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ABSTRACT 

Thi^ thesis is a study of kinks in general relativity. 

The kink spacetimes are topologically non-trivial and 

possess other interesting features such as tumbling light 

cones and a non-zero conserved quantity, now called the 

kink number. 

Skyrme first noted the existence of kinks in certain 

non-linear scalar field theories. Finkelstein and Misner 

were the first to recognize the existence of similar 

structures in general relativity. This thesis begins with a 

review of past work on kinks. 

The general form of a kink metric is discussed and a 

formula to calculate the kink number of any metric is 

derived. 

Several exact kink solutions of the Einstein field 

equations are found. The relationship of these solutions 

to well known (zero kink) metrics, such as the de Sitter 

and Friedmann-LeMairre-Robertson-Walker metrics is 

discussed. Possible interpretations of the kink solutions 

are suggested. Analogous solutions in a (1+1)-dimensional 

theory of gravity are also presented. Finally, work in 

progress and areas for future work are mentioned. 
ix 



SYMBOL TABLE 

In whpt follows the metric is chosen to have signature 

(- + + + ) 

and 

Greek letters a,R,t... run from 0 to 3 with 
summation over repeated indices 
unless otherwise specified. 

Roman letters a,b,c .... run from 1 to 3 with 
summation over repeated indices 
unless otherwise specified. 

T - refers to the ordinary partial 
' derivative of any tensor T „. 

T o refers to the 4-covariant derivative 
' of any tensor T . with respect to 

the metric tensor g .. 
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CHAPTER Omi 

THE SKYRMIONIC KINKS 

Introduction 

This chapter introduces the notion of kinks in nonlinear 

scalar field theories and in theories such as general 

relativity (1.1). These structures, in the nonlinear scalar 

field theories, are now called skyrmions in recognition of 

the work of Skyrme. The term "kink" is now for the most part 

reserved for similar structures that occur in theories such 

as general relativity. In honour of the pioneering work of 

Skyrme a review of his work is given (1.2). 

1 



(l.l) Introduction. 

2 

Skyrme was the first person to construct a non-linear 

scalar field theory that possessed certain conserved 

quantities which today may be called kinks. Kinks can be 

considered as twists in the field variables. Skyrme 

referred to the kinks as "singularities" in the field 

variables, by this he meant they had a twist, not an 

infinity. The term "kink" was first introduced by 

Finkelstein (Finkelstein, 1966) and is now for the most 

part reserved for the similar structures that arise in 

theories such as general relativity that were first 

considered by Finkelstein and others several decades ago 

(Finkelstein and Misner, 1959; Finkelstein, 1966). 

In recognition of Skyrme's work, the kinks arising in 

certain non-linear scalar field theories are now called 

"skyrmions". There are many similiarities in the 

mathematics of skyrmions and kinks but also some important 

differences. A common aim of both types of field theories 

in which kinks arose was to find a unified description for 

fermions and bosons. The particles that make up ordinary 

matter, characterized by their fractional spin quantum 

number m = 1/2, 3/2,.... are called fermions. The fermions 

interact through the exchange of bosons which are 

characterized by their integer spin quantum number 



3 

m = 0 , 1, ... Skyrme achieved his goal of unification when 

he found a common description for fermions and bosons, but 

the kinks of general relativity were found not to describe 

fermions and other physical interpretations have been 

suggested (Finkelstein and McCollum, 1975; Harriott and 

Williams, 1988). The skyrmions do possess half odd 

intrinsic angular momentum (spin) as is required for the 

description of a fermion (Skyrme 1962) but the metrical 

kinks do not (Williams and Finkelstein, 1984). The 

skyrmionic kinks are scalar quantities. The metrical kinks 

of general relativity are described by a quantity that is 

neither a scalar nor a tensorial quantity. 

The focus of this thesis is the metrical kinks of 

general relativity but as a historical introduction to the 

development of kink theory the rest of this chapter will 

briefly review the work of Skyrme. 



(1.2) Skyrmions 

4 

On November 17th-18th, 1984 a workshop was held at 

Cosener's House, Abingdon, United Kingdom on the topic of 

skyrmions. Skyrme made some historical remarks at the 

beginning of this workshop and was due to repeat this talk 

at the beginning of another workshop on skyrmions in 1987 

but sadly he died a week before this latter symposium. His 

earlier talk was reconstructed by Ian Aitchason and 

published in 1988 (Skyrme, 1988; Dalitz and Stinchcombe, 

Editors, 1988). 

In this talk Skyrme explains the three main ideas that 

motivated his study of the nonlinear scalar field theories 

that possessed skyrmions. His fir$t goal was to construct a 

self interacting boson field theory. That is, he wished to 

construct a unified field theory that eliminated the need 

for two separate fields to describe bosons and fermions. 

Skyrme'5 second goal was to address the renormalisation 

problem in quantum field theory. This is a problem with 

infinities of physical variables, such as density, that 

arise in quantum field theories when particles are 

described as point-like objects. Skyrme's approach was to 

describe particles as extended objects, thus avoiding the 

infinities. This differed from the usual approach which was 
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to attempt to mathematically remove the infinities, by 

renormalization, from any theory that contained point 

particles. Skyrme was certainly not alone in his unease 

with the notion of elementary particles as point-like 

objects - Kelvin (1824-1907) did not like the idea of 

infinitely rigid point-like atoms (Thompson, 1910). 

Skyrme discusses in his 1984 talk, the "smoke ring" model 

studied extensively by Kelvin and Tait but finally 

abandoned in favour of Maxwell's Theory (Thompson, 1910). 

Skyrme's third aim was to find a theory that naturally 

reproduced the behaviour of fermions rather than imposing 

the necessary mathematics into the theory to reproduce the 

required properties. The fermions arise in quantised 

theories but have no obvious classical analogue. This led 

Skyrme to believe that the fermion should not be regarded 

as a fundamental particle. He was attracted to nonlinear 

theories such as general relativity in which the "sources" 

(particles possessing mass) of gravitation might themselves 

be produced by the field equations - arising as some kind 

of singularity* in the fields - instead of having to add 

them to the theory. 

* (It is important to note here that Skyrme often 

referred to a kink as a singularity in the field variables. 

By this, he meant that the field variables had a twist and 
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not that they had an infinity.) 

Particles can be classified on the basis of whether or 

not they are affected by the strong nuclear force, which is 

the force that binds atomic nuclei together. Particles that 

are affected by the strong nuclear force are known as 

hadrons and those that are not affected are called leptons. 

The hadrons are then subclassified as to whether or not 

they are fermions or bosons. Baryons are hadrons that are 

also fermions. Mesons are hadrons that are also bosons. 

Skyrme hoped that the fermionic sources would occur as 

singularities* in some nonlinear classical meson field 

theory arising as a conserved quantity that might be 

identified with the baryon number. In this way the fermions 

might naturally arise from the meson fields instead of 

having to be imposed on the theory. 

Skyrme began his work by first turning his attention to 

nuclear physics. Nuclear matter is very homogeneous and 

Skyrme found the description of the nuclear matter as a 

fluid very attractive. He suggested that the individual 

nucleons could be described as local twists in this fluid 

that described the nucleus. (Skyrme, 1958, 1959, 1961, 

1962) . This idea is identical to the current concept of a 

preferred direction in a theory with a spontaneously broken 



internal symmetry. 
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To quantify these ideas of describing a nucleon as a 

twist in a fluid Skyrme began by looking at the analogous 

problem in (1 + 1)-dimensional spacetime which is now 

called the sine-Gordon equation: 

a t t - a x x = -m sin(a) (1.1) 

where a(x,t) is the (single) field variable. The well known 

time-independent (one-kink) solution of this equation is 

(Skyrme, 1958; Rogers and Shadwick, 1982) 

a = ltan~ [exp(x)] 

A vacuum state, obtained when the right hand side of 

equation (1.1) is zero, is clearly 

cos(a) = 1 

However, a is only determined up to a factor of 2n, and so 

it is possible to have a time independent situation in 

which a(x) changes from one vacuum state at x = -», say 

a(-oo) = o, to another at x = », say a(oo) = 2TT. This 

situation describes a (sine-Gordon) one-kink solution and 

may be illustrated as shown below in Fig. (1.1). 



Fig. (1.1) A skyrmion kink. 

A simple kink centred at x = x0 . The arrows show it's width, the x range 
over which most of the variation of a(x) occurs. 03 



In general, choosing boundary conditions such as a(-°°) = 0 

and a(oo) = 2NTT describes an N-kink solution. 

If all physical variables depend only on a mod(27T) and 

if under the boundary conditions a tends to a multiple of 

277- at x = +oo, then R is effectively compactified to S and 

a(x) defines a mapping from the physical space S to the 

1 field space S . The number of times the circle is covered 

is called the winding number of the map. This winding 

number is equal to 1 for the boundary conditions a(-oo) = o 

and a(oo) = 2TT. For the the boundary conditions a(-oo) = o 

and a(oo) = 2NTT the winding number is N. The situation is 

illustrated below in Fig. (1.2). 

The winding number is a topologically conserved 

quantity and so may be identified with a physical conserved 

quantity such as the baryon number. This model generalizes 

3 3 to 3 + 1 spacetime, mapping S to S with a conserved 

winding number (and, in fact, to n + 1 dimensions with a 

mapping from S to S ). The specific equations needed to 

calculate this conserved number, now known as the 

(skyrmionic) kink number, were first published by Skyrme 

(Skyrme 1961) and have since been extended (Dunn, Harriott 

and Williams, 1990) to include general relativity. 



Fig. (1.2). The mapping a(x). 

The mapping from real space to field space provided by a(x). On the lower 
plane, the function a(x) is plotted vs. x, for the case a(+oo) - a*:00 = 

On the upper plane a(x) is plotted as the angle of a point on a unit circ 
which winds around N times as x runs from -oo to +00. Such an a(x; nas a 
winding number of N. 
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• At the time of his death, Skyrme still hoped that it 

might be possible to construct a nonlinear theory that 

allows a semi-classical visualization of elementary 

particles. All hadrons are now believed to have a more 

elemental substructure composed of two or three fundamental 

constituents called quarks. His goal was that the quarks 

and leptons, usually introduced as sources in these 

theories, be regarded as helpful ways of describing the 

situation rather than as fundamental particles. 

Skyrme was also investigating the possibility of 

topologically interesting field configurations in gauge 

field theories as opposed to his original work which was 

with nonlinear scalar field theories. If such 

configurations existed, he questioned what the affect of 

the constraints of the gauge invariance might be. In 

particular, he was considering the possibility that a 

certain choice of gauge that admits stable topological 

structures may require the addition of source particles to 

make it consistent and that these source particles may 

correspond to physical states. A similar situation is known 

to arise in the work of Faddeev and Popov (Taylor, 1976). 

Unfortunately Skyrme had not found any interesting specific 

examples of such a gauge theory by the time he died in 

1987. 



CHAPTER TWO 

THE GENERAL RELATIVISTIC KINKS 

Introduction 

The homotopic classification of the metrics of general 

relativity is discussed to introduce the notion of a kink 

metric (2.1). A detailed discussion of previous work 

concerning kinks in general relativity, in particular the 

work of Finkelstein, is presented (2.2). The general 

conditions that lead to a kink metric are derived (2.3). A 

formula to find the kink number of any metric is discussed 

(2.4). This extends earlier work of Skyrme. The exact form 

of the general spherically symmetric metric is derived 

(2.5). Possible interpretations for kink metrics are 

discussed (2.6). 

12 
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(2.1) Homotopic classification of Metrics. 

Field theories that admit configurations that are 

topologically distinct have applications in several areas 

of physics. A field configuration represents a mapping $ 

from the domain X of field variables into the range Y which 

is assumed to be a connected manifold 

*:X -> Y . 

It is usual to assume that only maps, $, that map fixed 

base point(s) x e X into a fixed base point y e Y are 

considered. The set of all topologically distinct classes 

of base-point preserving maps are called homotopy classes 

3 
and are denoted by [X,Y]. In many field theories X = R , 

, . 3 . 
and the infinite boundary of R is mapped into some fixed 

3 . . 3 
point y , so that R may be compactified to S . In such 

3 
theories there is interest in calculating [S ,Y] for 

different Y. 

3 Consider such a situation, when X = R , with boundary 

conditions *(x) -> y (fixed) as |x| -> eo, so that R may 

3 
be replaced by S . Such a field theory can therefore be 

described in terms of mappings 

•: S3 -> Y. 
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These maps can now be classified by computing the homotopy 

3 class [S ,Y] = TT3(Y), which is the third homotopy group. 

The homotopy classes can be labelled by Q where Q is the 

group identity containing the constant map, $ , which maps 

3 . the whole of R into the fixed point y . If Q is not the 

only element of n"3(Y) then the field theory is said to 

admit kinks (Finkelstein, 1966). For example: 

(i) Y = V, any vector space, then 

n3(V) = Q0 

and there are no kinks. 

3 
(ii) Y = S , as m the case of Skyrme's theory of strong 

interactions (Williams, 1970; Skyrme, 1971), then 

TT3(Y) = Z. 

The homotopy classes, ...Q_2, Q_1, QQ, 0^, Q2.... can be 

labelled by a single integer n e Z. The classes are 

generated by Q and Q ,. When n > 0 mappings belonging to 

Q are called n-kink maps and when n < 0 they are called 

n-anti-kink maps. A specific example of such a 1-kink map 

is 
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3 3 *: R -> S 

such that 

«(x) = (4>v 02, <P3, 04) 

and 

2 2-1 
</>. = 2ax. (r + a ) 

/ 2 2V , 2 2,-1 04 = (r' - a) (r + a^) 

where r = |x| and a is a non-zero constant. This is the 

usual stereographic projection and the homotopy class of $ 

is Qx. 

These 1-kink mappings of Skyrme's theory are degree-1 

maps. These degree-1 kinks are now called skyrmions. In the 

1-dimennional case they may be pictured as 2n twists in 

an infinitely long strip (Finkelstein and Misner, 1959). as 

illustrated in Fig. (2.1). 



( i ) 
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( i i ) 

^ 

( i i i ) :x 

F i g . ( 2 . 1 ) . ( U D - d i m e n s i o n a l Kinks viewed as t w i s t s 

( i ) A zero k ink , 

( i i ) A skyrmion k ink , 

( i i i ) A g r a v i t a t i o n a l k i n k . 
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3 3 . 3 . 

( m ) Y = P , where P is real projective 3-space (S with 
the antipodal points identified). Then 

*3(P
3) = Z, 

and so the theory does admit kinks. If 

3 3 K: S -> P 

is the usual double cover map which identifies the 

3 antipodal points' of S then the homotopy class of K 

3 generates n (P ) and so K is a 1-kink map but deg(K) •= 2. 

Such kinks correspond to a half twist (through an 

angle n) and not a full twist because the mapping 

characterizing the homotopy behaviour from M into Pn is 

not the double, cover map. For example in the 1+1 case it is 

1 . 1 

the map that is obtained by mapping S into "half of S " 

and then identifying the antipodal points to obtain P . The 

1+1 case can therefore be pictured as Mobius strip type of 

twist and is illustrated in Fig. (2.1). 

(iv) Y = SO(4) = S3 x P3 then 

7r3(SO(4))= Z @ Z 
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and so such a theory admits two types of kinks. 

General relativity was one of the first field theories 

to be studied from the point of view of homotopy theory. It 

can be shown (Shastri, Wiliams and Zvengrowski, 1980) that 
3 

for general relativity in 3+1 dimensions Y = P and it is 

of interest to find [X,Y] for different spacetime 

manifolds, X. Finkelstein and Misner (1959) showed that 
1 3 1 3 

when X = R x R o r X = R x S then the homotopy classes 

can be specified by a single integer, which has now become 

known as the kink number of the metric. The kink number of 

the metric can therefore not be altered by any coordinate 

transformation that is non-singular or does not involve a 

change in the global hypersurface foliation of the 

manifold, as this would involve a change in the homotopy 

class. Shastri, Williams and Zvengrowksi (1980) also 

discuss the classification problem for more general 

parallelizable spacetime manifolds. 

More generally, gravitational kinks can be shown to 

occur in (n+1)-dimensional spacetimes for any n > 0. In 

particular if Mn+J" = R1 x Mn and the hypersurface Mn is 

assumed connected, orientable and compactifiable (in the 

sense that the metric is required to take the same value 

everywhere on the boundary of M" so that the boundary could 

be identified to a point) then the relevant homotopy 
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classes are [Mn, P n], where Pn is real projective n-space. 
4 

This result will be shown below for the usual case of M . 

Manifolds are classified as to whether there exist mappings 

*: Mn -> Pn 

which have degree 1 (called Type 1) or whether no such 

mappings are possible (called Type 2). Generally the degree 

of a map can be defined between any two orientable 

manifolds of the same dimension. If 

*: Xn -> Yn 

then deg(*) is the number of times that $ wraps Xn around 

Yn. A simple example was illustrated in Fig. (1.2). 

In l+l dimensions, Type 1 is the only possibility, and 

M1 = S . The homotopy classes are [S , P ] = 7r (P1) = Z, 

where n (P ) is the first homotopy group. A 1-kink metric 

is associated with a degree 1 mapping 

1 1 *: S -> P 

Some examples of such metrics will be given later. In 2+1 

dimensions Williams and Zvengrowski (1991) show that Type 2 
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is the only possibility. In 3+1 dimensions both Type 1 and 

Type 2 are possible (Shastri, Williams and Zvengrowski, 

1980) . An example of a manifold that admits Type 1 is 

3 3 
M = P , and an example of a manifold which admits Type 2 

3 3 
is M = S . The latter is the mam focus of this thesis. 

4 
The 4-dimensional spacetime manifold X = M of general 

relativity and the problem of classifying the Lorentz 

metrics is now considered in more detail. The manifold is 

4 1 3 assumed to be parallelizable. Examples are M = R x M , 

3 . where M is connected and orientable. If asymptotic 

3 flatness is also assumed then M can be compactified to 

form a closed, connected, orientable three-manifold. A 

Lorentz metric is a cross section, 2, of the Lorentz metric 

4 . . . 
tensor bundle T _(M ). Shastri, Williams and Zvengrowski 

. . 4 show that the parallelizability of M means that 

classifying cross sections is equivalent to classifying the 

4 . 4 

maps, $, from M to the fiber of TQ (M ). This fiber is 

called S. by Steenrod (1951) and is the set of all 4 x 4 

real symmetric matrices of signature (-+++) 

4: M4 -> S. , 
4,1 • 

4 1 3 . This thesis assumes that M = R x M and in particular 

3 3 3 . 3 
that M = R or S . For these choices for M the homotopy 
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classes will be shown to be labelled by a single integer, 

now called the kink number. Kinks for manifolds with more 

complicated topologies have been studied by Shastri, 

3 Williams and Zvengrowski (1980), who consider M compact, 

closed, connected and orientable. Their work has been 

generalized somewhat by Whiston (1981) and Bugajska (1989). 

The corresponding problem in 2+1 dimensions has been 

analyzed by Williams and Zvengrowski (1991) and the 

problems involved in adding kinks for spacetime manifolds 

that are not simply connected have recently been addressed 

by ShasLri and Zvengrowski (1991) for the (3+1)-dimensional 

case. 

Since R is topologically trivial, the assumption that 

4 1 3 3 3 3 
M = R x M and in particular that M = R or S , means 

3 
that the homotopy classes to be found are [S , S ]. 

4/1 

Since the set of all Lorentz metrics has a dimension 

greater than 3 it is not immediately clear how the 

classification can be achieved using the concept of a 

degree of mapping, since this is not necessarily defined 

between spaces of different dimension. The classification 

can be achieved however, as outlined below. 

3 
To find the homotopy classes [S , S ] let G e S , 

then it will be shown later that G can be written uniquely 

as the product of two matrices S and Q. That is, 
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G = SQ = QS 

where S is positive definite and Q is symmetric and 

orthogonal. The matrix S is homotopically trivial since it 

can be deformed into the identity matrix and so the 

classification depends only on Q. Steenrod (1951) shows 

that the set of all Q is homeomorphic to the Grassman 

manifold M. . which in turn is homeomorphic to real 

3 projective 3-space, P . The homotopy classes which classify 

4 . 
the metrics of general relativity if M is assumed to be 

R1 x R3 (or R1 x S ) are therefore [S , P 3], which as 

described in the example (iii) may be labelled by a single 

integer, the kink number. 

It will also be shown later that Q may be written as 

the following product 

Q = P diag(-l, 1, 1, 1) PT , 

where P is orthogonal. Since P is orthogonal, each of its 

3 3 rows or columns represents maps i: R -> S . The kink 

number is the degree of this map. 
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(2.2) Historical Introduction to Kinks in General 

Relativity. 

Finkelstein and Misner (1959) first drew attention to a 

class of nonlinear field theories that they called 

"intrinsic". If, as in the section (2.1), * is a mapping 

from a domain X into a range Y, the term "intrinsic" was 

used to emphasise the fact that Y was not homeomorphic to a 

vector space as was the case with most field theories in 

the literature at that time. Their interest in this class 

of field theories was due to the fact that they possessed a 

non-trivial conservation law in which the conserved 

quantity assumed only a set of discrete values, even in 

unquantized theories, as described in the above section. 

Finkelstein and Misner noted that general relativity was 

such a theory and that in general relativity this conserved 

quantity could assume only the values 0, +1, +2, +3, 

This quantity therefore possessed many of the properties of 

a classical particle number even though it arose from the 

continuity of the basic fields. The authors suggested .that 

in the case of general relativity this quantity might be 

interpreted as a particle number. They named the new 

particle associated with this conserved quantity the 

M-geon. The term "geon" was coined by Wheeler as a 

corruption of "geometrical entity" and seemed appropriate 

since the quantity arose purely from the metric. 
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The authors also showed in this 1959 paper that the set 

possible metrics on a manifold may be divided into homotopy 

classes. Two metrics are said to belong to the same 

homotopy class if and only if they can be continuously 

deformed into each other. They noted that this set of 

homotopy classes is in one-one correspondence with the 

group of integers. Any metric can therefore be associated 

with an integer, which cannot be changed by any 

non-singular coordinate transformation, as this would 

involve a change of homotopy class. This integer has since 

become known as the kink number, N, of the metric and is a 

conserved quantity associated with any metric. Finkelstein 

and Misner were also the first to recognize the phenomenon 

of tumbling light cones which is associated with these kink 

metrics. This may be illustrated as shown below in 

Fig. (2.2). 

This initial work was continued by Finkelstein (1966) 

and it was Finkelstein who first introduced the term "kink" 

(replacing the term M-geon of the earlier work) for the 

conserved objects arising in these nonlinear field 
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Fig. ( 2 . 2 ) . Light cone behaviour for metrics belonging to the homotopy classes label 

by N = 0, N = 1, N = 2. 
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theories. The purpose of this 1966 paper was to deduce the 

properties that must be possessed by the underlying field 

for kinks to exist and to possess half-integer spin and 

Fermi-Dirac statistics. That is, Finkelstein hoped the 

kinks would provide a description of fermions (particles 

with intrinsic angular momentum (spin) 1/2, such as 

electrons). He noted the connection between the kinks of 

general relativity and those investigated by Skyrme (1959) . 

Finkelstein also discussed the fact that kinks do not 

describe point particles but rather particles that possess 

internal structure, distributed over a finite volume. 

Some confusion arose in the literature concerning the 

angular momentum properties of the kink spacetimes. There 

are two types of angular momentum: intrinsic and extrinsic. 

Intrinsic angular momentum is usually called spin, it 

refers to internal variables and distinguishes between the 

fermions and bosons. For example the gravitational field 

(graviton) has spin 2; the Dirac field has spin 1/2. 

Extrinsic angular momentum is usually called orbital 

angular momentum. 

It was hoped that the spin properties of the kinks 

would allow them to be identified as fermions. However, 

Williams and Finkelstein (1984) showed that the usual kinks 

of general relativity cannot have orbital angular momentum 
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of 1/2. They considered group fields which are field 

3 . theories for which the field or mapping * maps R into a 

. . 3 

Lie group G, with * mapping the infinite boundary of R 

into the group identity. Orbital angular momentum of 1/2 

can arise if and only if the 2TI rotation loops in the field 

space are not deformable to a single point, that is if they 

are nontrivial. To determine the existence of half-integer 

orbital angular momentum, the transformation properties of 

the fields under rotation must be considered. Using the 

notation of Williams and Finkelstein (1984), if the range 
3 3 of the mapping * is chosen to be a 3-sphere S , then S may 

be parametrized by four variables (0.,0 ,0_,0.) subject to 

20 0 = 1. They use as an example of a 1-kink mapping: 

$(x) = (01,02,03,04) 

with 0 = f (x) where f (x) are some functions of x that 

satsify 20 0 = 1. The value of the orbital angular 

momentum now depends on the transformation properties of 

the f . In particular if the rotation loop is trivial then 

orbital angular momentum of 1/2 is not possible. 

Williams and Finkelstein (1984) showed that for 

skyrmions, where the f transform as scalars, this loop is 

not a single point so the kinks of Skyrme1s theory do have 

orbital angular momentum of 1/2. The skyrmion fields 
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considered by Williams (1970) also possess such nontrivial 

loops. 

For the gravitational field, which can be considered as 

a group field, the g . are second rank tensors and the 

authors showed that the 2n rotation loop for a 1-kink 

metric was a single point and hence orbital angular 

momentum of 1/2 was not possible. This contradicted the 

earlier work of Williams (1971) and that of Shastri, 

Williams and Zvengrowski (1980) where the 0 were treated 

as scalars. Their analysis would only be valid in a theory 

such as that of Skyrme's, where the 0 refer to internal 

variables that transform as scalars. 

Williams (1985) showed that if the dimension of the 

usual spacetime manifold is increased to allow inner 

degrees of freedom then it is possible to have 

half-integral orbital angular momentum. The metric studied 

is of the form 

ds2 = g ftdx
adxfi + g,.dx1dx^ 

âlJ 3ij 

where 

gaJ3 = 6aR ' 2 V V 
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The indicies a and B run over time and the inner 

dimensions. The indicies i and j are the usual spatial 

indices. The indices of the g - thus refer to internal 

variables and so transform as scalars under spatial 

rotation. They therefore have non-trivial rotation loops 

and allow half-integer orbital angular momentum. 

The simple one-kink metric, in the usual 3+1 (time and 

three spatial) dimensions 

ga5 = Sa!i * 2*a*B 

where the 0 may be chosen to be 

x sina 

cosa 

was first introduced by Williams and Zia (1973) . This 

metric will be discussed in detail in future chapters. 

Williams and Zia (1973) also were the first to discuss 

what type of mass distribution might give rise to such a 

spacetime. Their discussions showed that it is possible to 

recover Newton's Inverse Square (force) Law by considering 

*i = 

0 = 
*o 
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the asymptotic behaviour of the metric. This part of the 

paper will also be discussed in more detail in future 

chapters of this thesis. 

Williams (1974) introduced the following generalization 

of the simple one-kink metric 

ds = (e sin a - e cos a)dt - 2(e +e )sinacosadrdt 

+ [ea - (ea + en)sin2a]dr2 + r2de2 + r2sin2ed$2 

where all functions a, a, and fi are functions of r alone. 

This metric and some further generalizations will be 

discussed in detail in further chapters. 

Williams also notes that because the g.. term will be 

zero at least once if there is a kink present, the usual 

transformation to remove the drdt term will be singular and 

therefore invalid. A singularity even at a single point 

will render the transformation inadmissable. This point has 

been.noted in a different context by Rosen (1983, 1985).. 

Such transformations will be examined in detail, with 

specific examples, in future chapters. 
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The interpretation of kink structures in spacetimes was 

extended in the work of Finkelstein and McCollum (1975) to 

include the internal structure of black holes that have no 

curvature singularities and obey the weak energy condition. 

This work also demonstrated, in more detail than 

Finkelstein and Misner (1959), the feature common to all 

kink metrics: that of tumbling light cones. This feature is 

illustrated below in Fig. (2.3). 

Spacetime is assumed Minkowski at infinity. Gradually, 

the lightcones tumble towards the centre so they have 

future toward -t at r = 0. They then turn back up 

symmetrically on the other side. Such a spacetime has a 

4 background topology of R and no curvature smgularites. 

Following a procedure similar to Williams and Zia (1973), 

which will be discussed in more detail in later a chapter, 

Finkelstein and McCollum showed that one example of a 

physical source that may lead to such a light cone 

configuration is one with an energy density, \L, given by 

H = 9(2 + r"1)"3. 

However, no exact metric that satisfies the Einstein field 

equations with such a form of n used in the stress-energy 

tensor was presented by the authors. 
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A feature common to many spacetimes is that of 

incomplete geodesies. The main result presented by 

Finkelstein and McCollum is that kink metrics and all other 

spherically symmetric stationary spacetimes have incomplete 

geodesies approaching every root of g. . in the metric. In 

general relativity the geodesies represent paths of test 

particles and so incompleteness is a problem because it 

means that test particles reach the edge of the manifold in 

finite proper time. Such a manifold can therefore not be 

the complete physical manifold even though this is not 

evident from the field equations themselves. The authors 

discussed how to extend the geodesies by various methods 

depending on the nature of the roots of g. . For simple 

roots, they used the Kruskal extension method (Kruskal, 

1960) and showed that the topology around each root is that 

of the Kruskal manifold. For multiple roots they 

illustrated two methods one based on symmetry and another 

based on topology. 

In particular, for the kink shown in Fig. (2.3) there 

is at least one set of incomplete geodesies. At the radii 

r. and r_, where the light cones are turned so that one 

branch is parallel to the t axis, there are null geodesies 

parallel to this t axis. These are therefore one-way 

surfaces. For example, nothing can get out of the region 

where |r| < |r,|. Near either of these one-way surfaces 



there are three sets of null geodesies: those that cross 

the surface, those that stay in the surface and those that 

approach but do not cross the surface. The authors showed 

that those geodesies that approach but do not cross the 

surface are all incomplete; the other two sets may or may 

not be. The Kruskal extension method was used to extend 

this kink manifold. This method assumes that the full null 

manifold may be made up of two copies of the given part 

joined along a surface in a smooth manner. This extended 

manifold may be illustrated as shown below in Fig. (2.4). 

The top two diagrams are of the same patch shown in 

different coordinates. Each patch in the top two diagrams 

is half of the patch in the lower diagram. The U and V 

axes are at the radius of the one-way surface, r or r„. 

The three sets of geodesies transform as follows: Null 

geodesies parallel to the t axis transform to the V axis. 

Null geodesies crossing the one-way surface transform to 

the lines crossing the V axis, parallel to the U axis. 

Incomplete null geodesies approaching the one-way surface 

but not crossing it transform into lines crossing the U 

axis into the new region. 

These results are obtained by Finkelstein and McCollum 

as a special case of the Kruskal method described for all 

spherically symmetric stationary spacetimes. To construct 
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the extensions, they considered the most general 

spherically symmetric metric, which, following their 

notation is 

ds2 = goo(dx°)
2 + 2g01dx°dx

1 + g ^ d x 1 ) 2 + 922dw
2 

where 

dw2 = de2 + sin29d*2. 

This metric is transformed to what the authors call 

standard form 

ds2 = e2B(Tdt2 + 2Kjdtdr) + g22dw
2 

2 where B and T are functions of r, K. = ±1 and g = -r 

except in regions of extremal r. 

To achieve this standard form, a transformation is 

first made to the form 

ds2 = e2/5(r(dx0)2 + 2Kdx°dr + Ldr2) + g22dw
2 

2 

where TL - K = -1 and all functions are functions of r 

only. The standard form is then obtained by a 

transformation 
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x° = t - | K - KL dr 

t 

where K. is the sign of K at a root r. of r, where the 

transformation becomes singular. 

One coordinate patch surrounds each root of r. Zero 

kink number metrics may or may not be covered by one patch. 

Metrics of a non-zero kink number will require more than 

one patch to cover them. Each root of T defines a surface 

called a root surface. The standard form draws attention to 

the root surfaces, which are trapped surfaces, and the 

incomplete geodesies approach root surfaces. 

The authors showed that three quantities are needed to 

count the kink number of the metric. These are, K. which is 

the sign of g at a root of gQ0; f-, the sign of x in 

the future direction; and cT. which is the change in r at 

r.. To qualitatively construct the extension near a root 

it is sufficient to know K., f., or, and the order of the 

root. These four quantities are invariants and so, 

therefore, is the topology of the extended patch which 

depends only on the order of the root. 
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These four quantities give further information about 

the spacetime. In particular, Finkelstein and McCollum 

showed that they indicate whether the spacetime describes a 

black or a white hole. A trapped surface may be defined by 

considering a shell of light emitted normal to a spherical 

surface. The behaviour of this shell is determined by the 

behaviour of j/-g _ in the direction in which the light is 

emitted. For example, if /-g has a maximum, the shell 

shrinks in surface area in whatever direction it is emitted 

If yf-q_? has a minimum, then the shell can only grow in 

surface area. A trapped surface is one from which such a 

surface area of a shell of light can either never grow or 

can never shrink. The surface of extremal /-g is always a 

trapped surface. Trapped surfaces also occur where the 

future part of the light cone points only in one direction 

in r. Matter can only flow in one direction there, thus 

determining a black or white hole situation. The direction 

in r of the positive t half of the lightccme at a root of r 

is given by K.. If f. is the sign of the chosen future and 

V-g is not extremal at a root of r then fK. = 1 indicates 
' ti A -L 

a white hole and fK. = -1 indicates a black hole. 

Finkelstein and McCollum illustrate a manifold 

extension for the kink metric in what they call rotation 

coordinates 
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ds2 = cos2a(dt2 - dr2) ± 2sin2adtdr - r2dw2. 

The authors did not demonstrate a form for cos2a that 

satisfied the Einstein field equations. They showed however 

that this metric can be transcribed into their 

standard form 

ds2 = cos2a dt2 ± dtdr - r2dw2 

2 

where r = cos2a, g__ = -r . There are two rcots, at r. and 

r Both root surfaces are black (matter trapped inside). 

In patch 1, f = 1 and K = -1. In patch 2, -t is the future 

direction at r_ and so f = -1, K_ = 1. Incomplete 

geodesies approach each root. The geodesies can be 

completed by transforming the metric to standard form and 

then to the form 

? 2B 2 2 
ds^ = e^,5(2f dUdV) + g22dw 

where f and r are functions of U.and V. (Kruskal, 1960). 

The authors observed that the original tr plane covers only 

half the UV plane. The tr plane is now extended by letting 

it cover the other half of the UV plane by reversing t but 

keeping the r the same. The geodesies crossing the U axis 

are now continuous. In this way, two new sheets are 
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attached. The light cone behaviour for this metric in 

rotation coordinates, standard form and UV form is 

illustrated in Fig. (2.4). 

Finkelstein and McCollum suggest that n-kink metrics, 

where n > 1, may need more extensions. Finkelstein and 

McCollum also noted that it is possible to construct a 

black kink (matter trapped inside) and a white kink (matter 

can only flow outwards) from an originally kinkless 

spacetime by a continuous process. They called this 

structure an "onion" as the formation of such a spacetime 

arises from "a pulling apart or as a nesting of spheres 

within spheres like an onion" as illustrated below in 

Fig. (2.5). In later chapters of this thesis the concept of 

an "onion" will be further explored. 

The interest in kink spacetimes initially arose from 

the possibility that they might contain a conserved 

quantity that could be interpreted as an elementary 

particle number. When this was found not to be the case, 

because of their incorrect spin properties, interest 

remained because the spacetimes were found to be 

topologically non-trivial and to possess other interesting 

features such as tumbling light cones. As discussed 

previously, Williams and Zia (1973), Williams (1974) and 

Finkelstein and McCollum (1975) introduced various kink 
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metrics and suggested possible mass distributions that 

might give rise to such spacetimes. No exact kink solutions 

of the Einstein field equations were demonstrated by any 

authors however. Also, the exact conditions that lead to a 

kink metric were unclear at this time. The integral 

counting number, also called the kink number, introduced by 

Finkelstein and Misner (1959) was not expressed in a 

covariant form. For this, and other reasons, it could not 

be used in general relativity to unambiguously define a 

kink metric as a metric with a non-zero integral counting 

number. 

This thesis first extends the work of Williams and Zia 

(1973) and Williams (1974), who suggested the general 

conditions that lead to kink metrics. Several exact kink 

solutions of the Einstein field equations are then 

presented. The tumbling light cone behaviour of all kink 

metrics, noted previously by Finkelstein and Misner (1959) 

and Finkelstein and McCollum (1975), is illustrated for 

these solutions. The relationship of these exact, kink 

solutions to well known solutions, such as the de Sitter 

and Friedmann-LeMaitre-Robertson-Walker solutions, is also 

investigated. Finkelstein and McCollum (1975) suggested 

that the kink metrics might serve as suitable metrics to 

describe the interiors of black holes. This idea, and other 

possible interpretations for kink metrics, are discussed 
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for the various solutions presented. Modifications to the 

integral counting number formula, introduced by Finkelstein 

and Misner (1959), are suggested. These modifications allow 

the kink number to be interpreted, in a well defined way, 

for any spacetime whose manifold is R x S . 
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(2.3) Particular Form of the Kink Metrics 

To derive the general conditions that lead to a kink 

metric consider, the set of all possible metric tensors of 

general relativity that make up the set of 4x4 real 

symmetric matrices of signature (-+++). This set is called 

S by Steenrod (1951). Any 4x4 real symmetric matrix G of 

signature (-+++) can be written as a product of a positive 

definite symmetric matrix S, which is a member of S. n and 

a 4x4 symmetric, orthogonal matix Q of signature (-+++) 

which is a member of 0. ,, that commute with each other 
4,1' 

(Birkhoff and MacLane, 1965) 

G = SQ = QS (2.1) 

This decomposition of the matrix G is unique (Chevalley, 

194 6) and is proved as follows. 

The matrix G is real and symmetric and can therefore be 

diagonalized by an orthogonal matrix R, 

R - 1GR = diag(n0,nlfn2,n3). 

R is the matrix of eigenvectors of G and n , a = 0,1,2,3 

are the eigenvalues of G. 
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2 . . . 
Consider the matrix G which is symmetric and positive 

2 definite. Then R also diagonalizes G 

R~1GRR~1GR = R_1G2R 

= diag(n0
2,n1

2,n2
2,n3

2). 

Define 

T 2 = diag(n0
2,n1

2,n2
2,n3

2) 

so that 

2 2-1 
G = RT R . 

2 The matrix T is positive definite, since it is the matrix 

of the squares of the eigenvalues of G. A matrix T can 

therefore be extracted easily by taking the positive square 

2 roots of all the diagonal entries of T . Define 

S = RTR"1 (2.2) 

and 

Q = S_1G 

so that 

SQ = G 

as required. 



It remains to show that S is symmetric, Q is 

orthogonal, that the decomposition is unique and that S 

and Q commute. 

T -IT 
S = (RTR x ) x 

-1 T T T = (R J")IT R1 

= RTR-1 

since R is orthogonal 

= s , 

hence S is symmetric. 

The definition of S given by (2.2) implies that 

S2 = RTR^RTR-1 

2 -1 = RT^R X 

and therefore that 

S2 = G2, 

Using this last result 

T -1 - I T 
QQ = (S XG)(S ±G)1 

-1 T -IT 
= s -"GG^S •*•) 
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= s- 1s 2
(s-

1) T 

= sts"1)1" 

= I. 

This shows that Q is orthogonal. The uniqueness of the 

decomposition is shown as follows: 

Let 

G = SQ = S'Q* 

where S and S' are symmetric positive definite matrices and 

Q and Q' are orthogonal. Define 

Q" = Q(Q')T 

then Q" is also orthogonal since 

Q"(Q")T = Q(Q')T[Q(Q')T]T 

T T 

= Q(Q') Q'Q 

= I. 

Also 

S« = SQ" 



since 
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SQ" = SQ(Q')T 

= S'Q'(Q')T 

= S' . 

The matrix S' is symmetric, therefore it is also true that 

T 
S' = (S')1 

= (SQ")T 

T T = (Q")V 

= (Q")TS. 

These last two results show that 

(S')2 = SQ"(Q")TS 

= S2. 

Any positive definte matrix can be written uniquely 

(Chevalley, 1946) as the exponent of some matrix- Define 

S = expA 

S' = expA' 

then S2 = (S')2 implies that 
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exp2A = exp2A' 

and hence that 

A = A'. 

Clearly now 

S = S' 

and 

Q = Q'. 

The decomposition is therefore unique as required. The 

commutativity of S and Q is shown as follows: 

The matrix G = SQ is symmetric and therefore 

T T SQ = (SQ)1 = QXS. 

Hence, using this last result and the fact that Q is 

orthogonal, 

S = QQTS = QSQ = QSQTQ2. 

T T 
The matrices Q and Q have the same eigenvalues and so QSQ 

is clearly positive definite. Also 
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(QSQ1)1 = QS"V = QSQ1 

T and so the product QSQ is symmetric and positive definite. 

2 2 T T T 
Q (Q ) = QQQ Q 

T 
= QQ 

= I 

2 . therefore Q is orthogonal. The decomposition (2.1) for any 

matrix is unique. Therefore since the decomposition for any 

symmetric positive definite matrix S is S = SI it must be 

true that 

Q2 = I 

and 

T QSQ = S 

or equivalently 

SQ = SQ. 

The matrices S and Q therefore commute as required and Q is 

symmetric as well as orthogonal. 
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Many of the known metrics of general relativity have a 

trivial Q matrix and a non-trivial matrix S. For example, 

for the Schwarzschild metric 

ds2 = -(1 - 2mr_1)dt2 + (1 - 2mr~1)"1dr2 

2 2 2 . 2 2 
+ r dez + r sin^edr 

Q = diag(-l,1,1,1) 

l-2mr -1 

S = 
0 (l-2mr~1)~1 0 

0 0 0 

0 

\ ° 
0 

0 

0 
2 . 2 / 0 r sin 9 

However, the Godel metric 

ds2 = -dt2 - 2exp(y2wx)dydt + dx2 - 2~1exp (2/2wx) dv2 + dz2 

has both S and Q non-trivial. This may be shown as follows: 

Define 

B = -2exp(/2wx) 

c = s-V 

so that the matrix G representing the metric can be written 

as 
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G = 

0 

1 

0 

0 

B 

0 

C 

0 

The S matrix is 

S = 

(" 
0 

X 

1 o 

0 

1 

0 

0 

X 

0 

Z 

0 

0 

0 

0 

1 

where 

X 

W 

z 

2 2 1/2 -1 ± B(l - C){[(1 + C) + 4B ] x / } 

B2(C - 1) - X2(C + 1)(2BX)-1 

B2(C - 1) +X2(C + 1)(2BX)_1. 

The matrix Q is 

Q = 

M 

0 

N 

I ° 
where M 

N 

[8-V 

0 

1 

0 

0 

N 

0 

-M 

0 

0 

0 

0 

1 

1]{[(1 - 8 _ 1B 2) 2 + 4B2]1/2}"1 

2B{[(1 - 8 _ 1B 2) 2 + 4B 2] 1 / 2} _ 1, 

Any positive definite matrix can be continuously 

deformed into the unit matrix. The matrix S, which is 
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symmetric and positive definite can therefore be deformed 

into the unit matrix and is said to be homotopically 

trivial. The matrices that reduce S to the unit matrix will 

be constructed in section (2.4). The kink nature of the 

metric must therefore be found in the matrix Q. The matrix 

Q can also be written as (Roman, 1961) 

Q = P diag(-l,1,1,1) PJ (2.3) 

where P is an orthogonal matrix, given by 

P = 

0n -0T ~0-

* i 

\*: 

<Pr 

0o "*, <t>. 

0o "01 

-M 
« , -<P. 

0i 

«o/ 

(2.4) 

and where 

2*«A = x-

Using equation (2.4) with equation (2.3) shows that Q may 

also be written as 

Qai3 = Sa& * 2Vfi" 

The matrix Q can be reduced to the matrix diag(-l, 1, 1, l) 
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by its matrix of eigenvectors, because Q is orthogonal and 

therefore has eigenvalues +1 (Horn and Johnson, 1985). It 

should be noted however that P is not the matrix of 

eigenvectors of Q. The required form of P can easily be 

found if the metric is spherically symmetric as will be 

demonstrated in section (2.5). For any symmetric, 

orthogonal Q the result is more difficult and lengthy to 

establish. A proof can be found however in Roman (1961). 

The kink metrics considered in this thesis are spherically 

symmetric metrics and therefore the proof for more general 

matrices Q is omitted. 

Williams (1971) showed that the <p define a mapping 

3 . 3 . . . . . . . 

from R into S . This mapping is said to be non-trivial if 

it does not belong to the homotopy class that contains the 

group identity, that is, the class that contains the 
3 . 

constant map, that maps R into a single point. If this 

mapping is non-trivial, then the metric represented by the 

matrix G will be a non-trivial kink metric and the 

degree of the map will be equal to the kink number. For 

example, for the Schwarzschild metric, the <p are 

*i = o 
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which is clearly the constant map. This mapping is 

therefore trivial and confirms that the Schwarzschild 

metric is not a kink metric. 

The factorization of any matrix G, representing a 

metric, into the matrices S and Q is unique in a given 

coordinate system but the factorization is not eovariant. 

That is, if the metric is transformed to a different 

coordinate system, then it will be represented by a 

different matrix G' that has a factorization S' and Q', and 

there is no simple relationship between S' and S or between 

Q' and Q. This is because the {<P } are not the components 

of a vector or a tensor. 
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(2.4) Derivation of the Kink Counting Number. 

Finkelstein and Misner (1959) were the first to 

demonstrate the existence of an integral counting number N 

that could be used to classify the metrics of general 

relativity up to a homotopy. The number N is now also 

called the kink number of the metric. They also 

demonstrated that metrics whose kink numbers differ cannot 

be continuously deformed into one another. The kinks of 

general relativity and skyrmion kinks are both 

characterized by mappings from a three-dimensional space 

into a three-sphere. This kink number N, corresponding to 

the homotopy class that contains the metric g „ , is related 

to the degree of this mapping, as is the counting number of 

skyrmion kinks. The skyrmion kink counting number is 

0 . Q 

obtained when the N component of the skyrmionic current N 

of strong interaction theory (Skyrme, 1961) is integrated 

over three-space. 

N = (127T ) e eaRTS<p <p ^ iQ<p fV (2.5) 

It is important to note that the 0 in the above equation 

due to Skyrme are scalar fields such that 

Z(p <4 = 1 
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The set {0 } therefore defines a map from three-space into 

the three-sphere 

3 3 *:R ->S 

such that 

*(*) = (0O, 0X, 4>2> 03) 

The skyrmionic current is therefore proportional to the 

Jacobian of $, and the skyrmion integral counting number Nq 

is equal to the degree of the map, deg($). 

f 

Ns = deg(*) 
0 3 N d X (2.6) 

J 

As noted by Felsager (1981), this winding number, 

deg($), i^ only well-defined for smooth maps between 

compact manifolds and even if it is defined for non-smooth, 

non-compact manifolds it need not be an integer or even 

constant. It is therefore necessary to be able to 

3 compactify R to form a three-sphere. This is possible .when 

. . 3 . ; 
* maps the infinite boundary of R into a single fixed 

3 
point in S , say (1,0,0,0). This means the set of maps * is 

restricted to satisfy 

(0Q, 0 r 02, 03) -> (1, 0, 0, 0) 



at the boundary at spatial infinity. 
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Such a restriction leads to asymptotic flatness 

lim %&= v 
|x|->°o 

and may be interpreted as "preventing" the kink from 

escaping at infinity. That is, if there is no matter at 

infinity the kink cannot be "pushed out" to infinity or 

"flattened out" under some coordinate transformation. 

Several examples of general relativistic kink metrics 

have been discussed (Finkelstein and McCollum, 1975; 

Harriott and Williams, 1988; Dunn and Williams 1989). All 

of these examples arise from metrics of the form 

g a = S a - 20 0„ (2.7 

where the 0 are functions satisfying £0 0 = 1. This 

metric given by equation (2.7), in the notation of section 

(2.2), corresponds to the choice S = I and G = Q. The kink 

number of such metrics is again related to the degree of 

the mapping defined by the {0 } and it appears that it 

could be calculated by using the formulae given in 

equations (2.5) and (2.6). However, there are several 
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problems with actually using these formulae to do such a 

calculation. These are: 

(i) The 0 of Skyrme's theory are scalars, whereas those 

arising in the general relativistic metrics are not 

scalars, vectors or tensors of any kind. Also, the relation 

they obey, namely 20 d> = 1, is not eovariant. It is 

• therefore not clear how these quantities transform under a 

change of coordinates. 

(ii) To be useful, it is desirable that the kink number 

could be calculated for any metric of general relativity. 

In general, it is not possible to transform a metric into a 

form such as (2.7) in order to extract the 0 to calculate 

the kink number. That is, in general it is not true that 

S = I. 

(iii) The concept of degree is only defined for mappings 

between spaces of the same dimension. The set of all 

Lorentz metrics, S , has a dimension greater than 3. The 

mapping used to define the kink number must therefore be 

shown to be between spaces of the same dimension. 

To overcome these problems it is therefore necessary to 

generalise the process used above to calculate a kink 
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number so that it will be well defined for all metrics. 

This is achieved by specifying how to define the 0 for any 

metric even if it cannot be expressed in the form of 

equation (2.7) and then showing how to define a vector 

quantity from the 0 that will allows a eovariant form of 

the kink number to be defined. 

The 0 for any general relativistic metric can always 

be found as follows: It was demonstrated in section (2.3) 

that any metric can be represented by the product of two 

matrices S and Q where S is positive definite and symmetric 

and Q is orthogonal and symmetric. It was also demonstrated 

that the matrix Q can always be written in the form 

P diag(-l,1,1,1) PT, 

where P is also orthogonal, so that each of its columns or 

3 . 3 rows represents a mapping from R into S . In particular, 

it was shown that the elements of Q can always be expressed 

in the form 

%R = 6aR " 2*cr*B' 

where the 0 are the elements of P, and 
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0n -0. "0_ -0. 

01 0r 0, "0, 
(2.8) 

0o -0i 0, 

0i 0o "01 0 
°/ 

The 0 satisfy 

Z0 0 = 1. 

Thus it is demonstrated that such 0 can always be found 

for any metric in a given coordinate system. 

It is a well known result (Geroch and Horowitz, 1979) 

that any Lorentz metric g . in a particular coordinate 

system can be written in terms of an arbitrary positive 

definite metric h „ and a vector field X that is unique up 

to a sign 

g«« = Ka - 2h„h f taxTxe(h x V ) - 1 . 'a£ aR ar BG 

It is this vector field X that will be used to replace the 

0 in the formula for the kink number. 

Let the matrix G represent the metric g . and let H 

represent the metric h « in some coordinate system. 

According to Perlis (1964), it is always possible to find 

an invertible matrix C that simultaneously diagonalizes M 
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and K where M and K are any symmetric matrices and K is 

positive definite. G and H are two such matrices and it 

will be shown that, following Perlis, there exists C such 

that 

CTGC = diag(no,n1,n2,n3) 

T CHC = I 

and 

Gca = n HcQ 

a 

where ca are the columns of C. These results are proved as 

follows: 

H is a real, symmetric matrix and therefore there 

exists a real, orthogonal matrix that diagonalizes it. Let 

this matrix be U, and let the eigenvalues be \i , 

a = 0,1,2,3 so that 

UTHU = diag(/i0, fiv M2, M 3). 

The eigenvalues \i of H are all positive because H is 

positive definite and therefore it is possible to construct 
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a symmetric matrix, D, from the inverse square roots of the 

eigenvalues. That is 

D = diag,M0-
1/2, M^ 1' 2, M2"

1/2, M3-
1/2>. 

Clearly 

DTUTHUD = diag(/ia'
1/2)diag(/ia)diag(Ma"

1/2) 

= I. 

A symmetric matrix, F, can now be constructed from D, G 

and U: 

T T F = D U GUD. 

The matrix F is easily seen to be symmetric because 

m m m m 

F = (D U GUD) 

= DTUTGT(UT)T(DT)T 

T T 
= D U GUD 

= F. 

The symmetric nature of the matrix F means that it can be 

diagonalized by a real orthogonal matrix. Let this matrix 

be V and let the eigenvalues be n , a = 0,1,2,3 so that 
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V TFV = diag(nQ, n r n2, n 3). 

Since V is orthogonal it is clear that 

T T T T V D U HUDV = V IV 

T = V V 

= I 

This result shows that a matrix C = UDV will diagonalize H, 

in particular it will reduce H to the unit matrix. Such a 

matrix C can be shown to also diagonalize G as follows: 

CTGC = (UDV)TG(UDV) 
rn m m 

= V (D U GUD)V 

T = V RV 

= diag(nQ, r^, n2, n 3). 

The matrix C = UDV is therefore the required matrix that 

simultaneously diagonalizes G and H. These last two results 

show that 

GC = (cT)"1diag(n0,n1,n2,n3) 

and 

T -1 
HC = (C ) XI 
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so t h a t 

GC = HCdiag(nQ, n l f n 2 , n3) 

= d i ag (n Q , nv n 2 , n 3 ) H c 

This last result shows that for any choice of C the (. will 

satisfy 

det(G - n H) = 0. 

There will therefore be non-trivial solutions to the 

eigenvalue equation 

g „XB = nh -X6. (2.9) 
^OLR aB v ' 

Recalling that G = SQ, it is therefore possible to make a 

special choice for h R, namely let 

H = S, 

This choice means that 

GX = SQX = nsx. 

It therefore follows that 
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W 8 - ™6 

or equivalently, 

QX = nx. 

The signature of Q means that one of the eigenvalues n , 

say n , will be negative. The eigenvalues of Q must be +1, 

because Q is orthogonal, so that n = -1 and n. = +1. 

If n = n , equation (2.9) can now be solved for X , which 

determines a vector field X, that is timelike and unique 

up to a sign and normalisation. The normalisation may be 

oc oc chosen so that EX X = 1 . However, with these choices, the 

X are equal to the 0 in this coordinate system. This can 

be shown as follows: 

Let 

col(0) = zeroth column of P 

0; 

01 

and 
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col(n) = zeroth column of n 
= diag(-l,1,1,1) l 

I'1 -1 \ 
0 

0 

It is now easy to show that 

,T 

G col(0) = SQ col(0) 

= SP diag(-l,l,l,l)PJ" col(0) 

= SP col(n) 

= -S col(0) 

Ta Comparing this result to (2.9) shows that X can be 

identified with the <p . 

This vector field X is now used in the equation (2.5) 

replacing the scalar 0 of Skyrme's formula. The ordinary 

derivatives are replaced by the eovariant derivatives with 

respect to the tensor s _, leading to the following 

eovariant form of the kink number formula 

/ 

N = (127T2)"1 oijk a R T „6 ,3v 
6 eaRrS X X |iX | j X |k d x" 
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The | denotes differentiation with respect to the tensor 

s .. Whenever the matrix S is the unit matrix, the 

eovariant derivatives reduce to ordinary partial 

derivatives and the formula returns to the original form 

proposed by Skyrme. 

This form of the kink number will be used later to 

demonstrate the that some metric solutions of the Einstein 

field equations are kink metrics. The agreement between 

this formula and Skyrme's original formula for these 

solutions will be demonstrated. This is achieved by 

calculating the kink number in the chosen coordinate system 

of the metric and then transforming the metric into 

coordinates where the S matrix is the unit matrix I and 

showing that the kink number remains unchanged. The kink 

number will remain unchanged in any coordinate system 

chosen provided the transformation is one allowed by 

homotopy theory. That is, provided the transformation is 

not singular at any point and provided that there is no 

change in the foliation of the manifold into hypersurfaces 

as a result of the transformation. 
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(2.5) The General Spherically Symmetric Kink Metric 

Consider the decomposition of the matrix G, 

representing the most general spherically symmetric metric, 

into its S and Q matrices. That is, as shown in 

section (2.3) 

G = SQ 

where S is symmetric and positive definite and Q is 

orthogonal. The most general spherically symmetric metric 

may be written in the coordinates {x } as (Bergmann 1942) 

^ 2 , a , B 
ds = g a 6 d x dx 

= Adt2 + 2 B ( x 1 r " 1 ) d t d x 1 + [C6. . + D (x1x1r~2) Jdx^x 1 3 

where A = A ( r , t ) , B = B ( r , t ) , C = C ( r , t ) , D = D ( r , t ) , 

t = x°, r = ( x V ) 1 / 2 . 

The matrix representing this metric is 

B x V 1 

BxV 2 

B x V 1 B x V 1 

1 - 1 1 1 - 2 1 2 - 2 
Bx r C + Dx x r Dx x r * 

B x 3 ^ 1 \ 

3 -2 Dxlx r 

D x 2 x V 2 

DX^V 2 

2 2 - 2 2 3 - 2 
C + Dx x r Dx x r 

DxVr"2 
c + Dx 3 x 3 r~ 2 

(2 .10) 
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Let R be the orthogonal matrix that diagonalizes G and 

let the eigenvalues of G be n„, n., fi_, n~, so that 
U 1 £. J 

R TGR = diag(nQ,n1,n2,n3) 

where n < o and n , n_, n_ > 0 to satisfy the signature 

condition. Then R simultaneously diagonalizes S and Q. This 

result is shown as follows: 

S is defined from equation (2.2) by 

S = RTR-1 

where T is the diagonal matrix whose elements are obtained 

by taking the positive square roots of the squares of the 

eigenvalues of G. To satisfy the signature conditions of G, 

exactly one of it's eigenvalues will be negative. This 

negative eigenvalue can be chosen to be fi without loss of 

generality. Clearly 

s = R d i a g ( | n 0 | , n r n 2 , n3) RT 

and 

R TSR = diag(|n0|f n1, n2, n3) 
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R TGR = diag(nQ, n1# n2, n 3). 

The matrix Q can be diagonalized as follows. 

Q = S_1G 

= {R diag(|n0|,n1,n2,n3) R T } _ 1 { R diag(n0,n1,n2,n3) R T> 

= (R T) _ 1 diag(|n'0r
1,(n1)~

1,(n2)"
1,(n3)"

1)R"1R 

diag(n0,,n1,n2,n3)R
T 

= R diag(|nor
1,(n1)"

1,(n2)"
1,(n3)~

1) 

diag(n0,n1#n2,n3)R
T 

= R diag(-l, 1, 1, 1) RT. 

Therefore R simultaneously diagonalizes S and Q as 

required. 

It is important to note that R is the matrix of 

eigenvectors of G, and P is the specific matrix defined in 

equation (2.4). Both of these matrices reduce Q to the 

matrix diag(-l,1,1,1).but they are clearly distinct 

matrices, except in the special case when G = Q and G is 

diagonal. In the case where S = I and so G = Q, then R is 

clearly the matrix of eigenvectors for Q as well as G. For 

the spherically symmetric case, the form of these two 

matrices, R and P, will be found below. 
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n„ = {A + C + D - [(A - C - D)
2 +4B2]1/2}/2 

n. = 

n„ = 

n2 - c 

{A + C + D + [(A - C - D) 2 + 4B2]1/2}/2 

To ensure that fl < 0 and n , fi , n3 > 0, the following 

inequalities must hold 

C > 0 ; B > A(C + D) 

The matrix of eigenvectors of G, R, is 

R 

/ -(c+D-n0)Ro
_1 0 

Bx1(rRQ)"
1 0 

-(c+D-n3)R3 
-1 

"S23r 
- 1 Bx1(rR3)"

1 

2 - 1 3 - 1 1 2 -1 2 -1 Bx^(rRQ)
 x x JS 2 3

 ± xY(rS23)
 x Bxz(rR3) 

Bx3(rRo)-
1 -x2S23"

:L x1x3(rs23; 
-1 3 -1 BxJ(rR ) \. 

where 

2 2 1/2 

R0 = [B^ + (c + D - nQ)']1/z 

R3 = [B
2 + (c + D - n 3 )

2 ] 1 / 2 

s 2 3 - [(x2)2+ (x 3) 2] 1' 2. 

To simplify the form of the matrices S and Q, consider 

the following relabelling 
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n3 = e° 

sin2a = -2B[(A - C - D ) 2 + 4B2]~1/'2 

The matrix S is now 

ef'c2a+e0s2a e~s2ax1(2r)_1 e~s2ax2(2r)-1 e~s2ax3(2r)_1 ' 

1 - I T 1-12 1 2 - 2 1 3 - 2 e s2axx(2r) e +F(x r T Fx x r Fx x r ̂  

e"s2ax 2 (2 r ) - 1 F x ^ V 2 e T +F(x 2 r - 1 ) 2 Fx 2 x 3 r - 2 

e~s2ax3(2r)~1 Fx 1 x 3 r - 2 F x 2 x V 2 e T +F(x 3 r - 1 ) 2 

(2.11) 

where 

ca = cosa, sa = sma 
- n a e = e - e 

„ Q . 2 , a 2 r 
F = e s in a + e cos a - e 

and the matrix Q i s 
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-c2a 1-1 2-1 
-x r s2a -x r s2a 

3 -1 „ -x r s2a 

1 -1 1 - 1 2 2 1 2 - 2 2 1 1 -? 7 

-x r s2a 1-2(xr ) s a -2x x r s a -2x x r s a 

-x2r_1s2a -2x1x2r~2s2a 1-2(x2r-1)2s2a -2x2x3r"2s2a 

-x3r"1s2a -2x1x3r"2s2a -2x2x3r~2s2a 1-2(x3r-1)2s2a 

where c2a = cos2a and s2a = sin2a. The matrix that 

represents the metric g „ can now be expressed as: 

(2.12) 

G = Rdiag(-e , e , e , e )R . 

Under this relabelling, the matrix R is 

-cosa -sma 

R = 

1 -1 . 
-x r sma 
2 -1 . 

-x r sina 
3 -1 . 

-x r sma 

0 

3, 
"S23r 

-1 1 -1 x r cosa 

-1 1 2 - 1 2 - 1 x S__ x x (rS ) x r cosa 

-x2S23"
1 x1x3/(rS23) x3r-1cosa 

(2.13) 

and the matrix G, given previously by equation (2.10), is 

eas2a-enc2a -2"1x1r"1s2ae+ -2-1xV1s2ae'f -2 _ 1xV 1s2ae + 

-2'1xV1s2ae+ -H(xV 1) 2+e T -Hx^r" 2 -Hx1x3r"2 

-2_1x2r'1s2ae+ -Hx1x2r'2 

-2-1x3r"1s2ae+ -Hx1x3r"2 

-H(x2r-1)2+eT -Hx2x3r"2 

- H x 2 x V 2 „. 3 -\.2A r -H(x r ) +e 
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where 

ca = cosa, sa = sma 
D. . 2 a 2 , r H = e sin a - e cos a + e 

+ n , a e = e + e . 

It is clear that the matrix Q depends on a but not on 

n, r or a. It can be written in a more compact form by 

introducing the functions {0 }: 

0 = cosa 

° i -1 . <2-14> 
0. = x r sina. 

These are the functions that were first introduced by 

Skyrme (1961) defining the hedgehog of skyrmionic gauge 

theory. They clearly obey 

E0 0 = 1 
^a^a 

3 . 3 and so these i<Pa) represent a mapping from R into S 

These 0 as defined above are the 0 defined in Section ^a ^a 

(2.3) as components of the matrix P where 

Q = Pdiag(-l,l,l,l)PT. 

Here the form of P is 
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1 -1 . 2 -1 . 3-1 
cosa -x r sina -x r sina -x r sina 
1 -l . 3 -l . 2 -l . x r sina -cosa x r sma -x r sma 
2 -1 . 3-1 l-i 
x r sina -x r sina -cosa -x r sina 
3 -l . 2 -l . l -l . 
x r sma -x r sina -x r sma -cosa 

(2.15) 

Equivalently, these are the 0 that lead to the following 

form for the tensor represented by the matrix Q 

%R = 6aR " 2 < V B ' 

It is now easy to see that when S = I, so that G = Q, the 

matrix R given by equation (2.13) is the matrix of 

eigenvectors of Q which is clearly distinct from the matrix 

P given by equation (2.15). 

One way to find kink metrics is therefore to find a 

suitable form for the angle a (in the above metric) that 

satisfies the Einstein field equations. To be of physical 

interest, this form should lead to a physically acceptable 

equation of state in the stress-energy tensor. The question 

of how to choose a stress-energy tensor will be addressed 

in the next chapter. 

The various choices that can be made for S and Q are: 
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0 O
 = 1 

0. = 0 

Q = d i a g ( - l , 1, l , 1) 

/n 
' e 

0 e T + ( e a - e r ) ( x V 1 ) 2 (eCT-eT) x V r " 2 (ea-eT) x V r " 2 

0 (eCT-eT)x2xV2 e T
+ ( e V ) ( x 2 r - V (e a-eT)x2x3r-2 

v0 ( e a - e T )x 3 xV 2 ( e V ) A V 2 eT+(e(T-eT) ( x V 1 ) 2 / 

This choice can be shown to lead to one of the well 

known spherically symmetric solutions, such as the 

Schwarzchild solution or the de Sitter solution, which are 

not kink metrics. 

(ii) n = r = a = 0 and a ^ 0, which imply that 

e~ = en - ea = 0, F = 0, e* = e1 + e° = 2, H = 2sin2a 

so that 

S = diag(l, 1, 1, 1) 
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and 

Q = G 

is non trivial. The elements of Q or G are given by the 

matrix given in equation (2.12), equivalently, 

qaR = gaB = 5aB ' 2 < W 

Under the coordinate transformation 

x° = t 

x = rcos$cos6 (2.16) 

2 x = rsmfcos9 

3 x = rsine 

the metric becomes 

2 2 . 2 
ds = -cos2adt - 2sm2adtdr + cos2adr 

+ r2de2 + r2sin29d*2. (2.17) 

It is easy to show that in these new coordinates the S and 

Q matrices are 

2 2 . 2 
S = diag(l, 1, r , r sin 6) 



Q = 

cos2a 

sin2a 

0 

0 

-sin2a 

cos2a 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 
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The matrix P, where Q = Pdiag(-1, 1, 1, 1)P , is 

P = 

cosa 

sina 

0 

0 

-sina 

cosa 

0 

0 

0 

0 

cosa 

-sina 

0 

0 

sina 

cosa 
/ 

The form of P shows that 

0. = cosa 

0, sma 

0e - 0$ = °-

These matrices do not arise from the transformations of 

equations (2.11) (2.12) (2.13) because the factorization of 

G into the matrices S and Q is not eovariant. They are 

found from the decomposition process described in section 

(2.3) . 

For particular values of a, this is a simple one-kink 

metric which has been studied by several authors (Clement, 
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1984 a,b,c, 1986; Finkelstein and McCollum, 1975; 

Finkelstein and Williams, 1984; Harriott and Williams, 

1986, 1988a; Williams, 1985 and Williams and Zia, 1973) and 

will be further discussed in Chapter 4. 

(iii) If S and Q keep their most general form, then the 

metric tensor has components: 

a . 2 n 2 g = e s i n a - e cos a ^oo 

g . = -2"1x1r~1sin2a(en + eCT) 

i i -2, r , n . 2 in - x xJr g.. = e Sij - x xJr (e + e sin a - e cos a) 

Under the coordinate transformation (2.16) the metric 

tensor components become 

a . 2 n 2 

g, , = e sin a - e cos a 

g, = -2 (e + e )sin2a 

g = eCTcos a - e sin a (2.18) 
3rr 

T 2 
%B " e r 

r 2 . 2 g$$ = e r sin 9 

and the S and Q matrices are now 
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S = 

tt 

rt 

0 

0 

tr 

s rr 

0 

0 

0 

0 

eV 
0 

0 

0 

0 

r 2 . 2 eTr^sin 9 

where 

and 

'tt 

S„o. = 
rt 

rr 

a . 2 , n 2 e sin a + e cos a 

sinacosa(e - e ) 

a . 2 , n 2 e sin a + e cos a 

Q = 

cos2a 

sin2a 

0 

0 

-sin2a 

cos2a 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

Therefore the 0 of the P matrix, where 

Q = Pdiag(-1, 1, 1, 1)PX, 

are 

0< cosa 

0 = sina (2.19) 

0e = 0$ = 0. 
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For certain choices of a, this metric can be shown to have 

one kink present (Harriott and Williams, 1986b) This metric 

will be further discussed in Chapters 3 and 5. 

It should be noted that n-kink metrics can easily be 

generated from any known one kink metric by construction of 

a new metric tensor represented by the matrix G (Williams 

and Zia, 1973) 

n n 

where G = SQ is the one kink metric 

Q = P diag(-l, 1, 1, 1) PT 

and 

Qn = (P)
n diag(-l, 1, 1, l)(PT)n. 

Such metrics may not, however, satisfy the Einstein field 

equations. For the metric given by equation (2.16), the 

matrix P is 

0 0 \ 

0 0 

cosa sina 

-sina cosa;. 

P = 

cosa 

sina 

0 

0 

-sina 

cosa 

0 

0 
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It is easy to show that 

p 
n 

= ( P ) n -

/ cos(na) 

s i n ( n a ) 

0 

\ 0 

- s i n ( n a ) 0 

cos(na) 0 

0 cos(na) 

0 - s i n ( n a ) 

0 

0 

s i n ( n a ) 

cos (na ) 

and that the matrix Q is 

/-cos(2na) -sin(2na) 0 0 

-sin(2na) cos(2na) 0 0 

0 0 1 0 

0 0 0 1 

The new values of the d> are 
^a 

0. = cos(na) 

0 = sin(na). 

A possible example of an n-kink metric is therefore 

2 2 . 2 
ds = -cos(2na)dt - 2sin(2na)drdt + cos(2na)dr 

+ r2de2 + r2sin29d$2 , 

but such an n-kink metric that satisfies the Einstein field 

equations has not yet been found. Extension of the 
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spacetime manifold to construct n-kink metrics from known 

one kink metrics, that do satisfy the field equations, 

will be discussed in future chapters. 



(2.6) Interpretations of Kink Solutions. 

The kinks, now called skyrmions, arising in the 

nonlinear scalar field theories were developed by Skyrme 

(Skyrme, 19 62) with the hope that they would provide a 

unified description of fermions and bosons. The similar 

structures arising in general relativity were first hoped 

to have a similar interpretation. However, the latter 

cannot usually describe half-odd intrinsic spin particles 

(Finkelstein and Williams, 1984). If the number of 

dimensions is extendi to include inner degrees of freedom 

then Williams (1985) showed that half-integral spin is 

possible. Such solutions may have a particle interpretatio 

but the usual metrics of general relativity will not. 

Features of a kink spacetime include tumbling light 

cones. They have no global timelike Killing vector, no 

global timelike coordinate. There are therefore no 

spacelike (Cauchy) hypersurfaces and so the Singularity 

Theorems (Hawking and Ellis, 1973) do not apply .to these 

spacetimes. A future direction is well defined at each 

point of the spacetime manifold by the light cones and so 

the manifold is in general time orientable. (This may not 

be the case if the infinite boundary of a single kink 

metric, where the light cones tumble through an angle n, 

is identified). 
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Finkelstein and McCollum (197 5) stated that the one 

kink metrics of general relativity (with spherical 

symmetry) that they considered do not have closed timelike 

curves and so causality will not be violated. Their 

arguement will extend almost unchanged to n-kink spacetimes 

and is as follows: Consider a particle fired from a large 

value of r, within its light cone. Without loss of 

generality assume the particle moves to the left (to 

smaller r) as illustrated in Fig. (2.3). The particle moves 

to different slices labelled by t = k where k is constant. 

For greater values of k as r decreases, the light cones 

are tipping more and more and so the particle, confined 

within its light cone at each point is constrained to move 

along the timelike geodesic sketched in Fig. (2.3), which 

is parabolic in shape. The particle cannot return to the 

large r values and so there are no closed timelike curves. 

Finkelstein and McCollum (1975) suggested that kinks 

may provide a description of the internal structure of 

black holes that possess no curvature singularities. These 

kink spacetimes have trapped surfaces: at certain radii the 

lightcones are turned so that one branch is parallel to the 

t axis at those radii. In one direction nothing can cross 

these radii. Kink metrics are global in nature and 

therefore any structures they describe must also be global. 



The global nature of the kink solutions found becomes 

evident from the fact that locally they will be shown to be 

transformable to non-kink metrics such as the de Sitter 

metric. The equation of state of the de Sitter kink metric-

will be shown to be 

P = - M-

This equation of state has been found to be associated with 

conditions in the early universe and, as shown in a later 

section, the associated scalar expansion is exponential. 

It is possible therefore that kink metrics may also have 

some relevance in the early universe. 

It is possible that there may be other interpretations 

for kink metrics. Williams (1974) briefly discussed using 

the stress energy tensor of the electromagnetic field in 

the field equations, however no solutions were found. 

Another approach may be to consider vacuum expectation 

energy solutions but no work has yet been done in this 

area. 



CHAPTER THREE 

THE GENERAL SPHERICALLY SYMMETRIC KINK METRIC 

Introduction 

This chapter derives the Christoffel symbols, Ricci 

tensor components, scalar curvature, Einstein tensor 

components (3.1) and Killings equations (3.2) for the most 

general form of the spherically symmetric metric discussed 

in Chapter 2. The form of the stress-energy tensor is 

presented (3.3). The choice of an appropriate velocity 

vector for this metric is discussed (3.4). The form of 

various hydrodynamical quantities appearing in the stress-

energy tensor are also found (3.5) - (3.7). 

88 
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(3.1) The Christoffel Symbols, Ricci Tensor, Scalar 

Curvature and the Einstein Tensor. 

The metric to be discussed is the most general form of 

the spherically symmetric metric that may admit kinks. It 

was shown in Chapter 2 that this metric could be written as 

-<Sin2a - - n — 2 -

.n . o( 

g , . = e s i n a - e cos a 

g. = - ( e + e ) s inacosa 

g = e cos a - e s i n a (3.1) 
3 r r v ' 

See := e r 
T r 2 

T 2 . 2 g_, = e r s i n 9 

The contravariant components of this metric are 

tt -a . 2 -n 2 g = e sin a - e cos a 

tr , -a -n> g = - (e + e )smacosa 

rr -a 2 -ft . 2 g = e cos a - e sin a 

gee = (eV)"1 

g*$ = (eTr2sin29)-1 

and the determinant of the matrix | \<3aR\ | is 

4 . 2 
det(g o) = -r sin 9 exp(ft + 2r + a) 
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Writing 

E = exp(ft + a) , 

it is clear that 

and 

<9rt>
2 ~ gttgrr = E' 

The Christoffel symbols are calculated from the 

equation (Misner, Thorne and Wheeler, 1973) 

r RT ~ 2 g (gBM,T
 + gTM,B " qRr,fx

) 

For this general metric, the equations for the non-zero 

Christoffel symbols are rather lengthy if written explieity 

in terms of the metric functions, a, a, n, T. Therefore, 

where convenient, they are stated here in terms of the 

metric components g.., g. and g and their derivatives. 

r \ t = -2"lE"1(grrgtt,t " 2gtrgtr,t + gtrgtt,r> 



9 1 

r t t r " - 2 " l E ' ^ g r r g t t , r " 9tr*rr, t> 

p t r r = 2 " l E " 1 ( g t A r , r " 2 g r r 9 t r , r + 9 rr*rr , t> 

r ^ = 2 - W r 2 [ g r r T / t - g t r ( r # r + 2 ^ ) ] 

r% $ = s i n 2 e r t e 0 

^ t t = 2 " l E * 1 ^ t r 9 t t , t - 2 g t t 9 t r , t + S t t ^ t t . r ' 

p r t r = 2 " l E " 1 ( g t r 9 t t , r " ^ r r . t ' 

^ r r = - 2 _ l E " 1 ( g t t g r r , r " 2 g t r g t r , r + g t r g r r , t > 

r r e e = 2 " l E ' V r 2 ^ t t ^ , r + 2 r _ 1 ) " ?tr\0 

r%$ = sin
2erree 

re = r* = 2-iT 1 te l t» ^ T,t 

r .. = -sinecose 

re = r* - 2-\ + r"1 r9 r* ,r 

r*e* = cote 
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The above results imply that 

r\t + r \ r - -2"lE'1(grrgtt,t + gttgrr,t 

" 2gtrgtr,t> 

" 2 " V 1 ( g t r 2 "gttgrr>,t 

= 2_1(n + a ) 

and 

t , „r -,-lr,-! 
r . + r 
rt rr 

- "2 E (grrgtt#r + gtt
grr,r 

' 2gtrgtr,r) 

= 2-1E"1(gtr
2 - g t t g r r ) / r 

= 2_1(n + a ). 

The Ricci tensor is the contraction of the Riemann 

curvature tensor and is defined by (Misner, Thorne and 

Wheeler, 1973) 

KaB g KraB5 l
 <XR,T

 l ar,B x aB1 TS
 l aSL

 TR' 

The non-zero Ricci components for this metric are stated 

below. For this general metric they are expressed in terms 

of the non-zero Christoffel symbols and their derivatives. 
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\ t = rJ 
t t , r 

t t 

- r r - 2rQ.. . + r\.ra. + r r ^ r Q 
t r , t t e , t t t ta t t ra 

- ( r V ) 2 - <rr«.j2 - 2 ( r \ a ) 2 - 2 r r _r t 
t r ' t e ; 

tt* t r 

r r - r r - T t t , r * t r , t T , t t 
+ 2 ~ l r t t t ( n , t + a , t + 2 r , t + 2r_1> 

> 2 " l r r t t ^ , r + V + 2 r / r ] - ( r ^ ) 2 (r r
t r ) 2 

2 - V ^ ) 2 - 2 1 " % ^ 

= rv + r- + 2r* r e xtr * t r , t ' * t r , r " ( r ta} , r ' " tr* te 
+ 2r r r e - r r rfc - ?re r e 
+ ^ t r 1 re * t t r r r 2 r t e r re 

+ r r . T \ t r t r 

= r - i 
t r , t + r t r , r " 2 ( n , t r + a , t r + 2 \ t r > 

+ ^ , t r t t r + ^ t A r " ^ t t ^ r r 

" T , t < 2 ~ \ r + r _ 1 ) + r r
t r ( r , r + 2 r"") 

R r r r r , t t r , r ^ r e , r + * r r t t 
+ 2rfc r e + r r r t + 2r r r e - rrfc \2 

r r te + * rr1 t r + li r r re ( r t r ) 

- 2(r e ) 2 - r r rt 
z u re ' * tr* r r 

= r t r r , t - r t t r , t - 2 ( 2 " l T , r r - r ' 2 ) + T , t r t r r 
+ r^ rV - rr^) - r^r1^ - rr

rr) 
, - i . 

r r v t t t r ' 
+ 2 r r

r r ( 2 - 1 T ^ r + r"1) - 2(2 - 1T f r + r " 1 ) 2 
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R = r + r r - r - (r \ 
ee ee,t ee,r e*,e l e$' 

+ r t ee^ r t t t + rrtr> + ^ee^tr + ^ r r ) 

" 1 + r te9,t + r ree,r + 2" l r t99(n , t + <\t> 

+ 2 _ l r ree(n , r + *,r> 

R$$ - sin29 ReQ. 

The carvature scalar is defined by 

and for this metric it is 

R . g«R t t + 2g
trEtr + g"R r r + *3*\e 

= e {cos aR - 2sinacosaR, + sin o:Rtt} 

-fl . 2 . 2 
- e {sin <*R + 2smacosaR. + cos aR. .} 
+ 2e-nr"2Ree. 

The Einstein tensor is defined by 

G n = R - - 2 ~ g „ R aB aB ^aB 

or 
a _ _ar„ _ „a _ --l^a 

B 2 RS R' 
G A = 9 6rfl = R"- " 2 ™ 

r 
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For this metric 

G \ = gtt:Rtt + g
trRtr - 2-

1-* 

,r __ .rr,, , _tr „-lT 
tr 

G r = g Rrr + g R._ - 2 *-R 

r rr +r 
6 t - g \ r

 + g'rRtt 

r rr 3 tr 

r 6 $ e $ 
G * = G = G "~ G * -= G* = 0. 
$ r r * e 

The components of the Ricci tensor and the Einstein 

ter.sor will not be further simplified until certain 

restrictions are placed on the functions a, ft, T, a . These 

restrictions will simplify the equations so that solutions 

to the field equations can be found. 



(3.2) Killing's Equations 
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The symmetries of a metric space are described by the 

number of Killing vectors it possesses (Schutz, 1980). The 

Killing vectors are vectors satisfying the equations 

JLfl ="a,B + MB,a = ° 

For this metric, the Killing equations are 

"t,t " rttt"t " ̂ r = ° 

H,r + "r,t " 2rttr^t = ° 

"t,e + "e,t ~ 2r6te^e = ° 

"t,« + »*,t - 2 r V * = ° 

u - 1^ ut - r
r a = 0 pr,r rr t rrMr 

"r,e + "e,r - 2r6re^e = ° 

r,» *,r r* * 

^9,9 " rt99^9 " ̂ 9 9 ^ = ° 



9 

*-ef» + "»,e ~ 2 r*e* M* = ° 

M#f, - r%^ t - r%$Mr - r%$M9 = o. 

These equations will be solved later for the specific 

solutions of the field equations that are found for this 

metric. However these general equations will clearly admit 

the three Killing vectors that are the generators of the 

rotation group S0(3), since the spacetime is spherically 

symmetric. 

I 



(3.3) The Stress-Energy Tensor 
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The stress-energy tensor for an imperfect fluid can be 

written (Ellis, 1971) 

T Q
6 = (M + P)u

au6 + (qaufi + q6u
a) + p£afi + ita

 & 

(3.2) 

where n is the total energy density measured by an observer 

moving with 4-velocity u a and q is the energy flux 

relative to ua and represents physical processes such as 

a diffusion and heat conduction. The vector q obeys 

q u = 0, ^ a 

The isotropic pressure is given by p and the trace-free 

anisotropic matter pressure is n R and represents processes 

such as viscosity. It satisfies 

\RU& = °" 

It is usual to assume that certain phenomenological 

equations of state hold (Ellis, 1971). These arise from 

comparison with Newtonian theory and the condition that 

entropy must never be negative. They are 
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% = 'XhVT,B + V> 

P - PT = -se 

where T is the temperature, p T is the thermodynamic 

pressure, n(pT,v) is the coefficient of viscosity, X(p_,,v) 

is the heat conduction coefficient, and S(pT,v) is the bulk 

viscosity coefficient. These last three coefficients are 

functions of the thermodynamic pressure and the specific 

volume v. The specific volume is defined by 

v = r~1 

where T is the rest mass density measured by an observer 

moving with 4-velocity ua. The rest mass is related to the 

total energy density /x by 

M = r(l + e) 

where e is the specific internal energy. Therefore these 

coefficients may be regarded as functions of p and /i. The 

coefficients n, X, and 2 obey the restrictions 
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n >, o 

x ^ o 

s >, o. 

The stress-energy tensor can therefore be written 

Tafi = (M + P T)
u 0 ! u

6 + P T ^ B "
 2ehQ!B " 2na°B + q0tuB + V 1"* 

(3.3) 

The perfect fluid approximation is obtained from equation 

(3.2) when 

% = naR = °' 

and then the stress-energy tensor reduces to 

Ta
R = (/i + p)u

auR + p$
a
R. (3.4) 
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(3.4) Choice of a Velocity Vector 

Finkelstein and McCollum (1975) and Williams and Zia, 

1973) discussed possible mass distributions that might lead 

to kink solutions, but did not consider the exact form of 

the stress-energy tensor, the velocity vector components 

or what the equation of state might be. Therefore, these 

earlier suggestions for possible mass distributions did not 

necessarily satisfy the Einstein field equations. Exact 

solutions of the Einstein field equations identified as 

kink solutions were found by Harriott and Williams (1988a). 

For the most generally spherically symmetric metric of 

section (2.4), given by equation (3.1), which is 

o . 2 ft 2 
g.. = e sin a - e cos a 

-1. ft . a. . _ g. = -2 (e + e )sm2a 

a . 2 ft 2 g = e sin a - e cos a rr 
T 2 

g99 * e r 

g„. = eTr sin G 

the 0 defined by equation (2.17) are 

0. = cosa 

0 = sina 

0e - 0* = ° 
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Solutions of the Einstein field equations are sought 

for which the components of the velocity vector are 

generalizations of the 0 , in that (Harriott and Williams, 

1986) 

u = e"~ ' cosa 

u
r = e~n/2sina (3.5) 

ue = u* = 0. 

For the simple kink met r i c , 

ga6 = ScxR - 2 V B 

for which ft = a = T = 0, it will be shown later that the 

only acceptable choice for the velocity vector is that 

given by equation (3.5). MacCallum (1973) who develops 

general relativity in tetrad formalism notes that the 

timelike tetrad may be identified with the velocity 

vector. For the simple kink metric given above, the four 

tetrads can be shown to be identical to the four columns of 

the matrix P, given by equation (2.8). The first column of 

the matrix P is 
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and the 0 obey 

/0 C 

0: 

0-

0a0Q = -1. 

The eovariant components of the velocity vector are 

u. = g*. u y t a 
a 

= g t t u + g t r u 
, a . 2 ft 2 . -ft/2 

= (e s m a - e cos a ) e ' cosa 
+ [ - ( e + e ) s i n a c o s a ] e ' s i n a 

ft/2 = - e ' cosa 

u = g . u + g u r ' r t ' r r 

= - ( e + e J s m a c o s a e ' cosa 

. , a 2 ft . 2 . -ft/2 . 
+(e cos a - e s i n a ) e ' s i n a 
_ p n / 2 

s i n a 

u 9 U* = 0. 
9 

This choice for the velocity components guarantees that 
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uau = -1 a 

as required. It also leads to various kink solutions of the 

field equations which have a physically acceptable 

stress-energy tensor. These solutions will be found and 

discussed in later chapters of this thesis. 
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(3.5) The Acceleration Vector. 

Before stating the acceleration vector components, the 

following results should be noted: 

n . g sma + g. cosa = -e sina rr 3tr 
ft g..cosa + g. sina = -e cosa 

c g cosa - g. sina = e cosa 
'rr *tr* 

a . g, cosa - g. . sma = -e sma 

These results may be used to deduce the following 

expressions for the non-zero components of the eovariant 

derivatives of the velocity vector, which are 

u\-t " u t ,t + r\tut + r \ r u r 

= (e"n/2cosa) . + 2"1e"a"n/2sinag.. + 
, T. T-T., r 

2-1E-1e-fl/2g tr[2g tr/ tcosa + g r r / tsina] 

2-1E-1e-n/2grrg t t>tcosa 

= (e-n/2sina) r + 2-
1e-a-n/2sinag_ . + 

,r rr, *-

2-1E-1e-n/2gtr[gtt^cosa + 2gtr/rsina] 

2-1E-1e-n/2gttgrrfrsina 



(e"n / 2cosa)> r + 2 ~ W - / 2 g t r g r r ^ t c o s a 

+ 2"1E"1e"n/2[gtrgrrrsina 

- 2a q±_ sina - g ĝ.*. cosa] yrrytr,r 'rr'tt,r J 

(e-n/2sina)/t - 2-
1e-a-n/2eosagtt/r 

+ 2-1E"1e-n/2[gtrgtt/tcosa 

" 2gttgtr,tCOS0! " gttgrr,tsina] 

* „e t „9 r 
U ;• * r t9U + r r9U 

2_1e~n/2[T .cosa + (T + 2r~1)sina] 

" u t , t " r \ t u t " r r t t u r 

= (-en/2cosa) t + 2 _ 1 e ' n / 2 g t t rsina 

" 2 - 1 e - n / 2 g t t / t cosa - e - n / 2 g t r > t s ina 
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Ut;r = u t , r - ^ t " ^ r 

(-en/2cosa) - 2_1e"n/2g,. cosa 

_-i -n/2 
" 2 e grr,tsina 

ur;t * ur,t " r \ r u t " ^ " r 

= (-en/2sina) - 2~1e~n/2g.. cosa 
/ w L-t. / IT 

_-i -n/2 
~ 2 e grr,tsina 

t r u = u - r u. - r u r;r r,r rr t rr r 

- (-en/2sina)r-2-V
n/2grr(rSi„, 

-n/2 , -1 -n/2 
- e ' gtr rcosa + 2 e ' <3rr tcosa 

ue ; e
 = -rte9ut " rreeur 

2 - V n/2+r r 2 T ^ c o s a 

+ 2-ie-n/2+Tr2[T + 2 r - i ] s i n a 
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t r .2 

«;« 99 t »* r 9;9 

The acceleration vector is defined as the eovariant 

derivative of u along the particle world lines and is given 

by 

Long calculations show that the components of this vector 

are 

ut = -E-y-/
2sina(en/2cosa) + E^e 0' 2 (en/2sina) <_ 

, r , x. 

u r = E-1en/2co£a(e
n/2cosa) ^ - K1**'2 (en/2sina) + 

i r , t 

u 9 - u* = 0. 

It can also be shown that 

u. = -e"n/2sina(en/2cosa) - e~n/2cosa(en/2cosa) . T. , r , t 

+ 2~1n . 

Ct = -e"n/2cosa(en/2sina) . - e"n/2sina(en/2sina) r , t , r 

+ 2_1n 

»9 " ** " °' 



(3 .6) The P r o j e c t i o n Tensor. 
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The projection tensor is defined by 

h Q = g Q + u u0. aB 'aB a B 

It has the following non-zero eovariant and eontravariant 

components for this metric. 

, tt -a . 2 -2a, 
h = e sin a = e h.. 

Krr -a .2 -2a. 
h = e cos a = e h 
, tr -a . -2a. h = -e sinacosa = e h, tr 
,96 -T -2 ., ,-1 h = e r = (-W 
h** = e"

Tr"2sin2a = (h$$)
-1, 

The mixed components are 

,t . 2 
h . = sin a 
r 2 
h = cos a 
i_r . t 

h . = h = -sinacosa 
h e " h * " 1' 

These definitions clearly show that 

ha
6u

B = 0. 
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(3.7) Other Hydrodynamic Quantities. 

The eovariant derivative of the velocity vector can be 

completely determined in terms of various dynamical 

quantities known, respectively, as the vorticity tensor 

w „, the shear tensor oaa> the velocity vector u , the 

acceleration vector u and the scalar expansion 9 

(Ellis, 1971): 

u o = w Q + a n + 3 h n 9 - u u . a;R aR aB aB a B 

The shear tensor a . and the term involving the expansion 6 

are the trace and trace free parts of the expansion tensor 

aR 

9 - = a „ + 3-1h _9. aB aB aB 

The expansion tensor and the vorticity tensor are the 

symmetric and antisymmetric parts of a tensor v _, that is 

the spatial gradient of the velocity vector defined by 

va6 * hrahVr;M* 

o. P> 
The definition of v fl and the relation h «u = 0 clearly 

show that 
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a Q a 

9 „u = w Qu = a „u = 0 aR aR aB 

e = ua 

a<XR " 2"1(ua;rhTB + " f i ; ^ " 3 ' V B e - <3'6> 

2 
From the shear tensor, a shear scalar a , may be defined: 

a2 = 2 - V / V (3.7) 

Justification for the names "expansion", "shear" and 

"vorticity" tensors for the tensors, 9 ft, a R, and w „ 

respectively and for the expansion scalar, 9, can be found 

as follows. 

It can be shown (Ellis, 1971) that the expansion tensor 

determines an expression for the rate of change of relative 

distance of neighbouring fluid particles 

(<Ss) 7<Ss = c*aBn
anB + 3_19 

where Ss is a relative distance in direction na. This 

clearly justifies the nai of expansion tensor for 9 _. The 

isotropic part is completely determined by 9, the scalar 

volume expansion. The shear tensor measures the distortion 
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of the volume element in all directions except those of the 

principal axes of the shear as determined by the 

eigenvectors of a _, while leaving the volume unchanged. 

Ellis (1971) also shows that 

.a . B. . _ .a , a _ JTjn,a . B h fi(n ) = (w R + a fi - aTnn n h fi)n . 

This last equation shows that the action of the vorticity 

tensor alone is that of a rigid rotation of the fluid 

particles with respect to a local inertial rest frame. 

With the above definitions, for this metric (3.1), the 

expansion scalar 9 = ua
# is given by 

6 = ut . + ur
 r + utra„ + urra 

,t ,r ta ra 

t n/2 . ^ , -n/2 . , (e- ' cosa) . + (e ' sma) , r. , r 

+ 2"1e"ay'2cosa(n,t + a . + 2r . ) 
,t ,t' 

+ 2"1e~n^2sina(n ^ + a ^ + 2T^. + 4r_1) 
,r ,r ,r 

E_1/2{ (eff/2cosa) + (ea/2sina) } 
, T. , r 

+ T .cosae~n/2 + (T + 2r_1)sinae~n/2, , u , r 

(3.8) 

The shear tensor components and the shear scalar will 
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be calculated from equations (3.6) and (3.7) when specific 

solutions have been found. 

The spherical symmetry of this metric clearly implies 

that the vorticity tensor 

w „ = 0. aB 



CHAPTER POUR 

DERIVATION OF KINK SOLUTIONS I 

Introduction 

The metric of Chapter 3 is now simplified by setting 

n = a = T = 0. Using the notation of Section (2.2), in 

which the matrix G, representing the metric tensor, is 

decomposed into a symmetric positive definite matrix S 

and an orthogonal matrix Q, this simplification is 

equivalent to the choice, S = I, so that G = Q. The various 

curvature quantities arising from this simplified form of 

the metric are presented (4.1). The form of the Einstein 

field equations for this metric are stated (4.2) and several 

perfect fluid, one-kink solutions to the field equations are 

found (4.3). Imperfect fluid versions of these solutions are 

discussed (4.4). 

/ 
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(4.1) The Christoffel Symbols, Ricci Tensor and Curvature 

Scalar. 

The field (iquations of Chapter 3 can be considerably 

simplified by setting 

n = a = r = 0. 

With these simplifications the metric becomes 

gafl = âfl ~ 2Vfl' 

It can be seen, using the notation of section (2.3), that 

this is equivalent to choosing S = I so that G = Q. This 

simplification allows several solutions to be found. As 

defined by equation (2.17), the 0 are 

0. = cosa 

0 = sina 

0e = 0$.= 0. 

The metric components, frcm equation (3.1), now reduce to 

tt g.. = -cos2a = g 

gtr = -sin2a = gtr 

rr g = cos2a = g 'rr ' 



g96 r (g } 

2 . 2 4* -1 
g9i = r2sin29 = (gM) \ 

The Christoffel symbols for this metric are 

t r .2 -1 . r .. = -r . = sin 2a a + 2 sin4a a , tt tr , r , t 

t r -1 . .2 r . = -r _ = -2 sin4a a _ + sin 2a a . tr rr ,r ,t 

r -l . 2 ) 
T .. = -2 sin4a a - (1 + cos 2a ;a . 

t 2 - 1 r = (1 + cos 2a) a „. - 2 sin4a a . rr ,r ,t 

rfcee = rsin2a 

r% $ = 3 1 ^ 9 ^ 3 

rr
ee = -rcos2a 

r%§ = sin
29rrQQ 

re = r* = r"1 1 r9 * r* r 

r ,, = -sin9cos9 

r* = cot9. 



From the above expressions it is clear that 

r« = r° = o 
ta *a 

r a = r"1 
ra 

r a
e a = cote. 

The Ricci tensor components are 

-1 . -1 . 2 
R. . = 2 sin4a a . . - 2 s m 4 a a + 2cos 2a (a . ) 

2 2 . 2 - 2cos 2a (a ) + 2sin4a a a . - 2cos 2a a , r , r , r. 
- 1 2 -1 . - 2r (1 + cos 2a) a . - r sm4a a , x. , r 

. 2 . 2 . 2 
R. = s i n 2a a . . - s m 2a a + sm4a (a . ) 

2 . 2 - sm4a (a ) - sin4a a . + 4 s m 2a a a . , r , x.r , r , r. 
- 1 . 2 -1 . - 2r sin 2a a „ - r sm4a a , ,r ,t 

-1 . -1 . 2 
R = -2 sm4a a . ¥ + 2 sin4a a - 2cos. 2a (a . rr , tt , , rr , x. 2 2 2 + 2cos 2a (a ) + 2cos 2a a . - 2sin4a a 

, r , t r , r 
- 1 . 2 -1 . - 2r s m 2a a . + r sm4a a 

, 1 . ,x. 

. 2 R = 2rcos2a a . + 2 r sm2a a + 2sin a 
0 0 f t / i 

R$$ = s i n 2 9 RQ6 
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and the scalar curvature is 

2 2 
R = 4cos2a (a ) - 4cos2a (a . ) + 4cos2a a . 

, r /"• , rr. 
+ 2sin2a a - 2sin2a a . . - 8sin2a a „ a . ,rr ,tt , r ,t 

-l -l - 2 . 2 + 8r sin2a a + 8r cos2a a . + 4r s m a. , r , x. 

(4.1) 

i 
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(4.2) The Perfect Fluid Field Equations 

Th3 components of the velocity vector can be found from 

equation (3.5). With this simplified form of the metric 

they are 

t 
u 
u r 

9 u 

= cosa = 

= sina = 

= u = 0 

" u t 

-u r 

This choice was made following standard practice 

(MacCallum, 1973). For this simple kink metric, assuming 

the perfect fluid approximation it can be shown to be the 

only acceptable choice for the velocity vector, unless the 

equation of state is p + n = 0. This result is shown as 

follows. Let 

t .. r „ 9 „ i c u = f± ; u = f2 ; u = f3 ; u = f4 

where f = f(t,r,9,$), a = 1,2,3,4. Then, a 

u, = -f.cos2a - f_sin2a 

u = -f.sin2a + f?cos2a 

ue " r 2 f3 
2 . 2 u, = r sin 9f.. 

9 4 
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t _ - „r 
Einstein tensor components G and G . are not 

identically zero therefore f. and f? must be non-zero, 

components G and G . are identically zero. Hence, 

The 

f3 * f4 - °' 

The non zero velocity components must obey u u = -1, which 

may be expressed as 

(f2
2 - f1

2)cos2a - 2f1f2sin2a = -1. 

t r 
The Einstein tensor component, G = G . and therefore the 

t r stress energy components T and T . must also be equal. 

This implies that 

2f1f2cos2a + (f2
2 - f1

2)sin2a = 0. 

These last two equations may be solved to give 

2 2 2 2-2 
cos2a = (f^ - f2 )(fi + f2 ) 

sin2a = 2f1f2(f1
2 + f 2

2)" 2 

. 2 2 The relation s m 2a + cos 2a = 1 now shows that 

f l 2 + f 2 2 " ^ 
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These functions may now be written as 

f. = cos9 

f2 = sine, 

but substitution back into the above equations shows that 

6 = a. The velocity components are therefore identified 

with the 0 . ^a 

Using these velocity components in the stress-energy 

tensor, the perfect fluid field equations are 

G* = -2r~2(rsin2a) = -(/i + p)cos2a + p (4.2) t , r 

t r -1 . G = G . = 2r sin2a a . r t ,t 

= -(M + p)sinacosa (4.3) 

r - 2 . 2 -1 G = -2r (rsin a) - 4r cos2a a . r , r ,x 
2 

= -(/! + p)sin a + p . (.4.4) 

Ge_ = G* = -r" (rsin a) - 2r~ (rcos2a a .) 
o * , rr , t , r 

+ (sin a) t t 

= p . (4.5) 
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(4.3) Three Perfect Fluid Solutions. 

To solve these equations, first note that substituting 

equations (4.2) and (4.3) into the left hand side of 

equation (4.4) gives 

2 . 2 
-(/i + p)cos a + p + cos2a(/i + p) = -(/x + p)sm a + p. 

Equation (4.4) is therefore consistent with equations (4.2) 

and (4.3). There are now three equations to satisfy, namely 

equations (4.2), (4.3) and (4.5). 

Equation (4.3) clearly reduces to 

4r"1 a . = «(M + p) (4.6) 

and equation (4.2) can be written as 

-l . - 2 . 2 2 
-4r sinacosa a - 2r sin a = -(/i + p)cos a + p . 

, r 
(4.7) 

Substituting equation (4.6) into equation (4.7), the 

following expression for p is obtained 

-1 . - 2 . 2 - 1 2 p = -4r sinacosa a - 2r sin a - 4r cos a a . , r f x 
(4.8) 



123 

Combining equations (4.8) with (4.5) and rearranging, a 

differential equation for a is obtained. All perfect fluid 

solutions of this metric must satisfy this equation. 

2 2 
sm2a a . . - sin2a a + 2cos2a (a . ) - 2cos2a (a ) ,̂ ^ ,rr ,t , r - 2 . 2 -1 + 4sm2a a . a - 2cos2a a . + 2r sin a + 2r a . = 0 , T. , r , XL , x 

(4.9) 

Three solutions of this equation can be readily 

obtained. If a . = 0 then equation (4.9) becomes 
11 

-sin2a a - 2cos2a (a ) + 2r sin^a = 0 ,rr v ,r' 

(4.10) 

Note that for this metric, when a . = 0 is chosen, the 
, t 

equation of state of any solution must be 

- M 

because the left hand side of equation (4.6) is identically 

zero. Solutions of the equation (4.10) are found by noting 

that if 

sin2a = f(r) (4.11) 
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where f(r) is some function of r, then differentiating with 

recpect to r gives 

sin2a(a ) = f(r) . 

Differentiating again shows 

2cos2a(a ) 2 + sin2a(a ) = f(r) . ,r ,rr ,rr 

These results mean that equation (4.10) can be written as 

2r"2f(r) - f(r)^rr = 0 . (4.12) 

This last equation is a second order, linear, homogeneous 

equation in normal form and clearly has particular 

solutions of the form 

f(r) = hrn (4.13) 

where A and n are constants. Substitution of this equation 

(4.13) into equation (4.12) shows that solutions are 

obtained when 

n = 2 

or when 

n = -1. 
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One solution, when n =• 2, of equation (4.10) and 

therefore of the field equations is 

sina = Kr (4.14) 

1/2 . where K = A ' is a constant. This solution is the 

de Sitter kink, which will be discussed further in 

Chapter 6. 

The other solution of equation (4.10), when n = -1, is 

sin2a = Ar-1 (4.15) 

where A is constant. This is the Schwarzchild kink, which 

will be discussed in Chapter 7. 

A third solution of equation (4.9), where a is a 

function of r and t, is 

tana = rt"1. (4.16) 

To prove this result, note that tana = rt implies that 

sin2a = 2rt(r2 + t 2 ) ' 1 

2 2 2 2-1 
cos2a = (t*5 - r ) ft*2 + O x 



126 
. 2 2/JU2 2,-1 sin a = r (t + r ) 

2 2-1 
a = t(tz + rz) 
, r 

2 2-1 
« *. = -r(t^ + r*-) 

2 2-2 
afrr = -2tr(r*- + O 

2 2-2 
a t t = 2tr(r

<: + t*") *• 
a f r t = (r

2 - t2)(r2 + t 2 ) - 2 

These results substituted into the left hand side of (4.9) 

give 

2 2 2 2-3 2 2 2 2-3 

4r tz(r*^ + tr) J - (-4r*V) (rz + t*) 

+ 2r2(t2 - r2)(r2 + t 2 ) - 3 -2t2(t2 - r2)(r2 + t 2 ) " 3 

+ 4(-2r2t2)(r2 + t 2 ) " 3 - 2(t2 - r2)(r2 - t2)(r2 + t 2 ) - 3 

2 2-1 2 2-1 
- 2(r + XT) X + 2(t*- + r ) X 

= o, 

as required. 

This solution is called the Friedmann-LeMaitre-

Robertson -Walker (FLRW) kink and will be discussed further 

in Chapter 9. 

Equation (4.9) becomes an ordinary differential equation 

—1 when the substitution a = a(rt ) = a(u) is made. Solutions 

of equation (4.9) of this form are being sought. 
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(4.4) Imperfect fluid solutions 

The stress-energy tensor discussed previously in 

section (3.3) can be expressed as given by equation (3.3) 

Tafi = (M + PT)u
auB + P T«

a
6 - 29h

a
6 " 2na

a
fi + q

aufi + qBu
a 

where /n is the total energy density measured by an observer 

moving with 4-velocity u and q is the energy flux 

relative to u . The thermodynamic pressure is given by p_, 

2 is the bulk viscosity coefficient, n is the coefficient 

of viscosity. The shear tensor is o . and the expansion 

scalar is 9. 

In all the previous solutions, the coefficient of bulk 

viscosity 2, the coefficient of dynamic viscosity n, and 

the heat conduction q , that appear in the stress energy 

tensor have been assumed to be zero. It is possible 

that more solutions may be found by now allowing these 

quantities to be non zero. 

For both the de Sitter and FLRW kink solutions, using 

equation (3.6), it can be shown that the shear tensor, as 

expected, satisfies 

aaB - °* 
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It can also be shown that for the simple kink metric 

gaB = *aB " 2*a0B 

assuming the form of the velocity vector, u = 0 , that the 

heat conduction vector qa must be zero. This result is 

shown as follows. The Einstein tensor components G _ and 

G . are zero. Therefore 
9 

9 * 
q e = = q * = q = q = 0 

The heat conduction vector obeys 

qau = 0, ^ a 

This result reduces to 

qfcut + q
rur = 0, 

and substituting for the velocity vector components this 

can be expressed as 

t r. q = - q tana. 

It is easily shown that 



qt = q 

and 

qr = q
r-
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t 

t r The Einstein tensor components G and G . are equal. 

t r Therefore equating the stress-energy components T and T . 

it follows that 

t t r r q ur + qru = q ut + qtu . 

Substituting for the velocity components in terms of a and 

t . r 
for q in terms of q and a, this last expression reduces 
to 

Hence 

2q [tanasina + cosa] = 0, 

qt = qr = 0. 

Any solution of the field equations for this simple kink 

metric which has a vanishing shear tensor must also have a 

zero heat conduction vector. 

For the de Sitter kink solution, using equation (3.8), 

it can be shown that the expansion scalar 9 is given by 
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9 = 3K. 

Using this result, the equation of state for the de 

Sitter solution may be expresesed as 

p = -u = -6K2 = pT - 3K2. 

For the FLRW kink, the expansion scalar 9 is given by 

9 = S ^ + t V 1 ' 2 . 

The equation of state for the FLRW kink may be written as 

p = PT - 32(r
2 + t 2)" 1 / 2 = -3 _ 1M . 



CHAPTER FIVE 

DERIVATION OF KINK SOLUTIONS II 

Introduction 

The metric of Chapter 3 is simplified by setting 

a . = 0. The various curvature quantities arising from 

this simplified form of the metric are presented (5.1). 

The Einstein field equations are calculated (5.2). Several 

perfect fluid (5.3) and imperfect fluid (5.4) and (5.5), 

one-kink solutions to the field equations are found. 
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(5.1) The Christoffel Symbols, Ricci Tensor and Curvature 

Scalar. 

(5.2) The Einstein Tensor. 

(5.3) Perfect Fluid Solutions. 

(5.4) Imperfect Fluid Solutions I. 

(5.5) Imperfect Fluid Solutions II. 
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(5.1) The Christoffel Symbols, Ricci Tensor and Scalar 

Curvature. 

The metric discussed in Chapter 3, namely 

a . 2 n 2 g. . = e s m a - e cos a 

g. = -(ea+e )sinacosa 

a 2 n . 2 g = e cos a - e sin a 

g*$ = e 7 " r 2 s i n 2 e ' 

can also be simplified assuming that the functions a, a, n, 

and T are functions of r only. With this simplification the 

Christoffel symbols and Ricci tensor components can be 

written compactly in terms of the metric tensor and its 

derivatives. Substitution for the metric tensor components 

is made only after the field equations have been 

constructed and further simplification? have been made. 

The Christoffel symbols are 

r tt - ~r tr - 2 g gtt,r 

r tr - 2 g gtt,r 

r\r " g tV,r + ^V^r 
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t -1 tr 
r 99 - "2 g g99,r 

= -2"1eTr2gtr[2r"1 + T 1 

- - e V g t r F 

rt** = S i n 2 e ^99 

r tt = ~2 g gtt,r 

v- _i T T tr 
r rr = 2 g grr,r + g gtr,r 

r 99 - ~2 g g99,r 

= -2-1eTr2grr[2r-1 + r^] 

= -eTr2grrF 

r r„ = Bin29Free 

g 
r ., = -sin9cos9 

= F 

r*e* - cote 

where 
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F = 2~1T ,. + r"1 

and, as before, 

E = e n + a. 

The non-zero Ricci components are now 

Rtt = (4E)-
1gttgtt/r{4F + 2g t t f r r(g t t > r)-

1 - E>r
E-i} 

Rtr = (4E>'lgtrgtt,r<4F + 2gtt,rr<gtt,r>"* " E,rE_1> 

Rrr - <4E>~lgrrgtt,r<4F + 2gtt,rr<gtt,r>"" " E,rE_1> 

- 2F - FE E - 1 - 2F2 
/^ ,r 

^ 9 = 1 + e r r 2 ( 2 E ) - 1 g t t F { 4 F + 2 g t t # r ( g t t ) ~ X 

+ 2F F"1 - E_1E \ 

R M = s i n 2 e R
9 9 

and the scalar curvature is 

R * E " l g t t , r r ~ 2" l E"2 g t t , rE , r + 2 e " T r 2 + ™"\t*2 

+ 4 E " l g t t F , r + 4 E" l F g t t , r ~ 2E*2FgttE ,r ' 
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(5.2) The Einstein tensor components. 

The Einstein tensor components are now 

G \ = - e - V 2 - S g ^ F V 1 - 2 g t t F / r E - 1 

*" ^ t t , ^ " 1 + F g t t E , r E " 2 

= -e"Tr-2 - gttF
2E-1 - Pg^^E" 1 

- 2gttE"
1{F^r - (2E)

-1FEjr + F
2} 

Gr
t - 0 

Gt
r = - 2 g t r

E ~ 1 ^ F
/ r " (2E)"1FE^r + F2} 

r -T -2 2 -1 -1 
G r = " e r " g t t F E " F g t t , r E 

G 6 - G * 
G e ~ G i 

- ^ 2 E ) " l g t t , r r + 4 E " 2 g t t , r E , r " E " l F g t t , r 

' g t t E " 1 { F , r " (2E)_1FE>r + F2} 

G6
r = G r

§ = G% - Ge t = Gfe = 0 
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The stress-energy tensor for a perfect fluid is given 

in equation (3.4) by 

T°B = (M + P)u
au6 + p5

a
6. 

By comparison with the velocity components for the simple 

kink metric (for which n = a = T = 0) solutions of the 

field equations are sought for which 

u = e ' cosa = -u. 

r -n/2 . u = e ' sma = -u r 
9 9 u = u = u_= u, = 0, 

e 9 

It is therefore clear that 

r t T . = T = - ( j u + p) sinacosa. 

Recalling that G . = 0, this result implies that the 

equation of state for any perfect fluid solution of the 

field equations resulting from this form of the metric must 

be 

p = -n. 
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Fluids satisfying this equation of state arise in 

inflationary cosmologicai models (Guth, 1981; Guth 1983; 

Guth, 1984) and in certain particle models (Rosen,1983). 

The stress energy tensor therefore must have the form 

and the Bianchi identities show that the pressure and 

density must be constant. The form of the stress energy 

tensor implies that 

c tr = "gtrE"1{F,r ' (2E)_1FEfr + F
2} = 0 (5.1) 

It is necessary for (sperieally symmetric) kink solutions 

of this metric that 

gtr / °' 

because g . = 0 would imply that a = 0. Clearly, it is also 

true that 

E = e a + rV 0. 

This field equation (5.1) can therefore be satisfied if 

either 



138 

F = 2~1T + r"1 = 0 (5.2) 

or if 

F / 0 but F F _ - (2E) E _ + F = 0 (5.3) 
ST ,r 

Both of these possibilities lead to solutions of the field 

equations. 

Consider first the case given by equation (5.2) where 

F = 2~1r + r"1 = 0 . 

This equation (5.2) implies that 

e = cr- (5.4) 

where c is a positive constant. 

When F = 0 the remaining fiej.d equations reduce to 

rt - Gr G t " G r 

= -e-V2 
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G ~ = G . 
e 9 

" -2~lE"lgtt,rr + 4"lE*2gtt,rE,r 

= P 

These last three equations imply that any solution must 

have 

p = -a"1 

and satisfy 

2"lE"lgtt,rr " 4"lE"2gtt,rE,r = c _ 1 = c <5'5> 

where C is also a positive constant. 

A general solution of this equation (5.5) is quite 

difficult to find since 

/T o o o 

g.. = e sin a - e cos a (5.6) 

E = eff+n 

and a, n, and a all depend on r. 

However, if a = n = 0 or a = -n is selected, so that 

E = 1, 
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then solutions are easily found. 

With either of these choices for a and n, equation 

(5.5) reduces to 

gtt,rr = 2 C 

and this last equation clearly has a solution 

gtt = Cr
2 + Dr + H (5.7) 

where D and H are arbitrary constants. 

First consider the case where a = n = 0. Using equation 

(5.6), it is clear that this choice of a and n implies that 

g., = - cos2a. 

Equivalently this last result combined with equation (5.7) 

shows that 

sina = 2~
1/2{1 + Cr2 + Dr + H} 1 / 2 . 

There is considerable freedom in choosing the values of 
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these constants, while ensuring that |sina| ̂  1. The 

resulting solution will be discussed further in section 

(10.1). 

To summarize, this solution of the field equations 

for the metric given in equation (3.1) has 

a = n = 0 

eT = C-V 

where C is a positive constant and 

sina = 2_1/2(1 + Cr2 + Dr + H ) ~ 1 / 2 (5.8) 

where D is any constant. The equation of state is p = -/u. 

It will be shown in section (10.1) that the metric can be 

written as 

ds2 = -(1 - r - r2)dt2 - 2(2r + r2 - 2r3 - r 4 ) 1 / 2 dtdr 

+ (1 - r - r2)dr2 + d92 + sin29d$2, 

valid for 0 $ r ^ 1. 

The case where a = -n is now considered in seeking 

another solution of equation (5.5) and hence of the field 

equations. This choice for a and n, using equation (5.6), 
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E = 1 

and 

n n -n . 2 gtt = -e" + (e" + e ")sin a. 

Equivalently, using equation (5.7) to substitute for g.. 

this choice for n requires 

.2 ._ 2 , _, . „ , n. . n , -n,-i sm a = (Cr +Dr + H + e)(e + e ) 

This last result can be written 

. 2 

sm a = tanhn, 

if n is chosen such that 

-e~n = Cr2 + Dr + H. . 

The constants C, D, H must be restricted to ensure that 
|sina| ̂  1. 
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but there is considerable freedom in doing this. To 

summarize, this solution of the field equations for the 

metric given in equation (3.1) has 

T -12 a = -n eT = C xr* 

where C is a positive constant and 

.2 2 n n -n -l 
sinza = (Cr + Dr + H + e") (e + e ") . (5.9) 

where D and H are positive constants. The resulting 

solution will be discussed further in section (10.2). It 

will be shown that the following metrics are solutions of 

the field equations 

ds2 = (r2 - 2r + l)dt2 + 2(8r3 + 8r - 12r2 - 2r 4 ) 1 / 2 dtdr 

- [l - 2(r2 - 2r -+ l)2][r2 - 2r + l]" 1 dr2 

+ de2 + sin29 d$2 

and 

ds2 = -(1 - r2) dt2 + 2r(4 - 2r 2 ) 1 / 2 dtdr 

+ [ 1 - 2(r2 - l)2][r2 - l]" 1 dr2 

2 2 .2 2 
+ r*2 d9z + sin^9 d$ 

both valid for 0 ̂  r ^ 1. 
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The second possible solution of the G field equation 

(5.1) was shown in equation (5.3) to occur when 

F / 0 but F-1F - (2E)~1E + F = 0 / , r , r 

This last equation can be integrated to obtain 

InF - 2_1lnE + 2~1T + lnr = k (5.10) 

for some constant k. Rearranging, equation (5.10) can be 

written as 

rFE~1/2 = Ke~ 1 / 2 T (5.11) 

where K = e > 0. Equivalently, substituting for 

F = 2~ T + r~ , equation (5.11) can also be written as 

2-1rT e1/27 + e1'2' = KE1/2 

or, by substituting for E = e , it can be written in 

terms of the metric functions r, a, n as 

[re1/27] =Ke(*+n>/2. 
, r 
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There are four remaining field equations to satisfy. These 

are 

G 9 ~ T 9 
9 9 

G 9 * T * -

The general forms of the field equations are listed in 

section (5.2) and these equations now simplify to 

= -e"V2 - g ^ V 1 - Fg^E"1 

= p (5.12) 

and 

= -(2E>"lgtt,rr + 4E'2gtt,rE,r 

" Fgtt,rE_:L 

= p . (5.13) 

Comparing these two field equations it is clear that for a 

consistent solution the following equation must hold 

- e " V - F2E-1gtt - 4E-
2E>rgtt/r + ^ E ) " ^ ^ = 0 . 
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(5.14) 

General solutions of this last equation (5.14) will be hard 

to find since 

a__._2. _n 2. 

a+n 
g.. = e sin a - e cos a 

E = e 

F = 2~1r + r"1 

and a, r, n and a are undetermined functions of r. However, 

solutions can be found if it is assumed that 

T = 0. 

The fact that T = 0 implies that 

F = r"1 (5.15) 

Using equation (5.15) with equation (5.3) shows that the 

simplification r = 0 implies 

E = e
a + n = K"2. 

Assuming, also for simplicity, that K = 1, it is clear that 

a = - n. 
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The metric component g.. is now 

-n . 2 n 2 
g. . = e sm a - e cos a. 

These simplifications, E = 1, F = r , and T = 0, 

reduce the remaining field equations to 

6 \ = G \ - "r'2 - r"2gtt " r"lgtt,r 

=-r"2[l + (rgtt)fr] 

G 99 - G % - "2'lgtt,rr " r'lgtt,r 

= -(2r)-1[rgtt>rr + 2gtt#r] 

=-(2r)-1[l+ (rgtt)/r]fr 

= (2r)"1[r2Gtt]^r 

These equations (5.16) and (5.17) now show that 

-1 2 t t 
(2r) 1[r ZG t

t] f r-G
t
t 

or equivalently 

2 t -l 2 t -l (r*JGT:t) [r^ t] = 2 r x , 

(5.16) 

(5.17) 
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This last equation can be integrated to give 

where L is a positive constant. Recalling that 

G \ = P = -M, 

it is clear that the constant L must be chosen to be 

positive to ensure that the energy density is positive. 

Substituting G,. = -L back into the G . field equation 

(5.16) also shows that 

-n . 2 n 2 
g,, = e sin a - e cos a 

= sin2a(e" + e"n) - e" 

-1 2 -1 
= 3 xLr - 1 + Mr x 

where M is an arbitrary constant. Equivalently, rearranging 

the above equation, a consistent solution requires that 

sin2a = [3_1Lr2 - 1 + Mr"1 + en][en + e""]" 1 

There is considerable freedom in choosing n, L and M while 

still ensuring the required behaviour of the function sina. 
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To summarize, this solution of the field equations for the 

metric given by equation (3.1) requires 

T = 0 a = -n 

and 

2 - 1 2 - i n n -n -l 
sin^a = [3 "LLr'{ - 1 + Mr x + e11] [e" + e "] x . (5.18) 

This solution will be discussed in section (10.3) It will 

be shown that the metric for this solution is 

ds2 = (r2 - 1) dt2 + 2[2(1 - (r2 - 1) 2] 1 / 2 drdt 

2 2 2 -1 2 2 2 
+ [1 - 2(r - 1) ][r - 1] dr + r*̂  d9z 

2 . 2 2 
+ r^sin 9 &$' 

valid for 0S< r ̂  1. 
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(5.4) Imperfect Fluid Solutions I. 

For the perfect fluid solutions previously found in 

this chapter the shear scalar can be shown to be non-zero. 

If the heat conduction vector components qa are still 

assumed zero, the stress-energy tensor, from equation 

(3.3), is 

Tafi = (n + PT)u
aufi + pT«-

a
B -29h

Q
fi - 2Da

a
6 (5.19) 

where y. is the total energy density, p is the 

thermodynamic pressure 2 is the coefficient of bulk 

viscosity, and n is the coefficient of dynamic viscosity. 

As shown in section (5.2), for all the solutions in which 

. . r • • a . = 0, the field equation G . is identically zero. It can 

also be shown from equation (3.6), that when a . = 0, the 

ax' component of the shear tensor is 

a . = a = -2a 3 ' sinacosa 

where, using equation (3.7), the shear scalar a is 

a = 3"ly'2rexp{2~1(-n+T-a)}[r~1exp{2"1(-T+a)}sina] 
/ r 

The Tr. component of equation (5.19) therefore indicates 
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that any solution of the field equations with a . = 0 and 
, x. 

q = 0 must have an equation of state given by 

H + p T - 29 - 4na 3~
1/2 = 0. (5.20) 

r t r The fact that T . = T and G *. = 0, means that any t r t 

solution for which a . = 0 and q = 0 must have 
, t ^a 

Gt
r = - 2 g t r E " 1 { F ^ r - (2E) _ 1 FE^ r + F2} = 0 

The re fo re , as in t h e p e r f e c t f l u i d c a s e , e i t h e r 

- 1 - 1 
F = 2 r + r = 0 

, r 

o r 

F ^ O , bu t F - 1 F - (2E) _ 1E + F = 0 
, r , r 

In either case, using the previously listed forms of 

the Einstein tensor components in section (5.2), it is 

clear that 

and 

Ge - r* G 9 " G #' 
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The shear tensor components a . , a , a _, and a , are 
x r e w 

calculated from equations (3.6) and (3.7), they are 

fftt = 2a 3~1/2sin2a 

c-rr = 2a 3~
1/2cos2a 

0 9 ° 9 3 °-

Substituting for these shear tensor components from the 

above equations and for the energy density, /i, from the 

equation of state (5.20), gives the following expressions 

for the stress energy tensor components 

t 2 .2 -1/2 . 2 
T . = -/xcos a + (pT - 29) s m a - 4n3 ' asm a 

-1/2 = PT - 29 - 40 3 ' a 

r . 2 2 -1/2 2 

T = -/xsm a + (pT - 29) cos a - 4n3 ' acos a 

= p - 29 - 4D 3_1/2a 

Te
Q = T % = pT - 29 + 20 3~1/2a 

There are therefore two independent field equations. These 

are 

G \ = Gr
r = pT - 29 - 40 3~

1/2a 

G®e = G*$ = pT - 29 + 20 3~
1/2a 
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If F = 0, these field equations reduce to 

Gt . Gr = _e-r -2 
t r 

= PT - 29 - 40 3
_1/2a 

cGe - G % " -2"lE"lgtt,rr + 4"lE"2gtt,rE,r 

= pT - 2e + 2n 3~
ly'2a. 

r1- —-1 

equations become 

If F / 0 but F_1F - (2E) E + F = 0, the field 
, r , r 

G\ = Gr 

t r 

= "e'Tr"2 " gtt p 2 E" 1 " Fgtt,rE_1 

-1/2 = PT - 26 - 40 3 ' a 

G 6 ~ Gi9 

' ^2E)"lgtt,rr + 4E'2gtt,rE,r " Fgtt,rE_1 

= PT - 29 + 20 3~
1/2a. 

General solutions of these field equations are clearly 

quite difficult to find because 

a . 2 n 2 
g.. = e sin a - e cos a, 

a+n E = e 
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e=e-(
a+n>/2(e*/2) r (5.21) 

, r 
+ 2(2-1T + r_1)(e"n/2sina) 
,-l/2„ (-n+r-a)/2r -1 (-T+a)/2 . . a = 3 ' rex " [r ev '' sma] 

, r 

and a, a, n, T are all unknown functions of r. In the 

special case T = a = n = 0, so that F = r~ , and 

from equations (5.21), E = 1 and g.. = -cos2a, it can be 

shown that a solution of the field equations is 

-1 1/2 -1/2 sina = -20 3 r + K ''(1 + K)r ' 

where K is a constant (Harriott and Williams, 1988a). 

However, this solution has negative energy density for 

certain values of r and will not be discussed further. 
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(5.5) Imperfect Fluid solutions II 

To find a further solution, the heat conduction vector 

q is chosen to be non-zero. The stress-energy tensor is 

now given by equation (3.3) which is 

T°B = (/i + P T ) U ° U B
 + V ° B "Seh°B " 2 n a QB + qQ£uB + U \ 

(5.22) 

The components of q must satisfy (Ellis, 1971) 

q ua = 0. 
^a 

The velocity components, as discussed previously in 

section (3.4), are chosen to be 

n/2 t -n/2 
u. = -e ' cosa u = e ' cosa 

n/2 . r -n/2 . 
u = -e ' sma u = e ' sina 

9 9 u Q = u . = 0 u = u = 0 . e 9 

As shown in section (5.2), some of the Einstein tensor 

components are identically zero. These are 
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These results together with the velocity components and 

equation (5.22) for the stress energy tensor, show that 

q = q = 0 

% " q* - ° 

and suggest the following form for the remaining components 

of the heat conduction vector 

qt = Qe ' sina 

q = -Qe ' cosa 

where Q is an unknown function of r. The eontravariant 

components are now 

t tt j. tr 

q = g qt + g qr 

= Qe ' sina 

„ X - « r t „ a. „*"r„ 

q = g qt + g qr 

r, -0/2 
= -Qe ' cosa. 

These results show that the square of the length of the 

heat conduction vector is given by 



a rt2 q qa = Q 

The term [q u + u q ] appears in the following four 

non-zero terms in the stress energy tensor components 

q.u + u.q = Qe^a~ '' sinacosa - Qe^ '' cosasina 

q u + u q = -Qe^ ~ '' sinacosa + Qe^ '' cosasina 

t ^ t. 
= -(qt

u + u
tq ) 

qtu
r + utq

r = Qe(a-n)/2sin2a + Qe<n"G>/2cos2a 

q u* + u q* = -Qe(a-n^2cos2a - Qe ̂ ^ /2sin2a 
*r r 

= ~(qtu
r + u tq

r). 

Some restrictions are now made on the metric. These 

restrictions are to assist in finding a solution, because 

the general forms for the field equations are difficult to 

solve. It is assumed that 

a = n. 

This assumption means that 

qtu
r + utq

r = Q 
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t t r r q.u + u.q = q u + u q = 0 . ut t̂  r̂ r^ 

The Einstein tensor component G . is identically zero 

and so the stress energy tensor component T . now gives the 

following expression for Q. 

Q = [/x + p - 28 - 40 3-1^2a]sinacosa. (5.23) 

Using this result for Q, the field equation 

G ^ = -2gtrE"
1{F>r - F(2E)

-1E>r + F
2} 

-1/2 = -[M + p - 26 - 40 3 ' ]sinacosa - Q 

where F = 2 T + r and E = e = e , reduces to ,r 

Gt
r = -2Q. 

This last result gives another expression for Q, which is 

Q = gtrE"
1{F^r - F(2E)"

1E^r + F
2} 

= -sin2a e"n{F „ - F(2E)_1E + F2} (5.24) 

Therefore, for the heat conduction vector to be non-zero, 

it must hold that 



and 

a f 0 
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F - F(2E)_1E + F2 f 0. , r , r 

The first of these equations, namely a ̂  0 is also a 

requirement for a kink solution. Comparing the expressions 

for Q, given in equations (5.23) and (5.24), it is clear 

that the non-zero hydrodynamic quantities must obey the 

following equation 

M + pT - 26 - 40 3~
1/2a = -2e"n{F - F(2E)_1E + F2}. i , r , r 

(5.25) 

The remaining field equations to be satisfied are 

G t - T t 

r r G = T r r 

e * * e 
G 8 " G . * T . * T 6-

From equation (5.22), 

T t = -/xcos a + (pT - 29) sin a - 40 3~
1'2asin2a 

= -M + [M + PT " 29 - 40 3
-1/2a]sin2a. 
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Using equation (5.25), the above expression for T can be 

written 

T \ = -M - 2e~n{F - F(2E)_1E ^ + F2}sin2a. 
x. f r , r 

Similarly, 

r . 2 2 -1/2 2 
T = -jisin a + (p - 26) cos a - 40 3 ' acos a 

= -ji + [M + pT - 26 - 40 3~
1/,2a]cos2a 

= -M - 2e~n{F - F(2E)-1E + F2}cos2a. 
, "" , r 

t r The Einstein tensor components G . and G are 

G\ - -e"V2 - g^V1 - Fg^E"1 

- 2 g t t E - 1 { F ^ r - F ( 2 E ) _ 1 E ^ r + F 2 } 

Gr
r » - e " V 2 - g ^ r V 1 - Fg E" 1 . 

These last four equations can now be used to show that 

t t r r although the field equations G t = T . and G = T are no 

longer equal, they are dependent and it is hence convenient 

to consider 
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Gr
r - G ^ = 2g t tE~V^ r - F(2E)

_1E^r + F
2} 

= e"n{F F(2E)_1E + F2}cos2a , r — , r 
= 2gtt{F^r - F(2E)

-1E^r + F
2} 

r t 
- T r - T t 

6 9 
The remaining independent field equation is G _ = T Q which 
is 

Ge
Q = pT - 29 + 20 3"

1/2a 

So far, the only simplifications made to the metric to 

assist in finding a solution are to assume that a . = 0 and 
, t 

n = a. To demonstrate an exact solution, several further 

simplifications are made. These simplifications are to 

choose two of the exponential functions, a and n to be 

zero; setting the coefficient of viscosity, 0, to zero and 

selecting a specific form for the remaining nonzero 

exponential function, r. That is 

n = o, 

0 = 0, 

and 

F = 2~1T + r"1 = -N , 
, r 
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where N is constant and the negative sign is included for 

convenience. Choosing n = 0 leads to 

E = e a + n = 1 

and 

g.. = -cos2a. 

It is clear that choosing F = -N is equivalent to the 

choice of 

T = -2Nr - 21nr 

or, equivalently, 

Q
T^2 _ -2Nr e r = e 

where the constant of integration has been set to zero for 

convenience. It should also be noted that choosing F = -N 

ensures that 

F - F(2E)_1E + F2^0 
» * " it 

as is required if the heat conduction is to be nonzero. In 

fact, this choice of F means that 
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F - F(2E)-1E + F2 = N2. (5.26) 
, r , r 

These choices now allow the field equations to be 

simplified to 

Gt. = -N(cos2a) + 3N2cos2a - e 2 N r 

x. , r 

= -n + [y + p T - 29]sin
2a 

Gr = -N(cos2a) „. + N2cos2a - e 2 N r 

r ,r 
2 

= -y + [/i + p - 26]cos a 

e -l "• G _ = 2 (cos2a) - N(cos2a) + N"cos2a e ,rr , r 

= PT " 29-

t r The G . and G equations can be combined to give 

-2N(cos2a) + 4N2cos2a - 2e 2 N r = - y. + p - 29. 
, r i 

Equivalently, substituting for y from equation (5.25) and 

using equation (5.26) shows that 

-N(cos2a) + 2N2cos2a - e 2 N r = p - 29 + N2 . 
, *" i 

Q 

This last equation and the G _ field equation are the 

remaining independent equations to solve. By inspection, a 

solution to these equations exists of the form 
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cos2a = P e 2 N r + T + f(r) 

where P and T are constants and f(r) is an unknown function 

of r which satisfies 

N
2p e2Nr + 2

_1f(r) - N2T - N2f(r) + e 2 N r + N2 = 0, 
,rr 

This last equation is valid if 

N2P + 1 = 0 

2~1f(r) r r - N
2f(r) - N2T + N2 = 0 

It is possible to choose 

-2 
P = -N 

T = 1 

so that 

f(r) = Uexp(±21^2Nr) 

where U is an arbitrary constant. These choices show that 
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cos2a = -N~2e2Nr + 1 + Uexp (+21/'2Nr) 

or equivalently that 

sin2a = (2N2)_1e"2Nr - 2~1Uexp(+21/2Nr). 

Some restrictions must be made on these unknown constants 

to ensure the correct behaviour of sina. To summarize, for 

this solution of the metric given by equation (3.1), 

n = a = 0 

0 = 0 

T = -2Nr - 2lnr 

or, equivalently, 

*Tr.2 _ Q~2Nr e r = e 

where N is a positive constant and 

sin2a = (2N2)~1e"2Nr - 2~1Uexp(+21/2Nr) 

(5.27) 

where U is a constant. This solution will be discussed in 

section (10.4). It will be shown that the equation of state 

is 

y + p T - 29 + 2N
2 = 0 
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where 

y = exp(2Nr) - (2 - 21/2)exp(+21^2Nr) - 2N2 

and N may assume any value in the range 

N2 < (21/2 - 1)3-1. 

The metric will be shown to be 

ds2 = -[1 - N~2exp(2Nr) + N~2exp(+21/2Nr)] dt2 

- 2[-N-4exp(4Nr) - N~4exp(2Nr21/2) + 2N~2exp(2Nr) 

- 2exp(±21/2Nr) + 2N~4exp(2Nr + 21/2Nr)] dtdr 

+ [1 - N~2exp(2Nr) + N~2exp(+21/2Nr)] dr2 

+ exp(-2Nr)d9 + exp(-2Nr)sin29 d*2 

valid for 0 ̂  r ^ R. where R. is defined from 

exp(2NR1) - exp(±2
li/2NR1) = 2N

2 . 



CHAPTER SIX 

THE DE SITTER KINK SOLUTION 

Introduction 

The form of metric and various hydrodynamical 

quantities for this kink solution are discussed (6.1) and 

the transformation to the familiar de Sitter form is 

demonstrated via a singular transformation (6.2). The 

Killing vectors for this spacetime are founi (6.3). The kink 

number is calculated for this metric and shown to be equal 

to one (6.4), and the feature common to all kink metrics, 

the tipping light cone behaviour, is illustrated for this 

solution (6.5). Extension of the manifold to produce an 

n-kink solution is demonstrated (6.6). 

167 
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(6.1) The Form of the Metric and Solution Properties. 

The solution obtained in Chapter 4, 

2 2 2 
ds = -cos2adt - 2sin2adtdr + cos2adr 

+ r2d92 + r2sin29d$2 (6.1) 

which may be called the de Sitter kink metric was given by 

equation (4.14) which shows that 

sina = Kr (6.2) 

for constant K. If the constant K is chosen to be positive, 

then this solution is valid for 

0 <: r <: K-1 

0 $ t < w. 

Justification for naming this solution the de Sitter kink 

metric and proof that it is a one-kink metric will be given 

in future sections. 

Analogous de Sitter kink solutions exist in both 1+1 

and 2+1 dimensions (Dunn, Harriott and Williams, 1991a; 

Williams and Zvengrowski, 1991). The 1+1 case will be 

discussed further in chapter 8. 
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To allow the presence of one complete kink, the 

variable r can be allowed to be negative, so that the range 

of r is 

-l -l -K •* ̂  r ̂  K . 

The metric can now be written as 

ds2 = -(1 - 2K2r2)dt2 - 4Kr(l - K2r2)1/2dtdr 

2 ? 2 7 ? 2 . 2 2 
+ (1 - 2K r )dr^ + r̂ d9*̂  + r sin 9d$ . 

(6.3) 

Note that for -(2K2)"1/2 £ r $ (2K2)"1/2, t is the timelike 

coordinate, but for (2K ) - 1 ' 2 < r < K_1, and 

-1 2 -1/2 . . 
-K < r ̂  -(2K ) ' , r is the timelike coordinate. 

The equation of state for this solution was shown in 

section (4.3) to be 

p = -y. 

Also, from equation (4.8) the isotropic pressure can be 

found to be constant, as expected, and in particular 

p = - 6K2. 
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It is also easy to see that this solution may be 

interpreted in a different way: as an empty space solution 

with a non-zero cosmological constant. If the choice 

p = y = 0 is made, then a cosmological constant 

n = 6K2 

must be introduced. The usual de Sitter universe is usually 

regarded as an empty space solution with a cosmological 

constant. 

The scalar expansion, 9, can be found from equation 

(3.8). For this solution it is 

9 = 3K. 

The expansion factor for this solution is therefore 

exponential. This may be shown as follows. From the 

definition of the scalar expansion 

(6s)' /6s = 9 = 3K . 

This equation may be integrated to obtain 

5s = Aexp(3Kt) 
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for constant A. 

The shear scalar and shear tensor can be shown, using 

equations (3.6) and (3.7), to be zero for this solution. 

The scalar curvature, R, can be calculated from 

equation (4.1). For this solution it is found to be 

R = 24K2. 

The scalar curvature is therefore a positive constant for 

this solution and the spacetime manifold is well behaved at 

all points. 

The velocity vector components are found from equation 

(3.5). They are 

u 1 = (1 - K 2 r 2 ) 1 / 2 =••* -ut 

ur = Kr = -u 
r 

u6 = uQ - 0 
$ u = u. = 0 

9 

The 4-velocity vector is (1, 0, 0, 0) at r = 0 and 

continuously turns to become (0, 1, 0, 0) at r = ±K . 
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The acceleration vector has components which are found 

from the equations listed in section (3.5). For this 

solution, 

u* = -K2r 

ur = K(l - K 2 r 2 ) 1 / 2 

uG = u* = 0. 

At r = 0 the acceleration vector is (0, K, 0, 0). This 

vector turns continuously, reaching (+K, 0, 0, 0) at 

r = +K-1. 
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This solution can be transformed to the de Sitter solution 

by means of a singular transformation. This was first 

demonstrated by Dunn and Williams (1989). The cross term 

dtdr can be removed by introducing a new coordinate 

t' = t + f (r) . 

Under such a transformation 

gt'r = gtr - <?ttdf/dr 

where f(r) must be chosen so that 

df/dr = tan2a = 2Kr(l - K2r2)1/2(1 - 2K 2r 2) - 1 

Note that this transformation is singular at 

2 -1/2 . . . . r = +(2K ) ' , which are points withm the range of 

allowed values for r. 

The metric is now 

ds2 = -(1 - 2K2r2)dt'2 + (1 - 2K2r2)_1dr2 

+ r2d92 + r2sin26d$2 



* 
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which is a form of the de Sitter metric. The usual form of 

the de Sitter metric is 

ds2 = -dT2 + a2cosh2(a~1T)[dX2 + sin2X(d92 + sin29d*2)] 

(6.4) 

and can be obtained by the transformation 

r = a sinX cosh(a T) 

sinh(a-1t') = ±sinh(a-1T)[1 - sin2X cosh2(a_1T)]x^2 

where a = (2K2)-1/2 , and is valid for 

0 < X < n 

-oo < T < to. 

The existence of this transformation justifies the name 

"de Sitter kink" for the solution given in equation (6.3). 

It also shows that the kinks are a global feature because 

locally the metric given in equation (6.3) is identical to 

the familiar de Sitter metric. 
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(6.3) The Killing Vectors. 

The Killing vectors are used to find the symmetries of 

the spacetime. For this metric, the Killing equations 

stated in section (3.2) reduce to 

yt t - 4K3r2(l - K2r2)1/2/xt + 2K
2r(l - 2K2r2)Mt = 0 

Mt,r + Mr,t + 4 K 2 r ( x ~ 2K2r2)Mt + 8K
3r2(l - K2r2)Mr = 0 

"t,e + "e,t = ° 

"t,« + "»,t = ° 

a - 2K(l - K2r2)~1/2(1 - 2K2r2 + 2K2r4)M^ 

- 2K2r(l - 2K2r2)Mr = 0 

"r,6 + "e,r " 2 I " \ = ° 

"r,» + "»,r ~ 2 r " \ * ° ' 

yQi& - 2Kr 2 ( l - K 2 r 2 ) 1 / 2 / i t + r ( l - 2K2r2)M r « 0 

"e,» + "»,e - 2cotG "» = ° 
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yifi - 2Kr2sin29(l- K2r2)1/2Mt + r
2sin29(l - 2K2r2)Mr 

+ sinecose y = 0 . 

The usual de Sitter spacetime admits a full set of 

ten Killing vectors, these are the timelike vector 6/61, 

three vectors which are the (spacelike) generators of the 

rotation group S0(3), and the six (spacelike )vectors which 

are the translations. The above equations clearly admit the 

vector 

y± = 61 St. 

The length of this vector is 

llMjl - 2K2r2 - 1 . 

This Killing vector y. is timelike for 

-2-1'2YT1 < r < 2-1/2K-1. 

-1/2 -1 It becomes null at r = +2 ' K , and is spacelike for 

-K"1 < r < -2-1/2K-1 and 2-1/2
K-

1 < r < if1. 

Therefore there is no global timelike Killing vector and so 

the spacetime is not globally stationary. 
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(6.4) Kink Number Calculation. 

The kink number N for this solution can be calculated 

using the formula stated previously in section (2.3), 

namely 

N = (127T2)"1 N°d3x (6.5) 

where 

0 _ Oijk a B yT 6 
N " e ea6r* X X |iX | j X |k* (6.6) 

and | denotes differentiation with respect to the S matrix 

in the G = SQ decomposition for any matrix G representing a 

metric tensor. Any metric given by equation (6.1), can be 

represented by the matrix 

G = 

-cos2a 

-sin2a 

0 

\ ° 

-sin2a 

cos2a 

0 

0 

0 

0 

0 

0 

2 . 2 0 r sin 6 

where a = a(r) . 
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Following the procedure outlined in section (2.3) to 

find the kink number, the <p are first found for this 
^a 

metric. As stated in section (2.4), any metric given by 

equation (6.1) is a metric for which the matrices S and Q 

in the decomposition of the matrix representing the metric 

are 

1 

0 

0 

\ o 

0 

1 

0 

0 

0 

0 

r* 

0 

0 

0 

2 . 2 
r s m 

e 

and 

-cos2a 

-sin2a 

0 

0 

-sin2a 

cos2a 

0 

0 

0 

0 

1 

0 

°\ 
0 

0 

1 

Writing 

Q = P diag(-l, 1, 1, 1) PJ 

where P is the matrix defined in equation (2.4), then 
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P = 

cosa 

sina 

0 

0 

-sina 

cosa 

0 

0 

0 

0 

cosa 

-sina 

0 

0 

sina 

cosa 

so that the required (p are 

<p. = cosa 

<p = sina 

These <p are the Xa used in the formula given in 

equation (6.6). The eovariant derivatives of the X , with 

respect to the tensor s - represented by the S matrix, are 

also needed to calculate the kink number from the formula 

given by equations (6.5) and (6.6). The nonzero Christoffel 

symbols of the tensor s . are 

rr = -r 96 

rr_. = -rsin29 
99 

re = r* = r'1 

re r$ 

r ** = -sin9cos9 
99 
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r$
Q* = cote . 
9$ 

The non-zero eovariant derivatives of the Xa = <p are 

X > = ' r ^ 
^ I t = X r,t 
Xt|r " xt,r 

X9|9 " r66rXr 

x*i« = r*. xr 

i $r 

Therefore the non-zero terms in the equation (6.6) will be 

those of the kind 

t r 6 9 - 2 . 2 . 
X X | X |_X I. = cosar sin a(sina) 

and 

vrvt v6 vi . - 2 . 2 X X i X i„X |X = smar sin c ,r 
x icX i* = smar sin a (cosa) r | b 19 ,. 

These groups of terms, actually six terms of each kind, 

will combine to give a non-zero answer because of the 

antisymmetrization. In particular, using the above results 

in equation (6.5) shows that 

f 
N = (127T2)'1 

I 
- 2 2 . 2 - 2 4 3 6[r cos asm aa + r sin aa 1 d x ,r ,rJ 



- I^V1 
C, 2H TT 

I 1 

a2 '0 0 

. 2 
sin a a sin*drd*d6 

, r 
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(6.7) 

where a and a„ are the values of a at the limiting values 

of r. For the de Sitter kink, 

a(r = -K-1) = -n/2 a(r = K-1) = n/2 , 

so that the integral given in equation (6.7) reduces to 

n/2 

N 
2 -1 (20 1( . 2 

sin ada)( 

n 
l 

2n 

I 
-n/2 

sin§d$)( d6) 

o 

n/2 

(27r2)~1[ 2_1(1 - cos2a)da] (2) ( 27T ) 

-n/2 

(27-2)"1(2~17r)(2)(27r) 

= l. 

In xa coordinates, the S matrix for this solution is 
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the identity matrix and so the eovariant derivatives with 

respect to the tensor s . reduce to ordinary derivatives 

and the equation (6.6) reduces to Skryme's original formula 

given earlier as equation (2.5). It can be shown (Skyrme, 

1961) that in this case 

N = (Tr)"1 (1 - cos2a)da 

a„ 

= (7r)_1[a(0) - a(»)], 

provided that sin2a is zero at the origin and at infinity. 

—l -l 
For the de Sitter kink, -K ,< r ^ K , sma = Kr, 

a(0) = 0 , a(K) = n/2. If r is allowed to be negative, so 

the complete kink is present, then a(-K) = -n/2, and this 

integral becomes 

/W/2 

-1 
n (1 - cos2a)da 

-n/2 

= 1. 

Therefore the above solution is a one kink solution. 
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If, however, the usual form, given by equation (6.4), 

of the de Sitter solution is considered, then the kink 

number is found to be 0. This is shown as follows. 

For the usual form of the de Sitter metric 

1-1 0 0 0 

0 a2cosh2(a_1T) 0 0 
G = 

0 0 a2cosh2(a_1T)sin2X 0 

\ 0 0 0 a2cosh2(a~1T)sin2Xsin26// 

(6.8) 

It is easy to show that 

Q = diag(-l, 1, 1, 1) 

and hence that 

* T - 1 

4>. = 0 for i = 1, 2, 3. 

The vector field X is therefore (1, 0, 0, 0) and so all 

the terms Xa
 R will be zero. The matrix S in the usual 

G = SQ decomposition of the matrix G given in equation 

(6.8) is 
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1 0 0 . 0 

0 a 2 c o s h 2 ( a _ 1 T ) 0 0 

0 0 a 2 c o s h 2 ( a _ 1 T ) s i n 2 X 0 

0 0 0 a 2 c o s h 2 ( a ~ 1 T ) s i n 2 X s i n 2 G 

The non-zero Christoffel symbols (with respect to the 

tensor s „) are 

rT
QQ = -asin

2Xsinh(2Ta X) 
t . 2 T 

r% $ = sin
2erTee 

rX
XT = a~

1tanh(Ta"1) 

rX
Qe = -2

_1sin2X 

FX
$§ = sin

28rXeQ 

r® = -2~1sin26. 

T X 6 $ Recalling that X = 1, X = X = X = 0 , it is hence clear 

that the only non-zero eovariant derivative 

a _ a ra T 
X IB " X ,B + r Br X 

is 

xX|X = rXXT = a"1tanh(Ta"1) 

Therefore, there are no non-zero terms in equation (6.6) 

and the kink number for the de Sitter metric is zero. 

'% 
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(6.5) Light Cone Behaviour. 

The kink properties of this solution can be more 

readily seen by looking at the light cone behaviour of the 

metric. The light cone behaviour is demonstrated by 

considering the equation 

g/x7r(dx
M/ds)(dxTr/ds) = 0 (6.9) 

This equation for the de Sitter kink of equation (6.2) is 

-(1- 2K2r2)(dt/ds)2 - 4Kr(l - K2r2)1/2dt/dsdr/ds 

+ (1 - 2K2r2)(dr/ds)2 + r2(d6/ds)2 + r2sin29(d*/ds)2 = 0 

For convenience, the plane 9 = * = constant is considered. 

Along the line, 

r = 0, a = 77, 

this equation reduces to 

-(t - t Q )
2 + (r - r Q )

2 = 0 

or, equivalently, 

r - r0 -±(t - t Q). 
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The light cones are therefore bounded by lines of slope +1 

so that their axes point up the t axis. Along the line 

2 -1/2 r = (2KZ) x/ , a = 37T/4 

or, equivalently, 

r =ro ' t = t o 

The light cones are therefore bounded by lines parallel to 

the r and t axes and the axes of the cones are at an angle 

7T/4 to either coordinate axis. Along the lines 

r = K_1, a = n/2 

(t - t Q)
2 - (r - r Q)

2 = 0. 

The cones are therefore again bounded by lines of slope +1 

but now the axis is parallel to the r axis. 

The complete light cone behaviour in the planes 6 = 0 

and i = 0 is shown below in Fig. (6.1). 



Fig. (6.1). Light cone picture for the de Sitter kink spacetime, 

CO 



188 

For the usual form of the de Sitter solution, as given 

in equation (6.4), the equation (6.9) in the 9 = * = 0 

plane reduces to 

-(T - T Q)
2 + a2cosh2(a"1T)(X - X 0)

2 = 0. 

Hence everywhere in this plane, the cones are bounded by 

lines whose slopes are 

±acosh2(a~1T). 

These cones therefore have a changing vertex angle as T 

varies but do not alter their orientation with respect to 

the coordinate axes for different coordinate values in the 

T,X plane. The light cone picture for the usual de Sitter 

solution is therefore as shown below in Fig. (6.2). 



.^..J&^JSJ&aS S2&£2JZZ£?ZJEZZZL 

>x 

Fig. (6.2). Light cone picture for the usual de Sitter spacetime, 

CO 
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(6.6) Extension of the Manifold 

The kink form of the de Sitter metric given in equation 

(6.3) by 

ds2 = -(1 - 2,K2r2)dt2 - 4Kr(l - K2r2)1/2dtdr 

+ (1 - 2K2r2)dr2 + r2d92 + r2sin29d$2 

assumes the same value at r = +K , therefore these points 

may be identified. Under a change of coordinates 

r = K~1sin(2~1B), 

-1 -1 valid for -K < r < K and -n < 6 < n, the metric becomes 

ds2 = -cosBdt2 - K~1sinBcos(2~1B)dtdB 

+ 4_1cosBcos2(2~1B)dB2 

+ K"2sin2(2~1B)d92 + K~2sin2(2~16)sin2ed$2, 

In these new coordinates it is still not possible to 

globally introduce a new time variable t' that will remove 

the g.o term because the transformation 

t« = t + f(6) 

leads to 
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't'A = gtB - gtt f<6>, B 

so that 

f(fi) 6 = (2K)
_1tanB cos(2_1G) 

which is undefined at B = n/2. 

It is possible to assume that the manifold, over which 

the de Sitter kink given above is defined, is not the whole 

of spacetime. Equivalently, the coordinate system can be 

regarded as unnecessarily restricting the solution because 

the coordinate patch ends at r = ±K, B = ±n. The larger 

manifold covering the whole of spacetime can be constructed 

by attaching other coordinate patches. This procedure 

follows that suggested by Finkelstein and McCollum (1975) 

and describes what they call an "onion". Construction of 

such an "onion" can be achieved here by a change of 

coordinates 

r = K~1sin(2~1nfl) 

valid for 

-K_1 -$ r < K - 1 and -n & 6 ̂  n 
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Under this coordinate change the metric becomes 

ds2 = -cos(nB) dt - nK~1sin(nB)cos(2~ nB) dt dB 

+ n2(2K)"2cos(nB)cos2(2~1nB) dB2 + 

K~2sin2(2~1nB) d92 + K~2sin2(2"1nB)sin2e d*2. 

The metric is still defined on the same manifold because 

the points B = ±n where the metric takes the same value can 

still be identified. The above metric now represents an 

n-kink metric rather than a one-kink metric. This can be 

shown by calculating the kink number. This is achieved by 

considering again equation (6.7), which is 

a, n 2n 
I I 

2 -1 
N = (27T ) •* 

a2 0 0 

, n 2n 
1 ( 2 
I sin a a si in* dr d* de. 

Under the coordinate transformation 

r = K~1sin(2~1nB) 

the integral becomes 
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N = (27r2)"1[2"1n 

n n 
t 
sin 2(2~ 1nB) dB] sin* d* 

27T 

/ 
-rr 

de 

rr 

2 _ 1 n (27r2)"1{2~1 [1 - cos(nB)] dS}(27T)(2) 

-n 

2~1n (27T2)"1 2~1(27r) (2n) (2) 

= n. 

However, the transformation that achieved this change 

is not one-to-one thoughout the range -K « r 4 K . The 

transformation extends the manifold from the one original 

coordinate patch. Within each patch, the metric is locally 

tranformable to the usual de Sitter metric. This 

transformation is clearly not globally possible. 



CHAPTER SEVEN 

THE SCHWARZSCHILD KINK SOLUTION 

Introduction 

The form of metric and other properties of this kink 

solution are discussed (7.1) and the transformation to the 

familiar Schwarschild form is demonstrated via a singular 

transformation (7.2). The Killing vectors for this 

spacetime are found (7.3). The kink number is calculated for 

this metric and shown to be equal to one (7.4), and the 

feature common to all kink metrics, the tipping light cone 

behaviour, is illustrated for *:his solution (7.5). 

194 
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(7.1) The Form of the Metric and Solution Properties. 

A solution of the Einstein field equations for the 

metric 

2 2 2 
ds = -cos2adt - 2sin2adtdr + cos2adr 

+ r2d62 + r2sin29d*2 (7.1) 

was shown in Chapter 4 to be 

• 2 » -1 sm a = Ar 

where A is a constant. If A is chosen to be positive then 

the solution is valid for A ,£ r < «>, and 

sina = ±(Ar"1)1/2. 

The metric can therefore be written as 

ds2 = -(1 - 2Ar_1)dt2 - 4A1/2r~1/2(l - Ar - 1) 1 / 2 dtdr 

+ (1 - 2Ar~1)dr2 + r2d92 + r2sin28d*2 . (7.2) 

It is clear from equation (7.2) that, for k 4 r < 2A, 

r is the timelike coordinate and, for r > 2A, t is the 

timelike coordinate. It can also be seen that, for 

A $ r < 00, the metric is non-singular everywhere. 
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The coordinate r may be allowed to be negative provided 

that A is now also chosen to be negative. That is, a 

solution is 

. 2 -1 

sm a = ar 

where a < 0. It is valid for -*> < r .£ a and 

sina = ±(ar"V/2. 

The equation of state for this solution is 

p = -y 

but equation (4.8) shows that 

p = 0. 

Clearly for this particlular solution the choice of a 

velocity vector has been made redundant. 

Substituting for sina into equation (4.1) shows that the 

scalar curvature for this solution is zero. This solution 

is therefore a vacuum solution which may be called the 

Schwarzschild kink because it can be transformed into the 
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usual Schwarzschild solution via a singular transformation. 

This will be demonstrated in the next section. It will also 

be shown in a future section that the kink number is non

zero. 
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(7.2) Transformation to the Schwarzschild Metric. 

The spherical symmetry of this vacuum solution means 

that according to Birkhoff's Theorem (Misner, Thome and 

Wheeler, 1973) it must locally be transformable to the 

Schwarzschild metric, which may be written as 

ds2 = -(1 - 2Ar"1) dT2 + (1 - 2Ar~1)"1 dr2 

+ r2 d92 + r2sin29 d*2. (7.3) 

The transformation that changes the kink metric given by 

equation (7.2) into the metric given above in equation 

(7.3) is 

T = t + f (r) 

where 

f (r) =gtr(gttr
1 

= tan2a 

= 4A 1/V 1/ 2(1- Ar-V/2(1 -2AT- 1)- 1 

so that the cross term drdt is removed. 

The required form of f(r) can be shown to be given by 
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f(r) = 4A1/2(r - A ) 1 / 2 

- 2Aln{[(A~1r - 1 ) 1 / 2 + l][(A"1r - 1 ) 1 / 2 - if1} . 

The existence of this transformation justifies the metric 

of equation (7.2) being called the Schwarzschild kink 

metric. The transformation is not valid globally since it 

is singular at r = 2A. Rosen (1985) also found a number of 

spherically symmetric vacuum solutions that could not be 

transformed to the Schwarzschild solution via nonsingular 

transformations. The solutions found by Rosen are not kink 

solutions. 

The above solution was first found by Harriott and 

Williams (1988) . This solution and transformation is 

similar to that noted by Dunn (1990) for the metric 

ds2 = cos2adt2 - 2sin2adtdr - cos2adr2 + r2d92 + r2sin29d*2 

(7.4) 

where 

2 » -1 cos a - Ar 

The difference between this metric and the metric given in 

equation (7.1) is due to a different definition of the <p . 

The metric of equation (7.1) arises from defining 
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0 = cosa 

<p = sina 

*e - ** « ° 

where the <p are the terms in the orthogonal matrix P that 

diagonalizes the matrix Q in the G = SQ decomposition of 

the metric as discussed previously. The metric given in 

equation (7.4) arises from defining 

0. = sina 

<p = cosa r 

*e
 m *9 = °-

This difference in the definitions of the <f> means that the 
a 

angles defined as a in the two metrics given in equations 

(7.1) and (7.4) differ by n/2. The angle a relates to the 

tipping of the light cones. However, both choices for the 

<p lead to the solution given in equation (7.2). 
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(7.3) The Killing Vectors. 

Killing's Equations for this metric are 

Mt t + 2A
3/2r"5/2(l - Ar_1)Mt - Ar"

2(l - 2Ar~1)Mr = 0 

"t,r + Mr,t ' 2 A r" 2< 1 " 2Ar_1)Mt 

- 4A3/2r"5/2(l - Ar-1)Mr = 0 

"t,e + Me,t = ° 

"t,* + "*,t = ° 

Mr/r + A
1/2r"3/2(l - 2Ar"2 + 2A2r-2)(l - Ar" 1 ) " 1 ' 2 ^ 

+ Ar~2(l - 2Ar-1)Mr = 0 

"r,e + "e,r ~ 2r~\ = ° 

"r,« + M*,r " 2 r"\ = ° 

Me^^A^r^d-Ar-1)1^ 

+ r(l - 2Ar"1)sin29 Mr = 0 

" 9,* + M*,9 " 2 c o t 6 "# = ° 
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y 9 9 - 2r(l - Ar"1)1/2sin26 y t + r(l - 2Ar~
1)sin26 Mr 

+ sin9cos9 yQ = 0. 

These equations have solutions 

ikx = S/St 

UL2 = 6/6$ 

ix_ = sin$6/63 + cot6cos*"/5* 

y, = cos*<5/("9 - cot6sin*5/<S*. 

As stated previously u.2, i 3̂, and ix. are the generators of 

the rotation group S0(3). 

The length of the Killing vector ii. is 

li-JI = -(1 - Ar"1) 

which is spacelike for A < r < 2A. It becomes null at 

r = 2A and is timelike for r > 2A. There is therefore no 

global timelike Killing vector. 
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(7.4) Kink Number Calculation 

The kink number formula as derived in section (2.3) is 

N = (127T2)"1 N d x 
J 

(7,5) 

where 

N° = e 0 i ^ £ R . X a X B
M X T , . X * l l r , aflT<5 | i I j k ' (7.6) 

and the | denotes differentiation with respect to the S 

matrix in the G = SQ decomposition of the matrix 

representing the metric. It was shown in section (6.4) that 

for any metric of the form given by equation (7.1) this 

kink number formula reduces to the following integral, 

given in equation (6.7) 

a, 2n n 
l 

N = (2-rV1 sin a a sin* drd9d* ,r 

0 0 (7.7) 

where a. and a. are the limiting values of a for the 

solution. For the Schwarschild kink, 

a1(r = A) = n/2 a2(r = «>) = 0 
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The integral given in equation (7.7) therefore reduces to 

n/2 

[ 2_1(1 - cos2a)da](2)(2n) 

'o 

= 2"1. 

This result is not unexpected as the angle only turns 

through n/2 radians for this range of r. 

A complete kink can be constructed by attaching the 

de Sitter kink solution discussed in chapter 6 for the 

interior range of r 

0 < r $ K-1 = A. 

The complete range of r is now 

0 < r < a 

and 

sina = Kr valid for 0 ̂  r < K 

sina = + (Ar~1)1'2 valid for A = K-1 .£ r < oo . 

2 -l N = (27T) 
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The solution is continuous at r = K but not 

differentiable. 

It is also possible to allow r to be negative and to 

construct an extension of the solution as follows 

sina = Kr valid for -K~ ^ r ̂  0 

sina = -(ar ) ' valid for -°° < r £ -K~ = a . 

The complete solution, valid for -°° < r < «>, has two kinks, 

and is illustrated below in Fig. (7.1). 

After transformation to the Schwarzschild metric, whose 

standard form is 

ds2 = -(1 - 2Ar_1)dT2 + (1 - 2Ar"1)~1dr2 

2 2 2 . 2 2 
+ r d9 + r sin 9d* 

via the singular transformation described in section (7.1), 

the kink number is zero. This can be shown as follows. For 

the standard form of the Schwarzschild metric the S and Q 

matrices in the decomposition of the matrix representing 

the metric are easily found to be 

Q = diag(-l, 1, 1, 1) 



A 

^ j Nx)4 
a = 

s ina = -( a / r ) . 

2rr 7TT/4 

1 / 2 ^ <. since 

3TT/2 £TT/4 

r = -oo -r'= . 

004 17 
= Kr * * — s i n o = (A/r) 1/2 

3TT/4 TT/2 

K-1 = A 

TT/4 0 

+00 

Fig . ( 7 . 1 ) . A two-kink s o l u t i o n , with an i n t e r i o r de S i t t e r type kink and an exte 
Sc'nwarzschi Id type k ink . 



and 

/ « -

S = 

(1 - 2Ar~1) 

0 

0 

0 

(1 - 2Ar~1)~1 

0 

0 

0 

0 

r' 

0 

0 

0 

2 • 2„ r sin 9 

The X = 0 are therefore clearly constant and so all 

terms X - will be zero. The only nonzero Christoffel 

symbols for the tensor represented by the matrix S are 

Tr 

rr 

66 

** 

-2 -1 -1 Ar (1 - 2Ar •*•) 

-2 -1 -1 

-Ar (1 - 2Ar ) 

-r(l - 2Ar-1) 

-sin26r(l - 2Ar_1) ,6 
9r = r 

-1 

,9 
** 

*r 

*9 

-sin9cos6 

r"1 

cote 

a The eovariant derivatives of X , which are given by 

xCt\R " X ,B + r B T X 

are therefore all zero except for 



I 

208 
T T T —2 —1 -1 

X |r = * T r X = A r (1 " 2 A r ' 

There is thus no non-zero contribution to equation (7.6). 

The kink number is clearly zero. 



(7.5) Light Cone Behaviour 
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The light cone behaviour is determined by solving the 

equation. 

gaB(dx°7ds)(dx
B/ds) = 0 (7.8) 

For the solution given by equation (7.2), the above 

equation reduces to 

-(1 - 2Ar-1) (dt/dr)2 - 4A1/,2r~1/2 (1 - A r - 1 ) 1 / 2 dt/dsdr/ds 

+ (1 - 2Ar_1)(dr/ds)2 + r2(d6/ds)2 + r2sin26(d*/ds)2 = 0 

(7.9) 

Consider the plane 6 = * = constant. Along the line r = A, 

the above equation (7.9) becomes 

(t - t Q )
2 = (r - r o )

2 . 

The light cones have their axes parallel to the r 

coordinate axis. 

Along the line r = 2A, equation (7.9) becomes 

(* - V <r - V = ° 
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and the light cones are tipped so that the bounding curves 

lie parallel to the coordinate axes. 

As r->», the light cones continue to tip until their 

axes become parallel to the t axis at infinity. This 

behaviour was first noted by Finkelstein and McCollum 

(1975) and is illustrated below in Fig. (7.2). 



- > 

+oo 

Fig. (7.2). Light cone picture for the Schwarzschild kink solution, 

H 
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CHAPTER EIGHT 

KINK SOLUTIONS IN 1+1 DIMENSIONS 

Introduction 

A (l+l)-dimensional theory of gravity is discussed 

(8.1). A kink metric in 1+1 dimensions is constructed and 

its curvature quantitites calculated (8.2). The energy 

conservation conditions are also constructed (8.2). De 

Sitter kink solutions are found, analagous to those 

previously discussed in chapter 6, (10.3). 

212 
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(8.1) A (l+l)-Dimensional Theory of Gravity. 

Recently there has been interest in 1+1 theories of 

gravity, primarily for pedagogical reasons. However, 

interest in these theories also exists because it is 

usually easier to work in two dimensions rather than four, 

so if a theory can be shown to duplicate the features of 

general relativity, at least qualitatively, it will provide 

a useful investigative tool for testing new ideas. It is in 

this capacity that such a theory is included herei to study 

kink solutions in two dimensions. 

The Einstein tensor is identically zero in l+l 

dimensions and so to construct a (1+1)-dimensional theory 

of gravity, a theory to replace general relativity must be 

proposed. Several such theories have been suggested 

(Teitelboim, 1983 and 1984; Banks and Susskind, 1984; 

Jackiw 1984 and 1985; Brown, Henneaux and Teitelboim, 1986; 

Sanchez, 1986 and 1987; Brown, 1988; Gegenberg, Kelly, Mann 

and Vincent, 1988) and most recently Mann et al (Mann, 

1989; Mann, Shiekh and Tarasov, 1990; Mann and Steele, 

1990; Mann, Morsink, Sikkema and Steele, 1990; Kelly and 

Mann, 1991; Sikkema and Mann, 1991a and b; Mann, 1992) have 

proposed a (l+l)-dimensional theory of gravity with the 

following field equation 
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R - fl = 8TTGT (8.1) 

where n is the usual (Einstein) cosmological constant, G is 

the universal (Newton) constant of gravitation and T is the 

a Pi 
trace of the stress-energy tensor T , 

T = a Tafi 1 gaB* ' 

An additional postulate of the theory is that 

TaR
;R = 0. (8.2) 

This is to ensure energy conservation. In general 

relativity the latter follows directly from the field 

equations, but in (1+1)-dimensional theory it is an added 

requirement. This particular theory has field equations 

that are simple to solve but rich in structure. Einstein's 

principal notion of equating curvature to matter is 

retained in this theory whose field equations are formally 

similar to the Einstein equations. It has been shown 

(Sikkema and Mann, 1991b) that this theory qualitatively 

reproduces many of the features of general relativity and 

also reduces to Newtonian gravity in the weak field and low 

velocity limit. 

The stress-energy tensor for a perfect fluid is 
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Ta
6 = (y + p)uau6 + P6a

B 

where, as usual, y is the total energy density and p is the 

isotropic pressure. The trace of T . is therefore 

T = p - y (8.3) 

Given any metric, a relationship between y and p will 

therefore be determined by equation (8.1), and actual 

solutions of this 1+1 theory will be those metrics that, in 

addition, allow p and y to satisfy the energy conservation 

equation (8.2). 

It is easy to show, following the general scheme of 

Shastri, Williams and Zvengrowski (1980), that these 1+1 

dimensional space-times do admit kink-like structures. By 

analogy with higher dimensions, the matrix G, representing 

the metric, can be written as the product G = SQ = QS. The 

matrix S is symmetric and positiye definite and Q is 

symmetric and orthogonal. It must therefore be possible to 

write 

G = SQ 
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/ A B \ / -cosB -sinfl 

\ 
B C / I -sinB cosB 

for some functions A, B, C and angle B. By analogy with 

higher dimensions, the matrix Q can also be expressed as 

P diag(-l, 1) PT 

where P is the matrix 

*t "*x 

<*> 0 t 

and 

0. = cosa 

0 = sina, 

Comparison of the two expressions for Q shows that 

B = 2a. 

The commutivity of S and Q implies 
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-B cosB - C sinB = -A sinB + B cosB, 

or equivalently 

B = 2_1(A - C)tanB. 

The matrix S is homotopically similar to the identity 

matrix and so a transformation exists that transforms S to 

a diagonal matrix whose non-zero (positive) elements may be 

written as e . Equivalently, because S is positive 

definite, it must have two real positive eigenvalues. It 

can therefore be diagonalized by its matrix of 

eigenvectors. The matrix representing G can therefore be 

written as 

-cosB -sinB 
T 

mB cosB 

and the metric is 

ds2 = -e~TcosB dt - 2e~TsinB dtdx + e"T cosB dx 

(8.4) 

If B = 0, this metric is conformally flat and reduces to 

the case studied by Jackiw (1985). When T = 0, the metric 
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reduces to the 1+1 version of the simple kink metric 

discussed previously in Chapters 4, 6, and 7. 

The kink number formula discussed previously in section 

(2.4) for metrics in 3+1 dimensions is 

/ 

N = (127T2)"1 Oijk vavB Y T Y<~ ,3V 
e eaBr* X X |iX | j X Ik d X ' 

In 1+1 dimensions it will reduce to 

N = (27T) -1 60i6 R X
a Xs,. dx . aB l 

/ 

The | denotes eovariant differentiation with respect to the 

positive definite metric represented by the S matrix. In 

the (1+1)-dimensional case, when the S matrix is diag(l,l) 

and the Xa are chosen equal to the <pa, the formula further 

simplifies to 

N = n -1 

co 

—00 

<*t *x,x " V t , x > d x • <8'5> 
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(8.2) Curvature and Hydrodynamic Quantities. 

If T is assumed to be zero in the metric given by 

equation (8.4), then the metric becomes 

ds = -cosB dt - 2sinB dtdx + cosB dx . (8.6) 

The non-zero Christoffel symbols are 

T t
t t = 2"

1{sinBcosB B t + sin
2B B x> = -r

X
tx 

r \ x = 2"1{sin26 R/t - sinBcosB R^} = -rx
xx 

rX . = 2_1{-(1 + cos2B) 6 . - sinBcosB B } 

rfc = 2~1{sinBcosB 6 . + (1 + cos2B) B } 
XX ft * x 

There is only one independent Ricci tensor component 

(Weinberg, 1972), 

Rtt = 2~
1cosB{(B x ) 2 - (B t ) 2 + sinB 6 t t 

- sinB B v v + 2sinB B .6 - 2cosB B . }, 

and 

Rxx " " Rtt 
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Rtx = tanB R^. . 

The scalar curvature is 

R = sin6[B x x - B tt] + 2cosB B t x + cos6[(B x ) 2 

- (B^t)
2] - 2sinB R>t B x 

which can be written more compactly as 

R = (cosB) t t - (cosB) xj£ + 2 (sinB) tj£ . (8.7) 

As in higher di7nensions, the velocity vector is chosen 

to be 

t u = cosa 

ux = sina. 

It can now be easily shown that, for the metric given by 

equation (10.6), the energy conservation equations, 

Ta .o=0/ reduce to 

T \ B - ° < 8' 8> 

Substituting for the velocity components, these 

conservation conditions given by (8.8) can be expressed as 
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a .(y + -p) + p v + sina cosa (y - p) . , x , x , t 
+ sin2a (y - p) v = 0 (8.9) 

a V(M + P) + P *. + cos2a (JU - p) . 

+ sina cosa (y - p) = 0. (8.10) 
, x 
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(8.3) The De Sitter Kink Solution. 

Using equation (8.7) to substitute for the scalar 

curvature, the field equation (8.1) can be written as 

(cosfl) tt - (c°sB)^xx + 2(sinB)^tx - n = 8nG(y - p) . 

If p = -y is chosen as the equation of state, the energy 

conservation equations (8.9) and (8.10) reduce to 

",t " ",x = °' 

Therefore any solution with an equation of state p = -y 

must have p and y constant. The field equation is now 

(cosB) .. - (cosB) + 2 (sinB) . - fl = -16nGy < 0. 

(8.11) 

The scalar curvature must therefore be constant. That is, 

R = (cosB) t t - (cosB) x x + 2(sinB) t = constant. 

This last equation is satisfied by any of the following 

sina = Kx valid for -K < x < K*"1 

sina = Kt valid for -K"1 £ t ̂  K_1 
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— 1 -1 cosa = Kx valid for -K ,$ x ^ K 

cosa = Kt valid for -K-1 ̂  t <: K_1, 

where K is a constant. 

2 If sina = Kx or cosa = Kt, then R = 4K , and the field 

equation (8.11) becomes 

4K2 - P. = -ISnGy. 

This solution therefore requires a positive cosmological 

constant 

n = 4K2 + 16nGy. 

2 If cosa = Kx or sina = Kt, then R = -4K , and the field 

equation (8.11) reduces to 

-4K2 - n = - 16nGy 

The cosmological constant may be set to zero if the density 

is chosen to be 

y = K2(47rG) 
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Alternatively, if the solution is regarded as an empty 

space (y = 0) solution, the cosmological constant must be 

negative 

n = - 4K2. 

Comparing these solutions to the de Sitter kink 

solution in higher dimensions discussed in Chapter 6, it is 

clear the first is the (1+1)-dimensional analogue of the de 

Sitter kink and the second can be considered as the 

(1+1)-dimensional analogue of the negative constant 

curvature space-time, the anti-de Sitter kink, discussed 

previously by Williams and Zvengrowski (1990) . 

For the de Sitter kink solution, sina = Kx, the metric 

is 

ds2 = -(1 - 2K2x2)dt2 - 4Kx(l - K2x2)1/2dtdx 

+ (1 - 2K2x2)dx2 , (8.12) 

valid for -K_1 £ x .< K_1 and 0 ̂  t < «. For this de Sitter 

kink metric the kink number, given by equation (8.5), can 

be shown to be equal to one. 

0. = cosa 

0 = sina 
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and so 

*t*x,x " *x*t,x = ( c o s a + sin2ot) a, x 

= a,x-

Substituting this last result into the kink number formula 

(8.5) gives 

N = 7T-1 

/ <* (oo) 

da 

'a (-co) 

= n'1 { n } 

= 1. 

The kink metric given by equation (8.12) can be 

transformed to the usual form of the de Sitter metric 

ds2 = -(1 - x2a"2)dT2 + (1 - x2a"2j"1dx2 , 

where a is a constant, via a singular transformation, as 

was the case in higher dimensions. The manifold can be 

extended, in an analogous manner to the procedure described 

for 3+1 dimensions, to form an n-kink metric by writing 
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x = K sin(n9/2) 

where -n < Q 4. n. The metric now becomes 

ds2 = -cos(n9) dt2 - nK_1 sin(n9) cos(n9/2) dtd9 

+ 4 - 1 n2K~2 cos(n9) cos2(n6/2) d92. 

This is analogous to the "onion" extension suggested by 

Finkelstein and McCollum (1975) in 3+1 dimensions. 



CHAPTER NINE 

FRIEDMANN-LEMAITRE-ROBERTSON-WALKER KINK SOLUTIONS 

Introduction 

A solution in 1+1 dimensions that is locally 

transformable to one of the (1+1)-dimensional analogues of 

the Freidmann-LeMaitre-Robertson-Walker (FLRW) solutions is 

demonstrated (9.1). The actual transformation of this 1+1 

solution to one of the Friedmann-LeMaitre-Robertson-Walker 

metrics is presented and the properties of this solution are 

discussed (9.2). Analagous solutions in higher dimensional 

situations are found (9.3) and the transformation to FLRW 

form for the 3+1 case is discussed (9.4). The kink number 

for the 3+1 kink metric and the corresponding FLRW metric 

are found (9.5). The Riemann tensor components (9.6) and the 

Killing Vectors (9.7) are also found for this 3+1 case. 

227 
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(9.1) A Friedmann-LeMaitre-Robertson-Walker and Minkowski 

Kink Solution in l-fl Dimensions. 

A solution found previously in 3+1 dimensions was given 

by equation (4.16). The solution is 

tana = rt 

This (3+1)-dimensional solution will be discussed in 

section (9.3). By analogy with this previously found 

solution, a possible solution of the 1+1 theory of gravity 

discussed in chapter 8 is 

tana = xt-1. (9.1) 

The angle a is only well defined for all x when t = 0. The 

spacetime manifold is therefore assumed to be the upper 

half plane, t > 0. The scalar curvature can be found from 

equation (8.7) 

R = (cosB)^tt - (cosB) x x + 2(sinB) fcx . 

When tana = xt~ , the scalar curvature can easily be shown 

to be zero. The field equation, using equations (8.1) and 

(8.3) can be written as 
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R - n = 8TTG(p - y) . (9.2) 

Equation (9.2) shows that this possible solution must have 

P = M 

if n is chosen to be zero. 

The energy conservation conditions for a perfect fluid 

are given by (8.9) and (8.10). When p = y they reduce to 

P,x - 2P V = ° 
p,t f 2p a,x = °' 

If tana = xt , it is easy to show that 

2 2-1 
a . = -r(t^ + O x 

11. 

2 2-1 
a,x = t ( t + x ' 

and so the energy conservation equations can be written as 

p"1 p = -t(t2 + x 2)" 1 

P_1 p,x = " x ( t 2 + x2)"1 

These last two equations clearly have a solution 
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P 2-1 

p =• (t~ + X^) x . 

It is also clear that p = y = 0 will also satisfy both the 

field equation and the energy conservation equations. The 

solution tana = xt may therefore be regarded in two ways: 

as a flat empty space (p = y = 0) solution or as a flat 
2 2-1 stiff matter (p = y = (t + x ) ) solution. 

The metric for this solution is 

ds2 = -(t2 - x2)(t2 + x 2)" 1 dt2 - 4tx(t2 + x 2 ) " 1 dt dx 

+ (t2 - x2)(t2 + x 2)" 1 dx2, 

(9.3) 

valid for -oo < x < °° and 0 < t < co. This metric describes 

four distinct regions as shown below in Fig. (9.1). These 

regions are bounded by the lines x = +t along which 6/6t is 

a null vector. In the regions labelled II and IV, where 

|t| > |x|, 

t is the timelike coordinate. In regions I and III where 

|t| < |x|, 

x is the timelike coordinate. 



t = -X 

III 

X = timelike coordinate 

t = x 

x = timelike coordinate 

Fig. (9.1). The Frledmann-LeMaitre-Robertson-Walker kink spacetime. 

U» 
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The angle a determines the orientation of the light 

cones. As v; varies from -o° to +00, for any fixed value of 

t, the angle a of the light cones changes by n, and so 

there is a complete kink present. This can be confirmed by 

calculation of tne kink number. Integrating along any 

hypersurface t = constant, the kink number formula given by 

equation (8.5) shows N = 1 as expected. This is proved as 

follows: For this solution 

0. = cosa 

= t(t2 + x2)'1'2 

0 = sina 

= x(t2 + xV1/2 

and hence 

¥ x , x " *x*tfx -
 fc<t2 + x 2 > - 1 • 

The kink number formula is 

,00 

(<Mx,x " Vt,xJ dx' 
-co 

N = n -l 

For this solution it can therefore be written as 
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N = n'1 

r 

-co 

t(t2 + x2 ) - 1 dx 

-1 -1 -1 = n tan x (xt ±) 

co 

-00 

= 1. 

The light cone behaviour of this solution is 

illustrated in Fig. (9.2). It is interesting to note that, 

unlike previous solutions, the light cone behaviour changes 

with the value of t. The range of x needed to tip through 

any particular angle increases as t increases. Along the 

lines t = ax, for any constant a, the light cones do not 

alter their orientation with respect to the axes. However, 

the orientation changes as the constant a changes. This can 

be seen by substituting t = ax into equation (9..3), which 

is 

ds2 = -(t2 - x2)(x2 +t2)_1dt2 - 4xt(x2 + t2)_1dxdt 

+ (t2 - x2)(x2 + t2)_1dx2 , 

so that the metric becomes 



^1> 

Fig. (9.2) The light cone picture for the Friedman-LeMaitre-Robertson-Walker 

1+1 kink solution. 
ro 
u> 
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ds2 = -(a2 - 1) (a2 + l ) " 3 ^ 2 - 4a(a2 + l)_1dxdt 

+ (a2 - 1)(a2 + l)_1dx2. 

For a = 0 the metric reduces to 

2 2 2 

dsz = dtz - dx . 

For a = +1 it reduces to 

ds2 = +2dxdt, 

and as a -> +°o it reduces to 
2 2 2 ds*1 = -dt"1 + dx . 

It will be shown in the next section that the stiff 

matter solution is locally transformable to a 

(1+1)-dimensional analogue of one of the Friedmann-

LeMaitre-Robertson-Walker (FLRW) solutions. These 1+1 FLRW 

solutions have been discussed by Mann and Sikkema (1991a). 

The empty flat space solution must be locally transformable 

to the Minkowski metric. Globally, however, this will not 

be possible. 
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(9.2) Transformation of the 1+1 Solution to the FLRW and 

Minkowski Forms. 

Consider first the stiff matter solution. Under the 

coordinate transformation 

T2 - t2 + X2 

X = tan"1(xt"1) 

the kink metric given by equation (9.3), defined on 

the upper half plane, t > 0, becomes 

ds2 = -dT2 + T2dX2, (9.4) 

valid for 0 < T < co, -77/2 ̂  X ̂  n/2. If the boundary 

points X = +7T/2 are identified, the spacetime manifold of 

this metric given by equation (9.4) is the whole plane 

except for the origin. This metric is easily shown to have 

no kink, when integration is performed along the 

hypersurfaces T = constant: By inspection it is clear that 

for this metric (9.4) the matrices S and Q, in the 

decomposition of the matrix G representing the metric, are 

\ 0 T2 

S = 

,2 
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and 

-1 o\ 

1 / 

Clearly therefore, 

* T = 1 

* x = 0 

and the kink number formula, equation (8.5), shows the kink 

number is zero. This discrepancy in the kink number is 

explained by the fact that the manifold over which this 

last metric is defined has been obtained from the original 

kink manifold by some "cutting and pasting" which homotopy 

theory does not allow. 

The original kink metric, given by equation (9.3) is 

defined on the upper half plane R x R , or, if the 

boundary points x = + », where the metric takes the same 

1 1 value, are identified, on the cylinder R x S . The 

manifold is foliated by the hypersurfaces t = k, for any 

positive constant k, each with the topology of R , or of S 

if the boundary points are identified. Along any such slice 

Q = 
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it is clear from Fig. (9.2) that the angle a of the light 

cones turns through n radians and, integrating with respect 

to x, the kink number N = 1. The S hypersurfaces are not 

everywhere spacelike. 

The metric given by equation (9.4) is defined on a 

different R x S manifold, obtained by identifying 

X = ±n/2 for each T, and is foliated by the hypersufaces 

T = k, for any constant k. Integrating now with respect to 

X gives a kink number N = 0. Again, inspection of 

Fig. (9.2) shows that around the circles 

2 2 2 
T = t + x = constant, 

the orientation of the light cones does not alter. The S 

hypersurfaces are everywhere spacelike and such 

spacetimes do not have kinks (Finkelstein, 1978) . 

It is important to note that changing the family of S 

hypersurfaces will only change the kink number if some 

cutting of the original manifold occurs. A change in the 

hypersurface decomposition without a change in the manifold 

will not affect the kink number. 

It is also important that the hypersurfaces over which 

the integral is taken to find the kink number are those 
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labelled by t = constant. This is because the manifold was 

specifically chosen with t e R and x e S so that the 

integration is over a hypersurface that is clearly 

compactifiable. This will guarantee that the degree of 

mapping is well defined. It is not clear that the 
2 2 1/2 

hypersurfaces labelled by T = (t + x ) ' = constant will 
be compactifiable. 

To summarize, the original kink manifold was chosen to 

1 1 . 1 1 . 

be R x S with t e R and x e S , in particular the upper 

half plane, t > 0. It is foliated by the family of 

hypersurfaces t = k which are not everywhere spacelike, and 
1 1 has a kmk number of one. The FLRW manifold is R x S with 

1 1 

T e R and X e S , in particular the whole of the TX plane 

except the origin. It is foliated by the hypersurfaces 

T = k which are everywhere spacelike, and has a kink number 

of zero. 

The transformation 

T1 = T coshX 

X' = T sinhX 

will transform the FLRW metric 

2 2 2 2 ds*̂  = -dT + T dX 
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to the 1+1 Minkowski metric 

ds2 = -dT'2 + dX'2. 

The above transformation was first noted by Bondi (1965). 

The empty space flat kink solution given by equation (9.3) 

may therefore be transformed locally to the Minkowski (zero 

kink) metric via the two transformations 

T = (t2 + X 2 ) 1 / 2 

X = tan"1(xt"1) 

followed by 

T1 = T coshX 

X' = T sinhX. 

It is also important to note that this solution differs 

from the previous solutions discussed in that the change of 

kink number under a certain coordinate transformation does 

not arise from the transformation becoming singular 

(infinite) at some finite point within the coordinate 

patch. Instead, the change in the kink number is because 

of the change in hypersurface foliation of the manifold 

resulting from the transformation. A knowledge of both the 
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metric and 

the manifold in terms of its globally defined hypersurface 

decomposition is therefore needed to determine the kink 

number of a given spacetime. This has been noted previously 

by Unruh (1971). 
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(9.3) A Two-Kink Minkowski Solution in 1+1 Dimensions. 

The Minkowski metric expressed in its usual coordinates 

is 

2 2 2 
dsz = - dt + dx . 

The above metric is defined on the whole xt plane and 

clearly has a decomposition into matrices S = diag(l,l) and 

Q = diag(-l,l). The kink number is zero when integration is 

performed over hypersurfaces labelled by t = constant. 

Consider now the change of variables 

t = TcosX 

x = TsinX . 

Under this transformation the metric becomes 

ds2 = -cos2X dT2 + 2Tsin2X dTdX + T2cos2X dX2 . . 

It is defined on the whole plane except the origin. 

Integration now along hypersurfaces labelled by 

T = constant will give a kink number of 2 and the light 
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cones will rotate through 2n. This result is seen most 

easily by considering the decomposition of the matrix G, 

representing the metric, as follows 

-cos2X Tsin2X 
G " I 2 

Tsin2X T cos2X 

-cos2X sin2X \ / 1 0 

sin2X cos2X / \ 0 T 

The matrices diag(l,T) are homotopically trivial as they 

can be continuously deformed to the identity matrix. The 

"kink nature" of the metric therefore resides in the other 

matrix. As the angle X varies from -n to n the light cones 

will tip continuously through 2n. 

This solution again shows the importance of the 

hypersurface decomposition of the manifold when determining 

the kink number for a given metric. 
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(9.4) FLRW Kink Solutions in Higher Dimensions. 

In 3+1 dimensions a solution of the metric 

2 2 2 
ds = -cos2adt - 2sm2adtdr + cos2adt 

+ r2d92 + r2sin29d*>2 (9.5) 

was given by equation (4.16), namely 

tana = rt-1. (9-6) 

whence 

ds2 = -(t2 - r2)(t2 + r2)_1dt2 - 4rt(t2 + r2)-1drdt 

+ (t2 - r2)(t2 + r 2)" 1 dr2 + r2d92 + r2sin29d$2. 
(9.7) 

Equation (9.6) shows that the angle a is well defined for 

all values of r when t 4 0. By analogy with the 

(1+1)-dimensional solution it is. clear that this solution 

may be transformed to one of the usual Friedmann-

LeMaitre-Robertson-Walker solutions, justifying the name 

for this kink solution. Equation (9.6) also shows that the 

angle a of the light cones changes by n as r varies from -» 

to oo (for any value of t) as illustrated in Fig. (9.3). 

Therefore it is expected that the solution will have a kink 
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Fig. (9.3). The light cone picture for the Friedmann-LeMaitre-Robertson-Walker 3 + 1 
kink solution. 
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number of one. This will be confirmed in the section (9.5). 

1 3 The manifold can be regarded as R x R , or if the boundary 

1 3 1 
points r = +oo are identified, as R x S , where t e R " 

3 The S hypersurfaces are not everywhere spacelike. 

The fluid pressure can be found from equation (4.8) and 

for this solution it is 

p = -2(r2 + t 2)" 1. 

Equation (4.6) now shows that the equation of state is 

p = -3~V 

It is easy to show that the eigenvalues of the matrix 

aB representing the tensor T are y, p, p, and p. This 

solution therefore obeys the weak energy condition, 

which may be stated as (Hawking and Ellis, 1973) 

y + 3p = 0. 

Unlike the previously discussed (3+1)-dimensional 

solutions, this solution has non-constant energy density 

and pressure. However, the pressure is still negative, as 

was the case for the previously discussed 3+1 solutions. 
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The scalar curvature is found from equation (4.1): 

R = 12(r2 + t 2)" 1, 

and the scalar expansion, given by equation (3.8), becomes 

9 = 3(r2 + t 2)~ 1 / 2. 

Again, this solution differs from those previously 

discussed in 3+1 dimensions because the curvature and 

expansion scalars are non-constant. 

The velocity components, given by equation (3.5), are 

ut - t(r2 + t 2)" 1/ 2 

ur =r(r2 + t2)-1'2 

u6 = u* = 0 

t r The components u and u have no limit as (r,t) -> (0,0). 

Also it can be seen that as r -> oo for any fixed value of t 

that 

u. -> 0 u -> 1 

The acceleration vector components listed in section (3.5) 

can be shown to be zero for this solution. 
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A similar solution also exists in 2+1 dimensions (Dunn, 

Harriott and Williams, 1991b). In 2+1 dimensions the metric 

is 

ds2 = -(t2 - r2)(t2 + r 2)" 1 dt2 - 4rt(t2 + r2)_1dtdr 

+ (t2 - r2)(t2 +r2)_1dr2 + r2d92 , 

2 2 1/2 where r = (x + y ) ' . This solution is a dust solution, 

that is, the equation of state is 

p = 0 , 

and the energy density is 

2 2-1 y = 2(x* + r ) x. 
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(9.5) Transformation of the 3+1 Solution to FLRW Form. 

Under the transformation 

r = T sinX 

t = T cosX, 

the kink metric given by equation (9.7) becomes 

ds2 = -dT2 + T2dX2 + T2sin2X d92 + T2sin2X sin29 d$2 

(9.8) 

which is the usual form of the closed FLRW metrics with 

expansion factor L(T) = T and curvature constant K = +1. 

It will be shown later that this form of the metric, given 

by equation (9.8), has a kink number of zero. The spacetime 

1 3 manifold of this FLRW solution is R x S . It has compact 

spacelike hypersurfaces given by 

T = constant. 

This solution is a rather unusual form of the closed FLRW 

models however because unlike most closed models the 

universe it describes does not expand to a certain radius 
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and then collapse back on itself, This solution expands 

forever but the expansion tends to zero as T -> ». This can 

be easily seen by considering 

L/L = T_1. 
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(9.6) Kink Number Calculation for the 3+1 Solution. 

As shown previously, the kink number formula for the 

metric given in equation (9.5) reduces to the form given in 

equation (6.7),, namely 

,a. 2n n 
t "• / 

N = ( 2 7 T 2 ) " 1 s in a a sin*drd">d9 , r 
a2 ° ° 

where a and a_ are the limiting values of a. For the 

solution given by equation (9.7), 

a± = T/2?a2 = -n/2 . 

The kink number therefore equals one. 

If the metric is transformed to the usual FLRW 

coordinates, the 0 are seen to be 
' a 

0 T= 1 

0i = 0 

because the matrix Q is diag(-l, 1, 1, 1). The S matrix is 
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S = 

1 

0 

0 

\ 
\ 

0 T2sin2X 

0 

0 

2 . 2 .2 
T sin Xsin̂ ei 

and so the Christoffel symbols with respect to the tensor 

represented by the matrix S are 

TX = r 
9 
T9 = r 

i 
T* T -1 

XX = T 

,9 
X9 

99 

e$ 

$$ 

99 

ii 
,9 

ii 

= r Xi = cotx 

= -sinXcosX 

= cot9 
. 2 2 = Tsm 9sm X 

Tsin X 
. 2 

-sinXcosXsin 9 
-sin9cos9. 

a All the terms X - will be zero. However 

X Ifi X ,B + r 6 T X 

will have the following non-zero contributions 

x |x " x le " x I* " T ' 
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Non-zero contributions to the kink number formula come from 

terms of the form 

Oijk a 6 T y6 
e eaRT6X X |iX |j X |k* 

However, due to the antisymmetrization these terms sum to 

zero and so the kink number is zero. 

This discrepancy in the kink number is explained in an 

analagous way to the 1+1 case as discussed in section 

(9.2) . 
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(9.7) The Riemann Tensor for the 3+1 Solution. 

The components of the Riemann tensor can be calculated 

from the equation (Misner, Thorne and Wheeler, 1973) 

Ra = ra - ra + ra ra - v° ra 
* RT6 * R6,T * RT,6 * fii1 OT * RT 06' 

This tensor has the following symmetries 

R RT6 " R R6T 

Ra = Ra + Ra + Ra = o K [6T5] R RT6 + R SGr + R
 TSR °» 

and so the number of independant components of the Riemann 

tensor is 80. 

The kink form of the 3+1 FLRW metric is given by 

equation (9.6) and is 

ds2 = -(t2 - r2)(t2 + r2)_1dt2 - 4rt(t2 + r^^drdt 

+ (t2 - r2)(t2 + r 2)" 1 dr2 + r2de2 + r2sin29d$2 

For this metric, the Christoffel symbols are 

t t 2 2 2-2 

rt
tt - -T t r = 2tr (t* + o * 

r \ r = - rr
rr = -2rt

2(t2 + r2)"2 



rrtt 

r\r 

99 

4* 

r r " 
r ** 

r9 re 

r ii 

r* 
9$ 

= 

= 

= 

= 

= 

= 

= 

= 

= 

3 2 2-2 
2r (tr + r*) * 
3 2 2-2 

2tJ(t*i + T*) * 
2 2 2-1 

2rrt(t̂  + O 
S i n 2 e r t99 

2 2 2 2 
- r ^ - r*") (t*5 + O 
sin2erree 
* -1 

r r* - r 

-sin9cos9 

cot9. 

Using these Christoffel symbols, the non-zero Riemann 

components are 

i 
R tt* 

R* R rt* 

R rr* 
R$ 

K 99* 
K rre 

R tte 
R rte 
Re 

*e* 
Rr R 9r9 

Rr R ete 
R *r* 
Rr 

*t* 
Rt R 9r9 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

2 2 
-2r (r^ 
2tr(r2 

2 2 -2t^(rZ 

2 2 
-2r (r^ 

-2t2(r2 

-2r2(r2 

2tr(r2 

2r2sin' 

2 -2 
+ t*5) 

2 -2 + tZ) * 

+ t 2 ) " 2 

+ t 2 ) " 1 

+ t 2 ) ~ 2 

+ t 2 r 2 

+ t 2 r 2 

29(r 2 + • 

2 2 2 2 
2r r ( r + t*-) 

-2r3t(r 

sin29R] 

sin29R: 

-2r3t(r 

2 + t 2 ) -

r 
9r9 
r 
9t9 
2 + t2)" 
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* * „ - 2r4(r2+t2)-2 

R \ r * " sin2eRt9r9 

R \ t * " sin2eRtet9' 

If the kink form of the metric, given by equation 

(9.7), is transformed to the usual FLRW coordinates it 

becomes 

2 2 2 2 2 . 2 2 2 . 2 . 2 2 

ds*1 = -dT + T̂ dX*̂  + T sin Xde*" + T sin^Xsin^d* . 

In these coordinates, the nonzero Christoffel symbols are 

rX = r9 m i = - 1 
TX T9 T* 

T r x x = T 

T\e = F*X* - C O t X 

r X
G e = -sinXcosX 

r * 9 * * c o t e 

T . 2 . 2 r . . = T s m 9 s m X 
* * 

T . 2 
r'ee = Tsm^x 
X 2 
r ** = -sinXcosXsin 9 

** 
Q 
r *. = -sin9cos9 

** 

and the non-zero Riemann components are 

R % 9 * - " 2 s i n 2 x 

* 
R XX* = "2 
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i 

M 

l) 

R® = -2 
K xxe l 

R6*Q* = 2sin29sin2X 
R X * V * = 2sin2Xsin29 

4X* 

RX9X9 " 2 s i n 2 x' 

All the nonzero Riemann tensor components are well behaved 

for all points of the manifold. 
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(9.8) The Killing Vectors for the 3+1 Solution. 

Killing's Equations for the 3+1 FLRW kink metric of 

equation (9.6) are 

2 2 2-2 3 2 2-2 Mtft " 2 ^ * ^ + t') yt - 2rJ(r^ + t*-) *- yr = 0 

"t,r + "r,t + 4 r t 2 ^ + t 2 ) " 2 "t 
2 2 2-2 + 4tr^(r^ + XT) * yr = 0 

"t,e + Me,t = ° 

"t,« + "*,t = ° 

3 2 2-2 2 2 2-2 
Mr/r - 2t

J(r + tz) l yt - 2xx?(vz + tl) * yr = 0 

"r,e + "e,r " 2 r _ 1 "9 = ° 

M * + M* - 2r~ y. = 0 ^r,* ^*,r ^4 

yQiQ -2r2t(r2 + t 2 ) - 1 Mt + r(t
2 - r2)(r2 + t 2)" 1 Mr = 0 

"9,* + ^4,9 " 2 c o t G "4 * ° 

. 2 2 2 2 —1 
y _ + sinecose y - 2sm 9r t(r + t ) y. 

+ sin29r(t2 - r2)(r2 + t 2)" 1 y = 0. 
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These equations admit six Killing vectors 

^ = 676*4 

ii2 = sin* 6/69 + cot9cos4 6/64 

jj = cos* 6/69 - cot9sin* 6/6i 

M4 = -rcos9 6/6t + tcos9 6/6r 

-tr~1sin9 6/69 

H5 = -rsinesin* 6/6t + tsin9sin* 5/6r 

-1 -1 
+ tr cos9sin* 6/69 + tr cosececos* S/Si 

ii6 = -rsin9cos* 6/6t + tsin9cos* 6/6r 

-1 -1 
• + tr cos9cos* 6/69 - tr cosec9sin* S/6i, 

The generators of the rotation group SO (3) are j£ , ^ , ix_, 

and a , n , ML& are translations. 

The lengths of these Killing vectors are 

l%l I = r sin 9 
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2 2 2 2 2 
|it | | = r s in 4 + r cos 9cos 4 

2 2 2 2 2 
|ii | I = r cos * + r cos 9sin * 

|i44|| = t
2 + r2cos29 

|ii5| | = t
2 + r2sin2esin2* 

|ii6|| = t
2 + r2sin26cos24, 

These vectors are therefore clearly spacelike everywhere. 

Under the coordinate transformation 

r = T sinX 

t = T cosX, 

which transforms the kink metric of equation (9.6) to the 

usual FLRW form which is 

ds2 = -dT2 + T2dX2 + T2sin2X (de2 + sin26 d4 2), 

the Killing Equations are 

M T / T - 0 
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<*T,X + >UX,T " 2 T " \ = ° 

MT fe
 + M e , T - 2 T " l M e = ° 

<-T,4 + ".,T " 2 T ' \ = ° 

<*X,X " T ^ T = ° 

"x,e + "e,x " 2 c o t x "a = ° 

<*X,4 + " # , X - 2 C O t X >*4 = ° 

. 2 /i_ - T s m X Mm + sinXcosX / i v = 0 

"e,» + ^*,e " 2cote % = ° 

. 2 . 2 . .2 M* * - T sin Xsin Q y- + sinX cosXsm 6 

yv + sinecose /iQ 
A O 

= 0 

The six Killing vectors are 

M1 = 6/6i 

U, = cos4 6/6B - cot6sin4 6/64 



it = sin* 6/66 + cotecos4 6/64 

it = cose 6/6X - cotXsine 6/66 

ur = sin6sin4 6/6X + cotXcos6sin4 6/66 

+ cotXcosec6cos* 6/64 

H- = sin6cos4 6/6X + cotXcos6cos4 6/66 
6 

- cotXcosecesin* 6/6$ 

and their lengths are 

|\± \| = T2sin2Xsin26 

||M2II
 = T2sin2Xcos2* + T2sin2Xcos26sin2* 

| |ii | | = T2sin2Xsin2* + T2sin2Xcos26cos24 

||ii4ll = T2cos26 + T2cos2Xsin26 

||M5I| = T2sin2esin24 + T2cos2Xcos2esin24 

+ T cos Xcos * 

2 2 2 2 2 2 
| |ii | | = T sin ecos 4 + T cosXcos 6cos 4 

+ T cos2Xsin 4. 
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As required, these lengths agree with those found in the 

(t, r, 6 ,4) coordinate system. For example, 

M6|| = t2 + r2sin2* 

= T2cos2X + T2sin2Xsin29sin24 

= T2cos2X + T2(l - cos2X)sin26sin24 

2 . 2 .2 = T sin 6sin 4 + 

T2cos2X(l - [1 - cos26][l - cos24]) 

2 . 2 . 2 2 2 2 
= T sin 6sm 4 + T cos Xcos 4 + 

2 2 2 . 2 T cos Xcos esin 4. 

The linear independence of these Killing vectors is easily 

established. 
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(9.9) A Minkowski Two-Kink Solution in Higher Dimensions 

The two-kink Minkowski solution discussed previously 

clearly extends to the (2+1) and (3+1)-dimensional 

situations. The usual 3+1 Minkowski metric is 

2 2 2 2 2 
ds** = -<3+/ + dx* + dy*̂  + dz . 

Under the coordinate transformation 

t = t' 

x = rcos$cos6 

y = rsin*cos9 

z = rsine 

it becomes 

2 2 2 2 2 2 . 2 
ds*" = -dt1*5 + dr + r de' + r singed*' 

Under the transformation 

t' = TcosX 

r = TsinX 

it becomes 
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ds2 = -cos2X dT2 + 2T sin2X dTdX + T2 cos2X dX2 

+ T2sin2X de2 + T2 sin2X sin29 d*2 

As discussed previously for the (1+1)-dimensional case, 

this metric has two kinks. 



CHAPTER TEN 

OTHER KINK SOLUTIONS 

Introduction 

Kink solutions found in Chapter 5 are briefly discussed. 

The first of these is another form of the de Sitter kink 

(10.1). Two further perfect fluid solutions 

(10.2) and (10.3) and an imperfect fluid solution 

(10.4) are also illustrated. 
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(10.1) Solution I 

267 

Solutions of the field equations for the metric given 

by 

a . 2 fl 2 g. . = e s m a - e cos a 

g. = -(e + e )sinacosa 

a 2 fl . 2 ,,. ,, g = e cos a - e s m a (10.1) Jrr x ' 
T 2 

9ee
 = e r 

T 2 . 2 g.. = e r sin 9 
*$ 

were found in chapter five. Such a solution was given by 

equation (5.8) for which 

a = fl = 0 eT = C-1r~2 

and 

sma = 2
-1/,2{l + Cr2 + Dr + H} 1 / 2 (10.2) 

where C, D, and H are constants, with C > 0. There is 

considerable freedom in choosing the values of these 

constants. For example, requiring that 

sina = 0 at r = 0 



means that 
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H = -1 

and requiring that 

sina = l a t r = R > 0 

o 

forces 

CR 2 + DR - 2 = 0 . o o 

This last quadratic has solutions 

R = (2C)_1[-D ± {D2 + 8C}1/2]. 

The constant C > 0 and so a positive and real R will be 
o 

obtained if the positive square root is chosen. 

For example, selecting 

D = 1 and C = 1 

and substituting into equation (10.2) gives 



sina = (2)-1/2[r + r 2] 1' 2, 

To ensure that |sina| ̂  1, this last result leads to the 

restriction 

0 ̂ < r ̂  1, 

where 

sina = 0 at r = 0 

and 

sina = 1 at r = R = l . 
o 

With these choices of D = 1 and C = 1, the metric is now 

2 2 2 2 3 4 1/2 
ds^ = -(1 - r - r Jdt^ - 2(2r + r - 2r - r ) "^dtdr 

+ (1 - r - r2)dr2 + de2 + sin26d*2. 

For this solution 

g " = gtt = r
2 + r - l 

gtr = gtr = -(2r + r
2 - 2r3 - r4 ) x ' 2 

grr = grr = 1 - r - r
2 = -gtt 

96 , 
•?ee " * = 1 

g#* = (9**)"
1 = sin2e . 
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e non-zero Christoffel symbols are 

rt
tt = rr

tr = 2_1(1 + 2r)(2r + r2 - 2r3 - r 4 ) 1 / 2 

r\ r - -rr
rr - rr

tt = 2-
1(2r3 + 3r2 - r - 1) 

rfc = 2*"1(2 + 2r - 5r 2 + 5r 4 + 2r 5)(2r + rr v ' 
2 „ 3 4,-1/2 r - 2r - r ) ' 

r .. = - sinGcose 44 

r % 4 = COt9' 

It follows that 

Rtt = r2 + r - 1 = gtt = - grr 

Rx = -(2r + r2 - 2r3 - r 4 ) 1 / 2 = 

Rrr = 1 - r - r2 = grr 

Ree - i = See 

R$$ = s i n 2 e = g$$ / 

that the solution is an Einstein space. 

The Ricci scalar, calculated from the equation listed 

section (5.1), is 
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R = (g t t)
2 + 2(g t r)

2 + ( g r r )
2 + (g e e)

2 + g**g## 

= 4 

The equation of state for this metric is 

p = - n = -c . 

With the above choice of C = 1, this equation of state is 

p = -y = -1 

The fact that this solution is an Einstein space and 

has a constant scalar curvature and constant energy density 

suggest that it may be a form of the de Sitter kink. The 

usual transformation to remove the cross term drdt is 

obtained by finding a function f(r) such that 

t1 = t + f (r) 

f(r) =gtr(gttr
1. 

For this solution, 

f'(r) = (2r + r2 - 2r3 - r4)1/2(r2 + r - I ) " 1 

(10.3) 
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where Ox r ̂  1. 

This transformation will be singular because 

r2 + r - 1 = 0 

at 

r = (2)1/2[-l + (5)1/2] = 0.7 

which is within the allowed range of r. 



(10.2) Solution II 
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Another solution of the field equations was given by 

equation (5.9) for the metric of equation (10.1). This 

solution is 

a = -fl 

er = C-V2 

and 

sin2a = (Cr2 + Dr + H + e")(en + e" 0)" 1, 

(10.4) 

This last result can be written 

. 2 
s m a = tanhfi, 

with n is chosen such that 

-e~n = Cr2 + Dr + H. 

The constants C, D, H must be restricted to ensure that 

|sina| .< 1, 
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but there is considerable freedom in doing this. For 

example, if 

sina = 0 at r = 0, 

then the constant H must be chosen so that 

H = 1 or H = -1. 

If 

sina -> 1 as r -> 1 

then 

C + D = - l if H = l 

and 

C + D = 1 if H = -1. 

The constant C can assume any positive value. Therefore, 

without loss of generality, C = 1 can be selected. 

Substituting into equation (10.4), C = 1, H = 1 and D = -2 

gives 

sin2a = [1 - (r2 - 2r + 1)2][1 + (r2 - 2r + l) 2]" 1 



valid for 

0 x r x l. 

With these choices for sina, H, D, a and T, the metric 

given by equation (10.1) becomes 

ds2 = (r2 - 2r + l)dt2 + 2(8r3 + 8r - 12r2 - 2r4)1/2dtdr 

- [1 - 2(r2 - 2r + l)2][r2 - 2r + l]_:Ldr2 

+ de2 + sin26d*2. 

which is valid for Ox r x l. 

The other possibility, when C = 1, H = -1 and D = 0 are 

selected, gives 

2 2 2 2 2-1 

sin a = [1 - (r - 1) ][1 + (r - lp] 

valid for 

o < r ̂  l. 

For this last form of sina the metric is 
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ds2 = -(1 - r2)dt2 + 2r(4 - 2r2)1/2drdt 

2 2 2 - 1 2 2 2 
+ [1 - 2(r - 1) ][r*̂  - 1] xdr*" + r̂ de*" 

2 . 2 2 

+ r singed* . 

The equation of state for both of the above metrics is 
P = -M = -1 



(10.3) solution III 
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Another solution of the field equations for the metric 

given in equation (10.1) was found in chapter five. As 

stated in equation (5.18) this solution is 

T = 0 

a = -fl (10.5) 

-fl . 2 fl 2 g^t = e sm a - e cos a 

= sin2a(e" + e"n) - en 

-1 2 -1 
= 3 Lr - 1 + Mr 

where L is an arbitrary constant. Equivalently, rearranging 

the above equation, it can be seen that a consistent 

solution requires 

• 2 r ->- l T 2 . . „ - 1 , fl., r fl , -fl - 1 
s i n a = [ 3 Lr - 1 + M r + e ] [ e + e ] 

There is considerable freedom in choosing fl, L and M while 

still ensuring the required behaviour of the function sina. 

For example, choosing fl = 0 leads to the de Sitter kink (if 

M = 0) and Schwarzschild kink (if L = 0) both of which were 

discussed previously. However if 

-e" n = Lr2 - 1 + Mr"1 



is chosen then 

278 

sin a = tanhfl. 

With this choice, the constants must now be restricted to 

ensure that |sina| ̂  1. Selecting 

sina = 0 at r = 0 

requires 

M = 0 , 

and choosing 

sina -> 1 as r -> 1 

requires 

L = 3. 

Therefore, with these choices, 

sin2a = tanhfl = [1 - (1 - r2)2][l + (1 - r2)2]"1 

valid for 
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0 < r < l 

and the metric is 

ds2 = (r2- l)dt2 + 2[2(1 - (r2 - l)2]1/2drdt 

+ [1 - 2(r2- l)2][r2 - l]_1dr2 + r2de2 

2 . 2 2 

+ r^sin^d* . 

• 
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(10.4) Imperfect Fluid solution I 

An imperfect fluid solution of the metric given by 

equation (10.1) was found in chapter five and given by 

equation (5.27). This solution is 

e r = e 

a = fl = 0 

where N is a positive constant and 

. 2 2-1 -2Nr -1 1/2 
sin a = (2N ) e - 2 ±Uexp(±2x/ Nr) , 

where U is any constant. 

To ensure sina = 0 at r = 0 

U = N~2 

is required, and now 

sin2a = (2N2)~1[exp(2Nr) - exp(+21/2Nr)] 

cos2a = 1 + N~2exp(+21/2Nr) - N~2exp(2Nr). 
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The expression for sina is an increasing function of r and 

reaches 1, at some value of r = R., when 

exp(2NR1) - exp(+2
1^2NR1) = 2N

2 

The equation of state with n = fl = 0 is now 

y + p T - 29 + 2N
2 = 0 

Q 
Substituting for p m - 29 from the G _ field equation 

1 U 
produces an expression for y 

y = - 2N2 - 2 1(cos2a) + N(cos2a) - N2cos2a 
, rr , r 

= exp(2Nr) - (2 - 2ly'2) exp(+21/2Nr) - 3N2 

This is an increasing function of r and so will be positive 

for all r if it is positive at r = 0. This function is 

positive at r = 0 if 

1/2 2 
-1 + 2 ' - 3N > 0. 

That is, if, 

N 2 < (2 1 / 2 - 1)3""". 

The metric is now 
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ds2 - -[1 - N~2exp(2Nr) + N~2exp(±21/2Nr)]dt2 

- 2{-N~4exp(4Nr) - N~4exp(2Nr21/2) + 2N~2exp(2Nr) 

-2exp(±21^2Nr) + 2N~4exp(2Nr + 21/2Nr)}dtdr 

+ [1 - N~2exp(2Nr) + N"2exp(±21/'2Nr) ]dr2 

+ exp(-2Nr)d92 + exp(-2Nr)sin29d*2 

which is valid for 0 < r < R with R. is defined by 

exp(2NR1) - exp(±2
1^2NR1) = 2N

2. 

The constant N may assume any value in the range 

N2 < (21/2 - 1)3-1. 



CHAPTER ELEVEN 

CONCLUSIONS 

Introduction 

The work of this thesis is summarized (11.1) and a 

discussion of future work in the area is presented (11.2) 
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(ll.l) summary. 
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This thesis reviewed the work of Skyrme, who first 

noted the kink-like structures in certain non-linear scalar 

field theories. Previous work on kinks in general 

relativity was also reviewed. 

The general form of a kink metric was derived and 

various kink solutions were found using this form. These 

are the first exact kink solutions of the Einstein field 

equations published. Several of these solutions were 

discussed in detail, and their relationship to familiar 

solutions of the field equations was demonstrated. 

The formula to calculate the kink number for any 

metric, introduced by Skryme was elaborated. The formula 

was stated in a eovariant form and the kink number of 

various solutions were found. The kink number of these 

solutions was demonstrated to be the same in several 

coordinate systems. 

Analagous kink solutions to those found in the usual 

3+1 dimensions were shown to exist in a (1+1)-dimensional 

theory of gravity. The lower dimensional theory was 

introduced so that in this simpler situation the kink 

properties might be more easily illustrated. 



(11.2) Future Work. 
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At least four areas for future study are easily 

identified. These are: 

(i) There is a need to find more exact solutions of the 

Einstein field equations which are kink solutions. In 

particular solutions which have more than one kink and 

solutions that have equations of state with positive 

pressure in 3+1 dimensions. Other solutions related to 

familiar zero kink solutions via singular coordinate 

transformations or surgery on the manifold should also be 

sought. 

Solutions of the general kink metric for which 

a = a(r,t) are being investigated. If a = a(r) only, it was 

shown that if a perfect fluid form is assumed then the 

equation of state must be p = - y. To find perfect 

fluid, positive pressure solutions with this form of the 

metric, a = a(r,t) is required. 

The solutions listed in chapter 10 are being further 

investigated to see if they are related to well known 

solutions. 
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(ii) This thesis concentrated on kinks in general 
1 3 

relativity on manifolds that are assumed to be R x R or 
1 3 . on R x S if the boundary points are identified. Kinks are 

known to exist on more complicated manifolds. The kinks 

studied in this thesis are known as kinks of type 2. Kinks 

of type 1 on more complicated manifolds also exist and have 

not been studied in detail. 

(iii) More work may need to be done on the kink number 

formula. It is not clear that in its current form it will 

be sufficient to calculate the kink number of kinks defined 

on more complicated manifolds than those studied here. 

(iv) Solutions of the Einstein field equations using the 

stress energy tensor of the electromagnetic field might be 

investigated. Also vacuum expectation energy solutions 

might be of interest. 

U 
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