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Abstract

In this thesis, we shall introduce the concepts of h-quasi-monotone, quasi-monotone,
bi-quasi-monotone, h-quasi-semi-monotone, quasi-semi-monotone, quasi-nonexpansive,
semi-nonexpansive, lower hemi-continuous, upper hemi-continuous, weakly lower (re-
spectively, upper) demi-continuous, strongly lower (respectively, upper) demi-continuous,
strong h-pseudo-monotone, strong pseudo-monotone, h-pseudo-monotone, pseudo-mono-
tone, h-demi-monotone, and demi-monotone operators. We shall first obtain some gen-
eralizations of Ky Fan's minimax inequality. As applications, we shall obtain results on
fixed point theorems, generalized variational, quasi-variational and bi-quasi-variational in-
equalities, and complementarity and bi-complementarity problems.

In Chapter 2, we shall first obtain a minimax inequality which generalizes Ky Fan's
minimax inequality in several respects. Then, we shall obtain a Knaster-Kuratowski-
Mazurkiewicz (in short KKM) type lemma which will be more general than KKM Lemma
in all of its practical applications. By applying our KKM type lemma, we shall obtain
a generalization of Brézis-Nirenberg-Stampacchia’s generalization of Ky Fan’s minimax
inequality.

In Chapter 3, as applications of the minimax inequalities of Chapter 2, and as ap-
plications of most of the above mentioned operators, we shall obtain several existence
theorems for compact and non-compact generalized variational inequalities and for non-
compact generalized complementarity problems in topological vector spaces.

Finally, in Chapter 4, as applications of the generalized variational inequalities of
Chapter 3, we shall first obtain some fixed point thecrems in Hilbert spaces for some of
the operators introduced in this thesis. Applying the minimax inequalities of Chapter 2
or some minimax inequalities in the literature and/or some of the operators introduced
in this thesis, we shall obtain several existence theorems for non-compact generalized
quasi-variational inequalities as well as for both compact and non-compact generalized
bi-quasi-variational inequalities, and non-compact bi-complementarity problems in locally
convex Hausdorff topological vector spaces.

viii
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Chapter 1

Introduction

Ky Fan [48] obtained a minimax inequality in 1972 which was celebrated at that time.
Let us go back to the history behind obtaining this minimax inequality. We shall start
with the classical theorem of Knaster-Kuratowski-Mazurkiewicz (in short KKM) [72]. This
classical theorem is often called the KKM Theorem or KKM Lemma. The KKM Theorem
has numerous applications in various fields of pure and applied mathematics. Today, the
studies and applications of the KKM Theorem are called the KKM Theorey.

Ky Fan [44] obtained a generalization of the classical KKM Theorem [72] in 1961 to
infinite dimensional Hausdorff topological vector spaces and establised an elementary but
very basic ‘Geometric Lemma’ for set-valued mappings. Later, Browder [21] obtained a
fixed point form of Fan’s Geometric Lemma in 1968 which is called Fan-Browder Fixed
Point Theorem today. Since then there have been numerous generalizations of Fan-
Browder Fixed Point Theorem with applications in coincidence and fixed point theory,
minimax inequalities, variational inequalities, nonlinear analysis, convex analysis, game
theory and mathematical economics.

Ky Fan [48] applied the above Geometric Lemma in obtaining his 1972 celebrated
minimax inequality. Ky Fan’'s minimax inequality plays a fundamental role in nonlinear
analysis and mathematical economics and has been applied to potential theory, partial
differential equations, monotone operators, variational inequalities, optimization, game

theory, linear and nonlinear programming, operator theory, topological groups and linear
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algebra. By using Ky Fan’s minimax inequality, a more general form of the Fan-Glicksberg
Fixed Point Theorem was derived for set-valued operators which were inward (or outward)
as defined by Ky Fan in 1969. Ky Fan’s definitions of inward (or outward) mappings were
more general than Halpern’s [56] definitions for inward (or outward) mappings of 1965.

In Chapter 2 of this thesis, we shall obtain two new minimax inequalities in topological
vector spaces which generalize Ky Fan’s minimax inequality [48, Theorem 1] in several
respects.

To obtain the second minimax inequality, we shall first establish a KKM type lemma.
This lemma will be more general than KKM Lemma in all of its practical applications.
By applying our KKM type lemma, we shall generalize and extend Brézis-Nirenberg-
Stampacchia’s generalization [16] of Ky Fan's minimax inequality [48].

Let X be a non-empty subset of a topological vector space £ and £~ be the continuous
dual of E. Let T : X — 2E° be a map, then the generalized variational inequality
problem associated with X and T is to find y € X such that the generalized variational
inequality sup ,e1(;) Re(w, j—z) < 0forall z € X holds, orto find § € X and @ € T(§)
such that Re(w,§ — z) < 0 for all z € X holds. When T is single-valued, a generalized
variational inequality is called a variational inequality.

The topic of variational inequalities has only been studied systematically since 1960s
(e.g., see Fichera [51] and Stampacchia [102] and others). The variational inequality
theory is related to the simple fact that the minimum of the differentiable convex functional
I on a convex set D in a real Hilbert space can be characterized by an inequality of the
type (I'(u),v — u) < 0 for all v € D, where I'(u) is the derivative of the functional
I(u). However, it is remarkable that the variational inequality theory has many diversified
applications. During the last three decades which have elapsed since its discovery, the
important developments in variational theory are formulations that variational inequalities
can be used to study problems of fluid flow through porous media (e.g., see Baiocchi and
Capelo [7]), contact problems in elasticity (e.g., see Kikuchi and Oden [69]), transportation
problems (see Bertsekas and Tsitsiklis [14] and Harker [57]) and economic equilibria (see

Dafermos [34]). An additional main area of applications for variational inequalities arises



in control problems with a quadratic objective functional, where the control equations
are partial differential equations. A detailed discussion of this can be found in Lions {75].
The connection between control problems and quasi-variational inequalities is presented in
Aubin [3] and Zeidler [114]. There also exist intimate interconnections between variational
inequalities, stochastic differential equations, and stochastic optimization. We can find
these in Friedman [52]-[53], Bensoussan, Goursat and Lions [12] and Bensoussan [11].
Browder [19] and Hartman and Stampacchia [59] first introduced variational inequalities.
Since then, there have been many generalizations, e.g., see [1], [6], [7], [16], [21]. [42],
[71], [91], [98]. [99], [104], and [112], etc.

The area of mathematical programming which is known as complementarity theory,
is equally important. In 1965, Lemke [74] first introduced and studied complementarity
theory. Cottle and Dantzig [30] defined the complementarity problem and called it the
fundamental problem. For recent results and applications, we refer to Harker and Pang
[58], Noor, Noor and Rassias [80] and references therein. However, it was Karamardian
[68], who proved that if the set involved in a variational inequality and complementarity
problem is a convex cone, then both problems are equivalent. After that, many generaliza-
tions have been given by Shih and Tan [93], Ding [36], Isac [66]-[67], Chang and Huang
[24] and references therein. For more detail on the discussion between the variational
inequalities and complementarity problems, we refer to Cottle, Giannessi and Lions’ book
[31] and references therein.

The purpose of Chapter 3 is to present existence theorems for generalized variational
inequalities with applications to existence theorems for generalized complementarity prob-
lems. To this end, we shall first introduce the notions of lower hemi-continuous, up-
per hemi-continuous, k-quasi-monotone, quasi-monotone, h-quasi-semi-monotone, quasi-
semi-monotone, quasi-nonexpansive and semi-nonexpansive operators. As applications of
the above operators and the minimax inequalities in Section 2 of Chapter 2, we shall
present some existence theorems for generalized variational inequalities and generalized
complementarity problems in topological vector spaces. These results will extend or im-

prove the corresponding results in the literature, e.g., see [6], [27] and [91]. Surjectivity



of monotone or semi-monotone operators will also be discussed. Moreover, we shall in-
troduce the notions of weakly lower (respectively, upper) demi-continuous, strongly lower
(respectively, upper) demi-continuous operators and the notions of quasi-monotone and
quasi-semi-monotone operators in more general settings. As applications of these oper-
ators, we shall obtain some existence theorems on generalized variational inequalities in
topological vector spaces and in non-reflexive Banach spaces. Using the concept of escap-
ing sequences introduced by Border in [15], we shall also obtain some existence theorems
for the above operators on generalized variational inequalities in non-compact settings.

Finally, in this chapter we shall introduce the notions of h-pseudo-monotone, pseudo-
monotone, h-demi-monotone and demi-monotone operators. Our definition of pseudo-
monotone operators is a generalization of the single-valued pseudo-monotone operators
defined by Brézis-Nirenberg-Stampacchia in [16]. As applications, we shall present some
existence theorems for generalized variational inequalities and generalized complementar-
ity problems for pseudo-monotone and demi-monotone operators. Qur results for demi-
monotone operators will extend the corresponding results in [6], [16], [27] and [91]. The
results for pseudo-monotone operators will generalize the corresponding results in [16] and
extend those in [6], [27] and [91]. Surjectivity of demi-monotone operators will also be
discussed.

We remark here that the development of variational inequalities can be viewed as
the simultaneous pursuit of two different lines of research: On the one side, it reveals
the fundamental facts on the qualitative behaviour of solutions (such as its existence,
uniqueness and regularity) to important classes of problems. On the other side, it enables
us to develop highly efficient and powerful new rumerical methods to solve, for exam-
ple, free and moving boundary value problems and the general equilibrium problems. A
comprehensive investigation of numerical methods of variational inequalities is contained
in Glowinski, Lions and Tremolieres's book [55]. For more details, we refer to Cottle,
Giannessi and Lions [31], Crank [32], Harker and Pang [58], Noor [78]-[79], Noor, Noor
and Rassias [80], Rodrigues [88] and Shi [90] etc. Among the most effective numerical



techniques are projection methods and its variant forms, linear approximation method, re-
laxation method, auxiliary principle and penalty function techniques. In addition to these
methods, the finite element technique which is also being applied for the approximate
solution of variational inequalities, have been obtained by many mathematicians including
Falk [43], Mosco and Strang [76] and Noor, Noor and Rassias [80] and references therein.

It is well known that fixed point theory is very important in mathematics. The close
relationship between fixed point theory and mathematical economics can be illustrated in
many ways. In order to explore this relationship, one can study, for example, the topics in
[17], [77] and [35]. The usefulness of Brouwer's fixed point theorem in [17] was recognized
by John von Neumann [77] when he developed the foundations of game theory in 1928.

In Chapter 4 of this thesis, we shall give several applications of the generalized vari-
ational inequalities of Chapter 3 and the minimax inequalities of Chapter 2. We shall
mainly apply the generalized variational inequalities of Chapter 3 in obtaining fixed point
theorems in Hilbert spaces. Applying the minimax inequalities of Chapter 2 or some min-
imax inequalities in the literature and/or some of the operators introduced in this thesis,
we shall obtain several existence theorems for non-compact generalized quasi-variational
inequalities as well as several existence theorems for both compact and non-compact gen-
eralized bi-quasi-variational inequalities, and non-compact bi-complementarity problems
in locally convex Hausdorff topological vector spaces.

We shall first investigate fixed point theorems in Hilbert spaces for lower or upper
hemi-continuous operators T such that I — T is either quasi-monotone or a quasi-semi-
monotone operator. Qur results will extend or improve the corresponding fixed point
theorems in the literature, e.g., see [6], [18], [27] and [91]. As special cases of these
fixed point theorems, we shall also obtain fixed point theorems for quasi-nonexpansive or
semi-nonexpansive operators.

Next, we shall investigate some fixed point theorems in Hilbert spaces H for set-
valued operators T which have some kind of upper semicontinuity and such that I —T is
pseudo-monotone or demi-monotone. These fixed point theorems will extend or improve

the corresponding fixed point theorems in the literature, e.g., see [6], [27] and [91].



In recent years, various extensions and generalizations of variational inequalities have
been considered and studied. It is clear that in a variational inequalities formulation, the
convex set involved does not depend on solutions. If the convex set does depend on
solutions, then variational inequalities are called quasi-variational inequalities.

Let X be a non-empty subset of a topological vector space £ and E* be the continuous
dual of E. Given the maps S : X — 2% and T : X — E*, the quasi-variational inequality
(QVI) problem is to find a point § € S(7) such that Re(T'(3),5—=z) < 0forall z € S(§).
The QVI was introduced by Bensousson and Lions in 1973 (see, e.g., [13]) in connection
with impulse control. Applications of quasi-variational inequalities can be found in Aubin
[3]. Aubin and Cellina [4] and Zeidler [114]. Again, if we consider a set-valued map
T : X — 2E7, then the generalized quasi-variational inequality (GQVI) problem is to find
a point § € S(y) and a point @ € T'(y) such that Re(w.g — z) < 0 for all z € S(j).

In 1982, for the study of operations research, mathematical programming and op-
timization theory, Chan and Pang [23] first introduced the so-called generalized quasi-
variational inequalities in finite dimensional Euclidean spaces. The existence theorem of

Chan and Pang [23] is illustrated as follows:

Theorem 1.0.1 Let X be a non-empty compact conver subset of R® and S : X — 2%
and T : X — 2R be such that S(z) is compact conver and T'(z) is contractible and
compact for each € X. Moreover assume that S is continuous and T is upper

semicontinuous. Then GQVI has at least one solution.

In 1985, Shih and Tan [92] were the first to study the GQVI in infinite dimensional
locally convex Hausdorff topological vector spaces. The following result illustrates an
existence theorem of Shih and Tan [92] on GQVI:

Theorem 1.0.2 Let E be a normed space, E= be the continuous dual space of E and
X be a non-empty compact conver subset of E. Let S : X — 2% be continuous such
that for each z € X, S(z) is a non-empty closed conver subset of X, and T : X — 2E°

be upper semicontinuous from the relative topology of X to the strong topology of E*



such that for each x € X, T(x) is a non-empty strongly compact subset of E*. Then
there erists a point y € X such that

(i) § € S(§) and

(i) sup es(g) infuer(y) Re(w,§ —z) < 0.

Since then, there have been a number of generalizations of the existence theorems
about GQVI, e.g., Cubiotti [33], Ding and Tan [39], Harker and Pang [58], Kim [70], Shih
and Tan [100] and Tian and Zhou [111] and references therein. These results have wide
applications to problems in game theory and economics, mathematical programming (e.g.,
see Aubin [3], Aubin and Ekeland [5], Chan and Pang [23], Harker and Pang [58] and
references therein). Most existence theorems mentioned above, however, are obtained on
compact sets in finite dimensional spaces or infinite dimensional locally convex Hausdorff
topological vector spaces, and both S and T are either continuous or upper (or lower)
semicontinuous.

On the other hand, in economic and game applications, it is known that the choice
space (or the space of feasible allocations) generally is not compact in any topology (even
though it is closed and bounded), a key situation in infinite dimensional topological vector
spaces. Moreover, we note that there is practically no existence theorem for solutions
of generalized quasi-variational inequalities on non-compact sets in infinite dimensional
spaces. Motivated by this observation, we shall obtain some results on existence theorems
for generalized quasi-variational inequalities on paracompact sets for operators which are
either monotone and lower hemi-continuous along line segments or semi-monotone and
upper hemi-continuous along line segments or upper semicontinuous. Our results gener-
alize the corresponding results in [70] and [92].

Moreover, we shall obtain some results on existence theorems for generalized quasi-
variational inequalities on paracompact sets for operators which are either strong A-pseudo-
monotone or h-pseudo-monotone and which have some kind of upper semi-continuity. Our

results will extend the corresponding results in [70] and [92].



In 1989, Shih and Tan [100] first introduced the generalized bi-quasi-variational in-
equalities in Hausdorff topological vector spaces. Shih and Tan's generalized bi-quasi-
variational inequality can be described as follows:

Let £ and F’ be Hausdorff topological vector spaces over the field ® (which is either
the real field or the complex field), let ( , ) : F x E — ® be a bilinear functional, and let
X be a non-empty subset of E. Given a set-valued map S : X — 2% and two set-valued
maps M,T : X — 2F, the generalized bi-quasi-variational inequality (GBQVI) problem
is to find a point ¥ € X such that § € S(3) and inf,er(g) Re(f — w,§ — ) <0 for all
z € 5(y) and for all f € M(y).

Motivated by Shih and Tan's GBQVI in [100], we shall obtain some results on exis-
tence theorems of generalized bi-quasi-variational inequalities in locally convex Hausdorff
topological vector spaces on compact sets. Then as applications of our results and the
results in [100], using the concept of escaping sequences introduced by Border in [15],
we shall obtain some existence theorems on non-compact generalized bi-quasi-variational
inequalities and generalized bi-complementarity problems for semi-monotone operators.
Our results will extend the corresponding results in [100].

Furthermore, in this thesis, we shall introduce the concept of bi-quasi-monotone op-
erators. As applications of bi-quasi-monotone operators, we shall obtain some results
on existence theorems for generalized bi-quasi-variational inequalities in locally convex
Hausdorff topological vector spaces.

Finally, even though we have some results for demi-operators, generalized quasi-
monotone, generalized quasi-semi-monotone, bi-quasi-semi-monotone, and hemi-continu-
ous operators on generalized variational inequalities or generalized quasi-variational in-
equalities, they have not been included here. We have completed some work on these
topics and wish to continue to work on these topics soon. Moreover, we do not cover
the topics on generalized KKM (in short G-KKM) maps, minimax inequalities and exis-
tence theorems of equilibria for G&-majorized correspondences in generalized convex (or
G-convex) spaces for which we refer to M. S. R. Chowdhury [26], M. S. R. Chowdhury
and K.-K. Tan [28]-[29] and some references therein.



Chapter 2

Generalizations of Ky Fan’s

Minimax Inequality

2.1 Introduction

In Chapter 1 of this thesis, we have given a brief history of Ky Fan's minimax inequality
[48]. Indeed, Ky Fan's minimax inequality has become a versatile tool in nonlinear func-
tional analysis [48], convex analysis, game theory and economic theory [3]. There have
been numerous generalizations of Ky Fan’s minimax inequality by weakening the com-
pactness assumption or the convexity assumption; e.g., due to Allen [1], Bae-Kim-Tan
[6], Brézis-Nirenberg-Stampacchia [16], Ding and Tan [39], Shih and Tan [91], Tan [104],
Tan and Yuan [109], Yen [112] and Fan himself [49].

Horvath obtained some generalizations of Fan's Geometric Lemma and his minimax
inequality in [60] and [61] in 1983 and 1987 respectively, by replacing convexity assumption
with topological properties: pseudo-convexity and contractibility. In 1988, Bardaro and
Ceppitelli [8] further generalized Ky Fan’s minimax inequality into H-spaces, which are
topological spaces, by utilizing Horvath’s concept.

Following this line, a number of generalizations of Ky Fan's minimax inequality were
given by Horvath [62], Bardaro and Ceppitelli [10], Ding and Tan [40], Ding, Kim and
Tan [37]-[38], Chang and Ma [25], Park [81], Tarafdar [110] and Tan, Yu and Yuan [108]

9
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in H-spaces which do not have a linear structure.

Recently, Park and Kim introduced the concept of a generalized convex (or G-convex)
space in [86] which is a generalization of convexity in vector spaces, Horvath’s pseudo-
convex spaces [60], c-structure [62] and H-spaces [8]-[10]. G-convex spaces are adequate
to establish theories on fixed points, coincidence points, KKM maps, G-KKM maps,
minimax inequalities, equilibrium existence theorems, intersection theorems, variational
inequalities, best approximations and many others. For details, see [28], [29], [82], [83],
[84], [85], [86]. [107].

On the other hand, for applications, various generalizations of the classical KKM
Theorem and Sperner’s Lemma [101] have been given by Fan [45], [46], [47] and [50],
Ding and Tan [40], Gale [54], Idzik and Tan [65], Shapley [89], Shih and Tan [95], [96],
[97], Ichiishi [63], and Ichiishi and ldzik [64].

In Section 2 of this chapter, we shall obtain a new minimax inequality in topological
vector spaces which generalizes the celebrated 1972 Ky Fan’'s minimax inequality [48, The-
orem 1] in several respects. We shall establish that this minimax inequality is equivalent
to all the minimax inequalities in [109].

In Section 3, we shall obtain a KKM type lemma. This lemma will not be a direct
generalization of the classical KKM Theorem since convexity of the underlying subset is
needed but which is not required in the KKM Theorem. But we shall observe that in
all practical applications of the classical KKM Theorem the underlying subset is always
convex. Hence for all practical applications, our KKM type lemma of Section 3 will be
more general. Moreover, we shall apply this lemma to generalize and extend Brézis-
Nirenberg-Stampacchia’s generalization [16] of Ky Fan's minimax inequality [48]. This
minimax inequality will also generalize the corresponding minimax inequalities in [27] and
[91]. As a special case of this minimax inequality, a third new minimax inequality will be
obtained. Four fixed point theorems and four equivalent formulations of the third minimax

inequality will also be obtained.



11

2.2 Generalization of Ky Fan's Minimax Inequality in topolog-

ical vector spaces

First we introduce and recall some notations and definitions. Throughout this thesis R
denotes the set of all real numbers and R* = {r e R: 7 > 0 }. If Ais a set, we
shall denote by 24 the family of all non-empty subsets of A and by F(A) the family of
all non-empty finite subsets of A. If A is a subset of a topological space X, we shall
denote by :ntx(A) the interior of A in X and by cfx(A) the closure of Ain X. If A
is a subset of a vector space, we shall denote by co(A) the convex hull of A. If A is a
non-empty subset of a topological vector space £ and G : A — 2E is a correspondence,
then coG : A — 2F is a correspondence defined by (coG)(z) = co(G(z)) foreach z € A.

Let X and Y be subsets of a vector space E such that co(X) C Y. Then F: X —
2Y is called a K ' M-map if for each A € F(X), co(A) C UzeaF(z). Note that if F is
a KKM-map, then = € F(z) for all z € X. In this thesis, topological vector spaces are
not assumed to be HausdorfF unless it is explicitly stated.

We shall need Ky Fan’s following infinite dimensional generalization [44, Lemma 1] of

the classical Knaster-Kuratowski-Mazurkiewicz Theorem [72]:

Theorem 2.2.1 Let £ be a topological vector space, X and Y be non-empty subsets
of E such that X C Y and Y is conver. Suppose F : X — 2Y is such that

(a) F is a KK M-map;

(b) for each z € X, F(z) is closed in Y;

(c) there erxists xq € X such that F(zo) is compact.

Then Nex F(z) # 0.

Theorem 2.2.1 as stated above is slightly more general than Ky Fan originally stated
in [44]. This was observed by Ding and Tan in [39, p.234].

We now state Ky Fan’s minimax inequality [48, Theorem 1].



Theorem 2.2.2 Let E be a topological vector space and X a non-empty compact
convex subset of E. Let f be a real-valued function defined on X x X such that
(a) for each fizred x € X, f(z,y) is a lower semicontinuous function of y on X:
(b) for each fizred y € X. f(z,y) is a quasi-concave function of z on X.
Then the minimazx inequality

min sup f(z,y) < sup f(z,z)
veX rex reX

holds.
The following result is another formulation of Theorem 2.2.2:

Theorem 2.2.3 Let E be a topological vector space and X be a non-empty compact
convez subset of E. Let f be a real-valued function defined on X x X such that
(a) for each z € X, f(z,z) < 0;
(b) for each fixed r € X, f(z,y) is a lower semicontinuous function of y on X;
(c) for each fized y € X, f(z,y) is a quasi-concave function of z on X.

Then there exists § € X such that f(z,§) <0 forallz € X.

We remark here that in stating Theorems 2.2.1, 2.2.2 and 2.2.3 above, the space E is
not required to be Hausdorff as Ky Fan originally stated. This fact was observed in Ding
and Tan's paper [39].

In this section we shall obtain a new minimax inequality as a generalization of Ky
Fan's minimax inequality to non-compact sets.

We shall begin with the following result:

Theorem 2.2.4 Let E be a topological vector space, X be a non-empty conver subset
of E and f,g: X x X - RU {—o00,+00} be such that

(a1) for each z,y € X, f(z,y) > 0 implies g(z,y) > 0;

(b1) for each fired x € X, y — f(z,y) is lower semicontinuous on non-empty
compact subsets of X;

(c1) for each A € F(X) and for each y € co(A), minge, g(z,y) < 0;
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(d1) there erist a non-empty closed and compact subset K of X and zo € K such
that g(zo,y) > 0 forallye X\ K.
Then there exists § € K such that f(z,y) <0 forallz € X.

Proof: Define F: X — 2K by
Flz)={ye K : f(z,y) <0} forall z€ X.

Note that by (6,), each F(z) is closed in A'. We shall first show that the family {F(z):
T € X} has the finite intersection property. Indeed, let {z;,---,z,} be any finite subset
of X. Set C = co({zo,z1,---,zn}), then C is non-empty compact convex. Note that
by (a1), g(z.x) < Oforall z € X. Define G : C — 2° by G(z) = {y € C :
g(z,y) < 0} for all z € C. We observe that: (i) if A is any finite subset of C, then
co(A) C UzeaG(x); for if this were false, then there exist a finite subset {z;,---,z,}
of C and z € co({z1,--.zm}) with z ¢ U™, G(z;) so that g(z;,z) > 0 for all j =
1,---,m which contradicts (c;); (ii) for each z € C, clc(G(z)) is closed in C and
is therefore also compact. By Theorem 2.2.1, Nyecclc(G(z)) # 0. Take any 7 €
Nzecclc(G(z)). Note that zo € C and G(zo) C A by (d;); thus § € clec(G(xo)) C
clx(G(zo)) = clr(G(zo)) C K. Since we also have §j € N7_,clc(G(x;)) and for each
j=1,un, ele(Glz)) = clc({y € C : g(z;,9) <0}) C clol{y € C : f(z;y) <
0}) ={y € C: f(zj,y) <0} by (a1) and (b,), we have f(z;.5) <O0forall j=1.---,n
and hence j € N7_, F(z;). Therefore { F(z) : £ € X} has the finite intersection property.

By compactness of K, NexF(z) # 0. Take any § € N cxF(z), then § € A and
flz,g) <0forall z € X. o

For another generalization of Theorem 2.2.3 (and also generalizations of the corre-
sponding minimax inequalities in [16] and [91]), we refer to Section 2.3.

The following fixed point theorem is equivalent to Theorem 2.2.4:

Theorem 2.2.5 Let E be a topological vector space, X be a non-empty conver subset
of E and F,G : X — 2X U {0} be such that
(az) for each x € X, F(z) C G(z);
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(b2) for each x € X, F~Y(zx) is compactly open (i.e., F~'(z)N C is open in C for
each non-empty compact subset C of X);

(c2) there exrist a non-empty closed and compact subset K of X and o € K such
that X \ K C G™(zo);

(dg) for each x € K, F(z) # 0,

(e2) for each x € X, G(z) is conver.

Then there erists § € X such that § € G(y).

To show Theorem 2.2.4 implies Theorem 2.2.5:
Define f,g: X x X — R by

(1 fzeF(y),
f(z’y)_{o itz ¢ Fly),
(= )_{1 if z € G(y),
TEIZV 0 fegcw)

forall z,y € X. It is easy to see that the conditions (a;), (b;) and (d,) of Theorem 2.2.4
are satisfied. If the hypothesis (¢;) of Theorem 2.2.4 is also satisfied, then by Theorem
2.2.4, there exists § € A such that f(zr,y) < 0 forall z € X. It follows that F(j) = 0
which is impossible. Thus the hypothesis (¢;) of Theorem 2.2.4 does not hold. Hence
there exist A € F(X) and § € co(A) such that min e, g(z,7) > 0 so that z € G(j) for
all z € A. Therefore § € co(A) C G(7) by (e2). a

To show Theorem 2.2.5 implies Theorem 2.2.4:

Define F,.G : X — 2X U {0} by F(y) = {z € X : f(z,y) > 0} and G(y) =
co({z € X : g(z,y) > 0}) for all y € X. It is easy to see that the conditions (a;), (bs).
(c2) and (e) of Theorem 2.2.5 are satisfied. If the hypothesis (d;) of Theorem 2.2.5
is also satisfied, then by Theorem 2.2.5, here exists § € X such that § € G(g). But
then there exist z,---,7, € X and A(,---, A, € [0,1] such that g(z;,7) > 0 for all
t=1,---,n, Y, i =1and § = 37, Air;. This contradicts (¢;) because § € co(A),
where A = {z1,---,z,}. Hence the hypothesis (d,) of Theorem 2.2.5 does not hold.
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Thus there exists § € K such that F(§) = 0. It follows that f(z,§) <0 forall z € X.
O

Note that Theorem 2.2.5 is Theorem 2.4’ in [109].

Clearly, Theorem 2.2.4 implies the following result which is Theorem 2.2 in [109]:

Theorem 2.2.6 Let X be a non-empty convez subset of a topological vector space
and ¢, : X x X = RU {—o0,0} be such that

(a) o(z,y) < Y(z,y) for each (z,y) € X x X;

(b) for each fized x € X, y — ¢é(z,y) is lower semi-continuous on non-empty
compact subsets of X;

(c) for each A € F(X) and for each y € co(A), mingea ¥(z,y) < 0;

(d) there exist a non-empty closed and compact subset K of X and ro € X such
that Y(zo,y) >0 forally € X \ K.
Then there ezists y € K such that ¢(z,y) <0 forallz € X.

It is shown in [109] that Theorem 2.2.6 implies the following result which is Theorem
2.4 in [109]:

Theorem 2.2.7 Let X be a non-empty conver subset of a topological vector space
and ¢, : X x X - RU {—o0, +oc} be such that

(a) ¢(x,y) S v(z,y) for each (z,y) € X x X and ¥(z,z) < 0 for each r € X;

(b) for each fired x € X, y — ¢(z.y) is lower semicontinuous on non-empty
compact subsets of X;

(c) for each fired y € X, the set {zx € X : ¢¥(x,y) > 0} is convexz;

(d) there exist a non-empty closed and compact subset K of X and a point zo € X
such that ¥(zo,y) >0 for ally € X \ K.
Then there ezists §y € K such that ¢(z,§) <0 forallz € X.

It is shown in [109] that Theorem 2.2.7 is equivalent to Theorem 2.2.5. Thus Theorems
2.2.4,2.2.5 (Theorem 2.4" in [109]), 2.2.6 (Theorem 2.2 in [109]) and 2.2.7 (Theorem 2.4

in [109]) above are all equivalent and are also equivalent to Theorems 2.2/, 2.2, 2.3",
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2,47, 24", 24" and 2.4"" in [109]. Note however that the equivalence of Theorem 2.2
in [109] and Theorem 2.4 in [109] was not established in [109]. Note also that Theorem
2.2.6 does not imply Theorem 2.2.4 directly and Theorem 2.2.7 does not imply Theorems
2.2.4 and 2.2.6 directly. For applications to existence of equilibrium points of generalized

games, we refer to [109].



2.3 Further generalization of Ky Fan's Minimax Inequality in

topological vector spaces

The purpose of this section is to present a further generalization of Ky Fan’s minimax
inequality to non-compact sets.
We shall begin with the following result which is Lemma 1 of Brézis, Nirenberg and

Stampacchia in [16, p.294]:

Lemma 2.3.1 Let E be a Hausdorff topological vector space, X, Y be non-empty
subsets of E and F : X — 2Y be a KK M-map such that
(a) cly F(zo) is compact for some o € X;
(b) for each z € X, the intersection of F(z) with any finite dimensional subspace
L of E is closed in L;
(¢) for each convezx subset D of E,
(cby( [ FE)ND=( (| F(z))nD.

reXnD rzeXnD
Then

N F(z)#0.

reX
Lemma 2.3.1 as stated above is slightly more general than Brézis, Nirenberg and

Stampacchia originally stated in [16, p.294]. This was observed by K.-K. Tan in [106].

Now, we shall establish the following result:

Lemma 2.3.2 Let E be a topological vector space, X be a non-empty conver subset
of E. Let F: X — 2% be a KKM-map such that

(a) cx F(zo) is compact for some zq € X;

(b) for each A € F(X) with zo € A and each z € co(A), F(zx) N co(A) is closed
in co(A) and

(c) for each A € F(X) with zo € A,

(clx( ﬂ F(z))Neco(A)=( () F(z))Nco(A).
z€CO(A) z€CO(A)

Then Ngex F(z) # 0.
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Proof: Fix any A € F(X) with o € A. Define G4 : co(A) — 2°9(4) by G4(z) =
F(z) N co(A) for each 2 € co(A).

Now, for each r € co(A), G4(z) is non-empty since F' is a KKM map and closed
in co(A) by (b). Note that co(A) is compact. Thus each G 4(z) is also compact. For
each B € F(co(A)) we have B € F(X) as co(A) C X and so co(B) C UzepF(z). But
co(B) C co(A); it follows that

co(B) C (|J F(z))Nco(A) = U (F(z)nco(A)) = | Galz).

z€B reB r€B

Thus G4 is a KKM-map on co(A). Hence by Theorem 2.2.1, we have

(| Ga(z)#0, ie., (| F(z)Nco(A) # 0. (2.1)

r€Co(4) reC0O(4)

Let {E;}ies be the family of all convex hulls of finite subsets of X containing the
point zg, partially ordered by C.
Now, foreach i € I, let E; = co(A;), where A; € Fo(X) = the family of all non-empty
finite subsets of X containing the point zq.
By (2.1), for each i € I, Mg, F(z) N E; # 0. Fix any u; € N,eg, F(z) N E;. For
eachz € [, let
®; = {u;lj 24,5 €I}

Clearly, (i) {®:|7 € I'} has the finite intersection property and (ii) ®; C F(zo) forall i € I.
Then cfx®; C clx F(xo) for all i € I. By compactness of clx F(zg), Niesclx®: # 0.
Choose any & € N;c; c€x®P;. Note that for any i € I and for all j € I with j > ¢,

u; € [ F(z)NE; C([) F)nE;)C () F(a).

IGE] IGE. IGE'

Therefore
& C ) Fla). (2.2)
r€E;
Now, for any z € X, there exists ig € I such that z,& € E;,. Therefore for all : > i,
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we have z,% € E;, C E;. It follows that for all 7 > i,

teE:Nclx®; CE;N(clxNeg, F(2))
= (Neee, F()) N E;  (by (c))
= (N, F(z)N E3) C F(=).
Thus £ € F(z) for all z € X. Hence N cx F(z) #0. o
Under the hypotheses of Lemma 2.3.2, we see that if for each z € X and each finite
dimensional subspace L of E, F(z) N L is closed in L, then for each A € F(X) with
zo € A and each z € co(A), F(z)Nco(A) is also closed in co(A). The following example

shows that the converse is not true in general.

Example 2.3.3 Let E = R2. Consider the following non-empty conver subset X of
E:

X={(u,v)eR0<u<!land0 <v<1-u}U{(u,v) ER*|lu=0 and0 < v <1}.

Fiz 2o = (3,3) € X. For each z € X with z # (0,0) and z # zo, let A, denote the
following set:

A; = the closed region in X bounded by the line v = 1 — u and the line passing
through the point z and parallel to the line v =1 — u.

Now, we define F : X — 2% by

A U{(0,0} U {(;55- m33) s n=1.23,---}, iz #(0,0) and x # zo;
Fle)=1 X, if = (0,0);

(0.0} U {(zh k) i m = 1,2}, iz =zo.
Then for each A € F(X) with zo € A and for eachz € co(A), F(z)Nco(A) is closed in
co(A). However, consider L = R? and z = (0,0); then F(z)NL = F((0,0))NnR2 = X
is not closed in L. Note that F is a KKM-map such that clx F(zo) = F(zo) is compact
and the condition (c) of Lemma 2.3.2 is also satisfied. Thus our Lemma 2.3.2 is

applicable but Lemma 2.3.1 is not.

We remark here that Lemma 2.3.1 and Lemma 2.3.2 are not comparable. Note that

when X =Y and is convex then Lemma 2.3.2 improves Lemma 2.3.1. However, in all



applications of Lemma 1 in [44] or Lemma 2.3.1, the sets X and Y are equal and X is
always assumed to be convex.

We shall now establish the following minimax inequality:

Theorem 2.3.4 Let E be a topological vector space, X be a non-empty convex subset
of E, h : X — R be lower semicontinuous on co(A) for each A € F(X) and f :
X x X - RU {—o00,+o0} be such that

(a) for each A € F(X) and each fized z € co(A), y — f(z,y) is lower semicon-
tinvous on co(A);

(8) for each A € F(X) and each y € co(A), mingea[f(z,y) + h(y) — h(z)] < 0;

(¢) for each A € F(X) and each z,y € co(A) and every net {yo}aer in X con-
verging to y with

fltz+ (L = t)y.9a) + h(ya) — h(tz + (1 —t)y) <0 forall a €T and all t € [0,1],

we have f(z,y) + h(y) — h(z) < 0;

(d) there erist a non-empty closed and compact subset K of X and o € K such
that f(zo,y) + h(y) — h(zo) >0 for ally € X\K .

Then there erists § € K such that f(z,3) < h(z) — k() for all z € X.

Proof: Define F': X — 2¥X by
F(z)={y € X : f(z,y) + h(y) — h(z) < 0} for each = € X.

f Fis not a KK M-map, then for some finite subset {z,,---,z,} of X and a; >
0forz = 1,---,n with "7, a; = 1, we have § = ¥, oyz; € U, F(z;). Thus
flzi, )+ h(7) = h(z;) >0fori=1,---,n so that

min [f(z:.§) + A(F) — h(z:)] > 0,

1<i<n
which contradicts the assumption (b). Hence F : X — 2¥ is a K K M-map. Moreover
we have,
(¢) F(zo) C K by (d), so that cfx F(z¢) C clx K = K and hence clx F(zq) is

compact in X



(22) for each A € F(X) with o € A and each z € co(A),

F(z)Nco(A) = {y € co(A) : f(z,y) + h(y) — h(z) < 0}
= {y € co(A) : f(z,y) + h(y) < h(z)}

is closed in co(A) by (a) and the fact that £ is lower semicontinuous on co(A);

(222) for each A € F(X) with zo € A, if y € (clx(Nrecors) F(z))) N co(A), then
y € co(A) and there is a net {ys}aer in Nyecoqs) F() such that y, — y. For each
z € co(A), sincetz+(1—t)y € co(A) forall t € [0, 1], we have y, € F(tz+(1—t)y) for all
a € andall t € [0, 1]. Thisimplies that f(tz+(1—¢t)y, yo)+h(ya)—h(tz+(1—2t)y) <0
for all « €T and all t € [0, 1] so that by (c), f(z,y) + h(y) — h(z) < 0; it follows that
¥ € (Nzeco(a) F(x))Neo(A). Hence, (clx(Nrecoa) F(x)))Nco(A) = (Nzecocs) F())N
co(A).

Hence by Lemma 2.3.2 we have N cx F(z) # 0. Then there exists § € N,ecx F(z),
so that f(z,g) + h(g) — h(z) < 0 for all z € X. By (d), § necessarily belongs to A'. O

When h =0, Theorem 2.3.4 reduces to the following:

Theorem 2.3.5 Let E be a topological vector space, X be a non-empty conver subset
of Eand f: X x X - RU {—o00,+0c0} be such that

(a) for each A € F(X) and each fized z € co(A), y — f(z,y) is lower semicon-
tinuous on co(A);

(b) for each A € F(X) and each y € co(A), mingey f(z,y) <0;

(c) for each A € F(X) and each z,y € co(A) and every net {yo}aer in X con-
verging to y with f(tx + (1 — t)y,yo) < 0 for all « € I and all t € [0.1], we have
fz,y) <0;

(d) there exist a non-empty closed and compact subset K of X and ro € K such
that f(zo,y) >0 for all y € X\K.

Then there exists § € K such that f(z,§) <0 for allz € X.

Next we show that Theorem 2.3.5 implies the following minimax inequality:

Theorem 2.3.6 Let E be a topological vector space, X be a non-empty conver subset
of E and f: X x X - RU {—o00,+00} be such that
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(a) for each A € F(X) and each fized = € co(A), y — f(z,y) is lower semicon-
tinvous on co(A);

(b) for each A € F(X) and each y € co(A), mingec 4 f(z,y) < 0;

(c) for each A € F(X) and each z.y € co(A) and every net {y,}oer in X con-
verging to y with f(tx + (1 —t)y,ya) < 0 for all a« € T and all t € [0,1], we have
f(z,y) <0;

(d) there exist a non-empty closed and compact subset K of X and zo € K such
that whenever sup,cx f(z,z) < 00, f(zo,y) > sup,.cx f(z.z) for ally € X\K.

Then the minimaz inequality

minsup f(z,y) < sup f(z, z)
YER rex reXx
holds.

Proof: Let ¢ = sup,cy f(z,z). Clearly, we may assume that { < +oc. Define for any
z,y € X,9(z,y) = f(z,y)—t. Then g satisfies all the hypotheses of Theorem 2.3.5 when
f is replaced by g. Hence by Theorem 2.3.5, there exists an § € K such that g(z,7) <0
for all z € X. This implies f(z,§) < t for all £ € X, so that sup,y f(z,§) < ¢ and
therefore

minsup f(z.y) < sup f(z,§) < t = sup f(z.2),
ye€K rex reX

mlnsup flz,y) <sup f(z,z).0
ye _1: .‘L’Ex

Theorem 2.3.6 generalizes Theorem 2.2.2 in several ways.

Theorem 2.3.7 Let E be a topological vector space, X be a non-empty conver subset
of E. Let f,g: X x X — R U {—o00,4+00} be such that

(a)f(z,y) < g(z,y) forallz,y € X and g(z,z) < 0 forall z € X;

(b) for each A € F(X) and each fired z € co(A), y — f(z,y) is lower semicon-
tinuous on co(A);

(c) for each y € X, the set {z € X : g(z,y) > 0} is convex;



(d) for each A € F(X) and each r,y € co(A) and every net {y,}aer in X con-
verging to y with f(tz + (1 — t)y,ya) < 0 for all @« € T and all t € [0,1], we have
flz,y) <0;

(e) there erist a non-empty closed and compact subset K of X and zo € K such
that f(zo,y) >0 for all y € X\K.

Then there exists § € K such that f(z,5) <0 forallz € X.

Proof: It is easy to see that the conditions (a) and (c) here imply the condition (b)
of Theorem 2.3.5 so that the conclusion follows. m]
Note that Theorem 2.3.7 generalizes Theorem 1 of Shih and Tan in [91, pp.280-282].

Theorem 2.3.8 Let E be topological vector space, C be a non-empty closed conver
subset of E and f : C x C — R be such that

(a)f(z,z) <0 forallz € C;

(b) for each A € F(C) and each fired z € co(A), y — f(z,y) is lower semicon-
tinvous on co(A);

(c) for each y € C, the set {r € C: f(z,y) >0} is conver:

(d) for each A € F(C) and each z,y € co(A) and every net {y,}aer in C con-
verging to y with f(ix + (1 —t)y,ya) < 0 for all & € T and all t € [0,1], we have
f(z,y) < G;

(€) there erist a non-empty closed and compact subset L of E and xo € CN L such
that f(zo,y) >0 forallye C\ L.

Then there exists § € C N L such that f(z,5) <0 forallz € C.

Proof: Let f=g, K =CNL and X = C in Theorem 2.3.7, the conclusion follows.

Theorem 2.3.8 improves Theorem 1 of Brézis-Nirenberg-Stampacchia in [16]. Note
that if the compact set L is a subset of C, C is not required to be closed in £ in Theorem
2.3.8. Note also that in Theorem 1 of [16], the set C was not assumed to be closed in E.
However this is false in general as is observed by the following example in [106, Example

1.3.14].



Example 2.3.9 Let E = R? C = {(u,v) e R®: v2 +v?2 < 1, u,v > 0}, L =
{(u,v) e R? : > + 02 < L} 20 = (ﬁ,zlﬁ), and f : C x C — R be defined by
f(z.y) = |lyll = llz|| for all z.y € C. Then all the hypotheses of Theorem [ in [16]
are salisfied. However there does not exist § € C N L such that f(z,j) < 0 for all
zeC.

Following the ideas of Ky Fan [48, pp.104-106], Ding and Tan [39] and Tan and Yuan
[109, pp.486-489], we shall obtain several equivalent formulations of Theorem 2.3.5 and
fixed point theorems:

Theorem 2.3.5-A. (First Geometric Form) Let X be a non-empty conver subset of
a topological vector space E and N C X x X be such that

(a1) for each A € F(X) and each fired z € co(A), the set {y € co(A) : (z,y) € N}
is open in co(A);

(by) for each A € F(X) and each y € co(A), there exists z € A such that (z.y) &
N:

(c1) for each A € F(X) and each z,y € co(A) and every net {yo}aer in X
converging to y such that (tx + (1 — t)y,ya) € N for all a € T and for all t € [0,1],
we have (z,y) &€ N;

(dy) there erists a non-empty closed and compact subset K of X and ro € K such
that (zo,y) € N, for all y € X\K.

Then there exists § € K such that the set {x € X : (z,§) € N} = 0.

Theorem 2.3.5-B. (Second Geometric Form) Let X be a non-empty conver subset
of a topological vector space E and let M C X x X be such that

(az) for each A € F(X) and each fired x € co(A), the set {y € co(A) : (z,y) € M}
is closed in co(A);

(bg) for each A € F(X) and each y € co(A), there exists z € A such that (z,y) €
M;

(c2) for each A € F(X) and each r,y € co(A) and every net {yo}taer in X
converging to y such that (tz + (1 —t)y,ya) € M for all a € T and for all t € [0, 1],
we have (z,y) € M;



(dz) there exists a non-empty closed and compact subset K of X and zo € K such
that (zo.y) € M, for all y € X\K.

Then there exists a point § € N such that X x {g} C M.

Theorem 2.3.5-C. (Mazximal Element Version) Let X be a non-empty conver subset
of a topological vector space E and let G : X — 2% U {0} be a set-valued map such
that

(a3) for each A € F(X) and each fized z € co(A), G~ (z) N co(A) = {y € co(A) :
z € G(y)} is open in co(A);

(b3) for each A € F(X) and each y € co(A), there exists * € A such that z & G(y):

(c3) for each A € F(X) and each x.y € co(A) and every net {ys}aer in X
converging to y such that tz + (1 — t)y € G(ya), for all a € T and for all t € [0,1],
we have = € G(y);

(d3) there exists a non-empty closed and compact subset K of X and zo € K such
that xg € G(y), for all y € X\K.

Then there exists a point §y € K such that G(y) = 0.

Theorem 2.3.5-D. (Fired Point Version) Let X be a non-empty conver subset of a
topological vector space E and let G : X — 2¥X U {0} be a set-valued map such that

(aq) for each A € F(X) and each fized z € co(A), G~(z) N co(A) is open in
co(A);

(by) for each A € F(X) and each z.y € co(A) and every net {y,}acr in X
converging to y such that tz + (1 — t)y &€ G(ya), for all « € T and for all t € [0,1],
we have ¢ € G(y);

(cq) there exists a non-empty closed and compact subset K of X and zo € K such
that z¢ € G(y), for all y € X\K;

(dy) for each y € K, G(y) # 0.

Then there exists yo € X such that yo € co(G(yo)).

Theorem 2.3.5-D implies the following fixed point theorem:
Theorem 2.3.10-A. Let X be a non-empty convex subset of a topological vector
space E and let G : X — 2X U {0} be a set-valued map such that



(as) for each A € F(X) and each fized z € co(A), G~'(z) N co(A) is open in
co(A);

(bs) for each y € X, G(y) is convez;

(cs) for each A € F(X) and each z,y € co(A) and every net {ya}aer in X
converging to y such that txr + (1 — t)y € G(ya), for all a € T and for all t € [0,1],
we have z & G(y);

(ds) there exists a non-empty closed and compact subset K of X and zo € K such
that zo € G(y), for all y € X\K;

(es) for eachy € K, G(y) # 0.

Then there ezxists a point yo € X such that yo € G(yo)-

The following fixed point theorem is equivalent to Theorem 2.3.10-A.

Theorem 2.3.10-B Let X be a non-empty convez subset of a topological vector space
E and let Q : X — 2¥ U {0} be a set-valued map such that

(as) for each A € F(X) and each fized x € co(A), Q(x) N co(A) is open in co(A);

(bg) for each y € X. Q"' (y) is convez;

(c6) for each A € F(X) and each z,y € co(A) and every net {ys}aer in X
converging to y such that tr + (1 —t)y € Q' (ya), forall « € T and for all t € [0,1],
we have z & Q™' (y);

(dg) there exists a non-empty closed and compact subset K of X and zo € K such
that xo € Q™' (y), for all y € X\K;

(eg) for eachy € K, Q™' (y) # 0.

Then there exists a point yo € X such that yo € Q(yo)-

The following fixed point theorem follows from Theorem 2.3.10-A:
Theorem 2.3.11. Let X be a non-empty convezx subset of a topological vector space
E and let G : X — 2X U {0} be a set-valued map such that

(a7) for each A € F(X) and each fired z € co(A), G™1(X) N co(A) is open in
co(A);

(b7) for each A € F(X) and each z,y € co(A) and every net {yo}aer in X
converging to y such that tz + (1 —t)y & coG(ya), for all a € T and for all t € [0,1],
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we have z & coG(y);

(c7) there exists a non-empty closed and compact subset K of X and zo € K such
that xo € co(G(y)), for all y € X\K;

(d7) for each y € K, G(y) # 0.

Then there exists yo € X such that yo € co(G(yo))-

Proof: Theorem 2.3.5 = Theorem 2.3.5-A:

Let f: X x X — R be such that

1, if (z,y) € N;

ﬂaw:{m if (z.y) & N.

Then we have the following.

(a) For each A € R, each A € F(X) and each fixed z € co(A), the set

0, if A <O0;
{y €co(A): f(z,y) <A} =1 {y€co(A):(z,y) €N}, fO<A<I;
co(A), ifA> 1.

is closed in co(A). Thus for each A € F(X) and each fixed z € co(A), y — f(z.y) is
lower semicontinuous on co(A).

(b) For each A € F(X) and each y € co(A), there exists € A such that (z,y) & N.
Thus f(z,y) = 0. Hence min;ea f(z,y) < 0.

(c) By hypothesis (c;), for each A € F(X) and each z,y € co(A) and every net
{Ya}aer in X converging to y such that f(tz + (1 — t)y,y.) < 0 for all a € T and for
all ¢ € [0,1], we have f(z,y) <0.

(d) There exists a non-empty closed and compact subset K of X and zo € K such
that (zo,y) € N, i.e., f(zo,y) > 0forall y € X\K.

Hence, all the hypotheses of Theorem 2.3.5 are satisfied. Therefore, by Theorem
2.3.5, there exists § € K such that f(z,7) < 0 for all z € X; i.e., there exists § € K
such that {z € X : (z,5) e N} =0. o

Proof: Theorem 2.3.5-A = Theorem 2.3.5:

Let N = {(z,y) € X x X : f(z,y) > 0}. Then we have the following.



(a1) Foreach A € F(X) and each fixed = € co(A), the set {y € co(4) : f(z,y) > 0}
is open in co(A). Hence the set {y € co(A) : (z,y) € V} is open in co(A).

(b,) Foreach A € F(X) and each y € co(A), mingea f(z,y) < 0. Thus there exists
z € A such that f(z,y) <0, i.e, (z,y) € N;

(c1) By condition (c), for each A € F(X) and each z,y € co(A) and every net
{¥a}aer in X converging to y such that (tz + (1 —¢)y,y,) € N for all a € T and for all
t € [0,1], we have (z,y) & N.

(d,) By condition (d), there exists a non-empty closed and compact subset A of X
and zo € K such that (zo,y) € N forall y € X\K.

Hence, all the hypotheses of Theorem 2.3.5-A are satisfied. Therefore, by Theorem
2.3.5-A, there exists § € K such that {z € X : (z,9) € N} = 0. Thus (z,§) € for all
z € X. Hence f(z,5) <0forall z € X. a

Proof: Theorem 2.3.5-A = Theorem 2.3.5-B:

Let V =X x X\M. Then we have the following.

(a;1) Foreach A € F(X) and each fixed z € co(A), theset {y € co(A) : (z.y) € N}
is open in co(A).

(b,) For each A € F(z) and each y € co(A), ther exists z € A such that (z,y) € V.

(c1) For each A € F(X) and each z,y € co(A) and every net {ys}aer in X con-
verging to y such that (tz 4+ (1 —t)y,ya) & N forall o € T and for all ¢ € [0, 1], we have
(z,y) € N.

(d,) There exists a non-empty closed and compact subset A" of X and zo € A" such
that (zq,y) € N, forall y € X\A'.

Hence, all the hypotheses of Theorem 2.3.5-A are satisfied. Therefore, by Theorem
2.3.5-A, there exists § € K such that (z,§) € N forall z € X. Thus (z,%) € M for all
z € X. Hence X x {g} C M. o

Proof: Theorem 2.3.5-B = Theorem 2.3.5-A:

Let M = X x X\N. Then the proof is similar to the above proof and therefore, by
Theorem 2.3.5-B, there exists j € K such that X x {§} C M and hence (z,7) € N for
all ze€ X, z.e., theset {z € X : (z,5) € N} =0. o



Proof: Theorem 2.3.5-B = Theorem 2.3.5-C:

Let M = {(z,y) € X x X : 2 ¢ G(y)}. Then we have the following.

(a2) For each A € F(X) and each fixed z € co(A), the set {y € co(A) : ¢ &
G(y)} = {y € co(A) : (z.y) € M} is closed in co(A).

(b2) For each A € F(X) and each y € co(A), there exists z € A such that z &€ G(y)
so that (z,y) € M.

(c2) By condition (c3), for each A € F(X) and each z,y € co(A) and every net
{ya}aer in X converging to y such that (tz + (1 — t)y,y.) € M for all « € T and for all
t € [0,1], we have (z,y) € M.

(d2) By condition (d3), there exists a non-empty closed and compact subset A" of X
and zg € K such that (zo,y) & M forall y € X\K.

Hence, all the hypotheses of Theorem 2.3.5-B are satisfied. Therefore, by Theorem
2.3.5-B, there exists § € K such that X x {§} C M. Thus z € G(y) for all z € X.
Hence G(3) = 0. o

Proof: Theorem 2.3.5-C = Theorem 2.3.5-B:

Let G : X — 2X be defined by G(y) = {xr € X : (z.y) & M} for all y € X. Then
we have the following.

(a3) For each A € F(X) and each fixed z € co(A), the set {y € co(A) : (z.y) &
M} = {y € co(A) : z € G(y)} is open in co(A).

(b3) Foreach A € F(X) and each y € co(A), there exists r € A such that (z.y) € M
so that z & G(y)-

(c3) By condition (c;), for each A € F(X) and each =,y € co(A) and every net
{¥a}aer in X converging to y such that (tz + (1 —t)y) € G(y.) for all « € T and for all
t € [0,1], we have = &€ G(y).

(d3) There exists a non-empty closed and compact subset A" of X and zo € A such
that (zo,y) € M for all y € X\K so that zo € G(y) for all y € X\K.

Hence, all the hypotheses of Theorem 2.3.5-C are satisfied. Therefore, by Theorem
2.3.5-C, there exists a point § € K such that G(§) = 0. Thus = & G(3) for all z € X.
Hence (z,7) € M forall xr € X, i.e., X x {§} C M. O
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Proof: Theorem 2.3.5-C = Theorem 2.3.5-D:

By Theorem 2.3.5-C, there exist A € F(X) and yo € co( A) such that z € G(yo) for
all z € A. Thus yo € co(A) C co(G(yo)). =

Proof: Theorem 2.3.5-D = Theorem 2.3.5-C:

From the hypotheses of Theorem 2.3.5-C we see that the conditions (a,), (bs) and
(c4) follow from the conditions (a3),(c3) and (d3) respectively. Suppose for each y € K,
G(y) # 0. Then condition (d,) of Theorem 2.3.5-D is satisfied. Hence all the hypotheses
of Theorem 2.3.5-D are satified. Therefore by Theorem 2.3.5-D, there exists yo € X
such that yo € coG(yo). Thus there exist z,,...,z, € G(yo) and A(,....A, > 0
with }7, A\; = 1 such that yo = 3%, A;z; € coG(yo). Let A = {z1,...,z,}. Then
A€ F(X) and yo € co(A). Hence by condition (b3) of Theorem 2.3.5-C, there exists
z; € A such that z; € G(yo), which is a contradiction. Hence there exists § € A" such
that G(g) = 0. O

Proof: Theorem 2.3.5-D = Theorem 2.3.10-A:

This is obvious, because by Theorem 2.3.5-D there exists yo € X such that y, €
coG(yo). But by (bs) of Theorem 2.3.10-A, G(yo) is convex. Hence yo € G(yo). m|

Proof: Theorem 2.3.10-A <= Theorem 2.3.10-B5:

(=:) Let G = Q7!, then G™! = Q. Therefore by Theorem 2.3.10-A, there exists
Yo € X such that yo € G(yo) = Q@' (y0). Hence yo € Q(y0).

(<:) Let @ = G, then Q7! = G. Therefore by Theorem 2.3.10-B, there exists
Yo € X such that yo € Q(yo) = G~ '(y0). Hence yo € G(yo). ]

Proof: Theorem 2.3.10-A = Theorem 2.3.11:

Let F(y) = coG(y). Then we have the following.

(as) For each A € F(X) and each fixed z € co(A), F~!(z) N co(A) is open in
co(A). For, let y € (coG)~'(z) N co(A), then y € co(A) and = € co(G(y)). Let
Yi:---2Yn € G(y) and Ay, ..., A, > 0 with 7, A; = 1 such that z = 3%, \;y;. Now
foreachi =1,...,n G (y;) Nco(A) is open in co(A) and y € G~ (y;) Nco(A) for all 7.
Let U = N (G~ (yi)Nco(A)). Then U is an open neighbourhood of y in co(A). Ifz € U
then z € co(A) and y; € G(z) foralli =1,...,n so that z = %, \;y; € co(G(z)) and
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hence z € (coG)~!(z) N co(A) forall z € U.

(bs) Foreach y € X, F(y) = co(G(y)) is convex;

Conditions (c5) and (ds) are obvious. But for each y € A, G(y) # 0 implies F(y) #
0. Thus (es) holds. Therefore by Theorem 2.3.10-A, there exists yo € X such that
Yo € F(y0) = co(G(y0)). =



Chapter 3

Generalized Variational

Inequalities

3.1 Introduction

If X is a non-empty subset of a topological vector space F and T : X — 2E°, then the
generalized variational inequality problem associated with X and T is to find § € X such
that the generalized variational inequality sup ,erg; Re(w,j —z) < 0 for all z € X
holds, or to find § € X and & € T(§) such that Re(w,j —z) < 0 for all z € X
holds. When T is single-valued, a generalized variational inequality is called a variational
inequality. Browder [19] and Hartman and Stampacchia [59] first introduced variational
inequalities. Since then, there have been many generalizations, e.g., see [1], [6], [7], [16],
[21], [42], [71]. [91], [98]. [99], [104], and [112], etc.

The purpose of this chapter is to present existence theorems for generalized variational
inequalities with applications to existence theorems for generalized complementarity prob-
lems. Our main results are listed as Theorems 3.2.23, 3.2.28, 3.2.33, 3.3.12, 3.3.15, 3.4.4,
3.4.7,3.5.1,3.53, 3.6.4 and 3.6.9. This chapter is organized as follows:

In Section 2 of this chapter, we shall introduce the notions of lower hemi-continuous,
upper hemi-continuous, k-quasi-monotone, quasi-monotone, h-quasi-semi-monotone, quasi-

semi-monotone, quasi-nonexpansive and semi-nonexpansive operators. Some basic results
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as well as some examples are also given.

Next, as applications of minimax inequalities of Section 2.2, we present some existence
theorems for generalized variational inequalities and existence theorems for generalized
complementarity problems. Our results extend or improve the corresponding results in the
literature, e.g., see [6], [27] and [91]. Some results will also be obtained on surjectivity of
monotone or semi-monotone operators.

In Section 3, we shall introduce the notions of weakly lower (respectively, upper)
demi-continuous, strongly lower (respectively, upper) demi-continuous operators and the
notion of quasi-monotone operators in more general settings. Some basic results and
examples will also be given. As applications of these operators, we shall obtain some
existence theorems on generalized variational inequalities in topological vector spaces and
in non-reflexive Banach spaces. A result on surjectivity will also be obtained.

In Section 4, we shall introduce the notion of quasi-semi-monotone operators in more
general settings and obtain some existence theorems for quasi-semi-monotone and upper
demi-continuous operators on generalized variational inequalities in topological vector
spaces and in non-reflexive Banach spaces. A result on surjectivity will also be obtained.

In Section 5, we shail obtain some existence theorems for the operators introduced
in Section 3.3 and 3.4 on generalized variational inequalities in non-compact settings
using escaping sequences introduced by Border in [15]. As applications, some results are
obtained in non-reflexive Banach spaces.

In Section 6, the notions of h-pseudo-monotone, pseudo-monotone, hA-demi-monotone
and demi-monotone operators will be first introduced. Then, applying the minimax in-
equalities of Section 2.3, we shall present some existence theorems for generalized vari-
ational inequalities and existence theorems for generalized complementarity problems for
pseudo-monotone and demi-monotone operators. Our results for demi-monotone opera-
tors extend the corresponding results in [6], [16], [27] and [91]. The results for pseudo-
monotone operators generalize the corresponding results in [16] and extend those in [6],
[27] and [91]. Some results will also be obtained on surjectivity of demi-monotone oper-

ators.
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3.2 Generalized Variational Inequalities for Quasi-Monotone
and Quasi-Semi-Monotone Operators

In this section, as applications of the minimax inequalities of Section 2.2, existence the-
orems for generalized variational inequalities and generalized complementarity problems
are obtained in topological vector spaces for quasi-monotone and quasi-semi-monotone
operators. Our results extend or improve the corresponding results in the literature, e.g.,
see [6] and [91]. Our results also improve and generalize the corresponding results in [27].

Let £ be a topological vector space. We shall denote by E~ the continuous dual of
E, by (w, z) the pairing between £~ and E for w € E~ and z € E and by Re(w, z) the
real part of (w,z).

For each zo € E, each non-empty subset A of E and each ¢ > 0, let W(zo;¢€) :=
{y € E*: |(y,xo)| < €} and U(A;€) := {y € E~ : sup_¢, [y, z)| < €}. Let o(E~, E) be
the topology on E~ generated by the family {W(z;¢): x € E and € > 0} as a subbase
for the neighbourhood system at 0 and §(E™~, E) be the topology on E= generated by
the family {U(A;€) : A is a non-empty bounded subset of £ and ¢ > 0} as a base
for the neighbourhood system at 0. We note that E~, when equipped with the topology
o(E™, E) or the topology 6(E~, E'), becomes a locally convex Hausdorff topological vector
space. Furthermore, for a net {y.}aer in £~ and fory € E=, (i) yo — y in o(E~, E) if
and only if (ya,z) — (y,z) for each z € E and (ii) yo — y in §(E~, E) if and only if
(Yo, ) — (y,z) uniformly for z € A for each non-empty bounded subset A of £. The
topology o(E~, E) (respectively, 6(E™, E)) is called the weak™ topology (respectively, the
strong topology) on E=. If p € E, p is the linear functional on E~ defined by p(f) = f(p)
for each f € E~.

Let X be a non-empty subset of E. Then X isa conein Eif X isconvexand A X C X
forall A > 0. If X is a cone in E, then X = {we€ E~: Re(w,z) >0forallz € X} is
also a cone in E~, called the dual cone of X.

Let X be a non-empty subset of £ and T': X — 2E". Then T is said to be

(z) monotone (on X) if for each z,y € X, each u € T(z) and each w € T(y),
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Re(w —u,y — z) > 0;

(1) semi-monotone [6, pp.236-237] (on X) if for each z.y € X, inf,er(s) Re(u,y —
r) < infyer(y) Re(w.y — z).

Let y € E. Then the inward set of y with respect to X [56] is the set Ix(y) = {z €
E:z=y+r(u—y) for some u € X and r > 0}. We shall denote by Ix(y) the closure

of Ix(y)in E.
Let X be a non-empty convex subset of E. Then for each z,y € X, the line segment
in X joining z and y istheset {z€ X : z = Az + (1 — A)y for all X € [0,1]}.

It is clear that if T" is monotone, then T is semi-monotone. The converse is in general
false, see Example 2 in [6]. Clearly, these two notions coincide for single-valued operators.

Let X and Y be topological spaces and T : X — 2Y. Then T is said to be

(2) upper (respectively, lower) semicontinuous at zo € X if for each open set G in
Y with T'(zo) C G (respectively, T'(zo) N G # B), there exists an open neighbourhood U
of zo in X such that T'(z) C G (respectively, T(z) NG # 0) for all z € U;

(i2) upper (respectively, lower) semicontinuous on X if T is upper (respectively,
lower) semicontinuous at each point of X;

(zi2) continuous on X if T is both lower and upper semicontinuous on X.

We shall need the following Kneser's minimax theorem [73] (see also Aubin [2, pp.40-
41]:

Theorem 3.2.1 Let X be a non-empty conver subset of a vector space and Y be a
non-empty compact conver subset of a Hausdorff topological vector space. Suppose
that f is a real-valued function on X x Y such that for each fized ¢ € X, f(z,y) is
lower semicontinuous and conver on Y and for each fized y € Y, f(x,y) is concave

on X. Then

minsup f(z,y) = supmin f(z,y).
yeyxel\)’f( y) ze.g() yeYy f(zy)

The following result is essentially Lemma 2 in [94] (see also [106, Lemma 2.4.1]) which

was first given by Karamardian for single-valued operators in [68, Lemma 3.1]:
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Lemma 3.2.2 Let X be a cone in a topological vector space E and T : X — 2E°.
Then the following statements are equivalent:

(a) There ezists § € X such that sup, e Re(w,j —z) <0 forall z € X.

(b) There exists §j € X such that Re{w,§) =0 for all w e T(§) and T(§) C X.

The following is essentially a result of S. C. Fang (e.g. see [23] and [94, p.59]) (see
also [106, Lemma 2.4.2]):

Lemma 3.2.3 Let X be a cone in a topological vector space E and T : X — 2E°.
Then the following statements are equivalent:
(a) There exist § € X and & € T(g) such that Re(w,j—z) <0 forallz € X.
(b) There exist § € X and & € T(§) such that Re(tp,j) =0 and & € X.

The following simple result is Lemma 2.1.6 in [106]:

Lemma 3.2.4 Let E be a topological vector space and A be a non-empty bounded
subset of E. Let C be a non-empty strongly compact subset of E=. Define f: A - R
by f(z) = min,ec Re(u,z) for all x € A. Then f is weakly continuous on A.

We shall begin with the following:

Definition 3.2.5 Let E be a topological vector space, X be a non-empty subset of E
and T : X — 22" Then T is said to be
(a) lower hemi-continuous on X if and only if for each p € E, the function

»: X = RU {+oo}, defined by

fo(z) = sup Re(u,p) for each z € X,
ueT(=)

is lower semicontinuous on X (if and only if for each p € E, the function g, : X —

R U {—oo}, defined by

z)= inf \ h z € X,
95(2) uell%(:) Re(u,p) for each z € X

is upper semicontinuous on X);



37

(b) upper hemi-continuous on X if and only if for each p € E, the function
fo: X = RU {400}, defined by

fo(z) = sup Re(u,p) for each = € X,
u€T(z)

is upper semicontinuous on X (if and only if for each p € E, the function g, : X —
R U {~oc0}, defined by

)= inf Re u, or EaCh zE .X’,
gp( ) u T(:) ( p) f
is lower semicontinuous on X).

Note that if X is convex, then the notions of lower hemi-continuity along line segments
in X and upper hemi-continuity along line segments in X are independent of the vector
topology 7 on E as long as 7 is Hausdorff and the continuous dual E~ remains unchanged.
Note also that if T, S : X — 2E° are lower (respectively, upper) hemi-continuous and

a € R, then T + S and aT are also lower (respectively, upper) hemi-continuous.

Proposition 3.2.6 Let E be a topological vector space and X be a non-empty subset
of E. Let T : X — 2E" be lower semicontinuous from the relative topology on X to

the weak™ topology o(E~, E) on E*. Then T is lower hemi-continuous on X.
Proof: For each fixed p € E, define f, : X -+ RU {+00} by
fo(z) = sup Re(u,p) foreach z € X.
u€T (=)
Fixanyp € E. Let A € R be given and let A = {z € X : f,(z) > A}. Take any z, € A.
Then fp(20) = sup,er(z) Re(u:p) = sup,er(s,) Re p(u) > A. Choose any uo € T(z)
such that Re p(uo) > A. Thus (Re p)~'(A,00) N T(z0) # O where (Re p)~'(A, 00)
is a weak™ open set in E*. Since T is lower semicontinuous at =, there exists an open
neighbourhood V;, of zo in X such that T'(z)N(Re p)~!(\,00) # 0 for all z € V. Hence
fo(2) = sup,er(:) Re p(u) = sup,er(;) Re(u,p) > A for all z € N,,. Thus N, C A.
Consequently, f, is lower semicontinuous on X. Hence T is lower hemi-continuous on X.

a
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The converse of Proposition 3.2.6 is not true in general as can be seen in the following

example.

Example 3.2.7 Let X = [0,1] and E = R. Then E* = R. Let T : X — 2E" pe
defined by
T(:z:):{ {1,3}, fz<l,
{1,2,3}, f=z=1.
If p € E and p > 0, the function f, : X — R U {+oo}, defined by f,(z) =
SUp,er(z) Re(u,p) = 3p for each z € X, is continuous. Ifp € E and p < 0, the
function f, : X — R U {+oo}, defined by f,(z) = sup,er(.) Re(u,p) = p for each
z € X, is also continuous. Thus T is lower (and upper) hemi-continuous on X.
But T is not lower semicontinuous (along line segments) in X. Indeed, let zo = 1
and U = (%,2), then U is an open set in R such that U N T(zo) = {2} # 0. But for
any open neighbourhood V' of xo in X and for anyz € V with =z # zo, UNT(z) = 0.

This shows that T is not lower semicontinuous (along line segments) in X.

Proposition 3.2.8 Let E be a topological vector space and X be a non-empty subset
of E. Let T : X — 2E° be upper semicontinuous from the relative topology on X to

the weak™ topology c(E™,E) on E*. Then T is upper hemi-continuous on X.
Proof: For each fixed p € E, define f,: X - RU {+0o0} by

fo(z) = sup Re(u,p), for each z € X.
u€T (=)

Fix any p € E. Let A € R be given and let A = {z € X : fp(z) < A}. Take any
zo € A. Then fy(20) = supuer(s) Re(u,p) = sup,er(s) Re p(u) < A. Thus there
exists € > 0 such that f,(z0) < A — e < A. Therefore Re p(u) < A —e < A for all
u € T(z). Hence T(z) C (Re p)~!(—o0, A —€) which is weak™ open in E=. Since
T i1s upper semicontinuous at zo, there exists an open neighbourhood N, of z, in X
such that T'(z) C (Re p)~'(—o0,A —¢€) for all z € N,,. Thus Re p(u) < A — e for all
u € T(z) and for all = € N.,. Hence sup,cr(;) Re p(u) < A —€ < A forall z € N,;
i.e., fp(z) = supyer(:) Re{u,p) < A —e < Aforall z € N,. Therefore N,, C A so
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that A is open in X. Consequently, f, is upper semicontinuous on X. Hence T is upper
hemi-continuous on X. O
The converse of Proposition 3.2.8 is not true in general as can be seen in the following

example which is Example 2.3 in [105, p.392]:

Example 3.2.9 Let £ = R? and X = {(z,y) € R?: 22+ y®> < | and z,y > 0}.
Define f,g: X — 2B by

f(rcosf,rsind) = {(tcosb,tsinf) : r <t <2} forallr € (0,1), 8 € (0, Z;—),

and

g(z,y) = {(z,0) : = > z} for all (z,y) € X.
Then f and g are upper semicontinuous on X so that f and g are upper hemi-
continuous on X by Proposition 3.2.8 and hence f + g is also upper hemi-continuous.
However it is easy to see that f + g is not upper semicontinuous (along line segments)

in X.

Definition 3.2.10 Let E be a topological vector space, X be a non-empty subset of
EandT:X —2E°. Ifh: X - R, then T is said to be

(1) h-quasi-monotone if for each z,y € X, inf,ery) Re(w.y—z)+h(y)—h(z) >0
whenever sup etz Re(u,y — ) + h(y) — h(z) > 0;

(2) quasi-monotone if T is h-quasi-monotone with h = 0:

(3) h-quasi-semi-monotone if for each z,y € X, inf,er(y) Re(w,y — z) + h(y) —
h(z) > 0 whenever inf.er(z) Re(u,y — z) + h(y) — h(z) > 0;

(4) quasi-semi-monotone if T is h-quasi-semi-monotone with h = 0.

Clearly, monotonicity implies quasi-monotonicity, but the converse is not true as can

be seen in the following simple example:

Example 3.2.11 Define T : Rt — 2R by T(z) = [z, 2z] for all z € R*.
Suppose z,y € R* such that £ < y < 2z. Choose u = 2z € T(z) and w =y €
T(y). Then (w—u,y —z) = (y — 2z,y — z) = (y — 2z)(y — =) < 0, which shows that

T is not monotone.
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But T is quasi-monotone. Indeed, let z,y € R*. Clearly, if sup,er(z)(u,y — z) =
2z2(y — z) > 0 then y > z. Thus inf,er)(w.y —z) = y(y —z) > 0. Hence T is

quasi-monotone.

The following example shows that quasi-monotonicity does not imply semi-monotonicity.

Example 3.2.12 Define T : Rt — 2R py
i, fo<z<;
5z, fr>1.
Letz,y e RY. If

fy—=z), forO0<z<l;
supueT(r)(us y— .l‘) =

(y—z), forz =21
>0,

then y > z. Thus

. yly—z), f0<y<l;
infuer)(w,y —z) =4 | .
Jy—zx) fy=>1,

> 0.

Hence T is quasi-monotone.

But T is not semi-monotone. Indeed, let x = } and y = 3. Then T(%)

I\
—

2

and T(3) = [4.3]. Hence inf,ery(u,y—2) = inf e g u(y—z) = inf,er1 5 u(3—3)
—3)

O i
I

infoeryz 3 = 35 and infuer)(w,y —2) = inf e qwly — ) = inf,e 5 w03
infwe[g,s] 3% = 2. Thus the inequality inf,c7(s) Re(u,y — z) < infyer(y) Re(w,y — z)

does not hold.

The following is Example 2 of Bae-Kim-Tan in [6, pp.241-242] which shows that

semi-monotonicity does not imply quasi-monotonicity.

Example 3.2.13 Define T : R — 2R by

T(I)={ [0, 2z], z:f:z:Z 0;
[22,0], ifz<O.
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It is shown in [6, p.241] that T is semi-monotone. Taking z =1 and y = 2, we see
that

sup (u,y —z)= sup u(y—z)=2>0.
u€T(x) u€[0.2]

and

inf (w,y—z)= inf —z)=0,
A (w,y —2) Jof july —z) =0,

so that T is not quasi-monotone. Note that T is also not monotone.

Clearly, semi-monotonicity implies quasi-semi-monotonicity and quasi-monotonicity
implies quasi-semi-monotonicity; but the converses are not true in general as shown in
Examples 3.2.12 and 3.2.13 respectively.

Definition 3.2.14 Let (E.[| - ||) be @ normed space and X be a non-empty subset of
E. Then T : X — 2E is quasi-nonezpansive if for each z,y € X, each u € T'(z) and
each w € T(y), Re(w —u,y —z) < [ly — z|°.

It is clear that if T is single-valued and nonexpansive (i.e., |T(z) — T(y){| < |lz — ||
for all z,y € X), then T is quasi-nonexpansive. The converse is false in general as can

be seen in the following example.

Example 3.2.15 Let X =[0,1] and define T : X — R by T'(z) = —z? forallz € X.
Then for each r,y € X, (T(y)-T(z),y—z) = —(y*—2*Wy—z) = —(z+y)(y—z)* <

ly — z|* so that T is quasi-nonezpansive. On the other hand, since
IT(z) = T(y)| = y* - 2*| = |y + zlly — z| > |y — 2|
whenever y # r with x +y > 1, T is not nonexpansive.

We shall denote by I the identity operator on a Hilbert space H; i.e., I(z) = z for all
r€H.

Proposition 3.2.16 If X is a non-empty subset of a Hilbert space H and T : X —

2" then T is quasi-nonezpansive if and only if [ — T is monotone.



Proof: Suppose T is quasi-nonexpansive. Let z,y € X be given and choose any
ug € T(z). Then for each w € T(y),

Re(y —w.y—z) =Re(y—r+z—uo+uo—w.y—z)

= |ly — z||* + Re{z — uo,y — z) + Re(uo — w,y — z)

> Re(x — ug,y — z)
since T' is quasi-nonexpansive. Thus infyer(y) Re(y —w,y —z) > Re(z —ug,y —z). As
uo € T(z) is arbitrary, infuer(y) Re(y — w,y ~ z) > sup,er(,) Re(r —u,y — z); ie,

welt Sy ey —2) 2 well-THe) Re(u.y = z).
Thus I — T is monotone.
Conversely, suppose [ — T is monotone. Then for each z,y € X,u € T(z) and

w € T(y), Re{(y —w) — (z — u),y — z) > 0 so that Re(w — u,y — ) = Re(w — y +
y—T+z—-uy—z)=Re(w—y,y—z)+|y—z|®+ Re(z —u,y — z) < |ly — z|?.
Thus T is quasi-nonexpansive. a

Proposition 3.2.16 is a generalization of Proposition 1 in [20].

Definition 3.2.17 Let (E,|| - ||) be a normed space and X be a non-empty subset of
E. Then T : X — 2E° is semi-nonexpansive if for each .y € X.
inf sup Re(w—u,y—z)<|ly—z||°
o sup Re(w—uy—z) < [ly -]

Proposition 3.2.18 [f X is a non-empty subset of a Hilbert space H and T : X —

2 then T is semi-nonezpansive if and only if I — T is semi-monotone.

Proof: Suppose T is semi-nonexpansive. Let x,y € X be given. Then inf,er(s)
Sup,er(y) Re(w —u,y — 1) < |ly — z||>. Let € > 0 be arbitrarily fixed. Then there exists
ug € T(z) with sup,er(,) Re(w — uo,y — z) < |ly — z||> + €. It follows that for each
wo € T(y),

Re(z —uo,y —7) = Re(z —y +y — wo + wo — uo,y — T)
= —|ly — zl|> + Re(y — wo,y — z) + Re(wo — uo,y — )
< e+ Re(y — wo,y — z)
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so that Re(r — uo,y — z) < inf,er(y) Re(y — w,y — z) + € as wo € T(y) is arbitrary.
Since € > 0 is also arbitrary, Re(z — uo,y — z) < infyer(,) Re(y — w,y — ). Therefore
inf,er(z) Re{z — u.y — z) <infyer(y) Re(y — w,y — z). Thus [ — T is semi-monotone.

Conversely, suppose I —T is semi-monotone. Then foreach =,y € X, inf,er () Re(z—
u,y —r) < infyery) Re(y —w,y —z). Let € > 0 be arbitrarily fixed. There is ug € T(z)
with Re(z —uo,y—z) < infyer(y) Re(y —w,y —z)+e. It follows that for any wo € T(y),
Re(wo—uo,y—7) = Re(wo—y+y—z+z—uo,y—z) = Re(wo—y,y —z) +[ly — z||*+
Re(z —uo,y —z) < —Re(y — wo,y — z) + [ly — z||* + infuer(y) Re(y —w,y —z) + € <
ly — z||* + €. As wo € T(y) is arbitrary, sup,ecr(,) Re(w —uo,y — z) < [y — z||> + €.
Thus inf,eT(z)SUp,er(y) Re(w —u,y — z) < |ly — z[|> + €. As e > 0 is also arbitrary,
infuer(z) SUPyer(y) Re(w — u,y — z) < [ly — z]|%. Therefore T is semi-nonexpansive. O

It is clear from the definitions that a quasi-nonexpansive operator is semi-nonexpansive.
The converse does not hold in general: The operator T defined in Example 3.2.13 is semi-
monotone but not monotone. Then by Propositions 3.2.16 and 3.2.18, the operator
S = I — T is semi-nonexpansive but not quasi-nonexpansive.

In this section, we shall apply Theorem 2.2.4 to obtain existence theorems for general-
ized variational inequalities together with applications to existence theorems for general-
ized complementarity problems. Some results on maximality of monotone operators and
surjectivity of monotone or semi-monotone operators will also be given. We shall begin

with the following:

Lemma 3.2.19 Let E be a topological vector space, X be a non-empty conver subset
of E, h : X — R be conver and T : X — 2E° be lower hemi-continuous along
line segments in X. Suppose j € X is such that sup,cr(,) Re(u.j — z) < h(z) —
h(g) for all x € X. Then

sup Re(w,y —z) < h(z) — h(y) forall z € X.
weT(3)

Proof: Suppose that sup,er(,) Re(u,g—z) < h(z)—h(g) forallz € X. Letz € X
be arbitrarily fixed. Let z; =tz + (1 —t)y =9 —t(g—=z)forallt € [0,1]. Then z, € X
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as X is convex. Let L = {z :t € [0,1]}. Thus sup,cr(.,) Re(u,§ — z) < h(z) — h(7)
for all t € [0, 1]. Therefore sup,cr(.,) Re{u,§ — z) < h(zx) — h(j) for all ¢ € (0, 1].
Since T is lower hemi-continuous on L, the function f;_.: L — RU {+oc}, defined

by

fij-z(2¢) = sup Re(u,y —z) for each z, € L,
u€T(z¢)

is lower semicontinuous on L. Thus theset A = {z, € L : f;_-(z) < h(z) — h(g)} is
closed in L. Now z, — § in L ast — 0%. Since z, € A for all t € (0,1] we have j € A.
Hence f;_-(§) = sup,er(z Re{u,§ — z) < h(z) — k(7). Since £ € X is arbitrary, we
have sup,cr(; Re(w,§ — z) < h(z) — h(g) forall z € X. ]

By modifying the above proof, we have the following result whose proof is omitted:

Lemma 3.2.20 Let E be a topological vector space, X be a non-empty conver subset
of E, h : X — R be conver and T : X — 2E" be upper hemi-continuous along
line segments in X. Suppose § € X is such that infyer(r) Re(u,§j — z) < h(z) —
h(y) for all x € X. Then

inf Re(w.y —z) < h(z) — h(g) forall z € X.
weT(y)

Note that if £ is a locally convex space, X is a non-empty convex subset of £ and
h : X — R is convex, then h is lower semicontinuous on X if and only if & is weakly

lower semicontinuous on X .

Lemma 3.2.21 Let E be a topological vector space, X be a non-empty conver subset
of E and h : E — R be convex. Suppose j € X and w € E~ are such that Re(w, i —
z) < h(z) — h(g) for all z € X, then Re(w,y —z) < h(z) — h(§) for all x € Ix(7).

Proof: Let = € Ix(y) be arbitrarily fixed; then £ = § + r(u — §) for some u € X
and r > 0.

Case 1. Suppose 0 < r <1, thenz =ru+ (1l —r)y € X as X is convex and
u,§ € X. By assumption, we have Re(w,§ — z) < h(z) — h(y).
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Case 2. Suppose r > 1, then u = (1 — 1)§ + 1z. Since u € X, by assumption again,

we have

LRe(w.§ —r) = Re(w,j— u)
< h(u) — h(g) < (1 = DA(F) + Lh(z) — h(§)
= (h(z) = h(3))

so that Re(w,y — z) < h(z) — h(y).
Thus in either case, Re(w,y — z) < h(z) — h(y) for all z € Ix(7). O

Theorem 3.2.22 Let E be a topological vector space, X be a non-empty conver sub-
set of E, h : X — R be conver and weakly lower semicontinuous on weakly com-
pact subsets of X and T : X — 2E° be h-quasi-monotone. Suppose there ezist a
non-empty weakly closed and weakly compact subset K of X and zo € K such that
inf,er(y) Re(w,y — xo) + h(y) — h(zo) > 0 for ally € X\ K. Then there ezists j € K
such that sup,er(;) Re(u.§ — z) < h(z) — h(3) for allz € X.

Proof: Define f,g: X x X — R by

f(z,y) = sup Re(u,y —z)+ h(y) — k(z),
u€T(z)

g9(z.y) = inf Re(w,y—z)+h(y) - h(z)
for all z,y € X. Then we have the following:

(1) For each =,y € X, since T is h-quasi-monotone, f(z,y) > 0 implies g(z,y) > 0.

(2) For each fixed z € X, y — f(z,y) is weakly lower semicontinuous on non-empty
weakly compact subsets of X.

(3) For each A € F(X) and y € co(A), mingesg(z,y) < 0. Indeed, if this were
false, then for some A = {z,---,z,} € F(X) and some y € co(A), say y = T %, \iz;
where A, .-+, A, = 0 with 37, A\; = 1, such that mini<i<n g(Zi,y) > 0. Then for
each i = 1,---,n, inf,er(y) Re(w,y — i) + h(y) — h(z;) > 0 so that 0 = g(y,y) =
inf ez Re(w,y— They Aize) +h(y) — (S Aizi) = Ty Ailinfuerg) Re(w,y—2) +
h(y) — h(z:)) > 0, which is a contradiction.
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(4) K is a weakly closed and weakly compact subset of X and zo € K such that for
all y € X\ K, g(zo,y) > 0.

Equip E with the weak topology. Then f and g satisfy all the hypotheses of Theorem
2.2.4 so that by Theorem 2.2.4, there exists § € R such that f(z,§) <0 forall z € X;
.., SUP,e7(s) Re(u,§ — z) + h(§) — h(z) <0 forall z € X. a

Theorem 3.2.23 Let E be a topological vector space, X be a non-empty conver sub-
set of E, h : X — R be convezr and weakly lower semicontinuous on weakly compact
subsets of X and T : X — 2E° be h-quasi-monotone and lower hemi-continuous
along line segments in X to the weak™-topology on E~. Suppose there erist a non-
empty weakly closed and weakly compact subset K of X and zo € K such that
infyer(y) Re(w,y — zo) + h(y) — h(z0) > 0 for ally € X\ K. Then there exists j € K
such that sup 7 ;) Re(w,j—z) < h(x)—h(§) for all z € X. Moreover, if h is defined
on all of E and is convez, then sup ,er(; Re(w,§—z) < h(z)—h(g) for all = € Ix (7).

Proof: By Theorem 3.2.22, there exists § € K such that sup,er(;) Re(u,§ — ) <
h(z) — h(y) for all z € X.
Since h is convex and T is lower hemi-continuous along line segmentsin X, by Lemma

3.2.19, we have

sup Re(w,j —z) < h(z)— h(g) forall ze X. (3.1)
weT(3)

Now if 4 is defined on all of £ and is convex, then by (3.1) and Lemma 3.2.21, we have

sup Re(w,j —z) < h(z) — h(7) for all z € Ix(§).0
weT(y)

Note that Theorem 2.2.6 (i.e., Theorem 2.2 in [109]) can not be applied directly to
prove Theorem 3.2.23.

Remark 3.2.24 Theorem 3.2.23 improves Theorem 3 of Shih and Tan in [91, pp.283-
285] in the following ways:

(1) f is h-quasi-monotone instead of monotone;
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(2) f is lower hemi-continuous along line segments instead of lower semicontinu-
ous along line segments in X.

Note that there are typos in the original statement of Theorem 3 in [91].

Theorem 3.2.25 Let (E,||-||) be a reflezive Banach space, X be a non-empty closed
conver subset of E, h : X — R be convez and lower semicontinuous on weakly compact
subsets of X and T : X — 2E" be h-quasi-monotone and lower hemi-continuous along

line segments in X to the weak topology on E=. Suppose there is zo € X such that

- : 3.2
"yl'?;“ ot Re(w,y — o) + h(y) — h(zo) > 0. (3.2)
y

Then there exists j € X such that sup,er(; Re(w,§—z) < h(z)—h(g) forallz € X.
Moreover, if h is defined on all of E and is conver, then sup,er(; Re(w,j — r) <
h(z) — h(g) for all z € Ix(y).

Proof: Let o = hm”y”._.oo infuer(y) Re(w,y — xo) + h(y) — h(z0). Then by (3.2),
a>0. Let M > 0 besuch that lzoll < M and inf,er(y) Re{w, y—zo)+h(y)—h(zo) > §
forall y € X with [[y|| > M. Let K = {z € X : ||z]| < M}; then K is a non-empty
weakly compact subset of X. Note that for any y € X \ K, inf,er(y) Re(w,y — zo) +
h(y) — h(zo) > § > 0. The conclusion now follows from Theorem 3.2.23. o

By taking A = 0 in Theorem 3.2.23 and applying Lemma 3.2.2, we have the following

existence theorem for a generalized complementarity problem:

Theorem 3.2.26 Let X be a cone in a topological vector space E. Let T : X — 2E°
be quasi-monotone and lower hemi-continuous along line segments in X to the weak™-
topology on E~. Suppose there exist a non-empty weakly closed and weakly compact
subset K of X and zo € K such that inf,er(y) Re{w,y — zo) > 0 forally € X \ K.
Then there erists § € K such that Re(w,y) =0 for all w € T(g) and T(§) C X.

By taking h = 0 in Theorem 3.2.25 and applying Lemma 3.2.2 (or by the same
argument as in the proof of Theorem 3.2.25 and by Theorem 3.2.26), we have the following

existence theorem for a generalized complementarity problem:
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Theorem 3.2.27 Let (E,||-||) be a reflexive Banach space, X be a closed cone in E
and T : X — 28" be quasi-monotone and lower hemi-continuous along line segments
in X to the weak topology on E=. Suppose there is ro € X such that

lim inf Re(w,y — z¢) > 0.
e o3, Felwry — o)
yeX

Then there ezists § € X such that Re{w,§) =0 for all w € T(§) and T(§) C X.

Theorem 3.2.28 Let E be a Hausdorff topological vector space, X be a non-empty
convexr subset of E, h : X — R be convex and weakly lower semicontinuous on
weakly compact subsets of X and T : X — 2E" be h-quasi-monotone and upper hemi-
continuous along line segments in X to the weak™ topology on E* such that each T(z)
is weak™ compact conver. Suppose there exist a non-empty weakly closed and weakly
compact subset K of X and zo € K such that inf,er(y) Re{w, y—zo)+h(y)—h(zo) > 0
for ally € X \ K. Then there ezxist § € K and w € T(y) such that Re(d,§ — z) <
h(z) — h(y) for all z € X. Moreover, if h is defined on all of E and is conver, then
Re(w,y — z) < h(z) — h(g) for all z € Ix(7).

Proof: By Theorem 3.2.22, there exists § € K" such that sup,cr(;) Re(u.j — =) +
h(§) — h(z) <0 for all z € X. It follows that inf,er(r) Re(u,§ — z) + h(§) — h(z) <
0 forall z € X.Since his convex and T is upper hemi-continuous, by Lemma 3.2.20,
infyer(z) Re(w,j — ) + h(g) — h(z) <O forall z € X.

Define ¢ : X x T'(j) — R by ¢(z,w) = Re{w,§ — z) + h(§) — h(z) for all (z,w) €
X xT(y). Then for each fixed z € X, w — ¢(z,w) is weak™ lower semicontinuous and
convex and for each fixed w € T(y), £ — ¢(z,w) is concave. By Theorem 3.2.1,

min sup ¢(z,w) =sup min ¢(z,w) <O0.
weT(§) J:GJI\2 (D( ) J.'G.g weT () é( ‘ )—

Since T'(y) is weak™-compact, there exists w € T(3) such that

sup ¢(z,w) = min sup ¢(z,w) < 0.
reX we€T(§) reXx
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Therefore
Re(w.y — z) < h(z) — h(y) forall z € X. (3.3)

Now suppose 4 is defined on all of £ and is convex. Then by (3.3) and Lemma 3.2.21,
Re(w,§ — z) < h(z) — h(g) for all z € Ix(g).0

Remark 3.2.29 Theorem 3.2.28 extends Theorem 5 of Bae-Kim-Tan in [6, pp.235-
240] in the following ways:

(1) E= is not equipped with the strong topology,

(2) T is h-quasi-monotone instead of semi-monotone,

(3) Each T(z) is weak™-compact instead of strongly compact,

(4) T is upper hemi-continuous along line segments instead of upper semicontin-
uous along line segments in X.

Note however that the coercive conditions in our Theorem 3.2.28 here and in

Theorem 5 of [6] are not comparable.

Theorem 3.2.30 Let (E,||-]|) be a reflexive Banach space, X be a non-empty closed
conver subset of £, h : X — R be conver and lower semicontinuous on weakly compact
subsets of X and T : X — 2E" be h-quasi-monotone and upper hemi-continuous along
line segments in X to the weak topology on E= such that each T'(x) is weakly compact
convez. Suppose there is zo € X such that

lim inf Re(w,y — zo) + h(y) — h(zo) > 0.

|yll—c0 weT(y)
yGX

Then there exist § € X and w € T(y) such that Re(w,§ — z) < h(z) — h(F) for all
z € X. Moreover, if h is defined on all of E and is convez, then Re(w,§ — z) <
h(z) — h(g) for all z € Ix(7).

Proof: By using the same argument in the proof of Theorem 3.2.25 and by Theorem
3.2.28, the conclusion follows. i
By taking & = 0 in Theorem 3.2.28 and applying Lemma 3.2.3 we have the following

existence theorem for a generalized complementarity problem:



Theorem 3.2.31 Let X be a cone in a Hausdorff topological vector space E. Let
T : X — 2E° be quasi-monotone and upper hemi-continuous along line segments in
X to the weak™-topology on E= such that each T(z) is weak™-compact conver. Suppose
there exist a non-empty weakly closed and weakly compact subset K of X and zo € K
such that inf,e7(y) Re{w.y — zo) > 0 for ally € X \ K. Then there exist § € K and
W € T(§) such that Re(iw,§) =0 and & € X.

By taking A = 0 in Theorem 3.2.30 and applying Lemma 3.2.3 (or by a similar
argument in proving Theorem 3.2.25 and by Theorem 3.2.31), we have the following

existence theorem for a generalized complementarity problem:

Theorem 3.2.32 Let (E,||-||) be a reflexrive Banach space, X be a closed cone in E
and T : X — 2E° be quasi-monotone and upper hemi-continuous along line segments
in X to the weak topology on E= such that each T(z) is weakly compact convez.

Suppose there is o € X such that

lim inf Re{w,y — zqo) > 0.
Il oo wily) QY — Z0)
yEJ\'

Then there exist j € X and w € T(3) such that Re(,§) =0 and & € X.

Theorem 3.2.33 Let E be a Hausdor(f locally convex topological vector space, X be a
non-empty convex subset of E, h : X — R be conver and weakly lower semicontinuous
on weakly compact subsets of X and T : X — 2B be h-quasi-semi-monotone and
upper hemi-continuous along line segments in X to the weak™-topology on E™ such
that each T(z) is strongly compact conver. Suppose there erist a non-empty weakly
compact subset K of X and zo € K such that for each y € X\ K, minyer(,) Re{w,y—
zo) +h(y)—h(zo) > 0. Then there exist § € K and W € T(§) such that Re(i, j—z) <
h(z) — h(3) for all z € X. Moreover, if h is defined on all of E and is convez, then
Re(w,§ — z) < h(z) — h(g) for all z € Ix(3).

Proof: Define f,g: X x X :—» RU {—oc0,+00} by

flz,y) = min Re(u,y — z) + h(y) — h(z),
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g(z,y) = gin Re(w,y — z) + h(y) — h(z)

for all z,y € X. Then we have the following:

(1) For each z.y € X, since T is h-quasi-semi-monotone, f(r,y) > 0 implies
9(z,y) > 0.

(2) For each fixed z € X, since T(z) is strongly compact, by Lemma 3.2.4, y —
f(z,y) is weakly lower semicontinuous on non-empty bounded subsets of X and hence
also weakly lower semicontinuous on weakly compact subsets of X.

(3) For each A € F(X) and y € co(A), minzea g(z,y) < 0 by using the same
argument as for (3) in the proof of Theorem 3.2.22.

(4) By assumption, K is a weakly closed and weakly compact subset of X and o € K
such that for each y € X \ K, minger(y) Re(w,y — zo) + h(y) — h(zo) > 0, i.e.,
9(zo0,y) > 0.

Equip £ with the weak topology. Then f and g satisfy all the hypotheses of Theorem
2.2.4 so that by Theorem 2.2.4, there exists § € K such that f(z,j) <0 forall z € X;
i.e., minger(z) Re(u,y — ) + h(y) — h(z) < 0 for all z € X. Since h is convex and T is
upper hemi-continuous, by Lemma 3.2.20, we have

min Re(w.j —z) < h(z) — h(g) forall re X.
weT(g)

By following the same argument as in proving Theorem 3.2.28, the conclusion follows. O

Remark 3.2.34 Theorem 3.2.33 extends Theorem 5 of Bae-Kim-Tan in [6, pp.238-
240] in the following ways:

(1) T is upper hemi-continuous along line segments instead of upper semicontin-
uous along line segments in X,

(2) T is h-quasi-semi-monotone instead of semi-monotone.

Note however that the coercive conditions in our Theorem 3.2.33 here and in

Theorem 5 of [6] are not comparable.

Theorem 3.2.35 Let (E,||-||) be a reflexive Banach space, X be a non-empty closed

conver subset of E, h : X — R be conver and lower semicontinuous on weakly
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compact subsets of X and T : X — 28" be h-quasi-semi-monotone and upper hemi-
continuous along line segments in X to the weak topology on E™ such that each T(z)
is compact conver. Suppose there is zo € X such that
[|g/li}Elox wé%t('y) Re(w,y — zo) + h(y) — h(zo) > 0.
yEX

Then there exist § € X and @ € T(§) such that Re(w,y — z) < h(z) — h(g) for all
z € X. Moreover, if h is defined on all of E and is convez, then Re(w.j — z) <
h(z) — h(y) for all z € Ix(7)-

Proof: By using the same argument in the proof of Theorem 3.2.25 and by Theorem
3.2.33, the conclusion follows. a
By taking A = 0 in Theorem 3.2.33 and applying Lemma 3.2.3, we have the following

existence theorem for a generalized complementarity problem:

Theorem 3.2.36 Let X be a cone in a Hausdorff locally conver topological vector
space E. Let T : X — 2E be quasi-semi-monotone and upper hemi-continuous
along line segments in X to the weak™-topology on E™ such that each T (x) is strongly
compact conver. Suppose there erist a non-empty weakly compact subset K of X and
zo € K such that for each y € X \ K, min,er(y) Re{w.y — zo) > 0. Then there exist
y € K and w € T(y) such that Re(w,y) =0 and w € X.

Theorem 3.2.37 Let (E,|| - ||) be a reflexive Banach space, X be a closed cone in
E and T : X — 2E° be quasi-semi-monotone and upper hemi-continuous along line
segments in X to the weak topology on E= such that each T(z) is compact conver.
Suppose there is o € X such that

lim inf Re(w,y — zg) > 0.
llvli—s0 weT(y) (w,y — o)
yeX

Then there exist § € X and w € T(3) such that Re(w,j) =0 and w € X.



We observe that in all the generalized variational inequalities and generalized comple-
mentarity problems stated above, (1) when T is lower hemi-continuous along line seg-
ments, T is only required to have non-empty values, (2) when T is upper hemi-continuous
along line segments and quasi-monotone, T is required to have weak™-compact-convex
values and (3) when T is upper hemi-continuous along line segments and quasi-semi-
monotone, T is required to have strongly-compact-convex values.

Next we shall discuss maximality of monotone operators.

Let X be a non-empty subset of a topological vector space E; then T : X — 27
is mazimal monotone if T is monotone and if T~ : X — 2E" is monotone such that

T(zx)CT*(z)forall z € X, then T =T".

Theorem 3.2.38 Let E be a topological vector space and T : E — 2E° be monotone
and lower (respectively, upper) hemi-continuous along line segments in E such that

each T'(z) is weak™ compact convex. Then T is maximal monotone.

Proof: Let T : E — 2E° be monotone such that T(z) C T=(z) for all z € X. Let
Yo € E be arbitrarily fixed and let wg € T™(yo). Since T™ is monotone, for each z € E and
each u € T*(z), Re(u —wo,yo—z) < 0. It follows that sup,cr(,) Re(u —wo, yo—z) < 0
for all z € E. By Lemma 3.2.19 (respectively, Lemma 3.2.20), sup,er(,,) Re{w —
wo, Yo — =) < 0 (respectively, inf,er(y) Re(w — wo,y0 — z) < 0) for all z € E. Thus
sup.¢eg infuwer(yo) Re(w — wo,yo — ) < 0. By Theorem 3.2.1, infyer(yo) Supcg Re{w ~
wo, Yo — z) < 0. Since T(yo) is weak™ compact, there exists @& € T(yo) such that
sup,eg Re( — wo,yo — ) = inf,eT(y) SUP.cg Re(w — wo,yo — z) < 0. Therefore
wo = W € T(yo). Since wg € T(yo) is arbitrary, T(yo) = T(yo). Since yo € E is also
arbitrary, we conclude that T = T™~. Hence T is maximal monotone. a

Theorem 3.2.38 improves Lemma 3 of [98] in several respects.

Finally in this section we shall prove some results on the surjectivity of monotone or

semi-monotone operators.

Theorem 3.2.39 Let (E,||-||) be a reflexive Banach space, X be a non-empty closed

convez subset of E and T : X — 2E° be monotone and lower hemi-continuous along



line segments in X to the weak topology on E=. Suppose there is o € X such that

lim inf Re(w,y — zo)/|ly]| = oc.
”y“e_‘;'oo weT (y) (w,y o)/ Iyl
y€E

Then for each given wo € E~, there exist § € X such that sup,er(;) Re(w—wo,j—z) <
0 for all z € X. In particular, when X = E, then T is surjective; in fact, for each
w € E~, there isy € E such that T(y) = {w}.

Proof: Let wg € £~ be given. Then

limjyjj—oo (infuer(y) Re(w — wo, y — zo)/llyl])
yeX

= 1imuyu—\’oo ((infwer(y) Re{w,y — zo)/|lyll) — [[wol]) = oo.
yE

Define T~ : X — 28" by T~(z) = T(x) — wo for all z € X. Then T~ is monotone and
lower hemi-continuous along line segments in X to the weak topology on E~ and
lim inf Re(w,y — zo)/||y]| = oo.

llyll—c0 weT*(y)
yeX

Therefore by Theorem 3.2.25, there exist § € X such that sup,cr.; Re(w,§ —z) <0
for all z € X. That is, sup,er(;) Re{(w —wo,§ —z) < 0forall z € X. Now if X = E,
then w — wo = 0 so that wy = w for all w € T'(g) and hence T(y) = {wo}. This shows
that T is surjective such that for each w € E£~, thereis y € E with T'(y) = {w}. a

Theorem 3.2.40 Let (E,||-||) be a reflerive Banach space, X be a non-empty closed
convez subset of E and T : X — 22" be monotone and upper hemi-continuous along
line segments in X to the weak topology on E™ such that each T(z) is weakly compact
conver. Suppose there is zo € X such that

lim inf Re(w,y — zo)/|ly|l = oco-

llyll—c0 weT(y)
yeX

Then for each given wo € E=, there exist § € X and & € T(gy) such that Re{w —
wo,§ — ) <0 for all z € X. In particular, if X = E, then T is surjective.



Proof: Let wo € E~ be given. Then
limjy)|—oo (infwer(y) Re(w — wo,y — zo)/|ly})
veX

= limyli—co (infuer(y) Be(w.y = 2o}/ lyl) = llwoll) = oo.
yE

Define T= : X — 2&° by T(z) = T(x) — wo for all z € X. Then T= is monotone and
upper hemi-continuous along line segments in X to the weak topology on E~ such that
each T=(z) is weakly compact convex and
! ngm oanf, e(w.y — zo)/|lyl| = oo

Therefore by Theorem 3.2.30, there exist § € X and w € T"(y) such that Re(w, i —
z) < 0 for all z € X. But then there exists w € T(y) with @ = @ — wq so that
Re( — wo,y —z) < 0 forall z € X. Now if X = FE, then & — wg = 0 so that
we = w € T'(y). This shows that T is surjective. a

By using an argument similar to the proof of Theorem 3.2.40 and by applying Theorem
3.2.35 (instead of Theorem 3.2.30), we have the following surjectivity of semi-monotone

operators:

Theorem 3.2.41 Let (E,||-||) be a reflexive Banach space, X be a non-empty closed
convez subset of E and T : X — 2E° be semi-monotone and upper hemi-continuous
along line segments in X to the weak topology on E= such that each T(z) is compact
convez. Suppose there is zo € X such that

lim inf Re(w,y — zo)/|ly|| = oo-

{lull—oc0 w€ET(y)
yEX

Then for each given wo € E™, there exist § € X and w € T(y) such that Re(w —
we,§ —z) <0 for all z € X. In particular, if X = E, then T is surjective.

We remark here that the proofs of Theorems 3.2.39 and 3.2.40 are slight modification
of the proof of Theorem 2 in [98] and improve Theorem 2 in [98] from upper semicontin-

uous along line segments to lower or upper hemi-continuous along line segments.
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3.3 Generalized Variational Inequalities for Quasi-Monotone
and Lower Demi-Continuous Operators

In this section we shall obtain some results in topological vector spaces for the existence
of solutions for some generalized variational inequalities with quasi-monotone and lower
demi-continuous operators. Some applications are given in non-reflexive Banach spaces
for these solutions for generalized variationai inequalities with quasi-monotone and lower
demi-continuous operators. A result on surjectivity will also be obtained.

We shall denote by & either the real field R or the complex field C throughout Sections
3.3to 3.5. If X and Y are topological spaces and T : X — 2Y, then the graph of T is
the set G(T') := {(z,y) € X x Y :y € T(z)}.

Let X be a topological space such that X = U, C, where {C,.}3, is an increasing
sequence of non-empty compact subsets of X. Then a sequence {z,}5%, in X is said to
be escaping from X relative to {C,}22, [15, p.34] if for each n € N, there exists m € N
such that z, ¢ C, for all k > m.

Let £ be a topological vector space over ®, F' be a vector space over ® and ( , ):
F x E — & be a bilinear functional. For each zo € F, for each non-empty subset
Aof E and for € > 0, let W(zo;e) := {y € F : |[(y,z0)| < €} and U(A;¢) :=
{y € F :sup,es|(y,z)| < €}. Let o(F, E) be the (weak) topology on F generated by
the family {W(z;¢) : £+ € E and € > 0} as a subbase for the neighbourhood system
at 0 and 6(F, E) be the (strong) topology on F generated by the family {U(A;e¢) :
A is a non-empty bounded subset of £ and ¢ > 0} as a base for the neighbourhood
system at 0. We note then that F’, when equipped with the (weak) topology o(F’, E) or
the (strong) topology 6(F, E), becomes a locally convex topological vector space which
is not necessarily Hausdorff. But if the bilinear functional ( , ) : F x E — ® separates
points in F, i.e., for each y € F' with y # 0, there exists ¢ € F such that (y,z) # 0, then
F becomes Hausdorff. Furthermore, for a net {ya}oer in F and fory € F, (i) yo — y in
o(F, E) if and only if (y,,z) — (y,z) for each z € E and (ii) yo — y in §(F, E) if and
only if (ya,z) — (y,z) uniformly for £ € A for each non-empty bounded subset A of E.
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Now if X is a non-empty subset of E, then a map T : X — 2F is called () monotone
(with respect to the bilinear functional ( , )) if for each z.y € X, each u € T(z) and
eachw € T(y), Re(w—u,y—zx) > 0 and (27) semi-monotone (with respect to the bilinear
functional ( . )) if for each z,y € X, inf,er(s) Re(u,y — z) < infyer(y) Re(w,y — z).
Note that when F' = E=, the vector space of all continuous linear functionals on E and
( , ) is the usual pairing between E~ and E, the monotonicity and semi-monotonicity
notions coincide with the usual definitions (see, e.g., Browder [22, p.79] and Bae-Kim-
Tan [6, p.237] respectively). Note also that T : X — 2F is monotone if and only if
its graph G(T') is a monotone subset of X x F'; i.e., for all (z1,y1),(z2,y2) € G(T),
Re(y, — yr, 22 — 1) 2 0.

We now state the following result which follows from Theorem 2.2.4 and is a gener-

alization of Ky Fan's minimax inequality in [48, Theorem 1]:

Theorem 3.3.1 Let E be a topological vector space, and X be a non-empty compact
conver subset of E. Suppose that f,g: X x X — RU {—o00,+0c} are two mappings
satisfying the following conditions:

(i) for each r € X, g(z,r) < 0 and for each z,y € X, f(z,y) > 0 implies
g(z,y) > 0;

(it) for each fired x € X, the map y — f(z.y) is lower semicontinuous on X;

(iii) for each fired y € X . the set {z € X : g(z.y) > 0} is convez.

Then there erists a point § € X such that f(z,§) <0 for all z € X.
We shall begin with the following result:

Lemma 3.3.2 Let E be a Hausdor[f topological vector space over ®, F be a vector
space over ® and C be a non-empty compact subset of E. Let{ , ): Fx E — &
be a bilinear functional such that for each fizxed y € F, the map = — Re(y,z) is
continuous on E. Equip F with the strong topology 6(F, E) and let A be a non-empty
(strongly) bounded subset of F. Define f : A — R by f(y) = minzec Re(y,z) for each
y € A. Then f is lower semicontinuous on A from its relative §(F, E) topology to the
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usual topology of R. If in addition, for each fized = € E, the map y — Re(y,z) is
continuous on A, then f becomes continuous on A from its relative §(F, E) topology

to R.

Proof: First we shall show that f is lower semicontinuous on A. For, let A € R and
By = {y € A|f(y) < A}. Let {yo}aer be a net in By and yo € A such that y, — o
in 6(F, E) topology. Therefore f(y,) = minzec Re{ya,z) < A. Since C is a compact
subset of £ and z — Re(ya,z) is continuous on C for each a € T, there exists z, € C
such that f(y.) = Re(yo,zo) < A. Therefore, {z,}aer is a net in the compact set C.
Hence there exist a subnet {z,/}orerr of {za}aer and z¢ € C (as C is closed in E) such
that z,+ — zo in the relative vector topology on C. Thus f(y,) = min.ec Re(yo, z) <
Re(yo, to) = limy Re(Yor, Tor) = limar f(yar) < A = yo € By = B, is closed. Hence f
is lower semicontinuous on A.

Again, for each z € E, if the map g, : A — R defined by g.(y) = Re(y.z) is contin-
uous on A from the relative §(F, E) topology on A to R, then f(y) = min.cc g-(y) =
minzec Re(y, ), foreach y € A, is upper semicontinuous on A from the relative §(F, E)
topology on A to R. Consequently f becomes continuous on A from the relative §(F, E)
topology on A to R. O

When F' = E~ and ( , ) is the usual pairing between E* and £, Lemma 3.3.2 reduces

to the following result which is a modification of the Lemma 2.1.6 in [106]:

Corollary 3.3.3 Let E be a Hausdorff topological vector space and E= be the con-
tinuous dual of E equipped with the strong topology. Let A be a non-empty (strongly)
bounded subset of E* and C be a non-empty compact subset of E. Define f: A - R
by f(y) = minuec Re(y,u) for all y € A. Then f is strongly continuous on A.

Definition 3.3.4 Let E be a topological vector space over ®, F be a vector space over
® and X be a non-empty subset of F'. Let ( , }: F x E — ® be a bilinear functional
such that for each fized p € F, the map y — Re(p,y) is continuous on E. Equip F
with the strong topology §(F,E) and let T : X — 2& be a map. Then

(a): T is said to be weakly lower (respectively, upper) demi-continuous on X if
and only if for each p € F, the function f,: X — R U {400} defined by
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fo(z) = sup Re(p.u) for each :z€ X,
u€T(=)

is weakly lower (respectively, upper) semicontinuous on X when X is equipped with
the relative o(F, E)-topology on X (if and only if for each p € F, the function g, :
X — RU {—o0o} defined by

gp(z) = ueuTl{:) Re(p,u) for each :z € X,

is weakly upper (respectively, lower) semicontinuous on X when X is equipped with
the relative o(F, E)-topology on X );

(6): T is said to be strongly lower (respectively, upper) demi-continuous on X if
and only if for each p € F), the function f,: X — R U {+oc} defined by

fo(z) = sup Re(p,u) for each :z € X,
u€T(z)

is strongly lower (respectively, upper) semicontinuous on X when X is equipped with
the relative 8(F, E)-topology on X (if and only if for each p € F, the function g, :
X — RU {—oo} defined by

z)= inf Re(p,: i h z€ X,
9p(2) o e(p.u) for each :z¢€

is strongly upper (respectively, lower) semicontinuous on X when X is equipped with

the relative 6(F, E)-topology on X ).

The definition of upper demi-continuous map is a generalization of the Definition 1 of

upper hemi-continuous map in Section 4 of [4, p.59].

Note that if M, T : X — 2E are weakly lower (respectively, weakly upper) demi-
continuous on X or strongly lower (respectively, strongly upper) demi-continuous on X
and a € R, then M + T and aT are also weakly lower (respectively, weakly upper)
demi-continuous on X or strongly lower (respectively, strongly upper) demi-continuous
on X.
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Proposition 3.3.5 Let E be a topological vector space over ®, F be a vector space
over ® and X be a non-empty subset of F. Let ( , ) : F x E — ® be a bilinear
functional such that for each fized p € F, the map y — Re(p.y) is continuous on E.
Equip F with the strong topology 6(F,E). Let T : X — 2F be weakly (respectively,
strongly) lower semicontinuous on X from relative weak (respectively, strong) topology
on X to the weak topology o(E,E~) on E. Then T is weakly (respectively, strongly)

lower demi-continuous on X.
Proof: For each p € F, define f, : X — RU {+oc} by

fo(z) = sup Re(p,u) foreach =€ X.
u€T (=)

Fixany p€ F. Let A € R be given and let A = {z € X : f,(z) > \}. Take any z; € A.
Then fp(z0) = sup,er(z) Re(p, u) > A. Choose any ug € T(zo) such that Re(p, up) > A.
Let o : E — R be defined by A(u) = Re(p,u) for each u € E. By hypothesis A is
continuous on FE.

Thus A=1(A, +00) N T(z0) # 0, where h=!(\, +0c0) is an open set in E. Since T is
weakly (respectively, strongly) lower semicontinuous at =, there exists a o(F, E)-open (re-
spectively, §( F, E')-open) neighbourhood N, of zg in X such that T(z)NA~ (), +oc) # 0
for all = € V5. Hence fy(z) = sup,er(s) A(u) = sup,er(;) Re(p,u) > A for all = € N,
Thus N, C A. Consequently, f, is weakly (respectively, strongly) lower semicontinuous
on X. Hence T is weakly (respectively, strongly) lower demi-continuous on X. !

The converse of Proposition 3.3.5 is not true as can be seen in the following example

which is similar to Example 3.2.7.

Example 3.3.6 Let E =R and F = E~. Since E* =R, we have F = E~ = R.. Let
X =[0,1]CF and T : X — 2F be defined by

T(z):{ {1,3}, z:f.z'<1,
{1,2,3}, ifz=1.

The details of the rest of this ezample is similar to Erample 3.2.7.
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Proposition 3.3.7 Let E be a topological vector space over ®, F be a vector space
over ® and X be a non-empty subset of F. Let { , ) : F x E — ® be a bilinear
functional such that for each fired p € F, the map y — Re(p,y) is continuous on
E. Equip F with the strong topology §(F,E). Let T : X — 2E be weakly (respectively,
strongly) upper semicontinuous on X from relative weak (respectively, strong) topology
on X to the weak topology o(E,E*) on E. Then T is weakly (respectively, strongly)

upper demi-continuous on X.
Proof: For each p € F, define f, : X — RU {+oc} by

fo(z) = sup Re(p,u) foreach :ze€ X.
u€T(z)

Fixany p€ F. Let A € R be given and let A = {z € X : f,(z) < A}. Take any z, € A.
Then fy(20) = sup,er(s) Re(p,u) < A. Choose any € > 0 such that f,(z) < A—¢€ < A.
Let o : £ — R be defined by h(u) = Re(p,u) for each u € E. By hypothesis & is
continuous on E. Since h(u) < A—e < A for all u € T(z), T(z0) C A~ (~00,\ — €)
which is open in E. Since T is weakly (respectively, strongly) upper semicontinuous at
Zo, there exists a o(F, E)-open (respectively, 6( F, E')-open) neighbourhood N., of z,
in X such that T(z) C A™!(—00,A —¢) for all z € N,,. Thus h(u) < A — ¢ for all
u € T(z) and for all = € N. Hence sup,er(;) h(u) < A —e< Aforall z € NV,; ie,
fo(2) = sup,er(:) Re(p-u) <A —e< Aforall z€ V.. Therefore N, C A so that A is
o(F, E)-open (respectively, §( F, E)-open ) in X. Consequently, f, is weakly (respectively,
strongly) upper semicontinuous on X. Hence T is weakly (respectively, strongly) upper
demi-continuous on X. O

The converse of Proposition 3.3.7 is not true as can be seen in the following example

which is similar to Example 3.2.9.

Example 3.3.8 Let E = R? and F = E*. Since E* = R?, we have F = E* = R2.
Let X = {(z.y) € F:22+y?> <1 and z,y > 0}. Define f,g: X — 2E by

f(rcos,rsind) = {(tcosh, tsinf) : r <t <2} for all r € (0,1), 0 € (0, ;),



and
g(z.y) = {(,0) : = > z} for all (z,y) € X.

The details of the rest of this example is similar to Example 3.2.9.
The following definition is a generalization of (2) of the Definition 3.2.10:

Definition 3.3.9 Let E be a topological vector space over ®, F be a vector space over
® and X be a non-empty subset of F'. Let ( , ) : F x E — ® be a bilinear functional.
Let T : X — 2E be @ map. Then T is said to be quasi-monotone if for each z,y € X,

inf Re(ly —z,w)>0
3, ety =2, w)

whenever

sup Re(y — z,u) > 0.
u€T(z)

In order to prove our main results of this section, we shall now establish the following

result:

Lemma 3.3.10 Let E be a topological vector space over ®, F be a vector space over
® and X be a non-empty conver subset of F. Let ( , ) : F x E — ® be a bilinear
Junctional such that for each fired y € F', the map p — Re(y,p) is continuous on
E. Equip F with the strong topology 6(F,E) and let T : X — 2E be quasi-monotone
(with respect to ( , )) and strongly lower demi-continuous along line segments in X.
Let y € X. Then

sup Re(j —z,w) <0 forallz € X < sup Re(y — z,u) <0 forall r € X.
weT(3) u€T(z)

Proof: Suppose that sup,er(;) Re(§ — z,w) < 0 for all z € X. Since T is quasi-
monotone, we must have sup,e7(;) Re(§ — z,u) < 0 forall z € X.

Conversely, suppose sup () Re(§—z,u) < 0 for all z € X. Let z € X be arbitrarily
fixed. Let z; =tz + (1 —t)y =g —t(y—z) for all t € [0, 1]; then z, € X as X is convex.
Let L = {z : t € [0,1]}. Thus sup,er.,) Re(§ — z,u) < 0 for all t € [0,1]. Therefore
SUP,e7(=) Re(§ — z,u) <0 forall t € (0,1].
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Since T is strongly lower demi-continuous on L, the function f;_,: L — RU {400}
defined by

fi—z(zt) = sup Re(y— z,u), for each z;, € L,
uET(:g)

is strongly lower semicontinuous on L. Then theset A = {z;, € L | f;-(z) < 0} is
strongly closed in L. Now z; — 7 in L as t — 0%. Since =z, € A for all ¢ € (0, 1] we have
y € A. Hence f;_-(§) = sup,er(5) Re{§ — z,u) < 0. Since z € X is arbitrary, we have
sup,er(z) Be(d — z,w) < 0 forall z € X. 0

When F = E~ and ( , ) is the usual pairing between E~ and E, we obtain the

following result:

Corollary 3.3.11 Let E be a topological vector space, E* be the continuous dual
of E equipped with the strong topology. Let X be a non-empty conver subset of E*
and T : X — 2F be quasi-monotone and (strongly) lower demi-continuous along line
segments in X. Let j € X. Then

sup Re(j —z,w) <0 forallz € X < sup Re(j —z.u) <0 forall z € X.

weT(§) ueT(x)
Theorem 3.3.12 Let E be a topological vector space over ®, F be a vector space over
®and( , ): FxXE — ® be a bilinear functional such that ( , ) separates points in F.
Equip F with the strong topology 6(F, E) and let X be a non-empty o(F, E)-compact
convezr subset of F. Suppose that for each fized p € E, the map y —— Re(y,p)
is strongly continuous on X and for each fized y € F, the map p — Re(y,p) is
continuous on E. Let T : X — 2E be quasi-monotone (with respect to ( , )) and
(strongly) lower demi-continuous along line segments in X. Then there exists j € X
such that

sup Re(y —z,w) <0 forallz € X.
weT ()

Proof: Let 7 = {L : L is a finite dimensional subspace of F such that X N L # 0}
and partially order 7 by C. Foreach L € F, let X; = XN L. Note that X is a compact
convex subset of L. For each z,y € X, define 9,4 : Xy x X; — R by

¢(17, y) = sup Re(y - l‘,U>
ueT(z)
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and

Y(z,y) = wé['Il't;y) Re(y — z,w).

Then for each z € X, ¥(z,x) < 0 and for each z.y € X, since T is quasi-monotone
o(z,y) > 0 implies ¥(z,y) > 0. For each fixed z € X, y — &(z,y) is (strongly)
lower semicontinuous on X, . For each fixed y € X, the set {z € X : ¥(z,y) > 0}
is convex. Hence by Theorem 3.3.1, there exists §;, € X such that ¢(z,7.) < 0 for all
z € X, e,

sup Re(yr —z,u) <0 forall z € X;.
ueT(x)

Since {yr}Ler is a net in X which is o(F, E)-compact, there is a subnet {§.}cr of
{gL}rer and § € X such that §- — ¢ in the relative o (F, E)-topology on X.

Fix any 2 € X. Choose Lo € F such that £ € Ly. Then for any L € F with Lo < L,
we have

sup Re(yr —z,u) <0,
ueT(r)

so that there exists L, € F' such that

sup Re(jp — z,u) <O0forall L' € F' with L' > L.
u€T(zx)

Since §r» — g in the relative o(F, E)-topology we have,

sup Re(g —r,u) <0 forall ze€ X. (3.4)
u€T(x)

Since T is (strongly) lower demi-continuous along line segments in X, by (3.4) and Lemma
3.3.10 we have,

sup Re(g —z,w) <0 forall z € X.O
weT ()

When F = E~ and ( , ) is the usual pairing between E= and E, we obtain the

following result:

Corollary 3.3.13 Let E be a topological vector space, E= be the continuous dual of

E equipped with the strong topology, X be a non-empty weak™ compact convezr subset
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of E* and T : X — 2F be quasi-monotone and (strongly) lower demi-continuous along
line segments in X. Then there erists § € X such that

sup Re(§ —z,w) <0 foral ze€X.
weT(y)

As an application of Theorem 3.3.12 we get the following result:

Theorem 3.3.14 Let (E,| - |[) be a non-reflexive Banach space and X be a non-
empty unbounded, weak™ closed and conver subset of E* with 0 € X. Let T : X — 2E
be quasi-monotone and (strongly) lower demi-continuous along line segments in X.
Suppose

liminf sup Re(z,u) > 0.
r€X |izll—co yeT(z)

Then there exists § € X such that

sup Re(y —z,w) <0 forallz € X.
weT(§)

Proof: Let B(0,r) be the closed ball in £~ at center 0 with radius r. Let B(0.r)N
X =X,. Clearly X, #0as0¢€ X, foreveryn =1,2,---. Fixann € N. Then X,
is a weak™ compact convex subset of E~. Now Ty, : X, — 2F is quasi-monotone and
(strongly) lower demi-continuous along line segments in X,,. Hence by Theorem 3.3.12,
there exists §, € X, such that

sup Re(yn, — z,w) < 0forall z € X,. (3.3)
wET (§n)

Then by Lemma 3.3.10 we have

sup Re(gn — z,u) <0 forall z € X,. (3.6)
u€T (z)

Letting z = 0 in (3.5) we get sup,e7(5,) Re(Fn, w) < 0. Hence

liminf sup Re(gn,w) <O0. (3.7)
" weT(gn)
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If {§.}32, were unbounded, then ||§,,]| — oo as ¢ — oo for a subsequence {§n, }2, of
{§in}22, so that by hypothesis,

liminf sup Re(g,,w) >0,
Hnll—c0 weT(3n)

which contradicts (3.7). Hence {7,}22, is bounded, say ||#,]] < M foralln = 1,2,---.

Without loss of generality we can assume that there exists a subnet {Z,}qer of {9},

and y € E” such that 2, — 7 in weak™-topology. For each a € T, let 2, = #,,, where
ne — 0o. For each £ € X, thereis N € N with ||z]] < N and M < N. Then for each
na > N, (3.6) shows that sup,er(;) Re(fn, —z,u) < 0 so that sup,cr(,y Re(§ —z,u) <
0. Hence

sup Re(y —z,u) <0 forall z € X.
u€T(z)

Since T is (strongly) lower demi-continuous along line segments in X by Lemma 3.3.10
we have

sup Re(y —z,w) <0 forall z € X.O
weT(§)

The following is a result on surjectivity:

Theorem 3.3.15 Let (E,||-||) be a non-reflerive Banach space and T : E* — 2E be
monotone and (strongly) lower demi-continuous along line segments in E*. Suppose

that
- . R b
liminf sup Be(z, w) =
lzll—c0 wer(zy  llz]|

Then for each given wo € E, there exists yo € E* such that T(yo) = {wo}-

Proof: Let wy € E be given. By hypothesis

.. Re(r,w—w T Re(zr.w) Re{x,wg)
lim infjjz|j—co SUP yeT () ”"I” % = lim infjy)—co SUPyer(n)] °”;” — "i "°]
.. Re{z,
2 liminfjjz—oo SUPweT(z)[—ﬂ(ﬁl = |lwoll]

.. Re(z,
= lim mf",”_.oo supweT(,) _c”(;'l_wz - ”woll

= OQ.

Thus

Re(z,w — wo) _

liminf sup
llzll—~° weT(z) llz||
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We define Ty : £~ — 2E by T)(z) = T(z) — wo for all z € E=. Then T} is monotone
and hence quasi-monotone and (strongly) lower demi-continuous along line segments in
E*. Now by (3.8) we have

. Re(z, w')
liminf sup ————~ = 0.
llzll—=c0 wety(z) |||

Hence

liminf sup Re(z,w’) > 0.
lizli—o0 weTy(x)

Then by Theorem 3.3.14, there exists yo € £~ such that

sup Re(yo—z,u) <0 forall z € E~.

u€T1 (o)
Thus
sup Re(yo — r,w —wg) < 0 forall z € E~.
w€T (o)
It follows that w — wo = 0 for all w € T(yo) so that T'(yo) = {we}. o

In the first step of the above proof, we follow the argument of Shih and Tan in [98,
pp.431-440].
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3.4 Generalized Variational Inequalities for Quasi-Semi-Monotone

and Upper Demi-Continuous Operators

In this section some results will be obtained in topological vector spaces for the existence
of solutions for some generalized variational inequalities with quasi-semi-monotone and
upper demi-continuous operators (see Definition 3.3.4). As applications, some results will
be obtained in non-reflexive Banach spaces. A result on surjectivity will also be discussed.

The following definition is a generalization of (4) of the Definition 3.2.10:

Definition 3.4.1 Let E be a topological vector space over ®, F be a vector space
over ® and X be a non-empty subset of F. Let ( , ) : F x E — & be a bilinear
functional. Let T : X — 2E be a map. Then T is said to be quasi-semi-monotone if
for each z,y € X,

inf Re(y —z,w)>0
wel(y) «y - zw)

whenever

inf Re(ly —z.u) > 0.
uel%(x) ely —z.u)

We shall begin with the following:

Lemma 3.4.2 Let E be a topological vector space over ®, F be a vector space over
® and X be a non-empty convezr subset of F. Let ( , ) : F x E — ® be a bilinear
functional such that for each fized p € F, the map y — Re(p,y) is continuous on E.
Equip F with the strong topology §(F, E) and let T : X — 2F be quasi-semi-monotone
(with respect to ( , )) and strongly upper demi-continuous along line segments in X.
Let gy € X. Then

inf Re(j —z,w) <0 forallz€e X <= inf Re(§—=z,u) <0 foralzecX.
weT(g) u€T(r)

Proof: Suppose that inf,cr(z Re(y — z,w) < 0 for all z € X. Since T is quasi-

semi-monotone, we must have inf,er(;) Re(§ — z,u) <0 forall z € X.
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Conversely suppose inf,er(s) Re(§ —z,u) < Oforall z € X. Let £ € X be arbitrarily
fixed. Let z; =tz + (1 —¢t)y =y —t(g—z) forall t € [0, 1]; then z, € X as X is convex.
Let L = {z,:t€[0,1]}. Then

inf Re(y —z;,u) <0 f | ¢t .
uel%(z,) e(§ — z,u) <0 forall t €[0,1]

Therefore

inf Re(y —z,u) <O0forall t € (0,1].
B e(y —z,u) <0 forall t € (0,1]

Since T is strongly upper demi-continuous on L, the function g;_, : L — R U {+o0}
defined by

gy—z(2¢) = inf Re(y — z,u), for each z, € L,
u€T(ze)

is strongly lower semicontinuous on L. Then theset A = {z;, € L | g5--(z:) < 0} is
strongly closed in L. Now z, — g in L as t — 0%. Since z, € A for all t € (0, 1] we have
g € A. Hence g;_.(3) = inf,e7(35) Re(y — z,u) < 0. Since z € X is arbitrary, we have
inf ety Re(y — z,w) <0 forall z € X. a

When F' = E~ and ( , ) is the usual pairing between E~ and E, we obtain the

following result:

Corollary 3.4.3 Let E be a topological vector space over ®, E~ be the continuous
dual of E equipped with the strong topology and X be a non-empty conver subset of
E-. Let T : X — 2£ be quasi-semi-monotone and (strongly) upper demi-continuous
along line segments in X. Let § € X. Then

inf Re(y—z,w) <0 i1 X < inf Re(y —z,u) <0 i1 X.
o e(§ —z,w) <0 forall z € ot e(g —z,u) <0 forallz €

Theorem 3.4.4 Let E be a Hausdorff topological vector space over ®, F be a vector
space over ® and ( , ) : F x E — ® be a bilinear functional such that ( , ) separates
points in F. Equip F with the strong topology §(F,E) and let X be a non-empty
o(F, E)-compact conver subset of F. Suppose that for each fized p € F, the map
y —— Re(p,y) is continuous on E and T : X — 2% is quasi-semi-monotone (with

respect to { , )) and (strongly) upper demi-continuous along line segments in X.



Suppose further that each T(z) is a compact subset of E. Then there erists j € X

such that

in Re(y —z,w) <0 for all X.
wren’ll'?g) e(y —z,w) <0 forallz €

If in addition, T(y) is also convez, then there ezists a point w € T(jj) such that
Re(j —z,w) <0 forall z € X.

Proof: Let 7 = {L|L is a finite dimensional subspace of F such that X N L # 0}
and parially order F by C. Foreach L € F,let X = XNL. Defineg, v : Xy x X1 - R
by

o(r,y) = inf Re(y —z,u) forall z,y € X,
u€T (x)

and

Y(z,y) = wé%t('y) Re(y — z,w) for all z,y € X,.

Note that X is a compact convex subset of L. For each z € X, ¥(z,z) < 0 and for
each z,y € X, since T is quasi-semi-monotone, ¢(z,y) > 0 implies ¥’(z,y) > 0. By
Lemma 3.3.2, for each fixed z € X, y — ¢(z,y) is lower semicontinuous on X (from
its relative (6(F, E)-) topology to the usual topology of R). For each fixed y € X, the
set {z € X : ¥(z,y) > 0} is convex. Hence by Theorem 3.3.1, there exists §;, € X
such that ¢(z,y.) <0 forall z € Xi; i.e., infuer(s) Re(yr — x,u) <0 for all r € X.

Since {§r}rer is a net in X which is o(F, E)-compact, there is a subnet {j./}er
of {JL}rer and § € X such that g.» — § in the relative o(F, E) topology on X.

Let £ € X be arbitrarily fixed. Choose Ly € F such that z € Ly. Then for any
L € F with Lo < L we have inf,er(s) Re(yr — x,u) < 0 so that there exists L) € F’
such that inf,er(z) Re(grr — z,u) < 0 forall L' € F' with L' > Lj. Since j+ — ¢ in
the relative o(F, E) topology we have

inf Re(y — < 0 for all X. 3.
uel%(x) e(y —z,u) <0foralze (3.9)

Since T is also (strongly) upper demi-continuous along line segments in X, by (3.9) and
Lemma 3.4.2 we have inf,e7(5) Re(y — z,w) < 0 for all z € X. But T(g) is compact in

E; hence minimum is attained and therefore min,e7(z Re(y — z,w) < 0 for all z € X.



If T(g) is also convex, we can apply Theorem 3.2.1 and find a @ € T'(§) such that
Re(y —z,w) <0forall z € X.O

When F' = E™ and ( . ) is the usual pairing between £~ and E, we obtain the

following result:

Corollary 3.4.5 Let E be a Hausdor(f topological vector space over ®, E= be the
continuous dual of E equipped with the strong topology and X be a non-empty weak™
compact convez subset of E=. Let T : X — 2F be quasi-semi-monotone and (strongly)
upper demi-continuous along line segments in X. Suppose that each T(z) is a compact
subset of E. Then there exrists § € X such that minyer(z) Re(y — z,w) < 0 for all
z e X.

If in addition, T(j) is also convex, then there exists a point w € T(§) such that
Re(y —z,w) <0 forall z € X.

As an application of Theorem 3.4.4 we get the following result:

Theorem 3.4.6 Let (E,||-||) be a non-reflezive Banach space and X be a non-empty
unbounded, weak™ closed and convexr subset of E~ with 0 € X. Let T : X — 2E pe
quasi-semi-monotone and (strongly) upper demi-continuous along line segments in X .

Suppose that each T(r) is a (norm) compact subset of E and

liminf min Re(z,u) > 0.
r€X |||zjj—o0 ueT(z)

Then there ezists § € X such that
min Re(y —z,w) <0 for all z € X.
weT(3)

If in addition, T(§) is also convez, then there exists w € T(j) such that

Re(y — z,w) <0 forall z € X.
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Proof: Let B(0,r) be the closed ball in £~ at center 0 with radius r. Let X, =
B(0,r)Nn X. Clearly X,, #0 as 0 € X, foreveryn =1,2,---. Fixann € N. Then X,
is a weak™ compact convex subset of £~.

Now, T|x, : Xn — 2F is quasi-semi-monotone and (strongly) upper demi-continuous
along line segments in X,,. Also for each z € X,,, T(z) is (norm) compact in E. Hence

by Theorem 3.4.4 there exists g, € X, such that

min Re(§, —z,w) <0 forall z € X,,. (3.10)
w€T (jn)

Then by Lemma 3.4.2 we have

renTi(n)Re(g}n —z,uy<0forall z € X,. (3.11)

Letting = = 0 in (3.10) we get minyer(j,) Be(gn, w) < 0. Hence

inf m ) < 0. 3.19
lm}‘m wgll’l([yln) Re(gn,w) <0 (3.12)
K {#n}32, were unbounded, then ||§, || — oo as i — oo for a subsequence {7, }2, of

{#.}22., so that by hypothesis,

liminf min Re(g,,w) >0,
l[gnll—o0 wWET (3n) (n, )

which contradicts (3.12). Hence {§,}32, is bounded, say ||| < M foralln =1,2,---.
Without loss of generality we can assume that there exists a subnet {,}qer of {§.}2,
and j € E” such that Z, — 7 in weak™-topology. For each o € T, let 2, = #,_, where
ne — oo. For each z € X, thereis N € N with |[z]] < N and M < N. Then for each
ng = N, (3.11) shows that min.e7(z) Re(Yn, —z,u) < 0 so that minyer(s) Re(§—z.u) <
0. Hence

min Re(y —z,u) <0 forall z € X.
ueT(z)

Since T is (strongly) upper demi-continuous along line segments in X, by Lemma 3.4.2,
we have min,er(5 Re(§ — z,w) < 0 forall z € X.

If T'() is also convex, we can apply Theorem 3.2.1 and find a w € T(g) such that
Re(j — z,w) < 0forall z € X. O

The following is another result on surjectivity:
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Theorem 3.4.7 Let (E,|| - ||) be a non-reflezive Banach space and T : E~ — 2E
be semi-monotone and (strongly) upper demi-continuous along line segments in E*.

Suppose that for each x € E=, T(z) is a (norm) compact conver subset of E and

liminf inf &% _
llzll—co ueT(z) |||

Then for each given wo € E, there exists yo € E= such that wo € T(y,).

Proof: Let wy € E be given. By hypothesis

lim inf"z”_oo minweT(x) ﬁﬂfﬁ?wu-ﬂ)‘ = lim inf[l:r:ll—»oc» mi%eT(r)[Rif:ﬂw) - Ref;:}TO)]
> lim infjjzjj—oo l’ninweT(;r:)[RA“J,;?"']—Wz — Jlwoll]
= lim infjjg—oo Minyer(s) 52 — ||woll
= oco.
Thus
liminf min fe(z, w = wo) = 00. (3.13)
llzll—o0 weT () (E4]

We define T\ : E~ — 2F by Ti(z) = T(z) — wo for all z € E=. Then T) is semi-
monotone and hence quasi-semi-monotone and (strongly) upper demi-continuous along
line segments in E*. Also, for each ¢ € £=,Ti(z) = T(z) — wo is a (norm) compact
convex subset of £. Now by (3.13) we have

. . Re(z,w')
liminf min ~————* = oo.
lizll—o weTi(z)  ||z]|

Hence

liminf min Re(zr,w') > 0.
llcll—c0 w'€Ti(z)

Then by Theorem 3.4.6, there exist yo € E~ and @ € Ti(yo) such that Re(yo—z,w) < 0
for all £ € E~; but then there exists & € T (yo) such that w = @ — wp, so that
Re(yo — z,w — wo) < 0 for all z € E~. It follows that wo = w € T(yo). a

In the first step of the above proof, we follow the argument of Shih and Tan in [98,
pp.431-440].
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3.5 Generalized Variational Inequalities in Non-Compact Set-
tings using Escaping Sequences

In this section we obtain some generalized variational inequalities in non-compact settings

using escaping sequences introduced by Border in [15].

Theorem 3.5.1 Let E be a topological vector space over ®, F be a vector space over
® and ( , ): F x E — ® be a bilinear functional such that ( , ) separates points
in F. Equip F with the strong topology §(F, E) and let X be a non-empty (convez)
subset of F such that X = U ,C, where {Co}3%, is an increasing sequence of non-
empty o(F, E)-compact convez subsets of X. Suppose that for each fized p € E, the
map y — Re(y,p) is strongly continuous on X and for each fized y € F, the map
p+— Re(y,p) is continuous on E. Let T : X — 2E be quasi-monotone (with respect
to ( , )) and (strongly) lower demi-continuous along line segments in X such that

(a) for each sequence {y,}32, in X with y, € C, for each n € N which is escaping
from X relative to {C,}2., there exist ng € N and z¢ € Cp, such that

sup Re(yn, — zo,w) > 0.
WET (yng )

Then there exists § € X such that
sup Re(§ —z,w) <0 forallz € X.
weT(y)

Proof: Fix an arbitrary n € N. Note that C, is a non-empty o(F, E)-compact
convex subset of F. Define T, : C,, — 2F by T,(z) = T(z) for each z € C,; i.e.,
T. = T|c,. Now clearly T, is quasi-monotone and (strongly) lower demi-continuous
along line segmentsin C,. Then by Theorem 3.3.12, there exists 3, € C, such that

sup Re(y, —z,w) <0 forall z € C,. (3.14)
wETn(in)

Note that {7,}2, is a sequence in X = U2 ,C, with g, € C, for each n € N.

n=1 n=1

Case 1: {§.}32, is escaping from X relative to {C,}2,.

n=1
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Then by hypothesis (a), there exist ng € N and z4 € C,, such that

sup  Re(fn, — zo,w) >0
wETng (§ng)

which contradicts (3.14).

Case 2: {§.}72, is not escaping from X relative to {C,}2,.

Then there exist n; € N and a subsequence {§,, }%, of {§a}32, such that g, € Cy,
for all ; € N. Since C,, is o(F, E)-compact in F, there exist a subnet {3, }aer of
{9n,}2, and § € Cp; C X such that 2, — § in the relative o(F, E)-topology.

For each a € T, let 2, = y,,, where n, — oc. Then according to the choice of 7,
in C,, we have

sup Re(§n, —z,w) <O0forall z € Cy,,. (3.15)
weTﬂo(ﬁ"o)

Now by Lemma 3.3.10 and (3.15) we have

sup Re(yn, —x.,u) < O0forall z € C,,. (3.16)
u€Th, (z)

Let z € X be arbitrarily fixed. Let n,, > n, besuch that z € C,
for all & > ag. Then by (3.16) we have

. Thus C,,, C Ch,

0

sup Re(fn, — z,u) <0 for all @ > ay. (3.17)
u€Tnq (x)

Note that y,, € C,, C for all ng > n4, and T,

Nag

(z) = T(z) = Tn,(z) for each

a 2 ao. Now letting n, — oo in (3.17) we have sup,er, () Re(§ — x,u) < 0. Since

Nag

z € X is arbitrary we have

sup Re(y —z,u) <0 forall z € X. (3.18)
ueT(z)

Since T is (strongly) lower demi-continuous along line segments in X, by (3.18) and
Lemma 3.3.10 we have sup,e7(; Re(§ — z,w) < 0 for all z € X. 0
When F = E~ and ( , ) is the usual pairing between E~ and E, we obtain the

following result:
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Corollary 3.5.2 Let E be a topological vector space, E* be the continuous dual of
E equipped with the strong topology. Let X be a non-empty (conver) subset of E~
such that X = UL, C, where {C,}32, is an increasing sequence of non-empty weak”
compact conver subsets of X. Let T : X — 2E be quasi-monotone and (strongly)
lower demi-continuous along line segments in X such that

(a) for each sequence {y,}5%, in X with y, € C, for each n € N which is escaping
from X relative to {Cn}72, there exist ng € N and zo € Cn, such that

sup Re(yn, — zo,w) > 0.
weT(yno)

Then there exists § € X such that sup ,er(; Re(§ — z,w) <0 for all z € X.

Theorem 3.5.3 Let E be a Hausdorff topological vector space over ®, F be a vector
space over ® and ( , ) : F'x E — ® be a bilinear functional such that { , ) separates
points in F. Equip F with the strong topology 6(F,E) and let X be a non-empty
(convez) subset of F such that X = U2 C, where {C,}2, is an increasing sequence
of non-empty o(F, E)-compact convez subsets of X. Suppose that for each firedp € F,
the map y — Re(p,y) is continuous on E and T : X — 2E is quasi-semi-monotone
(with respect to ( , )) and (strongly) upper demi-continuous along line segments in
X such that each T(x) is compact. Suppose further that the following condition is
satisfied:

(a’) for each sequence {y,}2, in X with y, € C, for each n € N which is escaping
Jfrom X relative to {C.}32, there exist ng € N and zo € Cp, such that

min Re — zg,w) > 0.
WD) elyne = 20, w0)

Then there ezists § € X such that min,er(; Re(§ — z,w) < 0 for all z € X.
If in addition, T'(3) is also convez then there exists a point w € T'(§) such that

Re(y —z,w) <0 forallz € X.

Proof: Fix an arbitrary n € N. Note that C,, is a non-empty o(F’, E')-compact convex
subset of F. Define T,, : C,, — 28 by T,.(z) = T(z) for each z € Cy;i.e., T, = Tlc,.



Now clearly, T}, is quasi-semi-monotone and (strongly) upper demi-continuous along line
segments in C,,. Then by Theorem 3.4.4, there exists a i, € C, such that

in Re(y, — z,w) <0 forall z € C,. 3.19
werg'l,,l(ng,.) e(Jn — r,w) <0 for all « ( )

Note that {7.}32, is a sequence in X = U C, with , € C, for each n € N.

n=1 n=1
Case 1: {#}32, is escaping from X relative to {C,}2,;.
Then by hypothesis (a’), there exist ng € N and z¢ € C,, such that

min Re(y,, — zo,w) >0
WETng (n) (yno 0. >

which contradicts (3.19).

Case 2: {f,}32, is not escaping from X relative to {C,}2,.

Then there exist n; € N and a subsequence {7, }32, of {§.}32, such that j,, € Cy,
forall j € N. Since Cy, is o(F, E)-compact in F there exist a subnet {2, }aer of {§a, }$2,
and y € Cp, C X such that £, — j in the relative o (F, E)-topology.

For each o € T let 2, = y,,, where n, — oc. Then according to our choice of §n,
in Cy,, we have

min Re(§n, —z,w) < 0forall z € Cp. (3.20)
weTﬂa(.’;ﬂo)

Now by Lemma 3.4.2 and (3.20) we have

er}lir}‘ )Re(g},.a —z,u)<0forall z € C,,. (3.21)

Let £ € X be arbitrarily fixed. Let n,, > n, be such that z € Chey- Thus Cy, C Chp,
for all & > ag. Then by (3.21) we have

min Re(§n, — z,u) <0 for all @ > ap. (3.22)
u€Tng ()

Note that g,, € C,, C Ch,y forall ng > ny, and T,

e (2) = T'(z) = Ty, () for each
a 2 ag. Now letting n, — oo in (3.22) we have minyer,_(s) Re(§ — z,u) < 0. Since
z € X is arbitrary we have

i j — < 0 for all X. .2
ungla)Re(y z,u) <0 forall z € (3.23)



Since T is (strongly) upper demi-continuous along line segments in X, by (3.23) and
Lemma 3.4.2 we have min,er(5) Re(§ —z,w) <0 forall z € X.
If T'(j) is also convex, we can apply Theorem 3.2.1 and find a @ € T(§) such that
Re(j — z,w) <0 forall z € X. a
When F' = E= and ( , ) is the usual pairing between E~ and E, we obtain the

following result:

Corollary 3.5.4 Let E be a Hausdorff topological vector space, E* be the continuous
dual of E equipped with the strong topology. Let X be a non-empty (conver) subset
of E* such that X = U2, C, where {C,}2, is an increasing sequence of non-empty
weak™ compact convexr subsets of X. Let T : X — 2E be quasi-semi-monotone and
(strongly) upper demi-continuous along line segments in X such that each T(z) is
compact. Suppose that the following condition is satisfied:

(a') for each sequence {y,}3%, in X with y, € C, for each n € N which is escaping
from X relative to {C,}S2., there exist ng € N and z¢ € Cro such that

min Re —zo,w) > 0.
weT (yny) (yno To )

Then there ezists § € X such that min,er(;) Re(§ —z,w) <0 for all z € X.
If in addition, T(§) is also convez then there exists a point w € T(§) such that
Re(y — z,0) <0 for all z € X.
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3.6  Generalized Variational Inequalities for Pseudo-Monotone

and Demi-Monotone Operators

In this section we shall obtain some existence theorems for generalized variational inequal-
ities and generalized complementarity problems in topological vector spaces for pseudo-
monotone and demi-monotone operators. Surjectivity of demi-monotone operators will
also be discussed.

We shall begin with the following:

Definition 3.6.1 Let E be a topological vector space, X be a non-empty subset of
EandT : X —2E°. [fh: X — R, then T is said to be an h-pseudo-monotone
(respectively, h-demi-monotone) operator if for each y € X and every net {ya}aer in

X converging to y (respectively, weakly to y) with

limasup[ueiTn(f; )Re(u,ya —y)+h(ya) — h(y)] <0

we have

i i Yo — Yo} — > 1 Y -
lim sup(, inf | Re(u.yo — ) +h(ya) = h(a)] 2 _inf Re(w,y —2) + h(y) — h(z)

forallz € X.
T is said to be pseudo-monotone (respectively, demi-monotone) if T is h-pseudo-

monotone (respectively, h-demi-monotone) with h = 0.

Note that if T is single-valued and is pseudo-monotone in the sense of [16, p.297],
then T is pseudo-monotone in the sense of Definition 3.6.1 above. Note also that every

demi-monotone operator is a pseudo-monotone operator.

Proposition 3.6.2 Let X be a non-empty subset of a topological vector space E. If
T : X — E~ is monotone and continuous from the relative weak topology on X to the

weak™ topology on E™, then T is both pseudo-monotone and demi-monotone.
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Proof: Suppose {ya}acris a netin X and y € X with y, — y (respectively, y, — y
weakly) (and limsup, Re(Tya, ya —y) < 0). Then for any z € X and € > 0, there are
B1.52 € T with [Re(Ty,ya — y)| < § forall @ > B, and |Re(Tyo — Ty,y — x)| < § for
all @ > 3;. Choose 3¢ € I with 39 > 3;, 2. Thus

Re(TYas Yo — ) = Re(TYa,Ya —y) + Re(Tya,y — )
> Re(Ty,ya —y) + Re(Tys,y — z)
= Re(Ty.Ya — y) + Re(Tya — Ty,y — =) + Re(Ty,y — z)
> —%— 5+ Re(Ty,y — z) for all @ > f,.

Given v € T, choose any 3 € T such that 3 > v and 8 > Bo. Then for each o > 3,
Re(Tyo,ya — z) > —€ + Re(Ty,y — z) so that

SUP,> Re(Tya, Yo — 2) 2 sup,ys Re(TYar Yo — )
> —e+ Re(Ty.y — z).
Therefore

limsup Re(TYa, Yo — ) > —e+ Re(Ty,y — z).

As € > 0 is arbitrary,
limsup Re(Tya,ya — z) > Re(Ty,y — z).

Hence T is pseudo-monotone (respectively, demi-monotone). m]

The converse is not true in general as can be seen in Example 3.2.11. In Example
3.2.11, we see that T is not monotone. But it is easy to show that T is both pseudo-
monotone and demi-monotone.

We shall now prove the following lemma:

Lemma 3.6.3 Let E be a Hausdor[f topological vector space, A € F(E), X = co(A)
and T : X — 2E" be upper semicontinuous from X to the weak™-topology on E-
such that each T(z) is weak™-compact. Let f : X x X — R be defined by f(z,y) =
infyer(y) Re(w,y — x) for all z,y € X. Then for each fized z € X, y — f(z,y) is

lower semicontinuous on X.
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Proof: Let A € R be given and let z € X be arbitrarily fixed. Let Cy = {y € X :
f(z,y) < A}. Suppose {y.}aer is a netin C, and yo € X such that y, — yo. Then for
each a € [, A > f(2,y.) = infyer(y.) Re(w, ya — z) so that by weak*-compactness of
T'(ya), there exists w, € T'(y.) such that A > inf,er(ya) Re(w, Yo —z) = Re(wa, yo—z).
Since T is upper semicontinuous from X to the weak™-topology on E£*, X is compact and
each T'(z) is weak™-compact, U.cxT(z) is also weak™-compact. Thus there is a subnet
{war }arerr of {wa}aer and wo € U.exT(z) C E~ with war — wg in the weak™-topology.
Again, as T is upper semicontinuous with weak™-closed values, wo € T'(yo).

Suppose A = {a1,---,a.} and let ¢;,--- ¢, > 0 with 7, ¢; = 1 such that yo =
Y tia;. Foreach of €T, let t¢',--- ¢ > 0 with ¥"%, ¢ = 1 such that y, =

o t?"a,-, Since E is Hausdorff and y, — yo, we must have t?" — t; for each : =
1,---,n. Thus A > Re(wor. yor — z) = L%, t* Re(war, a; — ) —> Yr, tiRe{wo.a; —
r) = Re(wo, Y=, ti{a; — z)) = Re(wg,yp — ) so that A > inf,eT(yo) Re(w,yo — ) and
hence yo € C\. Thus C) is closed in X for each A € R. Therefore y — f(z,y) is lower
semicontinuous on X. a

We remark here that in Lemma 3.6.3, T is only assumed to be upper semicontinuous
from X = co(A) to the weak™-topology on E~ and T is weak™-compact valued. If X is
any non-empty compact subset of £, the strong topology on E~ and a strongly-compact-

valued mapping are generally required, see e.g. [100, Lemma 2].
We shall now establish the following result:

Theorem 3.6.4 Let X be a non-empty convez subset of a Hausdor[f topological vector
space E and h : E — R be convez. Let T : X — 2E° be h-pseudo-monotone (re-
spectively, h-demi-monotone) and be upper semicontinuous from co(A) to the weak"-
topology on E~ for each A € F(X) and such that each T(z) is weak™-compact convez.
Suppose there exist a non-empty compact (respectively, weakly closed and weakly com-
pact) subset K of X and zo € K such that for each y € X \ K, minyer(y) Re(w,y —
zo) +h(y) —h(zo) > 0. Then there exist j € K and w € T(§) such that Re(,j—z) <
h(z) — h(g) for all = € Ix(g).

Proof: We first note that for each A € F(X), h is continuous on co(A) (see e.g. [87,
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Corollary 10.1.1, p.83]). Define ¢ : X x X — R by ¢(z,y) = minyer(y) Re(w,y — z),
for each z,y € X. Then we have the following.

(a) For each A € F(X) and each fixed £ € co(A), since E is Hausdorff and co(A4)
is compact, and the relative weak topology on co(A) coincides with its relative topol-
ogy; it follows that y —— ¢(z,y) is lower semicontinuous (respectively, weakly lower
semicontinuous) on co(A), by Lemma 3.6.3.

(b) Clearly, for each =z € X, ¢(z,z) = 0 and for each fixed y € X, z —— o(z,y) is
quasi-concave. It follows that for each A € F(X) and each y € co(A), mingea[d(z,y) +
h(y) — h(z)] < 0.

(c) Suppose A € F(X), z,y € co(A) and {ya}aer is a net in X converging to y
(respectively, weakly to y) with

(tx + (1 —t)y,ya) + h(ya) — h(tz+ (1 —t)y) <0 forall a €T andall te[0,1]

Then for t = 0 we have @(y, yo)+h(ya)—h(y) < 0forall @ € T, i.e., minger(y,) Re(w. ya
—y) + h(y.) — h(y) <0 for all o € T'. Hence
limsup[ min Re(w,ys —y) + h(ya) — h(y)] <O0.
o w€T (ya)

Since T is h-pseudo-monotone (respectively, h-demi-monotone), we have

lim sup, [minuer(ya) Re(w, Yo — 7) + h(ya) — h(z)] (3.24)
2 infuer(y) Re{w,y — z) + h(y) — h(z).
Fort = 1 we also have ¢(z, yo)+h(ya)—h(z) < Oforall o € T, i.e., min,er(y,) Re(w.
Yo —Z) + h(yo) — h(z) <0 for all @ € T'. It follows that

limasup[wg%i(gl )Re(w, Yo — ) + h(ys) — h(z)] < 0. (3.25)

By (3.24) and (3.25), é(z,y) + h(y) — h(z) < 0.

(d) By assumption, K is a compact and therefore closed (respectively, weakly closed
and weakly compact) subset of X and zo € K such that foreach y € X\ K, min,er(y) Re(
w,y—o)+h(y)—h(zo) > 0; it follows that for each y € X\ K, (0. y)+h(y)—h(z0) >
0.
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(i T is h-demi-monotone, we equip E with the weak topology.) Then ¢ satisfies all
the hypotheses of Theorem 2.3.4. Hence by Theorem 2.3.4, there exists a point j € K
with (z.y) < h(z) — h(j) forall z € X; in other words, min,er(y;) Re(w,y — z) <
h(z) — h(g) forall z € X.

Define f : X x T(g) — R by

f(z,w) = Re(w,y — z) + h(y) — h(z) for all z € X and for all w € T(3).

Note that for each fixed z € X, w —— f(x,w) is weak™ continuous and convex and
for each fixed w € T'(y), ¢ — f(z,w) is concave. Thus by Theorem 3.2.1 we have

: 0 — ) — = i \y— y)— <0
Join, sup(Re(w,§ — z) + h(g) — h(z)) = sup min (Re(w.§ —z) +h(§) — h(z)) <0

Hence there exists a point w € T(g) such that
Re(w,§ —z) < h(z) — h(y) forall ze X. (3.26)

Since h is defined on all of £ and is convex, by (3.26) and Lemma 3.2.21, we have
Re(w,y — z) < h(z) — h(g) for all 2 € Ix(7). !

Remark 3.6.5 If T is h-pseudo-monotone (respectively, h-demi-monotone), Theo-
rem 3.6.4 generalizes (respectively, extends or improves) Application 3 in [16, p.297]
in the following ways (1), (2) and (3) (respectively, following ways (1) and (2)):

(1) T is set-valued and upper semicontinuous from co(A) to the weak™ topology
on E* for each A € F(X) instead of single-valued and continuous on any finite
dimensional subspace;

(2) h need not be lower semicontinuous on X;

(3) As noted earlier, our definition of pseudo-monotonicity, even in the single-

valued case, is more general.

Theorem 3.6.6 Let (E, | -||) be a reflexive Banach space, X be a non-empty closed
conver subset of E and h : E — R be convez. Let T : X — 2E" be h-demi-monotone

and be upper semicontinuous from co(A) to the weak topology on E™ for each A €
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F(X) such that each T(z) is weakly compact convex. Suppose there is o € X such
that

lim inf Re(w,y — zo) + h(y) — h(zo) > 0. (3.27)
||y||€—'Y°° w€eT(y)
ye.

Then there exist y € X and w € T(y) such that Re(w,y — z) < h(z) — h(g) for all
z € Ix(3).

Proof: Let a = limj—« infyueT(y) Re{w,y — zo) + h(y) — h(zo). Then by (3.27),
a>0. Let M > 0be sucﬁiﬁat lzo|l £ M and inf,er(y) Re{w, y—zo)+h(y)—h(z0) > %
for all y € X with [ly]| > M. Let K = {z € X : ||z]| £ M}; then K is a non-empty
weakly compact subset of X. Note that for any y € X \ K, infyer(y) Re{w,y — zo) +
h(y) — h(zo) > § > 0. The conclusion now follows from Theorem 3.6.4. O

By taking A~ = 0 in Theorem 3.6.4 and applying Lemma 3.2.3 we have the following

existence theorem of a generalized complementarity problem:

Theorem 3.6.7 Let X be a cone in a Hausdorff topological vector space E. Let
T : X — 25" be pseudo-monotone (respectively, demi-monotone) and be upper semi-
continuous from co(A) to the weak™-topology on E™ for each A € F(X) such that
each T(z) is weak™-compact convexr. Suppose there ezxist a non-empty compact (re-
spectively, weakly closed and weakly compact) subset K of X and zo € K such that for
each y € X\ K, miny,er(y) Re(w,y — zo) > 0. Then there exist j € K and w € T(g)
such that Re(i, ) =0 and & € X.

By taking 2~ = 0 in Theorem 3.6.6 and applying Lemma 3.2.3, we have the following

existence theorem for a generalized complementarity problem:

Theorem 3.6.8 Let (E,|| - ||) be a reflexzive Banach space, X be a closed cone in
E and T : X — 2E° be demi-monotone and be upper semicontinuous from co(A) to
the weak topology on E~ for each A € F(X) such that each T(z) is weakly compact
convez. Suppose there is to € X such that

lim inf Re(w,y—z¢) > 0.
o~ wET (s (w,y = o)
y€ )
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Then there ezist § € X and @& € T(§) such that Re(,§) =0 and & € X.

Finally in this section we shall prove a result on the surjectivity of demi-monotone

operators.

Theorem 3.6.9 Let (E.||-||) be a reflexive Banach space, X be a non-empty closed
conver subset of E and T : X — 2E° be demi-monotone and be upper semicontinuous
from co(A) to the weak topology on E= for each A € F(X) such that each T(z) is

weakly compact convezx. Suppose there is zo € X such that

lim inf Re(w,y —z = oo,
loll—~e weTtw) (w,y —zo)/llyll
yE-

Then for each given wo € E*, there exist § € X and & € T(3) such that Re{(w —
wo,§ — ) <0 for all z € X. In particular, if X = E, then T is surjective.

Proof: Let wg € £~ be given. Then

lifnnyu—voo (infuer(y) Re(w — wo,y — zo)/|lyl])
Ve
= limy—cs (infuer(y) Re(w,y = zo)/llyl)) — llwoll) = 0.
3
Define T : X — 2E" by T+(z) = T(x) — wo for all z € X. Then T~ is upper

semicontinuous from co(A) to the weak topology on E~ for each A € F(X) such that

each T™(z) is weakly compact convex and

lim inf Re{w,y—=z = co.
|ly||e—"xoo weT*(y) ( y 0)/”y”
y

Suppose y € X and {y, }aer is a net in X converging weakly to y with

lim inf
asup[ueT' (

Ya

)Re(u,ya —y)] L0.
It follows that

lim sup, [infuer(ya) Re(u, Yo — 9]
< lim sup, [infuer(y.) Re{u — wo, Yo — y)] + limsup, Re(wo,yo — y)
= limsup, [infuer+(ya) Re(u, yo — y)] < 0.
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Since T is demi-monotone,

li i U Yo —T)] > w,y —z) for all X.
1rnasup[u61Tn(£°)Re(uAy :L')]_wér%i('y) Re(w,y —z) forall z €

Hence for each z € X,

inf,ere(y) Re(w,y — z)

= inf,eT(y) Re(w — wo,y — )

= infyer(y) Re{w,y — ) — Re(wo,y — z)

< limsup, [infuer(ya) Re(u, yoa — z)] — Re(wo,y — z)

< limsup, [infueT(y,) Re(u — wo, Yo — ) + Re(wo, yo — z)] — Re{wo,y — z)

< lim sup, [infuer=(ya) Re(u, yo — z)] + lim sup, Re(wo, yo — ) — Re(wo.y — z)

= lim sup,, [infuer+(y.) Re(u, ya — z)].

Therefore T is also demi-monotone.

Hence by Theorem 3.6.6 with A = 0, there exist § € X and w € T~(y) such that
Re(w,y — z) < 0 for all z € X. But then there exists @ € T(§) with @ = @ — wp so
that Re(w — wo,y — z) <0 forall z € X. Now if X = F, then &0 — wo = 0 so that
wo = w € T(y). This shows that T is surjective. a



Chapter 4

Applications

4.1 Introduction

In this chapter we shall give several applications of the generalized variational inequalities
of Chapter 3 and the minimax inequalities of Chapter 2. We shall mainly apply the gen-
eralized variational inequalities of Chapter 3 in obtaining fixed point theorems in Hilbert
spaces. Applying the minimax inequalities of Chapter 2, we shall obtain some existence
theorems on generalized quasi-variational inequalities as well as some existence theorems
on generalized bi-quasi-variational inequalities in locally convex HausdorfF topological vec-
tor spaces. The main applications in this chapter are listed as Theorems 4.2.3, 4.2.7,
4.2.11, 4.2.13, 4.2.20, Corollaries 4.2.5, 4.2.6, 4.2.9, 4.2.10, 4.2.17, 4.2.18 and Theorems
43.4, 4310, 43.16, 4.3.20, 43.24, 446, 4.48, 4.4.11, 44.15,4.4.19 and 4.4.26. We
shall organize Chapter 4 as follows.

[n Subsection 1 of Section 4.2, we shall investigate fixed point theorems for lower or up-
per hemi-continuous operators T such that I —T are either quasi-monotone or quasi-semi-
monotone operators in Hilbert spaces which extend or improve the corresponding fixed
point theorems in the literature, e.g., see [6], [18], [27] and [91]. As special cases of these
fixed point theorems, we shall also obtain fixed point theorems for quasi-nonexpansive or
semi-nonexpansive operators.

In Subsection 2 of Section 4.2, we shall investigate some fixed point theorems in
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Hilbert spaces H for set-valued operators T which are upper semicontinuous such that
[ — T are pseudo-monotone or demi-monotone. These fixed point theorems will extend
or improve the corresponding fixed point theorems in the literature, e.g., see [6], [27] and
[91].

In Subsection 1 of Section 4.3, we shall obtain some results on existence theorems
of generalized quasi-variational inequalities on paracompact sets for operators which are
monotone and lower hemi-continuous along line segments.

In Subsection 2 of Section 4.3, we shall obtain some results on existence theorems
of generalized quasi-variational inequalities on paracompact sets for operators which are
semi-monotone and upper hemi-continuous along line segments.

In Subsection 3 of Section 4.3, we shall obtain some results on existence theorems of
generalized quasi-variational inequalities on paracompact sets for upper semicontinuous
operators. We shall obtain these results by applying a generalized version of Ky Fan's
minimax inequality [48] due to Ding and Tan [39, Theorem 1]. Our results generalize the
corresponding results in [70] and [92].

In Subsection 4 of Section 4.3, we shall obtain some results on existence theorems
of generalized quasi-variational inequalities on paracompact sets for operators which are
strong h-pseudo-monotone and which have some kind of upper semicontinuity. Our results
extend the corresponding results in [70] and [92].

In Subsection 5 of Section 4.3, we shall obtain some results on existence theorems of
generalized quasi-variational inequalities on paracompact sets for operators which are A-
pseudo-monotone and which have some kind of upper semicontinuity. Our results extend
or improve the corresponding results in [70] and [92].

In Section 4, we shall first obtain some results on existence theorems of general-
ized bi-quasi-variational inequalities in locally convex Hausdorff topological vector spaces
on compact sets. Then as applications of these results and the results in [100], using
the concept of escaping sequences introduced by Border in [15], we shall obtain some
existence theorems on non-compact generalized bi-quasi-variational inequalities and gen-

eralized bi-complementarity problems for semi-monotone operators. Our results extend
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the corresponding results in [100].

Finally, in Subsection 4 of this Section, we shall introduce the concept of bi-quasi-
monotone operators. Then as applications of bi-quasi-monotone operators, we shall obtain
some results on existence theorems for generalized bi-quasi-variational inequalities in lo-

cally convex HausdorfF topological vector spaces on compact sets.
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4.2 Fixed Point Theorems in Hilbert spaces

Throughout Chapter 4, H denotes a Hilbert space with inner product (-,-) and the cor-
responding induced norm || - || and bc(H) denotes the family of all non-empty bounded
closed subsets of H. If X is a non-empty subset of H, we shall denote by dg(.X) the
boundary of X in H. fr € Handr > 0,let B.(z)={ye€ H:|lz—y|| <r}. fd
is the metric on H induced by the norm || - ||, let D be the Hausdorff metric on bc(H)
induced by d. D is defined by

D(A1,Az) =inf{r>0: A, C B,(As) and A, C B,(A1)}
= ma'x{supze.»h d($7 A2)7 supyéAg d(y7 Al)}v

where d(z, A) = inf{||lz — y|| : y € A} and B.(A) = {z € H : d(z,A) < r} for any
Ae2f andr > 0. (If A= {y}, B.(A) = B.(3).)

If X is a non-empty subset of H, a map T : X — 2¥ is said to be pseudo-contractive
[6] on X if for each z,y € X, and for each w € T'(y), there exists u € T(z) such that
flz =yl < I(L +r)(z —y) — r(u — w)]|| for all r > 0.

A map T : X — be(H) is said to be nonexpansive on X if for each z,y € X,
D(T(2), T(y)) < ll= — yl-

We shall denote by I the identity operator on H i.e., I(z) =z for all z € H.

The following result is the Proposition in [6, pp.240-241].

Proposition 4.2.1 Let X be a non-empty subset of H.
(a) If T : X — bc(H) is nonerpansive such that for each z € X,T(z) is either
conver or compact, then T is pseudo-contractive on X.

(6) If T : X — 2 is pseudo-contractive, then I — T is semi-monotone on X.

Let K be a non-empty closed convex subset of H. For each z € H, there is a unique
point mx(z) in K such that ||z — 7x(z)|| = inf.exn ||z —2]||- 7x () is called the projection

of z on K.

The projection 7x(z) of z on K is characterized as follows [71, Theorem 1.2.3, p.9]:
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Proposition 4.2.2 Let K be a non-empty closed convex subset of H. Then for each

t€H andy € K, y = wr(z) if and only if Re(x —y,z —y) <0, forall z € K.
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4.2.1 Some Fixed Point Theorems for Quasi-Monotone or Quasi-Semi-

Monotone Operators

In this section, we shall apply the main results from Section 3.2, namely, Theorems
3.2.23, 3.2.28 and 3.2.33, to obtain fixed point theorems in Hilbert spaces H for set-
valued operators T which are lower or upper hemi-continuous along line segments such
that I — T are either quasi-monotone, quasi-semi-monotone, quasi-nonexpansive or semi-
nonexpansive.

As an application of Theorem 3.2.23, we have the following fixed point theorem:

Theorem 4.2.3 Let X be a non-empty conver subset of H and T : X — 2H be lower
hemi-continuous along line segments in X such that each T(z) is closed conver and
I — T is quasi-monotone. Suppose there exist a non-empty weakly compact subset K
of X and z9 € K such that for each y € X \ K, inf,er(y) Re(y — w,y — 7o) > 0.
Then there exists § € K such that Re(§ — w,§ —z) < 0 for all z € Ix(y) and for
all w € T(j). Moreover, if either § € intg(X) or w7 (§) € Ix(§), then § is a fized
point of T'.

Proof: Equip H with the weak topology. Since T is lower hemi-continuous along
line segmentsin X, I — T : X — 2 is also lower hemi-continuous along line segments
in X and satisfies all the hypotheses of Theorem 3.2.23 with A = 0. Hence by Theorem
3.2.23, there exists § € K such that sup,cr(;) Re(§ —w,j — z) < 0 for all z € Ix(3).

By continuity, we have

Re(j —w,j—z) <0 forall z € Ix(y) and forall we T(3). (4.1)

Case 1. Suppose j € intg(X). Fix an arbitrary w € T(§). Take any r > 0 such that
B.(y) C X. Then for each z € H with =z # §, let u —y+2 "y ," thenu € B.(g) C X
C Ix(g)- By (4.1), Re(§ — w,% - ";“_") < 0 so that ; Re( ,2—g) <0 and
hence Re(y — w,z—g) <0 forall z € H.
It follows that Re(y —w,z) = 0 for all = € H so that § = w € T(j). As w € T(§)

is arbitrary, we conclude that in fact T'(y) = {g7}.
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Case 2. Suppose p := w1 (§) € Ix(y). Fix an arbitrary @ € T(j). By Proposition
4.2.2, we have p € T(3) and Re(y — p,w — p) < 0. Thus

0 < Re(p— j.@ — p)
= Re(p—9,% —§+§ —p)
= Re(p — 4, —§) — |5 — pll*.
Therefore |7 — p||> < Re(j — ,§ —p) <0by(41)aspe Ix(g). Thusj=p=
Tr(5(9) € T(Y). a
As seen in Example 3.2.11, if we define T : Rt — be(R) by T(z) = [—z,0] for all

z € R*, then I — T is quasi-monotone but not monotone.

The following result follows from Theorem 4.2.3 and Proposition 3.2.16:

Corollary 4.2.4 Let X be a non-empty conver subset of H and T : X — 2H be
quast-nonerpansive and lower hemi-continuous along line segments in X such that
each T(z) is closed and conver. Suppose there exist a non-empty weakly compact
subset K of X and zo € K such that (¢) for each y € K N 9u(X).71y(y) € Ix(y)
and (i) for each y € X\ K, infer(y) Re(y —w,y —x0) > 0. Then T has a fired point

in K.

Corollary 4.2.5 Let X be a non-empty bounded closed convez subset of H and T :
X — 2H be quasi-nonerpansive and lower hemi-continuous along line segments in X
such that each T(z) is closed and conver. If w1y (y) € Ix(y) for each y € Iu(X),
then T has a fized point in X.

Corollary 4.2.6 Let X be a non-empty bounded closed conver subset of H and T :
X — 2% be quasi-nonezpansive and lower hemi-continuous along line segments in X

such that each T'(x) is closed and convez. Then T has a fized point in X.
As an application of Theorem 3.2.28, we have the following fixed point theorem:

Theorem 4.2.7 Let X be a non-empty convez subset of H and T : X — 29 be upper

hemi-continuous along line segments in X such that each T(z) is weakly compact
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convezr and I —T is quasi-monotone. Suppose there ezist a non-empty weakly compact
subset K’ of X and zo € K such that for eachy € X\ K, infer(y) Re(y—w,y—zo) > 0.
Then there exist § € K and & € T(3) such that Re(§g—w,j—z) <0 for all z € Ix(g).

Moreover, if either § € inty(X) or w15 (9g) € Ix(y), then § is a fized point of T, i.e..
y € T(3)-

Proof: Equip H with the weak topology. Since T is upper hemi-continuous along
line segments in X, I — T : X — 2" is also upper hemi-continuous along line segments
in X. Note that / — T satisfies all the hypotheses of Theorem 3.2.28 with A = 0. Thus
by Theorem 3.2.28, there exist j € K and @ € T(y) such that Re(j —w,5 — z) < 0 for
all z € Ix(y). By continuity,

Re(§ —w,j—z) <0 forall ze€Tx(g). (1.2)

Case 1. Suppose g € inty(X), then there exists r > 0 such that B,.(§) C X. Then for
each z € H with = # §j, let u = § + % - ﬁﬁ then u € B.(j) C X C Ix(§). Thus
Re(y —w, %ﬁ) < 0 so that mg;_:”Re(g}—zb, z—g) <0 and hence Re(jj —w,z—7) <

0 forall z € H.
It follows that Re(y — w,z) =0 for all = € H so that §y = w € T(§).

Case 2. Suppose p := wr(;(9) € Ix(g). By Proposition 4.2.2, we have
pE€T(y) and Re(y — p,w —p) <0 forall we T(y). (4.3)

Since w € T'(g), by (4.3) we have
0 < Re(p — §,% — p)
= Re(p — §, % — § +§ — p)
= Re(p — g, — ) — |5 — pl*.
Therefore ||j — pl|* < Re(§ —@,§ — p) <0 by (4.2). Thus § = p = np(3(§) € T(§).O

The following result follows from Theorem 4.2.7 and Proposition 3.2.16:

Corollary 4.2.8 Let X be a non-empty convezr subset of H and T : X — 2H pe

quasi-nonexpansive and upper hemi-continuous along line segments in X such that
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each T'(z) is weakly compact convex. Suppose there ezist a non-empty weakly compact
subset K of X and zo € K such that (z) for each y € K N Iy (X)), 7ry)(y) € Ix(y)
and (it) for each y € X\ K, inf,e7(y) Re(y —w.y —z0) > 0. Then T has a fized point

in K.

Corollary 4.2.9 Let X be a non-empty bounded closed conver subset of H and T :
X — 2 be quasi-nonezpansive and upper hemi-continuous along line segments in X

such that each T(z) is weakly compact convez. If vr(,)(y) € Ix(y) for eachy € du(X),
then T has a fized point in X.

Corollary 4.2.10 Let X be a non-empty bounded closed convexr subset of H and
T : X — 2% be quasi-nonezpansive and upper hemi-continuous along line segments

tn X such that each T(z) is weakly compact convex. Then T has a fized point in X.

As an application of Theorem 3.2.33 with 2 = 0 we have the following fixed point

theorem:

Theorem 4.2.11 Let X be a non-empty conver subset of H, T : X — 2H be upper
hemi-continuous along line segments in X such that each T(zx) is compact conver and
I =T is quasi-semi-monotone. Suppose there exist a non-empty weakly compact subset
K of X and zo € K such that for each y € X \ K, infyer(y) Re(y — w,y — zo) > 0.
Then there exist § € K and w € T(§) such that Re(§—1w.§—z) <0 for all z € Tx(3).
Moreover, if either § € inty(X) or w1 (J) € Ix(3), then § is a fized point of T.
Proof: Equip H with the weak topology. Since T is upper hemi-continuous along
line segmentsin X, [ — T : X — 2f is also upper hemi-continuous along line segments
in X and satisfies all the hypotheses of Theorem 3.2.33 with A = 0. Hence by Theorem
3.2.33, thereexist § € K and w € T(y) such that Re(§ —w,y—z) < 0 for all z € Ix(y).
By continuity of @, Re(§ —w, 5 —z) < 0 for all z € Ix(§j). Now the rest of the proof is

similar to that of Theorem 4.2.7 and the conclusion follows. ]

Remark 4.2.12 Theorem 4.2.11 extends Theorem 6 of Bae-Kim-Tan in [6, pp.242-
243] in the following ways:
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(1) I — T is quasi-semi-monotone instead of T is pseudo-contractive [6, p.240];

(2) T is upper hemi-continuous along line segments instead of upper semicontin-
uous along line segments in X.

Note however that the coercive conditions in our Theorem 4.2.11 here and in

Theorem 6 of [6] are not comparable.
The following result is an immediate consequence of Theorem 4.2.11:

Theorem 4.2.13 Let X be a non-empty convezr subset of H and T : X — 29 be
upper hemi-continuous along line segments in X such that each T(z) is compact
conver and I — T is quasi-semi-monotone. Suppose there exist a non-empty weakly
compact subset K of X and zo € K such that (z) for each y € K NOy(X), 71 (y) €
Ix(y) and (i) for each y € X \ K, inf,er(y) Re(y — w,y — z0) > 0. Then T has a
fized point in K.

As seen in Example 3.2.12, if we define T : Rt — bc(R) by

xr

Z-19, fo<z<l,
T(z) = 2—1 ;
0.==], ifz>1,

then I — T is quasi-semi-monotone but not semi-monotone.

Corollary 4.2.14 Let X be a non-empty bounded closed conver subset of H and
T : X — 2% be semi-nonerpansive and upper hemi-continuous along line segments in

X such that each T(z) is compact conver. If w1, (y) € Ix(y) for each y € du(X),
then T has a fized point in X.

Corollary 4.2.15 Let X be a non-empty bounded closed convex subset of H and
T : X — 2% be semi-nonezpansive and upper hemi-continuous along line segments in

X such that each T(z) is compact convezr. Then T has a fized point in X.

By Proposition 4.2.1 which is the Proposition in [6], if T is nonexpansive, then [ — T

is semi-monotone; it follows from Proposition 3.2.18 that T is semi-nonexpansive. Also
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observe that a set-valued nonexpansive operator is necessarily upper semicontinuous (and
also lower semicontinuous) so that it is upper hemi-continuous by Proposition 3.2.8. Thus

we have:

Corollary 4.2.16 Let X be a non-empty conver subset of H and T : X — bc(H)
be nonexpansive such that each T(z) is compact convez. Suppose there erist a non-
empty weakly compact subset K of X and zo € K such that (i) for each y € K N

Ou(X), 1) (y) € Ix(y) and (it) for each y € X \ K, inf,er(y) Re(y —w,y — zo) > 0.
Then T has a fized point in K.

Corollary 4.2.17 Let X be a non-empty bounded closed convez subset of H and T :
X — 2H be nonezpansive such that each T(z) is compact convez. If ) (y) € Ix(y)
for each y € 9y(X), then T has a fized point in X.

Corollary 4.2.18 Let X be a non-empty bounded closed conver subset of H and
T : X — 2% be nonezpansive such that each T(z) is compact conver. Then T has a

fized point in X.

Remark 4.2.19 Theorem 1 of Browder [18] states that if X is a non-empty bounded
closed conver subset of H and f : X — X is nonezpansive, then f has a fized point
in X. Thus Corollaries §.2.6 and 4.2.10 (respectively, Corollary 4.2.18) general-
ize Browder’s fired point theorem [18, Theorem 1] to set-valued quasi-nonezpansive
(respectively, nonerpansive) operators while Corollaries 4.2.5 and {.2.9 (respectively,
Corollary 4.2.17) generalize Browder’s fired point theorem [18, Theorem ] to set-
valued quasi-nonerpansive (respectively, nonezpansive) operators which need not be
self-maps. Note that Corollary 4.2.6 generalizes Browder’s fized point theorem [18,

Theorem 1] even for the single valued quasi-nonezpansive map T .

Finally we observe that in all fixed point theorems stated above, (1) when T is lower
hemi-continuous along line segments, T is required to have closed-convex values, (2)
when T is upper hemi-continuous along line segments and quasi-monotone, T is required
to have weakly-compact-convex values and (3) when T is upper hemi-continuous along

line segments and quasi-semi-monotone, T is required to have compact-convex values.
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4.2.2 Some Fixed Point Theorems for Pseudo-Monotone and Demi-

Monotone Operators

In this section we shall obtain some fixed point theorems in Hilbert spaces H for set-
valued operators T which have some kind of upper semicontinuity and such that 7 — T is

pseudo-monotone or demi-monotone.

As an application of Theorem 3.6.4, we have the following fixed point theorem:

Theorem 4.2.20 Let X be a non-empty conver subset of H and T : X — 2H be
upper semicontinuous from co(A) to the weak topology on H for each A € F(X) such
that each T'(z) is weakly compact conver and I — T is pseudo-monotone (respectively,
demi-monotone). Suppose there exist a non-empty compact (respectively, weakly com-
pact) subset K of X and zo € K such that for eachy € X\ K, infyer(,) Re(y—w,y—
ro) > 0. Then there exist § € K and i € T(§) such that

Re(j —w,y—z) <0 forall z € Ix(y).

Moreover, if either § is an interior point of X in H or p(§) € Ix(j), where p(§) is
the projection of § on T(y), then § is a fized point of T, i.e., § € T(3).

Proof: (if I — T is demi-monotone, we equip H with the weak topology.) Since T
is upper semicontinuous from co(A) to the weak topology on H for each A € F(X),
I —T:X — 2" is also upper semicontinuous from co(A) to the weak topology on H
for each A € F(X) and satisfies all the hypotheses of Theorem 3.6.4 with A = 0. By
Theorem 3.6.4, there exist § € K" and @ € T'(§) such that Re(j —,§ — z) < 0 for all
z € Ix(y). By continuity,

Re(j — w,g —z) <0 for all z € Ix(7). (4.4)

Case 1. Suppose y is an interior point of X in H, i.e., § € intyX, then there exists

r > 0 such that B.(§) C X. Then foreach z € H with z # §, letu=§+ % > ”y _“, then
u € B:.(§) C X C Ix(9). Thus Re(g—1, gll;—-lel) < 0 so that 5=t—: Re(y w,z—y) <0

and hence Re(y —w,z —§) <0 forall z € H.
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It follows that Re(y —w,z) = 0 for all z € H so that §j = w € T(j).

-

Case 2. Suppose p(y) € Ix(j). By Proposition 4.2.2 of Section 4.2, the projection p(#)
of § on T'(j) has the following property:

p(y) € T(y) and Re(g — p(3), w — p(g)) < 0 for all w € T(3). (4.5)
Since w € T(gy), by (4.5) we have

0 < Re(p(§) — §. @ — p(3))
= Re(p(§) — §,% — § + § — p(3))
= Re(p(§) — §,% — §) — |§ — p(@)II".
Therefore
1§ — p()I° < Re(§ — 1,5~ p(§)) <O by (4.4).
Thus § = p(§) € T(). =

The following fixed point theorem is an immediate consequence of Theorem 4.2.20:

Theorem 4.2.21 Let X be a non-empty convezr subset of H and T : X — be(H)
be upper semicontinuous from co(A) to the weak topology on H for each A € F(X)
such that each T(x) is weakly compact convez and [ — T is pseudo-monotone (re-
spectively, demi-monotone). Suppose there exist a non-empty compact (respectively,
weakly compact) subset K of X and zo € K such that (i) for each y € K N du(X),

Trw)(y) € Ix(y) and (ii) for each y € X \ K, inf er(y) Re(y — w,y — o) > 0. Then
T has a fized point in K.

Corollary 4.2.22 Let X be a non-empty compact (respectively, bounded closed) con-
ver subset of H and T : X — be(H) be upper semicontinuous from co(A) to the weak
topology on H for each A € F(X) such that each T(z) is weakly compact convez
and I — T is pseudo-monotone (respectively, demi-monotone). Suppose that for each
y € Ou(X), nr(y)(y) € Ix(y). Then T has a fized point in X.
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Corollary 4.2.23 Let X be a non-empty compact (respectively, bounded closed) con-
ver subset of H and T : X — bc(X) be upper semicontinuous from co(A) to the
relative weak topology on X for each A € F(X) such that each T(x) is weakly com-
pact conver and I — T is pseudo-monotone (respectively, demi-monotone). Then T

has a fized point in X.
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4.3 Generalized Quasi-Variational Inequalities on Non-Compact

Sets

Let X be a non-empty subset of a topological vector space E. Given the maps S : X —
2% and T : X — E*, the quasi-variational inequality problem (QVI) is to find a point
§ € S(y) such that Re(T(7),y — z) < 0 for all z € S(7). The QVI was introduced by
Bensousson and Lions in 1973 (see, e.g., [13]) in connection with impulse control. Again,
if we consider a set-valued map T : X — 2£°, then the generalized quasi-variational
inequality problem (GQVI) is to find a point § € S(§) and a point w € T'(§) such that
Re(w,y — z) <0 for all £ € S(y). The GQVI was introduced by Chan and Pang [23] in
1982 if £ = R™ and by Shih and Tan [92] in 1985 if E is infinite dimensional.

If X is a topological space and {U, : @ € A} is an open cover for X, then a partition
of unity subordinated to the open cover {U, : o« € A} is a family {8, : a € A}
of continuous real-valued functions 3, : X — [0,1] such that (1) 8.(y) = 0 for all
y € X\ Us. (2) { support B, : a € A} is locally finite and (3) S,c48.(y) = 1 for each
ye X.

The following result is Lemma 1 of Shih and Tan in [92, pp.334-335]:

Lemma 4.3.1 Let X be a non-empty subset of a Hausdorff topological vector space
E and S : X — 2E be an upper semicontinuous map such that S(z) is a bounded
subset of E for each x € X. Then for each continuous linear functional p on E, the
map f, : X — R defined by fo(y) = sup,cs(,) Re(p,z) is upper semicontinuous; i.e.,
for each A € R, the set {y € X : f,(y) = sup,es(,) Re(p,x) < A} is open in X.

The following result is Lemma 3 of Takahashi in [103, p.177] (see aiso Lemma 3 in
{100, pp.71-72]:

Lemma 4.3.2 Let X and Y be topological spaces, f : X — R be non-negative and
continuous and g : Y — R be lower semicontinuous. Then the map F: X xY — R,

defined by F(z,y) = f(z)g(y) for all (z,y) € X x Y, is lower semicontinuous.

The following result is essentially Theorem 1 of Bae-Kim-Tan in [6, p.231]:



Theorem 4.3.3 Let E be a topological vector space, X be a non-empty conver subset
of E and f,g: X x X - RU {—o00, +00} be such that

(a) g(x,z) <0 for all r € X and f(z,y) < g(z.y) forall z,y € X:

(b) for each fired x € X, y — f(z,y) is lower semicontinuous on non-empty
compact subsets of X;

(c) for each fized y € X, the set {x € X : g(z,y) > 0} is convez;

(d) there ezist a non-empty compact conver subset Xo of X and a non-empty
compact subset K’ of X such that for each y € X \ K, there is an z € co(Xo U {y})
with f(z,y) > 0.

Then there erists § € K such that f(z,5) <0 forallz € X.
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4.3.1 Generalized Quasi-Variational Inequalities for Lower Hemi-Conti-

nuous Operators

In this section we shall obtain some existence theorems for generalized quasi-variational
inequalities for monotone and lower hemi-continous operators on paracompact sets.

We shall first establish the following result:

Theorem 4.3.4 Let E be a locally conver Hausdorff topological vector space and
X be a non-empty paracompact convexr subset of E. Let S : X — 2X be upper
semicontinuous such that each S(z) is compact conver and T : X — 2E° be monotone
and lower hemi-continuous along line segments in X to the weak™-topology on E*.
Let h : X — R be conver and continuous. Suppose that the set
YE={yeX: sup sup Re(u,y —z)+ h(y) — h(z) >0}
z€S(y) ueT ()

is open in X. Suppose further that there exist a non-empty compact conver subset Xg
of X and a non-empty compact subset K of X such that for each y € X \ K, there
exists a point z € co(Xo U {y}) N S(y) with sup,er(;) Reu,y —z) + h(y) — h(z) > 0.
Then there erists a point § € K such that

(i) § € S(§) and

(22) sup,er(z) Be(w,§ — z) < h(x) — k() for all z € 5(3).

Proof: We divide the proof into two steps:

Step 1. There exists a point § € X such that § € S(3) and
sup [ sup Re(u,§ —z) + h(§) — h(z)] < 0.
z€S(§) ueT(z)

Suppose the contrary. Then for each y € X, either y & S(y) or there exist z € S(y)
and u € T(z) such that Re(u,y — ) + h(y) — h(z) > 0; that is, for each y € X, either
y &€ S(y)ory € X. If y € S(y), then by Hahn-Banach separation theorem, there exists
p € E~ such that Re(p, y) — sup,¢s(,) Re(p, ) > 0. For each y € X, set

v(y) := sup [ sup Re(u,y — z) + h(y) — h(z)].
z€S(y) ueT(x)
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Let V5 := {y € X|y(y) > 0} = ¥ and for each p € E~, set
Vo :={y € X : Re(p,y) — sup Re(p.z) >0}.
T€S(y)

Then X = Vo UU,eg- V5- Since each V, is open in X by Lemma 4.3.1 and V4 is open in
X by hypothesis, {Vo,V, : p € E~} is an open covering for X. Since X is paracompact,
there is a continuous partition of unity {fo, 8, : p € E~} for X subordinated to the open
cover {¥o,V, : p € E7} (see, e.g., Theorem VIIl.4.2 of Dugundji in [41]); that is for
eachpe E=, 3,: X — [0,1] and Bp : X — [0, 1] are continuous functions such that
for each p € £, B,(y) =0forally € X \ V, and Bo(y) =0 for all y € X \ Vp and
{ support 8o, support 3, : p € E~} is locally finite and Bo(y) + Epeg-Bo(y) = 1 for each
y € X. Define ¢,y : X x X - R by

#(z.y) = Bo(y)[ sup Re(u,y — z) + h(y) — h(z)] + Epce-Bo(y) Re(p. y — z).
and
Y(z,y) = ﬂo(y)[wg;{y) Re(w,y — z) + h(y) — h(z)] + Epee-Bo(y) Relp, y — ),

for each z,y € X. Then we have the following.

(1) For each z,y € X, since T is monotone, é(z,y) < ¢(r.y) and ¥(z,zr) = 0 for
all zr € X.

(2) For each fixed x € X and each fixed u € T(z), the map

y+— Re(u,y — ) + h(y) — h(z)
is continuous on X and therefore the map

y = Po(y)[ sup Re(u,y —z) + h(y) — h(z)]
ueT(z)

is lower semicontinuous on X by Lemma 4.3.2. Also for each fixed z € X,

y — Zpee-Bp(y)Re(p,y — z)

is continuous on X. Hence, for each fixed z € X, the map y — &(z,y) is lower

semicontinuous on X.
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(3) Clearly, for each y € X, the set {z € X : ¥(z,y) > 0} is convex.

(4) By hypothesis, there exists a non-empty compact convex subset X, of X and a
non-empty compact subset A" of X such that for each y € X \ A, there exists a point
T € co(Xo U {y}) N S(y) such that sup,cy(,) Re(u,y — z) + h(y) — h(z) > 0. Thus
Bo(y)[suP,er(s) Re{u, y—z)+h(y)—h(z)] > 0 whenever Bo(y) > 0. Also Re(p,y—z) > 0
whenever 3,(y) > 0 for p € E~. Consequently, ¢(z,y) = Bo(y)[suP,er(r) Re(u,y — z) +
h(y) — h(z)] +E,ee-Bp(y)Re (p, y — z) > 0.

Then ¢ and 3 satisfy all the hypotheses of Theorem 4.3.3. Thus by Theorem 4.3.3,
there exists § € A" such that ¢(z,y) <0forall z € X, i.e.,

Bo(9)1 sup Re(u,§ — z) + h(§) — h(z)] + Zpee-Bp(§) Re(p, § — x) <0 (4.6)

forall z € X.
If Bo(y) > 0, then § € Vo = ¥ so that v(g) > 0. Choose z € S(7) C X such that

sup Re(u,y — ) + h(y) — h(Z) > 2(—)‘1/—2 > 0;
u€T () Z

it follows that

Bo(9)[ sup Re(u,j— )+ h(§) — h(2)] > 0.
ueT(2)

If B,(y) > 0 for some p € E=, then § € V, and hence

Re(p,y) > sup Re(p,z) > Re(p, )
z€S(3)

so that Re(p,y — £) > 0. Then note that
Bo(g)Re(p.y — £) >0 whenever 3,(3) >0 for p € E~.
Since Bo(g) > 0 or B,(7) > 0 for some p € E*, it follows that

$(2,9) = Bo(9)[ sup. Re(u,§ — &) + h(§) — h(2)] + Lpee-Bp(§) Re(p, § — £) > 0,

which contradicts (4.6). This contradiction proves Step 1.
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Step 2.

sup Re(w,y —z) < h(z) — h(y) forall z € S(3).
weT(3)

Indeed, from Step 1, § € S(y) which is a convex subset of X, and

sup Re(u,y —z) < h(z) — h(y) forall z € S(y).
u€T(z)

Hence by Lemma 3.2.19, we have

sup Re(w,y —z) < h(z) — h(y) forall z € S(y).O
w€T(§)

if X is compact, Theorem 4.3.4 reduces to the following:

Theorem 4.3.5 Let E be a locally convex Hausdorff topological vector space and X
be a non-empty compact convez subset of E. Let S : X — 2% be upper semicontinuous
such that each S(z) is closed conver and T : X — 2%° be monotone and lower hemi-
continuous along line segments in X to the weak™-topology on E~. Let h : X — R be
conver and continuous. Suppose that the set

E={ye X: sup sup Re(u,y —z)+ h(y)— h(z) >0}
r€S(y) ueT(x)

is open in X. Then there exists a point y € X such that
(2) y € 5(g) and
(22) sup,er(y) Re(w,§ — ) < h(z) — h(g) for all = € S(7).

Remark 4.3.6 Theorem {.3.4 and Theorem {.3.5 generalize Theorem 1 of Shih-Tan
in [92, p.335].

Note that if X is also bounded in Theorem 4.3.4 and the map S : X — 2¥ is, in addi-
tion, lower semicontinuous and for each y € T = {y € X : sup,¢s(y)[Sup,er(z) Re(u. y —
z) + h(y) — h(z)] > 0}, T is lower semicontinuous at some point z in S(y) with
SUP,eT(s) Re(u,y — z) + h(y) — h(z) > 0, then the set X in Theorem 4.3.4 is always

open in X as can be seen in the proof of the following:



Theorem 4.3.7 Let E be a locally conver Hausdorff topological vector space and X
be a non-empty paracompact conver and bounded subset of E. Let S : X — 2% be
continuous such that each S(r) is compact conver and T : X — 2E° be monotone
and be lower hemi-continuous along line segments in X to the weak™-topology on E~.
Let h : X — R be conver and continuous. Suppose that for each y € ¥ = {y € X :
SUPes(y)[SUPeT(z) Re(u,y — ) + h(y) — h(z)] > O}, T is lower semicontinuous at
some point z in S(y) with sup,er () Re(u,y — ) + h(y) — h(z) > 0. Suppose further
that there exist a non-empty compact convezr subset Xo of X and a non-empty compact
subset K of X such that for eachy € X\ K, there ezists a point z € co( XoU{y})NS(y)
with sup er(z) Re(u,y — z) + h(y) — h(z) > 0. Then there exists a point §j € K such
that

(1) 7 € S(g) and

(i) sup,er(y) Re{w,§ — ) < h(z) — h(§) for all z € S(7).

Proof: By virtue of Theorem 4.3.4, we need only show that the set

E:={y€X: sup[sup Re(u,y—z)+ h(y)— h(z)] > 0}
r€5(y) u€T(x)

is open in X. Indeed, let yo € T; then by hypothesis, T is lower semicontinuous at some
point zo in S(yo) with sup,cr(z,) Be(u, yo — o) + h(yo) — h(zo) > 0. Hence there exists
ug € T'(xg) such that Re(uo, yo — zo) + h(yo) — h(x0) > 0. Let

a := Re(uo, yo — To) + h(yo) — h(zo).
Then a > 0. Also let

a
U,:={uekE: supX [{u — uo, 21 — 22)| < g}

s1,52€
Then U, is a strongly open neighborhood of ug in E=. Since T is lower semicontinuous
at zg and U; N T'(zo) # O, there exists an open neighborhood V; of zo in X such that
T(z)NU; #0 forall z € V.
As the map z —— Re(ug, 2o — z) + h(zo) — h(z) is continuous at zq, there exists an

open neighborhood V; of x5 in X such that

| Re(uo, zo — =) + h(x0) — h(z)| < % forall z e V..
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Let Vo := V1N V,; then Vj is an open neighborhood of zo in X. Since zo € VoNS(yo) # 0
and S is lower semicontinuous at yp, there exists an open neighborhood N; of yo in X
such that S(y) N o # 0 for all y € V.

Since the map y —— Re(ug,y — yo) + A(y) — h(yo) is continuous at yq, there exists

an open neighborhood N, of yo in X such that
| Re(uo,y — yo) + h(y) — h(o)| < 5 forall y e No.

Let Vo := N; N N,. Then Ny is an open neighborhood of yg in X such that for each
y1 € Ny, we have

(2) S(y1) N Vo # 0 as y; € Vy; so we can choose any ; € S(y;) N Vp;

(¢2) [Re{uo, y1 — yo) + h(y1) — h(yo)| < § as y1 € Na;

(1i2) T(z,) N Uy # 0 as z, € Vj; choose any u; € T(z,) N U; so that

«a
sup [(u1 — ug, 21 — 22)| < =
71,22€X 6

(2v) |Re(uo, zo — 1) + h(x0) — h(z1)| < § as z; € V5.
It follows that

Re(uy,y1 — 1) + h(y1) — h(x1)

= Re(ui — uo, 1 — 1) + Re(uo, y1 — 1) + h(y1) — h(zy)
> —% + Re(uo.yy — yo) + A(y1) — A(yo)

+Re(uo, yo — o) + A(yo) — h(z0)

+Re(uo, o — z1) + h(zo) — h(z1) ( by (éé7)),

2 ——5+a—-5=%>0 (by () and (iv));

therefore

sup [ sup Re(u,y; —z) + h(y1) — h(z)] >0
r€S(y) ueT(z)

as z, € S(y1) and u; € T'(z;). This shows that y; € T for all y; € N, so that T is open

in X. This completes the proof. a

If X is compact, Theorem 4.3.7 reduces to the following:
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Theorem 4.3.8 Let E be a locally convex Hausdorff topological vector space and
X be a non-empty compact conver subset of E. Let S : X — 2% be continuous
such that each S(zx) is closed convez and T : X — 2E" be monotone and be lower
hemi-continuous along line segments in X to the weak™-topology on E=. Let h :
X — R be conver and continuous. Suppose that for each y € £ = {y € X :
SUP,es(y)[SUPueT(z) Re(u,y — z) + h(y) — h(z)] > 0}, T is lower semicontinuous at
some point z in S(y) with sup,cr(y Re(u,y — ) + h(y) — h(z) > 0. Then there exists
a point y € X such that

(¢) g € S(3) and

(i2) supyer(y) Re(w.§ — z) < h(z) — h() for all z € S(3).

Remark 4.3.9 Theorem 4.3.7 and Theorem 4.3.8 generalize Theorem 2 of Shih-Tan
in [92, p.338].
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4.3.2 Generalized Quasi-Variational Inequalities for Upper Hemi-Conti-

nuous Operators

In this section we shall obtain some existence theorems for generalized quasi-variational

inequalities for semi-monotone and upper hemi-continuous operators on paracompact sets.

We shall now establish the following result:

Theorem 4.3.10 Let £ be a locally conver Hausdorff topological vector space and
X be a non-empty paracompact conver and bounded subset of E. Let S : X — 2X
be upper semicontinuous such that each S(z) is compact conver and T : X — 2E° pe
semi-monotone and be upper hemi-continuous along line segments in X to the weak"-
topology on E™ such that each T(z) is strongly compact conver. Let h : X — R be
convezr and continuous. Suppose that the set

E={yeX: sup [ inf Re(u,y—z)+h(y)— h(z)] > 0}
reS(y) €T ()

ts open in X. Suppose further that there exist a non-empty compact conver subset X,
of X and a non-empty compact subset K of X such that for each y € X \ K. there
ezists a point r € co(Xo U {y}) N S(y) with inf,er(r) Re(u,y — z) + h(y) — h(z) > 0.
Then there ezists a point § € KN such that

() § € S(y) and

(12) there exists a point w € T(§) with Re(w.j—z) < h(z)—h(F) for all z € S(3).

Proof: We divide the proof into three steps:

Step 1. There exists a point § € X such that j € S(§) and

sup [ inf Re(u,§ —z)+ h(§) — h(z)] < 0.
z€S(3) u€T(z)

Suppose the contrary. Then for each y € X, either y & S(y) or there exists £ € S(y)
such that inf,cr(z) Re(u,y — z) + h(y) — h(z) > 0; that is, for each y € X, either
y€ S(y)orye X. fy € S(y), then by Hahn-Banach separation theorem, there exists
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p € E” such that Re(p,y) — sup,¢g(,) Re(p.z) > 0. For each y € X, set

7(y) := sup [ inf Re(u,y —z)+ h(y) — h(z)].
reS(y) u€T(z)

Let V5 := {y € X|v(y) > 0} = £ and for each p € E~, set
Vo :={y € X : Re(p,y) — sup Re(p,z) > 0}.
z€S(y)

Then X = Vo UU,eg- Vp- Since each V, is open in X by Lemma 4.3.1 and V} is open in
X by hypothesis, {V5,V, : p € E~} is an open covering for X. Since X is paracompact,
there is a continuous partition of unity {8q, 8, : p € £~} for X subordinated to the open
cover {V5,V, : p € E~}. Define ¢,9: X x X — R by

#(z,y) = Bo(v)] inf | Re(u.y — ) + h(y) — h(z)] + Spes-By(y) Re(p,y — 2),

and

¥(z,y) = ﬂo(y)[wér;{y) Re(w,y — z) + h(y) — h(z)] + Spee-Bp(y) Re(p, y — z)

for each z,y € X. Then we have the following.

(1) For each z,y € X, since T is semi-monotone, ¢(r,y) < ¢(z.y) and ¢¥(z.z) =0
forall z € X.

(2) For each fixed £ € X, the map

inf R y — h —h
yr— Aof e(u,y — ) + h(y) — h(z)

is weakly lower semicontinuous (and therefore lower semicontinuous) on X by Lemma

3.2.4 and the fact that A is continuous; therefore the map

y— ﬂo(y)[ueir,_;fz) Re(u,y — z) + h(y) — h(z)]

is lower semicontinuous on X by Lemma 4.3.2. Also for each fixed z € X,

Y — Zpee-Bo(y)Re(p,y — )

is continuous on X. Hence, for each fixed z € X, the map y — o(z,y) is lower

semicontinuous on X.



(3) Clearly, for each y € X, the set {z € X : ¢(z,y) > 0} is convex.

(4) By hypothesis, there exists a non-empty compact convex subset X, of X and
a non-empty compact subset A' of X such that for each y € X \ A, there exists a
point € co(Xo U {y}) N S(y) such that inf,er(r) Re{u,y —z) + h(y) — h(z) > 0. Thus
Po(y)[infuer(z) Re(u,y—z)+h(y)—h(z)] > 0 whenever 35(y) > 0. Also Re(p,y—z) > 0
whenever B,(y) > 0 for p € E*. Consequently, ¢(z,y) = Bo(y)[infuer(z) Re{u,y — z) +
h(y) — h(z)] +Epee-Bp(y)Re (p, y — z) > 0.

Then ¢ and ¢ satisfy all the hypotheses of Theorem 4.3.3. Thus by Theorem 4.3.3,
there exists § € A" such that ¢(z,7) <0 forall z € X, ie.,

Bo(9)[ inf Re(u.§ —2z) +h(g) = h(z)] + Zpe-Bp(§) Re(p,§ —2) <O (4.7)

forall z € X.
i Bo(§) > 0, then § € Vo = T so that y(y) > 0. Choose £ € S(j) C X such that
inf Re(u,y — &)+ h(g) — h(z) > @ > 0;

ueT(z) 2
it follows that
Bo(d)[ inf, Re(u.§ = 2) + h(§) = h(@)] > 0.

If B,(3) > 0 for some p € E™, then § € V, and hence
Re(p.j) > sup Re(p.z) > Re(p,)

zES(9)

so that Re(p,j — Z) > 0. Then note that
Bo(7)Re(p.y — £) > 0 whenever 5,(3) >0 for pe E™.
Since Bo(7) > 0 or B,(y) > 0 for some p € E~, it follows that
8(2,9) = Bold)[ inf, Re(u.§ — 2) + h(3) = h(&)] + Spes-p(d)Re(p,§ — £) >0,

which contradicts (4.7). This contradiction proves Step 1.
Step 2.

inf Re(w,j —z) < h(z) — h(g) forall z € S(y).
weT(j)
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Indeed, from Step 1, § € S(7) which is a convex subset of X, and
é?{ )Re(u.g} —z) < h(z)— h(y) forall z € S(j).
Hence by Lemma 3.2.20, we have

inf Re(w,j—z) < h(z)— h(y) forall ze S(7). (4.8)
weT(y)

Step 3. There exist a point & € T'() with Re(w,g—z) < h(z)—h(j) forall z e S(§).

Indeed, from Step 2 we have

sup [ inf Re(w,§ —z) + h(§) — h(z)] <0, (4.9)
res(y) weT(9)

where T'(3) is a strongly compact convex subset of the Hausdorff topological vector space
E~ and S(3) is a convex subset of X.

Now, define f : S(7) x T(3) — R by f(z,w) = Re(w,§ —z) + h(§) — h(z) for each
r € S(§) and each w € T(3). Note that for each fixed z € S(g), the map w — f(z.w)
is convex and continuous on T(§) and for each fixed w € T'(§), the map z — f(z, w)
1s concave on S(y). Thus by Theorem 3.2.1, we have

min sup [Re(w,§ — z) + h(j) — h(z)] = sup min [Re(w.§ — z) + h(§) — h(z)].
weT(9) res(3) zes(y) wET(9)

Hence

min sup [Re(w,§ —z) + h(y) — h(z)] <0, by (4.9).
w€T(§) res(y)

Since T'(g) is compact, there exists @ € T(j) such that

Re(w,y — z) < h(z) — h(yg) forall z € S(7).0

If X is compact, Theorem 4.3.10 reduces to the following:

Theorem 4.3.11 Let E be a locally conver Hausdorff topological vector space and X
be a non-empty compact conver subset of E. Let S : X — 2% be upper semicontinuous

such that each S(z) is closed convez and T : X — 2E" be semi-monotone and be upper
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hemi-continuous along line segments in X to the weak™-topology on E* such that each
T(z) is strongly compact conver. Let h : X — R be conver and continuous. Suppose
that the set

E={yeX: sup [ inf Re(u,y—z)+ h(y)— h(z)] >0}
z€S(y) u€T(z)

s open in X. Then there exists a point § € K such that
(2) § € 5(3) and
(72) there ezists a point w € T(y) with Re(w,§j—z) < h(z)—h(g) for all z € S(7).

Note that if the map S : X — 2¥ is, in addition, lower semicontinuous and for each
y € L, T is upper semicontinuous at some point z in S(y) with infyer(s) Re(u,y — z) +
h(y) — h(z)] > 0, then the set ¥ in Theorem 4.3.10 is always open in X as can be seen
in the proof of the following:

Theorem 4.3.12 Let E be a locally convex Hausdor[f topological vector space and X
be a non-empty paracompact conver and bounded subset of E. Let S : X — 2% be
continuous such that each S(z) is compact convexr and T : X — 2F be semi-monotone
and be upper hemi-continuous along line segments in X to the weak™-topology on E~
such that each T(z) is strongly compact convexr. Let h : X — R be conver and
continuous. Suppose that for each y € £ = {y € X : SUP,es(y) [10fueT(z) Re(u,y —
x) + h(y) — h(x)] > 0}, T is upper semicontinuous at some point r in S(y) with
inf,er(z) Re(u,y — =) + h(y) — h(z) > 0. Suppose further that there exist a non-
empty compact conver subset Xo of X and a non-empty compact subset K of X
such that for each y € X \ K, there ezists a point z € co(Xo U {y}) N S(y) with
inf,eT(z) Re(u,y — ) + h(y) — h(z) > 0. Then there exists § € K such that

(¢) § € S(§) and

(t) there erist a point w € T(j) with Re(w,§—z) < h(z) — h(g) for all z € S(7).

Proof: By virtue of Theorem 4.3.10, it suffices to show that the set

E={ye X: sup [ inf Re(u,y—z)+ h(y)— k(z)] > 0}
z€S(y) u€T (z)
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is open in X. Indeed. let yo € ¥; then by hypothesis, T is upper semicontinuous at some
point o in S(yo) with inf,er () Re(u, yo — zo) + h(yo) — h(zo) > 0. Let

ai= nf  Re(uryo = zo) + h(yo) ~ hlzo).

Then a > 0. Also let

W:={wekE": sup_ Hw, z1 — 22)| < a/6}.

21,22€
Then W is a strongly open neighborhood of 0 in E= so that U; := T'(zo) + W is an open
neighborhood of T'(zo) in E=. Since T is upper semicontinuous at zg, there exists an
open neighborhood V] of zo in X such that T'(z) C U, for all = € V.
As the map z ~—— inf,e7(z) Re(u, zo — z) + h(zo) — h(z) is continuous at zg, there
exists an open neighborhood V; of zg in X such that

eiTn(f )Re(u,zo —z) + h(zo) — h(z)| < af/6 forall z e V;.

Let V5 := V1N V,; then V; is an open neighborhood of =g in X. Since zo € VoNS(yo) # 0
and S is lower semicontinuous at yq, there exists an open neighborhood N; of yo in X
such that S(y) NV # 0 forall y € N,.

Since the map y — inf,e7(z) Re(u.y —yo) + A(y) — h(yo) is continuous at yo, there
exists an open neighborhood NV, of y5 in X such that

eiTn(f )Re(u,y —yo) + h(y) — h(yo)| < a/6 forall ye N,.
u Io

Let Np := Ny N N,. Then N, is an open neighborhood of y in X such that for each
y1 € Np, we have

(2) S(y1) N Vo # 0 as y; € Ny; so we can choose any z; € S(y;) N Vp;

(#7) |infuer(so) Re(u. y1 — yo) + h(y1) — A(yo)| < /6 as y1 € Ny;

(i) T(z1) CUL =T (z0) + W as z; € Vi;

(:v) |infuer(zo) Re(u, o — 1) + h(zo) — h(z1)| < @/6 as z; € V5.
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It follows that

infuer(z,) Re(u, y1 — z1) + k(1) — h(z1)

> infuer(emsin Re(w g1 — 1) +h(y1) — hlzy) ( by (iii)).

> inf,e7(zo) Re(u,y1 — 1) + h(y1) — h(z1) + inf.ew Re(u,y1 — z1)
> infuer(z,) Re(u, y1 — yo) + k(1) — h(yo)

+ inf,eT(zo) Re(u, yo — zo) + A(y0) — h(zo)

+ infuer(z) Re(u, To — 1) + h(z0) — h(z1) + infuew Re(u,y, — 1)
>_41a-2-2=2>0 (by(i)and (iv));

therefore

sup [ inf Re(u,y1 —z) + h(y1) — h(z)] >0
z€S(y;) “ET ()

as r; € S(y1)- This shows that y; € £ for all y; € Ny, so that ¥ is open in X. This

completes the proof. a

If X is compact, Theorem 4.3.12 reduces to the following:

Theorem 4.3.13 Let E be a locally convez Hausdorff topological vector space and
X be a non-empty compact convezr subset of E. Let S : X — 2% be continuous such
that each S(z) is closed conver and T : X — 2E° be semi-monotone and be upper
hemi-continuous along line segments in X to the weak™-topology on E~ such that each
T(x) is strongly compact convexr. Let h : X — R be convexr and continuous. Suppose
that for each y € & = {y € X : sup,es(ylinfuer(z) Re(u,y —z) + h(y) — h(x)] > 0}, T
is upper semicontinuous at some point r in S(y) with inf,er(z) Re(u,y — =) + h(y) —
h(z) > 0. Then there ezxists § € X such that

(¢2) g € 5(§) and

(22) there exists a point & € T(y) with Re(w,y—z) < h(z)—h(g) for all z € S(7).
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4.3.3 Generalized Quasi-Variational Inequalities for Upper Semi-Conti-

nuous Operators

In this section we shall obtain some existence theorems for generalized quasi-variational
inequalities for upper semicontinuous operators on paracompact convex sets. In obtaining
these results we shall mainly use the following generalized version of Ky Fan’s minimax

inequality [48] due to Ding and Tan [39, Theorem 1].

Theorem 4.3.14 Let X be a non-empty convex subset of a topological vector space
Eandlet f: X x X - RU {—o00,+o0} be such that

(a) for each fired x € X, the map y — f(z,y) is lower semicontinuous on each
non-empty compact subset C of X ;

(b) for each A € F(X) and for each y € co(A), mingc f(z.y) < 0;

(c) there exists a non-empty compact convex subset Xqo of X and a non-empty
compact subset K of X such that for eachy € X\ K, there exists an z € co(XoU{y})
with f(z,y) > 0.

Then there exists a point §y € K such that f(z,5) <0 for all z € X.

The following result is Lemma 2.2.7 of K.-K. Tan in [106] (see also the proof of
Theorem 21 of Takahashi in [103]):

Lemma 4.3.15 Let E be a topological vector space and E* be the continuous dual of
E equipped with the strong topology. Let X be a non-empty compact subset of E and
T : X — 2E° be upper semicontinuous such that T(z) is strongly compact for each
z € X. Define f: X x X — R by f(z,y) = infyer) Re(w,y—z), for each z,y € X.

Then f is lower semicontinuous on X x X.

By modifying the proof of Theorem 3 of Shih and Tan in [92], we have its generalization

to a non-compact setting as follows:

Theorem 4.3.16 Let E be a locally convez Hausdor(f topological vector space and

X be a non-empty paracompact conver subset of E. Let S : X — 2% be upper
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semicontinuous such that each S(z) is a non-empty compact conver subset of X and
T : X — 2E° be upper semicontinuous from the relative topology of X to the strong
topology of E™ such that each T(z) is a strongly compact conver subset of E*. Let
h: X — R be conver and continuous. Suppose that the set

Y={ye€X: sup[ inf Re(w,y—z)+h(y)— h(z)] >0}
reS(y) weT(y)

is open in X. Suppose further that there ezist a non-empty compact conver subset Xo
of X and a non-empty compact subset K of X such that for each y € X \ K, there
exists a point € co(Xo U {y}) N S(y) with inf,er(y) Re(w,y — ) + h(y) — h(z) > 0.
Then there ezists § € X such that

(¢) y € S(y) and

(it) there exists w € T(y) with Re(iw,§ — z) < h(zx) — h(§) for all z € S(3).

Proof: We divide the proof into two steps:
Step 1. There exists a point § € X such that j € S(§) and

sup [ inf Re(w,§ —z) + k() — h(z)] < 0.
zeS(y) wET(Y)

Suppose the contrary. Then for each y € X, either y & S(y) or there exists z € S(y)
such that infuer(y) Re(w,y — =) + h(y) — h(z) > O; thatis, y € S(y)ory € . If
y & S(y), then by Hahn-Banach separation theorem, there exists p € E~ such that
Re(p,y) — sup,cs(,) Re(p,z) > 0. For each y € X, set

7(y) := sup [ inf Re(w,y—z)+ h(y) - h(z)].
reS(y) weT(v)

Let Vo := {y € X|¥(y) > 0} = T and for each p € E~, set

Vo :={y € X : Re(p,y) — sup Re(p,z) >0}.
z€S(y)

Then X = Vo U Uyeg- V}. Since each V;, is open in X by Lemma 4.3.1 and V; is open in
X by hypothesis, {V5,V, : p € E*} is an open covering for X. Since X is paracompact,
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there is a continuous partition of unity {f, 3, : p € E~} for X subordinated to the open
cover {Vp,V,: p € E~}. Define¢: X x X - R by

é(z,y) = ,do(y)[wg;{y) Re(w.y — z) + h(y) — h(z)] + Spee-Bp(y) Re(p. y — z).

for each r,y € X. Then we have the following.
(1) For each fixed £ € X, the map

y+— inf Re(w,y—z)+ h(y) - h(z)

weT (y)

is lower semicontinuous on each non-empty compact subset of X by Lemma 4.3.15 and

therefore the map

y— ﬂo(y)[wg%{y) Re{w,y — z) + h(y) — h(z)]

is lower semicontinuous on each non-empty compact subset of X by Lemma 4.3.2 of

Section 4.3. Also for each fixed z € X,

Yy +— Eoce-Bpo(y)Re(p,y — z)

is continuous on X. Hence, for each fixed z € X, the map y — &(z,y) is lower
semicontinuous on each non-empty compact subset of X.

(2) For each A € F(X) and for each y € co(A), minzes d(z,y) < 0. Indeed, if

this were false, then for some A = {z,,---,z,} € F(X) and some y € co(A), say y =

i1 Aizi where Ay, --- A, > 0with %, \; =1, such that mini<i<n ¢(Zi,y) > 0. Then
foreachi=1,---,n, fo(y)[infuer(y) Re(w,y~z:)+h(y) —h(z:)]+Epee-B(y) Relp, y —
z;) > 0sothat 0 = d(y,y) = Bo(y)[infuer(y) Re(w, y— "%, Mizi)+h(y)—h(Z%, dizi)]+
Epee-Bply)Re(p,y— iz Xizi) 2 7y Ai(Bo(y)[infuer(y) Re(w, y—z:)+h(y)—h(z:)]+
Ypee-Bp(y)Re(p,y — z:)) > 0, which is a contradiction.

(3) By hypothesis, there exist a non-empty compact convex subset X, of X and a
non-empty compact subset K’ of X such that for each y € X \ K, there exists a point
z € co(Xo U {y}) N S(y) such that inf,er(y) Re{w,y — z) + h(y) — A(z) > 0. Thus
Bo(y)[infuer(y) Re(w, y—z)+h(y)—h(z)] > 0 whenever By(y) > 0. Also Re(p,y—z) > 0
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whenever 3,(y) > 0 for p € E=. Consequently, ¢(z,y) = Bo(y)[infyer(y) Re(w,y — z) +
h(y) = h(z)] +Zpee-Bp(y)Re (p. y — z) > 0.

Then o satisfies all hypotheses of Theorem 4.3.14. Hence by Theorem 4.3.14, there
exists a point § € A such that ¢(z,y) <0 forall z € X i.e.,

Boli)l inf | Re(w.§ —2) + h(3) - h(z)] + Tpes-B(d) Re(p.§ — ) SO (4.10)

forall z € X.
If Bo(7) > 0, then § € Vo = T so that v(g) > 0. Choose Z € S(j) C X such that

. P . N {€/)
oy Tl 9 = B RG) — HE) 2 = > 0

it follows that
Bo(9)[ inf Re(w,§— z) + h(y) — h(2)] > 0.
weT(3)

If B,(g) > 0 for some p € E~, then j € V, and hence

Re(p,j) > sup Re(p,z) > Re(p, )
z€5(3)

so that Re(p,y — £) > 0. Then note that
Bo(§)Re(p,§ — ) >0 whenever 8,(y) >0 for pe E™.
Since Fo(§) > 0 or 3,(y) > 0 for some p € E~, it follows that
o(%,9) = ﬁO(g)[wé’}fg, Re(w, § — 2) + h(§) — h(£)] + Spee-B,(§) Re(p,§ — £) > 0.

which contradicts (4.10). This contradiction proves Step 1.

Step 2. There exists a point w € T(y) such that
Re(w,y — z) + h(g) — h(z) < 0 for all z € S(g).

Note that for each fixed z € S(§), w — Re(w,§ — z) + h(§) — h(z) is convex and
continuous on T'(§) and for each fixed w € T(y), z — Re(w,y — z) + h(§) — h(z) is
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concave on S(7). Thus by Kneser’'s minimax theorem [73], i.e., by Theorem 3.2.1, we
have

i 3 - h(3) — h(z)] = max mi - h(j) — .
wrg;g);g%)[ﬁe(wy ) + h(g) — h(z)] xrgg‘;)wgg&)[&(w,y z) + h(§) — h(z)]

Hence

. . . < .
i, xrggé)[ﬁe(w,y z)+ h(g) —h(z)] <0 byStepl

Since T'(y) is compact, there exists w € T(§) such that

Re(w,§ —z)+ h(g) —h(z) <0 forall z € S(7).0

Note that if X is also bounded in Theorem 4.3.16 and the map S : X — 2¥ is, in
addition, lower semicontinuous, then the set ¥ in Theorem 4.3.16 is always open in X as

can be seen in the proof of the following:

Theorem 4.3.17 Let E be a locally convez Hausdorff topological vector space and
X be a non-empty paracompact conver and bounded subset of E. Let S : X — 2X
be continuous such that each S(z) is a non-empty compact conver subset of X and
T : X — 28" be upper semicontinuous from the relative topology of X to the strong
topology of E™ such that each T(z) is a strongly compact conver subset of E. Let
h : X — R be conver and continuous. Suppose further that there ezists a non-
empty compact conver subset Xo of X and a non-empty compact subset K of X
such that for each y € X \ K, there exists a point z € co(Xo U {y}) N S(y) with
inf,er(y) Re(w,y — ) + h(y) — h(z) > 0. Then there ezxists a point §j € X such that

(¢) § € S(§) and

(12) there exists a point w € T(§) with Re(w,§—z) < h(z)—h(F) for all z € S(F).

Proof: By virtue of Theorem 4.3.16, we need only show that the set

Y:={yeX: sup [ inf Re(w,y—z)+ h(y) — h(z)] > 0}
r€S(y) wET(Y)



is open in X. Indeed, let yo € X; then there exists o € S(yo) such that a :=
inf,eT(y) Re (w, yo — o) + h(yo) — h(zo) > 0. Let

W:={wekE: sup (w,:1 —2)| < %}-

51.22€X

Then W is a strongly open neighborhood of 0 in E* so that U; := T'(yo) + W is an
open neighborhood of T'(yo) in E*. Since T is upper semicontinuous at yg, there exists
an open neighborhood N} of yo in X such that T(y) C U, for all y € V;.

As the map r — inf,eT(y) Re(w, zo — =) + h(xo) — h(z) is continuous at zg, there

exists an open neighborhood V) of zg in X such that
. a
wé%{m) Re(w,zq — z) + h(zo) — h(z)]| < 5 for all z € V4.

Since 2o € V1 N S(yo) # 0 and S is lower semicontinuous at yg, there exists an open
neighborhood NV, of yo in X such that S(y)N V] # 0 for all y € N,.

Since the map y ~— inf,er(y) Re{w,y — yo) + A(y) — R(yo) is continuous at yo,

there exists an open neighborhood N3 of yg in X such that

inf Re(w.y — yo) + ~h(y) — h(yo)| < 2 for all y € Ns.
weT (yo) 6

Let No := Ny N N2 N N3. Then Vg is an open neighborhood of y, in X such that for

each y; € Ny, we have
(2) T(yh) CUL =T (yo) + W as y; € Ny;
(22) S(y31) N Vi # 0 as y; € N,; so we can choose any z; € S(y;) N Vi;
(222) |infuer(y) Re{w, y1 — yo) + A(y1) — h(yo)| < § as y1 € N3;

(2v) |infuer(yo) Re{w, zo — z1) + h(x0) — h(z1)| < & as z; € V.
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It follows that

infuer(y,) Re(w, y1 — z1) + h(yr) — h(zy)

2 influer(yo)+w) Re{w. yr — 1) + h(y1) — h(zi)  ( by (4)).

> infyer(yo) Re(w,y1 — 1) + h(y1) — h(z1) + infuew Re(w,y1 — 1)
> infueT(yo) Re(w,y1 — yo) + h(y1) — h(yo)

+ infueT(yo) Re(w, yo — zo) + h(yo) — h(zo)

+infuer(y) Re(w, 2o — 21) + h(z0) — A(z1)

+infyew Re(w,y, — x,)

>—S+a—-5—%=%>0 (by(i)and (iv));

therefore sup ¢ s(,,)[infuer(y) Re(w,y1 — x) + h(y1) — h(z)] > 0 as z; € S(y1). This

shows that y; € T for all y; € Nj so that ¥ is open in X. This proves the theorem. O

Theorem 4.3.17 generalizes a result of Shih-Tan-Kim ([92, Theorem 4] and [70, The-

orem| which is a special case of Theorem 11 in [100]) to non-compact setting.
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4.3.4 Generalized Quasi-Variational Inequalities for Strong Pseudo-Mono-

tone operators

In this section we shall first introduce strong pseudo-monotone operators. As applications
of strong pseudo-monotone operators, we shall obtain some general theorems on solutions
of the GQVI in locally convex Hausdorff topological vector spaces. We shall obtain exis-
tence theorems for GQVI on paracompact sets X where the set-valued operators T are
strong pseudo-monotone and are upper semicontinuous from co( A) to the weak*-topology
on E~ for each A € F(X).

We shall begin with the following:

Definition 4.3.18 Let E be a topological vector space, X be a non-empty subset of
EandT:X —2E . [fh: X — R, then T is said to be a strong h-pseudo-monotone
operator if for each continuous function § : X — [0,1], for each y € X and every net

{ya}aer in X converging to y with

limsup[f(yo)( inf Re(u,ya —y) + h(ya) — h(y))] <0
o u€T (ya)

we have
lim sup, [6(y) (infuer(ya) Re(t, Yo — ) + h(ya) — h(2))]
> [0(y)(infuer(y) Re(w.y — z) + h(y) — h(z))]
forallz € X.
T is said to be strong pseudo-monotone if T is strong h-pseudo-monotone with
h =0.

Note that a strong h-pseudo-monotone operator is stronger than our Definition 3.6.1
of h-pseudo-monotone operator. Indeed, by choosing & = 1 in the above definition, we
see that a strong h-pseudo-monotone operator is also an h-pseudo-monotone operator.

Thus every strong pseudo-monotone operator is also a pseudo-monotone operator.

Proposition 4.3.19 Let X be a non-empty subset of a topological vector space E. [f
T : X — E~ is monotone and continuous from the relative weak topology on X to the

weak™ topology on E~™, then T is strong pseudo-monotone.
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Proof: Let us consider any arbitrary continuous function § : X — [0,1]. Suppose
{ya}eer isanetin X and y € X with y, — y (and lim sup, [0(ya)(Re(T Yo, ya —y))] <
0). Then for any = € X and € > 0, there are 3,3, € [ with [0(y,)Re(Ty.y. — y)| < §
for all « > 8, and |0(ya)Re(Tya — Ty,y — z)| < § for all & > B,. Choose gy € ' with
Bo = Bi, B2. Thus for each a > 3,

= 0(ya)Re(T Yo, Yo — y) + 0(ya) Re(Tya,y — )

2 0(ya)Re(Ty, ya — y) + 0(ya) Re(Tya,y — z)

= 0(ya) Re(TY, Yo — y) + 0(ya) Re(Tyoa — Ty.y — z)
+0(ya)Re(Ty,y — )

> —5—5+0(y.)Re(Ty,y — z)

= —€+0(ys)Re(Ty.y — z).

0(ya) Re(Tyor Yo — 1')

Given v € T, choose any 8 € I such that 3 > v and 3 > §o. Then for each o > 3,
0(ya)Re(TYorYa — =) > —€ + 0(ya)Re(Ty,y — z) so that

SUP,> O(Ya ) RE(T Yo Yo —Z) 2 SUPL>p O(Ya)Re(TYar Yo — T)
> —€+5up,>s 0(ya)Re(Ty, y — z)
> —e+ limsup, (yo)Re(Ty,y — z)
= —e+0(y)Re(Ty,y — x).

Therefore inf,er sup,>., (yo) Re(T Yo, Yo — ) = —€ + 0(y)Re(Ty.y — z).
As ¢ > 0 is arbitrary,

lim sup 6(ya)Re(Tya.ya — ) > 0(y)Re(Ty,y — ).

Hence T is strong pseudo-monotone. )

But the converse is not true in general as can be seen in Example 3.2.11. In Example
3.2.11, we see that T is not monotone. But it is easy to show that T is strong pseudo-
monotone.

We shall now establish the following result:

Theorem 4.3.20 Let E be a locally conver Hausdorff topological vector space, X

be a non-empty paracompact conver subset of E and h : X — R be convexr. Let
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S : X — 2% be upper semicontinuous such that each S(z) is compact conver and
T : X — 2E° be strong h-pseudo-monotone and be upper semicontinuous from co( A)
to the weak™-topology on E* for each A € F(X) such that each T(z) is weak™-compact
convez. Suppose that the set

E={ye X : sup [ inf Re{w,y—z)+ h(y) — h(z)] > 0}
reS(y) w€T(v)

is open in X. Suppose further that there exists a non-empty compact subset K of X
and a point zo € X such that zo € KNS(y) and inf ,e1(y) Re(w, y—zo)+h(y)—h(zo) >
0 forally € X \ K. Then there exists j € K such that

(2) g € S(g) and

(22) there exists w € T(y) with Re(w,y — z) < h(z) — h(y) for all z € S(F).

Proof: We divide the proof into two steps:

Step 1. There exists a point § € X such that j € S(3) and

sup [ inf Re(w,j—z)+h(g)— h(z)] <0.
zes(y) weT)

Suppose the contrary. Then for each y € X, either y & S(y) or there exists r € S(y)
such that inf,er(y) Re(w.y — z) + h(y) — h(z) > 0; that is, y € S(y)ory € E. If
y & S(y), then by Hahn-Banach separation theorem, there exists p € E~ such that
Re(p,y) — sup,es(,) Re(p,z) > 0. For each y € X, set

7(y) == sup [ inf Re(w,y —z)+ h(y) — h(z)].
zeS(y) weT(y)

Let Vo := {y € X|v(y) > 0} = £ and for each p € E~, set

Vo :={y € X : Re(p,y) — sup Re(p,z) > 0}.
z€S(y)

Then X = VoUU,eg- Vp. Since each V, is open in X by Lemma 4.3.1 of Section 4.3 and
Vo is open in X by hypothesis, {Vp,V, : p € E=} is an open covering for X. Since X is
paracompact, thereis a continuous partition of unity {fo, 3, : p € E*} for X subordinated
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to the open cover {V;, V, : p € E~}. Note that for each A € F(X), h is continuous on
co(A) (see e.g. [87, Corollary 10.1.1, p.83]). Define ¢: X x X — R by

o(z,y) = .Bo(y)[wrgii,&) Re(w,y — z) + h(y) — h(z)] + Spee-Bp(y) Re(p, y — z)

for each z,y € X. Then we have the following.
(1) Since E is HausdorfF, for each A € F(X) and each fixed r € co(A), the map

warng? Re(w,y — z) + h(y) — h(z)

is lower semicontinuous on co(A) by Lemma 3.6.3 and the fact that 4 is continuous on

co(A) and therefore the map
y > Go(y)[ min Re(w,y — z) + h(y) — h(z)]

is lower semicontinuous on co(A) by Lemma 4.3.2 of Section 4.3. Also for each fixed
r€ X,
y — Lpee-B(y) Re(p,y — z)

is continuous on X. Hence, for each A € F(X) and each fixed z € co(A), the map
y +— @(z,y) is lower semicontinuous on co(A).

(2) For each A € F(X) and for each y € co(A), minges d(z,y) < 0. Indeed, if
this were false, then for some A = {z,---,z,} € F(X) and some y € co(A), say y =
Simy Az where A, - A, > 0with %, A; = 1, such that min<i<n ¢(i,y) > 0. Then

foreachi =1,---,n, Bo(y)[minger(y) Re(w,y—z:)+h(y)—h(z:)]+Epee-Bo(y) Re(p, y—
z;) > 0sothat0 = ¢(y,y ) Bo(y)[minyer(y) Re(w,y—35, Aizi)+h(y)—h(TE, Xiz:)]
+Epee-0p(y) RE(P’ =1 AiTi) 2 35y Ai(Bo(y)[minger(y) Re(w.y — z:) + h(y) -

h(z:)] +Epee-Bp Re(p, — z;)) > 0, which is a contradiction.
3) Suppose A€ F(X), z,y € co(A) and {ya}ser is a net in X converging to y with

dtz+(l —t)y,yo) <0 forall o€l andall te]|0,1].

Then for ¢ = 0 we have ¢(y,y,) <0 forall a €T, i.e., Bo(Yo ) [Minyer(ys) Re(w, ya —
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Y) + h(ya) — R(Y)] + EpeeBp(Ya)Re(p, yo — y) < 0 for all @ € T. Hence

lim sup, [Bo(yo )(minuer(ya) Re(w, Yo — y) + h(¥a) — h(y))]
+liminfo(Epee-Bp(ya) Re(p, yo — y))

< limsup, [Bo(¥a )(minyer(ya) Re(w, Yo — y) + A(ya) — A(y))
+Epee-Bp(Ya) Re(prya —y)] <0

Therefore lim sup, [fo(¥o )(minwer(ya) Re(w, yo — y) + A(yo) — h(y))] < 0.

Since T is strong h-pseudo-monotone, we have

lim sup, [Bo(¥a) (minyer(ya) Re(w, Yo — z) + A(ya) — h(z))]

. (4.11)
> Bo(y)(minyer(y) Re{w,y — z) + h(y) — h(z)).
Thus
lim supa[ﬂo(ya)(minweT(ya) Re('w’ Yo — 1:) + h(ya) — h(x))]
+Esee-Bp(y) Re(p,y — ) (4.12)

Z /-?O(y)(minweT(y) RC(IU,y - :L‘) + h(y) - h(.’L'))
+X,ee-Bp(y) Re(p,y — )

For t = 1 we have é(z.,y,) < 0forall a €T, ie,
ﬂo(ya)[wgi(go)Re(w,ya —z) + h(ya) — h(z)] + reeBp(Ya)Re(p.yo — ) <0

for all « € ['. Therefore

lim sup, [Go(ye ) (MiftueT (o) Re(w, va — 2) + h(ya) — h(2))]
+liminf, [SpGE‘ﬂp(ya)Re(pv Ya — x)]
< limsup, [Bo(yo ) (minwer(ya) Re(w, yo — ) + h(ya) — h(z))

+Eoee-Bp(ya)Re(p, yo — )]
<0.

Thus

lim sup, [Bo(¥o ) (Minyer(y,) Re(w, Yo — =) + h(ys) — h(z))]
+Eee-Bo(y) Re(p,y — z) (4.13)
<0.
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Hence by (4.12) and (4.13), we have ¢(z,y) <0.

(4) By hypothesis, there exists a non-empty compact (and therefore also closed) subset
K of X and a point g € X such that zo € KNS(y) and infyer(y) Re(w, y—zo) +h(y)—
h(zo) > 0 for each y € X \ A. Thus for each y € X \ K, Go(y)[infuwer(y) Re(w,y —
zo) + h(y) — h(z0)] > 0 whenever Bo(y) > 0 and Re(p,y — zo) > 0 whenever 3,(y) > 0
for p € E=. Consequently, ¢(zo,y) = Bo(y)[infuwer(y) Re(w,y — zo) + h(y) — h(zo)] +
Yoce-Bo(y)Re(p,y —zo) >0 forallye X\ K.

Then ¢ satisfies all hypotheses of Theorem 2.3.5. Hence by Theorem 2.3.5, there
exists a point § € K such that ¢(z,7) <0forall z € X;i.e.,

ﬂo(!?)[wg}{g) Re(w,§ — z) + h(§) — h(z)] + Zpep-Bp(§)Re(p.§ —z) <0 (4.14)

forall z € X.

Now, the rest of the proof of Step 1 is similar to the proof in Step 1 of Theorem
4.3.16. Thus Step 1 is proved.

Step 2. There exists a point @ € T'(§) such that

Re(,j — z) + h(§) — h(z) < 0 for all z € S(§).

Also the proof of Step 2 is similar to the proof of Step 2 of Theorem 4.3.16. Hence
there exists w € T'(y) such that Re(w,g —z) + h(g) — h(z) <0 forallz € S(j). O

If X is compact, we obtain the following immediate consequence of Theorem 4.3.20:

Theorem 4.3.21 Let E be a locally conver Hausdorff topological vector space. X be a
non-empty compact convez subset of E and h : X — R be convez. Let S : X — 2% be
upper semicontinuous such that each S(z) is closed convexr and T : X — 2E" be strong
h-pseudo-monotone and be upper semicontinuous from co(A) to the weak*-topology on
E* for each A € F(X) such that each T(z) is weak™-compact conver. Suppose that
the set

Y={ye X: sup[ inf Re(w,y—z)+h(y)— h(z)] >0}
res(y) w€T()

is open in X. Then there exists y € X such that
(z2) y € S(y) and
(22) there exists w € T(y) with Re(w,y — z) < h(z) — h(g) for all z € S(F).
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Note that if X is also bounded in Theorem 4.3.20, the map S : X — 2¥X is, in
addition, lower semicontinuous and for each y € £, T is upper semicontinuous at y in X,
then the set ¥ in Theorem 4.3.20 is always open in X as can be seen in the proof of the

following:

Theorem 4.3.22 Let E be a locally convex Hausdorff topological vector space, X
be a non-empty paracompact conver and bounded subset of E and h : X — R be
convez. Let S : X — 2X be continuous such that each S(z) is compact conver and
T : X — 2" be strong h-pseudo-monotone and be upper semicontinuous from co(A)
to the weak™-topology on E* for each A € F(X) such that each T(x) is weak™-compact
convezr. Suppose that for each y € £ = {y € X : sup,¢g,linfuer(y) Re(w,y — =) +
h(y) — h(z)] > 0}, T is upper semicontinuous at y from the relative topology on X
to the strong topology on E=. Suppose further that there ezists a non-empty compact
subset K of X and a point zo € X such that zo € K N S(y) and inf,e7(,) Re(w,y —
To) + h(y) — h(zo) > 0 for ally € X \ K. Then there exists § € K such that

(i) § € S(3) and

(22) there exists w € T(y) with Re(w,§ — z) < h(z) — h(F) for all z € S(3).

Proof: By virtue of Theorem 4.3.20, we need only show that the set

L:={yeX: sup [ inf Re{w,y—z)+ h(y)— k(z)] >0}
reS(y) weT(y)

is open in X. Indeed, let yo € X; then there exists o € S(yo) such that a :=
infueT(y) Re (w, yo — To) + h(yo) — h(zo) > 0.

Let W := {w € £~ :sup, _,ex [{w,21 — 22)] < 2}. Then W is a strongly open
neighborhood of 0 in £~ so that U, := T'(yo) + W is an open neighborhood of T'(yo) in
E=. Since T is upper semicontinuous at yo in X, there exists an open neighborhood N,
of yo in X such that T'(y) C U, for all y € N;.

Now, the rest of the proof is similar to the proof of Theorem 4.3.17. Hence by the
rest of the proof of Theorem 4.3.17, £ is open in X. This proves the theorem. a

If X is compact, we obtain the following immediate consequence of Theorem 4.3.22:
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Theorem 4.3.23 Let E be a locally conver Hausdorff topological vector space, X be
a non-empty compact conver subset of E and h : X — R be conver. Let S : X — 2¥
be continuous such that each S(z) is closed conver and T : X — 2&° be strong h-
pseudo-monotone and be upper semicontinuous from co(A) to the weak™-topology on
E™ for each A € F(X) such that each T(z) is weak™-compact convezr. Suppose that
for each y € ¥ = {y € X : sup,eg(ylinfuer(y) Re(w,y — =) + h(y) — h(z)] > 0}, T is
upper semicontinuous at y from the relative topology on X to the strong topology on

E=. Then there ezists § € X such that
(¢2) g € S(g) and
(22) there exists w € T(§) with Re(w,§ — z) < h(z) — h(§) for all z € S(3).
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4.3.5 Generalized Quasi-Variational Inequalities for Pseudo-Monotone

Operators

In this section we shall use Theorem 2.3.5 as a tool to obtain some general theorems
on solutions of the GQVI in locally convex Hausdorff topological vector spaces. We shall
obtain existence theorems for GQVI on paracompact sets X where the set-valued operators
T are pseudo-monotone (see Definition 3.6.1) and are upper semicontinuous from co(A)

to the weak™-topology on £~ for each A € F(X).

We shall now establish the following result:

Theorem 4.3.24 Let E be a locally convex Hausdorff topological vector space, X be
a non-empty paracompact conver and bounded subset of E and h : X — R be convex.
Let S : X — 2% be upper semicontinuous such that each S(z) is compact conver
and T : X — 2E° be h-pseudo-monotone and be upper semicontinuous from co(A) to
the weak™-topology on E~ for each A € F(X) such that each T(z) is weak™-compact
conver and T(X) is strongly bounded. Suppose that the set

E={ye X: sup [ inf Re(w,y—z)+ h(y)— h(z)] >0}
res(y) weTl)

is open in X. Suppose further that there ezists a non-empty compact subset K of X
and a point xo € X such that zo € KNS(y) and infer(y) Re(w, y—zo)+h(y)—h(zo) >
0 forally € X\ K. Then there ezxists j € K such that

(i) § € S(7) and

(22) there exists w € T(y) with Re(w,y — z) < h(z) — h(g) for all z € S(7).

Proof: We divide the proof into two steps:

Step 1. There exists a point § € X such that § € S(7) and

sup [ inf Re(w,§ —z)+ h(g) — h(z)] < 0.
zes(y) weT(3)

Suppose the contrary. Then for each y € X, either y € S(y) or there exists z € S(y)
such that inf,e7(y) Re(w,y — =) + h(y) — h(z) > O; thatis, y &€ S(y) ory € . If
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y € S(y). then by Hahn-Banach separation theorem, there exists p € E* such that
Re(p.y) — sup,es(,) Re(p, ) > 0. For each y € X, set

¥(y) :== sup [ inf Re(w,y — z) + h(y) — h(z)].
reS(y) weT(y)

Let Vo := {y € X|y(y) > 0} = ¥ and for each p € E~, set
Vo :={y € X : Re(p,y) — sup Re(p,z) > 0}.
z€S(y)

Then X = Vo UU,ecg- V;- Since each V, is open in X by Lemma 4.3.1 of Section 4.3 and
Vo is open in X by hypothesis, {V4,V, : p € E*} is an open covering for X. Since X is
paracompact, there is a continuous partition of unity {fo, 8, : p € E~} for X subordinated
to the open cover {Vo,V, : p € E~}. Note that for each A € F(X), h is continuous on
co(A) (see e.g. [87, Corollary 10.1.1, p.83]). Define ¢ : X x X — R by

o(z,y) = ﬂo(y)[wrgTi?y) Re(w,y — z) + h(y) — h(z)] + Zpee-Bp(y) Re(p,y — z)

for each z,y € X. Then we have the following.

(1) By following the same arguments as in (1) of the proof of Theorem 4.3.20, it
follows that for each A € F(X) and each fixed £ € co(A), the map y — o(zx,y) is
lower semicontinuous on co( A).

(2) For each A € F(X) and for each y € co(A), minges é(z,y) < 0. The proof of
this is similar to the proof of (2) of Theorem 4.3.20. Thus the conclusion follows.

(3) Suppose A € F(X), z,y € co(A) and {ya }aer is a netin X converging to y with
&tz + (1 —t)y,ya) <0 forall a € andall ¢e€[0,1]
Case 1: Fo(y) = 0.
Since fo is continuous and y, — y, we have Bo(y.) — Bo(y) = 0. Note that

Bo(ya) = 0 for each a € I'. Since T'(X) is strongly bounded and {y,}aer is a bounded
net, it follows that

limasup[ﬂo(ya)(wergi(ga) Re(w,ya — z) + h(ya) — h(z))] = 0. (4.15)
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Also
Bo(y)[ min Re(w y—z)+ h(y) — h(z)] =
Thus
lim sup, [Bo(¥e J(minuer(ya) Re{w, yo — =) + h(ya) ~ h(z))]
+Epee-Bp(y)Re(p, y — z)
= Epee-Bp(y)Re(p,y — z) by (4.15) (4.16)
= Bo(y)[minyer(y) Re(w,y —z) + h(y) — h(z)]
+Zpee-Bp(y) Re(p,y — ).
Fort =1 we have ¢(z,ys) < Oforall a €T, ie.,

50(.%)[ rr}l(n Re{w, yo — .’L’) + h(ya) — h(.’l:)] + Sp&E’ﬁp(ya)Re(pa Yo — 1') <0 (4.17)

for all « € I'. Therefore

lim sup, [Bo(Yo )(Minwer(y,) Re(w,ya — ) + h(ya) — h(z)))
+liminfa [Soe-Bp(ya) Re(p, yo — )]
< lim sup, [Bo(yo )(minuer(y.) Re{w, ya — z) + h(ya) — h(z))
+EpeEBp(Ya) Re(p, ya — )]
<0 by (4.17).
Thus

lim sup, [Bo(¥a ) (min,er(y,) Re(w, yo — ) + h(y.) — h(z))]
+Xsee-Bp(y) Re(p,y — z) < 0.

Hence by (4.16) and (4.18), we have ¢(z,y) < 0.

(4.18)

Case 2: Go(y) > 0.

Since fFy is continuous, Fo(y.) — Bo(y). Again since Fo(y) > 0, there exists A € T
such that Fo(y.) > 0 for all a > A.

Then for t = 0 we have ¢(y,y,) < Oforalia €T, i.e., Bo(ya)[mingyer(y.) Re(w, Yo —
Y) + h(ya) — R(y)] + Xpee-Bo(ya)Re(p,ya —y) < 0 for all « € T. Thus

lim sup,, [ﬂo(ya)(minweT(ya) Re(w, Yo — y) + h(ya) - h(y))

(4.19)
+Epee-Bp(Ya) Re(p,ya — y)] < 0.
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lim sup,, [Bo(¥e ) (Minyer(y,) Re(w, ya — y) + h(ya) — h(y))]

+liminfo[Soee+Bo(yYa) Re(p, Yo — )]

< limsup, [Bo(Yo )(Minwer(ya) Re(w, ya — y) + h(ya) — A(y))

+Sp€E‘ﬂp(ya)Re(P-, Yo —y)] <0 by (419)
Since liminf, [Y e+ Bp(Ya ) Re(p, Yo — y)] = 0, we have

lim sup, [Bo(Yo )(Minuwer(ya) Re(w, ya — ¥) + h(ya) — h(y))]
<O0.

Since Fo(yo) > 0 for all a > A, it follows that

Bo(y) lim sup, [minyer(ya) Re(w,ya —y) + h(ya) — A(y))]
= lim sup, [Bo(ya)(minueT(ya) Re(w, Yo — y) + h(ya) — h(y))]-

Since Bo(y) > 0, by (4.20) and (4.21) we have

lim sup] min )Re(w,ya —y) + h(ya) — h(y)] < 0.

o wET (ya

Since T is h-pseudo-monotone, we have

lim sup, [minuer(ya) Re(w, ya — ) + h(ya) — h(z)]
2 minger(y) Re(w,y — z) + k(y) — h(z).

Since Bo(y) > 0, we have

Ho(y)[lim sup,, (minyer(y,) Re{w.ya — 2) + h(ya) — h(z))]
2 Bo(y)[minger(y) Re(w,y — z) + h(y) — h(z)].
Thus
Bo(y)[lim sup, (minweT(ya) Re(w,ya — z) + h(ya) — h(z))]
+Xpes-Bp(y) Re(p,y — z)
2 Bo(y)[minuer(y) Re{w,y — z) + h(y) — h(z)]
+Xpee-Bp(y) Re(p, y — z).
For t =1 we also have ¢(z,y,) < 0 foralla €T, ie.,
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(4.20)

(4.21)

ﬂo(ya)[wg%,i(ga) Re(w7 Yo — x) + h(yor) - h(l’)] + EpeE‘ﬂp(ya)Re<pa Yo — .‘L‘) <0
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for all @ € I'. Therefore

0 2 limsup,[Bo(ya)(minyer(ya) Re(w,ya — ) + A(ya) — h(z))
+Xpee3p(ya) Re(p, Yo — 7))
2 lim sup, [fo(ye ) (minuer(ya) Re(w, ya — ) + h(ya) — h(z))]
+ lim info[Eee-Bo(ya ) Re(P, yo — )]
= Bo(y)[lim sup, (minyer(y,) Re{w, Yo — ) + h(ya) — h(z))]
+Xpee-Bp(y)Re(p. y — z).

(4.25)

Consequently, by (4.24) and (4.25), we have ¢(z,y) < 0.

Now, the rest of the proof of Step 1 is similar to the proofs in Step 1 of Theorems
4.3.20 and 4.3.16. Thus Step 1 is proved.

Step 2. There exists a point w € T'(§) such that

Re(w,y —z) + h(y) — h(z) < 0 forall z € S(7).

Also the proof of Step 2 is similar to the proof of Step 2 of Theorem 4.3.16. Hence
there exists w € T(7) such that

Re(w,§ —z) + h(§) — h(z) <0 forall z € S(3).0

If X is compact, we obtain the following immediate consequence of Theorem 4.3.24:

Theorem 4.3.25 Let E be a locally convez Hausdor(f topological vector space, X be
a non-empty compact conver subset of E and h : X — R be convezr. Let S : X — 2X
be upper semicontinuous such that each S(z) is closed conver and T : X — 2E° be
h-pseudo-monotone and be upper semicontinuous from co(A) to the weak™-topology
on E* for each A € F(X) such that each T(z) is weak™-compact conver and T(X) is
strongly bounded. Suppose that the set

E={yeX: sup [ inf Re(w,y—z)+h(y)—h(z)] >0}
reS(y) w€T(v)

s open in X.
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Then there exists y € X such that
(z) y € S(g) and
(22) there erists w € T(j) with Re(w,§ — z) < h(z) — h(§) for all x € S(j).

Note that if the map S : X — 2% is, in addition, lower semicontinuous and for each
y € ¥, T is upper semicontinuous at y in X, then the set £ in Theorem 4.3.24 is always

open in X as can be seen in the proof of the following:

Theorem 4.3.26 Let E be a locally convexr Hausdorff topological vector space, X
be a non-empty paracompact conver and bounded subset of E and h : X — R be
conver. Let S : X — 2% be continuous such that each S(z) is compact convezr and
T : X — 2E° be h-pseudo-monotone and be upper semicontinuous from co(A) to
the weak™-topology on E* for each A € F(X) such that each T(z) is weak™-compact
conver and T(X) is strongly bounded. Suppose that for each y € £ = {y € X :
SUP.es(y [Infuer(y) Re(w,y — z) + h(y) — h(z)] > 0}, T is upper semicontinuous at
y from the relative topology on X to the strong topology on E*. Suppose further
that there erists a non-empty compact subset K of X and a point zo € X such that
o € KN S(y) and infyer(y) Re(w,y — zo) + h(y) — h(zo) > 0 forall y € X\ K. Then
there exists § € N such that

(¢) g € 5(y) and

(12) there exists w € T(§) with Re(w,§ — z) < h(x) — h(§) for all x € S(§).

Proof: By virtue of Theorem 4.3.24, we need only show that the set

Y:={ye€X: sup [ inf Re(w,y—z)+h(y)—h(z)] >0}
z€S(y) wET(Y)

is open in X.
Now, following the same arguments as in the proofs of Theorems 4.3.22 and 4.3.17 we
can similarly show that the set ¥ is open in X. Hence by Theorem 4.3.24 the conclusion

follows. m]

If X is compact, we obtain the following immediate consequence of Theorem 4.3.26:
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Theorem 4.3.27 Let E be a locally conver Hausdorff topological vector space, X be
a non-empty compact convezr subset of E and h : X — R be convez. Let S : X — 2%
be continuous such that each S(z) is closed conver and T : X — 2&° be h-pseudo-
monotone and be upper semicontinuous from co(A) to the weak™-topology on E= for
each A € F(X) such that each T(z) is weak™-compact conver and T(X) is strongly
bounded. Suppose that for each y € T = {y € X : sup,¢s(y)[infuer(y) Re(w,y — z) +
h(y) — h(z)] > 0}, T is upper semicontinuous at y from the relative topology on X to
the strong topology on E~.

Then there exists y € X such that
(¢) g € S(y) and
(¢:2) there erists w € T(j) with Re(w,y — z) < h(z) — h(§) for all z € S(7).
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4.4 Generalized Bi-Quasi-Variational Inequalities

Let £ and F’ be Hausdorff topological vector spaces over the field ®,let ( , }: FxE — ¢
be a bilinear functional, and let X be a non-empty subset of E. Given a set-valued map
S : X — 2% and two set-valued maps M,T : X — 2F, the generalized bi-quasi-
variational inequality (GBQVI) problem is to find a point § € X and a point @ € T'(3)
such that § € S(¥) and Re(f —w,§ — z) < 0 for all z € S(3) and for all f € M(§) or
to find a point § € X, a point w € T(§) and a point f € M(y) such that y € S(y) and
Re(f — ,§ — z) < 0 for all z € S(g). The generalized bi-quasi-variational inequality
was introduced first by Shih and Tan [100] in 1989.

In this section we shall obtain some results on existence theorems for generalized bi-
quasi-variational inequalities in locally convex topological vector spaces on compact sets.

Throughout Section 4.4, ® denotes either the real field R or the complex field C. For
other notations and preliminary concepts we shall refer to Section 3.3.

We now state the following result due to Yen in [112, pp.477-481] which is a general-
ization of Ky Fan’s minimax inequality in [48, Theorem 1] and which can be easily derived
from Theorem 4.3.3 (i.e., Theorem 1 of Bae-Kim-Tan in [6]):

Theorem 4.4.1 Let E be a topological vector space, and X be a non-empty compact
conver subset of E. Suppose that f.g: X x X — R are two mappings satisfying the
following conditions:

(2) f(z,y) < g(z,y) for allz,y € X and g(z,z) <0 forall z € X;

(i2) for each fired x € X, the map y — f(z,y) is lower semicontinuous on X;

(i22) for each fired y € X, the map = — g(z,y) is quasi-concave on X:
Then there exists a point y € X such that f(z,7) <0 for all z € X.
We remark here that in the original version of Theorem 4.4.1 as stated in [112], the

topological vector space E is assumed to be Hausdorff.

The following definition generalizes Definition 3.2.5(b):
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Definition 4.4.2 Let E be a topological vector space over ®, F be a vector space over
® and X be a non-empty subset of E. Let ( , ): F x E — ® be a bilinear functional
and M : X — 2F be a map. Then M is said to be upper hemi-continuous on X if
and only if for each p € E, the function f,: X — R U {+co} defined by

fo(2) = sup Re(u,p) foreach :€ X,
wEM(2)

is upper semicontinuous on X (if and only if for each p € E, the function g, : X —
R U {—oc} defined by

gp(z) = uel.]\:/llt;:) Re(u,p) for each :ze€ X,

is lower semicontinuous on X ).

Note that the notion of upper hemi-continuity along line segments is independent of
the topology 7 on E as long as 7 is Hausdorff and the vector space F over ® remains
unchanged. Note also that if M, T : X — 2F are upper hemi-continuous on X and

a € R, then M + T and aT are also upper hemi-continuous on X.

The following proposition generalizes Proposition 3.2.8:

Proposition 4.4.3 Let E be a topological vector space over ®, F be a vector space
over @ and X be a non-empty subset of E. Let ( . ) : F x E — ® be a bilinear
functional such that for each fizredp € E, u — (u,p) is o(F, E)-continuous on F when
F is equipped with the o(F, E)-topology. Let M : X — 2F be upper semicontinuous
from the relative topology on X to the weak topology o(F,E) on F. Then M is upper

hemi-continuous on X.
Proof: For each p € E, define f,: X — RU {+0c0} by

fo(z) = sup Re(u,p) foreach :ze X.
uEM(z)

Fix any p € E. Let A € R be given and let A = {z € X : f,(z) < A}. Take
any zo € A. Then fy(20) = sup,eps(s,) Re(u,p) < A. Choose any € > 0 such that
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fo(20) < A—€e< A Let h: F — R be defined by h(u) = Re(u,p) for each u € F. By
hypothesis h is o(F, E')-continuous on F. Since h(u) < A —e < X for all u € M(z),
M(z0) C h™'(—o00, A — €) which is o(F, E)-open in F.

Since M is upper semicontinuous at zg, there exists an open neighborhood V., of =,
in X such that M(z) C h7!(—o0,A —¢) for all z € N,,. Thus h(u) < A — € for all
u € M(z) and for all = € N;,. Hence sup,ep(z) (u) S A —e < Aforall z € N, ie,
fo(2) = sup,enrs) Re(u,p) < A —e < Aforall z € N,,. Therefore N;, C A so that
Ais open in X. Consequently, f, is upper semicontinuous on X. Hence M is upper

hemi-continuous on X. o

Note that the converse of Proposition 4.4.3 is not true as can be seen in Example
3.2.9 which is Example 2.3 in [105, p.392]:

We shall now establish the following result:

Lemma 4.4.4 Let E be a topological vector space over ®, X be a non-empty compact
subset of E and F' be a Hausdorff topological vector space over ®. Let{ , }): FxE —
® be a bilinear functional and T : X — 2F be an upper semicontinuous map such
that each T(x) is compact. Let M be a non-empty compact subset of F, o € X and
h: X — R be continuous. Define g : X — R by g(y) = [infrerrinfuer(y) Re(f —
w,y — zo)] + h(y) for each y € X. Suppose that ( . ) is continuous on the (compact)
subset [M —U,ex T(y)] x X of F x E. Then g is lower semicontinuous on X.

Proof: Let A € R be given, and let Ay = {y € X : g(y) < A}. Suppose that
{Ya}taer is a netin Ay such that y, — yo € X. Then g(yo) = [infrerr infuer(ya) Re(f —
W, Yo — o)) + ~(ya) < A for each a € T'. For each o € T, since the sets M and T(y,)
are compact, by continuity of ( , ), we can choose f, € M and w, € T(y,) such that
Re( fo —Way Ya—Z0) +h(Ya) = [infrerr infuer(ya) Re(f —w, ya — Zo)] +h(¥a) = g(ya) <
A. Since T is upper semicontinuous and each T'(z) is compact, T(X) = U,ex T(y)
is compact. Thus there are subnets {f,/}orer of {fatoer and {war}arer of {wa}aer
and fo € M, wo € Uyex T'(y) such that f,, — fo and wyr — wo. As T is upper

semicontinuous with closed values, T has a closed graph in X x F and hence wo € T(yo).



Since ( , ) is continuous on the compact set [M — U,cx T'(y)] x X and h is continuous
on X, we have g(yo) = [infrerr infuer(y,) Re(f —w,yo— o)+ A(yo) < Re(fo—wo, yo—
o) + h(yo) = limu[Re( for — War, Yar — Zo) + h(Yar)] = limar g(yar) < A Thus yo € Ay
and hence A, is closed in the relative topology on X . Therefore g is lower semicontinuous

on X. a

When A =0 and M = {0}, replacing T by —T', Lemma 4.4.4 reduces to the Lemma
2 of Shih and Tan in [100, pp.70-71].

The following result generalizes Lemma 3.2.20:

Lemma 4.4.5 Let E be a topological vector space over ®, F be a vector space over ®
and X be a non-empty conver subset of E. Let ( , ) : F x E — ® be a bilinear func-
tional. Equip F with the o(F, E)-topology. Let D be a non-empty o(F, E)-compact
subset of F, h : X — R be conver and M : X — 2F be upper hemi-continuous along
line segments in X. Suppose j € X is such that infsepr(zyinfyep Re(f — g,y — z) <
h(z) — h(g) for all z € X. Then

felgt;g)glélg Re(f —g.y—z) < h(z)—h(g) forall ze€X.

Proof: Suppose that infse,(r)inf,ep Re(f—g,9—z) < h(z)—h(g) forall ze X.
Fix an arbitrary z € X. Foreacht € [0,1],let z, =tz + (1 — ¢t)j = § + t(x — 7). Then

sy € X as X is convex. Thus for each ¢ € (0, 1],
t-infrear(z)infgep Re(f — g,§ —z) = infjepr(z)infgep Re(f — 9,9 — =)
< h(ze) — h(3)
< t(h(z) — A(9)).
as h is convex so that infear(z,) infyep Re(f — 9,9 — ) < h(x) — h(g) and hence for all
t € (0,1], infremr() Re(f,§ — z) < h(z) — h(§) — infep Re(g.z — §).
Let L={z:t€[0,1]} and A ={z € L :infreps(zy Re(f,§ — ) < h(z) — h(g) —
infgep Re(g,z — §)}. Since M is upper hemi-continuous on L, z, € A for all ¢ € (0, 1]

and zy — g as t — 0%, we have § € A so that

. . a _ < _ ~ — b4 . —_ 1 .
felﬁf(g) Re(f.§ — z) < h(z) — h(3) inf Re(g,z — §)
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It follows that infsear(z) infyep Re(f —g,9 — ) < h(z) — k(7). Since = € X is arbitrary,
we have infsear(;) infoep Re(f — g,9 — z) < h(z) — h(g) forall z € X. a
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4.4.1 Generalized Bi-Quasi-Variational Inequalities in Locally Convex

Topological Vector Spaces

We shall now establish the following result:

Theorem 4.4.6 Let E be a locally convexr Hausdor[f topological vector space over ®,
X be a non-empty compact convez subset of E and F be a Hausdor(f topological vector
space over ®. Let ( , ): F x E — ® be a bilinear functional which is continuous on
compact subsets of F' x X. Suppose that

(a) S : X — 2% is an upper semicontinuous map such that each S(z) is closed
and conver;

(6) T : X — 2F is upper semicontinuous such that each T(z) is compact convez:

(¢) h: X — R is conver and continuous;

(d) M : X — 2F is upper hemi-continuous along line segments in X and semi-
monotone (with respect to { , )) such that each M(z) is compact conver and

(e) the set

E={ye X :Izgg) feihn[t;x) wér;_t('y) Re(f —w,y — z) + h(y) — h(z) > 0} is open in X.

Then there ezists a point y € X such that

(1) § € 5(y) and

(22) there exist a point f € M(y) and a point w € T(y) with Re(f —w,y—z) <
h(z) — h(g) for all z € S(7).
Moreover, if S(z) = X for all z € X, E is not required to be locally conver and if
T =0, the continuity assumption on ( , ) can be weakened to the assumption that

for each f € F, the map x — (f,z) is continuous on X.

Proof: We divide the proof into three steps:

Step 1. There exists a point § € X such that § € S(j) and

inf inf Re(f —w,§—z) + h(§) — h(z)] <0.
Iség%)[felﬂnﬂmgm e(f —w,§—z)+h(§) — h(z)] <
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Suppose the contrary. Then for each y € X, either y & S(y) or there exists z € S(y)
such that inf feprs(z) infuer(y) Re(f —w,y—z) + h(y) —h(z) > 0; that is, foreach y € X,
either y & S(y) ory € . If y & S(y), then by Hahn-Banach separation theorem, there
exists p € £~ such that

Re(p,y) — sup Re(p,z) > 0.
z€S(y)

For each p € E~, let
V(p) = {y € X : Re(p,y) — sup Re(p,z) >0}.
z€S(y)

Then V(p) is open by Lemma 4.3.1. Since X = T U Upee- V(p), by compactness
of X, there exist py,p2,---,pn € E~ such that X = SUU, V(p;). For simplicity
of notations, let V5 := ¥ and V; = V(p;) for i = 1,2,---,n. Let {Bo,B1, -, 5}
be a continuous partition of unity on X subordinated to the covering {V5,V},---,V,}.
Then By, By, - - -, Bn are continuous non-negative real-valued functions on X such that j3;
vanishes on X \ V;, for each ¢ = 0,1, --,n and Y%, B:(z) = 1 for all z € X. Define
¢,p: X xX = R by

d(z,y) = [,:G‘B,f(z, wg;{y) Re(f —w,y — )+ h(y z)] + Zﬂ. )Re(pi,y — ).

and

¥(z,y) = Jo(y)[ inf inf Re(g —w,y—z)+h(y) — h(z)] + Zn:ﬂf(y)Re(pi,y - ),

g€EM(y) weT(y) i=1

for each z,y € X. Then we have the following.

(1) ¥(z,z)=0forall z € X.

(2) Since M is semi-monotone, for each z,y € X we have infrear(z) Re(f,y — z)
< infgem(y) Re(g,y —z). Then infrepr(z) Re(f —w,y — ) < infgerr(y) Re(g —w,y — )
forall w € T(y). Hence infsepr(z) infuer(y) Re(f—w,y—z) < infgenr(y) infuer(y) Re(g—
w,y — z). Therefore ¢(z,y) < ¥(z,y) forall z,y € X.

(3) For each fixed z € X, the map

nyé‘[vlt(r)wéI%(y)Re(f w,y — z) + h(y) — h(z)
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is lower semicontinuous on X by Lemma 4.4.4; therefore the map

yr— ﬁo(y)[felﬁf(r)wég{y) Re(f —w,y — z) + h(y) — h(z)]

is lower semicontinuous on X by Lemma 4.3.2. Hence for each fixed z € X, the map
y — ¢(z,y) is lower semicontinuous on X.
(4) Clearly, for each fixed y € X, the map = + ¥(z,y) is quasi-concave on X.
Then ¢ and ¢ satisfy all the hypotheses of Theorem 4.4.1. Thus by Theorem 4.4.1,
there exists § € X such that ¢(z,5) <0 forall z € X, i.e.,
B, Jaf, 88, ReCS =0, =2) + h(G) = R+ 2 Bi0)Re(pi, 7 —2) <0 (426

forall z € X.
Choose £ € S(y) such that

felzlvltf(i) wg%'i(‘g) Re(f —w,y — &) + h(§) — h(Z) > 0 whenever F4(7) > 0:

it follows that

50(y)[f61£[t;i) wégll'fg) Re(f —w,j — &) + h(g) — h(2)] > 0 whenever 3y(3) > 0.

If: € {1,---,n} is such that 3;(j) > 0, then § € V; = V(p;) and hence

Re(p;,§) > sup Re(pi,z) > Re(p;, )
T€S(Y)

so that Re(p;,j — ) > 0. Then note that
Bi(§)Re(pi, § — £) > 0 whenever 3;(§) >0 fori=1,---,n.

Since Bi(y) > 0 for at least one i € {0,1,---,n}, it follows that

8ol ok, Re(f = w.d = 2) + K@) = b)) + 3 4i0) Re(pi, i = &) >0,

which contradicts (4.26). This contradiction proves Step 1.

Step 2.

. . o d— ) < () — (s o
felf\%lt;ﬁ)wé]%t(.g) Re(f —w,g —z) < h(z) — h(g) for all z € S(3)



Indeed, from Step 1, § € S(y) which is a convex subset of X, and
inf inf Re(f —w.y—2z) < h(z)—h(g) forall S(y). 4.27
P, e(f —w.§ —z) < h(z) —h(g) forall ze S(g) (4.27)
Hence by Lemma 4.4.5, we have

inf_inf —w,§ —z) < h(z) — h(j 7).
feltelt;g})wé%(j)Re(f w,§ —z) < h(z) —h(g) forall ze S(3)

Step 3. There exist a point f € M(y) and a point w € T'(y) with Re(f —w,y—z) <
h(z) — h(g) forall z € S(y).

From Step 2 we have

inf inf Re(f—w,j—z)+h(j)—h(z)] <0;
(230 rdiha Gy et 8 =)+ R~ R

inf Re(f —w.,§— h(7) — h(z) < 0. 4.28
:lel&,(f.w)eiﬂg)xw) e(f —w,§ —z)+ h(g) — h(z) <0, (4.28)

where M(j) x T'(y) is a compact convex subset of the Hausdorff topological vector space

F x F and S(3) is a convex subset of X.

Let Q = M(g) x T(y) and the map g : S(y) x @ — R be defined by g(z.q) =
g9(z,(f,w)) = Re(f —w,y —zx) + h(g) — h(z) for each =z € S(j) and each ¢ = (f,w) €
Q@ = M(g) x T(y). Note that for each fixed z € S(g), the map (f,w) — g(z, (f,w))
is lower semicontinuous from the relative product topology on Q to R and also convex
on Q. Clearly, for each fixed ¢ = (f,w) € @, the map z — g(z,q) = g(z,(f,w)) is
concave on S(y). Then by Theorem 3.2.1 we have

min su (z,(f,w)) = sup min g(z,(f,w)).
(Fin, sup g (f,w)) Iesg)(m)eqy( (f, w))

Thus

min_ sup Re(f —w,y —z)+ h(§) — h(z) <0, by (4.28).
(fw)€Q res(y)

Since @ = M(y) x T(g) is compact, there exists (f,zb) € M(y) x T(g) such that

sup Re(f — 1,5 —z) + h(§) — h(z) < 0.
€S(F)
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Therefore
Re(f —i,§ — ) < h(z) — h(§) forall z € S(3).

In other words, there exist a point f € M(y) and a point & € T'(y) with

Re(f —w,§ — z) < h(z) — h(§) forall z e S(3).

Next we note from the above proof that the requirement that E be locally convex is
needed when and only when the separation theorem is applied to the case y & S(y). Thus
if $: X — 2% is the constant map S(z) = X for all z € X, E is not required to be
locally convex.

Finally, if T = 0, in order to show that for each z € X, y —— ¢(z,y) is lower
semicontinuous, Lemma 4.4.4 is no longer needed and the weaker continuity assumption
on ( , ) thatfor each f € F, the map z — (f, z) is continuous on X is sufficient. This

completes the proof. m]

Theorem 4.4.7 Let E be a locally convex Hausdorff topological vector space over @,
X be a non-empty compact convezx subset of E and F be a vector space over ®. Let
(, ):FxE — ® be a bilinear functional such that ( , ) separates points in F and
for each f € F, the map x — (f,x) is continuous on X. Equip F with the strong
topology 6(F, E). Suppose that

(a) S: X — 2% is a continuous map such that each S(z) is closed and convez:

(6) T : X — 2F is upper semicontinuous such that each T(zx) is strongly compact
and conver;

(¢) h: X = R is convexr and continuous;

(d) M : X — 2F is upper hemi-continuous along line segments in X and semi-
monotone (with respect to { , )) such that each M(z) is 6(F, E)-compact convez; also,
foreachy € £ = {y € X : sup,cg(,[infrerr(z)infuer(y) Re(f—w,y—z)+h(y)—h(z)] >
0}, M is upper semicontinuous at some point  in S(y) with infrepr(s)infoery) Re
(f —w,y —z) + h(y) — h(z) > 0.

Then there ezists a point §y € X such that
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(¢2) y € S(y) and

(i) there ezist a point f € M(§) and a point W € T(§) with Re(f — w.j — z) <
h(z) — h(y) for all z € S(y).
Moreover, if S(z) = X for all x € X, E is not required to be locally conver.

Proof: As (, ) : F x E — ® is a bilinear functional such that for each f € F,
the map z +—— (f, z) is continuous on X and as F is equipped with the strong topology
§(F, E), it is easy to see that ( , ) is continuous on compact subsets of F' x X. Thus
by Theorem 4.4.6, it suffices to show that the set

S={yeX: inf inf —w.y — h(y) — h
{ye ngg)[fé‘g(r)wér}(y)Re(f w.y — z) + h(y) — k()] > 0}

is open in X. Indeed, let yo € T; then by the last part of the hypothesis (d), M is upper
semicontinuous at some point o in S(yo) with infrear(z,) infuer(ye) Re{f —w. yo — 2o) +
h(yo) — h(zo) > 0. Let

= f inf Re(f—w,yo— h — h(zo).
* 7 el odflny VS 700 = 20) + Rlyo) = (o)

Then a > 0. Also let

W:={weF: sup (w,z; —z)| < af6}.

21,52€X
Then W is an open neighborhood of 0 in F so that {/; := T'(yo) + W is an open
neighborhood of T'(yo) in F. Since T is upper semicontinuous at yo, there exists an open
neighborhood N, of yo in X such that T'(y) C U forall y € V;.

Let Uz := M(zo) + W, then U, is an open neighborhood of M (zy) in F. Since M is
upper semicontinuous at o, there exists an open neighborhood V; of zo in X such that
M(z) C U; forall z € V.

As the map z — infrenr(z,) infuwer(yo) Re(f —w, zo—z) +h(z0) — h(z) is continuous
at g, there exists an open neighborhood V; of x4 in X such that

fe}g}(t'zo)welg(t;’o) Re(f —w,zq — z) + h(z0) — h(z)| < /6 forall z € V;.



150

Let Vo := ViNV3; then V5 is an open neighborhood of zg in X. Since zo € VoNS(yo) # 0
and S is lower semicontinuous at yo, there exists an open neighborhood N, of yo in X
such that S(y) N Vp # 0 for all y € N,.

Since the map y —— inf rear(zo) infuer(yo) Re(f — w.y — yo) + A(y) — h(yo) is con-

tinuous at yo, there exists an open neighborhood N3 of yo in X such that

f f R — h(y) — h f Ns.
Ife}\'t}(zo)wel%(yo) e(f —w,y —yo) + h(y) — h(y)| < a/6 forall ye N;

Let Np := NN NaN N3. Then Vg is an open neighborhood of y, in X such that for each
y1 € Ny, we have
Ty) CUy=T(yo) + W as y1 € Vy;
i) S(z1) N Vo # 0 as y; € Na; so we can choose any z; € S(y;) N Vo;

w) M(z,) CU = M(zo) + W as z, € Vi;

(2)
(2
(112) |inf fenr(zo) infuweT(yo) Re(f — w, 41 — yo) + A(y1) — h(y0)| < /6 as y; € N3;
(
(v) | inf fepr(zo) infweT(yo) Re(f — w,z0 — 1) + h(z0) — h(z1)| < a/6 as z, € V5.

It follows that

infrerr(z,) infuwer(y) Re(f —w,y1 — x1) + h(y1) — h(z1)

2 infiren(zo)+w] Inffwer(o)+w) Be(f —w,y1 — 1) + h(y1) — h(z1) ( by (¢) and (iv)),

2 inf fent(zo) infuwerve) Re(f — w,y1 — 1) + h(y1) — h(z1)
+inf e infuew Re(f — w,y1 — z4)

2 inf fer(zo) INfuweT (o) Re(S — w. 31 —yo) + h(y1) — h(yo)

+inf fenr(zo) Infuwer(yo) Re(f — w, %0 — 7o) + h(yo) — h(z0)

+inf rerr(zo) infwer(yo) Re(f — w,zo — ) + A(z0) — h(z1)
+infrew Re(f,y1 — 1) + infuew Re(—w,y1 — z4)

> —af6+a—af6—a/6—a/6=c/3>0 (by (i) and (v));

therefore

f inf R ok
xes&)[!elllvll(r)wellg(yl) e{f —w,y1 — z) + h(y1) — h(z)] > 0

as 1 € S(y1). This shows that y; € T for all y, € Ny, so that ¥ is open in X. This

proves the theorem. m]
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4.4.2 Generalized Bi-Quasi-Variational Inequalitiesin Non-Compact Set-
tings

In this section, we shall apply Theorem 4.4.7 together with the concept of escaping
sequences to obtain an existence theorem on non-compact generalized bi-quasi-variational

inequalities for semi-monotone operators.

Let £ be a topological vector space over ®, F' be a vector space over ® and ( , ):
F x E — ® be a bilinear functional.

If X isaconein Eand (, ): F x E — & is a bilinear functional, then X = {w €
F : Re(w,r) > 0forall r € X} is also a cone in F, called the dual cone of X (with

respect to the bilinear functional { , )).

We shall now establish the following result:

Theorem 4.4.8 Let E be a locally convex Hausdorff topological vector space over ®,
X be a non-empty (conver) subset of E such that X = U2,C,, where {Cp}32, is
an increasing sequence of non-emptly compact convez subsets of X and F be a vector
space over ®. Let ( , ): Fx E — ® be a bilinear functional such that ( , ) separates
points in F' and for each f € F, the map = — (f,z) is continuous on X. Equip F
with the strong topology 6(F, E). Suppose that

(1) S: X — 2% is a continuous map such that

(a) for each x € X,S(z) is a closed conver subset of X and

(b) for each n € N, S(z) C C, for all z € Cy;

2) T : X — 2F is upper semicontinuous such that each T(z) is 6(F. E)-compact
convez;

(3) h: X — R is convez and continvous;

(4) M : X — 2F is upper hemi-continuous along line segments in X and semi-
monotone (with respectto ( , )) such that each M (z) is 6(F, E)-compact convez; also,
foreachy € £ = {y € X : sup,¢g([infrerr(z) infuer(y) Re{f—w,y—z)+h(y)—h(z)] >
0}, M is upper semicontinuous at some point x in S(y) with inf jepr(r) infyer(y) Re(f—

w,y — z) + h(y) — h(z) > 0 and M is upper semicontinuous on C, for each n € N;



(5) for each sequence {y,}2, in X, with y, € C, for each n € N, which is
escaping from X relative to {Cr}5%,, either there ezists ng € N such that yny & S(Yn,)
or there exist no € N and zp, € S(yn,) such that mingeyr(y, ) Minuwer(y,,) Re(f —
W, Yng — Tng) + A(Yng) — A(Tn,) > 0.
Then there exists a point § € X such that

(z2) y € S(y) and

(i7) there exist a point f € M(§j) and a point & € T(§) with

Re(f —w,§ —z) < h(z) — h(F) for all z € S(3).

Moreover, if S(z) = X for all z € X, E is not required to be locally convez.

Proof: Fix an arbitrary n € N. Note that C, is a non-empty compact convex subset
of E. Define S, : C, = 2°7, h, : C, = R and M,,,T, : C, — 2F by S.(z) = S(z),
ha(z) = h(z), Mp(z) = M(z) and T,(z) = T'(z) respectively for each z € Cj; t.e.,
Sn. = Slca: hn = klc,, Mn = M|c, and T, = T|c, respectively. By Theorem 4.4.7,
there exists a point g, € C, such that

(2)’ n € Sn(fn) and

(i)’ there exist a point f, € M(gn) = Mu(yn) and a point W, € T(Jn) = Tnu(¥n)
with Re(fp — tn, §n — z) < h(z) — A(§n) for all £ € S, (in).

Note that {7,}32, is a sequence in X = U2, C, with g, € C, for each n € N.

Case 1: {7,}2, is escaping from X relative to {C,.}2,.

Then by hypothesis (5), there exists ng € N such that §ny € S(§ng) = Sno(Une)»
which contradicts ()’ or there exist ng € N and z,, € S(§n,) = Sn, (o) Such that

min min Re(f —w,¥n, — Tng) + A(Gny) — h(Tn,) > 0,
FEM(jng) wET (§ny) (f Yno "°> (y"O) ( o) .

which contradicts (zz)’.
Case 2: {7,}32, is not escaping from X relative to {C,}32,.

Then there exist n, € N and a subsequence {gn, }32, of {y.}32, such that j, € C,,
forall j = 1,2,.... Since Cy, is compact, there exist a subnet {Z,}ser of {7, }52, and

g € Cp, C X such that 3, — 7.
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For each a € T, let z, = ¢,_, where n, — co. Then according to our choice of ,,
in C,,, we have

(2)" na € Snalfna) = S(na) and

(i%)" there exist a point f,, € Mo (Jng) = M(yn,) and a point w,, € T, (Jn.) =
T(§na) With Re(fny = Bags Gra = 2) + h(Jna) — h(2) < 0 for all 2 € Sp,(fna) = S(na)-
Since n, — 00, there exists ag € I such that n, > n, for all @ > aq. Thus C,,, C C,_,
for all @ > ag. From (¢)” above we have (§.,¥n,) € G(S) for all & € T'. Since S
is upper semicontinuous with closed values, G(S) is closed in X x X; it follows that
y € 5(3)-

Moreover, since { f,. }aao and {tn, }o>a, are netsin the compact sets Uzec., M(z)
and Uzec, T(z) respectively, without loss of generality, we may assume that the nets
{fuYoer and {tin, Yaer converge to some f € Uzecn, M(z) and some i € Uzec,, T'(x)
respectively. Since M and T have closed graphs on C,,, feM@) and v e T(y).

Let z € S(g) be arbitrarily fixed. Let n, > n; be such that € C,,. Since S is
lower semicontinuous at g, without loss of generality we may assume that for each o € T,
there is an r,, € S5(§n.) such that z,, — z. By ()" we have, Re(fno — Wny s Yng —
Zn,) + A(Gns) — h(za,) < 0 for all @ € T. Note that fo, — by, — f — i in §(F, E)
and {§in, — Tn, }aer is a net in the compact (and hence bounded) set C,,, — Uyecn, S(Yy)-
Thus, we have for each € > 0, there exists a; > ap such that |Re(f,, — W, — (f —
W), Jina — Tna )| < €/2 for all @ > a,. Since (f — ), §n, — Tn.) — (f — .5 — ). there
exists a2 > o such that |Re(f — b, §n, — Tp,) — Re(f —ib,j—z)] < ¢/2 for all & > as.

Thus for a > a,,
lRe(j:"O - lb"o’ﬁno - xﬂo) - Re(j _'—bv!} _$>|
< IRe(fna - lbno - (f_ li)),ﬁno - :L‘no)l + IRe(f — lb, gno — T, — (g _ -l'))l
< 6/2 + 6/2 = €.

Thus
lignRe(fna - lbﬂo’&'na - Ino) = Re(-f - u‘)’g - 1‘)'
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By continuity of A, we have

Re(f —,§— z) + h(§) — h(z)
= lima[Re(fry — Wnar na — Tng) + h(Gn) — h(za,)]
<O0. =

Corollary 4.4.9 Let (E. || -||) be a reflezive Banach space, X be a non-empty closed
convez subset of E and F' be a vector space over ®. Let { , ): Fx E — ® be a
bilinear functional such that ( , ) separates points in F and for each f € F, the
map z — (f,z) is continuous on X. Equip F with the strong topology 6(F,E).
Let S : X — 2X be weakly continuous such that S(z) is closed conver for each
g€ X, T:X — 2F be weakly upper semicontinuous such that each T(x) is §(F, E)-
compact conver, h : X — R be convezr and (weakly) continuous and M : X — 2F be
(weakly) upper hemi-continuous along line segments in X and semi-monotone (with
respect to ( , )) such that each M(z) is §(F, E)-compact conver. Also, for each
y € L ={y € X :sup,cglinfrem(s) infuery) Re(f —w,y—z) +h(y)—h(z)] >0}, M
is weakly upper semicontinuous at some point x in S(y) with inf ferr(z) infuer(y) Re(f—
w,y — ) + h(y) — h(z) > 0 and M is weakly upper semicontinuous on C, for each
n € N. Suppose that

(1) there exists an increasing sequence {r,}>2, of positive numbers with r, — oo
such that S(z) C Cy, for eachz € C,, and eachn € N where C, = {z € X : ||z|| < r.}:

(2) for each sequence {y,}°%, in X, with |ly.|| — oo, either there erists no € N
such that yn, & S(yn,) or there exist ng € N and z,, € S(yn,) such that

min i Re(f = w.yno = Zng) + h(Yne) ~ h(2n) > 0.
FEM (yng) wET (yno) (f =W, Yng — Tno) + h(Yno) — h(2n,)

Then there exists § € X such that
(a1) ¥ € 5(§) and
(by) there erist a point f € M(g) and a point w € T(y) with

Re(f —,§ — z) < h(z) — k() for all z € S(3).
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Proof: Equip E with the weak topology. Then C, is weakly compact convex for each
n € N such that X = U2 ,C,. Now if {y,}2, is a sequence in X, with y, € C, for
each n = 1,2,---, which is escaping from X relative to {C,}>2,, then ||y.[| — oc. By
hypothesis (2), either there exists ng € N such that y,, & S(ya,) or there exist ng € N
and z,, € 5(yn,) such that mingenr(y,y) MiNweT(yn ) Re(f — W, Yng — Tng) + h(Yno) —
h(zn,) > 0. Thus all hypotheses of Theorem 4.4.8 are satisfied so that the conclusion

follows. a

We shall now obtain an existence theorem on non-compact generalized bi-complementarity
problem for semi-monotone operators.
The proof of the result observed by S.C. Fang (e.g. see [23, p.213] and [94, p.59])

can show the following improvement of Lemma 3.2.3:

Lemma 4.4.10 Let X be a cone in a Hausdorff topological vector space E over ®
and F' be a vector space over ®. Let ( , ): F x E — ® be a bilinear functional. Let
g€ X and g € F. Then the following are equivalent:

(a) Re(g,y—z) <0 forallz € X.

(b) Re(§,5) =0 and § € X.

When X is a cone in E, by applying Lemma 4.4.10 and Theorem 4.4.8 with A = 0
and S(r) = X for all z € X, we have immediately the following existence theorem of a

generalized bi-complementarity problem:

Theorem 4.4.11 Let E be a Hausdorff topological vector space over ®, X be a cone
in E such that X = U2 ,C,, where {C,}32, is an increasing sequence of non-empty
compact convez subsets of X and F be a vector space over ®. Let ( , ): FxE — &
be a bilinear functional such that ( , ) separates points in F and for each f € F
the map z — (f,z) is continuous on X. Equip F with the strong topology 6(F, E).
Suppose that

(1) T : X — 2F is upper semicontinuous such that each T(z) is §(F, E)-compact

convezx;
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(2) M : X — 2F is upper hemi-continuous along line segments in X and semi-
monotone (with respect to ( , )) such that each M(z) is §(F, E)-compact convez;
also, for each y € ¥ = {y € X : sup,eg(ylinfrerr(z) infuer(y) Re(f — w,y — z)] > 0},
M is upper semicontinuous at some point z in S(y) with inffey(r)infuer(y) Re(f —
w,y —z) >0 and M is upper semicontinuous on C, for each n € N;

(3) for each sequence {y,}2, in X, with y, € C, for each n € N, which is
escaping from X relative to {Cn}32,, there exist ng € N and z,, € X such that

min min Re w, -1 > 0.
FEM(yng) wET (yng) <f Yno no)

Then there exist a point § € X, a point f € M(y) and a point w € T(y) such that
Re(f —w.9) =0 and f —w € X.

Corollary 4.4.12 Let (E,|| - ||) be a reflexive Banach space, X be a closed cone in
E and F be a vector space over ®. Let ( , ) : F x E — ® be a bilinear functional
such that ( , ) separates points in F and for each f € F, the map z — (f,z) is
continuous on X. Equip F with the strong topology §(F,E). Let T : X — 2F be weakly
upper semicontinuous such that each T(z) is §(F, E)-compact conver and M : X — 2F
be (weakly) upper hemi-continuous along line segments in X and semi-monotone (with
respect to ( , )) such that each M(z) is §(F, E)-compact conver. Also, for each y €
L = {y € X : sup sy linfrerr(z) infuery) Re(f — w,y — z)] > 0}, M is weakly upper
semicontinuous at some point z in S(y) with inf feprr(z) infyer(y) Re(f —w,y —z) >0
and M is weakly upper semicontinuous on C, for each n € N. Let {r,}2, be an
increasing sequence of positive numbers with r, — oo and C, = {z € X : ||z|| < r,}
for each n € N. Suppose that for each sequence {y,}2, in X, with ||y.|| — oo, there
ezist no € N and z,, € X such that mingeps(y, ) MinweT(y,,) Re(f — W, Yny — Tny) > 0.
Then there exist j € X, f € M(§) and o € T(y) such that

Re(f —,5) =0 and f — o € X.

Proof: Equip E with the weak topology. Then C, is weakly compact convex for
each n € N such that X = U,C,. Now if {y.}32, is a sequence in X, with y, € C,
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for each n = 1,2,..., which is escaping from X relative to {C,}2,, then ||ya] — oo.

n=1"

Hence by hypothesis, there exist ng € N and z,, € X such that

min min Re(f — w, —Zn,) > 0.
FEM (yng) wET (yng) f Yno ~ Tn)

Thus all hypotheses of Theorem 4.4.11 are satisfied so that the conclusion follows. O
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4.4.3 Further Results in Non-Compact Generalized Bi-Quasi-Variational

Inequalities

In this section also we shall use the concept of escaping sequences introduced by Border
to find an existence theorem on generalized bi-quasi-variational inequalities for monotone
operators in non-compact settings. As an application, an existence theorem for generalized
bi-complementarity problem will be given.

By modifying the proof of Theorem 2 of Shih and Tan in [100, pp.69-70] and by
Theorem 3.2.1 which is Kneser's minimax theorem in [73, pp.2418-2420] (see also Aubin

[2, pp.40-41]) we can similarly verify the following result whose proof is omitted:

Theorem 4.4.13 Let E be a locally convex Hausdorff topological vector space over
®, X be a non-empty compact conver subset of E and F be a vector space over ®.
Let ( , ) : F x E — ® be a bilinear functional such that ( , ) separates points in
F and for each f € F, the map z — (f,z) is continuous on X. Equip F with the
strong topology 6(F, E). Suppose that

(a) S : X — 2X is a continuous map such that S(z) is closed conver for each
reX;

() M : X — 2F is monotone (with respect to ( , )) and lower semicontinuous
from the relative topology on X to the strong topology §(F.,E) on F;

(¢) T : X — 2F is an upper semicontinuous map from the relative topology on
X to the strong topology 6(F, E) on F such that T(z) is strongly compact for each
re X;

(d) h: X — R is conver and continuous.
Then there exists a point j € X such that

(2) g € S(g) and

(22) infyer(z) Re(f —w,j—z) < h(z)—A~(g) for all z € S(§}) and for all f € M(F).
If M(y) and T(y) are also convez, then

(22)' there ezists w € T(§) such that Re(f —w,§—z) < h(z)—h(§) for all z € S(3)
and for all f € M(g).
Moreover, if S(z) = X forall x € X, E is not required to be locally convez.



159

When F' = E~ and ( , ) is the usual pairing between E~ and E, by taking M = 0
and replacing T' by —T, Theorem 4.4.13 reduces to the following result:

Corollary 4.4.14 Let E be a locally conver Hausdorff topological vector space and
X be a non-empty compact convez subset of E. Let S : X — 2% be continuous such
that S(z) is closed conver for each z € X, T : X — 22" be upper semicontinuous
from the relative topology on X to the strong topology of E* such that T(zx) is strongly
compact for each r € X and h : X — R be conver and continuous. Then there ezists
y € X such that

(1) § € 5(§) and

(2) infyer(g) Re(w,§ — z) < h(z) — h(§) for all z € S(7).
Moreover, if T(y) is also conver, then

(2) there exists w € T(§) such that Re(w,§ — z) < h(x) — h(§) for all z € S(j).

When h = 0 and each T'(z) is also convex, the above result was observed by W.K.
Kim in [70] which is an improvement of Theorem 4 of Shih and Tan in [92, pp.341-342].

We shall now apply Theorem 4.4.13 together with the concept of escaping sequences
to obtain an existence theorem on generalized bi-quasi-variational inequalities in non-
compact settings. As an application, we shall obtain an existence theorem on generalized
bi-complementarity problem.

We shall now establish the following result:

Theorem 4.4.15 Let E be a locally conver Hausdorff topological vector space over
®, X be a non-empty (conver) subset of E such that X = U ,C,, where {C}2, is
an increasing sequence of non-empty compact conver subsets of X and F be a vector
space over ®. Let ( , ): FxE — ® be a bilinear functional such that { , ) separates
points in F' and for each f € F, the map ¢ — (f,z) is continuous on X. Equip F
with the strong topology 6(F, E). Suppose that

(1) S: X — 2% is a continuous map such that

(a) for each x € X, S(zx) is a closed conver subset of X and

(b) for each n € N, S(z) C C, for all z € Cp;
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(2) M : X — 2F is monotone (with respect to ( , )) and lower semicontinuous
from the relative topology on X to the strong topology 6(F, E) on F such that each
M(x) is convex:

(3) T : X — 2F is upper semicontinuous from the relative topology on X to the
strong topology 6(F, E) on F such that each T(z) is a strongly compact conver subset
of F;

(4) h : X — R is conver and continuous;

(3) for each sequence {y,}3%, in X, with y, € C, for each n € N, which is
escaping from X relative to {C,}3%,, either there exists ng € N such that yny & S(Yn,)
or there exist ng € N, Tny € S(¥no) and frny € M(yn,) such that

min RC(fno — W,y Yny — l'no) + h(yno) - h(x"o) > 0.
weT(yno)

Then there exists a point y € X such that

(i) § € S(g) and

(2t) there exists a point w € T(y) with Re(f — w,y — z) < h(z) — h(j) for all
z € S(g) and for all f € M(y).

Moreover, if S(z) = X for all x € X, E is not required to be locally conver.

Proof: Fix an arbitrary n € N. Note that C, is a non-empty compact convex subset
of E. Define S, : C, = 2", h, : C. — R and M,.T, : Cn — 2F by S.(z) = S(z).
ha(z) = h(z), Mn(z) = M(z) and T, (z) = T(z) for each z € Cy; ie., S, = S|c,.
hn = hlc,, Mn = M|c, and T,, = T|c,,. By Theorem 4.4.13, there exists a point i, € C,
such that

(2)’ gn € Sn(yn) and

(22)’ there exists a point W, € T(§n) = Tn(yn) with Re(f —t,,Jn—z) < h(z)—h(jn)
for all z € S,.(9,) and for all f € M,(7,)-

Note that {§,}32, is a sequence in X = U ,C, with g, € C, for each n € N.

Case 1: {§.}32, is escaping from X relative to {C,}2,.

n=1

Then by (5), there exists ng € N such that §p, & S(Gny,) = Sno(¥n,). Which contra-
dicts (z)’ or there exist ng € N, Tng € S(Jng) = Sno(Uno) and frg € M(§ng) = Mng(Gne)
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such that minyer(g,.,) Be(frno — W Yng — ZTng) + A(Yny) — h(xn,) > 0, which contradicts
(22)".

Case 2: {J.}32, is not escaping from X relative to {C,}32,.

Then there exist n; € N and a subsequence {,,}%2, of {yn}32, such thaty, € C,,,
forall j =1,2,--- . Since C,, is compact, there exist a subnet {2, }aer of {jn,}32, and
g € Cn, C X such that 3, — y. Foreach a €T, let Z, = y,,, where n, — oc. Then
according to our choice of §,_ in C,,, we have

(2)” Jna € Snal¥na) = 5(gn,) and

(22)" there exists a point Wy, € Tn,(Un) = T(Yn,) With Re(f — wn,,4n, — ) +
h(gna) —h(x) <0 forall z € Sp,(¥n.) = S(Jn.) and for all f € M, (Fn,) = M(gn,)-
Since n, — oo, there exists ag € I" such that n, > n, for all @ > aq. Thus C,, C C,,,
for all @ > ag. From (z)” above we have (§,..,9.,) € G(S) for all « € T'. Since S
is upper semicontinuous with closed values, G(S) is closed in X x X; it follows that
y € S3)

Also, since {tn,}aao IS @ net in Uzec, T(z) which is compact, without loss of
generality, we may assume that the net {0, }.er converges to some w € Ureca, T'(z).-
Since T has a closed graph, w € T(7).

Let £ € S(§) and f € M(y) be arbitrarily fixed. Let n; > n, be such that z € C,,.
Since S and M are lower semicontinuous at j, without loss of generality we may assume
that for each o € T, there are z,,, € S(§n,) and fn, € M(gn.,) such that z,, — z and
Sfna — [ respectively. By (:z)” we have, Re(fn, —Wn,,Jna — Tna) + ~(Jn, ) = () <0
for all « € . Note that f,, — w,, — f —win §(F,E) and {§n, — zn, }aer is a net
in the compact (and hence bounded) set C,, — Uyec,, S(y). Thus, we have for each
€ > 0, there exists a; > ag such that |Re(f,, — Wn, — (f — @), Fn, — Tn,)| < €/2 for
all @ > ay. Since (f — W, Jny — Tn,) — (f — W,y — z), there exists a; > a; such that

|Re(f — W, Yny — Tn,) — Re(f —w,§ —z)| < €/2 for all @ > 3. Thus for a > as,

|Re(fra — Wnas Gna — Tn,) — Re(f — b, § — )|
S IRe(fna - lbno - (f - lb), g'na - zna)l + |Re(f - lb? yAna - 'r"la - (g - x))l
<ef2+ef2=c¢



Thus lim, Re(fa, — Wna:Jne — Tna) = Re(f — 0,7 — z). By continuity of &, we have

Re(f —w.§ — z) + h(§) — h(z)
= lima[Re(fay — Wna, Jng — Tny) + A(Jns) — A(zn, )]
<o0. O

Corollary 4.4.16 Let (E,||-||) be a reflexive Banach space, X be a non-empty closed
conver subset of E and F' be a vector space over ®. Let ( . ): Fx E — ® be a
bilinear functional such that ( , ) separates points in F and for each f € F, the
map z — (f,x) is continuous on X. Equip F with the strong topology §(F,E). Let
S : X — 2% be weakly continuous such that S(zx) is closed convez for each r € X,
M : X — 2F be monotone (with respect to ( , )) and lower semicontinuous from the
relative weak topology on X to the strong topology §(F,E) on F such that M(z) is
convez for each x € X and T : X — 2F be upper semicontinuous from the relative
weak topology on X to the strong topology §(F, E) on F such that T(z) is a strongly
compact conver subset of F for each x € X. Suppose that h : X — R is conver and
weakly continuous. Suppose further that

(1) there exists an increasing sequence {r,}2%, of positive numbers with r, — oo
such that S(z) C C,, for eachz € C, and eachn € N where C,, = {z € X : ||z|| < r.};

(2) for each sequence {y,}3%, in X, with ||ly.]| — oo, either there exists ng € N
such that yn, & S(yn,) or there exist ng € N, 2,y € S(Yn,) and fn, € M(yn,) such
that MitueT(yng) Re(fro = Ws Yo = Tng) + h(¥ng) — h(Tng) > 0.
Then there exists y € X such that

(a1) y € S(y) and

(by) there exists a point w € T(i) with Re(f — w,g§ — z) < h(z) — h(g) for all
z € S(y) and for all f € M(y).

Proof: Equip E with the weak topology. Then C,, is weakly compact convex for each
n € N such that X = U32,C,. Now if {y,}32, is a sequence in X, with y, € C, for

each n = 1,2,---, which is escaping from X relative to {C,}32,, then ||ly.|]| — oo. By

hypothesis (2), either there exists ng € N such that y,, & S(yn,) or there exist ng € N,
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Tno € S(Yno) and fay € M(yn,) such that minyer(y, ) Re(fro — W, Yno — ZTng) + A(Yny) —
h(zne) > 0. Thus all hypotheses of Theorem 4.4.15 are satisfied so that the conclusion

follows. a

By taking M = 0 and replacing T by —T in Theorem 4.4.15, we obtain the following

non-compact generalization of Corollary 4.4.14:

Corollary 4.4.17 Let E be a locally conver Hausdorff topological vector space over
®, X be a non-empty (convez) subset of E such that X = U, C,, where {C .}, is
an increasing sequence of non-empty compact conver subsets of X and F be a vector
space over ®. Let ( , ) : FxE — ® be a bilinear functional such that ( , ) separates
points in F and for each f € F, the map z — (f,z) is continuous on X. Equip F
with the strong topology 6(F, E). Suppose that

(1) S : X —2X is a continuous map such that

(a) for each x € X, S(z) is a closed conver subset of X and

(b) for each n € N, S(z) C Cp, for all z € Cy;

(2) T : X — 2F is upper semicontinuous from the relative topology on X to the
strong topology 6(F, E) on F such that T(z) is a strongly compact conver subset of F
for each z € X;

(3) h: X — R is conver and continuous;

(4) for each sequence {y,}2, in X, with y, € C, for each n € N. which is
escaping from X relative to {Cr}32,, either there erists ng € N such that yn, & S(yn,)
or there exist ng € N and zn, € S(yn,) such that minger(y,,) Re(w, Yyn, — Tno) +
h(Yne) — h(zn,) > 0.

Then there exists a point y € X such that

() § € 5(9) and

(22) there exists a point w € T(§) with Re(w,g—z) < h(z)—h(g) for all = € S(3).
Moreover, if S(z) = X for all z € X, E is not required to be locally conver.

For other non-compact generalization of Corollary 4.4.14, we refer to Yuan [113].
The result observed by 5.C. Fang (e.g. see [23, p.213] and [94, p.59]) can be modified

below whose simple proof is omitted:
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Lemma 4.4.18 Let X be a cone in a Hausdorff topological vector space E over ®
and F be a vector space over ®. Let ( , }): F x E — ® be a bilinear functional. Let
M,T : X — 2F. Then the following are equivalent:

(a) There exist § € X and w € T(g) such that

Re(f —w,g —z) <0 for allz € X and for all f € M(y)-
(b) There exist y € X and w € T(y) such that
Re(f —,5) =0 and f —® € X for all f € M(§).

When X is a conein £, h = 0 and S(z) = X for all z € X, by applying Lemma
4.4.18 and Theorem 4.4.15, we have immediately the following existence theorem of a

generalized bi-complementarity problem:

Theorem 4.4.19 Let E be a Hausdorff topological vector space over ®, X be a cone
in E such that X = U

0 1Cn, where {C,}2, is an increasing sequence of non-empty

compact conver subsets of X and F be a vector space over ®. Let ( , ): Fx E — &
be a bilinear functional such that ( , ) separates points in F and for each f € F, the
map = +— (f,z) is continuous on X. X. Equip F with the strong topology 6(F. E).
Suppose that

(1) M : X — 2F is monotone (with respect to ( , )) and lower semicontinuous
from the relative topology on X to the strong topology 6(F, E) on F such that M(z)
is convez for each z € X;

(2) T : X — 2F is upper semicontinuous from the relative topology on X to the
strong topology 6(F, E) on F such that T(z) is a strongly compact conver subset of F
for each x € X;

(3) for each sequence {y,}2, in X, with y, € C, for each n € N, which is
escaping from X relative to {Cr}32,, there exist ng € N, z,, € X and fo, € M(yn,)
such that minyer(y,,) Re(fay — W, Yny — Tno) > 0.

Then there erists a point j € X and a point w € T(§) such that

Re(f —,5) =0 and f —w € X for all f € M(§).



Corollary 4.4.20 Let (E,|| - ||) be a reflezive Banach space, X be a closed cone in
E and F be a vector space over ®. Let ( , ) : F x E — ® be a bilinear functional
such that {( , ) separates points in F and for each f € F, the map ¢ — (f.x) is
continuous on X. Equip F with the strong topology §(F,E). Let M : X — 2F be
monotone (with respect to ( , )) and lower semicontinuous from the relative weak
topology on X to the strong topology 6(F, E) on F such that M(z) is convez for each
z€X and T : X — 2F be upper semicontinuous from the relative weak topology on
X to the strong topology 6(F, E) on F such that T(z) is a strongly compact convez
subset of F' for each x € X. Let {r,}°%, be an increasing sequence of positive numbers
with r, — o0 and C, = {z € X : ||z|| < ra} for each n € N. Suppose that for
each sequence {yn}2, in X, with |ly.|| — oo, there exist ng € N, z,, € X and
Jno € M(yn,) such that minyer(y, ) Re(fay — W.Yny — Tn,) > 0. Then there erxist
g € X and w € T(y) such that Re(f —w,§) =0 and f—w € ffor all f € M(z).

Proof: Equip E with the weak topology. Then C, is weakly compact convex for
each n € N such that X = U2 ,C,.. Now if {y.}2, is a sequence in X, with y, € C,
for each n = 1.2,---, which is escaping from X relative to {C,}32,, then |jy.|| — .
Hence by hypothesis, there exist ng € N, z,, € X and f,, € M(yn,) such that

in Re — w, - > 0.
wein (fro ) Yng — Tng)

Thus all hypotheses of Theorem 4.4.19 are satisfied so that the conclusion follows. O
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4.4.4 Generalized Bi-Quasi-Variational Inequalities for Bi-Quasi-Mono-

tone Operators in Compact Settings

[n this section we shall first obtain some results on existence theorems of generalized

bi-quasi-variational inequalities for bi-quasi-monotone operators in compact settings.

If we take M = {0} and replace T by -T in Lemma 4.4.4 of Section 4.4, we get the
following result which slightly modifies Lemma 2 of Shih and Tan in [100, pp.70-71]:

Lemma 4.4.21 Let E be a topological vector space over ®, X be a non-empty com-
pact subset of E and F be a Hausdorff topological vector space over ®. Let { , ) :
F x E — ® be a bilinear functional and T : X — 2F be an upper semicontinuous
map such that each T(z) is compact. Let zo € X be arbitrarily fired and h : X — R
be continuous. Define g : X — R by g(y) = [infuer(y) Re(w,y — zo)] + h(y) for each
y € X. Suppose that ( , ) is continuous on the (compact) subset [U,ex T(y)] x X of

F x E. Then g is lower semicontinuous on X.
The following definition generalizes the Definition 3.2.5(a):

Definition 4.4.22 Let E be a topological vector space over ®, F be a vector space
over ® and X be a non-empty subset of E. Let { , ): F x E — ® be a bilinear
functional and M : X — 2F be a map. Then M is said to be lower hemi-continuous
on X if and only if for each p € E, the function f,: X — RU {+c0} defined by

fo(z) = sup Re(u,p) foreach :¢€ X.
ueM (=)

is lower semicontinuous on X (if and only if for each p € E, the function g, : X —

RU {—o0} defined by

z)= inf h ze€ X,
9p(2) uéﬁ(:)Re(u,p) for eac € X,

is upper semicontinuous on X ).



Note that the notions of lower hemi-continuity along line segments in X and upper
hemi-continuity (see Definition 4.4.2) along line segments in X are independent of the
topology T on E as long as 7 is Hausdorff and the vector space F over ® remains
unchanged. Note also that if M, T : X — 2F are lower (respectively, upper) hemi-
continuous on X and o € R, then M 4 T and aT are also lower (respectively, upper)

hemi-continuous on X.

The following proposition generalizes Proposition 3.2.6:

Proposition 4.4.23 Let E be a topological vector space over ®, F be a vector space
over ® and X be a non-empty subset of E. Let { , ) : F x E — ® be a bilinear
functional such that for each p € E, u — (u,p) is o(F, E)-continuous on F when
F is equipped with the o(F, E)-topology. Let M : X — 2F be lower semicontinuous
from the relative topology on X to the weak topology o(F,E) on F. Then M is lower

hemi-continuous on X.
Proof: For each p € E, define f,: X — R U {+o0} by

fo(z) = sup Re(u,p) foreach ze X.
u€EM(z)

Fix any p € E. Let A € R be given and let A = {z € X : f,(z) > A}. Take any
z0 € A. Then fy(z0) = sup,ear(s,) Re(u.p) > A. Choose any ug € M(zp) such that
Re(ug,p) > A. Let A : F — R be defined by h(u) = Re(u,p) for each u € F. By
hypothesis h is o(F, E)-continuous on F.

Thus h™'(A, +o00) N M(z0) # 0, where h='(X,+o0) is a o(F, E)-open set in F.
Since M is lower semicontinuous at zo, there exists an open neighborhood V., of =g in
X such that M(z) N A™'(A, +00) # 0 for all = € N,,. Hence f,(z) = SUP,enm(z) P(U) =
SUPyen(s) Re(u,p) > A for all z € N,,. Thus N;, C A. Consequently, f, is lower

semicontinuous on X. Hence M is lower hemi-continuous on X. m]

Note that the converse of Proposition 4.4.23 is not true as can be seen in Example
3.2.7.
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Definition 4.4.24 Let E be a topological vector space, X be a non-empty subset of
E. Let F be a vector space over ® and ( , ) : F x E — ® be a bilinear functional.
Let M\T : X — 2F be two maps. Suppose h : X — R. Then M is said to be
h-T'-bi-quasi-monotone if for each x,y € X, each finite set {3; : j = 0,1,---,n} of
non-negative real-valued functions and each finite set {p;. : k =1,---,n} of E~,

AW ok, Jnf  Re(g = w0,y = 2) + hy) = ha)] + 3 Buly)Relproy =) > 0

whenever

Bo(y)[ sup inf Re(f —w,y —z)+h(y)— h(z)]+ DY_ Be(y)Re(pr.y — z) > 0.
feM(z) weT(v) k=1

M is said to be bi-quasi-monotone if M is h-T-bi-quasi-monotone with h = 0 and

T=0.

Clearly, a monotone operator is also an A-T-bi-quasi-monotone operator. But the
converse is not true; because if T = 0, B, = | and each p; = 0, then an A-T-bi-quasi-
monotone operator is an h-quasi-monotone operator which is not necessarily a monotone

operator as shown in Example 3.2.11.

The following result generalizes Lemma 3.2.19:

Lemma 4.4.25 Let E be a topological vector space over ®, F be a vector space over ®
and X be a non-empty conver subset of E. Let ( , ) : F x E be a bilinear functional.
Equip F with the o(F, E)-topology. Let D be a non-empty o(F, E)-compact subset
of F, h : X — R be convex and M : X — 2F be lower hemi-continuous along line
segments in X. Suppose § € X is such that supsepy(,)infoep Re(f — g,§ — z) <
h(z) — h(g) for all z € X. Then

sup inf Re(f —g,9—z) < h(z)—h(y) foral ze X.
feM(y) 9€D

Proof: Suppose that sup s, infsep Re(f —g,9 —x) < h(z) —h(g) forall z € X.
Fix an arbitrary z € X. Foreach t € [0,1], let z;, =tz + (1 —t)§y = §+ t(z — ). Then
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2 € X as X is convex. Thus for each ¢ € (0,1],

t-supgens(s,) infeep Re(f —g.§ —z) = SUPfenr(=) Infgen Re(f — g.§ — =)
< k(=) — h(H)
< t(h(z) — A(7)),

as h is convex so that supcs(.,)infyep Re(f — g,5 — z) < h(z) — h(§) and hence for
all ¢ € (0, 1], supepriey Re(f,§ — z) < h(z) — h(§) — inf,ep Relg,z — §).

Let L ={z:t€[0,1]} and A = {z € L : supsepry Re(f.§ —z) < h(z) — h(F) —
infgep Re{g,z — §)}. Since M is lower hemi-continuous on L, z, € A for all t € (0, 1]
and z; — g as t — 0%, we have §j € A so that

sup Re(f,j—z) < h(z) — h(g) — inf Re{g.x —§).
fEM(H) g€D
It follows that sup ;e ;) infgep Re(f —g,§ —z) < h(z) — h(§). Since z € X is arbitrary,
we have sup ;e infgep Re(f —g,§ — =) < h(z) — h(y) forall z € X. m

We shall now establish the following result:

Theorem 4.4.26 Let E be a locally convex Hausdorff topological vector space over ®,
X be a non-empty compact conver subset of E and F be a Hausdorff topological vector
space over ®. Let ( , ): F x E — ® be a bilinear functional which is continuous on
compact subsets of F' x X. Suppose that

(@) S : X — 2% is an upper semicontinuous map such that each S(z) is closed
convezr;

(b) T : X — 2F is upper semicontinuous such that each T(z) is compact convez;

(c) h: X — R is conver and continuous;

(d) M : X — 2F is lower hemi-continuous along line segments in X and h-T -bi-
quasi-monotone (with respect to ( , )) such that each M(z) is convezr and

(e) the set

S={yeX: sup[sup inf Re(f—w,y—z)+h(y)—h(z)] >0} is open in X.
z€S(y) feM(x)weT(y)

Then there exists a point §y € X such that
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(z) gy € 5(9) and

(22) there exist a point w € T(y) with Re(f —w,§ — z) < h(z) — h(§) for all
r € S(y) and for all f € M(g).
Moreover, if S(z) = X for all r € X, E is not required to be locally conver and if
T = 0, the continuity assumption on ( , ) can be weakened to the assumption that

for each f € F, the map z — (f,z) is continuous on X.

Proof: We divide the proof into three steps:

Step 1. There exists a point § € X such that § € S(j) and

sup [ sup inf Re(f —w,y—z)+h(j)—h(z)] <0.
r€S(y) feM(z) weT(3)

Suppose the contrary. Then for each y € X, either y & S(y) or there exist r € S(y)
and f € M(z) such that inf,e7(,) Re(f —w,y —z) + h(y) — h(z) > 0; that is, for each
y € X, eithery € S(y)ory € E. f y & S(y), then by Hahn-Banach separation theorem,
there exists p € £~ such that

Re(p,y) — sup Re(p,z) > 0.
r€S(y)

For each p € E~, let

V(p) = {y € X : Re(p.y) — sup Re(p,z) >0}.
z€S(y)

Then V(p) is open by Lemma 4.3.1. Since X = S U Upee- V(p), by compactness
of X, there exist py,ps,---,pn € E™ such that X = S U UL, V(p:). For simplicity
of notations, let V5 := ¥ and Vi = V(p;) for i = 1,2,---.n. Let {Bo,B1.-" -, 5}
be a continuous partition of unity on X subordinated to the covering {V5, Vi,---,V,}.
Then Bo, 81, - -, Bn are continuous non-negative real-valued functions on X such that 3;
vanishes on X \ V;, for each i = 0,1,---,n and £ 8i(z) = 1 for all z € X. Define
o, : X x X =R by

¢(z,y) = Bo(y)[ sup inf Re(f—w,y—z)+h(y)—h(z)]+) Bi(y)Re(pi,y — z),

feM(z) wET(y) i=1
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and

¥(z,y) = Bo(y)[ elfvllf; ) ér%f )Re(g —w,y —z) + h(y) — h(z)] + > _ Bi(y)Re(pi.y — z).
9€M (y) weT(y =

for each z,y € X. Then we have the following.

(1) For each z € X, ¥(z,z) < 0 and for each z,y € X, since M is h-T-bi-quasi-
monotone, ¢(x,y) > 0 implies ¥(z,y) > 0.

(2) For each fixed z € X and each fixed f € M(z), the map Ty : X — 2F defined by

Tf(y) :=f—T(y) foreach ye X

is an upper semicontinuous map such that each T}(y) is a compact subset of F. Thus
by Lemma 4.4.21, the map
y — [wg}fy) Re(f —w,y — )] + h(y) — h(z) = [wré‘%,f(y, Re(w'.y — z)] + h(y) — h(z)
is lower semicontinuous on X. By Lemma 4.3.2, the map
yr— Bo(y)[ sup inf Re(f—w,y—z)+h(y)— h(z)]
feM(x) wET(y)
is lower semicontinuous on X. Hence for each fixed £ € X, the map y — o(z.y) is
lower semicontinuous on X.
(3) Clearly, for each fixed y € X, the set {z € X : ¥(z,y) > 0} is convex.
Then ¢ and v satisfy all the hypotheses of Theorem 3.3.1. Thus by Theorem 3.3.1,
there exists § € X such that ¢(z,9) < 0forall z € X, i.e.,
Bo(§)[ sup inf Re(f—w.§—z)+h(g)-h(z)] +zn: Bi(g)Re(pi,y —z) <0 (4.29)
feM(z)weT(3) i=1
forall z € X.
Choose z € S(g) such that
sup inf Re(f —w,7 —2)+ h(g)—h(Z) >0 whenever SFy(3j) > 0;
feM(z) weT(3)
it follows that

Bo(F)[ sup inf Re(f —w,§— )+ h(§) — h(2)] >0 whenever So(3) > 0.
fem(z) wET(3)



if i € {1,---,n} is such that 8;(§) > 0, then § € V(p;) and hence

Re(pi, ) > sup Re(pi.z) > Re(p;, 1)
z€5(4)

so that Re(p;,j — ) > 0. Then note that
Bi(y)Re(pi.g — ) >0 whenever Si(y) >0 for i =1,---,n.
Since B;(g) > 0 for at least one ¢ € {0,1,---,n}, it follows that
Po(P)[ sup inf Re(f —w,§ —2)+ h(§) — h(Z)] + > Bi(§) Re(p:, § — ) >0,
femM(z) weT(y) i=1
which contradicts (4.29). This contradiction proves Step 1.

Step 2.

sup inf Re(f —w,y—z) < h(z)-h(g)forall z € S(H).
remM(y) weT(H)

Indeed, from Step 1, § € S(7) which is a convex subset of X, and

sup inf Re(f —w,y—z) < h(z)—-h(y) forall z € S(7). (4.30)
feM(z) weT()

Hence by Lemma 4.4.25, we have
sup inf Re(f —w.,y—z) < h(z)-h(y) forall z e S(3j).
feM(y) wE€T(y)
Step 3. There exist a point @ € T(y) with Re(f —w,§—z) < h(z)—h(y) forall ze
S(y) and forall f e M(y).

From Step 2 we have

sup [ sup inf Re(f —w,y—z)+ h(g) — h(z)] < 0;
reS(i) feM(y) vET(9)

sup inf Re(f —w,y—2z)+h(g)—h(z) <0, (4.31)
(z.F)ES(§) x M (§) wET(¥)

where S(7) x M(g) is a convex subset of the Hausdorff topological vector space £ x F

and T'(y) is a compact convex subset of F'.
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Let @ = S(y) x M(j) and the map g : @ x T(y) — R be defined by g(q,w) =
9((z, f),w) = Re(f—w,§—z)+h(g)—h(z) foreach g = (z, f) € Q = S(7) x M(3) and
each w € T'(7). Note that for each fixed ¢ € Q, the map w — g(q, w) = g((z, f), w) is
lower semicontinuous from the relative topology on T(7) to R and also convex on T'(7).
Clearly, for each fixed w € T'(y), the map (z, f) — g((z, f),w) is concave on Q. Then
by Theorem 3.2.1 we have

min su ,w) =sup min ,W).
i qegg(q ) sup wem)g(q )

Thus

min sup [Re(f —w,§ —z) + h(§) — h(z)] <0, by (4.31).
w€T () [(z,£)eS(5) x M (5)]

Since T'(y) is compact, there exists w € T'(y) such that
sup  [Re(f —w,§—z)+h(§) — h(z)] <0.
(. £)€S(g)x M ()

Therefore
Re(f —w,g—z)+h(g)—h(z)<0

for all z € S(g) and for all f € M(y).

Next we note from the above proof that E is required to be locally convex when and
only when the separation theorem is applied to the case y & S(y). Thus if S : X — 2%
is the constant map S(z) = X for all z € X, F is not required to be locally convex.

Finally, if T = 0, in order to show that for each z € X, y —— o(z,y) is lower
semicontinuous, Lemma 4.4.21 is no longer needed and the weaker continuity assumption
on ( , ) that for each f € F, the map ¢ — (f, z) is continuous on X is sufficient. This

completes the proof. |

Theorem 4.4.27 Let E be a locally convex Hausdorff topological vector space over
®, X be a non-empty compact convex subset of E and F be a vector space over ®.

Let ( , ) : F x E — ® be a bilinear functional such that ( , ) separates points in
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F and for each f € F, the map = +—— (f,z) is continuous on X. Equip F with the
strong topology 6(F, E). Suppose that

(@) S: X — 2% is a continuous map such that each S(z) is closed and convez;

(6) T : X — 2F is upper semicontinuous such that each T(z) is strongly compact
and convez;

(¢) h: X — R is conver and continuous;

(d) M : X — 2F is lower hemi-continuous along line segments in X and h-T-bi-
quasi-monotone (with respect to ( , )) such that each M(z) is convez; also, for each
y €T = {y € X :sup.es(y)[5uPserr(z) infuer(y) Re(f — w,y — ) + h(y) - h(z)] > 0},
M is lower semicontinuous at some point z in S(y) with sup sepr(z)infuer(y) Re(f —

w,y —z) + h(y) — h(z) > 0.

Then there exists a point §y € X such that

(i) § € S(7) and

(i2) there exists a point w € T(y) with Re(f — w,y — z) < h(z) — h(g) for all
z € S(y) and for all f € M(y).
Moreover, if S(z) = X for all x € X, E is not required to be locally convez.

Proof: As ( , ) : F x E — ® is a bilinear functional such that for each f € F,
the map = — (f,z) is continuous on X and as F' is equipped with the strong topology
6(F.E), it is easy to see that { . ) is continuous on compact subsets of F' x X. Thus
by Theorem 4.4.26, it suffices to show that the set

E={yeX: sup [ sup inf Re(f —w,y—z)+ h(y)— h(z)] >0}
z€S(y) feM(z) wET(y)

is open in X. Indeed, let yo € £; then by the last part of the hypothesis (d), M is lower
semicontinuous at some point zq in S(yo) With sup ;e ar(zo) infwer(ye) Re(f —w,yo— o) +
h(yo) — h(zo) > 0. Hence there exists fo € M(zo) such that infuer(y) Re(fo — w,yo —
zo) + h(yo) — h(zo) > 0. Let

a:= inf  Re(fo—w,y0— o)+ h(yo) — h(zo)-
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Then a > 0. Also let

W:={weF: sup |[(w,z; — )| < %}

7,m2€X

Then W is an open neighborhood of 0 in F so that U, := T(yo) + W is an open
neighborhood of T'(yo) in F. Since T is upper semicontinuous at yg, there exists an open
neighborhood N, of yo in X such that T(y) C U; for all y € N;.

Let Uz := {f € F : sup_, _ex |[(f — fo.z1 — 22)| < £}, then U, is an open neigh-
borhood of fo in F'. Since M is lower semicontinuous at zo and Uz N M(zq) # @, there
exists an open neighborhood V; of zo in X such that M(z) N U, # 0 forall z € V;.

As the map = — infyer(y) Re(fo — w,z0 — z) + h(z0) — h(z) is continuous at zo,
there exists an open neighborhood V, of z¢ in X such that

af Re(fo—w,z0 = 2) + h(zo) — ()| < % forall z €V

Let ¥ := ViNV,; then 1} is an open neighborhood of z¢ in X. Since zo € VyNS(yo) # @
and S is lower semicontinuous at yg, there exists an open neighborhood N, of yg in X
such that S(y) N V5 # 0 for all y € V,.

Since the map y — inf,e7(y) Re(fo — w.y — yo) + h(y) — h(yo) is continuous at
Yo, there exists an open neighborhood N3 of yo in X such that

inf Re(fo—w.y — yo) +h(y) — h(yo)| < = forall ye Ni.
w€ET (yo) 6

Let Np := Ny N N;N N3. Then Vp is an open neighborhood of yg in X such that for each
y1 € Ng, we have

(2) T(y1) CUL=T(yo) + W as y1 € Ny;

(12) S(y1) NVo # 0 as y; € Ny; so we can choose any z, € S(y;) N Vo;

(477) |infuer(yo) Re(fo — w.y1 — yo) + A(y1) — h(yo)| < § as y1 € Ni;

(tv) M(z1) N Uz # 0 as z; € V;; choose any f; € M(z,) N U, so that

«
sup_|(f1 — fo,z1 — 22)| < =
21,22€X 6

(v) |infueT (o) Re(fo — w,z0 — z1) + h(z0) — A(z1)| < Sasz; €V
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It follows that

infyer(y,) Re(fi —w.y1 — z1) + h(y1) — h(z1)

2 Re(fi — Jo.y1 — z1) +infuer(y,) Re(fo — w,y1 — x1) + h(y1) — h(z1)

2 —§ + inffuer(y)+w] Re(fo — w,y1 — z1) + (1) — k(z1) ( by (7) and (iv)),
2 —% +infuer(y,) Re(fo — w, y1 — z1) + h(z1) — h(z1)

+infyuew Re(fo —w,y1 — 1)

2 —5 + infuer(y) Re(fo — w, y1 — yo) + ~A(y1) — h(yo)

+ infueT(yo) Re(fo — w,yo — zo) + h(yo) — A(Z0)

+ infuer(y) Re(fo — w, o — z1) + h(z0) — h(z1)

+inf,ew Re(—w, y1 — 1)

2—§—§gta—3—-5=%5>0 (by () and (v));

therefore

sup [ sup inf Re(f—w,y1—z)+h(y1)— h(z)] >0
r€S(n) feM(z) wET(y1)

as ) € S(y1) and f, € M(z,). This shows that y; € T for all y; € Ny, so that £ is

open in X. This proves the theorem. a



Chapter 5
Concluding Remarks

In summary, in this thesis we have given a KKM type lemma, some generalizations of the
Ky Fan’s minimax inequality, several fixed point theorems in Hilbert spaces, and several
existence theorems for non-compact generalized variational inequalities and non-compact
generalized complementarity problems in topological vector spaces and non-compact gen-
eralized quasi-variational inequalities in locally convex Hausdorff topological vector spaces
and several existence theorems for both compact and non-compact generalized bi-quasi-
variational inequalities, and non-compact bi-complementarity problems in locally convex
Hausdorff topological vector spaces.

Besides, we have introduced the concepts of h-quasi-monotone, quasi-monotone,
bi-quasi-monotone, h-quasi-semi-monotone, quasi-semi-monotone, quasi-nonexpansive,
semi-nonexpansive, lower hemi-continuous, upper hemi-continuous, weakly lower (re-
spectively, upper) demi-continuous, strongly lower (respectively, upper) demi-continuous,
strong h-pseudo-monotone, strong pseudo-monotone, h-pseudo-monotone, pseudo-mono-
tone, h-demi-monotone, and demi-monotone operators.

Further, even though we have some results for demi-operators, generalized quasi-
monotone, generalized quasi-semi-monotone, bi-quasi-semi-monotone, and hemi-continu-
ous operators on generalized variational inequalities or generalized quasi-variational in-
equalities, they have not been included here. We have completed some work on these

topics and wish to continue on these soon.

177



178

Note that, we have not covered the topics on generalized KKM (in short G-KKM)
maps, minimax inequalities and existence theorems of equilibria for G5-majorized corre-
spondences in generalized convex (or G-convex) spaces. But some work has been done
by the author on these topics. In particular, the minimax inequalities of Chapter 2 have
been generalized into G-convex spaces and as applications of some of these minimax in-
equalities, results on the existence theorems of equilibria have been obtained in G-convex
spaces. For some detail on these topics, we refer to M. S. R. Chowdhury [26], M. S. R.
Chowdhury and K.-K. Tan [28]-[29] and some references therein.



Bibliography

[1]

(2]
[3]

[4]

(8]

[9]

[10]
[11]
[12]

[13]

G. Allen, Variational inequalities, complementarity problems, and duality theorems,
J. Math. Anal. Appl., 58 (1977), 1-10.

J.P. Aubin, Applied Functional Analysis, Wiley-Interscience, New York, 1979.

J.P. Aubin, Mathematical Methods of Game and Economic Theory, revised ed., Stud.
Math. Appl. 7, North-Holland, Amsterdam, 1982.

J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-
Heidelberg, 1984.

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley & Sons, 1984.

J.S. Bae, W.K. Kim and K.-K. Tan, Another generalization of Ky Fan’s minimazr
inequality and its applications, Bull. Inst. Math. Acad. Sinica. 21 (1993), 229-244.

C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities: Applica-
tions to Free-Boundary Problems (translated by L. Jayakar), John Wiley & Sons.
New York, 1984.

C. Bardaro and R. Ceppitelli, Some further generalizations of RKnaster-Kuratowski-
Maczurkiewicz Theorem and minimaz inequalities, J. Math. Anal. Appl., 132 (1988),
484-490.

C. Bardaro and R. Ceppitelli, Applications of the generalized Knaster-Kuratowski-
Mazurkiewicz Theorem to variational inequalities, J. Math. Anal. Appl., 137 (1989),
46-58.

C. Bardaro and R. Ceppitelli, Fized point theorems and vector-valued minimaz theo-
rems, J. Math. Anal. Appl., 146 (1990), 363-373.

A. Bensoussan, Stochastic Control by Functional Analysis Method, North-Holland,
Amsterdam, 1982.

A. Bensoussan, M. Goursat and J. L. Lions, Contrél impulsionnel et inéquations
quast-variationnelles stationnaires, C. R. Acad. Sci., 276 (1973), 1279-1284.

A. Bensoussan, and J. L. Lions, Nouvelle formulation des problémes de contréle im-
pulsionnel et applications, C. R. Acad. Sci., 29 (1973), 1189-1192.

179



180

[14] D. P. Bertsekas and J. N. Tsitsiklis, Projection methods for variational inequalities
with applications to the traffic assignment problem, Math. Prog. Study, 17 (1982),
139-159.

[15] K.C. Border, Fired Point Theorems with Applications to Economics and Game The-
ory, Cambridge University Press, Cambridge, London, New York, New Rochelle,
Melbourne, Sydney, 1985.

[16] H. Brézis, L. Nirenberg and G. Stampacchia, A remark on Ky Fan’s minimaz prin-
ciple, Boll. Unione Mat. Ital. 6 (4) (1972), 293-300.

[17] L. E. J. Brouwer, Uber Abbildungen von Mannigfaltigkeiten, Math. Ann., 71 (1912),
97-115.

[18] F. E. Browder, Fized point theorems for noncompact mappings in Hilbert space, Proc.
Nat. Acad. Sci. U. S. A., 53 (1965), 1272-1279.

[19] F.E. Browder, Nonlinear monotone operators and convez sets in Banach spaces, Bull.
Amer. Math. Soc., 71 (1965), 780-784.

[20] F.E. Browder, Nonlinear mappings of nonezpansive and accretive type in Banach
spaces, Bull. Amer. Math. Soc., 73 (1967), 875-882.

[21] F. E. Browder, The fized point theory of multi-valued mappings in topological vector
spaces, Math. Ann., 177 (1968), 283-301.

[22] F. E. Browder, Non-linear operators and non-linear equations of evolution in Banach
spaces, in Proc. Sympos. in Pure Math., Amer. Math. Soc., Providence, RI, Vol. 18,
Part II (1976).

(23] D. Chan and J. S. Pang, The generalized quasi-variational inequality problem, Math.
Oper. Res., 7 (1982), 211-222.

[24] S. S. Chang and N. J. Huang, Generalized strongly nonlinear quasi-complementarity
problems in Hilbert spaces, J. Math. Anal. Appl., 158 (1991), 194-202.

[25] S.S. Chang and Y. H. Ma, Generalized KKM Theorem on H -spaces with applications,
J. Math. Anal. Appl., 163 (1992), 406-421.

[26] M. S. R. Chowdhury, 4 G-RKRM type theorem and its applications to minimaz in-
equalities on G-convez spaces, submitted.

[27] M. S. R. Chowdhury and K.-K. Tan, New minimaz inequalities and applications, to
appear in the Journal of the Indian Math. Soc., 63 (1) (1997).

[28] M. S. R. Chowdhury and K.-K. Tan, Minimaz inequalities on G-conver spaces with
applications to generalized games, submitted.

[29] M. S. R. Chowdhury and K.-K. Tan, Intersection theorems in G-conver spaces and
applications, submitted.



181

[30] P. W. Cottle and G. B. Dantzig, Complementarity pivot theory of mathematical pro-
gramming, Linear Algebra Appl., 1 (1968), 103-125.

[31] R. W. Cottle, F. Giannessi and J. L. Lions, Variational Inequalities and Complemen-
tarity Problems: Theory and Applications, J. Wiley and Sons, New York. London.
1980.

[32] J. Crank, Free and Moving Boundary Problems, Oxford Univ. Press, London, 1984.

[33] P. Cubiotti, Some remarks on the fired points of lower semi-continuous multi-
functions, J. Math. Anal. Appl., 174 (1993), 407-412.

[34] S. Dafermos, Ezchange price equilibria and variational inequalities, Math. Prog. 46
(1990), 391-402.

(35] G. Debreu, Theory of Value: An Ariomatic Analysis, Yale Univ. Press, New Haven
and London, 1959.

[36] X. P. Ding, Generalized strongly nonlinear quasi-variational inequalities, J. Math.
Anal. Appl., 173 (1993), 577-587.

[37] X.-P. Ding, W. K. Kim and K.-K. Tan, Equilibria of non-compact generalized games
with L=-majorized preference correspondences, J. Math. Anal. Appl., 164 (1992),
508-517.

(38] X.-P. Ding, W. K. Kim and K.-K. Tan, A selection theorem and its applications, Bull.
Austral. Math. Soc., 46 (1992), 20.-212.

[39] X.-P. Ding and K.-K. Tan, A minimaz inequality with applications to ezistence of
equilibrium point and fized point theorems, Colloquium Mathematicum, 63 (1992),
233-247.

[40] X.-P. Ding and K.-K. Tan, Covering properties of H-spaces and applications, Applied
Math. Mech., 14 (1993), 1079-1088.

[41] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.

(42] J. Dugundji and A. Granas, KKM maps and variational inequalities, Ann. Scuola
Norm. Sup. Pisa (Ser. 4), 5 (1978), 679-682.

[43] R.S. Falk, Error estimates for the approzimation of a class of variational inequalities,
Math. Programm., 28 (1974), 963-972.

[44] Ky Fan, A generalization of Tychonoff’s fired point theorem, Math. Ann., 142 (1961),
305-310.

[45] Ky Fan, Simplicial maps from an orientable n-pseudo-manifold into S™ with the
octahedral triangulation, J. Comb. Theory, 2 (1967), 588-602.

(46] Ky Fan, A covering property of simplezes, Math. Scand., 22 (1968), 17-20.



[47]

[48]

[49]

[50]

[51]

[59]
[60]

[61]

(62]

182

Ky Fan, A combinatorial property of pseudo-manifolds and covering properties of
simplezes, J. Math. Anal. Appl., 31 (1970), 68-80.

Ky Fan, A minimaz inequality and applications, in “Inequalities”, Vol. III, “Pro-
ceedings, Third Symposium on Inequalities” (O. Shisha Ed.), Academic Press, New
York, 1972, 103-113.

Ky Fan, Some properties of convez sets related to fized point theorems, Math. Ann..
266 (1984), 519-537.

Ky Fan, A survey of some results closely related to the Knaster-Ruratowski-
Mazurkiewicz Theorem, Game Theory and Applications, Econom. Theory Econo-
metrics Math. Econom., Academic Press, 1990, pp.358-370.

G. Fichera, Problem: elastostatic con vincoli unilateralil problema di singnortnicon
ambigue condizioni al controno, Atti. Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat.
Natur. Sez. La., 7 (1963-64), 91-140.

A. Friedman, Stochastic Differential Equations and Applications, Vol. 1-2, Academic
Press, New York, 1975-1976.

A. Friedman, Optimal stopping problems in stochastic control, SIAM, Rev. 21 (1979),
71-80.

D. Gale, Equilibrium in a discrete exchange economy with money, Int. J. Game The-
ory, 13 (1984), 61-64.

R. Glowinski, J. Lions and R. Tremolieres, Numerical Analysis of Variational In-
equalities, North-Holland, Amsterdam, 1982.

B. Halpern and G. Bergman, 4 fized point theorem for inward and outward maps,
Trans. Amer. Math. Soc., 130 (1968), 353-358.

P. T. Harker, Predicting Intercity Freight Flow, VUN Science Press Utrecht, Holland,
1987.

P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear
complementarity problems: A survey of theory, algorithms., and applications, Math.
Prog., 48 (1990), 161-220.

P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional
equations, Acta Math., 115 (1966), 153-188.

C. D. Horvath, Points fizés et coincidences pour les applications multivoques sans
convezité, C.R. Acad. Sci. Paris, 296 (1983), 403-406.

C. D. Horvath, Some results on multi-valued mappings and inequalities without con-
verity, in “Nonlinear and Convex Analysis — Proc. in Honor of Ky Fan” (B.-L. Lin
and S. Simons, Eds.), pp.99-106, Marcel Dekker, New York, 1987.

C. D. Horvath, Contractibility and generalized convezity, J. Math. Anal. Appl., 156
(1991), 341-357.



183

[63] T. Ichiishi, Alternative version of the Shapely’s Theorem on closed coverings of sim-
plezes, Proc. Amer. Math. Soc., 104 (1988), 759-763.

[64] T. Ichiishi and A. Idzik, Theorems on closed coverings of a simplex and their appli-
cations to co-operative game theory, J. Math. Anal. Appl., 146 (1990), 259-270.

[65] A.Idzik and K.-K. Tan, Covering properties of simplezes, J. Math. Anal. Appl., 176
(1993), 608-616.

[66] G. Isac, A special variational inequality and the implicit complementarity problem, J.
Fac. Sci. Univ. Tokyo, 37 (1990), 109-127.

[67] G. Isac, Complementarity Problems, Lecture Notes in Mathematics, Vol. 1528,
Springer-Verlag, 1992.

[68] S. Karamardian, Generalized complementarity problem, J. Optimization Theory
Appl., 8. (1971), 161-168.

[69] N. Kikuchi and J. T. Oden, Contact Problems in Elasticity: A Variational Approach,
SIAM, Philadelphia, 1988.

70] W. K. Kim, Remark on a generalized quasi-variational inequality, Proc. Amer. Math.
Soc., 103 (1988), 667-668.

[71] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and
their Applications, Academic Press, New York, 1980.

[72] B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein Beweis des Fizpunktsatzes fir
n-dimensionale Simpleze, Fund. Math., 14 (1929), 132-137.

[73] H. Kneser, Sur un théoréme fondamental de la théorie des jeur, C. R. Acad. Sci.
Paris, 234 (1952), 2418-2420.

[74] C. E. Lemke, Bimatriz equilibrium points and mathematical programming, Manage-
ment Sci., 11 (1965), 681-689.

[75] J. L. Lions, Optimal Control Systems Governed by Partial Differential Equations,
Springer-Verlag, 1971.

[76] U. Mosco and G. Strang, One-sided approrimation and variational inequalities. Bull.
Amer. Math. Soc., 80 (1974), 308-312.

(77] J. von Neumann, Zur Theorie der Gesellschaftssiele, Math. Ann., 100 (1928), 295-
320.

[78] M. A. Noor, Some recent advances in variational inequalities, New Developments in
Approximation-Solvability of Nonlinear Equations-Abstract Differential and Integral
Equations: Theory and Applications (Ram U. Verma, ed.), Marcel Dekker, Inc., New
York.

[79] M. A. Noor, General nonlinear complementarity problems, Analysis, Geometry and
Groups: A Riemann Legacy Volume (Th. M. Rassias and H. M. Srivastava, eds.),
Hadronic Press, Inc.



(80] M. A. Noor, K. I. Noor and Th. M. Rassias, Some aspects of variational inequalities,
J. Comput. Anal. Math., 47 (1993).

{81} S. Park, On minimaz inequalities on spaces having certain contractible subsets, Bull.
Austral. Math. Soc., 47 (1993), 25-40.

[82] S. Park, Fizred point theory of multifunctions in topological vector spaces, II,J. Korean
Math. Soc., 30 (1993), 413-431.

(83] S. Park, Coincidences of composites of admissible u.s.c. maps and applications, C.R.
Math. Rep. Acad. Sci. Canada, 15 (1993), 125-130.

(84] S. Park, Foundations of the KKM theory via coincidences of composites of upper
semicontinuous maps, J. Korean Math. Soc., 31 (1994), 493-519.

[85] S. Park, Best approzimations theorems for composites of upper semicontinuous maps,
Bull. Austral. Math. Soc., 51 (1995), 263-272.

[86] S. Park and H. Kim, Admissible classes of multifunctions on generalized conver spaces,
Proc. Coll. Natur. Sci. Seol Nat. Univ., 18 (1993), 1-21.

[87] R. T. Rockafeller, Convez Analysis, Princeton University Press, Princeton, 1970.

[88] J. F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland. Ams-
terdam, 1987.

(89] L.S. Shapley, On balanced games without side payments, Mathematical Programming
(T. C. Hu and H. M. Robinson, eds.), 1973, pp.260-290.

[90] P. Shi, An iterative method for obstacle problems via Green’s functions, Nonlinear
Analysis, 15 (1990), 339-346.

[91] M.-H. Shih and K.-K. Tan, A4 further generalization of Ky Fan’s minimaz inequality
and its applications, Studia Math., 78 (1984), 279-287.

[92] M.-H. Shih and K.-K. Tan, Generalized quasi-variational inequalities in locally convez
topological vector spaces, §. Math. Anal. Appl., 108 (1985), 333-343.

[93] M.-H. Shih and K.-K. Tan, The Ry Fan minimaz principle, sets with convez sections,
and variational inequalities, in: Differential Geometry, Calculus of Variations and
Their Applications, G. M. Rassias and T. M. Rassias (eds.), Lecture Notes in Pure
Appl. Math., Vol. 100, Dekker, 1985, 471-481.

[94] M.-H. Shih and K.-K. Tan, Minimaz inequalities and applications, Contemp. Math..
54 (1986), 45-63.

[95] M.-H. Shih and K.-K. Tan, Covering theorems and simplezes and systems of linear
inequalities, Linear and Multilinear Algebra, 19 (1986), 309-320.

[96] M.-H. Shih and K.-K. Tan, Covering theorems of convez sets related to fized point
theorems, Nonlinear and Convex Analysis, Proceedings in Honour of Ky Fan (B.-L.
Lin and S. Simons, eds.), Marcel Dekker, Inc., New York, 1987, pp.235-244.



185

[97] M.-H. Shih and K.-K. Tan, Shapely selections and covering theorems of simplezes,
Nonlinear and Convex Analysis, B.-L. Lin and S. Simons, eds.), Marcel Dekker, Inc.,
1987, pp. 245-251.

[98] M.-H. Shih and K.-K. Tan. Browder-Hartman-Stampacchia variational inequalities
for multi-valued monotone operators, J. Math. Anal. Appl., 134, No. 2 (1988), 431-
440.

[99] M.-H. Shih and K.-K. Tan, A minimaz inequality and Browder-Hartman-Stampacchia
variational inequalities for multi-valued monotone operators, Proceedings of the
Fourth Franco-Seams Joint Conference (Chiang Mai, Thailand), 1988, DAL TR-88-2.

[100] M.-H. Shih and K.-K. Tan, Generalized bi-quasi-variational inequalities, J. Math.
Anal. Appl., 143 (1989), 66-85.

(101] E. Sperner, Neuer Beweis fiir die invarianz der Dimensionszahl und des Gebietes,
Abh. Math. Sem. Univ. Hamburg, 6 (1928), 265-272.

[102] G. Stampacchia, Formes bilinéaires coercitives sur les ensembles converes, C. R.
Acad. Sci. Paris, 258 (1964), 4413-4416.

[103] W. Takahashi, Nonlinear variational inequalities and fized point theorems, J. Math.
Soc. Japan, 28 (1976), 166-181.

[104] K.-K. Tan, Comparison theorems on minimazr inequalities, variational inequalities,
and fized point theorems, J. London Math. Soc. (2), 28 (1983), 555-562.

[105] K.-K. Tan, Generalization of F.E. Browder’s sharpened form of the Schauder fized
point theorem, J. Austral. Math. Soc. (Ser. A), 42 (1987), 390-398.

[106] K.-K. Tan, Lecture Notes on Topics in Topology and Functional Analysis, unpub-
lished, 1985, 1991 and 1994.

(107] K.-K. Tan, G-KRM theorem, minimaz inequalities and saddle points, to appear in
the Proceedings of the Second World Congress of Nonlinear Analysts, held in Athens,
Greece, July 10-17, 1996.

[108] K.-K. Tan, J. Yu and X.-Z. Yuan, Some new minimaz inequalities and applications
to existence of equilibria in H-spaces, Nonlinear Analysis, 24 (1995), 1457-1470.

[109] K.-K. Tan and X.-Z. Yuan, A minimaz inequality with applications to eristence of
equilibrium points, Bull. Austral. Math. Soc., 47 (1993), 483-503.

[110] E. Tarafdar, A fized point theorem in H-spaces and related results, Bull. Austral.
Math. Soc., 42 (1990), 133-140.

[111] G. Tian and J. Zhou, Quasi-variational inequalities with non-compact sets, J. Math.
Anal. Appl., 160 (1991), 583-595.

[112] C.L. Yen, A minimaz inequality and its applications to variational inequalities, Pacific
J. Math., 97 (1981), 477-481.



186

[113] X.-Z. Yuan, Contributions to Nonlinear Analysis, Ph.D. Thesis, Dalhousie University,
Halifax. Nova Scotia, Canada B3H 3J5, December, 1993.

[L14] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. 1-5, Springer-
Verlag, New York, 1985-1990.



IMAGE EVALUATION
TEST TARGET (QA-23)

16

i

14

125

150mm

Rochester, NY 14609 USA
e: 716/482-0300

1653 East Main Street
Phon

APPLIED = IMAGE . Inc

© 1993, Applied Image, Inc., All Rights Reserved





