objects as CONQUETOLScccoueurruerreeirreeeeeaereeeereeeeeeseerenn. 1
1.1.2 The Resilient Field of Real-Time Applicationsc.cococeereeeiinenieneeencreeeeen. 2
1.1.3 The Second Paradigm or Formalisation as a Controlling Factor...........cccccoeeununen.e. 3
1.1.4 The Third Paradigm or The Power of Pictures..........cccccueevveeerveeerereecereereeceeeneneee. 5

1.2 MOUIVATIONS .cceeeeeeeeeeeiteeee e ce e ceeeeee e e e reaeeeerassssassseeeeen s aeansnnnseananneseseasannannsnnnnseeees 6
1.2.1 Effectiveness and Simplicity.......ccccocueectirniicrinninninienieeeieceeiee e se e, 6
1.2.2 Capability of Tackling Complex Tasks......c.ceceeverevinirinenieeereeeeeeeeeeee e, 6
1.2.3 Early Detection of ErTOrs.......coieiiecireceircrtiecietereienieteeetee e ees e e 7
1.2.4 Powerful Combination of Paradigms.......cccceeoereerimmmnunenreieeeeeeeeceeeeee e 7
1.2.5 Understandability and Practicality.......ccccceuiiviiinnniniiieneceeeeeeeeceeeee e, 7
1.2.6 Ease of COMMUNICATION .oeouuveeiiiiiiieeeeeeeieeeeeeieeeieeeeeeeteseeesnnnnsansneessssesasssssesssesssssssses 7
1.2.7 Expressiveness and MOAernityccccecueeeirreeiuemnnrntieiecreeeeeeieeeeeeeeee e eeeeeneeesneennes 8
1.2.8 Rigor and PreciSionccccoouiiiiiieciieeeieeeiertteeriecre et et e e snre s e ssae st enenan 8
1.2 R IMEIMENE e ieeiiieeeeeeeeee e e e et ettt eeseetteseessesasn e smemeeeaeeaaseassesssassssseeens 8

1.3 CRallenges...ccccceviiieiiiiie ettt e e e ettt ettt e et ee e 8
1.3.1 Efficient Combination of Techniques and Notationsccccceeceevvveeereiecreernennnee. 9
1.3.2 Approaching Time-Constrained Systems from an Object-Oriented Perspective.... 10
1.3.3 Developing Mechanisms for Formalisation of Graphical Representations.............. 10
1.3.4 Rigorous Treatment of Temporal Constraints..........ccceeeeveeeercreeecrerereeneeereceennee. 11
1.3.5 Provision for User ACCEPIANCEcceeceeeeriererereierinireerertesteesresseeseesesssessassssesseenens 11
1.3.6 TOOl SUPPOIT....ceiiiiiic ettt ettt ettt ae s s enbesneeseens 12
1.3.7 Capability of EXtensioncocooccviriiriiiicierieti ettt 12

1.4 Notes on Terminologycooieiiiiiiceeieeiie ettt eae e en e e 13
1.5 The Proposed Approachi.........cccccccouieceiiesieeciineieeiereneteereee et e eseenns 14
1.6 Overview of the Thesis.....cooueiviieiiieeeeeeeeee ettt eee s e e eeeeeeeeses e eeeseseseeneneas 17
1.7 Chapter SUMMAry ...ccocoiiiriiiieececeeeee e ettt aee et et e eaeeeseeenneeneen 18

Table of Contents

2 Background: Context and Concepts.........oeoveuereuerereeerrenieeeeeeecreereeeeeenenens 19

2.1 INEOAUCHON. ...ttt ettt et stee e enee e e enese s s asnaes 19
2.2 Research Space and Topic Locationcceueueueurucerucuemieeeecieeeeceee et eeee s 20
2.3 On Specifying Real-Time SyStemscceeueeereueeiuieeiieieeeeseeeeeeeeeeeeeeeeeeeeeeeeseeeseseeens 22
2.3.1 Characteristics of Real-Time SyStemsovoueueeeeieceeeeinieeeeeeeeeeeeteeeeeeeeeeeeeeeessens 22
2.3.2 Focus On Time ..ottt s st e e e 29
2.4 Brief Immersion in Object-Omentationououeeeeeceeemeeieeeeeeeeeeeeeee oo e esessns 30
2.4.1 On Objects and Their Modelling POWeTc.ovevviueeieeneeeeieeeeeeeeeeeeeeeeeresen 30
242 Object-Orientation in the Real-Time Domain........cc.cueueeveeeeereeeceieeeneeeeeeeeeeen 33
2.5 On The Importance of Graphical NOtationsc.cc.oeeeeueeieveeeeeeeieeeeeeeeeeseeeeenans 34
2.6 Formal Notations in Software Developmentcueueieeucecemeeeeeeneeeeeeeeeeeeeeeenesnnes 36
2.6.1 Alexander’s Definition of a Formal System...........ccovevveuieeeeieeeereeeeeeeeeeeeeeeseseesnns 36
2.6.2 Classifications and Examples of Formal Methodsc.ccovevvemeeeveeemiecneenanen. 38
2.6.3 Advantages and Disadvantages of Formal Methodsccocueeiuievieveveeeeeeeeennen. 40
2.6.4 Formal Techniques within the Software Development Process.............cooe.......... 43
2.6.5 A New Trend: Lighter Use of Formal Methods...........coeeeeeueeeeeeeeeeeeeeeeeeeerereran 43
2.7 Chapter SUMMALYc.ccuimiireeie ettt ettt et et ee s e e e s stemee s seseessasesesessns 44
3 Background: NOtationsccccceumuiieieieeeeieseetercieecce et eeee et ee e eenenee s 45
3.1 INEOAUCTON. ...ttt e et e e eeee et seseeeeeaesseaes 45
3.2 Zand FIavours Of Z.........ccoiiiiiieeee ettt e e se et e s s e eneneres e 45
3.2.1 The Z NOTATON ...ttt e ee e e e e eeeeae s e e e eeeeesesenen 46
3.2.1.1 Sets, Types, and Predicates........coeeueeeueieieeiiniceieeeeeeee et ees e 47
3.2.1.2 Relations, Functions, and SeqUeNCEs.............cueuevivemeemeeeiermeeeeeeneeeeeeeeenseerenen 50
3.2.1.3 Schemas and Schema Calculus.........cueueveuevrieeeeinieiceeceeeee e, 55
3.2.2 Z Variants and Tools............ccccoiiiriiiiiieeeeeee e 58
3.23 A GIANCE A0 Zt+ vttt et s s e 61
3.3 On UML and Its Capability of Dealing with Time.......c.o.coooveuiuieveeieienieeeeeeeeeeeeeen. 62
3.3.1 ABird's Eye View on UML........c.ooviiiiiiiiieeeeee e es e 63
3.3.2 UML Support for Modelling Real-Time Systems............ceeueeemeeeeeseseeeeeeeeerenenennn, 76
3.3.3 The UML PromiSecccooioimtreeietiteeeeeeeeeeeeeeetee e e e eee et e e eeeseeeaesseeee s s eeenon. 82
3.4 Chaprer SUMMATYooiiiieieieiete ettt et ee et eee et eee e e s eeeeeses s s, 87
4 Related WOorkcomieiiiie ettt e eeens 88
4.1 INEEOAUCHON. ..t et e e e e eteeeeeee e ees e 88
4.2 Integration of Semi-formal and Formal Notations in Software Specification................ 89
4.3 Semi-formal/Formal Integrations of Notations Not Involving Z.............ccoovemecencnn.... 92
4.4 Semi-formal/Formal Integrations of Notations Involving Variants of Z 95
4.5 Closely Related Approaches........c.cooueiueuieiuiuicuieiceeceeeeeeeeeeee et 96
4.5.1 Jia’s Augmented Object-Oriented Modeling Language..............ooveeerremveemeeeonnnee 96
4.5.2 Noe and Hartrum’s Extension of Rational Rose 98ccoevemememeereeeereenrn, 929
4.5.3 Blending Octopus and Zc.ooeooeieiieieiiece e e 101
4.5.4 Headway System’s ROZELINKcoououeuiviueiemieieieeeeeeeeeeeeeeee e ee e s, 103

vi

4.5.5 ObjectZand UML.....c..ociiimiiiiieiceeeetre et e et ettt 104

4.6 Modalities of Specifying Temporal Constraints in Z...........ccceeeeereereruerneesreseenesenenenn. 106
4.6.1 Time RefINEMENTIN Z......ooooneeeeiieieeeieeeeeeeeeeeeeeeee e e eeeeeeeeeeeessnenessessesssneans 107
4.6.2 The QUartz AIternative.ccoocveieeireieeieieiee et e et et et e s eseeesenaas 108
4.6.3 Andy Evans’ Approachc..ccccoceeuieieiiniicnininneeeteste et 109
B.0.4 RTIOZ ...t ee et s et e ae e e e e e e e e e aeeeeaseansesaeseesessseanaeans 111
B.0.5 TCOZ. ettt ee s e s e et e et s e e e e e e e e ae e e aeeeen et e aeseaaneeenreraeanaaans 112
4.6.6 Other APProachesccccoeevieciriiireirieeeee et ee e se e e ssee s esens 114
4.6.7 The Z4+ AltEINatiVecooeeeieeeeieiieeeececeteeeeeeeeeeee et eeeeeessseasesesseeeesnesssesaaeans 116

4.7 Chapter SUMMATLYcviiieeiecctneeetee ettt ettt s e s s seasas s asse st s s sesasaens 116

5 Formal Specification of Temporal Constraints..........c.ecevveeererrereveecreeeeereneene. 118

5.1 INEEOAUCTION. ...eeeeiiiiieiieeeccee et s ee e e e e eeee s e nennseeeseeesneanesessneenanesns 118

5.2 Dasarathy’s Classification of Temporal Constraints...........ccoeeeeeerenenreesenersennnnenenn.. 119

5.3 On the Rigorous Specification of Temporal Constraints........cc.cceeeveereerrerercrnnanrannas 123

5.4 Real-Time Logic (RTL) ..cocuootiiiiiieieeeteteteectet e n e ne et ne 124
5.4.1 The Event-Action Model............ooueiieeeeiiiiiieieee ettt ae s eeene e 124
54.2 RTL Concepts and NoOtations........c.c.cceeueeueinieeireeririeeeeeeeeessessesessesssesssesnsnenes 125

5.5 USING RTL N Zt+ ettt seene e et ceee e et s s emesesasnnasanes 127
5.5.1 Lano’s Key Extensions to RTLc.ccccceveivininiinininininirecc et ennas 128
5.5.2 EVOIES ceeeeeeeee ettt e e e e e e e e e et eaae e e n s ateeeeaaeeseaseeaaanns 128
5.5.3 T@IMMIS ceeeeeieeeeeeeeeeeeeee ettt ettt e e e e e e e e e et e e e e e e e et ae e ea e e e e e e eenneantaeaeaaneeneeaasaensnean 129
5.5 FOIMUIAE cooieiieeeee e e e e e s e e e e e e e e e e e e aeee e e e e eaenanns 130
5.5.5 ADDIEVIAIONS. c...eeeeieeeeiiic ettt ettt eeee e e e e aeeeesene e snaneaeee st eeaaeeenaes 130
5.5.6 AXIOIMIS c.uevveieieeieeeeeieeieeeeeeteeesteeeeaeteeesesateesseeeseee e eeaeeessaeameeeeesanteeeeeaaeseeneessesanenn 131

5.6 Chaprer SUMMATYcccuiiiieieeenecetrreiente et teestse st esestesesse s esse e ssesassasesesnssasassesenns 131

6 Translations Between UML and Z++: Formalisation and Deformalisation ...132

6.1 INETOQUCTION. ettt e et e e e e e e e eeeeeeee e aaeeeasseeseeesseessaseeeen 132

6.2 Preliminary Remarks........cocouveieeiiiiiiieeceececec e 133

6.3 Formalisation of UML Class Diagrams in Z++........cccoeeeveevereeeereerereereesesessesneseennns 136
6.3.1 Rules for Developing Well-Formed Class Diagrams.........ccccceceueeverencerreennenennn. 136

6.3.1.1 Rules for Class Diagramsccceevueriereieiueeieeeeiereeeeeeteesee e eseessesesesese e 138
6.3.1.2 RuUles fOr Classeseooueieueiieiieeeeeeeieeeeeee e e eeeeeeeeeeeeetesesteeesteseseeeeessssaseens 139
6.3.1.3 Rules for Relationshipscccceeeeeueeriirieiieee e 144
6.3.2 Translation Principles for Class Diagramsccccceeueuiereeeeeeneensneseeeseseseene. 146
6.3.2.1 Translation of TYPes.....cccceeoieireiiiiininenie et ee ettt nese s 147
6.3.2.2 Translation of AttriDUCES.ceemeeeeeeeeeeeeeee e eeeeeeeeeeeee e e e s seaeneeanan 149
6.3.2.3 Translation of OPerations..........cceeeueeeuieieuieieeieieeeeeeeete et evese e 150
6.3.2.4 Translation of Classesccoiveeeueeeeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeesasenesenaaeeeeessesees 151
6.3.2.5 Translation of Relationshipsccceeirmininninnireee e, 152
6.3.3 Algorithm for Formalising Class Diagrams (AFCD)...........ccceverirueceeenirniennnn. 154
6.3.3.1 AFCD INPUL....iiiiiccie e tete et 155

vii

6.3.3.2 AFCD OUIPUL......uniccceieeee ettt e 157

6.3.3.3 AFCD Pseudocodecueevieeeiriciiiiiiiiicenteeeceeeseteeee e enessssesese e e 158

6.4 Formalisation of UML State Diagrams in Z++ ..c.cc.cevveeiniinnurreeincnennecsesscsssennens 171
6.4.1 Constraints on the Contents of State Diagrams............ccoecvveiieinciiniininncnnnn. 171
6.4.2 Translation Principles for State Diagrams...........ccoccouiniiiiiiinineinicnns 174
6.4.2.1 General Principles and Terminology..........ccccceevuceinenernncrccccoennninnnccnnncnnen. 174
6.4.2.2 Translation of StAtesc..ceevceecriiiniiiiiniiiici et 176
6.4.2.3 Translation of Transitions........ccccoceiiiiiiiniiininiinir e 179
6.4.3 Algorithm for Formalism State Diagrams (AFSD).........ccccoiviiiiiinniniinicnnns 183
6.4.3.1 AFSD INPUL.....coiiiiiiiicciir ettt ee e s e s s s s sae e 183
6.4.3.2 AFSD OUIPUL. ...ttt sre s 185
6.4.3.3 AFSD Pseudocodecccocrvireciiiiiiniiiiiiiiicicenecne e 185
6.4.4 Example of Formalising a State Diagramcccccoiviiiiiininciiinnencnceee 189
6.5 Deformalisation: From Z++ Specifications to UML Representationscccccceeees 193
6.5.1 Principles of Deformalisationc.ccccceeeeuuireiriieiniienieeeierteeerc et ee et eees 193
6.5.1.1 Assigning TYPes.....cocoeoiiiiiiirecittecerr e s 193
6.5.1.2 Generating Attributes for UML Classesc.cooovirnieciinccnenncerinnienince. 194
6.5.1.3 Generating Operations for UML Classesc.ceecteernncienennenccccennurecnnneenees 195
6.5.1.4 Generating UML Classes.........ccccoovimmiimiiiiiiiiincciccieice e 196
6.5.1.5 Generating Relationships.......c.cccccoouiiiiiiiiiiiciiiccee 197
6.5.1.6 Generating State Diagramsccooeremmmiieiiiiiiiiie e 198
6.5.2 Outline of the Algorithm for Deformalisation (ADF)........c.ccoccecieeiiniininninncnn. 199
6.6 Notes on the Application of Formalisation and Deformalisation Algorithms 202
6.7 Chapter SUMMALY ..ottt st ares e sae s sas e ers s e nnins 204
7 AProcedural Frame.........ccccccccoiiiiiiiiniiiiiiiiiiiicic ettt 205
7.1 INErodUCHON ...ttt ettt s et e et e e e e s e ast s e s be s nee 205
7.2 Modelling FOCUS ...ceoriiiiiiccctccc e 206
7.3 ALTEFACES ittt ettt ettt ettt et a e et e e et ae e e e srs e resaeenas 207
Te& ACHVITES «eeoinriiiiiiiciiii ittt c s et se e st sn e e st s e s s e neeess sasesonnnsssenans 210
7.4.1 Conventions in the Diagrammatic Representation of the Procedural Frame........ 210
7.4.2 Simplifications in the Diagrammatic Representation of the Procedural Frame 212
7.4.3 Stages and STEPS.......coiiiiiiiiiiiiiiie s 212
7.4.4 The Regular Sequence of Modelling Activities..........c.coceevivcinniicciinninnnnnennnen. 215
7.4.5 Alternative Flows of Modelling Activitiesccoevivuiiicnicncniiiicinieieieneee, 217
7.5 Chapter SUMMAry ...ttt e snern s 219
8 An Application: The Case of the Elevator System...........ccccceeeriiinniinnnnnnne. 221
8.1 INErOdUCHION . c.eeeiiiiiiiiiiie ettt ettt e et s e st 221
8.2 On the Elevator Case Studycocuiiiiiiiiiiiiiieiice ettt s ecnnens 222
8.3 The Problemcooii ettt 223
8.3.1 General Requirements for the Elevator Systemc..ccccceiiiiiniinnininciinccnnecncnne. 224
8.3.2 Temporal Constraints for the Elevator System ..., 225

viil

8.3.3 Coverage of Dasarathy Constraints by the Elevator’s Timing Requirements........ 227

8.4 The Modelling SOIUtIONcceeeneeeiiieieteeeee ettt eeens 228
8.4.1 Definition of Use Cases......cuuteeuerrieeierririneneerteeeeeeeeteeeeete e eesee e eseesseesesseeas 228
8.4.2 Elaboration of SCenariosccccceoueeierevcrinteinteieeeeeie et evee e senes 229
8.4.3 Construction of the Class Diagram........cccceceviminrrreieiencereieeceeeeeeeee e e 233
8.44 Specification of Sequence DIagramsccocceetvueririreseieeeieeeeeeeeesee e 234
8.4.5 Elaboration of Class Compoundscccoeoeeiieeieemreeeseeieicieeceeeenee e 236
8.4.6 Formalisation through the AFCD and the AFSD..........cccocoveievieeenieeeee. 240
8.4.7 Enhancement of the Formal Specificationcccceceeuiviiiiniiceeceniecececenee 249

8.5 Chaprer SUMMALYcccoiiiiiiit ettt ettt e et e s te e emas e sae e sseessenssaeeesenne 252

9 Towards an Integrated Environment: A Prototype for Harmony 253

9.1 INEOUCTION. ...ttt ettt et ene e e ae s aeess e be s ns e e s esssseanennenes 253

9.2 General Principles..........o.cooiiiiiiiiiiiiereeeeeet et 254

9.3 Overall Organisation.........coccceeeeieireitirrieiteeersteeeeeee et et enee e sstesesseessaesseesseene 257

9.4 The Project Pane...........ccooiiiiiiiiiiiieertc et erne et 259

9.5 The UML Space...........ociiiiiiiiiiiiictccttnee ettt sas st sase s s s 262

9.6 The Z4+ SPACE ..uunenniiiiiiieecc ettt ettt et et et 263

9.7 Other FEaturesc.cucouiiiiiiriiecciiicnteietcteteteteiet ettt er e e sae s seae s saeen 266

9.8 Chapter SUMMArycoiiiiieiiiiiicccete et este ettt e et e st s e e e ss e seseaeseeneeneen 268

10 CoNCIUSIONScoiceiiiieeeeeeeecee et eane 269

10.1 INEFOAUCTON ...ttt ettt et ene et st e en e anenseseaeseeseenns 269

10.2 Summary Comparison with Closely Related Approaches...........ccceeevurerenencnnnn.... 269

10.3 Main ContribUtions.......ceeeveeeieirieinieetieieeste ettt ereeess e eseseeseenes 271

10.4 Other Contributions.........ceioueeeeieiiieceeeer e e 272

10.5 More On the Limitations of the Proposed Approachccceceevvecviecinccnerenneeee. 273

10.6 A LOOK FOrward......cocoomiiiiieeieiceteee et e et 274

Bibliographycc..e.coi et 276
Appendix A: Summary Overview of Z++cc.coceiecirnineeieeceieneeceeeecaeeaeenenns 295

A.1 BNF Syntax of the Z++ Class Declaration.........c.oouveieoiiiiiieiiiiicceecieeeeeeeen 295

A2 Invocation Of OPerationscceeeuueereereeererninietenteeieeteeeeeneeeeereeseeeneerressseneaeseseseane 297

A3 INOTES ON SEMANTICS.eiiiiiiiiieee i cee ettt ce ettt eetee e ae e et eeeseeeesrnse e e snessesnseenneens 298

A.4 Extending and Restructuring the Specification........cc.ocoeuieuieiiiiiiceeceeiccne, 300

A5 Translation to Standard Z.............ooiiiiiiiiieeeeee e 301

Appendix B: Java Implementation of the AFCD.............cocoviiveiiecerecreeen 302
B.1 Contents of the Program Listingccccectetrrinmvininininieeeieeee et 302
B.2 Program LiSting...........cccooiiiiiiiiiiiiiiec ettt 303

Appendix C: Harmony’s User Interfacec.ccocuveieeiicceieecieeiceeeeeeeeeececees 359

X

Table 2.1

Table 3.1
Table 3.11
Table 3.1IT
Table 3.IV
Table 3.V
Table 3.VI
Table 4.11
Table 5.1
Table 7.1
Table 8.1

Table 10.1
Table B.I
Table C.I
Table C.II
Table C.III
Table C.IV
Table C.V
Table C.VI
Table C.VII

Table C.VIII

Table C.IX
Table C.X
Table C.XI
Table C.XII

Table C.XIII

List of Tables

Classification of Research Approaches Based on Domains of
EXploration ...ttt

A Summary of SEQUENCES ...cc.coueeeriieiieeieeeeeree et
UML Things (Model Elements)cccoevieeieenreieiiieeeeee.
UML Relationshipscccccviuieiniiniececnninereeeeeese e,
UML Extension Mechanismscccocccovueeniiveennninenneneeeeeeeecnnnn,
Types of Events in UML ..ot
UML Markings and Expressions for Time and Location
Examples of Semi-Formal/Formal Integrations Not Involving Z ...
Examples of Semi-formal/Formal Integrations Involving Z
Abbreviations for Modelling Artefactsccccooveeueemereceererenene.

Correspondence between ELS Timing Requirements and
Dasarathy Constraintscc.ccceoccevieeeinrenneeseeseiee e

Summary Comparison with Closely Related Approaches
Contents of the FCD Programcccceeuieeieieieieiccccecee
Menus of Menu Bar ..o
Shortcut Buttons and Their Equivalent Menu Options

File Menu Jtems cooeeiieiieeeeeeeeeeeeee e e e e e

Help Menu Items ...t
UML Toolbox Items ..o,

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.

g.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

2.1
2.2
3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
6.1
6.2
6.3
6.4
6.5

List of Figures

Domains of Research Space and Topic Locationccccccvvceeececnucncne 21
Hard, Firm, and Soft Real-Time Systemsccccevevcvmeurnnenrieneeeseeeeenne. 23
Partial Z Description of a Robot Armccoiiiiniinnniiiciccnee 57
General Form of Z++ Class Declarationc.cccccooeveiiivnnncercennerencennn. 61
Snapshot of Rational Software Corporation’s Rational Rose 64
The 4+1 Architectural Views and UML Diagrams That

Express Them ..ottt 69
Overview of the Automatic Camshaft Testing System (ACTY) 70
Example of Use Case Diagram: Excerpt from ACTS Specification 72
Example of Class Diagram: Excerpt from ACTS Specification 73
Example of Object Diagram: Excerpt from ACTS Specification 74
Example of Sequence Diagram: Excerpt from ACTS Specification 75
Example of Signal: Excerpt from ACTS Specificationccccceveueeucee. 77
UML Symbols for Asynchronous and Synchronous

ComMmMUNICATION ..covviiiiieiiiiiiieetie et e eee e e ete e sve e e enne s seeaeeseeens 79
Example of Statechart Diagram: A 2-Speed DC Motor for ACTS

AXIS X ettt et e et ae e bn e e nss e e e eennes 80
First Zoom-In on The Research Spacecccccevueeuiniieniinniieeee 93
Second Zoom-In on The Research Spaceccccocevvevnriirieninincceeceeinene 95
Jia’s AML-based Approachcccociiiiiiiiniiiiiiie e 98
Noe and Hartrum’s Approachcccoeiiiiiiininiiiiiieeceeeeeee 100
The Octopus and Z Integration Approachcccoviivirienenincnncencnncnn. 102
The RoZeLink Tool ..ottt 103
The UML/Object-Z Combinationcccevceeveeinrinrereieereereeseenenens 105
The Top-Level FCD Procedurecccoueeceeeceeciinniinieieereciee e 159
The CheckCDSyntax Procedurecccceeciireneencnninnereenniiee e seeeeeees 159
The CheckRelationships Procedureccccooeeciieninninenieeecceeeee 161
Alrernative CheckRelationships Procedurecoooeeviiniiniececeneceeene 161
The CheckAcrossCD Procedurecc.cocoveeeieirvcnmeiiienneeeeee e 162

Fig. 6.6

Fig. 6.7

Fig. 6.8

Fig. 6.9

Fig. 6.10
Fig. 6.11
Fig. 6.12
Fig. 6.13
Fig. 6.14
Fig. 6.15
Fig. 6.16
Fig. 6.17
Fig. 6.18
Fig. 6.19
Fig. 6.20
Fig. 6.21
Fig. 6.22
Fig. 6.23
Fig. 6.24
Fig. 6.25
Fig. 6.26
Fig. 6.27
Fig. 6.28
Fig. 6.29
Fig. 6.30
Fig. 6.31
Fig. 6.32
Fig. 6.33
Fig. 7.1

Fig. 7.2

Fig. 7.3

The CheckClasses ProCeAULEooueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneaneaoees 162

The CDTranslate Procedureoocuveeeeeeeeeeiieeeeeceeeceeeeeeeeeee e 164
The TranslateClasses Procedureooveeueeveeiieeeiiieieeeceeeeeeeenenne 164
The TranslateClass Procedureocueeuiveeiieiiiieeieeeeeeeeeeeeeeeeeeeeeenes 164
The TranslateAttributes Procedurecovevueeeeeiniicceeecneeeeeeeeieee. 165
The TranslateAttribute Procedurecooouveeeviveeiiiiiieeieieeceeeene. 165
The Translate Operations Procedurecoceeeeuieneeiecceiiiecieceeeeee, 166
The TranslateOperation Procedurecceecerveeueereeeieeereeeereereeeenne 166
The ProcessOpParams Procedurecccooeeeeivurvcninrnneeieecercneseevenenas 167
The ProcessOpReturn Procedureo.oouveeeeveeieueeeiececeeeeeeceereeneeeee, 167
The PlaceZPPAttributes Procedureoovvieuieeemeieieeeeeeeeeeeeeeeeeeneeenes 168
The PlaceZPPOperations Procedurecccveuvemeeveeeneeeereereereeeennene. 168
The TranslateRelationships Procedureccccoveenienierievecinieieenenane, 169
The TranslateAggregation Procedurec.ocecueeiereeneeneeeneeererenvennene., 169
The TranslateAssociation Procedureccoooueeeeieeenieeieieeeeeeeeeene. 170
General Form of A State Transitioncoccovuviveveveevceeneeeeeeeeeeeeean. 172
The SDTranslate Procedureuoeeveeuiemeeeeetrieeeeseeeeeeeeeeeeeeeeeseeeeesneane 186
The TranslateStates Procedureccoeeeeeveieiiieeeiiiiieee e 187
The TranslateState Procedurecoveeveeueiieeieeeeeieeeeeeeeeeeeeeeeeeeeseeens 187
The TranslateTransitions Procedureco.ooviieeiceeeereeeeeeeeeeeeeeenn. 188
The ProcessCallTrans Procedureco.oveueeeieeeeeeeeeeeeeeeeeeeeeeeeeeeenns 188
The GenerateTransitOperation Procedurec.ocueeeeveieecrecreeeeeeenennne. 189
The WriteHistoryPredicates Procedureccoooveeveemeereeieeereereeeeennee. 189
DCMotor State Diagram from the ACTSccooovieviiiviieccreeereeneene 190
Z++ Class DCMotor Generated by the AFSDc.oooeveeeneereeeeneene, 191
The AFD Procedureoooeceeieceeieieeceeeeee et eseeeeeeseeaaene 200
The TranslateZPPClass Procedureooeevueeiveviceeeeeieecreieeeeeeeeene. 201
The GenerateUMLClass Procedurecuocueieeveeneeoeeeeeeeeeeeeeeeesnens 201
The Procedural Frameooceeiieiieieeiieciceee e s 211
Regular Sequence of Modelling Activitiesccocoeevvreeeeereeeeeerereenennee. 216
An Example of Irregular Flow of Modelling Activitiesccccueveenen... 218

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

8.12

8.13
8.14
8.15
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
2.9
9.10
9.11
C.1
C2
C3
C4

ELS Use Case Diagramcccooeviruieiiienieeiieesreeceecese e 228
ELS Scenario: Outside Request Accooeeeirnnrninnnnieeeceeceeeeeenee. 230
ELS Scenario: Outside Request Bccccoooeieiiniiiieinecierecrereeen, 231
ELS Scenario: Outside Request Ccoceevienirverieeeeeeereeeeeveee 232
ELS Scenario: Inside Request Accoovivieeeininneeceeeeeeeeeeeee 232
ELS Class Diagram: Initial Structurecccooeveeeeeeeiieiieiiieeeeeae. 233
ELS Sequence Diagram: Outside Request Acc.ccceevivirrreinrennrnnnne. 235
ELS Class BULEON ...ccueeieieiieieteteeeeee e 237
ELS State Diagram for the Button Classccccoecrrciinnnneccnerrnee. 237
ELS Class Elevator «.....cccuooviouiiiiieieccieeeeeeeeeeeeeecee et 237
ELS State Diagram for the Elevator Classccoeeeveieerioneecrcrerrcnnnne, 238

ELS Class Diagram with Attributes and Operations Atrached to

CLASSES ..ottt 239
ELS Z++ Specification Generated by the AFCDc..ccueuerrernenee... 241
ELS Z++ Class Button Updated by the AFSDccccooevuriroreennnne. 246
ELS Z++ Class Elevator Updated by the AFSDcccoocuvvennnnnc... 247
Harmony’s Lookco.ueeeiouiniinieecceeceeeeeee et 258
The View Menu c..c.oiviiiriiiieeeeeeteeteeee e 258
The Project Panecooevieueeeeeeeieeieeeeeeeeceeeee et 260
The New Model Element Selectoroceevieeueeieieeiciieeeeeeeeeeee, 260
Harmony with New Project Just Created.......cccceeveveeveeiiriicniee. 261
The UML MenU ..ottt 262
A UML T00IbOXoovieeiiiiiiinieieteeeeeceee ettt 263
Harmony’s Z++ Menu ..cc.cocvviiiienieciineetieeeeeee e 264
The Z++ Symbol BoXceveuieiieceieieecee e 265
Harmony Specific BUttonscccocecevericeinininincnteeeee e, 266
The Legend Panecc.cooouiueiiiiiieieereeeereee e 267
The Harmony Windowccoveuoieieemienieecieceeceeeeee e 359
Harmony’s Menu Barccccoooiiiiiiiieeeeee e 360
Harmony’s Main Toolbarcocecoeeiimiieiiiiiiieceeeeeee e 361
Harmony’s File Menuccooooooiiiiiiiiicieeeeeee e 362

xili

Fig. C.5
Fig. C.6
Fig. C.7
Fig. C.8
Fig. C.9
Fig. C.10
Fig. C.11
Fig. C.12
Fig. C.13
Fig. C.14
Fig. C.15
Fig. C.16
Fig. C.17

Harmony's New Model Element Selectorccocoeiniiniiniincnnncnnnnn. 363

Harmony's Edit Menu ...t 364
Harmony’s View Menuccociriiiiiecierieieeccereteecceteceeenseese e 365
Harmony’s UML Menuccocceiiiviiniiieniecree et eeeteeniesessennns 366
Harmony's Z++ MenU.....coocoiiiiniiieiieieiceeeceeee et 367
Harmony's Tools Menuccocoeiiiiiiiiniiiinieneeeeeee e, 368
Harmony’s Window Menuocceoieeiiiiieiieecceeeseeceeeneeesese e 368
Harmony’s Help Menu ... 369
Harmony’s UML To00lboxesc.ccoceeuirirennneeeniiiiiiiecccetncenececnnes 370
Harmony’s Z++ Symbol Boxccccoooiniiiiiiiiiiiiricccne 371
Harmony’s Legend Pane: COMP and CD Symbolscccuuuneee. 373
Examples of Harmony Messagescccococeuereriicecenccncnnnnccniencccnenes 374
Harmony’s About Messagecouveeeriencneccnnniiiinicieecncreeeeene 374

List of Abbreviations

ACTS Automatic Camshaft Testing System
ADF Algorithm for Deformalisation

AFCD Algorithm for Formalising Class Diagrams
AFSD Algorithm for Formalising State Diagrams
CASE Computer-Aided Software Engineering
CD Class Diagram

CLS Class Specification

CLSTD Class State Diagram

coMP Class Compound

(O\) Communicating Sequential Processes
DFD Data Flow Diagrams

ERD Entity Relationship Diagrams

IDE Integrated Development Environment
ISE Integrated Specification Environment
GUI Graphical User Interface

ELS The Elevator System

OMG Object Management Group

OMT Object Modelling Technique

6]0) Object-Oriented

0O0A Object-Oriented Analysis

OOD Object-Oriented Design

OOSE Object-Oriented Software Engineering
00z Object-Oriented Variant of Z

ROOM Real-Time Object Oriented Modelling
RT Real-Time

RTL Real-Time Logic

RTS Real-Time Systems

SC Scenario

SCG Scenario Group

SQD Sequence Diagram

SQDG Sequence Diagram Group

TCS Time-Constrained Systems

TL Temporal Logic

ucC Use Case

UCD Use Case Diagram

UML Unified Modelling Language

ZPPC Z++ Class

ZSPEC Z++ Specification

Acknowledgements

First of foremost I would like to express my deepest gratitude to my thesis supervisor,
Dr. Peter Hitchcock, who guided my research with infinite wisdom and patience, as well as
with unabated confidence in my ability of completing the work presented here. I am much
indebted to Dr. Hitchcock for introducing me to the rigorous, admirable world of formal
notations, and for spending countless hours with me guiding the shaping of the approach
described in this thesis.

I would also like to express my heartfelt gratitude to the members of my examining
committee, Dr. Peter Bodorik, Dr. Trevor Smedley, and Dr. William Phillips, for their
guidance and support throughout the course of my studies. In particular, I would like to
thank Dr. Bedorik for supervising my earlier coursework and research, to express my
gratitude to Dr. Smedley for opening for me the realm of visual notations, and to thank Dr.
Phillips for his advice and encouragement.

I would also like to extend my thanks to the external examiner, Dr. Gregory Butler,
from Concordia University, Montreal, for his thorough review and constructive critique of
the thesis. Dr. Butler has pointed out with great clarity both the merits and the limitations of
our thesis, his observations about the latter being extremely helpful for us to better evaluate
our work and to define its future directions.

I would also like to express my gratitude to the former School of Computer Science
and the former Technical University of Nova Scotia for the financial support I received in
the form of scholarships and awards during my doctoral studies. I would like to thank both
the former School of Computer Science at TUNS and the current Faculty of Computer
Science at Dalhousie University, in particular to their directors, Dr. Jonathan Barzilai and,
respectively, Dr. Jacob Slonim, for trusting me with teaching appointments as lecturer for
the courses Software Development with Ada, Software Engineering, Database Management
Systems, and Computer Organization for Electrical Engineers. Teaching these courses
offered me the privilege of being constantly stimulated by the inquiring minds of my

students and helped me consolidate the foundation of the present work.

Among the students who steadily motivated and encouraged me in my work Paul
Evans, Greg Power, Chad Seward, Patrick Lee, Silvano Da Ros, Carmen Wong, Fernand
Boudreau, Stephen Nickerson, Atreya Basu, Samer Mansour, and Jas Singh are the ones to
whom I am especially grateful. Many thanks are due as well to my graduate colleagues Dawn
Juda, Eve Rosenthal, Marcel Karam, Krys Gawetski, and Arun Sood who provided me, in
various phases of my studies, with a friendly and stimulating environment.

I am deeply indebted to Dr. Traian Ionescu, my former team leader and head of
department at the Polytechnic University of Bucharest, Romania, who mentored my earlier
professional steps with wisdom, goodwill, and grace. To him and his wife, Mrs. Mihaela
Ionescu, I owe special thanks for their guidance and friendship throughout many years.

I was very fortunate to work with and be guided by several other senior professors at
the Polytechnic University of Bucharest. I would like to take this opportunity and thank Dr.
Radu Dobrescu, Dr. Sergiu Iliescu, and Dr. Aurelian Stanescu for giving me, years ago,
through their personal examples, an excellent definition of the word academia.

To my longtime friend, Cristian Mierlea, I would like to say thank you for many
things but especially for teaching me, many years ago, that in essence the computers are an
extraordinary combination of mathematics and literature. And for inducing me, in those
high school years, to value them dearly. For their constant support and encouragement
throughout the years my heartfelt thanks go as well to my friend Mike Cailean and to his
wife, Rodica Cailean. I would also like to express my thanks to a special friend, close to my
heart and mind, Jorge Luis Borges, the great Argentine writer, presently in Heaven, in all
probability narrating one of his fabulous stories. The beauty and finesse of his writings lifted
my spirit in countless nights.

I have many special thanks for my parents, my wife, and my daughter. Words can
hardly express my gratitude for them, but I trust they know how deeply I have appreciated
their support throughout my studies. My daughter Diana grew up with a student father,
quietly accepting to have me away from her in so many occasions. Finally, I would like to
particularly thank my wife for her unfailing understanding, extended sacrifice, and
unconditional love. I would like her to know that without her support this thesis would

never have happened.

Abstract

This thesis is about the integration of semi-formal, graphical representations with
formal notations within a modelling approach aimed at the construction of time-constrained
systems (TCS). We believe that the two types of notation, graphical (semi-formal) and,
respectively, formal, can efficiently complement each other and provide the basis for a
software specification approach that can be both rigorous and practical. Although many
authors have envisaged the advantages of combining informality with formality in software
construction, there are very few reports that address the problem within the context of
object-orientation and project its solution over the canvas of TCS modelling.

The pillars of our approach are the following: the combination of formal and semi-
formal notations for specification purposes, the integration into an object-oriented approach
of modelling capabilities that target properties of TCS, the elaboration of detailed algorithms
for UML to Z++ translations, and the proposal of a procedural frame for effective and
reliable development of TCS. Principles and an outine of an algorithm for the reverse
translation, from Z++ to UML, are also included in the approach.

While the graphical notation employed is a subset of the UML, the formal notations
used are Lano’s Z++, an object-oriented variant of Z, and Jahanian and Mok’s Real Time
Logic. Both structural and dynamic aspects of the system are considered and a new
modelling element denoted class compound is proposed.

From a methodological point of view, after several UML-based modelling steps are
completed the formalisation process can take place, the result being a formal specification
derived from the graphical representations obrtained in the eatlier steps. The integrated, semi-
formal and formal model of the system can be subsequently enhanced while the designed
translation mechanisms allow changes in the graphical representations to be reflected into the
formal specifications as well as modifications of the formal specifications to be fed back into
the diagrammatic descriptions of the system.

A case study, an Elevaror System, is included in the thesis to illustrate the application
of the proposed approach and the GUl-centred design of Harmony, an integrated
specification environment intended to support the approach, is also presented.

Although we believe the proposed approach offers a viable solution for modelling
software systems, it has nevertheless a number of limitations that need be pointed out.
Firstly, the translation of UML constructs is restricted to a subset of the notation, and the
treatment of state diagrams is confined to sequential, non-composite executions (composite
states and aspects related to concurrency are not covered). Secondly, although timing
constraints can be attached to structural UML constructs in the regular way, we have not
tackled their mechanised translation to Z++, and there is a limited incorporation of such
constraints in the state diagrams considered. Thirdly, the formal language employed, Z++, is
currently lacking in supporting tools, which could be an impediment to the use of the
proposed approach in industrial applications. Fourthly, for the formalisation algorithms a set
of rules for well-formedness and a set of principles for translation are given without using
meta-models for UML and Z++/RTL, yet the use of these meta-models would have probably
allowed a more concise and precise description of the algorithms.

However, our belief is that, through future work, the above limitations can be
overcome and our proposal can thus become a stronger contender in the landscape of object-
oriented approaches for modelling TCS.

Xviii

R

1 INTRODUCTION
—

“ “Where shall I begin, please your Majesty?’ ke asked.
‘Begin at the beginning,’ the King said, gravely,
‘and go on till you come to the end: then stop.’ "

[Lewis Carroll, Alice’s Adventures in Wonderland, 1865]

1.1 Three Paradigms and a View of the Field

1.1.1 The First Paradigm or Objects as Conquerors

Few paradigms have had such a significant impact on the field of software development as
the object-oriented approach. One can argue that actually there is nothing really new under
the sun of technology, and that rhe object-oriented paradigm simply built upon the results of
many honest structured methods exercised intensively on various domains of application
over a significant number of years. The time of object-orientation just had to come, one may
say, and this is probably true considering the constant progress within the computers’ world,
but we still cannot stop admiring its fundamental naturalness and the benefits it made

possible.

The object-oriented paradigm has shifted the developers’ focus from the solution domain
(computer implementation) to the problem domain (the real-world that we relendessly try to
model and control) and brought with it a much greater modelling power —resulting primarily
from the natural correspondence between objects and real-world entities. The object-

oriented approach has also come with solutions for improved control of complexity —mainly

through abstraction, information hiding, and localisation, and provided effective answers for
code reusability and extensibility via encapsulation and inheritance. The object concept
proves to be remarkably powerful while essentially simple —the key characteristics of any true

successful solution. And of any true conqueror.
1.1.2 The Resilient Field of Real-Time Applications

While a large variety of general-purpose object-oriented development methods have been
proposed, among the most notable Shlaer and Mellor [Shlaer88, Shlaer91], Coad and
Yourdon [Co0ad90, Coad91], OMT (Object Modeling Technique) [Rumbaugh91], Booch
[Booch94], OOSE (Object-Oriented Software Engineering) [Jacobson94], Fusion
[Coleman94], and more recently the Unified Software Development Process [Jacobson99],
there has been comparatively a smaller production of object-oriented methods dedicated to
real-time systems. This type of applications seemed to be more resilient to potential
conquerors, including the objects. The explanation resides mostly in the efficiency concerns
developers of real-time systems may have. As Bran Selic points out, even though the object
paradigm is suitable for real-time applications (due to its equal emphasis on both structure
and behaviour, which appropriately answers the needs of real-time systems development
methodologies) it nevertheless extended over the real-time domain more slowly than over
other areas of software development [Selic98]. The cause, the author indicates, lies in the
rather scarce attention paid to important aspects of real-time execution, such as concurrency
and efficient allocation of memory. Indeed, the constraints on execution speed and memory
space are much stricter for real-time systems which, among other things, must meet
deadlines and operate in typically unfriendly environments. Consequently, the traditional
solution for ensuring both high execution speed and low memory utilization was to write
lower level code using assembly language or languages such as C, Ada or Occam. These
languages in turn provided relatively little support for the implementation of object-oriented
designs. On the other hand, where support was provided (e.g., C++, Smalltalk) the overhead
for manipulating objects at run time seemed to be costly, precluding the implementation of

real-time systems in all but the more relaxed (softer) cases.

Nevertheless, some newer object-oriented approaches for real-time development such as
ROOM ([Selic94], Octopus [Awad96], and Comet [Gomaa00] have been successfully
developed over the last years. This is certainly related to the constant improvements in
hardware —faster, more powerful, and more compact processors being able to alleviate a
number of issues related to the development of real-time systems in the “object-oriented
way” and extend the application range of the OO paradigm in areas never tackled before.
Commonly, the object-oriented analysis and design techniques that focus on real-time
systems extend the traditional capabilities of general-purpose object-oriented methodologies
with support for modelling aspects such as concurrency, distribution, timing constraints,
synchronisation, communication, interrupts, and exceptions. At the implementation level,
newer languages such as Ada95 [Barnes96] and Java [Gosling96] offer good support for
writing real-time applications in an object-oriented manner (Java’s capability for real-time
programming is amply illustrated in [Bollella00]). These realities provide solid grounds for
us to predict, for the near future, an increased interest in applying the object-oriented
technology to the field of real-time applications. In other words, the field’s resilience has

been eroded to the point of the complete acceptance of the conqueror objects.
1.1.3 The Second Paradigm or Formalisation as a Controlling Factor

Software developers need to be resourceful, imaginative, alert, and quick to react to new
challenges. This is due to the dynamics of their profession, in which daily novelties represent
the only constant characteristic of the work environment. The need for fast and efficient
solutions for new problems exercises tremendously the creativity of developers. But in the
rush for delivering the expected solutions errors happen and bugs sneak in the software
produced. Sometimes, the entire architecture of a program turns out to be erroneous. The
craft of software developers needs reality checks, more so if the application domain is safety-
critical or security-critical. Formalisms are needed as controlling factors of a developer’s
work; creativity must be channeled properly, and some moderation in art is necessary. It is
well known that the best masterpieces brightly combine inspiration with rigor. In software

development, formal methods are precisely employed to bring in the latter.

As shown by Gerhart et al., “formal methods are mathematical synthesis and analysis
techniques used to develop computer-controlled systems” [Gerhart94, pp.5]. While it is
observed that the technological transfer of formal development approaches from the
academia to the industry is rather slow, an increased interest in the application of formal
methods to software construction has been signaled over the last years [Fraser94, Clarke96,
Hall98, Abernethy00]. Typically, what prompts the usage of formal techniques are safety
concerns, regulatory standards, or the need to demonstrate that the implementation of a
system corresponds to the system’s requirements. However, we believe that the most
important reason for applying formal methods in industrial applications lies in the improved
understanding of the system under construction and, generally speaking, in increased

intellectual control over the software being developed.

Numerous formalisms or formal development frameworks have been proposed, among the
most notable being Temporal Logic (TL) [Rescher71, Pnueli77], the Vienna Development
Methodology (VDM) [Bjorner78, Jones90], Communicating Sequential Processes (CSP)
[Hoare78, Hoare85], Calculus of Communicating Systems (CCS) [Milner80], Larch
[Gurag85, Gurtag93], Statecharts [Harel87, Harel96], and the Language of Temporal Logic
Specification (LOTOS) [ISO89], but we will focus our attention on the formalism that
emerged as one of the most popular over the last decade: the specification language Z,
originated from the Oxford University Computing Laboratory, U.K., and currently used by
many organisations all over the world. Very good classifications of formal approaches can be
found in [Fraser94], [Gaudel94], and [Liu97], while authoritative references on Z are

[Spivey92] and [Wordsworth92).

While successfully employed for formally describing and analysing numerous data-intensive,
non real-time applications, the specification language Z has been only occasionally utilised
for the development of time-constrained systems. Although mathematically sound, mature,
expressive, and elegant, Z has been traditionally deemed of limited applicability in describing
systems essentially characterised by strict demands on their meeting of prescribed deadlines,

systems that most often are also concurrent in nature and complex, and possibly even safety

critical. This limitation is due mainly to Z’s intrinsic lack of support for capturing temporal
properties of systems and to its reduced capability for simulation, which makes difficult the
construction of executable prototypes that could allow developers to interactively refine and
validate the specifications. In addition, due precisely to its generality and expressiveness, Z
does not typically allow for automated translation of specification into implementation code.
However, newer studies have been focused on finding modalities of using Z for specifying
real-time systems [Fidge97, Periyasamy97, Mahony98] and it has also been shown that by
employing additional conventions and structuring mechanisms it is possible to animate a
large subset of Z descriptions [Utting95, Jia98b). Both these studies and the well-known,
solid mathematical foundation offered by Z for formally capturing various properties of
systems have encouraged us to investigate the possibility of using Z (more precisely, an
object-oriented extension of Z) in the development of real-time systems (which, for reasons
explained later in this chapter, we will refer to as rime-constrained systems). In short, to
approach successfully the field of real-time systems, we believe that objects alone are not
sufficient: mathematical rigor is needed, and should be provided as early as possible in the

software development process.
1.1.4 The Third Paradigm or The Power of Pictures

Descriptions of computer applications, at least in what regards the software components,
used to be mostly if not entirely textual. There were hardly any other forms of representation
but text and perhaps formulae and tables (both of them in essence some other forms of
organised text). Driven by the technological engine that has produced increasingly faster
processors and constantly larger-capacity devices, the world of software itself has changed in
the last decade or so. The words of David Harel, in a2 1988 seminal article, proved to be
prophetic: “We are entirely convinced the future is visual. We believe that in the next few
years many more of our daily technical and scientifical chores will be carried out visually, and
graphical facilities will be far better and cheaper than today’s” [Harel88, pp. 528]. While
after more than a decade we can extend this prediction to incorporate multimedia facilities,

today we feel fortunate to witness the truthfulness of Harel’s prediction and admire the

accuracy of his vision. The graphical symbols (for practical purposes we exclude from them
the classical letters of the alphabet), the icons, the visual metaphors, the animation, are now
common parts of our daily interaction with the computers. Actually, it is hard to imagine
today any significant software development environment based exclusively on text. Even the
more conservative Unix systems have included graphical interfaces into their environments.
As Harel predicted, the present is and indeed the future will continue to be visual. We have
complied with this reality by incorporating a graphical notation in our modelling approach

and by providing a graphical user interface to the tool that supports this approach.

1.2 Motivations

The motivations for our research approach can be summarised as follows:
1.2.1 Effectiveness and Simplicity

First and foremost, we have the fundamental belief that any new, practical approach should
necessarily be both effective and simple —or, to be more precise and use one of Einstein’s
well known quotes, “as simple as possible, but no simpler” (this quote is cited, among others,
by Stroustrup in his landmark book on C++ [Stroustrup97, pp. 723]). Obviously, any
academic research should have a motivation that ultimately relates to practical needs.
Overcomplicated software development approaches have difficulties gaining widespread
acceptance in industrial environments, and as such they take the risk of remaining mere
exercises in abstraction. The point here is not to underestimate the need for complex, sound,
thoroughly refined theoretical foundations for new software development techniques, but
rather to emphasise the necessity of hiding such foundations under apparently
unsophisticated facades. In other words, we are driven in our approach by the desire to

“engineer the illusion of simplicity” [Booch94, pp. 6].
1.2.2 Capability of Tackling Complex Tasks

We see the real-time systems as a complex, challenging field of investigation that is open to

new research and offer the promise of rewarding methodological improvements. Benefits of

effective application development in this area are potentially enormous (Kopetz97,

McUmber99, Douglass99].
1.2.3 Early Detection of Errors

Cost-benefit considerations also provide for us the compelling reason to focus on the early
stages of the software development process, where detecting and correcting an error is usually
berween tens and hundreds of times less expensive than later, during implementation and

maintenance [Boehm84, Schach99].
1.2.4 Powerful Combination of Paradigms

We consider that the accurate combination of several major paradigms that emerged
vigorously within the software development world can provide the basis for a technologically

sound, useful, and efficient methodological solution.
1.2.5 Understandability and Practicality

Effectiveness requires excellent communication and minimal departure from the problem
domain in terms of description of functionality. As such, we see use cases and scenarios as the
most appropriate means of interactivity, as key elements for bridging the gap between the
users’ understanding of the system under development and the developers’ view of the same
thing (the system). In software specification, capturing the behaviour of a system is probably
more important than describing the system’s structure, because the latter can generally be

subjected to some approximations and refined in later stages.
1.2.6 Ease of Communication

Speed of communication and shared understanding depend on the way the information is
organised and on the quality of the information’s conveyor. Visual representations and
graphical symbols are very powerful means of transmitting information. One cannot rely

exclusively on unadorned text for capturing the intricacies of real-time systems. We are

compelled by today’s technology, in which visual descriptions play a very important role in

conveying information, to incorporate in our approach forms of graphical representation.
1.2.7 Expressiveness and Modernity

Because we deal with the specification of software systems we are compelled, for reasons
outlined in Subsection 1.1.1, to proceed in an object-oriented manner. We use object-
orientation as the wrapper paradigm of our approach that also incorporates formality and
focuses on real-time issues. The widespread success of this paradigm accounts for our choice,

there is no real competition for objects at this point in time.
1.2.8 Rigor and Precision

Formality or, in other words, mathematical rigor is a condition for dependability and
assurance when dealing with real-time systems. Not only are we convinced that the key parts
of the more complex software specifications should be treated formally, but we make out of

formalisation an important component of our approach.
1.2.9 Refinement

Finally, to supply our approach with the necessary characteristic of “naturalness”
(synonymous to “developer-friendly”) we have included the classical technique of refinement
in the modelling approach proposed (the term is used here in the sense of iterative revision of
the model for gradual improvement, not in the sense of successive detailing of the model up
to executable code). It should be point out that refinement is not used simply as a universal
remedy, but as an important constituent of our approach, as shown in Chapter 7 of the

thesis.
1.3 Challenges

Based on the above-mentioned considerations, our essential goal, stated briefly, is to propose

a new, theoretically sound, yet user-friendly and pragmatic methodological approach for

specifying time-constrained systems. The approach aims at incorporating both object-
oriented principles and formal techniques for describing the software under construction.

We have identified a number of major challenges for our endeavor, as outlined below.
1.3.1 Efficient Combination of Techniques and Notations

There is an apparent dichotomy between graphical (specifically, semi-formal or informal)
and formal techniques for software specifications, but there is also a growing number of
approaches that attempt to integrate them and reap the benefits of both, as shown in
Chapter 4. (To be precise, graphical notations can be formal, as discussed more in Section
2.5 of this thesis, but unless specified otherwise we refer in our dissertation to the larger
category of semi-formal and informal graphical notations —see also the notes on terminology
in Section 1.5). Typically, specification approaches based on semi-formal or informal
graphical representations are designed to provide a user-friendly apparatus for software
development, and focus primarily on suitable methodological steps and on the inclusion of a
an easy to manipulate set of modelling symbols. The concern for rapid development plays an
important role in the definition of such approaches. Conversely, formal techniques are
employed rather as sophisticated tools for demonstrating properties of the systems, and are
generally used only in situations that require special attention, such as safety analysis or
security enforcement. Formal methods can provide greater intellectual control even though,
as pointed out by Gerhart et al., no single method is general enough to completely cover an
application domain, and it is rather unclear how to combine formal methods with other
methods [Gerhart94]. However, as indicated by Perry Alexander, the two types of models,
formal and informal, are not competitive, but complementary [Alexander95]. On the one
hand, graphical models are natural and easy to understand and on the other hand formal
models ensure precise specification and proof capability. The integration of the two models
would combine, as well said by Alexander, “the best of both worlds,” thus offering a solution
for reliable, efficient software development. The challenge remains, obviously, to seamlessly
integrate them in an efficient, unified approach, balanced between formal and informal,
flexible enough to be used for a large class of applications, and able to adapt to various

degrees of rigorousness demands.

10
1.3.2 Approaching Time-Constrained Systems from an Object-Oriented Perspective

The application of the object-oriented paradigm has been extended relatively recently to the
area of real-time systems (more details are presented in Chapters 2, 3, and 4 of the thesis).
However, there are numerous aspects of such systems that need particular attention when
dealt with from an object-oriented point of view. As pointed out by numerous authors, the
specification of real-time systems using the object paradigm remains an area of ongoing
research [Yang96, Evans99, McUmber99]. The modelling challenges in the case of time-
constrained systems embrace both structural aspects (such as identification and structuring of
classes, establishing relationships, and deciding on object responsibilities) and behavioural
aspects, including message passing, synchronisation, communication, parallel execution and,
of course, capturing of time properties in the form of precise temporal constraints imposed

on the run-time execution of the system.
1.3.3 Developing Mechanisms for Formalisation of Graphical Representations

The translation of models described using a semi-formal graphical representation into their
formal, mathematically sound counterparts has been the object of previous research work, as
presented in more detail in Chapter 4 of the thesis. However, rules for formalisation have
been designed primarily in the context of structured methods, such as SSADM (Structured
Systems Analysis and Design Method) [Pollack92] or the RRT (Rigorous Review
Technique) [Aujla94], while relatively few attempts have targeted the object-oriented
models, and even fewer have been dedicated to the specification of real-time systems. With
the emergence of the modelling standard UML (Unified Modelling Language) [Booch98]
some recent approaches have focused on translating UML notations into formal equivalents
or on employing UML in conjunction with formal notations, as discussed in more detail in
- Chapters 3 and 4. Yet, there is still a need for continued work in this new direction,

especially if we take into consideration real-time aspects of the systems.

11

1.3.4 Rigorous Treatment of Temporal Constraints

In a frequently cited paper, Dasarathy stresses the importance of specialised constructs in
requirements languages for capturing timing constraints [Dasarathy85]. He points out that
temporal restrictions typically considered are performance constraints (placed on the system’s
response) although the same importance should be given to behavioural constraints, which
impose limits on the rate of stimuli on a system. Dealing with time in a rigorous fashion is in
itself a complex problem. Accurately capturing timing properties of systems has been for
some time the subject of considerable research work [Hoare78, Dasarathy85, Ostroff89,
Shaw92, Mathai96, and many others]. However, including temporal aspects in object-
oriented models is an even greater issue, a subject that over the last few years has increasingly
attracted the attention of researchers (examples of research in this direction include
[Vishnuvajjala96], [Selic99a], [Alagar00], and [Kim0Ob]). We strongly agree with Leung and
Chan that “being such an important notion, time deserves a proper treatment” [Leung96,
pp- 246]. Consequently, we attempt to include in our notation a set of modelling constructs
capable to provide the necessary support for expressing our expectations of punctuality and

collaboration regarding the components of the system being developed.
1.3.5 Provisions for User Acceptance

As previously mentioned, one of our goals is that of understandability and practicality. We
advocate the application of formal techniques in software development, particularly in
software specification, but we are aware that the acceptance of such techniques by the
software development community can be achieved only by proposing a well-defined,
relatively small, yet expressive set of notations, incorporated into a straightforward and easy-
to-follow modelling technique. Therefore, the challenge is to reach the equilibrium between
the true expressiveness of the approach and its apparent complexity, which must not be
perceived as too complicated to its intended users. Of course, it will not be possible to
completely hide the mathematical foundation of the approach behind graphical symbols but,
as pointed out by Gerhart et al., the main challenge for applying formal methods consists not

of teaching the developers the mathematics involved, but of training the users how to model

12

the systems properly [Gerhart94]. Hence, we need work on the notation, but must not forget

the method.

1.3.6 Tool Support

A recognised issue with the formal techniques in general is the lack of tool support
[Gerhart94, Dill96]. Software tools are necessary for enhanced interaction with the user,
including navigation and visualisation, for type checking, and for reasoning about the
consistency of specifications across larger projects. Also, improved mechanisms of version
control, as well as facilities for maintaining conformance between formal specifications and
their corresponding design rationales are needed [Johnson96]. Consequently, our intention
is to supply the theoretical results of our work with suitable tool support, in the form of an
environment for object-oriented, visual and formal modelling of systems. Even though some
desirable capabilities of this environment, such as formal proof and animation, would not be
included in our tool at this stage (such features would require separate, complex research
investigations) our intention is to include sufficient functionality in the tool to illustrate the

practicality of our approach.
1.3.7 Capability of Extension

Even though potentially very rewarding, dealing with formal aspects at the specification level
must be seen only as a starting point towards the application of the proposed dual approach,
formal and semi-formal, to the entire software development process. We would like to sce
beyond the present dissertation and leave the door open for potential extensions beyond the
modelling phase, for instance for prototyping and simulation, refinement to executable code,
specification based testing, and formally-conducted maintenance. In practical terms, the
challenge is that both the notation and the deliverables of our specification approach should
be ready for use in subsequent software development phases as well as in association with

alternative software construction techniques and tools.

13

1.4 Notes on Terminology

Before outlining the approach proposed in this thesis several notes on terminology are

necessary.

First of all, we rely on Fraser et al. to distinguish between formal, semi-formal, and informal
specification techniques [Fraser94]. Specifically, informal techniques, represented by natural
language and unstructured pictures, “do not have complete sets of rules to constrain the
models that can be created,” semi-formal techniques have well-defined syntax and their
“typical instances are diagrammatic techniques with precise rules that specify conditions
under which constructs are allowed and textual and graphical descriptions with limited
checking facilities,” while formal techniques, such as specification languages based on
predicate logic, have precise syntax and semantics and “there is an underlying model against
which a description expressed in a mathematical notation can be verified.” [Fraser94, pp.

79].

Secondly, as many other authors, for instance [Spivey92] and [France97], we use the term
notation as a substitute for language, although rigorously speaking notation refers only to the
set of symbols belonging to the language. This commonly used promotion of the term helps

avoiding tedious repetitions and simplifies the discourse of the thesis.

Thirdly, we use the word specification in the sense defined by Alan Davis, that of a
document containing a description (in our case, of the software under construction).
According to this definition, one can use terms such as requirements specification, design

specification, or test specification [Davis93, pp. 372].

Fourthly, the word modelling, which also appears in the title of our thesis, is used to denote
the activity of creating a model; that is, of developing a representation of the real thing
(which, again, in our case is the software system being built). We see the two concepts,

specification and modelling, closely connected and the difference between them of rather

14

fine nuance. Specification, in our view, is a description that may propose a model, while a
model, in its analytical form, is recorded in a specification (for the sake of completeness,
generally speaking a specification may not contain a model and a model may not have a
specification). In our approach the distinction between specification and modelling is
especially difficult to highlight; using well-established terminology, we employ the modelling
notation UML and a variant of the specification language Z to create object-oriented models
of the system, described in documents (specifications) that encompass both analysis and

design aspects.

Finally, we use the term time-constrained systems (TCS) as an alternative to real-time or
reactive systems in order to emphasise the temporal restrictions imposed on such systems and
to shift the focus from specialised, less approachable products confined to rather restricted
domains (military, nuclear energy generation, or medical devices), to more accessible
products such as operating systems, transaction processing systems, cellular phones, and
microwave oven controllers. In our view, one can consider the term time-constrained systems
a substitute for both hard and soft real-time systems —a substitute that stresses the
importance of timing properties that characterise these systems. Nevertheless, in order to
avoid repetitions and employ recognised terminology when necessary, the terms time-

constrained systems and real-time systems are used interchangeably in this thesis.

1.5 The Proposed Approach

This thesis is about the integration of semi-formal, graphical representations with formal
notations within a modelling approach aimed at the construction of time-constrained
systems. We believe that the two types of notation, graphical (semi-formal) and, respectively,
formal, can efficiently complement each other and provide the basis for a software
specification approach that can be both rigorous and practical. The former notations, relying
on graphical symbols and diagrams, bring the “power of pictures,” which manifests through
better representation of abstractions and higher expressiveness. The latter notations, precise,
based on mathematics, increase the developer’s assurance and intellectual control and make

possible automated synthesis and verification. Although many authors have envisaged the

15

advantages of combining informality with formality in software construction, there are very
few reports that address the problem within the context of object-orientation and project its

solution over the canvas of TCS modelling.

The pillars of our approach are the following: the combination of formal and semi-formal
notations for specification purposes, the integration into an object-oriented approach of
modelling capabilities that target properties of TCS, the elaboration of detailed translation
algorithms from diagrammatic representations to formal specifications, and the proposal of a
procedural frame for effective and reliable development of TCS. Principles and an outline for
the reverse translation, from formal specifications to graphical representations, an auxiliary
process intended to support the understanding of the system’s model by developers and users

not trained in formal methods, are also included in the approach.

While the graphical notation employed is a subset of the UML, the formal notations used are
Lano and Haughton’s Z++ object-oriented variant of Z [Lano91, Lano94a, Lano95)] and
Jahanian and Mok’s Real Time Logic [Jahanian86, Jahanian94]. Both structural and
dynamic aspects of the system are considered and a new modelling element, denoted class
compound and consisting of a simple yet practical aggregation of the UML class and state

diagram constructs, is proposed in order to facilitate the specification process.

From a methodological point of view, after several UML-based modelling steps are
completed the formalisation process can take place, the result being a formal specification
derived from the graphical representations obrtained in the earlier steps. The integrated, semi-
formal and formal model of the system can be subsequently enhanced while the designed
translation mechanisms allow changes in the graphical representations to be reflected into the
formal specifications as well as modifications of the formal specifications to be fed back into

the diagrammatic descriptions of the system.

A case study, an Elevator System, is included in the thesis to illustrate the application of the
proposed approach and the GUI-centred design of Harmony, an integrated specification

environment intended to support the approach, is also presented.

16

Although we believe the proposed approach offers a viable solution for modelling software
systems, it has nevertheless a number of limitations that need be pointed out. Firstly, the
translation of UML constructs is restricted to a subset of the notation, and the treatment of
state diagrams is confined to sequential, non-composite executions (composite states and
aspects related to concurrency are not covered), which reduces the applicability of the
translation algorithms to modelling TCS. Secondly, although temporal constraints can be
attached to structural UML constructs in the regular way (using UML time marks, time
expressions, and timing constraints —see Table 3.VI for details), we have not tackled their
mechanised translation to Z++, and there is a limited incorporation of such constraints in the
state diagrams employed. More precisely, the timing information pertaining to state
diagrams considered in the formalisation process is only in the form of bounds (lower, upper]
included in the label of transitions and in the form of transition triggers of the kind passage
of time events (all other sorts of temporal constraints need be added manually by the Z++
specifier). Thirdly, the formal language employed, Z++, is currently lacking in supporting
tools, which can be an impediment to the use of the proposed approach in industrial
applications (our Harmony tool is not yet implemented, and we have not intended to deal
with tool-supported formal analysis and formal refinement in the present thesis). In fact, we
are aware of tools for Z++ only via [Lano94d], in which it is mentioned that such tools have
been written in Quintus Prolog and ProWindows, but we have not investigated the possible
connection of our approach to these tools. Fourthly, for the formalisation algorithms a set of
rules for well-formedness and a set of principles for translation are given without using meta-
models for UML and Z++/RTL, yet the use of these meta-models would have probably
allowed a more concise and precise description of the algorithms. Also, there are a number
of issues related to the application of the formalisation and deformalisation algorithms,

indicated in Section 6.6, that deserve further investigation and require additional work.

However, our belief is that, through future work, the above limitations can be overcome and
our proposal can thus become a stronger contender in the landscape of object-oriented

approaches for modelling TCS.

17

1.6 Overview of the Thesis

The present thesis, in its remaining chapters, is organised as follows. Chapter 2, Background:
Context and Concepts, defines the space of our research, localises in this space the topic of
our dissertation, and presents the most significant aspects of the “domains” that belong to
the space of our investigation. The distinguishing characteristics of real-time systems are
examined, essential object-oriented principles and concepts are surveyed, observations on the
value of graphical notations are presented, and the utilisation of formal methods in software
development is discussed. In Chapter 3, Background: Notations, the focus is shifted from
general concepts to the two particular specification languages employed in our integrated
approach. A description of the specification language Z is given, together with a short
presentation of some of Z’s variants. In particular, Z++, the object-oriented variant of Z used
in the proposed approach is briefly introduced. Also, an overview of UML, including its
capability for modelling real-time systems, as well as a look on UML’s perspectives are
included. A survey of reported research that is similar to ours is taken in Chapter 4, Related
Work. In this chapter, the major ways of integrating informality with formality in the
specification phase are identified, related approaches focused on real-time systems are
examined, and existing ways of dealing with time in Z-based approaches are discussed.
Details on the formal resources employed for dealing with time in a rigorous manner are
presented in Chapter 5, Formal Specification of Temporal Constraints. This chapter
includes a section on the major types of timing constraints that are considered when
modelling time-constrained systems and gives detils on the specific RTL constructs
employed for capturing time-related properties of the systems. Details on the translation
processes from UML class diagrams to Z specifications, including the automated
formalisation of classes, relationships, and state diagrams are given in Chapter 6, Translations
between UML and Z++: Formalisation and Deformalisation. Guidelines for completing the
reverse translation, from Z++ to UML, are also suggested in this chapter. Chapter 7, A
Procedural Frame, brings the translation mechanisms proposed in the previous chapter under
the methodological umbsrella of a complete modelling approach. The proposed dual (semi-

formal and formal) modelling process is detailed through a series of steps organised in stages,

18

in each step a set of artefacts being produced, making up the combined diagrammatic and
formal model of the system. An illustration of applying the proposed dual, integrated
approach to modelling time-constrained systems is provided in Chapter 8, An Application:
The Case of the Elevator System. Since any new methodological approach for software
development is best served by an accompanying tool, Chapter 9, Towards an Integrated
Environment: A Prototype for Harmony, presents the GUI-centred design of the software
specification environment that we have envisaged as supporting tool for the proposed
modelling approach. Finally, Chapter 10, Conclusions, analyses the merits and limitations of
our approach, presents a summary of our contributions, and opens a window to the future
by pointing to a series of connected research directions that we believe deserve further

investigation.

1.7 Chapter Summary

In this chapter we have taken a view on the big picture, that of today’s computer-related
technologies, and introduced the larger scene of our research. We have explained the
motivations of our endeavor, pointed out the major challenges related to our work, and
outlined the proposed dual, integrated formal/semi-formal software specification approach.
This approach, aimed at the development of time-constrained systems, has the main goal of
harmoniously integrating graphical (semi-formal) and mathematical notations in a
theoretically sound, yet friendly, flexible, and easy-to-use software specification
methodology. An overview of the chapters that follow has been presented as well. In this
initial chapter a brief analysis of three major paradigms that pervade today’s software
development world was also included. We believe that the foundation for sound, effective
improvements of software development methodologies resides in the right combination of
the three paradigms, object-orientation, formal specification, and visual representation. At

the convergence of these powerful paradigms we place the topic of our thesis.

2 3ACKGROUND: CONTEXT AND CONCEPTS

“You must pin down the butterfly of time.”

[Michael Jackson, Software Requirements and Specifications: A
Lexicon of Practice, Principles and Prejudices, Addison-Wesley,
1995, pp. 78]

2.1 Introduction

In this chapter the research space and the coordinates of the thesis’ topic are defined using a
classification based on ‘domains and ‘sub-domains’ of exploration and the major aspects of
the larger framework in which we have undertaken our research are overviewed. By analysing
the distinctive features of real-time (or, in our vocabulary, time-constrained) systems, object-
oriented modelling, and formality in software development the larger contour of our work is
drawn. The main characteristics of real-time systems are analysed with the dual intent of
establishing the context of the present research and of identifying specific challenges of
capturing temporal properties of systems. The impact of the object-oriented paradigm on the
software development process is also discussed and the value of graphical notations is
emphasised. Some of the most significant aspects of employing formal notations in various
phases of the software life-cycle are examined, and arguments pro and contra this
employment are reviewed. As part of the examination of formality and formalisms, the newer
category of light formal methods, which circumscribes our approach, is briefly discussed.
Thus, Chapter 2 sets the scene for a closer look (in Chapter 3, “Background: Notations”) at
the two specification languages used in our approach, one formal (Z) and the other
graphical, semi-formal, and object-oriented (UML). The same scene is then used in Chapter
4, “Related Work,” to identify existing research approaches that are situated in the vicinity of

our topic’s location.

20

2.2 Research Space and Topic Location

The research space that encompasses the topic of the present thesis can be described by
considering three domains of exploration (Table 2.1 and Fig. 2.1). For simplification, in the
case of the first domain, which characterises the formality of a modelling approach, only its
‘formal’ sub-domain is considered. The second domain describes the methodological
paradigm used for software development, which can be either object-oriented or non object-
oriented. The third domain classifies approaches as having or not having RT modelling
capabilities. Within each of the three domains of exploration a number of sub-domains
(areas) of interest can be further delimited according to various criteria. We have been
interested in specifying the Z, Z++, and UML “dimensions” of a given approach, hence the

classification in Table 2.1, which distinguishes areas denoted A, B, and C in the first domain,

1, 2, and 3 in the second, and ® and + in the third.

Table 2.1 Classification of Research Approaches Based on Domains of Exploration

Formality Domain

Mcthodology Domain

Real-Time Domain

Area A [non-Z]:
Formalism involved,

but not Z-centred

Area 1 [non-OO0]:
Not an object-oriented

methodology

Area ® [non-RT]:
No RT modelling

capabilities

Formalism involved,

Area B [Z but non-O0Z]:

Area 2 [OO, non-UML]:

An OO methodology,

Area + [RT]:
RT modelling capabilities

Z-centred, but not OOZ but UML not involved provided
Area C [OOZ]: Area 3 [UML]:

Formalism involved, and An OO methodology N/A

an OO version of Z used that uses UML

21

The 18 possible combinations of areas from the three domains provide a classification
scheme in which a given approach has a class between Ale and C3+ (with the exception of

classes C1e and C1+, which do not make sense because an OOZ notation can be used only
in conjunction with an OO modelling strategy). This sharp delimitation of domains involves
a certain simplification, since things are almost never purely “black or white” (formal or
categorically non-formal, for instance), but it nevertheless serves well our localisation

purpose. Based on the classification presented in Table 2.1, a graphical representation of

domains can be drawn, as presented in Fig. 2.1.

Research location:
* formal. employing an OOZ vanant
* OO development, UML-based
* RT modelling capability

Fig. 2.1 Domains of Research Space and Topic Location

The figure indicates that our class C3+ approach is placed at the intersection of the three

major domains described above, and also enjoys the special characteristics provided by its

22

“O0Z-centred” and “UML-based” dimensions. Before moving to investigate further the
three domains defining the research space and discuss the details of the Z and UML
notations used to demarcate areas in these domains, several comments are necessary. Firstly,

to keep the figure simple, the areas in Fig. 2.1 have not been textually labelled as indicated in

Table 2.1, but the identification of specific classes, e.g., B2e, should be straightforward.
Secondly, the graphical representation of the abstract topology presented in Fig. 2.1 is in not
intended to reflect the proportionality of existing approaches (for instance, there is no
intention on our part to claim a 50-50 distribution between OO and non-OO approaches,
as the figure might suggest). Thirdly, the classification presented in Table 2.I and its
depiction shown in Fig. 2.1 will be used again in Chapter 4, where a survey of related

approaches is presented.

2.3 On Specifying Real-Time Systems
2.3.1 Characteristics of Real-Time Systems

In today’s fast evolving world of computing, real-time systems are taking an increasingly
important role and are extending their reign over a growing number of application domains.
Real-time systems prove to be useful in many areas of human activity: numerous
commercial, industrial, medical, and military products that must pay careful attention to the
precious resource which is the time are used on daily basis. As pointed out by Stankovic, “a
real-time system is one in which the correctness of the system depends not only on the
logical results, but also on the time at which the results are produced” ([Stankovic96b], pp.
751). In a similar way, Everetr and Honiden indicate that “a real-time system must respond
to externally generated stimuli within a finite, specifiable time delay” [Everett95, pp.13].
Severe consequences may resule if timing as well as logical correctness properties are not
satisfied. Based on the severity of consequences, the real-time systems can be classified as
hard real-time systems, where the failure of meeting the deadline can result in an important

loss (including loss of human life, injury, and/or major equipment damage), or soft real-time

23

systems, in which the deadline can be occasionally missed, but the utility of the result
decreases after the deadline [Burns97, Kopetz97]. Some authors take into consideration an
intermediate category, firm real-time systems, which in essence can be described as having a
shorter soft deadline and a longer hard deadline [Douglass98] (Fig. 2.2 presents a summary
characterisation of the three types of real-time systems based on a generic utility-time
function.) Hard real-time systems encompass aircraft controllers, process control systems,
factory robots, traffic lights controllers, and medical devices such as heart pacemakers, while
examples of soft real-time systems include automatic banking machines, ticket reservation
systems, general-purpose communication systems, and embedded commercial products such
as television sets and videocassette recorders. An example of firm real-time system is that of a
patient ventilator system, in which an occasional late breath in the range of few seconds is

tolerated, while a several minute delay is catastrophic [Douglass98].

Utility (a) Hard RTS

t,, (hard deadline)

» Time
Utility .
A . (b) Firm RTS
. ty (soft) t,, (hard)

& Time
g
Utitity (c) Soft RTS B
A A;'
&

. t, (soM deadline)

e,

Fig. 2.2 Hard, Firm, and Soft Real-Time Systems

24

As pointed out by Stankovic, most of the activities of real-time systems have to occur in a
timely fashion, but some non time-critical activities also coexist. The former activities are
referred to as real-time tasks (or time-critical tasks) while the later can be simply called rasks
[Stankovic88]. Timing constraints on tasks can be periodic, if activated every T units of
time, aperiodic if activated at unpredictable times, or sporadic, if they aperiodic behaviour is
further restrained by a minimum interval of time between activations [Stankovic96a). The
complexity of designing RTS also arises from additional types of constraints and
requirements such as resource constraints, concurrence constraints, precedence relationships,
placement constraints, communication requirements, criticalness. A real-time system differs
from a traditional system (non real-time) in at least the following aspects: deadlines are
attached to some or all of the system’s tasks, faults in the system —including timing faults—
may lead to catastrophic consequences, the system should have the ability to deal with
exceptions, the system must be fast, predictable, reliable, and adaptive [Stankovic88). Lin
and Burke show that RTS are very difficult to debug and modify, and —since there are always
demands for new functions and configurations— they must be easy to change and reconfigure
[Lin92]. Other authors also point out that the design of real-time software is resource-
constrained, the software itself is intricate and contains highly complex time critical parts,
and the real-time software should be able to detect the occurrence of failures [Natarajan92,
Everett95]. Everett and Honiden show that “development of most software focuses on how
to handle a normal situation, but real-time, critical-application development also focuses on
how to handle the abnormal situation” (Everert95, pp.15). And, unfortunately, as Gibbs
points out, “errors in real-time systems ... are devilishly difficult to spot because, like that
suspicious sound in your car engine, they only occur only when conditions are just so”
[Gibbs94, pp.88]. In short, as noted by Douglass, RTS “must operate under more-severe
constraints than ‘normal’ software systems yet perform reliably for long periods of time”

[Douglass99, pp. 57].

In what follows, we give a more detailed account, albeit not exhaustive, of characteristics
pertaining to RTS and analyse their implications on the design of a dedicated specification

approach. Of course, it is rather difficult to find an example that exhibits all the properties

25

listed below, and it will be a massive task, if not impossible, to develop a specification

method capable of rigorously handling all these properties. In fact, in Subsection 2.3.2 we

focus on a reduced number of capabilities we have aimed to include in our modelling

approach, but at this point it is useful to have a closer look at the impressive complexity of

the RT domain. The starting point of our selection has been the list of requirements for

specification languages presented by Narayan and Gajski in [Narayan93] and further

analysed by Narayan in [Narayan96]. Their list of requirements is concerned, however, with

the more restricted category of embedded systems so we have resorted to additional

references in order to describe the larger class of real-time systems.

Timeliness. The essential characteristic of RTS is that deadlines are imposed to some or
all the tasks of the system. Timeliness is part of the definition of a real-time system
[Douglass99], such system being required to work under predefined temporal constraints
and correctly react to stimuli from its environment “on time” [Selic94]. In specification
terms, the modelling notation should incorporate a time metric, as well as facilities for
expressing both relative and absolute timing constraints;

Reliability. One of the most imperative requirements placed on RTS, particularly on
hard RTS, is that of reliability. Due to the gravity of the potential damages that can
result as a consequence of a real-time system failing to function correctly, additional
measures must be taken into consideration. As pointed out by Nancy Leveson, the vast
majority of software faults have roots in incorrect specification [Leveson86], therefore the
specification languages and techniques employed in the development of RTS must
provide adequate support for incorporating reliability measures and for assessing the
system’s safeness. Essentially, means to deliver specifications that are complere,
consistent, comprehensible, and unambiguous are necessary [Burns97]. The use of
formal techniques is required, at least for the security and safety-critical parts of the
system;

Intensive dynamics. Due to the typically intensive dynamics of RTS, modelling the states
of such systems is an essential requirement for a dedicated specification language.

Diagrammatic notations with solid mathematic foundation have been proposed (among

26

the most notable Petri Nets [Petri62, Reisig85] and Statecharts [Harel87]) and proved to
be extremely valuable for specifying the dynamic behaviour of RTS. In particular, finite-
state machines have been used successfully in various phases of the software development
process {Avnur90, Ding93, Harel96];

Input/Output. Obviously, due to the continuous interaction with the environment in
which a real-time system typically operates, an adequate set of symbols and operators for
describing input/output operations should be included in the specification language;
Exceptions. Real-time systems must react promptly to stimuli from their environment or
to internal events that necessitate immediate attention. Some events, external or internal,
are more important than others, and taking appropriate measures in response to critical
situations is a strict requirement for such systems. Exception and interrupt handling are
inherent in the implementation of RTS and it is desirable to have them described at the
specification level;

Concurrency. Even though concurrency is not part of the definition of RTS, many such
systems exhibit concurrent behaviour. Moreover, as pointed out in [Shaw92], due to the
very nature of RTS it is not sufficient to model only the system, it is also necessary to
capture the environment in which it operates. And, this environment is inherently
concurrent, with multiple sources of stimuli that influence the behaviour of the system.
Consequently, a specification language for RTS should provide appropriate support for
expressing concurrency;

Distribution. As in the case of concurrency, distribution is not necessarily a characreristic
of RTS, but it is nevertheless impossible to ignore it, at least in the case of large-scale
systems. Capturing the distributed nature of a complex real-time system is becoming a
necessary feature in these days when the Internet and the World-Wide Web have
obrained the status of common nouns. However, the task of expressing both concurrency
and distribution is very demanding [Douglass99];

Communication and synchronisation. One cannot possibly imagine a useful system in
which various software components do not communicate and synchronise, more so in a

real-time system that is required to be both concurrent and distributed. Clear description

27

of communication and synchronisation is necessary and the specification notation must
provide constructs and mechanisms to support it;

Resource allocation. Because many RTS are also distributed, it is desirable that facilities
for describing allocation of resources should be included in a specification language that
aims at modelling such systems;

Size. RTS are not only special in their dealing with time but in many cases they are also
large and complex, involving numerous processes and threads, as well as a significant
number of input/output variables. Size alone is obviously an element that affects the
development of a system, but in the case of RTS a complicating factor is that largeness is
inherently associated with continuous change, so provisions for extensibility should be
built in the design of such systems [Burns97]. Both structured and object-oriented
methods provide means of dealing with increasingly more demanding requirements on
size; modules, classes, components, and patterns are typical solutions for dealing with
large-size software products. Operators for expressing composition and decomposition, as
well as mechanisms for modelling hierarchical structures are necessary;

Non time-constrained activities. Although it would appear that non time-critical activities
should not be deemed an issue, it has been shown that incorporating such activities in
the development of RTS may prove to be a complicating factor. The most common
problem raised by non time-constrained activities is that a worst-case execution time for
them (e.g., the answer from a human user) cannot be easily evaluated [Audsley96];
Computations. Typically, RTS must continuously interact with their environment and
provide appropriate response under conditions imposed by the environment. The
computation of the system’s response can be complex, for instance in the case of process
control systems, which involve solving systems of possibly complicated differential
equations. Consequently, the implementation of RTS requires the ability of
manipulating real, fixed or floating-point numbers [Burns97]. This translates into a
requirement for the specification language, which must be able to handle both
quantitative and qualitative intricacies of RTS;

Data modelling. RTS are the most complex type of systems —as put by Alderson et al.,

they “have proved troublesome to produce, with all the difficulties of the other kinds of

28

software-based systems together with a number of specific additional problems”
[Alderson98, pp. 442]. Among the traditional difficulties, data modelling is a challenging
issue if not for all, but for an increasing number of time-constrained systems. In fact, a
branch of time-constrained systems is that of real-time database systems (RTDBS), in
which both timely response and the ability to manipulate data that has temporal validicy
are required [Lin94]. In this respect, solutions to unambiguously specify aspects such as
relationships between consistency constraints and timing constraints, the validity of
external data consistency, abstractions for data, and also data transformations are needed
[Sahraoui97];

Reuse. As pointed out by Mrva, the real-time systems, particularly the embedded
systems, appear to be poor candidates for reuse [Mrva97). This can be explained by the
fact that most of the RTS are specialised, typically required to resolve needs of a rather
particular nature. Reuse seems hard to achieve with RTS for the simple reason that rarely
two applications exhibit more than limited similarity. However, as indicated by Mrva,
reuse is not only desirable but also possible within the realm of such systems and the
major factors on which the reusability value of a real-time system depends on are the
frequency and the utility of reuse, which are related to comprehensibility, habitability
(measures how “at home” a potential user feels with the reusable components), and
independence of components with respect to their environment [Mrva97]. The object-
oriented paradigm offers an avenue of investigation for the designers of RTS, together
with the newer pattern-based techniques;

Animation/execution. The need for animation is advocated by many authors who stress
the importance of rapid-prototyping and early client feedback in the development of
RTS. Animation of specifications is generally desired, because it can provide a rapid
feedback to the designer and facilitate a better understanding of the system’s
requirements. Although the more ambitious goal of an animation system is to generate a
full-scale prototype or even a complete implementation of the system being developed,
animation can be used interactively for immediate exploration purposes: the

consequences of a specification can be evaluated dynamically, during the composition of

29

the system’s specifications, thus allowing the refining and optimisation of specifications

[Utting95].

2.3.2 Focus On Time

Obviously, the real-time domain is very complex and very demanding. The approach we take
is to tackle some of its complexity and deal with several of the aspects mentioned above.
Since the defining property of a real-time system is timeliness, we decided to focus on
expressing temporal properties of the systems at the specification level. Because of this, and
for reasons outlined in Subsection 1.4, we use time-constrained systems (TCS) as the
preferred term in denoting the systems our approach is focused on, although when needed
(primarily, for referencing purposes) the traditional RTS denomination is also used in this

dissertation.

Our “selection of emphasis” has also been based on the observation that while timeliness is a
characteristic of both hard and soft real-time systems if we speak about TCS (as opposed to
RTS) more stringent (“harder”) requirements placed on these systems, such as reliability and
safety, are gently pushed towards the background. The intention, of course, has not been to
ignore such demanding requirements, but to come up with a “more popular,” more
pragmatic specification approach that would appeal to both software developers and users
and would not scare them away by suggesting an emphasis on the more difficult (and less
“popular”) subclass of complex safety-critical applications. And, while our method can
address the modelling of hard RTS (e.g., traffic lights controllers), it is only fair to say that
“really hard” RTS -if we may introduce this distinction— such as aircraft autopilot controllers
or nuclear process control systems would need supplementary treatment, provided by some
additional techniques and tools. On the other hand, while we acknowledge our approach’s
focus to the “softer side” of RTS (in fact, not necessarily soft, since it could be either “lighter
hard”, “firm,” or indeed “soft™) we note that the term TCS has an additional advantage: it

covers both reactive (or event-driven) systems and time-based (or time-driven) systems

30

because timeliness is part of both of them. (If it were to speak simply abour time-based
systems it would have meant that we address only systems whose behaviour is driven by the
passage of time or the arrival of time epochs [Douglass99], and this would have been

somewhat too restrictive).

Our emphasis on timing properties is illustrated by the fact that the starting point in the
design of our approach has been provided by the archetypical classes of temporal constraints
identified in [Dasarathy85] and that Real-Time Logic (RTL) [Jahanian86, Jahanian94],
which offers very good support for expressing both absolute and relative timing properties,
has been included in the proposed integrated specification method (more details are provided
in Chapters 5 and 6). In terms of the characteristics of RTS discussed in the preceding
subsection, the approach presented in this thesis can be summarily described as follows: it
places primary emphasis on timeliness, provides a good modelling coverage of intensive
dynamics, input/output, exceptions, non time-constrained activities, computations, data-
modelling and reuse, offers a fair support for dealing with concurrency, communication,
synchronisation, and size, and does not address distribution, resource allocation, and
animation/execution. In what regards reliability, the formal basis is here, with Z++ and RTL
its pillars, but the particular specification approach we propose here need be complemented

by analysis techniques that have been left outside the scope of the present dissertation.
2.4 Brief Immersion in Object-Orientation

2.4.1 On Objects and Their Modelling Power

Over the years, the structured paradigm proved to be less effective than initially thought. By
mid-eighties, the practitioners in the field became aware that it did not live up to earlier
expectations, particularly in two major respects: it did not cope well with the increasing size
of modern software products and did not support adequately the maintenance of such
products [Schach99]. As indicated by Schach, the essential limitation of the structured

paradigm is that its approaches for software development are either action-oriented or data-

31

oriented, but not both. In response to this situation, a new alternative, soon to be known as
object-oriented, emerged with remarkable power. Although an important breakthrough in
software development, the apparition of the new approach was not spontaneous, but the
cumulated result of the work of many scientists and developers [Booch94]. The origins of
some concepts that helped shape the new approach can be traced back to as early as the
1960s, most notably to Dahl and Nygaard (the class construct in Simula67), and to Alan
Kay, Adele Goldberg and their team at the Xerox Palo Alto Research Center, California
(messages and inheritance in Smalltalk) [Page-Jones99]. Other major contributors, according
to the same author, include Larry Constantine (coupling and cohesion), Dijkstra (layers of
abstraction), Barbara Liskov (abstract data types), David Parnas (information hiding), Jean
Ichbiah (packages and genericity in Ada83), Bjarne Stroustrup (C++), Bertrand Meyer
(Eiffel), Grady Booch, Ivar Jacobson, and James Rumbaugh (OOA, OOD, and UML). To
these, we have to add Peter Chen, whose ERD (Entity-Relationship Diagrams) contribution
[Chen76] is a recognised source of inspiration for object-oriented approaches. And,
interestingly, if we follow Kouichi Kishida's observations and look carefully we can find
precursors to OO even in ancient times (Confucius) as well as in the 19" century (the
German philosopher Max Weber) [Kishida96]! In fact, this should not be so surprising, since
in his survey of the foundations of the object model, Booch also makes references to ancient

philosophy, Greek in his case, as well as to Descartes [Booch94, pp. 36-37].

The newer approach, the object-oriented paradigm, is founded on the concept of object,
which can be defined concisely as “a unified software component that incorporates both the
data and the actions that operate on that data” [Schach99, pp. 17] or as “a concept,
abstraction, or thing with crisp boundaries and meaning for the problem at hand”
[Rumbaugh91, pp. 21]. More completely, an object is “an entity that: has state; is
characterized by the actions that it suffers and that it requires of other objects; is an instance
of some (possibly anonymous) class; is denoted by a name; has restricted visibility of and by
other objects; may be viewed either by its specification or by its implementation” [Booch86,
pp- 215]. The internal structure of an object is described by attributes, and messages can be

sent to an object to invoke one of its methods (or operations) —that is, to invoke actions that

32

generally operate on the internal structure of the object. Typically, we ignore many details of
objects, and are concerned mostly with ways of manipulating them through operations. In
software, the notion of object covers tangible things (such as book, floor, door, or
thermometer), persons (e.g., student, teacher, employee), roles (e.g., dispatcher, supervisor,
controller), events (e.g., take-off, interrupt, shutdown) and an infinite variety of other things
(e.g., proposals, meetings, poetic ideas, eulogies, referrals, rebuttals, etc.). In OO terminology
a class is a template for objects that have similar features, more precisely the objects
belonging to the same class have the same structure and the same behaviour (e.g.,
raymondsAlarmClock is an object of the class AlarmClock). A class can be seen as an abstract data

type that supports inheritance.

Three major principles are promoted by the OO paradigm:

¢ Encapsulation, the defining principle of object-orientation, which signifies putting
together in a single unit of both data and operations pertaining to some entity that can
be qualified as an object (or, to be more precise, as a class, the “blueprint for creating
objects” [Mughal00, pp. 2]). Encapsulation supports abstraction and information hiding,
key ingredients for developing high-quality software products;

e Inheritance, the mechanism of creating a new class from existing ones and the provider
of the strongest foundation for reuse;

e Polymorphism, essentially an instrument for abstraction and an enhancer of flexibility,
with its meaning taken from the Greek equivalent of “having multiple forms,” and used

in the OO world with the significance “same name for different behaviours.”

The major breakthrough brought by the OO approach comes from the fact that the
conceptual and physical independence of components reduces the level of complexity of
software. Thus, both development and maintenance are simplified [Schach99]. Among the

most important benefits of the OO approach we would nominate:

® Greater modelling power, since objects correspond more naturally to real-world entities

and as such the problem domain is better described;

33

® Increased code reusability and extensibility, due to encapsulation and inheritance, which
offer strong support for code reuse and product extension;

e Improved control of complexity, mainly through abstraction, information hiding, and
localisation —the management of complexity is helped since the emphasis is on interfaces

and interactions among independent, collaborating entities (objects).

These benefits, together with a series of other advantages of the OO approach, such as
production of software more resilient to change, greater level of confidence in the correctness
of software through separation of its state space [Booch94], greater stability of designs over
time, more flexible and adaptable development, and easier transition between the
development phases [Johnson00], have lead to a proliferation of OO techniques and tools
for software construction. Of course, there are less beneficial aspects of OO development
that the software professionals are aware of, most significantly longer initial development
time, decreased run-time performance, and unavailability of adequate OO DBMS, but
overall the newer approach has gained the confidence of the software development world
[Johnson00]. And, while there are some isolated opinions that the OO paradigm is only a
“hype,” possibly less effective than the structured one [Niemann99], and some scientists have
even proclaimed its impending demise [Davis98], we share Bertrand Meyer’s position that
“OO0 solutions are our best bet” and, in fact, “it’s the only game in town” [Meyer99, pp.
144], the newly emerged component-based development actually assuming and making use

of the OO technology.
2.4.2 Object-Orientation in the Real-Time Domain

For reasons mentioned in Subsection 1.1.2, the “conqueror objects” have only relatively
recently expanded over the real-time domain. However, as the OO technology has matured,
the focus of numerous scientists has shifted towards tackling the complexity of real-time
applications via the OO avenue. Currently, there is a significant amount of work in this
direction, and a number of important methods and methodologies have been proposed,

among the most notable ROOM [Selic94, Selic96], TRIO [Bucci94, Ciapessoni99],

34

Octopus [Awad96], and Comet [Gomaa00]. The considerable attention currently paid by
researchers and developers to the application of the OO techniques to the development of
RT software is both indicative of the economical importance of RTS and illustrative for the
general recognition of the OO paradigm’s modelling prowess. And, there is probably no
better illustration for the current concerted effort in this direction than the development of
powerful dedicated commercial tools such as I-Logix Inc.’s Rhapsody [Rhapsody01] and
Rarional Software Corporation’s Rational Rose Real-Time [RationalRoseRTO01]. In
addition, the hottest general OO programming language of the moment, Java, has recently
enhanced its support for RT applications through the definition of the preliminary version of
the Real-Time Specification for Java (RTSJ), expected by E. Douglas Jensen “to become the
first real-time programming language to be both commercially and technologically
successful” [Bollella00, pp. xxi]. With strong research directions and important programs
such as OMG’s Real-Time Analysis and Design Initiative [Selic99a], major advances in the
development of industrial-use IDEs, and considerable RT support from an OO language
such as Java that is used by a large number of programmers, the trend is obvious. We can

safely assume that it will continue strongly in the foreseeable future.
2.5 On The Importance of Graphical Notations

It has been mentioned in Chapter 1 that today is almost impossible to create a viable
software development tool without an adequate GUI interface. The provision for an easy-to-
use, friendly and functionally complete graphical interface is not simply a trend of the
moment but a stringent requirement for any development tool intended for practical use.
Although it might seem like a futile argumentation, it is nevertheless useful to stress the
importance of visual interfaces in such tools. And perhaps there is no better way to emphasise
this idea than by paraphrasing David Taylor who, in a recent article, recalls the following
prediction he made more than 15 years ago about the OO paradigm: “by the year 2000 no
one would talk about objects any more because the technology would be so thoroughly
absorbed into the mainstream that no one would think to mention it” [Taylor99, pp- 50].

While we share Meyer’s position and question the accuracy of Taylor’s affirmation in the

35

OO context (Meyer considers that several more years are still needed before Taylor’s
affirmation can be fully supported [Meyer99]), we believe that this is truly the case for
graphical interfaces in the context of software tools. Thus, we can state that they are here for
quite a while and practically taken for granted, so “nobody would think to mention them.”
In fact, animation and multimedia capabilities are an important part of our interaction with
the computers and they are expected to have an increasingly larger presence in modern

professional tools, so perhaps discussing GUI advantages runs the risk of obsoleteness.

But it is not only the graphical user interface we are referring to; the use in our approach of
UML, defined as a “visual modelling language” [Quatrani98], corresponds to another reality,
that of the need for visual notations in analysis and design. In Chapter 1 the motivations for
a combination graphical notation (semi-formal in our case) with a formal language for
software specification have been presented and while we do not intend to discuss here visual
languages and environments in general, we refer nevertheless to [Green96] for a complete list
of cognitive dimensions that can be used to evaluate the benefits of visual notations,
including closeness of mapping, abstraction gradient, role-expressiveness, consistency,
progressive evaluation, and visibility. Also, for a thorough rebuttal of some common
objections to the use of visual representations in the computing process we refer to [Cox93].
However, the task is simpler in our case, since OO methodologies have been traditionally
supported by graphical notations, and it is quite hard today to imagine such a methodology
withour an accompanying set of graphical symbols for classes, relationships, collaboration

diagrams, etc.

In our opinion, the use of visual representations, as opposed to simply employing text, is
strongly justified by enhanced support for abstraction, better representation of information
in terms of structures (components and their relationships), increased expressiveness (richness
of information content), simpler syntax, capability for direct manipulation, and increased

naturalness (which facilitates communication).

Many scientists have acknowledged the advantages of visual notations in software

development by adding a “visual dimension” to their specification approaches, for instance
y g P

36

Buhr's diagrams for the design of Ada applications [Buhr90], Dillon et al.’s Graphical
Interval Logic (GIL) aimed at representing the temporal evolution of concurrent systems’
properties [Dillon94], Roman et al.’s custom built Pavane visualisations for capturing
formally expressed specifications and designs [Roman96], and Taentzer's visual rules for
declarative specification of behaviour in OO modelling techniques [Taentzer99]. In the “Z
area” an interesting approach is the one taken by Kim and Carrington who, based on Kent’s
Constraint diagrams [Kent97] and Kent and Gil's Contract Box notation [Kent98] propose

3D visualisations of Z expressions to facilitate the understanding of specifications [Kim99b].

It is also important to note that visual notations are not necessary semi-formal (or informal)
because when accompanied by precise semantics they fit in the class of formal notations (this
is the case, for example, of Petri Nets and Statecharts, two powerful techniques used for
modelling specific aspects of RTS). Bur even in the case of more general semi-formal
notations such as DFD (Data Flow Diagrams), ERD, or UML the expressive power
provided by their graphical representation is of considerable help during the development

process.

And, to conclude the case for graphical notations, perhaps apparently a minor aspect, but
nevertheless solidly backed by its acceptance in practice is Together Soft Corporation’s
inclusion of colours in the modelling process [TogetherSoftO0b]. Colours and other elements
of visualisation are, in our opinion, great enhancers of productivity in developing software

products.

2.6 Formal Notations in Software Development

2.6.1 Alexander’s Definition of a Formal System

A clear and concise definition of a formal system can be found in [Alexander95). The author

uses the following terminology (key terms are highlighted by us using italics):

37

® A formal system consists of a formal language and a deductive apparatus;

e A formal language has two essential components: an alphaber of symbols and a set of
grammar rules;

e The grammar rules are used to construct well-formed formulas;

® A deductive apparatus is a set of axioms (basic truths) plus a set of inference rules (e.g.,
substitution, simplification, expansion rules);

® The inference rules produce a well-formed formula from other well-formed formulas; the
deductive apparatus also provides means to establish whether a well-formed formula is a
direct consequence of another;

e To apply a formal system to a problem, the formal system must be given semantics,
which in essence provide a mapping between objects in the problem domain and well-

formed formulas in the formal language;
e With the semantic mapping established, the formal system can be used to create a formal

model of “known characteristics” of the problem domain.

As pointed out by Alexander, software systems requirements describe the desired behaviour
of a system within its operational environment. In essence, the execution of a software
artefact can be described formally by a precondition I(x) and a post-condition O(x,z), where
x is the input of the execution and z is its output. In short, when I(x) is true, the execution of
the software artefact generates z, which satisfies O(x,z). The key issue in software
development is to find some program P(x) that produces z under the conditions stipulated by
the pre-condition I and the post-condition O. This process of determining an appropriate
P(x) is complex, and requires successive refinements, each producing a more concrete model
of the system (the starting point being a high-level model of the requirements). Each
refinement involves two fundamental processes, synthesis and analysis. Alexander points out
that in general both synthesis, the creation of a new model of the system, and analysis, the
verification of the model with respect to the original model, can be reliable only if formal
models are employed. Semi-formal models are unable to predict or verify most of the

system’s characteristics.

38

According to the same author, “a software specification is a model of a developing software
system” and “formal specification is representing software specification using a formal
model” [Alexander95, pp. 30]. The “foundations picture” drawn by Alexander can be

extended with a couple of definitions proposed earlier by Jeannette Wing:

® “A formal specification language provides a notation (its syntactic domain), a universe of
objects (its semantic domain), and a precise rule defining which objects satisfy each
specification” [Wing90, pp. 10];

e Formal specification languages supply the mathematical basis for formal methods, which

are “mathematically based techniques for describing system properties” [Wing90, pp. 8].

2.6.2 Classifications and Examples of Formal Mcthods

The usual way of classifying formal methods is based on the traditional model-oriented
versus property-oriented criterion. The distinction between these two categories of methods
stems from the way the behaviour of the system is defined, directly or indirectly. A model-
oriented method directly describes the behaviour of a system in terms of sequences of states
(each state being characterised by a set of instance variables) and operations that can cause
state transitions. The property-oriented methods can be further classified as axiomatic or
algebraic, depending on their underlying mathematical foundation (first order predicate logic
or many sorted algebras). In both cases, property-oriented methods define the behaviour of
the system indirectly, via a set of properties usually expressed as axioms that the system must
satisfy [Wing90]. In their comprehensive survey of formalisms Liu and Zedan propose a
more refined taxonomy by identifying five classes of formal methods, specifically model-
based, logic-based (logics are employed to express the desired properties of the systems,
including temporal and probabilistic behaviours), algebraic, process algebra-based (differ
from algebraic by supporting explicit representation of concurrency), and net-based
(graphical notations with precise formal semantics) [Liu97]. On the same topic, Gaudel
points out that a finer distinction between formal methods can be made by using additional

criteria, specifically [Gaudel94]:

39

e Their level of formality —the methods can be classified according to three key terms,
namely ‘formalised,’ ‘conceptual,” and ‘deductive’. Formal methods are obviously
formalised but the degree of the notation’s formalisation and the potential of performing
various types of checks are different from method to method. Similarly, different
techniques emphasise in various degrees their capability of modelling conceptual aspects
of systems and exhibit deduction systems of various degrees of complexity;

e The life-cycle stages where the techniques are applied. The classification encompasses
activities such as domain specification, requirements engineering, design by refinement,
proof of correctness, software re-engineering, and reuse;

e The specific aspects of computing they address. Algebraic methods are focused on
describing abstract data types in an implementation-independent manner, model-
oriented techniques aim at explicitly dealing with the dynamics of state-based systems,
while other approaches address aspects specific to reactive and distributed systems, such
as communication and concurrency;

¢ The mathemarical foundation on which they are based, in terms of conceptual
framework and deduction system. The conceptual foundations include process algebras,
automata, set theory, and partial functions, while the deduction systems can be based on
first-order predicate logic, higher-order logic, temporal logic, etc.;

® The methodological apparatus accompanying the method. Typically, this may consist of
data tool kits in the case of model-oriented techniques, or may be provided as a kernel

for property specification in the case of algebraic or axiomatic methods.

Some of the most representative formal methods are, in alphabetical order, Abrial’s B-
Method [Abrial96], Hoare’s CSP [Hoare78, Hoare85], Milner's CCS [Milner80], ITL
(Interval Temporal Logic) [Moszkowski86], Larch [Guttag85, Gurttag93], LOTOS [ISO89],
Petri Nets [Petri62, Reisig85], RTL (Real-Time Logic) [Jahanian86], RTTL (Real-Time
Temporal Logic) [Ostroff89], Statecharts [Harel87], Temporal Logic [Rescher71, Pnueli77,
Manna81], VDM ([Jones90], and Z [Spivey92]. A large variety of environments and tools

have been developed to accompany the existing formal methods and a significant number of

40

extensions and variations have been proposed. Several notable variants and tools pertaining

to the “Z sub-domain” are discussed in Subsection 3.2.2 of this thesis.
2.6.3 Advantages and Disadvantages of Formal Methods

There has been a fair amount of debate over the applicability of formal methods in practice
and especially over their potential of becoming working instruments for the large community
of software developers. The attitudes vary from strong skepticism [Lawrence96, Glass96] to
resolute conviction [Hall90, Meyer97, Kapur00], with many views within the range
delimited by the above positions. We note however that the tendency is to recognise the
benefits of formality in software development, but to caution also about its perceived

disadvantages.

In what follows we present a summary of both benefits and disadvantages of applying formal
techniques but not before mentioning that precisely the intricacies of these techniques
prompted us to decide on the fundamental theme of our thesis, that of integrating formality

with semi-formality in software specification.

The main reasons for employing formal methods are related to achieving the following goals:

® Better understanding of the system through formal specification and increased
intellectual control [Gerhart94, Sommerville95, Clarke96, Hall96]. Daniel Jackson, in
particular, remarkably refutes Brian Lawrence’s opinion that, due to the difficulties
associated to their application, formal methods may not be actually needed. Jackson
considers that documents written in a natural language cannot be adequate repositories
of an analyst’s insights and that the greatest benefits of formalising requirements reside in
clarifying ideas, revealing unexpected issues, and providing relevant feedback for the
discussion with the client (Jackson’s counterpoint to Lawrence’s opinion {Lawrence96],

in [Jackson96a]). Also, Jeannewte Wing remarkably notes that “the greatest benefit in

41

applying a formal method often comes from the process of formalizing rather than from
the end result” [Wing90, pp. 13];

Higher degree of confidence through rigorous verification and property proving,
particularly needed for the development of safety or security-critical systems
[Sommerville95, Liu97, Schach99, Kapur00];

Increased customer satisfaction and higher quality of products, including earlier
detection and minimisation of errors, as well as enhanced functionality and performance
[Gerhart94, Larsen96];

Improved communication via supplemental notations [Gerhart94, Jackson96a);

Power of abstraction or, as expressively stated by D. Jackson, “simplicity by omission”
Uackson96a, pp. 21];

Competitive advantage resulting from applying the best practice [Gerhart94, Kelley-
Sobel00];

Compliance with standards or certification requirements [Hinchey96, Kapur00];
Possibility of automatic transformation from specification to implementation
[Sommerville95];

Potential for reuse by enhanced identification of commonality [Bowen95a, Jackson9Ga,
Meyer97];

Educational benefits, including better understanding of research-and-design issues

[Gerhart94] and improvement of complex problem solving skills [Kelley-Sobel00].

On the negative side, the following are considered the main disadvantages of formal

methods:

Difficult to use in practice due to their underlying mathematics, perceived by many
developers as being hard to master [Gaudel94, Sommerville95, Lawrence96].
Representatively, Stephen Schach lists as weaknesses of formal specification methods
“hard for team to learn, hard to use, almost impossible for most clients to understand”

[Schach99, pp. 364];

42

e Lack of supporting tools [Gerhart94, Morgan94, Dill96, Holloway96];

e Not general enough, and not yet sufficiendy employed in combination with other
methods, formal or informal [Gerhart94, Clarke96, Lawrence96];
e Insufficient formal education and training of developers [Jones96, Hinchey96, Clarke96,

Zimmerman00] and lack of educational support, including suitable textbooks [Kelley-
Sobel00];
e Slow technology transfer from research to industry [Gaudel94, Glass96, Clarke96];

e Unwillingness of customers to invest effort in acquiring the necessary skills for dealing

with formal representations of the systems [Sommerville95];
¢ Insufficient management support [Sommerville95];
e Inadequate notation, difficult to understand and use [Parnas96};
e Lack of application on significant, complex real-world problems [Holloway96, Dill96,

Zimmerman00] and lack of truly impactive, convincing results [Parnas96].

Based on the analysis of a number of negative opinions about formal methods Hall [Hall90]
and Bowen and Hinchey [Bowen95b] point out that many of the perceived disadvantages
are actually “myths” and aptly dispel these myths with counterexamples and solid
justification. Among the typical “myths” (or misconceptions) about formal methods the
most common are: they increase development costs, can be applied only to safety critical
systems, delay the delivery of the product, require a high level of mathematical skill, and are

not actually necessary.

Overall, we share the view of those who advocate the application of formal methods, and
believe that the difficulties of learning them are well paid off by the benefits they can bring.
On the other hand, we agree with Anthony Hall that they are not a universal panacea
[Hall90] and believe that integrating them into a software development approach that
combines formality with informality can increase their chances of success in practice. Also,
we need not forget that like most other things in life, formal methods should not be

overused, otherwise they may turn out to be actual obstacles in the completion path of a

43

software product. Or, in Bowen and Hinchey’s words, “thou shalt formalize, but not

overformalize” [Bowen95a, pp. 571
2.6.4 Formal Techniques within the Software Development Process

As indicated in Subsection 2.6.1, a formal system can essentially perform two kinds of
activity, analysis and synthesis. On practical terms, formal techniques can be applied during
all stages of formal development. Specific activities include rigorous specification of
requirements, specification verification and validation, program refinement from
specifications, specification-based testing, re-engineering, and reuse [Wing90, Gaudel94]. As
pointed out by many authors, the greatest benefits can be obtained by applying formal
techniques in the initial stages of development, when the early detection of errors saves a

considerable amount of time and money [Leveson86, Morgan94, Larsen96, Schach99].
2.6.5 A New Trend: Lighter Use of Formal Methods

Recognising the need for a larger acceptance of formal methods, a new direction of
investigation has emerged within the last few years, focused on a more pragmatic application
of formalisms in software development. In order to increase the use of formal methods in
industrial applications, including large-scale projects and applications outside the safery-
critical area, cost-effective ways of improving the quality of software have been proposed. In
this direction, Jones suggests the use of formal methods light, an approach focused on
sketching the abstract model of the system, seen as crucial for understanding the architecture
of the system, with minimum emphasis on notational details [Jones96]. In the same line of
research, Jackson and Wing consider that lightweight formal methods, characterised by
partiality in language, modelling, analysis, and composition, can bring greater benefits at
reduced cost by allowing economically feasible automatic analysis of selected parts of the
system [Jackson96b]. The authors’ opinion is that the generality of an expressive language
such as Z is an impediment for tool-supported analysis while simpler, less expressive, but

more “focused” formal methods, can have greater effect in practical applications. An

44

exponent of the new direction, the lightweight modelling notation Alloy, based on a subset
of Z and incorporating a limited number of extra features necessary for object modelling, has
been recently developed at the Massachussetts Institute of Technology, together with a
supporting tool entitled Alloy Constraint Analyzer [Jackson00a, JacksonOOb]. Under the
same umbrella of lightweight formal methods, Easterbrook et al. report very promising
results of applying, in three NASA projects, “partial analysis on partial specifications, without
a commitment to developing and baselining complete, consistent formal specification”
[Easterbrook98, pp. 5]. Also, based on two other NASA case studies, Feather concludes that
lightweight formal methods are uscful for rapid analysis of specifications, yield results in a
cost-effective and timely manner, and can be successfully used as complements to other
forms of quality assurance [Feather98]. In a similar direction, Cau et al. propose the use of
lean formal methods, envisaged as methods adequately accompanied by suites of affordable
and practicable tools capable of supporting rapid prototyping, testing, and verification
[Cau98], and Rushby suggests “invisible” formal methods, unobtrusively integrated in
familiar software engineering tools [Rushby00]. The approach presented in this thesis also

proposes a lighter application of formal methods.

2.7 Chapter Summary

In this chapter the larger space of our research has been surveyed and the topic of the
dissertation has been localised on precise coordinates by using a “zoom-in” technique of
exploration. Since the location of the thesis’ topic lays at the intersection of three major
domains of software development and investigation, namely real-time systems, formality, and
object-orientation, an overview of these domains has been presented and specific challenges,
advantages, and disadvantages have been pointed out. This overview has provided the
groundwork for next focusing the “investigation lense” on the two specification notations
used in our approach (in Chapter 3) and, respectively, on the existing research studies that

share similarities with our work (in Chapter 4).

45

3 3ACKGROUND: NOTATIONS

“A good notation has a subtety and suggestiveness which at
times make it almost seem like a live teacher.”

(Bertrand Russell, in Introduction to L. Wittgenstein’s
Tractatus Logico-Philosophicus, 1922]

3.1 Introduction

This chapter shifts the focus from the distinguishing aspects of the domains that make up the
thesis’ research space to particular details of the two specification languages, Z and UML,
that provide the notational basis for the modelling approach proposed in this thesis.
Presentations of the main features of both Z and UML are included, and the salient
components of the two notations are illustrated by short examples. A look at the larger
family of Z-based languages and a brief introduction of Z++ (the OO variant of Z employed
in our approach) are also included and UML’s support for modelling RTS is examined. In
order to illustrate UML an Automatic Camshaft Testing System (ACTS) inspired from our
previous work on developing software for an automobile manufacturing company is
employed as a “recurrent theme” from which short examples are extracted. Observations

regarding current directions of exploiting the modelling power of UML are also presented.

3.2 Z and Flavours of Z

The formal specification language Z has been developed by the Programming Research

Group at the Oxford University Computing Laboratory from the influential work of Jean-

46

Raymond Abrial [Abrial80] and has been used by various industrial organisations all over the
world. Numerous variants of Z have been proposed over the years, including object-oriented
alternatives. A model-oriented formal language based on set theory and first order predicate
logic, Z is undoubtedly one of the most successful formal specification notations in terms of
its acceptance by the software development community. The specialised literature contains
numerous accounts of software and hardware products that have employed Z as a formal
instrument for specification, for instance IBM’s Customer Information Control System
(CICS) [Nix88], Inmos transputers [Barrett89], Tektronix oscilloscopes [Delisle90],
Bellcore’s PLAN system for planning and administrating feeder loop networks [Morgan94],
and Lloyd’s Register's COBOL parser [Neil98]. More on the industrial use of Z can be
found in [Gerhart94] and [Bowen95b] and a comprehensive set of pointers to Z resources is
available at “The World Wide Web Virtual Library: The Z Notation” [ZedO1].
Authoritative books on the syntax and semantics of Z are [Spivey92] and [Wordsworth92],
while very good texts on the application of Z in practice are [Barden94] and {Jacky97].
Object-oriented versions of Z are comprehensively surveyed in [Stepney92a, Stepney92b]

and amply illustrated in [Lano94a], while the most complete reference for Z++ is [Lano95].

This section continues with a summary overview of the main features of Z, including its
types, predicates, relations, functions, schemas, and schema calculus. These features provide
the foundation on which all Z variants have been built, including the object-oriented
alternative Z++ employed in our dissertation. Variants of Z are then briefly surveyed in
Subsection 3.2.2, followed by a succinct introduction of Z++ in Subsection 3.2.3. The
presentation of Z++ is kept to a minimum here since the notation is further detailed in
Chapter 6, in conjunction with the proposed formalisation process of UML constructs. Z++

is also briefly presented in Appendix A.
3.2.1 The Z Notation

In essence, a Z specification consists of a number of schemas, which describe both the static

and the dynamic aspects of the system. The static properties of the system are captured in the

47

collection of possible states of the system and in the invariant relationships that must be
satisfied as the system transitions from state to state. The dynamic properties of the system
are modelled by the system’s operations, the relationship between their input and outputs,
and the changes in the system state. Schemas provide the necessary support for
modularisation and refinement, allowing the developer to specify pieces of the software
product separately and then relate and combine them using the rules of Z schema
composition. Refinement is supported, abstract specifications being transformed into
equivalent concrete schemas that contain additional derails. This powerful mechanism for
composition and refinement accounts for the notation’s successful application to larger
projects. Schemas are expressed formally and the effect of each operation is described
abstractly using first order predicate logic expressions, but the entire Z specification can (and
normally should) include textual annotations, natural language descriptions that clarify the

meaning of the rather arid machematical statements.

The remaining part of this Subsection summarises the main features of Z, as described in
[Spivey92] and [Wordsworth92], and illustrates them with several short examples. The

notation style follows the one of [Barden94].

3.2.1.18ets, Types, and Predicates

Z’s set theory is a typed set theory, which means that every value in the specification is
assigned to a type. From simple, basic types, it is possible to define more complex types via
three ways of type composition: set types, Cartesian product types, and schema types. A type
can be introduced in Z by a given set (or basic type), declared by writing its name in the

given set brackets. For instance:

[LIGHT) (3.1)

introduces the given set with the name LIGHT, declared to be a type covering values of a

specific kind, used as “atomic” entities in a given application (in this case, we need to

48

describe the various lights that can be turned on or off in an apartment). As already

mentioned, each variable declared in Z must have a type, for instance:

| balconyLight: LIGHT (3.2)

A set can be defined by set enumeration, that is by listing its members (of the same type) in
order, separated by commas, and enclosed in brackets. For instance, possible kinds of room

of interest in a particular application can be written:

{livingroom, bedroom, bathroom, kitcher, den, hall, extra} (3.3)

A name can be given to a set introduced via set enumeration by using syntactic equivalence,

specified by the == symbol, for instance:

ROOMKIND == {livingroom, bedroom, bathroom, kitchen,
den, hall, extra} (3.4)

A set with just one member is called a singleton set, while a set with no members is an empey
set or a null sec. The equality of two sets means that both sets have exactly the same
members, so for two sets A and B with members of different types, both the A = B and
A # B notations are not well-formed because comparison is not possible between such sets.
Typical set operations such as union (U), intersection (N), difference (\), and Cartesian
product (x), as well as relationships such as subset (S), strict subset (C), and membership
(€) can be applied. The cardinality of a finite set A is denoted #A, while the set of all subsets
of set A is denoted PA (powerset of A). The set of integer numbers is denoted 2 and its type
is P2. Similarly, natural numbers are in the set N, which has the type PN. These two types
are included by default in any specification and need not be introduced formally. Types with
smaller number of values can be introduces using data definition, specified by the data

definition operator (::=), for instance:

49

STATUS ::= on | off (3.5)
Another way of defining a set is by set comprehension, in the form:

{D | P e E} (3.6)

where D is a declaration, P a constraint imposed on values, and E an expression denoting
the terms. The expression (3.6) denotes the set of values of term E for everything declared in

D that satisfies the constraining predicate P. For instance, if TEMPERATURE == 2 then:
{t: TEMPERATURE | t 2 0 A t < 20 ® t} (3.7)

gives the set of all positive temperatures that are less than 20-degree Celsius.

More complex structures can be defined using schema types, for instance, assuming LENGTH

and WIDTH are already introduced (e.g., LENGTH == N and WIDTH == N) then:
Room
kind: ROOMKIND
dimension: LENGTH x WIDTH (3.8)
temperature: TEMPERATURE
lights: PLIGHT

The components of composite type variables can be accessed using the dot notation. In the

above case if libraryRoom is a Room variable then the specification can make use of

libraryRoom.kind, libraryRoom.dimension, etc.

In Z, predicates provide formal ways of expressing the meaning conveyed by declarative
sentences of the natural language. It is possible to build more complex predicates from
simpler ones by using the connectives of the first-order logic: negation (), conjunction (a),
disjunction (v), equivalence (<), and implication (=). In addition, the universal quantifier

(v) and the existential quantifier (3) are available, as well as the unique existential quantifier

50

(3,), which indicates the fact that there is a single item satisfying a certain property. An
example of a predicate, describing a situation that requires turning a heater on, is the
following (assume that a Heater type, a roomHeater variable of Heater type, and the
comfortLevel constant have been defined, and note the single quote decoration that

indicates the “after-state” value of roomHeater.status):

(roomHeater.status = off) &
(libraryRoom. temperature < comfortlevel)

= roomHeater.status’ = on (3.9)

3.2.1.2 Relations, Functions, and Sequences

A relation is a set of ordered pairs. In a relation R, the first member of the pair belongs to a
set X, while the second member of the pair to a set Y (X and Y need not be different). The

notation for the relation R is:

] R : X — Y (3.10)

where X is the from-set and Y is the to-set of relation R. To indicate the fact the xe X and

Y€Y are in relation R the following notation is used:

| X = y € R orequivalendy, x r v (3.11)

The generic definition:

| X = Y == P(X X Y) (3.12)

describes all possible relations that can be defined from X to Y. For a given relation R defined

as in (3.10), the domain of R, denoted dom R, is the set of first members of all pairs in

51

the relation, while the range of R, denoted ran R, is the set of second members of all pairs

in the relation. They are defined, respectively, by the following expressions:
I {x:X | 3 yeYex — ye R} (3.13)
I {y:Y | 3 xe€ X ®x — y e R} (3.149)

Two relations R and S, defined as R : X «— Y and, respectively, S : Y — 2z can be

subjected to relation composition, denoted R; S and defined formally as:

I{x:X;z:ZI(BerO(xt—-yeRAyl—~zeS))0xl—~z)(3.15)

A number of operators are useful when working with relations. Assuming that M is a set of
members from the domain type X and N is a set of members from the range type Y, then the
domain restriction operator <, which confines relation R to those pairs whose first members

are in the set of interest M is defined as:

| M QR == {x:X; y:Y | X € MA X — y € R ® x — vy} (3.16)

The range restriction operator t is defined symmetrically:

I R N == {x:X; y:Y | v € NAX+Fk— y e R ®X — Yy} 3.17)

It is also possible to use the domain subtraction operator €, which restricts the relation to

those pairs whose first members are not in the set M. This operator is defined as:

|MeR=={x:X;y:leéMAx!-——oyEROX!—'Y) (3-18)

52

Finally, the range subtraction operator & restricts the relation to those pairs whose second

members are not in the set N. The range subtraction operator is defined as:
| RBN=={x:X; y:Y | y ¢ NA X+ ye€ R ®Xx — vy} (3.19)

A function is a particular case of relation, in which each member of the from-set can be in
relation with at most one member of the to-set. This is expressed formally by the following

generic definition, which defines all possible functions from X to Y:

i X —= Y == {f: X +— Y | (Vx:X; y,;,¥,:Y @

(2 — y)) € £ A (x b+ y,) € £ = y =y,)} (3.20)
In Z there are predefined symbols for partial functions, total functions, partial injections,
total injections, partial surjections, total surjections, and bijections. Partial functions
correspond to the definition (3.20), since there is no constraint on the from-set —specifically

the domain of £ may not be the entire from set X. The domain of a rotal function is the

entire from-set of the function. The formal generic definition for total functions is:
| X — Y == {f : X —= Y | dom f = X} (3.21)

An injection has the property that the second members of its pairs are unique. Injections can

be partial injections, described by:

| X == ¥ == {f : X == Y | (vx,,%x, : dom f e

£(x,)= £(x,) = x,= x,)} (3.22)
or can be total injections, corresponding to:

[X = Y == (X — Y) N (X = Y) (3.23)

53

A surjection has the property that its range is the whole of its to-set. Partial surjections are

described by:

| X —» Y == ({f : X ——Y | ran £ = Y} (3.24)
while total surjections are defined as:
| X —» Y == (X — Y) N (X —+» Y) (3.25)

Finally, a bijection is a function both injective and surjective:

| X »=» Y == (X = Y) N (X — Y) (3.26)

Since functions are relations, all operators that apply to relations apply as well to functions.
In addition, an operator that guarantees that the result is a function and can be used for
updating information is the function overriding operator ®. For instance, with the [LIGHT]
given set (3.1) and the STATUS type (3.5), a partial function that keeps track of the lighting

situation in a given environment can be defined as:

lightsynopsis : LIGHT — STATUS (3.27)

and turning on the particular light balconyLight can be described as:

lightsynopsis = lightsynopsis @ (balconyLight +—— on) (3.28)

Sequences are particularly useful in software specification. A sequence of values of type X is
an ordered collection of values and can be defined as a partial function from the natural
numbers N to X with the property that its domain is 1 .. n (where n is the length of the

sequence). The generic definition that describes all possible sequences of values of type X is:

54

seq X == {f N—— X | (3n: Nedom f=1..n)} (3.29)

As shown in Table 3.1, where the definition (3.4) is used for X, a number of operators permit
the extraction of useful information from a sequence s, namely head(s), tail(s),
last(s),and front (s) . Also, a sequence s can be reversed by applying the reverse operator

rev(s) and two sequences s and t can be concatenated using the concatenation operator ~.

Table 3.1 A Summary of Sequences

Item

Description

Example

fassume X = ROOMKIND as defined in (3.4)]

finite sequences

seqX == {f : N —— X|
domf=1.. n}

s = <hall, kitchen, den, bedroom, bedroom>
emptyseq = <>

non-empty
finite sequences

seq X ={f :seqX | #f> 0}

t = <livingroom, bedroom, extra, hall, extra>

injective isegX == seqX N(N =+ X) u = <hall, den, livingroom>

sequences

head head s = s (1) head s = hall

tail tail s={k :1..#s-1e tail s = <kitchen, den, bedroom, bedroom>
k—sk+ 1)}

last lasts = s #s last s = bedroom

front fronts = {#s} @s front s = <hall, kitchen, den, bedroom>

reverse tevs=fk:1.#se rev s = <bedroom, bedroom, den, kitchen, hall>

(#s—k +1)—s (k)}

concatenation

sTt=sU{k:1. #te
(k + #s) +— t(k)}

s 7 t = <hall, kitchen, den, bedroom, bedroom,
livingroom, bedroom, extra, hall, extra>

55

Z includes definitions for non-empty sequences (seq; X) as well as for injective sequences

(iseq x). The notion of bag can also be used in Z, with the expression:
l bag X == X —— N; (3.30)

indicating that items x, € x have a number of apparitions n, > 1 in the bag.

3.2.1.2Schemas and Schema Calculus

The fundamental building block for Z specification is the schema, which can be defined as a
mathematical description of a part of the system under construction. Z schemas are used for
describing both structural and behavioural properties of the system. They can express both
the state space and the operations of the systems, and can be interconnected using the
mechanisms of Z schema calculus. Thus, they provide support for modularity and
composition, allowing the development of large-scale specifications. Schemas also provide

the basis for refinement through schema transformation.

A Z schema has a name (used for reference throughout the specification) and consists of two
parts: a declaration part, and a predicate part (some examples of schemas are given in Fig.
3.1). In the declaration part schema components are introduced and their types are specified.
These components act as local variables that, together with the global variables defined in the
system, can be used by the first-order expressions included in the predicate part. These
expressions define conditions that must be satisfied by the variables introduced in the
declaration part. The association between the names introduced in the declaration part and
the types of values that those names denote is referred to as the signature of the schema. The
property of the schema is given by the constraints included in the predicate part, together
with the predicates implicit in the declaration part. The property of the schema is also called
the schema invariant and together with the signature of the schema makes up, when the
schema defines the abstract state of an abstract data type, the data space, which describes all

possible data states of the abstract data type. Schemas also describe operations and operations

56

on the abstract state are called abstracr operations. When schemas define such operations the

following conventions are used:

e undashed names denote the values of the components in the starting state, before the
operation;

e dashed names denote the values of the same components in the ending state, after the
operation;

e names postfixed by a question mark denote the input values to the operation;

e names postfixed by an exclamation mark denote the output values from the operation.

Predicates that refer only to the input values and to the starting state define the precondition
of the schema. The precondition must hold in order for the operation to behave as defined.
The remaining predicates included in the predicate part are concerned with input, output
and the ending state. They are referred to as the postcondition of the schema and describe
the conditions that must be obtained after the operation has behaved as specified. Z provides
a number of conventions for schema presentation aimed at reducing the amount of
specification shown in a document. These conventions include schema decoration (for
systematical inclusion of dashed names associated to a schema, together with the schema’s
invariant), schema inclusion (which has the result of bringing into the declaration part of the
enclosing schema all the declarations of the enclosed schema), the delta convention, which
makes use of the symbol A and indicates change in the schema’s variables, and the xi
convention, which uses the symbol = and provides a shorthand notation for situations in
which the schema’s variables are not changed by an operation. Schemas can be combined
using the following schema calculus mechanisms: disjunction, conjunction, negation,
implication, quantification, piping, and composition. Both the signatures and the properties
of two or more schemas can be combined according to the significance of the logical
connectives indicated above. A short example of a Z specification illustrating some of the
above conventions is shown in Fig. 3.1 (the example is an adaptation of a small part of the

case study presented in [Evans97]).

57

Description of a robot arm. The robot loads bottles from a conveyor and unloads them at a filling
machine. The bottles are loaded and unloaded one ar a time. Given type for identifying bottles:

[BOTTLEID]

The two opposite positions of the robot arm and a type useful in describing the loading process (the
robot arm is either unloaded or loaded with an identifiable borttle):

ArmPosition ::= at_coveyor | at_filling
bottleLoaded ::= loaded (BOTTLEID)» | unloaded

Composite type describing the robot arm:

Arm
position: ArmPosition
status: bottleLoaded

Robot arm initialisation:

InitArm
Arm
position = at_conveyor
status = unloaded

Robot arm operations. The delta convention for Load and Unload operations indicates that the Arm
state is changed:

Load
A Arm
bottle? : BOTTLEID

position = at_conveyor
status = unloaded
status’ = loaded (bottle?)

osition’= position
p

—— Unload
A Arm
bottle! : BOTTLEID

position = at_filling
status loaded (bottle!)
status’ unloaded
position’= position

Fig 3.1 Partial Z Description of a Robot Arm

58

In conclusion of this summary presentation of Z we note again that there is much more
about this language than presented here and for all the necessary details we refer the reader

once more to the sources cited at the beginning of this section.

3.2.2 Z Variants and Tools

Currently, there is an expanding community of Z users and researchers in many parts of the
world, with major concentrations in the Great Britain, and significant presence in other
countries, most notably Australia, Canada, France, Germany, and the U.S.A. The Internet
makes available numerous Z resources, many of them accessible through the Z community’s
web-site [Zed01], which provides pointers to a variety of materials, including papers, reports,
books, and tools. As pointed out from this web-site, as well as from Stepney et al.’s surveys
[Stepney92a, Stepney92b] and Lano and Haughton’s collection of case studies {Lano94a],

various groups have worked on developing extensions to Z, some of the most notable being:

e Object-Z, which provides a construct for classes that encapsulates both state and
operation schemas and includes a non-conformant inheritance mechanism (operations in
derived classes can be redefined by strengthening the operation’s precondition or by re-
writing it) [Duke94]. Provisions for specifying the allowable sequences of operations are
included, and a temporal logic notation is employed. The formal semantics of classes in
Object-Z are based on event histories, and operators for specifying parallel operations are
available. This object-oriented variant of Z uses a graphical notation for classes that
extends Z’s basic construct, the schema, and provides a useful visual aid for the
developers;

® Z++, which follows an approach similar to the one taken by the authors of Object-Z for
specifying systems in an object-oriented fashion [Lano91, Lano95]. Z++ has class
definition and an inheritance mechanisms similar to that of Object-Z but, as indicated in
[Stepney92b], while Object-Z is fairly abstract, the design of Z++ has been more

influenced by object-oriented programming language constructs. Z++, which also

59

includes temporal logic support, is further covered in Subsection 3.2.3, in Chapter 6,
and in Appendix A of this thesis;

ZEST (Z Extended with Structuring), developed by British Telecommunications as an
object-oriented dialect of Z intended primarily for modelling network structures and
open distributed systems [Zadeh96]. ZEST extends the conventional Z language by
including a class construct that consists of five distinct clauses (inheritance, interface,
axiomatic clause, unnamed schema, and named schemas) and has a syntax similar to that
of Object-Z. However, its semantics are significantly different and it has no special
provisions for capturing temporal properties of systems;

OOZE (Object-Oriented Z Environment), which has an algebraic formal semantics
based on OB]J3, employs Z’s notation and specification style, and consists of a full-
fledged environment that includes a database for indexes, dependency relations, and
module extensions, as well as support for animating the specifications [Alencar94].
OOZE permits the nesting of schema boxes and incorporates readability enhancements
such as separate exception schemas and separate pre- and post- conditions;

Sum, an extension of the conventional Z oriented towards refinement and translation of
formal specifications to Ada [Utting95]. Sum is part of the Cogito formal development
environment, which includes among its components a type-checker, a configuration
management tools, and the Ergo theorem prover (the inspired header of their web-site is
“Cogito, Ergo Sum” [Cogito97]). Sum specifications are translated into constructs of the
functional programming language Haskell. This particular language was chosen because
its type system is similar to that of Z, its strong typing allows for a fair amount of
checking the specifications during editing, and its lazy evaluation increases the chance of
termination in the case of some specifications;

S, designed as a “gentler Z” (hence, its name, suggesting a Z without asperities), a
machine readable notation developed at the University of British Columbia in the
context of Hughes Aircraft of Canada’s complex project CAATS (Canadian Automated
Air Traffic System) [Joyce94]. The purpose of the language is to satisfy the requirements
of applying formal specifications in large scale industrial projects by overcoming the

perceived limitations of Z, specifically difficulty in explaining it to non-expert users and

60

impossibility of creating Z specifications using a standard text editor. The advantages of
S, which has a Z-like syntax and HOL semantics, stem from its relatively simple
semantics, entire printable set of characters, and the availability of a proven verification
tool, the HOL system;

o Alloy, the “new kid in town,” is defined by its originator as “a little language for
describing structural properties” (Jackson0Ob, pp. 1], both sufficiently simple to allow a
completely automatic semantic analysis and sufficiently powerful to express complex
constraints. The new modelling language, which has its semantic basis taken from Z and
a structuring mechanism similar to that of existing object-oriented notations such as
UML, is aimed at supporting lightweight formal development of object-oriented systems.
Alloy is less powerful than Z but compensates Z’s unsuitability for object-oriented
modelling with a number of features such as more flexible state declarations and distinct
types of schemas. It also has a graphical notation with a textual counterpart thar allows
building a model entirely textually and, in comparison to UML, is more abstract (since it

is based on sets and not classes) and, of course, has precise semantics.

Several well-known Z tools are the already mentioned COGITO, which proposes a
methodology and toolset for the formal development of software [Bloesch94]; Logica’s
Formaliser environment, consisting of a ZEST Specific Formaliser, a Z Specific Formaliser,
and a Generic Formaliser that supports the development of grammars for new languages
[LogicaOl]; Z/EVES, a complex analysis system from ORA, Canada, that allows the
examination of Z specifications through syntax and type checking, precondition calculation,
schema expansion, domain checking, and theorem proving [Meisels97, ZEVES00]; Wizard,
a type-checker for Object-Z [Uttig95, Wizard01]; Jia’s ZTC and ZANS tools, a type checker
and, respectively, an animator for Z specifications [Jia98a, Jia98b, ZANS98, ZTC98];
ZETA, an open environment written in Java that provides an integration framework for
editing, analysing, and animating Z specifications [ZETA00], and the more recent Alloy
Constraint Analyzer, developed by Daniel Jackson and his colleagues at the Massachussetts
Institute of Technology [Alloy00]. Additional information on several other Z tools,
specifically ProofPower Z, Zola, CADIZ, and HOL-Z, can be found in an earlier paper by

61

Steggles and Hulance [Steggles94]. Since a number of newer Z-centred specification
approaches are currently being developed it is expected that novel Z tools, supporting these
approaches, will emerge in the near future. Some of these recent approaches are described in

Chapter 4, where work related to ours is surveyed.

3.2.3 A Glance at Z++

One of the OO extensions of Z, Z++ distinguishes itself through its support for capturing
timing properties of systems. Since the language constitutes an integral part of the
foundation on which our modelling approach is built, the purpose of this subsection is to
provide only a quick look at Z++, its features being described in more detail in Appendix A,
which contains a summary overview of Z++, and in Chapter 6, where rules for formalising
UML constructs are presented. Here, only the general form of Z++’s most important

construct, the class declaration, is given, based on [Lano94e] and [Lano95] (Fig. 3.2).

ZPP_Class ::= CLASS Identifier [TypeParams]
(EXTENDS Ancestors]
[TYPES TypeDefs]
[FUNCTIONS AxiomaticDefs]
[OWNS Locals]

[RETURNS OpTypes]
(OPERATIONS OpTypes]
[INVARIANT Predicace]
[ACTIONS Actions)
[HISTORY History]

END CLASS

Fig. 3.2 General Form of Z++ Class Declaration

62

As indicated by Lano and Haughton, in the Z++ class declaration TypeParams represents a
list of generic type parameters, EXTENDS specifies the superclasses of the class, TYPES
introduces type identifiers used in the declaration of local variables, FUNCTIONS gives a
list of axiomatic definitions of constants, OWNS specifies the local variables (attributes),
RETURNS lists the operations that do not change the state of the object, OPERATIONS
declares the operations that may change the attributes of the object, INVARIANT specifies a
predicate that describes the internal state of the object and is guaranteed to be true between
executions of the object’s operations, ACTIONS defines the class operations that can be
performed on objects of the class (the operations are specified using regular Z schema
definitions), and HISTORY specifies the admissible sequences of execution for the objects of

the class in the form of temporal-logic formulae that make use of operators such as OO

(henceforth), O (next), < (eventually), before and until. In essence, it is here, in the
HISTORY clause, where Z++’s capability of dealing with temporal aspects of the systems
resides. As described in Chapter 6, this clause can also contain RTL (Real-Time Logic)
formulae (Jahanian and Mok’s RTL is introduced in Chapter 5).

3.3 On UML and Its Capability of Dealing with Time

The Unified Modeling Language (UML) has emerged from the combination of several
widely-used, practice-validated object-oriented notations developed over the last decade by a
number of prominent authors, primarily from the Booch notation [Booch94], Rumbaugh et
al.’s OMT [Rumbaugh91], and Jacobson et al.’s OOSE [Jacobson94]. The fact that Booch
and Rumbaugh joined forces at Rational Software Corporation in October 1994, followed
by Jacobson in October 1995, created the premises for a standard notation and a common
methodology for the object-oriented development community. In order to accommodate the
variety of existing object-oriented analysis and design approaches and gain a large industry
support, UML has borrowed concepts and notations from several other methods, including
Coad and Yourdon [Co0ad90, Coad91], Shlaer and Mellor [Shlaer88, Shlaer91], Fusion
[Coleman94], and Statecharts [Harel87]. In November 1997 version 1.1 of UML has been
adopted as object modelling standard notation by the Object Management Group (OMG)

63

and as of March 2001 minor revisions have been included in versions up to 1.4, the work on
the last one being currentdy in progress. A major revision, version 2.0, is tentatively scheduled
for standardisation in 2001 [Kobryn99]. The complete version 1.3 of the language’s
specification, published in March 2000, is available from the OMG web-site [UMLO00]. In
our opinion, the incorporation of concepts from numerous sources, although justified by the
goal of ending “the methods war” by providing a comprehensive, widely accepted modelling
language for object-oriented development, requires some “fine-tuning” in practical terms —
the generality of the notation and its higher level of diffuseness [Green96] typically
necessitating decisions on what to be used, what customisations to be made (what
“stereotypes” to be employed), and what to be left out from UML in a particular
methodology and/or application. As detailed later in the thesis, for practical reasons we focus
in our approach on only a subset of the UML notation and thus minimise the notational
alternatives that UML would provide if considered in totality. Here, in Subsection 3.3.1 an
overview of UML'’s general capabilities is presented, while in Subsection 3.3.2 the features of
the language that support the modelling of RTS are examined. Although the most
authoritative reference for UML is [UMLOO] for a shorter and less formal description of
UML we have relied on [Booch98] as primary reference for the two Subsections that follow,
with additional sources consulted [Quartrani98], [Si-Alhir98], [Douglass98] and
[Douglass99]. The examination of UML is completed in Subsection 3.3.3 with a look at

some of the current research and industrial developments involving UML.

3.3.1 A Bird’s Eye View on UML

As indicated by its authors, UML is a “graphical language for visualizing, specifying,
constructing, and documenting the artifacts of software-intensive systems” [Booch98, pp.
xv]. The notation is primarily designed for supporting the analysis and design phases of the
software development process, but it is useful also for the deployment and maintenance of
software. UML is supported by the industrial-strength software development environment
Rational Rose (latest version 2001), commercially available form Rartional Software

Corporation [RationalRose01], and has been integrated in a number of other CASE tools,

64

some of which are mentioned in Section 3.3.3 of the thesis. Recently, a real-time version has
also been made available [RationalRoseRTO01]. The environment is powerful and supports
not only the modelling of large software systems, but also processes such as reengincering and
automated code generation. Fig. 3.3 contains an image of the Rational Rose environment
(version 2001), showing its main components in the case of a logical view specification: the
menu bar, the toolbar, the browser, the palette for class modelling, and the pane with
drawing windows (the example shown is of an Elevator system, based loosely on [Dong97b],

where an OMT description is given).

allf

FELIELY f
b s B —— -~
!5 ElevatorTest | R X -—
% 3 Use Caze Vaw N
=3 Logeal Vew o
g Man .
£ Buton &
* umCi)
= g TapFloor 8 $tumOn(H
§ a :-ddana) SreadStatus()
= g Elevaosysnn | Elevator
EX Elevator g
i . T levStatus
¥ 2 Ascains | ¢ ®targetFioor
% O Componentvew | B TopFicor ‘ BottomFloor ®currentFlaor _“
g 2@ ol g BoownButan MiddleFloor ®upBution irection
h Propertes 4 ~ QpdoorStatus
SpressDawnButton(SpressUpButton(-
4 SdownBLttonOT0 SupButtonON) Sgelect Fioor)
- $qpenDoor)
ScioseDoor()
Smoveln(
S ElevatorSystem SmaveDown(
cors
&elevators
o) N &requests
. :r:questo
I'_"'—'—a. xecRequest) -
= {e e S - _.d
For Help. poams 1 : : ' . ' - - T A

Fig. 3.3 Snapshot of Rational Software Corporation’s Rational Rose

Booch et al. indicate that there are three types of building blocks in the language, namely
things (first-class abstractions in UML’s conceptual model, alternatively referred to by us as
model elements), relationships that interconnect abstractions, and diagrams that present
collections of things together with the relationships that exist among these things [Booch98).
A summary of UML basic things (there are also variations for them), further classified as

structural, behavioural, grouping, and annotational is presented in Table 3.II, while the

Table 3.1 UML Things (Model Elements)

65

UML Thing Kind Description Symbol
(Model Element)
represents a set of objects with the same
class structural actributes, operations, relationships and
semantics
defines a collection of operations (a set ~
interface structural of services) that represent the externally

visible behaviour of an entity

collaboration

structural &
behavioural

describes an interaction and includes
several cooperating elements with their
specific roles

use case

structural &
behavioural

represents a set of sequences of actions
that yield an observable result to some
actor(s)

active class

structural

a class whose instances owns threads or
processes and thus can initiate control
activities

component

structural

a physical and replaceable part of a
system that packages implementation

node

structural

a run-time computational resource
generally having memory and often
processing capability as well

interaction

behavioural

defines a behaviour and consists of a
set of messages exchanged among
collaborating objects within a particular
context

(message, the basic
element)

»
>

specifies the sequences of states an

details in Subsection

state machine behavioural object or an interaction can go through 3.3.2
during its lifetime
[1
package grouping general purpose mechanism for
organising model elements in groups
N
note annotational | explanatory item (comments,

constraints, etc.)

66

fundamental relationships of the language, namely dependency, association, aggregation
(with its particular form composition), generalisation, and realisation are succinctly described
in Table 3.III (diagrams, the third kind of building blocks, are discussed in more detail later
in this Subsection). The authors indicate that besides building blocks the conceptual model
of UML consists also of a number of rules for putting together these blocks (such as rules for
names, scope, visibility, and integrity) and common mechanisms that are consistently applied

within the language (specifications, adornments, common divisions, and extensibility

mechanisms).
Table 3.1l UML Relationships
UML Description Symbol
Relationship

a “using” relationship from a client C to a
dependency supplier S (“C uses §” or “C depends on S™); S Commmmmmmmmmae- C
changes in the specification of S may affect the
using class C

structural relationship between two model
elements that declares a connection between
association their instances (on the association symbol the rel_name
name of the relationship, the roles of the two m!

model elements and the multiplicity of their E
instances can be specified)

1 rolel role2 T2

aggregation is a particular case of association
aggregation / that specifies a “has-a” relationship between W P
composition the whole W and its part P; composition is an <>

aggregation with strong ownership and the \'v4
lifetime of P subsumed to the lifetime of W . P

generalisation relationship between a more general model
clement (parent P) and a more specific kind of P <} C
that element (child C); “is-a” relationship

realisation a relationship in which the contract stipulated
in the model element X is carried out in the X <F-------—-. R
model element R

67

Since extensibility is one of the most important characteristics of the language the
mechanisms that ensure UML remains open-ended, namely stereotypes, tagged values, and

constraints are presented in Table 3.IV.

Table 3.1V UML Extension Mechanisms

UML Extension Description Symbol
Mechanism

allows the creation of new building blocks
stereotype from the existing ones; extends the language <<stereotype_name>>
by allowing the addition of new, problem-
specific model clements

tagged value attaches new information to an existing
model element; extends the language by {property_description}
allowing the addition of new properties

constraint extends the semantics of UML building
biocks by adding new rules or modifying the {constraint_description}
existing ones

In essence, the UML allows the modelling of a system through a number of diagrams that
capture either the static or the dynamic aspects of the system and can be organised in a
number of views, each view being “a projection into the organization and structure of the
system, focused on the particular aspect of that system” [Booch98, pp.31]. Static aspects are
captured in use case diagrams, which contain actors (an acror being someone or something
that externally interacts with the system), use cases, and their relationships; class diagrams,
which show classes, interfaces, collaborations, and their relationships; object diagrams, which
provide snapshots of instances of classes and their relationships; component diagrams,
illustrating the organisation of and the dependencies among software implementation
components (a component typically maps to one or more classes, interfaces and
collaborations); and deployment diagrams, which show the configuration of nodes and the

run-time allocation of components to nodes. Behavioural aspects are described in sequence

68

diagrams, which depict a succession of messages exchanged among objects and emphasise the
time ordering of messages; collaboration diagrams, which are similar to sequence diagrams,
but stress the organisation and the roles of objects that send and receive messages; statechart
diagrams, which essentially contain states and transitions that describe the event-driven life
cycle of objects; and activity diagrams, whose role is to indicate how the control flows from
activity to activity within a system. The sequence diagrams and collaboration diagrams,
which convey the same information and can be easily transformed one into the other, are

referred to commonly as interaction diagrams.

Although with the exception of the use case view the terminology related to views varies from
author to author (for instance, [Booch98] speaks of use case, design, process, deployment,
and implementation views, [Si-Alhir98] uses the terms use case, structural, behavioural,
environment, and implementation views, and [Quatrani98], whose presentation is based on
the Rational Rose tool, discusses the use case, logical, process, component, and deployment
views) and there are also different nuances involved in the meanings these authors associate
to views, it is generally acknowledged that a “4+1” architectural view model allows a
comprehensive description of the system. Useful to note, the view concept is not part of
UML specification, but the language supports this generally accepted “4+1” view of
architecture that facilitates the organisation of knowledge and allows the modelling of the
system from various interconnected perspectives. Interestingly, the Rational Rose
environment, including its latest edition [RationalRose01], has predefined sections for only
four views (use case, logical, component, and deployment) and relies on component

diagrams to render the process view employed by Booch et al. and by Quatrani.

In Fig. 3.4 we have set for a “4+1” view solution that associates meanings and diagrams to
views in Si-Alhir’s way, which emphasises a more traditional demarcation between structure
and behaviour [Si-Alhir98]. However, in order to use as much as possible the more prevalent
Rational terminology, the names of views have been borrowed from all the references

mentioned above.

69

Structural View Behavioural View
class diagrams sequence diagrams
object diagrams R collaboration diagrams

activity diagrams

Sstatechart diagrams

component diagrams deployment diagrams

Component View Deployment View -

Fig. 3.4 The 4+1 Architectural Views and UML Diagrams That Express Them

In this “4+1 views” architectural model of the system the use case view describes the
behaviour of the system as seen by its users. It employs use case diagrams to capture the
functionality provided by the system to its external interactors and constitutes the “central
perspective” that binds together the different angles under which the system can be
scrutinised. The structural view relies on class and object diagrams to describe the system’s
structural elements and their interconnections. The behavioural view is concerned with the
dynamic aspects of the system and uses all four types of behavioural diagrams to capture
them. The component view (or implementation view) makes use of component diagrams to
capture both the behavioural and static aspects of a system’s realisation and shows all the
components and files that are needed to assemble the physical system. Finally, the
deployment view presents in its associated deployment diagram the nodes that form the
hardware topology on which the system executes. Of course, for managing the complexity of
a problem each view can be considered separately but the complete “picture” of the system is
obtained by interconnecting them. In fact, as pointed out by Booch et al., the views interact
inherently, for instance the nodes of the deployment view contain components (defined in

the component view) that realise classes (specified in the structural view) and behaviours

70

(described in the behavioural view), all derived from use cases (captured in the use case view).
In our dual-notation specification approach focused on time-constrained systems we are
primarily interested in the use-case, structural, and behavioural views, and leave aside details

pertaining to the component and deployment view (details are given in Chapter 7).

To keep the description shorter and in agreement with the selection of the UML subset used
in our approach only five out of the nine possible kinds of UML diagrams are illustrated
below. A use-case diagram (Fig 3.6), a class diagram (Fig 3.7), an object diagram (Fig. 3.8),
and a sequence diagram (Fig. 3.9) pertaining to a common “theme”, an Automatic Camshaft
Testing System (ACTS, Fig. 3.5) inspired from our previous work [Dascalu89, Ionescu93],

are presented in this Subsection, while a statechart diagram is included in Subsection 3.3.2.

pnreer ploter

N

P

measurement
stag
L X
speciaised T
computer [-]
i
| an
\ measurement probe
operapors
consoe

Note: for measurement purposes a system of
polar coordinates (X, Y, P) s useg

P SISy gy ey A L rete 1t et
S P T STt A i R O I e e,

PP e —————
o d e AT e p S E R A A

<t

Fig. 3.5 Overview of the Automatic Camshaft Testing System (ACTS)

71

These diagrams are only intended to illustrate several of the basic UML concepts and not to
capture the entire complexity of the automatic camshaft testing problem, so they should be

viewed only as small excerpts from a larger specification.

However, in order to provide the necessary context, a short description of the system
presented in Fig. 3.5 is necessary. Functionally, what is important to know is that in the
ACTS actual profile data (Y values) for each of the N cams (typically N = 8 or N = 12) of an
automobile engine camshaft are automatically collected and then a number of associated
diagrams (“height,” speed, and acceleration) can be drawn and a variety of comparisons can
be performed against theoretical values. To achieve this, for each cam the measurement
probe is first moved along the X axis to a position that corresponds to the middle of the

cam’s lateral surface, pushed subsequently against the cam (Y movement) and then the

camshaft is rotated a little more than 360 ° (movement on ¢ axis) while profile values Y are
collected from the cam. The ACTS operator has a number of options, including selective
testing of cams (e.g., only cams 1, 4, 5, and 8 are inspected), variable “angular step” for
measurement (e.g., 0.5° or 1°), and various formats for test certificates (out of tolerance

values only or full diagrams, printed or plotted profiles, etc.).

In the four related UML diagrams the view on ACTS is “sequential” in the sense that the
three axis controllers (X, Y, ¢) work only one at time and the sensors are polled by the
controllers. As shown later in Subsection 3.3.2 a concurrent approach can also be considered
with sensors sending signals to the axis controllers and the camshaft being rotated towards a
predefined position while the probe is “cruising” on X and Y directions (in principle,
simultaneous movements on X and Y axes are not excluded either). In the UML diagrams
pertaining to the ACTS specification italics have been used to highlight key elements, many
of them introduced in Tables 3.II to Table 3.IV. Besides the references cited at the
beginning of this section for more examples of UML diagrams we suggest
[TogetherSoft00a], which contains one of the most concise and clear UML tutorials we

found during our survey of the notation.

system name\\

Automatic Camshaft
Testing System

actor ‘-m
\ Perform {f{
_} testing :13
T ri:
 use case ?
User = S'*’
Obtain test
A certificates Measurement |5
//T /_ <<include>> 1 Stand

{ ’ ' . “\ _<<extend>>

.. stereotype . AN
generalisation l op 7 N

s AR

/ﬂm (Plot camshaﬂ\
_ archived data @

el

Supervisor \ \

N\

Set camshaft
profile

R T A e TR
T A Y R Pt S et 0o

Fig. 3.6 Example of Use Case Diagram: Excerpt from the ACTS Specification

1.N
1 <>
] PlannedProbeRoute Position
1
isets follows; 1
1 A A 1
‘ > supervises » controls
MainManager p . MeasurementManager] 3 Probe
Ty 1
relationship reading direction
interprets /P
\
. ActualCam v
ProfileData coordinates
/ class
3 /
LinearAxis & AxisController :ﬂwﬂ‘ds : AxisMotor
Controller 1 P
1 1 5
v v -3
AngularAxis checks reads S~ generalisation r;:g
Controller -7 h‘g
association — 2
&
2
é}i
Sensor ACMotor DCMotor o
I3
5 &
| it
—— aggregation
\,/’/
. 2
Position Displacement
Sensor | . 1 Transducer ~ Counter
g N A A o
i ~_ multiplicity {first counter for + direction,
(|] constraints | sccond counter for - direction}
-
I
Proximity Limit ‘ S— .
Sensor Sensor ' constraint
™~ LinearDisplacement AngularDisplacement
Due to space consideration§— Transducer Transducer
class attributes and operations
are not shown in this diag
note

RS T Sy e I P
N R TR i ST O

Fig. 3.7 Example of Class Diagram: Excerpt from the ACTS Specification

74

rightLimitSensor: LimitSensor leftLimitSensor: LimitSensor

N Y%
\ /
/'vvrchecks
(S / 4
/

/

» commands

xController: AxisController motorX: DCMotor

// \\\
| A % |
checks // \ reads
AN
A/I \\\
. imity: xTransducer:
zeros/e'nsor. Proximi SQr:sor LinearDisplacementTransducer
7 W™
\] L
{ /)/ \J\
\ P / \
object name class name / \
/ \
r/ ‘\
// \
/ \

xCounterPlus: Counter xCounterMinus: Counter

Fig. 3.8 Example of Object Diagram: Excerpt from the ACTS Specification

A, Y SR,
LX R LIV -

PR
XN

1

Pt RANRLT.

RN

A R

75

instance name : class namc\
Y

mm: xController: xMotor: xTransducer:
MeasuromentManager AxisController DCMotor LinearDisplacementTransducer B
I I
— goToTargetPosition()
A
L readX()
\\ y T—l
“~ message R e ittt o ----
calculate)
call to self - Cruise /
~] Profie() result returned’
speedOne
pe () -1
repeated action L j
N * readX() -
r 3
x 1 :
e e 4= 3
i
speedTwo() 53
D,—— i
* readX() -——I i
L :
e it e i J— f‘:é
speedOne() h;g
" o
readX() —
| x |]
UGS L 5
H
| ; stop() ;
b confirm target Ll
i position reached ! !L =
| T life line activation bar
L

R T T DT PR o o T VAR A S T T AN 6o T RN 4, BT e 15
T I o B o A v AT =

2t e

Fig. 3.9 Example of Sequence Diagram: Excerpt from the ACTS Specification

76

3.3.2 UML Support for Modelling Real-Time Systems

As described in [Booch98], UML provides support for modelling real-time systems via a

number of special constructs and mechanisms.

Firstly, there are events and signals. According to Booch, Rumbaugh, and Jacobson, events
are “things that happen” [Booch98, pp. 37], each event specifying some occurrence that has
identifiable location in time and space. A signal is a particular type of event that represents an
asynchronous stimulus communicated between instances of classes. Other types of events are
call event, passage of time event, and change event (Table. 3.V). Signals are similar to classes;
they can have instances, attributes, and operations, and can be organised in hierarchies.

Represented as classes stereotyped with the <<signal>> mark, they are in relation

Type Description . Symbol

an occurrence of interest
signal event pfxckcd as an object and <<signal>>
dispatched asynchronously from

an object to another

method invocation from no special symbol,

call event an object to another; synchronous graphical notations for
notification from the caller object to the | regular operation
object whose operation is invoked invocation apply

passage of time event that specifies that a given after (duration)

event duration has elapsed

event that indicates the satisfaction
change event of some condition (typically based on the | when (condition)
changing of some attribute’s value);

in particular, can be used as a time when (time_value)
event, marking the arrival of an
absolute moment of time

Table 3.V Types of Events in UML

77

“send” with the class operation that dispatches them. As a notational convention, receivers of
signals may include in their class symbol, below attributes and operations, an additional
compartment showing the list of accepted signals. An important kind of signal is exception,
predictably stereotyped with the mark <<exception>>. All types of event can be cither internal
or external to a system, synchronous or asynchronous (depending on whether or not their
sender waits for the receiver’s response), and can be multicasted (send to a specified set of
receivers) or broadcasted (dispatched to all objects in the system that might be listening).
Events other than signals are typically involved in state diagrams only as transition triggers
but they can also be modelled as classes. Considering again the ACTS problem used in
Subsection 3.3.1 but opting this time for a concurrent solution (several threads of control

involved), an example of signal communicated between classes is given in Fig. 3.10.

AxisController
opStatus: int
LimitSensor route: Coordinate []
target: inat
status: boolean » alams roet: Coordinate
mask: boolean initialise ()
sensoriD: int updateRoute ()
updateTarget ()
set () planNavigation ()
reset () goToTarget ()
update () emergencyStop () &t
110 () >~ kA
ge 3N Signals: 33:
()
limitReached :f‘;'f.:‘
<<send>> stopRequest t:{g
i
N 73_‘,
<<signai>> %
LimitReached 5
"v{:?
sourcelD: int ¢
timeMark: Time [3
T.;»l
getSourcelD () 4
getTimeMark () 231

T o S O T e e e el L R e BT e Tt S Tt

Fig. 3.10 Example of Signal: Excerpt from the ACTS Specification

In this figure, the thick-line class “AxisController” is an active class, as explained below,
while “LimitSensor” is a regular class whose objects are within the flow of control rooted in

some active class (not included in the diagram).

78

Secondly, there is UML support for describing processes and threads. While a process
represents a heavyweight flow of control that is known to the operating system, has its own
address space, and competes with peers on the same node, a thread is a lightweight flow of
control that runs in the address space of an enclosing process and competes with peers within
this process. In a concurrent system an active class is used to show an independent flow of
control, each active object representing a thread or process that can initiate control activity.
An active class can be stereotyped either as <<process>> or <<thread>>, is graphically
represented with a thick line, and typically contains the extra compartment “signals” in its
representation. Communication between thread objects can be achieved using either signals
(asynchronous) or call events (synchronous) while process objects usually communicate via
message passing (asynchronously) or remote procedure calls (synchronously). As shown in
Fig. 3.11, UML includes graphical symbols for representing both asynchronous
communication, which has mailbox semantics, and synchronous’ communication,
characterised by rendezvous semantics. Two special cases of rendezvous are also included in
Fig. 3.11: timeour rendezvous, meaning that the sender will wait for the receiver to respond
to the message up to some preset period of time before aborting the transmission and
continuing with its processing, and balking rendezvous, describing the situation in which the
sender aborts the communication and continues its processing if the receiver is not
immediately ready to accept the message [Booch94]. In UML it is also possible to indicate a

critical region by attaching the {concurrent} constraint to operations.

Thirdly, although not restricted to the specification of RTS, finite-state machines and
statechart diagrams are of great help for modelling such systems, especially if the behaviour
of these systems is event-driven. A finite-state machine serves for representing the lifecycle of
objects and conrtains a set of states and all possible transitions among these states. A state can
be viewed as a situation in the life of an object during which it performs some activity,
satisfies a specific condition, or simply waits for an event. A stable state is a state in which the
object may exist for an identifiable period of time. In its most complete description a state

has a name, executes some entry/exit actions, contains internal transitions (which are

79

Z)
MY

':t-_z;.

o
U
tg
2
o
g
2
]

)

|

g
REnP? s kit

1‘4?3 992 A2

1: synchronous message

AP
o
2

(rendezvous)

oy N
RN

g}:&;} AR

2: asynchronous message

- 3: timeout rendezvous
| (@

4: balking rendezvous -

i
1
:l
!

Fig. 3.11 UML Symbois for Synchronous and Asynchronous Communication

handled without causing a state change), has a number of substates (either sequential or
concurrent), executes some activities, and declares deferred events (events queued and
handled by the objecrt in a different state). A transition, in its most complete form, has five
parts: a source state, the state from which the transition originates, an event trigger, the event
that makes the transition eligible to fire, a guard condition, a Boolean expression that must
be true for the transition to take place, an action, which is an atomic computation and may
act directly on the object described by the state machine and indirectly on other objects, and
a target state, the state that becomes active as the result of firing the transition. Modelling
reactive objects means specifying stable states, events, actions that occur on state changes,

conditions for these actions to take place, as well as initial and final states. It is useful to note

80

that in a Mealy machine actions are attached to transitions, while in a Moore machine
actions are attached to states, both approaches being handled properly by the state and
transition concepts described above. A statecharr diagram (see also Section 3.3.1) shows a
state machine, emphasises the flow of control from state to state, and can be used in the
context of the whole system, of a subsystem, or of a class. In Figure 3.12 an example of finite

state machine is presented, illustrating some of the most commonly used state-transition

7 final state

——
@
. /‘

off

TR By

event action
\
“~—. permission_to_restart/ _~
reset () — —

oft ?

Blocked

Qp

21

T
LIPRS

fimit_reached or other
change_direction_command / emergency condition /
/\reverseDirecb’on() stop ()

MRS
G SRRL

0

«

Tore.

,’/ ‘ got_command /
speedOne{) [~

Stopped MoveWithSpeedOne

T

T,

XA
s
S

]

LY)

AT

J target_reached / \ _
stop() i [} -
t limit_reached or other
emergency condition /
go2_command / stop ()
speed'lrwo()

243,

T

e,
M. b1t

f go2_command / l
' speedOne() ‘

initial state state v

\—/-.. ‘ \\\

MoveWithSpeedTwo

T,

R

transition -~

From the stopped state, the 2-speed motor brings the probe in a
target position by “accelerating” with speed 1. “crusing” with speed|
2, "decceleraring” with speed 1, and then stopping. If out of limits |
or in case of another emergency, the motor stops immediately and i
|

ERAEIRIEY oty

requires the operator’s permission to restart working.

R AT T TR

XTI

WL = B

R R e
B SN TSN TR

SR L b SR LT T

Fig. 3.12 Example of Statechart Diagram: A 2-Speed DC Motor for ACTS’ Axis X

81

elements. The example is again related to the ACTS problem and describes the operation of

a 2-speed DC motor that moves the measurement probe on axis X under the supervision of

the X axis controller.

Fourthly, modelling RTS can make use of some UML markings and expressions that are

dedicated to capturing time and space properties of systems. These are timing marks, time

expressions, time constraints, and location tagged values (Table 3.VI). Additionally,

semantics tagged values can be attached to operations and a time expression may be used to

specify the operation’s time complexity: minimum, maximum, and/or average execution

time.

Table 3.VI UML Markings and Expressions for Time and Location

Type

Description

Example

timing mark

indicates the time of an occurrence and is
denoted by a lowercase letter attached to an
event (message)

a: updateRoute()

b: goToTarget()

time expression

an expression that evaluates to a time value;
it may include the predefined functions for
messages startTime, stopTime, and
executionTime

b.startTime < a.stopTime + 0.5

time constraint

a statement about relative or absolute value(s)
of time; as all other UML constraints it is
represented by a string in brackets

fa.executionTime < 2 ms}

fevery 12 hours}

location tagged
value

specification of a component’s placement in a
node; typically written below the name of the
component, it is primarily used in
deployment diagrams

{location = RemoteController}

Finally, the modelling of any particular class of systems,

including RTS, is supported by

UML’s extension mechanisms described in Subsection 3.3.1. In particular, stereotypes are of

82

great value for satisfying the modelling requirements of particular types of application and
for supporting specialised methodologies. A prominent example in this respect is Selic’s
definition of new stereotypes, including <<capsule>>, <<protocol>>, and <<port>> [Selic99b]),

as means of expressing the concepts put forth by the ROOM approach.

However, UML alone is not sufficient for rigorous development of RTS and supplementary
formalisation is necessary [Evans99, Howerton99, McUmber99, Alagar00]. Solutions in this
direction have already been proposed, as indicated in the next Subsection, where several of

UML’s avenues of development are overviewed.

3.3.3 The UML Promise

As a new and promising language for specifying object-oriented systems, UML has been
recently approached from various perspectives by practitioners and researchers. Without
claiming that our survey of the latest developments involving UML has exhaustively covered
the related literature, we have identified several major directions of exploiting the benefits
brought by the notation. These directions, some of which intersect in many of the surveyed

reports, can be described as follows:

e Application ro the development of industrial systems, from medium-sized to complex.
The range of reported applications extends from the construction of an MPEG-4
decoder [Barrios99] to the development of a next-generation AWACS (Airborne
Warning and Control System) [Bell99], and encompasses projects such as a wine
bottling production line [Becker00], a car radio assembly line [Fernandes00], a gas
turbine engine simulation system [Xie99], and a GSM (Global System for Mobile
Communication) [Jigorea00];

® Extensions covering special application domains. Equipped with the new device, UML,
teams from both industry and academia have recently started to employ its modelling
capabilities in areas traditionally more difficult to tackle, such as heterogeneous systems

and distributed systems. In many cases, extensions to the notation have been proposed,

83

from simple additions consisting of a few of sterecotypes to more intricate modifications
involving both syntax and semantics. For instance, in the [Barrios99] proposal aimed at
heterogeneous system design the additions consist of a number of tags attached to classes
to indicate the rarget implementation language and of a number of stereotypes for
hardware entities, in the [Fernandes00] tackling of embedded systems the extensions
come in the form of tagged values called references associated to use cases for betrer
correspondence with object diagrams, in the [Conallen99a] paper comprehensive
stereotype-based extensions to UML that allow the modelling of Web applications are
presented, while in the [Price99] treatment of spatiotemporal data modelling a set of

supplementary definitions to UML is proposed, resulting in what the authors have
termed STUML (Spatio-Temporal UML);

Support for new development methodologies. In order to accommodate particular
aspects of the modelling process within specific application domains or to promote novel
software construction approaches not only extensions to UML but also new development
methods and methodologies have been devised. Examples of such UML-based methods
and methodologies, some of them accompanied by specific extensions of the notation,
include D'Souza and Wills' comprehensive Catalysis approach for object and
component-based development [D’Souza98], Conallen and Bebick’s proposal for
modelling Web applications [Conallen99b], Muller’s utilisation of UML for database
design [Muller98], Cheeseman and Daniels’ process for server-side component-based
development [Cheesman00], Fernandes et al.’s alternative for modelling embedded
systems [Fernandes00], Lu et al.’s UDRE (User-driven Domain-specific Requirements
Engineering), focused on the user’s involvement in the development process and on the
relevance of requirements throughout it [Lu99], and Oldevik et al.’s methodology for
developing distributed systems, a methodology that employs RM-ODP (the ISO
standard Reference Model for Open Distributed Processing) as a conceptual and
architectural framework and UML as a flexible modelling notation “that can be used for
virtually anything” [Oldevik98, pp.13];

Combinations with other notations. There are also situations where simply extending

UML is not sufficient for capturing all the aspects of a particular class of application (or

84

for capturing these aspects in the desired way), yet employing the modelling power of
UML still brings significant advantages. In such cases, UML can act as companion to
some other language or languages, and play various roles. Examples of partners for UML
include IDL (Interface Description Language) in the object-oriented development of
distributed systems [Watkins98], Java in the construction of simulation systems
[Kortright97], E-DFDs (extended data flow diagrams) in modelling distributed real-time
systems [Becker00], and a variety of rigorous languages such as ¢cTLA (a variant of
Lamport’s Temporal Logic of Actions) [Graw00], GSBL™ (an algebraic specification
language based on inheritance [Favre99]), and VHDL [McUmber99] in specification
approaches with enhanced formalism. Since combining notations is also the avenue of
research we follow in the present thesis, more about combinations of notations, in
particular about those involving UML and variants of Z, is presented in Chapter 4,
Related Work, of this thesis.

Strengthening of UML’s underpinning formalism and, generally speaking, formalisation
of UML. Representatively, the need for concerted efforts in this direction has lead to the
formation of a dedicated group, pUML (“precise UML”) whose primary objective is “to
clarify and make precise the semantics of UML” [pUMLOla] and whose membership
include well known scientists such as Andy Evans, Robert France, David Harel, Kevin
Lano, Stuart Kent, and Bernand Rumpe. The two working groups of pUML focus on
building a rigorous meta-model semantics for UML and, respectively, on defining precise
semantics for OCL (Object Constraint Language, the standard constraint language of
UML [Warmer98}). Approaches taken by pUML members include the proposal of a
meta-model semantics for structural constraints in UML [Kent99], the incorporation of
rigorous reasoning techniques within UML’s component abstractions and
representations [Evans98], the development of an axiomatic semantics model for a large
part of the notation [Lano98], and the formalisation of key UML constructs [Shroff97]
(for a more complete image of the group’s research we refer the reader to pUML’s list of
publications available at [pUMLO1b]). Sustained work in the same direction of

formalising UML has also been ongoing for some time in other centres of research (e.g.,

85

Alagar and Muthiayen’s proposal for Real-Time UML [Alagar00] and Alemdn and

Alvarez’s work on foundations of developing UML model verification tools [Alemdn00]);

e Eclectic uses, for instance as supporting notation in an approach aimed at helping
students understand the value of precise specifications [Stoecklin98] or in the generation
of the OOHyTime meta-model, whose purpose is to facilitate both the understanding
and the utilisation of HyTime (Hypermedia/Time-Based Structured Language), a
standard for interchanging hypermedia documents [Scott99];

® Tool support. The growing popularity of the modelling language has also been fuelled by
the development of a variety of CASE tools that incorporate support for the notation.
Besides Rational Software Corporation, with its vanguard tools Rational Rose
[RationalRose01] and Rational Rose Real-Time [RationalRoseRTO01], a number of other
major commercial vendors have already provided the software development community
with CASE tools that incorporate support for the UML notation. Among these, major
vendors are TogetherSoft Corporation, developers of Together Control Center, Together
Enterprise, and Together Solo [TogetherSoft00b], I-Logix, Inc., with its Rhapsody
environments for modelling real-time embedded systems [RhapsodyOl], Popkin
Software, creators of System Architect 2001 [SystemArchitect01], Computer Associates
International, Inc., providers of the application lifecycle management tool Paradigm Plus
[ParadigmPlusO1], and Microsoft Corporation, who have recently acquired Visio
Corporation, the developers of Visio, an intelligent diagrammatic editor [Visio00].
However, it is worth noting that providing comprehensive tool support for UML is not
easy to achieve. For instance, according to [Bell99] the coverage of the notation need be
improved in the case of the two (unnamed) design tools that were used in the AWACS

project and, as the author indicates, provided incomplete support for UML.

A number of observations can been drawn from our survey of the recent UML literature.
First of all, that the wealth of projects and applications domains making use of the new
modelling language as well as the variety of directions from which the language has been

approached provide a solid justification for the term general notation associated with UML.

86

Also, even before the apparition of a dedicated tool such as Rational Rose Real-Time we
could note as a fact the significant number of approaches aiming at dealing with complex
systems such as real-time embedded systems and distributed systems. This reflects a clear
need for notational support for modelling such systems, and it appears that in the near future

UML will have a major role to play in the distributed and real-time areas.

The application of UML to specific domains has lead to a number of extensions or
adaprations of the notation and in not a few cases a new, custom-made methodology has also
been proposed. In fact, extensions to the notation appear to represent the norm rather than
the exception in the employment of UML. However, this should not come as a surprise,
since UML was built from the beginning with provisions for extension, but the spawning of
notations can lead to an “inflated” UML, hard to manipulate efficiently. Also, the number of
new methodologies proposed is rather large, and unless the proposal of a new methodology is
fully justified, the present methodological gusto may actually backfire, and undermine the
very idea of unification behind UML. In truth, however, we should note that many of the
new methodologies reported in the literature are necessary to fill the gap between UML’s
generality and the development idiosyncrasies of specific application domains. Also, the
impending “stabilisation” of the Unified Modelling Process will most probably reduce
significantly the number of new methodologies that bring only marginal modifications to

existing practices.

Finally, we should note the quasi-unanimous acceprance of UML and the fact it is generally
perceived as a very useful tool, with luminous future. For instance, Xie et al. are particularly
satisfied with the support provided by UML for iterative development and the value of
frequent shifts between views, especially between the use-case view and the logical view,
which are deemed to accelerate the understanding of the requirements and the developing of
new ideas [Xie99]; Barrios and Lopez’s study highlights UML’s versatility in supporting, at
higher levels of abstraction, the design of complex systems that necessitate mixed
implementation solutions [Barrios99]; the [Becker00] paper shows that it provides adequate

input to a CASHE tool such as SIM2SYS (developed by the authors to support their

87

methodology); Lu et al. consider that UML’s semantics help the clarification of requirements
while its diagrammatic notations enhance the “understandability, traceability, verifiability,
and modifiability of the requirements” [Lu99, pp. 133]; and Watkins et al. deem it a “rich
methodology,” well equipped to “express the requirements of large systems” [Watkins98,
pp-149].

Of course, not all UML is shining brightly in the limelight, and beyond shortcomings
mentioned at the beginning of Section 3.3 and inherent limitations that have triggered a
significant number of UML extensions and combinations with other notations there are also
some other deficiencies in the language, for example logical flaws in the definition of certain
UML concepts, as pointed out by [Simons99] who strongly disputes the soundness of a
number of features pertaining to use cases. But the vast preponderance of useful features
present in the language, as well as UML’s versatility and widespread acceptance have
provided us with good reasons to decide to employ it in our approach. Of course, because
the magic concoction is still boiling over the fire, we probably have to cool it a bit first and
then see if its flavour is the one promised by its tempting aroma. Or, to put it in a different

way, we believe that only time and practice will tell us what things deserve to stay.

3.4 Chapter Summary

In this chapter the two specification languages, Z and UML, that pertain to the thesis’
research space and further characterise the topic of this dissertation have been presented.
Examples of application as well as surveys of both Z and UML landscapes, including
descriptions of extensions, research directions, and ways of utilisation, have been included.
UML’s support for RT software development has been described and Z++, the object-
oriented variant of Z used in the thesis has been succinctly introduced, with a view of further
detailing it in Chapter 6, where it provides fundamental support for the formalisation
approach proposed in this thesis. Remarks on the current expectations raised by UML have

also been presented.

88

A R8LATED WORK

"But search the land of living men
Where wilt thou find their like agen?"

[Walter Scotr, Introduction to
Canto First, Marmion, 1808]

4.1 Introduction

The purpose of this chapter is to narrow the research space, focus on the topic location and
discuss current specification approaches that are related to ours. Based on the examination of
these approaches, the contour of our work can be drawn with greater accuracy, leaving to the
remaining of the thesis the task of completing the detailed picture of our approach. Some
general observations regarding the integration of notations in software specification are
presented first, followed by a brief review of a number of semi-formal/formal combinations
of notations involving formalisms other than Z. Then, the examination of integrations of
notations is narrowed down to research projects that involve Z or variants of Z. In particular,
five approaches that share significant characteristics with the modelling solution presented in
this thesis are discussed in more details and both commonalities and differences are
highlighted. Because the approach proposed in this dissertation places special emphasis on
capturing temporal properties of systems, a review of existing modalities of dealing with time

in the context of Z-based specifications is also included.

89

4.2 Integration of Semi-formal and Formal Notations in Software

Specification

Integrating formal with semi-formal or informal notations in software development is not a
new idea, some forms of combinations being present in a fair number of approaches. After
all, formal languages like Z include provisions for textual, plain language annotations,
intended to alleviate the difficulty of following complex mathematical expressions and to
relate abstract descriptions with real-world entities. However, as pointed out by several
authors, one of the main reasons that, in addition to lack of tools support, have prevented
the wider application of formal methods is that not sufficient attention has been paid to the
integration of formal techniques with traditional, semi-formal methods [Gerhart94,

Clarke96, Lawrence96].

Many authors consider the integration of formal techniques with conventional, informal (or
semi-formal) approaches as highly beneficial in software development. For instance,
[Aujla94] points out that formal techniques are portable and extendable and can be used in
various ways and in various phases of the development. They can be applied as
complementary techniques or as alternatives to conventional approaches. Their application
leads to the detection of a significant number of errors in specifications. On the other hand,
Aujla et al. show that formal techniques themselves benefit from being included in the larger
frame of an integrated methodology; they are provided with both context and method,
which they may lack if considered in isolation. Alexander sees the combination of formality
and informality as a way to obtain “the best of both worlds” [Alexander95] and Bruel er al.
point out that “the main objectives of integrated formal/informal approaches is to make

formal methods easier to apply and to make informal methods more rigorous” [Bruel98b,

pp- 52].

Integration, which in general covers combination of notations, models, and even methods
[Bruel98b], has nevertheless its own issues, most notably the fact that interpretations

underlying the translation rules from informal to formal are seldom explicitly stated, the

90

focus of formalisation is in general on basic constructs, and not structures, and litcle
attention is paid to relating the results of analysing the generated formal models to the
corresponding components of the informal counterparts (Bernhard Rumpe, in the

[Bruel98b] panel).

However, in general, using complementary, concerted techniques for modelling software
systems brings a series of benefits, the most important being the increased modelling power
provided by the combination and the higher level of confidence they bring in regarding the
correctness of the software product being developed. Evidently, these advantages did not pass
unnoticed by the researchers and practitioners of the software engineering field, and various
combination strategies have been proposed. Some of these strategies are briefly reviewed in
the rest of this chapter but, before that, it is useful to point out that, in broad terms, the
relationship between the formal and the semi-formal (or informal) components of a
specification can be one of the following (notice that we refer in particular to semi-formal or

informal graphical notations):

e If the graphical (semi-formal or informal) part is built initially and then a translation
process is applied to obtain its formal counterpart, we can speak about derivation of the
formal model from the informal model or simply of formalisation (e.g., [Lec95], where
diagrammatic and text elements of Bailin’s object-oriented requirements specification
method OOS [Bailin89] are translated into Z counterparts, or [Laleau00], where the
translation is from UML to B). Certainly, it is also possible to obtain a visualisation of
the formal part, in which case the derivation is from formal to visual (e.g., [Salek94],
where the REVIEW system is used in the larger frame of the METAVIEW meta-system
—which facilitates the development of CASE environments- to generate natural language
descriptions from Environment Definition Language (EDL)/Environment Constraint
Language (ECL) specifications, or [Kim99b], where graphical representations for Z

constructs are proposed). The later form of derivation can also be called deformalisation;

e If in addition to diagrammatic representations some related formal specifications are

produced independently (e.g., (Jia97], where Z specifications supplement UML models),

91

the approach can be characterised as complementary formalisation. Typically, this
approach also involves derivation from informal to formal, a subset of the diagrammatic
description of the system being translated into formal specifications (this is the case for

the cited {Jia97] approach, which is discussed in more detail in Subsection 4.5.1);

e if changes in any of the specification’s parts are continuously propagated in the other, we
can speak of a tight integration of notations (e.g., [RoZeLink99], where UML models

are connected to corresponding ZEST descriptions).

In the above classification the terms semi-formal part and formal part of a specification are
used but we should point out that, due to the costs involved, formalising the entire
specification of a software product is generally impractical, if not impossible, and the typical
approach is to apply formal techniques only to the critical sections of the software being
developed [Gerhart94]. As such, the correspondence between the diagrammatic (semi-formal
or informal) and textual (formal) parts of a specification is typically limited to a subset of the

specification’s components.

Depending on the number of notations involved, a combination of notations can take the
form of either a dual-notation integration (e.g., [Bjorkander00], where UML is combined
with SDL) or of a multiple-notation integration (e.g., the multi-paradigm specification
technique devised by Zave and Jackson [Zave96], the pure formal method integration
(PFMI) strategy suggested by Paige to allow the combined usage of formal methods such as
Z, refinement calculus, predicative programming, and Larch [Paige98], or the framework
solution proposed by Day and Joyce for integrating multiple notations [Day00]). Generally
speaking, the integration does not necessarily involve a formal/semi-formal (or informal)
combination; it can be of the formal/formal type (e.g., [Sowmya98], where the dynamic
aspects of RTS are modelled using both Statecharts and FNLOG, a logic-based language
buile on first-order predicate calculus and TL) or semi-formal/semi-formal (e.g.,
[Scogings01], where an integration UML/Lean Cuisine+ is proposed for supporting the early
stages of interactive system design). And, as mentioned in the classification proposed above,

it has also been considered useful to deformalise the formal models [Salek94, Kim99b].

92

For the purpose of comparing various integration approaches we also introduce the notion of
monolithic environment, which means thart a single CASE tool is used for developing both
semi-formal and formal models, and various subsequent formal processing (such as analysis
and refinement) can be invoked from this tool. The alternative, the non-monolithic
environment, refers to a combined use of CASE tools, with separate invocations from the

operating system.

We believe that the integration of notations does provide a viable solution for modelling
complex systems because various aspects of the systems need various ways of description,
which can beneficially complement each other (for a classification and examination of forms
of method complementarity, primarily in terms of notations and processes, we suggest
[Paige99]). In particular, in the case of formal/semi-formal integrations, it is always possible
to “fine tune” the formality level and adjust the balance between the less rigorous
diagrammatic representations and the formal specifications to best answer the needs of a
given application. An important point we must not forget about integration is, as well stated
by Clarke et al., that the end result should be a compound, and not a mixture (in other
words, a solution in which the components are tightly united, and not one in which the

components simply intermingle) [Clarke96].

Within the research space introduced in Section 2.1, we look next at a number of integration

approaches that propose a formal/semi-formal combination of notations.

4.3 Semi-formal/Formal Integrations of Notations Not Involving Z

By resorting again to the classification proposed in Table 2.I and to the research space
presented in Fig. 2.1 we can detail now the areas that neighbour our thesis’ C3+ topic
location and have a look at research approaches that “reside” in these areas. Figure 4.1

contains an enlarged depiction of a major portion of Fig. 2.1, which covers all 16

combinations of integration as defined in Section 2.2 (recall that the classes —or areas— Cle

[formal |
formal I

Al+ A2+ A3+ non RT
l Z
| S|
B+ B2+ B3+
00z
C2+ C3+
ca. ca. “-
B1. B2. B3. i
£
Al. A2, A3, Bk
o
A

Legend:

A Formal but not Z-based 1 Not an OO methodology . Non RT
B Formal, Z burnot OOZ 2 OO bur not UML-based + RT

C Formal, 00Z 3 00. UML-based

Fig 4.1 First Zoom-In on the Research Space

94

and Cl+ are discarded). In this section we focus only very briefly on some examples of
projects that fit in the Ale to A3+ areas, as an introduction to the next section, where Z-
based approaches are discussed. This introduction is intended to be simply illustrative and by
no means comprehensive (areas Al to A3 are quite large, because they include “everything
but not Z” of all possible semi-formal/formal combinations of notations that cover our
research space). Examples of A-type approaches, with succinct descriptions, are presented in
Table 4.1. It can be inferred from this table that the topic of semi-formal/formal integration
has been pursued constantly by researchers, and no remote area (“remote” in the sense

defined by our classification) has been left uncovered.

Table 4.1 Examples of Semi-formal/Formal Integrations Not Involving Z

Areca Areca Example Summary Description
Characteristics Approach of the Example
Formal non-Z, Translation from Modified Entity-
Ale Non OO, [D’Almeida92] Relationship diagrams (MER) and
Non RT textual Keyboard-based Formatted
Descriptions (KDF) to VDM
Formal non-Z, DFD-based methods integrated with
Al+ Non OO, [Sahraoui97] TL constructs of the Zaman language
RT [Sahraoui92]
Formal non-Z, The VISUALSPECS environment
A2e¢ | OO non UML, | [Cheng94] supports the formalisation of OMT
Non RT models in algebraic languages such as
Larch
Integration of HRT-HOOD (Hard
A2+ | Formal non-Z, Real Time- Hierarchical OO Design)
OO non UML, | [Chen98] models [Burns95] with TAM
RT (Temporal Agent Model) specifications
[Scholefield92]
Formal non-Z, B specifications generated from UML
A3e UML, [Laleau00] diagrams
Non RT
Formal non-Z, Petri Nets serve for representing and
A3+ | UML, [Bordbar00] analysing dynamic models in a UML-
RT based approach aimed at modelling
discrete-event dynamic systems

95

4.4 Semi-formal/Formal Integrations of Notations Involving Variants of Z

After the introduction to semi-formal/formal integrations of notations based on examples

that do not involve Z, it is now time to look at the closer neighborhood of the thesis topic,
represented by areas B2e to C3+, which make up the “Z sub-domain”. The best way to do
this is to enlarge again the original representation of Fig. 2.1 and discard the peripheral areas

Ale to A3+, thus resulting the depiction shown in Fig. 4.2. Examples that serve the

w]

[z
L=
B1+ B2+ B3+ w non RT
00z
!
C2+ C3+ '
c2 C3.
B1. B2. B3.
< | S >
M umi | "
¢ non OO ol 00 .
[SN i
{ Legend:)
B Formal, Z. but not 00Z 1 Not an OO methodology « NonRT
C Formal. 002 2 OO but not UML-based + RT

3 0O. UML-based

Fig. 4.2 Second Zoom-In on The Research Space

96

illustration of integration classes proposed in Chapter 2 are given again in tabular form
(Table 2.IT). Regarding the completion of this table, it can be noted that even though all ten
areas of the “Z sub-domain” have been covered, examples for some classes have been more
difficult to find than for other. In particular, the example for Bl+ is the only one we find
after a rather long search (typically, in the earlier approaches, when Z was integrated with
notations of structured approaches, the focus was not on RT applications). Also, for the C2+
category we had to resort again to [Lano95], the only other candidate we found being
[Dong97b], but there the addition of an OMT description to the Object-Z specification of a
multiple-elevator controller is rather accidental, and not suggested as an integration approach
per-se. The closer categories B3 to C3 are also not very populated, and in fact the few
approaches that fit in these areas of the thesis’ topic’s “near vicinity” constitute the more
restricted group of “closely related approaches,” discussed next at the last and most detailed

level of investigation of the thesis’ research space.

4.5 Closely Related Approaches

While, as previously shown, there are numerous approaches that integrate in various degrees
graphical, semi-formal representations with formal notations, very few are aimed at explicitly
dealing with TCS using a Z-based formalism incorporated in the larger frame of the OO
paradigm. We have identified five specific approaches that in our view are the closest to the
direction of work that we have pursued. However, of the five approaches, only two include
provisions for explicitly dealing with temporal properties of the systems, as we also have

attempted.
4.5.1 Jia’s Augmented Object-Oriented Modeling Language
Xiaoping Jia, the author of the well-known Z type checker ZTC [Jia98a], takes a pragmatic

approach in combining the strengths of semi-formal graphical OO notations with those of

formal specifications (Jia97, Jia98c]. The author indicates that only a partial automation of

97

Table 4.1 Examples of Semi-formal/Formal Integrations Involving Z

Arca Arca Example Summary Description
Characteristics Approach of the Example
Z but not OOZ, ERD and DFD formalised using Z
Ble Non OO, {Aujla94] within the Rigorous Review Technique
Non RT (RRT)
Z but not OOZ, Formalisation in Z of casual timing
Bl+ Non OO, [Coombes92] | diagrams (diagrams inspired from those
RT used by electrical engineers to illustrate
temporal properties of digital devices)
Z but not O0Z, Constructs of Bailin’s OOS method
B2e OO but not UML, | [Lee95] transformed into equivalent Z
Non RT specifications (also mentioned in Section
4.2)
Z but not OOZ, Fusion models translated into Z
B2+ OO but not UML, | [Bruel96] specifications (precursor of [France97]
RT shown in the B3+ area)
Z but not OOZ, [Jia97] Formalisation in Z of UML constructs
B3e UML, (details in Subsection 4.5.1 and,
Non RT [Noe00] respectively, 4.5.2)
Z but not OOZ, Structural and behavioural Octopus
B3+ UML, (France97] analysis models expressed in UML are
RT formalised using Z (details in Subsection
4.5.3)
Proposal of a 4-submodel specification
00z, based on the integration of OMT and
C2e OO but not UML, | [Nguyen96] Object-Z* (a slightly modified version of
Non RT Object-Z); RT properties not explicitly
targeted
00z, Formalisation of OMT constructs in
C2+ OO but not UML, | [Lano95] Z++ (more details in Chapter 6)
RT
00z, Two-way link between UML constructs
C3e | UML, supported by Rational Rose 98 and
Non RT [RoZeLink99] | ZEST specifications (details in
Subsection 4.5.4)
00z, UML and Object-Z combine forces for
C3+ UML, [KimOOb] describing a lights control system
RT (details in Subsection 4.5.5)

98

code generation can be achieved from semi-formal OO models, in the form of a skeletal
implementation. Thus, in his approach formal notations are used for partial description of
the system, as a complement of the traditional OOAD models (as indicated in the definition
of complementary formalisation proposed in Section 4.2). The approach is driven by
practical reasons and its aim is to minimise changes and extensions of widely-used semi-
formal and formal notations while providing an intuitive and easy to use, yet powerful
software development method. Specifically, Jia proposes a language denoted AML
(Augmented Object-Oriented Modeling Language) thar essentially combines notations from
UML and Z. For pragmatic reasons, minimal additions to the Z notations have been
included (mostly for handling the specification of classes), making up the slightly extended Z
notation referred to as Zext. A supporting tool called Venus was developed to provide the
very useful capabilities of model analysis, animation of a large subset of Z specifications,
refinement of the design based on a fixed, yet comprehensive library of data structures and

algorithms, and extensive C++ code generation.

UML specifications UML to Z mapping _>

- class diagrams

- class interfaces

- statechart diagrams >
AML model
UML and Zext
specifications

Z specifications

- class states >

- class operations (partiai)

- data types and subtypes

\-9:#' TN S
k.—-"" N o ‘:r‘]*&“' ;IJ‘KT

Fig. 4.3 Jia's AML-based Approach

Jia’s AML-based approach can be related to the relatively new research direction of light-

weight formal methods, succinctly discussed in Subsection 2.6.5. As described by Jia, the

929

integration of UML and Z is focused on compensating for the limitations of UML, primarily
the fact that data types and operations are not formally specified. In essence, as shown in Fig.
4.3, adapted from ([Jia97], the UML notation is used to specify the system’s class
organisation, the class interfaces, and the related state diagrams, while the Z language is
employed to provide supplementary details, specifically class states, data definitions, and

partial descriptions of operations.

While exceliently addressing the practical barriers that hinder the large-scale use of formal
methods in practice, Jia’s approach differs from ours in a number of ways. Firstly, there is no
particular emphasis on capturing time-related property of systems, thus making its
application dependent on the medeling ability of UML and on the limited time-capturing
capability of the regular Z. Secondly, even though the UML notation is employed, the
formal part of the object-oriented model is expressed via a minimal set of extensions of Z,
and we believe that by employing a full-fledged object-oriented version of Z additional
modeling power would be available, without significant increase of the notation’s
complexity. Thirdly, it is not indicated whether the opposite translation, the mapping from
Z to UML is included. The diagram on which we have based Fig. 4.3 indicates that Z
specifications are only fed forward to the complete model, without a corresponding feedback

from the integrated AML model to Z descriptions.
4.5.2 Noe and Hartrum’s Extension of Rational Rose 98

More recently, Capt. Penelope Noe, from the Air Force Personnel Center, Randolph, Texas,
and Prof. Thomas Hartrum, from the Air Force Institute of Technology (AFIT), Ohio, have
proposed the extension of Rational Rose 98 for the inclusion of formal specifications
[Noe00]. In summary, their approach is to exploit existing features of Rational Rose,
specifically Rose’s scripting language and available textual fields that can be used for
embedding formal expressions, and produce a formalised model that can be fed into the
AFITtool transformation system. Based on this input, the AFITtool is capable of generating
Ada code (Fig.4.4). From Rose’s set of graphical representations, only the class diagrams and

the state diagrams are considered, and an additional non-Z and non-UML state transition

100

table is also employed in the semi-formal specification process. Using primarily the
Documentation field associated with classes, operations, and state transitions, Z
specifications that supplement the description of the system can be embedded into the

extended Rose model. These formal specifications are partially written in the L*T X format.

extended
Rose mode!
(.mdl)

£

L
Rational Rose 98 Y
OMT models via

- class diagrams
- state diagrams
- state transition table AFIiTtool

-comrectness
L N ZLAT X file and consistency
Rose Script Fﬁ) (.250) 1 checking :> Ada 95code
S~ - Ada 95 code
Z added descriptions generation

through Rose text fields

- class constraints
- operation details

- state transitions details
e

Fig. 4.4 Noe and Hartrum’s Approach

The approach follows the OMT methodology [Rumbaugh91] and consists of building three
models: the object model, which defines the class structure of the application, the functional
model, which describes the desired interaction of the system with its environment, and the
dynamic model, which expresses the state changes of the system. In summary, the object
model is created by augmenting the UML class diagram with Z-specified user defined data
types and constraints on classes and attributes, the dynamic model is built using regular finite
state machines whose states and events are represented in Z using static schemas, and the
funcrional model is obtained through the description of class operations, details such as pre—
and post—conditions being added in Z and the operations being represented by dynamic Z

schemas. After the extended model of the system is completed a translation procedure (a

101

Rose script) is invoked in order to produce a Z file in L*T.X format, as entry for the

AFITtool. Consistency and correctness checks are performed and Ada 95 code is produced.

This approach is well explained in the [Noe0O] paper and its practical utility has obvious
merits. In addition, as indicated by the authors, it suggests a viable line of work, that of
developing Rose scripts for interfacing with other CASE tools. This approach is different
from ours in several ways. Firstly, as in the [Jia97] approach discussed previously, RTS are
not targeted explicitly. Secondly, Z is used again in its regular version, which has the
advantage of keeping the notation simple and the potential of interfacing with a larger
variety of analysis tools, but this solution is less direct than employing an OO variant of Z
for OO specifications. Thirdly, many Z descriptions are entered in the L*T X syntax, which
is clearly not user-friendly. Fourthly, the internal format of the “.zed” file is custom-made
(tailored to the AFITtool), and thus its usage in connection with other tools is restricted. In
addition, as in the [Jia97] example, this approach also fits in the complementary
formalisation category of integration, and ours proposes a tight-integration solution. Lastly,
it can be noted that although Rose 98 acts as the sole front-end modelling tool, Noe and
Hartrum’s integration of notations is not entirely monolithic. This is due to the fact that a
separate program, the AFITtool, with its own set of commands and interface demands, is

invoked outside the main environment, Rational Rose.
4.5.3 Blending Octopus and Z

The approach described by France et al. in [France 97] represents one of the relatively few
attempts of integrating OOAD methods with formal specification techniques for developing
RTS (work connected to this approach is described as well in [Bruel96], [Shroff97], and
[Bruel98a]). The formal specification language used is Z, which was chosen, as indicated by
the authors, because of its maturity and the availability of related analysis tools. Here, the
combining of an OO approach with a formal specification technique consists of translating
the three analysis models of the Octopus method [Awad96] into equivalent Z specifications.

The formal specification language Z is used to enhance the modelling capability of Octopus

102

by allowing consistency checking across models (thus opening the way for the application of
automated analysis tools) and by providing the developer with a better insight into the
problem’s requirements. Octopus analysis models are translated into Z constructs using
procedures that could be partially automated. The formalisation process is applied to all
three analysis models of Octopus: the object model is formalised using class schemata, while
the derivation of the other two models, dynamic and functional, which capture system
behaviour, involves four steps: definition of states, definition of subsystem responses to
events, Z modelling of transitions described in the dynamic model, and description in Z of
statechart actions and activities, including those represented in the functional model (Fig.

4.5, based also on the earlier [Bruel96] paper on FuZE, which combines Fusion and Z).

~
Octopus to Z mapping

- object model formalisation:

Octopus models :> classes and generalisations :D

- behaviour formalisation:

- object model .
- functional model states, events, transitions, Z specifications
- i actions, and activities
dynamic model (temporal properties
included)

(real-time properties

captured in
Statecharts) (
‘ feedback

Analysis tools

g
j

o D B R R R St e e

Fig 4.5 The Octopus and Z Integration Approach

Feedback from analysis tools to both the diagrammatic and the formal models is considered,
but we can note however that in this approach the integration of notation is not tight in the
sense defined in Section 4.2. Also, even though the object model is translated into regular Z
constructs that model classes, a translation into an object-oriented version of Z would be

more natural and direct, and the specifications would have similar structure in terms of

103

classes. Additionally, the OMT-based notation of Octopus has currently less exposure than

UML, which has enjoyed a constantly growing expansion over the last few years.

4.5.4 Headway System’s RoZeLink

Most probably, the only tool that has been developed commercially to support an object-
oriented modeling approach and combine the advantages of graphical, semi-formal notations
with those of formal notations is RoZeLink [RoZeLink99], produced by Headway Software
Inc. as a bridge between the UML notation supported by the 1998 version of the Rational

Software Corporation’s Rose environment and the ZEST object-oriented formal

Rose Worid
(UML models) e N .
| N, Formaliser World
- class attributes —1[> — (ZEST
- class interfaces RoZelink: specifications)
- class operations Two-way mapping
(partial) <: <1——— - class structure
- aggregations - attnbu}es
- inheritance - - operations

‘
3 TN L OV by A o n PTG LT AT N
P R S S o i g G LA

B e T e T e st Sy A TR

Fig. 4.6 The RoZeLink Tool

specification language supported by Logica’s Formaliser [Formaliser01]. RoZeLink, which
apparently has not been further developed since the producing company has changed its
direction of work (sce the web-site in the [RoZeLink99] reference), provides the necessary bi-
directional link between the two notations and achieves the goal of maintaining
specifications consistent between models. RoZeLink operates between a Rose UML model
and a collection of Formaliser documents, and through a continuous translation mechanism

maps elements from the semi-formal model into the formal model and vice-versa. This

104

implies that changes in one “world” are reflected during the modelling process in the other
one (Fig. 4.6). We borrowed from RoZeLink this idea and also pursued a tight integration of

notations.

Although practical and comprehensive in its dealing with structural aspects of the system, the
Headway Systems’ approach has its limitations, primarily because there are no particular
provisions for dealing with time-related properties of the systems. In addition, only the class
structure of the system is involved in formalisation, the statecharts are not. Also, the
RoZeLink approach does not propose a truly monolithic integrated environment, its role
being to act as an intermediary that interconnects two already existing commercial software
development tools. In order to work both “graphically” and “formally” on his specifications,

a user must first start up three separate applications.
4.5.5 Object Z and UML

The closest approach to ours (it belongs in the same C3+ class) and also the most recent is
presented in [KimOOb] (earlier work by the same authors on formalising UML diagrams is
described in [Kim99a] and [Kim00a]). In many ways, our work is similar to Kim and
Carrington’s alternative for integrating UML and an object-oriented variant of Z, but there
are also some notable differences, as indicated below. First, however, we would like to
indicate that we started to develop our approach in the form presented here sometime in
1998 and an early outline of the integration and of the proposed Harmony tool was
presented by the author of this thesis in August 1999 as part of the requirements for the
Visual Languages course taught by Prof. Phil Cox at Dalhousie University, Halifax, Nova
Scotia [Dascalu99]. Therefore, we have worked independently in the same topic area, and

only very recently have learned about Kim and Carrington’s approach.

In summary, as shown in Fig. 4.7, their proposal is to translate UML models into Object-Z
models, temporal properties of the systems receiving adequate treatment via a time trace

notation based on time refinement calculus. Kim and Carrington’s approach proposes not

105

only a formalisation of the class structure but also a formalisation of dynamic properties
based on use case diagrams, sequence diagrams, and statechart diagrams. Very briefly, there is
a direct correspondence from UML classes to Object-Z classes that “makes the semantic
translation between the two languages less complex” [Kim00b, pp. 241], and the dynamic
behaviour of the system is formalised using detailed translation rules for all elements of the

statecharts (initial state, regular states, entry and exit actions and activities, events, and

guards).
UML models Object-2
- class diagrams }ctasrszs; (et:":'el sseld
-use case diagrams — D UML to Object-Z2 | N P ogse“me tra%es)
sequence diagrams [. formalisation | . formal functional
- statechart diagrams model (Actor and
(including time events)
Event free types and
Scenarios function)

Fig. 4.7 The UML/Object-Z Combination

Kim and Carrington’s approach is one of the most mature solutions for UML and Z
integration and has been developed in one of the strongest research groups on formal
methods, the Software Verification Research Center at Queensland University, Brisbane,
Australia (their web-site is mentioned in the [Cogito97] reference). It builds on extensive
research developed over more than a decade by prominent scientists in the field, and benefits
from a suite of tools and techniques that have been validated through numerous applications.
Nevertheless, our approach also has its merits. It uses Z++ instead of Object-Z and we
believe that Lano’s OOZ proposal fares better than Object-Z in some respects, specifically in
the details included in the class specification (see class definition in Subsection 3.2.3) and in

the integration of the RTL semantics and syntax for explicitly dealing with temporal

106

properties. In our view, RTL, described in Chapter 5 in conjunction with our formalisation
process, has an intuitive and natural syntax and its semantics are easier to grasp by developers
not trained in formal methods. Z++ and RTL offer therefore a friendlier user-interface and
sustain our lightweight alternative for pragmatic TCS specification. Also, the approach
presented by Kim and Carrington does not propose a tight integration of notations (there is
not a two-way mapping between semi-formal and formal models) and there is no specific
mention of a development tool in their paper, so we cannot ascertain its characteristics under

the monolithic/non-monolithic environment criterion.

4.6 Modalities of Specifying Temporal Constraints in Z

Capruring time-related properties of systems is not a simple task. Actually, it is one of most
demanding challenges faced by the developers of timed-constrained systems, as emphasised
by the profusion of approaches proposed in this direction, including numerous variants of
Temporal Logic (comprehensively reviewed in [Bellini00]) and all sorts of “timed”
formalisms, including Timed Petri Nets [Ramchadani74], Timed CSP [Schneider92],
Timed CCS [Moller92], Timed Statecharts [Kersten92], and Timed LOTOS [Léonard98],
(Interestingly, although various alternatives of using Z for specifying RTS have been
proposed, the term “timed Z” appears nevertheless in surprisingly few references —and in a
rather general way,— so we cannot speak of an established Timed Z notation.) Since a general
discussion of the various solutions proposed over the years for capturing temporal properties
of systems exceeds the scope of this dissertation we summarise in this Section only some of
the most important ways of tackling the “time issue” within Z-based specification
approaches. In general, enhancement of Z with constructs and symbols borrowed from
other formalisms have been proposed (e.g., [Mahony92, Fidge97, Mahony98, Yuan98]),
much fewer being the approaches that attempt to capture timing constraints using
exclusively the constructs of regular Z (e.g., [Evans97]). In all cases, special mechanisms for

modelling temporal properties have proved to be necessary.

107

4.6.1 Time Refinement in Z

In one of the earlier approaches that employ Z for modelling time-constrained systems,
Mahony and Hayes propose an extension of the notation and the use of refinement calculus
to allow a unified treatment of both analog and discrete properties of such systems
[Mahony92]. Three “notational devices” are introduced: topologically continuous functions
for expressing both analog and discrete quantities, physical units attached to variables, and
specification statements describing the assumptions made by the system about its
environment and the effect the system is expected to achieve provided the assumptions are
satisfied. In order to declare a variable such as the temperature at a given location (say, in an
aquarium), a TEMPERATURE type with associated physical units can be first defined by

resorting to the set R of real numbers:

TEMPERATURE == R [Celsius] 4.1)

Then, by introducing the type TIME through syntactic equivalence with the set of real

numbers (and with an appropriate physical unit attached):

TIME == R [Second] (4.2)
the evolution of our variable of interest can be modelled as a continuous total function:
[aquariumTemperature : TIME —&- TEMPERATURE 4.3)
On the other hand, discrete variables, such as the following one, which indicates whether or
not fresh water is pumped into the aquarium, can be modelled as a partial continuous
function from time to Boolean (“partial” because they are possibly times when the variable is

undefined or its value is changing):

waterIn : TIME —P~ B (4.4)

108

Other important concepts used in Mahony and Hayes’ approach include the notion of open
time interval (o ... B), the collection TTIME of all open intervals of time, the time topology
TTIME, which encompasses all periods of time consisting of open, disjoint intervals, the
cov (Period) function, which gives the collection of disjoint, open intervals of time that
comprise the Period set of time, and timed history predicates such as Pred on Period,
Pred in Period, and Pred at t, where Pred is a logical predicate, Period a period of

time consisting of a set of open intervals of time, and t a moment in the passage of time.

This approach allows the description of both analog and discrete properties of systems —two
aspects of TCS that usually are modelled separately— within a unified framework that at the
same time supports the capturing of temporal properties over intervals of time. By
associating physical units to variables it helps both the understanding and the type
compatibility checking of the specifications. While this approach is expressive and practical
for specifying various properties of RTS, including concurrency aspects, it has been pointed
out that by modelling variables as constant functions over all time the focus is shifted away
from important features of Z, such as state schemas and operation schemas, which become

“buried in the specification” [Dong97a, pp.26].
4.6.2 The Quartz Alternative

The Quartz approach [Fidge97] is similar to the previously described work of Mahony and
Hayes in that it deals with time and functional behaviour in a unified way, and places equal
emphasis on capturing temporal constraints and on specifying functional requirements. The
proposed scope of the Quartz approach is however different since it aims at integrating RTS
specifications (in a variant of Z) with program refining techniques leading to the generation
of Ada-like high-level programs augmented with time constraints. In the words of its
authors, “Quartz encompasses real-time software development from specifying the formal
requirements through writing the high-level language code” [Fidge97, pp. 100]. The major
principles of the method are that program development and verification are performed in

lockstep at all levels of abstraction and the same rules are applied throughout the entire

109

refinement process. In outline, Quartz proceeds as follows: first, top-level specifications are
created, defining the behaviours of the system via allowable traces of observable variables
(histories indexed by the absolute time); then, the specifications are refined to a set of
concurrent components that constitute the basis for a skeletal program design; next, each
individual component is refined using sequential refinement rules, leading to the
identification of low-level state changes and descriptions in an executable subset of the
specification notation that correspond to constructs of the target high-level language; finally,
since some time constraints may not be yet fully verified, they are subject to further analysis

at the executable code level.

Conceptually, time is modelled in Quartz using an additional variable that in the refinement
process receives the same treatment as the other variables of the system do. The time domain
can be either discrete (T == N) or continuous (T == R) and the variable now can be introduced
to model the passage of available processor time. The concepts of action systems are brought
in to allow the expressing of concurrency and timing and, from the notational point of view,

Z schemara are combined with guarded-command language constructs.

The goal of the authors of Quartz, that of proposing a formal development method that
iteratively transforms top level RTS specifications into executable time-verified executable
code is undoubtedly ambitious, but what strikes the reader of the [Fidge97] article is the
complexity of the approach, a relatively simple example necessitating a rather long
refinement and long explanatory descriptions. Of course, this is the general case with formal
refinement and analysis, but questions can be raised regarding the applicability of the

method in all but smaller-sized or highly critical applications.

4.6.3 Andy Evans’ Approach

Andy Evans also shows that even though traditionally it has been considered that Z in itself
is insufficient for specifying RTS, it is nevertheless possible to introduce extensions to the

standard Z language that provide the capability of capturing the dynamic aspects of the

110

systems [Evans97]. In his approach, Evans proposes four extensions to Z addressing the issue
of specifying reactive systems: genericity, generic operations being used as instruments for
describing concurrent behaviour; real-time extension, allowing the specification of dynamic
properties of the system, including timed computations; modularity, that permits the
encapsulation of concurrent behaviours; and synchronized communication, which allows
modules to communicate via a CSP-like mechanism. Notably, Evans uses only regular Z

constructs, thus eliminating the need for specialised specification and analysis tools.

The key idea of Evans’ approach is to specify the dynamic behaviour of the system as the set
of allowable sequences of system states. States and operations are specified in the classical Z
style, thus providing the static specification of the systems, while the dynamic specification is
achieved using a model based on the notions of infinite computations, atomic events, and
non-deterministic interleaving of atomic operations. Infinite sequences are specified using a

new data type (in the following, X is a type):

comp X == N, — X (4.5)

a next-state schema is introduced, and a generic operation validcomp is proposed as an

extension to Z for specifying the valid behaviours (computations) of the system:

—— [STATE]

—validcomp_ : comp STATE ¢ (P STATE x (STATE & STATE))
|ve : comp STATE; I : P STATE; R : STATE <> STATE e (4.6)
| o validcomp (I, R) < o(l) € I &

(vn : N,® o(n) R o(n+l) v o(n+l)= &(n))

Timed computations explicitly capturing temporal constraints imposed on the system are
modeled using the notions of discrete time (Time == N) and of infinite sequences of states
with associated time values. A generic relation validcomp,, similar to the one in (4.6), is
proposed in order to specify the allowable behaviours of the system. Evans’ approach makes

an elegant use of generic constructs to provide Z with extensions for specifying real-time

111

systems. However, using infinite sequences of states to describe the system’s dynamic
properties brings a level of mathematical complexity that may hinder the adoption of the

proposed extensions by the larger community of software developers.

4.6.4 RTOZ

Another approach that employs a variant of Z, specifically Object-Z, in a formalism aimed at
specifying RTS is Periyasamy and Alagar’s Real-Time Object Z (RTOZ) [Periyasamy97,
Periyasamy98). RTOZ addresses both time-dependent data and time-constrained processes,
and allows for a separation between temporal constraints and functional specification. The
philosophy of RTOZ is based on the notion of filter specifications (classes that specify

timing constraints) and a model of time that relies on the history of data objects.

A specification in RTOZ is composed of two sets of classes: regular classes, that capture the
structural and the behavioural requirements of the system without regard to temporal
restrictions, and timing classes (filters) that model timing properties of the system. There is a
one-to-one correspondence between regular classes and filter specifications, a filter
specification describing the timing constraints imposed on the behaviour of its associated
class. Each filter specification consists of several filter schemas, and each operation in a given

class is restricted by a filter schema in its class’ associated filter specification.

The approach described by Periyasamy and Alagar is novel in that it utilizes real-time filters
in the context of object-oriented specifications, and makes a clear separation between the
specification of the system’s functional requirements and the description of its timing
constraints. This demarcation between the timing aspects and the “time-abstracted”
behaviour of the system brings a series of advantages, most notably the increased reusability
of the functional specifications of the system, localisation of effects in the case changes in
requirements are required (improved by the isolation of functional requirements from

temporal constraints), and better understanding of both the operational characteristics and

112

the timing properties of systems. Also, RTOZ extends only minimally the syntax of Object-

Z, thus preserving the capabilities of Object-Z without increasing its complexity.

Although RTOZ provides adequate support for the verification of properties such as safety
and liveness, it can nevertheless be difficult to specify the characteristics of TCS only in a
formalised way. A combination of diagrammatic and formal techniques would combine the
advantages of both, essentially ease of use on the one hand and rigorous, verifiable

descriptions on the other.

4.6.5 TCOZ

Another approach aimed at capturing RT requirements is presented in [Mahony98] and
{Mahony00], and involves the combination of Object-Z and Timed CSP in a blended
notation called Timed-Communicating Object-Z (TCOZ). The motivation of this notation
is, as pointed out by its authors, to complement the expressive modelling power of Z
regarding the static, single-threaded specification of systems with the capability of Timed
CSP of capturing the behaviour of concurrent real-time systems. The integration of
notations and techniques is actually multi-levelled; first, Object-Z extends Z with constructs
suitable for object-oriented modelling, then the notion of time is added to Object-Z to
obtain the enhanced notation Timed Object-Z. This enhancement is made possible by
considering a global real-time clock, represented by the state attribute now, and by modelling
environmental interactions as functions of time, included in the system state. On the other
hand, CSP is extended with two primitives, delay and timeout that permit the
specification of temporal aspects of sequencing and synchronisation. Finally, Timed Object-
Z and Timed CSP are blended in the TCOZ notation, whose principal characteristic is to

model operations as terminating CSP processes and objects as non-terminating processes.

The basic constructs of Timed CSP are sequencing, parallel composition of processes, and
choice (internal and external). Sequencing has two forms, the first one describing the

succession event-process behaviour as follows:

113

a @t — P(t) 4.7)

where a is an event, t is the time parameter , and P the process.

The second one describes the sequential composition of processes, as in:

P;Q (4.8)

3 ”»

where the sequential execution of processes P and Q is indicated by the operator “; ”.

Parallel composition of processes is represented using the syntax:
PIIXIIQ (4.9)
where P and Q are processes and X is a set of events enabled jointly by P and Q.
The external choice operator has the form:
a— POb —Q (4.10)
and signifies that the above processes begins by enabling both a and b and then behaves (as p
or Q) according to the event a or b that is actually enabled by the environment. The internal
choice operator has a similar meaning, but the variation in behaviour is determined by the

internal state of the process:

a— P M b—>oo0 (4.11)

114

The above operators are added to Z’s set of operators and bring with them the semantics of
CSP. The time-specific primitives delay and timeout are as well imported in the extended

version of Object-Z.

In essence, the approach proposed by Mahony et al. makes use of the complementary
semantics of the state-based behavioural model and of the event-based behavioural model
and offers an excellent example of multi-integration of formal notations for software
specification. However, the very combination of the two extended formalisms may raise a
barrier that could prevent the wider acceptance of TCOZ in practice; the result is a rather
complex notation, not easily accessible to developers who are not trained in formal methods.

Also, oversized specifications may result from applying TCOZ to larger systems.

4.6.6 Other Approaches

Besides the approaches discussed above, other proposals for applying Z to TCS have been

made over the years. Some of them are succinctly reviewed below.

In one of the earliest approaches, Duke and Smith suggest the integration of Z and TL for
modelling TCS in a solution that allows the verification of properties such as liveness and
safety [Duke89] but as indicated in [Johnson95] the application of temporal operators on

both schemas and predicates can be confusing.

The work of Coombes and McDermid [Coombes93] can also be placed in the traditional
line of research, that of enhancing the semantics of Z with semantics of other formalisms that
are more suitable for specifying and verifying TCS. In essence, the authors consider
constructs specific to a variant of TL, namely Interval Logic, employ the grid concept to
allow the inclusion of multiple clocks (needed in distributed systems), and adapt to time
intervals the CSP concept of trace. Although sound and thorough, Coombes and
McDermid’s approach seems too complex for practical application and can lead to oversized

specifications.

115

The issue of capturing temporal properties using Z is also addressed by C.W. Johnson, this
time in a less researched context, albeit very important, that of supporting user interface
development in the construction of interactive safety-critical systems [Johnson95]. Johnson’s
proposal combines Z schemas with TL formulae, structured graphics, and generic input
events. While Johnson’s proposal successfully addresses a series of issues pertaining to the
formal development of user interfaces (such as modelling of temporal properties that affect
usability and synchronisation between the interface and the underlying application) and is
supported by a prototyping system entitled Prelog there is still work needed regarding the

refinement of specifications, as acknowledged by the author.

Dong and Zucconi suggest a framework for incorporating time in Z-based formal models
[Dong97a] and propose the use of timed refinement and the ProCoS approach [He96] to
capture the input environment and the Quartz approach to express the requirements of the
core system, all within the frame of an extended version of Object-Z. This is one of the most
flexible frameworks proposed to date for extending the modelling power of Z to the RT
domain, since it allows the integration of a variety of time formalisms (not only the ones
mentioned above) in an OO extension of Z. Nevertheless, the observations made previously

regarding TCOZ can apply here as well.

In a similar line of research, involving the expression of time constraints in a Z-centered
formalism, Bolognesi and Derrick introduce an ambitious concepr, constraint- and object-
oriented (C-O-0), in a highly innovative specification method thar in essence combines
object-oriented constructs (mapped to Object-Z) with constraints that define the time-
ordering of operations (modelled as transition graphs) [Bolognesi98]. In our opinion this
solution, although very original and interesting, is too complex and involves an adjustment
of the OO paradigm that may appear too difficult to the larger community of software

developers.

116

Also relatively recenty the proposal of a Complete-Object-Oriented-Z (COOZ) has been
made [Yuan98], relying on an object-oriented version of Z that integrates mechanisms and
notations from Object-Z and OOZE and employing Duration Calculus (DC)
[Chaochen91] for describing temporal properties of objects. Yuan et al.’s solution is one of
the most complete proposals to date and its application is supported by a set of tools, entitled
COOZ-Tools, that consists of an editor and viewer, a syntax and semantics checker, a
refinement tool, a help system, and a project manager. Although DC is considered by the
authors of COOZ more powerful than TL, it is the very complexity of DC and the
particularities of its notation that can constitute an obstacle for the larger application of

COOZ in practice.
4.6.7 The Z++ Alternative

As mentioned in Subsection 2.7.3, Z++ supports the modelling of TCS by incorporating a
TL-based formalism. In essence, the HISTORY clause of the class specification describes the
admissible sequences of execution, in the form of TL or RTL predicates. Because we rely on
Z++ 1o achieve “time capturing,” the Z++ way for dealing with time is described in more
detail in Chapters 5 and 6 of the thesis. We mention here only that our time specification
solution relies on Jahanian and Mok’s RTL, whose constructs are incorporated in the larger
frame of Z++ in the way proposed initially by Lano [Lan095]. This solution follows the
general approach for extending Z to TCS modelling, that of incorporating constructs and
symbols from other formalisms, and has been chosen for reasons outlined in Chapter 5 of the

thesis.

4.7 Chapter Summary

In this chapter work related to our approach has been surveyed. The major directions of
integrating notations in software specification have been investigated and a closer look at

proposals aimed at dealing with systems characterised by complex temporal properties has

117

been taken. The major ways of dealing with time in software specification have been
identified and several particular approaches have been analysed in greater detail. As the
overall result of our survey, we found out that five reported projects come significantly close
to the line of research we have pursued; they are, respectively, Jia’s pragmatic approach based
on AML, Noe and Hartrum’s support for formal methods in Rational Rose, France et al.’s
formalisation of Octopus, Headway Software’s RoZeLink tool, and Kim and Carrington’s
integration of UML and Object-Z. The major characteristics of these approaches have been
discussed and the main differences between them and our own approach have been pointed

out.

1i8

5 FORMAL SPECIFICATION OF TEMPORAL
CONSTRAINTS

“And then the clock collected in the tower/
Its strength and struck.”

[A. E. Housman, Eight O'Clock, Last Poems, 1922]

5.1 Introduction

In this chapter the formal resources employed in our approach for specifying temporal
aspects of TCS are presented. Because various sorts of TCS behaviour can be described using
the archetypal constraints identified some sixteen years ago by Dasarathy, we start by
reviewing this author's classification [Dasarathy85], wrapping the original classes of
constraints in the garments of a simple notation introduced for manipulation purposes.
These classes of constraints will be used later (in Chapter 8) to illustrate our approach for
capturing temporal properties of systems. Then, we emphasise the need for formality in
describing timing properties of the systems and, because our Z++ formalism partially relies
on Jahanian and Mok’s Real-Time Logic (RTL) and its underlying event-action model
Jahanian86], we briefly survey the model and the RTL notation. Finally, we present the
extensions proposed by Lano for employing RTL within the frame of Z++ [Lano95].
Throughout the chapter the concepts and notations are illustrated by short examples of

daily-life extraction.

119

5.2 Dasarathy’s Classification of Temporal Constraints

Since our modelling approach is aimed at TCS, particular attention is paid to specifying
temporal restrictions placed on such systems. Dasarathy’s landmark paper [Dasarathy85] on
constructs for expressing timing constraints of RTS provides the reference for our way of
dealing with time. The original classification introduced by Dasarathy was widely accepted
by the researchers in the field because it covers in a simple yet extensive manner the various
types of temporal constraints that can be imposed on systems. The basic notions on which
the classification was built are those of stimulus (S), response (R), and event (E). The latter,
as indicated by the author, can be either a stimulus received by the system from its

environment or an externally observable response issued by the system.

However, in order to unify the terminology and subsequently make the transition to the
event-action model underlying Jahanian and Mok’s RTL [Jahanian86], we had to make
some alterations to the original concepts of Dasarathy. Specifically, following Jahanian and
Mok's approach and as opposed to Dasarathy's, we consider the events instantaneous and
make use of the additional notion of action to describe an operation that has a non-zero
duration (details about actions and events are given in Subsection 5.4.1). Consequently, the
duration class of timing constraints identified by Dasarathy will no longer apply to events,
but to actions, because in our approach events have no duration. This has however only a
minor impact on the original classification of Dasarathy, since it affects only one of the nine
classes of contraints (“classcs of constraints” is our terminology). And, as in the original

Dasarathy paper, both stimuli and responses continue to be considered events.

In the following, Dasarathy's classification of timing constraints, presented in our own
notation, is briefly reviewed. The examples given by Dasarathy for the classes he proposed
were from the field of telephony; in this section, we employ a microwave oven device to
provide short illustrations for each class of temporal constraints. The classes of constraints are

given in an informal manner, some implicit assumptions being made about the occurrences

120

of stimuli and responses. However, as discussed in the next section, a more rigorous

specification of the constraints is necessary for developing reliable models of TCS.

Before reviewing the possible types of temporal constraines it is useful to note that, as
Dasarathy points out, the timing restrictions placed on a system can be either performance
constraints, which impose limits on the system’s response time, or behavioural constraints,
which specify restrictions on the rates of stimuli applied to the system. Both types of
constraints can be described using three broad categories of timing constraints: maximum,
minimum, and durational. A constraint of type maximum specifies an upper limit placed on
the interval of time between two occurrences of events, a constraint of type minimum
specifies a lower limit for the interval between two such occurrences, and a durational
constraint indicates the amount of time required for the duration of an action. These three
categories of temporal restrictions are not exclusive, in a more complex case being possible to

have constraints of all three kinds placed on a particular behaviour of the system.

When possible combinations involving stimuli and responses come into consideration, the
maximum and minimum categories expand in four subcategories (or classes) each. Because
the duration category needs no further partitioning, a total of nine classes of temporal
constraints are hence possible (the notation DCx means "Dasarathy contraint class x”, where

x is a number we provide for easier referencing):

[DC1] MaxSS(S1, Sz, 1), specifies the maximum time t allowed between the occurrence of

stimulus St and the occurrence of the subsequent stimulus S.

Example: After the power level has been set, the microwave oven's start button
should be pressed no later than 60 seconds, otherwise the attempt to use the heating
feature of the microwave oven will be considered abandoned. This timing condition
can be expressed as MaxSS(setPowerLevelCmd, startHeatingCmd, 60.0).

(Note that for documentation purposes the Cmd postfix is used in this chapter to
indicate a stimulus event, as opposed to a response event, which has no specific
postfix);

[DC2]

[DC3]

121

MinSS(S1, Sz, 1), specifies the minimum time t allowed between the occurrence of

stimulus S1 and the occurrence of the subsequent stimulus S.

Example: After the current date and time has been set, the microwave oven's heating
feature should not be started for at least 1 second. This can be expressed as
MinSS(setDateTimeCmd, startHeatingCmd, 1.0);

MaxRS(R, S, t), specifies the maximum time t allowed between the occurrence of

response R and the occurrence of the subsequent stimulus S.

Example: After the countdown chronometer has been paused, the user should press
the Resume button no later than 1800 seconds (otherwise the Countdown mode of
operation will be considered abandoned). This timing constraint can be specified as
MaxRS(chronometerPaused, resumeCountdownCmd, 1800.0);

[DC4] MinRS(R, S, 1), specifies the minimum time t allowed between the occurrence of

[DC5]

[DCo]

[DC7]

response R and the occurrence of the subsequent stimulus S.

Example: After the heating process has been completed, the user should wair at least
one second before opening the door. This timing constraint can be expressed as
MinRS(stopHeating, openDoorCmd, 1.0).

MaxSR(S, R,), specifies the maximum time t allowed between the occurrence of

stimulus S and the occurrence of the subsequent response R.

Example: After the user has pressed the Pause button during a heating operation, the
actual stopping of the heating process should occur no later than 0.5 seconds. This
condition can be expressed as MaxSR(pauseHeatingCmd, stopHeating, 0.5);

MinSR(S, R, t), specifies the minimum time t allowed berween the occurrence of

stimulus S and the occurrence of the subsequent response R.

Example: After the user has pressed the Start button for a heating operation, the
actual heating process could start immediately. This can be expressed as
MinSR(startHeatingCmd, startHeating, 0.0);

MaxRR(R1, Ry, 1), specifies the maximum time t allowed between the occurrence of

response R1 and the occurrence of the subsequent response Ra.

122

Example: When the heating process has been completed, the completion should be
indicated by three successive beeps, the time interval separating every two consecutive
beeps not exceeding 1.5 seconds. The timing condition imposed on the beeps can be
specified broadly as MaxRR(endBeep, startBeep, 1.5).

[DC8] MinRR(R1, R, 1), specifies the minimum time t allowed between the occurrence of

response R1 and the occurrence of the subsequent response Ra.

Example: When the heating process has been completed, the completion should be
indicated by three successive beeps, the time interval that separates every two
consecutive beeps being not less than 1.0 second. This timing condition imposed on
the beeps can be specified as MinRR(endBeep, startBeep, 1.0);

[DC9] Duration(A, t, t2), specifies the minimum time i and the maximum time t2 required for

action A to last (4 may be 0, and t: may be omitted, in which case it will be

interpreted as +0).

Example: The audio signals emitted by the microwave oven to indicate the
completion of some operations (such as “done heating,” or “chronometer reached
zero”) should be in the form of beeps whose duration, per beep, should be no less
than 1.0 seconds and no more than 2.0 seconds). The last part of this requirement
can be described by the expression Duration(Beep, 1.0, 2.0).

Of course, in the S-S cases S, and S, may be the same type of stimulus, and in the R-R cases
the responses R, and R, may be of the same nature. Another observation is that in classes
[DCI1] to [DC4] the timing constraints are imposed on the system’s users, and therefore it is
necessary to specify the actions the system must take when these constraints are not satisfied.
In such cases, Dasarathy proposes the use of an artificial stimulus, a timer to signal situations
in which the user fails to apply the second stimulus within the requirements of classes [DC1]
to [DC4]. If a maximum-time constraint is not satisfied the timer will signal the absence of
the stimulus within the prescribed deadline and the system will be able to transition to a new
state and/or issue a specific response. Similarly, if a minimum-time constraint is disobeyed
(that is, the user applies the stimulus too soon) then the armed timer will not go off and this

will be considered an undesirable situation, which requires specific treatment. Classes [DCS5]

123

to [DC8] are conditions imposed on the system's performance, rather than on the user's

behaviour, and therefore the use of a timer is not necessary.

5.3 On the Rigorous Specification of Temporal Constraints

Although essentially simple, Dasarathy's categories of temporal constraints are archetypal for
they can be succesfully used to specify of large variety of conditions involving time (more
precisely, such conditions can be “reduced”, or “translated,” to combinations of Dasarathy
constraints). However, the way the constraints have been described previously leaves room
for interpretations. For instance, the constraint [DCG], defined as MinSR(S, R, t) does not
specify whether the occurrence of R is actually required (that is, should R always follow S, or
it is possible to have instances of S without subsequent response R?). In addition, as observed
from the short examples provided in the previous section (e.g., for [DC4] and [DC8Y)), it is
necessary to associate some temporal markings with the beginning and the end of actions and
to take in consideration the actual number of occurrences of a stimulus or response.
Moreover, parallel execution of actions is difficult to describe precisely without resorting to

additional constructs.

For these reasons, while taking the Dasarathy constraints as a reference basis for formulating
the requirements of TCS, we resort in our approach to a formal language, RTL, that
unambiguously describes the temporal restrictions placed on such systems. To give only an
example, in RTL the constraint [DC6] can be expressed in a more precise way, for instance
as

vieN, @(s,i) +d < @(Tr,i)

meaning that each event s (stimulus) is followed by the start of response r after at least a
units of time and no response r can occur without being triggered by s (the notation of the
Dasarathy constraint has been adapted for RTL). Other detailed predicates related to [DC6]

are possible, for instance the response r can be allowed to occur without being triggered by s.

124

In fact, one of the reasons for using Z++ as counterpart of UML in our integrated modelling
approach was its inclusion of RTL, a precise and easy to comprehend language for expressing

time-related properties of the systems.

5.4 Real-Time Logic (RTL)

The dynamic aspects of systems are formally expressed in Z++ using statements written in an
extended version of RTL. We introduce below the specification language Real-Time Logic,
originally proposed by Jahanian and Mok [Jahanian86, Jahanian94] and in the next section
indicate the extensions brought by Lano to the language. Because RTL is based on the event-
action model, a brief presentation of the major components of the model is given first,

followed by a summary overview of the notation.
5.4.1 The Event-Action Model

RTL, as described by its inventors, provides a uniform way for specifying both relative and
absolute timing of events. The computational model on which RTL relies is centred around
two key elements: the first is action, and the other is event. Additionally, the concepts of
state predicates and timing constraints complete this model that allows the capturing of data
dependencies and of temporal ordering of computations performed by the system in

response to external and internal events.

An action is an operation that requires a bounded amount of system resources and is
delimited by two events, one denoting its initiation, the other its completion (notational
details are given in the next Subsection). An event is a temporal marker that has attached a
time value, its time of occurrence, and imposes no requirements on the system's resources.
Actions may be either primitive or composite. The former have atomic implementations,
while the latter consist of two or more subactions, whose order of precedence can be

specified using the sequential or parallel operators. Events can be classified in four categories:

125

e External events, stimuli received by the system from its surrounding environment, for
instance the user pushes the microwave oven's Start button;

® Start events, marking the initiation of some action, for instance the beginning of the
Heating operation;

® Stop events, marking the termination of some action, for instance, the end of the Heating
operation;

e Transition events, signaling a change in the state of the system, for instance
speedLimitReached, indicating the fact that a locomotive has reached the maximum allowed

speed under some given conditions (e.g., 60 km/h on a bridge).

5.4.2 RTL Concepts and Notations

After the introduction of the two most important concepts of RTL, event and action, an
overview of the notation is presented in the following. For practical reasons, we introduce
some minor alterations to the notation. Specifically, we use combination of words for longer
action names and capitalise each word in the combination, as opposed to Jahanian and
Mok’s original uppercase only convention. Also, when denoting events we use lowercase
single-word identifiers or multiple-word identifiers with all the words of the combination

except the first capitalised.
e Actons

- are denoted by capital letters such as a, B, etc., capitalised words or combination of
capitalised words such as Heating, MoveToNextFloor, or abbreviations such as TCD (“Timer
Counting Down”);

- A.B denotes the subaction B of composite action A;

- A.B; signifies the i-th appearance of subaction B within composite action a;

- B||C means that subactions B and ¢ execute in parallel;

- B;C signifies that subactions B and ¢ execute in sequence, B followed by c;

- !N indicates a synchronisation point N, and A!N together with !NB specifies that

action A should be completed before action B starts its execution;

126

e Events

external events are denoted using the convention for event identifiers described above

and are prefixed by the symbol Q. For instance, QpushStartButton is the event

corresponding to the user pressing the button Start;

- start events are indicated by the symbol T, for instance Ta represents the event
associated to the start of action a;

- stop events are indicated by the symbol !, for instance A represents the event
associated to the completion of action a;

- transition events indicate a modification in one of the system's state variables. The

notation (S = true) denotes the event corresponding to the transition that makes the

state variable s true and (s := false) denotes the transition event that makes the state

variable s false.
® The occurrence function, denoted @, is introduced to capture the notion of real time:
@(E.i) = time of the i-th occurrence of the event E, where i € N,

Note that within Z++ the alternative symbol # is used, as described in Subsection 5.5.3.

Therefore, #(£.1) is employed in the following chapters of the thesis.

® State predicates, assertions about the state of the system. The value of a state predicate
can change over time, as a result of external events and/or system responses. Depending
on the boundary conditions, nine forms of state predicates are possible, from s<t,,¢t,>,
through s(t,,t,), to sit,,t,) . Informally "<t” means before time t, " (t" means "before

” " " - - " - " - -
orat t”, "[c" signifies "at time t", etc. For instance, s<t;,t;] specifies that the state
predicate s is true before time t, and remains so until exactly at time t,. An example of

state predicate is DoorlsClosed <THeating, {Heating>.

e RTL predicates are formed using arithmetical relations (=, =, <, <, >, 2) and
algebraic expressions containing integer constants, variables, addition, subtraction,

multiplication by constants, and the occurrence function.

127

® RTL formulae can be constructed using universal and existential quantifiers, equality
and inequality predicates, and first order logical connectives. An example of an RTL

formula is:

Vi, @ QMailReceived, i) < T (DispatchMail, i) A | (DispatchMail, i) < @(QMailReceived, i) + 60
The above can be interpreted as “action DispatchMail must be executed after the event

MailReceived each time the event occurs and must be completed within 60 time units of the

occurrence of the MailReceived event.”

e Timing constraints complete RTL's underlying model by providing assertional
statements about the absolute timing of events that characterise the system's behaviour.

Four types of constraints are considered of particular importance in RTL:

- sequential constraints, constraints on the sequential execution of actions. For
instance to indicate that subaction B always precedes subaction C in the composite
action A one can write Vi @JA.B, i) < @(Ta.c, i);

- parallel constraints, constraints on the parallel execution of actions. For instance to
indicate that subaction B precedes the parallel execution of ¢ and p within composite

action A one can write Vi @4A.B, i) < @(Ta.c, i) ~ @{A.B, i) < @(TA.D, i);

- sporadic timing constraints, given as a requirement for action A to complete its
execution within a deadline d after the occurrence of the event E, event for which a
separation p between occurrences is required;

- periodical timing constraints, in the form “while S is true execute A with period p and
deadline d” where s is a state variable and A an action (the longer RTL formulae for

the last two categories of constraints can be found in [Jahanian86])).

5.5 Using RTL in Z++

The key idea of Lano's approach for expressing temporal properties of systems is to include

in the HISTORY clause of Z++ classes an extended RTL predicate that defines the behaviour

128

of the objects of the class. This behaviour is seen as a continuous and infinite series of states

segmented by occurrences of events, and the RTL predicate holds at all times.

In Z++, the domain TIME of time-valued terms is totally ordered, meaning that in additions to
satisfying the axioms for partial order, the following properties also hold: (a) there is a
designated element o, such that 0 < t, for each element t ¢ TIME; and (b) for every pair of
elements (t,, t;) € TIME x TIME, (t; < t;) v (t, = t;) v (t; > t;). The time domain
satisfies the axioms of a set of non-negative elements of a totally ordered topological ring, with

operation + and *, and units 0 and, respectively, 1. It can be considered that N ¢ TiME.

The following are summarised from [Lano95], only the concepts and notations needed later
in the thesis being presented. Compared with Lano’s description, we use the term operation

instead of method, this choice being maintained throughout the entire thesis.
5.5.1 Lano’s Key Extensions to RTL

The key concepts of Lano’s extension of RTL are:

® invocation instance, which comprises the initiation, the execution, and the termination
of operation op;

® request event, in the form — op, denoting the arrival at the current object of a request for
the execution of operation op;

e the temporal operators C* "at all future times”, (J "at some future time”, and ® "holds at";

® counters for operation events #req(op), #act (op), and #fin(op), as defined in 5.5.3.
5.5.2 Events

Each operation op of class ¢ has associated the following events:

® top(x), the initialisation of an invocation instance of op(x), x € x, where x is the set

of the operation's possible inputs;

129

® Jlop(x), the termination of the operation's invocation instance;

® —op(x), the arrival at the object of a request for the invocation of the operation;

Other events are events of the form ¢ := true or¢ := false, where ¢ is a predicate without
modal operators or occurrences of now, denoting that the events of this predicate are true
(or, respectively, false), and events for a supplier object s of class s, in the form
T(ops(x),s), {(ops(x),s), and — (ops(x),s) . In addition, « (ops (x) ,s)signifies the sending

from the current object of a request for s to execute the operation ops with inpur x.

5.5.3 Terms

The following terms can appear in a class C's associated RTL formulae:

® variables v;, i € N;

* arrributes of the class, its ancestors, and supertypes;

® n-ary functions in the form £ (e1, es, -, en);

® &e, denoting the time at which e occurs, where e is an event occurrence (E,1i),
i€ Ny;

®* o(op(x),i), T(op(x),i), and l(op(x),i), where op is an operation of class ¢, x
its inpur, and i€ Ny;

® event occurrences in the form «((ops(x),s),i), where s is an object of ’s supplier
class s and ops an operation of s;

® self;

® now;

® &, which indicates the value of e at time ¢, where e is a term and t a time-valued
term;

® Oe, which denotes the value of term e at the next operation initiation time;

* #act (op), the number of initiations of op’s execution, up to the present time;

130

#req(op), the number of requests for op’ s execution, received by the object up to the
present time;

#fin (op), the number of terminations of op’ s execution, up to the present time.

5.5.4 Formulae

Considering a class ¢, the following are RTL formulae related o it:

P(e1, .., en) for an n-ary predicate symbol p and terms ey, ea, ... eg;

oAy, vy, o= y,and - ¢, for formulae ¢ and y;

¢Ot, which indicates that ¢ holds at time ¢, where o is a formula and ¢ a time-valued
term;

vD e ¢ and 3D e ¢, for declarations b and formulae ¢;

"¢, which denotes that ¢ holds at all future times (not related to c); “¢ which means
that ¢ holds at each initiation time of an operation from the class; and O¢, which is
the value of ¢ at the next operation initiation time;

o', which means that eventually ¢ will hold in the future, and ¢, which indicates
that ¢ will eventually hold at the initiation time of an operation from the class;
enabled(op) and enabled(cp(x)), where op is a method of class ¢ and x an
expression in the input type of op, indicating the condition that must hold at the

operation’s initiation.

5.5.5 Abbreviations

Lano also introduces a number of abbreviations, including:

%active (op), for the number of execution instances of cp that are currenty
executing; it abbreviates #act (op) - #fin(op);
delay(op,i) = T(op,i) - —(op,i), the delay between the i-th request for the

execution of operation op and the actual i-th initialisation of the operation;

131

® duration(op,i) = dop(i} - Top(i), the duration of operation op’s i-th execution;
® mutex({opi1, ..., opn}), meaning that at any given moment a method opk of the set
{op1, -.., opa} has a number of active instances that is equal to the total number of

active instances of all the operations in the set;
® self_mutex({opi, ..., opa}), meaning that each operation opx in the set {opy,..., opn}
has at most one active instance at any given moment;

® op, which is an abbreviation for #active (op) > 0;
5.5.6 Axioms

A comprehensive set of axioms is included in Lano's book. For illustration purposes two are

given below, but for full details we refer the reader to Appendix A of [Lano95]:

(a) Arany given time, there cannot be more terminations of op (x) than activations:

vieNy o &(Top(x), i) < &(dop(x), i)

(b) Event occurrences are indexed ordered on their time of occurrence:

Vi,j e Nyje i £ j = &(E,i) < &(E,j)

5.6 Chapter Summary

In this chapter the formal basis for expressing temporal properties of the systems has been
presented. Since requirements on the behaviour of TCS can be described using the classes of
constraints proposed by Dasarathy, a review and respecification of these classes using a simple
notation and small examples related to a microwave oven application have been presented.
Also, since, in our modelling technique, the capturing of timing constraints is performed
using extended RTL formulae, an overview of the notational elements of RTL as well as a
brief description of its underlying action-event model has been provided. Lano’s extensions of
RTL have also been presented. As a result, the preparation for the formalisation of UML
models, including timing restrictions on the behaviour of systems, has been completed. The

following chapter provides additional details on the specific use of RTL in our approach.

132

6 TRANSLATIONS BETWEEN UML AND Z--+
FORMALISATION AND DEFORMALISATION

"Poetry is what gets lost in translation.”

[attributed to Robert Frost (1874-1963)]

6.1 Introduction

This chapter presents the translation processes between UML models and their
corresponding Z++ specifications. Empbhasis is placed on the UML to Z++ translation, whose
purpose is to increase the rigor of the system’s description, but in order to make formal
specifications easier to understand during the integrated modelling of the system the reverse
translation, from Z++ to UML, is also considered. The first type of translation, alternatively
referred to as formalisation, applies both to UML class diagrams, which capture structural
aspects of the system, and to UML state diagrams, which describe the system’s dynamics.
The second translation, alternatively denoted deformalisation, produces UML classes from
the information contained in Z++ specifications and thus can be considered “structure-
oriented”. The focus is on those parts of formalisation and deformalisation that can be
performed automatically, a detailed set of translation principles and a translation algorithm
based on these principles being presented for each process. The formalisation and
deformalisation processes described in this chapter are included in the larger modelling frame
of TCS that constitutes the subject of Chapter 7 and their application is illustrated in the

Elevator Controller case study presented in Chapter 8.

133

6.2 Preliminary Remarks

The modelling approach described in this thesis relies on the combined use of UML and
Z++. In Chapter 7 derails are given on the complete UML/Z++ integrated modelling process
proposed in the thesis, a process that consists of a number of activities such as definition of
use cases, construction of UML class diagrams, and elaboration of Z++ specifications. In the
present chapter the focus is on two key parts of this process, the formalisation and
deformalisation activities. Before describing these two activities, which essentially consist of
translations between UML models and Z++ specifications, some general observations are

necessary.

First, a couple of remarks on terminology. Specifically, in the larger frame of the modelling
approach described in Chapter 7 formalisation and deformalisation are denoted activities (or
subprocesses), yet for simplicity in the present chapter we refer to them as processes (another
possible generic term for formalisation and deformalisation, procedure, was avoided because
it appears extensively in the pseudocode description of the algorithms presented later in this
chapter). Also, the term translation (from UML to Z++, or from Z++ to UML), used as a
substitute for formalisation and, respectively, deformalisation, should be seen as “selective
translation” since in both cases only a partial mapping from one modelling space to the other
is performed (in the case of deformalisation the term “truncated translation” would be even
more accurate since significant informational content is possibly discarded when generating

UML constructs from Z++ specifications).

In what regards formalisation, its main role in the approach presented in this thesis is to help
both developers and their clients gain a better understanding of the system under
construction by increasing the rigour of the system’s description. With an accurate insight
into the system’s desired structure and behaviour those involved in the early stages of the
system’s development will be able to avoid a significant number of potentially very costly
specification errors. Also, since the formalisation process makes precise and amenable to

formal reasoning and formal refinement the initially written in UML description of the

134

system, it opens the door for subsequent formal processing, but aspects regarding formal
analysis of specifications and formal refinement of specifications to code are not dealt with in

the present thesis.

Guidelines for formalising object-oriented semi-formal models have been proposed by Lano
and Haughton in [Lano94c] and by Lano in [Lano95]. They represent the starting point for
the semi-formal to formal translation process presented in this chapter but it should be
pointed out that Lano and Haughton’s work was concerned with the formalisation in Z++ of
OMT models, so we have adapted and extended their approach to UML models. Also, in the
present approach we have attempted to provide a systematic description of the formalisation,
through detailed sets of principles and detailed algorithms, and have additionally tackled the
reverse translation from formal specifications to graphical representations, translation that

was not considered by Lano and Haughton.

As in the case of Lano and Haughton’s work, the approach proposed in this thesis addresses
the formalisation of both structural and behavioural aspects of the system. For the latter, the
same RTL formalism proposed by Jahanian and Mok is employed but differences exist
between the two approaches regarding the derails of this employment, as shown in Section
6.4. In practical terms, the formalisation of UML constructs in Z++ consists of two
components, formalisation of class diagrams (described in Section 6.3, and concerned
primarily with structural aspects of the system), and formalisation of state diagrams
(presented in Section 6.4 and dealing with behavioural characteristics of the system). The
formalisation of UML models applies only to the core elements of the language (class
diagrams, classes, relationships, and state diagrams) bur, as shown in studies published by
authors who have worked on similar formalisation approaches, these constructs provide good
insights into the system and allow formal reasoning abour its properties [Lano95, France99,

Kim99a].

Additional reference for the formalisation processes described in this chapter has been

provided by the work of Kim and Carrington on formalising UML models in Object-Z

135

[Kim99a, Kim00a, KimOOb]. In particular, their formal Z description of UML class diagram
constructs, preliminary to the translation procedure from UML to Object-Z, has served us to
better define and organise the rules for well-formed UML class diagrams presented in

Subsection 6.3.1.

In what regards the reverse translation, from Z++ specifications to UML constructs, it should
be noted that it has a secondary role in the modelling process, its purpose being to make
easier the interpretation of the integrated model by developers and users not trained in
formal methods. This feature may or may not be used within a particular modelling context,
but its inclusion in the proposed approach allows a form of “reverse engineering,” from
formal specifications to semi-formal graphical descriptions. In practice, it is thus possible to
have some Z++ specifications developed first and then their class structure propagated into
the UML space. This allows an improved communication between developers skilled in
formal methods and developers and users that favour the graphical representation of the
system. The deformalisation option is not a common feature in integrated approaches and its
practical utility is smaller than that of formalisation. In fact, the only other approach that
deals with the reverse propagation of models is Headway System’s RoZeLink [RoZeLink99],
from which we have borrowed the idea. Nevertheless, the reverse translation suggested in
Section 6.5 is significantly distinct from that used in RoZeLink, major differences stemming
both from the quite dissimilar OO variants of Z used (ZEST in the case of RoZeLink, and
Z++ in our case) and from the particular way the Formaliser structured editor used in
conjunction with RoZeLink continually enforces the correct syntax of ZEST specifications

[Formaliser0O1].

Since both formalisation and deformalisation processes can be partially automated we focus
in this chapter on those translation operations that can be implemented by a computer
program. For each process a set of translation principles is presented first and then, based on
these principles, an algorithm that allows the automatic execution of parts of the translation

is proposed. A number of issues pertaining to the practical utilisation of the formalisation

136

and deformalisation algorithms, in particular regarding their combined application, are

discussed in Section 6.6.

6.3. Formalisation of UML Class Diagrams in Z+

The first part of formalisation addresses the translation of UML structural constructs to Z++.
This formalisation applies to UML class diagrams and to the elements they contain (classes
and relationships), the result being a set of corresponding Z++ classes. For the target
language of the translation, Z++, it is useful to consider again the general form of a Z++ class,
introduced in Chapter 2 and presented in more detail in Appendix A, and to notice that a
supplementary clause, PUBLICS, has been included in the definition of Z++ classes. This
clause allows better specification of member visibility, in the same way the I' list of Object-Z
classes declares the attributes and operations that are externally accessible through the dot
notation [Duke94]. (The introduction of this clause is in agreement with the declared
intention of Z++’s authors, who designed the language’s syntax “to enable simpler extension
of the notation by the addition of new clauses to a class definition” [Lano94d, pp- 138)).
During the automatic translation the clauses of Z++ classes are partially filled in according to
the information contained in UML class diagrams and then the formal specifications can be
enhanced by developers with details of data structures, definition of operations, and more
elaborate constraints. In this section, the input considered for the formalisation process is a
single class diagram, a discussion regarding the application of the process to a set of class

diagrams, as well as to a class or a group of selected classes being presented in Section 6.6.
6.3.1 Rules for Developing Well-Formed Class Diagrams
In order to reliably perform the translation of UML structural constructs into Z++

specifications a number of constraints on the syntactic structures of UML class diagrams

must be enforced. These constraints ensure that the UML constructs are syntactically well-

137

formed and thus can be subjected to automatic translation to Z++. Many of them represent
restrictions on the development of UML models that are due to the specifics of the target
language of the translation, Z++ (they can be described as “compatibility constraints”
bertween UML and Z++), for instance interfaces and abstract classes are not treated since
there are no equivalent constructs for them in Z++ and, if parameters of operations are
provided in UML, both the names and the types of parameters must be specified in order to
allow the automatic formalisation of operation signatures. Other restrictions represent
simplifications of UML in cases in which it has been considered that the burden on the
formalisation process would not be compensated in practice by the inclusion of less

frequently used features (e.g., only binary relationships are considered).

These constraints, given below in the form of rules for developing well-formed class
diagrams, raise indeed the level of rigour required in the UML space and reduce to a certain
degree the modelling options of the UML developer. However, this reduction in modelling
flexibility is well compensated by the benefits of the more precise descriptions made possible
by formalisation. Also, while rather large and dertailed, the set of constraints described below
is however not exhaustive, its purpose being to avoid the more common modelling errors
that would prevent reliable automatic formalisation of class diagrams. In addition, minor
constraints such as restrictions on the number of characters used in the names of UML

constructs have been omitted for simplicity.

The rules for well-formedness presented in this section have been inspired primarily from
[Kim99a], with additional observations drawn from [Lano95]. Many rules have been added
(e.g., rules regarding attributes and operations, rules for generic classes) while some have
been discarded (association classes are not considered). All rules are commented and
organised in a manner intended to facilitate the subsequent description of the translation
principles presented in Subsection 6.3.2 and of the formalisation algorithm AFCD
(Algorithm for Formalising Class Diagrams) described in Section 6.3.3.

138

6.3.1.1Rules for Class Diagrams

The following must be satisfied by each class diagram that is subjected to formalisation:

® The class diagram consists only of classes and binary relationships

between classes; 6.1)
® There is a finite number of classes and a finite number of relationships

in the class diagram; (6.2)
® Each relationship that belongs to the given class diagram involves two

classes that also belong to the given class diagram; (6.3)

The first rule indicates that for formalisation purposes only classes and binary relationships
between classes are considered, other structural elements of UML that in general can be
included in class diagrams, such as interfaces and multiple relationships, being ignored (these
are restrictions generally imposed in other similar formalisation approaches, e.g., [Bruel96],
[France99], [Kim99a]). However, in practice, some of the UML constructs that are not
subjected to formalisation can still be present in the UML model, but in this case means to
extract a representation of the class diagram suitable to formalisation should be devised. In
addition, as indicated by rule (6.4) below, the classes can be of three kinds: regular,
parameterised, and binding (classes that instantiate parameterised classes [Booch98]). The
AFCD algorithm described in Subsection 6.3.3 assumes that rule (6.1) is satisfied, the class
diagram thart represents the input to AFCD being given as two sets, one of classes, and the

other of binary relationships.

Rule (6.2) imposes limitations on the cardinality of the set of classes and, respectively, of the
set of relationships that make up a diagram. Included here for the sake of completeness, it

can serve for a formal description (e.g., in Z or Z++) of the formalisation algorithm.

Rule (6.3) makes sure that the input provided to AFCD is valid in the sense that no

extraneous classes are involved in a relationship that belongs to the input class diagram. In

139

practice, this rule has an impact on the way two or more class diagrams can be related for

translation purposes, as discussed in more detail in Section 6.6.

Some other rules presented later in Subsection 6.3.1 can also be seen as applied to class
diagrams, for instance rule (6.37) that prevents more than one generalisation relationship
between any two classes, but for presentation reasons they have been described as “rules for
relationships,” after the description of the rules for classes and the introduction of the kinds

of relationships considered for formalisation.
6.3.1.2 Rules for Classes

The following constraints apply to UML classes contained in the class diagram that provides

the input of the formalisation process:

e Each class is either a regular class, a parameterised class, or a binding class; (6.4)
e Each class has a name, a finite number of attributes and a finite
number of operations; (6.5)
¢ Inaddition to name, arttributes, and operations, each parameterised class
and each binding class has a finite number of class parameters (in the
following, the parameters of parameterised classes are denoted formal class
parameters while the parameters of binding classes are denoted actual class
parameters). Regular classes do not have class parameters; (6.6)

® The name of each regular class is unique within the class diagram; 6.7)

® The name of each parameterised class is the same as the name of its

binding classes but is distinct from the names of all other classes that

belong to the class diagram; (6.8)
® The name of each binding class is the same as the name of the parameterised

class it binds and the name of other binding classes that instantiate this

parameterised class, but is distinct from the names of all other classes that

belong to the class diagram;

Each parametrised class and each binding class has ar least one class
parameter;

Each formal class parameter and each actual class parameter is
given only as a name;

Each instantiating class has the same number of parameters as the
parameterised class it binds;

Each attribute has a name and, optionally, a type, a visibility,

an initial value, and a property;

The name of each attribute of a class is distinct from the names of
all attributes and operations that belong to the same class;

The visibility of an attribute is one of the following: public, protected,
or private;

The property of an attribute is either changeable or frozen;

Each operation has a name and, optionally, a visibility, a finite list of
parameters, a return type, and a property;

The name of each operation of a class is distinct from the names of
all operations and attributes that belong to the same class;

The visibility of an operation is one of the following: public, protected,
or private;

The property of an operation is either none or query;

Each parameter of an operation has a name, a type, and, optionally,
a direction;

The parameters of an operation have unique names within the
operation’s list of parameters;

The direction of each operation parameter is one of the following:

in, out, or inout;

(6.16)

The type of each attribute, class parameter, operation parameter, and the

return type of each operation is either a basic type, a class type, or

140

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.17)

(6.18)

(6.19)
(6.20)

(6.21)

(6.22)

(6.23)

141

an array type; (6.24)
e Each formal class parameter denotes a basic type or a class type that is not

the type defined by a parameterised or binding class; (6.25)
e The name of the each formal parameter is different from all the names

of types used in the class diagram outside the parameterised class to which

the formal parameter belongs ; (6.26)
¢ The name of an actual class parameter is the name of a basic type or

of a class type that is not the type defined by a parameterised or
binding class. (6.27)

In the above, rule (6.4) specifies the types of classes that are subjected to formalisation. In
essence, only the regular UML classes and the UML parameterised classes together with their
binding classes are translated to Z++, which also allows parameterisation of classes (the
parameterised classes are also referred to as template classes, or as generic classes, while the

binding classes are alternatively denoted instantiating classes).

The structure of classes that is considered by the formalisation process is specified in rules
(6.5) and (6.6), the former giving the regular class structure while the latter appending the
requirement for class parameters in the case of parameterised and binding classes. As in the
case of rule (6.2), the requirements for a finite number of items in rules (6.5), (6.6), and
(6.17) are included for the sake of completeness. Evidently, the formalisation algorithm will

work on a finite input.

Rules (6.7) wo (6.9) provide constraints on the naming of classes. In general, within a class
diagram the names of classes must be unique, but exceptions to this principle are necessary to
accommodare binding of template classes such as Queue[X], which can be instantiated as
Queue(Task], Queue(Patient], etc. (this is denoted implicit binding). In UML there is a second
way of instantiating parameterised classes, explicit binding, with the name of the binding
class different from the name of the template class, but for simplification purposes the

formalisation algorithm assumes only implicit binding is used in class diagrams. In practical

142

terms, to ensure efficient checking of class names, the AFCD will consider as names of
generic and binding classes the string formed by concatenating the name of the class with the
list of the class’ parameters. As such, it is easier to automatically detect that, for instance, the
class Queue[Task] is distinct from the class Queue[Patient]. Also, this internal representation is

needed for the specification of relationship ends, as indicated in Subsection 6.3.1.3.

Rules (6.10) to (6.12) deal further with the well-formedness of template and instantiating
classes. Obviously, the absence of parameters would contradict the concept of parameterised
classes, hence rule (6.10), and the matching between formal class parameters and actual class
parameters must also be enforced, as stated by rule (6.12). Rule (6.11) limits the format of

class parameters to a single name, whose use is further restricted by rules (6.25) and (6.26).

Rules (6.13) to (6.16) are concerned with the well-formedness of attributes. Although the
visibility and the property of an attribute are listed as optional in rule (6.14), the AFCD will
assign default values for these two components if none is provided (public for visibility and
changeable for property). Also, even though Z++ requires types for all the attributes, we
decided to allow the AFCD to translate ateributes without their types specified in UML,
leaving to the developer the task of specifying in Z++, post translation, the missing types of
attributes. Rule (6.14) requires unique names for attributes in a given class. Notably, the
names of attributes must also be distinct from the names of operations, including inherited
operations, a constraint that stems from the specifics of Z++ and from the addition of the
PUBLICS clause, which lists attributes and operations without their type. Rule (6.15)
specifies the possible kinds of attribute visibility and rule (6.16) gives details about allowable
values for attribute property. The inclusion of rule (6.16) serves the formalisation process
since the frozen (constant) attribuctes are included in Z++ in the clause FuNcTIONS while the

changeable attributes are specified in the owns clause.

Regarding the visibility of attributes and operations addressed by rules (6.15) and,
respectively, (6.19), public attributes and operations will be made visible in Z++ by their

inclusion in the PUBLICS clause, while private attributes and operations will require the use

143

of an intermediary class and of a hiding operation applied to this class, as detailed in the
formalisation algorithm. Following from the specifics of Z++ and from the introduction of
the PUBLICS component in the definition of Z++ class, protected attributes and operations

will not require any special treatment.

Rules (6.17) to (6.23) address syntactic aspects of operations. Regarding the uniqueness of an
operation name in a class required by rule (6.18), considerations similar to those for rule
(6.14) apply. Rule (6.20) has been included to support the translation process to since query
operations, which do not change the state of the object, are listed separately (in the RETURNS
clause) from the regular operations indicated by the none property (these operations are listed
in the ACTIONS clause of the Z++ class). Rules for the parameters of operations are also
necessary to help the automatic translation to Z++. In particular, both the name and the type
of a parameter are required (6.21), since both are necessary in Z++ for declaring operations
and an automatic assignment of parameter names by the AFCD would complicate
unnecessarily the translation. Also, unique names for the parameters of an operation are
required in Z++ even though they may have distinct types, hence rule (6.22), and the
provisions of rule (6.23) are used in specifying the signatures of operations in Z++. If

unspecified, the direction of a parameter will be considered in.

Rule (6.24) indicates that three kinds of types are possible for attributes, parameters of
template classes, parameters of operations, and the returns of operations. Class types are all
the types whose name is identical with one of the names of classes that exist in the class
diagram. For practical purposes, the formalisation algorithms will accept names of types
given either as T, T[1, or T[params] , where params is a set of class parameters (more details

are given in Subsection 6.3.2.1).

Rules (6.25) to (6.27) further restrict the use of class parameter names in order to avoid

possible complications when formalising generic classes.

144

6.3.1.3 Rules for Relationships

The following rules apply to relationships between classes included in the class diagram:

e Fach relationship between two classes is either an association,

an aggregation, a composition, a generalisation, or an instantiation; (6.28)
e Each association relationship has a name; (6.29)
® Each relationship has two relationship ends; (6.30)
e Each end of a relationship is attached to a class; (6.31)

® Each end of a relationship has one of the following types, depending
on the kind of relationship to which it belongs:
(a) assoc in the case of association;
(b) aggreg, if the end is attached to the “whole” class of the
aggregation, and none if the end is attached to the “part” class;
(c) comp, if the end is attached to the “whole” class of composition,
and none if it attached to the “part” class;
(d) super, if the end is attached to the superclass of a generalisation,
and none if it is attached to the subclass;
() generic, if the end is attached to the parameterised (generic) class
of an relationship, and none if it is attached to the binding class; (6.32)
® Each end of a relationship has a multiplicity constraint attached,
which is expressed in the form of a finite sequence of ranges
ar..br,a. b .. ak.. bx
where:
K>0,
Vi,1<i<Ka=0,b>0,a<h
Vi, 1 <i<K-1,b <as,

and bc only may be +o0 (denoted *) (6.33)

»

® The multiplicity of the relationship end that is attached to the “whole

part of a composition relationship is 1; (6.34)

145

e Both ends of a generalisation have multiplicity 1; (6.35)
¢ Both ends of an instantiation have multiplicity 1; (6.36)
® Berween any two given classes, if more than one relationship exist,

the relationships are all either associations or aggregations/compositions; (6.37)
® The names of the associations that involve the same two classes are distinct; (6.38)
e Each generalisation involves two distinct classes; (6.39)
® Each instantiation is between a parameterised class and an instantiating class; (6.40)

® A class cannot be the superclass of any of its ancestors; (6.41)

Rule (6.28) specifies the kinds of relationships considered in the present approach.
Compared with the types of UML relationships described in Section 3.3, the dependency
and realisation relationships are not included (with the exception of the instantiation version
of dependency). Also, it should be noted that the term instantiation relationship is not in the
UML vocabulary, but we use it here to describe in a shorter way the dependency relationship

between a parameterised class and a binding class.

The names of association relationships are needed for formalising purposes, hence rule

(6.29).

Rules (6.30) and (6.31) enforce non-tangling relationships by requiring that each

relationship be specified in terms of two relationship ends, each end being attached to a class.

Rule (6.32) specifies constraints on relationship ends for properly formed relationships. It

avoids incorrect situations such as a relationship with both ends of type aggregation.

Rule (6.33) gives a general form for the multiplicity constraint attached to a relationship end.
This form encompasses all cases normally used in UML, including the multiplicity 1, which

can be represented as 1 .. 1, and the notation *, which can be represented 0 .. *.

146

Rule (6.34) makes sure that unshared containment, characteristic to composition, is properly
specified in terms of multiplicity while rules (6.35) and (6.36) do the same for the

instantiation of parameterised classes and, respectively, for generalisation.

Rule (6.37) gives the conditions under which multiple relationships between two classes are
allowed, while rule (6.38) makes sure that duplicate associations can be mechanically

formalised.

Rule (6.39) prevents a class to be its own superclass, while rule (6.40) defines more precisily

the instantiation relationship;

Finally, rule (6.41) avoids invalid situations in which a class acts as superclass to one or more
of its ancestors. Technically, rule (6.41) incorporates rule (6.39), but the latter was included
for increased clarity. The AFCD will detect the existence of cycles in the graph whose nodes
are the classes and whose links are the generalisation relationships contained in the input

class diagram.

The set of rules for relationships described above need be completed with rules regarding the
involvement of generic and binding classes in other types of relationships than instantiation.
To keep things simple, the algorithm for automatic translation will assume that invalid
situations such as a generic class at the “part” end of an aggregation whose “whole” end is

attached to a regular class are resolved by the developer before the algorithm is applied.

6.3.2 Translation Principles for Class Diagrams

The automated translation of UML class diagrams to Z++ specifications follows a number of

principles, as described below.

147

6.3.2.1Translation of Types

In order to facilitate the mechanisation of the formalisation process restrictions are placed on
the use of types, as indicated in rule (6.24). In the UML space the considered types of
attributes, parameters of operations, and returns of operations (henceforth collectively

denoted UML types) can be expressed in one of the following forms:

(@) In “scalar form” T, where T is a string identifier denoting either a basic type or a regular
class type (the latter means that a regular class with name T exists in the class diagram);

(b) In “array form” T[], where T is the name of a basic type or a regular class type (note the
empty space within the square brackets, meaning that only one dimensional arrays are
automatically processed and the information on array bounds, if any, is left to be
formalised manually by the developer);

(c) In “generic form” T [params] , where params is a list of parameters passed to a template class,
cach parameter in params denoting a basic type or a regular class type (array types and

types in generic form are not allowed within params, as indicated by rule (6.27)).

With these restrictions, the mapping of types from UML to Z++ proceeds along the

following lines:

® When the UML type is expressed in scalar form T, then:

- if T is the name of a recognised basic type, specifically unsigned integer, integer or real then
the correponding Z++ type will be, respectively, N, Z, or R (variants such as byte, in,
long, double, and float will also be treated as recognised basic types within the above three
categories). Constraints on the range of the type, if needed, will be specified by the
human formaliser. The Boolean type will be recognised for the returns of operations,
but no explicit output variable and no output domain will be associated in Z++ to
the operation’s return. Also, the type void of an operation’s return will be recognised

and treated as a type that requires no specification of output domain in the

148

operation’s signature and no specification of output parameter in the operation’s
definition;

- if T is the name of an existing regular UML class then the Z++ type will also be T;

- if uppercase(T) is the name of an existing given set in Z++, then the Z++ type will be
uppercase(T) (by uppercase(X) we denote the string obrained from the identifier x by
promoting to uppercase all its lowercase letters, while keeping the others unchanged);

- if T is neither the name of a recognised basic type, nor the name of an existing regular
UML class or of an existing Z++ given set, it will be treated as the name of a
unrecognised basic type and a new given set will be added in Z++, with the letters of
the identifier T written in uppercase, as it is customary in Z. The Z++ type will
therefore be uppercase(T);

- if T is used in the context of a parameterised class and it is identical with the name of
a formal parameter of the class, the Z++ type will also be T;

e When the UML type is an array type T[], then T will be first checked as described above
and then the operator seq will be applied to the Z++ type corresponding to the scalar type
T. For instance, the UML type int[] will become seq(2) in Z++ and the UML type Car []
will be mapped either to seq(CAR), if no class with the name Car exists in the class diagram,
or to seq(Car), if Car is the name of an existing UML class;

e When the UML type is given in generic form T[params] it will be assumed that the items
of the params list represent actual parameters for the generic class T. If these parameters are
provided by the formal parameters of the enclosing class, they will be left unchanged,
otherwise each parameter P of params will be checked against recognised basic types,
existing regular classes, and existing given sets, as outlined previously for types expressed
in scalar form. It is possible therefore that a new given set will be created in Z++ if P is
neither the name of an existing class, nor the name of a recognised basic type (e.g., the
UML type Stack[Book]will lead to the creation of the given set BOOK in Z++ if class Book does
not exist in the class diagram).

Since in order to allow an earlier transfer of UML class diagrams to Z++ specifications the

UML types can be left unspecified, the formalisation algorithm may produce incomplete

definitions for auributes and operations in Z++. This means that after the automatic

149

translation is performed one of the first tasks of the human formaliser will be to complete the

information on types if further development of formal specifications is intended.

6.3.2.2 Translation of Attributes

The following apply when translating to Z++ the attributes of UML classes :

® The names of UML attributes will be used as names for the corresponding Z++
attributes, for instance the attribute size in UML will be mapped into the same name
attribute size in Z++;
® The property of the UML autribute will determine the clause in which the corresponding
Z++ auribute is placed. Attributes that cannot be modified, declared frozen in UML, will
be placed in the FUNCTIONS clause of the Z++ class, while all other attributes (changeable)
will be included in the owNs clause. Due to Z++’s specifics, it is assumed that frozen
attributes are also declared protected, since the constants declared in the FUNCTIONS clause
of a Z++ class are local to the class and to its subclasses;
e The initial value of the attribute, if provided in UML, will be used as follows:
- if the attribute is listed as changeable the initialisation of the attribute will be performed
using an assignment statement in the init operation of the Z++ class;
- if the attribute is frozen the initialisation will be performed in the predicate part of an
axiomatic box definition that will be included in the FUNCTIONS clause;
It is assumed that the type of the initial value of the attribute is the type of the attribute,
which means that for array types the initial values must be given as sequences of the form
<Vi, ..., Vo>, n 2 0;
® The visibility of an attribute att of a class C will be treated as follows by the translation
algorithm:
- if the attribute has public visibility the name of the attribute will be appended to the
clause PUBLICS of the Z++ class C;
- if the attribute has protected visibility no special measures will be taken since in Z++ all

attributes are inherited automatically by the derived classes;

150

- if the auribute has private visibility it will be appended to the list of hidden features
kept by the algorithm for each class. This list, if not empty after the processing of all
the attributes and operations of the class, will require a hiding operation applied to
the class, as detailed in Subsection 6.3.2.4.

- the type of the attribute will be determined according to the translation priciples for

types presented in Subsection 6.3.2.1.

6.3.2.3 Translation of Operations

The following principles apply for translating to Z++ the operations of UML classes:

® The names of UML operations will be used as names for the corresponding Z++
operations, for instance the operation determineTrend in UML will be mapped into the same
name operation determineTrend in Z++;

® The property of an op operation of a UML class ¢ will determine the clauses of the Z++
class ¢ in which the signature and the definition of the corresponding Z++ operation op
are placed. Operations declared query, which do not change the state of the object, will
have their signatures specified in the RETURNS clause of the Z++ class ¢, while all other
operations will have their signatures included in the OPERATIONS clause. For both query
and non query operations, definitions specified as indicated below are included in the

ACTIONS clause of the Z++ class;

® The parameters of the UML operation op, if any, are processed as follows:

- the type of each operation parameter will be processed according to the translation
principles for types described previously and the Z++ type of the parameter will be
added to the Z++ operation’s signature according to the direction of the parameter.
Specifically, if the direction of the parameter is in then the type of the parameter will
be added to the list of input domains, if the direction is out it will be added to list of
output domains, and if the direction is inout it will be added to both lists;

- the name of each operation parameter is used to construct the initial part of the

operation’s definition in Z++. If the type of the parameter is in the name of the

151

parameter post-fixed by the symbol ? (denoting an input variable in Z) will be
appended to the operation’s definition list of input parameters and if the type of the
parameter is out, the name of the parameter postfixed by ! (denoting an output
variable in Z) will be added to the operation’s definition list of output parameters. If
the direction of the parameter is inout, both the above operations will be performed;
® The return type of an UML operation, if present and different from void and Boolean, will
be first processed according to the principles outlined for types in Subsection 6.3.2.1 and
then placed as an item in the list of output domains of the corresponding Z++
operation’s signature. If vid or Boolean, no action will be taken;
® The visibility of each UML operation will be processed similarly to the visibility of UML
attributes. The name of a UML public operation will be included in the puBLICS clause
of the Z++ class in which the corresponding Z++ operation has been created while the
name of a private operation will be added to the list of hidden features maintained by the
translation algorithm for each Z++ class for the purposes described in Subsection 6.3.2.4.

Protected UML operations will not require any special treatment.

6.3.2.4Translation of Classes

The following apply for automatic formalisation of UML classes in Z++:

® Only regular and generic classes will be translated, no action being necessary for binding
classes, which simply instantiate generic classes. In fact, a particular instantiation of an
existing generic class may not necessarily correspond to a binding class present in the
class diagram (e.g., if the parameterised Producer(X] class exists in the class diagram, a
variable can can declared as P:Producer{Car] in a2 UML class without having the Producer(Car]
explicitly drawn in the class diagram);

® The names of UML classes will be used for their corresponding Z++ classes, each regular
or generic UML class ¢ being mapped into a class with the same name ¢ in Z++;

® The class parameters of a generic UML class will be listed in the parameter list of the

corresponding Z++ class;

152

e The names of all direct superclasses of a UML class will be listed in the EXTENDS clause
of the corresponding Z++ class;

e Ali the attributes of a UML class will be processed according to the principles described
previously in Subsection 6.3.2.2, information being placed in the puBLICS,
FUNCTIONS, OWNS, and ACTIONS clauses of the corresponding Z++ class, as well as in
the list of hidden features maintained by the algorithm for the Z++ class. The list of
given sets of the Z++ specification will be updated during this process based on the
information contained in the types of UML attributes;

e All the operations of a UML class will be processed according to the principles described
previously in Subsection 6.3.2.3, information being placed in the PUBLICS, RETURNS,
OPERATIONS, and ACTIONS clauses of the corresponding Z++ class, as well as in the list
of hidden features maintained by the algorithm for the Z++ class. The list of given sets of
the Z++ specification will be updated during this process based on the information
contained by the types of operation parameters and the type of operation return;

e After all the classes in the class diagram are processed as described above, the classes ¢
with a non empry list of hidden features will be used for creating hiding classes, prefixed
by the symbol H (from Hiding), classes needed for providing the desired visibility of
attributes and operations. Specifically, for each class ¢ with hidden features an operation
H_C 2 C\ [hidden_featuresc] will be included in the Z++ specification and the class H_c

will be used instead of C in the EXTENDS list of classes that have C superclass.

6.3.2.5Translation of Relationships

The relationships included in a class diagram are formalised in Z++ as follows:
® Inheritance relationships (generalisations) are formalised during the translation of classes
through the inclusion in the EXTENDS clause of each Z++ class of the names of the class’

immediate superclasses;

153

Instantiation relationships are formalised during the translation of classes by including
the formal parameters of the class in the parameter lists of Z++ classes, as described in
Subsection 6.3.2.4;

Aggregation and composition relationships are formalised by adding to the container

class of the relationship an attribute that indicates the contained object or objects.

Specifically, if the aggregation or composition is between class W (“whole”) and the class P

(“part”), then the attribute will be created in class W with a name and a type that depend

both on the multiplicity of the “part” end of the relationship, as follows:

- if the multiplicity is “one,” then the attribute will have the name p (the class name in
lowercase) and its type will be P. For instance, given a one-to-one aggregation or
composition between the classes Radio and Antenna, with Antenna the “part” class of the
relationship, then the attribute antenna : Antenna will be created in the class Radio;

- if the mulriplicity is “many,” then the attribute will have the name p+“s” and its type
will be PP. For instance, considering a one-to-many aggregation or composition
between Radio and Button, with Button the “part” class of the aggregation, then the
attribute buttons : PButtons will be created in the class Radio.

However, if attributes of type P or PP already exist in W, no additional attribute describing

the aggregation/composition will be created in W.

Associations relationships are formalised by creating a Z++ class that describes the

association and by including in the System class of the Z++ specification an object of this

class, with appropriate constraints attached. More precisely, considering a many-to-many

association assoc berween classes A and B, then:

a class with the name AssocDescriptor will be created in Z++;

- the attributes instancesOfA of type IPA, instancesOfB of type PB and associnstances of type A« B
will be included in the owNs clause of the AssocDescriptor class;

- the constraint dom associnstances = instancesOfA A ran asssoclnstances = instancesOfB will be
included in the INVARIANT clause of the AssocDescriptor class;

- the object theAssocDescriptor of type AssocDescriptor will be included in the owNs clause of

the System class of the specification.

154

For instance, considering the many-to-many association departs between the classes Fiight
and Aiport, then the class DepantsDescriptor will be created in Z++ with attributes
instancesOfFlight: PFlight, - instancesOfAirport: [PAirport, and departsinstances: Flight < Airport placed in its
OWNS clause (the names of the classes are underlined to indicate that instances of
associations are created between existing objects of the classes). A single object
theDepartsDescriptor of type DepartsDescriptor will also be created in the System class of the Z++

specification.

If the association is one-to-one or many-to-one from A to B than the type of the attribute
associnstances will be A - B and if the association is one-to-many from A to B the attribute’s

type will be B A

6.3.3 Algorithm for Formalising Class Diagrams (AFCD)

Based on the rules for syntactically well-formed UML class diagrams, classes, and
relationships presented in Subsection 6.3.1 and on the formalisation principles described in
Subsection 6.3.2, an algorithm for translating the core structural UML constructs into Z++
specifications is given below in a Pascal-like pseudocode. The structure of the algorithm’s
input as well as the format of the algorithm’s outpur are given first and then the algorithm is
detailed in top-down fashion. The code of a Java program that implements the algorithmic
contents of ADFC and adapts its data structures for an OO solution is included in Appendix
B. Derails that have been omitted from the presentation that follows can be found in the
code presented in this Appendix. As a matter of convention, in ADFC’s pseudocode the

basic structuring module employed, the procedure, is specified as follows:

procedure ProcedureName (<inputParams>; <outputParams>) (6.42)

where <inputParams> is a list of parameters given in the form <ip,: Ty, ip;: T;, .ipu: Tv>, with each
ip, 1 <i <M an input parameter of type Ti, and <outputParams> is a list of the form
<op::Tiop2: Tz, .. opw: Tw>, with each op, 1 < j < N, an output parameter of type T. For simplicity,

the implicit type of output parameters is considered to be inout, meaning that the calling

155

module passes them to the procedure, which returns them after execution in a possibly

modified form.

6.3.3.1 AFCD Input

The input of the formalisation algorithm is a representation of a UML class diagram,

denoted (D, that consists of the tuple (C, R) where C is the set of classes and R is the set of

binary relationships between the classes, R : C <> C. In terms of the structure, the following
are considered:
C ={Co, ...,Cn1, N 2 O (6.43)

with N = o for the empty set of classes C= @ . Similarly:

® = {Ro,..Rmi},M>0 (6.44)

Each class C in C has the following format:

C = (name, ctype, atts, ops, cparams) (6.45)
where name is a string identifier and ctype one of the following: reg, para, or bind, while the

other components have the form:

atts = {atto, ..., attna-1}, Na >0
ops = {opo, ..., Opne1}, NO >0
cparams = {cpo, ..., CPrep-1}, NCp =0 (6.406)

Each attribute att in atts has the form:

att = (name, attype, vistype, initval, property) (6.47)

where name and type are string identifiers, vistype is either public, protected, or private, and
property is either changeable or frozen. With respect to initval, this should be a value of type, but

the formalisation algorithm does not perform type checking.

Each operation op in ops shown in (6.45) has the form:

156

op = (name, vistype, params, rettype, property) (6.48)
where name is a string identifiers, vistype is either public, protected, or private, property is none or
query, and params is a set:

params = {po, ..., pnp-1}, Np 20 (6.49)

where each parameter p in params has the form:

p = (name, ptype, dir) (6.50)

with name and ptype string identifiers and dir one of in, out , or inout.

Each class parameter cp in cparams given in (6.46) is a string identifier and attype of (6.47),
rettype of (6.48) and ptype a (6.50) are type identifiers given as T, T[] or T[tparams}, where T is

a string identifier and tparams is a list:

tparams = (tpo, ..., tpnw1), Ntp >0 (6.51)

with each tp.,0 <i < Ntp-1, a string identifier.

Each relationship R in R of (6.44) has the form:

R = (name, rend1, rend2) (6.52)

where name is a string identifier or the reserved word null and the two ends of the relationship

have the structure:

rend = (kind, classname, mult) (6.53)
with kind either assoc, aggreg, comp, super, generic, or none, the classname given as a string
identifier, and mult specified in the form:

mult = (a1 .. by, .., ak .. bx) (6.54)

where K and the range limits aiand bi, 1 <i <K, satisfy condition (6.33).

157

6.3.3.2AFCD Output

The output of the algorithm is a Z++ specification z = (4, zc, oc) that consists of a
header H that precedes the class declarations, a set zC of classes, and a set oc of operations
on classes that gathers statements that represents operations applied on Z++ classes such as
hiding and composition. A statement is considered to be a text consisting of one or more

lines built according to the syntax of Z++. For AFCD purposes:

H = (GivenSets) (6.55)

meaning that only given sets are placed by the algorithm in the header specification, with:

GivenSets= (GSo, ..., GSngs.1}, Ngs > O (6.56)

where each GS is an uppercase string identifier.

The set of Z++ classes has the form:

2C = (ZCo, ..., ZCnz1}, Nz = O (6.57)

where each ZC has the structure indicated in (6.62). The set of operation on classes is given

as:

OC = (HidingOperations) (6.58)

meaning that AFCD constructs only hiding operations on classes for inclusion in oc, the

form of HidingOperations being:

HiddingOperations= {HOo, ..., HOnno1}, Nho = O (6.59)

where each HO is a Z++ statement.

The form of each ZC in (6.59) is:

ZC = (NAME, CPARAMS, EXTENDS, PUBLICS, TYPES , FUNCTIONS, OWNS, RETURNS
OPERATIONS, INVARIANT, ACTIONS, HISTORY) (6.60)

158

which corresponds to the structure of Z++ described in Appendix A. In the above NAME is a
string identifier, CPARAMS, EXTENDS and PUBLICS are lists of string identifiers and all the other

components of ZC are sets of Z++ statements. Notationally:

CPARAMS = {cpo. --- . CPNzcp-1}, Nzcp =20
EXTENDS = {exto, ..., extax-1}, Nxt >0
PUBLICS = {pbo, ..., pbnpb-1}, Npb =0
TYPES = {typo, ..., typntp-1}, Ntp >0
FUNCTIONS = {funo, ..., funarun-1}, Nfun >0
OWNS = {owno, ..., OWnNow-1}, Now >0
RETURNS = {reto, ..., retnrer-1}, Nret >0
OPERATIONS= {zopo, ..., ZOPNzo-1}, Nzo >0
INVARIANT = {invo, ..., iNVNinv-1}, Ninv=0
ACTIONS = {acto, ..., actnact-1}, Nact=0
HISTORY = {histo, ..., OWNNnis-1}, Nhis >0 (6.61)

From the AFCD point of view the above corresponds to the external representation of a Z++
class, but for implementation purposes additional components are used for modelling Z++
classes (they make up the “internal representation” of the Z++ class, which facilitates the
translation and allows extensions of the algorithm). Specifically, a set of attributes, a set of
operations and a list of hidden features are included, as shown in the AFCD code presented

in Appendix B.
6.3.3.3 AFCD Pscudocode

The highest level, pseudocode description of the AFCD is given in Fig. 6.1. The input for
the FCD procedure is a class diagram, and its output is a Z++ specification. The FCD
procedure invokes first the CheckCDSyntax procedure to verify that the rules for well-formed
class diagrams are satisfied and, if this is confirmed, proceeds with the translation of UML
constructs to Z++ by calling the TranslateCD procedure. The errorFlag variable, visible across
the FCD, is used to signal the detection of errors (violations of rules for well-formedness) at all
levels of procedure nesting. Specific messages that indicate the kind of the errors detected are

issued locally by the lower level procedures.

159

— Top level UML to Z++ formalisation procedure
procedure FCD(CD:ClassDiagram)
ZPPS:ZPPSpec; — Z++ specification to be generated
errorFlag := false; - flag to signal well-formedness errors
begin
CheckCDSyntax (CD) ; - check correctness of the class diagram
if (not errorFlag) then
TranslateCD(CD; ZPPS) - and translate only if no errors found
endif;
PrintZPPSpec (ZPPS) ; - print to file resulting Z++ specification
end FCD;

Fig. 6.1 The Top Level FCD Procedure

In the following, the CheckCDSyntax procedure is described only through its high-level
components, specific details of implementation being provided by the code included in
Appendix B. Here, only the rules that involve more than preliminary checks of the input in
terms of expected structures and valid items are covered (examples of such preliminary
checks include verifying that two relationship ends have been provided for each relationship
and checking that the property of an attribute is either changeable or frozen). The TranslateCD

procedure is described after the high-level modules of CheckCDSyntax are presented.

- Check the well-formedness of the input class diagram

procedure CheckCDSyntax (CD:ClassDiagram)
begin
CheckRelationships (CD) ; - check constraints at relationship level
if (not errorFlag) then
CheckAcrossCD(CD) ;
end if;
if (not errorFlag) then
CheckClasses (CD) ; -- check canstraints at class level
end if;
end CheckCDSyntax;

Fig. 6.2 The CheckCDSyntax Procedure

160

The CheckCDSyntax procedure shown in Fig. 6.2 consists of three categories of checkings,
each addressing a context (class, relationship, or class diagram) that corresponds from a
notational point of view to the groups of rules presented in Subsection 6.3.1. However, due
to practical considerations, the order of contexts has been changed and, as detailed later, the
contents of each group of checkings match only loosely the contents of the associated group
of rules (although globally all major rules are covered). More precisely, we have taken the
approach of checking in a given context those rules that require (almost) exclusively
information available in that context. For this reason, a rule such as (6.41) given previously
as a relationship rule (a rule preventing a class to be the superclass of any of its ancestors) is
verified in the CheckAcrossCD procedure and not in CheckRelationships. Regarding the order
of checkings, the validation of the internal contents of classes (CheckClasses procedure),
involving the inspection of lower-level structural details, is performed only if the other two
categories of tests are passed. Also, the CheckAcrossCD procedure follows the internal checking
of relationships since improperly formed relationships would preclude reliable verifications at

the class diagram level.

To simplify the pseudocode descriptions that follow, the testing of the errorfiag indicator
between procedures is no longer shown, but it should be considered that an error in a given
procedure would generally preclude the meaningful execution of the procedures that follow.
Thus, if a test fails, the execution of the algorithm will stop. With this approach, the UML

developer is required to incrementally improve the well-formedness of the class diagram.

Also, since comments are included in the procedures given below, only brief indications on
the correspondence between the Fcp’s procedures and the rules of well-formedness are given

in conjunctions with the components of the CheckCDSyntax procedure.

As shown in Fig. 6.3, the internal verification of relationships consists of five tests, covering,
in order, rules (6.32), (6.33), (6.29), (6.34), (6.35), and (6.36). The other rules listed as
relationships rules in Subsection 6.3.1 are checked in the CheckAcrossCD procedure, shown in

Fig. 6.5.

161

— Check constraints on the relationships

procedure CheckRelationships (CD:ClassDiagram)

begin
CheckRelationshipEnds (CD) ; - verify praper ends of the relationships
CheckWellFormedMultipicity (CD); - verify multipiicity at the two ends
CheckAssociationsHaveName (CD); — verify names are given to associations
CheckCompMultOne (CD) ; — the whole part of composition and
CheckRelMultOne (CD, GEN) - both ends of generalisation and
CheckRelMultOne (CD, INST) — instantiation must have multiplicity one

end CheckRelaticnships;

Fig. 6.3 The CheckRelationships Procedure

It is necessary to note that the organisation of tests shown in Fig. 6.3 for CheckRelationships
was chosen over the faster alternative depicted in Fig. 6.4 because it allows a clear

demarcation of tests and a clear separation of error messages.

— Alternative testing of relationships (not used). Faster, but with no clear separation of messages.
procedure AlternativeCheckRelaticnships(CD:ClassDiagram)
begin
for i = 0 to M-1 do - verify all relationships
CheckRelationshipEnds (CD.R({i}]) — venify proper ends of the relationship
CheckWellFormedMultipicity (CD.R{i]) - verify muitiplicity at the two ends
if (isAssociation(CD.R[i])) then
CheckAssocHasName (CD.R[1i]) -- associations must have names
end if;
if (isComposition(CD.R[1i])) then
CheckWholeMultCne (CD.R[1i1]} - the whole part of composition
end if; - must have multiplicity one
if (isGeneralisation(CD.R[i])) then
CheckRelMultOne (CD.R[i],GEN) - bothends of generalisation
end if; -- must have multiplicity one
if (isInstantiation(CD.R[i])) then
CheckRelMultOne (CD.R[i], INST) --andboth ends of instantiation
end if; — must have multiplicity one
end for;
end ALternativeCheckRelationships;

Fig. 6.4 Alternative CheckRelationships Procedure

162

More complex verification work is done by the CheckAcrossCD procedure, whose component

tests are sequentially ordered based on their possible implications on other tests.

— Check constraints across dlass diagram

procedure CheckAcrossCD (CD:ClassDiagram)

begin
CheckEndRelClassesExist (CD); - vernfy existence of classes involved in relationships
CheckClassNamesUnique (CD) ; - check constraints on names of classes
CheckDistinctAssocNames (CD) ; - distinct names of assocs. between the same two dlasses
CheckDuplicateRelationships (CD); - only assoc and aggreg/comp can be duplicated
CheckInstantiationEnds (CD); - verifyinstantiation ends attached correctly to classes
CheckMatchingBind ings (CD) ; - dasses in an inst. rel. must have same no. of params.
CheckNoAncestorToSelf (CD) ; — adlass cannot be ancestor to itself

end CheckAcrossCD;

Fig. 6.5 The CheckAcrossCD Procedure

The rules verified by the CheckAcrossCD procedure are, in order (6.3), (6.7 to (6.9), (6.38),
(6.37), (6.40), (6.41), (6.12), and (6.41).

The last procedure within CheckCDSyntax is CheckClasses, shown in Fig. 6.6, whose role is to

ensure the uniqueness of names of attributes, operations, and parameters of operations, as

required by rules (6.14), (6.18), and (6.22).

-- Check constraints at class level

procedure CheckClasses (Ch:ClassDiagram)

begin
for i = 0 to N-1 do — verify all classes in the class diagram
CheckAttributeNamesUnique(CD.C[1]); - verify names of attrib. within the class
CheckOperationNamesUnique (CD.C[i]); -- verify names of ops. within the class
CheckOpParamNamesUnique (CD.C[i]) — verify names of op. parameters
end for;

end CheckClasses;

Fig. 6.6 The CheckClasses Procedure

163

The translation part of the algorithm, coordinated from the CDTranslate procedure is
described next (Fig. 6.7 to 6.20).

The top-level procedure CDTranslate performs the major tasks of translating the classes and
the relationships (Fig. 6.7). In order to establish the required visibilities of attributes and
operations, it also applies hiding operations on classes, an activity that can take place only

after both classes and relationships are processed.

The TranslateClasses procedure (Fig. 6.8) subjects to translation all non-binding UML
classes by invoking TranslateClass (Fig. 6.9). Here, detailed formalisation work on individual
UML classes is performed. Based on the information available in the input UML class a
corresponding Z++ class is created. with its “internal representation” filled according to the
translation principles presented in Subsection 6.3.2. Esentially, translations of attributes
(procedures TranslateAttributes of Fig. 6.10 and TranslateAttribute of Fig. 6.11) and operations
(procedures TranslateOperations of Fig. 6.12 and TranslateOperation of Fig. 6.13) are
performed first, followed by placement of information in the “externally visible
representation” of the Z++ class. This preparation work for external representation is done by
PlaceZPPAttributes and PlaceZPPOperations procedures (Fig. 6.16 and 6.17). Details on the
processing of operations are shown in the procedures ProcessOPParameters (Fig. 6.14) and
ProcessOpReturn (Fig. 6.15), which deal with the translation of the operation’s parameters

and, respectively, of the operation’s return.

Since some of the relationships are implicitly processed during the formalisation of classes,
only associations and aggregations/compositions receive special treatment, as indicated by the
procedure TranslateRelationships (Fig. 6.18). Derails on formalising aggregations and
compositions are given in TranslateAggregation (Fig. 6.19), while the translation of association

is described by TranslateAssociation (Fig. 6.20).

Further translation details are available from the code included in Appendix B.

164

— UML to Z++ translation of a class diagram

procedure CDTranslate(CD:ClassDiagram; ZPPS:ZPPSpec)

begin
TranslateClasses (CD;ZPPS) ; -- process classes
TranslateRelationships (CD; ZPPS) — process relationships
ResolveVisibility (;ZPPS) — apply hiding operations on Z++ classes

end CDTranslate;

Fig. 6.7 The CDTranslate Procedure

- Translation of classes

procedure TranslateClasses(CD:ClassDiagram; ZPPS:ZPPSpec)
begin

for i = 0 to N-1 do - inspect all dlasses in the class diagram
if(CD.C[i].ctype /= bind) then — translate regular and parameterised
TranslateClass(CD,CD.C[1i];ZPPS) -- classes only (ignore binding classes)
endif;

end for;

end TranslateClasses;

Fig. 6.8 The TranslateClasses Procedure

- Translation of an individual class

procedure TranslateClass(CD:ClassDiagram,C:UMLClass; ZPPS:ZPPSpec)

ZC:ZPPClass; - Z++ dass to be created
begin
AppendClass (C.name; ZPPC, ZC); — create corresponding Z++ class
if (C.ctype==para)then — if UML class is generic transfer formal
TransferCParams (C; 2C) - class parameters to Z++ class
endif;
ProcessParents(CD,C; 2C):; -- process parents and fill EXTENDS clause
TranslatelAttributes (CD,C; ZPPS, 2C): -- formalise attributes
TranslateOperations(CD,C; ZPPS,2C); - formalise operations
PlaceAttributes (;2ZC); — filt FUNCTIONS, OWNS, and ACTIONS
PlaceOperations (;2C); - fill FUNCTIONS, OWNS, and ACTIONS
end TranslateClass; - work done on this class

Fig. 6.9 The TranslateClass Procedure

165

- Translation of attributes

procedure TranslateAttributes(CD:ClassDiagram, C:UMLClass;
ZPPS:ZPPSpec, 2C: ZPPClass)

begin
for i = 0 to Na-1 do — inspect all attributes of the class
TranslateAttribute (CD,CD.atts[1i];ZPPS,2Z2C) - andsaveinfoinZ++ class
end for;

end TranslateAttributes;

Fig. 6.10 The TranslateAttributes Procedure

- Translation of an attribute

procedure TranslateAttribute(CD:ClassDiagram, att:UMLAtt;
ZPPS:ZPPSpec, 2C:ZPPClass)

zatt: ZPPAtt; - Z++ attribute to be created
begin
zatt.name = att.name; - take name,
zatt.visibility = att.visibility; — visibility,
zatt.initval = att.initval; - and initial value from UML attribute
if (att.property == changeable) then -- determine place of attribute in Z++
zatt.clause = QWNS - class depending on property
else
zatt.clause = FUNCTIONS
end if;
if (zatt.visibility == public) then -- make provisions for attribute visibility
Rppend(zatt.name; ZC.Publics)
else if (att.visibility == private) then
Append(zatt.name; ZC.HiddenFeatures)
end 1if;

ProcessType (att.type,CD, ZC; ZPPS, zatt.ztype) ; - determine type of Z++ att. and
— possibly add to given sets of Z++ spec.
Append{zatt;ZzC); - finally, add attribute to Z++ class
end TranslatelAttribute;

Fig. 6.11 The TranslateAttribute Procedure

166

- Translation of operations

procedure TranslateOperations(CD:ClassDiagram, C:UMLClass;
ZPPS:ZPPSpec, Z2C: ZPPClass)

begin
for i = 0 to No-1 do — inspect all operations of the class
TranslateOperation(CD,CD.opl[i]; ZPPS,2C); - andsaveinfoinZ++ class
end for;

end TranslateOperations;

Fig. 6.12 The TranslateOperations Procedure

- Translation of an operation

procedure TranslateOperation(CD:ClassDiagram, op:UMLOp;
ZPPS:ZPPSpec, ZC: ZPPClass)

zop: ZPPOp; -- Z++ operation to be created
begin
zZop.name = Op.name; -- take name and
zop.visibility = op.visibility; — visibility from UML operation
if (zop.visibility == public) then -- make provisions for operation visibility
Append(zop.name; ZC.Publics) - inZ++ context
else if (zop.visibility == private) then
Append (zop.name; ZC.HiddenFeatures)
end if;
if (op.property == query) then -- determine place of operation signature
zop.clause = RETURNS - in Z++ class depending on property
else
zop.clause = OWNS
end if;
ProcessOPParameters (CD, op; ZPPS, 2C, zop) ; -- process parameters of operation and

- possibly add to given sets of Z++ spec

ProcessOpReturn(CD, op; ZPPS, ZC, zop) ; -- process operation return and
-- possibly add to given sets
Append (zop; ZC) ; - finally, add operation to Z++ class

end TranslateOperation;

Fig. 6.13 The TranslateOperation Procedure

167

- Translation of parameters of operations

procedure ProcessOPParams (CD:ClassDiagram, op:UMLOp, ZC:ZPPCLass;
Z2PPS:ZPPSpec, zop: ZPPOp)

ztype:Ztype; -- helper variables
name,dir:String;
begin
for i = 0 to Npo-1 do - process all operation parameters
name = op.p[i].name; -- take name and
dir = op.p{i].name; -~ direction of parameter

ProcessType (op.pl[i] .ptype,CD, ZC; ZPPS, ztype) ;- determine Z++ type and
- possibly add to given sets of Z++ spec

if (dir == in) then — if direction of parameter is in
Append (ztype;zop.sign.InputDomain) ;- append type to input domain
Append (name+”?”; zop.def.InputList)- and decorated name to input list

else if (dir == out) then - if direction of parameter is out
Append (ztype; zop.sign.OutputDomain) ;- append type to output domain
Append (name+”!”; zop.def.OutputList)--and decorated name to input list

else - otherwise, direction is inout
Append (ztype;zop.sign.InputDomain) ;- and therefore do both
Append (name+”?”; zop.def.InputList);
Append (ztype; zop.sign.OutputDomain);
Append (name+”!”; zop.def.OutputList);

end if;

end for;
end ProcessOpParams;

Fig. 6.14 The ProcessOpParams Procedure

— Interpretation of operation retum

procedure ProcessOPReturn(CD:ClassDiagram, op:UMLOp, ZC:ZPPCLass;
ZPPS:ZPPSpec, zop: ZPPOp)
ztype:Ztype;
begin
ProcessType (op.rettype,CD, 2ZC; ZPPS, ztype) ;-- determine Z++ type and
-- possibly add to given sets of Z++ spec

if ((op.rettype /= boolean)aé& - if type neither boolean nor void
(op.rettype /= void)) then
Append (ztype;zop.sign.OutputDomain); --append to output domain
Append (“result!”;zop.def.OutputList); - andappend result param. to output list
end if;

end ProcessOpReturn;

Fig. 6.15 The ProcessOpReturn Procedure

168

— Placement of Z++ attribute descriptions in appropriate clauses

procedure PlaceZPPAttributes(;ZC:ZPPCLass;)
stmtA:String; -- two statements needed per attribute, one for attribute definition

stmtB:String; - the ather for intialisation assignment (if an init value is provided)
initop:ZPPOp; - a Z++ operation that may be needed for the initialisation of attributes
axiomDef:String; - representation for the predicate part of a Z axiomatic definition

begin
- process all attributes

for i = 0 to Nza-1 do
AssembleZPPAttDef (ZC.att[i];stmA); -- form att. def. from data in Z++ class

if(ZC.att[i].clause == OWNS) then
Append (stmA; ZC.OWNS)

if(Z2C.att[i].initval not null)

AssembleZPPAttAssign(ZC.att([i];

if (initop not in ZC.ops) then
AddInitOp (;ZC.ops)

- place attribute def. in OWNS dause

then - ifinitial value exists
stmB); - form assignment statement

- create init op. in Z++ class if needed

endif;
Append(stmB;ZC.initop.code) -- and add initialisation assignment to it
endif;
else
— place att. def. in FUNCTIONS clause

Append (addBar (stmA) ; ZC.FUNCTIONS) ;
if(Z2C.att[i].initval not null) then - and if initial value exists

AssembleZPPAttAssign(Z2C.att[i]; stmB); - form assignment statement
Append (stmB;axiomDef) - and append it to pred. part of ax. def.

endif;
endif;

endfor;
Append(schemaPred; ZC.FUNCTIONS); -- complete Z schema in FUNCTIONS

end ProcessOpReturn;

Fig. 6.16 The PlaceZPPAttributes Procedure

;ZC:ZPPCLass;) — place op. descriptions in clauses

procedure PlaceZPPOperations (
- statement that can be used for both signature and definition

stmt: String;
begin
-- process all operations

for 1 = 0 to Nzo-1 do
AssembleZPPOpDef (ZC.op([i];stmt); -- form op. def. from data in Z++ class
-- and piace it in ACTIONS clause

Append(stmt; ZC.ACTIONS);
AssembleZPPOpSign (2C.op[i];stmt); - form op. signature
if(ZC.op{i].clause == RETURNS) then

Rppend (stmt; ZC.RETURNS)

else
Append{stmt; ZC.OPERATIONS) - or in OPERATIONS clause

endif;

endfor;
end PlaceZPPOperations;

-- and place it either in RETURNS clause

Fig. 6.17 The PlaceZPPOperations Procedure

169

— Translation of refationships

procedure TranslateRelationships(CD:ClassDiagram; ZPPS:ZPPSpec)
begin
for i = 0 to M-1 do - inspect all relationships
if (IsAggreg(CD.R[i])or IsComp(CD.R[i])then - translate aggregs/comps
TranslateAggregation(CD.R[i]l;ZPPS)
else if (IsAssoc(CD.R[i])) then

TranslateAssociation(CD.R[i];ZPPS) — and associations
end if;
end fcr;
end TranslateRelationships; - gen. and instantiations are

— processed during the
- translation of classes

Fig. 6.18 The TranslateRelationships Procedure

- Translation of aggregation and composition

proccedureTranslateAggregation(rel:UMLRelationship; ZPPS:ZPPSpec)

whole, part: String; - names of classes in aggreg/comp relationships
mp: boolean; -- muttiplicity of component (one/many as F/T)
watt: ZPPAtt; ~ attribute to be added to container (by default
- protected, without initial value, and with clause OWNS)
cmp = “component”; — constant string used in def. of attributes
begin
getEndsDescription(rel;whole,part,mp); - get info from relationship
- and then assign name and type to attribute
if {!mp) then -- depending on the multiplicity of the part class
Assign(cmp+part, part;watt) - multiplicity of part one
else
Assign (cmp+part+“s”,“P”+part;watt) -- multiplicity of part many
end if;
addAttToZPPClass (watt,whole; ZPPS); -- add attributes to container class

endTranslatelAggregation;

Fig. 6.19 The TranslateAggregation Procedure

170

- Translation of assocation

procedureTranslateAssociation(rel:UMLRelationship; ZPPS:ZPPSpec)

one, two: String; — names of the two classes in association
zatt: ZPPAtt; — helper ZPP attribute to be added to Z++ classes

— (protected, without initial value, and with clause OWNS)
line: String; - local variable
zcls: ZPPClass; — Z++ class to be created
dscr: =“Descriptor”; - constant strings used in the creation of the new dlass
instOf: =“instancesoOf”;
inst: =“instances”;

begin

zcls.name = rel.name + dscr; - thename of new class is derived from the name of assoc.
getEndsDescription(rel; one, two); - get the names of the two classes in association
formInvariantConstraint (one, two; line); — create predicate for INVARIANT clause
Append(line; zcls.INVARIANT); — and append to new class
AddClassToZPPSppec(zcls; ZPPS); -- append class to Z++ spec.
Assign(instOf + one, “P” + one; zatt);
AddZPPAttToClass (zatt, zcls.name; ZPPS); -- add first attribute to the new dlass
Assign(instOof + two, “P~” + two; zatt)
AddZPPAttToClass(zatt, zcls.name; ZPPS) - add second attribute to the class

FormInstancesType (one, two, ZPPS; stmt)

Assign(rel.name + inst, line; zatt)

addAttToZPPClass (zatt, zcls.name; ZPPS); -- add third attribute
updateSystemDescriptors (zcls; ZPPS); - update descriptors of associations

endTranslateAssociation;

Fig. 6.20 The TranslateAssociation Procedure

171

6.4 Formalisation of UML State Diagrams in Z++

The second part of formalisation is concerned with the translation of UML dynamic
constructs to Z++. More precisely, this formalisation applies to UML state diagrams that are
associated to individual classes, the result consisting in information appended to the Z++
classes created previously during the formalisation of the structural aspects of the system. As
in the case of formalising class diagrams, the focus is on those parts of the translation process
that can be automatically performed. The structure of the present section is similar to that of
Section 6.3, but instead of a set of rules for syntactically correct state diagrams the expected
format of states and transitions is given in a descriptive manner. Also, the Algcrithm for
Formalising State Diagrams (AFSD) is not presented at the same level of details as AFCD
and it does not have an example of implementation included in the thesis’ appendices (due
to space considerations only the code for AFCD is provided in Appendix B). However, an

example of formalising a state diagram is given in Section 6.4.
6.4.1 Constraints on the Contents of State Diagrams

In Subsection 3.3.2 the notions of event, finite state machine and statechart diagram were
discussed and the description of states and transitions was given. Compared with that
description, the AFCD uses a slightly different version of state machine, some elements being
ignored while other are added. In Fig. 6.21 the general form of a transition is presented,
showing the modelling elements used in state diagrams that are accepted by the formalisation
algorithm (the structure of these elements is reflected in the format of the AFSD’s input

detailed in Subsection 6.4.3.1).

As can be seen from Fig. 6.21, the AFSD takes into consideration timed transitions, in the
sense described in [Lano95], but internal transitions of states (which do not cause state
changes) and deferred events (that could be handled by the object in different states) are not
dealt with during the mechanised translation to Z++. Also, signal events are omitted bur all

other possible types of trigger events, namely call event, passage of time event, and change

172

event, are considered. A further simplification is that composite states are not covered,

although their possible treatment is briefly discussed in Section 6.6.

Source State Target State
(initial or regular state) Transition (regular or final state)
entry action event (parameters) > entry action
qcuvvty [guard] a.cnwty : S
exit action [lower, upper] / exit action %
actions £

N
3

vy TE R R L AR M -
B B e S

Fig. 6.21 General Form of a State Transition

A state diagram consists of a finite number of states and a finite number of transitions
between states. Each state is of one of the following kinds: initial, final, or regular (we
introduce the last term to denote a state that is neither initial nor final). Exactly one of the
states is the initial state of the diagram, and zero or more final states can be included in the
state diagram. Each regular state has a unique name within the state diagram and may
contain an entry action, an activity, and an exit action. Initial and final states, which are in

fact pseudostates, do not have names and do not contain actions or activities.

Each transition connects a source state to a target state and is either triggerless (automatic
transition) or has a trigger event of the kind indicated below. A guard condition that can
enable or disable the transition, an additional condition denoted initiation timing condition
(expressed as an interval of time [lower, upper]), and a set of actions can optionally be attached
to the transition. The source state and the targer state of the transition may be the same, and
each transition has only one trigger event. The same event, however, may serve as trigger for

several transitions. The trigger event is of one of the following kinds: call event, denoted by a

173

name, passage of time event, specified in the form after (duration), or change event, given as when
(condition). A call event may have a number of formal parameters, with types indicated. The
guard condition is a Boolean expression that when evaluated as true enables the firing of the
transition, provided the object is in the source state of the transition. When not indicated on
the transition, the guard condition is assumed to be true. The timing limits lower and upper, if
present, indicate the requirements for the transition’s initiation time, more precisely after the
transition is enabled its execution must be initiated no earlier than lower units of time and no
later than upper units of time. The actions attached to the transition as well as the actions and
activities included in states are specified as method invocations, using 2 name and optionally
a list of formal parameters, with types indicated (as in the case of the call events, the
requirement for explicit types of parameters is needed for automated translation purposes,
although usually the types of parameters are not specified in state diagrams). Actions may
represent invocations of operations from supplier classes, in which case the name of an object
of the supplier class precedes the name of the action (the dot notation is used, for instance in
the state diagram for class C an action a.op() denotes the invocation of method op of object a,

where a is an object of Cs supplier class A). Activities of states are assumed to be operations of
the class for which the state diagram was drawn, so the dot notation need not be used (they

are methods invoked on seif).

Depending on the type of their trigger event, the transitions can be classified as externally
invoked if the trigger is a call event or internally invoked if the trigger is a change or passage
of time event, or the transition is triggerless. For formalisation purposes triggerless transitions
are assimilated to transitions caused by “change events” when(true). Anonymous transitions
with guarding condition guard are assimilated to transitions triggered by change events
when(guard). Normally, when a change event when(condition) triggers a transition the guard
component of the transition should be omirtted (included in condition), although the AFSD
processes it properly by appending the guard to the condition of the transition. In order to
simplify the translation procedure, it is assumed that transitions from the initial state are

triggerless, with no guarding condition, execution timing condition, or actions attached.

174

Also, it is assumed that the same call event appears throughout the entire state diagram with

the same formal parameters, including names and types, as do actions and activities.
6.4.2 Translation Principles for State Diagrams

Before detailing the formalisation of the principal components of state diagrams, the states
and the transitions, a number of preliminary observations on the approach taken for

formalising state diagrams are necessary.
6.4.2.1 General Principles and Terminology

First of all, we need to recall that while a transition has a single trigger event an event may
serve as trigger for several transitions (for the time being the point of view is sequential,
meaning that at each occurrence time a trigger event triggers a single transition, but the
transition it triggers may be different over the lifetime of the object). As pointed out by Kim
and Carrington, who cite [Douglass98], each trigger event must have an associated event
acceptor operation in the class for which the state diagram has been drawn [Kim0Ob]. Since
an event may trigger more than one transition, this operation may in fact describe several
transitions. Because it indicates the effects of the event in terms of transitions triggered and
because of notational reasons that will become apparent in Subsection 6.4.2.3, we chose to

use thc term transit operations fOl’ thCSC event acceptor operations.

However, using a single transit operation to cover all transitions possibly triggered by a
certain event can be difficult to formalise mechanically, mainly because of the potential
complexity of the timing constraints included in the HISTORY clause of the Z++ class. In our
approach, we resort to the notion of transition signature for avoiding excessively long
temporal formulae in the HISTORY clause, while keeping reasonably small the number of
transit operations associated to a trigger event. The use of transition signatures, defined
below, provides an intermediary solution between two opposite alternatives: the alternative

of using a transit operation for each trigger event, which may lead to complex formulae, and

175

the alternative of using a transit operation for each transition, which may lead to a large

number of operations included in the Z++ class.

By transition signature we denote the compound resulting from the concatenation of the
following components associated to a transition, starting from the source state: the exit
actions of the source state, the trigger event of the transition, the guard condition of the
transition, the initiation timing constraint of the transition, and the actions attached to the
transition (the parameters of events and actions are also part of the signature). In short, the
signature of a transition includes all the components of the transition depicted in Fig. 6.1,
prefixed by the exit action of the source state of the transition. This signature serves the
purpose of identifying transitions that behave similarly buc differ in the states they connect,
transitions with identical signatures being described by the same transit operation. For
example, in the state diagram of Fig. 3.12, reproduced in a simplified form in Fig. 6.29,
there are three shared transition signatures, namely “when (limited_reached)/stop(),” “goSpeedOne,”
and “off”. (Fig. 6.29 is used in Subsection 6.4.4 for exemplifying the application of the
AFSD).

The above definition of transition signature also hints to the fact that while we attach exit
actions of states to outgoing transitions and include them in transit operations, the entry
actions of the states are not formalised using transit operations. This is further explained in

Subsection 6.4.2.2.

For formalisation purposes, a number of additional conventions are introduced, as follows:

® A uansition triggered by a call event is said to be a simple transition if its signature
consists exclusively of the name of the trigger event and, if provided, of the names and
types of the parameters of the event (in other words, the source state of the transition has
no exit acrion and the transition itself has no guard condition, no initiation timing
condition, and no actions). The notion of simple transition describes a non-guarded

asynchronous method call with no restrictions on initiation time and no appended

176

actions (examples of such simple transitions in Fig. 6.29 are reverseDirection, goSpeedOne,
goSpeedTwo, and off);

® Since several transit operations may be created for the same trigger call event, a basic
name for the transit operations associated with the call event is needed. The basic name is
the name of the event, for instance if the call event is sendCharacter(c: char) the basic name
for the transit operations will be sendCharacter, and if more than one transit operation will
be created, they will be denoted sendCharacter1, sendCharacterz, etc. (an exception applies if one
of the transit operations describes the simple transition associated with the event —in this
case the name sendCharacter will be used for it, without an index appended). To distinguish

. berween the operations that model the transitions and the event that triggers the
transitions, in the Z++ specification the name of the event will be prefixed by o, for

instance the call event in the case described above will be denoted wsendCharacter.

A note on the creation of Z++ operations describing transitions, actions, and activities is also
necessary. During the formalisation of the state diagram, when such an operation is to be
created, an operation with the same name may exist as the result of previously applying the
AFCD. In this case, it is no longer necessary to create another operation, but an error
message will be generated if the input and output domains, as well as the input and output
lists of the existing operation do not match the ones that would be generated for the new

operation.
6.4.2.2Translation of States

The formalisation of states proceeds as follows:

® An enumerated type (State will be created in the TYPE clause of the Z++ class C
corresponding to the UML class associated to the state diagram (e.g., a type DisplayState in
the class Display). The elements of this type are the names (in lowercase) of the regular
states included in the state diagram plus the names final, K > 1, generated incrementally for

each final state present in the state diagram (final states are included here for the sake of

177

completeness, although they appear rarely in RTS). In addition, an attribute state of type
CState denoting the current state of the object will be created in the owNs clause. The state
attribute, local to the class, will not be listed in the PUBLICS clause of the Z++ class;
The name of the target state of the transition outgoing from the initial state will be used
as initial value for the state attribute. The initialisation of state will be performed in the init
operation of the Z++ class;
The names of the regular states and the generated names of the final states will be used to
construct predicates in the HISTORY clause of the Z++ class, along the lines proposed in
[Lano95]. Specifically, the following categories of predicates will be generated:
permission predicates, definition of transition effects, and reachability properties. Delay,
duration, and other timing constraints will also be included in the HISTORY, and the
names of the states will be used in these constraints as well, as detailed later in the
description of translations of state actions, state activities, and transitions (the last
category of HISTORY predicates, describing mutual exclusion properties, involves only the
names of transitions). For the first three categories of predicates, the following apply:
- the permission predicates relate transitions with their source states and will be given
in the form
O(transit _operation = state = sourcestate; v ... v state = sourcestaten);
- the predicates describing the effect of transitions relate transitions with their target
states and will be given as
O (transit_operation => O(state = targetstate; v ... v state = targetstatey));
- the predicates for reachability indicate the relationships between source states and
their outgoing transitions, and will be specified in the form
O (state = sourcestate = transit_operation; v ... v transit_operationp)
The names of regular and final states will be placed accordingly in the above predicates,
as will be the names of transit operations created as detailed in Subsection 6.4.2.3.
The entry action of each state, as well as the activity of the state will be formalised as
local operations of the Z++ class, if not already declared otherwise in the class. The
principles of translating UML operations described in Subsection 6.3.2.3 apply here as

well, the names and the types of the parameters of the actions and activities being

178

processed in the same way the names and the parameters of operations are processed by
the AFCD. A distinction occurs however if an entry action represents the invocation of a
method on an instance of a supplier class. Since the class of this supplier object is not
specified in the format of entry actions, no generation of operation will take place and no
verification will be made to ensure that the method invoked actually exists, but a
reminder in the generated Z++ specification will be included as a comment (e.g.,
/I >> check invocation heater.raiseTemp(deita) is valid <<). This remainder will help the specifier to
complete the formalisation of the state diagram after the AFSD is applied. If an
operation with the same name already exists in the Z++ class as the result of previously
applying the AFCD no action will be taken, the idea being that entry actions and
activities may be operations already declared in the UML description of the class
included in the class diagram provided as input to the AFCD. Temporal specifications
on the entry action and the activity of the state will be appended in the HISTORY clause
of the Z++ class as follows:

- if the entry action entry_action(paramsg) exists in state S, where paramsg are the names of

the action’s parameters, then the predicate

VieN; e T (entry_action(paramse), i) = #((state = S) := true, i)

will be added to indicate that the entry action initiates its executions as soon as the
state is entered;

- if the entry action entry_action(paramsg) is followed by an activity activity(paramsa), where
paramsp are the names of the activity’s parameters, then temporal chaining between the

two will be indicated as

VieN; e { (entry_action(paramse), i) = T activity (paramsy), i)

meaning that the termination of the entry action coincides with the initiation of the
activity;

- if the state has only activity (paramsa) but no entry action, the predicate

VieN; o T (activity (params), i) = #((state = S) := true, i)

179

will be included to indicate that the state’s activity commences its executions as soon
as the state is entered.
For both the entry action and the activity the precondition state = § will be added to the
definition of the operations that describe them;
® The exit actions of the states will be covered by transit operations created to formalise

translations, as described in the next subsection.

6.4.2.3 Translation of Transitions

Each transition will be formalised using a transit operation declared in the OPERATIONS
clause and defined in the AcTIONS clause of the in the Z++ class. As previously stated, a
transit operation describes several transitions with the same signature. Differences exist
between the formalisation of externally invoked transition (transition whose triggers are call
events) and internally invoked transitions (transitions triggered by change or passage of time

events), as follows:

® If the transition is triggered by a call event denoted cll, then for formalisation purposes
the basic name of the transit operation will be call and the event itself will be denoted wcall.

For each such transition:

- an operation call with the signature included in the OPERATIONS clause and definition
included in the AcTIONS clause of the Z++ class will be created using the information
provided by the parameters of the event ocal for defining the inputr and outpurt
domains of the operation’s signature and the input and output lists of the operation’s
definition. The name of this operation will be included in the puBLIC clause of the
class;

- if this is the only transition in the state diagram triggered by wcall, or if all the
transitions triggered by ocall have the same signature, then the above is the only
transit operation associated with wcall. Information extracted from the transitions that

have the same signature will be appended to the Z++ class as follows:

° if the guard condition guard is specified then a predicate of the type

180

(enabled(call) = (state = S1 v ... v state = S) A guard)

will be included in the HISTORY clause of the Z++ class. In this predicate the
states S1, ... , Sk are the source states of the transitions that share the same
signature. Since the well-formedness of the guard condition is not verified, a
reminder for the human specifier to check the condition will be included as a
comment, in the form // >> check condition [guard] is well-formed <<; The inclusion of this
predicate in the HISTORY clause allows further specification by the human
formaliser of detailed temporal constraints regarding the execution of transition,
for instance in the case of a transit operation that corresponds to a single guarded

transition it is possible to write

(enabled(call) = (state = sourcestate) A guard) A

VieN,e 3, ji, j2eN, ((state = sourcestate) A guard) O (wcall, j} A

& (wall,j) = —> (call, i) A ((state = sourcestate) A guard) ©T (call, i) A

L(cll,i) = & ((state = sourcestate) := false, j1) A

L(call,i) = & ((state = targetstate) := true, j2)
The above indicates the conditions under the operation call is enabled, shows that
the enabling condition holds at the time of the j-th occurrence of the trigger
event wall and that the operation is requested as soon the trigger event occurs. It
also indicates that the enabling condition still holds at the initiation of the
operation and details the change of state at the termination of the operation (the
assumption is that sourcestate and targetstate are distinct, otherwise the last two lines
should be omitted);

if specified, the timing condition [lower, upper] will be used for including in the

HISTORY clause the predicate

Vi € Ny e fires (call,i} = lower <delay (call,i) < upper

which indicates that the execution of call initiates sometime berween lower and

upper units of time after the request for execution is made;

181

° in the definition of the operation call predicates relating the source state with the
target state of all transitions covered by the operation will be included in the

form

(state = sourcestate A state’ = targetstates) v ...v (state = sourcestatex A state’ = targetstatex)

unless there is only one target state involved, in which case the inclusion of the
predicate state’ = targetstate will suffice (conditions on source states will be included
in permission and reachability predicates);

° the state exit action and the actions attached to transitions are formalised as class
operations declared in the OPERATIONS clause and defined in the AcTIONS clause
of the Z++ class. These operations, which are local to the class, will have their
invocations appended in sequence in the definition of the call operation (the
order is the exit action first, followed by the actions attached to transitions in the

order they are written on the transitions).

if there are several distinct signatures for the transitions triggered by wcall, then for
each distinct signature a transit operations will be created in the OPERATIONS clause
and defined in the ACTIONS clause of the Z++ class. These operations will be declared
public. If one of the transition signatures is the signature of a simple transition, then
the corresponding transit operation is the call operation created previously, the
remaining operations being named i, allz, etc. If there is no simple transition
signature among the signatures of transitions triggered by wcall, then the names of the
operations will be cally, callz, etc.;

for each transit operation calik (K = 1), information extracted from the transitions that
have the same signature will be appended to Z++ class in the manner described above
for processing guards, initiation timing constraints, and source and target states.
However, the state exit action and the actions attached to the transitions are
appended in the following order to the body of the transit operation: state exit action
first, followed by the invocation of the simple operation call, and then by the actions

attached on transitions, in the order they are specified on transitions. Operations for

182

state exit action and transition actions are created in the Z++ class in the way

described previously;

If the transition’s trigger event is a change event when(condition) then the formalisation
proceeds in a way similar to the one described for transitions triggered by call events, the
difference being that no operation for the simple transition is created and that internal
(spontaneous) transit operations with the name 1, k 2> 1, will be generated
incrementally, one for each group of transitions that have the same signature. These
internal operations are local to the class, therefore their names will not be included in the
PUBLICS clause of the Z++ class. The condition of the event will be appended to the guard
condition of the transitions, if any, and will be used in the above given formulae in the

place of guard;

If the transition’s trigger event is a passage of time event after(time_expression) then the
formalisation is similar to that of transitions triggered by change events, internal transit
operations with the name Tk being generated incrementally by the algorithm for each
group of transitions that have the same signature. The only difference resides in the way

the temporal condition is handled. For each such condition the predicate

Vi € Ny @ enabled (T) A T(Tk, i) = & ((state = sourcestate) := true, i) + time_expression

will be appended to the HISTORY clause of the Z++ class meaning that the operation is
initiated after time_expression units of time from the moment the state is entered, provided
the transition is enabled. This predicate need be checked by the human specifier, since

no verification of the validity of the time expression is performed by the AFSD.

The translation of transitions continues until all trigger events present in the state diagram

are processed, each trigger event leading to the creation of one or more transit operations.

Then, all the transit operations created in the translation process will be used to generate

mutex and self-mutex predicates, permission predicates, effect of transition predicates, and

183

reachability predicates, all included in the HISTORY clause of the Z++ class as indicated in
Subsection 6.4.2.2. For the first category, it is assumed that transitions in UML state
diagrams are both mutually exclusive and mutually self exclusive (see definition of these
properties in Chapter 5), therefore the names of all transit operations will be included in

both the mutex and self_mutex expressions appended to the HISTORY clause.

6.4.3 Algorithm for Formalising State Diagrams (AFSD)

In the same way the AFCD was described in Section 6.3, the AFSD is presented in this
section through the structure of its input and output and through the pseudocode
description of its executable contents. For separation of concerns purposes it is assumed that
AFSD is invoked after AFCD, although they can be merged in an implementation, as
discussed in Section 6.6. With this assumption, the Z++ class structure corresponding to the
one developed in the UML space is already available, thus the AFSD only appends

information to Z++ classes and is not concerned with the creation of classes.

6.4.3.1AFSD Input

The input for the AFSD is provided by the Z++ specification resulted from the execution of
the AFCD, specification given in the formart presented in Subsection 6.3.3.2, and by a finite
state diagram SO that consists of the tuple (S, 7), where S is a set of states and T'a set of

transitions between states, 7: S «— S. In terms of the structure, the following are considered:

S ={So,...Sn11,N 2 O
T = (To,..Tm1}, M20 (6.62)

Each state S in § has the following format:

S = (name, kind, entry_action, activity, exit_action) (6.63)

where name is a string identifier (nul if the state is not regular), and kind is one of the following:
initial, regufar, or final. The components entry_action and exit_action can be null, if not provided, or

actions given in the form:

184

action = (name, params) (6.64)
while activity is either nul (if not provided) or an action prefixed by the name of an object,
which is a string identifier, possibly nuli:

activity = (objectname, action) (6.65)

In (6.64) params are given in the formar indicated for operation parameters in (6.49) and

(6.50).

Each transition T in Tof (6.62) has the form:

T = (source, target, trigger, guard, time_range, actions) (6.66)

where source and target are states that belong to S, guard is a Boolean expression including

the default value true, time_range is either null or given as an interval [lower .. upper] with lower

and upper numerical values such that lower < upper, and actions has the form:

actions = {actiono, ... , actionnac1}, Nact =0 (6.67)
with each action given in the format (6.65). The last component of a translation, the trigger
event has the following form:

trigger = (kind, body) (6.68)

where kind is one of the following: none (used only for the transition from the initial state),
call, change, or timing. If the kind of the trigger event is none, than its body is null, and if the kind
of the trigger is call, then its body has the form:

body = (name, params) (6.69)
where name is a string identifier and params a list of parameters with the structure specified

in (6.49) and (6.50). If the kind of the trigger is change, its body has the form:

body = (condition) (6.70)

185

where condition is a Boolean expression. If the kind of the trigger is timing, then its body has

the form:

body = (duration) 6.71)

where duration is a timed-valued expression.

6.4.3.2AFSD Output

The output of the AFSD is a Z++ specification having the structure described in Subsection
6.3.3.2. Under the assumption indicated at the beginning of Subsection 6.4.3, this output is
generated by appending information to the Z++ specification provided as input to the

AFSD.
6.4.3.3 AFSD Pscudocode

Using the convention (6.42) for the representation of procedures, the pseudocode
description of AFCD is given in Figures 6.22 to 6.28. These figures show the higher level
modules of the AFCD, designed according to the principles of translation outlined in
Subsection 6.4.2. Since comments are included in procedures only some brief explanations

are given below.

The SDTranslateProcedure of Fig. 6.22 coordinates the entire formalisation work. Its three
major components are the TranslateStates, TranslateTransitions, and WriteHistoryPredicates
procedures. The TranslateStates procedure shown in Fig 6.23 has two roles: the first of
creating the enumerated type State and the attribute state of this type (with proper
initialisation), and the second of coordinating the individual formalisation of states. Each
state is processed individually by the TranslateState procedure (Fig. 6.24), which appends the
name of the state to the members of the State type and formalises the entry action and the

activity of the state, if available.

186

Transitions are processed based on their trigger event by the TranslateTransitions procedure
(Fig. 6.25). Derails on the formalisation of transitions triggered by call events are given in
Fig. 6.26, which contains the pseudocode of the ProcessCallTrans procedure. Since call events
are asynchronous method calls a simple transit operation is generated in any case for the
event, based on the name and parameters of the call event. If there is a single transition
signature for this event, it is assumed that the simple transit operation is the only such
method needed by the developers of the state diagram, hence the additional work on the
simple transit operation done by procedure CompleteUniqueTransitOperation (not detailed in
the AFSD pseudocode). In fact, if there are no guards, time range, state exit action and
transition actions in this single transition signature, the procedure does nothing else other
than appending the simple transition operation created previously to the list of transit
operations maintained by the state diagram. Since the processing of translations is driven by
the trigger events present in the state diagram, it is necessary to mark as “processed” the

transitions covered in each invocation of the ProcessCallTrans procedure.

If there are several transition signatures for the same call event, the GenerateTransitOperation is
invoked for each such signature, as shown in Fig. 6.27. Formalisation work involving the
processing of state exit action, of the guard condition, of the initialisation timing condition,

and of the actions attached to transitions is performed here.

The last procedure shown for the AFSD, the WriteHistoryPredicates, appends to the HISTORY

clause of the Z++ class a number of predicates, as indicated in Subsection 6.4.2.2.

~UML to Z++ translation of a state diagram

procedure SDTranslate(SD:StateDiagram, zcls:String;ZPPS: ZPPSpec)

begin
TranslateStates (SD, zcls; ZPPS); -- process states
TranslateTransitions(SD, zcls; ZPPC); -~ process transitions
WriteHistoryPredicates (SD, zcls; ZPPC) - add predicates to the HISTORY clause

end SDTranslate;

Fig. 6.22 The SDTranslate Procedure

187

-- Transiation of states

procedure TranslateStates(SD:StateDiagram,zcls:String;ZPPS:ZPPSpec)

ZppET: ZPPEnumType; ~ enumerated type to be created
state: ZPPAtt; — and an attribute of this type

begin
for i = 0 to N-1 do — inspect all states in the state diagram

TranslateState(SD,SD.S[i],2cls;ZPPS, zppET) - translate each of them and
— create the enumerated State type

end for;

AddTypeToZPPClass (zppET, zcls; ZPPS) ; — add type to Z++ class
Assign(“state”, zcls+"“STATE” ; zatt); - create attribute state:ClassState
AddzpPPAttToClass (zatt,zcls; ZPPS) ; - add it to the class
InitialiseStateAtt (SD,zcls; 2PPS) ; - and initialise the state attribute

end TranslateStates;

Fig. 6.23 The TranslateStates Procedure

- Translation of an individual state

procedure TranslateState(SD:StateDiagram,S:State,zcls:String;
ZPPS:ZPPSpec, zppET : ZPPEnumType)

begin
if (S.kind == final) then — incrementally generate names of final
AppendFinalState(; zppET, S.name) — states and append them to STATE type
else if (S.kind = regular) then
AppendState(; zppET) ; — append name of reg. state to type
if (S.entry_act /= null) then
ProcessEntryAct (S, zcls; ZPPS) ; - formalise entry action
if (S.activity /= null) then
ProcessActivity(S, zcls;ZPPS); - formalise activity
endif;

end TranslateState;

Fig. 6.24 The TranslateState Procedure

188

- Translation of transitions

procedure TranslateTransitions(SD:StateDiagram, zcls:String;
ZPPS:ZPPSpec)

begin
for i = 0 to M-1 do — inspect all transitions
if (not Processed(T[i].trigger)) then — if not already processed
if£(T(i].kind == call) then — process the transition
- based on its trigger event:
ProcessCallTrans (SD,T([i], zcls; ZPPS) — call event trigger,
else if (T{i].kind == change) then
ProcessChangeTrans (SD,T[i]), zcls;ZPPS) - change event trigger, or
else if (T[i]).kind == timing) then
ProcessTimingTrans (SD,T[i], zcls;2ZPPS) - passage of time trigger
end if; — (the transition from the
end if; — initial state is not processed)
end for;

end TranslateTransitions;

Fig. 6.25 The TranslateTransitions Procedure

— Translation of transitions triggered by a call event

procedure ProcessCallTrans (SD:StateDiagram, T:Transition,
2cls:String; ZPPS:ZPPSpec)

tsigns([]: TransSign; -- holder for transition signatures
postfixNo: int := 1; — number to be appended to op. names
begin

— create simple operation for this trigger
GenerateSimpleTransitOperation(T.trigger, zcls; ZPPSpec);

FormTransitionSignatures (SD,T.trigger;tsigns) - determine all trans. signatures

if (tsigns.size == 1) then — if one only, update simple op.
CompleteUniqueTransitOperation(SD, tsigns{0}, zcls;ZPPC)

else - otherwise generate a trans. op
for i = 1 to tsigns.size do - for each signature

GenerateTransitOperation(SD, tsigns[i}, zcls;ZPPC)

end for;

end if;

-- mark “processed” all transitions with this trigger
MarkTransitionsProcessed (T.trigger;SD);
end ProcessCallTrans;

Fig. 6.26 The ProcessCallTrans Procedure

189

— Creation of operations for a transition signature

procedure GenerateTransitOperation(SD:StateDiagram, tsign:TransSign,
zcls:String; 2PPS: ZPPSpec)
zop: ZPPOp; -- transit op. to be created
begin
if (isSimpleTransSignature(tsign)) then
CompleteUniqueTransitOperation(SD, tsign, zcls; ZPPC)

else
SetName (T.trigger.name+getPostfix; zop); - assign postfix number
ProcessExitAction (SD, tsign, zcls; zop, ZPPC) ; — process exit action
ProcessGuard (SD, tsign, zcls, zop.name; ZPPC) ; — use guard for HISTORY
ProcessTimeRange (SD, tsign, zcls, zop.name; ZPPC) ; - use time range for HISTORY
RelateStatesInOperation(SD, tsign; zop): - relate source and target in
- operation body
AppendActions (SD, tsign, zcls; zop, ZPPC) ; -- create operations as needed
- and append actions to op.
AddOperation(zop, zcls; ZPPC) ; — finally, attach op. to class
end if;

end GenerateTransitOperation;

Fig. 6.27 The GenerateTransitOperation Procedure

— UML to Z++ translation of a state diagram

procedure WriteHistoryPredicates(SD:StateDiagram, zcls:String;
2PPS:2PPSpec)

begin
WriteMutexSelfMutex (SD,zcls;ZPPS); - wrte mutex and self-mutex predicates,
WritePermissions (SD, zcls;ZPPC); -- permission predicates,
WriteTransEffects (SD, zcls; ZPPC) ; - transition effects predicates,
WriteReachability (SD, zcls; ZPPC) -- and reachability predicates in HISTORY clause

end WriteHistoryPredicates;

Fig. 6.28 The WriteHistoryPredicates Procedure
6.4.4 Example of Formalising a State Diagram

In order to illustrate the proposed approach for formalising state diagrams the state diagram

shown in Fig. 3.12 is reproduced here in a reduced form, stripped of annotations and with

190

shorter names for some of its states (Fig. 6.29). By applying the AFSD described in
Subsection 6.4.3, the Z++ class presented in Fig. 6.30 is obtained.

f
®- °
3

permissionToRestart / reset() (Blocked
off t
when (imit_reached) /
reverseDirection S0
/'/\‘
/ A | ~ 9oSpeedOne -
Stopped SpeedOne
when N
(target_reached) / [when (limit_reached) /
stop() l stop()
goSpeedTwo |
‘ goSpeedCne
l
|
o
SpeedTwo

R R R T S g D L A2 R T R S S TR S o4)

Fig. 6.29 DCMotor State Diagram from the ACTS

The notions of transition signature and transit operation can be easily related to the
particular context of the DCMotor state diagram and of the DCMotor Z++ class obrained from
it. To further describe the two notions, let us assume that another transition permissionToRestart,
this time with two actions attached, stop() and reset(), is added to the state diagram,

connecting the states SpeedTwo and Stopped (the latter being the target state of the transition).

191

CLASS DCMotor EXTENDS Motor
PUBLICS

permissionToRestart, reverseDirection, off, goSpeedOne, goSpeedTwo
TYPES
DCMotorState ::= stopped | blocked | speedone | speedtwo | final

FUNCTIONS
OWNS

state : DCMctorState

RETURNS
OPERATIONS

permissionToRestart: — ;
reverseDirection: — ;
off: — ;
goSpeedOne: — ;
goSpeedTwo: — ;

*Ti1: =

YT &
stop: — ;
reset: —

INVARIANT
ACTIONS
init ==> state’ = stopped;
permissicnToRestart ==>reset;
state’ = stopped:
reverseDirection ==> state’ = stopped;
off ==> state’ = final;
goSpeedOne ==> state’ = speedone;
goSpeedTwo ==> state’ = speedtwo;
*11 ==> stop;
state’ = blocked;
*12 ==> state’ = stopped;
stop ==> ;
reset ==
HISTORY

// mutual exclusion properties

mutex({permissionToRestart, reverseDirection, off, goSpeedOne,

goSpeedTwo, T1, I2}) A
self mutex({permissionToRestart, reverseDirection, off, goSpeedOne,

goSpeedTwo, Ti1, T2}) A

Fig. 6.30 Z++ Class DCMotor Generated by the AFSD (continued on next page)

192

// permission predicates

“(permissionToRestart = state = blocked) A
~(reverseDirection = state = stopped) A

~(off = state = blocked v state = stopped) A
Z{goSpeedOne = state = stopped v state = speedtwo) A
Z(goSpeedTwo = state = speedone) A

Z(T1 = state = speedone v state = speedtwo) A

—(X2 = state = speedone) A
// definition of transition effects

Z(init = O{(state = stopped)) A
Z(permissionToRestart = O (state = stopped)) A
~(reverseDirection = O(state = stopped)) A
Z{off = O(state = final)) A

2(goSpeedOne = O(state = speedone)) A
Z(goSpeedTwo = O(state = speedtwo)}) A

Z(x1 = O(state = blocked)) A

Z(t2 = O(state = stopped)) A

// reachability properties

—(state = stopped = reverseDirection v off v goSpeedOne) A
—(state = blocked => permissionToRestart v off) a

Z(state = speed_one = goSpeedTwo Vv Ii1 VvV I2) A

Z{(state = speed_two = goSpeedOne v T1) A

// delay, duration, and other constraints

(enabled(t1) = (state = speedone v state = speedtwo)
A limit reached) A

// >> check [limit_reached] is well-formed <<
(enabled(t2) = (state = speed_one) A target_reached)

// >> check [target_reached] is well-formed <<

END CLASS

Fig. 6.30 Z++ Class DCMotor Generated by the AFSD (continued from the previous page)

In this situation two distinct transition signatures would exist for the transitions triggered by

the call event permissionToRestart. In terms of operations, the pemissionToRestat would still be
. . « s ”» . . - -

generated as an operation (corresponding to a “simple” transition), but it would not be in

fact a transit operation. Thus, it would no longer be included in HISTORY predicates, and its

193

body would be empty. The two distinct transition signatures would have associated two
transit operations, permissionToRestart; and permissionToRestartz, which would be used to describe state
changes. In their bodies, an invocation to permissionToRestart would be included before the
invocation of their specific actions. During the enhancement of the Z++ specification, the
human formaliser could decide whether these three operations can be replaced by a single

(but more complex) operation.

6.5 Deformalisation: From Z++ Specifications to UML Representations

As discussed in Section 6.2, the reverse mapping, from Z++ to UML, can be useful in certain
situations. As in the case of formalisation, this “reverse” translation can be partially
mechanised, but it should be noted that relevant information included in the Z++
specification can be lost (in particular, various types, constraints, and bodies of operations).
In this section a number of guiding principles for deformalisation are suggested and the

outline of an Algorithm for Deformalisation (ADF) is presented.
6.5.1 Principles of Deformalisation

In the following, it is considered that a Z++ specification with the structure given in Section
6.3.3.2 is available, based on which a class diagram together with a set of state diagrams
associated to individual classes can be obtained. For the ADF the structure of the output
class diagram is the one given in Subsection 6.3.3.1, while the state diagrams are represented

as described in Subsection 6.4.3.1.

6.5.1.1 Assigning Types for UML Autributes, Parameters of Operations, and

Operation Returns

Due to the specifics of Z++, not all attributes, parameters of operations, and returns of

operations present in the Z++ specification will have their types translated to UML. Only

194

attributes specified as att:itypespec in Z++, with typespec detailed as below, and only
parameters of operations and returns of operations that correspond to input or output
operation domains specified as typespec will have their types mapped to UML. The format

of typespec that allows an automated translation of type to UML is one of the following:

@ T (“scalar form”), where T is the name of a given set, or of an enumerated type, or of a
regular Z++ class, or of a predefined Z type (N, 2, or R). If T is N the corresponding
UML type will be unsigned int, if Tis 2 the type in UML will be int, if T is R the type in
UML will be real, and in all other cases the type in UML will be T;

(b) seq(T), PT, or FT (“array form”), with T given as in (a) above. In this case, if T is N the type
used in UML will be unsigned int[], if T is 2 the UML type will be int[], if T is R the type
will be real[], and in all other cases the corresponding UML type will be T(};

(c) T{params] (“generic form”), where T is the name of a generic class included in the Z++
specification and params a list of names denoting actual parameters whose types are
assumed to be of form (a) (parameters of generic classes may not be arrays or instances of

generic or binding classes). In this case, the translated type in UML will be T[params].

In practical terms, the above restrictions on typespec signify that more complex Z++
specifications of types (e.g., involving functions, relations, or Cartesian products) are not

mapped automatically to UML.
6.5.1.2 Generating Attributes for UML Classes

The following apply for obtaining the attributes of a UML class C, whose correspondent Z++

class is C (for easier referencing the latter will be denoted zC in the following):

® Each artribute att included in the OWNS clause of the ZC class will have a corresponding
attribute att in the C class, provided that the type of the attribute is not a class type
(ateributes of class type will lead to the creation of associations and aggregations, as
shown in Subsection 6.5.1.5). The property of this attribute will be changeable, the type of

the actribute will be assigned according to the principles presented in Subsection 6.5.1.1

195

for the translation of types, and the visibility of the attribute will be public if att is included
in the clause PUBLICS of class ZC, private if it is used in the hiding operation defining the
Z++ class H_C, and protected otherwise. The initial value initval will be given to the attribute
in the C class if an assignment statement att = initval exists in the init operation of class zC;

From the FUNCTIONS clause of ZC, each attribute att will be extracted and included in the
UML class C if the definition att:typespec is present in a axiomatic definition included in
the clause. The property of this attribute will be frozen, the type of the attribute will be
assigned according to the principles for translating types presented in Subsection 6.5.1.1,
and the visibility of the attribute will be private if the name of the attribute is used in the
hiding operation defining the Z++ class H_C, and protected otherwise (attributes declared in
the FUNCTIONS clause cannot be public). The initial value initval will be given to the attribuce
in the C class if a statement att = initval exists in the predicate part of the axiomatic

definition of the FUNCTIONS clause.

6.5.1.3 Generating Operations for UML Classes

The following apply for obtaining the operations of a UML class C whose correspondent Z++

class is ZC:

Internal operations of class ZC (operation prefixed by the symbol *) and the init operation

of the class will not be translated to UML;

All other operations of ZC will be treated as follows:

- The name of the operation in ZC will be used as the name of the corresponding
operation in C;

- The visibility of the operation will be public if the name of the operation is included in
the PUBLICS clause of ZC, private if the name appears in the hiding operation defining
the class H_C, and protected otherwise;

- The property of the operation will be query if the operation is declared in the RETURNS
clause of ZC and none if it is declared in the OPERATIONS clause;

196

- The return type of the operation will be assigned according to the principles
described in Subsection 6.5.1.1, based on the output domain of the operation
specified in either the RETURNS or the OPERATIONS clause of the ZC class;

- The parameters of the operation in class C will receive the names used in the
definition of the operation included in the ACTIONS clause of zC. For each parameter,
the direction of the parameter will be in if the name of the parameter is decorated
with the symbol 2, out if it is decorated with the symbol !, and inout if the parameter
appears in both the input and the output lists of the operation. The type of each
operation parameter will be assigned as described in Subsection 6.5.1.1, based on the
input and output domains of the operation, which are listed in either the RETURNS or
the OPERATIONS clause of ZC;

- The precondition of the operation as well as the body of the operation will not be
translated to UML. However, assignment statements included in the init operation
will be used for assigning initial values to attributes in UML, and predicates
involving the state attribute, if available, will be inspected when generating state

diagrams.

6.5.1.4 Generating UML Classes

The following apply for obtaining UML classes from a Z++ specification:

Each class C in Z++ that is not a descriptor of an association (associtaion descriptor
classes were introduced in Subsection 6.3.2.5) will have a correspondent class C in UML.
If the Z++ class C has an associated hiding class H_C in Z++, the list of hidden features
used in the hiding operation that defines H_C will be employed to assign the visibility
private to the corresponding features (attributes and operations) of the UML class C, as
described in Subsections 6.5.1.2 and 6.5.1.3;

Each generic class G in Z++ will be translated to generic class G in UML, the names of
the formal class parameters of the Z++ class G being used as names for the formal class

parameters of the UML class G;

197

A binding UML class Glactual_params] will be created whenever a type Glactual_params] is
encountered in the Z++ specification, with G matching the name of an existing generic
class G in Z++ and the number of actual parameters actual_params equal to the number of
the formal parameters of the Z++ class G (however, the names of the actual_params should
not be the same with the names formal_params of the generic class). If not already present, a
binding relationship between the binding class and the generic class will be drawn in the
class diagram, with the names of the actual parameters used to differentiate the binding
class from other possible classes that instantiate the same generic class (see also
Subsection 6.5.1.5 on generating relationships);

The attributes and the operations of each regular or parameterised UML class will be
obrained as indicated in Subsections 6.5.1.2 and 6.5.1.3, based on the inspection of the

corresponding Z++ class.

6.5.1.5 Generating Relationships

Relationships will be generated in UML class diagrams as follows:

Generalisation relationships will be obtained based on the information included in the
EXTENDS clause of Z++ classes. For each class P (parent) included in the EXTENDS clause of
the Z++ class C (child) a generalisation relationship between P and € will be created in the
class diagram. If the EXTENDS clause of C includes a hiding class H_P, the relationship in
the class diagram will be nevertheless between P and C;

Instantiation relationships will be obtained based on the attributes of generic type
Glactuai_params], where G is the name of a generic Z++ class. A binding class
Glactual_params] will be created for each different set of actual parameters actual_params
encountered for G, and a instantiation relationship between this class and the generic
UML class G will be included in the class diagram;

Associations will be obtained in two ways:

(a) From association descriptor classes that exist in the Z++ specification (their

description was given in Subsection 6.3.2.5). For each such descriptor class an

198

association relationship will be created in the class diagram between the classes A and
B included in the definition of instances0f attributes of the association descriptor class;
(b) From attributes of the type D, seq(D), PD, or FD where D is the name of a Z++ class.
For each such attribute encountered in a Z++ class C an association relationship
between UML classes C and D will be created in the class diagram. The attribute may
indicate in fact an aggregation or a composition relationship, but the human
formaliser will be required to change the type of the relationship if necessary;
Aggregations and compositions will not be generated automatically by the ADF but, as
mentioned above, some of the association relationships produced by the ADF may in
fact be aggregations or compositions. It will be left to the human specifier to make the

necessary changes.

6.5.1.6 Generating State Diagrams

State diagrams will be created by the ADF only for those Z++ classes C that have an

enumerated CState (or State) type defined in their TYPE clause and an attribute state of this

type declared in their OWNS clause. For each such Z++ class a state diagram “C's State

Diagram” will be generated as follows:

The names of the enumerated type State’s members will be used as names of the states
created in the state diagram (however, final states, which will be created as well, will not
receive names);

If an initialisation assignment state = entrystate exists in the init operation of the Z++
class, an initial state will be created and an anonymous, non guarded and actionless
transition from the initial state to entrystate will be created;

Based on the predicates included in the HISTORY clause of the Z++ class and on the
predicates included in the transit operations of the class (specifically, predicates that
relate source states with target states) transitions will be created in the state diagram. For
each transition, the name of the transit operation that describes the transition in class €

will be attached to the transition in the state diagram.

199

6.5.2 Outline of the Algorithm for Deformalisation (ADF)

Based on the principles proposed in Subsection 6.5.1 for the generation, starting from a Z++
specification, of a UML model consisting of a class diagram and of a set of state diagrams
associated to classes, an outline for a deformalisation algorithm is presented in Fig. 6.31 to
6.33. This outline describes the ADF only in terms of its high level components, but it

covers nevertheless all the significant aspects of the Z++ to UML translation process.

As a matter of general approach, the mapping of the Z++ specification to a UML model can
be tackled in (at least) two ways. One alternative is to design the algorithm in a manner that
allows the successive generation of the major modelling elements of the UML space, namely
the classes, the relationships, and the state diagrams. This approach would require however a
triple processing of the individual Z++ classes, the first for creating the UML class structure
that mirrors the one present in the formal specification, the second for generating the
relationships between classes, and the third for creating state diagrams for those classes in
which state changes are explicitly described in Z++ via a state actribute. While this approach
allows a better separation of concerns, an incremental development of the UML model in
terms of major kinds of artefacts, and a less complex structure of the algorithm, it is however

less efficient in terms of implementation.

Since this alternative involves a repeated treatment of each Z++ class and we envisage the
possibility of applying the deformalisation process on an individual class or a group of
selected classes, we have opted for a second approach, that of generating all types of UML
elements —classes, relationships, and state diagrams— through a single inspection (processing
loop) of the Z++ classes, each class being mapped to UML elements based on the
information contained in its definition and on the information provided by the context of
the Z++ specification. While this approach allows the complete treatment of an individual
Z++ class in a single processing step, it has the disadvantage that the generation of some
UML elements is “buried” in modules whose primary purpose is different, more precisely

binding classes and association relationships are created, if necessary, during the processing of

200

attributes (this is nevertheless in agreement with the translation principles described in

Subsection 6.5.1.5).

The approach we have taken is apparent in the top-level ADF procedure, presented in Fig.

6.31.

- Z++ to UML translation

procedure ADF(ZPPS:ZPPSpec;CD:ClassDiagram, SDS:StateDiagrams)

begin
for i = 0 to Nz-1 do — process ail Z++ classes
TranslateZPPClass (ZPPS, ZPPS.2C[i] ;CD, SDS) ;
end for;
PrintClassDiagram(CD) ; — show/save results: class diagram -
PrintStateDiagrams (SDS) ; - and state diagrams
end ADF;

Fig. 6.31 The ADF Procedure

The particular treatment of a Z++ class is handled by the TranslatezPPClass procedure, which
coordinates the generation of the UML class, the processing of generalisations, and, if
appropriate, the generation of the state diagram associated with the class (Fig. 6.32). The
last procedure shown for the ADF, GenerateUMLClass, describes the work needed for the
completion of the UML class (Fig. 6.33). It is here, in the procedures called by
GenerateUMLClass, where the possible generation of associations and binding classes can take
place, while dealing with the types of attributes (processing the types of parameters of

operations and of operation returns may also prompt the creation of binding classes).

Nevertheless, as shown in Chapter 9, this organisation of the ADF suits better our modelling
purposes. In fact, the closely related generation of the UML class and of the state diagram
associated with the class in the TranslatezPPClass procedure forecasts the combined use of the
regular UML class specification and of the state diagram associated with the class in the

integrated modelling approach proposed in Chapter 7.

201

- Translate individual Z++ class to UML

procedure TranslateZPPClass (ZPPS:2PPSpec, ZC:ZPPClass;
CD:ClassDiagram, SDS:StateDiagrams)

begin
if (isAssocDescriptor(ZC)) then - if the class describes an assodation
GenerateAssociation (ZPPS, ZC; CD) — simply add assodiation to class diagram;
else — otherwise
GenerateUMLClass (ZPPS, 2C;CD) ; - generate the corresponding UML class
- (in the process, create associations
- and binding classes, if detected)
ProcessGeneralisations (ZPPS, ZC;CD) - process list of ancestors and
- update relationships in class diagram
if (hasStateAtt (ZC)) then — if there is a ‘state’ attribute in the Z++
GenerateStateDiagram(ZzC; SDS) - create state diagram and add to
end if; — the collection of state diagrams
end if;

end TranslateZPPClass;

Fig. 6.32 The TranslateZPPClass Procedure

- Generate UML Class from Z++ class ; in the process, generate assodiations and binding classes from type information
-- contained in the definition of attributes

procedure GenerateUMLClass (ZPPS:ZPPSpec, 2C:ZPPClass;
CD:ClassDiagram)

C:UMLClass; - UML dlass to be completed
begin
SetNameAndType (ZC;C) ; -- name the class and establish its
-- type (regular or parameterised)
if (C.ctype == para) then
SetClassParameters (2C;C) ; — if generic, provide parameters
end if;
GenerateAttributes (ZPPS, ZC;C,CD) ; — attach attributes
GenerateOperations (ZPPS, 2C;C,CD) ; - attach operations
AppendClassToClassDiagram{C;CD) ; -- then append class to the class diagram

end GenerateUMLC1 ass;

Fig. 6.33 The GenerateUMLClass Procedure

202

6.6 Notes on the Application of Formalisation and Deformalisation

Algorithms

At the conclusion of this chapter, several notes regarding the application of the three

proposed algorithms for formalisation and deformalisation are necessary.

First of all, while the focus in this chapter was on those aspects of translations between UML
and Z++ that can be automated, it is necessary to mention that the proposed algorithms are
intended only to serve as aids during the modelling process, and in no way to substitute the
human developer. In fact, we cannot stress enough the importance of the human factor in
the process of formalisation (and, generally, in the development process), the quality of the
software product depending essentially on the skills of its developers. Also, as shown in the
next chapter, while we assign a prominent role in the modelling process to the activities of
formalisation and deformalisation, the empbhasis is not on automated translations between

UML and Z++, but on the combined, efficient use of the two notations.

In practical terms, the three algorithms need be further refined in several aspects. In
particular, in conjunction with the integrated specification environment described in
Chapter 9, an environment whose design incorporates the mechanics of translation presented
in this chapter, the following issues need be tackled (we suggest below solutions for each of

them):

® While the AFCD applies to class diagrams, for practical purposes it is necessary to allow
the formalisation of a single class or of a selected group of classes. The solution for this is
to allow the AFCD to continue to operate within the context of the class diagram and to
visually mark in the generated Z++ specification the references made from within the
group of formalised classes to classes outside this group (e.g., by including a comment
listing the names of referenced butr not formalised classes). This would allow the

developer to decide if additional classes need be formalised;

203

¢ Also regarding the AFCD, its application to two or more related class diagrams need be
considered. This is not so much an issue of the algorithm itself as it is an issue of
combining and representing the related class diagrams in the environment that uses the
AFCD. The problem resides in classes included in one diagram that are in relationships
with classes from another class diagram. The suggested solution is to attach a description
to the class (similar to a property sheet) indicating the relationships in which the class is
involved, irrespective of the class diagram;

e Although not a major issue, the combined use of the AFCD and of the AFSD can also be
improved. At this point in time, AFCD is applied first, followed by the AFSD, the latter
algorithm only appending information in a Z++ class created by the former. The AFSD
can be extended without difficulty to create itself the target Z++ class and, more
generally, the work of both algorithms can be integrated in a single formalisation
algorithm. Since the same translation principles apply and the data structures used by the
algorithms is already in place this integration should be straightforward;

® Regarding the AFSD, its extension to composite and concurrent states is a topic that
deserves investigation. The first thing in such extension is to create an enumerated type
for each composite state in the state diagram, with an attribute of this type describing the
current local state. Then, more complex descriptions of transitions are necessary. Parallel
executions can be expressed via the || operator available in RTL;

e Finally, the combined use of the three algorithms, the AFCD, the AFSD, and the ADF is
to be considered in an integrated environment (see Chapter 9). The main issue is the
“updarte problem,” which arises when a model is switched back and forth berween the
two spaces, UML and Z++. The solution, similar to the one used in version control
systems, is to let the developer decide on committing the changes. To help his or her
decision, things to be added can be marked in a specific way (e.g., with indicators such as
“>>>>>,” meaning “in,” or new information) and things to be removed in a different way

(e.g., with “<<<<<,” meaning “out,” or information to be discarded).

204

6.7 Chapter Summary

In this chapter translations between structural and dynamic UML model elements and Z++
specifications have been discussed. The focus has been on the formalisation process, which
has the role of generating formal specifications from UML class diagrams and state diagrams
but the auxiliary reverse process, denoted deformalisation, has also been considered. Detailed
principles and algorithms have been presented for the automated UML to Z++ translation
and guidelines for the reverse translation have been proposed. In Chapter 7 the activities of
formalisation and deformalisation are included in a larger procedural frame that is aimed at
guiding the development of the integrated UML/Z++ model of TCS and in Chapter 8 the
application of the formalisation algorithms are illustrated through an Elevator Controller

case study.

205

7 A PROCEDURAL FRAME

“Arithmetic is where the answer is right and everything is nice
and you can look out of the window and see the blue sky

--or the answer is wrong and you have to start over

and try again and see how it comes out this time.”

[Carl Sandburg, Arithmetic, Complete Poems, 1950]

7.1 Introduction

The translation principles described previously are included in this chapter in a procedural
frame whose aim is to make systematic the elaboration of the integrated semi-formal/formal
model of the system. Although given as a series of interconnected steps and although a
“regular” sequence of steps is proposed, this procedural frame is intended only to guide the
development of the model, and not to insist on a pre-established sequence of modelling
activities. As shown in this chapter, the frame is flexible enough to accommodate various
specification strategies and to support the iterative development of the model. The artefacts
obrained in the modelling process are described, including a key modelling element, denoted
class compound and introduced primarily for supporting the formalisation process. This new
construct represents an extension of the fundamental concept of class and encompasses the
traditional UML class and the UML state diagram associated with the class. The specific
modelling activities are also described and comments on the various elaboration paths that
can be followed during the development of the combined UML/Z++ model are included. In
addition to the suggested “regular” sequence of modelling activities an example of an
alternative scenario for the modelling process is given. The regular modelling scenario
proposed in this chapter is applied on the case study described in Chapter 8 and the entire

procedural frame is supported by the Harmony environment presented in Chapter 9.

206

7.2 Modelling Focus

As indicated in Section 3.1, the approach presented in this thesis is focused on the structural
and behavioural aspects of TCS and is aimed at developing OO models in a rigorous,
pragmatic, and efficient way. For this reason, a number of modelling activities supported by
UML are not included in the procedural frame described in this chapter and their
corresponding artefacts (specifically, diagrams) are not included in the integrated UML/Z++
model. This simplification is justified by the fact that the above diagrams are either parallel
to some already incorporated (specifically, collaboration diagrams are essentially re-writings
of sequence diagrams), can be ignored without losing significant insight into the system
(activity diagrams), or can be deferred to later development stages thar are beyond the scope

of the approach proposed in this thesis (component diagrams and deployment diagrams).

By considering the 4+1 architectural views shown in Fig. 3.4, only the User View, the
Structural View, and the Behavioural View are dealt with in the proposed approach, and
from the diagrams that support them only the use case diagrams, the class diagrams, the
sequence diagrams, and the state diagrams are employed. In addition to the discarded
diagrams indicated in the previous paragraph, object diagrams are not utilised either, the
reason being twofold: firstly, they bring relatively little information about the system in
addition to that already contained in class diagrams and sequence diagrams (“object diagrams
show instances instead of classes; they are useful for explaining small pieces of complicated
relationships, especially recursive relationships” [TogetherSoft00a]), and, secondly, the
objects do appear in sequence diagrams in a more important role, that of describing

behaviour (the system structure being sufficiently expressed by classes).

In short, we look at a 2+1 views architecture of the system, a reduction of the generic 4+1
views approach that nevertheless allows a reliable description of the system. It is worth noting
that many of the UML applications described in the recent literature focus typically on use
cases, scenarios, class diagrams, and statecharts diagrams, e.g., [Howerton99, Barrios99,

Xie99, Jigorea00, Xu00] and less frequently other types of diagrams are also presented, e.g.,

207

[Bell99, Fernandes00]. In fact, having the class organisation completed in terms of both

attributes and operations allows the further development of the system possibly up to and

including implementation (partition and deployment of components may or may not be

necessary, depending on the application).

7.3 Artefacts

During the modelling of the system, a series of diagrams are drawn, modelling constructs are

completed, including both UML and Z++ specification of classes, and the formalisation and

deformalisation processes are performed. Starting from a set of requirements that describe

the desired properties of the system, the following five categories of artefacts (products) are

obtained, making up the combined semi-formal/formal model of the system:

Use case diagrams, describing the intended high-level behaviour of the system as seen
from the point of view of external entities (actors) that interact with the system. These
are typical UML use case diagrams, each capturing a portion of the system’s externally
visible behaviour (its “functionality”), and each containing a number of use cases that
further detail this behaviour. The regular UML notation is used to develop both use case
diagrams and use cases. Abbreviations for these constructs, introduced for easier
referencing and used as prefix denominations within Harmony’s Project Pane described
in Chaprer 9 are UC for use cases and UCD for use case diagrams;

Scenarios, specific sequences of actions involving the system and the actors thar interact
with it. Scenarios, as pointed out by Booch, “are to use cases what instances are to classes,
meaning that a scenario is basically one instance of a use case” [Booch98, pp. 225]. UML
provides sequence and collaboration diagrams for representing scenarios; however, these
diagrams involve a high level of detail (they require the designation of classes and objects
for carrying out the scenarios) so we felt necessary to introduce a distinction between a
scenario and a sequence diagram. Specifically, we see a scenario as an informal, analysis-
level description of a particular sequence of actions encompassed by a use case, while a

sequence diagram is a detailed, design-level description of the same thing (in sequence

208

diagrams responsibilities for carrying out actions are assigned to individual classes and
objects, as opposed to the system as a whole.) In our approach, another major difference
between scenarios and sequence diagrams is that no specific notation is required to
represent scenarios, while sequence diagrams are developed using the UML notation.
From a development point of view, a refinement step is thus introduced between the
elaboration of scenarios and that of sequence diagrams. Scenarios can be written in
natural language, possibly as a series of numbered steps [Schach99], captured in decision
tables [Davis93], shown using custom-made, application-specific graphical aids (Chapter
8 provides an example), or described in a notation similar to that of sequence diagrams
(e.g., event traces [Rumbaugh91]). In order to provide a modality to relate scenarios with
their encompassing use case, the notion of group of scenarios, a basic structuring
mechanism, is introduced. The abbreviation associated to a scenario is SC and the one
for a scenario group is SCG;

Sequence diagrams, developed using the UML notation and providing a design-level
representation of scenarios. As discussed above, they are also “instances of use cases” and
capture the externally visible behaviour of the system but in addition they show internal
interactions among objects. The abbreviation for sequence diagrams is SQD and, by
symmetry with scenarios, the notion of group of sequence diagrams is introduced, with
the associated abbreviation SQDG;

Class diagrams, defining the high level architecture of the system and consisting of
classes, relationships among classes, and additional structural constraints expressed as
multiplicity values. For formalisation purposes, only UML classes and the usual types of
relationships indicated in Section 6.3.1 are considered. Class diagrams are represented

using their dedicated UML notations, and are abbreviated as CD;

Class compounds, each class compound, denoted COMP, being a simple syntactic
extension of class, grouping the regular class description (CLS) and the state diagram
associated with the class (CLSTD). The notion of class compound is introduced
primarily for supporting the needs of the formalisation process but it represents in
general a simple yet useful extension of the concept of class. The idea of a class

compound comes naturally from Z++, but it has also been inspired from the approach of

209

Howerton and Hinchey [Howerton99], who propose the annexation of the Z
specification of the class state diagram to the UML description of the class. The intention
of Howerton et Hinchey is to directly combine UML descriptions and Z specifications
for describing classes in an approach that advocates different notations for modelling
different aspects of the system. However, they do not envisage the syntactical
concatenation of the UML class and state diagram constructs and do not propose a
denotation for their solution. As a brief remark, it is only natural to add when necessary
the state diagram of the class (defining possible sequences of executions) to the two
traditional sets of elements encapsulated in a class: dara (defining structure) and
operations (defining behaviour). Thus, the class compound concept can be viewed as a
class with enhanced description of behaviour. Of course, not all classes need a state
diagram, so the CLSTD section of COMP can be empty. A summary of the
abbreviations introduced above is given in Table 7.1I.

Z++ specification (ZSPEC), consisting of a set of Z++ classes (ZPPCs), each Z++ class
corresponding to a class from the UML space. The Z++ specification as a whole is the
formal counterpart of the combined contents of the class diagrams that make up the

UML component of the integrated model of the system.

Table 7.1 Abbreviations for Modelling Artefacts

Element Abbreviation Element Abbreviation
Use Case UcC Class Diagram CD
Use Case Diagram UcCD Class Compound COMP
Scenario SC Class Description CLS
Scenario Group SCG Class State Diagram CLSTD
Sequence Diagram SQD Z++ Specification ZSPEC
Sequence Diagram Group SQDG Z++ Class ZPPC

210

7.4 Activities

Fig. 7.1 gives a diagrammatic description of the procedural frame proposed in this thesis for

modelling TCS. The figure shows both the modelling activities (steps) performed and the

artefacts obtained as the result of each activity. Since the artefacts have been discussed in the

preceding section, the focus is here on the activities. Before discussing them, a number of

conventions and simplifications used in Fig. 7.1 are indicated.

7.4.1 Conventions in the Diagrammatic Representation of the Procedural Frame

Several conventions are used in Fig. 7.1, as follows:

Activities are represented by rounded rectangles;

Modelling products (the artefacts) are represented by regular rectangles;

Continuous, arrow-ended flow lines connect activities with their output products and
products with activities that use them as input;

Dashed, arrow-ended lines represent a change from an activity to another and, in
contrast with the continuous flow lines, do not require that artefacts are obtained in the
originating activity (the decision to move to another activity may be based on the
inspection of the already existing artefacts associated with the current activity). These
dashed lines are used in two situations: in the process of iterative development of the
model (feedback links), and when moving from one activity to another without
necessarily providing new input to the newly initiated activity;

The steps are numbered and organised in five stages (or levels), their ordering suggesting
the typical flow of activities within the modelling process. Same level activities can be
performed in a parallel fashion, including an interleaved form of parallelism;

The set of diagrams obtained as a result of a specific modelling activity in stages 1 to 3
are generically denoted collection, e.g. the Use Case Collection is created in the

Definition of Use Cases step.

211

L Requirements Set }-——»Gooﬂnlﬂon of Use Casuj< ——---5
]
]
]
1
. |
1
| ucColiection | !
l |
I
4 |
SR,
Tt T mem e — e ’ﬁ Elaboration of Scenarios
e e I
I
i \ | !
: ' !
: 4)
X I { SC Collection } i
! |
1 | '
| v |
_ \‘_ _________________ !
3A Construction of Class 3B Specification of .
Diagrams | _ Sequence Diagrams
/] !)
l ' |
'
v | 4
CD Collection :] SQD Collection
! ;
i N
| : :
! :
3 .
~ L
I i -
 J ! L L J 3
{4A Elaboration of \ 3
UML Class Compounds |~~~ - 4B Elaboration of S
4.A.1 Class Specification | . =~ Z++ Specification
4.A.2 State Diagram Spec.)
'd T / r)
v | v 5A Formatisation \\ v
UML Class 2++ Specification ‘?
Compounds(COMP) (ZSPEC), a set of "
(CLS and CLSTD) L d / Z++ classes (ZPPC) i
\sa DeformallsatloD‘A £X
Integrated UML/Z++ L)
Classes Collection j

ey
N

ST SRS, S
ISR PR AT P TR s

Fig. 7.1 The Procedural Frame

212

7.4.2 Simplifications in the Diagrammatic Representation of the Procedural Frame

In order to keep the diagram readable a number of simplifications have been made regarding
aspects of the modelling process that are less common and therefore less emphasised in the
proposed procedural frame. Firstly, while in principle it is possible to come back several
levels at a time, for instance from step 4A to step 2 or even to step 1, the revision links are
drawn however only from one level to the immediately preceding one (this would be the
regular, more frequent way of refinement). Secondly, the CD Collection can serve as input
for the Specification of Sequence Diagrams activity (3B) and, vice-versa, the SQD Collection
can be used as reference for the Specification of Class Diagrams activity (3A), but more
important is their respective input for activities 4B (Elaboration of UML Class Compounds)
and, respectively, 4A (Elaboration of Z++ Classes). Thirdly, there is an implicit feedback
from activities 5A (Formalisation) and 5B (Deformalisation) to activities 4A and 4B (in fact,
so strong a feedback that activities on levels 4 and 5 can be aggregated on a single level, but
we needed to highlight the steps of formalisation and deformalisation), which again is not
shown for keeping the diagram readable. Lastly, the input for the entire process is
represented by the Requirements Set, whose elaboration is not of our concern (we assume
that a workable collection of requirements is available). Yet, in practice there is a continuous
need for revising the requirements, so links back from modelling activities to the definition
of requirements (an activity not shown in Fig. 7.1) should be considered implicit in the

diagram.

7.4.3 Stages and Steps

The procedural frame outlined in Figure 7.1 serves only as a guide for modelling TCS, the
most important thing being to correctly and completely develop all the artefacts of the
integrated UML/Z++ model. The diagram presented in Fig. 7.1 is flexible enough to
accommodate various specification strategies and encompasses diverse modelling paths, as
discussed more in the next Subsection. In the following, we highlight the modelling activities

included in our procedural approach and present them as organised in five stages. The

213

ordering of the modelling stages corresponds roughly to the typical sequence of activities so
the discussion that follows is somewhat biased towards the “regular” modelling scenario
proposed in the next Subsection and shown in Fig. 7.2. However, possible variations in the

sequencing of activities are also indicated, and are further illustrated in Subsection 7.4.5.

The specific activities performed in each stage are the following:

® At stage 1, starting from the Requirements Set that describes the desired system, a
number of use cases that capture segments of externally visible system functionality are
identified, making up the Use Cases Collection of the integrated model. During this
activity actors interacting with the system are also identified;

® At stage 2 use cases are used to instantiate a number of scenarios that will serve later for
the identification of classes. There is no restriction on the way scenarios are represented
since they are expected to produce “a rough cut” of the externally visible behaviour of the
system and provide high-level insight into the application. Normal scenarios (most likely
to occur) as well as abnormal scenarios (or exceptional scenarios, describing situations
that diverge from the normal case) are developed and possibly tied together in a Scenario
Group that corresponds to a particular use case. Taken together, groups of scenarios as
well as individual scenarios (that is, scenarios not yet related to an already defined use
case) make up the Scenarios Collection of the model. Although initially individual
scenarios as well as groups of scenarios not bounded to uses cases are possible, it is
recommended that through iterative revision of specifications the final model should
contain only bounded groups of scenarios, a one-to-one correspondence use case-scenario
group being desirable;

® At stage 3, using the available Scenarios Collection two possibly intertwined activities can
take place: Specification of Class Diagrams (3A) and Specification of Sequence Diagrams
(3B). In practice, one needs to develop concurrently the system’s model on both
directions, structure (classes) and behaviour (primarily, operations included in classes).
Only by simultaneously considering the class structure and the responsibilities of classes

and class instances, as captured in sequence diagrams, can the catch-22 type of problem

214

at this level be resolved (what classes and objects to include in the sequence diagrams if
the class diagram is not defined, and what classes make up the high-level architecture of
the system if the internal behaviour is not known? —recall that scenarios describe
externally visible behaviour). However, in practice, the specification of sequence
diagrams is the one that can be deferred since in general it is easier to construct the class
diagrams by exploiting the information contained in scenarios (class diagrams may
contain only the names of the classes, without any other details, while the sequence
diagrams necessarily include both classes and their operations). Thus, step 3A is normally
performed first and step 3B follows. In fact, the specification of sequence diagrams
performed in step 3B can be omitted all together, as shown in Subsection 7.4.5. The best
thing, however, is not to ignore it, but to use it at least as a “revision checkpoint,” with
input from all subsequent levels. In short, from our point of view, on stage 3 the
development of class diagrams is compulsory while the development of sequence
diagrams is recommended;

At stage 4 the CD Collection as well as the SQD Collection (if available) provide the
basis for the detailed specification of classes. An argument can be raised about the
development of classes represented separately from the development of class diagrams
and, indeed, there is a blurred line between these two activities. We separate them for
systematisation purposes and view the Specification of Class Diagrams as an activity in
which the rough sketch of the system’s class structure is drawn (in terms of classes,
relationships, and cardinality constraints) while the subsequent activities of UML and
Z++ class elaboration are concerned with the specification of class details (attributes,
operations, and constraints). And, indeed, stages 3 and 4 are the closest related stages in
the “stratification” suggested in Fig. 7.1. Regarding the “parallel” steps 4A, Elaboration
of UML Class Compounds, and 4B, Elaboration of Z++ Classes, they can be started and
performed simultaneously (this is the reason for placing them on the same level) but the
typical way is to perform step 4A first or to perform only the step 4A and rely on the
subsequent formalisation of class compounds (step 5A) to obtain Z++ specifications of
classes. In the regular flow of activities shown in Subsection 7.4.4 we actually use step 4B

as a refinement activity, which follows step 5A. The Elaboration of UML Class

215

Compounds on stage 4 consists in: (a) establishing the attributes and the operations of
the classes as well as the constraints attached to classes in the regular UML construct of
class (CLS); and (b), in drawing state diagrams (CLSTD) for those classes that require

them, thus completing for each class in CDs its corresponding class compound COMP;

® At stage 5 the formalisation of selected UML class compounds takes place in step SA by
applying initially the rules for automated translation described in Chapter 6 and then by
manually adding the necessary derails to the formal specification. This activity has the
role of producing rigorous descriptions of the system, captured in the Z++ specification.
It provides the strongest basis for refining the model, many ambiguities, omissions and
inconsistencies being detected here. At the same level of modelling, deformalisation of
classes initially written in Z++ (step 5B) can be performed according to the guidelines
suggested in Chapter 6. However, as shown in the next Subsection, the “regular” flow of
activities includes only step 5A at this level of modelling and the procedural frame treats

the activity of deformalisation as a “variation” of the modelling process.
gp

It is important to note that iterative refinements of the products obrained so far need be
performed. We envisage essentially two categories of iterative development, one expectedly
more intensive (more frequently performed), which can be called “short range revision”
because it involves backwards stages 5 to 3 only, and the second performed less frequently yet
reaching farther, which can be called “long range revision,” potentially affecting backwards
all the stages of activities, including the (not shown in the diagram) elaboration of
requirements. As already mentioned the iterative development of the artefacts that constitute
the integrated model of system is primarily propelled by the process of formalisation, a key
idea of our approach being to use formalisation of UML constructs for improving the

chances of detecting errors.

7.4.4 The Regular Sequence of Modelling Activities

A graph-like representation of the regular sequence of modelling activities, which for

simplicity omits the products of each activity, is represented in Fig. 7.2. (In UML terms, this

216

Stage 1

Definition of
Use Cases

g 'w.\.‘?i*‘e.—;:-ﬁ
. Ao
e

Rt 'J-’.

Construction of
Class Diagrams

Specification of
Sequence Diagrams

Elaboration of UML
Class Compounds

Elaboration of
Z++ Specification

= T e

Formalisation
““““ SA ' (UML to Z++)

Deformalisation
(Z++to UML)

Fig. 7.2 Regular Sequence of Modelling Activities

217

can be assimilated with the normal scenario of the use case represented by the procedural
frame described in Fig. 7.1) The modelling stages are highlighted, the direct flow of activities
is emphasised by a thicker, continuous line and the iterative revisions of specifications are
indicated by a dashed line. This scenario, which in its “forward segment” (that is, not
including feedback links) does not encompass the deformalisation activity (reserved for
“irregular” modelling scenarios), can be succinctly described by the <1, 2, 3A, 3B, 4A, 5A,

4B> sequence, where the numbers are associated with activities as indicated in Fig. 7.1.

7.4.5 Alternative Flows of Modelling Activities

The procedural frame presented in Fig. 7.1 encompasses different orderings of activities and
we do not claim that the “regular” flow suggested in the previous Subsection represents the
unique or the most effective way of developing the integrated UML/Z++ model of the
system. There are other alternatives possible, and depending on the particular application, on
the experience of the development team, as well as on an a series of other factors, including
project priorities and deadlines, one of them may be considered better suited for the
particular development needs of a given application. Our “regular” chaining of modelling
activities represents only a reference procedure which we believe can be applied in the general
case, but nevertheless we do not constrain the ordering of the steps in the modelling process,

more important being the correct completion of the integrated model.

Among the other alternatives of sequencing the modelling activities, the one presented in
Fig. 7.3 is described here because it highlights a specific strategy that deserves further
examination. More precisely, this example of “irregular” scenario for the modelling process
can be described in its “forward segment” as <1, 2, 3A, 4A||4B, 5A||5B, 3B>, where the
symbol || describes parallel activities (notice that in order to show that 3B comes after 5A and
5B a compromise regarding the notation has been made in Fig. 7.3, where thick dashed lines
are used as part of the “forward segment”; they are however different from the regular
feedback connections, which continue to be represented as thin dashed lines). Two elements
are special in this scenario: first, the fact that the description of classes proceeds in parallel in

UML and Z++ and, second, that step 3B comes last in the forward part of the scenario.

218

Stage 1

Definition of

fivs

’,

Elaboration
of Scenarios ;'

¥
&

A

¥

Construction of
Class Diagrams

Specification of
Sequence
Diagrams

Elaboration of :
UMLClass
Compounds

Formalisation
(UML to Z++)

Deformalisation
(Z++ to UML)

Fig. 7.3 An Example of “Irregular” Flow of Modelling Activities

219

The first element highlights the idea that various teams of specifiers may have various
backgrounds and while some would favour the use of UML, some may prefer employing
Z++ as specification notation. In fact, there is the possibility that the specification of classes
may proceed first in Z++ and then in UML (and, by extrapolation, it is theoretically possible
to have all classes specified in Z++ and nort at all in UML). The second element illustrates the
idea previously mentioned in Subsection 7.4.3 that sequence diagrams can be used as a tool
for fine-tuning the specification, and thus can be the last set of artefacts developed in the
modelling process. Of course, additional refinements for improving the accuracy of the

model follow in any case.

Another example of an irregular modelling scenario, which stresses rapid development is, in
its “forward segment,” <2, 3A, 4A, 5A, 4B>, meaning that the definition of use cases (step 1)
and the specification of sequence diagrams (step 3B) are omitted. In short, this modelling
alternative takes a “fast-track route” and, after the elaboration of scenarios, class diagrams are
developed, UML classes are detailed, the formalisation process takes place, and the detailed
specification of Z++ classes is completed. It represents in fact a shorter version of the regular
flow of modelling activities suggested earlier. Interestingly, perhaps due to space limitation,
in many papers describing the use of UML only the artefacts of steps 2, 3A and 4A are
described, in some cases step 2 being skipped as well. While we recommend the regular
alternative described in 7.4.3 the above modelling scenario can nevertheless work well in

various application contexts.

7.5 Chapter Summary

In chis chapter a procedural frame for pragmatic, efficient and reliable modelling of TCS
have been presented. The artefacts produced in the modelling process, specifically various
sets of UML diagrams organised in collections, the set of UML class compounds, and the
formal specification consisting of a set of Z++ classes have been presented. The class

compound, a simple yet useful construct serving primarily the purpose of formalising UML

220

classes in Z++ and representing a practical extension of the fundamental notion of UML
class, has been introduced. Specific abbreviations that are later used in the development of
the Harmony environment have been associated with the modelling artefacts. The modelling
activities, included in the proposed procedural frame and organised in five stages have also
been described and the modelling process has been discussed in terms of both regular and
irregular chainings of activities. The application of the suggested modelling process, relying
on the combined use of UML and Z++, is illustrated on an Elevator System case study
presented in the next chapter. It has also driven the design of the supporting tool Harmony

described in Chapter 9.

221

'3 AN APPLICATION: THE CASE OF THE
ELEVATOR SYSTEM

“In order to get some kind of limit to this enormous
subject [elevators] it seems sensible to restrict this study
to those devices which have land as their starting point,
leaving aside the larger question of aviation and
rocketry.”

(Jean Gavois, in the Preface to his Going Up: An
Informal History of the Elevator from the Pyramids to
the Present, Otis Elevator Co., New York, 1983]

8.1 Introduction

Our modelling approach is illustrated in this chapter by a fairly complex application, an
Elevator System (ELS). A brief review of this frequentdy used case study starts the
presentation, then the application is defined in terms of general and temporal requirements.
In particular, the timing constraints imposed on ELS are shown to provide a comprehensive
coverage of the Dasarathy constraints discussed in Chapter 5. Following the specification
steps presented in Chapter 7 the elevator system is subjected first to UML modelling, then
the formalisation algorithms described in Chapter 6 are applied. The need of enhancing the
formal specification and of precisely expressing the temporal requirements placed on systems
is emphasised and, based on this application, observations regarding the modelling process

proposed in Chapter 7 are included.

222

8.2 On the Elevator Case Study

The elevator example constitutes one of the preferred case studies of software engineering
authors, its extraction from a daily life reality (everybody knows what an elevator is) doubled
by its intrinsic complexity --which allows the illustration of various modelling concepts and
techniques, including the treatment of temporal constraints-- accounting for its popularity
and frequent employment. The origins of this case study can be traced back to Donald
Knuth's first volume on the Art of Computer Programming, where a simulation program of
Caltech’s Mathematics building's elevator was included to exemplify coroutine-based
implementation techniques [Knuth73, pp. 280-295]. Since then, many other authors have
resorted to the elevator problem as a means of illustrating new software development
approaches; to point out only a few reports focused on an elevator system, we refer to Glenn
Coleman et al's paper on simulating concurrent systems using Statemate specifications and
automatic prototyping [Coleman90], Zhang and Mackworth's formal description of
embedded real-time systems using Constraint Nets [Zhang93], Dong et al's approach on
specifying parallel and distributed systems in Object-Z [Dong97b], Duval and Cattel's
PROMELA and Synchronous C++-based method for developing safe process control
applications [Duval97], and Schach's textbook on software engineering [Schach99]. The
latter author points out that the elevator case study is non-trivial ("the problem is by no
means as simple as it looks” [Schach99, pp. 3471), and can be of great value when illustration
of software development techniques is intended. In fact, Schach makes the elevator system
one of the two main case studies recurrent in his book. Recently, a detailed, comprehensive
Object-Z description of an elevator has been proposed [Mahony00] and although it is one of
the few that employs an object-oriented variant of Z, it differs from ours in several major
aspects: firstly, it is purely formal, and we combine semi-formal graphical descriptions with
formal specifications; secondly, they use CSP and we employ RTL as primary instrument for
capturing temporal properties of systems; and thirdly, the OO extension of Z they employ is
different from ours. In addition, our goal in this chapter has been to illustrate the steps and

the artefacts of the modelling process proposed in Chapter 7, without giving comprehensive

223

derails on a specific application. Thus we have been less ambitious with our Elevator System:
it is not a multiple elevator-system (although the modelling resources employed in our
approach, in particular UML and RTL, allow the expressing of concurrent behaviours), and

it is not specified in all details.

The starting point for our example was provided by the multiple-elevator system presented
by Robert Holibaugh in his special report on Joint Integrated Avionics Working Group's
Object-Oriented Domain Analysis Method (briefly denoted JODA) [Holibaugh93].
However, in order to make it illustrative for our purposes, we modified the problem
statement in numerous places, in some cases by adding new requirements or by providing
supplemental details to the existing ones, while in others by eliminating stipulations that
would have had only limited significance for exercising our approach (for instance, we
renounced providing the elevators with back doors). For the same illustration purposes, we
have added a set of temporal constraints (time conditioning was non-existent in Holibaugh's
case study) and described the solution of the problem in a fair level of detail. In this way, our
example has departed significantly from its starting point, and acquired a “personality” of its
own. Although fictive, without a precise correspondent in real life, the elevator described
below is sufficiently general to be easily imagined working around the clock in the concrete,

shadowing high-rise office building across the street.

8.3 The Problem

In our initial source of inspiration, the [Holibaugh93] report, the elevator system was part of
an Office Building Transportation System thar also encompassed an escalator system and a
set of staircases. Since the focus of this application is on the elevator system, detailed
requirements on the building's escalators and stairs are not considered below. The general
requirements for the elevator are denoted Rx (where x is a number provided for casier
referencing) while the requirements that explicitly impose timing constraints on the system

are denoted Tx. The correspondence between the temporal constraints placed on the Elevator

224

System and the basic Dasarathy timing constraints to which they can be related is given in

Subsection 8.3.3 and both types of requirements are consequently treated by the problem's

solution, presented in Sections 8.4.

8.3.1 General Requirements for the Elevator System

The general, non time-related requirements for the Elevator System are the following:

[R1]
(R2]

[R4]

(R5]

[R6]

The elevator serves two or more floors;

The elevator contains on board a set of destination buttons (car buttons), one for
each floor served by the elevator. When pressed, a destination button becomes
illuminated and remains so until the elevators arrives at the corresponding floor;

The elevator has on board a set of lights (floor indicators), in one-to-one
correspondence with the floors. At any given moment, exactly one of these indicators
is lit, showing the floor the elevator is currently at;

The elevator has on board two door buttons (a close door button and, respectively,
an open door button) which, when the elevator is stopped at a floor, can be pressed
by the passengers to close the door earlier than otherwise done automatically and,
respectively, to keep the door open longer than otherwise allowed by the elevator's
preset timeout;

The elevator contains an Alarm button that, when pressed, will generate an intense
audio signal (further details are given in constraint [T5]);

Each floor except the top and bottom floors has two request buttons, one for
requesting the elevator to go up, and the other to go down. When pressed, such a
button becomes illuminated and remains so until the elevator arrives at the floor and
then moves in the requested direction. The terminal floors (the bottom floor and the

top floor) have only one request button;

[R7]

[R8]

225

The elevator has a single elevator door, which is either closed or open. The door
cannot be opened while the elevator is moving and, reciprocally, when open it will
prevent the elevator from moving;

On each floor, there is a floor door that will work in tandem with the elevator's door
and, for safety reasons, a floor door can be open only if the elevator is stopped at that

particular floor;

[R9] When an elevator has no requests, it will remain idle at the last visited floor (the last

[R10]

8.3.2

target floor at which the elevator has stopped), with its door closed;
On board of the elevator there is a special Stop button, which when pressed will stop
the elevator’s movement. It will not be possible to open the doors when the elevator

is stopped in between the floors.

Temporal Constraints for the Elevator System

The elevator is also required to satisfy the following timing constraints:

(T1]

(T2]

(T3]

<Open Floor Door> After the elevator has stopped at a particular floor, the elevator's
door will open no sooner than OPEN_MIN_TIME seconds and no later than
OPEN_MAX_TIME. Practical values for these constants can be, for instance, 1.0
seconds and, respectively, 3.0 seconds;

<Stay Open Floor Door> After the elevator has stopped at a given floor the clevator's
door will normally stay open for a STAY_OPEN_NORMAL_TIME period of time (e.g.,
12.0 seconds). However, if the Close Door button on board of the elevator is pressed
before this timeout expires, the door will close but no sooner than
STAY_OPEN_MIN_TIME (e.g., 2.0 seconds);

<Resume Elevator Movement> After the door is closed, the movement of the elevator
can resume, but no sooner than CLOSE_MIN_TIME seconds and no later than
CLOSE_MAX_TIME seconds (possible values can be, for instance, 1.0 seconds and,

respectively, 3.0 seconds);

226

[TO4] <Elevator Speed Constraints> The movement of the elevator between destination

[T5]

[T6]

[T7]

floors should be continuously monitored, and a minimum and maximum speed
limits should be considered. Two preset values, SPEED_LIMIT_LOW and
SPEED_LIMIT_HIGH will serve the detection of abnormal moving conditions (too
slow or too fast). In such cases, the elevator will be stopped immediately and an
alarm signal will be issued. Practical values for the above constraints can be expressed
in seconds per floor, for instance the lower limit can be 5.0 seconds/floor and the
higher limit can be 3.0 seconds/floor (during continuous movement). It can be
considered that floor sensors are available to detect the presence of the elevator by
any given floor;

<Stop Request> If the Stop button on board the elevator is pressed, the moving
elevator will stop as soon as possible, in any case no later than STOP_MAX_TIME
seconds (e.g., 2.0 seconds). The floor doors will not open if the elevator is not
positioned at a floor, and the elevator will remain in this state of emergency stop for
STAY_STOPPED_TIME seconds (e.g., 20.0 seconds) unless the Stop button will restart
the above timeout from zero. Before the elevator resumes its movement, the Stop
button will be illuminated for a sequence of several consecutive visual signals (timing
requirements for both audio and visual signals are specified by [T7]);

<Alarm Triggered> If the Alarm button inside the elevator is pressed, then the
elevator will stop immediately according to the timing condition STOP_MAX_TIME
(from T5) and a continuous, highly audible alarm signal will be issued (T7 gives
details on timing characteristics of these signals). In contrast to T35, the elevator will
not resume its movement after STAY_STOPPED_TIME seconds, and will stay stopped
until authorization for moving is given by a designated staff member and the alarm
system is set-off;

<Signal Timing> The audio alarm will consists of a sequence signals, each of a
duration no less than MIN_SIGNAL_DUR (e.g., 1.0 seconds) and no greater than
MAX_SIGNAL_DUR (e.g., 2.0 seconds). The separation between signals,
SIGNAL_SEPARATION, should be preset to a given value, e.g. 1.0 seconds. The same

constants can be used in the case of the visual signals mentioned by [T5];

227

8.3.3 Coverage of Dasarathy Constraints by the Elevator's Timing Requirements

The timing constraints T1-T8 placed on the Elevator System's behaviour are intended to
illustrate the way our proposed approach deals with a variety of temporal requirements.
Since, as indicated in Section 5.2, Dasarathy's classification of timing restrictions offers a
reference basis for such requirements, it is useful to notice that eight out of nine classes
presented in Subsection 5.2.1 are covered in our case study. The correspondence between the
elevator’s timing constraints [TC1]-[TC7] and the corresponding Dasarathy classes of
temporal constraints [DC1]-[DC9] to which they can be related is given in Table 8.1, and
shows that all DC classes except [DC4], which is a constraint placed on external stimuli, are
covered by at least one of the elevator timing requirements TC. This table, together with the
solution of the problem presented in the remaining of this chapter, demonstrates that our

proposed approach can deal with a large variety of timing restrictions placed on TCS.

Table 8.1 Correspondence between ELS’s Timing Requirements
and Dasarathy's Constraints

Elevator Timing Constraint Corresponding Dasarathy Constraints
T1 <Open Floor Door> DC7 (MaxRR), and DC8 (MinRR)

T2 <Stay Open Floor Door> DC6 (MinSR), DC7 (MaxRR), and DC8 (MinRR)
T3 <Resume Elevator Movement> DC7 (MaxRR) and DC8 (MinRR)

T4 <Elevator Speed Constraints> DC1 (MaxSS) and DC2 (MinSS)

T5 <Stop Request> DC3 (MaxRS) and DC5 (MaxSR)

T6 <Alarm Triggered> DC5 (MaxSR)

T7 <Beep Timing> DC9 (Duration)

228

8.4 The Modelling Solution

The steps of the “regular” flow of modelling activities described in Chapter 7 are illustrated
below using the Elevator case study. The role of each modelling step is highlighted and

examples of artefacts obtained in each step are given.

8.4.1 Definition of Use Cases

A single use case diagram is sufficient to describe the externally visible behaviour of the
elevator system, as shown in Fig. 8.1. Within this diagram, two use cases are considered,
Inside Request and Outside Request, and there are only two actors that interact with the

systems, the User, a person that issues a command to the elevator, and the Elevator itself.

Elevator System
Outside
\ Request

/ Inside
Request Eievator

User

Y S g T R P ey b BT 05 TR ATy T TR em i § N L, P T e e, B i B

Fig. 8.1 ELS Use Case Diagram

229

8.4.2 Elaboration of Scenarios

The two use cases represented in Fig. 8.1 are next detailed through the use of scenarios, four
such scenarios being presented in Fig. 8.2 to 8.5. As mentioned in Chapter 7, the scenarios
can be described in various ways, one of which being to use application-tailored visual
descriptions. In our case, a number of graphical symbols are used, as indicated in the legend
attached to the figures, allowing a more elaborate description of the system’s externally

visible behaviour.

While developing the scenarios it has been observed that there is not a clear cut line berween
the two use cases considered initially, in real-life situations combinations of internal and
external requests being issued for the elevator’s service. For this reason, the scenarios that
follow are “attached” to the two use cases considered in Fig. 8.1 based on the type of the first
issued request shown in the scenario. For illustration purposes only a segment of the building
in which the elevator operates is considered (levels 2 to 6), sufficient however to describe the

most important aspects of the elevator’s operation.

While developing the scenarios, a number of rules regarding the functioning of the elevator
have been established. To describe them, the notions of direction-changing and direction-
keeping requests need be introduced. While a direction-keeping request is simply not a
direction-changing request, the latter can be either an internal request (for instance, someone
presses the car button number 4 while the elevator is at floor 6 and moving up) or an
external request (for instance when the elevator is at floor 3 and moving down a request is
issued at floor 5, no matter for what direction). Using these two terms, the “rules of the

elevator” can be formulated as:

Rule #1: “Maintain direction as long as possible”. This rule means basically that if more
service requests exist, the elevator will serve first the direction-keeping requests. If, at a given
time, there are only direction-changing requests, than the stipulations of Rule#3 below have

to be followed;

230

Rule#2: “When maintaining the direction, go to the closest floor from which a direction-
g

keeping request has been issued”;

Rule #3: “If direction has to be changed, change direction and then (a) try to apply rules
Rules #1 and #2 or (b) if this is not applicable, go to the farthest floor from which a
direction-changing request has been issued.” This rule prevents the situation of an “infinite

loop” in the elevator’s traveling, as described in the scenario shown in Fig. 8.5.

The first scenario, presented in Fig.8.2, is a normal instance of the Outside Request use case.
Specifically, while the elevator is waiting at floor 6, a request from floor 3 is issued for
movement up to floor 5. No other requests are issued while the elevator services this request.

The basic behaviour of the elevator is captured in this scenario.

s 5
A

? A A

JAN A A AN . .
2

o=
- Time |’
To T, T, T, T, T, T, T, T, T,
Legend: Mowing Stopped or A Blevater's A Active Floor User in
: Elevator Idle Elevator Direction Button e Elevator
v Up / Down

\7 Up / Down

R L T A S

Sl TeLmrne S L e U e N e T B TS L e s T L e D A A e W w e

Fig. 8.2 ELS Scenario: Outside Request A

231

The second scenario, shown in Fig. 8.3, is another instance of the Outside Request use case.
Its can be described summarily as “Sorry, but I changed my mind!,” because in it the issuer
of the request from floor 3 is no longer taking the elevator after it arrives at the floor. The

elevator, not having any other internal or external requests to serve, becomes idle at floor 3.

Floor

Fig. 8.3 ELS Scenario: Outside Request B

The third scenario, presented in Fig. 8.4, also an instance of the Outside Request use case,
describes a situation in which two requests are issued at the same floor for different
directions. By applying Rules #1 and #2 of the elevator, the Up request at floor 4 is served

before the Down request at the same floor, although the latter was issued first.

The fourth scenario, depicted in Fig. 8.5, is an instance of the Inside Request use case that
serves for illustrating the solution for a situation in which a user attempts to use the elevator
in a rather mischievous way. The scenario, which can be denoted “You cannot be the

exclusive user of the elevator!” shows that a user that repeatedly tries to travel between floors

———-

Floor

232

; ViEsivi!
® 0\

q>

<>
:

Fa\

3 AN i '
- - ”
[* / e

T ————®Time O

Ts T, T, T, T, T, T, T, T, T, i
egend: Movin l l Stopped or /N Elevators /\ Active Fioor Useri -
Legend: [Elevator idle Elevator < Direction Button LIkl B

. \/ Up/Down v Up / Down g

N e il mndl e T IR e e W L e e N0 i e RSN PN

Fig. 8.4 ELS Scenario: Outside Request C

»
W »

3
6 .
F3 2
vl v| vl i g
|v};ﬁ INERYNY :
//‘ \\\ ’/ ;
g /
4 4 4
=
To T, T, T, T, T, T, T, T,
. \ Elevator:
Legend s, e, 8 fmr L e
Up / Down v Up 7/ Down

Fig. 8.5 ELS Scenario: Inside Request A

233

3 and 4 (by pressing car button number 3 when moving from floor 3 to 4 and car button 4
when moving from floor 4 t03) is interrupted in this action when another request is issued at

floor 5. This solution is made possible by Rule #3b.

8.4.3 Construction of the Class Diagram

The scenarios shown previously serve not only for establishing a set of rules for the intended
behaviour of the elevator, but they also help the construction of the system’s a class structure.
The class diagram resulted from the information gathered while developing scenarios, as well
from the inspection of the problem’s requirements is shown in Fig. 8.6. This diagram is
given only in terms of component classes and relationships between classes, and provides no

details about the contents of the classes (attributes and operations are not specified yet).

1
1 PositionDetector
AlarmSystem
1 1
Elevator
1
Door
<O
1 1
S) 2
. . 1
CarButton SpecialCarButton Groupindicator
>——
1
serves 1
Indicator
Button
0.1 1
FloorButton — —— @ Fioor
0.1 1 <>
1

T SRR POENS R A NS N E STt g hte i
S R e T i e L S B SR S I SR SIS R AT ML

Fig. 8.6 ELS Class Diagram: Initial Structure

234

In this class diagram the obvious components of the elevator system are represented: the
elevator itself, the floors, the buttons, and the indicators. In order to distribute the
functionality of the elevator, the classes AlarmSystem, responsible with issuing audio and
visual signals in exceptional situations, and PositionDetector, intended to take care of
monitoring the position and the speed of the elevator, are also included. Since conceprually
both the floor indicators and the indicators present in the elevator have always the same state
(they show the same thing, the floor at which the elevator is currently at), a single class
Grouplndicator has been introduced. In addition, buttons are modelled by several classes,
based on their specific use (regular car buttons, used for accepting internal requests from the
user, special car buttons such as Alarm, Stop, Open Door and Close Door, and floor
buttons, which indicate the direction of external requests). Only a class Floor has been
included in the diagram to keep the graphical representation simple, although two classes
TopFloor and BottomFloor from which a MiddleFloor inherits would more accurately

describe the floors in an object-oriented way (see [Dong97] solution in this respect).

8.4.4 Specification of Sequence Diagrams

Additional insight into the elevator system is obtained by developing sequence diagrams. In
particular, while trying to assign responsibilities to the objects of the classes the internal
behaviour of the system becomes more clear. Fig. 8.7 shows a sequence diagram that
corresponds to the scenario depicted in Fig. 8.2 (Outside Request A Scenario). In fact, the
sequence diagram describes only half of this scenario, yet the analysis of the elevator’s
behaviour indicates that the key design principles of the Elevator System are captured in this
diagram. Specifically, the diagram describes both the situation in which the elevator is
checking its requests at a floor (“idle” or “stopped”), and the situation in which the elevator

is moving towards a destination floor (“target floor”).

elevator:
Elevator

floor:
Floor

positionDetector:
PositionDetector

door:
Door

*
updateRequests()
1 getUpButtonState()

getCarButtonStates()

updateTarget()

target floor is
below current floor

moveDown()
f *

goToTarget()
r_:]

getCurrentFloor()

teR t
updateRequests()

_{‘,] target reached
stop()

o

235

Fig. 8.7 ELS Sequence Diagram: Outside Request A

1. DD e L e e
DS Tt v g I S AR AL ST Y

236

The design solution considered, apparent in this sequence diagram, is to continuously poll
both the floor buttons and the internal car buttons in order to permanently maintain a list of
existing requests (the repeated operation updateRequests in the diagram). When the need for a
movement is detected by the idle (or stopped) elevator, the target floor is set (updateTarget
operation) and the elevator starts moving but not before closing its door (to be precise, if the
elevator is idle, the door is already closed). While moving towards the target the list of
requests need be continuously updated (within the goToTarget operation, which is labelled
“repeated” to indicate the repetitive nature of its major two components: getCurrentFloor and
UpdateRequests, the latter perfoming the same task as in the idle or stopped situations). The

sequence diagram also stresses the central role the Elevator class has in the system.
8.4.5 Elaboration of Class Compounds

With a better insight into the system’s structure and behaviour, the class compounds can be
next detailed. Two class compounds are described in this Subsection in terms of both class
specification (CLS) and state diagram associated with the class (CLSTD). One class is very
simple (the Button class), while the second is quite complex, bearing the responsibility of
much of the work done by the system (the Elevator class). The Button class compound, with
its two components shown in Fig. 8.8 (the class specification) and 8.9 (the state diagram) is
included here because in this particular application other classes present in the class diagram

have a behaviour similar to that of the Button (these classes are Indicator and Door).

The Elevator class includes the operations deemed necessary in the sequence diagram drawn
in the previous modelling step and has also its attributes specified. These attributes include
the state descriptor for the objects of the class (the state attribute), an autribute for denoting
the elevator’s current direction, another for keeping information about the elevator’s current
floor, and three atributes for the groups of possible requests (internal requests, external

requests for up movement, and external requests for down movement).

The CLSTD of the Elevator class compound, shown in Fig. 8.11, is constructed based on

the following states:

237

Button
tate : ButtonState

+press()
+tumOff()
+getState() : ButtonState

Fig. 8.8 ELS Class Button

x5

<

\ /\\ A

h I 4 -

) press 4

> 5

Not llluminated MmOt {flluminated r4
-]

\— 5

Toay Tyrmiroin

PR = P R e BT OV - - G
B O L s ST R A R I

Fig. 8.9 ELS State Diagram for the Button Class

Elevator

#state : ElevatorState

#dir : Direction

#current : unsigned int

#target : unsigned int
#carRequests : unsigned int[]
#upFloorRequests : unsigned int []
#downFloorRequests : unsigned int []
+updateRequests()
+updateTarget()

+goToTarget()

+moveUp()

+moveDown()

Fig. 8.10 ELS Class Elevator

238

J

k) Y o AT i e e
G AR L n s

RNy
ALY 2un

[t
WUl

(movingUp when(target_reached and down_to_go)
- entry: moveUp()
vu\my goToTarget()
exit: st
0pX) W,
&
' when(target_reached and
l up_to_go)
when(other_levei_request when(up_target) l
and up_to_go) ; \ J
f
I stoppedToUp
when(no_requests, entry: door.open()
*— (o) activity: updateRequests()
exit: door closey)
\ o
\
\
A A
idle when(level_request and up_to_go)
when(level_request and down_to_go)
activity: updateRequests() -
a
when(no_requests) r stoppedToDown
entry: door.open()
activty. updateRequests() i
| g gt :
when(other_level_request
and down_to_go) ’
when(down_target) !
when(target_reached
’ and down_to_go)
\ 4
movingDown
entry: moveDown() when(target_reached and up_to_go
activty: goToTarget() e:!(et nd up_fo_go!
ext: stopy)
LT L i T R R R e N R e T S T S e I e e L F i e L B e, s PR T S S TIEN

Fig. 8.11 ELS State Diagram for the Elevator Class

- idle, describing the situation in which the elevator has no requests, neither internal

nor external (to be more precise, the elevator enters this state after stopping at a floor,

waiting for a period of time, and still not having

requests);

- movingUp, which is the state of the elevator moving upwards to its current targer floor;

- movingDown, same as above, but for the opposite direction;

- stoppedToUp, which denotes the state in which the elevator is stopped at a floor and

either (a) has pending requests, the analysis of which indicating that the next

movement of the elevaror is an up movement, or (b) has no pending requests but it

239

has just completed its last service coming from a lower floor and has not yer entered
yet the idle state;
- stoppedToDown, same as above, but with either (a) a down “next direction to take,” or (b)

a last moving direction “down.”

The Alarm and Stop Elevator situations (triggered by special inside car requests)
correspond to two abnormal states of the elevator that for simplicity have been omitted
from the diagram. In the diagram, specific change conditions lead to the transition of the
elevator from state to state. Detailing of these conditions is best done in Z++, as shown

later in the chapter.

1 .
[Elevator 1 :
{#state : ElevatorState
#dir : Direction PositionDetector -
#current : unsigned int - ~ =
AlarmSystem #arget : unsigned int -curentfloor : unsigned int
1 [#carRequests : unsigned int (] +getCurrentFloor() : unsigned int
— pFloorRequests : unsigned int [] +calculateSpeed() : double
+audioSignal() \ . bownFlootRequests : unsigned int{]
+visualSignal -
0 T +updateRequests{)
+updateTarget() Door
~@+goToTarget) - [¥stote - Doorstate
+moveUp() 1 9
+moveDown() +open()
+stop() +close() 4
. +getState() : DoorStat
i ? 1 1 -
]
CarButton SpecialCarButton T
-buttonNumber : unsigned int [kind : SpecialCarButtonKind
+getButtonNumber() : unsigned int +getKind() : SpecialCarButtonKind o Groupindicator
-size : unsigned int %
‘5 +setindicator(in ind : unsigned int) 54
Button 1 [|+resetindicator(in ind : unsigned int)
state : ButtonState a . 1 sresetAll() -
+press() ' i
*wmOfi() Floor . :
+getState() : ButtonState| wingd - Fi nd
#loorNumber : unsigned int :
[#upButton : FloorButton [_'M'“""
0..1 1 [#downButton : FloorButton state : IndicatorState .] 5
FloorButton _@|"9°tind() : FioorKind icatorNumber : unsigned int i
ind - FloorButioniang 0.1 17 |+setFloorNumber(in floorNumber : unsigned int) +tumOn() S
- o i +getUpButtonState() : ButtonState +tumOn()) 5
*getKind(: FloorButtonKind +getDownButtonState() : ButtonState getState() : IndicatorStats ¥
.3
. o S e S ke U e I e AR en S e A s e Bt A T e e e R

Fig. 8.12 ELS Class Diagram with Attributes and Operations Attached to Classes

240

With all the classes of the initial class diagram shown in Fig. 8.6 detailed in terms of

attributes and operations the resulting class diagram is the one presented in Fig. 8.12.

8.4.6 Formalisation through the AFCD and the AFSD

Having the classes of the class diagram specified in detail in terms of arttributes and
operations and having the state diagram also specified for some classes, it is possible to apply

the automated translation processes from UML to Z++ described in Chapter 6.

First, the class diagram is translated to Z++ by applying the AFCD algorithm detailed in
Section 6.3, the result being shown in Fig. 8.13 (the text file generated by the Java program
presented in Appendix B has been manually edited with Z specific symbols, the generation of
such symbols directly from the program being one of the intended near future enhancements

of the AFCD’s implementation).

Next, the state diagrams associated with the classes are formalised via the AFSD algorithm
presented in Section G.4. In the case of the Button class the result, shown in Fig. 8.14,
reflects the simplicity of the state diagram (it has been included here primarily for showing
the groups of predicates generated in the HISTORY clause of the Z++ class), while in the
case of the Elevator class presented in Fig. 8.15 it reflects the complexity of both the class’
structure and behaviour. Because the Elevator state diagram is specified using transitions
triggered by changed events, numerous internal operations have been created. The quite arid
nature of these operations (that need be further processed by the human specifier, at least in
what regards their proper renaming) has prompted us to add comments for them in the

Elevator Z++ class.

In both the case of the complete Z++ specification shown in Fig. 8.13 and of the detailed
Z++ class Elevator shown in Fig. 8.15, the intervention of the human formaliser after the
application of the AFCD and AFSD algorithms is necessary, as described in more detail in

the next Subsection.

241

[ELEVATORSTATE, DCORSTATE, INDICATORSTATE, SPECIALCARBUTTONKIND,
BUTTONSTATE, FLOORBUTTONKIND, FLOORKIND, DIRECTION]

CLASS System

PUBLICS

TYPES

FUNCTIONS

OWNS
theServesDescript

RETURNS

OPERATIONS

INVARIANT

ACTIONS

HISTORY

END CLASS

//

CLASS Elevator

PUBLICS
setTarget,

TYPES

FUNCTIONS

OWNS
state
dir :

update

ELEVATORS
DIRECTION;
current N;
target N:
carRequests
upFloorRequests
downFloorRequests
door : Door;
carButtons PCar
specialCarButtons
groupIndicator :
positionDetector
alarmSystem : Ala
RETURNS
OPERATIONS
updateRequests :
updateTarget
goToTarget
moveUp
moveDown
stop
INVARIANT
ACTIONS
setTarget ==> ;
updateRequests
moveUp
moveDown
stop ==> ;
alarm
HISTORY
END CLASS

—
- 7
p—_—

-

or : ServesDescriptor:;

Requests, moveUp, moveDown,

TATE;

seg(N);

seq(N) ;
: seqg(N);

Button;
: PSpecialCarButton;
GroupIndicator;
PositionDetector;
rmSystem;

—_

—_

’

stop, alarm

Fig. 8.13 ELS Z++ Specification Generated by the AFCD

242

CLASS AlarmSystem
PUBLICS
audioSignal, visualSignal
TYPES
FUNCTIONS
OWNS
RETURNS
OPERATIONS
audioSignal —
visualSignal : — ;
INVARIANT
ACTIONS
audioSignal ==> ;
visualSignal ==> ;
HISTORY
END CLASS
/] m e e
CLASS PositionDetector
PUBLICS
getCurrentFloor, calculateSpeed
TYPES
FUNCTIONS
OWNS
currentFloor : N;
RETURNS
OPERATIONS
getCurrentFloor : — N;
calculateSpeed : — R;
INVARIANT
ACTIONS
getCurrentFloor result! ==> ;
calculateSpeed result! ==> ;
HISTORY
END CLASS

open, close, getState
TYPES
FUNCTIONS
OWNS
state : DOORSTATE;
RETURNS
OPERATIONS
open : = ;
close s
getState : — DOORSTATE;
INVARIANT
ACTIONS
open ==> ;
close ==> ;
getState result! ==> ;
HISTORY
END CLASS

’

Fig. 8.13 ELS Z++ Specification Generated by the AFCD (continued from the previous page)

243

e

CLASS CarButton
PUBLICS
getButtonNumber
TYPES
FUNCTIONS
OWNS
buttonNumber : N;
RETURNS
OPERATIONS

getButtonNumber : — N;
INVARIANT
ACTIONS

getButtonNumber result! ==> ;
HISTORY
END CLASS

CLASS SpecialCarButton
PUBLICS
getKind
TYPES
FUNCTIONS
OWNS
kind : SPECIALCARBUTTONKIND;
RETURNS
OPERATIONS
getKind : ~» SPECIALCARBUTTONKIND;
INVARIANT
ACTIONS
getKind result! ==>
HISTORY
END CLASS

/] m e e

CLASS Button
PUBLICS

press, turnOff, getStatus
TYPES
FUNCTIONS
OWNS

state : BUTTONSTATE;
RETURNS
OPERATIONS

press : — ;

turnOff : — ;

getStatus : — BUTTONSTATE;
INVARIANT
ACTIONS

press ==> ;

turnOff ==> ;

getStatus result! ==> ;
HISTORY
END CLASS

Fig. 8.13 ELS Z++ Specification Generated by the AFCD (continued from the previous page)

//
CLASS FloorButton
PUBLICS
getKind
TYPES
FUNCTIONS
OWNS
kind :
RETURNS
OPERATIONS
getKind :
INVARIANT
ACTIONS
getKind
HISTORY
END CLASS
//
CLASS Floor
PUBLICS
getKind,
TYPES
FUNCTIONS
OWNS
kind
floorNumber
upButton
downButton
grouplIndicator
RETURNS
OPERATIONS
getKind :
setFloorNumber
getUpButtonState
getDownButtonState
INVARIANT
ACTIONS
getKind result! ==> ;
setFloorNumber floorNumber?
getUpButtonState result!
getDownButtonState
HISTORY
END CLASS
//
CLASS GroupIndicator
PUBLICS
setlIndicator,
TYPES
FUNCTIONS
OWNS
size N;
indicators
RETURNS
OPERATIONS
setIndicator

FLOORBUTTONKIND;

— FLOORBUTTONKIND;

result! ==> ;

setFloorNumber, getUpButtonState,

FLOORKIND
N;
FloorButton;
FloorButton;
GroupIndicator;

— FLOORKIND;

N - ;

— BUTTONSTATE;
— BUTTONSTATE;

resetindicator, resetAll

Pindicator:;

N — N;

getDownButtonState

Fig. 8.13 ELS Z++ Specification Generated by the AFCD (continued from the previous page)

245

resetIndicator : N — ;
resetAll : — ;

INVARIANT

ACTIONS
setIndicator ind? result! ==> ;
resetIndicator floorNumber? ==> ;
resetall ==

HISTORY

END CLASS

/o e e

CLASS Indicator
PUBLICS
turnOn, turnOff, getState
TYPES
FUNCTIONS
OWNS
state : INDICATORSTATE;
indicatorNumber : N;
RETURNS
OPERATIONS
turnOn : — ;
turnOff : — ;
getState : — INDICATORSTATE;
INVARIANT
ACTIONS
turnOn ==> ;
turnOff ==> ;
getState result! ==> ;
HISTORY
END CLASS

R

CLASS ServesDescriptor

PUBLICS

TYPES

FUNCTIONS

OWNS
instancesofElevator : PElevator;
instancesofFloor : PFloor:
servesInstances : Flcor = Elevator;

RETURNS

OPERATIONS

INVARIANT
dom servesInstances = instancesofFloor
ran servesInstances = instancesofElevator

ACTIONS

HISTORY

END CLASS

HPositionDetector £ PositionDetector \ [currentFloor]

A

HDoor 2 Door \ [state]
HCarButton & CarButton \ [buttonNumber]

A

HSpecialCarButton £ SpecialCarButton \ [kind])
HFloorButton £ FloorButton \ [kind]

A

HGroupIndicator £ GroupIndicator \ [size]

A~

HIndicator £ Indicator \ ({[state, indicatorNumber])

Fig. 8.13 ELS Z++ Specification Generated by the AFCD (continued from the previous page)

246

CLASS Button
PUBLICS

press, turnOff
TYPES
ButtonState ::= notilluminated | illuminated

FUNCTIONS
OWNS

state : ButtonState

RETURNS
OPERATIONS

press: — ;
turnOff: —» ;

INVARIANT

ACTIONS
init ==> state’ = notilluminated;
press ==> state’ = illuminated;
turnOff ==> state’ = notilluminated;

HISTORY

// mutual exclusion properties
mutex ({press, turnOff}) A self_mutex ({press, turnOff}) A
// permission predicates

..{press = state = notilluminated v state = illuminated) A
Z(turnOff = state = illuminated) A

// definition of transition effects

(press = O/(state = illuminated)) A
(turnOff = O(state = notilluminated)) A

// reachability properties

(state = notilluminated = press) A
(state = illuminated = press v turnOff)
END CLASS

Fig. 8.14 ELS Z++ Class Button Updated by the AFSD

247

CLASS Elevator
PUBLICS

press, turnOff

TYPES

ElevatorState ::= idle

FUNCTIONS
OWNS

state ElevatorState;
dir Direction;
current : N;
target : N;
carRequests
upFloorRequests
downFloorRequests
door Docr;
carButtons
specialCarButtons
groupIndicator :
positionDetector
alarmSystem

seq(N);

RETURNS
OPERATIONS

updateRegquests : — ;
updateTarget : — ;
goToTarget : — ;
moveUp : — ;
moveDown : -— ;

stop : — ;

11 ;
*12 ;
*13
“14
*1g
“1g
* 1o

ita

L A A A

.TQ

PCarButton;
: PSpecialCarButton;
GroupIndicator;
PositionDetector:;
AlarmSystem;

| movingup

| movingdown | stoppedtoup |

stoppedtodown

seq(N) ;
seq(N);

/7
//
/7
//

condition triggered operations
describing the transitions of
the Elevator state diagram

shown in Fig. 8.12

Fig. 8.15 ELS Z++ Class Elevator Updated by the AFSD (continued from previous page)

248

INVARIANT

ACTIONS

/7 [...]

// definitions of Elevator operations as in Fig.8.12

*1l ==> state’ = movingup: // idle to movingup

*12 ==> state’ = movingdown; // idle to movingdown

*1t3 ==> stop; // movingup or movingdown to stoppedtoup
state’ = stoppedtoup;

*14 ==> stop; // movingup/movingdown to stoppedtodown
state’ = stoppedtodown;

*15 ==> door.close; // stoppedtoup to movingup
state’ = movingup;

*16 ==> door.close; // stoppedtodown to mcvingdown
state’ = movingdown;

*17 ==> state’ = stoppedtoup; // idle to stoppedtoup

*1, ==> state’= stoppedtodown; // idle to stoppedtodown

*19 ==> state’= idle; // stoppedtoup/stoppedtodown to idle

HISTORY

// mutual exclusion properties, permission predicates, definition
// of transition effects and reachability properties omitted for
// simplity (examples are available in Fig. 6.30 and 8.14)

// enabling conditions:

(enabled(T1) = (state = idle) A other_level request_and_up_to_go) A
(enabled(12) = (state = idle) A other_level request_and down_to_go) A
(enabled(T3) = (state = movingup v state = movingdown) A

target_reached_and_up_to_go) A
(state = movingup v state = movingdown) A
target_reached_and_down_to_go) A

n

(enabled(1y)

(enabled(ts) = (state = stoppedtoup) A up_target) A

(enabled(tg) = (state = stoppedtodown) A down_target) A

(enabled(t7) = (state = idle) A level request and up_to_go) A
(enabled(tg) = (state = idle) A level request and down_to_go} A
(enabled(tg9) = (state = stcppedtodown v state = stoppedtoup) A norequests

END CLASS

Fig. 8.15 ELS Z++ Class Elevator Updated by the AFSD (continued from the previous page)

249

8.4.7 Enhancement of the Formal Specification

After the automated translation from UML to Z++ takes place, the results obtained by
applying the AFCD and the AFSD must be checked since modifications and additions may
be necessary. In the case of the ELS Z++ specification example shown in Fig. 8.13, it can be
observed that the “state types” (e.g., ElevatorState) are translated by the AFCD as given sets,
although they should be defined as enumerated sets. Also, in the case of the Z++ class
Elevator shown in Fig. 8.15, the attributes of array type denoting the internal and external
requests of the elevator are translated as seq(N), although a more suitable representation in

this particular case is PN, since these attributes are better modelled as sets.

The work on the formal specification, aimed at its enhancement, encompasses various
aspects. In particular, all sorts of constraints on both the structure and the behaviour of the
class’ instances, as well as the bodies of the operations can be specified. Without entering in
too many details, we exemplify this aspect of formalisation by considering the Elevator Z++
class of Fig. 8.15 and by defining more precisely the conditions that trigger the transitions

between the elevator’s states. Using the modified definitions:

carRequests: PN
upFloorRequests: PN

downFloorRequests: PN

and the equivalences:

~

floorRequests & upFloorRequests U downFloorRequests

A

requests = carRequests U floorRequests

some of the conditions of the internal transit operations v included in the Elevator class can

be written as follows (for each condition the transition it triggers is shown on the right-hand

side of the formula):

250

(a) other_level_requests_and_up_to go £ current ¢ floorRequests A
3x € floorRequests ® x > current [t,]
(b) target_reached_and_down_to_go 2 (current = target) A

(dir = down A 3Bx € requests e x > target) v (dir = up A

Ax € requests e x > target A Jy € requests e y < target)

[t.a]

(c) up_target £ target > current [ts)
(d) level request_and up_to_go £ current € upFloorRequests {t,]
(e) no_requests £ requests = & {15l

Of course, the above are a very small part of the work needed in the Z++ space, a significant
amount of detail being necessary to describe the system in a complete and precise way. In
particular, the modelling of the complex Z++ class Elevator is a laborious rask, in which the
fine interplaying of conditions and operations need be carefully specified. During the
enhancement of the formal specification the deformalisation process can also take place,

modifications performed in the Z++ space being reflected partially in the UML space.

Atctention to temporal properties of the system is also necessary. A detailed, elaborate
specification of these properties is possible by writing RTL formulae in the HISTORY clause
of the Z++ classes. Taking into consideration the temporal constraints placed in Section 8.2
on the Elevator System, solutions for expressing them in Z++ can involve the following

expressions:

(a) For the temporal constraint [T1] the condition for the door to open within a given

interval of time after the elevator stops at a floor can be expressed as:

Vi:Np e 3j:N; o T(door.open,j) - l(stop,i = OPEN_MIN TIME A
d(door.open,j) - l(stop,i) < OPEN_MAX_TIME

251
if the interpretation of the constraint is that the door starts to open and completes this
action within the specified time bounds, or as:

Vi:N; e 35:N; o d(stop,i) — (door.open, j)
A OPEN_MIN TIME <

< delay (door.open,j) < OPEN_MAX TIME

if the requirement is that the door only starts its opening within the specified time
bounds.

(b) For the temporal constraint [T2], the condition for the door to stay open at floor for a

specific period of time provided the CloseButton is not pressed during this period of
time can be expressed as:

Vi:N; e (Aj:N; e d(door.open,i) < &((CloseButton.state

on) :=true,j) <
! (door.open,i) + STAY_OPEN_NORMAL_TIME) =>

T (door.close,i+1) = {(door.open,i) + STAY_OPEN_NORMAL_TIME

(c) For the temporal constraint [T3] the correlation between the closing of the door and the

start of the elevator movement (either up or down) can be expressed as:

Vi:N; e 3j:N; ¢ CLOSE_MIN TIME

T (move,i) - {(door.close,j)

<
< CLOSE_MAX_TIME

(d) For the temporal constraint [T7) the details regarding the audio and visual signals in case
of emergency can be written as:

< MAX SIGNAL_DUR A
<

< SIGNAL_SEPARATION

Vi:N; « MIN_SIGNAL_DUR < duration(signal, i)
T(signal,i+1) - {(signal,i)

The constraint [T4] can be modelled using a variable that records the value of now at “new

floor” occurrences during the elevator’s movement, while conditions [T5] and [T6] can be
expressed with predicates similar to those presented above.

252

Using the specification capabilities of RTL, including the extensions proposed by Lano for
its use within the frame of Z++, detailed time-related requirements placed on the system can

be rigorously expressed.

8.5 Chapter Summary

In this chapter the modelling approach proposed in the thesis has been exemplified using an
Elevator System on which a number of general and temporal constraints have been placed.
Examples of artefacts for all the steps of the regular modelling process presented in Chapter 7
have been provided and observations on the role of each step have been included. Examples
of applying the AFCD and AFSD algorithms described in Chapter 6 have also been
provided, the class diagram of the ELS being translated into a Z++ specification. Remarks on
the need for enhancing the formal specification, as well as on the need of precisely describing

the temporal aspects of the systems have also been included.

253

D TOWARDS AN INTEGRATED ENVIRONMENT: A
PROTOTYPE FOR HARMONY

“Build me straight, O worthy Master!
Staunch and strong, a goodly vessel,
That shall laugh at all disaster,

And with wave and whirlwind wrestle!”

[H. W. Longfellow, The Building of the Ship, 1849]

9.1 Introduction

In this chapter the overall design of the specification environment entitled Harmony is
presented and details are given regarding both its operational capabilities and its GUI
appearance. This tool is intended to fully support the modelling process proposed in Chapter
7, with special attention paid to provisions for sustaining the formalisation of UML classes
and state diagrams described in Chapter 6. Deformalisation is also supported and aids are
included for easy manipulation of Z++ symbols in the process of writing formal
specifications. A “tandem” mode of operation is introduced, consisting essentially in the
synchronised presentation of a UML class compound and its corresponding Z++ class
specification. A more complete description of this CASE tool, currently evolving into a
prototype, is provided in Appendix C. In this chapter, the general principles of Harmony are
presented first, followed by an overall view of the environment, and then by successive
descriptions of Harmony’s main components: the Project Pane, the UML Space, and the
Z++ Space. A number of additional features of the environment, including specific toolboxes

and buttons, are also presented.

254
9.2 General Principles

Because we attempt to combine the benefits of “both worlds” (“formal” and, respectively,
“informal,” as well put by Alexander in the title of his paper [Alexander95]) and to
“harmonise” the use of the UML and Z++ notations we have assigned the name Harmony to
the environment that supports our modelling approach. In its present form, Harmony is
intended to fully support the modelling process outlined in Chapter 7, with particular
emphasis on the formalisation and deformalisation activities described in Chapter 6. Both
UML and Z++ specifications can be “simultaneously” developed in Harmony and a bi-
directional link exists berween the formal and the graphical representations of the system,
ensured by the translation mechanisms described previously in the thesis. This allows
changes in the graphical representations to be reflected into the formal specifications, as well
as the modifications of the formal part to be fed back into the diagrammatic description of

the system.

Reflecting our philosophy for a rigorous yet pragmatic modelling approach, our goal for this
stage of Harmony's development was to keep things simple and focus on those aspects of
TCS that must be completely and correctly captured during the early stages of software
development. Further extensions for the environment are possible, some of them outlined in
the Conclusions of this thesis, and provisions for interfacing with external tools are included.
Presently, Harmony’s designed capabilities are adequate for the development of the Elevator
case study described in Chapter 8, as well as for modelling other TCS. Of course, software
systems in which the focus is not on temporal restrictions (“non TCS”) can also be specified

using Harmony.

The environment operates on specification projects, which are sets of specifications
represented in diagrammatical (UML) and/or mathematical (Z++) forms. For this reason
Harmony is referred to as an integrated specification environment (ISE). The combined
result of the specification activities supported by Harmony, more exactly the sum of the

artefacts (model elements) produced in these activities within the procedural frame presented

255

in Chapter 7, constitutes the integrated model of the system. Since a total formalisation of
the system is typically not required, the environment can be used for a partial formalisation
within a complete specification of the system. In practical terms, this means that it is not
necessary that a one-to-one correspondence between UML and Z++ components is achieved
—some parts of the system will be described both in UML and Z++, while other only in UML
or only in Z++. In principle, it is possible to have the entire system specified solely in Z++,
but this can be efficient only in the case of small-sized systems (it also comes against our idea

of combining formality and informality in software specification).

One of the distinguishing characteristics of Harmony is that it is monolithic in the sense
defined in Section 4.2. By itself, it is sufficient to sustain a complete specification of the
system and through its provisions for interfacing with external tools it is also capable in
principle of supporting further development (in particular, we envisage interfacing with
external tools for formal proof and formal refinement). Thus, it can be used as the “root”
instrument from which other applications can be started —this is in contrast with other
approaches, for instance RoZeLink’s, where three applications need be separately started
from the operating system in order to perform the formalisation and deformalisation
processes [RoZeLink99]. As shown in next section, it also “monolithically” integrates two

“worlds,” the visual world of UML, and the textual, intensively symbolical world of Z++.

Another point that needs be further highlighted about Harmony is that it is designed for
producing pragmatic, efficient, and precise models through the combined used of semi-
formal diagrams and formal specifications. In this respect, the use of Z++ has primarily the
role of supporting better understanding of the system and, generally speaking, of enhancing
the intellectual control over the system. As discussed in Chapter 2, this is one of the main
advantages of using formal methods and, consequently, although more intricate features for
formal processing can be added later through Harmony’s “add-ins” feature, they nevertheless
are beyond the scope of this thesis. Only a syntax and consistency checker is envisaged to be
included directly in Harmony, this being a useful tool for enhancing the developer's

confidence in the accuracy of his or her Z++ specifications.

256

As a matter of overall organisation of the two modelling spaces it is necessary to mention that
while a project may consist of several class diagrams there is a unique Z++ specification for
the system. Because a Z++ specification encompasses not only classes but also statements
external to classes (such as definitions of global types and operations on classes) and because
we have attempted to ensure a consistent way of accessing the groups of artefacts within the
project, a Global Spec component has been included in the Z++ Space. When fully

expanded, as detailed in Section 9.6, it shows the entire text of the formal specification.

On a more derailed level, support for the class compound construct introduced in Chapter 7
is available, the idea being that the key classes of TCS need be detailed not only in respect
with their attributes and their operations, but also with the sequencing of their operations (as
captured in state diagrams). From a GUI point of view, a simple splitter bar between the
space in which the UML class is represented and the one that corresponds to the class’ state
diagram is introduced, the two regular UML constructs being syntactically associated in the
graphical model (they are also inherently associated in Z++ class declarations, where, within
the CLASS construct, the HISTORY clause describes the temporal properties of the class’

objects).

Also, since an intense work on UML class compounds and on their corresponding Z++
classes is expected, a synchronisation mechanism of on-screen presentation of the
corresponding COMP and ZPPC constructs is proposed (the abbreviations introduced in
Table 7.1 are used again in this chapter). This mechanism defines a mode of operation that
can be viewed as a manifestation, in our terminology, of the tandem principle (simply put, it
means that two entities are working together for accomplishing a common goal). This mode
of operation that allows in essence the “simultaneous” development (or the simple

inspection) of a class in both its UML and Z++ forms is further described in the next section.

Before describing further the organisation of Harmony, we need to point out that only the
design of the environment has been completed, but not its implementation. Therefore, the

screen shots that follow are only aids for further development and do not represent actual

257

captures of the running environment. The examples of UML and Z++ model elements
included in Fig. 9.1, showing the Elevator class compound and its corresponding Z++ class
specification have been pasted into the environment panes, and have not been developed
with Harmony. The design of Harmony’s user-interface presented in this chapter and
further described in Appendix C, a “mock-up” prototype written in Java, includes

nevertheless the necessary details for fully sustaining Harmony’s implementation.

9.3 Opverall Organisation

Fig. 9.1 presents Harmony in a typical situation, in which a project is loaded and work is
undergoing in the UML and Z++ spaces on several modelling elements, specifically a use
case, a scenario, a sequence diagrams, two UML class compounds, and two Z++ classes. As
seen in the figure, the environment consists of a main window (or browser), divided into
several panes and containing other GUI elements such as a menu bar and toolbars. Since a
systematic description of Harmony’s user interface is included in Appendix C, we focus in
this chapter only on those aspects that distinguish the most this ISE. From this perspective, it
is notable that Harmony has three main panes, referred to, respectively, as the Project Pane,
The UML Space and the Z++ Space. In addition to these panes, to the menu bar, and to the

environment's toolbars, a message console and a status bar are also included.

In short, the entire organisation of the project can be viewed in the Project Pane, which
shows the collections of artefacts grouped as indicated in Chapter 7. Work on the semi-
formal model is performed in the UML Space, and formal specifications are written in the
Z++ Space. It is important to note that in this organisation the three panes can all coexist on
the screen at any given moment, but they can also be individually turned off, as shown in the
View Menu presented in Fig. 9.2. Thus, work can proceed either in parallel in the semi-
formal and the informal spaces, or can be focused on one of the to modelling “worlds”. The

specifier can turn off either “world” and use only half of Harmony’s capabilities, either for

File Edt View uwL

2o+ Toois Wndow el

: - e A TAT T =T
(o|alm]|¥[n]s]|o je]w] |k (B
- « — — q
i Projett Pane » UL Space ;. Z+* Space
W Eievator System. ‘ 3] € [~ »] ER © ewtes |
¢ K5 uc Calsection - -
® . Main Use Case Diz °| 3] 3] N, CLASS Xlewator
1+ Outside Reque: > AR S E rsLrs
%+ mside Request ; m-—:hm. wantelequescs, acvelp, moved
© B sc Comection vauest Gevator elajalxr| ymcrrows
. - oms
© @ insice Request | o irioatiiand ljvjeln state : Tlewatorace:
® BB Outside Reguest Hi Peuneat . vamgned imt M ™ @ir : Darectiam;
® Reguestfom T’ PLrget wnmgned it . :: ::.—
R , jocodoquens wasigned int (] €l » P e
4 Requestfom T, - et ieaequent . unmrgned int [] d Do s seqtN),;
$ Reguesthom M’ [P domnt iseequents . uamgaad int | el <]olo Wl loorRequests = seq(N);
@ &5 sa Cotecton ' [*epdsseRequent)) dowr? loochegiests @ gl ;
© (@5 inside Request [Pupdste TargeO cp=lele @0z : Door:
a) D - +goToTarget) sIe (o axBerons : ICarBxton:
9 BB Class Diagrams ana C ¢ ermoreUpd S}2 spec1allarBatons : PipecialCasurzan;
© & Main Lo i oveD ewan() Jf~[3]e groupIndicacor : Crouplndicator.
9 EB 2+ Specficaton *8t000 p?utuhto?ta;t lwut:-“m,
| ¢ @ cioval Spec nf=f1]0] ,ppuan : yrte:
i g E.l;vmr of~frfe] orsmrums L
! or wpdax B
i] Button ofeelalt p‘“‘f otuwc? —-: R
: ef~falil Do— s
! cl=l=]~ il
| .
| TARIIAST
i S =lPI18 . ome
: cae am. secTarge e
‘ Ui-=jFja Westelequests ca>
i ‘

10]

4]

Toolbars

& X Project Pane
¥ 4 UML Space
™ g Z++ Space

M Message Console
- Status Bar

® Tandem On

o Tandem Off

@ Zoomin..
& ZgomOut..

Actual Size

Eitto Window

Fig. 9.2 The View Menu

259

developing solely UML models or for exclusively representing the system formally. As
indicated in Fig. 9.2, all the panes of Harmony can be shown or hidden, although it will be

of little value to have both the UML Space and the Z++ Space turned off simultaneously.

The same figure also allows the further description of the tandem mode of operation. In
short, this mode of operation brings to the front of both modelling spaces (UML and Z++)
the pair of corresponding COMP and ZPPC descriptions, irrespective on which space the
developer is actually working. As such, all the relevant information about a class, specifically
its: UML structure in CLS, the UML state diagram CLSTD, and the formal ZPPC
representation are visible at the same time on the screen provided that the “tandem option”
is turned on and, of course, both UML and Z++ panes are open. The tandem mode of

operations extends to class diagrams and their counterpart, the entire Z++ specification as

reflected by Global Spec.

9.4 The Project Pane

The Project Pane, shown in Fig. 9.3 with the ELS project loaded and partially completed, is
one of the three principal areas of the Harmony window. Its role is to visually present the
project’s structure in terms of artefacts and groups of artefacts as described in Chapter 7 and
to support a number of operations that allow the gradual development and organisation of
the project. These operations consist of creating a new artefact or group of artefacts, moving
an element from a group to another, and deleting an artefact or a group of artefacts. They are
invoked by mouse actions within the pane’s area, for instance a right-mouse click on the
empty space of the pane opens the New Model Element Selector shown in Fig. 9.4. Two of
the above operations are also available through other interface elements of Harmony, more
precisely New is included in the File, UML, and Z++ Menus, and both New and Delete
have icons on the environment’s main toolbar (again, we refer to Appendix C for further

details).

260

Project Pane :
I Elevator System! :
® UC Collection

© B Main Use Case Diagram
%o Outside Request
%+ Inside Request
© B sc colection
© B inside Request
$ Moving Up RequestA
$ Moving Up Request B
$ Moving Down RequestA
$ Moving Down RequestB
©- B Outside Request
@ (3 sq collection
©- @8 inside Request
@ @3 Class Diagrams and Compounds
© & main
Elevator Controller
Elevator
3 Floor
Button
Q Z++ Specification
@ @B ciobai Spec
[E] Elevator
Floor
Button

=l
e
| Project Scenario i
W it 2 = 5
!' Diagrams Group Seguencs Diagram Ciass Diagram Ciass Compound Z++Class
| ok][concm |[_vew |

Fig. 9.4 The New Mode! Element Selector

261

From an operational point of view, immediately after Harmony is started all the
environment’s panes are empty, including the Project Pane. If from this state a new project is
created, the view of Harmony is the one indicated in Fig. 9.5, which highlights the initial
structure attributed by default to any project. This structure, following the guidelines of the
procedural frame presented in Chapter 7, consists of the five major groups of artefacts
considered there: the UC Collection, the SC Collection, the SQD Collection, the Class
Diagrams and Compounds Section, and the Z++ Specification. (We prefer not to use the
term collection for UML diagrams and compounds, since it may hint to an unstructured
type of organisation, which is acceptable in the case of use cases, scenarios, and sequence
diagrams —which need not, and typically cannot be completely specified,— but is not well

suited for classes, which must be fully and correctly defined and organised).

o 4> e
Bla[o]|[x[o]a]|a] e |&8]%ke
; Project Pane N UML Space N Zoo Space
W microwave Gven T EEnsL
B UC Collecbon N
&3 sc contection BN B 0 Kad L2
[& sa Cottection iy w2
BS ciass Oragrams and Compounds : elalalx
B3 z++ specification ‘ :
Jfvioiu
Xiwialz
cfeinvh #
ejcleota
cixidqo
ci2jdjo
uf~isje
ng~11j0
Ot=jillie
»: ohef s TJ
HEfm18 LJ
Juiwipj®
Microwave Oven project successfully created
e S £ = TR KE 1Y

Fig. 9.5 Harmony with New Project Just Created

262

9.5 The UML Space

In the UML Space the specifier can work on one or more model elements, each model
having its own tabbed-pane within this space. In Fig. 9.1, it can be seen that several such
elements are opened at the same time, the one active being the Floor Class compound, with
both its class specification and state diagram shown. Various options for working on the
UML Space are available through the environment’s menus and its toolbar. Among other
things, the UML menu shown in Fig. 9.6 indicates that it is possible to disable the current
UML toolbox (e.g., for inspection purposes, its elimination resulting into an increase of
UML Space’s visible area), as well as the state diagram part of a class compound (there are

classes that have a trivial state diagram).

@ NewucD
%o NewUC
B NewsSCO
$ NewSC
88 NewsaDG
#! NewsQD
New CD
New COMP
<3 Open... chl-0
@ save ctit-s
@ SaveAs..
Close Ctel-wy

Translate to Z++

Show UML Toalbox
Hide UML Toolbox

Show STD
Hide STD

O@®| 0@

Fig. 9.6 The UML Menu

263

The same figure shows that creating new model elements, opening existing ones, saving
them, or closing them are operations also possible through the UML Menu. An important
function accessible via this menu is “Translate to Z++,” which allows the user to propagate
new UML specifications or changes to existing ones into the Z++ Space. The rules for

automated formalisation described in Chapter 6 are applied in this process.

The UML Space also contains a toolbox specific to each type of artefact created using the
modelling approach proposed in this thesis. Since there are five distinct types of such
artefacts, five types of UML toolboxes are provided, the one visible at a given moment
corresponding to the type of artefact currently shown in the front tabbed-pane of the UML
Space. One of these toolboxes is presented in Fig. 9.7, and all five are included in Appendix
D. Some general symbols, such as “select item,” “text,” and “annotation” (the first three on
the left-hand side of Fig. 9.7) are a common presence in most if not all UML toolboxes. The
SQD Toolbox presented below includes additionally the “state,” “activation bar,” “message,”

< ” < ” o« ”» 3 . »
message to self,” “asynchronous message,” “return message,” and “destroy object” symbols.

A =[-]x]

Fig. 9.7 A UML Toolbox

9.6 The Z++ Space

In Harmony, the Z++ space is the equal partner of the UML space and as such its dedicated
menu has an organisation similar to that of the UML menu, as shown in Fig. 9.8. For
instance, the reverse process of formalisation, the transfer of information from Z++ to UML,
with its inherent simplifications discussed in Chapter 6, is invoked via the “Translate to

UML” option, which has the counterpart “Translate to Z++” in the UML Menu.

264

Additionally, there are several functions specific to the Z++ space, all available through the

Z++ menu.

Firstly, there is the “Analyse” option, which is intended to allow the syntax and consistency
checking of the formal specifications. Secondly, due to the specific organisation of the Z++
specification, options for the presentation of the Global Spec as well of the Z++ classes are
provided. More precisely, the Global Spec can show only the Z++ contents extraneous to
classes, such as names of global types and hiding operations on classes (in case option Classes
Hidden is selected); this contents together with the names of Z++ classes (if option Classes
Collapsed is chosen); or the full text of the Z++ specification, i.e. the Z++ statements
extraneous to classes and the detailed description of classes (if option Classes Expanded is
selected). Also, an individual Z++ class can be presented within the UML space either alone
(Hide Context option selected) or accompanied by the Z++ contents not included in classes

(Show Context option selected).

[} New Class Ctri-N
[E] Open Class... Ctil-0
Save cti-S
@ SaveAs...
Close Ctril-w
Translate to UML
Analyse
® Show Z++ Symbol Box

O Hide Z++ Symbol Box
O Classes Hidden

C Classes Collapsed
@] Classes Expanded
CJ Show Context

O Hide Context

Fig. 9.8 Harmony's Z++ Menu

265

A further distinction from the UML counterpart comes from the fact that a Symbol Box
instead of a Toolbox is available when working in this space. This “palette of mathematical
symbols” provides a practical alternative to the use of combinations of keystrokes for
inserting special symbols in the formal specification (a similar Symbol Pallette is available in
Logica’s Z Formaliser [FormaliserO1]). The Symbol Box for the Z++ Space, with its
comprehensive set of items is presented in Fig. 9.9. The Z and Z++ specific symbols have
been compiled from the indexes available in [Spivey92, pp. 153] and [Lano95, pp. 417-418]
and the Symbol Box includes only those items that cannot be written using a standard font
such as Courier or Times New Roman. For instance, in order to keep the Z++ Symbol Box
as small as possible the arithmetic operators +, -, *, and / are not included, nor are Z specific
notational elements such as ::=, < .. >, or >> that can be represented using regular fonts.
Because in Z++ there is a need for subscripts (and sometimes for superscripts) two non-Z
symbols, the superscript and the subscript indicators are also included as the last two
elements of the Z++ Symbol Box. As for the organisation of this toolbar, a “topic related”
criterion has been applied, the symbols being grouped according to their use: existential and
universal quantifiers first, followed by statement separators, then by operators pertaining to
sets and bags, then by function related symbols, etc. The nine elements in the Symbols Box
that precede the superscript and the subscript indicators on the last row are Z++ specific (do

not pertain to the regular Z). Further details on the Z++ Symbol Box are available in

Appendix C.

& Z++ Symbol Box L 22 s =10].x|
F[3,[¥[e]1[x[elefcc[u]n[efee(cle]o
LYl {Aajvi=simll <] 2~ =il +m
»ieimiaidbiairiofdiPESEiTIITIsANSEPHF
NiNj2|rjufzfefo]ofo|efejeftlil—|B]O

Fig. 9.9 The Z++ Symbol Box

266

9.7 Other Features

There are other features available in the Harmony environment, which is nevertheless kept as
simple as possible without jeopardising either its ease of use or its full support for the
formalisation activities described in Chapter 6 and for the combined UML/Z++ modelling
process proposed in Chapter 7. Some of these features are briefly described below, while

additional details are available in Appendix C.

For instance, there are five environment-specific buttons visible on Harmony’s main toolbar,
namely the Translate to Z++, Translate to UML, Tandem Off, Tandem On, and Analyse
buttons. In addition, the logo used for Harmony (taken from [RogersGifs01] Clipart
Gallery), can also be considered environment specific. In order to exploit a bit the harmony
metaphor, the first four symbols presented in Fig. 9.10 have icons related to the acoustic
domain, specifically a metrenome for the Harmony logo, a single (mono) audio-speaker for
the Tandem Off button, a pair of speakers (a stereo system) for Tandem On, and a sound
analyser for the Analyse Z++ Specifications function. The last three icons have been
downloaded from [LeosIconsO1] while all the other icons present in Harmony have been
cither taken from the “Java Look and Feel Graphics Repository” (standard symbols such as
New, Open, Delete, etc.) [JavaLook01] or created by us from the scratch (all the symbols for
the artefacts and all the elements of the UML and Z++ toolboxes). For translation operations
between the “worlds” of UML and Z++ two new symbols have been designed, both using
“transfer arrows” and cubes in their representation, the latter suggesting complex, well
defined “worlds” (of modelling, in our case). These translation buttons are represented on

the last two positions of Fig. 9.10.

LR AT R

Fig. 9.10 Harmony Specific Symbols

267

Regarding the Harmony logo it is interesting to note that it can be viewed as conveying a
combination of suggestions about the two most distinguishing characteristics of our
modelling approach: focused on smooth integration of notations (“harmony”, suggested by
an instrument associated with the rhythm of music), and focused on temporal properties of

stems (“the metronome,” a device which punctuates the passage of time).
P passag

Other icon-centred elements of Harmony’s user interface include a Legend Pane for the
symbols used in the modelling process, accessible via the Help menu. One of the tabbed-

pane of the Legend Pane is shown Fig. 9.11.

|9’| Scenarios Collection

>
g

Scenarios Group

9 Scenario

Fig. 9.11 The Legend Pane

Beside these detailed aspects of Harmony's design there are some other, higher-level
functional features that deserve to be mentioned. As shown in Appendix C, they include
tools for customising the properties of the editor, of the project, or of the environment as
whole, provisions for “add-ins,” zoom-in and zoom-out features, options for the export and

the import of Z++ specifications, and creation of additional Harmony windows. In

268

particular, through the Add-Ins feature present in the Tools Menu, connections with
external software tools are envisaged, and through the Export Z++ Specification included in
the File Menu an independent file containing solely the Z++ description of the system can be
generated for the purpose of being used in a separate development context. The counterpart
of the latter feature, the Import Z++ Specification, has the role of allowing the inclusion of
Z++ specifications developed externally into a Harmony project. This capability would
permit the subsequent generation of the corresponding UML class structure through

deformalisation.

9.8 Chapter Summary

In this Chapter the Harmony integrated specification environment has been introduced
through the description of its user-interface and of the functionality available through this
interface. This environment is intended to provide a monolithic integration of UML and
Z++ notations by fully supporting the formalisation and deformalisation activities presented
in Chapter 6 as well as the modelling process of TCS proposed in Chapter 7. The principles
that permeate Harmony's design, the environment’s general organisation, as well as its three
major components, the Project Pane, the UML Space, and the Z++ Space have been
described in a fair level of detail. Remarks on some secondary aspects of Harmony, such as
specific icons and symbols, have also been included. Although Harmony is only in the design
stage, the description presented in this chapter provides a good foundation for its
implementation and allows the consideration of possible enhancements, some of them

outlined in the next chapter.

269

N
o

10 con

USIONS

“What we call the beginning is often the end.
And to make an end is to make a beginning.
The end is where we start from.”

[T.S. Elliot, Little Gidding, Four Quarrets, 1942]

10.1 Introduction

At the conclusion of this thesis, we first look back and highlight the merits and the
limitations of our approach and then look forward to point out the work that remains to be
done. To evaluate our work in the context of current research, a summary comparison with
the closely related approaches discussed in Chapter 4 is included. The contributions of our
work are presented by dividing them in two categories, principal and secondary, and the
limitations of the present work are briefly reviewed. Needed improvements to the work

described here and connected research paths that can be beneficially pursued in the future

finalise the chapter.

10.2 Summary Comparison with Closely Related Approaches

In Cha ter 4 ﬁVC l'CSC&I'Ch studies were Cl'dSSiﬁCd as “ClOSCly rclated a l'O&ChCS” to our WOl'k.
PP
Althou h thCV were examined in some detail in that chapter, we resort again to them In
J g

order to provide a brief comparison with our work. This comparison is based on a number of

criteria, specifically:

* Type of translation from diagrammatic notations to formal specifications, which can be

either an OO to an OO or an OO to non-OO formalisation (the latter means chat

270

constructs of a non object-oriented formal language such as Z are adapted to represent
OO constructs from the semi-formal counterpart);

® Provisions for modelling RT systems (either included or not);

* Type of integration of notations, based on the classification introduced in Section 4.2.
Under this criterion, we denote simple formalisation (or derivation) by F,
complementary formalisation by CF, and tight integration of notations (which involves
two-way translations) by TF;

® The characteristic that can be referred to as the monolithic construction of the
supporting specification environment (the definition of a monolithic environment has
also been introduced in Section 4.2);

®* Capability of applying tool-supported processing techniques on the formal specifications,
including syntax and consistency checking, formal verification, and refinement. This
capability describes the present situation and refers to the connection with tools that
already exist;

®* The usage of the formal notation involved, reflecting its popularity and the number of

applications in which it has been employed.

The results of this comparison are shown in Table 10.1. From this Table it can be seen that
our approach has its merits as well as its limitations. While the merits are stressed in Sections
10.3 and 10.4, about the two main limitations highlighted in the table we need to point out
that although one is more difficult to overcome (specifically, it is difficult to match the
popularity enjoyed by Z, ZEST, or Object-Z), the other (connection to tools for further
formal processing) can be surmounted through the continuation of the work presented in
this thesis (Section 10.6 describes our intentions in this respect). In addition, there are
several other limitations, discussed in Section 10.5, which also can be overcome through
additional work. Nevertheless, we believe that our approach provides a viable alternative for
combined, semi-formal/formal software specification, and introduces a fresher presence in
the landscape of pragmatic development of TCS through synergetic use of semi-formal and

formal techniques.

Table 10.1 Summary Comparison with Closely Related Approaches

271

Approach Criteria
OO0 w0 RT Type of Monolithic Processing Usage
0o specification | integration | specification of formal of formal
formalisa- capability of notations | environment | specifications notation
tion (analysis,
refinement,
etc.)
(Jia97] no No CF no Yes high (Z)
[Noe00] no No CF parual Yes high (Z)
[France97] no Yes F no Yes high (Z)
[RoZeLink99] yes No TF no Yes high
(ZEST)
(Kim0O0b] yes yes CF N/A Yes high
(Object-Z)
Harmony yes yes TF yes no low
(Z++)

10.3 Main Contributions

The main contributions of our work are the following:

® Pragmatic integration of two notations, one graphical and semi-formal (UML) and the
other textual and formal (Z++), in a specification approach that attempts to reap the
benefits of both;

®* The advanced formalisation of UML constructs in Z++, both in terms of structure and
behaviour. It is worth noting that although Lano describes ways of formalising OO

models in Z++ [Lano95] this was nevertheless done in the context of the OMT notation

272

and, while we have not covered all the minute aspects of the formalisation process, our
translation from UML to Z++ is performed in a more pragmatic and systematic way,
with detailed algorithms being proposed. Also important to note, very few formalisation
approaches look at both structure and behaviour, notably [France97] and {Kim0Ob)),
and practically only one within the vicinity of our topic location [RoZeLink99], takes
into consideration the reverse propagation, from formal (textual) specifications to semi-
formal (diagrammatic) models;

* Rigorous and pragmatic treatment of TCS through the use of a formalism, RTL, whose
notation is easy to comprehend and apply. The usability and coverage of our modelling
approach stem from its capability of capturing various time-related properties of systems,
as discussed in Chapters 5 and 8;

* Lighrweight, practical specification process allowing for both reliable specifications and
rapid development of software. The main idea of our approach is to provide a rigorous
and usable alternative for OO specification of TCS. In order to achieve this, we have
focused on the most critical aspects of modelling (in terms of consequences in the life-
cycle of the product) and covered the earlier phases of software construction, in
particular the OO analysis phase;

® Design of the Harmony ISE, aimed at fully supporting the technique proposed in this
thesis. What particularly distinguishes this specification environment is its monolithic
construction, support for tight-integration of notations, balanced inclusion of both
functions and notational elements (we have attempted to keep things simple, yet still
operationally powerful), provisions for easier manipulation of formal symbols, and

capacity for extension.

10.4 Other Contributions

There are also a number of aspects of our work that can be listed as secondary contributions.
They do not play principal roles in the discourse of this thesis, yet they support it and also

represent bits of original work that can be further employed and further investigated:

273

® Development of a non-trivial example, the ELS. Through this application, which can be
added to the rather large collection of elevator case studies recorded in the literature, the
most relevant particularities of our approach have been illustrated;

® Classification of integrations of notations. We needed it to provide a basis of comparison
with other approaches, but it can be usefully employed or adapted for comparing
alternatives of integrating notations in other contexts (e.g., hardware design);

® A zoom-in technique of investigation. The technique has of course been employed in
numerous other cases (it is an embodiment of the classical top-down method of
investigation), yet there are no reports in literature that present it under the “zoom-in”
metaphor;

® Proposal of a class compound construct that encompasses both structure, expressed in
the class construct, and behaviour, captured in the state diagram (in addition to the one
defined by the operations of the class construct). This pairing of UML constructs (class
and state diagram) although quite simple in its idea is nevertheless powerful in thar it
extends the basic OO concept of encapsulation (data + operations) to a stronger
appendage of the type data + operations + allowable sequences of execution;

® Several proposals regarding the terminology: TCS, ISE, tight-integration of notations,
monolithic approach, transition signature, transit operation, and the set of terms and
abbreviations used to denote the artefacts and steps of our modelling approach;

® A comprehensive review of the research space. Compulsory part of a PhD thesis, of
course, but we extended our survey to cover aspects such as UML perspectives and
exemplification of UML constructs through the ACTS specification “theme”. Both the
survey of UML and the modelling of ACTS can evolve in fully-fledged studies on their

own rights.

10.5 More On the Limitations of the Proposed Approach

Besides the two main limitations indicated in Section 10.2, namely Z++'s lack of exposure
(due primarily to its lack of tools) and Harmony’s lack of connection to tools for formal

analysis and refinement, there are several other limitations of the proposed approach that

274

need be addressed in order to enhance the work presented in this dissertation. In particular,
the treatment of state diagrams is rather limited, confined to “flat,” non-composite structures
and to sequential executions, which reduces the applicability of the translation algorithms to
modelling TCS (such systems need treatment of concurrency, synchronisation, etc.). Also,
the treatment of the timing constraints needs significant improvement, since we have not
tackled the automated translation of timing constraints attached to UML structural
constructs, and provided only a limited translation of such constraints in the case of state
diagrams (the burden of formalising temporal constructs lies too heavily on the human
formaliser). In addition, a more concise and precise description of the translation algorithms
can be obtained if meta-models for UML and Z++/RTL are used. The deformalisation
process also needs improvement; it has been described only by a set of principles and the
outline of an algorithm, hence further work on details is needed, as it is needed on dealing

with the particular aspects of applying the translations algorithms discussed in Section 6.6.

10.6 A Look Forward

The work presented here is neither complete nor free of errors. We are aware, as indicated in
the previous section, of some of its limitations and know that further work is needed in

several directions. In particular, our intentions for future work encompass:

* Enhanced automated formalisation and deformalisation. Due to the importance of these
processes in producing reliable specifications further studies are necessary, especially
regarding the translation of dynamic UML models into precise Z++ specifications;

®* Synrax and consistency checking of Z++. We consider the alternative of translating Z++
to Z insufficient, and in order to achieve one of the primary goals of our approach, that
of increased intellectual control over the software being developed, automated syntax and
consistency checking of formal specifications can play an important role;

® The complete implementation of Harmony. At the time these lines are written, we have

completed the design of Harmony. Nevertheless, only by implementing it and exercising

275

it on various case studies we will be able to both improve its design and gain additional
insight about the ways our approach can be efficiently put to work in practice;

® Development of tools for formal analysis and refinement. Although we have not aimed at
covering aspects of formal proof and formal refinement, the development of such tools is
necessary to support the wider application of our approach;

® More applications. In addition to improving the design of Harmony, the application of
the approach on more case studies will be beneficial for fine-tuning the technique of

specifying TCS proposed in this thesis.

The above is work that we intend to pursue further in order to develop Harmony into a tool
usable on large scale. But, predictably, while working on a given topic ideas for other subjects
spring into one’s mind, some related and some not so related to the original topic of
investigation (and some relatively clear and some decidedly vague). Some of the more related

and the slightly more well-formed such ideas that occurred to us are:

® Visualisation of Z constructs in the sense proposed by Kim and Carrington for Z in
[Kim99a];

® Usage of the CSP formalism instead of RTL for aiternative, enhanced modelling of
paralellism;

® Animation of a subset of specifications. A look at solutions such as the Z-based Sum
language [Utting95] can provide a starting point;

* Integration of our modelling technique with code generation tools aimed at exploiting
the RT capabilities of high-level programming languages;

® Formalisation of modelling patterns and their utilisation in various contexts, for instance

for developing Web applications.

At any given time, our Elevator’s door may or may not be open depending on a series of
factors, as discussed in Chapter 8, but the door of further work and further improvements

should always be open.

Bibliography

[Abernethy00]

[Abrial80]

[Abrial96]

{Alagar00]

[Alderson98]

[Alemin00]

[Alencar94]

{Alexander95]

{Alloy00]

[Audsley96]

[Aujla94]

[Avnur90]

[Awad96]

276

Abernethy, K., Kelly, J., Sobel, A., Kiper,].D., Powell, J., “Technologz' Transfer
Issues for Formal Methods of Software Specification,” Proc. of the 13° Conf. on
Software Engineering Education and Training, March 2000, pp. 23-31.

Abrial, J.-R., Schuman, S., and Meyer, B., “Specification Language,” in McKeag
R.M., and MacNaghten, A.M. (editors), On the Construction of Programs: An
Advanced Course, Cambridge University Press, 1980, pp. 343-410.

Abrial,].-R., The B Book: Assigning Programs to Meanings, Cambridge University
Press, 1996.

Alagar, V.S., and Muthiayen, D., “Towards a Mechanical Verification of Real-
Time Reactive Systems Modeled in UML,” Proc. of the 7* Intl. Conf. on Real-
Time Compuring Systems and Applications, Dec. 2000, pp. 245-254.

Alderson, A., Hull, M.E.C., Jackson, K., and Griffiths, L. E., “Method Engineering
for Industrial Real-Time and Embedded Systems,” Information and Software
Technology, vol. 40, no. 8, Aug. 1998, pp. 443-454.

Alemdn,].L.F., and Alvarez, A.T., “Can Intuition Become Rigorous? Foundations
for UML Model Verification Tools,” Proc. of the 11 Intl. Symposium on
Software Reliability Engineering (ISSRE 2000), Oct. 2000, pp. 344-355.

Alencar, A.J., and Goguen, J.A., “Specification in OOZE with Examples,” in Lano,
K., and Haughton, H. (editors), Object-Oriented Specification Case Studies,
Prentice Hall International, 1994, pp. 158-183.

Alexander, P., “Best of Both Worlds: Combining Formal and Semi-Formal
Methods in Software Engineering,” IEEE Potentials, vol. 14, no. 5, Dec. 1995/Jan.
1996, pp. 29-32.

“The Alloy Constraint Analyzer” web-site, Alloy version 2000, Software Design
Group, Massachusetts Institute of Technology, accessed Feb. 6, 2001 at
htep://sdg.lcs.mit.edu/alloy/

Audsley, N.C,, Burns, A., Davis, R.1, Scholefield, D.J., and Wellings, A.J.,
“Integrating Oprional Software Components into Hard Real-Time Systems,”
Software Engineering Journal, vol. 11, no. 3, May 1996, pp. 133-140.

Aujla, S., Bryant, T., and Semmens, L., “Applying Formal Methods Within
Structured Development,™ IEEE Journal On Selected Areas in Communications,
vol. 12, no. 2, Feb. 1994, pp. 258-264.

Avnur, A., “Finite-State Machines for Real-Time Software Engineering,”
Computing and Control Engineering Journal, vol. 1, no. 6, Nov. 1990, pp. 273-
278.

Awad,].Z.M., Ziegler,]., and Kuusela, ., Object-Oriented Technology for Real-
Time Systems: A Practical Approach Using OMT and Fusion, Prentice-Hall, 1996.

[Bailin89]

[Barden94]

{Barnes96]

[Barrett89]

[Barrios99]

[Becker00]

(Bell99]

[Bellini00]

[Bjorklander00]

[Bjerner78]

[Bloesch94]

[Boehm84]

[Bollella00]

{Bolognesi98]

{Booch86]

[Booch94]

[Booch98]

277

Bailin, S.C., “An Object-Oriented Requirements Specification Method,”
Communications of the ACM, vol. 32, no. 5, May 1989, pp. G08-623.

Barden, R., Stepney, S., and Cooper, D., Z in Practice, Prentice-Hall International,
1994.

Barnes, J., Programming in Ada’95, Addison-Wesley Longman, 1996.

Barrett, G., “Formal Methods Applied to A Floating Point Number System,” IEEE
Transactions on Software Engineering, vol. 15, no. 5, May 1989, pp. 611-621.

Barrios, S.D., and Lopez J.C., “Heterogeneous Systems Design: a UML-based
Approach.” Proc. of the 25" EUROMICRO Conf., Sep. 1999, vol. 1, pp. 386-389.

Becker, L.B., Pereira, C.E., Dias, O.P., Teixeira, I.M., and Teixeira, J.P., “MOSYS:
A Methodology for Automatic Object Identification from System Specification,”
Proc. of the 3" IEEE Ind. Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC-2000), pp. 198-201.

Bell, A.E., and Schmidt, R.W., “UMLoquent Expression cf AWACS Software
Design,” Communications of the ACM, vol. 42, no. 10, Oct. 1999, pp. 55-61.

Bellini, P., Mattolini. R, and Nesi, P., “Temporal Logic for Real-Time System
Specification,” ACM Computing Surveys, vol. 32, no. 1, March 2000, pp. 12-42.

Bjérklander, M., “Graphical Programming Using UML and SDL,” IEEE
Computer, vol. 33, no. 12, Dec. 2000, pp. 30-35.

Bjerner, D., and Jones, C.B. (editors), The Vienna Development Method: The
Mera-Language, Lecture Notes in Computer Science, vol. 61, Springer-Verlag,
1978.

Bloesch, A., Kazmierczak, E., Kearney, P., and Traynor, O., “The Cogito
Methodology and System,” Proc. of the First Asia-Pacific Software Engineering
Conf., Dec. 1994, pp. 345-355.

Boehm, B.W,, “Verifying and Validating Software Requirements and Design
Specifications,” IEEE Software, vol. 1, no. 1, Jan. 1984, pp. 75-88.

Bollella, G., Gosling, J., and Brosgol, B.. Real-Time Java Specification, Addison-
Wesley, 2000.

Bolognesi, T, and Derrick,]., “Constraint-Oriented Style for Object-Oriented
Formal Specification,” IEE Proc. Software, vol. 145, no. 2-3, April/June 1998, pp.
61-69.

Booch, G., “Object-Oriented Development,” IEEE Transactions on Software
Engineering, vol. 12, no. 2, Feb. 1986, pp. 211-221.

Booch, G., Object-Oriented Analysis and Design with Applications, Second
Edition, Benjamin/Cummings Publishing Company, 1994.

Booch, G., Rumbaugh, J., and Jacobson, J., The Unified Modeling Language: User
Guide, Addison-Wesley Longman, 1998.

{Bordbar00]

{Bowen95a}

{Bowen95b]

[Brucl96)

[Bruel98a}

[Bruel98b]

[Bucci94]

[Buhr90]

[Burns95]

{Burns97]

[Cau98]

[Chaochen91)

{Cheesman00]

[{Chen76)

[Chen98]

278

Bordbar, B., Giacomini, L., and Holding, D.J., “UML and Petri Nets for Design
and Analysis of Distributed Systems,” Proc. of the 2000 IEEE Ind. Conf- on
Control Applications, Sep. 2000, pp. 610-615.

Bowen,].P., and Hinchey, M.G., “Ten Commandments of Formal Methods,”
IEEE Computer, vol. 28, no. 4, April 1995, pp. 56-63.

Bowen, J.P., and Hinchey, M.G., “Seven More Myths of Formal Methods,” IEEE
Software, vol. 12, no. 4, July 1995, pp. 34-41.

Bruel,].M., France, R.B., and Benzekri, A., “A Z-Based Approach to Specifying
and Analyzing Complex Systems,” Proc. of the 2" Ind. Conf. on Engineering of
Complex Computer Systems, Oct. 1996, pp. 336-343.

Bruel, J-M., and France, R.B, “Transforming UML Models to Formal
Specifications,” In Proc. of the First Ind. Conf. on UML - Beyond the Notation,
Lecture Notes in Computer Science, Springer-Verlag, vol. 1618, 1998, accessed
Feb. 10, 2001 at hup://www.cs.york.ac.uk/puml/papers/bruelumli98.pdf

Bruel, J.M., Cheng, B., Easterbrook, S., France, R., and Rumpe, B., “Integrating
Formal and Informal Specification Techniques. Why? How?,” Proc. of the 2™ IEEE
Workshop on Industrial Strength Formal Specification Techniques, Oct. 1998, pp.
50-57.

Bucci, G., Campanai, M., Nesi, P., and Traversi, M., “An Object-Oriented Dual
Language for Specifying Reactive Systems,” Proc. of the 1" Intl. Conf- on
Requirements Engineering, April 1994, pp. 6-15.

Buhr, R.J.A., Practical Visual Techniques in System Design with Applications to
Ada, Prentice-Hall, 1990.

Burns, A., and Wellings, A., HRT-HOOD: A Structured Design Method for Hard
Real-Time Systems, Elsevier, 1995.

Burns, A., and Wellings, A., Real-Time Systems and Programming Languages,
Second Edition, Addison-Wesley Longman, 1997.

Cau, A., Zcdan, H., and Moszkowski, B., “‘Lean’ Formal Methods in the
Development of Provably Correct Real-Time Systems,” IEE Colloquium on Real-
Time Systems, Digest no. 1998/306, April 1998, pp. 6/1-6/5.

Chaochen, Z., Hoare, C.A.R., and Ravn, A.P., “A Calculus of Duration,”
Informarion Processing Letters, vol. 40, no. 5, May 1991, pp. 269-276.

Cheesman, J., and Daniels,]., UML Components: A Simple Process for Specifying
Component-Based Software, Addison-Wesley, 2000.

Chen, P., “The Entity-Relationship Model-Toward Unified View of Data,” ACM
Transactions on Database Systems, vol. 1, no. 1, March 1976, pp. 9-36.

Chen, Z,, Cau, A,, Zedan, H,, Liu, X,, and Yang, H., “A Refinement Calculus for
the Development of Real-Time Systems,” Proc. of the 1998 Asia Pacific Software
Engineering Conference, Dec. 1998, pp. 6G1-68.

[Cheng94]

[Ciapessoni99]

[Clarke96]

[Coad90j
[Coad91]

[Cogito97]

{Coleman90]

[Coleman94]

[Conallen99a)

[Conallen99b]

[Coombes92]

[Coombes93]

[Cox93]

[D’Almeida92)

[D’Souza98]

279

Cheng, B.H.C., Wang, E.Y,, and Bourdeau, R.H., “A Graphical Environment for
Formally Developing Object-Oriented Software,” Proc. of the 6* Intl. Conf. on
Tools with Artificial Intelligence, Nov. 1994, pp. 26-32.

Ciapessoni, E., Coen-Porisini, A., Crivelli, E., Mandrioli, D., Mirandola, P., and
Morzenti, A., “From Formal Models to Formally Based Methods: An Industrial
Experience,” ACM Transactions on Software Engineering and Methodology, vol.
8, no. 1, Jan. 1999, pp. 79-113.

Clarke, E.M., and Wing, J.M., “Formal Methods: State of the Art and Future
Directions,” ACM Compuring Surveys, vol. 28, no. 4, Dec. 1996, pp. 626-643.

Coad, P., and Yourdon, E., Object-Oriented Analysis, Prentice-Hall, 1990.
Coad, P., and Yourdon, E., Object-Oriented Design, Prentice-Hall, 1991.

“Cogito, Ergo Sum: Methodology and Toolset for the Formal Development of
Software,” (Cogito version 1997), The Cogito web-site, Software Verification
Research Center, University of Queensland, Brisbane, Australia, accessed Feb. 5,
2001 at hrep://svrc.it.uq.edu.au/Cogito/

Coleman, G.L., Ellison, C.P., Gardner, G.G., Sandini, D., and Brackert, J.W.,
“Experience in Modeling a Software System Using STATEMATE,” Proc. of the
IEEE Ind. Conference on Computer Systems and Software Engineering
(COMPEURO’90), May 1990, pp. 104-108.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F., and
Jeremaes, P., Object-Oriented Development: the Fusion Method, Prentice-Hall,
1994.

Conallen, J., “Modeling Web Application Architectures with UML,”
Communications of the ACM, vol. 42, no. 10, Oct. 1999, pp. 63-70.

Conallen, J., and Bebick, K., Building Web Applications with UML, Addison-
Wesley, 1999.

Coombes, A.C., and McDermid, J. A., “Using Diagrams to Give A Formal
Specification of Timing Constraints in Z,” in Bowen, J.P., and Nicholls, J.E.
(editors), Proc. of the Z User Workshop, London, UK, Dec. 1992, Workshops in
Computing, Springer, 1992, pp. 119-130.

Coombes, A.C., and McDermid, J. A., “Specifying Temporal Requirements for
Distributed Real-Time Systems in Z,” Software Engineering Journal, vol. 8, no. 5,
Sep. 1993, pp. 273-283.

Cox, P.T., “Picture the Future,” Object Magazine, July-Aug. 1993.
D’Almeida, |., Achutan, R., Radhakrishnan, T., and Alagar, V.S., “Transformation

of a Semi-Formal Specification to VDM,” Proc. of the 7" Knowledge-Based
Software Engineering Conf., Sept. 1992, pp. 40-49.

D’Souza, D.F., and Wills, A.C., Objects, Components, and Frameworks with UML:

The Caralysis Approach, Addison-Wesley Longman, 1998.

[Dasarathy85]

[Dascalu89]

[Dascalu99]

[Davis93]

[Davis98]

[Day00]

[Delisle90]

[Dill96]

[Dillon94]

[Ding93]

[Dong97a]

[Dong97b]

[Douglass98]

[Douglass99]

280

Dasarathy, B., “Timing Constraints of Real-Time Systems: Construct for
Expressing Them, Methods of Validating Them,” IEEE Transactions on Software
Engineering, vol. 11, no. 1, Jan. 1985, pp. 80-86.

Dascalu, S.M., “Architectural and Functional Features of the Computing,
Measuring, and Contro! Subsystem of the ESMC-04 Automatic Camshaft Testing
Machine,” (in Romanian), Proc. of the 2 Symposium on Structures, Algorithms,
and Equipment for Process Control, lasi, Romania, Oct. 1989, pp. 545-550.

Dasalu, S.M., “Towards the Integration of Two Software Specification Notations:
UML and Z++,” paper submitted in partial fulfillrment of the requirements for the
Visual Languages course, Dalhousie University, Halifax, NS, Canada, Aug. 1999.

Davis, A.M., Software Requirements: Objects, Functions & States, Prentice Hall,
1993.

Davis, A. M., “Predictions and Farewell,” IEEE Software, vol. 15, no. 4, July/Aug.
1998, pp. 6-9.

Day, N., “A Framework for Multi-Notation Requirements Specification and
Analysns, Proc. of the 4* Ind. Conference on Requirements Engineering, June
2000, pp. 39-48.

Delisle, N., and Garlan, D., “A Formal Specification of An Oscilloscope,” IEEE
Software, vol. 7, no. 5, Sep. 1990, pp. 29-36.

Dill, D.L., and Rushby, J., “Acceptance of Formal Methods: Lessons From
Hardware Design,” IEEE Computer, vol. 29, no. 4, April 1996, pp. 23-24.

Dillon, L.K., Kutty, G., Moser, L.E., Melliar-Smith, P.M., and Ramakrishna, Y.S.,
“A Graphical Interval Logic for Specifying Concurrent Systems,” ACM
Transactions on Software Engineering and Methodology, vol. 3, no. 2, April 1994,
pp- 131-165.

Ding, S., and Katayama, T Eecifying Reactive Systems with Attributed Finite
State Machines,” Proc. of the 7" Int. Workshop on Software Specification and
Design, Dec. 1993, pp. 90-99.

Dong, J. S., and Zucconi, L., “A Framework for Adding Time into Formal Object
Models,” Proc. of the 3" Int. Workshop on Object-Oriented Real-Time
Dependable Systems, Feb. 1997, pp. 26-31.

Dong, J. S., Zucconi, L., and Duke, R., “Specifying Parallel and Distributed
Systems in Object-Z: The Lift Case Study,” Proc. of the 2™ Intl. Workshop on
Software Engineering for Parallel and Distributed Systems, May 1997, pp. 140-
149.

Douglass, B.P., Real-Time UML: Developing Efficient Objects for Embedded
Systems, Addison-Wesley Longman, 1998.

Douglass, B.P., Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks, and Patterns, Addison-Wesley Longman, 1999.

[Duke89]

[Duke94]

{Duval97]

[Easterbreok98]

{Evans97]

[Evans98]

[Evans99]

(Everett95]

[Favre99]

[Feather98]

[FernandesQ0]

(Fidge97]

[FormaliserO1]

[France97]

281

Duke, R., and Smith, G., “Temporal Logic and Z Specifications,” Australian
Computer Journal, vol. 21, no. 2, May 1989, pp 62-69.

Duke R., Rose G., and Smith, G., “Object-Z: A Specification Language Advocated
for the Description of Standards,” TR 94-45, Software Verification Research
Centre, School of Information Technology, The University of Queensland,
Brisbane, Australia, Dec.1994, accessed September 1998 at
hup://svrc.it.uq.edu.au/Bibliography/svrc-tr.heml?94-45

Duval, G., and Cattel, T., “From Architecture Down to Implementation of Safe
Process Control Applications-The Lift Case Study,” Proc. of the 13* Hawaii Ind.
Conf. on Systems Sciences, Jan. 1997, pp. 24-32.

Easterbrook, S., Lutz, R., Covington, R., Kelly, J., Ampo, Y., and Hamilton, D.,
“Experiences Using Lighoweight Formal Methods for Requirements Modeling,”
IEEE Transactions on Software Engineering, vol. 24, no. 1, Jan. 1998, pp. 4-14.

Evans, A., “An Improved Recipe for Specifying Reactive Systems in Z,” Z User
Workshop, Reading, UK, 1997, accessed Feb. 15, 1999 at
hup://www.student.comp.brad.ac.uk/-asevans1/z.huml

Evans, A., “Reasoning with UML Class Diagrams,” Proc. of the 2 IEEE Workshop
on Industrial Strength Formal Specification Techniques, Oct. 1998, pp. 102-113.

Evans, A., and Wellings, A.J., “UML and the Formal Development of Safety
Critical Real-Time Systems,” IEE Colloquium on Applicable Modelling,
Verification and Analysis Techniques for Real-Time Systems, Jan. 1999, pp. 2/1-
2/4.

Everett, W., and Honiden, S., “Reliability and Safety of Real-Time Systems,” IEEE
Software, vol. 12, no. 3, May 1995, pp. 13-16.

Favre, L., and Clerici, S., “Integrating UML and Algebraic Specification
Techniques,” Proc. of the 32 Ind. Conf. on Technology of Object-Oriented
Languages and Systems (TOOLS-32), Nov. 1999, pp. 151-162.

Feather, M., “Rapid Application of Lightweight Formal Methods for Consistency
Analysis,” IEEE Transactions on Software Engineering, vol. 24, no. 11, Feb. 1998,
pp- 949-959.

Fernandes,].M., Machado, R.]., and Santos, H.D., “Modecling Industrial Embedded
Systems with UML,” Proc. of the 8" Ind. Workshop on Hardware/Software
Codesign (CODES 2000), May 2000, pp. 18-22.

Fidge, C., Kearney, P., and Utting, M, “A Formal Method for Building
Concurrent Real-Time Software,” [EEE Software, vol. 14, no. 2, March/April
1997, pp. 99-106.

“Formaliser,” accessed Feb. 7, 2001 at Logica’s web-site
hup://public.logica.com/-formaliser/formlst/formlsr.htm

France, R.B., Bruel, J.-M., and Raghavan, G., “Taming the Octopus: Using Formal
Models to Integrate the Octopus Object-Oriented Analysis Models,“ Proc. of the
High-Assurance Engincering Workshop, Aug. 1997, pp. 8-13.

(Fraser94]

[Gaudel94]

[Gerhart94]

[Gibbs94]

[Glass96]

[Gomaa00}

[Gosling96]

[Graw00]

[(Green96)

[Gurttag85]

[Guttag93]

(Halloo]

[Hall9g]

[Hall98]

[Harel87]

{Harel88]

282

Fraser, M.D., Kumar, K., and Vaishnavi, V.K., “Strategies for Incorporating
Formal Specifications in Software Development,” Communications of the ACM,
vol. 37, no. 10, Oct. 1994, pp. 74-85.

Gaudel, M.C., “Formal Specification Techniques,” Proc. of the 16" Intl. Conf. on
Software Engineering, Sorrento, Italy, May 1994, pp. 223-227.

Gerhare, S., Craigen, D., and Ralston, T., “Experience with Formal Methods in
Critical Systems,” IEEE Software, vol. 11, no. 1, Jan. 1994, pp. 21-28.

Gibbs, W.W., “Software’s Chronic Cirisis,” Scientific American, Sep. 1994, pp. 86-
95.

Glass, R.L., “Formal Methods Are a Surrogate for a More Serious Software
Concern,” I[EEE Computer, vol. 29, no. 4, April 1996, pp. 19-20.

Gomaa, H., Designing Concurrent, Distributed, and Real-Time Applications with
UML, Addison-Wesley, 2000.

Gosling, J., and Steele, G., The Java Language Specification, Addison-Wesley,
1996.

Graw, G., Herrmann, P., and Krumm, H., “Verification of UML-based Real-Time
Systems by Means of cTLA,” Proc. of the 3" IEEE Ind. Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 2000), March 2000, pp. 86-
95.

Green, T.R.G., and Petre, M., “Usability Analysis of Visual Environments: A
‘Cognitive Dimensions’ Framework,” Journal of Visual Languages and Computing,
vol. 7, no. 2, June 1996, pp. 131-174.

Guuag, J.V., Horning, J.J., and Wing, J., “The Larch Family of Specification
Languages,” IEEE Software, vol. 2, no. 3, May 1985, pp. 24-36.

Gurtag, J.V., and Horning, J.J. (editors), Larch: Languages and Tools for Formal
Specification, Springer-Verlag, 1993.

Hall, A., “Seven Myths of Formal Methods,” IEEE Software, vol. 7, no. 5, Sep.
1990, pp. 11-19.

Hall, A., “What Is the Formal Methods Debate About?,” I[EEE Computer, vol. 29,
no. 4, April 1996, pp. 22-23.

Hall, A., “What Does Industry Need from Formal Specification Techniques?,”
Proc. of the 2 IEEE Workshop on Industrial Strength Formal Specification
Techniques, Oct. 1998, pp. 2-7.

Harel, D., “Statecharts: A Visual Formalism for Complex Systems,” Science of
Computer Programming, vol. 8, no. 3, June 1987, pp. 231-274.

Harel, D., “On Visual Formalisms,” Communications of the ACM, vol. 31, no. 3,
May 1988, pp. 514-530.

[Harel96]

[He96]

[Hinchey96]

[Hoare78]

[Hoare85]

[Holibaugh93]

[Holloway96]

[Howerton00]

[lonescu93]

{ISO89}

[Jackson96a]

[Jackson96b]

{Jackson00a]

[JacksonQOb]

[Jacky97]

283

Harel, D., “The STATEMATE Semantics of Statecharts,” ACM Transactions on
Software Engineering and Methodology, vol. 5, no. 4, Oct. 1996, pp. 293-333.

He,]., Hoare, C.A.R., Muller-Olm, M., Olderog, E.-R., Schenke, M., Hansen,
M.R,, Ravn, A.P., and Rischel, H., “The ProCoS Approach to the Design of Real-
Time Systems: Linking Different Formalisms,” Tutorial Papers, Formal Methods
Europe '96, April 1996, accessed April 4, 2001 at
heep:/Iwww.cs.auc.dk/-apr/pub/pub.html

Hinchey, M.G., “To Formalize or not To Formalize?,” IEEE Computer, vol. 29,
no. 4, April 1996, pp. 18-19.

Hoare, C.A.R., “Communicating Sequential Processes,” Communications of the
ACM, vol. 21, no. 8, Aug. 1978, p. 666-677.

Hoare, C.A.R., Communicating Sequential Processes, Prentice Hall, 1985.

Holibaugh, R., “Joint Integrated Avionics Working Group (JIAWG) Object-
Oriented Domain Analysis Method (JODA),” Special Report CMU/SEI-92-SR-3,
version 3.1, Software Engineering Institute, Carnegie Mellon University, Nov.

1993.

Holloway, C.M., and Butdler, R W., "Impediments to Industrial Use of Formal
Methods,” IEEE Computer, vol. 29, no. 4, April 1996, pp. 25-26.

Howerton, W.G., and Hinchey, M.G., “Using the Right Tool for the Job,” Proc.
of the 6" IEEE Ind. Conf. on the Engineering of Complex Computer Systems,
Sept. 2000, pp. 105-115.

lonescu, T, and Dascalu, S.M., “Algorithm and System for Automatic Camshaft
Testing,” in P. Kopacck (editor), A Cost Effective Use of Computer-Aided
Technologies and Integration Methods in Small and Medium Sized Companies:
IFAC Workshop, Vienna, Austria, Sep. 1992, Pergamon Press, 1993, pp. 131-136.

Internarional Standard ISO 8807, LOTOS - A Formal Description Technique
Based on the Temporal Ordering of Observational Behavior, SO, 1989.

Jackson, D., “Requirements Need Form, Maybe Formality,” IEEE Software, vol.
13, no. 2, March 1996, pp. 20-22.

Jackson, D., and Wing,]., “Lightweight Formal Methods,” IEEE Compurter, vol.
29, no. 4, April 1996, pp. 21-22.

Jackson, D., Schechter, ., and Shlyakhter, 1., “Alcoa: The Alloy Constraint
Analyzer,” Laboratory of Computer Science, Massachusetts Institute of
Technology, March 27, 2000, accessed Feb. 6, 2001 at
hutp://sdg.les.mit.edu/-dnj/pubs/alcoa-overview.pdf

Jackson, D., “Alloy: A Lightweight Object Modelling notation,” Laboratory of
Computer Science, Massachusetts Institute of Technology, July 28, 2000, accessed
Feb. 7, 2001 at htep://sdg.lcs.mit.edu/-dnj/pubs/alloy-journal.pdf

Jacky, J., The Way of Z: Practical Programming with Formal Methods, Cambridge
University Press, 1997.

[Jacobson94]

[Jacobson99]

{Jahanian86]

(Jahanian88]

[Jahanian94]

(JavaLookO1]

(Jia97]

[Jia98a)

[Jia98b]

[Jia98c]

[Jigorea00]

{Johnson95]

(Johnson96}

{Johnson00]

[Jones90)

284

Jacobson, 1., Object-Oriented Software Engineering: A Use-Case Driven Approach,
Addison-Wesley, 1994.

Jacobson, J., Booch, G., and Rumbaugh, J., The Unified Software Development
Process, Addison-Wesley, 1999.

Jahanian, F. and Mok, A.K., “Safety Analysis of Timing Properties in Real-Time
Systems,” I[EEE Transactions on Software Engineering, vol. 12, no. 9, Sep. 1986,
pp- 890-904.

Jahanian, F., Lee, R., and Mok, A.K., “Semantics of Modecharts in Real-Time
Logic,” Proc. of the 21" Annual Hawaii Ind. Conf. on System Sciences, Software
Track, Jan. 1988, vol. 2, pp. 479-489.

Jahanian, F. and Mok, A.K., “Modechart: A Specification Language for Real-Time
Systems,” IEEE Transactions on Software Engineering, vol. 20, no. 12, Dec. 1994,
pPpP- 933-947.

“Java Look and Feel Graphics Repository,” a Sun Microsystems web-page, accessed
April 10, 2001 at heep://developer.java.sun.com/developer/techDocs/hi/repository

Jia, X., “A Pragmatic Approach to Formalizing Object-Oriented Modeling and
Development,” Proc. of the 21" Annual Intl. Conf. on Computer Software and
Application (COMPSAC’97), Aug. 1997, pp. 240-245.

Jia, X, “ZTC: A Type-Checker for Z notation, User’s Guide,” version 2.03,
Aug.1998, accessed Feb. 7, 2001 at hup://se.cs.depaul.edu/fm/Papers/guide.ps

Jia, X., “A Tutorial of ZANS -- A Z Animation System,” Release 0.31, July 1998,
accessed Feb. 7, 2001 at hutp://se.cs.depaul.edu/fm/Papers/zanstut3.ps

Jia, X., and Skevoulis, S., “Code Synthesis Based on Object-Oriented Design Models
and Formal Specifications,” Proc. of the 22 Annual Int. Conf. on Computer
Software and Applications, Aug. 1998, pp. 393-398.

Jigorea, R., Manolache, S., Eles, P., and Peng, Z., “Modelling of Real-Time
Embedded Systems in an Object-Oriented Design Environment with UML,” Proc.
of the 3" IEEE Ind. Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2000), March 2000, pp. 210-213.

Johnson, C.W¥., “Using Z to Support the Design of Interactive Safety-Critical
Systems,” Software Engineering Journal, vol. 10, no. 2, March 1995, pp. 49-G0.

Johnson, C.W., “Literate Specifications,” Software Engineering Journal, vol. 11,
no. 4, July 1996, pp. 225-237.

Johnson, R.A., “The Ups and Downs of Object-Oriented Systems Development,”
Communications of the ACM, vol. 43, no. 10, Oct. 2000, pp. 69-73.

Jones, C.B., Systematic Software Development Using VDM, Second Edition,
Prentice-Hall, 1990.

[Jones96}

[Joyce94]

(Kapur00]

[Kelley-Sobel00]

(Kent97]

[Kent98]

[Kent99}]

[Kesten92]

(Kim99a]

[Kim99b]

[Kim00a]

[Kim0O0b]

285

Jones, C.B., “A Rigorous Approach to Formal Methods,” IEEE Computer, vol. 29,
no. 4, April 1996, pp. 20-21.

J. Joyce, N. Day, and M. Donat, “S: A Machine Readable Specification Notation

Based on Higher Order Logic,” Proc. of the 1994 Intl. Meeting on Higher Order
Logic Theorem Proving and its Applications, Lecture Notes in Computer Science,
vol. 859, Springer-Verlag, 1994, pp. 285-299.

Kapur, D., “The Use of Formal Methods in Hardware and Software Cannot Be
Abandoned,” Proc. of the 5* Symposium on High Assurance Systems Engineering,
Nov. 2000, pp. 142-143.

Kelley-Sobel, A., E., “Empirical Results of A Software Engineering Curriculum
[ncorporating Formal Methods,” Proc. of the 31" SIGCSE Technical Symposium
on Computer Science Education, 2000, pp. 157-161.

Kent, S., “Constraint Diagrams: Visualizing Invariants in Object-Oriented
Models,” Proc. of OOPSLA97, ACM SIGPLAN Notices, vol. 32, no. 10, ACM
Press, Oct. 1997, pp. 327-341.

Kent, S., and Gil, Y., “Visualizing Action Constraints in Object-Oriented
Modelling,” IEE Proccedings: Software, vol. 145, no. 2-3, April 1998, accessed
March 3, 2001 at htep://www.cs.ukc.ac.uk/pubs/1998/786/index.html, pp. 70-78.

Kent, S., Gaico, S., and Ross, N., “A Meta-model Semantics for Structural
Constraints in UML,” Chapter 9 in Kilov, H., Rumpe, B., and Simmonds, 1.
(editors), Behavioral Specifications for Businesses and Systems, Kluwer Academic
Publishers, Sep. 1999, pp. 123-141.

Kersten, Y., and Pnueli, A., “Timed and Hybrid Statecharts and Their Textual
Representation,” in J. Vytopil (editor), Formal Techniques in Real-Time and Fault-
Tolerant Systems, 2 Int. Symposium, Lecture Notes in Computer Science, vol.
571, Springer-Verlag, Berlin, 1992, pp. 591-620.

Kim, S.-K., and Carrington, D., “Formalizing the UML Class Diagram Using
Object-Z,” in France R., and Rumpe, B. (editors), 2™ Ind. Conf. on UML, Lecture
Notes in Computer Science, vol. 1723, Springer-Verlag, Berlin, Oct. 1999, pp. 83-
98.

Kim, S.-K., and Carrington, D., “Visualization of Formal Specifications,” Proc. of
the 6" Asia Pacific Software Engincering Conf. (ASPEC ' 99), Dec. 1999, pp- 102-
109.

Kim, S.-K., and Carrington, D., “A Formal Mapping between UML Models and
Object-Z Specifications,” in Bowen,].P., Dunne, S., Galloway, A., and King, S.
(editors), Ind. Conf. of B and Z Users ZB2000, Lecture Notes in Computer
Science, vol. 1878, Springer-Verlag, Berlin, Feb. 2000, pp. 2-21.

Kim, S.-K., and Carrington, D., “An Integrated Framework with UML and
Object-Z for Developing A Precise and Understandable Specification: The Light
Control Case Study,” Proc. of the 7* Asia-Pacific Software Engineering Conf.
ASPEC 2000, Dec. 2000, pp. 240-248.

{Kishida96]

[Knuth73]

[Kobryn99]

[Koperz97]

(Kortright97]

[Laleau00]

{Lano91]

{Lano94a]

[Lano94b]

{Lano94c]

[Lano94d]

[Lano94e¢]

[Lano95]

[Lano98]

[Larsen96]

[Lawrence96)

286

Kishida, K., “Managing Megaprojects: A Free-Form Approach,” IEEE Software,
vol. 13, no. 4, July 1996, pp. 28-30.

Knuth, D.E., The Art of Computer Programming, Second Edition, Addison-
Wesley, 1973.

Kobryn, C., “UML 2001: A Standardization Odyssey,” Communications of the
ACM, vol. 42, no. 10, Oct. 1999, pp. 29-37.

Kopetz, H., Real-Time Systems: Design Principles for Distributed Embedded
Applications, Kluwer Academic Publishers, 1997.

Kortright, E.V., “Modeling and Simulation with UML and Java,” Proc. of the 30
Annual Simulation Symposium, April 1997, pp. 43-48.

Laleau, R., and Mammar, A., “An Overview of a Method and its Support Tool for
Generating B Specifications from UML Notations,” Proc. of the 15* IEEE Indl.
Conf. on Automated Software Engineering, Sep. 2000, pp. 269-272.

Lano, K., “Z++, an Object-Oriented Extension to Z,” in Z User Workshop,
Oxford 1990, Springer-Verlag Workshops in Computing, 1991, pp.151-172.

Lano, K., and Haughton, H. (editors), Object-Oriented Specification Case Studies,
Prentice Hall, 1994.

Lano, K., and Haughton, H., “A Comparative Description of Object-Oriented
Specification Languages,” Chapter 2 in Lano, K., and Haughton, H. (edizors),
Object-Oriented Specification Case Studies, Prentice Hall, 1994, pp. 20-54.

Lano, K., and Haughton, H., “Object-Oriented Specification Languages in the
Software Life Cycles,” Chapter 3 in Lano, K., and Haughton, H. (editors), Object-
Oriented Specification Case Studies, Prentice Hall, 1994, pp. 55-79.

Lano, K., and Haughton, H., “ Specifying A Concept-recognition System in Z++ ,"
Chapter 7 in Lano, K., and Haughton, H. (editors), Object-Oriented Specification
Case Studies, Prentice Hall, 1994, pp 137-157.

Lano, K., and Haughton, H., “The Z++ Manual,” version Oct. 25, 1994, accessed
Jan. 10, 2001 at www.dc.uba.ar/people/materias/isoft1/Z/papers/z++.pdf

Lano, K., Formal Object-Oriented Development, Springer-Verlag, 1995.

Lano, K., and Bicarregui, J., “Formalising the UML in Structured Temporal
Theories,” Proc. of the 2 ECOOP Workshop on Precise Behavioral Semantics, July
1998, pp. 105-121.

Larsen, P.G., Firzgerald, J., Brookes, T., “Applying Formal Specification in
Industry,” IEEE Software, vol. 13, no. 3, May 1996, pp. 48-56.

Lawrence, B., “Do You Really Need Formal Requirements?,” IEEE Software, vol.
13, no. 2, March 1996, pp. 20-22.

[Lee95]

[Léonard98]

[Leoslcons01]

[Leung96]

[Leveson86]

[Lin92]

[Lin94]

[Liu97}

(Logica0l]

[Lu99]

[Mahony92]

{Mahony98]

[Mahony00]

(Manna81]

[Mathai96]

287

Lee,], Pan, .1, and Huang, W.T, “Integrating Object-Oriented Requirements
Specifications with Formal Notations,” Proc. of the 7* Ind. Conf. on Tools with
Artificial Intelligence, Nov. 1995, pp. 34-41.

Léonard, L., and Leduc, G., “A Formal Definition of Time in LOTOS,” Formal
Aspects of Computing, vol. 10, no. 3, June 1998, pp. 248-266.

“Leo’s Icons Archive,” accessed Jan. 10, 2001 at hetp://www.iconarchive.com/
(> Computer Icons > Misc. Comp. Icons I)

Leung, K.R.P.H., and Chan, D.K.C., “Extending Statecharts with Duration,”
Proc. of the 20" Intl. Conf. on Computer Software and Applications
(COMPSAC'96), Aug. 1996, pp. 246-251.

Leveson, N.G., “Software Safety: Why, What, and How?,* ACM Computing
Surveys, vol. 18, no. 2, June 1986, pp. 125-163.

Lin, K.J., and Burke, E.J., “Coming to Grips with Real-Time Realities,” IEEE
Software, vol. 9, no. 5, Sep. 1992, pp. 12-15.

Lin, K.J, and Son, S.H., “Real-Time Databases: Characteristics and Issues,” Proc.
of the First Workshop on Object-Oriented Real-Time Dependable Systems, Oct.
1994, pp. 113-116.

Liu, X,, Yang, H., and Zedan, H., “Formal Methods for the Re-Engineering of
Computing Systems: A Comparison,” Proc. of the 21" Int. Conf. on Computer
Software and Applications (COMPSAC '97), Aug. 1997, pp. 409-414.

“Formal Methods Tools and Services,” a Logica web-site, last updated Feb. 15,
2001, accessed April 10, 2001 at htep://public.logica.com/-formaliser/

Lu, M., Zhao, Z., and Li, M., “Object-Oriented Requirements Modeling Based on
UML,” Proc. of the 31" Int. Conf. on Technology of Object-Oriented Languages
and Systems (TOOLS-31), Sep. 1999, pp. 133-140.

Mahony, B.P., and Hayes, 1.]., “A Case-Study in Timed Refinement: A Mine
Pump,” IEEE Transactions on Software Engineering, vol. 18, no. 9, Sept. 1992,
pp- 817-826.

Mahony, B., and Dong, J.S., “Blending Object-Z and Timed CSP: An
Introduction to TCOZ,” Proc. of the 1998 Intl. Conf. on Software Enginecring,
April 1998, pp. 95-104.

Mahony, B., and Dong, J.S., “Timed Communicating Object Z,” IEEE
Transactions on Software Engineering, vol. 26, no. 2, Feb. 2000, pp. 150-176.

Manna, Z. and Pnueli, A., “Verification of Concurrent Programs: The Temporal
Framework,” in Boyer, R.S., and Moore, }.S. (editors), The Correctness Problem in
Computer Science, Academic Press, New York, 1981, pp. 215-273.

Mathai,], (editor), Real-Time Systems: Specification, Verification and Analysis,
Prentice-Hall, 1996.

(McUmber99]

[Meisels97]

[Meyer97]

[Meyer99]

[Milner80]

[Moller92]

[(Morgan94]

[Moszkowski86]

Mrva97]

[Mughal00]

[Muller98]

[Narayan93]

[Narayan96]

[Nartarajan92]

[Neil98]

[Nguyen96]

288

Mc-Umber, W.E., and Cheng, B.H., “UML-Based Analysis of Embedded Systems
Using a Mapping to VHDL,” Proc. of the 4* IEEE Intl. Symposium on High-
Assurance Systems Engineering, Nov. 1999, pp. 56-63.

Meisels, I., “Software Manual for Windows Z/EVES Version 1.5 and the Z
Browser,” Technical Report 97-5505-04e, ORA Canada, Sep. 1997.

Meyer, B., “The Next Software Breakthrough,” IEEE Computer, vol. 30, no. 7,
July 1997, pp. 113-114.

Meyer, B., “A Really Good Idea,” IEEE Computer, vol. 32, no. 12, Dec. 1999, pp.
144-147.

Milner, R., A Calculus of Communicating Systems, Lecture Notes in Computer
Science, vol. 92, Springer-Verlag, 1980.

Moller, F., and Tofts, C., “An Overview Of TCCS,” Proc. of the 4"
EUROMICRO Workshop on Real-Time Systems, June 1992, pp. 98-103.

Morgan, N.W, and Schahczenski, C., “Transitioning to Rigorous Software
Specification,” Proc. of the First Intl. Conf. on Requirements Engineering, April
1994, pp. 6-15.

Moszkowski, B., Executing Temporal Logic Programs, Cambridge University Press,
1986.

Mrva, M., “Reuse Factors in Embedded Systems Design,” IEEE Computer, vol.
30, no. 8, Aug. 1997, pp. 93-95.

Mughal, K.A., and Rasmussen, R., A Programmer’s Guide to Java Certification: A
Comprehensive Primer, Addison-Wesley, 2000.

Muller, R., Database Design for Smarties: Using UML for Data Modeling, Morgan
Kaufman, 1998.

Narayan, S., and Gajki, D.D., “Features Supporting System-Level Specification in
HDLs, “ Proc. of the European Design Automation Conf. (EURO-DAC'93), Sep.
1993, pp. 540-545.

Narayan, S., “Requirements for Specification of Embedded Systems,” Proc. of the
9* IEEE Intl. ASIC Conf. and Exhibit, Sep. 1996, pp. 133-137.

Natarajan, S., and Zhao, W., “Issues in Building Dynamic Real-Time Systems,”
IEEE Software, vol. 9, no. 5, Sep. 1992, pp. 16-21.

Neil, M., Ostrolenk, G., Tobin, M., and Southworth, M., “Lessons from Using Z
to Specify a Software Tool,” IEEE Transactions on Software Enginecring, vol. 24,
no. 1, Jan. 1998, pp.15-23.

Nguyen, K., “Towards a Practical Formal Method for Object-Oriented
Modelling,” Proc. of the Asia-Pacific Software Engineering Conf., Dec. 1996, pp.
226-237.

[Niemann99)

[Nix88]

[Noe00]

[Oldevik98]

[Ostroff89]
[Page-Jones99]
[Paige98]

[Paige99]

[ParadigmPlus01]

[Parnas96]

[Periyasamy97]

[Periyasamy98]

[PetriG2)

[Pnueli77]

[Polack92}

[Price99]

289

Niemann, T., “Nuts to OOP!,” Embedded Systems Programming, vol. 12, no. 8,
Aug. 1999, accessed Feb. 12, 2001, at
htep://www.embedded.com/1999/9908/9908fcat].htm

Nix, C., J., and Collins, B.P., “The Use of Software Engineering, Including the Z
Notation, in the Development of CICS,” Quality Assurance, vol. 14, no. 3, Sep.
1988, pp. 103-110.

Noe. P.A., and Hartrum, T.C., “Extending the Notation of Rational Rose 98 for
Use with Formal Methods,” Proc. of the IEEE National Aerospace and Electronics
Conf. (NAECON 2000), Oct. 2000, pp. 43-50.

Oldevik, J., and Berre, A.-]., “UML-Based Methodology for Distributed Systems,”
Proc. of the Second Intl. Workshop on Enterprise Distributed Object Computing
(EDOC’98), Nov. 1998, pp. 2-13.

Ostroft,].S., Temporal Logic for Real Time Systems, John Wiley and Sons, 1989.

Page-Jones, M., Fundamentals of Object-Oriented Design in UML, Addison-
Wesley, New-York, 1999.

Paige, R. F., “Heterogeneous Notations for Pure Formal Method Integration,”
Formal Aspects of Computing, vol. 10, no. 3, June 1998, pp. 233-242.

Paige, R.F., “When Are Methods Complementary?,” Information and Software
Technology, vol. 41, no. 3, Feb. 1999, pp. 157-162.

“Paradigm Plus — Enterprise Component Modeling,” Computer Associates
International, Inc. web-site, accessed Jan. 27, 2001 at
htep://www.cai.com/products/alm/paradigm_plus.htm

Parnas, D.L., “Mathematical Methods: What We Need and Don't Need,” IEEE
Compurer, vol. 29, no. 4, April 1996, pp. 28-29.

Periyasamy, K., and Alagar, V.S., “Extending Object-Z for Specifying Real-Time
Systems,” Proc. of the 23" Indl. Conf. on Technology of Object-Oriented
Languages and Systems (TOOLS-23), July 1997, pp. 163-175.

Periyasamy, K., and Alagar, V.S., “Adding Real-Time Filters to Object-Oriented
Specification of Time Critical Systems,” Proc. of the 2 IEEE Workshop on
Industrial Strength Formal Specificarion Techniques, Oct. 1998, pp. 28-39.

Petri, C.A., Kommunikation mit Automnaten (in German), PhD Dissertation,
University of Bonn, Germany, 1962.

Pnueli, A., “Temporal Logics of Programs,” Proc. of the 18" IEEE Annual
Symposium on Foundations of Computer Science, Oct. 1977, pp. 46-57.

Polack. F., “Integrating Formal Notations and Systems Analysis: Using Entity
Relationship Diagrams,” Software Engineering Journal, vol. 7, no. 5, Sep. 1992,
pp- 363-371.

Price, R., Srinivasan, B., and Ramamohanarao, K., “Extending the Unified
Modeling Language to Support Spatiotemporal Applications,” Proc. of the 32* Indl.

[pUMLO1a]

[(pUMLO1b)

[Quatrani98)

{Ramchadani74]

[RationalRose01]

[RationalRoseRTO01]

[Reisig85]
[Rescher71]

{Rhapsody01]

[RogersGifs01]

[Roman96]

[RoZeLink99]

{Rumbaugh91]

{Rushby00]

[Sahraoui92]

[Sahraoui97]

290

Conf. on Technology of Object-Oriented Languages and Systems (TOOLS-32),
Nov. 1999, pp. 163-174.

“The Precise UML Group ~ Main Details,” pUML Group web-site, accessed Jan. 28, 2001

at hup://www.cs.york.ac.uk/puml/maindetails.heml

“The Precise UML Group — Publications,” pUML group web-site, accessed Jan. 28, 2001

at heep://www.cs.york.ac.uk/puml/publications.heml

Quatrani, T., Visual Modeling with Rational Rose and UML, Addison Wesley
Longman, 1998.

Ramchadani, C., Analysis of Asynchronous Concurrent Systems by Timed Petri
Nets, PhD thesis, Massachusetts Institute of Technology, Dept. of Electrical
Engineering, Feb. 1974.

“Rational Rose, A Rational Suite Product,” Version 2001, Rational Software
Corporation web-site, accessed Jan. 27, 2001 at
http://www.rational.com/products/rose/index.jsp

“Rational Rose Real Time,” Version 2001, Rational Software Corporation’s web-
site, accessed Jan. 27, 2001 at hup://www._rational.com/products/rosert/index.jsp

Reisig, W., Petri Nets: An Introduction, Springer-Verlag, 1985.
Rescher, N., and Urquhart, A., Temporal Logic, Springer-Verlag, 1971.

“Rhapsody Overview,” I-Logix, Inc. web-site, accessed Jan. 25, 2001 at
hup://www.ilogix.com/fs_about.htm, <Rhapsody> link.

“Creative Design Icon Archive,” part of the Creative Design Clipart Gallery,
RogersGifs.com, accessed Jan. 15, 2001 at htep://www.rogersgifs.com/iconmaster,
(Gallery Index 35).

Roman, G.C., Hart, D., and Calkins, C., “Visual Presentation of Software
Specifications and Designs,” Proc. of the 8" Intd. Workshop on Software
Specification and Design, March 1996, pp. 115-124.

“RoZeLink, Product Description,” 1999 version, Headway Software Inc.’s web site,
accessed May1999 at hrep://indigo.ie/-chrisc

Rumbaugh, J., Blaha, M., Premerlani, W., Frederick, E., and Lorensen, W,
Object-Oriented Modeling and Design, Prentice Hall, 1991.

Rushby, J., “Disappearing Formal Methods,” Proc. of the 5* Symposium on High
Assurance Systems Enginecring, Nov. 2000, pp. 95-96.

Sahraoui, N, and Delfieu, D., “Zaman, A Simple Language for Expressing Timing
Constraints,” Proc. of the 18" IFIP-IFAC Workshop on Real-Time Programming,
June 1992, pp. 19-24.

Sahraoui, N., “Applying Specification Methods to Complex Systems,” Proc. of the
IEEE Ind. Conf. on Systems, Man, and Cybernetics, Oct. 1997, vol. 5, pp. 4488-
4491.

[Salek94]

[Schach99]

{Schneider92]

[Scholefield92]

[Scogings01]

[Scort99]

[Selic94]

[Selic96]

{Selic98]

[Selic99a)

[Selic99b)

[Shaw92]

[Shlaer88]

[Shlaer91}

[Shroff7]

Salek, A., Sorenson, P.G., Tremblay, J.P., and Punshon, }.M., “The REVIEW
System: From Formal Specifications to Natural Language,” Proc. of the First Indl.
Conf. on Requirements Engineering, Apr. 1994, pp. 220-229.

Schach, S., Classical and Object-Oriented Software Engineering with UML and
Java, WCB/McGraw-Hill, 1999.

Schneider, S., Davies, J., Jackson, D.M., Reed, G.M., Reed, J.N., and Roscoe,
A.W., “Timed CSP: Theory and Applications,” Lecture Notes in Computer
Science, vol. 600, Springer-Verlag, 1992, pp. 640-675.

Scholefield, D.J., and Zedan, H.S.M., “The Refinement of Real-Time Systems,”
Proc. of the 4" EUROMICRO Workshop on Real-Time Systems, June 1992, pp.
122-127.

Scogings, C., and Phillips, C., “A Method for the Early Stages of Intcractive System
Design Using UML and Lean Cuisine+,” Proc. of the Second Australasian User
Interface Conf. (AUIC 2001), Jan. 2001, pp. 69-76.

Scott, L.P., and da Graga Pimentel, M., “An Object-Oriented Model for HyTime
Using UML,” Proc. of the Third Ind. Conf. on Computational Intelligence and
Multimedia Applications, Sep. 1999, pp. 393-398.

Selic, B., Gullekson, G., and Ward, P.T., Real-Time Object-Oriented Modeling,
John Wiley & Sons, 1994.

Selic, B., “Modeling Real-Time Distributed Software Systems,” Proc. of the 4” Indl.
Workshop on Parallel and Distributed Real-Time Systems, April 1996, pp. 11-18.

Selic, B., “Animating Structures: Real-Time, Objects, and the UML,” Keynote
Talk, Proc. of the 19" IEEE Real-Time Systems Symposium, Dec. 1998, pp. 165.

Selic, B., “Turning Clockwise: Using UML in the Real-Time Domain,”
Communications of the ACM, vol. 42, no. 10, Oct. 1999, pp. 46-54.

Selic, B., “Using UML for Modeling Complex Real Time System Architectures” (a
1999 PowerPoint presentation), ObjectTime Limited web-site, accessed Jan. 8,
2001 at hrep://www.objectime.com/otl/technical/umlre.heml

Shaw, A.C,, “Communicating Real-Time State Machines,” IEEE Transactions on
Software Engineering, vol. 18, no. 9, Sep. 1992, pp. 805-816.

Shlaer, S., and Mellor, S.J., Object-Oriented Systems Analysis: Modeling the
World in Data, Prentice-Hall, 1988.

Shlaer, S., and Mellor, S.J., Object Lifecycles: Modeling the World in States,
Prentice-Hall, 1991.

Shroff, M., and France, R.B., “Towards a Formalization of UML Class Structures in
Z,” The 21" Annual Ind. Conf. on Computer Software and Applications
(COMPSAC’97), Aug. 1997, pp. 646-651.

[Si-Alhir98]

[Simons99]

[Sommerville95]

[Sowmya98]

[Spivey92]

[Stankovic88]

[Stankovic96a]

[Stankovic96b]

[Steggles94]

[Stepney92a]

{Stepney92b])

[Stoecklin98]

[Stroustrup97]

{SystemArchitect01]

[Taentzer99]

[Taylor99]

{TogetherSoft00a]

292

St Alhir, S., UML In A Nutshell: A Desktop Quick Reference, O'Reilly &
Associates, 1998.

Simons, A.J.H., “Use Cases Considered Harmful,” Proc. of the 29” Ind. Conf on
Technology of Object-Oriented Languages and Systems (TOOLS-29 Europe), June
1999, pp. 194-203.

Sommerville, 1., Software Engineering, Fifth Edition, Addison-Wesley, 1995.

Sowmya, A., and Ramesh, S., “Extending Statecharts with Temporal Logic,” IEEE
Transactions on Software Engineering, vol. 24, no. 3, March 1998, pp. 216-231.

Spivey,].M., The Z Notation: A Reference Manual, Second Edition, Prentice-Hall
International, UK, 1992.

Stankovic, J.A., and Ramamritham, K., Tutorial: Hard-Real Time Systems,
Computer Society Press of the IEEE, 1988.

Stankovic, J.A., “Real-Time and Embedded Systems,” ACM Computing Surveys,
vol. 28, no. 1, March 1996, pp. 205-208.

Stankovic,] .A., et al., “Strategic Directions in Real-Time and Embedded Systems,”
ACM Computing Surveys, vol. 28, no. 4, Dec. 1996, pp. 751-763.

Steggles, P., and Hulance, J., “Z Tools Survey,” June 1994, accessed February 1998
at fp://ftp.ist.co.uk/pub/doc/zola/ztool-survey.ps

Stepney, S., Barden, R., and Cooper, D. (editors), Object-Orientation in Z,
Workshops in Computings, Springer-Verlag, 1992.

Stepney, S., Barden, R., and Cooper, D., “A Survey of Object-Orientation in Z,”
Software Engineering Journal, vol. 7, no. 2, March 1992, pp. 150-160.

Stoecklin, S., Williams, D.D., and Swain, R., “Understanding Object-Oriented
Systems Specifications Using Familiar Systems,” Proc. of the Intl. Conf. on Software
Engineering: Education & Practice, Jan. 1998, pp. 10-15.

Stroustrup, B., The C++ Programming Language, Third Edition, Addison-Wesley,
1997.

“System Architect 2001,” Popkin Software web-site, accessed Jan. 27, 2001 at
http://www.popkin.com/products/sa2001/systemarchitect.htm

Taenwzer, G., “Adding Visual Rules to Object-Oriented Modeling Techniques,”
Proc. of the 29" Intl. Conf. on Technology of Object-Oriented Languages and
Systems(TOOLS-29 Europe), June 1999, pp. 275-284.

Taylor, D.A, “Programming for Everyone,“ IEEE Computer, vol. 32, no. 5, May
1999, pp. 50-51.

“Practical UML: A Hands-on Introduction for Developers,“ TogetherSoft
Corporation web-site, Oct. 16. 2000 revision, accessed Jan. 9, 2001 at
htep:/ Iwww.togethersoft.com/servicessyUMLShortCourse/index.heml

293

[TogetherSoft00b] “Together Product Feature Chart,” TogetherSoft Corporation’s web-site, Dec. 18,
2000 update, accessed Jan. 26, 2001 at
heep:/iwww.togethersoft.com/together/matrix.html

[(UMLO00] OMG Unified Modeling Language Specification, version 1.3, Object Management
Group web site, published March 1, 2000, accessed Sep. 23, 2000 at
fip://ftp.omg.org/pub/docs/formal/00-03-01.pdf

[Utting95] Utting, M., “Animating Z: Interactivity, Transparency and Equivalence,” Proc. of
the 1995 Asia Pacific Conf., Dec. 1995, pp. 294-303.

[Vishnuvajjala96] Vishnuvajjala, R.V,, Tsai, W.-T., Mojdehbakhsh, R., and Elliott, L., “Specifying
Timing Constraints in Real-Time Object-Oriented Systems,” Proc. of the High-
Assurance Systems Engincering Workshop, Oct. 1996, pp. 32-39.

[Visio00] “Microsoft Visio Overview Tour,” Microsoft Corporation web-site, accessed Nov.
20, 2000 at hrep://www.microsoft.com/office/visio/overview.htm

[Warmer98] Warmer, J., and Kleppe, A., The Object Constraint language: Precise Modeling with
UML, Addison-Wesley, 1998.

[Warkins98] Watkins, S., Dick, M., and Thompson, D., “From UML to IDL: A Case Study,”
Proc. of the 28" Ind. Conf. on Technology of Object-Oriented Languages and
Systems (TOOLS-28), Nov. 1998, pp. 141-153.

[Wing90] Wing, .M., “A Specifier’s Introduction to Formal Methods,” IEEE Computer, vol.
23, no. 9, Sep. 1990, pp. 8-24.

{WizardO1] “Wizard, A Type-Checker for Object-Z Specifications,” Software Verification
Research Center’s web-site, University of Queensland, Brisbane, Australia, accessed
Feb. 6, 2001 at huep://svrc.it.uq.edu.au/Object-Z/pages/Wizard .html

[Wordsworth92] Wordsworth, J.B., Software Development With Z, Addison-Wesley, 1992.
[Xie99] Xie, Z., Yu, J., and Liu, J., “Applying UML to Gas Turbine Engine Simulation,”

Proc. of the 31"Ind. Conf. on Technology of Object-Oriented Languages and
Systems (TOOLS-31), Sep. 1999, pp. 458-464.

[Xu00] Xu, R., Masaru, Z., and Zhang, H.-Q., “Object-Oriented AGVS Modcling with
UML,” Proc. of the 39" SICE Annual Conference, Intl. Session Papers, July 2000,
pp- 261-264.

[Yang96] Yang, S.M., Yoon, T.M., and Kim, M.H., “System Development Based On A

Real-Time Object Model,” Proc. of the 2 Workshop on Object-Oriented Real-
Time Dependable Systems (WORDS'96), Feb. 1996, pp. 152-159.

(Yuan98] Yuan, X., Hu., D., Hao, Xu, H., Li, Y., and Zheng, G., “Complete Object-
Oriented Z and Its Supporting Environment COOZ-Tools,” Proc. of 27* Indl.
Conf. on Technology of Object-Oriented Languages and Systems (TOOLS-27),
Sept. 1998, pp. 206-213.

[Zadeh96] Zadeh, H.B., and Stepney, S., “ZEST - Z Extended with Structuring: A User's
Guide,” British Telecommunications 7004.0.20.13, Logica’s PROST web-site, Jan.
22, 1996, accessed Feb. 7, 2001 at htp://public.logica.com/-prost/ps/d13.ps

[ZANS98]

[Zave90]

{ZedO1]

(ZETAO00]

[ZEVES00]

[Zhang93]

[Zimmerman00]

[ZTC98]

294

“ZANS Animations,” Formal Methods Research Group's web-site, De Paul
University, Chicago, IL, last updated Feb. 25, 1998, accessed Feb. 7, 2001 at
heep://se.cs.depaul.edu/fm/zans.huml

Zave, P., and Jackson, M., “Where Do Operations Come From? A Multiparadigm
Specification Technique,” IEEE Transactions on Software Engineering, vol. 22, no.
7, July 1996, pp. 508-528.

“The Z Notation,” The World Wide Web Virtual Library, last updated by
Jonathan Bowen on Jan. 13, 2001, accessed Feb. 6, 2001 at
huep://www.afm.sbu.ac.uk/z/

“The ZETA System: Overview,” release 1.5, Technische Universitit Berlin’s web-
site, last modified July 18, 2000, accessed Feb. 6, 2001 at hetp://uebb.cs.tu-
berlin.de/zeta/

“Z/EVES,” an ORA, Canada, web-site, last updated July 12, 2000, accessed Feb. 5,
2001 ac hep://www.ora.on.ca/z-eves/welcome.html

Zhang, Y., and Mackworth, A.K., “Design and Analysis of Embedded Real-Time
Systems: An Elevator Case Study,” TR-93-04, Department of Computer Science,
University of British Columbia, accessed July 1998 at
ftp://ftp.cs.ubc.ca/fep/local/techreports/1993/TR-93-04.ps.gz

Zimmerman, M., Rodriquez, M., Ingram, B., Katahira, M., de Villepin, M., and
Leveson, N., “Making Formal Methods Practical,” Proc. of the 19" Conf. on
Digital Avionics Systems, Oct. 2000, vol. 1, pp. 1B2/1-1B2/8.

“Z Type Checker,” Formal Methods Research Group's web-site, De Paul
University, Chicago, IL, last updated Aug. 12, 1998, accessed Feb. 7, 2001 at
hrep://se.cs.depaul.edu/fm/ztc.huml

295

Appendix A Summary Overview of Z++

The following is a summary presentation of Z++, based on [Lano94b], [Lano94e] and
(Lano95] (throughout the entire thesis the later was used as primary reference whenever it
was necessary to resolve differences between various Z++ materials). For documentation
and manipulation purposes several identifiers have been modified, e.g., we write
RTLFormula instead of Fmlagry, and use Cinstead of T. Also, a PUBLICS clause, listing
externally visible attributes and operations has been appended to the structure of the Z++
class presented in Section A.l. The recommended place for PUBLICS is between the

EXTENDS and TYPES clauses of the Z++ class (more details about this new clause can be

found in Chapter 6).

A.1 BNF Syntax of the Z++ Class Declaration

ZPP_Class ::= CLASS Identifier [TypeParams]
[EXTENDS Ancestors]}
[TYPES Types]
[FUNCTIONS AxiomaticDefs]
[OWNS Locals]
[RETURNS OpTypes]

{OPERATIONS OpTypes]
[INVARIANT Predicatel
[ACTIONS Actions]
[HISTORY History]
END CLASS

where:

TypeParams ti= [“(" pParlist “]™]
Parlist ti= Identifier [, Parlist] |
Identifier << Identifier [, Parlist]

Ancestors tr= Idlist

296

Types ti= TypeDeclarations
Locals = Identifier : Type ; Locals | Identifier : Type
Optypes tiz [(*] Identifier : Idlist —» Idlist; OpTypes |

{*] Identifier : Idlist — Idlist
Actions 1= {*] [Predicate &] Identifier Idlist ==> Code; Actions
| [*] (Predicate &) Identifier Idlist ==> Code

History to= LTLFormula | RTLFormula

Briefly, about the clauses in the class declaration:

e cuass is followed by an identifier and a possibly empty list of generic type parameters.
In this list, the notation A << B signifies that class parameter a is the descendent of class
B;

® EXTENDS contains the list of classes inherited by this class;

e TYPES contains definitions of types used in the declarations of local variables. Classes
can be used as types in this clause and in the clauses that follow;

e runcTIoNns is followed by axiomatic definitions of constants;

e ouwns is followed by attribute declarations, for each attribute the name and the type
being given;

e RETURNS includes the signatures of operations that do not change the atributes of the
class instances. These operations represent pure enquiry accesses to the state;

e OPERATIONS includes the signatures of the operations that can change the state of the
objects. The operations are specified here and in the RETURNS clause as functions from
a sequence of input domains to a sequence of output domains;

e INVARIANT specifies a property of the internal state that must remain unchanged
between the executions of operations. The default invariant of a class is true;

® ACTIONS contains definitions of operations that can be performed on instances of the
class. For an operations op of class c the input parameters x are listed before the
output parameters y. The body of the operation code (op, C) contains Z statements.
The operation has either the implicit precondition true or an explicit precondition

Pre(op, C). The general form for an operation’s definition is:

297

Pre (op, C} & op x y ==> Code (op, C)

® HISTORY contains a predicate that defines the admissible sequences of execution for the
operations of the class’s objects. The predicate can be written in linear temporal logic or

in RTL.

A.2 Invocation of Operations

In class ¢ an operation declared as

and defined as
Pre(op, C) & op x y ==> Code (op, C)

can be invoked as objectc.op(ap) where objectc is an object of class ¢ and ap a list of
actual parameters. The alternative notation objectc.op[ap/£fp] can be used, where ap is the
set of actual parameters that substitute the formal parameters £p. It is also possible to
highlight the output parameters y that result from the invocation of the operation by

writing y « objectC.opl(ap).

An implicit operation Newc is available for each class c. The default name of the object
created by Newc is c!, but the object can be suitably named by using the expression

Newc [objectName! /c!].

In Z++ the set of auributes changed by an operation is implicitly specified via the
decoration of attributes, an attribute att that does not appear decorated as att’ in the

operation’s definition being considered unchanged by the operation.

298

Operations of classes that have their name prefixed by * are denoted spontaneous (or
internal) actions, invoked implicitly during the lifetime of the object. Also, an init
operation can be included in a Z++ class to perform the initialisation of the object. In order
to have init executed at the creation of class instances, the symbol * must precede the

name of the operation, making it an internal action.

Within classes, the usual Z technique of splitting an operation in normal and error

behaviour can be applied:

CLASS C
OWNS
OPERATIONS
Op_OK : X > Y
. Op_Error : X -2 Y
Op : X > Y
ACTIONS
Op_OK x? y! ==> Pre_OK A Def OK
Op_Error x? y! ==> Pre_Error A Def_ Error
Op x? y! ==> Op_OK v Op_Error
END CLASS

A.3. Notes on Semantics

A class declaration c as in A.1 defines implicitly the following Z schemas for, respectively,

the class state:

— Statec
c

Inve

299

and for each operation op:

— Ingp
x : IN

— oUtop
y : OUT

where c defines the state of ¢, 1nv is the invariant of the class and, as in typical Z style
declarations, the elements of parameter sequences x and y are matched position by
position with their corresponding types contained in the sequences In and, respectively,

our (the parameters are listed in pairs var:varType).

The precondition pre (op,c) involves the class state and the input parameters:

r— SchemaPre (op,C)
| Statec

Inop

Pre (opn, C)

and the operation itself is described by:

—— Schema (op, C)
A StateC

A SupplierObjects (op,C)

= NonSupplierObjects (op,C)
Ingp

Outep

Code (cp, Q)

where supplierobjects(op,C) are schemas involved (directly or recursively) in the
definitions of operations invoked from within op and NonSupplierobjects (op,c) are the

schemas for the other class instances in the specification.

300

For each class ¢ the given set [@C] represents the set of all possible objects of the class and

the set ¢ denotes the existing objects of c. These are described in the following schema,

which also includes a dereference map +c from object identities to object values:

— Objectse
*¢ : @C - Statec
C : P(@C)

C = dom (*c)

The nil object reference nil.:@c, which can never be an element of ¢, can be used in

Z++.

A.4 Extending and Restructuring the Specification

The specification can be extended by applying operations on classes, as follows:

ClassExpression :== ClassIdentifier |

ClassExpression

\

(FeatureList) |

ClassExpression [Renamelist) |

GenericClassExpression [ParameterList] |

ClassExpression
ClassExpression
ClassExpression

ClassExpression

ClassExpression *

+

A
x

N

-

ClassExpression |
ClassExpression |
ClassExpression |

ClassExpression |

Ident ClassExpression

where classIdentifier is the class name assigned in its cLass clause; FeatureList a list of

attributes and operations of the class, RenameList a list of substitutions new/o1d involving

constants, attributes and operations, and ParameterList a list of types that represent the

generic parameters of the class (by definition, a generic class is a class with a non-empty list

of parameters.) Succinct descriptions for some of the above operations:

301

e The hiding operation \ has the effect of making the attributes and operations of the
class unavailable to the class’ descendents;

® Renaming allows the changing of names for reusability purposes, but does not affect
the semantics of the class features;

e The operation A on classes creates a class that contains the disjoint union of class
attributes and the same-named operations, with their definitions conjoined;

® The intersection operator n produces the syntactic intersection of the definitions of the

two classes, only the features with identical descriptions being retained.

A.5 Translation to Standard Z

Z++ specifications can be translated into regular Z specifications using a “flattening”
procedure that allows the use of available analysis tools for Z. However, as pointed out by
Lano and Haughton, temporal constraints are not treated, but their handling is feasible by
using explicit trace variables in class state schemas [Lano94e]. The specific details of

translation to Z follow from the semantics of Z++ outlined in A.3.

302

Appendix B Java Implementation of the AFCD

B.1 Contents of the Program Listing
The listing included in this Appendix contains the code of a Java program that implements

the AFCD described in Section 6.3 of the thesis. The listing has several components,

presented in the order indicated in Table B.1.

Table B.I Contents of the FCD Program (continued on the next page)

No. Component Description

Document type definition that establishes the structure of the input
1 classdiagram.dud provided to the FCD program. This input is a representation of a UML
class diagram.

The highest level class of the program. Coordinates: (a) the parsing of
the input description of the class diagram and the loading of the input’s

2 FDCManager.java components into Java objects; (b) the verification of the well-formedness
of the input class diagram; (c) the translation to Z++ of the class
diagram.

Parser and loader that processes the *.xml input file and populates the
classes of the program with the elements of the input. By verifying the
structure of the input data, it enforces some of the rules for well-
formedness of the class diagram.

3 CDParser.java

4 CDSyntaxChecker.iava Groups the more complex checks for well-formedness of class diagrams
Y) presented in Section 6.3.1.

Coordinates the entire formalisation in Z++ of a UML class diagram,

> CDTranslator.java according to the principles of translation described in Section 6.3.2.

6 ClassDiagram.java Class that models the UML class diagram provided as input to FCD.

. Models regular classes from the UML space. It is also the superclass of
7 | UMLClass.java the UMLParaBindClass java class.

Models both parameterised and instantiating UML classes. For AFCD’s

8 UMLParaBindClass java purposes further specialisation of the class was not necessary.

9 UMLAttribute.java Models attributes of classes from the UML space.

10 UMLOperation.java Models operations of classes from the UML space.

303

Table B.1 Contents of the FCD Program (continued from the previous page)

No. Component Description
11 UMULParameter.java Models parameters of UML operations.
12 Relationship.java Models binary relationships between classes.
13 RelationshipEnd.java Models the ends of relationships.
14 Multiplicity.java Models the multiplicity attached to the ends of relationships.
15 Range.java Modcls_ ranges of values. Used as components of multiplicity
constraints.
Models the Z++ specification that results from formalisinga UML
16 ZPPCSpec.java class diagram. It is the correspondent of the UML class diagram in
the Z++ space.
Provides representation of Z++ classes. Contains both the clause
17 ZPPClass java contents ?F a Z++ class (extcrnil representation”) apd i
information that makes up an “internal representation” that
facilitates translation from and to UML.
18 ZPPActribute java Placeholder for information describing an attribute from the Z++
space.
19 ZPPOperation.java Placeholder for information describing a Z++ operation.
20 ZPPOpSignature.java Iflaceholder for information describing a Z++ operation’s
signature.
21 ZPPOpDefinition.java Placcbglder for information describing a Z++ operation’s
definition.
22 StatementList.java A class for grouping Z++ statements.
. Models Z++ statements. Each statements consists of one or more
23 Statement.java lines
24 IdList.java Models lists of identifiers.
. Utility class handling all messages to the user and the formatting
25 Logger.java : . 2
of the Z++ specification.
26 FCDConstants.java Interface that groups the constants used in the program.

B.2 The Program Listing

The listing of the Java program that implements the AFCD is presented below.

304

Printed en. June 14, 2001 at 11:40 B

- Bege 1 of 1

10

15

20

25

30

35

40

45

50

S5

<2xml version='1.0' encoding=‘us-ascii®?>

<!-- Document Data Type (DTD) for class diagram; specifies the structure of the AFCD input
The symbol * means "zero or more® while the symbol + means “one or more™ -->

<l=- Class diagram declaration-->
<!ELEMENT classdiagram (class*, relationship*)>
<!ATTLIST classdiagram title CDATA $REQUIRED>

<!-~ Class declaration -->
<!ELEMENT class (attr, op*) >
<I!ATTLIST class
name CDATA #REQUIRED
ctype (reg | para | bind) “reg®">

<!=-- Attribute declaration -->

<!ELEMENT att (#PCDATA)>

<!ATTLIST att
name CDATA $REQUIRED
type CDATA *"null”
initval CDATA “null®
vistype (public | protected | private) "public®
property (changeable | frozen) “changeable®>

<!-- Operation declaration -->
<!ELEMENT op (param*) >
<!ATTLIST op
name CDATA $REQUIRED
vistype (public | protected | private) ®public”
rettype CDATA “"null®
property (none | query) *none%>

<!-- Parameter declaration -->
<!ELEMENT param (#PCDATA) >
<!ATTLIST param
name CDATA $REQUIRED
ptype CDATA $REQUIRED
dir (in | out | inout) ®in®">

<i{-- Relationship declaration -->
<!{ELEMENT relationship (relationshipend+*)} >
<!ATTLIST relationship name CDATA ®null®>

<!=-- Relationshipend declaration -->
<!ELEMENT relationshipend (multiplicity) >
<!ATTLIST relationshipend
kind {assoc { aggreqg | comp | super [generic | none)
classname CDATA $REQUIRED>

<!—- Multiplicity declaration -->
<!|ELEMENT multiplicity (range+) >

<!=-- Range declaration -->
<!ELEMENT range (#PCDATA) >
<!ATTLIST range
begin CDATA "1*
end CDATA "1*>

#IMPLIED

305

‘IBuitldar - Fileneme -m.wm Sava
m- :-u,»au at ‘B2s: ‘ﬁm

. "1‘ Fy

10

15

20

25

30

35

40

45

S0

SS

// 2 FCDManager

peackage fcd:
mport java.io.File:
/e

* Coordinates the three major functions of the AFCD:
* (a) parsing of the input description of the class diagram
* (b) verification of the well-formedness of the class diagram
* (c) translatjon to Z++ of the components of the class diagram
*/
Public cisss FCDManager |

private ClassDiagram cd;

privale ZPPSpec zZspec;

// All main work components start from here
public vold doWork(File file) |
Tty

cd = new ClassDiagram() ;
CDParser parser = N@W CDParser(cd);
parser.parse(file);

CDSyntaxChecker checker ~ MW CDSyntaxChecker{cd) ;
¥ (ichecker.checkCDSyntax())

Logger.log("Checking of CD syntax stopped.%;
olse |

Logger.log(®"Checking of CD syntax successfully completed.¥;

CDTranslator trans = NW CDTranslator(cd) ;
trans.CDtranslate():
i

} cateh (Exception e) |
e.printStackTrace() ;
Logger.log(“"Parsing of CD input stopped.9:
I
}

public static vold main(String[] args) {

File file = mew File("classdiagram.xmi™;

y |

¥ (args.length == 1)
file - new File(args{0}):

FCOManager mgr = NEW FCDManager();
mgr.doWork(file) ;

} cateh (Exception x) |
X.printStackTrace() ;
System.exit(l);

144

7/

//

7/

124

124
124

parsing & loading

verification

translation

entry point

default input file

a manager to
coordinate the work

306

— , s - D: — T— ',' _.'E ll“ ECFEIERS e e ‘

Inge 1 ef 3

Reiated em Jume 14, 2001 at 12:12 3 hy Secgie Daesale
// 3 CDParser
package fcd;
5
mport java.util.e;
mport java.io.File;
mpost java.io.IOException:
import javax.xml.parsers.*;
10 mport org.xml.sax.*:
mport org.wic.dom.*;
/** parses the imput and populates the classes modelling the UML class diagram */
public class CDParser |
15 privale ClassDiagram cd;
private Map mappings = ®ewW HashMap();
public CDParser(ClassDiagram cd) {
this .cd~ cd:
20 i
public void parse(File fiie) theows Exception |{
DocumentBuilderFactory factory = DocumentBuilderfactory. newInstance() ;
factory.setValidating(true);
25 ay |
DocumentBuilder builder = factory.newDocumentBuilder() ;
setErrorHandler(builder) ; // error handling code to deal with DTD validation

Document document = builder.parse(file);

Logger.log("The input class diagram *+ document.getDocumentElement() .getNodeNams()

30 + ® suyccessfully read.%;

createElement(document) ; // create cd and its elements from the DOM tree

Logger.log("The class diagram ® + document.getDocumentElement(} .getNodeName()
+ " successfully created.%;
| cateh (SAXException sxe) |
3s Exception x = sxe;
¥ (sxe.getException() != nufl)
x = sxe.getException();
Logger.log(x.getMessage());
throw x;
40 | cateh (ParserConfigurationException pce) |
pce.printStackTrace() ;
} cateh (IOException ioe} ¢
ice.printStackTrace();
} cateh (Exception x) {
45 thwow x;
1
]

/** Creates an element corresponding to the DOM node and recursively processes its children */

50 private vold createElement(Node node) Hhrows Exception {
swiich (node.getNodeType()} { // determines action based on node type
case Node.DOCUMENT NODE:
Document doc = (Document) node;
Node next = doc.getDocumentElement() ;
SS mappings.put(next, cd);
createElement(next) ;
break ;
case Node.ELEMENT_NODE:
String name = node.getNodeName() ;
60 ¥ (name.equals(®classdiagram®) {
String title = ((Element) node)} -getAttribute(*title®);
cd.setName(title) ;
| etoe ¥ (name.equals(“class™) |
createClass(node) ;
65 | else W (pame.equals(®att®)) |

IMullder - Fileneme = D:/Mockyard/Testhed/sxo/fol/DBazses . Suva

Priated eu Jume 14, 2001 at 12:12-3 by Secgis Dusinls : . Puge 2 of 3

createAttribute(node} ;
| clee ¥ (name.equals(®op®)) |
createOperation(node) ;
} oloe ¥ (name.equals(®param™) |
70 createPazameter(nodej ;
} oloe N (name.equals(®relationship®™) {
createRelationship(node) ;
} oise W (name.equals(®relationshipend®) {
createRelationshipEnd{node) ;
5 |} aige ¥ (name.equals(®multiplicity®) {
createMultiplicityinode);
} else W (nawme.equals({®range™)) {
createRange(node) ;
]
80 NodeList children = node.getChildNodes(); // recursive processing of children
¥ (children := mull)
for (imt i<0; i < children.getLength({); i++)
createElement(children.item(i)) ;

break ;
85 default -
breek
]
}
S0 /** Creates and initialises class cdiagram elements */

private wold createClass(Node node) {
Node parentNode = node.getParentNode();
ClassDiagram container = (ClassDiagram} mappings.get(parentNode);
String ctype = (({Element) node).getAttribute("ctype®);
95 UMLClass c1 = mll ;
String token = ((Element) node).getAttribute{"name®):;
¥ (ctype.equals(®reg®™)) |
cl = container.createClass{);
cl.setName(token);
100]} olee |
cl = container.createUMLParaBindClass{);
({(UMLParaBindClas® cl).setCType(ctype) .
((UMLParaBindCilas® cl).setNameAndParameters{token) ;
}
10s mappings.put (node, cl);
i

private wvoild createAttribute(Node node) |
Node parentNode = node.getParentNode() ;

110 UMIClass container = (UMLClass) mappings.get(parentNode) ;
UMLAttribute att = container.createAttribute();
att.setName(((Element) node) .getAttribute("name®™));
att.setType(((Element) node) .getAttribute("type®));
att.setVisType(((Element) node).getAttribute(™vistype™;:;

115 att.setlInitValue(((Element) node).getAttribute(®initval™));
att.setProperty(((Element) node).getAttribute{®property®);

1

private vold createOperation(Node node) {
120 Node parentNode = node.getParentNode():
UMIClass container = (UMIClass) mappings.get(parentNode) ;
UMLOperation op = container.createOperation():
op.setName(((Element) node) .getAttribute("name®));
op.setVisType(((Element) node) .getAttribute(®vistype®™);
125 op.setRetType(((Element) node) .getAttribute("rettype®));
op.setProperty((/Element) node}.getAttribute(®"property™)
mappings.put(node, op):;
}

130 privale void createParameter(Node node) f{

308

135

140

145

150

155

160

165

170

175

180

185

190

i

priivale wold createRelationship(Node node) {

private wold createRelationshipEnd(Node node) thwows Exception(

private wvold createMultiplicity(Node node) {

]

private vold createRange(Node node) |

i

private void setErrorHandler{DocumentBuilder builder) |

_Bege 3of 3

Node parentNode = node.getParentNode() ;

UMiOperation container = (UMLOperation) mappings.get (parentNode) ;
Parameter param = container.createParameter(};

param.setName(((Elament) node) .getAttribute("name®));
param.setType(((Element) node) .getAttribute({“"ptype®™);
param.setDir(((Element) node) .getAttribute(®dir®));

Node parentNode = node.getParentNode():

ClassDiagram container = (ClassDiagram) mappings.get (parentNode) ;
Relationship rel = container.createRelationship();

rel.setName(((Element) node).getAttribute{™name®));
mappings.put(node, rel):;

Node parentNode = node.getParentNode()
Relationship container = (Relationship) mappings. get (parentNode) ;
RelationshipEnd relEnd =~ new RelationshipEnd() ;
¥ ((container.getEndl(}) == mull)
container. setEndl(relknd) ;
olee W ((container.getind2(}) == null)
container. setEnd2(relEnd) ;
olse |
Logger.log{"INPUT ERROR: More than two ends for relationship ¥container.getName() + *.%);
Exception x = RewW Exception();
Hwow x:
}
relEnd.setKind(((Element) node) .getAttribute("kind®)) ;
relEnd.setClasaName(((Element) node) .getAttribute(®classname®)) ;
mappings.put(node, relEnd);

Node parentNode = node.getParentNode() ;

RelationshipEnd container = (RelationshipEnd mappings.get (parentNode) ;
Multiplicity mult = container.createMultiplicity();

mappings.put(node, mult);

Node parentNode = node.getParentNode() ;

Multiplicity container = (Multiplicity) mappings.get{parentNode);
Range range = container.createRange():

range.setBegin(((Element) node) .getAttribute("begin®));
range.setEnd(((Element) node).getAttribute(®end®)) :

builder. setErrorHandler(
MW org.xml.sax.ErrorHandler() | // ignore fatal errors
public void fatalError(SAXParseException exception] throws SAXException (
}
public vold error(SAXParseException e) throws SAXParseException {
twow e; // treat validation errors as fatal
}
public vold warning(SAXParseException err) thwows SAXParseException { // print warnings
Logger.log("** Warning™ + *, line " + ezr.getLineNumber()
+ %, uri ® + err.getSystemld()};
Logger.log(* ® + err.getMessage()):

309

e

Pristed om Jume 14, 2001 at 12:52 3N by Seveis Dusssls s fuge 1.0f.7.

// 4. CDSyntaxChecker
package fcd:
mport java.util.s;

/*+* Handles all checks of well-formedness */
public cisss CDSyntaxChecker implesmants FCDConstants
10 privale ClassDiagram cd;
petvale Collection classes = mew ArrayList();
private Collection relationships = new ArrayList();

public CDSsyntaxChecker(ClassDiagram cd) |
15 this .cd = cd;
this .classes = cd.getClasses();
this .relationships =cd.getRelationships():
1

20 /** Highest level of organising the checks */
public boolesn checkCDSyntax() f{
boolean ret - faise ;
¥ (!checkRelationships()) retsm ret;
¥ (icheckAccrossCD({}) retum ret;
25 retum checkClasses():;
i

/** Contains a series of tests at relationship level */

peivate boolean checkRelationships() |

30 boolean ret - faise ;
Logger.separator();
¥ (icheckRelationshipEnds()) fetum ret: // check ends of relationships are
Logger.separator(); // properly defined
¥ (!checkWellFormedMultiplicitiex)) retum ret; // check multiplicities are properly
3s Logger. separator() ; // defined
[({checkAssociationsHaveNames()) retuwm ret; // check names exist for associations
Logger. separator() ;
[] ({checkCompositionsMultOne()) retum ret; // check proper mult. of compositions
Logger. separator() ;
40 [| {{checkRelationshipsMultOne(SUPER, GENERALISATION) relain ret;//same for generalisations
Logger. separator(); A
fetM checkRelatjionshipsMultOne(GENERIC, INSTANTIATION ; // and instantiations
}
45 /** Contains a series of tests at class diagram level */

private boolean checkAccrossCcii) |
boolean ret - faise ;
Logqger. separator();

¥ (!checkEndRelClassesExist{)) retum ret; // check classes in rel. exist in CD
S0 Logger. separator() ;
¥ (icheckClassNamesUnique()) retwm ret; // check names of classes

Logger. separator{() ;
¥ (icheckDistinctAsscciationsNames()) retum ret; // associations between same two

Logger.separator() ; // classes must have distinct names
1] ¥ (icheckDuplicateRelationships()) retun ret; // check multiple rel. between same
Logger. separator() ; // two classes
¥ (:checkNoAncestorToSelf()} retum ret; // a class cannot be ancestor to itself
Logger. separator();
[] (!checkInstantiationClassex)) retwn ret; // check proper def. of instantiations
60 Logger. separator();
rtum checkMatchingBindings() ; // and proper matching of parameters

// at instantiation
I

65 /** Contains a series of tests at class level v/

310

il - Filess = B ARG ey . o S

70

15

8o

85

90

95

100

105

110

115

120

125

130

Fristed em Jwme 16.:2001 at 12:52 3¢ by Seveis Duscals Bage 2.0f 7.
private boolesan checkClasses() |
boclean ret ~ false ;
Logger. separator();
¥ (!checkAttributeNamesUnique()) fetusm ret; // check names of attributes

Logger. separator();

¥ (!checkOperationNamesUnique()) febuim ret; // of operations

Logger. separator() ;

retum checkOpParamNamestUnique() ;
}

/** Verifies that the ends of relationships are properly formed */
public boolesn checkRelationshipEnds() (
boolean ret = true ;
for (Iterator i = relationships.iterator(); i.hasNext(); } {
Relationship rel = (Relationship) i.next();
¥ (!rel.checkEnds())
ret = falee ;
1
Logger. logCheckResult("Relationship ends®, ret);
etEn ret;
}

/** Verifies format of multiplicity constraints */
public boolean checkWellFormedMultiplicities() (
boolean ret - true ;
for (Iterator i = relationships.iterator(); i.hasNext();) {
Relationship rel = (Relationship) i.next():

¥ (!'rel.getEndl().checkMultiplicity()) // test both ends
ret = false ;

¥ (!'rel.getEnd2().checkMultiplicity{})
ret = false ;

}
Logger.logCheckResult{"Well-formed multiplicities® ret):
rtum ret;

}

/** Verifies names are provided for association relationships */
public boolean checkAssociationsHaveNames() (
boolean ret = true ;
for (Iterator i = relationships.iterator(}; i.hasNext();) {
Relationship rel = (Relationship) i.next():;
¥ (!rel.checkAssociationHasName{))
ret - false ;
]
Logger. logCheckResult(®Associations have names®, ret):
retum ret;

/** Verifies that multiplicity of the whole part of composition is one */
public boolean checkCompositionsMultone() |
boolean ret = true ;
for (Iterator i = relationships.iterator(); i.hasNext();) ¢
Relationship rel = (Relationship) i.next();
¥ (!rel.checkCompositionMultOne())
ret - false ;
1
Logger. logCheckResult("Multiplicity of whole part of composition? ret);
retum ret;
}

/** Verifies that specific kinds of relationships have multiplicity one */
public boolean checkRelationshipsMultOne(String endKind, String relKind) {
boolean ret - ttue ;

// and of parameters of operations

311

- Bage S C‘,iz

mﬁh 34, M‘t u-n -ummn
. H i

(Iterator i = relationships.iterator(); i.hasNext(); }

for
Relationship rel = (Relationship) i.next();
(!rel.checkRelationshipMultOne{endKind, relKind))

ret - false :

135 1
Logger.logCheckResult("Multiplicity of " + relKind + ® ends™, ret);

retum ret;
}
in a relationship belong to the class diagram */

140
/** Verifies that the two classes involved
{

pitvate boolean checkEndRelClassesExist{)

boolean ret - GTue ;
String clsName;
; {

for (Iterator i = relationships.iterator(); i.hasNext();)
Relationship rel ~ (Relationship) i.next():;
clsName = rel.getEndil() .getClassName() ;

® (!classFound(clsName)) {
Logger.log(®"CD SYNTAX ERROR: Class invelved in relationship not found (™

150 .
clsName + "}*);
ret = false ;
}
claName = rel.getEnd2().getClassName!);

¥ (!classFound{clsName)) {
Logger.log(®CD SYNTAX ERROR: Class involved in relationship not found (™

145

1S5
clsName + ")®);

ret = false ;

}
160 i
Logger.logCheckResult("Exist classes at relationship ends% ret):
reum ret;

}
Verifies constraints on class names */

165 /e
public boolsan checkClassNamesUnique() |
boolesan ret - true ;
M size = classes.asize();
170 for (M i = 0; i <size; i++) |
UMIClass cls = (UMLClass) ((ArrayList) classes) .get(i};
ret &= checkClassNameUnique(cls.getName(), 1i):
}
175 Logger.logCheckResult(®Class names unique®, ret);

tum ret;
}
/** Verifies names of classes are unique within the class diagram */
private boolean checkClassNameUnique(String className, ¥t index) |{

180
boolean ret = true ;

it size = classes.size():;
(M i = index+l:; i <size; i++) |
{(ArraylList) classes) .get(i):

for
UMLClass cls = (UMLClass)
185
¥ ((cls.getName()) .equals(className)) (
Logger.log("CD SYNTAX ERROR: Duplicate name of class detected ("+classNamet *}®);
ret = false ;
break ;
190 1
}
fetum ret;

i
Verifies that asscciations between the same two classes have distinct names */

195 /v

312

— ¥ilesama = D:/Meckyuia/Besthet/ oo

200

20S

210

220

225

230

235

240

250

255

260

public boolean checkDistinctAssociationsNames) f
boolesn ret = true ;
M size = relationships.size():
for (Mt i = 0; i < size; i++) |
Relationship rell = (Relationship) ((ArrayList) relationships).get(i);
¥ (rell.isAssociation(})) |
String clsl = (rell.getEndl()).getClassName();
String cls2 = (rell.getEnd2()).getClassName();
for (it j = i+1; § < size; j++) {
Relationship rel2 = (Relationship) ((ArrayList) relationships).get(j);
¥ (rel2.isAssociation()) f{
¥ ((rel2.hasClassEnds(clsl, cl32)) || (rel2.hasClassEnds(cls2, clsl)))
¥ ((reli.getName()) .equals{rel2.getName())) |
Logger.log("CD SYNTAX ERROR: Duplicate name of association detected (™+
rell.getName()+ *)®);
ret = faloe ;

t
}
Logger.logCheckResult{"Distinct association names® ret);
etum ret;
}

/* Verifies that only aggregs/comps and assocs may be duplicated between the same two classes */
public boolean checkDuplicateRelationshipsa) (

boolean ret = true ;

String clsNamel;

String clsName2;

String relKind;

it size = relationships.size():
for (Mt i = 0; i < size; i++) |
Relationship rell = (Relationship} ((ArrayList) relationships) .get (i);
relKind = rell.getRelationshipKind();
clsNamel = (rell.getEndl()).getClassName():
clsName2 = (rell.getEnd2()).getClassName():
for (it j = i+1; J < size; J++) {
Relationship rel2 = (Relationship) ((ArrayList) relationships).get(j):
¥ (rel2.nasClassEnds(clsNamel, clsName2?)) {
W (((rel2.getRelationshipKind(})).equals(relKind)}) {
¥ ((relKind.equals(GENERALISATION)) || (relKind.equals(INSTANTIATION))) |
Logger. log("CD SYNTAX ERROR: Duplicate % relXKind + ® relationships detected *
+ "between classes (" + clsNamel + *, ™ + clasName2 + "}");
ret = faloe ;
break ;
}
} olse |
Logger.log ("CD SYNTAX ERROR: Distinct relationships detected between classes (%
clsNamel + ®, ® ¢+ clsName2 + ")");
ret = false ;
break ;

Logger.logCheckResult("Valid duplicate relationships% ret):
tum ret;
}

/** Verifies that a class is not its own ancestor */
private boolesn checkNoAncestorToSelf() {
boolean ret = true ;

313

'uuu- m—--n.wmlm” .
mna-u.nuua-nuumm . . : -Duge 8 of 1.

265

275

280

285

290

295

300

305

310

315

320

325

Collection classes = cd.getClasses();
fof (Iterator i = classes.iterator(); i.hasNext();)} { // look at all classes
UMLClass cls = (UMIClass) i.next():
//if (FCDManager.DEBUG) Logger.log({®"*** checkAncestorToSelf(® + cls.getName() + LR A LA I
¥ (!checkCycleToSelf(cls.getName()}) ret = falas ; // and verify there are no
} // cycles in the inheritance
// graph containing the class
Logger.logCheckResult("No ancestor to self" ret):
refum ret;
}

/** Checks no ancestor to self for ome class (or, equivalently, no successor to self} */
private boolesn checkCycleToSelf(String cls) {
boolsen ret = Gue ;
Collection one = (ArrayList) successors(cls); // gather all successors
// (per generation)

while (true) (

¥ (one.isEmpty()) { // stop when the list is empty
(FCDManager.DEBUG) Logger.log(®"No cycles found for class "+ cls);
retum ret;

i

(one.contains{cls)) { // or the root class itself is in the list
Logger.1og("CD SYNTAX ERROR: Generalisation cycle detected for class "+ cls);
retum !ret;

}
Collection two = new ArrayList();
fof (Iterator i = one.iterator(); i.hasNext();) {
String temp = (String) i.next():
two.addAll((ArrayList) successors(temp)): // update the generation of ancestors
}
¥ (FCDManager.DEBUG) Logger.log(two.toString());
one = NEW ArrayList(two) ; // go and test the next generation

}

/** Gathers all direct successors of a given class (the "first gemeration®) */
privale Collection successors(String cls) {
Collection one = NewW ArrayList();
for (Iterator i = relationships.iterator():; i.hasNext{);) { // check all relationships
Relationship rel = (Relationship) i.next();

¥ (rel.getEndl().getClassName().equals{cls)) // if generalisation check
¥ (rel.getEndl{).getKind() .equals(SUPER}} // if given class is superclass
one.add(rel.getEnd2() .getClassName()) ; // if yes, gather the successors
eclse
W (rel.getEnd2().getClassName() .equals(cls)) // same for the other rel. end

¥ (rel.getEnd2().getKind() -equals(SUPER))
one.add(rel.getEndl() .getClassName()) ;
}
retum one;
}
/** Verifies that suitable classes are involved in instantiation relationships */
public Dboolesn checkInstantiationClasses(} (
boolean ret = true ;
for (Iterator i = relationships.iterator(); i.hasNext{();) { // look at all relationships
Relationship rel = (Relationship) i.next();
String clsNamel = rel.getEndl().getClassName();
String clsNameZ = rel.getEnd2().getClassName();

¥ ((rel.getEndl().getKind()).equals(GENERIC)) // if instantiation
¥ (!foundClassOfType(clsNamel, PARA} 11 // check end classes
! foundClassOfType{clsName2, BIND)) { // (para, bind)

Logger.log ("CD SYNTAX ERROR: Invalid classes involved in instantiation (™
clsNamel + *, ® + clsName2 + ") ") ;
ret = false ;
1
W ((rel.getEnd2().getKind()) .equals(GENERIC)) // or end classes (bind, para)

314

Touilder - u:---rwwm Save
Sristed en Juns. 34,2003 at- ﬂ.ﬂv..mm -

_Page ¢ of 7.

330

335

345

350

355

360

365

370

375

380

¥ (:foundClassOfType{clsNamel, BIND} ||
{foundClassOfType{clsName2, PARA)) |

Logger.1log("CD SYNTAX ERROR: Invalid classes involved in instantiation (%

claNamel + ®, ™ + clsName2 + ")7);
ret = falee :
i
}
Logger. logCheckResult(®"vValid instantiation end classes% ret);
etum ret;
I

/** Verifies the corresporndence between the number of params at instantiation */
public boolean checkMatchingBindings() {
boolean ret = true ;
for (Iterator i = relationships.iterator(); {.hasNext(); } {
Relationship rel = (Relationship) i.next():
W (rel.isRelationshipKind(GENERIC}) {
UMIClass clsl = cd.getUMLClass((rel.getEndl()) .getClassName());
UMLClass cls2 = cd.getUMLClass{(rel.getEnd2()).getClassName());
Wt sizel = O;
W size2 - O;
¥ (clsl instanceof UMLParaBindClass &&
({(MLParaBindClass)clsl) .getCType()) .equals(BIND)) {
sizel = (((UMLParaBindClass clsl).getClassParameters()).size(};
size2 = (((UMLParaBindClass cls2) .getClassParameters()).size();
) olse |
sizel = (((UMLParaBindClass# clsl).getClassParameters()).size();
size2 = (((UMLParaBindClas® cls2).getClassParameters()).size():

W (sizel != size2) {

Logger.log("CD SYNTAX ERROR: Invalid parameter matching at instantiation (%

clsli.getName() + ®, " + cls2.getName() + ")) ;
ret = falee ;

]
]
Logger.logCheckResult("Matching bindings (as number of parameters)? ret):
retum ret;
]

/** Verifies that names of attributes are unique within the class */
private boolean checkAttributeNamesUnique() |
boolean ret - tiye ;

for (Iterator i = classes.iterator(); i.hasNext();) {
UMIClass cls = (UMIClass) i.next();
¥ (tcls.checkAttributeNamesUnique())
ret = false ;
|
Logger. logCheckResult(®"Attribute names unique®, ret);
retum ret;
]

/** Verifies that names of operations are unique within the class */
public boolean checkOperationNamesUnique() {
boolean ret - true ;

for (Iterator i = classes.iterator(); i.hasNext():;) {
UMLClass cls = (UMLClass) i.next(};
¥ (!cls.checkOperationNamesUnique())
ret = faise :
}
Logger. logCheckResult(®"Attribute Names Unique® ret):;
etum ret;

315

Exinted ea Jime 34, 2001 -at 12:52 I by Secyiv. Dasoals : : . Page 7 of 7.

N
- r

395

400

40S

410

415

420

425

430

/** Verifies that names of parameters are unique within an operation's list of parameters */
public boolesn checkOpParamNamesUnique(} {
boolean ret = true :

for (Iterator i = classes.iterator(); i.hasNext();) {
UMIClass cls = (UMLClass} i.next():
¥ (icls.checkOpParamNamesUnique())
ret = false ;
}
Logger.logCheckResult("Operation Parameter Names Unique% ret);
et ret;
i

/** Determines if a given class belongs to the class diagram */
private boolesn classFound(String className) {
Collection classNames = MW ArrayList();

for (Iterator i = classes.iterator(); i.hasNext():;)
UMIClass cls = (UMLClass) i.next():
classNames.add(cls.getName(});
I
UM classNames.contains(className) ;
I

/** Determines if a class of given name and type exists in the class diagram */

private boolean foundClassOfType(String className, String ctype) |
boolesn ret = false ;
Collection classes = cd.getClasses();
for (Iterator i = classes.iterator(); i.hasNext():)i

UMIClass cls = (UMIClass) i.next():

¥ (cls.getName() .equals(className))

¥ (((ctype.equals(PARA) || ctype.equals(PARA)) && (cls instanceof UMLParaBindClass))il
(ctype.equals(REG) && !(cls instanceof UMLParaBindClassi}) f
ret = true ;

316

Jiuilder - Filename = D:/Vorkyard/Testbed/sro/fod/CDTranslator.java
Printed oo June 14, 2001 at 2:39 MM by Sergiu Dascalu Page 1 of 6
// 5. CDTramslator
package rcd;
g
import java.io.*:
import java.util.*;
mport java.awt.*;
16 /** Manages the formalisation in Z++ of a UML class diagram */
public class CDTranslator implements FCDConstants |
private ClassDiagram cd; // input class diagram
private ZPPSpec zspec: // output Z++ specification
15 public CDTranslator(ClassDiagram cd) |
this .cd = cd;
i
/** Translates a class diagram to Z++*/
20 public void CDtranslate() |
Zspec = NAW ZPPSpec(): // create the new Z++ spec
translateClasses(); // process classes
translateRelationships() // process relationships
25 resolveVisibility(); // hide private features of classes
zspec.printZPPSpecification();
1
/** Translates UML classes */
30 private void translateClasses() |
for (Iterator i = (cd.getClasses()).iterator{(); i.hasNext(}; } |
UMLClass cls = (UMLClass) i.next(}:
® (! (getCType(cls)).equals(BIND)) // process regular and generic
translateClass(cls): // classes; ignore binding classes
335 I
l
/** Translates relationships */
private vold translateRelationships() |
40 for (Iterator i = (cd.getRelationships()).iterator(); i.hasNext(};) {
Relationship rel = (Relationship) i.next():
¥ (rel.isAggregation() 1| rel.isComposition())
translateAggregation(rel}; // process aggregations & compositions
¥ (rel.isAssociation()})
45 translateAssociaticn(rel); // process associations
I // (generalisations and instantiations
] // are processed during the
// translation of classes)
/** Hides private features of classes */
S0 privite void resolveVisibility() ¢
for (Iterator i = (zspec.getClasses()).iterator(): i.hasNext();) {
ZPPClass zcls= (ZPPClass) i.next():
¥ (zcls.getHiddenFeatures() != null) | // if list of hidden features is not
String cls = zcls.getName(): // empty, rename the original class
55 Statement stmt = N@W Statement();
stmt.addLine(HIDDEN + cls + EQUIV + cls + HIDE + "(["
+ (2cls.getHiddenFeatures()).listIds() + ®]®); // construct hiding operation on class
2epec.appendHidingOps(stmt) ; // and add the operation to Z++ spec
l
60 1
}
/** Translates individual UML class tc Z++ %/
private vold translateClass(UMLClass cls) |
65 String name = cls.getName();

317

JBuilder - Filensme = D:/Workyard/Testbed/srou/fod/CDPramslator.java

Printed on June 14, 2001 at 2:39 B by Sergiu Dasoalu

Page 2 of 6

® ((getCType(cls)).equals(PARA))

name = ((UMLParaBindClass) cls).getReducedName();

ZPPClass 2¢cls = zspec.appendClass(name); /7

// use reduced name of generic classes

create Z++ class with same name

70 % ((getCType(cls)) .equals(PARA))
2cls.setCParams(processCParams((UMLParaBindClass cls)); // transfer class params to Z++
2cls.setExtends(processParents(cls.getName())) : // process parents of class
translateAttributes(cls, 2cls): // formalise attributes
translateOperations(cls, zcls); // formalise operations
75 placeZPPAttributes(zcls); // place attributes in Z++ clauses
placezZPPOperations(zcls): // place attributes in Z++ clauses
}
/** Creates the list of formal class parameters */
80 private IdList processCParams(UMLParaBindClass cls) |
IdList idl = new IdList(};
for (Iterator i = (cls.getClassParameters()).iterator(); i.hasNext():) |
String cparam = (String) i.next():;
8s idl.append(cparam) ;
!
retum idl;
t
30 /** Gathers all direct superclasses of a class*/
peivate IdL:st processParents(String cls) ¢
IdList idl = mew IdList():
Collection relationships = cd.getRelationships();
95 fof (Iterator i = relationships.iterator(}: i.hasNext{);) |
Relationship rel = (Relationship) i.next{}: // check all relationships
¥ (rel.getEndl().getClassName().equals(cls) } // if generalisation see
¥ (rel.getEnd2().getKind().equals(SUPER)! // if the given class is superclass
idl.append((rel.getEnd2()).getClassName()); // if yes, gather its successors
100 eclse
¥ (rel.getEnd2().getClassName() .equals(cls}) // do the same for the other rel. end
¥ (rel.getEndl().getKind().equals(SUPER))
idl.append((rel.getEndl()) .getClassName(}) ;
}
103 fetum idl;
}
/** Translates all the attributes of a class */
private vold translateAttributes (UMLClass cls, ZPPClass zcls) |
110
for (Iterator i = (cls.getAttributes()}.iterator(); i.hasNext():) |
UMLAttribute att = (UMLAttribute) i.next();
2zcls.appendAttribute(translateAttribute(att, zcls)); // process each attribute and add
} // to Z++ class
115 }
/** Translates an individual attribute */
private ZPPAttribute translateAttribute (UMLAttribute att, ZPPClass zcis) |
2PPAttribute zatt = NewW ZPPAttribute(att.getName(}); // create att & get name from UML att
120
zatt.setVisType(att.getVisType()): // get also visibility
¥ (att.getInitvalue() '= mull) // and initial value
zatt.setInitValue(att.getInitValue()):
¥ (atr.getProperty() .equals(CHANGEABLE) } // determine place of Z++ attribute
125 zatt.setClause(OWNS) ;
eise
zatt.setClause(FUNCTIONS) ;
¥ (att.getVisType() .equals(PUBLIC)) // make provisions for visibility
2cls.appendPublics(zatt.getName()) ;
130 eise N (att.getVisType() .equals(PRIVATE))

318

JBuildsr - Pilemams = D:/Workyard/Testbad/sxo/fod/CDTranslator.java
Printed ocu June 14, 2001 at 2:39 MM by Sexgis Dmscalu Page 3 of 6
zcls.appendHiddenFeatures(zatt.getName()):;
zatt.setType(processType(att.getType(), 2cls)); // and determine type of Z++ attribute
retum zacc;
}
135
/** Translates all the operations of a class */
private vold translateOperations (UMLClass cls, ZPPClass zcls) |
for (Iterator i = (cls.getOperations()).iterator(): i.hasNext():)} { // check all operations
UMLOperation op = (UMLOperation) i.next{}:;
140 ZPPOperation zop = translateOperation{op, 2cis); // process each operation and add
2cls.appendOperation{(zop) ; // tao Z++ class
}
}
145
/=+* Translates an individual operation of a class */
private 2PPOperaticn translateCperation (UMLOperation op, ZPPClass zcls) f
ZPPOperation zop = NeW ZPPOperation(op.getName()) ; // create new op & get name from UML op
150 Zop-setVisType(op.getVisType()): // get also visibility
¥ (op.getVisType().equals(PUBLIC)) // make provisions for visibility
2zcls.appendPublics(zop.getName()) ;
else ¥ (op.getVisType().equals(PRIVATE))
2zcis.appendHiddenFeatures(zop.getName()) :
155 ® (op.getProperty().equals(QUERY)) // determine place of op. signature
2op.setClause(RETURNS) ;
else
Zop.setClause(OPERATIONS; ;
processOpParameters(op, 2op, 2cls): // process parameters of operation
160 processOpReturn(op.getRetType(), zop, 2cCls): // and the operation return
retum zop;
i
/** Process parameters of operation®*/
165 private void processOpParameters(UMLOperation op , ZPPOperation zop, 2PPClass zcls) |
for (Iterator i = (op.getParameters()).iterator(); i.hasNext();) { // check all params
UMLParameter param = (UMLParameter) i.next({};
String pname = param.getName(); // get name and
String dir = param.getDir(); // direction of param
170 String ztype = processType(param.getType(), 2cls): // determine Z++ type
(dir.equals(IN)) (// if direction is "in®
(zop.getOpSignature()) .appendInputDomain(ztype) ; // append type to input
(zop.getOpDefinition()) .appendInputId(pname + QUESTION_MARK ; // domain and decorated
// name to input list
175 | else W (dir.equals(OUT)) {
(zop.getOpSignature()) .appendCutputDomain(ztype) ; // process "out*™ param
(zop.getOpDefinition(}) .appendOutputld{pname + EXCLAM _MARK) ;
} eclise {
180 (zop.getOpSignature()) .appendInputDomain{ztype) ; // process "inout”®™ param
(zop.getOpDefinition()) .appendInputId(pname + QUESTION_MARK) ;
(zop.getOpSignature()) .appendOutputDomain{ztype) ;
{zop.getOpDefinition()) .appendOoutputld(pname + EXCLAM_ MARK) ;
]
185]
}
/** Interprets the operation's return type */
private void processOpReturn(String opret, ZPPOperation zop, ZPPClass zcls) |
190 ¥ (opret = null) {
String ztype = processType(opret, 2cls); // determine 2Z++ type
¥ (iopret.equals(BOOLEAN) && !opret.equals(VOID)} |
(zop.getOpDefinition()) .appendOutputId(RESULT) ; // update op. definition
(zop.getOpSignature()) .appendOutputDonain(ztype) ; // and op. signature
195 }

319

Jhuildar -~ Pilename = D:/Woxkyard/Testbed/sxa/fod/CDPranslatorx.java
Printed on June 14, 2001 at 2:39 B by Sergiu Dmscalu Page 4 of 6

200

205

220

225

230

245

250

255

260

}

/*+* Place operation sigrature and definition in appropiate clauses of Z++ class */
private wvoid placeZPPOperations(ZPPClass 2cls) {
for (Iterator i = (zcls.getZPPOperations()).iterator(); i.hasNext(}):) |
ZPPOperation zop = (ZPPOperation) i.next();
¥ (zop.getClause() != mull } |
¥ ((zop.getClause(}) .equals(RETURNS))
2cls.appendReturns{zop.assembleSignature()) :
eclise
2cls.appendOperations{zop.assembleSignature());
2cls.appendActions(zop.assembleDefinition());

/** Place attribute info in appropriate clauses of Z++ class */
private vold placeZPPAttributes(ZPPClass zcls) |
Statement st = AW Statement();
fof (Iterator i = (2cls.getZPPAttributes()).iterator(); i.hasNext();) |
ZPPAttribute zatt = (ZPPAttribute) i.next();

((2att.getClause()).equals(OWNS}) { // OWNS or FUNCTIONS?
zcls.appendOwns(zatt.assembleZPPAttribute(faloe)) ;
¥ (zatt.getInitvValue() '!'= null } { // check if init value
Statement stmt = zatt.assembleZPPAttAssignOwns{); // provided

ZPPOperation init =~ null ;
B (zcls.isInitOpEmpty()) |
init = zcls.getInitOp():
init.setClause(OPERATIONS) ; // include init operation
} // in the class
((2cls.getInitOp()).getOpDefinition()) .appendCode(stmt) ; // append initialisation
} // to init code
| cioe |
2cls.appendFunctions(zatt.assembleZPPAttribute(tsue));
¥ (zatt.getInitValue() !~ null) |

N (st.size() == 0) st.addSeparator(): // construct axiomatic
Statement stm? = zatt.assembleZPPAttAssignfunctions}; // definition for
st.updateStatement(stmt); / constant values

H (st.size() > 0) i
2cls.appendFunctions(st) ;

1
/+* Translates aggregations and compositions ¢/
private void translateAggregation(Relationship rel)|

String whole = rel.getWholeName(): // names of the two classes
String part = rel.getPartName();
boolean mp = rel.whatPartMultiplicity() : // one = F, many = T
ZPPAttribute watt = M@wW ZPPAttribute(}:; // attribute to be added
// tc whole class

W ('mp)

watt. setNameType(lower(part), part):
eise

watt.setNameType(lower(part) + "s®, POWERSET + part): // multiplicity many
ZPPClass zcls = zspec.getClass(whole):
2cls.appendAttribute(watt); // append att to whole class
2cls.appendOwns(watt.assembleZPPAttribute(false)); // and info in OWNS

320

JBuilder - Pilensae = D:/Workyard/Testbed/sro/fod/CDPranslator.java
Printed on Junse 14, 2001 at 2:39 FM dy Sergiu Dascalu

Page S of 6

/** Translates associations ¢/
private vold translateAssociation(Relationship rel) i

String relName = rel.getName() ;

265 String aName = (rel.getEndl()).getClassName(): // names of the two
String bName = (rel.getEnd2()).getClassName();
String typeline = **%;

boolean ma = ((rel.getEndl()}.getMultiplicity()).whatMultiplicity(); // one = F, many = T

270 boolean mb = ((rel.getEnd2()).getMultiplicity()).whatMultiplicity():
ZPPAttribute zatt = New ZPPAttribute(): // first attribute to be
zatt.setNameType(INSTANCESOF + aName, POWERSET + aName) ; // added to
ZPPClass zcls = zspec.appendClass(upper({relName) + DESCR): // the class created to

275 2cls.appendOwns(zatt.assembleZPPAttribute(faloe)) : // describe the association

2att =~ Mmew ZPPAttribute():
zatt.setNameType(INSTANCESOF + bName, POWERSET + bName) ; // second attribute
zcls.appendOwns(zatt.assembleZPPAttribute(false));

280
zZatt = Mew ZPPAttribute():; // third attribute
¥ (ma ¢ mb) typeline = aName + REL_SIGN + bName;
else ¥ (!ma ¢¢ mb) typeline = bName + PFUNCTION + aName:;
else typeLine = aName + PFUNCTION + bName;

285 zatt. setNameType(lower({relName} + INSTANCES, typeline);
2cls.appendOwns(zatt.assembleZPPAttribute(faloe));

Statement stmt = NEW Statement(}: // constraint
stmt.addLine(DOMAIN + lower(relName) + INSTANCES + EQUAL + INSTANCESOF + aName) ;
290 stmt.addLine(RANGE + lower(relName) + INSTANCES + EQUAL + INSTANCESOF + bName) ;

zcls.appendInvariant({stmt);

ZPPClass system = zspec.getClass(SYSTEM);

zatt = Mew ZPPAttribute():; // object descriptor for
29¢S zatt.setNameType(THE + upper(relName} + DESCR, upper(relName) + DESCR}; // the association

system.appendOwns(zatt.assembleZPPAttribute(falee)) ;

/** Translates UML type to a 2Z++ type*/

300 private String processType(String type, ZPPClass zcls) |
¥ (type == null) // type not provided,
retum null ; // do nothing
¥ (type.indexOf(®[®) == -1) // process scalar type
305 retum processScalarType(type, zcls):
String str = type.substring(type.indexOf{"[") + 1, type.indexOf(™]%));
¥ ((str.trim()).length() == Q) // if array type, add seq
et SEQ + (" » processScalarType({type.substring(C,type.indexOf(™{")}, zcls) + ™)";
310 returmn type; // if generic type, keep unchanged
]
/** Interprets UML types expresssed in scalar form */
privste String processScalarType(String type, ZPPClass zcls) |
315 ¥ (type == null)
retum null ;
¥ (type.equals(NAT) || type.equals(BYTE)) // compare against recognised basic types
retum NATURALS;
320 ¥ (type.equals(INT) || type.equals({INTEGER) |i type.equals{LONG))
retumn INTEGERS;
¥ (type.equals(REAL)!| type.equals(DOUBLE) || type.equals(FLOAT))
refum REALS;
¥ (type.equals(BOOLEAN))

325 fetum BOOL:

classes

321

Jhuilder - Pilename = D: /Workyard/Testbed/sro/fod/CDTranslatos . java

Printed on June 14, 2001 at 2:39 M by Sargis Dascals Page 6 of 6
¥ (type.equals(VOID))
retum VOID; // compare with the formal
¥ (2cls.getCParams() !'= mull) // parameters of the class, if any
¥ ((2cls.getCParams()) .existsId(type})
330 etum type;
¥ (cd.existsUMLRegClass({type)) // compare with existing class types
retum type;
¥ (zspec.getGivenSets() != null) // compare with existing given sets
¥ ((2spec.getGivenSets(}).existsId{type. toUpperCase()))
335 retun type.toUpperCase(!;
Zspec.appendGivenSet(type.toUpperCase()) ; // if nothing found, create a given set

et type.toUpperCase();

340 /** Determines the type of a UML class */
private sString getCType(UMLClass cls) |
¥ (cls instanceof UMLParaBindClass)
¥ ((((UMLParaBindClass) cls).getCType(}) -equals(PARA))
fetUmMm PARA;
345 ealse
returm BIND;
clse
retum REG;

350
/** Helper operation that capitalises the first letter of a string */
private sString upper(String text) {
String first = text.substring(0,1);
fetuMm text = first.toUpperCase() + text.substring(l):;
355 i

/** Helper operation that makes lowercase the first letter of a string */
private String lower(String text) {
String first = text.substring(0,1);
360 UM text = first.tolowerCase() + t.ext.substring(l);
]

322

auu- Filensns = D‘W‘nlma— .
uhtuqa-o 26, 2001 at 12:38 S ey .S -uua-n. - ‘Page:l of 2:

// 6. CLASS DIAGRAM

package fcd;

5
mpost java.util.s;
VALl

* Models the UML class diagram provided as input to FCD. Contains both checks for well-formedness
10 * and operations that implement parts of the translation to Z++
*/
public class ClassDiagram implements FCDConstants {

private String name; // Contents of class diagram:
15 privale Collection classes = RewW ArrayList(); // classes
privale Collection relationships = mew AcrrayList(); // and relationships

// Data access operations

20 public vold setName(String name) {
this .name = name;
} .

public string getName() {
25 retwm name;
i
public Collection getRelationships () |
retumn relationships:
}
30 public Collection getClasses() |
fetum classes:;
}

public UMILClass getUMLClass(String clasaName)
35 UMLClass cls = null ;
for (Iterator i = classes.iterator(); i.hasNext(}; Y {
cls = (UMIClass) i.next{):;
¥ ((cls.getName()).equals(className))

.

40 }
retum cls;
1
public UMLClass getUMIClass(i index) {
45 relum (UMIClass) ((ArrayList) classes) .get(index);

public boolesn existsUMLRegClass(String className) |
boolsan found = faise ;
50 UMLClass cls = null ;
for (Iterator i = classes.iterator(); i.hasNext();) {(
cls = (UMLClass) i.next();
¥ (!(cls instanceof UMLParaBindClass) && ((cls.getName()) .equals(className))) |
found = true ;
SS break ;
}
|
retum found:
}
60
// Utilities needed by the parser for populating the class diagram with components

public UMLClass createClass() {
UMIClass cls = hew UMIClass():
65 classes.add(cls);

323

Brinted en - Juse 14, 2001 at -12:58. ‘!w Sassals

. Puge: 2 ef:2"

70

75

80

8s

90

95

retum cls;
}

public UMLParaBindClass createUMLParaBindClass{) |
UMLParaBindClass cls = AW UMLParaBindClass();
classes.add(cls);
tum cls;

}

public Relationship createRelationship{) {
Relationship rel = mew Relationship();
relationships.add(rel);
et rel;

i

/** Prints contents of class diagram */
public vold printClassDiagram{) (
Logger.log("CD title = ® + pame);
fof (Iterator i = classes.iterator(); i.hasNext():) |
UMIClass cls = (UMIClass) i.next():
cls.printUMLClass();

i
for (Iterator i = relationships.iterator(); i.hasNext();) {

Relationship rel = (Relationship) i.next();
rel.printRelationship();

324

TP P o ey ey Y gy ey
Bristed eu Jume 34, 2001 at 1:00 .8 My Sergts Deesals

_Puge 1.of 2

// 7. UMLClass
package fcd;

S mpost java.util.+;

/** Models reqular UMIL classes; superclass of UMLParaBind class */
public cless UMLClass implements FCDConstants(
protected String name;

protected Collection attributes = new ArrayList():;
protected Collection operations = new ArrayList();

10

// Data access methods
15
public wvoild setName(String name) {
this .pame = name;
}

20 public String getName() |
elurn name;
}

public Collection getAttributes() {
25 return attributes;
}

public Collection getOperations() {
retun operations;
30 i

// Utility methods needed by the parser

public UMLAttribute createAttribute() |
3S UMLAttribute att =~ MW UMLAttribute();
attributes.add{att):
rebm att;
}

40 public UMlLOperation createOperation() {
UMLOperation op = New UMLOperation();
operations.add(op);
retum op;
i
45
/** Verifies names of attributes within the class */
public boolean checkAttributeNamesUnique(} {
boolesn ret - true ;
Set s = NAW TreeSet():
S0 for (Iterator i ~ attributes.iterator(); i.hasNext();) {
UMLAttribute att = (UMLAttribute) i.next():
String ungq = att.getName();
¥ (!s.add(unqg)) {
Logger.log(®CD Syntax Error: Duplicate attribute name detected: "+ unqg +
S5 ® for class " + getName()):
ret = falee ;

i
fof (Iterator i = operations.iterator{); i.hasNext(); } |
60 UMLOperation op = (UMLOperation) i.next(};
String unq = op.getName():;
¥ (is.add(urq)) {

Logger.log("CD Syntax Error: Duplicate attribute/operation name detected: ung +

" for class " + getName());
65 ret = false ;

325

Wuilisr -~ Fllasine = D:/Ackyesd/Testhed/soo/ Sol/MEClass. Juve
Pxinted en June 14, 2001 at 1:00 W 2y a.-!a:a-—n

Puge 2 of 2

]
}
rebum ret;
]
70 /** Verifies names of operations within the class */
public boolean checkOperationNamesUnique()
booclesn ret - true ;
Set s ~ NAW TreeSet():
for (Iterator i = operations.iterator(); i.hasNext();) {
15 UMlOperation op = (UMLOperation) i.next():
String unqg = op.getName();
¥ (!s.add{unq)) {
Logger.log(®CD Syntax Error: Duplicate operation name detected: "+ unq +
® for class " + getName()):
680 ret = false ;

}
for (Iterator i = attributes.iterator(}; i.hasNext();) {
UMLAttribute att = (UMLAttribute) i.next();
as String ung = att.getName();
¥ (!s.add(unq)) |

Logger.log("CD Syntax Error: Duplicate operation/attribute name detected: ® ung +

® for class " + getName());
ret = false ;
90 }
]
retum ret;
}

9s /** Verifies names of operation parameters */
public boolesn checkOpParamNamesUnique() {
boolean ret = true ;
for (Iterator i = operationms.jiterator(); i.hasNext();) |
UMLOperaticn cp = (UMLOperation} i.next():;
100 ¥ (!op.checkOpParamNamesUnique(name))
ret - false ;
}
retum ret;
}
105
/** Prints contents of the class */
public wvoid printUMIClass() |
Logger.log("UMILClass name = " + name);
for (Iterator i = attributes.iterator(); i.hasNext();) {
110 UMLAttribute att = (UMLAttribute) i.next();
att.printUMLAttribute();
)
for (Iterator i = operations.iterator(); i.hasNext();) {
UMLOperation op = (UMLOperation) i.pext();
115 op.printOperation();
}
Logger.separator() ;

326

ﬂuﬂ‘- Tileneme = n-wwm.”

Printed s Jume 14, Mltl-!‘-hmm g -Tage L of 2

// 8. UMLParaBind .
peckage fcd:
mport java.util.*;

/** Models UML parameterised and binding classes */
public class UMLParaBindClass extends UWMIClass(

10
private Collection classParameters = N@W ArrayList();
prftvate sString reducedName; // T[params) is the name of the class
// and T is its reduced pame
15 private sString ctype: // distinction para/bind specified here
// Data access methods
public String getName() {
20 et name;
}
public String getReducedName{) |
retum reducedName;
25 }
public vold setCType(String ctype) |
this .ctype = ctype:
}
30
public string getCType() {
fetum ctype:;
}
35 public Collection getClassParameters() {

felurn classParameters:
}

public vold setNameAndParameters(String name) {
40 this .name = name;
reducedName = name.substring(0, name.indexOf(°'['));
assembleParameters{);
}

45 /** Assemble the parameters of the class for external representation */
privale wold assembleParameters() |
String param = mll ;

String params = name.substring(name.indexOf(’[') + 1, name.indexOf(']'));
while (true) |
50 ¥ (params.indexOf(',") == -1) |{

param = params;
classParameters.add(param) ;
break ;
| olse {
55 param = params.substring(0, params.indexOf(*,')):
params = params.substring(params.indexOf(®, *}+1);
classParameters.add(param) ;

60 }

/** Prints contents of the class */
public vold printUMIClass() {
Logger.log(®"Class reduced name = ® + reducedName + * type = ® + ctype):
65 Logger.logLine("Class parameters =" ;

327

‘ Tuilder m—--n.wwwa—
Pitnted en June 14,2001 at : — :

age 2. of 2

for (Iterator i = classParameters.iterator(); i.hasNext();) {
Logger.logLine(® ® + (String) i.next());
}

Logger.log(®"®) ;
70 SUPper .printUMIClass() ;

— il = DA oy oy — —
Fristed eu Jume 34,.2001 at 1:11 B hy Sexpis Dusssla

10

15

20

25

30

35

40

45

50

55

60

65

// 9. UMLAttribute

peckage fcd:

/* Models act:ibute‘s of classes from the UML space */
public ciass UMIAttribute |

String name;
String type;
String visType;
String initvalue;
String property;

i

/ Data access methods

~

public vold setName(String name) {
this .name = name;
i

public String getName() {
etum name;

public wvold setType(String type) {
¥ (!type.equals(®null®))
this .type = type;

public sString getType() |
tum type;

public vold setVisType(String visType) |
this .visType = visType:;
i

public String getVisType() {
retsn visType;
}

public vold setProperty(String propertyl (
this .property = property;
}

public String getProperty() {
fetum property:;
1

public vold setlInitvValue(String initvValue) {
N (!initValue.equals(®null®))
this .initvalue = initValue;
i

public sString getInitValue() {
el initvalue;
}

/** prints contents of attribute */
public vold printUMLAttribute() {
StringBuffer buf - REW StringBuffer(“"Attribute name:
¥ (type != mull) |
buf.append(*\n type: B
buf.append(type)

// attribute structure

® + name):

329

a-.u,uu-cx-untJ_n&-m-

Tuge-2 .of 2°

70

75

buf.append(®"\n visType: %;
buf.append(visType) ;
buf.append(®"\n property: % ;

buf.append{property};
¥ (initValue != null) {
buf.append(*®\n initvalue: %;
buf.append(initvalue);
}
String out = buf.toString(}:
Logger.log(out):

330

Toiider - Filemams = - ek resa e oul ecal Cok et o S
-Brinted em Jums 14, 2002 at 1:20 m!mm

Suge 1.0f 2

// 10. UMLOperation
package fcd:
mport java.util.=;

/** Models operation of classes from the UML space */

public ciass UMLOperation {
10
String name; // operation structure
String visType;
String retType;
String property:;
Collection parameters = NOW ArrayList();

i

15
// Data access methods

public wvoid setName(String name) {
20 this .name = name;
}

public String getName() {
retUMm name;
25

public wvold setVisType(String visType) {
this .visType = visType:

30
public String getVisType()
fetum visType;

35 public vold setRetType(String retType) |
¥ (!retType.equals(®null®))
this .retType = retType:
}

40 public String getRetType() {
etum retType:
}

public vold setProperty(String property) |
45 this .property = property:
}

public string getProperty() {
fetumn property;

50]
public Collection getParameters() {
retum parameters;
}
S5
// Utility method needed during parsing
public Parameter createParameter() {
Parameter param = MW Parameter();
60 parameters.add(param);

e param;
}

/** Verifies that names of operation parameters are unique */
65 public boolesn checkOpParamNamesUnique(String className) (

331

Bxiated en June 14, 2001 &t'1:20 WM Ny Sevgts Dussaln

Page 2.0 2

boolesan ret - true ;
Set s = maw TreeSet();

for (Iterator i = parameters.iterator():; i.hasNext();) {
70 Parameter att = (Parameter) i.next();
String unq = att.getName():
¥ (!s.add(unq)) {
Logger.log(®"CD Syntax Error: Duplicate parameter name detected: "+ ung +
® for operation: ™+ name + ® in class ®* + className);
75 ret -~ false ;
}
}
retum ret;
}
80
/** Prints contents of cperation */
public wold printOperation() {
StringBuffer buf = MW StringBuffer(®Operation name: " + name);

buf.append(”\n visType: %
85 buf.append(visType) ;
N (retType != nll) {
buf.append(”\n retType: %;

buf.append(retType) ;
}
90 buf.append(*\n property: %;
buf.append(property) ;
String out = buf.toString();
Logger. log(out) ;

9S for (Iterator i = parmte:s.itezatdr() ; i.hasNext();) i

Parameter param = (Parameter) i.next():
param.printParameter();

100 }

332

Jiuildar -~ Pilemmme = D:/Vochkyard/Testhed/sro/fod/AEIarmmeter . Save
Printed o Jume 14, 20931 at 1:22 5 by Secgis Dascals

fage 1 of 1

// 11. UMLParameter

package fcd;
public cisss UMLParameter |

private String name:
private String type;
10 private String dir;

5

// Data access methods

public vold setName(String name) |
15 this .name = name;
i

public sString getName() |
el name;
20 i

public vold setType(String type) !
this .type = type;
}
25
public sString getType() |
tum type;
}

30 public vold setDir(String dir)
this .dir = gir;
]

publlc String getDir() {
35 retum dir;
I

/** Prints coantents of parameter */
public vold printParameter() |
40 StringBuffer buf = MW StringBuffer(®Parameter name: ® + name) ;
buf.append(®\n type: %
buf.append(type) ;
buf.append(™\n dir: %,
buf.append(dir) ;
45 String out = buf.toString():
Logger. log(out) ;

333

JBuildsx -~ Pilemame = D:/Morkyard/Testbed/sro/fod/Ralatiemshiy. java
Printed on June 14, 2001 at 1:32 I by Sexyis Dascalu

Page 1 of 4

10

15

20

30

40

45

50

60

€65

// 12. Relationship

package fcd:

/** Models binarcy relationship between classes */

public cisss Relationship implements FCDConstants {

private String name;
private RelationshipEnd endl:
prtvite RelationshipEnd end2;

// Data access methods

public vold setName(String name) |
¥ (!name.equals(®null®))
this .name = name:
}

public String getName(} |
retum name;
i

public vold setiEndl(RelationshipEnd end) |
this .endl = end;
|

public RelationshipEnd getEndl() i
turmn endl;
}

public void setEnd2(RelationshipEnd end) |
this .end2 = end:
]

public RelationshipEnd getEnd2() |
tum end2;

}

public sString getWholeName() {
¥ (isAggregation{)) |
¥ ((endi.getXind()) .equals{AGGREG))
retum endi.getClassName();
eise
retum end2.getClassName():

]
retum mall ;
}

public string getPartName(; |
¥ (isAggregation{)) |
¥ ((endl.getKind()) .equals(AGGREG))
retum end2.getClassName();
else
retum endl.getClassName();
l
retum null ;

/** Determines the kind of the relationship */
public String getRelationshipKind() |
¥ (isAssociation())
retumm ASSOCIATION:
else W (isAggregation()!

Juilder - Pileasme = D:/Woxkyard/Testbed/sro/fod/Ralaticaship. jawe
Frinted o Jume 14, 2001 at 1:33 X by Sexyin Dascals

reburn AGGREGATION;
else W (isComposition())
retum COMPOSITION:
eloe ¥ (isGeneralisation(})
70 etum GENERALISATION;
elise
retuwm INSTANTIATION;

75 /** Checks if two given classes are the ones involved in the reiationship */
public boolean hasClassEnds(String classNameA, String classNameB! |
etwn ((endl.getClassName()) .equals(classNameA) &é
(end2.getClassName()) .equals{classNameB)) |I!
((end2.getClassName(}) .equals(classNameA) &&
80 (endl.getClassName()) .equals{classNameB)) ;

/** Determines the multiplicity of the whole end of composition (one or many) */
public boolean whatWholeMultiplicity() |
8s # ((endl.getKind()).equals(AGGREG)}
retum (endl.getMultiplicity()).whatMultiplicity():
ecloe
retum (end2.getMultiplicity()).whatMultiplicity();

50
/** Determines the multiplicity of an aggregation end */
public boolean whatPartMultiplicity() {
¥ ((endl.getKind()) .equals(AGGREG))
returm (end2.getMultiplicity(}) .whatMultiplicity():
9s olse
retum (endl.getMultiplicity()).whatMultiplicity();

// Operations to determine if the relationship is of a given kind */
100
public Dboolean isAssociation()!
retum (endl.getKind()).equals(ASSOC) && (end2.getKind()) .equals(ASSQC) ;
}

108 public boolean isAggregation()t
fetum ((endl.getKind()).equals(AGGREG) &é (end2.getKind()) .equals(NONE)) 1]
({endl.getKind()) .equals(NONE) && (end2.getKind()).equals(AGGREG));
1

110 public boolesn isComposition()
retumn ((endl.getKind()) .equals(COMP) &é (endZ.getKind()) .equals(NONE))} (|
((endl.getKind()).equals(NONE) && (end2.getKind()).equals(COMP));
t

1158 public boolean isInstantiation()|
retum ((endl.getKind()) .equals(GENERIC) && (end2.getKind{)) .equals(NONE))} I!
((endl.getKind()) .equals(NONE) ¢& (end2.getKind()).equals(GENERIC));
}

120 public boolesn isGeneralisation()|
retum ((endl.getKind()).equals(SUPER) &é (end2.getKind()!} .equals(NONE)) 11|
((endl.getKind()).equals{NONE) &¢& (end2.getKind())}.equals(SUPER});

125 /** Determines if the relationship is of a given kind */
public boolesn isRelationshipKind({String endKind) {
retum ((endl.getKind()).equals{endKind) && (end2.getKind()) .equals(NONE}) |
((endl.getKind(}) .equals(NONE} && (end2.getKind(}) .equals(endKind)) ;

130

335

JBuilder - Pilemame = D:/Workyard/Testbed/sro/fod/Belaticaship. jave
m-mu,nu-ﬁx:n-!mm Page 3 of 4

/** Verifies that the two ends of the relationship are correctly formed */

public boolesn checkEnds() {
boolean ret - true ;

135 ¥ (((endl.getKind()).equals(ASSOC) && ! (end2.getKind()) .equals(ASSOC)) 1I! // associaticn
{!{endl.getKind()).equals(ASSOC) && (end2.getKind(}) .equals{ASSOC)}) |
Logger.log{"CD SYNTAX ERROR: Incorrect association ends ("+
endl.getKind() + *, ® - end2.getKind() + ")™);

ret - false ;
140 I
¥ (((endl.getKind()).equals(AGGREG) && ! (end2.getKind()) .equals(NONE)) || // aggregation
(!({endl.getKind()).equals(NONE) && (end2.getKind()] .equals(AGGREG)}}) |
Logger.log("CD SYNTAX ERROR: Incorrect aggregation ends (™+
145 endl.getKind() + ", " + end2.getKind() + ™} ™) ;
ret = false :
I
(((endl.getKind(}).equals(COMP) & ! {end2.getKind()) .equals(NONE)} || // compositiorn
150 (! (endl.getKind()).equals(NONE) && (end2.getKind()).equals{COMP))) |
Logger.log(®"CD SYNTAX ERROR: Incorrect composition ends ("+
endl.getKind() + ", " + end2.getKind(} + ")"):
ret =~ false ;
}
155
® (((endl.getKind(}) -equals(SUPER) && ! (end2.getKind()).equals(NONE)} ! // generalisation
(! (endl.getKind()).equals(NONE) && (end2.getKind{()) .equals(SUPER))) |
Logger.log(®CD SYNTAX ERROR: Incorrect generalisation ends ("+
endl.getKind{() + ®, * + end2.getKind(} + ")™);
160 ret = false ;
I
¥ (((endl.getKind()) -equals(GENERIC) && !(end2.getKind()).equals(NONE)) i{| // instantiation
(! (endl.getKind()).equals(NONE) && (end2.getKind()) -equals(GENERIC))) ¢
165 Logger.log(®CD SYNTAX ERROR: Incorrect instantiation ends ("+
endl.getKind() + ", ® + end2.getKind(}) + ")*);
ret = false ;
i
170 retum rec;
i
/** Verifies that a name is given to an association */
public boolean checkAssociationHasName() |{
175 boolean ret = true ;
¥ (((endl.getKind()).equals(ASSOC)) && (name == null 1)
Logger.log(®CD SYNTAX ERROR: Association without name detected(;
ret - false :
1
180
etum ret:

/** Verifies that the whole part of composition has multiplicity one */
185 public boolean checkCompositionMultOne() |
boolean ret = true ;
¥ (((endl.getKind()).equals(COMP)) && ! (endl.getMultiplicity().isMultiplicityOne())
Il ((end2.getKind()).equals{COMP}) && ! (end2.getMultiplicity() .isMultiplicityOne())) |

190 Logger.log(™CD SYNTAX ERROR: Multiplicity of whole part of composition not 1%
ret = false

et ret;

336

Juildar - Pilemsme = D:/Woxkysrd/Testhed/sro/fod/Belaticaship. jave
Printed o June 14, 2001 at 1:33 M by Sargin Dascals

Poge 4 of 4

/** Verifies that both ends of the relationship have multiplicity one */
public boolesn checkRelationshipMultOne(String eniKind, String relKind) |
boolesan ret = true ;

200
[
{{{(endl.getKind(}}.equals(endKind)) 1| ((end2.getKind()).equals{endKind))
! ((endl.getMultiplicity().isMultiplicityOne()) && (end2.getMultiplicity() .:'.sMult:iplicityOne(q
)
M
208
Logger.log(®CD SYNTAX ERROR: Multiplicity of % relKind + * end not i™;
ret = false :
i
210 fetum ret;

/** Prints contents of relationship */
public vold printRelationship() {
218 Logger.sepacator():
¥ (name != null }

Logger.log{"Relationship name = ® + name);
Logger.log(®Relationship endl = % ;
endl.printRelationshipEnd();

220 Logger.log(®Relationship end2 = %;
end2.printRelationshipEnd{);

}

&é

337

JBuilder - Filesame = D:/Workyard/Testhed/sro/fod/Belaticoshipiad. jave
Printed on June 14, 2001 at 1:37 B by Sargis Dascals

Page 1 of 1

// 13. RelationshipEnd

peckage fcd:
mport java.util.-;

/** Models the ends of the relationships */
public ciass RelationshipEnd {
10
private String kind;
private sString className;
private Multiplicity multiplicity;

15 // Data access methods

public void setKind(String kind) i
this .kind = kind;
}
20
public sString getKind() {
retum kind;
}

25 public void setClassName{String className) |
this .className = className;
}

public String getClassName() |
30 etum className;
Tl

public Multiplicity getMultiplicity() |
retum multiplicity;
35 }

/** Utility method needed during parsing */
public Multiplicity createMultiplicity() |
multiplicity = mewMultiplicity():
40 rtum multiplicity;

/** Verifies the validity of the end's multiplicity =/
public boolean checkMultiplicity() i

45 fetum multiplicity.isWellFormedMultiplicity():
I

/*+ Prints contents of relationship end +/
public vold printRelationshipEnd{) |
50 StringBuffer buf = New StringBuffer("Relationship end:"™;
buf.append(®\n kind: ®;
buf.append(kind) ;
buf.append(®\n class name: %;
buf.append(className) ;
58 String out = buf.toString{):
Logger.log(out);
multiplicity.printMultiplicity();

60

338

Jiuilder - Pilenams = D:/Wozkyard/Testhed/sxo/fod/Maltiplicity. jave
Priated om Jume 14, 2001 at 1:45 5M by Sergin Dascals Juge 1 of 2

// 14. Multiplicity

package fcc;
5 mport java.util.*;

/** Models the multiplicity constraint attached to a relationship end*/
public class Multiplicity {
private Collection ranges = N@W ArrayList();
16
/** Utility method needed during parsing */
public Range createRange{) {
Range range = N@&W Range();
ranges.add{range;};
15 fetum range:;

/* Determines if the multiplicity is one or many */
public booleen whatMultiplicity()(// false = one, true = many
20 ¥ (isMultiplicityMany(})
retum true ;
eclse
retum false ;

[iv]
w

/** Checks that the multiplicity has the form : [a(l)..b(1), a(2)..b(2;, a(K)..b(K)]
where K > 0, a(i} >= 0, b(0) > 0, a(i) <= b{i}, O <= i <= K,
and b(i) < a(i+l), 0O <= i <= K-1 */
public boolesn isWellFormedMultiplicity(} {
30 boolean ret - true :
i size = ranges.size();
M bsaved = 0;

it i« o0;
35 while (ret ¢ (i < size)) | // check all ranges as long
// as long as no error
M a=0;
i b=0;
40 Range range = (Range) ((ArrayList) ranges) .get(i):;

String begin = range.getBegin():
String end = range.getEnd();

try
45 a = Integer.parselnt(begin); // ai must be numbers
® (a>=0) ¢ // greater or egqual to zerc
¥ (i>0 |
(a <= bsaved)!{ /7 a(i+l) > b(i) ?
Logger.lcg("CD SYNTAX ERROR: Multiplicity interrange improperly formed "+
50 "(end " + bsaved + " anc next begin "+ 3 + "}%);
ret = falge :
i
i
try |
S5 b = Integer.parselnt{end); // B(i) must be numbers except
¥ (b>=1) 4 // for b(K) which may be *
W (bo>=a) /7 a(i) <= b(i) 2
bsaved = b;
i+ // sc far, so good; check next
60 | olne | /7 a(i) > k(i)

Logger.log(®CD SYNTAX ERROR: Multiplicity range improperly formed *+
“(end " + a + " and begin "+ b + ") ");

ret = faise ;

(23]
w

i
| clme | // all b(i) must be > 0

339

Jhutldar - Filemmme = D:/Mozkyard/Testhed/sro/fod/Maltiplicity. sawe
Pristed om Jume 24, 2001 at 8:‘5-”“;.“-

age 2 of 2

70

75

eo

85

90

95

100

i0s

/** Checks if multiplicity is "one®™ -- given as range (1 .. 1)

}

Logger.log(®CD SYNTAX ERROR: End of multiplicity range less *+

®"than 1 (" + b + *)");
ret = false ;

i
| cateh (Exception x} |
¥ (!1((i == 3ize-1) €& (end.equals(®™*™)})) |

end + ®)%);
ret = falee ;
}
P+
1
| oloe {

Logger.log("CD SYNTAX ERROR: Negative number in beginning of multiplicity range ("™

+ begin + ")*);
ret = false ;
}
) cateh (Exception x) |

begin + *}*);
ret = false ;
]

retum rec;

public boolesn isMultiplicityOne()!
retum (ranges.size() == 1) & ((Range) ((ArraylList) ranges)

I

/** Checks if multiplicity is "many® +*/
public boolesn isMultiplicityManyi(){
retum (ranges.size() > 1} || ((Range) {(ArrayList) ranges)

I

/** Prints contents of multiplicity =*/

public vold printMultiplicity() {

Logger.leg("Rangea: " + ranges.size());

fof (Iterator i = ranges.iterator(); i.hasNext(}:;) {

Range range = (Range)} i.next():;
range.printRange(}:

// only b(K) may be "*®
Logger.leg(®CD SYNTAX ERRCR: End of multiplicity range not a number (™+

// a{i) <0

// a(i)

./
/

.get(0); .

.get(0)).

not a number
Logger.log("CD SYNTAX ERROR: Beginning of multiplicity range not a number (™

isOne()

isMany()

340

Juildar ~ Filemams = D:/Norkyard/Testhed/sra/fod/Range . Java

Priated om June 14, 2001 at 1:52 MM by Saxgiu Dascals Page 1 of 1

// 15. Range

package fcd:

/** Models ranges of values; used for expressing multiplicity corstraints */
public class Range
private String begin:
poivate String end:
10
// Data access methods
public vold setBegin(String begin) |
this .begin = begin;

I
15 public String getBegin() f
retwrn begin;
}
public wvold setEnd(String end) |
this .end = end:
20 }
public String getEnd() {
retumn end;
1

25 /** Checks if range is "one®, i.e., {1 .. 1) +/
public boolean isoOne() |
boolean ret = true ;
y ¢
M b =~ Integer.parselnt(begin);
30 M e = Integer.parselat(end):
¥ (b!=111et=1)
ret = false ;
| cateh (Exception e} |
ret = false ;
35]
et ret;
I
/** Checks if range is ®"z2ero or one®, i.e. (0..1) or (1..1) +/
public boolean isZeroOrOne() |
40 retwm ! isMany():
l

/** Checks if range indicates a "many” multiplicity; i.e., neither (0 .. 1) nor (1 .. 1)
public boolesn isMany() ¢
45 boolean rot = true ;
oy ¢
M b = Integer.parselnt(begin);
i e - Integer.parselnt(end);
H ((b==01!1b==1) §& (e == 1})
50 ret =~ false :
} cateh (Exception e) |
ret = false ;

i
retum ret:;
55 I
/** Prints contents of range */
public vold printRange() |
StringBuffer buf = mew StringBuffer(®Range begin = %;
buf.append(begin);
60 buf.append(®™ .. end = % ;
buf.append(end) ;
String ocut = buf.toString():
Logger.log(out);

65 |}

*/

341

Jiuildex - Fileasms = D:/Mozkyurd/Testhed/sro/fod/LRPipes. Jave

Frinted o Jume 14, 2001 at 1:02 B by Serygin Dascalw fage L of 2

// 16. ZPPSpec
peckage fcd:
mport java.util.e;

/** Models a Z++ specification */
public ciass ZEPSpec implements FCDConstants |
String name;
IdList givenSets; // given sets
StatementList globalDeclarations; // global declarations
Collection clagses; /7 all other classes
Statementlist hidingOps:; // hiding operations cn
15 // classes

public zPPspec() |

this (nult ; ;

b

10

i

20 publlic ZPPSpec(String rame} |
this .name = name;
appendClass(SYSTEM) ;

25 // Data access methods

public void setName(String name) {
this .name = name:
]
30 public String getName() i
retum name;

publlc IdList getGivenSets() |
3s etum givenSets;
1

publc Collection getClasses() {
retum classes;
40 }

public ZPPClass getClass(String className) {
ZPPClass zcls - null ;
for (Iterator i = classes.iterator():; i.hasNext{();)} i
45 Scls = (ZPPClass) i.next():
¥ ((zcls.getName()) .equals(className))

50 }
// Append operations for the parts of the specification used in automated formalisation

public zPPClass appendClass(String name) |
55 ZPPClass cls = mew ZPPClass{name);
¥ (classes == null)
classes -~ mew ArrayList();
classes.add(cls);
retum cls;
60 1

public vokd appendGivenSet(String givenSet) |
¥ (givensSets =~ null)
givenSets = new IdList{):
€S givenSets.append(givenSet) ;

342

Jhuildar - Fileamme = D:/Workyurd/Testhed/sro/fod/SPPpec. java
Printed cm Jume 14, 2001 at 1:02 M by Sexrgin Duscals

Page 2 of 2

public wvold appendHidingOps(Statement stmt) |
(hidingOps == null)
70 hidingOps = fNeW StatementlList();
hidingOps.append({stmt);

/** Prints contents of ZPP specification */
75 public vold printZPPSpecification() !
(givenSets != null)
Logger.log(®[" + givenSets.listIds({} + *]™);
for (Iterator i = classes.iterator(); i.hasNext{); } |
ZpPClass cls = (ZPPClass) i.next(}:
80 cls.printZPPClass();
}
Logger.log({™®)
¥ (hidingoOps '= null) |
ArraylList statements = hidingOps.getStatements();
85 it size = statements.size();
for (Mt i - 0; i < size; i++) |
Statement stmt = (Statement) statements.get({i);
Logger.log(stmt.listLines(0)):

// given sets

// classes

// hiding operations
30 }

343

JBuilder - Filemsms = D:/Voxkyard/Testbed/sro/fod/SPEClass. jav