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Abstract

Remote sensing studies and climate research require precise knowledge of the single-
scattering properties of nonspherical particles. In this study. a three dimensional
finite-difference time domain (FDTD) program with a perfectly matched layer (PML)
absorbing boundary condition is developed to provide a numerical solution for light
scattering by nonspherical dielectric particles. The FDTD model is used to study
the single-scattering properties of cirrus ice crystals in the infrared and to investigate
the scattering patterns by particles with various morphologies. The FDTD scheme is
extended to simulate light scattering and absorption by particles with large complex
refractive index. The FDTD scheme is also extended to be applied to simulate light
propagation in dielectric media with particles embedded.

The anomalous diffraction theory (ADT) is considered to be suitable for the cal-
culation of the extinction and absorption efficiencies for nonspherical particles with
small refractive indices. In this study. an analytical ADT model for light scattering by
arbitrarily oriented hexagonal and cylindrical particles is developed. The differences
between the analytical ADT model and the simplified ADT model, which is often
used in climate and remote sensing studies, are also examined.

Using the FDTD model, we examine a number of commonly used approximate
methods including Mie theory, the ADT, and the geometrical optics method (GOM),
for the calculation of the scattering and absorption properties of hexagonal ice crystals

in cirrus clouds. Some problems in the retrieval of cirrus particle size are addressed.
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Chapter 1
Introduction

Cirrus clouds. primarily present in the upper troposphere and lower stratosphere. are
globally distributed and are composed almost exclusively of nonspherical ice crystals
(Liou 1986; Starr 1987; Miloshevich et al. 1992). Remote sensing studies and climate
research require precise knowledge of the single-scattering properties of nonspherical
particles including cirrus ice crystals, snowflakes and aerosols. due to their effect on
radiative transfer in the atmosphere system (Stephens et al. 1990; Takano et al.
1992; Fu et al. 1999). Light scattering and absorption processes depend not only
on the incident wavelength and the refractive index of the particle. but also on the
particle size, shape and orientation. Because for a particle with an arbitrary shape,
an appropriate coordinate system for the boundary condition at the particle surface
cannot be imposed. it appears unlikely to produce a universally effective exact solution
for the light scattering and absorption processes of these natural particles. To date,
except for some simple particle shapes, such as spheres (Mie 1908), double sphere
systems (Videen et al. 1996), spheroids (Asano and Yamamoto 1975). infinite circular
cylinders (Rayleigh 1918; Wait 1955), Chebyshev particles (Mugnai and Wiscombe
1986). finite circular cylinders (Mishchenko et al. 1996a) and cubes (Laitinen and
Lumme 1998), theoretical scattering treatments are not available for the scattering
and absorption by nonspherical particles. Non-analytical solutions such as Rayleigh
theory (Rayleigh 1871) can be applied when the particle size parameter is much



smaller than one. When the size parameter is larger than ~40. the geometric optics
method (GOM) (Takano and Liou 1989; Yang and Liou 1996b; Macke et al. 1996) can
be used for nonspherical particles. However, in the resonance region (Barber and Yeh
1975), Rayleigh theory and the GOM are not applicable because of the assumptions
pertaining to each technique.

Since there are significant observational and computational difficulties in deter-
mining the radiative properties of nonspherical ice crystals in cirrus clouds, it is
common practice to approximate nonspherical ice crystals by spherical particles (e.g.,
Stephens et al. 1990; Sun and Shine 1995), spheroids (Asano and Yamamoto 1975) or
long circular cylinders (Liou 1972; Stephens 1980), so that the exact theories can be
used. Unfortunately. none of these approaches accounts for the hexagonal structure
of ice crystals with finite length.

Additionally, it was recently suggested that the anomalous diffraction theory
(ADT) (van de Hulst 1957) would be an appropriate method to calculate the sin-
gle scattering properties of nonspherical particles (Mitchell 1995). The ADT is an
approximate method, which is often used to calculate the extinction and absorption
coefficients of water droplets and ice crystals (e.g., Ackerman and Stephens 1987;
Mitchell and Arnott 1994). The ADT can be applied analytically to nonspherical
particles of various shapes. However, by comparing results from the ADT with those
from the discrete dipole approximation, Maslowska et al. (1994) concluded that the
ADT cannot be used for light scattering and absorption by nonspherical particles
without verification with rigorous methods. Furthermore, due to the difficulty in
obtaining analytical or numerical solutions for randomly oriented particles using the
original notation of the ADT, a randomly oriented particle with a volume of V and
a projected area of P is usually converted to a cylinder with the same volume but
a thickness of V//P. The light extinction and absorption cross-sections of the ran-
domly oriented particle are then approximated using the ADT to the cylinder with
the incident radiation normal to the base of the cylinder (Bryant and Latimer 1969).
This simplified ADT is widely used (Mitchell and Arnott 1994; Arnott et al. 1994).



However. like the ADT itself, the accuracy of this simplification needs to be checked.

To get accurate solutions for the radiative properties of nonspherical particles
in the resonance region, numerous promising approaches, including the method of
moments (Harrington 1968; Morgan, 1981), the discrete-dipole approximation (DDA)
(Purcell and Pennypacker 1973; Singham and Bohren 1987; Draine 1988; Flatau
et al. 1990; Draine and Flatau 1994; Draine 1998), the digitized Green-function
technique (Goedecke and O’'Brien 1988), the integral equation technique (Chen and
Islander 1990), the T-matrix or extended boundary condition method (Waterman
1971; Barber and Hill 1990; Mishchenko et al. 1996b). and the multiple-scattering
approach (Chiappetta 1980), have been developed. These approaches are usually
applicable to size parameters less than approximately 15 in practice and/or to specific
shapes with smooth and continuous surfaces. Among these light scattering models,
the most frequently used methods are the DDA and the T-matrix approach.

The DDA was first developed by Purcell and Pennypacker (1973) for scattering
and absorption calculations involving dielectric grains of cubic shape whose sizes are
comparable to or smaller than the incident wavelength. It is a Hexible technique for
calculating the light scattering and absorption by particles with arbitrary shapes and
composition. The DDA consists of approximating the actual target by an array of
the dipoles. Each of the dipoles is subject to an electric field which is the sum of
the incident wave and the electric fields due to all of the other dipoles. Through the
solution of the electric field at each dipole position, the scattering and absorption
properties of the target can be obtained. Because the DDA replaces the solid particle
with an array of point dipoles occupying positions on a cubic lattice, and the lattice
spacing must be small compared to the wavelength of the incident light in the particle,
the DDA requires large computer storage and CPU time. The DDA works well for
materials with {m — 1| < 3 and target dimension D < 5\. where ) is the wavelength
in the surrounding medium (Draine 1998).

The T-matrix approach (Waterman 1971) is one of the most powerful exact tech-

niques for computing light scattering by nonspherical particles based on rigorously



solving Maxwell’s equations. Standard T-matrix computations become ill-conditioned
for particles with a small or zero imaginary part of the refractive index because of
the strong effect of the ripple structure (Wielaard et al. 1997). Using a matrix
inversion scheme based on a special lower triangular-upper triangular factorization,
rather than on the standard Gaussian elimination, Wielaard et al. (1997) improved
numerical stability of T-matrix computations for nonabsorbing and weakly absorb-
ing nonspherical particles. As a result, the maximum convergent size parameter for
particles with small or zero absorption can increase by a factor of several, and can
exceed 100. However, although the method is claimed to be, potentially, applicable
to any particle shapes, most practical implementations of the technique pertain to
bodies of revolution such as spheroids and circular cylinders.

To compute the single-scattering properties for arbitrarily-shaped particles such
as ice crystals in cirrus clouds, we develop a numerical scheme in this study by using
the finite-difference time domain (FDTD) technique. The finite-difference time do-
main (FDTD) formulation (Yee 1966) for electromagnetic field problems is a direct
numerical solution of Maxwell time-dependent curl equations. and is an elegant and
robust tool for solving light-scattering problems. The scheme treats the scattering
and absorption of the particle as an initial value problem. and it can be applied to
particles of arbitrary shapes and composition. Pioneered by the initial work of Yee
(1966) and many other electrical engineers, the FDTD method has been used exten-
sively to solve various kinds of electromagnetic problems. With the development of
a number of highly absorbing boundary conditions from the late 1970’s to 1990’s,
the usefulness of the FDTD method in dealing with the scattering by an arbitrarily
shaped or inhomogeneous object has been widely recognized. Yang and Liou (1995;
1996a) employed the FDTD method for light scattering by small ice crystals. A
transmitting boundary condition was used. They showed that their FDTD model
can work well for size parameters smaller than 10. For larger size parameters, the
errors become significant.

The stability and accuracy of the FDTD method are determined by many factors,



such as the boundary conditions, cell size, scatterer size, etc. Improving the accuracy
and stability of the FDTD program and applying the FDTD technique to different
physical problems have been active pursuits over the past 15 years. In this study, our
major effort concentrates on developing an accurate FDTD model for the calculation
of light scattering and absorption by dielectric particles of arbitrary shapes. The
FDTD for light scattering and absorption by dielectric particles with large complex
refractive indices is also studied. Moreover, because of the practical importance in
various fields of application and engineering, the FDTD model is further extended to
simulate light propagation in dielectric media with particles or voids embedded. In
Chapter 2, a three-dimensional FDTD program is developed, which is accurate for
dielectric particles with size parameters as large as 40. In Chapter 3, appropriate
treatments of the material properties and electromagnetic fields associated with the
particle boundaries are presented so that the FDTD scheme can provide reliable so-
lution for light scattering and absorption by particles with a wide range of refractive
indices. In Chapter 4, the extension of the FDTD model for light propagation in
dielectric media with particles or voids embedded is given. Additionally, to examine
the applicability of the ADT in the study of the cirrus radiation effect and the remote
sensing of the cirrus particle sizes, we develop the analytical ADT for finite hexagonal
ice crystals and circularly cylindrical particles. The results from the original ADT
and the simplified ADT are also compared. These are documented in Chapter 5. The
applications of the FDTD model in the examination of the accuracy of the approx-
imate light scattering models and in the retrieval of the microphysical properties of

cirrus clouds are reported in Chapter 6. Conclusions are given in Chapter 7.



Chapter 2

Finite-difference time domain
solution of light scattering by
dielectric particles with a perfectly
matched layer absorbing boundary

condition

2.1 Introduction

Pioneered by the work of Yee (1966) and many other electrical engineers. the finite-
difference time domain (FDTD) solutions of Maxwell’s equations have been exten-
sively applied to electromagnetic problems such as antenna design, radar cross sec-
tion computation. waveguide analysis and some other open-structure problems. The
FDTD technique is a numerical solution to Maxwell’s equations. and is formulated
by replacing temporal and spatial derivatives in Maxwell’s equations with their finite-

difference correspondences. In this method, the electric field grid. which is offset both



spatially and temporally from the magnetic field grid, is used to obtain update equa-
tions that yield the present fields throughout the computational domain in terms of
the past fields. The update equations are used in a leap-frog scheme to incrementally
march the electromagnetic fields forward in time. This method can be accurately
applied to general electromagnetic structures, including particles of arbitrary shapes
and composition. However, like other numerical approaches, the FDTD method re-
quires large computer storage and large CPU time, even for particles with small size
parameters. Moreover, the stability and accuracy of the FDTD program are deter-
mined by many factors such as the boundary condition. mesh size and scatterer size,
etc. Topics related to improvement of its accuracy, reduction of memory and CPU
time requirement. and applications to larger objects, have been actively pursued over
the past 15 years (Holland 1994; Xu et al. 1997, 1998).

In applications of the FDTD technique to problems in an unbounded space, one of
the key issues is the truncation of the computational domain via artificial boundary
conditions. In the case of studying light scattering by particles of arbitrary shapes, it
is essential to use the most effective and efficient boundary treatment. Yang and Liou
(1996a) employed the FDTD method for light scattering by small nonspherical ice
crystals using a transmitting boundary condition (Liao et al. 1984; Yang and Liou
1998a). They found that the FDTD works well for particles with size parameters
smaller than 10. In this study, we develop a three-dimensional FDTD program to
provide a numerical solution for light scattering by nonspherical dielectric particles.
A newly developed. so-called perfectly matched layer (PML) absorbing boundary
condition (ABC) (Berenger 1994,1996; Katz et al. 1994) is used to truncate the
computational domain. We apply the FDTD program for light scattering by dielectric
particles with size parameters as large as 40 to show its accuracy and efficiency.
In Section 2.2, the FDTD with PML ABC for dielectric scatterers is formulated.
In Section 2.3, the FDTD program is validated using the exact solutions. Some
applications of the present program to nonspherical particles are presented in Section

2.4. The summary and conclusions are given in Section 2.5.



2.2 The finite-difference time domain method with

a perfectly matched layer absorbing boundary

condition

2.2.1 The finite-difference time domain method

The finite-difference time domain (FDTD) formulations of electromagnetic field prob-
lems is a direct numerical solution of Maxwell’s time-dependent curl equations. Con-

sider a source-free medium, where Maxwell’s equations can be written as

yxE=- ‘;—f (2.1a)
vxH= e%% (2.1b)

where E and H are the electric and magnetic fields. respectively: u is the permeability,
and e is the permittivity of the dielectric medium.
Assuming that the time-dependent part of the electromagnetic field is exp(—iwt),

the electric and magnetic fields can be written in the form

E(x,y, z,t) = E(z. v, z)exp(—iwt), (2.2a)
H(z.y, 2 t) = H(z,y. z)exp(—iwt), (2.2b)

where w = kc. k and c are the wavenumber and the speed of the electromagnetic
wave, respectively. in free space.

€ in Eq.(2.1b) is complex for an absorptive medium and can be expressed as

€ = €, + i€;. (2.3a)



Since the refractive index m = ,/eq, and for nonferromagnetic medium g is unity, the
real and imaginary parts of € may be expressed by the real and imaginary parts of m

in the form

2

2
€ =m;—m;, €=2m.m,. (2.3b)

To apply the FDTD method for light scattering by small ice crystals, Yang and
Liou (1996a) introduced a way of transforming Maxwell's equations to a source-
dependent form that governs the scattering process of a dielectric particle so that
complex calculations can be avoided when the scatterer is absorptive. Here, the
equivalent Maxwell's equations for absorptive scatterer are derived without introduc-
ing the effective current as Yang and Liou (1996a) did.

Inserting Eq.(2.2) into Eq.(2.1b) and using Eq.(2.3a). we have

v x H(z,y,z) = w(e — ie.)E(z. y. 2). (2.4)

Multiplying Eq. (2.4) with ezp(—iwt) and using Eqs. (2.2) and (2.3a), we obtain

—

OE(z,y.z.t)

v x H(z,y,2,t) = weE(z,y, 2. ) + €, 5t . (2.5)
Eq.(2.5) can be further simplified to
dlexp(rt)E(z,y, 2. t)] _ exp(Tt) 9 x H(z.y. =.1). (2.6)

ot €

where 7 = we;/¢.. Using the central finite-difference approximation for the temporal

derivatives in Eq. (2.6) over the time interval [nAt, (n + 1)At]. we have

- - At = 1/9
E"Yz.y. z) = exp(—TAL)E™(z, . 2) +exp(—1'At/2)E— v xHV3(z,y, 2), (2.70)
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where At is the time increment, n is an integer denoting the time step. From
Eq.(2.7a). the electric and magnetic fields are evaluated at alternate half-time steps
(Yee 1966).

By discretizing Eq. (2.1a) over the time interval of [(n — 1/2)At, (n + 1/2)At],
which is a half-time step earlier than the time step when the electric field is evaluated,

we have

H‘n+l/2(z,y’ 2) = ﬁ"'l/z(l’, y,2) — .L.:.Lf Vi xE"’"(x, y.z). (2.7b)

Let As = Az = Ay = Az denote the space increment; the explicit finite difference

approximation of Eq. (2.7) can be derived in the following forms:

HY* Y205 +1/2,k +1/2) = HFY2(6, 5+ 1/2,k + 1/2)

At
. 5 I pngs o L
+u(i,j+ 2kt 1/2)A3[E;(z’] +1/2,k+1) = EJ(i.j + 1/2,k)
+E2(i,j,k+1/2) = E>(i,7 + L.k + 1/2)]. (2.8a)

EZ*Yi+1/2,5,k) = exp[—T(i + 1/2, j, k) At]ER (i + 1/2. j, k)+
At
fr(i + 1/27 Jr k)

HIPY2(i4+1/2,j = 1/2,k) + Hy*V2(i+1/2, 5,k — 1/2) = HIY2(i +1/2, §, k + 1/2)).
(2.8b)

exp[—7(i + 1/2. ,k)At/2]

AT+ 172, +1/2,k) -

The positions of the field components are illustrated in Fig. 2.1.

To obtain accurate numerical results, the spatial increment As must be much
smaller than the wavelength within the scatterer and its minimum dimension. To
guarantee the stability of the FDTD computation, the time increment At has to

satisfy the following condition (Taflove and Brodwin 1975)
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Figure 2.1: Positions of the electric and magnetic field components in an elementary
cubic cell of the FDTD lattice.
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1 1 1
cAt < (

At Ay + Az,z)"l/i’ (2.9)

where ¢ is the wave velocity within the scatterer.

2.2.2 Perfectly matched layer absorbing boundary condition

One major difficulty encountered in applying the FDTD method to open-structure
problem is that the domain where the field is computed is unbounded. Since a finite-
difference scheme over an infinite domain is impractical. the extent of the solution
region must be limited by using an artificial absorbing boundary condition (ABC)
(Sullivan 1996). The accuracy and stability of the FDTD program would be sensitive
to the boundary condition used. Early approaches for the boundary condition are
mostly one-way wave equation approximation techniques (Engquist and Majda 1971).
Among those are Mur’s second- and third-order ABC (Mur 1981), outgoing wave
annihilators (Bayliss and Turkel 1980), transmitting boundary conditions (Liao et al.
1984), and the Higdon method (Higdon 1986). A recent development in ABCs was
the perfectly matched layer (PML) absorbing boundary condition (ABC)(Berenger
1994.1996: Katz et al. 1994). In the 2D case (Berenger 1994). it is reported that
reflection coefficients of PML are as low as 1/3000th of those based on standard
second- and third-order analytical ABC. The PML for the 3D works just as well as
in 2D (Katz et al. 1994).

To apply the FDTD method with PML ABC to a three-dimensional light scatter-
ing problem. the original finite difference algorithm developed by Yee (1966) needs to
be modified. Following Berenger (1996) and Katz et al. (1994). the normal FDTD
computational space is surrounded by PML regions as shown in Fig. 2.2, backed up
by perfectly conducting walls. The PML creates a fictitious absorbing layer adjacent
to the outer grid boundary. In the inner volume, the finite-difference equations are
the usual discretizations of Maxwell’s equations. In the PML regions, six Cartesian

components of electric and magnetic vectors are split into twelve (e.g, H is split into
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PML(0Ox,0x*, Gy,Cy*, 0z,02*)
PML(0,0, Gy,Oy*, Oz,0z*)
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\
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Figure 2.2: Computational domain terminated by the PML. The arrangement of the
fictitious electric conductivity (o) and magnetic conductivity (¢*) in the PML walls
is also shown.
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H., and H;., and E; is split into E, and E;:), resulting in 12 modified Maxwell’s

equations such as

O(E.; + Ev)

Lo a:y + o;sz = - 3y . (2.10a)
uoa—gt’—‘ +o0.H,. = M%E’—) (2.10b)
eoagt’” +0,Ery = M’a—;H'”) (2.10¢)
eoagt" +0:E;: = —Q(HJT%—) (2.10d)

where the subscript 0 denotes the vacuum medium. and ¢ and ¢* are the fictitious

electric and magnetic conductivities, respectively, which satisfy the condition

g a

€0 - E
Eq.(2.11) allows the impedance of the fictitious medium equal to that of free space

(2.11)

and thus no reflection occurs when a plane wave propagates across a vacuum-PML
interface.

On the six sides of the PML regions, the absorbing PML layers are matched to
each other by having transverse conductivity equal to zero. As a result, the outgoing
waves from the inner vacuum would propagate into these absorbing layers without
reflection. At the 12 edges, two conductivities equal to zero, but the other four equal
to those of the adjacent side PMLs. Thus, there is also no reflection from the side-
edge interfaces. In the eight corners of the PML. the conductivities are assigned
to those of the adjacent edges; none of the 12 conductivities is zero. Therefore, the
reflection equals zero from all the edge-corner interfaces. The arrangement of fictitious
conductivities in the PML is shown in Fig. 2.2. In theory. only the ideal continuous

PML media can have perfect match without reflections. In the numerical PML, due
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to step-type variations of conductivities between the PML sublayers and the break
of the fields, a certain amount of numerical reflection and dispersion would occur.
In order to reduce this reflection and dispersion, the conductivities should increase
smoothly from a small value on the vacuum-PML interfaces to a large value on the
outer boundaries. Thus, to approximate a continuous media. the number of PML
cells used should be sufficient to approximate a continuous media.

After crossing the PML layer, the wave is reflected by the perfectly conducting
conditions which ends the PML region; and then, after a second crossing, it can come
back into the normal FDTD computational space. So, for a PML layer of thickness

d, an apparent reflection factor is found to be (Berenger 1994)

l’)
R(6) = exp[— 2c0s6

[ otorael, (2.12)

€oC

where 6 is the angle of incident radiation relative to the normal direction of the PML
surface.

Berenger (1994) proposes that the conductivities should increase with depth within
PML as

o(p) = om(E)". (2.13)

where n can be 1, 2 or 3 etc, but not necessarily an integer. In this study, we set n

= 3. From Eqgs. (2.12) and (2.13), the apparent reflection can be expressed as

R(8) = [R(0)]**?, (2.14)

where R(0) is the reflection factor at normal incidence. R(0) is a key user-defined

parameter which can be expressed as

2 ond
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For grazing incidence, 6 is close to 7/2 and then the factor R(8) is close to unity
with any given . So the grazing incidence may cause some numerical reflections.
Therefore. the scatterer and the PML should not be too close so that there will not
be scattered waves impinging on the PML at grazing angles. Furthermore, Eq.(2.15)
suggests that the PML should have a sufficient thickness, or enough number of cells,
to achieve small reflections, which is another important reason why the number of
PML layers needs to be kept at a reasonable level.

The finite-difference formulation of the 12 modified Maxwell’s equations in the
PML is straightforward. For instance, using the notations of the FDTD scheme, E.,
in the PML is computed based on Eq.(2.10c) as

EZrH (i +1/2.5,k) = exp[—ay(i + 1/2,j, k) At [eo) EZ, (i + 1/2, j. k)+
1 — exp[—ay(i + 1/2, j, k) At /e
ay(i+1/2,7,k)Ay

HMY2(i+1/2,5 - 1/2,k)), (2.16)

[HP' 264+ 1/2, 5 + 1/2.k)—

where H. equals the sum of H.; and H, in the PML. In this study, H., as well as
other electric and magnetic field components, is defined in the whole computational
domain including the PML, but all the split field components such as H,, and H,
are defined only in the PML region. This treatment requires a little more mem-
ory than Berenger’s original notations (Berenger 1996). However. this modification
circumvents the complicated treatments to connect the field components at the in-
terface between the PML and the normal FDTD computational space, which makes
the program much more concise and readable.

The PML scheme has been successfully extended to the TLM-based FDTD method
(Xu et al. 1997) and for the absorption of nonlinear electromagnetic waves (Xu et

al. 1998). The reflection factor has been found to be better than 10~ with 16 PML

lavers even in nonlinear cases.
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2.2.3 Wave source implementation

Based on the equivalence theorem (Schelkunoff 1943; Merewether et al. 1980), we
implement a plane wave source using the closed surface of a rectangular box within
the vacuum region of the computational domain. The equivalence theorem states
that the existence of wave-excitation source can be replaced by the equivalent electric
and magnetic currents on the closed surface. If there is a scatterer inside this closed
surface, the interior fields will be the total fields (incident and scattered), and the
fields outside are just the scattered fields. By using scattered fields in this way, the
field incident on the absorbing boundary condition is more readily absorbed. On the

closed surface, both electric and magnetic sources are added to the fields as

- - At =
H—H- "X n), 2.
H — S (B x ), (2.17a)
” ~ At -
— - n n 2
E o E-—C(ax A™) (2.175)

where H'" and E™ are the incident fields, and n is the inward unit normal vector
of the closed surface. For the numerical implementation, note that the nodes of £
and H are at different spatial grid points. Furthermore, A" and £ may come from
arbitrary directions. Therefore, the light scattering by an arbitrarily oriented particle
can be computed. To obtain the incident fields A™ and E™ at the corresponding
grid points on the closed surface, an auxiliary one-dimensional source FDTD grid is
placed along the incident direction (Taflove 1995). At only one single point on the
one-dimensional source grid, an arbitrary field excitation is added to the electric field

components. Herein, a Gaussian pulse is used as the field excitation in the form

E(t) = ezp[—(WtA—t —5)2. (2.18)

In the time-marching of the FDTD formulation, the pulse propagates along the

one-dimensional source FDTD grid. The incident field components at each grid point
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on the closed surface is from a linear interpolation of the neighboring field values on
the one-dimensional source grid. This process is exactly like the propagation of a plane
wave to the grid points on the closed surface, and then the wave front on the closed
surface is used to simulate the incident wave only inside the closed surface. This is
called the total-field formulations. By comparing the total-field formulations with the
scattered-field formulations in which only the scattered-field is computed throughout
the computational domain, Holland and Williams (1983) found that, in terms of
numerical dispersion. the total-field FDTD approach is superior to the scattered-field
approach.

It has been assumed here that the medium surrounding the scatterer is free space
and we then use the equivalence theorem for the implementation of the wave source
on the closed surface. In general, the equivalence theorem can also be applied when
the surrounding medium is an arbitrary dielectric medium. However, when the sur-
rounding medium is not free space, both Eq.(2.17) and the one-dimensional FDTD
formulation for the incident plane wave must be modified. We give the detailed

discussion about the wave source implementation in general situations in Chapter 4.

2.2.4 Transformation of the near field to the far field

The near fields computed by the FDTD algorithm are in the time domain. To cal-
culate the single scattering properties of the dielectric scatterer. the time-dependent
fields must be transformed to the corresponding fields in the frequency domain. In
this study. the discrete Fourier transform (DFT) is used to do this. Let At denote
the time increment. n denote the time step, and f(nAt) be a component of the field
in the time domain at the time step n. The field in the frequency domain is then

given by

Flw)= i f(nAt)exp(iwnAt), (2.19)

n=0

where N denotes the total time-marching steps.
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In order to calculate the single scattering properties of a dielectric particle, we also
need to transform the near-field in the frequency domain to the far-field (Yee et al.
1991; Luebbers et al. 1991; Barth et al. 1992). For a lossless particle, the equivalent
electric and magnetic currents can be defined on a surface enclosing the particle, using
the electromagnetic equivalence theorem; the far-field can then be obtained through
these currents. However, for an absorptive particle, this approach is not numerically
efficient. In this study, we use a volume integration method (Purcell and Pennypacker
1973; Goedecke and O'Brien 1988; Flatau et al. 1990; Draine and Flatau 1994; Yang
and Liou 1996a) to evaluate the scattered far-field and the absorption cross-section.

For a dielectric medium, the electromagnetic wave equation in the frequency do-

main can be expressed in the source-dependent form as (Goedecke and O’Brien 1988)

(V? + KE(F) = —4r (KL + 7). P(7). (2.20)

where I is a unit dvad (Tai 1971) and P() is the polarization vector given by

B() = 5(27: LE@. (2.21)

When the surrounding medium is air or free space. ﬁ(F) is nonzero only within

the particle. The solution for Eq.(2.20) is given by an integral equation in the form
(Tai 1971)

E() = B +4n [ [ [0F ORI+ veve.POLe  (22)

where Ey(7) denotes the incident wave; the integration domain v is the region inside

the dielectric particle; the 3-D Green function in free space, G(7. £), is given by

. = exp(ik]7 - €])
G(, &) = Ty (2.23)
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In the far-field region (kr — oo), it can be proven by using Eq.(2.22) that the
scattered far-field caused by the presence of a dielectric scatterer is (Yang and Liou
1996a)

.2 _ikr - .
BiPir—oo = o [ [ [168) ~ 11UE@) - 7. E@exp(~iki e, (229

47r

where 7=77/|7] is the unit vector in the observation direction (see Fig. 2.3), and € is
the position vector which represents (x,y,z). The scattered field £,(7) can be broken
down into the components parallel and perpendicular to the scattering plane in the

form
E\(7) = QE,o(7) + BE, 5(7), (2.25)

where & and 3 are the unit vectors parallel and perpendicular to the scattering plane

respectively, and

=0 x @ (2.26)

Therefore Eq.(2.24) can be written in a matrix form

Esa(7) e:rp (ikr) a.F 6" B
E,5(7) ] ///[6(6 -1 [ B.E é:- exp(—ikr.€)d’€
_ exp(ikr) | s2 s3 Eya -
—ikr [ s Sy } E.p (2.27)

where s; (i = 1,2.3 and 4) are the elements of the amplitude scattering matrix. sy, so,
s3 and sy are defined in a sequence shown in Eq.(2.27) to make s; and s3 associated

with the incident E components perpendicular to the scattering plane, and to make
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Figure 2.3: Incident and scattering geometry for the transformation of the near field
to far field.



sy and s associated with the incident E components parallel to the scattering plane.
E,« and E, 3 are the components of the incident E-field with respect to the scattering
plane. Note here that if the incident wave is in the z direction as shown in Fig. 2.3,
both E,, and E,s are in the zoy plane with E, 3 perpendicular and E,, parallel
to the scattering plane. In the FDTD scheme the incident wave is defined by given
E,: and E,,, which denote the incident E-field components in r and y directions,

respectively. Therefore, it is clear that

Eoa
Eo.ﬁ

where & and ¢ are unit vectors along the z and y axes, respectively. The amplitude

(2.28)

scattering matrix can then be expressed as

So 83
Sq4 81

where F, ;. Fuy. F5.. and Fj, are computed from the electric fields obtained by the

(2.29)

FDTD in two polarization directions. If we assume the incident E-field amplitude is
one,

(1) when £, =1 and E,, =0, we have

[T AT

(2) when E,; =0 and E,, = 1, we have

exp(—ikt.€)d3€. (2.3006)

Moreover, in terms of the Stokes parameters. we have
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I Iy
F
Q| — Q" (2.31)
U k*r? |y,
- V - - VO -

where the subscript 0 denotes the incident wave. The transformation matrix is given

by

The elements of F are simply functions of s;;

Fu |
Fy
Fy
Fiy |

(2.32)

they can be derived from the defi-

nition of Stokes parameters in terms of the electric fields. and are given by (Bohren

and Huffman 1983)

1

Fi, = 3(313'{ + 525, + 5353 + 545} ). (2.33a)
1 = = = «

F12 = 5‘(8232 — 815 -+ S48y — 8383), (233b)
Fi;= RG(SQS;‘; + S[SZ), (2336)
Fi4 = I'm(sas3 — s1s)), (2.33d)
1 L ] = = =

Fo = 3(8232 — 818, + 8383 — 8484), (2336)
1 = = = £ ]

Foo = 5(3131 + 5985 — 353 — $45}), (2.33f)



Fo3 = Re(sys3 — s153),

F24 = Im(323§ + SISI),

F31 = Re(s2s) + s153),

F33 = Re(szs] — s153),

F33 = Re(s|s; + s3s}).

F34 = Im(sas] + sys3).

Fy1 = Im(s485 + s153),

Fyp = I'm(s4s5 — s153),

Fi3 = Im(s185 — s3s3),

F44 = Re(sls§ - 8333).
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(2.33g)

(2.33h)

(2.331)

(2.33;)

(2.33k)

(2.331)

(2.33m)

(2.33n)

(2.330)

(2.33p)

The scattering cross-section is related to the first element of the scattering trans-

formation matrix as follows

@=%/ffamwwm,
k2Jo Jo

where 6 is the scattering angle (zenith angle) and ¢ is the azimuth angle.

(2.34)
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The scattering phase matrix P can be defined in terms of the transformation

matrix as follows

4m
= k2F' (2.35)

With a specific orientation, the scattering characteristics of nonspherical particles

P=

depend not only on the zenith angle (scattering angle) but also on the azimuth angle
with respect to the scattering direction. The results should be azimuthally averaged

and this is done to any element of P through

P(§) = 2—17; | (6, o)do. (2.36)

The asymmetry factor then can be numerically computed by
1/~ .
g= 3/0 Py (0)cosfsinbd8. (2.37)

The absorption cross-section is also calculated using the volume integration (Yang
and Liou 1996a) in the form

7/ [ [«@E@ B @ae (2.33)

The extinction cross-section is simply the sum of the scattering and absorption

Oa

cross-sections as

Oe = Og + 0. (2.39)

For the scattering by a nonspherical particle, the absorption and extinction cross-
sections depend on the polarization of the incident wave. However. if the average of
the cross-sections with respect to the two perpendicularly polarized incident waves is
considered. it is independent of the plane on which the polarization of the incident
wave is defined (Yang and Liou 1996a). The cross-sections for unpolarized light can
then be expressed as the mean values of the the cross-sections with respect to the two

perpendicularly polarized incident waves.
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2.3 Validation of the perfectly matched layer finite-

difference time domain

In principle, the FDTD method can be accurately applied to particles of arbitrary
shapes and composition. However, there are numerical errors involved in the FDTD
technique. These errors can be attributed to the numerical dispersion of the finite-
difference analog, the approximation of a specific particle shape by a pseudo-structure
constructed by cubic grid cells, the representation of near-field by the discretized data
which does not account for the field variation within each cell. and reflections from
the PML ABC. These errors are dependent on the grid size. the cell number in the
free space between the scatterer and the PML, and the cell number in the PML,
etc. Yang and Liou (1996a) pointed out that the errors of the FDTD technique can
also be attributed to the residual energy inside the computational domain. when the
time-marching iteration of the near-field based on the pulse technique is terminated.

For a fixed PML thickness, the reducing R(0) by increasing the PML loss mono-
tonically reduces the reflection from the domain boundary. However, this benefit
levels off when R(0) drops to less than 10™° (Katz et al. 1994). Berenger (1994)
found that the increasing PML cell number can also reduces the reflection from the
domain boundary. But the PML thickness is restricted by the size of the computa-
tional domain due to the limitation of the computing resource. Generally, a PML
thickness of 4-8 cells is reasonable for both accuracy and computing efficiency. For
the distance between the scatterer and the PML, 5-20 cells are sufficient (Berenger
1994). Throughout this chapter, we set a R(0) of 1073, use a G-cell thick PML, and
keep 7 cells for free space between the scatterer and the PML.

[t was found that by using the PML ABC, the computational domain is reduced
significantly when compared with traditional ABC approaches. In this study, the
computations were performed on a SunSparc workstation and Cray SV1 machines,
respectively, for particles with size parameters < 20 and > 20. In the following, the

PML FDTD scheme for the scattering by dielectric particles are examined by using
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Mie theory for spheres, and the exact scattering solution for a pair of spheres in
contact.

Figure 2.4 shows the extinction efficiency (Qe) and absorption efficiency (Qa),
and asymmetry factor (g) of spherical ice crystals computed by Mie theory and the
PML FDTD method at a wavelength of 10.8 um (m = 1.0891 + 0.182161), which is
a particularly important wavelength in satellite remote sensing. Also shown are the
absolute and relative errors of the PML FDTD results. In the FDTD calculations, a
grid size of As = \/20 is used. We can see that the FDTD errors for both extinction
efficiency and absorption efficiency are very small. For size parameter larger than 2.0,
the relative errors for Qe are within ~1.0%, and the relative errors for Qa are within
~0.5%. The errors in asymmetry factors due to the FDTD are ~0.1%. These results are
true even when size parameter reaches 40. In consideration of the trend of the error,
it is safe to believe that the PML FDTD can produce Qe and Qa with errors within
~1.0% for quite large size parameters. For size parameter smaller than 2.0, the relative
errors become larger for Qe, Qa and g. This is because when using As = \/20, the
sphere is approximated by only a few cubic cells (e.g., for a size parameter equals
to 1.0, it has only about 6 cubic cells in diameter to approach a sphere). Numerical
results show that using smaller cell size would result in more accurate results.

It should be noted here that using As = A/20, errors due to the FDTD with
the conventional boundary condition are about 5% for the extinction and absorption
efficiencies at the size parameter of 10, as reported in Fig. 5 of Yang and Liou (1996a).
Their errors also increase as the size parameter increases. It may be concluded that
the accuracy of the FDTD method is sensitive to the boundary conditions used.

Figures 2.5 to 2.7 show the scattering phase functions for spherical ice crystals
computed by Mie theory and the PML FDTD scheme using a wavelength of 10.8
um for different size parameters. Also shown are the absolute and relative errors
of the FDTD results. We can see that the errors in the scattering phase functions
are typically smaller than 5%. Larger errors due to the FDTD only occur when the

scattering phase functions are minimum. These errors can be largely related to the
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of the sphere and A is the wavelength. These results are computed by Mie theory

and the PML FDTD method at a wavelength of 10.8 um (m = 1.0891 + 0.18216).

Also shown are the absolute and relative errors of the FDTD results. A grid size of
As = A/20 is used in the FDTD calculation.
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numerical dispersion of the finite-difference analog, and the approximation of a sphere
by cubic grid cells, as well as the representation of near-field by the discretized data.
To reduce the errors, finer cells should be used, but larger CPU time and storage
space are required.

Figure 2.8 shows the scattering phase functions for spherical ice crystals computed
by Mie theory and the PML FDTD method at wavelengths of 0.55um (m = 1.311),
10.8 um (m = 1.0891 + 0.18216¢) and 12.99 um (m = 1.4717 + 0.38907) for a size
parameter of 6. We choose the three wavelengths to demonstrate the effectiveness
of the PML FDTD to different refractive indices of ice. In order to see how the use
of smaller cells affects accuracy, we use three different cell sizes of A\/20, A/30 and
A/60 in the PML FDTD calculation. Also shown are the absolute and relative errors
of phase functions computed by the PML FDTD. For different refractive index, we
cannot see significant difference in errors. Figure 2.8 shows that the PML FDTD
program is insensitive to the refractive index or the wavelength in this application.
We can also see that the relative errors decrease by using higher resolution meshes
for each wavelength. Using As = \/60, the relative errors in the scattering phase
function are smaller than ~4Y%.

The exact solution of light scattering by a double sphere system is available using
the multipole method (Videen et al. 1996). Figure 2.9 shows a comparison of the
scattering phase functions from a pair of spheres (r = A/2 for each sphere) in contact,
illuminated end-on. The PML FDTD program was used with a cell size As = A\/60.
m = 1.53 + 0.001i was used to approach the refractive index of biological spores
(Tuminello et al. 1997) at a wavelength of 0.55um. For this nonspherical double
sphere system, only a small discrepancy exists between the calculated results of the
two models. At the minimum value of the phase function, the relative error of the
FDTD result is ~19%. However, it is noted here that the minimum value of the
phase function is 2.96617 x 103 and the absolute error of the FDTD result is only
—6.96830x 10~*. Therefore, the FDTD program is shown to work well for nonspherical

particles as well as for spherical particles.
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Figure 2.8: The scattering phase functions for spherical ice crystals computed by Mie
theory and the PML FDTD method at wavelengths of 0.55 um (m = 1.311), 10.8 um
(m = 1.0891 + 0.18216%), and 12.99 um (m = 1.4717 + 0.3890:) for a size parameter
of 6. Also shown are the absolute and relative errors of the FDTD results. Different
cell sizes of As = \/20, A/30 and \/60 are used in the FDTD calculations.
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2.4 Applications to nonspherical particles

2.4.1 Hexagonal ice crystals

From in situ aircraft observations, it has been learned that cirrus clouds are largely
composed of nonspherical plates, columns, and bullet rosettes (Heymsfield and Platt
1984) with a basic hexagonal structure. The size parameter for these ice crystals
can range from ~107! to 10° at thermal infrared wavelengths (-4 - 100 pm). This
wide size parameter range introduces tremendous difficulty in the modeling of optical
properties of nonspherical ice crystals (Liou and Takano 1994).

In both climate and remote sensing applications, calculations involving scattering
and absorption by nonspherical ice crystals at thermal infrared wavelengths are usu-
ally highly simplified. Mie theory is often used, but nonspherical particles must first
be converted into spheres (e.g., Plass and Kattawa 1968; Arnott et al. 1997). Other
commonly used approximations include the anomalous diffraction theory (ADT) and
the geometric optics method (GOM) (e.g., Takano and Liou 1989). For example, Sun
and Shine (1995) applied the GOM for hexagonal ice crystals with size parameters
greater than 30 and Mie theory for size parameters less than 30.

Figure 2.10 shows the absorption efficiency of randomly oriented hexagonal ice
crystals as a function of size parameter at a wavelength of 12.99 um (m = 1.4717 +
0.389%). The aspect ratios (length/width) for these nonspherical ice crystals roughly
follow the observations reported by Ono (1969) and Auer and Veal (1970). The results
are derived from different scattering algorithms: Mie theory for a sphere with an
equivalent projected area, ADT, GOM, and FDTD technique. We can see that in the
resonance region. Mie theory overestimates the absorption efficiency while the ADT
and GOM underestimate it. The absorption efficiency from the ADT approaches one
for large size parameters because the ADT does not consider the external reflection.
Differences between the ADT and GOM for small size parameters can be explained
by the absence of refraction and reflection in the ADT.

Based on the single scattering properties of hexagonal ice crystals derived from the
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Figure 2.10: Comparison of absorption efficiency for randomly oriented hexagonal
ice crystals derived from different scattering program: Mie theory for spheres with
equal projected area. anomalous diffraction theory (ADT), geometric optics method
(GOM), and finite-difference time domain (FDTD) technique. The results are shown
as functions of size parameter 27r,/\, where rp is the radius for a projected area
equivalent sphere.
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GOM for large size parameters and the FDTD technique for small size parameters, we
(Fu et al. 1998; 1999) developed a composite scheme which appropriately interpolates
results for size parameters between ~10 and ~50. Applying this composite technique,
errors in the broadband emissivity of cirrus clouds associated with conventional ap-
proaches were examined (Fu et al. 1999). It was found that the relative errors in
the emissivity due to using the approximate light scattering programs can be as large
as ~30%. We have developed an accurate parameterization of the infrared radiative
properties of cirrus clouds for climate models using the single-scattering properties
from the composite method (Fu et al. 1998).

It is well known that in the resonance region, absorption efficiencies of spherical
particles can be much larger than one. This is the so-called tunneling effect whereby
the incident radiation outside the projected area of the particle can be absorbed.
From Fig. 2.10. we can see that in the resonance region. absorption efficiencies of
hexagonal particles can also be larger than one, which means that for particles whose
surfaces are not smooth, the tunneling effect is still significant. The tunneling effect
is clearly shown in the upper panel of Fig. 2.11. which illustrates a Poynting vector
field near and inside a hexagonal ice crystal (D/L =1 and D /) = 2.5, where D and
L denote the width and length of the hexagonal crystal, respectively). The Poynting
vector represents the flux density of electromagnetic energy and the direction of energy
propagation. The results are obtained using the FDTD technique at a wavelength
of 12.99 pum (m = 1.4717 + 0.389%). The incident radiation is perpendicular to the
symmetrical axis of the particle with the electric field polarized in the z direction.
The Poynting vector field on a plane perpendicular to the symmetrical axis of the
particle at L/2 is shown. We see that photons passing near the particle edge can be
captured and absorbed. When the incident electric field is polarized in y direction,
as shown in the lower panel of Fig. 2.11, we can see that incident energy propagates
along the surface of the particle. Therefore, for natural incident light, tunneling effect
and surface wave both exist. The absorption of natural incident light is determined

by the two processes.
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Figure 2.11: Poynting vectors near and inside a hexagonal ice crystal (D/L =1 and
Dm/X = 2.5) on a plane perpendicular to the symmetrical axis of the particle at
L/2. A wavelength of 12.99 pm (m = 1.4717 + 0.389%) is used. For the upper panel,
the incident electric field is polarized in z-direction; for the lower panel, the incident
electric field is polarized in y-direction. '
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What we learn from Figs.(2.10) and (2.11) are quite different from what Mitchell
(1995) assumed for nonspherical particles. Mitchell (1995) claimed that the light
scattering and absorption by nonspherical particles are very different from those by
spheres and should be simulated more appropriately by the ADT method. Here we
can conclude that the ADT neglects important physical processes such as tunneling
effect and surface wave while Mie theory overestimates the effects of these processes

for nonspherical particles.

2.4.2 Irregular tetrahedral aggregates

One type of nonspherical particle whose optical properties are of interest is a cluster of
bio-warfare agent spores. When a liquid solution containing such spores is aerosolized
and the liquid evaporates, compact, nearly spherical clusters of these spores remain.
Early warning systems depend on rapid identification of these particles, and elastic
and fluorescent light scattering may play a crucial role in the development of such
systems (Pinnick et al. 1998; Videen et al. 1998).

Herein. the PML FDTD is applied to an aggregation of spores which is approx-
imated by four spherules in a tetrahedral orientation as shown in Fig. 2.12. The
log of the scattering intensity as a function of the zenith and azimuth angle for the
tetrahedral structure is shown in Fig. 2.13 for an incident angle of 0° (z-direction).
We can see the enhancement at three azimuth angles of 60°, 180° and 300° when the
zenith angle is ~40°. More discussions on the application of the PML FDTD method
to the light scattering from irregular tetrahedral aggregates are reported in Videen et
al. (1998).

2.4.3 Deformed droplets

Deformed liquid droplets are of importance in industrial areas involving sprays, ther-
apeutic aerosols. and combustion aerosols, where aerodynamic particle size is com-

monly measured to assess the airborne behavior of the droplets (Videen et al. 2000).
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Figure 2.12: Diagram of the tetrahedral scattering system. Four r = A/2,m = 1.53
+ 0.001i spheres are in contact.
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in Figure 2.12 when the light is incident in positive z-direction.
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With the development of multi-pixel detectors such as intensified charge-coupled de-
vice (ICCD) cameras, light scattering by these droplets can be angularly measured
in a two-dimensional way. At the same time, modeling of the light scattering by
deformed droplets is necessary not only for validation of the measurements, but also
for retrieval of the droplet shapes from the measurements. In this study, light scat-
tering by a distorted droplet is simulated with the FDTD technique. The shape of
the distorted droplet is analytically given in a form (Videen et al. 2000)

r =719+ d(1 — 3cos’a), (2.40)

where rg is the radius of an undistorted droplet and d is the amount of distortion.
The droplet is axisymmetric about y axis as shown in Fig. 2.14. For the droplet
to have an aspect ratio (the largest dimension L/ the smallest dimension D) of 2,
d = 0.246rg. Figure 2.15 shows the two-dimensional angular optical scattering by
a deformed oleic-acid droplet illuminated edge-on at A = 0.6328 um (m = 1.4599)
calculated with the FDTD technique. The aspect ratio of the droplet is 2. The
size parameter in terms of D is 7D/A = 24. The radial direction originated at the
center of the figure denotes the scattering angle # from 0° to 180°. The azimuth
angle ¢ is denoted by the anti-clockwise direction. The figure is plotted for azimuth
angle from 90.5° anti-clockwise to 88.5°. The scattering from this particle displays
high-intensity streaks and significant enhancement and weakness due to interference.
This scattering pattern bears a strong resemblance to several of the experimentally
measured patterns obtained by Secker et al. (2000) shown in Fig. 2.16. In Fig. 2.16,
the laser beam is incident in a direction perpendicular to the falling direction of the

droplet.
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Figure 2.14: Diagram of a deformed droplet with edge-on incidence.
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Figure 2.15: Two-dimensional angular optical scattering by a deformed oleic-acid
droplet illuminated edge-on at A = 0.6328 pum (m = 1.4599) calculated with the
FDTD technique. The aspect ratio of the droplet is 2. The size parameter in terms

of DiswD/A =24.
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Figure 2.16: Experimentally measured light scattering patterns by oleic-acid droplets

at A = 0.6328 pum obtained by Secker et al. (2000).
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2.5 Summary and conclusions

A finite-difference time domain (FDTD) program has been developed in this study.
The perfectly matched layer (PML) absorbing boundary condition (ABC) has been
used. This PML FDTD program is validated by Mie theory for spheres and by the
multipole method for a nonspherical double-sphere system. Compared with these
reference results, the relative errors in absorption and extinction efficiencies due to
the PML FDTD are within ~17 for particles with size parameters as large as 40.
The relative errors for the scattering phase function are typically within ~5%. The
accuracy of this technique guarantees its reliability in applications to remote sensing
and climate studies.

The PML FDTD scheme has been applied to hexagonal ice crystals at IR wave-
lengths. It is shown that the conventional approaches for light scattering by nonspher-
ical particles introduce significant errors, particularly in the resonance region. This
scheme has also been applied to the light scattering by irregular tetrahedral aggre-
gates, which have potential application to early warning systems to identify clusters
of bio-warfare agent spores. For applications to deformed droplets, this scheme may
help people in the experimental field to identify the particle shapes.

Because of the use of the PML ABC, the computational domain for the FDTD
is reduced significantly. In this study, the computations were performed on a regular

workstation, even for particles with size parameters as large as 20.



Chapter 3

Application of the finite-difference
time domain technique to light
scattering by dielectric particles
with large complex refractive

indices

3.1 Introduction

There exist materials with large complex refractive indices, which include, e.g., water
and high-water-content biological tissues at microwave wavelengths. The study of
electromagnetic wave scattering and absorption by highly refractive dielectric targets
with arbitrary shape and composition has important applications in radar remote
sensing (Battan 1973) and in the study of microwave propagation in the biological
tissues (Nadobny 1998).

Using a perfectly matched layer (PML) absorbing boundary condition (ABC)
(Berenger 1994, 1996; Katz et al. 1994), we have developed a three-dimensional (3D)

47
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FDTD scheme for light scattering by nonspherical dielectric particles as presented
in Chapter 2. When a grid cell size of A\/20 was employed, we showed that the 3D
PML FDTD method can achieve an accuracy of ~1% in extinction and absorption
efficiencies and ~5% in scattering phase function for particles with size parameters as
large as 40 (i.e.. D~13A). In the work reported in Chapter 2, however, the 3D PML
FDTD model was applied to light scattering by ice crystals, biological spores, and
oleic-acid droplets, whose refractive indices are generally small. In this study, we will
focus on the application of the FDTD method to highly refractive dielectric particles.

In Section 3.2, we will discuss the numerical treatments related to particle bound-
aries in the finite-differencing scheme and appropriate methods will be presented. In
Section 3.3, we will first present the numerical results in order to show the impor-
tance of appropriate boundary treatments in the FDTD solutions. The accuracy of
the FDTD scheme is then determined for particles with m = 7.1499 + 2.914i using

the exact solutions. The summary and conclusions will be given in Section 3.4.

3.2 Particle boundary treatments

In the 3D PML FDTD model, the target is defined with cubic grid cells. Therefore,
the staircasing effect has always been a source of errors. Because of the large disconti-
nuity in permittivity between the target and surrounding medium for particles with a
large refractive index, the numerical treatments of the electromagnetic fields near the

particle boundaries will also become an important issue in the FDTD simulations.

3.2.1 Dielectric property treatment

In the FDTD method, the scatterer with an arbitrary shape and composition is
approximated with an array of cubic cells. At each position of the electric field com-
ponents (See Fig.2.1), the permittivity of the medium in the computational domain
including the scatterer must be assigned before the time-marching of the FDTD for-

mulation. For cells totally inside one medium, the permittivity is homogeneous. But
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for cells split by the particle boundaries, the permittivity at different field-component
positions may not be identical. In our FDTD scheme, we have used the local values
of the permittivity at different field-component positions.

For the cells split by the interfaces between neighboring media, however, the
averaging techniques for the material properties are often used. In the FDTD model
developed by Yang and Liou (1996a; 1998b), the grid cell was considered to be the
basic spatial unit and the permittivity was assumed to be homogeneous for each cell.
Thus, for any grid cell with inhomogeneous permittivity, such as grid cells split by the
particle-boundary interfaces, an effective permittivity was evaluated using an effective
medium theory. The most widely used effective-medium theories are the Maxwell-
Garnett theory and the Bruggeman theory (Chylek and Srivastava 1983). If particles
of one material are dispersed in a continuous host of another material (separated-
grain structure). the use of the Maxwell-Garnett rule is indicated. If the space is
filled by a random mixture of two or more constituents (aggregate structure), the
Bruggeman theory is the appropriate option. Other frequently used effective-medium
theories are the volume average of the dielectric constants and the volume average of
the refractive index (Dobbie and Chylek 1998). Unfortunately, when a space is filled
with two constituents. but they are clearly separated by a single interface (which is the
case of a FDTD grid cell split by the particle edge), there seems no sound basis for all
these mixing rules to be applied. Following Yee (1966), Yang and Liou (1996a; 1998b)
selected components of the magnetic field at the center of cell faces and the electric
field counterparts at the cell edges. Therefore, another averaging, which involves four
neighboring cells for each electric component position, was recommended to evaluate
the permittivity for the FDTD simulation. Recent studies (Nadobny et al. 1998),
however, have suggested that extra errors in the light scattering simulation could be
caused by the averaging of the material property.

In the next section, numerical results will be presented to show that for the per-
mittivity at different field-component positions, using simply the local value of the

permittivity at each point is more accurate than using averaged values. For the
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comparison purpose, the averaging is done within a cubic cell centered at the cor-
responding field-component position. The Maxwell-Garnett rule with free space as
the host is used to evaluate the effective permittivity if the free space exceeds half
of the cubic averaging range; otherwise, the inverted Maxwell-Garnett rule with par-
ticle material as the host is used. It should be noted that the averaging method
used here involves only one-time averaging to obtain the electric permittivity for the
FDTD simulation, which is found to work better than the method involving two-time

averaging.

3.2.2 Electric field interpolation

The FDTD can only produce the components of near fields at the mesh grid points as
shown in Fig. 2.1. However, because the scattering phase matrix. and the extinction
and absorption cross-sections are determined by the scattered far field, it is necessary
to transform the near field to the far field (Yang and Liou 1996a). In this study, we use
a volume integration method (Purcell and Pennypacker 1973; Goedecke and O’Brien
1988; Flatau et al. 1990; Draine and Flatau 1994: Yang and Liou 1996a) to evaluate
the scattering and absorption properties. Here, without sacrificing the generality,
we will address some issues related to the volume integration using a homogeneous
particle. Its absorption cross-section, e.g., can be written in the FDTD scheme using

the cubic cell in the form

__k (AB(E). B A
0= | | [dOB@.E @
27e;As® S ) : . e
= —:.-\E_O|2 ; |E[(i + Ai)As, (j + Aj)As, (k + Ak)As]|?d: ., (3.1)
7 t.7.k

where Ej is the incident electric vector and v is the volume of the particle. For cells
totally in the particle, Ai = Aj = Ak = 0 and J; jx = 1. But for cells split by the
particle boundaries. J; jx is the fraction of the particle volume within the cell, and Ad,
Aj and Ak are so defined that [(i + Ai)As, (j + Aj)As, (k + Ak)As] is the gravity
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center of the particle volume within the cell. It is noted that when |E|? = 1, we have
As*Y; 1 6ijk = v. Similar volume integration is required to obtain the extinction
cross-section and the scattering phase matrix.

In the FDTD scheme, the electric components Ez, Ey and E:x for each cell are
not evaluated at the same position (Fig.2.1) and they are all perpendicular to their
respective cubic cell faces. To perform the volume integration numerically, we need
to interpolate the electric field components at the FDTD grid points to the gravity
center of the cell. The simplest way to do so is to directly interpolate the FDTD
electric components for £z, Ey and Ez at the gravity center of the cell. This is
valid if the permittivity difference between the particle and the surrounding medium
is small so that the field discontinuity at the particle boundaries is not significant.
However, when the permittivity difference between the particle and the surrounding
medium is large. the direct interpolation of the FDTD electric components within
the cells split by the particle boundaries would result in significant errors, as will be
shown in the next section.

To interpolate the FDTD field components within the cells partially occupied by
the particle, the ideal method is to use the exact boundary condition for electromag-
netic fields at the material interfaces; that is, the tangential components of electric
fields and the normal components of the electric displacements are continuous through
the interfaces. When a particle is implemented in the FDTD mesh, the normal vec-
tor of the particle surface element can be determined in principle. Therefore, for the
field interpolation within the cells involving the particle boundary, we can first de-
compose the FDTD electric vectors into the normal and tangential field components
relative to the boundary surface elements. Following the exact boundary condition,
the tangential components of electric fields and the normal components of the electric
displacements are then interpolated. After the interpolation, the normal electric field
components are obtained from the interpolated normal electric displacements divided
by the particle permittivity.

In a FDTD grid cell split by the particle boundary, the normal direction of the
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Figure 3.1: Schematic diagram of a particle surface element within a FDTD grid cell
and its normal vector.
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particle surface element can be defined using its local zenith and azimuth angles 6
and ¢ with respect to the FDTD Cartesian coordinates (See Fig. 3.1). So for the
given grid cell, the projections of the FDTD electric components Ez, Ey and Ez to

the radial, € and ¢ directions are

Ez, = Exsinfcoso, (3.2a)
Ezxy = Ezcosfcoso, (3.2b)
Ezy, = —FEzsing, (3.2¢)
Ey, = Eysinfsino, (3.2d)
Eyy = Eycosfsino. (3.2e)
Ey, = Fycoso, (3.2f)
zr = Ezcos6, (3.29)
Ezy = —Ezsiné. (3.2h)
Ezs=0, (3.23)

where the 8 and ¢ components above are parallel to the surface element, while the
radial component is perpendicular to it. Therefore, based on the boundary conditions
for electromagnetic fields at the material interfaces, we can perform linearly interpo-
lation using the electric displacement for the radial components and using the electric
field for the # and ¢ components.

The interpolations would be done for all components in Eq.(3.2) individually.
Then the interpolated components at the cell or gravity center of the given cell could
be added together for the radial, § and ¢ directions, respectively. and denoted as D;,
Eg and E,. Here. D, is the electric displacement component in the radial direction.
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These fields could be transformed into electric components in the Cartesian coordinate

system using

Ez = %sinOcosq& + Egcosfcosg — Epsing. (3.3a)
D, . - ‘
Ey= Tsmeszmb + Egcosfsing + Eycoso. (3.3b)
D, )
Ez= TcosO — Eysind, (3.3¢c)

where ¢ is the permittivity of the particle.

If a particle has a regular shape such as spheres, spheroids. cubes and circular
cylinders. etc., it is practical to do the field interpolation using the exact boundary
conditions. However. for particles with arbitrary shapes, it would be much more diffi-
cult, although not impossible, to use this treatment. Therefore. in this study. we also
test another approximate boundary field interpolation. In this method. we first obtain
the electric displacement components using the FDTD electric comnponents multiplied
by the local permittivity. We then interpolate the electric displacement components
to the gravity center of each cell. The electric components used in Eq.(3.1) would
be the interpolated electric displacement divided by the particle permittivity. Again,
this treatment has significance only for the grid cells split by the particle edge. For
other grid cells, either inside or outside the particle, because the dielectric constants
are the same. this treatment is equivalent to simply doing the interpolation for electric
fields.

[t should be noted that for the interpolation at the gravity center (which is different
from the cell center for a cell split by the particle edge). the FDTD field components
on the neighboring grid cells are also needed. However, if we use the electric field
at the cell center in Eq.(3.1), the FDTD field components on the given grid cell
are enough for the interpolation. This simplification may cause some errors but
requires significantly less memory or computational time. Therefore. it is also worth

examining the errors due to the use of the cell-center interpolation. Note here that, for
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the interpolation involving the electric displacements, the related electric component

is still the interpolated electric displacement divided by the particle permittivity.

3.3 Numerical results

In the numerical simulations, we set a 6-cell thick PML with reflection coefficient R(0)
of 107 and keep 6 cells for free space between the scatterer and the PML (Berenger
1994, 1996; Katz et al. 1994). If not specified, a grid cell size As = \3/20 is used,
where A; denotes the wavelength inside the particle. The accuracy of the FDTD
results is examined using Mie theory which is exact for spheres. The size parameter
of a particle is defined as 27a/\, where a is the radius of the sphere and A is the

wavelength in the surrounding medium.

3.3.1 Effects of particle boundary treatments

A wide range of refractive indices are used to examine the effects of the treatments
involving particle boundary on the FDTD simulations. These refractive indices in-
clude 1.311, 1.4717 + 0.389% and 5 + 2i. The size parameters used are those where
the extinction is the most significant. For refractive indices 1.311 and 1.4717 +0.38%
a size parameter of 6 is used. For refractive index 5 + 2i, a size parameter of 2 is
chosen. '

Figure 3.2 shows the comparison of the scattering phase functions for spheres
from Mie theory and those from the FDTD schemes. In the FDTD calculations,
the dielectric constant (permittivity) at the location of the electric components for a
given cell is either the averaged value, as discussed in Section 3.2 (average), or simply
the local value at that point (no average). In both FDTD simulations, the electric
fields in frequency domain are interpolated to the gravity center of each grid cell
by considering the exact boundary conditions. We can see that. using the averaged
dielectric constant, the errors in phase functions are generally larger, especially for

the backscattering and the scattering minima. Figure 3.2 shows that the errors in
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Figure 3.2: Comparison of the scattering phase functions for dielectric spheres with
different refractive indices from Mie theory and those from the FDTD using different
dielectric property treatments. In the FDTD calculations. the dielectric constant used
at each position of the electric field components for a cell is either the averaged value
(average) or simply the local value at that point (no average). The grid cell size is
A¢/20 where A\g is the wavelength inside the particle. The size parameter is defined
as 2ma/\ where a is the radius of the sphere and X is the wavelength in the air.
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the scattering phase function due to the FDTD without averaging of the permittivity
are less than ~5%. Therefore, we recommend that the local value of the dielectric
constant should be used in the FDTD scheme, which is not only more accurate, but
which also requires less computational time and memory when compared with the
scheme using average.

The effects of different field-interpolation schemes, including those using the electric-
field (E). electric-displacement (D), and the exact boundary conditions (BC), are then
examined. We compare the FDTD results using the three field-interpolation methods
with those from Mie theory. In all the FDTD calculations, the local values of the
dielectric constants are used, and the field components are interpolated at the gravity
centers of the grid cells. Figure 3.3 shows the comparison of the scattering phase
functions for spheres between Mie theory and the FDTD simulations. We can see
that for all refractive indices used here, the interpolations using exact boundary con-
ditions (BC) and electric displacement (D) give better results with errors smaller than
~5kh. For small refractive indices, the electric-field interpolation (E) works well with
errors smaller than 3% and 6% for m = 1.311 and m = 1.4717 + 0.389%:, respectively.
However. for large complex refractive indices, the errors due to the FDTD using the
electric-field interpolation become large. For m = 5 + 2i, the error can reach ~12%.
This happens because the dielectric constant varies greatly between the particle and
the surrounding medium, which leads to the significant discontinuity of the normal-
electric-field components at the particle boundary. Therefore, direct interpolation of
the electric fields is not generally valid for particles with large refractive indices.

We have also checked the sensitivity of the FDTD results to the field-interpolation
positions. Herein, the field components are interpolated either at the cell center or
at the gravity center for a given grid cell. Figure 3.4 shows the comparison of the
scattering phase functions for spheres calculated from Mie theory and those from the
FDTD with different field interpolation positions. In the FDTD simulations, we use
the local dielectric constant at each grid point for the wave propagation simulation,

and use the exact boundary conditions for the field interpolation. We can see that
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Figure 3.3: Comparison of the scattering phase functions of dielectric spheres with
different refractive indices from Mie theory and those from the FDTD using different
field-interpolation methods. Here BC denotes the interpolation using exact boundary
conditions. D using the electric displacement, and E directly using electric field.
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Figure 3.4: Comparison of the scattering phase functions of dielectric spheres with
different refractive indices from Mie theory and those from the FDTD using different
field interpolation positions. In the FDTD calculations, the field components are
interpolated either at the cell center or at the gravity center.
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the FDTD results are more sensitive to the interpolation position when the refractive
index becomes larger. For refractive indices of 1.4717 + 0.389 and 5 + 2i, using the
interpolation at the cell center produces ~2-4% more errors in the scattering phase
function.

The extinction and absorption efficiencies for the cases shown in Figs.3.2-3.4
are listed in Table 3.1. We can see that for small refractive indices (1.311 and
1.4717+0.389:), all methods work well for the extinction and absorption calculations.
The errors are generally ~ 1%, except for the FDTD using the electric displacement in-
terpolation, which has errors -2, However, for large complex refractive index (5+2:),
the FDTD with the electric field interpolation can result in an error of ~18Y%. The
FDTD schemes using other interpolation methods for highly refractive particles can
work well, but with larger errors than for small refractive indices. Here we can see
again that. although the FDTD using the averaged dielectric constant is numerically
more complicated. it introduces little advantage in accuracy in comparison with the
scheme using the local dielectric constant. This is especially the case for the particles
with large refractive indices. Table 3.1 shows that, the FDTD scheme using the local
value of dielectric constant and interpolation at the gravity center by considering the
electromagnetic boundary conditions can work well for both small and large refractive
indices. The relative errors in the absorption and extinction efficiencies are smaller
than ~3%. The FDTD using the electric-displacement interpolation can also produce
reliable results for a wide range of refractive indices; and for particles with arbitrary
shapes it is a more practical method. It is worth mentioning here that although the
cell center interpolation produces more errors than the gravity center interpolation,

the former is numerically more efficient.

3.3.2 Numerical results for m = 7.1499 + 2.914;

One application of the FDTD scheme is in the centimeter radar remote sensing of
precipitating hydrometeors including raindrops, snow and hail/graupel. Since the

hydrometeors are generally nonspherical, and can be a mixture of ice and water (e.g.,
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hailstone), the interpretation of the radar reflectivity requires the light scattering
scheme such as the FDTD for nonspherical particles with arbitrary composition. Here,
the FDTD scheme is examined for dielectric spheres with a large refractive index of
7.1499 + 2.9147. This refractive index is for water at the wavelength of 3.2 cm. In the
FDTD simulation, we use the local value of the dielectric constant; and in the volume
integration to obtain the single-scattering properties, we apply the interpolation for
electric fields at the cell gravity center by considering the exact boundary conditions.

Figure 3.5 shows the extinction efficiency (Q.), absorption efficiency (Q,) and
asymmetry factor (g) as functions of size parameters (2mra/\) calculated using Mie
theory and the FDTD for water spheres at a wavelength of 3.2 cm (m = 7.1499 +
2.914i). Also shown are the absolute and relative errors of the FDTD results. For
the size parameters larger than one, we can see that the relative errors for Qe and
Qa from the FDTD using As = A\q/20 are generally within ~3% and ~4%, respectively.
The errors in asymmetry factors due to the FDTD are smaller than ~1%. For size
parameters smaller than 1.0, the relative errors in the single scattering properties
become larger. This is largely because As = A;y/20 could not resolve the small
spheres well. To verify this explanation, Fig. 3.5 also shows the finite-difference time
domain results for size parameters smaller than 3 by using higher resolution so that
the small particles are resolved equally well as the particle with the size parameter
3. In this case, we can see that the relative errors in the extinction and absorption
coefficients are smaller than ~4% for small particles.

The comparisons of scattering phase functions from Mie theory and the FDTD
scheme with As = A4/20 for different size parameters are shown in Figs. 3.6 and 3.7.
We can see that the errors in the scattering phase functions are typically smaller ~5%.

Figure 3.8 presents the effect of the cell size on the FDTD results. Here we consider
a water sphere with size parameter of 3 for a wavelength of 3.2 cm. The cell sizes of

Aa/20. Aq/25 and Ay/30 are used. We can see that the relative errors decrease when

higher resolution meshes are used.
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Figure 3.5: Extinction and absorption efficiencies, and asymmetry factor for water
spheres as functions of size parameters. These results are from Mie theory and the
FDTD at a wavelength of 3.2 cm (m = 7.1499 + 2.9147). In the FDTD calculation, a
grid cell size of A;4/20 is used. For size parameters smaller than 3, the FDTD results
(FDTD*) are also shown by using the cell size so that the number of cells are the
same as that for the particle with the size parameter of 3.
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Figure 3.6: Comparison of the scattering phase functions for water spheres from Mie
theory and those from the FDTD at a wavelength of 3.2 cm (m = 7.1499 + 2.914:)
for size parameters of 1, 2 and 3.
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rigure 3.8: Comparison of the scattering phase functions for water spheres from Mie
theory and those from the FDTD at a wavelength of 3.2 cm (m = 7.1499 + 2.9144)
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the FDTD simulations where A4 is the wavelength inside the particle.
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Thz numerical results shown above demonstrate that the FDTD scheme with ap-
propriate particle boundary treatments can be applied to dielectric particles with a
wide range of refractive indices. However, for nonspherical particles with arbitrary
composition, it is numerically difficult in the volume integration to use the gravity
center interpolation by considering the exact boundary conditions. The results shown
in Table 3.1 and Figs.3.2-3.4 suggest that it may be a reasonable approach to use the
interpolation for the electric-displacement components at the cell center. In this way,
the numerical scheme can be largely simplified. Figure 3.9 presents the comparison of
scattering phase function computed from Mie theory and the FDTD method at the
wavelengths of 10.8um for ice sphere (m = 1.0891 + 0.18216:) and 3.2 cm for water
sphere (m = 7.1499 + 2.9147), with the size parameters of 20 and 3, respectively. In
the FDTD calculations here, we employ the interpolation for the electric displace-
ment to the cell center. The relative errors obtained are comparable with the results
presented in Fig. 2.6 and Fig. 3.6. The comparison of Mie theory and the FDTD
scheme for the absorption and extinction efficiencies reveals that the relative errors
are smaller than 3-4%. Therefore, the FDTD scheme using the cell center interpola-
tion for the electric displacement, which is numerically more efficient and practical,
can also obtain reliable results for dielectric particles with a large range of refractive

indices.

3.4 Summary and conclusions

Numerical solutions for light scattering by dielectric particles with a wide range of re-
fractive indices are provided using the finite-difference time domain technique, where
the computational domain is truncated with a perfectly matched layer absorbing
boundary condition. In this study, we have focused on the effects of numerical treat-
ments related to the particle boundary on the FDTD results. The sensitivity study
is performed for dielectric particles with different refractive indices including 1.311,

1.4717 + 0.389: and 5 + 2. The main conclusions are as follows.
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Figure 3.9: Comparison of the scattering phase functions from Mie theory and those
from the FDTD at the wavelengths of 10.8um for ice sphere (m = 1.0891 + 0.18216%)
and 3.2 cm for water sphere (m = 7.1499 + 2.914¢), with the size parameters of 20
and 3, respectively. A cell size of A\¢/20 is used where )\ is the wavelength inside the
particle. In the FDTD simulation, the interpolation using the electric displacement
to the cell center is employed.
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(1) The averaging of dielectric constant (permittivity) at grid points does not im-
prove the accuracy of the FDTD scheme, although it would make the scheme numer-
ically more complicated. It is recommended that the local value of the permittivity
be used in the FDTD simulation.

(2) It is inappropriate to directly interpolate the electric components in the volume
integration to calculate the scattering and absorption properties for dielectric particles
with large refractive indices. However, reliable results can be obtained using the
electric-displacement interpolation or the interpolation method based on the exact
electromagnetic boundary conditions. Note that, the interpolation using the electric
displacement is numerically more practical for particles with arbitrary shape and
composition.

(3) The interpolation of the field components to different positions in the grid cell is
also examined. Compared to the interpolation to the gravity center, the interpolation
to the cell center introduces slightly more errors, but is computationally more efficient.

(4) The present FDTD scheme with appropriate treatments related to the particle
boundary can be applied to dielectric particles with a wide range of refractive indices.
The errors decrease with the decrease of the refractive indices.

The accuracy of the FDTD scheme, with the interpolation of the field components
to the gravity center based on the exact electromagnetic boundary conditions, is
examined by comparing Mie results for dielectric spheres with m = 7.1499 + 2.914s.
The errors in the extinction and absorption efficiencies are less than ~4%. The errors
in the scattering phase functions are smaller than ~5%. It is also found that similar
accuracy is obtained by using the electric displacement interpolation to the grid cell

center.



Chapter 4

Application of the finite-difference
time domain technique to light
propagation in dielectric media

with particles embedded

4.1 Introduction

Most light scattering studies are related to targets surrounded by air or free space. For
particles or voids embedded in absorbing media, such as particles and air bubbles in
the ocean. or particles surrounded by water vapor in the atmosphere, light scattering
problems must be solved in order to study ocean remote sensing or the radiative
transfer in the atmosphere.

Light scattering by spherical particles or voids embedded in absorbing media was
studied by Mundy et al. (1974), Chylek (1977), Bohren and Gilra (1979), and Quinten
and Rostalski (1996). However, there seems no report in this field for nonspherical
particles. For particles or voids with arbitrary shapes embedded in dielectric media,

the finite-difference time domain (FDTD) scheme (Yee 1966) may be an appropriate
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method to solve the light scattering problems. The FDTD formulation in dielectric
media is simply formulated as shown in Chapter 2. Another fundamental point of
the FDTD is the wave source implementation in the FDTD lattice. For wave source
implementation. a generic problem has been to accurately realize the physics of the
source using as few electric or magnetic field components localized in the space lattice
as possible, so that the additional computer storage and running time needed to
simulate the source are small compared to the resources needed for the ordinary grid
operations. In the context of FDTD solvers for Maxwell’s equations, the incident
plane wave source must meet the following essential requirements (Taflove 1995):

(1) The source should permit the numerical analog of the incident wave to enter the
computational domain from what appears to be the space outside the computational
domain.

(2) At any time step, the incident wave source must introduce no variations of the
generated numerical plane wave across its wavefront, where the wavefront is defined
as the plane perpendicular to the direction of propagation.

(3) The plane wave source should permit the numerical analog of the incident
wave to have arbitrary vector-field polarization, arbitrary time-domain waveform,
and arbitrary duration.

(4) The plane wave source should permit any scattered numerical waves to pass
through the source locus without any hindrance or interaction, and eventually reach
an infinite distance from the scatterer.

Following these requirements, in this study, we will introduce the implementation
of the incident wave source conditions in dielectric media in Section 4.2. To validate
the FDTD simulation, Mie theory for a spherical particle immersed in an absorbing
medium is introduced in Section 4.3. We will show the numerical simulation results

in Section 4.4. Summary and conclusions are given in Section 4.5.
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4.2 The total-field/scattered-field formulation

Historically, there have been several methods for the plane wave source in the FDTD
such as the insertion of the incident wave as an initial condition (Yee 1966), the
hard source (Taflove 1975) and the total-field/scattered-field formulation (Mur 1981;
Umashankar and Taflove 1982). The total-field/scattered-field formulation was the
first compact plane wave source that succeeded in all aspects. This approach is based
on the equivalence theorem (Schelkunoff 1943; Merewether et al. 1980), the linearity
of Maxwell’s equations, and the decomposition of the total electric and magnetic
fields into incident and scattered fields. If a plane wave source is implemented on a
locus within the region between the scatterer and the absorbing boundary, the interior
fields will be the total fields (incident and scattered) and the fields outside the locus
are only the scattered fields.

Following Taflove (1995), Fig. 4.1 illustrates the coordinates used to define the
propagation direction and polarization of the incident plane wave. Using standard
spherical coordinates, the incident unit wavevector L‘:,-,,c is oriented with an angle 6
relative to the +z-axis of the lattice (where 0° < # < 180°). and with an angle ¢
relative to the +z-axis of the lattice (where 0° < ¢ < 360°). To specify the incident-
wave polarization. we first define a reference vector kine X 2 in the wavefront plane
(the plane of constant phase) of the incident wave. We then specify an orientation
angle U of the incident-electric-field vector £ relative to this reference vector (where
0° < ¥ < 360°). This way of specifying the electric field polarization is useful for all
wave incidence cases except § = 0° and 8 = 180°. where ¢ can be used to describe
the orientation of E. relative to the +z-axis.

Figure 4.2 shows the total-field/scattered-field interface in three dimensions which
provides eight possible points of initial contact with the incident wavefront as the
wavevector angles # and ¢ are varied through their angles. As shown in Fig. 4.2,
for the numerical simulation of the incident plane wave, we assume that an auxiliary
one-dimensional source FDTD grid is placed along the incident wavevector so that the

origin O, of the tatal-field/scattered-field interface coincides with one of the electric
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field components of the source grid Ein.(mo) (Taflove 1995), where mq denotes one
grid point of the auxiliary one-dimensional source FDTD grid. The goal is to time-
step the one-dimensional source grid to model the propagation of the desired incident
plane wave in the given medium. Note here that the same spatial increment As,
temporal increment At and time step number n as those for the main 3D FDTD grid
are used for the one-dimensional source FDTD grid. With the delay distance d known
for a particular location of interest in the main 3D FDTD grid. the incident field at
this location can be obtained by linearly interpolating like field values adjacent to
point mqg + d on the one-dimensional grid. This procedure requires computation of
the incident-wave time dependence at only a single point on the source grid, i.e., at
mg — 2 the hard source EI, .(mg —2) = Ef(nAt), where f(nAt) is an arbitrary time
function (Taflove 1995).

Now we consider the situation when the space in which the wave source is im-
plemented is filled with a dielectric medium other than a free space. The system of
finite-difference equations for the source grid can be derived using Eq. (2.8). The
permittivity and permeability of the medium are given as ¢ and /i. respectively. Here,

we assume € has a real part €, and an imaginary part é;. We have

Ht ¥ (m +1/2) = H2Z (m + 1/2)
At

+;—[ Epe(m) — EL (m +1), (4.1a)
E:::l( )—e:z:p[—TAt] mc +

exp[—rAt/zl [H::,:‘” ~1/2)-
H,.';;‘”(m +1/2), (4.1b)
where 7 = wé; /€,.

In three dimensions, the interface of the total-field/scattered-field interface is com-

posed of six flat planes forming a rectangular closed box as shown in Fig. 4.2. The
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vector components of the incident wave is added to the main 3D FDTD grid points

on the interface as follows (Taflove 1995). For electric fields,
j = jo face: Ex(l = 'io + 1/2, ...,’i[ - 1/2,] = j(); k= ko, veny A.[)

En (l ]07 ) Eﬂ-H(Z ]Ork —e:z:p[—‘/‘At/Q]éA n+l/2(L .}0 1/21 k)a

Jj=jo face: E.(i =14g,....01;] = jo; k = ko + 1/2, vk —=1/2)
E™*Y(i, jo, k) — E™* (i, jo, k +ezp[—TAt/2] "+1/2(z Jo—1/2,k),

.'t nc

j = j[ face: E;,_-(Z = io + 1/2, ...,i[ - 1/2,] = jl;k' = ko, ./\.1)
B! (i juk) = B7H vk +ezp[—rAt/°1 A HIR G+ 1/2k),
j = face: E:(i = 'io,---,il;j =j1;k = ko + 1/2 /\.1 - 1/2)

ET*'(i. jr, k) — ET*(i, 51, k) — exp[-7

S HIL i+ 1/2.k),
k = ko face: Ez(i =i0+1/2,...,i1 = 1/2: ] = Jo. ... J1; k = kg)
EMV(i, j ko) — EMY(4, 5, ko) + ez:p[—TAt/")] H;;‘c/~( ijoko —1/2),
k = ko face: Ey(i =do,..., 0155 = jo + 1/2,...,j1 - 1/2; k = kq)
E;*i(i. joko) — Ej* iy, ko) — exp[—rAt/zl “H () ko = 1/2),

k= k[ face: E;,_-(’L =19+ 1/2, ...,'il - 1/2,] =j0, ...,jl;k = /\.1)

E™Y(i, j. k) — EPYG, 5, ky) —ez:p[—rAt/"] H"*‘“( i j. ki +1/2),

y.inc
k =k, face: E, (i =1g,...., 517 = jo + 1/2,...,]’1 —-1/2:k =k)
Ep*Y(i.j, ki) — E3*Y(i 5. k) +exp[—rAt/°1 “H () b+ 1/2),

i =1 face: E (i =10;j =jo+1/2,....J1 - 1/2;k = ko, ..., k1)

At i1/
E;H-l(io*jvk)*_E;l+l(i0vjak)+exp[_1=At/2]g_A—s ::llc/ 0_1/ Ik

(4.2a)

(4.2b)

(4.2¢)

(4.2d)

(4.2¢)

(4.2f)

(4.29)

(4.2h)
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1= io face: E_-_(l = ?:o;j = jo, ...,jl; k= /\To =+ 1/2 kl - 1/2)

E?+l(i01j’l“) En+1(7'01.71 k) —e:t:p[

H;‘;‘!% io—1/2,5,k),  (4.2§)
1= ’il face: E, (Z = 'il;j = jo + 1/2, ...,j1 - 1/218 = k‘o, ./\.1)
Ep*iv.jik) — Eptt (i, g, k) — exp[—rAt/?] ~HIL 20+ 1/2,5,k), (4.2)
i =1 face: E.(i =141;5 = jo, .., j1; k= ko + 1/2 e k1 = 1/2)
E™ iy, g k) — EMY(iy, 4, k) + e:z:p[—TAt/')] jj;‘c“ (i, +1/2,5,k). (4.2

The wave sources for magnetic field, located one-half grid cell outside the total-
field/scattered-field interface, are implemented at the 3D FDTD magnetic field loca-

tions by

J=Jo—1/2face: H:(i=1ido +1/2,...,41 = 1/2:) = jo — 1/2:k = ko, ... k1)
HE™YA o= 1/2,) = B2 Jo = 1/20) = - ERndo k), (430

J=Jo—1/2 face: H(i =1do,....01;] = jo— 1/2k =hko +1/2. ...k — 1/2)
HIY2(, jo — 1/2,k) — HZPY2(i, o — 1/2,k) + %Eﬁ,,,c(i,jo, k), (4.3b)

J=a+1/2face: H.(i=do+1/2,....,51 = 1/2%j =1+ 1/2:k = ko, .... k1)
HPV2(5, )+ 1/2,k) — HMY2(0 5 +1/2,k) + %E’;mc(i, i k), (4.3¢c)

J=n+1/2face: Hy(i =dg,...,i;J =1+ 1/Lk=ko+ 1/2. vk —1/2)
HI™Vi o+ 1/2.K) = BG4 1/2K) = S Brn i B), (430)

k=ky—1/2 face: Hy(i =io+1/2,...,01 — 1/2;j = jo, ... ji; k = ko — 1/2)
HIYY2(i joko — 1/2) — HIJPY2(i, 5 ko — 1/2) + %E’;‘mc (2, J, ko), (4.3€)

k= /6.’() - 1/2 face: Hz(i = io, ...,‘il; ] =j0 + 1/2,...,j1 - 1/21\? = k() - 1/2)

. .. At .
H:+l/2(ze.7~, kO - 1/2) = H:+I/2(za Js kO - 1/2) - EE;MC(?’* s kO)v (43f)
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k= k’l + 1/2 face: Hy(?. = io+ 1/2,...,i1 - 1/2,] =j0, ...,jl;k = kl + 1/2)

Hy U230, j, ko +1/2) — Hy P25 by + 1/2) — %EL‘_W(LJ} k), (439)
k=k +1/2face: Hy(i=1to,...,i55] =Jo+1/2,..., 0 — 1/2:k = k; + 1/2)

HMY2(5 5ok + 1/2) — HYY2(5 5, ky + 1/2) + %Egm(i, j k), (4.3R)
i=idg—1/2 face: Hx(i=4d0—1/2; =jo+1/2....,j1 — 1/2:k = ko, ... ky)

HE™ 2o = 1/2,3,K) = HEVM iy = 1/2,1.0) + e Eplio, oK), (430)
i =dg—1/2 face: Hy(i =10 —1/2;5 = jo, s jishk = ko + 1/2. ... k) — 1/2)

' t
H;H_l/z('lb - 1/2,], k) A H;Hﬂ(io - 1/2va I") - ;L:AA_SE:mc(iO’j7 k)‘ (43-7)

i=u+1/2face: Hi(i=i1+1/2j=jo+1/2..... s = 1/2:k = ko, ... ky)

. \ 5
H.Z.H_l/z(il + 1/2 jv k) — H?+1/2(i1 + 1/2*.]' k) - A_E;,mc(ilvjv k)w (43k)

LAs
1= ‘il + 1/2 face: Hy(l = 'il + 1/2.] = jo, ]l,A. = ko + 1/2 k[ - 1/2)
. t
HIPV2 (i 4172, 5, k) — HPPY2(6 +1/2, 5, k) + ——-ﬂisEz‘m(m, k. (43D

Note here that the “~" in Egs. (4.2) and (4.3) denotes the assignment of the val-
ues at its right side to the field components at its left side on the total-field/scattered-
field interface in the FDTD computational domain.

The delay distance d for a location in the main computational domain is given by

d = Kine-Teomps (4.4)

where ki is the unit incident wavevector given by

kine = Zsinfcos$ + jsinfsing + zcosh. (4.5)
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and Teomp is the position vector from the appropriate origin to the field vector com-
ponent of interest.

For 0° < 6 < 90°, origins O,, Oz, O3 and O, in Fig. 4.1 are the points of the
total-field/scattered-field interface that can make initial contact with the incident
wavefront. For this angle of 6, we have the following possibilities for Fegmp:

(1) 0° < ¢ < 90°. Origin O, at (i, jo, ko)

Teomp = Z(teomp — 10) + §(Jeomp — Jo) + Z(kcomp — ko). (4.6a)
(2) 90° < ¢ < 180°. Origin O, at (i1, jo, ko)

Feomp = Z(lcomp — 1) + §(Jeomp — Jo) + 2(kcomp — ko), (4.6b)
(3) 180° < ¢ < 270°. Origin O; at (i1, J1, ko)

Teomp = Z(tcomp — 1) + §(Jcomp — J1) + 2(kcomp — ko). (4.6¢)
(4) 270° < ¢ < 360°. Origin Oy at (i, ju, ko)

Teomp = Z(icomp — t0) + §(Jeomp — J1) + 2(Keomp — ko). (4.6d)

For 90° < 6 < 180°, origins Ol, 02, 03 and O.; in Fig. 4.1 are the points of
the total-field/scattered-field interface that can make initial contact with the incident
wavefront. For this angle of 6, we have the following possibilities for 7epmp:

(5) 0° < & < 90°. Origin Oy at (io, jo, k1)

Teomp = Z(tcomp — 10) + §(Jeomp — Jo) + Z(kcomp — k1), (4.6€)
(6) 90° < ¢ < 180°. Origin O, at (i1, jo, k1)

Feomp = Z(icomp — 1) + Y(Jeomp — Jo) + Z(kcomp — k1), (4.61)
(7) 180° < ¢ < 270°. Origin Os at (1, ji. k1)

-

chnp = j(zcomp - il) + g(]comp -jl) + z(kwmp - kl)’ (469)
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(8) 270° < ¢ < 360°. Origin Oy at (io, ji1, k1)
Fcomp = :i'(icornp - iO) + g(]comp - .71) + é(kcomp - l\«l) (46h)

Given the delay distance d and the source grid FDTD values, the incident-field
values Ej,c|" and Hinc|"*!/? at a given location can be obtained by linear interpolation
of the like field values adjacent to point mo + d on the one-dimensional grid. The

required vector components of the incident field can then be obtained using

H:fnlcn = H,-':,:l/2(sz'n\llsz'n¢ + cosW¥cosfcosd). (4.7a)
H;;,lcn = HIY?(—sinlcose + cosWcoshsino), (4.7b)
H:;;lc/z = H Y (—cosWsing), (4.7¢)

E7 ine = Efyc(cosUsing — sinWcosbcosd). (4.7d)
E} ine = Ef.(—cos¥cosd — sin¥coshsing). (4.7e)

E? e = E7 (sin¥sing), (4.7f)

where H"'/* and E"_ are the interpolated magnetic and electric fields at that given
location. respectively.

It is noted here that if the medium in which the wave source condition is imple-
mented. is free space, all the formulae discussed in this chapter should go back to
those documented in Taflove (1995).

4.3 Mie theory for light scattering by spheres in

absorbing media

In order to provide validation for the FDTD simulation of electromagnetic wave prop-
agation in absorbing dielectric media with particles embedded. we will briefly intro-

duce Mie theory for light scattering by spherical particles in an absorbing medium in

this section
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Light scattering by particles immersed in an absorbing host medium has already
been solved by different authors in far field (Mundy et al. 1974; Chylek 1977; Bohren
and Gilra 1979). However, the absorption in the host medium restricts the solution
of the problem either to very weakly absorbing media or to finite distance from the
encapsulated particle (Quinten and Rostalski 1996). And due to the absorption in the
host medium, the extinction cross-section and absorption cross-section depend on the
radius of the conceptual integrating sphere around the scatterer. Therefore the ex-
tinction and absorption efficiencies calculated in the far-field region cannot represent
the scattering and absorption by the scatterer only. To avoid this problem, Quinten
and Rostalski (1996) derived a solution which generalizes the far-field solutions on
arbitrary sizes of the conceptual integrating sphere around the scatterer. In partic-
ular, they considered the E; x ﬁ; term in the definition of extinction as suggested
by Chylek (1977). which was overlooked in Mundy et al.(1974). Here E; and H;
are incident electric and magnetic vectors, respectively. In this study, we derive the
expressions for light scattering by spheres immersed in absorbing media using near
fields.

The problem with which we are concerned is scattering of a plane x-polarized
wave by an sphere with a radius of a immersed in an absorbing medium. In spherical
coordinates (Fig. 4.3), the incident (i), internal (t) and scattered (s) fields can be
expressed in spherical harmonics as (Bohren and Huffman 1983)

= Z (M) — Ny, (4.8a)
-k & (1), )
w_ Z A/[eln Noln) (48b)
E, =Y Eu(caM3) — id N4, (4.9a)
n=1
H = '“t Z En(da M) +ica N, (4.9b)

E, = Z En(ian N — b, M), (4.10a)
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Figure 4.3: Geometry of x-polarized light incident on a spherical particle of radius
a. The origin of the spherical polar coordinate system is at the particle center. The
direction of scattered light is defined by angles 6 and ¢.
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u
El?r

Z (i NS + a, M), (4.100)

where E, =i"Eq(2n+1)/(n(n+ 1)) with Eg as the amplitude of the incident electric
field at the origin of the coordinate system when the particle is removed; w is the
angular frequency; k£ and k, are complex wavenumbers in the host medium and inside
the scatterer, respectively; 1 and u, are the permeabilities of the host medium and
the scatterer, respectively.

The vector spherical harmonics in Eqs.(4.8)-(4.10) can be expressed in a form:

My = cos¢mn(cosh)zn(p)és — singT,(cosh)z,(p)és, (4.11a)

M.in = —singm,(cost)z.(p)és — cosPTp(cos8)z,(p)és, (4.11b)
Notn = singn(n + 1)sinfmw,(cos6) z";()p)é,.+

sin(ﬁrn(cose)ki’ip—)]éa + cosmn(COSO)[—FE"lEL)]éa, (4.11c)

Netn = cos¢n(n + 1)sinfm,(cosh) zn;p) ér+
[

COS¢Tn(cosO)[pz#)_]’ée ~ singmn(cost) pa(p)]

éor (4.11d)

where p denotes Ar or k7, corresponding to the fields outside or inside the scatterer,
respectively. Superscripts appended to M and N in Eqs.(4.8)-(4.10) denote the kind
of spherical Bessel function z,: () denotes j,(kr) or j,(kr), which is spherical Bessel
function: and ) denotes h{!)(kr), which is spherical Hankel function. The angle-
dependent functions 7, = P,/sinf and 7, = dP!/df, where P! is the associated
Legendre polynomial. can be computed by upward recurrence (Bohren and Huffman
1983).

Using the boundary conditions at the particle-medium interface (Ejy + Ey = Ey9,
Hig + Hyg = Hy; or Eig+ Egy = Eyy, Hiy + Hyy = Hyy, at 7 = a), we can finally solve
out an, b,. ¢, and d, in the form:
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_ muthp(a)¥n(B) — myn(a)yr(6)
= e (@)Un(B) —mEA (DL B) (4.120)
 mbn(@UL(8) — mu(a)un(8)
b = (@) (B) —mE, (@) n () (4.126)
 mia(avi(a) — mi€(a)una)
= a () U(B) —mE. (a)5n() (4.12¢)
o _ MiE()a(e) = miE (@) (@) w120

- mgfg(a) n(ﬁ) - mfn(a)wl (:3)

where m, and m are the complex refractive indices of the scatterer and the host
medium. respectively: a = mz, § = m,z, and z = 2ma/\g, with Ay as the wavelength
in free space; Riccati-Bessel functions ¥a(p) = pjn(p) and &.(p) = phi}(p).

Once a,, b,, ¢, and d, are obtained, the internal and scattered fields can be
calculated simply by using Eqs.(4.9)-(4.11).

If the host medium is nonabsorbing, the far-field approximation for the electro-
magnetic field is usually used to calculate scattering and extinction cross-sections.
However. for an absorbing host medium, it is not suitable to calculate the scattering
and extinction efficiencies in the far field. In this study, we derive the scattering and
absorption efficiencies of a sphere embedded in an absorbing host medium by using
the exact near-field expressions. Here the conceptual integrating sphere is simply the
surface of the scatterer. It is shown that the scattered energy W, and the energy

absorbed by the scatterer W, are given by

W, = lRe / / (E, x H?).fds

0 |E oc Ianlzf:ﬁ; _ Ibnlzfnfg
B cu(‘hr;/\ 2(2" +1)Im( - ). (4.13)
W = —-Re//(ﬁ. x Hr).nds
_ wE & lea|2 Uty — |dn|2u 07
= mn ey 22+ Dim( — ), (4.14)
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where the integral is taken over the surface s of the scatterer; n is an outward unit
vector normal to the surface of the scatterer; ¢ is the wave speed in vacuum; ¢, =
&n(mz) and Y = Yp(m.z). In the derivation of Eqgs.(4.13) and (4.14), we have used
Eqs.(4.9)-(4.11) and we have used Eq.(4.24) in Bohren and Huffman (1983) and the

relation

2n%(n + 1)°
2n+1
Following Mundy et al. (1974), the mean energy flow incident on the scatterer is

/0 ”(Tr,grm + TnTm)sinfdl = 6y, (4.15)

2mra®
T (4mam;i/No)?
2

Lo[1 + (4mami/ Ao — 1)ezp(4mam,/ o)

2ma
(4'ram,/,\ )2 2cp

|E0| (1 + (dmam;/Xo — 1)ezp(dmam;/No)], (4.16)

where m, and m, are the real and imaginary parts of the complex refractive index m
of the host medium.

The scattering and absorption efficiencies are Q, = W, /I and Q, = W, /I, respec-
tively. Therefore, the extinction efficiency is Q. = Q, + Q..

The extinction can also be calculated using the fields outside the particle. Follow-
ing Chylek (1977). the extinction energy is given by

W, = —%Re//(& x {7 + B x At + B, x H7).7ds. (4.17)

Similar to the derivation of Eqs.(4.13) and (4.14). we can obtain

_ PR & Yottt — Wi,
W—i Z 2n + 1 Im(—)+
— E n - ! +an I bn nwlt _ bt Itwn
-”lT > (2 + 1 it 1 Snbae 2t ) (418)

where &, = &(mz) and ¥, = ¢,(mz). The first term in last equation corresponds
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to the E; x H? term in Eq.(4.17). This term is not zero even when the conceptual
integrating sphere is the surface of the scatterer. Our numerical experiment shows
that, for the calculation of extinction efficiency, there is no difference between the
method using Eq.(4.18) and that using Eqs.(4.13) and (4.14).

In this study, we define the amplitude functions s, and s, following Kerker (1969)

in the form

o0

= Z 2n +1 [anﬂ'n cosl) + bpTa(cosb)). (4.19a)
S 2n+1

= z_: PRy [anTn(cos8) + bpmp(cosh)]. (4.19b)

For unpolarized incident light, the normalized scattering phase function can be

derived in a form

|s1]* + |saf*
nz1(2n + 1)(|an]? + [0a[?)
Another frequently used parameter in the radiative transfer calculation is the

P(cosf) = (4.20)

asymmetry factor which is defined as

!
g= %/—1 P(cosf)cosfdcosb. (4.21)

Using Eq.(4.20). the asymmetry factor can be expressed in an analytic form

n+l n{n+1)

nei (20 + 1)(|an|? + |6n]?)

_ 22f=1[MRe(a,,a;+l + baby ) + 22 Re(anb},)]

(4.22)

4.4 Numerical results

In the FDTD simulation, the computational domain is still terminated with the
perfectly matched layer (PML) absorbing boundary condition (ABC). Because the
medium between the particle and the PML is not free space here, the PML which

has an impedance of free space does not match the medium perfectly. Therefore,
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there may be some numerical reflection happening at the medium-PML interface.
However. when the total field/scattered field FDTD formulation is used, together
with the absorption of the scattered light by the surrounding medium, the scattered
waves arriving at the medium-PML interface is weak, and thus the reflection at the
medium-PML interface due to the imperfect match should not be significant. So it is
expected that using the PML in this case would still give a good simulation, though
more errors are involved.

Figure 4.4 shows the energy density within a spherical air bubble simulated using
the FDTD technique. The air bubble is submerged in an infinite dielectric medium
with a refractive index of 1.0893 + 0.18216:. The size parameter of the air bubble
is 6. The incident direction is along the -z direction. Only the energy density on a
plane crossing the center of the sphere is shown. The incident electric field is linearly
polarized in the direction perpendicular to the plane. The result is normalized by the
incident field at the location of the bubble center when the bubble is removed from
the medium. In the FDTD calculation, a grid cell size of \/60 is used, where A is the
incident wavelength in free space. The exact result for this case calculated by Mie
theory is shown in Fig. 4.5. We can see that the interference pattern inside the air
bubble simulated by the FDTD technique is very close to the exact result. However,
comparing the pattern in Fig. 4.4 with that shown in Fig. 4.5. we can see that the
FDTD has some numerical errors at the bubble boundary, particularly at the part
facing the incident wave.

Figure 4.6 illustrates the extinction, scattering, and absorption efficiencies and
asymmetry factors as functions of size parameters calculated by Mie theory for spher-
ical particles immersed in a host medium. A refractive index of 1.4 + 0.05i is used
for the particles. The real refractive index of the medium is 1.2, and the imaginary
refractive index of the medium is 0.0, 0.001, 0.01 and 0.05. We can see that, with the
increase of absorption in the host medium, both the extinction efficiency and scat-
tering efficiency decrease significantly, but absorption efficiency decreases little. For

large size parameters, the scattering efficiency can be reduced to zero, which means
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that the extinction by the particle is solely due to the absorption, which is close to one
for large size parameters. For size parameters smaller than 10, the asymmetry factors
change very little. However, when size parameter is larger than 10, the asymmetry
factors decrease dramatically with the increase of absorption in the host medium.
Figure 4.7 shows the scattering phase function versus scattering angle for spheres
with a refractive index of 1.4 + 0.05i, immersed in a medium with a real refractive of
1.2 and an imaginary refractive index of 0.0, 0.001, 0.01 and 0.05. The size parameters
are 5, 25. and 100. We can see that, with the increase of the imaginary refractive
index of the host medium, for small size parameters, the phase function has little
change; however, for large size parameters, the forward scattering decreases and the

backward scattering increases dramatically.

4.5 Summary and conclusions

For the applications of the FDTD technique to the study of light scattering and prop-
agation in dielectric media with embedded particles, we have extended the implemen-
tation of the incident wave source conditions in the FDTD to general surrounding
dielectric media. A numerical simulation result is shown. This extension makes the
FDTD suitable for the solution of light scattering and propagation problems when
the scatterer is embedded in surrounding dielectric media as well as in free space.
However. when the surrounding medium is no longer air or free space, one cannot use
the volume integration method to calculate scattering properties. Using the surface
integration in the near field to calculate the scattering properties is difficult by using
the electric fields from the numerical model. Therefore, only internal field and ab-
sorption can be calculated at current time by using the FDTD for particles immersed
in a dielectric medium.

Here in order to provide validation for the FDTD simulation. exact solution for
light scattering by spherical particles immersed in absorbing media is developed in

this study. The internal field is calculated and compared with the FDTD simulation.



91

'S

w

-t

Extinction Efficiency

FYYTTORTY [YNTTVITTI FITTITITTICITTITITO

LALALLALAS LAALALALAS LELLALALL) AAALLA M)

o
4
-
4
4

F o
[

T Y T T TrTT Y T T T
2 F R S T i i L ot il I PSS S T T

—t

w H
lllllllllll[lllllllll o

I

a

-

Scattering Efficiency
~ V]

lllllllllllllllll]

ll""llll1ll"ll"lll!"ll'lllllllllll

o

H

w
-—h
sl o
L
-—b
= 3
o
e
-—b
o
n

Absorption Efficiency
N
L

Ty llllll"lll""llllllllllllll

1
9
L
!

o

-1
1 10! 1

10 02
S ] C
3] . -
[} p L
[T . o
T :
3 07 . F
E ] , r
£ . . .
5. ] N -
7 ] «_ F
< 1 ‘~:

1]
—t

T T
1 10’
Size Parameter (2ra/A)

-
o
N
-
o
N

Figure 4.6: Extinction, scattering, and absorption efficiencies and asymmetry factors
as functions of size parameters for spherical particles immersed in a medium. A
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The extinction, scattering, and absorption efficiencies, and the phase function and
asymmetry factor of the scatterer are derived by using the conceptual integrating
sphere to be the surface of the scatterer. Exemplary results show that, the absorbing
host medium can reduce the scattering efficiency to as small as zero. So, for a particle
with large size parameter in an absorbing medium, the extinction by the particle is
mostly due to the absorption and close to one when size parameter is very large. This
development offsets the drawbacks in several earlier models and is suitable for the

application in related research fields.



Chapter 5

Anomalous diffraction theory for
light scattering by arbitrarily
oriented hexagonal and cylindrical

crystals

5.1 Introduction

The anomalous diffraction theory (ADT) is often used to investigate the scattering
and absorption by nonspherical particles (e.g., Chylek and Klett 1991a). The ADT
was first discussed by van de Hulst (1957). The premise of the ADT is that the
extinction of light by a particle is primarily the result of the interference between the
rays that pass through the particle with those that do not pass through it (Ackerman
and Stephens 1987). The ADT can calculate the scattering and absorption cross-
sections. However, it cannot be used to calculate phase functions. Therefore, one
cannot calculate asymmetry factors using the ADT.

The ADT requires that £ = md/A > 1 and | m — 1 |« 1, where d is the size of

the particle, A is the wavelength, and m denotes the complex refractive index. The

94
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first assumption states that we can trace a ray path completely through a particle,
while the second assumption implies that the refraction and reflection of rays passing
through the particle are negligible and that the absorption is not very strong. Thus the
ADT becomes more accurate as m approaches one. For very soft particles (| m—1 |«
1), the ADT is an efficient and effective approximation to the light scattering problem
by a particle even when the particle size is not very large (Chylek and Klett 1991a;
1991b).

The ADT can be applied analytically to nonspherical particles of various shapes.
van de Hulst (1957) derived analytical expressions using the ADT for the scattering
by spheres and infinitely long circular cylinders oriented perpendicular to the incident
light. Scattering by cubes was considered by Napper (1967) for the normal incidence
case. Stephens (1984) treated the scattering of obliquely incident light by long cir-
cular cylinders. Chylek and Klett (1991a; 1991b) obtained a simple analytical form
for absorption and extinction cross-sections of prismatic columns and plates oriented
perpendicular to the incident rays. Anomalous diffraction theory for arbitrarily ori-
ented ellipsoids was studied by Streekstra et al. (1994). In this study, we derive
the ADT solutions for the light scattering and absorption problems of arbitrarily ori-
ented hexagonal and cylindrical particles. Because the basic geometrical structure of
ice crystals in cirrus clouds is hexagonal, this research has its practical applications
(Fu et al. 1998; 1999).

In the application to a randomly oriented nonspherical particle, the ADT is of-
ten highly simplified because of the difficulty in obtaining the general analytical or
numerical solutions based on the original notation of the ADT. Bryant and Latimer
(1969) suggested that a randomly oriented particle with a volume of V and a pro-
jected area of P was first converted to a cylinder with the same volume but a thickness
of V/P. Then the extinction and absorption cross-sections of this randomly oriented
particle were approximated by applying the ADT to the cylinder with the incident
radiation normal to the base of the cylinder. This simplified ADT (SADT) is often

used in the studies related to the climate and remote sensing applications (Mitchell



and Arnott 1994; Arnott et al. 1994), but its difference from the original notation
of the ADT has not been checked. In this chapter, the SADT is compared with the
ADT for different particle shapes. In Section 5.2, the general formulation of the ADT
is reviewed. In Section 5.3, the ADT for light scattering and absorption by randomly
oriented finite cylinders (discs) and randomly oriented hexagonal columns (plates)
are introduced. The simplified ADT is reviewed in Section 5.4. In Section 5.5, the
extinction and absorption efficiencies calculated using the ADT and the SADT are

compared. Summary and conclusions are given in Section 5.6.

5.2 General formulation of the ADT

Following Chylek and Klett (1991b), let [; be a geometrical path of a given ray
through the particle (Fig. 5.1). Then the phase delay suffered by this ray relative to

a parallel ray traversing the same distance outside the particle is

w = klg(m — 1), (5.1)

where k = 2w/, and the complex refractive index of the particle can be written as
m = m, — im,;. Therefore, the phase delay ¢ is a function of the ray location on the
projected area p of the particle onto a plane perpendicular to the incident radiation.

Using ADT. the forward-scattering amplitude s(0) can be expressed as
s0) =2 / / (1—e™)dp. (5.2)
2 P v

where p is the projected area of the scatterer.
Let p = klg(m, — 1), r = klgm;, then

s(0) = ;‘— / /,, (1—e ") dp. (5.3)

T
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Figure 5.1: Geometry of the anomalous diffraction theory (ADT). The path of an
individual ray within a particle is denoted by 4. P and m are projected area and
refractive index, respectively.



98

Therefore, the extinction, absorption and scattering cross-sections can be ex-
pressed in the forms
4T

Oe = (lc2 )Re[s(0)] = 2//p (1 — e""cosp) dp. (5.4)

O, = //;(1 —e %) dp, (5.5)

Os = 0¢ — Og. (5.6)

5.3 The ADT for arbitrarily oriented hexagonal

and cylindrical particles

In this section, we apply the ADT to arbitrarily oriented hexagonal and cylindrical
columns of finite length. Note that the formulae presented here can be applied to

hexagonal and cylindrical plates as well as columns.

5.3.1 Analytical formulation of the ADT for arbitrarily ori-

ented hexagonal particles

Figure 5.2 shows the geometry of a hexagonal column of length [ and side a in a
rectangular coordinate system. The symmetric axis of the column is in the 7 direction;
the ¢ axis of the coordinate system is perpendicular to one of the 6 side planes of the
column. The arbitrary incident direction is denoted by the azimuth angle a and the
elevation angle 3. Because of the symmetry of the hexagonal crystal, a is from 0 to
7/6 and 3 is from 0 to 7/2.

For given obliquely incident ray with azimuth angle a. we can divide the base of
the hexagonal column into three areas, as shown in Fig. 5.3. The path from one side
to another side of the base in each area, along the direction of the cut, is denoted as

[y, I and [3, respectively. This path is a function of its position in each area. Here,
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Figure 5.2: Geometry of a hexagonal particle with obliquely incident ray.
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areal area2 area3

Figure 5.3: Geometry of cuts on the base of a hexagonal column.
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we introduce a length variable y to denote the path positions in each area, and y is
in the direction perpendicular to the cuts. In Fig. 5.3, we show how y is measured

in each area. Therefore, we have

V3y

= , 0<y<asi 6 — a), i
b 2sin(m/6 — a)sin(n/6 + ) Sy<sasin(r/6-a) (5.7)
V3a V3y ,
2= - <y < V3as .
b cosa  2sin(mw/6 + a)cosa’ 0 <y < Viasina, (5.8)
ls = @, 0 <y < a(cosa — V3sina). (5.9)
cosa

In the following, we denote [, 5, and l3 defined in Eqs.(5.7)-(5.9) as [, with
n=1,2, and 3.

To apply the ADT. we cut the hexagonal particle into infinitely thin slices with
thickness dy; these slices are parallel both to the symmetric axis of the particle and
to the incident direction. So for each slice, we can derive its contribution to the
forward-scattering amplitude. For obliquely incident rays with angle 3 as shown in
Fig. 5.4. the slice is divided into 3 areas by rayl. ray2, ray3 and ray4. The ray path
in the triangular area between rayl and ray?2 is z/(sinfdcos3). The ray path in the
area between ray2 and ray3 is [,/cosB. Therefore, the contribution of each area can
be derived by doing the integration in Eq. (5.2) over z for a given dy. Note that the
integration in the area between ray3 and ray4 is the same as that in the area between
rayl and ray2. So, for obliquely incident rays when I, < lctg3 as shown in Fig. 5.4,

the contribution from the slice to 25s(0) is

lnsing ikz(m— {cos@~lnsing thily (m—
amp'(l,) = [2 /0 (1 — e~ wndemt )dz + [ (1-e %5 )dz]dy. (5.10)

So we have

amp'(ls) = [A + l.sinfB — AeP! + I, sinfeB™|dy, (5.11)
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Figure 5.4: Geometry of the ADT for a slice of hexagonal particle. The slice is parallel
both to the symmetrical axis of the hexagonal particle and to the incident rays. [,(n
= 1. 2, 3) and y are defined in Fig. 5.3.
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wheren=1,2,3, B = —E;;B—l, and A = lcosf + %Qf—‘l’;‘—ﬁ lcosp + 2’"’6.

For obliquely incident rays when [,, > lctg3, the contribution from the slice to

225(0) can be derived as

9 lcos3 _ikz(m-1) lnsinf-—lcos3 lkl(m 1)

amp(l,) = [2/0 (1 — e™wmaessd \dz + (1 e "wm3 )dz]dy. (5.12)
So we have

amp*(l,) = [C + [, D]dy, (5.13)

lkl(m 1) "tsmdws[i tkli(m-1)

wheren=1,2,3. D=sinf(l—e™ 7 ),andC = leosd+=T22222 + lcosfe™ =na
2isinfBcos 'H,(l—f;ll

© Tkm-1) €

Integrating the contributions from all slices over y, we have the forward scattering

amplitude s(0) in the form

Blo(di+42) +43), 0 < 4 < arcty| =]
s(0) = & (24, + B3 + 2(az + by)], arctg[m] < B < arctg[—m—] (5.14)
nn(r/64+a)
£(2B, + By + 2(ay + b)), arctg[—b=—] < 8
sin(w/6+a)

where A,. Ay, A3, By, B3, a;,a,,b; and b, are given by

a sin(t/6—a) 1
Al =/0 amp (ll), (5.150.)

A —/ﬁmm 1 56
2= | amp* (1), (5.15b)
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a (cosa~/3sina)
As =/0 amp'(l3), (5.15¢)
(2/V3)letgBsin(n/6+a)sin(r/6-a) |
a= [ amp'(L,). (5.15d)
1}
ﬁasina
as = amp'(Ly), (5.15€)
—acosa+(2l/V3)ctgBsin(r/6+a)cosa
V3asina »
B= [ amp(l). (5.15/)
0
a (cosa—+/3sina) Y
By = /0 amp(ls), (5.159)
b asin(r/6-a) " ; 5 158
e -/(2/\/ﬁ)lctg[isin(w/6+a)sin(1r/6-a) amp ( l), ( ’ )

b —acosa+(2l/V3)ctgBsin(r/6+a)cosa
.= [

amp®(ly). (5.154)

The integration results of Ay, Ay, A3, Ba, B3, a;, a3, by, and b, can be expressed in

analytical formulae in the forms

sin(7/6 — a)
sin(7/6 + a)

A = Aasin(n/6 — a) + \?azsinﬂ + AE(1 - em’{i—‘}fT‘,))

+S'L;l,d[asin(7r/6 _ Q)eiﬁ%ﬁ%‘ﬁ + E(l —_— eﬁ%ﬂ)]’ (5.160-)

A, =(A+ Msinﬁ)\/iasi'na + 1.5Na?sinf3sin’*a

eBItI . BN 3asina

+—==(A— MsinB)(1—e )+ G. (5.16b)
BN

sin( sinf,. 8ya

- (A-V3a )e m?]a.(cosa — V3sina), (5.16¢)

Az = [A + \/§a
cost coSCx



B, = (C + DM)V/3asina + 1.5DNa?sin’a.

B3 = (Ccosa + V3aD)a(l — V3tga),

(11=AJ+

?lzctog‘fsin(n/ﬁ — a)sin(w/6 + a)
+AE(1 - eBlctgﬁ) + Sl—gﬁ-[']eB[agﬁ + E(l - eBlctg/j)]’

42sin* (/6 + a)

{éDaz sin(m/6 — a)

by = Clasin(r/6 — a) — J] + sin(r/6 T a) -

3atg?l

as = (A + MsinB)(V3asina — I) + 0.5N sin3(3a’sin*a — I?)

eBM

+(A _ A/Ising)ﬁ(eBNl _ eBzV\/l-fasina) +F.

bo=CI+ DMI +05DNI?

where I..J, E, F, M, N and G are given by

2lcosasin(mw /6 + )

I = —acosa + ,
V3tgs
2sin(mw/6 + a)sin(7/6 — a)
J= .
V3tg3
2sin(mw/6 — a)sin(mw/6 + a)
E = ,
V3B
sinBeBM . BN+V3asina 1 BNI
F = T[(\/gasma— Eﬁ)e - (I - ﬁ)e ],
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(5.16d)

(5.16¢e)

(5.16f)

., (5.16g)

(5.16h)

(5.163)

(5.17a)

(5.17b)

(5.17¢)

(5.17d)
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V3a

M= s (5.17¢)
cosa
V3
N=- 2cosasin(r/6 + a)’ (5.17f)
ng ] 1 BN V3asina 1
G = sznﬂT[(\/gaszna - E?W)e + m] (5.179)

For the calculation of the absorption cross-section o,, the previous process is
repeated. but %,%s(()) is replaced by a,, and the A, B,C, D in the previous formulae
are replaced by the following expressions:

A = lcos — ﬂ% (5.18a)
kai
B=- pc (5.18b)
C =2lcosB — (lcosf + ﬂﬁk‘%ﬂ)(l - e'%), (5.18¢)
2k,
D =sinfB(l — e ma), (5.18d)

To calculate the extinction, scattering and absorption efficiencies of the particle,

one needs to calculate the geometrical projected area of the particle. The projected

area of the hexagonal column is given by

P= ?azsmﬂ + 2alcosBcosc. (5.19)

For randomly oriented hexagonal particles, the extinction, scattering and absorp-

tion cross-sections and the projected area are given respectively by

. T [m/6 rw/2
Gesa =g /0 f' 0. s acosBdBda, (5.20a)
0
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and

“ ®/6 rm/2
p=T / Pcos@dBda. (5.200)
6 Jo 0

Therefore, the extinction, scattering and absorption efficiencies for randomly ori-

ented hexagonal particles are: Qo = Gesa/ P.

5.3.2 The ADT solution for arbitrarily oriented cylindrical

particles

For circular cylinders (discs) as shown in Fig. 5.5, Liu et al(1998) introduced an
ADT solution by using the analytic geometry. In this section, similar to our study for
arbitrarily oriented hexagonal crystals, we derive the ADT solution for finite circular
cylinders by using the the geometric arguments. Herein, we cut the particle into very
thin slices; these slices are parallel both to the symmetric axis of the particle and to
the incident direction. The height of the slice is that of the finite circular cylinder.
The width of the slice is a function of its position. In Fig. 5.5. it is clear that the
width of the slice {, = 2y/a? — y2. So for each slice, we can derive its contribution to
the extinction and absorption cross-sections following similar processes as we derive
Eqs.(5.11) and (5.13).

For obliquely incident rays, when [, < htgf, the contribution from the slice to

225(0) can be derived as

27
-'Ig_;ds(O) = [A + l,cos8 — AeP + ,cos8eBlv]dy. (5.21)
where B = —%=1 and A = hsing + Bonion? = hsind + 224,
When [, > htgé. the contribution from the slice to Fs(0) can be derived as
2T
—ds(0) = [C + [, D]dy, (5.22)
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Figure 5.5: Geometry of a finite circular cylinder with obliquely incident ray.



109

_ikh(m-1) . C s . _ikh(m-1)
where D = cosf(1 — e " cess ), and C = hsinf + % + hsinfe™ " cod  —
2isinfcosf -———‘khc(;:; 1)

k(m-1)

For the calculation of the absorption cross-section o,, the previous process is
repeated. but %?-_,'-S(O) is replaced by o4, and the A, B,C, D in the previous formulae

are replaced by the following expressions:

sinfcos

= hsinf — ———, 2
A = hsinf p— (5.23a)
2km,~
B=- gy (5.23b)
: : sinfcosf _ 2khm
C = 2hsind — (hsind + B — W1 —e ), (5.23¢)
2khAm
D = cosf(1 — e~ "ww"). (5.23d)

For circular cylinders, the integration for all slices are done numerically, which
requires that each slice be thin enough until the result is convergent. The extinction,
scattering and absorption cross-sections for randomly oriented cases can be obtained

from the integration of g., o5 and o, over incident angles. so that

x/2
Gesa = / Gesasingd db, (5.24)
V]

Again, in numerical calculations, the resolution of the incident angles should be high
enough to get a convergent solution.

It is known that for a randomly oriented convex particle with a surface area of
S. the projected area P = S/4. Therefore, the extinction, scattering and absorption
efficiencies for the randomly oriented convex particles are Q, = 46./8S, Q, = 45, /S
and Q, = 46, /S. respectively.
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5.4 The simplified ADT for randomly oriented par-

ticles

Bryant and Latimer (1969) suggested a simplified ADT which is often used for sim-
ulating the light scattering and absorption by nonspherical particles (Mitchell and
Arnott 1994; Arnott et al. 1994). In this method, a randomly oriented particle with
a volume of V and projected area of P is first converted into a cylinder with a thick-
ness of d. = V/P. Then the extinction and absorption efficiencies of this randomly
oriented particle can be approximated by applying the ADT to the cylinder with the
incident radiation normal to the base in the forms

Qe = 2 — 2exp(—kd,m;)cos[kde(m, — 1)]. (5.25)

Qs = 1 — exp(—2kd.m;). (5.26)

Here the extinction and absorption efficiencies are defined as the extinction and ab-
sorption cross-sections divided by the particle projected area.

From Eqs.(5.25) and (5.26), we can see that in the SADT. the extinction and
absorption efficiencies depend only on the d. which can be considered as the effec-
tive distance of the light passing through the particle. Therefore, for particles with
arbitrary shapes, once we know their volume and the projected area for randomly
oriented situation, we can get the effective distance d. and thus Qe and Qa can be
calculated. For a sphere with a radius of a, the effective distance d. = (4/3)a. For
a randomly oriented circular cylinder with a base radius of @ and a thickness of h,
d. = 2ah/(a + h). For a randomly oriented hexagonal column with a base side of a
and a thickness of h. d, = 2v/3ah/(V/3a + 2h).

The SADT provides the simplest way to apply the ADT to randomly oriented
particles with different shapes. However, since the light scattering and absorption
processes also depend on the particle shape when the particle size parameter is in the

intermediate region, this simple approximation may introduce significant differences
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from the original ADT. In the following section, we will show the results from both
the SADT and ADT for randomly oriented finite circular cylinders and hexagonal

columns to justify the notation here.

5.5 Results

Figure 5.6 shows the extinction and absorption efficiencies of hexagonal ice crystals
calculated by the ADT at a wavelength of 3.969 um (m = 1.3645 + 0.011127). [, a,
3 and a are defined in Fig. 5.2. The aspect ratio {/a is 6 in this case. We can see
that the extinction and absorption efficiencies of hexagonal particles depend on the
orientation of the particles. For normal incident light (i.e., 3 = 0), when a = 0 and
a = 7/6. these are simply the special cases of flat incidence and edge-on incidence
shown by Chylek and Klett (1991a). We can see that the extinction and absorption
curves for a = 7/12 are between those for « = 0 and & = 7/6. When § = 7/2, i.e.,
the incident direction is perpendicular to the base plane of the hexagonal particle,
there is no difference between curves for different a.

Using the ADT for arbitrarily oriented hexagonal columns or plates, we can cal-
culate the scattering and absorption efficiencies of randomly oriented hexagonal par-
ticles. The ADT results for randomly-oriented hexagonal ice crystals have been used
in the studies by Fu et al. (1998; 1999).

To compare the ADT with the SADT for different particle shapes, we use the
analytical solutions presented in sections 5.3.1 and 5.3.2 for hexagonal and cylindrical
particles. respectively. For spherical particles, Egs.(5.4) and (5.5) can be integrated
analytically so that

Qe = 2Re(1 — 2exp(L)/L - 2[1 — exp(L)]/L?]. (5.27)
Qo =1—2ezp(H)/H — 2[1 — exp(H)|/H*. (5.28)

where L = —2ka(m — 1)i, H = —4kam,, and a is the radius of the sphere.
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Figure 5.6: Extinction and absorption efficiencies of hexagonal ice crystals calculated
by the ADT at a wavelength of 3.969 um (m = 1.3645 + 0.01112:). [, a, a and 3 are
shown in Fig. 5.2. The aspect ratio {/a is 6.
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Figure 5.7 shows the extinction and absorption efficiencies of spheres with the
refractive indices of 1.140.01i, 1.140.10i and 1.140.20i as functions of size parameter
(wde/A), calculated using the ADT and the SADT. Only small real refractive index is
used here to satisfy the requirement of the ADT. Three different imaginary refractive
indices are chosen to show the difference between the ADT and the SADT under
different absorption conditions. We find that in the intermediate size parameter
region, the absorption efficiency from the SADT is systematically larger than that
from the ADT. When the absorption is weak, we can see that the extinction curve
from the SADT is very different from that of the ADT. The SADT shows an extinction
pattern which is particular for disc-like particle shapes with normally incident light.
Thus, using the SADT to calculate the extinction efficiency may result in erroneous
solutions if the absorption is not strong enough. However, when the absorption is
strong, because the interference at the far field is very weak due to the absorption
of the rays passing through the particle volume, the SADT extinction curve becomes
much closer to that from the ADT, though the difference is still significant in the
resonance region where the particle dimension is close to the incident wavelength.

Figure 5.8 shows the extinction and absorption efficiencies of randomly oriented fi-
nite circular cylinders with the refractive indices of i.14-0.01i, 1.140.10i and 1.140.20i
as functions of size parameter (7d./\), calculated using the ADT and the SADT. An
aspect ratio h/a = 2 is used in this calculation. In the ADT calculations, we set
the thickness of each slice as 0.01a, where a is the radius of the cylinder base. For
the randomly orientation treatment, we use an angle resolution of 7/180 for the inte-
gration. We can see that the absorption efficiencies from the SADT are larger than
those from the ADT in the intermediate size parameter region for all of the three
different refractive indices. The difference between the extinction efficiencies also be-
comes more significant than that for spherical particles. It is noted here that by using
mde/A as the size parameter, the extinction and absorption curves from the SADT for
any particle shapes are same; they are simply those for discs with normally incident

light. Using a larger aspect ratio h/a = 6 for the randomly oriented finite circular
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Figure 5.7: Extinction and absorption efficiencies of spheres with refractive indices
1.14+0.01i, 1.140.10i and 1.1+0.20i as functions of size parameters (7d, /), calculated

using the ADT and the SADT.
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Figure 5.8: Same as Fig. 5.7, but for randomly oriented finite circular cylinders with
an aspect ratio (h/a) of 2.
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cylinders, as shown in Fig. 5.9, we can see that the difference between the ADT and
the SADT results becomes smaller but still significant. By comparing Figs. 5.8 and
5.9 with Fig. 5.7. we can see that the differences between the ADT and the SADT
for randomly oriented finite circular cylinders are larger than those for spheres.

For randomly oriented finite hexagonal columns, as shown in Figs. 5.10 and 5.11,
we can see similar situations as those for randomly oriented finite circular cylin-
ders. However, the differences between the ADT and the SADT results for hexagonal
columns become slightly larger. It can be concluded that, using the SADT to calcu-
late the single scattering and absorption properties for randomly oriented nonspherical
particles may cause the results very different from those based on the original notation
of the ADT. Because the refractive indices used here are very small, the ADT may be
considered as a good approximation. However, by comparing with the exact theory
(Fu et al. 1999). the ADT may still underestimate the absorption efficiencies due to
neglecting the tunneling effects. Since the absorption efficiencies from the simplified
ADT are larger than those from the ADT, the SADT results may agree better with
the exact theory. But this better agreement is fortunate because the errors in the

ADT and those related to the simplifications in the SADT partly cancel each other.

5.6 Summary and conclusions

In this study, the anomalous diffraction theory is applied to arbitrarily oriented hexag-
onal and cylindrical particles. The analytical formulae are derived for the extinction
and absorption cross-sections of arbitrarily oriented hexagonal and cylindrical parti-
cles, which makes the calculation very efficient. The accuracy of these solutions is
determined by the conditions under which the ADT is valid, i.e.. the conditions for
refractive index m and size parameter z. If the ADT conditions are satisfied, the
current solutions would give reliable results for the scattering and absorption by ar-
bitrarily oriented hexagonal and cylindrical particles. However. if the particle is not
“very soft”, the ADT cannot be used to simulate the scattering and absorption by
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Figure 5.9: Same as Fig. 5.7, but for randomly oriented finite circular cylinders with
an aspect ratio (h/a) of 6.
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Figure 5.10: Same as Fig. 5.7, but for randomly oriented finite hexagonal columns

with an aspect ratio (h/a) of 2.
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Figure 5.11: Same as Fig. 5.7, but for randomly oriented finite hexagonal columns
with an aspect ratio (h/a) of 6.
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nonspherical particles without verification using rigorous methods (Maslowska et al.
1994).

Additionally, the simplified ADT is compared with the ADT using the original
notation for finite circular cylinders and hexagonal columns. In the resonance region
of size parameters, significant differences are found in both extinction and absorption
efficiencies. Using the simplified ADT for randomly oriented particles may introduce
a difference as large as ~15% in the absorption efficiency and ~100% in the extinction

efficiency.



Chapter 6

On the retrieval of cirrus particle
size using infrared channels in the
8-12 ym window: Reliability and

implications

6.1 Introduction

Cirrus cloud is one of the most important, yet least understood components in the
climate system (Liou 1986). A successful retrieval of cirrus cloud properties from
aircraft or satellite data requires accurate methodologies for the calculation of light
scattering and absorption by nonspherical cirrus ice crystals. Since there are ob-
servational and computational difficulties in determining the radiative properties of
nonspherical ice crystals in cirrus clouds, it is common practice to approximate non-
spherical ice crystals by spherical particles (e.g., Stephens et al. 1990; Ackerman et
al. 1990; Sun and Shine 1995) so that the exact theories can be used. Unfortunately,
this approach does not account for the hexagonal structure of ice crystals with finite
length. The cirrus radiative properties in the infrared are dominated by absorption,
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although the effects of scattering cannot be neglected (Fu et al. 1999). For this rea-
son, the use of Mie theory to evaluate the scattering coefficient and asymmetry factor
for ice crystals may not present a serious problem for the calculation of the emissivity
of cirrus clouds at infrared wavelengths. However. using Mie theory to specify the
absorption coefficient may result in significant errors.

The absorption and extinction cross-section of a sphere can be substantially greater
than what is predicted from its physical cross-section. Mitchell (1995) pointed out
that for irregular ice particles, grazing photons might not be captured as surface
waves. So only the physical cross-section of the particle needs to be considered when
predicting scattering and absorption. It has been suggested that the anomalous
diffraction theory (ADT) would be an appropriate method to calculate the single
scattering properties of nonspherical particles (Mithcell et al. 1996). Because of the
simplicity of the ADT, it is often used to calculate the absorption coefficients of ice
crystals for the remote sensing of cirrus clouds (Baran et al. 1998; Holz et al. 1998).
However. the validity of the ADT for the retrieval of the microphysical properties of
cirrus clouds need to be checked since the ADT is an approximate method (Van de
Hulst 1957).

To get accurate solutions for the radiative properties of nonspherical particles,
a finite-difference time domain (FDTD) program with a perfectly matched layer
(PML) absorbing boundary condition (ABC) has been developed in Chapter 2. In
this chapter, for randomly oriented hexagonal ice crystals, the accuracy of approx-
imate methods including Mie theory, the ADT and the GOM in the calculation of
single-scattering properties for nonspherical particles are first examined for the ap-
plication to remote sensing. Here the reference results are based on the FDTD cal-
culations for hexagonal particles with small size parameters and the GOM for large
size parameters. We then consider 30 size distributions from in-situ measurements
to simulate the single-scattering properties of cirrus clouds. The spectral brightness
temperatures in the 8-12 ym window from the cirrus clouds is calculated using the

discrete-ordinate radiative transfer model (Stamnes et al. 1988). Here we focus on
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the wavelengths of 8.333, 11.155 and 12.0 um since the differences in cirrus emissivity
between these wavelengths are often used to detect cirrus clouds and retrieve the ice
crystal size based on the observed brightness temperatures (Strabala and Ackerman
(1994); Stubenrauch et al. 1999). Here, the errors in the simulated brightness tem-
peratures due to the approximate single-scattering models and their effects on the
retrieved particle sizes are addressed. We also discuss the implication of our results
to the retrieval of cirrus particle size using infrared channels in the 8-12 um window.

The single-scattering models used are reviewed in Section 6.2. The calculation of
the single-scattering properties of cirrus clouds is documented in Section 6.3. The
brightness temperatures at top of atmosphere (TOA) calculated by using different
single-scattering models are discussed in Section 6.4. The retrieval of mean effective
size of cirrus clouds is addressed in Section 6.5. Summary and conclusions are given

in Section 6.6.

6.2 Single-scattering models

In the present study, we assume that the nonspherical ice crystals are randomly ori-
ented hexagonal columns. The aspect ratio of the columns follows those used in
Fu (1996). The refractive indices for ice from Warren (1984) are used. The single-
scattering properties of randomly oriented hexagonal ice columns are calculated at
wavelengths of 8.333, 11.155 and 12.0 um, which are often used for remcte sensing of
cirrus clouds. Different scattering models including the anomalous diffraction theory
(ADT), Mie theory, the geometric optics method (GOM) (Yang and Liou 1996b), and
the finite-difference time domain (FDTD) technique are used. The FDTD model used
is developed in Chapter 2. The ADT model used is the analytical solution for hexag-
onal crystals documented in Chapter 5. Mie theory and the GOM for nonspherical

particles are introduced as follows.



124

6.2.1 Mie theory

To apply Mie theory, nonspherical particles are usually converted into spheres of
either equivalent surface area or equivalent volume. Letting S and V be the surface
area and volume of a nonspherical convex particle, the radius of the equivalent sphere

is given by
o= 5(S/m2 (6.1)
or

ry = (3V/4m)'/3, (6.2)

where ry and r, are the radii for spheres with equivalent surface area and equivalent
volume, respectively.

For a nonspherical particle, spheres with both equivalent surface area and volume
can also be defined by letting S = ndwr2, and V = nirrd,, where n is the number of
spheres. So we have the radius r,s as (Fu et al. 1998)

rus = 3V/S. (6.3)

In this case, the particle size distribution is no longer preserved. However, the ratio
of volume V' to projected area P is conserved for each particle. Since this ratio is
simply the effective distance as discussed in Chapter 5. it is a fundamental parameter
in determining the absorption efficiency of a nonspherical particle. It can be shown
that r,s < 1y < 5. In the present study, we denote Mie theory applied to these
spheres as MieS, MieV or MieVS, corresponding to rs, r, and r,,. The size parameter

z for nonspherical particles is defined here as
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T = 27Tys /A (6.4)

6.2.2 Geometric optics method

Based on the laws of geometric optics, the geometric optics method (GOM) assumes
that light consists of separate localized rays that travel along straight paths. It is an
asymptotic approach that becomes accurate when a locally smooth surface is much
larger than the incident wavelength. The GOM has been used to derive the scattering,
absorption aand polarization properties of nonspherical ice crystals. Computation of
the angular scattering patterns for hexagonal ice crystals based on the GOM were
first reported by Jacobowitz (1971), where infinity hexagonal columns were assumed.
Cai and Liou (1982) developed a ray-tracing model for arbitrarily oriented hexagonal
ice crystals, which took into account internal absorption and polarization. Along
the same line, Takano and Jayaweera (1985), and Muinonen (1989) also carried out
numerical computations for the scattering of hexagonal particles. Takano and Liou
(1989) developed a geometric optics program that accounted for the ice crystal size
distribution and orientation.

In this study, a geometric optics model developed by Yang and Liou (1996b) is
used for the calculation of the single-scattering properties for arbitrarily oriented
hexagonal ice crystals. The new GOM model uses the ray-tracing technique to solve
the near-field on the ice crystal surface, which is then transformed to far-field on the
basis of the electromagnetic equivalence theorem. By performing the exact mapping
from the near-field to the far-field, the only approximation in this novel geometric
optics model is confined to the calculation of the surface field by means of geometric
optics.

Though the new geometric optics model removes some of the shortcomings of the
conventional geometric optics approach, it still cannot circumvent the large errors
for small size parameters. However, for size parameters larger than about 40, the

calculation of the surface field and the field inside the particle by means of geometric
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optics becomes increasingly accurate as the particle size parameter becomes larger.
Therefore. for large size parameters, the GOM is still an accurate model for the

calculation of the single-scattering properties of nonspherical particles.

6.2.3 A composite method

Because the FDTD can be applied only to particles with small size parameters, due
to its requirement for large CPU time and memory size, a composite methodology
(CMP) (Fu et al. 1998, 1999), which employs a linear combination of single-scattering
properties from Mie theory, the ADT, and the GOM, is applied to fit the FDTD results
for small size parameters and the GOM results for large size parameters. Therefore,
the CMP is valid for a wide range of size parameters. Following Fu et al. (1998,
1999). the scattering efficiency from the CMP is simply derived as the mean value
of those from the ADT and the MieVS for hexagonal ice crystals. The asymmetry
factor can be obtained from the MieV for size parameters (z = 27r,,/)) smaller than
10. For size parameters larger than 10, the asymmetry factor from the GOM is used.
The absorption efficiency Q. can be obtained by a linear combination of results from
the GOM and Mie theory for the wavelengths of 8.333, 11.155 and 12.0 um in the

form

Qo = 2/3Q.GOM +1/3Q,MieV S()\ = 8.333um),
Qo = 1/2Q.GOM + 1/2Q,MieV (A = 11.155um), (6.5)

Qa = 5/12Q.GOM + 7/12Q, MieV (A = 12.0um),

where QQGOM . Qan[ieVS and QaklieV are the absorption efficiencies from the
GOM, the MieVS and the MieV, respectively, for randomly oriented hexagonal par-
ticles. The coefficients for different wavelengths are empirically determined with the
FDTD and the GOM results.
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6.3 Single-scattering properties of cirrus clouds

In order to resolve the cirrus ice crystal size distributions, 38 size bins are used in
single-scattering calculations. The length (L) and half width (D/2) of ice crystals,
along with the length limits (L; and L,) of each bin, are shown in Table 6.1. The
single-scattering properties of hexagonal ice crystals at the 38 bins are calculated
using different methodologies, including Mie theory, the ADT. the GOM, and the
composite method at the 3 infrared wavelengths.

Figures 6.1, 6.2 and 6.3 show the extinction efficiency, absorption efficiency and
asymmetry factor for randomly oriented hexagonal ice crystals. calculated using dif-
ferent scattering models at the wavelengths of 8.333 ym (m = 1.2993 + 0.03707),
11.155 (m = 1.1139 + 0.29107) and 12.0 pum (m = 1.2798 + 0.4133:). respectively. We
can see that the CMP results are very close to the FDTD results. For the absorption
efficiency which dominates the IR radiative transfer, Mie theory overestimates this
quantity. while the ADT and the GOM usually underestimate it.

Using these single-scattering properties and cirrus ice crystal size distributions, we
can obtain the extinction coefficient, absorption coefficient and asymmetry factor of
cirrus clouds. The extinction coefficient 3, absorption coefficient &,, and asymmetry

factor g of the cirrus clouds for each wavelength can be expressed by

8= /L Fmes Q.(L, D)P(L, D)n(L)dL, (6.6)

3, = / ™ Ou(L. D)B(L, D)n(L)dL, (6.7)

min

JEme= §(L, D)Q,s(L, D)P(L, D)n(L)dL
g _— min L _ - i (6'8)
Jime=Qs(L, D)P(L, D)n(L)dL

min

where n(L) is the size distribution of the cirrus ice crystals. L:n and Lmq: are the

minimum and maximum lengths of ice crystals, respectively. P. Q.. Qa, Q, and § are



L(pm)

D/2(pm)

Ly(um)

Ly(pm)

0.20000E+01
0.40000E+01
0.60000E+-01
0.87500E+01
0.10000E+-02
0.12000E+02
0.16000E+02
0.20000E+02
0.25000E+02
0.37500E+-02
0.50000E+02
0.75000E+02
0.10000E+03
0.12500E+03
0.15000E+03
0.17500E+03
0.20000E+03
0.22500E+03
0.25625E+03
0.30000E+03
0.35000E+03
0.40000E+03
0.45000E+03
0.51250E+03
0.60000E+03
0.70000E+-03
0.80000E+-03
0.90000E+03
0.10000E+04
0.11000E+04
0.12000E+04
0.13000E+04
0.14250E+04
0.16000E+04
0.18000E+4-04
0.20500E+04
0.24500E+-04
0.31000E+04

0.10000E+01
0.20000E+-01
0.30000E+01
0.43750E+01
0.50000E+01
0.60000E+01
0.80000E+01
0.10000E+01
0.12500E+02
0.18750E+02
0.20000E+02
0.30000E+02
0.25000E+02
0.31250E+02
0.37500E+02
0.43750E+02
0.50000E+02
0.38250E+02
0.43562E+02
0.51000E+02
0.59500E+-02
0.68000E+02
0.76500E+-02
0.56375E+02
0.66000E+02
0.77000E+02
0.88000E+02
0.99000E+-02
0.11000E+03
0.12100E+03
0.13200E+03
0.14300E+-03
0.15675E+-03
0.17600E+03
0.19800E+03
0.22550E+03
0.26950E+03
0.34100E+03

0.10000E+01
0.30000E+01
0.50000E+-01
0.70000E+01
0.90000E+-01
0.11000E+02
0.13000E+02
0.19000E+02
0.21000E+02
0.33500E+02
0.37500E+02
0.62500E+02
0.87500E+02
0.11250E+03
0.13750E+03
0.16250E+03
0.18750E+03
0.21250E+-03
0.23750E+03
0.27500E+03
0.32500E+03
0.37500E+03
0.42500E+03
0.47500E+03
0.55000E+03
0.65000E+03
0.75000E+03
0.85000E+03
0.95000E+03
0.10500E+04
0.11500E+04
0.12500E+04
0.13500E+04
0.15000E+04
0.17000E+04
0.19000E+04
0.22000E+04
0.27000E+04

0.30000E+01
0.50000E+01
0.70000E+-01
0.90000E+01
0.11000E+4-02
0.13000E+02
0.19000E+02
0.21000E+02
0.33500E+02
0.37500E+02
0.62500E+02
0.87500E+02
0.11250E+-03
0.13750E+03
0.16250E+03
0.18750E+03
0.21250E+03
0.23750E4-03
0.27500E+03
0.32500E+-03
0.37500E+03
0.42500E+03
0.47500E+03
0.55000E+03
0.65000E+-03
0.75000E+03
0.85000E+03
0.95000E+-03
0.10500E+04
0.11500E+-04
0.12500E+-04
0.13500E+04
0.15000E+04
0.17000E+4-04
0.19000E+04
0.22000E+04
0.27000E+-04
0.35000E+04
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Table 6.1: Discretization of ice crystal sizes in the single-scattering calculations.
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Figure 6.1: The extinction efficiency, absorption efficiency. and asymmetry factor for
randomly oriented hexagonal ice crystals, calculated using different scattering models
at a wavelength of 8.333 um (m = 1.2993 + 0.03707).
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Figure 6.2: Same as Fig.6.1, but at the wavelengths of 11.155 um (m = 1.1139 +

0.29107).
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the projected area, extinction efficiency, absorption efficiency, scattering efficiency,
and asymmetry factor, respectively, for randomly oriented hexagonal ice crystals.
By assuming that the ice crystals are hexagonal, the ice water content (IWC)
and generalized effective size (D) are defined as (Fu 1996)
3 3 Lmaz
IWC = —8‘/—_,),. / DDLn(L)dL. (6.9)

™min
and

Jme= DDLn(L)dL
Jfmes (DL + ¥ D?)n(L)dL

min

ge = (6.10)
where p; is the density of pure ice, which is 0.9167gcm 3. As shown in Fu (1996) and
Fu et al. (1998), the radiative properties of cirrus clouds can be parameterized in
terms of /W C and Dy, in climate models. While the /W C is a prognostic variable in
most of climate models, little is known about the global distribution of Dg.. Therefore,

it is a subject of active research to retrieve D, from satellite measurements.

6.4 Comparison of brightness temperature at TOA

simulated using different scattering models

Using the single-scattering properties obtained from different scattering models, we
employ a discrete ordinate radiative transfer program developed by Stamnes et al.
(1988) to calculate the upward IR radiance at TOA. Corresponding to the 3 wave-
lengths at which the single-scattering properties are calculated. we use 3 spectral
bandwidths (8.3-8.4, 11.06-11.25, and 11.93-12.06 um) (Ackerman et al. 1990) to cal-
culate the mean IR radiance within each band. We use 32 streams and midlatitude
summer temperature profile. A single layer of cirrus cloud with different thickness
and location is considered, which is put between 8.0-8.5, 8.0-9.0. 8.0-10.0, 8.0-12.0,
8.5-12.5, 10.5-12.5, 11.5-12.5 and 12.0-12.5 km.
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The 28 ice crystal size distributions adopted in Fu (1996) and other 2 size dis-
tributions used by Mitchell et al. (1996) are used in the present study. These were
based on in situ aircraft observations from both midlatitude and tropical regions. In
order to include the potential effects of small ice crystals that may exist in cirrus
clouds on the infrared, all 30 ice crystal size distributions are extrapolated to 1.0 um
following Eq. (2) of Mitchell et al. (1996), which is

Ns(L) = Nosexp(—a;L) (6.11)

where L is the maximum dimension of the ice particles (particle length), ay is the
slope parameter, and Ny, is a normalizing factor. The extrapolated 30 ice crystal size
distributions are shown in Figs. 6.4 and 6.5. These size distributions are discretized
in 38 bins as shown in Table 6.1 to resolve the structure of the spectra. The ice water
content and the generalized mean effective size of these extrapolated size distributions
are given in Table 6.2. Because of the extrapolation, the ice water content and the
generalized mean effective size shown in Table 6.2 may be different from those in Fu
(1996).

Figures 6.6 and 6.7 show the comparison of the upward brightness temperatures
at TOA obtained from Mie theory, the ADT and the GOM with those from the CMP.
The difference can reach as large as 7K. Large differences usually occur when cirrus
cloud particle mean effective sizes are small. We can see that the MieV, ADT, and
GOM generally overestimate the upward brightness temperature but the MieS and
MieVS underestimate it. This may make significant difference in the retrieved cirrus
particle size. Therefore, to accurately retrieve the physical properties of cirrus clouds,
nonsphericity of ice crystals must be accounted for and an accurate light scattering
model is necessary.

Figure 6.8 shows the scatter diagram of brightness temperature difference (BTD)
between 8.333 and 11.155 um versus BTD between 11.155 and 12.0 pm, calculated
using scattering properties from Mie theory, the ADT, the GOM and the CMP. The
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Table 6.2: Characteristics of the 30 measured ice crystal size distributions.

Particle size IwC Dy,
distribution (gm™3) (um)
HP (1984): T (K)
-20 to -25 0.2933E-01 0.6361E+02
-25 to -30 0.2657E-01 0.5098E+02
-30 to -35 0.2567E-01 0.7772E+02
-35 t0 -40 0.2838E-01 0.5063E+02
-40 to -45 0.4362E-02 0.2116E+02
-45 to -50 0.2157E-02 0.2076E+02
-50 to -55 0.2147E-02 0.1399E+02
-55 to -60 0.6424E-03 0.2943E+02
FIRE I
11/01/86 0.5822E-02 0.6411E+02
11/02/86 0.1644E-01 0.8598E+02
10/22/86 0.1895E-01 0.9556E+02
10/25/86 0.3535E-01 0.1062E+03
10/28/86 0.1868E-01 0.1027E+03
TL (1989)
Cs 0.1066E-01 0.3638E+02
Ci uncinus 0.2848E+00 0.1297E+03
Warm 0.2656E-01 0.2926E+02
Cold 0.8551E-02 0.1072E+02
FIRE II
11/26/91 0.1494E-01 0.8031E+02
12/05/91 0.8362E-02 0.6984E+02
CEPEX: IWC (gm~3)
107* to 1073 0.9386E-03 0.2267E+02
1073 to 1072 0.5275E-02 0.2936E+02
1072 to 107! 0.2990E-01 0.5255E+02
0.1 to 0.32 0.1282E+00 0.8369E+02
CEPEX: April 4
2250 0.7762E-02 0.1922E+02
2341 0.1566E-02 0.2063E+02
2342 0.2542E-02 0.2798E+02
2347 0.2617E-01 0.5408E+02
2348 0.5237E-01 0.6090E+02
FIRE II (Average)
11/22/91 0.1308E-01 0.6681E+02
12/05/91 0.3398E-01 0.4990E+02
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BTD is used in the remote sensing for cirrus clouds to identify cloud types and cloud
particle sizes and shapes (Takano et al. 1992). In Fig. 6.8, for 8 different cloud
locations and 30 size distributions, each panel consists of 240 points corresponding to
each scattering model. We can see that the results from Mie theory, the ADT and the
GOM all deviate significantly from the CMP results. The CMP points are generally
between those from Mie theory and the ADT. Again, we can conclude that the light

scattering models used can alter the remote sensing results.

6.5 Sensitivity of retrieved cirrus particle size to

the single-scattering models

Physical properties of cirrus clouds have been studied with satellite or aircraft mea-
surements by several authors. For example, Strabala and Ackerman (1994) used a
trispectral combination of observations at 8, 11 and 12 um bands to detect cloud
and cloud phase. On the remote sensing for the microphysical properties of cirrus
clouds, Han et al. (1997) retrieved ice crystal sizes with a radiative transfer model
treating ice crystals as hexagonal columns. Baran et al. (1998) and Holz et al. (1998)
retrieved ice crystal sizes using the simplified anomalous diffraction theory (SADT)
(Bryant and Latimer 1969) as the scattering model.

It has been claimed that the interpretation of infrared radiometric measurements
based on Mie theory significantly underestimates the cirrus ice crystal sizes (Baran et
al. 1998). By applying Mie theory to equivalent ice spheres for the calculation of the
infrared absorption coefficients at wavelengths between 8 and 12 um, the maximum
ice crystal size that can be retrieved is about 30 um (Strabala et al. 1994). Beyond
this size range the spectral variation of the scattering and absorption properties is
not significant. Therefore, if the cirrus cloud is dominated by large particles, no re-
liable retrieval of the size information can be obtained by using these wavelengths.
To reconcile the retrieved particle size with the in situ measurements, people usu-

ally use the simplified ADT to calculate the scattering and absorption properties of
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nonspherical particles such as hexagonal ice crystals (Baran et al. 1998; Holz et al.
1998). Due to the error of the approximation, the simplified ADT can produce much
smaller absorption efficiencies than those from other scattering methods. Therefore,
using the absorption efficiency from the simplified ADT, one can then obtain much
larger retrieved particle size.

Reliable retrieval of microphysical properties of cirrus clouds requires accurate
calculation of the single-scattering properties of nonspherical particles. Because in
the calculation of single scattering properties, even for hexagonal columns, the ADT
still results in significant errors, there is reason to believe that using the SADT as
scattering model may also cause significant bias in the retrieved quantities. Here we
first examine the sensitivity of retrieved particle size to the scattering model and then
explore the limitations of the retrieval method by using the infrared window channels.

Differences in cirrus emissivity between the wavelengths 8.333 and 11.155 pum
are used to retrieve ice crystal size in this study. Following Holz et al. (1998), the
emissivity at 11.155 pm and the ratio of the emissivities at 8.333 and 11.155 um
are used to establish a lookup table. To build up a lookup table to retrieve the
mean effective particle size Dy, of a layer of cirrus cloud. we assume a particle size
distribution n(L) in the form (Mitchell et al. 1996)

Ns(L) = NOsexp(_asL)v (6120.)
N(L) = NqL’exp(—yL), (6.12b)
n(L) = Ny(L) + Ni(L), (6.12¢)

where v = 2-2exp[-(L;/100 um)?], is a parameter quantifying the deviation of the
distribution from exponential behavior. L denotes the maximum dimension of the
particles. a; = 1/L, and a; = (v + 1)/L; define the size distribution slopes of the
small- and large-particle modes. L, denotes the mean maximum dimension from the
contribution of small ice crystals and is fixed to 25.32 um (as = 395 cm™!) (Mitchell

et al. 1996). L; is the mean maximum dimension for the large ice crystal mode and



142

can be varied. A minimum in the bimodal size distribution exists in the region where
(6.12a) and (6.12b) overlap. The L corresponding to this minimum is estimated as
L. = 0.2927L, + 72.0. Knowing Ny(L) at L. via (6.12b), N,(L.) is estimated to be
Ni(L.)/2. Therefore, Nos = 0.5N;(L.)exp(asL.).

By varying L; from a small value to a large value, we can obtain a series of size
distributions. Using the absorption efficiency calculated by a scattering model, we

can calculate the cloud emissivity € in the form

= 1.0 — exp(—Faz/p), (6.13)

where z denotes the cloud thickness, ;: denotes the cosine of the radiance zenith angle.
Using Eq.(6.10). we can calculate the mean effective particle size (Dy.) related to each
size distribution. Therefore, using the emissivity values and the corresponding Dy,
we can build up a lookup table corresponding to the used light scattering model.
For example, shown in Fig. 6.9 are some curves in the lookup tables based on the
single-scattering properties from the ADT, CMP, GOM, MieS, MieV and MieVS.
Figure 6.10 shows the comparison of the retrieved D, based on the lookup tables
from the ADT, CMP. GOM, MieV, MieS and MieVS light scattering models with the
Dy of the simulated cirrus clouds. The clouds are simulated by using the bimodal size
distributions. The cloud emissivities are calculated by using Eq.(6.13) with absorption
properties from the CMP. For this retrieval, a given cloud emissivity of 0.5 at 11.155
pm is used. We can see that the retrieved particle sizes based on the ADT are
generally much larger than the actual values. Both the GOM and ADT ignore the
tunneling effect, but the GOM doesn’t overestimate the particle sizes, because of the
big differences in the absorption efficiencies between the GOM and ADT at 8.333 um.
The GOM results are close to the Mie results. which underestimate the particle sizes.
We may conclude that the tunneling effect cannot explain the big differences between
the retrieved particle sizes based on the ADT and other scattering models. It is the

errors of the ADT in absorption which make the difference. For large particles, we
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Figure 6.9: Emissivity ratio between 8.333 and 11.155 pm as a function of the emissiv-
ity at 11.155 um for a cirrus cloud composed of hexagonal ice crystals with bimodal
size distributions. The different curves correspond to various effective sizes (Dyge).
The used light scattering models include ADT, CMP, GOM, MieS, MieV and MieVS.
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can see in Fig. 6.10 that the retrieval is unstable, because the emissivity difference
between 8.333 and 11.155 pm is very small now.

Figure 6.11 shows the comparison of the retrieved D, based on the lookup table
from the CMP light scattering model with the actual D, of the 30 measured size
distributions. The emissivities of the cirrus clouds simulated by the 30 size distri-
butions are calculated by using Eq.(6.13) with absorption properties from the CMP.
The given cloud emissivity of 0.5 at 11.155 um is also used. In this study, to avoid
saturation in emissivity, the emissivity at 11.155 pm and the emissivity ratio between
8.333 and 11.155 pm are limited to be smaller than 0.95. Therefore, results from
some size distributions with Dg. larger than 90 are not shown here. We find that
the retrieved is reliable only for actual Dy, smaller than 30 pm. For larger Dy, the
retrieved are generally much smaller than the actual values. Therefore, for clouds
dominated by large particles, this particle-size retrieval method does not work. Using
the ADT to calculate single-scattering properties results in larger retrieved particle
sizes, but this is due to the error of the ADT in the calculation of the absorption

properties.

6.6 Summary and conclusions

Using the single-scattering properties derived from the ADT. Mie theory, and the
CMP methods, the cirrus spectral brightness temperatures at wavelengths of 8.333,
11.155 and 12.0 um are computed. The CMP methods are based on the FDTD for
nonspherical particles with small size parameters and the GOM for particles with
large size parameters. which can be considered as the reference calculation. We find
that using the ADT and Mie theory can introduce significant errors in the upward
brightness temperature, which can be as large as about 7K for some cirrus clouds.
This implies that the retrieval of cirrus properties using these IR channels must ac-
curately consider the nonsphericity of ice crystals and use accurate light scattering

models for scattering property calculation.
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Figure 6.11: Comparisons of the retrieved Dy, based on the lookup table from the

CMP light scattering model with the actual D of cirrus clouds.
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Using the spectral variation of the single-scattering properties in the 8-12 um win-
dow, the mean effective size (Dge) of a layer of cirrus cloud is often retrieved from the
measured radiance/brightness temperature. However, the limitation of this retrieval
is that when particles larger than about 30 um dominate the cloud, the spectral
variation of the single-scattering properties in the 8-12 pm window becomes insignif-
icant. The necessary information for a successful retrieval, which is only significant
for small particles, is “submerged” by the effect of large particles. Therefore, the
retrieval based on the variation of the single-scattering properties will collapse under
this condition. Using the anomalous diffraction theory for the retrieval may result in

much larger retrieved particle sizes, but these are not reliable values.



Chapter 7
Conclusions

The major objective of this study is to develop accurate solutions for light scattering
by nonspherical dielectric particles and to examine the accuracy of the approximate
approaches in light scattering by cirrus ice crystals. Following these goals. a three di-
mensional (3D) finite-difference time domain (FDTD) program is developed to provide
numerical solutions for light scattering by dielectric particles with arbitrary shapes
and composition. The perfectly matched layer (PML) absorbing boundary condition
(ABC) is used to truncate the computational domain. We show that the 3D PML
FDTD model can work very well for particles with m,z as large as 40, where m,
denotes the real refractive index and = denotes the size parameter of the particle. For
particles with large complex refractive indices, the 3D PML FDTD model also works
well but with larger errors in the calculation of extinction and absorption efficiencies.
The FDTD scheme is also extended to simulate light propagation in dielectric media
with particles embedded. Due to the difficulties in near to far field transformation
for this case, only near field is produced and compared with exact result. Moreover,
the present 3D PML FDTD model not only shows very good stability and accuracy;
it also requires much less computer memory. By observing the performance of this
FDTD model for a wide range of size parameters, we believe that it can be applied

to very large scatterers of arbitrary shapes with high accuracy when the computing

resources are available in the future.
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The 3D PML FDTD model is used to investigate the scattering patterns by par-
ticles with various morphologies. It is also used to examine the accuracy of the
traditional approaches including Mie theory, the ADT, and the geometrical optics
method (GOM). for the calculation of the light scattering and absorption properties
of hexagonal ice crystals in cirrus clouds. It is found that, for randomly oriented non-
spherical particles, using Mie theory for equivalent ice spheres tends to overestimate
the absorption efficiency while the ADT and the GOM tend to underestimate it.

For the simulation of light scattering by nonspherical dielectric particles, a fre-
quently used approximation is the anomalous diffraction theory (ADT). In this study,
an analytical ADT model for light scattering by arbitrarily oriented hexagonal and
cylindrical particles is developed. The accuracy of the ADT model is determined
by the size parameter and refractive index conditions under which it is valid. Use
of this method should be checked with accurate methods such as Mie theory, the
T-matrix method, the discrete dipole approximation, and the finite-difference time
domain technique. The differences between the ADT using the original notation and
the simplified ADT are also discussed. We find significant differences between the
results from the ADT using the original notation and those from the simplified ADT
solutions.

Another objective of this study is to apply the accurate light scattering models
to examine the methods to retrieve cirrus optical and microphysical properties by
creating a data processing model for satellite remote sensing of cirrus clouds. In
this study. we find that with different light scattering models, the difference in the
model-simulated infrared brightness temperature can be as large as 7K, which implies
that different light scattering models may cause significant difference in the retrieved
cirrus particle sizes. The validity of using two or three wavelengths in the atmospheric
window to retrieve cirrus particle sizes is investigated. Unfortunately, it is found that
the retrieval method is limited by the actual cirrus particle sizes. The cirrus particle
sizes from the retrieval based on two or three infrared wavelengths in the atmospheric

window are only reliable when D, is smaller than 30 pm.
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