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" notation and ‘symbol¥ used in the rest of the

Y Introduction e

kY

In-~this thesis we consider paifs of mpthemaéicalm' .
programm}ng pioblemS‘with‘zitﬁmal values that are
functionally inversely rel ed. The idea of.inverse
programming was-first introduced‘ig [5] to provide a solu-

. tion method for a problem that was difficult to solve by
; . -

»

.particular Gse,of\inverse programmingZany further. ' Instead

™ .
we consider its applicatiﬂéfto vector-valued mathematical

1 ¢
- L
.

programming problems. This Zleads to a consideration of tlfe

a - u -

»relationship between . inverses and duals and,also to metheds

4

of obtaining solutions for vector-valued problems that are

°
’ : ® I

.efficient with respect to the conefrainte as well as to the’

o N <+ -~ .

LY - - -

N . « -
objectlves. . . . LY
. 1 * b . °
In chapter l we develop a deflnltlom of an‘:invers ﬁg%ir

o

.0of mathematlcal prggrammlng problems. We also lntrodu

_chapter 2 we review some gegeral results on solutions of

» vector-valued programming problems and consider the restnie-°

tion of these to theé Iinear case. In chapter 3 we discusg

linear lnverse problems, first those 1n which one problem is

scalhr-valued and one 1s vector—Valued and then those in -

which both problemé are vector—valued. In-chapter 4 we

reV1ew some duality results-in’ nonllne r pro rammln and”
prog

(3 @

apply these to the(prdblem of-flndlng solutlons to nonl;near

I“ 4 « r
1nve;se p‘alrs° In doing thls'we develop a saddle functlon

>
ro- v e 3

other means. We outline this example but do not pursue this

.
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that treats the ‘objectivé functions and constraints emore
symmetrically than the saddle function @sually used.

The most -important results in this thesis are theorems \

‘4—14,4:}5 and 4-16 which summarize the relationship betwed

%

. i . Lo . L
inverse problems- and their duals in nonlinear programming.

w

These allow us to dev&liop methods of obtaining solutions = .

v
@ * !
. u

to vector-valued problems which are efficient with respect

to botﬁ objectives and eqhstraints. For the linear case we
- - = e 2 " ‘i'
develop algorithms ( 3-6, 3-7, '3-13 ) for these methads
~ [ - o
L
based on the restricted versions of these results given in

-
.

theorems 3-5 and 3-11 and results parEicular to the linear

case given in theorems 3-4 and 3-12. Before thegnem 4-14 . .

o

can be proved it .is necessary to develop a fremework for the

*

problem. Definition 3-1 provides the first rigorous defini-

=

tion of an 1&verse pair of vector-valued problems. Defini-

tion 4 13 intrdoduces a symmetric- Lagrange function that is

EN

- n u

particularly useful whennconsidering inverse pairs aﬁd may

be useful in other'areesﬁof mathematical programming as well.

7

Throughdut the thesis we i dicate interéstiné areas for

further rESearch. In particular we should be able to pr—

4

vide algorlthms for other spec1allzed classes of problems
v 1

similar to those developed for the linear case. Also we ~
A ) & - . . \ i .

should consider other uses of the’'symmetric Lagrange func-

A Y - - ¥ -

tion. ] ~ .

~

Fa »
We number theorems, lemmas, definitions, and

»

« algorithms sequentlally within each chapter° Each is coded

with the}fhapter andéyequence number. Hence theorem 2-3

A o
. Y

.
-~ [
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Chapter One — Inverse Problems: Definition and Background

[ , -

»

©* In this chapter we develop the background eefinitions
;and the notation needed for tl® results of this thesis. The
main definition is 1-3 which rigorously defines an inver$e

pair of mathematical programming problems. We then discuss

§ two. examples which show the usefulfiess of this concept and
q}arify the definition. Finally we define several restric-

.ted inverse pairs of problems that are considered in the
Y

‘following chapters.
) d B + .///N\\\

@

. . /- V! . ?
. Since we discuss vector-valued zfoblems wé\must consider

. n . .
v  orders on elements in R ., the n-dimensional space of .

o
PO

vectbrs/;;th real components. .In/'Rl we disﬁipguish two

. inequalities: =x > y(x,ig str;bt{§.greater than y) and
x 2 y(x is greater than or equal to y). In the more gene-
B 3 . f

-

ral R® we have three possible inequalities. These we

0

. . ’

- .
' denote as follows: : "

for X '= (th, oo o ,Xﬁ) ] ,Y = /(yll o9 o Uyn) e

: ’
’

. N then 'x 2’y if X, 2 ¥ for i = 1,2,..,,0;
\ . 5 ~ ot .
v ‘ . . . ¢ e
/;?Z Lo x 2y Aif X, 2 Y; for i = 1,2;,:..,n N
- :‘ v > .
\ [N
\ . and x. > y. ®for some j;
& o J J v .
;ﬁ =
- ' - X >y if x; > y; for i =1,2,..,,n;

to be read as: . IS

\ ’ . g . )

"greater than or equal to", '
RS " )

"greater than but not egpal to", - G

VAN Y,

e

A\

<

"strictly greater than".
@ )
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We ‘are intérested in the maximum or minimum element; if !

e~ w

. it exists, in some subset S c R®, If n = 1, the common

-

notion of a maximum (or minimum) sufficqf, that is:

. X, = max{x ¢ S} if and only if
: - -

X, € 8§ and x5z x “for all x e S.

If n> 1, we may not be able to compare all vectors in S

so this notion is not sufficient for qur needs. Instead we

4

) seek a Pareto maximum (or minimum) defined as follaws. . ‘ .
. . .
i Definition~.1-1: 'x = (xl,..,,xn) S is a Pareto maximum
' if, for any e S, . B ®
e
: - \ x implies y = x.
d T We wri%é this a , g ‘
" [ . .
. ST x = Pmax{y} RN
/ ] A 3 . '
such that e S - s : \
N 3 LA N

or .x = Pmax{y € S}.

\ vyt Y »
e .’

- We define a2 Pareto. minimum in a s%pilér fashion and denote
B T N Y '\'

it by "Pmin". A Paretq maximum or mirdmum of $- is also
‘8 ’ @ . } * \ s
oo called an efficient point of S or‘'a Pareto optimum.H ‘ ~

u
o N . . -

~7 .
‘
.
. o .
[ * " L4

Notice that if n = 1 a Pareto optifwm is optimyl in the

usual sense, so,ih general we can look for Pareto optima for

-

any . 2

o

The next definition defines the basic set *that we are

-

< interested in, two problems on that set and some useful

L)

3

» . subsets. !

[

I3 3y
Definition 1-2: (1) T < Rme_n is a set of ordered pairs
/ ' . . ‘

oL
S
=

K



. B % '
(a,b) ‘such that a e R* and b ¢ R with .the follo-

wing'propertieé:_ o
{(3,B) and (a,b).e T and bz B}&>{(3a,b) e T}

A,

t(3,6) and (a,b) € T. and a g3} ={(a,B) & T}

A )
) . (2) We define two probléms: ﬂf¢” .,@éﬁiz -
P (B) ‘find &= Bmax{a} . - =" ‘
B * such that “(a,b)»gs T ) c
- b 2B, . R
and I(a) " find b = Pmin{ba ‘ )
such that (a,b)’e T _ _ - -

% . -
(3) We define two general sets "A and B: °

A= {a | (a,b) e T for some b ¢ RD },

[25]
i

{b | (a,b) e T for some a & R" {f

(4) We define two subsets of A and B: _ - _ '

. A={ac Al forisome beB?2acecha-> a,(a b) € T},
' ’ B =1(be B| for some a e A ﬂ\B“év§\5 < b, Ga b) e«I}
(5) ﬁe define sets ~A§B$: and B(a)\\depending on . 5 -
and 2 R R \:“T;?;\\, “
) A(B) ="{a | a 1s\a Pargto égﬁlﬁumﬂln P(B)},
‘f B(a) = 1{b | 5 is a;Pareto cptlmgﬁ?ln I(a)} E .

» ‘ \\ *
. ’

. .y N

We next restrict the set T éb.that P(B) and_ I(a) have

‘optlmal values that are 1nversely rela.tedn This definitién-

N
3 L
. Y

is the basis for all our ‘results: Ty -

A

Definition 1-3: We call P(B) and I(3) an inverSe pair
of mathematical programming problems if ,E§§&s a

]

-



: -12— o

L+ .

~ N ~ L ']
nonempty closed set, if .A(B) and B(a) centain. finite
- - . 2 v a . - .

CR

elements for all "a ¢ A and B € B, gnd lf\tﬁe fblIo- X
w1ng monotonicity property ‘holds: . v ..
(l) if B and b e B ﬁtheg S ’ ‘ 'a.
{b > b and 5.8 A(B) }={ I, A(g) | ;bﬁ’a},' - .

Y Y ¢

(2) if 3 and a A -then B
{a<a and B e B(E)}={ beB(a) ] b=<El.E ".

2 - ®

N “ - ~ -

" The meaning of this deflnltlon 1s clarjfied in. tha discus-

[

sion below but notlce that the condltlons state#Fhat 1f ‘we

. L NN
ki W;ﬂ? 4

relax all the restrlctlons in elthen problem then we can =

. - « .
a - . e H

¥1nd & -new efflclent lent:whlch showé an 1mprovement_1n

» . [} LI -

every coordinate. T
2. . . . ) ®
If P(b), and I(3)_ form an inverse pair we dlstlngulsh )

between them by calling P 5) the prlmal problem and I(a)
the inverse problém. However thls-dlstlnctlon is somewhat- °
artificial. 'Consider the following lemma.

L o

-

Lemma 1-4: Let a” = -a, 'b” = -b. Define

Sl ’ N \ . -
T+ = {(b-,4") such that (a,b) ¢ T},
A- = {a* | (b",a") € T: for dome b~ e R}, n .

BI

{b”.| (b”,a") é T for -some a” e R},
; {a“eA”| for some b eB” 4 E’eAj,5’<a’,(b’,$‘)tT’},
E = {b“eB”|for some a “eA” 3 B eB” 5’>b‘,(b‘,a YeT"}.
Then 1f' P(b) and I(a) are inverse problems so are n N
P (3°) find b’ = Pmax{b~}

- such that (b~,a”) ¢ T~ .

£ \ / “ E’ v

LY - “ a'

| g
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.» Proof:

# - Since T

lent to' I(a) -

the existence
the existence
the effiéient
;‘i a’ e Z’

—

a, ae A and

pair so

{a’< 3 and B e B(3)}={3 b e B(a), b < B};

or, transforming the a's and b's and noting that

and ,I°(6“) - £ind a° = Pmin{a“J

X .
® —13_ - e
“
. a
.

such that (b”,a”) € T~

L . b 25",

a .

..is a nonempty closed sét sq is’ T‘."\%

-B, A© = -A and B = -B. P-“{3’) is equiva-
and I°(b”) is equivalent.to P(B).. Hence \\

of finite elements of A(bB) and B(a) implies'
of finite elements of A“(b”) and 'B-(a”),

sets for the new problems. Now assume

and a“ > a~’; since a” = -a we ‘must have |
~ ‘- LY
a ¢<a. But P(B): and 1(3) are an inverse

\ [
* d
. L/ *

w
k3

“

B (3”) = {-b | B e B(3)}, . ‘ .

. " 4

then f{a’ > 3° and B” ¢ B*(8")}=>{1 b" ¢ B*(a")| b~ > B},

Similarly if

{g’.< b~
Thus P~ (3")

with P“(a~)

(-3

o .

ﬂ’, b ¢ B*, then
and a“ e A“(b")}={3 a* ¢ A“(b") |'a” < a’}.

\

N ’
and I/(b°) form an inverse pair of problems ,

the primal and 1I°(B”) the inverse.l
~ & N

- M

Thus it is actually immaterial which probleﬁ‘ﬁ% consider to

N

be primal.

&

o N

’

o - [
n ¥

R ' . e . ’
We ‘also use one other equivalent pair of inverse prob- .

LY e °

lems. If we replace -b by b® then the original pair of
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B v

g
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) . . o
problems is equiv;le;t to: e R N
°* . M .0 s
, l \X L .£find a = Pmax{a} : \““
. \\\o om such that (a,-b") "¢ T_ ) ;w
b7 2 B, L
and find B* = Pmak{b~)} ’

such that (a,-b”) ¢'T .~

® az a.
1

a

In this pair'the»symmetry is even more transparent. Which °
pair we use does not matter because of the above &guivalence

but one may be more natural in a particular example or yield

n. %54
a less confusing proof. N \

We now consider the meanlng and lntent of deflnltloh >
.1-3. Let. £ be a function from the real numbers 1nto the
, real numbers, f:R+R. ThegHi, if £ is coﬁtinuous and
strictly monotone, ' £ has a unique inverse??ungtiép g:Rvg

such that £(b) = a <=> g(a) = b '(seé figure 1-1). - If we

let- T = {(a,b) | a 2 £(b)} or, equivalently,

—
-

= {(a,b) ] b ﬁ g(a)} then the optimal solution ts P(b)
is a = f(b), .i.e. lA(B) = {f(B)}, and the optlmal solution.
to I(a) is b = g(a¥, i.e. B(a) = {g(a)}. It is easy to
see that. P(b) and 1I(a) are an inéerse pair ofigrbbleps:
For this pﬁir the important part of T is £he curve ‘

= £(b). This lgads to the following definition.

[

Pefinition 1-5: The active boundary of T, called R is

. defined as ~ - .- a

={(a,b) ¢ T | aecAlb) or b e B(a)l.N

?

o v e e i o s, g o e ® T e R SR L I L T T
~ o s mmnann o wnwe v TR
v b e . s oz

ax‘_ . . S
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' following result.

""16— N |

By this definitian; definition 1-3 implies that the active

’
k

boundary for a problem in which a and b are scalar-

valued is strictly monotone.

There are several ways to extend these ideas to mappings
from R® to R”. Definition 1-3 is an attempt to construct

the weakest generalization that yields useful results “for
the problems we consider.

One way to generalize the& inverse relationship depiéted

in figure 1-1 "is through the property of T having an

\
-active boundary that is strictly increasing in each cpmpol

»

nent when-considered as giving a as a function of b or

b as a function of a. However in this case ve get the
{ 1

LN

"

-

Lemma 1-6: If P(b) and 1I(3) .are aﬁ\inVErse‘pair of

problems for T < R"R® and if T has a strictly mono-

v

tone (as described above) active bpuhdary! then

(1) (i) if b, Be B then :

~ L3

{b=5 and 3 e A(B)}={3 a e A(b)| a = &},
(ii) 4if a, a € A thén

: {a<a and b e B(a)}={31 b ¢ B(é)l b < B},

(2) (i) if b ¢ B(a)\ then 3 e A(b)

(ii) 4f a e A(B) then B e B(a).

Proof:

] (1) (i) (a,b) € T. Therefore a is feasible in P(g)

since b 2 b. If a8 is efficient in P(b{\ then * (a,b) is

on the active boundary. But ﬂ # b, so,if (a,b) and (5,5)

o e



3 a e A(b) such that

. ©-17- .

,
) n
B A

5,
are on the active boundary it is ndt strictly monotone. . _

Therefore 3 a ¢ A(b) such that a > a and implication

(1) (i) 1is proved. o e ) .

L]

(1) (ii) is provedwsimifarly.
(2) (i) Let b e B(a) and assume a ¢ A(B@. Then
a > 3. ,Theréfore (E,B) and (;,g) L
are elements of R. LBut, as above,‘this contradicts the-

fact that R is stricfly monotone. Therefore »a ¢ A(b).

(2) (ii) is proved similarly.® .

\ N
These properties, would put strong restrictions on the prob-

3 s u

lems. that could be considered as we point outgin the exam-

ples below. Thus a weaker notion of monotonicity is 'needed.
Definition 1-3 provides the needed/weaker monotonicity.

This monotonicity requirement is weaker in two ways. First,
bS] _ '
in definition 1-3 we only require the condition to hold for

b's in B and a's in A. This is a minor adjustment ahd .

@ -~

we normally are interested only in values in these sets. . v

» ') P
However it does éllow us to treat a large class of linear

programming probleﬁs withéut any difficulty as is shown in
the examples later ig the chapter. ‘§econd, the ;tronger ‘
monotonicity of lemma 1-6 guarantées an a wAth at least

one larger component if any component of b s incréased ..
while the monotonicity defined in definition 1-3} though it
dqes guarantee an a with all components‘larger, requires

increases in all components of 'b. To see that this actually

is weaker we must consider what we can say if b, and b

)
LN
.

4. . : o

.
B ] [ —— - T e G R A e e
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A e o

’ C
e s
\are.in B  and we enly have the conditipons of defimition
1-3. )

v ot o
L]

1f T, P(B), I(3) satisfy definition 1-3 ‘then

(1),(i) if b, B e B then , ) :

L3 »o
-~

>

B{b"Z‘B cand a e A(B)}=>{H-a 5 A(B) | a

~

Y
[s}}
Nyt

- - L4 >

if a, ae A then

2l
-~
e
N

 {a<3 and B e B(3)}={3 b ¢ B{a) | b = B},
(2) (i) if b e B(3) then 3acA(b), az3i
" (ii) if a e A(B) then 1b e B(a), b g B.
Pyoof: ~. . ,

® » 'S

- - e ~
aeA(b) = 3 (a,b) e T with b £ b, but

/

B (1) (1)

b < 5’ so b b and a is 'a feasible solution to P(b).

IA

Thus, if & is not efficient, there is an a > a that is.

; - - ’ - - [ LY ~
In either case 4 a ¢ A(b), a 2z a.- . .
. -

(1) (ii) is proved similarly. - - . o

(2) (1)

If b-e B(3) - then 3 a such that (a,b) ¢ T and

a2 a. Since (4,b) ¢ T then a is feasible in P(b), so

A a
-

there is an a ¢ A(b), a 2 a 2 a. -

L]

. N . e W
(2) (ii) 4is proved similarly.H

‘

Thus if we have an inverse pair of problems but do not have

’ S
a strictly monotone active boundary, increasinguone compo-

nent of b may not give us any .increase in the efficient

"solutions to the primal problem. Though in these two

o 53
respects the monotonicity,of lemma 1-6 is stronger, it may

not imply the monotonicity of definition 1-3. For example,‘

z
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’ X4

let b e R® and

If we inecrease either component of b
¥

4

can obtain an efficient' a

ment in one component.

b,dpne at a timé'affectﬁthe same

a

€

—19_ ,{@

~ » -

R2 and consider the primal problem.
(and stay in | B) we
tha} may only show an, improve-

If increlases to both components of

omponent of a; t“an

increasing both at the same time ﬁay still” only produce an

.

would nay ke an

- increaSe in one éomponent~of

-«

idverse pair.

a. In this case the,qigélems

4

EQ«E_i?e monotonrc1ty of '

lemma 1-6 and the monoton1c1ty of deflnltlon 1- 3 cannot gﬁ /

put 1n a hlerarchy tHough they both 1mply thg/monot0n1c1t

of lemma i 7.

our Wefinition” of-an inverse palr of prob{ems.

a

' sA

a

‘ Example '1-8:

3
~

processés so

given amount of resources.

Production" model as glven in qupmans C1l91].

’

Consider the standard liﬂeai progr

+ example of a firﬁ ¢hoosing levels bﬁ/

’

A

- ° /

‘ : /

v N

This ys an

A
-

let a be/total profi

i

S e

P~

b2
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*

" the inverse problem if 3 2 0. In this example

‘20—' <«

maximize a,

@

'5:; - - subject to xa b o ’ ¢
° o bx\s b . RN
. .o X2 0.
No& we define %ﬁ\é'fga,b) | ¥x 2z o0, c& 2 af\Dx < b} .
so the above problem is equivalent to: \ .‘ e ;§
P(B). . - ‘; \:maxiﬁize a’ (or find a = Pmax{al}) .
T . §9ch‘§hat (a,b) € T ;' .
: s b. . B

- K [ b
.
‘ o

Since b is a vector, the inverse problem on T is:
g 'Y -

I(3) - " find .b = Pmin{b} .
such that (ﬁ’b) e T @
' ) ) A az a.

Here we are trying to find a minimal vectbr/bf qqaﬁtities of

N
RS a N .
fl

resources needed to produce a desired. output.

~
w

If°c and D are positive b must be nomegative if ,

-

PkB3 has any feasible solutions. If b 2 0, X .solves

P.Ab) and” b = B, there is an o > 1 such that ob < b .and

-

ax sélveé_.{;P(aB)° Thus aoXx is feasible in P(b) and, if

A A

a_ is the value of p(b), a > CaX = aCx > Cx. If b =0,

the“optimal value of P(b) is zero. If, b > §, b > 0 and

the optimal walue of P(b) > 0. We can drgue similarly for
v , . <,/

‘

B=B={bgz 0} while A =R and. A

-

R+. Thus the,tondi-

1

tions of definitjon 1-3 are satisfied for the pair of prob-
lems P(b) and I(a) if ¢ and D are positive. A and
“A differ in-ghis case. Though the only really interesting’

{ ” '

a Qg ’ . v

-
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a

J

problems have a = 0, I(aL“ is-solvable for .a < 0.° As

L4

definition 1-3 stands, we can handle this example without

? o o«

adding extra restrictions.

If definitign 1-3 holds we now have. an inverse palr of .

problems with the follow1ng propertlesu If we -increase the -

supply of all resources from b to b, b > b, then ?(h)

has a solution that is more profltable than the optlmal

i ,

solutlon to P(B) -"a nmatural enough restrlctlon. “However

P

"if we increése the supply of some but not all of the re-
sources, so b 2 5, then, as lemma 1-7 shows, the new‘opti~

mal solution is as profltable as the old, hut the proflt may

not actually increase. &hus our model allows for excesses
. o

! b

to occur in the, sugply‘of some resources..Lemma 1l-6 shows that

4
¥

this could not occur if we use ‘the more restrictive form of ,

monotonicity of a mapping between R™  and R", This is one

réason for-chooding the weaker version for definition 1-3,

" ®For "the inverse problem, if we decrease the amount of

profit that is desired,'the conditions ‘of definition 1-3 .

v

imply that there is a new efficient solution that uses less

+ of each resource - again a natural enough restriction. This

second problem is not a étaﬂdard LP problem since it has a
N ! »

vector-valued-objectiven 'The existence of solutions to

\

problems of this type and methods of finding éhem are &is-’

cussed in the next chapter. The particular example ‘men-
_tioned here is a problem of increasing importance in econo-

* ! -

mics because of the recént prominence of ideas of controlled

-

growth and resource conservation.f

]

“

©
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'QEXamEle 1-9: . This example}from Cassidy [4] initially lead

o -

to the consideration of invers& pairs of -optimization prob-

. ~ . vy,
leps in Cassidy, Field and Sutherland [5]. ,This-{§ a prob-

¢

“lem in random paycff ganmes. We' assume that the players face
/ -

a .payoff matrix. A = {aij}‘.with _aij's that are random with

v

known distribution function P(a,. z 8).

coij
The row player may view his problem from two different

pérspectives. First, he can consider maximizing the return

8

~ ‘ . -
. he gets (B) with at least a given probability (a), i.e.
® .7 i
his pfoblem-is: .
. . / S . ) -

, ’ ! maximize B8

v

) @ . N 5 o~
J ’such)thqt iil xiP(aij 2:B8) 2a ¥ 3
] L -
L R '/, . "/ ) ﬁ
- ' ~ L x; = 1l
. . . - ﬁw i=1
) . X, 20 ¥vi.,”
1

Second, he can consider maximizing the probability (a) of

A
getting at least a given return (B), i.e. his problem is:

R

maximize «

n
such that I x.Pla,. 2z B) 2 o ¥ j
. ij = =
i=1
n .
~ . 1 .o
) i=1 &
, ‘ X, 20 v i,
. 1.
. i A
Now we define T = {(B,0) | 3 x'20, = x, =1, ,
i=1 *
n 0
‘gl xiP(aij 2 B) 2a ¥ jl. Then the above problems become,
i= .

v

respectively:

“we

[e]
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L)
4 o '
|
/ .

P(a) N maximize B
such that (B,a) e T
- o

U.Ear ‘

b~ ) ) \
L(B) maximize «

such that (B,a) ¢ T .

. "B 2 B. .

In [5], the authors show that if the distributions of the
Q 0

aij are strictly monotone, then definition 1-3 is satisfied

,and P(a) and I(B) are an inverse pair. Notice though

that’ I(B) 4is a linear programming prioblem while P(a) is

%
' extremely nonlinear since the X, a d B are all’'variables.
Here the inverse relationship allowg us\to solve P(a) by

repeated solution of I(B) as distussed in the cited paper.B

Notice that in both example 1-8 And 'example 1-9 one of the

problems is a linear .programming problem. This shows that

o

We now consider some special cases of T that are
useful in the following chapters. Thé easiest situation to
handle is one in which bdth P(b) and I(a) are scalar-

. If this 'is the case we say that -

a N
©

problems. In exampl¢ 1-8,qboth the objective's and con-
2

straints of the problems a linear. We can generalize
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T = {(a,b) } i x e K, Dx £ b, Cx 2z a, K som;ﬁLonveX'set, D

an mxn matrix, C a kxn matrix}. K is usually the non-

< o

negative orthant:. In this case we say we have a linear

inverse pair of programming problems. If we agq%n genera-'

o* a

lize gthe above definition of T %omewh_at SO

)

T = {(a,b) | 3 x e K, g{(x) £ b, f(i) 2 a,ng:ﬁn+Rm,’f:R9+Rk}

then P(b) and 1I(a) are both examples of standard (though

possibly vector-valued) nonlinear programming problems. In

«

this case we say we have a honlinear inverse pair of pro-

gramming problems. Note that this last definition is a

restriction to definition‘l—3 since we require that 3_ and

b can be specified by separate sets of constraints. De%;-

nition 1+3 allows cases wheére such.a separation is.not

possible (as in example 1-9).°

°

For linear and nonlinear inverse pairigyhere the under-
b

lyihg vector "x is of importance we, make the following -.

definitions.

Defiﬂ’ion 1-10: (a) If &a e A(B) and B ¢ B(3)" such

!

4

that a"= Ck and b = DX for X e K  _in the linear .

case, or a = f(x) and b = g(X) for X ¢ K in the

-
4

- 3 _ _ / B}
ndénlinear cé%e, then "(3,b,%) is called an optimal

* dnverse triple.: . . . '/ﬁ
(b) a e A(BY d b e B(a) are called effidienk

values for P(B)' and I(3) respeftively. If x is

~

the solution that yields a (or b)Y, then x is called

an efficient solution for P(B)'jor 1(a)) .

L4
B
” s i
‘ v .
.
P T
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/

(c) A(B) and B(3) .are called the set of efficient

values for P(b) and I(3a) respectively. ‘The set of
\

all X that.yield the set of efficient values is called

the set of efficient solutions. ' - /}f/

(d) AI(B)lc A(b) is the set of all a.e A(é) such,

- - . " 3 '
that b ¢ B(a).. That is if a ¢ AI(E) then there is an

"% such that (2,b,%) ts an .optimal inversé triple.

Similarly we define BIQE).
(e) R ¢ R is the set 'of all-optimal inverse triples.B -

7
© '
\

4

We end this chapter with Ewo examples that help.té
clarify some of the definitions and foreshadow some 6f the

results of cﬁapter 3.

7 - . N
Example 1-11l: We consider the following pair of problems:

} «
s

@ p(b) . find 3 = max{a = xl+x2}
g subject to 2xl,+x2 S bl L
N - xl+3x2 £ b2 ’
L - T Xpex, 20, BN )
I(a) find b = Pmlnﬂbl = 2xl+x2
. b2~= xl+3x2 J"
subjecé to xl+x2 z a - ]
. , Xy0%, 2 0,

~ N -

This is a particular case of example 1-8. As in that. example
\

we have B = B = T(blpbg) 2 0},.A =Ry X = R%. This is a

. . . N ’ \
linear inverse pair of programming problems.

4

”P
s

o
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5 ; . . 0 = ‘
’ : We now wish to‘f&nd T, R and R. Figure 1-2 shows a
. L The a value is a feasible ‘value of dP(b)f for al} b in

the shaded area and is optimal for b's on the bouméary.~

N
N »

v cross-=section of T for a held constant at a positive value.

. . \=Hence the boundary - the parts of bl‘— a,,b2 = a, o
2b1+b2 ='a " that are shown - is a subset of R. THe effi- .
\ ° - .‘n L4 . N - 9:
T - cient values of I(a) for the givenQJI,'are the:values of

o . b satisfying 2b,+b, Sa, b, z a, Bémz a. . Thus for (3,B)

on this line segment a e a(b) and B ehg(a)..,Also notice

i

. that the set of equations: . A ' '
2x,+ = oLt :
xl X2 bl . oy N -
voT ? " v
- ,3 B s« - ¢
X.+3x, = -
¢ ! l 2 Y 2 \
) X,+x, = ¢ o ' .
. L FTE TR oo o

“ . o w -

is not 1ndepencent for values on this llne segment“wl@ fact .

K 2(2xl+x2 = by) + (x +3x =b,) 4 .
‘ | ) yields 5(§&+x2 = Zblfpz) : ‘ “: u;uj
o I : \i>\¢A ‘which is 5(xl 2 =qalfﬁ . ) ‘
’ " So for (a,b} on 2b,+b, = 5a, the tﬁ}ee equations have a

unique solut"’ion° The set;df points for wHichqthe'sdlution

-

. is nonnegatlve is also,the part of the llne that forms part
N - .
. of the: boundary of the cross- sectlon OfF - T Hence if (a,b)

<Q Lot . @ . . vy

4 ¢+ is on the llnensegment,gthere is an x 2 0 such that
- (3,b,%) is an optimal inverse. triple and these (a,b) are
i ) ' . - \\ - “ e
: contained in _R. . ) ’

" «
. »

. ) . For a <0, tpe cross—section is the whole ‘nonnegative

’ ~

[ O
N
°
-

[ e e A o R
4
3

i
o “ -

”

eo

L]

L

mepo



N - -27- e
- -
4 - . . ‘
? . -
. . ’ . . % Y v
. -~ - °
. w 5 .
: e
a - . - *

. . . I .

L3

- v
2
L]

.

.
) l
N .
1)
ks -
f . B .
S s 1 N >'
"3a . 4da bl
) -
|

A}

Figure 1-2:

o

constant a > 0.

3

%
Cross-section of T

v

for a
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\ ta
N
\
& a KN
A
R is made up of the three indicated faces
and the nonpositive a axis.
. upper face (R) . . back face
‘ 2bl+b2=5a bl=a (a>0)

;froné face
b2=a\ (a>0)

.

B
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orthant. Since the only efficient value for 1I(a) is

Al
’

(0,0) if a < 0, (a,0,0) is the only element of .- R. If
a 1is negative we can raise its value without increasing

the efficient value of I(a).“‘Ihis does pot contradict

definition 1-3 since a ¢ x = R+. This @again shows why we

use A and B in definition 1-3 inst ad of A “and B:

a < 0 is not an efficient value for [P(b) for any b e B

so there is no (a,b) €.R with a < 0.

L J

Figure 1-3 shows the whole T set for this example.
As above, ﬁ is“th; set of (a,Bs in T such that \
2bl+b2 = 5a or ¢2/5bl+1/552 = a. Notice that these multi-
pliers qré alsp the ones needed in writing the objective
function of P(b) as a positive'linear‘combination of the

constraint functions. This fact is important and is used in

the theorems and algorithms of chapter "3.8

Example 1-12: We consider the following pair of problems:

P (b) ) find a = max{a .= xl-3x2}
subject to x1—2x2 £ bl N
g xl—xzns b2’ |
0 - Xqr¥, z 0,
I(a) ’ find b = Pmax by =‘x -2x,
2 T *17%
° subject to xl—3x2 2 a
xl,xé 3'0. o

Again we have a linear inverse pair of programming problems
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if'definition i-3 is satisfied b&t in'this case some
coefficients are negative.

Since we do not obtain a verification of the conditions
of definition 1-3 directiy from exémple'l—B as we did in

examplépl—ll, we first prove that we have an inverse ‘pair.

Figure 1-4 shows constraint Eéts for the pair of problems.

In P(b% if bl and b2 are both positive, the optimal

solution is at x = (min{bl,bz},O)l° If b, or b is

1 2
negative the optimal solution is at x = (0, - min{bl/z,bzh).

In either case, if bl and b2 are both increased, the
optimal value increases. In I(a), the only efficient solu-

tion is at the point of intersection of x1-3x2 = a with

the xlgo axis or the ngo axis. If' a 1is depreased, this

&

point moves so tha£ both b1 and b2 céh.pe decreased.

Thus the monotonicity conditions of definition 1-3 are sa-

tisfied for all a ¢ R and b ¢ R2° So A=A =R,

B.= B = R2 and we have an inverse pair of probléms° »
If a2 0 and (a,b) ¢ T we must have bl 2 a, b2 a

but otherwise the b's are not 3§stricted. "But a is opti-

v

mal in P(b = (a,a)) and b = (a,a) is optimal in I(a)

so (a,a,a) e R, (a,a,e) € E since (a,(a,a),(a,0)) 1is an

optimal inverse triple. If a < 0 ,and  (a,b) e T wé must

have’ bl 2 2/3a; b2 2 1/3a but otherwise the b's are not

restricted. This time (a,2/3a,1/3a) - is in R and &.
Fi§ure 1-5 ‘shows the complete T set. In this case

R = R. Notice that this'time R is made up of line seg-

ments and also that we can not write Xy 73%, (the objective

= e i
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s

Lonly efficient point /[ ‘ -
: N /

Figure l-4:

R iR S Ry M

»

/: // (_ / /, ( ‘

«

Constraint sets for P(b) and I(a) for

\

v example 1-12 showing direction of increase of

objective functions.

-
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x,-2x%, and x,-x, (the gonstrgint functions 0f P(b)).:

' ~ - 4 '
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funcﬁiogyof P(b)) as a positive linear combination of

>

This \is the converse 'of what happened in example 1-11 and

L) . .

L) I [3 1] K ) vy
again is important in chapter 3.H « .
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Chapter Two - Vector Optimization

I3

K] !

‘In‘chapter one it is noted that problems with vector
bﬂjectives arise quiﬁé naturally when we consider inverse
p;irs of problems. In this chapter we review some of the
results prgséntly available in vecto£ optimization.. In sec-’
tion 2.1 we consider the problem'in general and in section

2.2 we discuss what happené'to the results when the objec-

.
‘ [3

tives and constraints are linear.

2.1 General Results

Vector-valued problems arise in situations in which we

cannot combine all our objectives into one function. A
[} - b4

function that maps the values of several objectives into one

?
number to.be optimized is called a utility function. Con-

51deratlons of the propertles of such functions and of when
they exist are the subject of utlllty theory. We do not

enter this area of research but just assume that we are

~

dealing with‘problems for which no utility function exists.
If one ‘did we could simply find those points that maximize
utility.v che;wfse, we ‘usually take the set of Pareto opti-
fﬁal points ;s the bgst approximation éo the set of utility :

o

optimizing poirfts° It is assumed that a utility function

cannott be optimized at a°point that is not efficient. There-
- p Y

fore most methods for handling vector-valued optimization

problems concentrate on ways to f{nd‘efficient points. The
1

first results we discuss are d%rected to this ehd. Later

-




~

{

we look at possible methods of reducing the size of the set

af efficient points Eo provide a bettef approximation to the

set of utility optimizing pointsé

.The first discussion of methods to find efficient points
was in a paper on nonlinear programming by Kuhn and Tucker
in 1950 [211]. Little time seems to have been spent on. this

“problem for the next 15 or so years (sée Charnes and Cooper
{6] and Karlin [16]) until Geoffrion's paper in'1968 (141, °
-In the seventies there has beén much moée work in this areg

as seen for example in [(2,7,11,15,22,25,;30,31,32].

&

One important fact, that‘appeifs in most of the early

‘papers, is given in theorem 2-3. First.let us define a )

L4
v e . s .
general vector optimization problem (we use a maximization

problem wifhout loss of generality)o

' H
.

Definition 2~l: We.consider the following vector maximiza-

tion problem: . °

*

o ‘V . : find Pmax{ﬁ(x)=(fl(x),f2(x),,..qu(x))}g

such that x e X,the feasible set.l .

N
-

Definition 2-2: For any A = (xl,..u,xp) we can form a new

<«

ScaYar-valued problem from V as follows:

* ¢ .
& " iy

-

s o

S find ma§ %ifi(x)

i 1

- such that X e X. &

0
\ "
- N’
- A -
«

Theorem 2-3: Let ' A > 0. (i=1,...,p) "be fixed. If X% is

o ®
v R . P!
°

s o '



»

“~Noﬁ\the“§et of efficient points, E, is just {(1,1)}. (See

. S0 we, aré left With the following dilemma. With

optimal in S,, then X is.efficient in V,_

Proof: e " .

B This is theorem 1 in Geoffrion [14]1.8

. 4

However a major problem remalns. ThlS does not glve all

efficient points «as the following example shows.

s %
Example 2-4: Let f(x) = x = (xi,xz) and and let
X = {(xl,xz)lxl2 + x22 £ 1h. ,Théreforé the problem V is
to find the Pareto maxima of {(xl,xz)lxl2 + x22 £ 1},
Obviously the set of efficient points "is the set’
E = {(;l,xz)lxl ;.o, X, 20, xiz + xz2 = 1}
as shown in figure<§;l. However the points (1,0) -and \ \

(0,1) cannot be found by solving a scalar-valued problem

with Ay > 0,

The answer seems/to be to only restrict Ai to be 'nonnega-

tive. However this resuk}é in the following problem.

_ ey
Example 2-5: Let f(x) = x = (xl,xz), and let ™~ -

X = {(xl,xz)lo £ x,<1, 0 £ x, £:1}. Vv .is=now:

1= 2

find Pmax{(xl,x2)|0 £x; 2 1; 05x,5 1},
figufe 2-1.) However if we let. A= 1 and A, = 0 we ar
lndlffgrent to the points {1, x2)10 s x, 5”1}° All thes
are solutlons to S(l 0y and only one point is actually/ in B

,
o
E. B L e

L
¥
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. . . . .
: N ) Y. M L)
X
1 . 2 y/\ 1
) set of efficient
points in example 2-4
L4
>
X
l -
\ b
- ot
X
24 o,
‘h—\
only efficient point in .
exXample.2-5 -
A‘*
. .
) ‘ 4 -
g - — >
+ . X -
. . . ) 1 1
) v ’ < ! s - - : 1%
\ . : -
Figure 2-1l: FeaSible sets for examples 2-4 and 2-5 showing
the sets of’ efficient points. -
I. . ) . P X b
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positive we do not get all efficient points (even when x

is convex and the objectives are linear). Whereas if we

. . - .
allow X to be just nonnegative we may dget too many points.
%, T * *
We .get only the set of efficient points if the solution to

5

S, 1is unique whenever A = e, where e;" is the stanfard

.

. unit vector. ® '
In [21] and [14] the authors show that these points occur
where there is a first degree'dain in one component of the

.~

objective for a second degree’loss in the others. To get

®

around this problem Geoffriqm introduces the anion of 'proper

efficiency defined ' as follows.

A A

Definition 2-6: x is said .to be a)prqpe;;y efficient solu-

tion of Vv if it is efficient and if there exists a
scalar M > 0 such'that, for each i, we have .’

£.(x) - £,(X) "
. L — i <M for some 3j such "\
' , £y (R) - £5(x) ,

o

that fa(x) < fj(i) whenever x e X and £, (x) > £ (x).°

4

Geoffrion [14] p.619.8

- Thus X 1is not properly efficient if for an arbitrarily
vlarge M, there is an x ¢ X such that the imp;ovemen; in

some component i is at least' M times the loss in every

-

other component. But M 'is arbitrary and there are-pnly'a
finite set of compozn -Hence we can make the gain in

component i arbitrarily large relative to the loss in any

) ’ a4

other component.’ : - .

2
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\

Example 2-7: Consider example 2—£\again and the point N

x = (1,0). £(x) =x= (1,0). If x is.efficient then ¢

f(x) = x = (/l—xzz, xz). Cénsider.the ratio ' \;\\\g
4// ) _: el - . B )
‘ ' fz(x) f2(x) X, 0 .

ED eeeeee————

, , 'fl(x) - fl(x) { - /;;XZZ
' %3 ' Vl—x2% .

Since 1lim ———— .= lim

x2+0 1 - il*xzz “ x2k0 %

£, (R) "
P ’ nnot be bounded for x'e X.
Y _fl (x) o fl (X) . . i ® .‘t

- " .

- £, (x)

. - r '8
In this example (1,0) and ‘L) are not proper efficient

& ”

points.& . ‘ ’ ; " .
" n‘ . ’ “‘ . A : @Q . . .
We see then that if we look for proper efficient-points
instead of efficient points we are-only leaving out un@ésiiu .

N ®

‘-a'a -o‘ ) s ¢ ' ) :
rable cased. The important benefit we get from looking at -
this reétripted;éét.is'the fbllowfng theorem taken ffom

o

Geoffrion [141:: - B T AR -
= D ) . L4 "' ’ ' . . @(

-
» . -

N - ~ . [
Theorem 2-8: Let X be a convex set, and let. fi be con- . -- .
. ' -t @, ¢ = .
-, ) . - . ,"
cave' on X. Then .x is-properly ‘efficient in Vv if e,
Ja o ' N -
* - . . . s , o - - i
and only if x is optimal in S, for sgme A with " g
g L : T :
strictly positiwe components. . .. £ Te
' - , - . Cew T T e, “’,.’"T'»”"":;vfm: AN
, . ) 3 L .- e v, ; 4 -
i . , . T S
Proof: " - N v ,
- N . A ° "' ad ” .":
B See Ge8ffrion [141 pager 620, gheorem 2.8 .. L
» Al \ ° . . . . + .“ 4“11‘ '.,4‘: .
) ) - ) ,:; . ,?;.;v,:.:, o “:3 “;f ”"g te ;- . x“:o_ .
Thus .as long as our problem satisfies the' con¥exity . 7 7
L ) LS - LT e
( @ < e

D " v Py o
P H - .
¢ @ # ;- ]
B ,

s
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requlréments,nwe have completely charagterized the set of

properly eff1C1ent p01nts. Geoffrlon also notes the follow= 5

rng result that shows that the set of proper eff1c1ent‘ °

-

¥

c1ent points s

-

B [y f v
&

§ . ¢

Lemma 2-9:

~

E be the set "of all propér efflclent polnts°

°and £(E). .

N f

and contlnubus“and X

- Wge,r'e denotes closure.
a % N P W — 4
/jfﬁiﬁ\\‘\%\\\\ § - ‘ |
K S < s ,
. Proof: e

.
Ce o, e

14 R
. s

be thelr image under"

A~y

s £(E)

f‘

If

‘See the references in Geof'rion [14].8

\

£

is closed and convex,

) ,;, e E(B) & £(®)

¢

L)
-

Let E  be tggfsetaof all efficient pointgfand

is concave

then ¢

v

"K@hn and Tﬁcger [21] also define a proper efficiency

everyPKuhn—Tucker proper efficient point is proper eff1c1ent ¢

1n-our sense and the two are equlvalent if we have the con-

,vex1ty requlred by theorem -2-8, 1f f

4

‘. that differs somewhat from:the definition above.

Howbver

pornts 1s a satlsfactory reﬁlgcement for the set of effl— )

Let f£(E)*

and all constraints

_are dlffenentlable and if the Kuhn—Tucker constraint quali-

@ flcatlon holds (again see Geoffrlon [143)

]

A ma3or emphasis of recént work on vector-valued problems

-

s -

has been to try and' provide'a method by which we can mowve

4 -

from the efficient set we have now found to a .utility opti—

mizing 'point.

-

.
1

A good reference is the Cochrane and Zeleny

hook {71 whlch is the‘proceedlngs of a- conference held on

4

! -
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£(x) e £(X) + C

point x such that (1) f(x) € f(;) + C

.
: 1 \
/

this subject i 1973. Various methods of attacking the

‘ problem are reviewed by the paper by MacCrimmon [22] in this

book. "'These methods fall into the two main categories.
The first method depends on the problem setter:being

able to give, directly or indirectly, the trade-offs he

<

‘accepts at any particular set of output levels. One example-

is'as follbws. We set the A vegtor introduced above .and
- - [} . o¥

get a propér efficient point: ’Next'qe find out in which

direction;the probleﬁ setter woﬁl& like to move. We”now fihd'

1

- T . ' he
a new proper efficient point in that direction and repeat.

Y

™, . ? . . v N
This‘continueS'untll we cénnot find a better eff}Clent point.

w [

Thls assumes that, though we do not know the utlllty functlon

for the problem, we are able t%*get some local knowledge

. <
=

about it when needed o i ‘ nf . « o

The second major approach is to try to reﬂuce the set of

Ll -

,proper efflc1ent p01nts,by remov1ng points that are obv1ously

inferior. bnevmethod, introduced by Yu and Zeleny. (see [30-

52]), uses'what they call a "dominance structure", Briefly

¢

-the idea is as follows. When.we have an efficient point "X,

it is better than any point x° suéh that (1) - _a
l, and (2) £ (x) #‘f(x) where C} is the ®&one

P(cl,}..hcptfci £ 0} (the nonpositive orthant). When we-

have an optimal solution x of SA' it is better than any
2, and (2) \w

o [y

féx) # f(§) where C‘2 'is-the'cone {c = (c;,..,,c )|Acv< 0l.

C% or C2 is called the domlnatlon cone and these two pro-

& .

vide the extreme cases in: whlch we can find only, eff101ent

S
3 - « §
: ’
.
n ,
A D I' .
. . . .
.\Q s A ‘
N .
~
° A . P PO
"
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‘s
1

points, or we can 'look for a particular maximum since we

:
P

have a set of multipliers. “Between ~C1‘ and Cc°? we can
fin@ an endlegs variety of coneés that,owhen used in plaéé of
Cl or Czw above, give us part,of the Set of efficient
points. If the information abou;athe problem allows~us to
increase £he doqination cone; we can eliminate me;bers of
the set of proper efficient*poiﬁ%é that are dominated by
?thgr éoints when the new cone is used. We can also have

different cones for different poinfidor sets of point&ta

Hese two. methods are examples of the two dlfferent

°

basic approaches to the problem. Other methods combine ideas

A

from both or use the two iteratively (see [22]).

A
- . "

. -

u v

2.2+ Efficient Points in Linear Vector Optimization

In this section we consider problems in which the objec-

Kl “v
' tive and constraint functions are linear. OJR main result

is that all efficient points are-actuallyiproperly efficient
7 12

points. . . \

First we define a linear vector paximization problem.

(Again we consider only maximization problems without any
s g

loss of generality.) ’

\ o
@ \ “ i . °
‘ u 0

4

oo . -0
Definition 2-10: We consider the following linear vector

maximization proéblem: ' . )

\

Lv . ' find Pmax{Cx}. ‘

such that Dx g'b

]
v
o



where C e kan’ D ¢ Rmxn; X e Rn. b e R &

In both Evans and Steuer L[11] and Isermann [15], it is
proved that all efficient points are proper iggkhe con-
straints are Dx = b. Some simple changes to the proof in

[15] yield the following result.

Theorem 2-11: If xq is an efficient solution of LV then

x0 is a properly efficient solution of LV.HE

Before proving this theorem we prove 3 lemmas.

Lemma 2-12: x° is_an efficient solution of LV if and
only if the linear progfam ’ .
Pl maximize 'ey

such that Dx b .

) ; o -Cx + y = —Cxo
0,

HA

X 2 Y

W

0-
—~ k o
| ye R, e> 0 fixed

~

has an optjmal solution X,y with [y
©

il

0.

Proof:

"8 1f x° is efficient in LV then there is no X such

that X b and CX » cx° or CX-y = cx?

v

0, BbX

fin

. Yy 2 0.

Hence if y 2z 0, theroptimaf\value of LPl1 is zero ahd this
is obtained at y = 0, x = x0, ) - ¢ 0

?

0 - pg the other hand, if (x,y) is an optimalqsolution of

- “ IP1 and if y = 0, then the optimal value of LP1l. is zero

so there is no y 2 0 -and X z 0 such that Cx-y =‘Cx0}

o ..

P

[N

-

DX 5 b. If there was, (X,y) would be feasible with ey > 0.

{

'
’

s <y s @
T e
¥

a

L]

~
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o Y ) -
, {
Hence there is'no X 2 0 such that C% > Cx° and DX £

A
o

Therefore xO is efficient.H§ .

Lemma 2-13: x0 is an efficient solution of LV if and R

.- .only if the linear pfogram

R LP2 minimize (ub—waOY . ’
" P such that ub-wC 2 0
- ‘ wze>0 ,
. u 2.0 ] N

k m
wwE"R,uER°

= has an op%imal solution (u,w)v with ub-wa0 = 0.

\ n 3

Proof:

0

B LP2 is the dual of LPl. Therefore (x,y) is optimal vt

in LPl1 if and only if , LP2 has an optimal solution
"\ - A ~ ~ hd \ y
(u,w) with ey = ub—waO. Thus xo is an efficient solu-

tion of "LV: if and only if u}:—waO = ey-= 0.0

$ I

L3 L]

- Lemma 2-14: 0 is an efficient ‘solution of LV if and

( . : only if there exists v0 > 0, v0 € %5” such tha; x?
i ,&\ solves the Sroblem
LP3 maximkze VOCX
@ . * such that Dx b \
B } > 0. g

. S

~ ProSf:
0 ! y

@ Assume x’ " solves LP3 amd x° is not efficient in

LV. Then there is an X feasible in LV (and hence feas-

ible in "LP3) such that CX = Cxo° But this implies

[ a

N Y -
-ty .

~ror

- 7 Lo

>
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g
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e
Ry

¥ oL 2

~

/ ‘ '

3

'

v Cx > VOCxo, a contradiction. Hence x°% is efficient in

a.

VOCXO Z v0

Y a

Cx ' for all x -feasiblé' in LV. -

By theorem .2-8,

o

"

xo is therefore.broperl% efficient iﬁ~gLV?l‘ . "

~ . s ! ‘ o A , » ;
This theorem shows that we can find, all efficiént solu-
" . V-l: ° ‘“ B - , . - . R . N X "
: tions to LIV »by studying solutions to the’ probilem:
. . . “ .
» °, L . I
- ° , : 0 \4:‘5 Z, RS -
. & s 8- “: P ) '
o0 ° ! ‘o ° .
" @ ,
~ M i ' 0w : = ®
- , " @ : = ¢
. e ; .

. . 4
LV. . v ; - A
% _ 0 )

On the other hand, asgume . x is efficient in 1LV.
Therefdéore LP2 has an optimal solution (u,w) which satis-
fies ub = waO. Hence u is an‘optimai solution of "
LP4 minimize . ub . ) . >\\\\

< . such that: uD z wC .
- " . ’ - ) u ’1_2_ 00 ’ ’ ’
« - e oL .
Hence an optimal solution exists for the linéqr,progfam,
dual to LP4 ) & )
0 ’ . -~ N W R
- LPS maximize wCx ) . T
K ° “ ° e - - . -
such that Dx £ b o
] ‘ ' ) ’ Y. X _2_' 00 R ) Yo . -
~ ~ 0, . T0 e
From ub = wCx~ it follows. that x,  is‘'optimal in LPS5..
PN \ + « . N N ~y o Lo
With v0 = w2 e >0 we obtain xo as an optimal sq@lution -
to LP3.H R,
LY ° .
M "' -~ . ‘l“\_ W o v
a o 4 :‘!“' [ ,
Proof of, Theorem 2-11: — noa WY
« ) - - 0 Ve
B rLet x° ‘be an efficieﬁp solution of LV..  [Therefore.
b . I * . . u .‘: . : \T
_there exists a positive Vector v° e.R% such s¢hat - . ‘

.
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'L(A) maximize, ACx

such that Dx b

1A

b4 0o

hv

A > 0, X ¢ Rk given

as ) is'varied parametrically. Usually we normalize A

1

k .
so that I Ay = 1. This avoids repetition of A's dif-
i=1 .

fering only by a multiplicative constant. Since only the
. N
slope of the new composite objective function is impdrtant,

’

1

studying L(A)- with the normalized "A's give %l possible
solutions to the original problem_ LV. Noti?e that ifl v
is infeasible so is each L(A) and so‘'we know after sol-
ving L(A) “the first time whether or‘not LV , is feasible.

Although the above method apbears to solve the problem
of how to find the set of all efficient points two pfoblems
exist. The first is that éolving L()) for many different
choices of A is long and tedious. This érpblem can be
byercome by .applying some of the results of linear program-
ming theory. Using post-optimality analysis we can obtain
ways of finding the set of all efficient points once one
such poi is known. Thus we pick one A, solve L(A) and
. then udéythis solution té help find other efficient points.
But one pfoblem still remains. Consideg the following

g

example.

/ ' . \
- P
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o 3
Example 2-15: Find Pndx e -
-xl+X2 Y
Lv : subject to —xl+2x2’§ 2 .
. Y
XyeX, 2 0.
Now all.points on the portion of the line —x1+2x2'= 2 in

the first quadrént are efficient: Consider L(A) with

-

A= (2/3,1/3). ( Sée figure 2-2.) Co
L(2/3,1/3) | maximize {2/3x, + l/3(—x1¥x2)
= -L/3xl + xz}‘

s?bjecﬁ«to —Xq +n2x2 < 2
00 -

X X

fiv

17 72
Even though there are finite efficient solutions to fhe
originél problem,. the new composite objective fugction is
unbounded on the feasible set. Proceeding along the ségment
of the line /;xleXZ‘;'2 in the first quadranmt we e “tra-
ding off the value of oﬁelcomponent'df ihe obﬁective for the

value of the other. However, with tﬁé,multipliers (2/3,1/3)
N . (4]

\

‘this tradg off fncreases the véiue of tﬁe objective in

i °

L(2/3,l/3)”° Therefore: L(2/3,1/3) -i$ not optimized ai any
of the finite solutions to 1LV.' It turns out in fact that
L(A) is unbounded for all normalized A ‘with 1, > 1/2.

1 < 1/2, thehsolution is the efficient point (0,1).

~t

Only;when Al”= 1/2, are all other efficient points in LV

If A

optimal in L(x).B

-

o

&
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\
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«
. by
% L4
o ¥ oo
L
o
tq

A

Constraint set for example

5

objective .function with A
'

with a value of 3/2.

2-15, showing -
= (2/3,1/3) and

e

<

*
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In this example there are finite efficient pojnts, but for

]

the k, picked, the problem L(AY' is unbounded:

It can be shown [11] that if LV has'at lqeét one
finite efficient point, éhen a finite extreme’point must be
efficient. In solving L(A) by the simplex method we may
pass tﬁrough an extreme paint th;t is efficient in' LV but

not optimal in L(X). This is of particular concern if the

o

solution of L(}) ,isvunbouhded.‘ Evans and Steuer [1l] have
a revised simplex method that moves from extreme éoint to

extr%ge point and can test each qr any for efficiency as it
progresses. After finding one extreme point their method

checks surrounding extreme points for efficiency and in' this

way builds up the complete efficient set. This procedure

works since the set of all efficient points is connected

(see [321]). Other aiéorithms of interest are given in [25]

v 1
R 2

and ,[321,

[ ’ ’ '~
' Y

Exéﬁple 2-15, cont'd: The first simplex iteration in the

-

solution of ‘L{2/3,1/3Y takes us from the origin to the

corner X = (0;X). If we check this point we fin¢,it is

efficient. Finding the next e#?remé point to be ingznite »
?Qé ggi the set E of efficien’tﬂpoints'of° LV to be

b
E = {ixl,xz)I—xl+2x2 =2) X 20, %, 2 0}.%

kY

, [}
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Chapter Three- - Linear Inverse Pairs

A3 Ay ?

-

4

In ‘this chapter we look @mt linear-inverse pairs of
programming problenis. First wé consider pairs in which one
problem is scalar-valued. With insights developed in that

case we then congider pairs with Vector-valued objectives

- Y

on both problems. Our main aims are to dévelop algorithms .

for finding optimal 'inverse triples and to show the rela-
‘ u ~ » i N
tionship between an inverse pair and the duals 'of both prob-

~
v

lems. °~ " L s s

N
"
b
- Y
" 5, . !

.
3

3.1 Scalar-Vector Linear Inverse Problems

K

We now consider the pair of problems of example 1-8, "the
' ' 2
case in which one of' the problems is a scalar-valued LP .

proﬁlem. Most of the rgsults for phis case follow directly

from LP theory. Mbstwa;e also easy to see graphically

especially when we have just two variables. How?vef the
> 0

methods we develop and become familiar with for this case
R A - ' .
are also useful for problems in which both the primal and

the inverse are vector-valued., Our inverse pair can be de-

~ . ,
“

fined asrs ”

Definition 3-1: The primal problem is

l
PSL (b)' ‘ find. a = max{a = cx}

A
o

. - ' such that Dx

« , ’

< 1

X

v
=

The inverse problem is

'
.
;
- 8.

o 2 ,

-3
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)

. [ N
IVL(a) find b =Pmin{b = Dx} o
. such that ex 2z a
X 2 0
~

DERan

In both problems : C,X € Rn; b ¢ Rm; a e R.E .

A

PSL(P) is just an LP probleﬁ and thus can be solved in the

)

usual way. IVL(a) is a vector-valued problém and can be

approaéhed'by tﬁe methods discussed in chapter 2, ﬁowever

IVL(a) has only one constraint so we can simplify ﬁik‘soluJ

! )

tion procedure. ¥For edse of discussion we assume m = 2,
n = 2 and the set of efficient points for 1IVL(a) is non-

empty. 5 " v v

\

Our main concerns in this section are developing algo-
rithms for finding optimal inverse triples and studying”

their properties. In so doing we have tg find solutions to

.

both the primal and inverse problems. The structure helps

s

us to obtain these ‘solutions easily and we examine how and_

why this-is true. .

" ~

First let us reconsider the solution method for the
w Lad
vector problem IVL(a). We let IVL(a,A) be the scalar-

valued version with multiplier vector 2, that is IVL(a, )"

@

is the problem: ' .

) minimize Ab'= ADx " . .
4 ' . ’
such that c¢x. 2 a . V\\\,//

0.> .

[\

X
\ '] .
In the earlier discussion no importance was put on the .

11\

N
-

actual value of the multiplLér§Q However considet the
~ t .t

- ~~
- '
¢ . R

-



following example: . I'd

’

Example 3-2: This is a continuation of example 1-11.. There.

we _.had: o Vi
. ’ by = 2xy+x,
IVL (a) L Find Db = Pmin
S ‘ , D S bz = xl+3x2
B ‘ : : " such that X +x52a , .
Xyr X5 2 0

3
A ”
’ «

In this simple example it is obvious that ﬁﬁ set E of
e s P P _ _
efficient sblut}ons is E = {(xlmx2)|x1+x2 =.a, %720, x,20}.

However for ény normalized multiplier vector with Al < 2/3,

thé uniqugaoptimalksolution of 1IVL(a,A) is’ (0,a) ‘while
. . s

‘withe- Al > 2/3 the unique optimal solution is (a,0). " See
figure 3-1. The multiplier vector +(2/3,1/3) 7ields the
. problem. ' A S coe ‘ 5
b minimize. {2/3{2§1+x5} + l/3(xl+3x2)

.

= 5/3x; + 5/3x,}
subject to - X, + X 2 a
“ Xqe x2°g“0

The objective function has the same slope as the single -

constraint, so thé set of all optimél“sglutions is equal to .

the set E. It appeaxs that we should consider (2/3,1/3)

°

a better multiplier vector-than the others since from it we

»
»
[} o ]

can eggﬁﬁﬁ derive ihe,wh%}e effidient set for IVL(a). .
- In éxample 1-11, we show that R is the face of T

that is also a subset (subcone) of 5a = 2b 4 b2°' Thié‘

\ + 1

P 4 . . g

£ 2 - R ¥ o,



-

. =53~ 9

I

-7/4xl+3/2x!

 iVL(a, ¢3/4
~

‘ N . /‘\—a . . .
Figure 3-l: Constraint set for g&ample 3-2 showing optimal

objective functions for IVL(a,A) -‘when 1\ .is

(1/2,1/2) and (3/4,1/4).

« -~ ¥

&



equation can be.rewritten as

L : 5/3 a = 2/3 by + 1/3 b;’

. ) . <%{)““that the multiplier vector 1 that ellews us to find the

3 « .

i - o wholi eff1c1ent set-is made up of the éomponents of the nor-
. o o »q@l taq R that correspond to b_1 ‘ané bzn As nqticed :( ,
:; “ before we_a}sq haye ! . } “ f; |
i ’ * K 3;« L 5}3(1,15 = 2{3(2,1) + l(3(l,3?r ”f ;‘
. ‘.: - §-';Thus X is sgeh tharzfor some o >16: L . , . -
T,Q | f - b . PP ., . , . . >
-E;J“"Z . Thﬂs IVL(a) [ﬁgs the follow1ng propertles. The set of/ﬂ
{\ "N » . (LT AN

¢ r- eff1c1ent solutlons 1s, dependlng 4n .the. slopes of the objec—

- - ®
.

SN tive functlons and the constralnt, elther ' ! , ,  }

U ~ N
v ¢ B - ° ' e +

. "iv' \{(Xl,xé)lcx = a, xl,ﬁ}go.},{(il,o) where. ﬁl_f a{g;} or
o e . I : ‘ , v
{(0,%,) wheré’ §2“= a/c,}. If it is the Secend or third,

&
RN -

then t%e solﬁrlon of IVL(a,)) for-any X > 0 provides the el

o

efficient point. If it is.the’first: then thé solution of

v

IVLﬂa,A) for most 3{3 prod&ces either ‘(b,iz) or_ (iliO)?

) . ) fand only one normalized A gives a problem that .yields the ‘
Y w . @ R . P

Ca rest of, the efficient set. ‘It would therefore be useful if

2 T, we could find this® "best" A, call it- ‘X, in any paf;icqiar‘”

: ) case. . 'One answer is provided in [32] and is demonstrated in

. . -
M . \ - . ' s

f . the example, that is 1D =-ac for some positive constant

- 3
' < &
1 s Y - a = »

. @. This is the usual equality of slopes conditiqn ﬁrom N

, . Lagrange multlpller theory.a 1f there 1s no solution to-this

\

|
ﬁ set of equations then .the efficient %et 1s {(xl,O)} ox

©

Ehen
&
2
4R
'
t
i
1
)




\ (0 xz)} aﬁd,any A2 d sufflces to f;nd 1t. “

N P

.  In this- case, 1f we. solve IVL(a A) w1th an arbltrarlkr

¥ B *

. qhoaen Ay we.most llkely end up at, one end of the eff1c1ent

e, v e ' “

'Seti But, as we note 1n chapter 2, %he efflclent set can

r

. ) usually ‘be taken as an approx1matlon to they

* -

- points ‘'under some unknown utility functlon connectlng the

a
.

set of optlmal

o

at the edge of the eff1c1ent set, we probably have a bad

. : ..approxlmatlon to an optlmal solution. . In the context of
. ’ examplesh-B, it would ,appear to'be better to pick a solution

Iy :

o " that outputs some x; and X, ‘than to' take either of "the

v " . . .@xtreme-cases’ of ‘(il,O) or (0,§2). This is another rea-'
o . son for wanting to find 3X. T . -

v ’ N There.is another way of cparacterfzing X, but first we
ST - ’beed the followiné theorems. i o '

t
s . o . . . . .
- * - b1
. n e ¥

* Theorem 3-3: Let‘ PSL(b) and " IVL(a) be an ipverse:gair

f
- " ‘ 0 2

o

- , ¢ . ,

. asuoh that ¢k = a, and b = Dx - is .an efficient value,

~
' . i ‘

then (3,b,%) is an optimal inverse trﬁple% ‘
o “ :
v ~

. Proof: . 5 o
¢ .9 B Assupe a is not optimal in’ PSL(B). Then.there exist’

é and % -such that cx = a > a, bk £ b, x
¢£a “‘,"‘ s [} . .

X is\ﬁeasiblelin'"IVL(a) 'sQ thérg is a b ¢ B(a) such-

0. Therefore

v

e v e ot
El
Y

. v,

o «
. ? [} ~ . . A °

E LN .

a

1

of problems. , If - X is an-.efficient solution for ;IVL(EY

-

objective functions. If we -stop with the one‘efficient point

.3

A

,§ . R that ﬁks E$ Bub"sincé .a < a’ and .ﬁ € B(a), there is by
% _ defmn;tlon 1- 3~a _b E B($§' ‘such tgat"s %rgui We now have 1

) é - ‘ mS < "; B -or b < 5. _Therefore%"B £ B(3) but we haée~~ o
% :
/
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" This result depénds-heavily on

-valid.’

i of pggblems.

assumed -that it is.

fére 3 must be optimal .in |'PSL(b).

"an qptimal inverse triple.B

» " a

o v '

- ' -
’ v

fact that®for scalars < “and. <.

.

tion to PSL(b}

v

Hence we have a contradiction.

But then

are the same.

There-
(3,6,%) is

Se

w

cx being scalar and the,

i

We cannot’

“in general obtaﬁﬁfthévsame result if we Start with a solu-

but the next theorem gives a necessary and

sufficient .condition for those cases in which the result is

DRI VL
q . .
v . /2

- v
-

Theorem 3-4: -Let _PSL(b) - apd- IVL(a)

.

If X

‘

is an efficient value,

o
’

.and '3 = cX ther

is an efficient solution for

(a,b,x)

"

be an-inverse pair

bSL (b

is an

y

v

\ optlmal inverse trlple if and only if the dual of PSL(B)

_ .. ;
- " has a p051t1ve optimal sdlutlon y

~ s ) “' 1.
,
[N s

Proof: L . . ) )
o —— o o

a

~

@ -First assume (&,b,%) 'is an optimal inverse triple.
Therefore a = cx and b = Dx and there is no x 2 -0
that either cx > a;-Dx £ b or Dx s b, cx z a. Since

o
[

i . )
yb 2 ¢x holds for any feasible, solution to the dual, we

.
~

We can rewrite this system as:

"

- o

5

require a solution vy 310 , such that °§§ < cXs
" we need a solution té'%he system: ¢
(1)- .yD 2c o C
s 'yso
y ' ‘ yb = Exﬁ \ ‘

Therefore we

14

such

0,‘!




13

’(l e

oo

bt vt ki o =
g Py

Py )

"
g

where ¢ = .ay, o« a scalar. By Motzkin's Qheofem of the

. P
alternative '(p.28 in [23]) either (1”) has a solutién or

-57-

(F,0)I >

ok *

(9, (2

(yl o) (g—b

cX

.

o

|
1

v
o

0

hv

<

has' a solution but not both, where (2) is the system:

CA(2)

: "D -b) . _
qlzl +(~C}ZZ + (Cﬁle = 0

v
o
-
@
v
(o)

This system may be rewritten as: '

(2)

(27) \ Dz, + z] = be
CZZ,- T = X8 )
— I" . \ ‘
zy = (zl,n) 2:0, Z, 2 0, 8 20
. 27 e R®, n.¢ R, z, ¢ R', 8 € R.
Since Zy % either 'zi >0 and n 2 0 or 'zi 2 0 and
4 : \ " ) *
n > 0. Therefore, (2’)fh@s\a solution if and only if one of
the following two syftems, (2-1) and (2-2), has a solution: S
(2;1) - cE, > cx0 '
' Dz, g\?e . :
A ) 2y 2 0, 6 2 0;
(2~2) Cz, 2 CcXo
® ‘ \
) D22 < bbo
!“ €
zé 2 0, 6 2 0. -



"h\ » ‘ .
03 » :'58— \‘ \ i
\.
E‘ First we assume 6 > 0 and without loss of generality we
can actually assume 6 = 1. Now (2-1) becomes: .
' cz, > cx
~ . ° :
. . Dz, §'B o
‘ z, z 0. ‘ | ‘ :
But this system cannot have a golution since X is optimal
/I
- in PsL(b). (2-2) becomes: ”
o R /b ,
. Dz_ < o
. 2 ' |
- cz, 2 cX
@ ¥ \
2z, 20
Again this system cannot have a solution since X is\
optimal in IVL(3a). Hence if (2) has a solytion 6 must
v ' equal zero. In this case (2-1) becomes: )
. . czé > 0
\ -
. ‘ . Dzzl§ 0 ) .
. o !
. . > .
o Zz -_— 0 s

S

ow for any vy, feasible

]

i 0

\

=V

But we have czz‘> 0.

solution there can be no

"

P

get: ’ ; cz2

o

e e

%

R At iR gt T
SR -
Y

cémbinigg this with the above, we have:

©
-

s0,

in the dual of PSL(B), yD z c

ybDz, 2z cz,.

-

Hence,'ifnthewdual has a feasible

L]

solutiop to (2-1). For (2-2) we

w

0

w
(o}
L]
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Consider now' & + Z,-~ We have DIX + z,) DX + Dz

¢
- 3 [ - v.“ L4

W ~ “

b+ 0=b; c(x+ 22) = cxX + Cz

2 *

cx & 0 = cx and

A

5,
: 2%
+ 2, 2 0. Therefore, if. z, "is'§Qsolutioﬁ:to this systém,
" I \ , ' . 4 o )
+ z, solves (2=2) for. 8 = 1. *“But theré was no solution

to this system.

b

»i

when 6 = 1, so there can be no solution z,

Therefore we conclude that (2) has no solutfon so (1) must
have one. Hence if,j(5(5,§)~ is an optimal inverse triple

R A : . o
we can find a positive optimal solution to the dual of

PSL(b) .

v

Now assume that the dual of PSL(bB) has a positive opti-

mal solution ‘y. So system (1) above has & sobution and

v -

system (2) cannot. Hence, in garticular,'there is no x 20

such that either cx > a, Dx £ b or Dx £ b, cx 2 a. We

o

assumed that X is an efficient solutjon for pSL(b) “and

these inequalities imply that X is g}so an efficient solu-

tion fér °IVL(a). We know a = cX and, since y > 0, comple-

-

mentary slackness in the primal problem gives us b = bx.

‘ o-— —— - . 3 -
Therefore (a,b,x) is an optimal inverse triple.®

We now are in ‘a position-to develop a new characterization

of X. The following theorem gives the theory we need.

After that we explainfthe charaterization as a corollary.

Theorem 3-5: Let PSL(b) and IVL(a) be an inverse pair

-

of problems and let (3,5,%) be an optimal inverse
triple, then: .

(1) if ¥ > 0 solves the dual of PSL(B), B is an

efficient value of IVL(3a) generated by solving
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I‘}L(al§) i

\

(2) if b is an efficient value of IVL(a) gene-

2%

rated by solving 1IVL(a,A) then y = al -solves *

" the dual oft PSL(bB) for some & > 0 and, if
. a
b #£ 0, o = — |,
b

Proof: :
0 part (1) follows directly from theorem 4-16 and is

A
proved as a corollary to that theorem.

Part (2). Since, by theorem 3-4, the dual of PSL(Db)
has a positive optimal solution, it must be feasible. We can

write the dual as: min yb "

v

yD c

v

v

yz?0 /

i

y assumption, we also know = ¢k, b = .DXx. .

. , a
First let us assume” that Ab # 0. If —'- A is feasible
! ~ )\ .

1

it must be optimal, since the value of the dﬁal would be

-

a .
—.A.b = a, Therefore, for our result to hold we need to

Ab

zr

have a solution o to the system:

)

(2-1). E " aAD 2 c .
a 7 -
o = — ] . c o
\ Ab ,
\ .
az 0 .

But, ‘using a theorem of the alternative due to Gale (p.35 in

& .

‘L23]), we can deduce that there is either a solution to (2-1) . =

or a soluﬁiqp to (2-2) but not bbth, whe}e (2-2) is ﬁhe

L]

o —— ke



systém;
(2-2) ADz < B
L a ’
' . . cz > — B
Ab
N z 2 0

o Z € Rn, 8 € R.
Now assume B = 0 so:
ADz £ 0
cz > 0.

* If we let =z z + X we have:

¢z = cX +cz > a+ 0 and

‘ ADzZ = ADX + ADz £ ADX = Ab .

~

so we have a solution to:

o

(2-3) " ez > a
i +  ADz £ Ab
N zz0 .

For B > 0 we must consider two cases, Ab > 0 or xb < 0.

' . ) " , ({,,_
If A6 » 0, We can rewrite (2-2) as:
w2, <8
» h . Y B
’ 39 - ‘ ‘ .
. \) - (o -—'é- zZz > ‘a
! : ‘
s z 20
Therefore 2z = A% z solves (2-3). If Ab < 0 we have:
o c A% z < a
: \ AD-AE z 2 Ab oo '
| ° B .

SO

i
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Theréfore, letting z = 2x -

. —62-
c(x - Ab zf >
. g2l
. m(i-l%)s
and  x - 35 z >
B =
o 2B

*

to (2-3). similarly, if 8 <

[

tion to (2~§). Now let ; = cC so

IVL(a). 2 is feasible in ‘this prob

0 since, l% z 5 0,

2z, we again get a solution

s

B
0, 'we can also obtain a solu-
z

a > a. Corsider

lem so it has an optimal

value b £ Dz. "Since A'> 0 we have' b g ADZ. Now we can

use definition 1-3 and {a < a and

b 2o A" N 9
{3b ¢ B(3a)|b <« b}. . Therefore, putti
o Ab < Ab £ XDz =
\ -
o : or Ab < Ab,

However b e B(a) .so there must be

~ ~ ~

But A A\b is the optimal.value of the

. -

b € B(a)}l => :
ng‘all'these“tégethér,
- 2b

an x z 0 such that..

b = px and cx 2'a. Hence - x 1is feéasible in _IVL(3,\).

problem so there' can be

no b “and the¢refore there is no so$ution to (2-3) and hence

no soluti@n to (2-2). Therefore there {s a solution to (2-1)

. - R
so -2\ is feasible in the dual of PSL(b) and is therefore

AB ) t

an optimal solution. (Notice that if

L]

"Ab must have the same sign since A

£

Now we turn to the case in which

o

a #°0, then a‘ and
> 0).

b = 0. Therefore

oAb = 0 ' for all o and we need to show two things. For .the

dual of PSL(b)., ar is feasible for

yb 2 0 for all feasible y. Assume

o

false." Thus there is a solution to:

some ao > 0, and

the second part is
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(2-4)" . - yb < 0.
. 724Q / :
YD 2z c. -

and since X 2z 0, : s

0 > b = DX 2 c% = &

4

so a must be negative. But then x = 0 is feasible for
. \

IVL(0) so there exists -some 5 e B(0) and £.§ 0. Using
definition 1-3, {3 < 0 and ‘D ¢ B(0)} => (3D ¢ B(3)|b < b}.
Thus - b < 0, so ppat Ag < 0 1is a feasible value for
IVL(a,\) which.contradiqﬁs the optimality of b = 0.

Hehce yb 2 0 holds for all y which are feasible in the

dual of PsSL(B).

~

Now if oA 1is feasible for some «a.> 0, there is a solu-

i

¢

tion to the dystem
(2-5) ‘ —/}D s -c
’ . ' o > 0.

L

But‘by a theorem of the a&terhative due,to Gale (p.35 ifA

-

[231) .we can show that (2-5) has a soluiionbonly if (2-6)
. . : . |
does. not,” where (2-6) is:'. ; - s

(?—6%. . AD z 50 . o .
K -c .
o ’ ' 1 ° \
A . N R " z “_2_ 0 o . \
'(2-6) can’be fewritteﬁ‘as: " for some z 2 0 =
either i ADz < 0 and cz 2 0
or ADz £ 0 and cz > 0. "

Letting Zz = % + Z, z . must solve either _

czZz'z2 a and ADz < Ab



or : cz > a and ADzZ £ Ab. .
. . ° . 3 o \
In the lat{er we have a solution to (2-3) which leads to the

v

same contradiction as derived earlier. In the former z is
\ . .

feasible in IVL(a,)). but yields a better value than the op-

T

timum. Hence again we det a contradiction. Therefore a) is

P

feasible for gome o > 0. Therefore the proof is complete.B®
- * \ '

\ .
Corollary: Let PSL(b) and IVL(a) be an inverse pair of

problems and let BAR = {B|B = Dx is an efficient value
o - w0 . ’
in -IVL(a) and cX = a},°then there exists a common po-

»

\

sitive solution, vy, to the dual of each ,PSL(B)" for all o

» f )

b ¢ BAR« and all b can be derived as solutions\to

(

iVL%a,§), that is' y = aX for some o > 0.

A .
~
. ‘

. Proof: . ; i

—— ‘ .
B - For each b ¢ BAR and corresponding X, (a;b,%)  is.an
‘optimal inverse triple. All the B can be generated by sol-
ving IVL(a,X) and for each b there is an o > 0 sucl

M 4

that oY solves the dual of PSL(B) . - Hence ”XB 'is constant

' a v o ! ‘ ‘ i “ . \
‘for all b e BAR., If Xb #0, o = — by theorem 3-5 so. « *
) N . b ' . _
is constant: for all \b.: If b = 0, any a%‘for which- aX ., /
\ : . . . . , ‘ ‘
solves one of the dual preblems suffices.Hll./ ( i

’ ) ’ a0

rl . / :‘
( Theorem 3-5 is intuitively reasopabf?/since-both the dual

variable and the mqlgipl;er for.a Dix/7 bi (where' D; is

" the i® row of D) measure the value Of this component. .The
- Ld

v

A
dual variablewis a derived value’when _bi is given. The -
N ‘ A * N s &
multiplier is a given value that leads to a derived bi°

' In the above theorem the a is neées§§ry since all posi-

L

- . &
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tive scalar multiples of a multipliér,vector are equivalenti

but, if we multiply an optimal set of dual variables. by a-

scalar not equal to .1, the result is either not feasible or
not optimal. We have not normalized the multiplier vectbr

in part (1) of the theorem but an-equivalent result would be
' » N ¥ ' ~ ~ m ’
"that b is efficient in 1IVL(a,))* where X =y/ & §i3
B i=] ’
We now turn to algorithms for finding optimal inverse
. "2 N
triples. In the first we assume‘an a‘= a isvbiven, and we
are looking for all- b and. x such that (3,B,%) fé“an

»

.optimal inverse triple. . . @

1Y

- " k1 L

Algorithm 3-6: This algorithm finds optimal inverse triples

U%sgﬁa §pecified i e A for an inverse pair of .problems.
N I/

.-
-~ & ”\

(1) Choose ) >:0 and solve theﬂéimple lineérxgro;
. 0'“‘;" - .

o

\) for %' and B.

- gramming problem IVL(a, y

(2)

-

(3) Solve the linear program which.is the'dﬁéL°of
PSL(B). ., If there is no.fositive. solition,
a’# cXx and there aré no optimal. inverse triples

) - ! ’ A ® .
for a so stop. If ther¢ is no extreme point .

\\ - positive optimal solution, then- X .(gfém?step

1) is, the entire eﬁ#i?ient set qf soluti{o’ns°

) Otherwise'let,‘i\fbe'the'pqsitive extreme point
optimal sélution°" \n.‘° -

(4) Solve the simpléilinear:prbg%amm%pg problem

nd detetmine the entire sét of opti-

If x>0 then A =13 and procgéd'to step 4. .

s
g EETTRRC
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5 in step (2), x = X since X is the only multipliét vector
that does not yield either thé (%,,0) or (0,%;) (defined
*  previously) as the only optimal solution in step (1) " If we
do ge?*(il,O)! or ' (0,§2ﬁ then thé dual of PSL(B) must
/// ’ ‘*Ahave ;lternative optimal solutions. If thenset of efficient

\

solutions "does not contain just one point, X must be an
. o {
extreme point solution to this dual. If no éxtreme point
solution is posi&ive, then the solutions of the dual, when

‘normalized, glve all normalized mult1pl1ers, Thus ﬁhe X

found is the only eff1c1ent so@ptlon of IVL(a)
< .-

Example 3-2, cont'Q: Say 'we first pick X = (1/2;1/2)°

«As we saw before the,optimal'solution to IVL(10,.- (1/2,1/2))

~ | -is x ='(10,0) ,yielding B = -(20, 10) PSL(20,10) is then:
‘ ' | -3 = a = x,+ "
K . . a =max a = Xy x2 \
o . . R ¢ su¢h that éxl+x2 £20 ¢ o .
L ‘ - “ : +3x. < 10
. P o~ o o th3x2,§ 10
. . ; «x,l’XZ 2 0 ,

3 ‘ . .
" And its dual (see,figure 3-2) iss,

se Lo

. minimize 20y1-;:10‘§72

v
i

$ , * « . ’ 8 - SUCh that 2yl+y2‘ =

4 i ,‘ s L, - ‘ . Yl+3y2. _2_ 'l

r,o. . ' [ 5 ‘ ‘
E. O e , s - o, ' °
- - L) . yl”yz z 0 - .

<
-

This problem ‘has two ba51c optlmal solutiong.- Qne’of these

% 1s p051t1ve and if we normallze 1t we get . e

o

“* -
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§*

(2/5,1/5)

A\
. -67-
S
, .
- ° ~

o

= (2/3,1/35, This is the mul%iprier vector

(3/5) .
that we . showed above yields the whole efficient set.d@ ‘
f . A
. . - s ~
v ! AY
P )
<
)
s ! .
. ' - 0!
o S
- . * - - ~ “l
’ . - - " , ’b -
e '3 ~ . ‘ - J/
. ., - R . . r + R
3 [ "y A n\ ' L3
B a . ¢
Figure 3-2: Constraint set for the ddal of PSL(20,10)
9 ¢ . v e ‘oo, ‘<, ' »
- N “ 4
‘ in example 3-2 showing 'alternate ‘bhasic optimdl
. . .
0
\ solutions. ‘ L .
. ) N ;
- ’ ’ ° - ) ~
\ ) - - ¢ //
a / ° ® ‘
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.to be in some given-ratio. There may\be\no optimal inverse

" [ ' f'ﬁ L vl »
Algorithm 3-7: This algorithm finds an optimal inverse ‘e

%.‘ 1
.
N

.

In the next algorithm we again start with a specified

value for a 'but this time we want the components of . B )

L4 -
» a

trlple that has b with éxactly the desired.ratio of com- :

ponents and the ratio bhas td be adjusted There are many

r 2 Oy

ways of d01ng thls. - We .do it by resettlng the ratlo S0 that,

at»the optimal solutlon to the orlglnal problem, all

constralnts,are tight. . L.

.
.-~
Y P
. ! - ° ~
M » v N .

triple (a,b,x) for an‘inveisé.pair of proLlems in h
. ;hich’the value a ¢ ; ie spebif%ed~aﬁqéwhere the vector
b s p30portional to a givén gn,. v . |
(l) Solve the llnear programmlng problém PSL(b) for

“
-~ P e

x 'and a. If "a = a, let 5 = % = x-and pro-

A a
o

Q # a proceed to step
a and note that X = yx—

ceed to step (2). IE a =

. & -
- {5). Otherwise let y = a/

a solves' PSL(B yb) w1th optlmal valde a.

(2) If Di B then reset b = Dx. The desired ﬁro—
portlonallty cannot be exactly achleved.H

. (3) Skoe the llnear~programm1ng problem ghat irs dual s

- . &

to PSL(B) If it has a pdsltlve optimal solution

. o then (a 5 %) is the desired triple. -

e

(4) OtherWLSthhe problem PSL (B) Has‘ah alternative :.“

- -«
-~ g L— °

. optimal, solution X for which «<x-= a and
. A . ny .
Q§ 2 p. Set %X = x and return’ to step (2). .

i}

'(5) Multiply b ‘hyqsomelpositive constant not equal

0 ‘—'""’mﬂ"ﬁwwwyva&w__ s

el . Lo P » Ty ey -
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a
"

~ " «
“n

o Mo to' lﬂ aqd réturn to (l). If ‘a 1s still 0,

the desife@‘proportionélity cannot be éxactly ;

"

'achieveg. Increase all éomponents of b slightly g

‘- ’ ~ N N
. and return to (1). If a .is still 0 and
' Dx A b .definition, 1-3 is violated and optimal ° .

" . v " ) ~ ~
inverse triples cannot exist. "If Dx < b, reset

< vy

¢
v [P pY

~ ~ \\\ ':
b = Dx and, return to (1) .8

Part (3) follows theorem 3+4., What we really need in -’ A

part {4) is a b efficient in IVL(Z). That such a b il

exists with an x such'that cx = a follows becausetof the

. way b has been defined, because a ¢ A and because TN .
* v . % .
PSL(b) and 1IVL(a) are an inverse pair. -Also cohsider tbe

@

" set of optimal solutions of PSL(B). There must be an .

L v a

[ 3

. extreme point x of this set such that cx = 3, Dx < B and
. - . . " ’v" \ -
there is no other x in this set with Dx < Dx or else *

I -~

Dx = b for all x in the set. This is true since x is -
!just an exfremé point efficient solution for the problem ) :‘
GIVL(E). ‘Thué we“only needdconsideé extreme points of the v .
'griginal set of optimal solutions. This set is finite, so . e

the algorithm tefminates. If all components of B are of
the\same.bign; then the first adjustmgpt of 5 in part}(g)
suffices, sinée-if él is zero and ﬁ% £ 5 we already have
a violation' of definition 1-3. Tpe<extra part of‘the step

allows us to handle cases in which the componeﬁts\of B °

ﬁave different signs. This algorithm cag\?lso be used to
i . i v {
find optimal inverse triples with'a b close.to a given |,

N -
L] - ’ e

-
gy
3

o °
’ .

-4
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PSSR

TEET e

eshaapagens

. - such that 2y1+y2 z

.m= 2 and n = 2. However this réstriction is not used in

’ ' >
| . B

value if the value of a+ is unrestricted. 'By "close to" we

v ?
mean b is reset as necessary as outlined in the algorithm.

IS

H

Example 3-2, once again: Take 'a = 10 again. Say we guess

b = (10,10) and solve the problem: ) T

~ 1

PSL(10,10) . a ={max a = kl+x }

. ° - such that 2xl+x2 s 10

#+

x1+3x2 £ 19

. *1%2

w

The optimal solution to PSL(10,10) is 'x = (4,2) with

> W
o

~

value % = 6. Therefore y = a/a = 10/6

5/3 and
PSL(50/3,50/3) has the optimal. solution X = (20/3,10/3) ‘

" and value 10 = a. So T = (10,(50/3,50/3), (20/3,10/3))

is our candidate for an optimal inverse triple and we check .

for a positive solution to:

L

minimize 50/3y1+50/3y2 - *

1
[

v
=

i .- L ¥ty 2

yleZ-E 0
- & Ty
. \ ) v,
This problem has the ﬁnique‘optimal solution (2/5,1/5) °“so

T 1is" the desired triple.® ) - : .

all these results hold for any and n. In the above,

-
- 3



.0 “ , _7‘1_

- N

“

v

the efficient set for 1IVL(a) is a line segmént'or a point.,

gf there are.more than 2 variables, the efficient set is the

-

\. ° sSegment of a plane or hyperplane cut off by the positive
orthant or a corner or edge of the segment. Algorithm 3-6
must be‘mo@ified to handle this. If ‘the efficient set has

dimension n - 1, that is, it is all of the segment cut off

~

by the positive orthant, or is one point the algorithm works. "

\ . ‘
Otherwise we are trying to write. ¢ as a positive combina-

4

- . tion of the rows of- D but cannot. Since
a

. . n

.verse pair of problems and a ¢ A we know optimal inverse \

triples exist. If definition 1-3 is sa

- able to write' c . as a positive combination of the rows of

ed, we must be

v

D . and some of the rows of *I from the\nonnegétivity con-
straints -Ix £ 0 (see for example [9]). By adding as few

. rows of -I as possibié we find which constraints must be g
- . )

(31 - |

\ active and thus reduce the efficient set. The following

N

examples demonstrate these points. 'Ib the first the effi- .

. .

‘ . .
cient set is, still 'easy to see ‘since there are s$till .just .

N .
v

-t

" and m differ. 1In the second we consider a dhse in

-
" "

' x . 'm and. n a&are both 3. ° .

v P
v
. N\

) . ’
) , Example 3-8: Our inverse pair is’: . o

¥
;o ) @

4 &
ke oy . *

»

s oot St o e
PO N
pu——d
Py
&
=
a
3
x
s
’
E]
s

TSRS TR e
A §
3
:
2
v
B
LN
.
LY
'
-
°
2
>
»
.
v
. ©
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PSL(b)

IVL(a)

.

-72-

maximize {a = 4xl+10x2} .
subject to 2x1+5x2 < bl .
xl+x2 = b2
X] £ b3 .
‘ ¢
) Xq1X%, 20
‘-flnd Pmax bl = 2xl+5x2 . . "
b2 = xl+x2
by = X
subject to 4x,+10 é 2 ' |
il,x& 2 0.

We want to use-algorithm 3-7 to obtain an optimal inverse

~

triple with a = 20 and :b proportional to (5,1.5,1) = b. .

So first we solwe

this problem is x

vy =ala=2, so X

PSL(5,1.5,1). One optimal solution for
= (5/6,2/3) with ; = 10. Therefore

= (5/3,4/3) solves PSL(10,3,2). But

DX, = (10,3,5/3) so we set b = (10,3,5/3) and check to-see |

4

if T = (20,(10,3,5/3),(5/3,4/3)) 1% an optimal inverse .

triple. The dual of. PSL(10,3,5/3) is

L]
°

-
T

1Y

., does not satisfy the ‘requireménts. However PSL(lO,B,é) or

[

This. has the unique optimal solution y = (2,0,0) so T

minimize lOyl+3y2+S/3y3

such that 2y %y +v, 2.4

— A}
[/ ~—t

Sy +y, z 10

v

erY20Y3 0°

) " \

-
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. e

(PSL(10,3,5/3)) has another optimal olution ; =,(0,2)

and D; = (10,2,0). So we reset b =1{(10,2,0) and consider

the dual of PSL(10,20,0): \
\
minimize }0y1+2y2+09\3 \

v
f~N

such that 2yl+y2+y3 2

5yl+y2 z 10

v

0.

:

Yi:¥Y5:¥4
This has a positive optimal solution (1,5,a) for any posi-

tive o so the inVverse triple ‘(20,(10,2,0),?b,2)) is

°

optimal. Since there is no positive basic solution to the
&

dual, the point x = (0,2) is the only éfﬁicient7sélution\

4
P . Ny
.

to IVL(20).
"In this case the singie triple found is also..the entire
set of optipal inverse tripleé; Also c¢ = (4,10) can not
be written as a positive éo@?inétioﬁ of the roééyof D
which are (2,5), (1,1) and (1%0). - 1f we add the row
(-1,0) from -I then 1(2,5) + 5(1,1) + a(1,0)
+(3+a?(—1,0) = i4,10L. Therefore in the optimal inverse

triples Xy = o.m

Example 3-9: This is a special case of exalnple 1-8. We

are trying to decide what output to produce and how much

-

resources to use to make 5 units of profit under the follow-
. L4

ing conditions: there are 3 resourceS/and-B outputs, the

o

profit -function ls ‘a = CX = X +X, X, and the technology




e s VR L PR, Lo

1

1 2 4
6 '-13 %

Thus we want an optimalQinverée triple with a =5 for the

s &

matrix is (2 8 31 '

pair: \

PSL (b) maximize {a = +x +x3} .

1

R R

A
o

such that 2x1-*j8x2+3x3 5Py

IA
o

C ﬁ xl+2x2+4x3 s

.s b
2+3x3 s 05

Xl~,X2,X3 _%\_0; - .

IVL(a) ' £find Pmin bl =.2x1+8x2+3x3
. 9 = xl+2xz+4x3

. ' . 3 6xl—12x2+3}€3

T U
no

subject to X tx+X, 2 a

oL
L

. s ’xlllex3

v

Oo °

It is obviQus that the efficient set for IVL(5) is a sub-

. %

v

set of S = {a(xl',xz,xa)lxl+x2+x3 = 5, X;,X,4%5 2 0} but it

- is not obvious_which one. We decide that we‘&ould like to

A J

o8 -

in the ratio ‘b = (3,2,1) so we consider
/]

use the resourj§§
PSL(3,2,1). An optimal solutioﬁ for thii problem is

;A= (rL/3,1/6,1/3) with value. ; = 5/6. Thus ; ESE =6
80 X =‘(2p1,2) solves PSL(18,12,6) . with value~_Z Sa”n

Also Dx = (18,12,6) so T.= (5,(18,12,6),(2,1,2)) is a

. .candidate for the required optimal inverse triple. To cheék,'

o

\

we consider the éual‘of PSL(18,12,6): .- .
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‘A

-75- (

minimize lByl+12y2+6y3

v
2¥1+y2+6y3 21
8yl+2y2—l2y3 21
‘ 3yl+4y2+3y3 21

v Yyr¥pr¥q 20
* . This has the unique solution '(1/4,0;1/12) so T AOes’not
;étisf§ the réqﬁirements. Checking PSL(18,12{6) we find _
the alternate optimal solution ; = (ll/3,4/3,0%f~’”—";
D; ='(18,19/3,6) so we reset b to this value and conside;

the dual of PSL(18,19/3,6):
i . £y

minimize 18yl+19/3y2+6y3

.

. Such that 2yl+y2+6y3 21 -

8y1+292—12y3 z 1
3yl+4y2+N3y3 21 y
) A ) ’ \ yl'y2'y3 2 0
This dual has two optimal basic solutions y = (1/4,0,1/12)

£y 4

and y = (0,3/4,1/24): We can take Yy to be any convex
combination of y and y, for example- § =*(1/8,3/8,1/16).

Therefpre b ='(18,19/3,)% is the requiféd fesogrce vector.

® -, LY
9

IVLKSh§) now becomes ek . ’ ‘
yb = min l/8(2xl+8x +3x3)
‘ ., . | +3/8(x,+2x,+4%3) -
. , . +l/16(6x1—12xzf3x3) “
4 [ ’ a-
0 . o —‘xl+x2+33/16¥3} R

o



output bé insteed of consuming it.-

-76~ .
“» ' v , .
= eubject to >[<l+x2+x3 25
.. - xl,xz,x3 20

The set of optimal solutiens to this is

{a(s,o 0)+(1 w) (0,5, 0) 0 < d < 1} which is also the set

“

of eff;c1ept &olutlons to‘ IVL(S) ' From thlS we “can derive

L]
t

the set of eff1c1ent values.
. B(5) {a(le 5, 30)+(l—a)(40 10, —60) 0 s a < l}

The "B lfound-above corresponds t0: o = 11415 and the -60

- > . ® v .
‘indicates -that we can, run the processes in such a way as to

Al

Notice that in this case y is not unique and E is a
proper subset of ' S (one edge). Again ¢ = (1,1, i) cannot

be written as a p051t1ve comblnatlon of the rows of 'D,
N\

(2, 8’2), (1,2,4) and (6,-12,3). However '1/8(2,8, 3)

.+ 3/8(142 4) + 1/16(6,—12 3) + 19/16(0 0,-1), so we must

1nclude the last row of -I and X3 = 0 1in the optimal

s -~

o

inverse triplesi! e , .

£

3.2 Vector+Vector Linear inverse Problems

°

We now consider what happens- when both P(b) and 1I(3)

are vector-valued though still linear. For thié,discussion

o

we defihe the following pair of problems.

P o

Défihitiqn 3-10: The primal problem is: ¥

» -

s



ORI S o

PVL (b) o £ind a = Pmax{a = Cx}

' such that/ Dx 5 b
x z 0.
- " t
The inverse problem is | .
IVL (a) " find b ={Pmin b = Dx}

o

. such that Cx z a

0.

kan; b e Rm; a e Rk; X g R%.

X

I

3

In both problems . D € Rm:“; C e

PVL(b,u) and IVL(a,A) are the scalar-valued versions of

PVL(b) and IVL(a) respectively: We assume PVL(b) and

IVL(a) satisfy the conditions of definition 1-3.#

We now Pave two multiplier vectors, u nd X, to‘con—
sider. Previously we related A po.thg\ipzutions of the
dual of PSL(b). Now PVL(b) is vector-valued, and to get
a usual dual we have to consider Pvﬂ(b,u) for some u >. 0.
We can then get’a result similar to that obtained before and
a similar result-relating. u to solutions of IVL(a,;\)°
However since the dual of PVL(b,u) .depends on u and the
dual of 1IVL(a,A) depends on A,Athe multipliers for the

. two problems are not independent. The following theorem

, gives us the relationships discussed.

N °

Theorem 3-11: ﬂa,ﬁ,i) is an optimal inverse triple for the

. inverse péir bVLAB)‘ and IVL(a) if and only if there

exist u >0 .and X > 0 such that

A

——

R (1) % solves PVL(B,i) with optimal value 7a,

_(2) % solves IVL(a,X) with optimal value 1B, .

4 v

TEIRL
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<

solves the dual of PVL(B,u) .,

>

(3)
. (4) © golves the dual of IVL(a,X) . Lo

- ] The same theorem for the nonlinear case is theorem 4-15.
‘We prove that theorem in the next chapter using a modified
Lagrange function. Since the present tHeorem is just @
special case of the'nonllnear result, we delay its proof
until chapter 4 wherg it is a corol}ar§ﬂto theorem 4-15. l

. We next” turn to the problem of findin ' optimal inverse
‘ trip%es for pairs of'véotor;valued problems. .The hext~ R

theorem gives the results which enable us to construct

algorithms for finding these triples.- -

. Theorem '3-12: Let PVL(b) and IVL{a) be an inverse pair

of problems, and let b and a be elements of B and

A  respectively. . | N .

£y

(L) 1f PVL(h,E) has a fihite solution for §O> 0,
theén there‘rs a bz b With b ¢ g,'a\fx > 0
' ‘. ‘ -and an X 2z 0 such that x solves PVL(E,u),
| solv/s the dual of PVL(E,u), (a = ¢x%,b,%). is

an optimal inverse trlple and, for this tripler

Pl
o [

* i, and % are the multipliers required by theo-

>~ . rem 3-11.

- (2) If. IVL(a,A)‘ has .a finite solution for A-> 0,

~ AN -~

then there4is an a 2 ‘a with. a #: a, a w> 0

and.an x 2 0 such that x solves IVL(ayA), u

» ' .. Y
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2

of IVL(a,A), (a,b = Dx,x) is

-~

triple and, for this triple, u

multipliers reéuired BY"theorem

\ ’ o

(3) wWe can find all inverse triples by using (1) or

b
~

(2) and some b or a.. '~ - ,

.
" ¢ - L
s

-

Proof:
@(1) Consider the set of all optimal.solutions of PVL(b,u)
and take the Pareto minima over x ‘in this set of b % DX.

At least one Pareto minimum is at .ah extreme point. Let

4 s

this point be b and the x that yields it be xX. Now X

solves PVL(b,u) and there is no other solution x with

-

]

Dx 575 since this x would also solve PVL(b,#). Now te

b £ b and since definition 1-3 is satisfied b ¥ b. For

" RVL(E,E) and its dual there are a pdir of solutiens (x,vy).,,

" by strict complementary sfackness;_suchlthat ~§i >0 if and
only*if (Dx)i‘= Bi and Xy > 0 if and onlf if
(yb)j‘='('ﬁc)j° But we bave seen that for all solutions of-
'gVL(E,ﬁ),(Dx&'= Bi for all i = 1,...,m. Therefore there

a o

is a y > 0 that solves the dual, let it be 3.

- We now show X solves IVL(a,%) where &= pi and 1
solves its dual. IVL(E,X) is: - - .
| " minimize {Xb = %Dx}

‘éubject.tq Cx z a

hY v . i

X 0.

§1\%

-~

%X is certainly feasible so if, x: is not optimal then there

N v e
\]

.
o

v
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.
- ~ -

' is an x. such that: . ; - .

- Cx z.a

. x 2 0.

Bl

N 14

The value of PVL{(b,u) . is u¢X 5 ua. The value of its dual,

, is 3B. Therefore +a = b so there fnust be an x that
’ a

A - \ Al . N F]
(e < 3 -
~ solves - : ..

’ v

%
>
(@] O
£ S
WA
o 1 =i
e (V]|

-
v

» . . ]
»

" Since .1 > O, uCx 2 ya so . . vt

— [
. IDX* < JICx. ' o

" However .the constraints oqjthgfdual of PVL(B,7) are

YD = BC. X is a solution to. that dual so AD z BC -and

~

. Y
ADx 2 uCx for " all. x

. .
oy '

0. Thus we have a‘contradictio
, and so X solves IVL(a,X).. The dual of IVL(a,x) is:

-

1w

e

. o " . .maximize za : P .
.ot L o~ P
’ " . \ \
C zC 5 AD .
. \ L%
* Al
a . %0-2- ‘Oo ; o v

.
' ¢

1 is feasible in this problem and - 73 = B = XDX which is .

t

'“the\va}&e of IVL(3,X) so 1u 4is an optimal solution. ..

- ) - Therefore a,b,X,X,JI satisfy all four conditions of

theorem 3<11 and (Z,5,%) - mist be an optimal inversertriple

s

with 3y and T the required multipliers. . ‘

-
- ‘ e

2 '.l i- ‘ 7 N ! "
( L/S{§1 ar yJ o )

.

Lo ! . -

(3) Assume (;,ﬂwx) "is aﬁ gptimaI inverse triplé. .Then
~ N - ‘ o :
there exist A > 0, u > 0 by theorem 3-11 such that

Y

- ! “
‘a
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.t

A 1n part (l) (or va and A in part'(2)).8 . .

But 1 solves the dual of PVL(b,u) so AD z uC. There-

' Algorithm 3-13: This algorithr fiﬁds an optimal inverse

, A

-
P

* conditions (1) to (4) in that fﬁeorempare_met. - Now foi;ow

'part (1) . ~ Since ,PVL(b}u)' does have a finite solution we.

g\

need’ only show that b =Db. We can do this by shqw1ng that

. there is no X optlmal in PVL(b,p) such phat Dx < k. -

. Since 1 > 0 we would then have ADx < Ab.' But, as.in part

- A A 4 ’

(1), pa = Ab °and,»since X 1is optimal pa = uCX, so

ST A ADx <'pa = uCx.’ | _— C

-~

Eore ‘there is no .x 0 that gives ADx < uCx so X tcan-

'
~

2
not ex1st "Héqge (a,b,x) .can be found using b qu u

an
¢

® . [ . -
. .

This theorem allows us.to develop the following algorithm.

a
’ -
~ i

<
L

triple for.t & invefse pair of ‘problems PVL(b)‘ and

IVL(a) - starting w1th an estlmated value for b 1labelled

bi and a spe01f1ed multlpller- u. It further determines

1

‘the set of: all multipliers whlch yleld the same triple.
(1) Choose 1 > 0, b e B set b = b and solvé the

"‘~L’1iﬁe;£ programming problem PNL(B,H) for ia'

If no finite solution exists, reset ‘Eo

; © (2) ‘Set '3 = CR and, .if Dx S—S; reset b = DX.

'!, (3) Solve the lineﬁr programming problem which is the

: " Qdual of ;bL(E,E). If it has a positive so{ution
o ’ fﬁ, (E;B,ﬁ)i is an optimal inverse triple. _If ‘not,

: n therg ié“aﬁoéhe? extreme point, %, of the set of

optimal sofuyions of ' PVL(b,fi) with D; < Be

<
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B SR

e

LAY

L]

~

Stéps'(l):~
for the scalar—vector ‘case in sectlon<3 14’ I

ént to determlne those

uCx, =

does not 1néersect theulnterlorﬁff the

IVL

Reset

-~

X

= X and return to (2)‘.

(4) Let M = {u/HuII}

[

X solves

-«

- )

Let

vector‘and, if eiD§ =

~

b., so
S |

iv

4 N

IVL(a,e, ) T If

IVL(a,e ), solve its dual.

0

Ify *is

an extreme point optlmal solutl n of the dgal}add

¥/l vl

to M."If X does not

! some-singie objectlve

b4 y

v e MU,
_, ~Vectors

inverse

(5) Another

S repeatlng tHe algorithm with. u.> 0, u. ¢ MU.B

>0
that, witl b,
triple

optimal inverse triple c

4.,‘

L4 ©

LA

na touches the fea51ble set of PVL(b)

-1

(a,ei% is:

$

- mized.at X.
&

o

»

L]

- I3
1

o

. mihimize, ,{/ ejer =b j:}

. b
subject”%eﬁ

» . a
o s, .
ot “
'] n
- ".”.
1) v :
. .
\ » 0a -
.
..
L] »
its dual is:
13 ‘.1
e
.
.
.
¢ a 4 a
..
> a,
«h ‘)/ - “
- r
ﬁ'
rd ;
]
- o ] "

\

e Cx of
Tj

lead to th

(3,5, %)

Cx 2

)

,

Ipuat all such e.

)

be the convex hull of ' M. . Now

L]

*.8

®x 2
N

¢

J

are all the ‘norma

a

0"

°
°
»
.

solve IVL(are )l,
PVL (b) rs-opt11
n M. Let MU

-

e set of all;

N

ized multiplier

same optimal’

be found by

v 0" such that the! hypérplane

eff1c;e t set.

e

.

B

e
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\ .Mmaximize va -~ R
e C ,8ubject to yC = eiD
¢ "' e v ‘ \ - ‘ y '>- O. T o
. Assume X solves IVL(3a,e;) and y solves its dual. So

-~

ya = eip§’= bi. Consiqgia PVL(b,y) - which is:

) . y ' . . -‘ - - -
", g . ‘ maximize {yCx = yal
' o, N ) ~
, ) : o subject t¢ Dx £ b
: ‘1 M N ~ , X _>—_ 0, - .
o, . N B ©
. [ f L RN

.~z

« and its.dual which is: o . ,

minimize 2zb .

v

=
Q
§

. ‘ ’ ,subject to 2D 2
L - S
0

.
- ¢ - ) 2z

v

P ) %X is feasible in PVL(b,¥)., e; ’is feasible in its dual.

’ . %
¢

-~ ~ 4
E < -~ ’

b P yCx = ya = e;Dx = b; # e;b so these solutions are optimal.

\ ‘ .* Therefore if X solves IVL(3a,e;); % is optimal in
: .

. - Bvﬁ(bw§)° So we get the same optlmal 1nverse triple. If X

e s *is not a: solutlon of IVL(a,e ), e D is not a positive

f » Y

.
. v , -

- -« linear cpmbinatloq of the rowibif c. If it was we woFld

RPN . have e;D = yC for some y > % is -feasible in o
o . - 'IVLAi,éf) and 'y is feasible in its dual. But yCx = ya

f - o s -~ " . , P oo = a

P ¢ -a@ Dx = bi%”so x and y are'actually optimalJ , This

- " ae

Z - o would contradlct X not being a solutlon. If e,D 'é pét
? ”; . *,')a p051t1;e 11nea§.comb1naElon of the rows of C, ona,of the

%& “‘ . objeatlve functlons e.ﬁCx = a) must bg ogtlmlzed at x

b ‘125“,«-“§inaé X is efficient 1np PVL(b) If % is opﬁimal in

eis iyid ; PVL(b,u) and ‘PVL(b,p), 1£ i3 optlmal in PVL(b,ap+(l*u)u)

-ﬁ% ?,‘» . f,where 0 < a. i? Hencemliﬁ is, optlmal in PVE(b u). .for .
B . - . ) ' ‘



///// all py in MU. If w e MU and uwu > 0, a A > 0 which

>

solves the dual of PVL(b,u) and is the otherorequired’
multiplier vector must exist by theorem 3-12. Hence the
positive elements of MU are the other multipliers tha£

* lead to the same optimal inverse triﬁle. Each triple found

by this algorithm has an X that is an extreme point of the

o - feasible set of PVL(b). If ¥ )anal x are!ejf}bieﬁt

extreme points, and if aX +°(l-a)x is on the boundary of

- v

1 the fea51ble set, it 1s also an efficient p01nt.n In such a
case,~1f a = C(ax + (l—a)x) rand b = D(ax + . (l—u)x),
(a,b,ax +, (1-a)x) is also En'opfimal 1nverse triple. ' Using

a O

8 The algorlthm and this argument, we can £ind all optimal

e inverse trlples that can be obtained starting with b We

5

can, of course, develop an équivalgnt algorithm starting

ot
A

with an a e.A and a > 0.

“The following example demonatrates _the metgpd discussed

¢

» above. . ° " -
P °
- Example 3-14: OQur primal proﬁleﬁ is
PVL(b) * a = Pmaxfa, = 2x +x
] l lk

~ - ;W ) .

' . N a, = 2x;+3x%, e
- D i : . ‘'subject to x1+x2 s by , '&} '
, .
] . ’ \ n2xl+5x:‘z £ b, . ) :
"n . " ’);\“‘-. ) <y ¥
%; S : \ 6xl+x2 £ b3
fLi- ° ) P - 1\ S
i =
i » 8 2 \
: i Xl,XZ - 0 }
”; . ) N N f \
i , * \ |

" oo ‘ ’

9

Eatr R it ), Sps 1 I Y
P A SE e
A}
Y
?

:



g ) -85« T :
\ :“ - " °
" .” * @ 4‘& I \
SR i our iﬁveése‘pféblgm is -
IVL(a), . \ . b= Pmﬁnfbl = xi+x2w‘7" W, ' , n'
. | D it ? S
. R e . GE = g, ‘ IR
* ! > . . . ] " J - »
' -1
subject to 2xl+x 2 alf "
. ‘ S A 2%, +3%.-2 a o
RN ‘ .. & - - .. - 7 . 'l, 2. = 2 - ° v
e - . o .xl,xz 2 9. B .
v }’\@ Lo 1 v T ‘\- /w.‘ -
; We decide we want .B to be as close as 90551ble ro -- .7 ’
wa’ . "‘ “ » 0 »
B . nb = (7730,%4)° Figure 3 3 shows the constraint set for
. PYL (%, 30, 24) - Since a; < is optimlzed at  (17/5,18/5) -
) Toa d‘.aév“ls optlmlzed at (5/3 16/3), the eff1c1entuset . )
. ) must be {(xx 2)ix . 7; 5/3 s %y 5 17/5,18/5 5 %, % 16/3}.
Let us flrst ple u = €§/4 1/4) ‘This leads to uE = 61/5
. » N aB,
and % .= (17/5,18/5) sé~. a = (52/5,88¢5) and S ‘
o © 7D (7 124/5,24) Our candidate for 'an optimal triple is
- . then Ty = ((52/5,88/%),(7,124/5,24f, (17/5,18/5)) . To test
_ it we check ﬁhe dual of PVL((7, 124/5 24) (3/4 1/4)) S
, &
oL o o an 7yl+124/5y 24y3 " ' -0
S . 2 ‘ A ‘%’ 7 v \.
v .. ° £ d
, N B .
b e . +2 +6 z 2
-, t ° . * :,r: v l& YI yz y3 - , .
' » ) . Y #5y.+ys 2 1.5 o
- . . Y17PP¥of¥3. .2 L0 .
- f g . ] . og n
. IR . Yivy2APY'3 .Z.f;(}.* N
. . . ’ 24 kS :
j . This -has opt;mal bas10 sdlutlons (0 1/4 i/é) and * ..
.gu . " » - on
;- (7/5,0,%/1Q) so, it has,a p031t1Ve optlmal solutiop (e «g.t
g " ‘. (7/10,1/8»7/40)) and T ,satlsfles our requ:.rements° fo
oo ,' e T , oo | ,
r;’lf: " ° o
b v “
'éza "‘ " ! ° “« - - ' . \
g}, % ¢ s - ' “« ' "" we? [ Iy’
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X
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o Y ? . N
4
e 9
N 1Y
. . \
- 3\
\ a, alone)
. R { \? /
(3 ' s,
L ~ v 1 M - b -
- ’ [ ) ‘
. . ; '
‘ . i , \ 2xl+§xi=30
“ . 1 ‘o
L \ 2x1¥x2=l4 (optimal value .°
, . g f .’l - for a; alone)
% 2 v S =B
\ ' . 4 "‘?‘“\_ xl
- . 3 N . ' . 2 A
@ [ w ol
. +x.,=24 K +xX =T
. ., T Rl 1t%2
A NG ) ) 5
- . . . :
AN " < ~E
&' ® . ~ ) ’ S q
oo 'Fiqure 3-3:" Constraint set for PVL&?,30,245 in ‘€ .
' - . . - » ’
* a3 RN 3-14 showing optimal solutions if each objec- .
LE . s tive is taken separately.
=i % . \\/ -
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&

wr

' IVL((52/5,88/5),(1,0,0}) minimize Xx.+x

g

»
EY

-+ Following thé aboﬁe'proceQure we get a new triple
% A *

‘\""5/ ' ’

&

e

find what other u's-yield the same triple, since the first

gifb third constraints in the original problem are tight we

‘study the two problems:

172
such that 2x1+x2 2 52/5
) o ] 2x,+3x, 2 88/5
l.‘ \}gl’xz E 0
' IVL((52/5,88/5),(0,0,1)) minimize '6x;+x,, - .
such. that 2x;+x, 2 52/5
. \ gxl+3x2 z 88/5
f
- ! Xllxz z 0 ‘

]
3 ¥

X is oétim;l in- the firﬂfﬁgaz\not the second. The gylution
to the ddal of  the first s z = (1/4,1/4). (Nofice that

b

elD = (1/4,1/4)C.) ‘e,D ecannot be written as a positive

3 :
%pf'the rows- of C and hence some

4

linear combinatiox

eij ;«aj is optimized at ®. . We already know (see figuré
. - § «

3-3) that the first objective is optimized at this point,

~

. Therefore, for the kriple we héée found, MU = {(ulpuz)'

= a(l/Z,l/ZL/#/}l-a)(O,l)IO < a g 1}. (We® exclude the single

°

point (0,1) since u must be positive.) We next pick a

" N L
., 1 outside this set - say §/44?374p1/4) and resolve. .

i{rz = ((26/3,58/3), (7,30,46%3) , ((3,16/3)}. And this is .

4

optimal ,for the set of normalized u's A A

(lup o)) =\(\<4‘“.172) + (1-a) (1,0)|0 < a 5 1}. These two

.
v e

°

3

- ) o —~
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set§~of u's cover all possible values so»'I‘l and _T2 are
“ \ . - » 0
the extreme points to the set of optimal inverse triples.

. Therefore thé“complete set of optimal triples is | ) "

I

{(a,b,x)|a = «(52/5,88/5) + (lva)(26/3,58/3),

by

I

a(7,134/5,24) +(1-0)(7,30,46/3),
x = oa(17/5,18/5) + (1-a)(5/3,16/3)|0-g o £ 1}

~

Since u = (1/2,1/2) is in both sets; the other efficient T

@

\
solutions to PVL(7,30,14)- can be found from solving

PVL((7,30,24),(1/2,1/2)) and from.these the other optimal

~

triples can be derived.B - .- J/

- ’
: A :

* A

If we don't have a particular desired b (oxr a) we - .
" may have to try an iterative.apﬁroach to the problem. We
can pick one or tﬁemqther and proceed as above, Becguée of

linearity, if (a;p,x) is an optimal inverse”ﬁriple, so is'

o(a,b,x) fox all o > 0. So once fipnished we can pick an

a -or b that is not a ébsifi%emmultiple of any of those in
the optimal triples ‘found,.and repeat. In this way we can '
get an idea of what happens as we alter the‘réiiotoﬁ thé

- components in a ,or b. Once this is done we can pick a

[y

°£riple‘from amongst thoseé .derived.

' 6

We discuss one last-point in this section. It would be

nice if the fdllowing result held when (a,b,X) is an opti-
: ) : ‘

mal inverse triple: ’ o ; .o ¢
&

e a1(5) then Bl(a) =+Bl(a), ¢

LY

(1) Given a; a
{2) Given b, b € BI(3) then aT(b) = al(p).

However this does hot hold in éenera;r What does happen.

L] - q
. A .
(3 , . @



£y

"

¢ Starting with b = (2,2), we get the set of optimal inverse

‘B

- 2%

“w

"

\ - ] .
instead is demonstrated in the following example.

A , { i

A
Example 3-15: Our primal problem is:

PVL(b) ¥ a = Pmax a. ='2x% +2x.+x

1 i I A

o v

a) = ZXyFx,+oxg

+2%.+2%x. 5 b

~ ' subject to Xy 2 3

1

23, +x. +X b

1 72°73

L

2

* X1 1Xy Xy 20

*

triples ~~ T :

Y

T = {(a(8/3,2)+(1%) (2,8/3)),(2,2) ,a(2/3,2/3,0)

.

s +(1-a) (2/3,0,2/3)) |0 's.a 5 1}

so AT(2,2) £ {a(8/3,2)+(1-0)(2,8/3) [0 £ o £ 1)

-

- " . .
Picking a (8/3,2). ¢ AI(Z,Z) and studying the inverse

“problém: ' L
IVL(8/3,2) "B = Pmaxf{b, = x;+2x,+2x, )
b2 = 2x‘,1-l:x2+x3 w
. subject to 2xl#2x ¥x3 2 8/3

2

B . e
5 2xl+x2+2x3 2 2

v
o

) X i¥prX3 2

¢ -

we ‘ohtain_ BI(8/3}2)

Now take b = (28/9,14/9) and solve PVIL(28/9,14/9).

This yields ~ ) .

-

aT(28/9,14/9) = {a(28/9,14/9)+(1-a)(14/9,28/9) [0 £°% s 1}.

(2,2) ‘and  (28/9,14/9) ‘are both in BI(8/3,2)- but
\ e _gpc - -

! a
.

AR 3

= {a(2,2)+{1-a) (28/9,14/9) |0 < o s 1}.

%3’"



b e

S

a

P
Figure 3-4: Surface of the cogpstraint set for PVL(2,2). '

e

P

L~
.
.
.
f
R ,
-
N
B
4 o
.
.
o
"
'
- Ry
.
o
.
°
‘
.
s
- ’
‘
\ .



. N
‘ 91
" — —
, _—
- - - -
M -
v
. , .
'
. +
"
f
- . @
¢
\
) ' 3
7 ~
.
L
-
.
.
“
\
"
v
P
4
r
°
N
Y
f
.
o
B
)
s
4
’ .,
‘
.
s
'
4 &

- :

’ 3 @

. ’ ’Figure\‘B—Sc The constraint sét for PVL(28/9,14/9) o

%

* o,
& / . .
,
.
:/ ' )




©

[ -
o 1

al(2,2) # al(28/9,14/9). Rowever notice that —\T> o e
- Al v v . ‘

at(2,2) < a7(28/9,14/9) (e.g. (8/3,2) = ,
5)7(é8[9,14/9zﬁ2/7(14/9,28/9) and ' T
(2;8/3)"=.2/7(28/9,14/9)+5/7(14/9,28/9) ). ' Compare figures
Q—A‘and 3-5. In both, the- set of efficient points is the -
;%gment of the line of:interéection bétweeh the ﬁwo‘planes
'cu£ off by the positive gfthént and the sets, Af(2{2) ahd
;i;(2§/9,l%/9) afe the values founq from’ g[g on these seg-
ments. As the ratio of componéqtsuof bu is shifted the
intersectioﬁ lfge éHifts‘and ;he set AI(b) expands of

S
shrinks as more or less of ‘the line is'in the positive

orthant.§ i ' ..

* Though AAI(bI) and AIgbZ) ‘may not be equal the example
suggests the_fo;lowing,’ ﬁin@ AI(b) .for some b:. Determine -

8T (a) for all a e A;(b): Continue working back and forth

finding BI(aN for all a's in all AI(b) found and find-

3

ing AT(b). for all b's in all B'(a) found. Let A be

. the union of all a'(b) and let B be the union of all

$

BI(a), Foﬁ all a e Ay BE&&%«; B and for all b e B, - w

AI(b) cA. If a'e A, there is no a e A, a2 a. If b e B,

" there is no b . B, 5 < B. Since, as in this example, there
may be an uncountable number Gf -b's in B ‘and a's in A, *
we:Eannot gu;ranfee that we can produce. the entire éets A
and B. In the above example A = AI(28/9,14/9) but in ' .
géng;al A may not equél any particular al(v) (siqilarly

B may not equal any particular BI(a))°
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-3.3:  Efficiency of TP Solutions : .

-

Thls section con51ders a problem that may sometimes

\

ex1st with the normal solution concept in linear programmlng.
Instead of con81der1$g just the objectlve function valtie we
include a consideration of the tlghtness of the constralnts
The normal solution technlque does not 1nclude this and thus

}eaves out a elscuSSLOn of the effid¢iency with which the .
. N 2
solution is obtained. Two methods of surmounting the prob-

1em are discussed. L :

A ]

Consider thé following example. 04\//’~"

- °
P o

3

‘Example 3-16: maximize 4x,+10x,

- such that 2§1+5x2 <.10

‘ \;9, o X1+X2 S_ 3

-

‘ lexz, g_ 0

For' ease of «exposition let'us assume that we want to deter-
- 4 |

mine the amount of two products to produce from a given,

fixed amourrt ‘of two resources. The optimal basic solutions

for this probiem are (5/3,4/3) and (0,2) (see figure

3-6) . -Both give an optimal objective function value of 20.

However, for the first solution the cpnstraints- are tight

while for the second solution‘there is one surplus unit of

- - A

the second resource, .

The normal tiiear programming solution to this problem

is thgt the given'optimal vectors (6,2) and (5/3,4/3) (and

P
¢ v .
) ve
+ 4 L]

~ v



¢ - &
* ~
i =94~
‘w
13
T
'
f
N
b
‘
.
)
® \
.
<
°
1%
‘
’
i [4

P

’

/

i

. .
X 4 «
.
S
- >
'
»
.
N
.
.
f
2 N
LI
~
-
-
» 4
.
. «
-
< .
) B

“e

Constraint set for

basic solutions.,

e

©

example 3-16 Sho%ing optimal.
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any .convex combination of them) are equivalent, But ‘accept-

ing.this solution implies a number - of assumptions that are

A

often %gq@ﬁgd. First wé assume that the resources, are

freely available at the level stated except for any costs

" absorbéd .into phe objectlve functlon through x4 and Xoe

Second we assume that a surplus of elther resource‘;s cost-
less. (there are no storage charges, etc ?'and prof;tless (it
cannot be sold oxr used for other purposes).' Thlrd'we assume
that all costs and revegies are reflected in the oﬂ&ectiue
function. _The distribution of any su}plus resources"méﬁzbe
a secondary cousgderation/ but it seems thet (assuming“séo—
rage costs are not critical) the solution (0,2). is'Iikely
to be copsidered superior to (5/3, 4/3f‘ we can obtaln the
same profit and Stlll have 1 unit of resource 2 left over. '
That is (0,2) is a more efficient solution. Sy,
The dual of this problem is ‘

. minimize 10y1+3y2 .

3t

v
L

such that 2yl+y2 2

i t
»

\"

5yl+y2 2 10 .

" This has the unique. optimal solution (2,0). This indicates

. tion of the'twc outputs. It does not mean that the surplus

2

that the second resource has a value of zero in the produc-

2

hag no value for ‘alternate uses. From the discussion in

‘section 3.1, notice that though (5/3,4/3) uses up a1

B) we cannot find a positive set of dual
B ® 4 . Wt o

-

resources (DX

o

H

A

|
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variables,. X = 15/3,4/3) is:pot parr of an optimal:inverse

tripie - to get one, here we need to cut the secomd resource

-

to 2 ‘uhits anpd the trlple is (a = 20, b & (10,2),

4 - ‘ 124
<

X, = (0 2)) L ’ T

.X/ j

_ . The 51mplex method, as usually performed, canno; dlStln-

- /\ . l&‘
’ gulsh'between the twg basic solutlons found. However a
g
mlnor exten51on allows us to_, check botH the objectlve value

and the thhtness of constr_alni:s° First we add the slack

. s Q . ’
variable, =x3' and X, to the problem Usually they are

P

given a welght of zero in the objective funcglon. Instead

glve £x3i welght €3 and Xy vwelght‘ 54.n Our problem is

- now: - . T : o . ’ v

maximize 4x +le +e3 3+s4x4
- ‘ \ such that 2x,+5x,+x; = 10 -,

-~

. ) + 1 P
K xq xzﬁx%\ 3 . )

Xp 1KoKy X4 2 0
The value at (x;x,) .= (5/3,4/3) 1is still 20 but at (0,2)
it is 20 + e,. Since nothing in the problem indicates the

o @ 4

¥ value of a surplus in one resource relatlve to the other, we

v . should really con51der the objective in vector terms. If V.
is the optlm?;,value of the original problem then we compare
. /(V,a €3s B7€,) anmd XV,a,e5, Bye,). In the present problem .
. . the, point (0,2) with value (20,0,¢,) is\still better

_than (5/3,4/3) . with value (20,0,0). However if we had to

o

compare (20,23,0) and 120,9534)n‘we could not rat%?the

points without further information. .’ . '
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Another way to handle‘the?pr blem is as follows. We

4

L

o

v . noted that X =: (0,2) was part of an invérse optimal triple
N ' , "
while x = (5/3,4/3) was not. We can pigk am optimal X,

- o

; g . set b =Dx and a to the optimal valye,  and use theorem
:.& - L PO A A A
i 3-3 to chetk if (2,b,x) 1is an optima inverse triple. If
- &
§ o -
! it is, then there is no alternate optimal x that gives at
H R . - ' . 4%2 ~
é ¢ least as much surplus in each resource as x and more in
T ~y » ‘
i » - 4 »
! some, If it is not, then we can teést some other optimal
1 PR < - F«
! solution.l : .
5 : . . . .
B, This example demonstrates a possible method of rating
2‘ N w » - !A I - \
Lo . alternate.-optima for an LP problem. This methggtis not
z - » h . r
I . ; - 2x2
b + restricted to -D € R but works for any D ¢ Rmxn, m and
£, - L '
i 2 . .
H n finite, as long as.the primal problem andits natural’ .
P .y . ) | o >
g ° ! inverse (find B = Pmin{b.= Dx}, cx,2 a, x 2 0) satisfy
H L N v ‘ o d i
; . definition.1-3. R :
v e, ~
“‘ o 4 &t Ap . .
3« j ' - " ; o
15 . . Y 8 . !
;: # ® ) L4 - .‘ i
}"’ | Lt s ) ) !
! » N ‘ ‘
f» ® ., [y ’ ? : N
g . ¢
. - 2
e [ ° ‘
‘%:( « N “ — -
i - ° .
'ér‘ v
U N
Iy 4 . L4 ® ) »
; - ' ° . j,
i ~ ' .
A v -
i ) ) )
~3% * ' ) .
%; e ' a : v~ ,
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Chapﬁer Four - Nonlinear Inverse Pairs . .

®

- )
In this chapter we consider nonlinear invefﬁg pairs of

mathematical programming problems. First we diécuss several

known results for the scalar-valued nonlinear programming .

°
N @

problem defined by: . Cigj

Definition 4-1: The prlmal scqlar-valued problem is -

PSN (b) ' ’ maximize f(x) : ,
. subject to g(x)sb . <o
) X € KsRn, K nonempfy*agg convex, Cox ‘Y

f(x):Rn+R, g(x):Rn+Rm¢

- o

f(x) concave on K, o

° Ll % ’ . &
9 (x) convex on K (i =1,...m) . B y N -
3 coperty’” T
For these\ wef need a dual for P N(b) and a property ” : ) \\
introduced agv:égunded steepness" in [12] and developed iﬁ“; ‘ %

[13] where it is called "stability". Then we apply these . )

results to the following inverse pair of*problems in which

°

elther problem may be vector—valued.ﬁ . »

e
@ A)

¢ @

-

Definition 4»-2: Our primal problem is .

.

PVN (b) a = Pmaxfd = £(x)}: )

’

subject to g(x)sb, x € K.

Our inverse problem is -
—— «

~bo

IVN (a) B = Pmin{b = g(x)} . .
suﬁject to f(x)&a, x € K.
K is a convex nonempty subset of R" ,  glx) :R°>r",

f(x) R +Rk, fj(x) (3 = 1,..g,k) is concave on XK 3

) / B
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and gi(x) (i="1,...,m) is convex on K. We assume .

PVN(b) and .IVN(a) satisfy.the conditions of definition

!

1-~3. The scalar-valued versions are denoted by [

PVN(b,u) and IVN(;,A) rqspectibely.! : ~. i

. »
-

a -
o . YL, o v
4-1: Review of-Nonlinear Programming and Duality

w

For the noqlinear“pgé%”'” PSN(b) ‘- various duals aré

¢ .
| * & \

proposed in the literature Wéée, for example, [13, 23, 26,

\
» &
) A%

’ 1
28, 29]. These vary depending on restrictions imposed on%‘
the problem and the strength of the results obtained. We

fov e
use the dual presented by Geoffrion in [13]1. A compdrison -

between this dual-and others is given in Geoffrion's paper.
When restricted to the linear .case discussed in chéptég 3

K3 -~

all the‘pwfposedyduaIS‘reduce to the usual‘linear\program—

A
-

'miné dual, Qur dual then is deﬁine& as fallows. .

Definition 4-3: The dual of PSN(b} is L

DSN (b) minimize {supremum 'f(x) - u(g(x)-b)| x e K} ,

v
. °

subject to uz0 |
 £,9,K as above, u € ﬁmol . i

-
’

Notice that the minimand in DSN(b) is éonwex in u since
o ' |
it is the -pointwise supremum of a collectibn of functions .
‘ f .

'

lineér:i? .

.
> o

. Gi;en these definitions,’consider the following example
N . . N . F .
taken from [13]. : , . .
+ - . L ) 4
Example 4-4:  We consider the problevn . . .
@ - e . - N

o

. L ;o /
. L e g
4 &
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o PSTN(OQ@

»
: ihis problem has an optimal value of 0 at x (

.only feasible point. The dual’of this problenm is

DSN (0)

@

i

y . % ’ )
maximize vx - ) _ -

subject to
s

minimize {
uz0
l

= mi

uz

g(x) = x50 m

x e K =-Rﬁ

i
[e]
-
ﬁ.
oy
0

sup (v%- -u (x-0)) } _
xz0 . .

e

n ® if'u=0 . L - .
0 v
. 125 if u > 0 L
2 . -
4u /

‘This set has an infimal value of '0 but this is nat :taken

on by any finite uz0. Therefore there is no solution to the

dual. If we let the right hand side of the constraint be
b instead of% 0, then PSN(b) is the primal problem of a

" nonlinear inverse pair with g(x) = x, £(x) = /X, K = R,

o o

+ £ -
T=R:x R, A

-

~

+o

= R B =

3

3

+

-

+
R v. L4

Generally in nonlinear programming, for a solution-to the

primal to, bﬁply the existence of a sdélution to the dual we

-

need -some kind of qualification ogy the‘prohlem. Usually

a‘constraint ‘qualification is uséed such as the Kuhn-Tucker

‘

3 \\ ° *
Constraint. Qualification or the Slater Condition. 1In [12],. N

Gale proposes an alternative ihgt provides a pééessary as
well as sufficient cond{tion and thus is the weakest con- -
dition obtainable. Geoffrion in [13] calls this .

and uses it to provide a new look at duality. -Fi¥s

LY

define a new function.

’

<
°

4

Vo dwa

v 4 o T —
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Definit;on 4-5:

‘The Qaiue“fﬁnckidh v(b? xessdEiated with

. PSN(b) “for all. .b e B is deflned as -
’ : - v(b) = sup{f(x) | g(x)s b, x'c K).W .
“he definition. of stabilit&bis then.w .
A ' v ‘ | .
j Defipition' 4-6: PSN(b). is stable at b e B if v(B) is
1 . .
} finite and thefé exists an M > 0 such that
-
' v(b) -~ v(b) ,
¢ - < M for aLZ’ b e B - {b}
: | b -5 b |
g where || .*|| *is any norm on R".H
{
.t . F] e '
: Example 4-4, cent'd: °‘For this example v(b) =vb for all ’
N | b € B, so N »
b ' \ - » ?
¢ L. v(b) - v(0) yﬁ -0
' &% ¢ . a\b > 0
Ls"gl, . - @ — b > 0.
Iy N - .
.E' > I N . - 0 s
oo ! Since — + =« as b -+ 0, there is no bound on, v(b) - v(0)
te ' 4 TR ¢ . ¥ |
; . - S - b
- -, ~ ) . \/ ' I
" . for all b € B and PSN(0) is unstable.W . Y
K A . b - .
% ¢ ) . £ P“
: . Actually,,ynijf;;he’gssumptlons of convexmty and concav1ty Q»
T, ) ° .
Lt . on K;¥g and7f," instability of PSN(B) 1mlees that there
LA - . ,
. R N 'is no interi#r‘to the set of feasible pon.ntsn Hence the .
2,. . - .
' Slater Condltlcn‘ls sufficient’ to prove staﬁlllty.
/? Notice the parallel between the definition of stability
tv
e and. the definition of proper efficiency. In the former the

. °

4 3

L4

- &

ety e -

-

& PRttty e g T st g

I T

4

- v

ratio'of.changes in the objective function to changes in

o

. - . o
— . nb - - e . e

“"”““‘" s "’vv« _“Mh
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®

the cons;raint bounds must be bounded; in the latter the

g‘?// ratio of ‘changes in one objective to changes in other -
objectivgs must be bounded. |

+ With the above_toois we can prove the following results

"taken directly from [kp].ﬂ If b e B, there is an X _ and an

*a qgéﬁ that £(%) 2,3, g(X) = b, X e K. Hence
P ,
g(X) £ b+ ae for all .a > 0 where e is the vector of
1's of appropriate length and (a, b + ae) € T and

ﬁ +-ae € B,
?

Lemma 4-7: ,P§N(B) is stable if and only if v(b) * is

< - 3

) finite and there exists a'scalar M > 0 such that | N
A e .
7o vdb + ae) - v(B)
o N - — s M for all o > 0.H
v‘ a - - .
° * . - ‘

?
Theorem 4-8: (1) If % is feasible in PSN(B)_ and §. is

. » o
t) feasible in DSN(F), then the objective function of PSNQE)

, A
evaluated at X is not less'than the .objective funcfion

of rDSN(B) evaluated at .

22) If PsN(b) is stable, then: /J

a . ok ' - '

) (é; DSN(B) ‘has an optimal solution, %” . ‘ ‘

) (bX  the optimal values of égN(B) "and DSN(B)" | -, .
< * - } 1}

are equal, . .

-

.(c{..ﬁ *is an’optigél'solptién.gf' pSN(B) if and

'S

. only if =-u is a subd}adient of v(b) ' at
.% 2 ° ‘\

b ='b, that is v(ﬁ) s wv(b) - (b - B).

*
a

(d) evely optimal solution G of DSN(B) charac- .
terizes the set of all optimal solutions (if :
- . B . . | b

3 g Y

N B PN - N e DI e SO Y vl
LR v = ’ : - , B Lo st CEYyery e d
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Cany) of PBSN(b) as the maximizers of

Q, . ot 0 E(x) - G(g(x) - B)  over .K which also

o

satisfy the feasibility conditions (x) s B
and. the complementary slackness conditions

“u({gtx) -“B).= 0.% b

- v

Theorem 4-9: »If PSN(b) is stagle, (X,u) solve PsSN(b)- .

and DSN(B) if and only if. (#T) satisfy the following g
saddle—poéi.nt problem : )

' Find “(8,8) such that - -
. , ¢ ; . .
£(x)-0(g(x)=b) "5 £(R) 'ﬁ(&ﬁL'B)‘ = £(8)-u(g(R)-bB)%¢

"

? ; for x efK," u _2: 0. .
,‘ " We caﬂ (2,4) a saddle—pointa o< £f(x) - u(g(x)-b).H v
v, o T ‘ T . ’ )
. ] . .-
. v, '4=-2: Nonlinear 'Inverse Pairs "
& ’ ") “ ". - "" - T ‘ s )
St " . * 7 . We now turn our attentidé; o the pair of problems§ ( d

/Q *  PVN(b) ‘and .IVN(a). For this pair 'we define a-symneﬁi‘ic -

5

Lagrange function.and useé it to characgterize optimal inverse

e { tri‘ple_s. First, however, we must adjust\’the definitions of
@ tos ’ - P, ., »
a value function and stability to’ handle our vector-valued - -t
. : - - | v
0 problems: . . - . - T
he w L] , 1 )
Definition 4-10: The value function v(b,u) associated
: O : e -
z with PVN‘(«b,u) for all b e B and uy.>'0 is defined as P
* N ' > “ te o
v(b,u) = sup{uf(x) | g{x) g b, x € K}. 2 '
s/ " - ) ?Ts 'n%
) The value function V(a,A) -associated with IVN(a,}), -
’ for all, ae A and A > 0 is definéd as g s
> Y o & . N Tk . . , - ‘ .
: . V(a,A) = inf{Ag(x) |£(x) 2 a, x eg.K}.l Lo v
: ‘ b ‘ ' i )
1 v '-a ¥
: .. . . | ‘
A : : . [ .
R ———— i~ T PRI ¥y 2 A s L BT e
S * FE S S PR
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Lemma- 4-7 can be extended in an obvious fashien to provide
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% . N
&
a
- e P

" v ®
N & .

n [ 3 ﬁ.
Definition 4-11: PVN(b,n) is stable at b ¢ B for
———————— .

u >0 if wv(b,n) is finite ;Ea\ﬁhere exists an M > 0

such that . ‘ 4
[ 4

Yv(b,u) - v(b,u) . ;
2 MdSor all b e B - {b}.

"Ik b - Bol -

a

‘ PUN(b) is stable at B,E.B if and only if f?ﬁﬁéb,u) c"n
ris stable at b fo; alit u > d,, IVth;X&& isﬁstahle e ‘6,
~.at sBoe A £8Y A > 0 if V(a,x) is Ffinite and%&ﬁere - lgﬂ

‘ ‘? exTéts, ans M > &~ such that . ] . X

(E'A)‘: Via,s2) <M for all a e A - {al. )
la - &l , | :
IVN(a) is stable at a ¢ A if and only if IVN(a,A)’

is stable at a for all A > 0.R

~

?

an_ éasier method of determining the stability ofm PVN(b,u)
or IVN(a,\) for.b B, acA, u>0 and 1> 0.

.For 'the rest of this chapteg'ﬁe assume 01)35VN(b) 'is
sta%le at all b e B ﬁand: IVN{a) is stable at;éil ae A, .
(2) all efficient solutions of PVN(b)’ ana\\£VN(a) are
proﬁern ‘AssuﬁéEion (1) gives us solutions for the daals of
the scalar-valued problems PVN{b,u) an? ~IVN(a,r) for
all‘ bne B, a & A, >0, » > 0, Assumption (2)‘1ets‘us N
f£ind all efficient solutions to PVN(b) and IVN(a) by

considering PVN(b,u) and &ﬁvN(a,l) for 'y > 0, ¥ 0.

a 4

‘Example 4-12¢T Let m=.2,n=2, k=1, .

- JmIn(ay %, - = Xy,
f(xl,xz) min (%, ,%,), gl(xl.xz) ~Xye gz(xl,xz) "§2./

e
b
o

W g
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1 [

and k be the-unit‘recténglé {(xl,xz)Wléx 52,i§x2§2}

1

'Then PVN(b) (or in this ‘case PSN(b)) is

]

o 8 = maf{/min(xlcxz)} e
) ) s&gject to x; s by /2'
o ) , T ¥35 Db o

/ LAY ‘ (Xl’xz) e K.

' and IVN(a) 1is
' , °. b, = x
~’ r find B = Pmin -1 . . e

! >

. such that vmin %4
¢ . For PWVN(b), v{(b) = /minibi,bz). We can, without loss
> ‘o

?/ ., 6f generali£§ assume that b1 < b

2 and so we have that

v(b) = Vbl° To check the stabiiity of PVN(b) for any

b ¢ B we must, therefore, consider the iatio'

’ vbi+a - /by oy

o, .for o > 0. ~This ratio &nly leads to diffi-
. o . - }

. ' o -
culties if o = 0 in which case we have'

a M Al

w ‘Vbl"{"(! - Vb]: l ’ ’ ' 4
»lim » = ——— . Howeyer B = {(b,:b_)|b,21,b_ 21}
9 o0 o . ~2/BI g 12 172

A q

so this limit is bounded regardless of what b, is chosen.

Hence PVN(b) 1Is stable for all b e B.
For  IVN(a), the only efficient value is b, = b, = a
- and for any normalized A .the optimal value of . IVN(a,})
1 “ o«

is also @3. Hence V(a,r) = az, and all efficient points

o

by
-

At g 3,
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!
are proper. To check the stability of IVN(a) we must check
. ) é . .
the stability ?f IVN(a,A) for all 1 > 0. It suffices,

’ @

however to check the latter only for nofma}ized

>0

and for these we must consider the ratio % T
gae, AN
.5%?,‘““‘ R . N B \ o
' .2 N \
L . - (ama)? A
- = +2a-a { a>0.
a7 Ty oo 0

'Now we have A = {a|asv/Z}, so 2a'- a < 2V2 if « .0, and
) ‘ k ) L] ’ % ~ N
IVN(a,A) 1is stable for all normalized A > 0 and all B

a e A. Thus IVN(a) is stable for all a ¢ A.H

., s

. + If A is an efficient value of PVN(B), uad is the

&Y value of PVN(B,u) for some w > 0 at some x e K. This

?

PVN(b,u) 1is stable and hence has an optimal dual solution
4. Hence Y¥,u)  is a"saddle-point of pf(x) - u(g(x)-b)
Q for x e K, g’Oo Similarly %f b is ;n efficient value
., OFf IVN(E),\We get an (3,6) « that is a saddle-point of \}i\“
-Ag(x) + v(f(x)fa) for somg A > d and all x £ K, v 2 0. s

In the former case, since u is constant, pa 1is constant

and -(%,0) 'is a sa&die-éoint of u(f(x)-a) -ﬁ(g(x)-B) for

¥
3

all x ¢ K, w 2 0. Similarly, in the latter case, (x,v) "is
a saddle-point of -A(g(x)-b) + v(£(x)-a) «£for all x e K,
; ” Sl

v 2 0.- This motivates the following definition.
“ . s .

[

Definition 4—i3§ Let L{x,a,b,u,v) be defined as follows .

for the a,b,f,g _of an inverse pair, ﬁbN(b) and
%VNia): ‘ S )

L({x,a,b,u,v) = v(£f(x)-a)- u(g%x)—b)o, "
We call I the symmetrfc Lagrange function for BPVN(b)% ™

a \ . . .
. ¢ ~
»
« -
- e

L N -
.
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L]

and IVN(a).® - - ’ .

With this.definition we can obtain the following result.

4 '

*

_ — : ’
_ Theorem 4-14: (a,b,x) is an optimal inverse triple for the

inversg pair PVN(b) and IVN(a) if.and only if there’

exist U > 0, ¥ > 0 such that:

-

W (a) L(x,a,b,u,v) s L(%,3,6,3,¥y g L(%,3,6,u,%)
l . 03
. (b) L(X,E,B,ﬁ,{;), £ L(x,a,b6,14,v) §.L(;"a'57u~'V)
. * o for all x e K, u 2.0, v# O.
Proof: ' ”Q o

'I Assume (1) holds. If we add the constant va +to each

part of (la), we get

-~ vE(x) - a(g(x)-b) = VE(XR) - u(g(X)-b) g v£(X) - u(g(X).-b)

for all x e K, u 2 0. Therefore (%,d) is a saddle-point °

‘ of VvE£(x) - u(g(x)~B), so X% solves PVN(B,V). Since

S 0, ¥ is a proper efficient solution of PYN(B). Also

. s -

.o since u > 0, complementary slackpess gives us g(x) = b.

‘Sim;larl§ from (1b):we find éh&t )fgi) = a ana\-i is a
proper efficiénf solut}oﬁ of IVN(3). ‘' Therefore 3 e A(B) -
:bn& b e B(a) - and (a,b,x) must be an optimal inverse
Eriple. ‘ - o - - N
e * Now assume that (E,Bji) is an optimal inversé triple.
Then therg is a 7 > 0 for which 3a = 19 (X) i; aE‘Sptimal
value ;f PVﬁ(B,E) with“f(i) =:Bm 'PYN(B,ﬁ) is stable and

and therefore its dual has an optimal solution wu 2° 0" and

1

and (Xk,u) _satisfies

.

.

-
.
.
{
.

. . . R
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W(£(x)-8) - u(g(x)-b) 5 u(f£(x)-a) —ulg(x)-b)
' s B(E(R)-8) - u(g(R)-B) - n
for all x e K, uz 0. Sihilarly, condildering IVN{E),‘ «

-
« ®

we obtain a X > 0 and Vv 2 Q0 such thét\
~ - ~ _ _ j LY
V(£ -3) - X(g(x)-B) 5 v(£(X)-Erm X(g(F) =B}

s v(£(X)-3). —@X_(g(i‘) G '
for all *¢e¢ K, v 2 0.. Now let ¥ = va{” ana § =« LI
. ¢ | .

12

-

b e R ri o o
u

E

1)

i et e mwd im g

Then Vv > 0, u > 0 and Ww(f(x)-a) - u(g(x)-b)-

»

—~
4.

< V(£(X)-3a) - U(g(X)-B).  This is the left ingquaiify of .

o

[N,

1 (la) and (1b). Since £(%) = & *and g(®) = B, the Tight  °

£ ) inequalities are poth 0 £ 0. Therefore we have fouﬁd'a

%/ a3 0 and ; Vv > 0 witH éhé feéuiggé propeffies.l‘ T B

: . A

; ' With this theorem we can prove theé following, result

g' which is tHe nonlinear version of theorem 3-11. TQerefore‘

5 this result is the basis for the results of chapter 3. T .
: E R < . .

T Theorem 4-15: (5{5,§) is an opt;malfinverse"triplé for the,

&

« - L)
inverse pair *pvN (B) dnd IVN(3) if and only if theré '

S exist ,§ > 0 and 'X > 0 Jéugh that’ jw

%j . (1) * % solves pvN(B,5) with optiijal valie ua, C

%' o ’ (2) X - solves IVN(E,X) w%thAoptimal value x5 .

P ‘ (3) X solves-the dual of PVN(B,}) - R
(4) % solves‘;he dual of IVN.(a,\) . ' .

B .aAssume (A,5,%) is an optimal inverse triple. Then

-

- +

there exist & > 0° and ¥ > 0 such that, (1) in theorem

A

. . .
. .

.
I -~ - L]

.
: a - . . : b
- o . ‘ ~
.
. .
.
.
)
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(x,0) solves .PVN(b,V)
. PVN(b,¥) and - u
! ¢
X smgVes IVN(a,u)
(5’7'5!;5)
- :_,, ‘:-.'ﬁ —
g(x) = a.
X solves PVN(b,n)
5 .
solves IVN(E,X)

~

4-14 is satisfied.

is.a saddle-point of wf(x) - 9(9(3575)-

£

~109- ‘

But, by

solves the dual of PVN(b,V).

_and i%s dual. That is X _solves

proof of that theorem, (X,4)

By theorem 4-9,.:

'

Similarly.
S

and ¥V solves.its dual. But since

i's an ‘optimal inverse triple, £(X) = b and

Therefore iflweylet ¥=v and X = U, we have:

with. optlmal value: 1b =

with optimal value ~ pya = pf(x).,

the dual of PVN(Byu), and Ef solves the dual of " IVN(a,X).

o

LE
Xg\x), 2 solves

Assumg%conﬁﬁilons (1) to (4) are satisfied for some ’ !

-

u > 6), x > 0. ATherefore by theorem 4-9 (x A)

p01nt of

is a saddle—p01nt of u(f(x)—a) - Ag(x) for x e K; = 0.

0 -

Thus the 1néqua11t1es in (1) of theorem 4-14

(a,§,xx

valent of theoremw3—12.

with*a

“an.- optlmal ihverse trlple by adjustlng b untll we could
find a p081t1ve splution to the dual of PVL(B,v) We
argued that, because of linéarity, we only needeﬁ tonconsider

_a' finite nimber of possible ,alternatives for: b.

@

nonllnear Lcase we cannot use this argument: and, thus,’

'

]

”multlpller vector ? qnd an estlmated b é; found

1

uf (%) - A (g (x) -b)

must be an: optlmal inverse triple.ll .

'Cofoltarzw

LN

.« 70 )
Theor?m 3-11.m
7 : |
4In the nonlinear case we cannot obtain apcomplete egui- .

4

o o

i

a

o
'

'

may not be. able to develop a method of adjustln

e —— e

is a saddle-

for x e K, 2.2 0, and. (X, )

-

hold and

"

In the llnegr case'when we started

n

In the

Jln a
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E" J& X finite number of steps to a value that allows a pqsitive

e S , v s

1 : solution for the dual of PVN(b,u). "However we do have the
' following partial result. ’

N
ot N 1 » . -
A o

Theorem 4-16: If (a,b,x) is an:optimal inverse triple
(

T N
< -p -

then: .

2 (1) if a 1is-an efficient value of PVN(B) found
9 . ,

by :solving * PVN(B,u) for some"ﬁ > 0, then \i .

i aﬂ efficient value:-of IVN(a) found by

- v \‘-‘:ﬁ‘ ¢ 4

{
i
?\
I
; , - : solving IVN(3,A) where A is any positive
. & .. . -
; = optimar"éoZutlon of tﬁe dual of PVN(b,u).
; . . . vy tr r
i ‘ P (2) if b is an efficient value found by solving
f o X “ . » B )
t ! N IV%(a,A or some X > 0,-then a is an effi-
5": s : o . . .
! . -+ cient value found by solving PVN(E,u) where
CN— - 4 is any positive optimal solution of the dual
of IVN(3,A). oo .
\ ) '&"2%"?;’?:{:}: i . .
Proof: . ., Y

[ | (1) Since u > 0. and ) > 0, they provide the T and

"
.

v " needed in‘theorem,4{f@:‘ So, as inv%hé proof of that

’ )
e L O URL IR o,
¢ .

Ay

W e ow

T - theorem, b 4is the effiqieni value found. by solving

5o

IVN(3,A). (2) Similar.B .

. ' Corollary: Theorem 3-5pagf (1).

N g 0 ez s

'
\ !

Proof: ,

)

‘"M Ssince PSL(E)' is scalar-valued, we do not need a 1.

'3 is the efficient value found by solving PSN(B) since

- (a,b,%) is an optimal inverse triple. Therefore b is an '

= AT ol Vi A ATl g

L
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cient value of IVL(a) éenerated by solwing IVL(a,y) g

since ¥ > 0 solves the dual of ESL(B).I

&
3

0

v n

5

This iesu;t gives us part of what we had before. If we

start 'with § and B and if the dual of PVN(B,T) has a

‘positive solution we can obtain an optimal inverse triple. . *
- o - g

i

«

@

L
. B

However, if not, we cannot duarantee that wer dan £ind an- -

o

adjusted b for which wé ‘car obtain a positive solution.

For partigular types of problems, as in the linear case, .

] . ) S .‘,
algorithms may exist because thé~cha;apteristfbs of the-

LY

X .

“w

(%

<

[

“

a

problems allow us to make extra assumptions... However; 'in
" " &
general this cannot be done. . o -
N - +
2 . '_ :0 AR
»
; . o
I b o
i s ’ "
’ 7
Y
o / '
- L&
® (]
L4
\ | "
o ' < f 3
* - ° h A
. , .
— . ¢
. T PR - - — Fiaae v, - Iy %
U T e N T



tes

SRl e &g o 3
s

a

Y .

-

A Bt g 1 b

t

0

[T

bty e SO

b i AR B S

et

H

. ) -112- )
v '
- . lﬁ o ® ;
« B v * N B ‘ P o
. ‘ . M v :
v $ o * " o . . \) | ! "": L) :
- o Co Bibliography ™\ ~ , e
1. Balygﬁkl, M.L. and W. J Baumol, “Theﬁdual in nonlinéar -
. - 14 /k \l 0“ ! ' ! M ‘ i ”
; programmlng and its ecoromic—i terpregation“; Rev Eco
7 < v N S ————————
, . 'studies 35 (1968) 237-256. )
. e .. . s P
, Ve u - .
: - 2. Benayoun, R., J. de Montgolfler,“J. Qﬁrgny
* . rltchev", "Llnear programtnlng w;l.th mult.lple objec 1ve
. functions: step method (STEM) ", Math Prog 1 (197‘1)
Lo ’ o« T . . ‘ N B T .
‘ 366—3751; . .o IR " . i R . N ,
. ) - - [ . oo L) > w o ", A
T N St K e o SR
¢ " 3. Cass, D.; “Dhality: ‘a. symmetrlc apprbach from the_ ! X
M)/ég;nomist's.vaﬁtage p01nt"“ J Eco Th 7 61974) 272m295ﬁ RS e’
o _ ' Ve N L N ° o Y
(B’; . . 2 ‘ ° T N ° Y . &‘l [BR\Y . . :\ . L "“" . ‘;\ i
v N , R LY b * ey ,
4. ‘Cassidy, R.G.; Ph.D. esxs, .On Ranﬂomeayoff Games; - N
P " . ° N o fFow . We “"‘:
" - Dalhousie University, allfax, Nova Scotla, 1970. S, A )
e 4 . ' Pt “ . "
' @ : ° // * B " ! /‘ i ‘\“ ‘f\:I i N "“'«n*‘ ':.
5. Cass:l.d ’ R G., » C.A. F eld“ana W.R;Sx Sutherlanq, oL
» L » o na o
- - o @ y o a Do o 4 (Y] "t‘\
i "InVer Prog ammlng- theory and examples ,”Math Prog . *® e
. . . 4 (1973) 297-“30’8_ @ ¢ ) w . .:‘\’ w 1 n'" ".:‘i" . . (": , “":,.
«r‘ ( . a » ) L . . . ) . “ © e . - ' ”:,-.. : " . iy “:
_ 6., Charnes, A. and W.W. Cooper. Management Models and v
! ' tan u . (\"\ ' b . N
Industrlal Appllcatlons of Llnear Prognamming, Vblnl, IR L
@ " . 0,0 M " ' I ~
. 3 W;ley, New Yorkh 1951q‘. ' K e fh" ,”,” A N
. . e Ve . ~;’1 ;" * ~o o T
’ 7. Cochran@ J L and M sﬁeleny, edssa Multlple Crlterla' v ”f4
7 [} . v - P , ot ! ’:"’: " “u Sac
; ‘ Dec1s10n.Mak1ng, Unw of South“Garollné Press,. Colum— ;"NI‘-”ML'J‘
° blay 'S 2 C% 7 19730 . . o - N - " ! @‘? &, :. ( .
§ ) - R . * e o A N
, - v, PR " . R f@ T N b
- 8. DaCunha, N.O. and E. Polak; "Constrained minimization ’
under vector-valued criteria in finite dimensional, .
- < ¥ > " .
. : Co . Y .
a ¢ I
° . L W
“ Y . ’ i
- : . CoT T o Vs Fﬂ*ﬂf



Rk Ll
VI AT

,,“.wm:,
T e T
-3 =

~

N

R T
M P
£~

17 o e P
- -

o g, B et e b et
o BTt o, s st b sVt ey
ST .

Y amsaism  whfu e o

maximization problem", .Ops Res 22 (1914)~189—191.
I s
) ‘; 3 P - .

Rt B s e
-
v, .

9.

’ Il;‘Evéns; J.p.

[

W0

14 ° 'GeOffriOI}, AoMe ;

space", G Math Anal Appl 19 (1967) 103-124.

Ecker,

for linear multiple objective pfogréms“, Math Prog 8
' oo

O

-113-

J.G.

and I.A.

(1975) 375-377.

.

10. Evans, J.P.

and F.J.

Kouada;

Gould:;

"A nonlinear duality

w

"Finding efficient pdinté ~

theorem without convexity", Econometrica 40 (1972)

.487.° "

"
u

a smmpllfled appllcatlons - oriented fevelopment”,

nt

. IQSHQBleJ D.; Tﬁ geomet:ic duality theorem-with economic

A
.

0o,

»13.. G‘éoffrion'; M

0

_/""

g 5 (1973) 54-72

and*RaE. Steuer;

e

e

SIAM R@vlew 13 (1971) ‘1- 37;

frlon, ed. ~Perspectives on Optimization:

>

A revised simplex

applications", -Rev Eco. Studies 34 (1967) 19-24.°

"method»for llnear multlple objective programs“, Math

'"Duality,in nonlinear programming:

reprinted in A.M. Geof-

A Collection

’,of‘Expository Artibles, Addison-Weésley, Reading,

Mass., 1972.

L)

vector maximization",

630.

15. Isermann,

H.;

J Math Anal Appl 22 (1968) 618~

"Proper efficiency and the theory of

"Proper efficiency and the: linear vector.

L

TS Y ¢y »}f

Poaget ey r,:,: -



™
H

- T
£
r

R
o
!

B St iAo T B e Sk T o I e
- -

Ll a

et by

X
R

;"‘ -

i
]

~t

. ¢
> . - - o
\ h . 4 a Yy

16, Karlin, S.; .Mathematical Methods and Theoty .in Géﬁgs,‘

Prbgramming and Econoﬁics, Vol.l, Addison-Wesley,

Reading, Mass., 1959. ° Ve

» »

s r .

17, Klfnger, A.; "Improper solutions of the'vector maximiza-

tion problem", Ops Res 15 (1967) ‘570-572.

~

18. Klinger, .A.; "Vector-valued performance cri%erié",
* - ~ -‘1

IEEE Trans Auto Control, AC-9 (1964) 117-118.

-

19. Koopmans, T.C. &d.; Activity Analysis of Production and . .

-

Allocation, Wiley, New York, 1951. e

- a oW
20. Kornbluth, J.S-H.; "Multiple objective Xrinear program- | .

[}
.

-

~

ming", ORQ 25 (1974) 599-~613%. I
21. Kuhn, H.W. and A.W. Tucker; "Nonlinear programming",

. in J.Néyman, ed., Proceedings of the Second Berkéley

@

Symposium on Mathematical -Statistics .and Pxobability, -

Un. of Califoxrnia ﬁressf Berkeley, California, -1950., -

" ] v,
22. MacCrimmon, K.R.; '"An overview of multiple objective

decision making”, p.1l8 in [71.

o . o

23. Mangasarian, O.L.; Nonlineér Programming, McGraw-Hill,

New York, 1969,

®

L3

A

*24. Mangasarian, O.L. and J. Ponstein;.“Minimax and duality

!

) in nonlinear programming®, J Math Anal Appl 11 (1965)

'504-518.

25, Philip, J.; "Klgofithms for the vector maximization

4 .
"

]




PEEUIUN- SN

< At gy e

e s B ot

26, Rockafellar, R.T.; "Duality in nonlinear programming”,

-115-
b ) ' ' C

problem", Math Prog 2 (1972) 207-229. - :

I3 o '
R 0
o

/

k)

in G.B. Dantzig and A.F. Veinott, eds.; Mathematics

of the Decision Sdiences,"Parﬁ‘l,'Am Math Sociéty,

°

Pr;viaencq,”R.f,, 1968.

a
B -

«©

o
¢ LIS

.27, Roy,_B.; "Problems'and methods with multiple objective

functions", Math Prog 1 (1971) 239-266. -

"

28.. Stoer, J.; "Duality in nonlinear programming and the
4 . ©

©
mirvimax theorem", Numer Math 5 (1963) 371-379.

¢ . s

4
29. Wolfe, P.; "A duality théorem''for non-linear program-

ming", Quart Appl Math, 19 (1961) 239-244.

o
- ~
o

30.,Yu, P.L.; "Cone convexity, cone extreme points and

nondominated solutions in decisioén problems.with

multiobjectives", JOTA 14 (1974) 319-37%7.

-
v v
a N ¢

31. Yu, P.L.; "Introduction to domination structures in

multicriteria decision -problems", in [71].
£ - -

. 32. Yu, P.L. and M. Zelen§; "The set of all nondominated

-

solutions in linear cases and-a multicriteria simplex

method”, J Math Anal Appl 49 (1975) 430-468. °

®
. > (H
. ~

-

N




	00003
	00004
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112
	00113
	00114
	00115
	00116
	00117
	00118
	00119



