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ABSTRACT

Pure rotational transitions of DF(X 12+) withl < J" < 8inv" = 0 were
obtained precisely with a state-of-the-art Fourier transform spectrometer.
These data were combined with selected spectroscopic data for DF(v" = 0-4) in
a least-squares determination of Dunham coefficients.

The B'=* - X'=* ultraviolet emission band system of DF was recorded
spectrographically in the region 205-275 nm. Computer assisted rotational
analyses of 41 bands with 0 = v' < 5 and 16 < v" < 26 resulted in band origins
and rotational parameters for both electronic states.

The B'=* - X'=* emission bands of DCI in the region 166-240 nm were
photographed in higher orders of a 10.7-m concave grating vacuum spectrograph.
Rotational analyses of 56 bands of D*Cl with v'= 0-7 and v" = 11-23 furnished
molecular parameters for both states.

All reliable literature data for the X'=¥(v" = 0-19) and B'=* (v’ = 0-10)
states of HF and the X 1E+(v” = ()-26) and Blz+(v’ = (-7) states of DF were
employed to determine isotopiczily self-consistent radial operators which take
full account of Born-Oppenheimer breakdown. The dissociation energy of
DF(X 12"') was estimated as @, = 49338(43) cm™! and the vibrational index at
dissociation as vy = 29.2(5). The electronic isotope shift of B'=* was
estimated as AT, = -2.48(7) cm™L, Rotationally dependent Franck-Condon
factors for the B — X transition and Einstein coefficients for spontaneous
emission in X =% were calculated. Rotational assignments for the Bzt - x'st
emission band system of DF were extended significantly.

A similar analysis of data for H35Cl, B#c), D¥Cl, and D¥'Cl was
performed. A simultaneous four-isotopomer least-squares fit of 8497 line
positions resulted in Born-Oppenheimer potentials for the B's" and Xx's7states
and radial functions which describe adiabatic aud nonadiabatic effects. The
electronic isotope shift of B'S* was obtained as AT, = —1111(3) cm™.
Rotational assignments for the B'=* - x's* emission band system of D¥Cl were
extended and the first set of assignments for the B — X system of D*'Cl was
obtained. Quantum mechanical rotational and centrifugal distortion constants
were calculated for TCl. As was the case for HF/DF, the repulsive AT state
of HCI/DCl was found to perturb significantly the energy level manifold of

X=*ima heterogeneous fashion.
xxi
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CHAPTER 1
GENERAL INTRODUCTION

In the earlier part of this century, Erwin Schrodinger published a series
of articles () on the wave mechanical description of matter at the atomic
level. Schrodinger’s theory had far-reaching implications and influenced the
development of most areas of physical science. In the field of molecular
spectroscopy, the new wave mechanics was swiftly adopted as it provided much
improved interpretations of simple spectra over the old quantum theory
results.

All the stationary state energies, E, and wavefunctions, ¥, of a quantum
mechanical system are obtained as solutions of the .time-independent

Schrodinger equation,

#* (g, Q) ¥(g, Q) = E ¥(g, Q). (1.1)

Despite the deceptively simple appearance of this eigenvalue equation, an
exact solution is usually far from straightforward. The main problem is that
the eigenfunctions correlate the electronic coordinates, q, with those of the
nuclei, Q.

In 1927 Born and Oppenheimer (2) achieved a significant simplification of
the diatomic wave equation. In the absence of external magnetic and electric
fields, the total wavefunction was factored into electronic and nuclear parts
and any interaction between the two motions thus neglected. An important
result emerging from the Born-Oppenheimer treatment was the concept of a

potential energy function, describing the behaviour of a chemical bond as



a function of internuclear separation.

Much effort has been directed towards the development of procedures for
the determination of potential functions from basic principles and from the
results of spectroscopic experiments. Ab inifio methods varying in degree of
sophistication are applied routinely to the problem. It is found, however,
that such methodology provides results which approach spectroscopic accuracy
only for relatively simple one- or two-electron diatomics. For many-electron
systems, the average-field approximations of quantum methods give results
which are significantly inconsistent with  experimental observation.
Fortunately, more accurate methods are available whereby spectroscopically
derived “molecular constants” can be inverted to the internuclear potential.

A direct inversion method which is widely employed to generate diatomic
potentials is the semiclassical RKRV vprocedure.  This, however, is an
approximate method only; in recent years, improvement in the precision of
spectral measurements has necessitated a review of this inversion scheme.
This has stimulated the development of improved numerical procedures whose end
products are internuclear potential functions that are consistent with
experimental results, within the precision of the measurements.

One such niethod is employed in the present work to bring about a better
understanding of the electronic structures and spectra of the diatomic
hydrogen halides HF and HCI. In order to achieve this, it has been necessary
to go beyond the Born-Oppenheimer approximation. Spectroscopic information
has been employed to determine effective radial (unuclear) Hamiltonian
operators which consider adequately the coupling of electronic and nuclear
motions. Despite the widely held belief that these simple diatomic systems

have long been well understood, interesting results presented in this thesis



demonstrate clearly that previous characterizations in terms of molecular
constants precluded a comprehensive understanding of the molecular states and
their interactions.

In order to investigate the isotopic dependence of Born-Oppenheimer
breakdown in HF and HCl it has been necessary to incorporate spectral data of
several isotopomers. Due to the inferior quality or complete absence of some
data, comprehensive spectrographic investigations of the ultraviolet
B'=* - x'=* emission band systems of DF and DCI have been undertaken. Also,
a few very precise far-infrared transitions in ¢" = 0, and the fundamental
band of DF in the infrared, have been studied by interferometric techniques.

A review of some relevant theory is presented in the second chapter. The
sericlassical RKRV equations are developed and their theoretical basis, the
JWKB quantization condition, is outlined. The Born-Oppenheimer principle is
explained and its shortcomings are clearly indicated. It is shown how
electronic-nuclear coupling can be described by employing effective
Hamiltonian operatcrs that include implicitly the effects of excited
electronic states on nuclear motion. Chapter 2 also deals with computational
procedures important to this work. The statistical fitting method of
least-squares, which has been of crucial importance to the completion of the
present work, is described. Of equal importance was the numerical solution of
the radial wave equation for a general potential function, and this is
therefore also described.

The third chapter reviews previous attempts to improve semiclassical RKRV
potentials. The numerical correction method applied here io HF and HCI is
considered in particular detail; model calculations are carried out and the

effectiveness and limitations of the procedure are assessed.
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The fourth and fifth chapters describe the acquisition of new
experimental information on DF and DCl. Chapter 4 reports a conventional
rotational analysis for the B's* _ Xx5* electronic band system of DCI in the
ultraviolet and vacuum ultraviolet. Chapter 5 is divided into two parts; the
first describes a Fourier transform study of DF(»" = 0, 1), and in the second
part a rotational analysis of the ultraviolet B's* - x's* emission band
system is reported.

In the sixth and seventh chapters a numerical method is employed to
determine radial Hamiltonian operators from spectroscopic data. Chapter 6
describes the application of the procedure to a spectroscopic data base of the
isotopomers 1> Cl, H37Cl, D35C1, and D'CL. In Chapter 7 a similar analysis
is made of the spectroscopic information available for the isotopomers HF and
DF.  An important result of both analyses concerns the detection of
rotationally dependent energy shifts in the rovibrational levels of the ground
X% states arising from a strong second-order perturbation by the low-lying
repulsive AT state.

In the concluding chapter, the numerical method employed to derive radial
operators for HF and HCI is discussed briefly. The procedure is reviewed

objectively and suggestions for improved methods are provided.
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CHAPTER 2
THEORETICAL BACKGROUND AND NUMERICAL TECHNIQUES

2.1 The JWKB Approach

Within the Schrodinger equation framework, it is possible to obtain exact
analytic soluticms for a relatively few, often physically uninteresting
quantum mechanical systems. In practice, it is necessary to apply approximate
methods, as in the case for the solutions of the one-dimensional radial wave
equation. Aside from the usual tools of quantum mechanics, which include
perturbational and variational approaches, methods which investigate the
asymptotic behaviour of the wave equation can be employed.

One such procedure, for which an enormous literature exists, was
developed by Jeffreys (3), Wentzel (4), Kramers (5), and Brillouin (6).
Although this is abbreviated as JWKB in the present work, it is not uncommon
to find the alternatives WKB and WKBJ in the literature. The method is based

on a transformation of the one dimensional Schrédinger equation,

2
g}.;g@ + f% [E - UR)] ¥(R) = 0. @1

The total energy of the system is denoted by E, and its potential energy by
U(R); ¥(R) is the associated wavefunction and x the reduced molecular mass.

Insertion of the JWKB wavefunction (7),
,PJWKB(R) - e(i/h)(a’ (22)

where,

\n
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@=0,+h0 +# 0+ .. (23)

can be followed by solution of the wave equation to any desired order.
Substitution of the classical component ®, into Eq. (2.2) yields the modified

differential equation,
(ih/20)d*0 JdR? — (24)(dOJdR)* + [E — U(R)] = 0. (2.4)

If quantal effects are considered small in comparison to thz classical, the
leftmost term can be omitted, whereupon Eq. (2.4) suffers a reduction in

order. Straightforward integration yields the classical action integral,

®, = = J/ 2u[E - U(R)] dR. (2.5)

Dunham (8) has shown that if the classical component of the JWKB
wavefunction is employed only, and appropriate boundary conditions are

imposed, the Bohr quantization condition,

2 ;
r/ 2U[E — UR)] dR = 2 v, (2.6)
Ry
emerges. This old quantum theory result can be improved further by including

quantum effects partially through ©,, leading to the Bohr-Sommerfeld

half-integer quantization condition,

rz/ 2[E — UR)] dR = 270 (v + %), @.7)

Ry

where R, and R, are the classical turning points of motion and the quantum

number for the oscillation can assume the values v = 0, 1, 2 . .., etc. This

?

is also known as the semiclassical JWKB quantization condition.



If the first three terms of the expansion Eq. (2.3) are retained, a

two-term JWKB quantization condition arises and can be written as,

s r & - URaR - L. § URIE — UR 4R =v + %, (28)

By 967
1 r

where f = (1’12/2;4)1/2 and the contour of integration I" encloses the portion of

the real line for which U(R) < E. Initial applications of this and higher

order conditions were concerned with the calculation of the eigenvalues of

empirical analytical potential functions (9, 10).

The JWKB method has been criticized by Killingbeck (1) for its inherent
restriction to the classical region of motion; he pointed out that tunnelling
corrections beyond the classical turning points should be considered. As an
alternative to JWKB methodology, Killingbeck proposed a formulation based on
Young’s local momentum concept (12) and obtained preliminary numerical results
for symmetric oscillators that surpassed the two-term JWKB quantization
condition in accuracy. An alternate method stemming from work in the early
1930’s, was proposed following the rediscovery of the Milne differential
equation (I3) by Korsch and Laurent (14). The new procedure was developed

both for truly bound (14), as well as quasibound (15) energy levels.

2.2 The Dunham and Dunham-type Solutions

Dunham (I6) was the first to recognize an important application of the
JWKB method to the diatomic problem. Starting with the two-term quantization

condition, Eq. (2.8), Dunham assumed a potential energy function of the form,

UR) = a*(1 +af +af +..)+
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BJU + 1)1 - 2 + 38" - .. ), (2.9)

where § = (R - Re)/Re. R, and B, are the equilibrium internuclear separation
and rotational constant, respectively, and the rotational quantum number is

denoted by J. Dunham arrived at the energy level expression,

E, = Z Y (0 + WE + 1, (2.10)
kil

where the coefficients of the doubtle summation, Y,,, were defined in terms of
the potential expansion coefficients, a . The usual application of Dunham’s
result involves fitting spectral line positions to a model constructed on the
basis of Eq. (210). The determination of the Y,, is followed by an
estimation of the potential equilibrium derivative terms, a . By this simple
inversion procedure, experimentally derived positions of stationary energy
states are employed to deduce the molecular structure.

The main weakness of Dunham’s approach rests with the choice of the
reduced internuclear coordinate, §. The radius of convergence of this
expansion is 2R , making the model unreliable for extrapolation to larger R.
Also, the potential function adopted by Dunham fails to describe properly the
long-range diatomic interaction, the theoretical formulation of which is well
understood (I7). Following Dunhawn’s pioneering effort, other authors (18-20)
adopted different choices for £ in an attempt to improve the convergence of
the series. Despiie some improvement, these models also remain deficient in

their description of the long-range forces.



2.3 Rydberg-Klein-Rees-Vanderslice Potentials

If the rovibrational energy levels are known from experiment, it is
possible to use annther semiclassical method to determine the potential energy
function. The procedure developed by Rydberg (21), and soon thereafter also
discussed by Klein (22), exploited the half-integer quantization condition in
generating the classical turning points of motion from experimental
information, without assuming any particular analytic form for the potential.
Rees (23) later provided a graphical working formulation ¢t Klein’s equations,
but the large number of tedious manual calculations required made the method
cumbersome; as a result it did not enjoy wide use before the advent of digital
computers. Another factor contributing to the slow initial progress of this
method is the fact that the precision of experimental data often did not
warrant a more extensive description than was provided by closed term value
expressions of empirical potential-like functions. The subsequent treatment
of Vanderslice et al. (24) was successful at painting a clear picture of the
physical significance of the procedure and demonstrated the efficacy of
performing such calculations with digital computers.

The following derivation of the Rydberg-Klein-Rees-Vanderslice (RKRV)
expressions follows mainly that given in Ref. (24). As shown in Fig. 2.1, the

area enclosed by the potential function U(R) and energy level E is given by,

2
AE, J) = r [E - U,(R)] 4R, (2.11)
Ry
where U(R) = Uy(R) + /32.7(] + 1)/R2, the effective potential including the

kinetic energy of rotation. The partial derivatives



Figure 2.1
Illustration of the RKRV potential inversion procedure. R,
and R, are the inner and outer classical turning points,
respectively. The shaded area bound by energy E and the

potential well is denoted by A.
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2
[84(E, J)/6E], = | dR =R, - R, (2.12)
“R
1
'RZ
[BAE, N/3JJ + D], = —f°| R?dR = -p*R;' - R}, (2.13)
“R

1
allow for a unique determination of the two classical turning points. It is

now necessary to relate the experimentally derived energy terms to the area

integral. This is accomplished through the Eulerian integral of the type,

E - U(R) =%Jj[ i )]% dE', (2.14)

o'~ U,®

where E' are the (quantum number) parametrized energy terms and U, is the

minimum of energy. It is then possible to express the area integral as,

AE,T) = %r\/ E - E' dE' rz ‘R . (2.15)
U R V E' — U(R)

The next step in the derivation involves the manipulation of the first-order

1

JWKB quantization condition to bring it in a form compatible with the

rightmost integral above. The semiclassical eigenvalue condition,

v+ Y= () JEZ vV E' - U(R) dR, (2.16)
Rl

can be differentiated once to give,

dR
d(v' + W%)/dE' = (m)'lrz . , (2.17)
RV E - UR)

allowing the area integral to be cast as,

]
i

h
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AE, J) = 46 r»/E T E dE' d' + WdE'=
U

v+%2
48 [ V E — E dv' + ). (2.18)
ve+1/2

Since d(v' + 12) = dv’, we can write,

v
AE, J) = 4ﬂ[ VE - E'dv, (2.19)

v

€
which is essentially the usual S(E, J) “auxiliary” function from which most
derivations of the RKRV equations begin. Differentiating partially with
respect to E and J(J + 1), and setting the appropriate terms to Egs. (2.12),

and (2.13) respectively, one obtains the relevant expressions,

Y dv’
2f=R2—-R1=2,8J——-———, (2.20)
vV E — E'

€

and

2=R'-R'=2 dv' =

) A
v VE—-E' vV E—- F

€ 4

YAE' 19T (J+1) Y B, dv'
'1J = '1 v , (2.21)

where B, is a rotational constant. The two functions f and g make it

possible to extract the classical turning points from,
R @) = If/g, + f1* = f (2:22)
1,2 v 8y v Ty ’

where the + and — signs refer to the inner (R)) and outer (R,) turning points,

respectively, for vibrational level v,
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24 The Concept of Molecular Structure: The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation (2) is the cornerstone of modern
molecular physics. Proposed in 1927, it facilitated an exact solution of the
wave equation for one-electron diatomic systems such as the H; molecule.
Although the general three-body problem is theoretically impossible to solve
exactly, both for classical and quantum mechanical systems, casting the
particles into a confocal elliptical coordinate system allows for a separation
of variables and hence facilitates a restricted type of solution.

In their original treatment, Born and Oppenheimer (2) applied
perturbation theory to achieve a separation between the motions of the
electrons and those of the nuclear vibrations. A working formalism for the
separate quantization of the two motions was thus set up. Their argument was
based on the relatively large differential between values for the mass of the
electron and of typical nuclei. Since the nucleus-electron mass ratio is
large, it is expected that electrons will average their motion adequately
during the course of a single nuclear vibration, so that, to a good
approximation, the nuclei can be regarded as stationary. This allows for the
computation of electronic eigenvalues with a parametric dependence on the
internuclear coordinate.

The precise nature of the ansatz can be best elucidated by the
conventional mathematical formulation (25). Tn solving the total Schrddinger

eigenvalue equation,
Jf}otal(r’ R) Wtotal(r’ R) = E Wto[al(r. R)) (2-23)

the total molecular Hamiltonian operator for a diatomic system AB can be

expressed as,

PR S o
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%ml(’yR)"[A"'B]"'[z i, e {AB_
ZMA ZMB lZm 471.‘60 R
Z Z
Z_A._ Z..?.+ lz J_} (2.24)
A ', 2 T
i N i i i i) Y

where r and R refer to electronic and nuclear coordinates, respectively.

Specifically, r, and r, are the instantaneous distances of electron { and
nuclei A andlB, and ;he r; are instantaneous interelectronic separations.
The internuclear separation is given by R. The nuclear charges are Z A€ and
Zge, where e is the elementary electronic charge and the Z, give the number of
protons.  The nuclear and electronic masses are given by M, and m,
respectively, and the symbol P represents a momentum operator; € is the

permittivity of free space. The total energy operator can be written as,
H R = K (R) + %, (r, R), (2.25)

where o uc(R) and o, lec(r, R) correspond to the terms in square brackets in
Eq. (2.24).
The first part of the approximation involves the separation of the total

eigenfunction into electronic and nuclear components,

Yol B) = Y 5 B) ¥ (R), (2.26)

nuc

where wclec(r, R) satisfies the eigenvalue equation,

#1o 6y B) Vo6 B) = Ep (®) 9,05 R, (227)

Since the nuclei are considered as fixed, the Z AZB/R term contributes to

Eelec(R) parametrically and need not be considered explicitly in the solution
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of Eq. (227). This results in an effective potential energy, U(R), for
nuclear motion.  Direct substitution of Eqgs. (225, 2.26) in the total

Schrodinger equation, Eq. (2.23), then yields,

['#nuc(R) + eggélec(r’ R)-‘wnuc(R)welec(R) = Etotalwnuc(R)welcc(r’ R). (2.28)

Multiplying through and discarding terms containing ¢, lec(r, R)t/)nuc(r, R), one
obtains,
1‘l)elec(r’ R)'%;mc(R)wnuc(R) + 1pnuc(R)'genuc(R)Qpelcc(r’ R) +
1‘Dnuc(R)'9"’;*:150("’ R)we'lcc(r’ R) = Eto&alwnuc(R)wclec(r’ R). (2'29)

Substituting the right-hand side of Eq. (2.27) in Eq. (2.29) and rearranging

yields,
welec(r’ R)'#;mc(R)wnuc(R) + wnuc(R)xnuc(R)¢clec(r’ R) =
Ve BIE i~ R, (R). (2.30)

The omission of the underlined term constitutes the second part of the
approximation; in this fashion all interaction between nuclear and electronic
motions is eliminated. A subsequent division of Eq. (230) by ¢ (r R)

followed by rearrangement gives the quantization expression,

3 R R = [E_ - URW, (R) (2.31)
for nuclear motion. The entire procedure can be regarded as a simple
separation of variables .ationalized by the observation that the electronic
Laplacian is orders of magnitude greater than its nuclear counterpart.

While the treatment given above, obviously inspired by the typical

smallness of the m /M, ratio, scemingly achieves the desired separation, it is

iah i =
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thought by some that the argument was too hastily accepted. Woolley and
Sutcliffe (26) contend that the Born-Oppenheimer treatment was devised in an
attempt to rationalize an already existing school of thought consisting of a
preconceived (classical) notion of molecular structure in terms of a
well-defined potential energy surface, distinct bonds and angles. Although
these authors fail to suggest practical alternatives, they bring to light some
of the dangers associated with the blind use of the Born-Oppenheimer
approximation. At a deeper level of the solution of the wave equation, it can
be shown that the concept of a potential energy function is not preserved.

In an independent examination into the causes leading to the apparent
separation between nuclear and electronic motions, Essén (27) also expresses
dissatisfaction with the original treatment of Born and Oppenheimer (2).
Essén’s view of a molecule, which is also shared by Bader (28), is supported
by application of the quantum mechanical virial theorem to the description of
Coulombic interactions. According to this view, it is not the smallness of
the m /M, ratio that leads to the observed separation, but rather the derived
form for the Coulombic interaction between collective (vibrational) and
individual (electronic) internal molecular motions.  Bader (28) views a
molecule as a network of essentially neutral subsystems, which can be likened
to atoms, that interact weakly, in analogy with the conventional notion of
bonds, arranged spatially in some orientation, forming the concept of a
molecular structure.  Bader then distinguishes molecular structure from
molecular geometry, stating that his definition of molecular structure
survives beyond the clamped-nuclei approximation, whereas the concept of
molecular geometry does not. In accord with this theoretical setup, the

solution for the total system then simply requires that a separate virial
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theorem be solved for each subsystem.

Essén (27) did not provide a working formalism in his analysis. This was
achieved, to a limited degree, in recent work by Monkhorst (29). Employing
the coupled-cluster approach to treat the electrons and nuclei on the same
quantum mechanical footing, Monkhorst gave a lucid description of how the
computational effort should proceed in obtaining positions for both stationary
and time-dependent states. The coupled-cluster approach has since been
implemented computationally and is in routine use for ab initio calculations.

Despite the philosophical objections of some, a potential energy function
for vibrational motion remains as indispensable a tool to the molecular
spectroscopist as the electronic wavefunction is to the quantum chemist. The
whole of infrared spectroscopy, with particular emphasis on radiative
transition probabilities, appears to be impossible without it. It should be
realized at the outset however, that a potential function far outside the
Born-Oppenheimer approximation should be regarded as a useful mathematical
tool only. Often, at higher energy, a network of crossings of zeroth-order
curves occurs; in this case a potential energy function is devoid of any

physical meaning.

2.5 The Adiabatic Separation of Electronic States

The Born-Oppenheimer approximation neglects all avenues by which nuclear
vibrations can affect the electronic motions. A preliminary intuitive
examination of this limitation suggests two situations which can disturb the
efficient averaging of the electronic mass/charge distribution about a
dinuclear framework. The most obvious arises in the case of increasingly

energetic vibrations. Here, the separation begins to break down as the
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electrons cannot average their motions as efficiently in the course of the now
significantly more rapid nuclear oscillations.  This renders the electronic
potential £ (R) inappropriate for governing the nuclear vibrations.

The Born-Oppenheimer description of an electronic state is short-sighted
in one more respect. It assumes that no interactions between electronic
states occur. This can be shown to be false, most effectively by a
mathematical treatment. In a comprehensive review article, Kotos (25)
develops rigorously the different levels of approximation at which the radial
wave equation can be solved. The exact radial Schrédinger equation, which
considers the coupling of nuclear and electronic motions within a single
electronic state, as well as the coupling between rovibronic levels of

different electronic states, can be written as,

[ -ew'a, + U°® + ¢, ® - E @ =

- ) G RURR) (232)

m#n
where AR is the nuclear Laplacian operator and UEO(R) the Born-Oppenheimer
potential for electronic state n. The term C (R) is known as the adiabatic

correction and is given by,

C (R) = J¢:‘“(r, R) & '(R):p;‘“(r, R) dr, (2.33)

where the perturbing Hamiltonian is given by,

n 2 n
#'(R) = (8,u)’l{ Z vr.} AR Z v, (2.34)
i=1 ' =1 "

where Vq = 62/aq2 and the reduced masses are defined as,
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wh=M1+ M (2.35)
wl = -l M (2.36)

The cross-terms VR Vr in Eq. (2.34) represent the mass-polarization effect,
which induces the electrons to follow the motion of the nuclei. This effect
is, for example, responsible for the finite dipole moment in the homonuclear
diatomic HD (25). The terms C (R) in Eq. (2.32) are off-diagonal matrix
elements coupling electronic state n to excited states m. Their explicit form
is at this point unimportant. Within the realms of the adiabatic
approximation considered here, these terms are neglected. In addition, the
effective potential for nuclear motion now contains the radial term Cnn(R) and
is collectively referred to as the adiabatic potential Within  this
formulation, the radial wave equation is still of a second-order homogeneous
type and the concept of a unique potential energy function survives.

The adiabatic approximation can be expected to provide a good description
for a well-isolated ground electronic state.  Since the matrix elements
C,,(R), which describe the effects of excited rovibronic states on the
electronic motions of electronic state n, are inversely proportional to the
nuclear masses, the adiabatic approximation should be less accurate for light
molecules. The adiabatic solutions of the simple molecular systems H, and H;
are in fact shown (25, 30) to be unsuccessful at predicting the positions of
the vibrational levels of the rotationless ground states which are known quite
accurately from spectroscopic observation.

When interactions between electronic states are of significant magnitude,
the concept of a potential function is not preserved. Neglecting electronic

state coupling for the moment, it is possible to improve further on the



2l

adiabatic potential. There are two more effects which have not yet been
considered.  First, due to a relativistic Lorentzian transformation of the
electronic masses, the simplistic “rest-mass” wave description of Schrédinger
fails to describe the effects arising from special relativityy ~ These are
larger for the faster moving inner core electrons of heavy atoms and can be
shown to follow a Z/n dependence, where r is the principle quantum number and
Z is the nuclear charge number. For the relatively light systems for which
traditional ab initio methods are most successful, the relativistic effects
are small. In general, to ensure a theoretically proper inclusion of these in
the electronic and nuclear energies, one must solve the relativistic wave
equation of Dirac (371). Alternatively, if the terms omitted in Schrodinger’s
treatment are small, they can be estimated by conventional perturbation
theory.

Additional corrections are predicted from the branch of quantum
electrodynamics that deals with self-interactions (32).  Since the bound
electrons in a molecular system cannot be separated from their charge
radiation fields, they will undergo continuous absorption and re-emission of
virtual photons, the pairs existing for times dictated by the energy-time
uncertainty principle. The photons are not detectable experimentally (hence
the label ‘virtual’). The electron can be viewed as being continuously
“bathed” in these virtual particles leading to a self-energy associated with
each electron, whether bound or free. The classical electrodynamical
treatment of this phenomenon predicts unphysical infinite energy shifts. The
infinities are removed by performing a mass-renormalization, whereby a mass
contribution dm, due to quantum fluctuations of the electromagnetic field, is

added to the mass m, of a hypothetical chargeless electron. m, is not an
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observable, but the effective observed mass, m, + om, or m, is now associated
with finite shifts in the positions of the system’s energy levels. At yet a
deeper level, relativistic quantum electrodynamics describes an analogous
renormalization of the electronic charge, intrcducing a further shift in
energy, evidently much less important. These quantum-field effects are often
referred to as radiative corrections. The experimental detection of these
Lamb (32) shifts in atoms cannot be rationalized by either Schrédinger’s or
Dirac’s wave mechanics.

The adiabatic function corrected for relativistic and radiative effects
can then be regarded as the best possible function which preserves the concept

of a potential energy curve.

2.6 Nonadiabatic Theory

The explicit consideration of terms connecting rovibronic levels of
different electronic states leads to an exact solution of the radial wave
equation, Eq. (2.32). These off-diagonal nonadiabatic terms give a full
account of the electron-nuclear motion interactions. In this case, the
problem involves the solution of an inhomogeneous differential equation, but
in practice it is not approached in this fashion; an exception is found in
the article by Hutson and Howard (33).

A nonadiabatic calculation begins with the best possible potential
function, as defined above. The rovibrational energy eigenvalues of the
electronic state in question are calculated by solving the homogeneous problem
and second-order nonadiabatic corrections are applied to the eigenvalues.
These contributions are normally small enough to warrant a nondegenerate

perturbation treatment. A radial nonadiabatic correction function cannot be
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added to the best possible potential, as can be seen from Eq. (2.32), if the
problem is to be approached in a zruly direct fashion; there is no simple way
in which Eq. (2.32) can be manipulated to transform the terms on the
right-hand side to the form of a unique effective radial correction to the
adiabatic function. In fact, Bishop and Shih (30) have shown that a plausible
solution would involve a separate potential for each vibrational level. In an
ab initio sense, there cannot exist a unique potential function which
describes nonadiabatic corrections simultaneously in all the bound levels.

Although the task of calculating nonadiabatic corrections reliably is
enormous, requiring an accurate description of excited state electronic
wavefunctions and potentials, these computations are usually not attempted for
a more important reason. The bottleneck in an electronic calculation of this
sort is the solution to the fixed-nuclei problem. At the Hartree-Fock level,
variational methods suffer from the need to account for electron correlation.
Although this effect can be included by employing configuration interaction
(CI) wavefunctions, such calculations demand considerable CPU time and mass
storage (34). In the zeroth-order solution of Eq. (2.27), the instantaneous
repulsions between pairs of electrons are not accounted for properly, and an
iteratively improved average-field approximation is applied. = For “heavy”
diatomic systems, the relativistic corrections are considerable; the magnitude
of these effects is often large enough that convergence in a perturbational
calculation cannot be ensured. The inapplicability of conventional quantum
tools to this problem has prompted the development of a field of research that
is still in its infancy.

For these reasons, exhaustive nonadiabatic calculations have only been

carried out for one- and two-electron diatomic systems. It should be noted
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that the agreement between experimental measurements and ab initio
calculations for the ground state of HD™ has reached the 0.001 cm™?
level (30). The agreement between ab initio estimates of the bond
dissociation energies for the isotopomers of molecular hydrogen with the
experimentally derived values is most remarkable (35, 36). This problem has
been the subject of an interesting long-term interplay between theory and
experiment, where improvements to the methodology of both fields were in the

end needed to achieve the present day agreement.

2.7 Effective Hamiltonians for Radial Motion

In the adiabatic approximation, electronic state interactions are not
accounted for so that emergy levels of one state are completely oblivious to
those of distant o7 nearby states. An exact nonadiabatic solution constitutes
an enormous computational task.  Nonetheless, spectroscopic observables
reflect all internal and external perturbations to which the eigenstates are
subjected.

Improvement in the resolving power of spectrcscopic instruments over the
years has led to more precise determinations of the energy level positions and
revealed inconsistencies in the predicted interrelationships between the
molecular constants for different isotopic forms of a diatomic molecule. The
illuminating review article of Van Vleck (37) considered the various causes
resulting in such inconsistencies. The experimentally derived constants w’F
and Bf‘p were shown to differ from their zero-order values, w, and B, by

small isotopically variant corrections, so that the simple isotopic relations,

v, = Wi (237)
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and
B e/B; = u'lu, (2.38)

where the primes refer to isotopic substitution, could not be satisfied.
Briefly, four causes were implicated: the incompleteness of the JWKB expansion
in Dunham’s treatment, adiabatic corrections, and nonadiabatic perturbations
of two types. Those arising from coupling of electronic states with the same
orbital angular momentum, A, were termed homogeneous, and those mixing states
differing by a unit in A were named heterogeneous interactions. Theoretical
expressions were provided through which the estimation of such deviations
could, in principle, be carried out, and their limiting behaviour for certain
cases was discussed.

Owing to the aforementioned difficulties associated with a reliable ab
initio estimation of these terms, the work of Van Vleck served chiefly as a
qualitative guide to the understanding of the causes, offering little in terms
of a quantitative analysis, except for the simplest cases, and then only with
approximate analytical electronic wavefunctions. Since these effects follow
well understood isotopic behaviour, and since the experimental observables
inherently hold all information relating to these, it should be possible to
contrive an inversion procedure by which reliable quantitative descriptions
become available.

Fortunately, the nonadiabatic problem can be cast in a form that proves
to be more useful. A perturbation treatment of Eq. (2.32) can decouple
distant excited states from a ground state, projecting the (small)
nonadiabatic interactions onto the adiabatic Hamiltonian of the lower state.

These, then, appear as additional radial functions modifying the adiabatic

proTas.



26

Hamiltonian operator without alteﬁng the homogeneous nature of the eigenvalue
equation. This effective Hamiltonian operator is characterized by eigenvalues
which are essentially identical to those of the exact Hamiltonian.  The
procedure for accomplishing this, is known as the Van Vleck, or electronic
contact transformation (38). It appears, upon reflection, that the key to
preserving the concept of a potential energy function is the requirement that
a homogeneous differential equation describe the system. The inhomogeneous
wave equation is thus essentially equivalent with an infinite nondegenerate
perturbation expansion resulting in an homogeneous problem. It would seem,
then, that within the validity of the Van Vleck transformation, a potential
energy function is preserved. This concept is sustained as long as the
nondegeneracy of the perturbation can be ensured.

Since the pioneerir - treatment of Van Vleck, three independent works have
appeared in the literature that present effective vibration-rotation
Hamiltonians for a diatomic molecule. In the consideration of energy shifts
associated with non-Born-Oppenheimer behaviour in Is states, Herman and

Asgharian (39) derived the effective radial Hamiltonian operator,
£f -1 2
R = @)1 + (mm g (RIS +
@ )1+ (m /m )8 (R +1) + U(R), (2.39)

where Uid(R) is the adiabatic potential, and g, is defined with atomic rather
than nuclear masses. m, is the mass of a proton and the radial functions
gl(R) and gZ(R) represent heterogeneous and homogeneous perturbations,
respectively. These two Born-Oppenheimer breakdown contributions are of the

order of me/mp, in line with the errors expected in makirg the
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Born-Oppenheimer approximation.

A discussion of the physical significance of these functions with regard
to the elecronic structure of a S state is appropriate. In a
Born-Oppenheimer rotating oscillator there is complete separation of the
electronic and the nuclear motions, and gl(R) and gZ(R) are both uniformly
zero.  The effective radial Hamiltonian thus collapses to the adiabatic
operator. However, as the energy of vibration increases, some of the nuclear
excitation is transferred to the electronic cloud, coupling electronic and
vibrational motions and consequently also the ground 1> state to excited 'S
states. In an analogous fashion, as the frequency of rotation increases, some
of the nuclear angular momentum is transferred to the valence electrons,
distorting the otherwise cylindrical symmetry of the electronic distribution
along the internuclear axis. This results in a net nonzero electronic angular
momentum along the internuclear axis which imparts a partial II character onto
the X state, along with a net magnetic moment. Accordingly, matrix elements
coupling s states to I states assume finite values. Since the valence
electrons acquire a finite moment, they can interact with an applied magnetic
field and the molecule is now characterized by a Zeeman spectrum.

The results of Bunker and Moss (40) bear general similarity to those of

Herman and Asgharian (39). However, the effective Hamiltonian,
ff - 2
#TR) = 2u)g, RPL + BR)L + g RVI+1) + URR),  (240)

where B(R) = #%/2uR?, is now defined with U™(R). This potential is no longer
the adiabatic potential, but in addition contains nonadiabatic contributions.
These arise naturally by subjecting the isomorphic !> Hamiltonian to a contact

transformation and extending the resultant effective operator to the
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perturbation order required to give rise to such effects. The analogy of
8.(R) and g . (R) to g (R) and g,(R) in Eq. (2.39) should be obvious. In an
ensuing application of this operater tc the H2 and D2 isotopomers, Bunker es
al. (41) chose to model these nonadiabatic functions with effective constant
values, and achieved moderate success in describing the rovibrational energy
levels, with residuals displaying systematic trends.

The formulations of Herman and Asgharian (39) and Bunker and Moss (40)
were aimed primarily towards an ab initio type of analysis. The more recent
work of Watson (42) presents the Born-Oppenheimer breakdown problem in a
manner amenable to a JWKB treatment, and thus is more tractable for the
incorporation of experimental data in the estimation of relevant effects.
Watson begins with the Born-Oppenheimer operator and treats the correction
terms separately. The expression for the deviations of rovibrational level
positions from their Born-Oppenheimer values in electronic state n is given

by,
AE (v]) = T (m M)y, | B2 /RIT+DRO®) + SO®) |y >,  (241)

where the index i refers to each atom and the <1/)UJ| are rovibronic state
vectors; ﬂzt contains the reduced molecular mass constructed with atomic

masses. The functions ﬁg")(R) and §§")(R) are defined as,

RM®) = ROR) - R'lJﬂ 0™M(R) dR, (2.42)
RO
PR = sUR) + % [aUBO(R)/aR]Jﬁ 0"(R) dR, (2.43)
R
0

in terms of the isotopically invariant functions, QE")(R), RS")(R), and

SE")(R). To the accuracy envisaged by Watson, SS")(R) represents the pure

S L
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adiabatic correction. The purely nonadiabatic functions an)(R) and R‘g")(R)
represent homogeneous and heterogeneous perturbations, respectively, for
atomic subsystems i, The expression for the energy corrections, Eq. (2.41),
is conveniently in the form of the first-order Rayleigh-Schrédinger
perturbation theory result. Regarding the kernel as a perturbing Hamiltonian,

an effective (first-order) operator for radial motion can be written as,
~1p2 2 1p2 +1 i
T = 2u )'P2 + BROII+D)L + Z(me/Mi)Rg")(R)] + UTR), (244)
i

where,

U*(R) = UPOR) + Z(me/Mi):s'“g")(R). (2.45)

Examination of Egs. (2.42, 2.43) reveals at once the uncertainty associated
with unique determinations of §§")(R) and ﬁl(”)(R), on account of the
unspecified value of R,.  Although different functions would result for
different values of R, Watson (42) states that this does not affect the value
of the energy correction AE (v, J); addition of —-A/R to R™(R) with a
corresponding addition of (A/2)[aUPC(R)/4R] to §§")(R), would result in
identical energy corrections. From the experimentalist’s point of view, this
uncertainty results because there is no simple experimental method for
extracting any information relating to the vibrationally induced perturbation
of electronic cloud averaging, i.e. the pure homogeneous effects. Thus, as
the effective Hamiltonian, Eq. (2.44), suggests, the effects of Rl(")(R),
QE")(R) and Sg")(R) are experimentally inseparable.

2.8 The Isotopic Dependence of Molecular Constants

As indicated in the previous section, improvements in the resolution of



30

spectroscopic instruments helped reveal significant inconsistencies in the
simple isotopic relations describing diatomic molecular constants. Although
in the early days these defects were discovered from the spectra of hydrides
and deuterides, nowadays it has been possible to detect significant
Born-Oppenheimer breakdown effects in the high resolution spectra of such
relatively heavy diatomics as InCl (43) and MgCl (44). A rather interesting
case of what appears to be a relativistic breakdown of the Born-Oppenheimer
approximation has been reported recently for thallium chloride (45).

Within the framework of Dunham’s semiclassical treatment, the Y,
parameters in Eq. (2.10) can be related to a set of isotopically invariant

constants Ukl according to,

_ ~(k+2D)12
Y, =U,n : (2.46)

providing for a unified description of data for different isotopomers. A
rigorous account of Born-Oppenheimer breakdown effects, as well as
consideration of the two-term JWKB quantization condition, leads to the

modified relationship (42),
_ ~(k+21)2 a b 2,242
Y, = U, w® DR 4 om A2M + m A2IM, + 0 (mYMD),  (247)

which gives better descriptions of experimental line positions for
isotopically related molecules. The isotopically invariant U, can be
regarded as the molecular constants of the Born-Oppenheimer potential. The
mass-scaling parameters A;d are composed of contributions from adiabatic and
nonadiabatic coupling, as well as from higher-order JWKB phase integrals, and

are normally of the order of unity. The term & (mﬁ/Mlz.) emphasizes that the

exact expression should inclvde contributions from additional mass-scaling
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parameters with mass weights beginning with mi/Mf. These are normally
neglected as they are too small to characterize experimentally,. Eq. (2.47)
was employed by Coxon and Ogilvie (46) in a simultaneous least-squares
reduction of spectroscopic lines for isotopomers of HCI.

In recent years, it has become preferable to approach the problem from a
different perspective. Instead of concentrating on the determination of the
coefficients of power series in (v + %4) and J(J + 1), efforts have been
directed towards the estimation of the radial variation of elements of
effective radial Hamiltonian operators which include non-Born-Oppenheimer
effects. It is from these radial functions, after all, that the concept of
molecular constants is born. It is possible, then, with a proper
understanding of the mass dependence of such effects, to formulate the
reduction procedure in a manner which allows the simultaneous incorporation of
data for various isotopomers. If desired, it is possible to calculate the
molecular parameters, using fully quantum mechanical methods, following a
determination of the Hamiltonian operators. These would arise naturally by
subjecting the radial operator to a vibrational contact transformation
yielding an expression that operates within a single vibrational state. This
is entirely analogous to subjecting the exact multi-electronic state operator
to a Van Vleck, or electronic contact transformation, to yield a function that

operates within a single electronic state.

2.9 Centrifugal Distortion Constants for Diatomic Molecules

An appreciation for the need and general usefulness of rotational and
centrifugal distortion constants can be gained by reviewing the results of

Dunham’s theory (16). The most practical result of Dunham can be regarded as
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the compact representation of rovibronic energies in terms of a double power
series in (v + %) and J(J + 1). Although Dunham provided explicit expressions
for the (interrelated) Y,, coefficients in terms of the potential parameters,
these are ordinarily treated as free parameters in least-squares fits of
spectral data. The molecular constant model also provides a theoretical basis
for performing interpolation and (cautious) extrapolation to new members of a
set of spectroscopic line positions. ~ An additional advantage of this
methodology is that the coefficients of such expansions can be employed in any
of several inversion schemes to yield the internuclear potential, allowing for
the estimation of molecular intensity factors by considering the associated
wavefunctions.

There exist many methods for the estimation of centrifugal distortion
constants. A straightforward procedure involves the representation of

spectral line frequencies as,
v(', v, J', J7) = v (', V") + F(', J') — F(v', J"), (2.48)
where
Fo, ) =B -Dx*+ Hao> + LA + Max® + ..., (249

and & = J(J + 1) for a diatomic molecule in a IS state. Subsequent fitting of
line positions to this model furnishes estimates of rotational and centrifugal
constants for the two states involved. The vibrational term energies can then
be extracted from the fitted band origins, vo(v', v"), and can be used along
with the rotational constants, B , to yield first-order RKRV turning-points.
There are two problem with this procedure. The first deals with the
possibility of estimated constants absorbing some contribution from missing

constants due to the required truncation of the power series in & The
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additional effect of interparameter correlation in the least-squares procedure
renders the rotational constants as effective least-squares parameters which
serve only to represent the data from which they were derived, lack a strict
physical meaning, and have little extrapolation ability. Also, for
sufficiently large powers of <& and values of J, the procedure can encounter
computational round-off error problems, which may necessitate the use of
quadruple precision arithmetic.

The second problem is theoretical in origin. As a result of electronic
state interactions, the rotational and centrifugal distortion constants lose
their usual mechanical meaning. Use of contaminated rotational constants in
the ensuing generation of RKRV potential curves is inconsistent with the
derivation of the semiclassical inversion procedure, and the resulting
functions will not be fully decoupled from neighbouring electronic states.

Centrifugal distortion constants can also be calculated if a potential
energy curve is available. Two basic approaches involve semiclassical and
quantum mechanical methods.  Within the JWKB picture, Kirschner and
Watson (47) developed and employed a semiclassical perturbation theory to
estimate the centrifugal distortion constants of CO(X 12+). The method was
found to be increasingly unstable towards the dissociation limit and its
accompanying complexity made it unattractive for routine use. Barwell (48)
devised a procedure which removed the near-dissociation problems, so that
semiclassical quadratures could be evaluated to obtain the constants over the
entire range of potential energy. This was made possible by considering the
theoretically predicted (49) form of the long-range potential in the
first-order JWKB quantization condition.

There are three quantum mechanical methods for calculating centrifugal
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distortion constants for a diatomic molecule. The first, introduced by Moody
and Beckel (50), was termed the -eigenvalue-fitting method.  Here, the
vibrational-rotational eigenvalues of a potential energy function were found
and subsequently fitted to a power series in ¢, giving at once Bv, Dv, Hv,
etc. The second method, discussed by Tellinghuisen (5I), exploited the
relationship,

B(J) = 36(v, 1) =p%y IR |y >=B — 2D K +3HK? +...,[(250)
v a d{ ol v/ v v v A
where calculation of the expectation values for different values of J of given
v followed by a least-squares fit to a power series in ¢ led to estimates of
the constants. This is known as the energy-derivative method. These two
fitting methods suffer from similar problems as the experimental method above.
Moreover, the energy-derivative method makes the explicit assumption that
rotational constants are given as expectation values of RZ A neglect of
heterogeneous contributions to B (J) is made. The eigenvalue-fitting method
also assumes this, albeit implicitly, by constructing rotational potentials on

the basis of a centrifugal term ,62.%/R2.

The third, and most fundamental quantum mechanical method is based on the
application of Rayleigh-Schrédinger perturbation theory. Developed by
Albritton and co-workers (52), this procedure defines the rotational and
centrifugal distortion constants as perturbation energies of the rotational
Hamiltonian operator ,BZIR?‘. Expressing first and higher order wavefunction
corrections in terms of summations over zero-order terms, these authors

obtained,

B, = g%y, |R |y, (2.51)
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¥, IRy,
_ g " :
D =p i T (2.52)
v 12

E]

etc, where for D the special symbol emphasizes that a summation should be
considered over the bound vibrational levels and an integration carried out
over the continuum. Since the computational algorithm neglects altogether the
continuum contributions, second and higher order constants become increasingly
unreliable as the dissociation limit is approached. This traditional
perturbation procedure is also inefficient computationally owing to the great
number of summation operations, particularly for higher-order perturbation
energies.

In recent work, Hutson (53) was able to circumvent the sum-over-states
expressions by considering a direct perturbation calculation. This was made
possible by employing Hutson and Howard’s novel numerical procedure (34) for
solving reliably an inhomogeneous differential equation.  For first- and
second-order wavefunction corrections made orthogonal to the zero-order
eigenfunctions, expressions for the rotational and centrifugal distortion

constants are (53, 54),

B, = o 4%, (2.53)

D, = - P2 y{Dy, 254)

H =P’ - B |yDy, 2.55)

L, =P - By + D P pts, (2.56)

M, = <pPlae’ - B |yP> + 20 PPy - B P p®y,  (257)

where the perturbing Hamiltonian is o ' = ﬂZ/RZ. This method gives constants
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which are, in principle, reliable up to the dissociation limit. Of course,
for very high vibrational levels, an extended integration range is required to
ensure that all significant portions of the wavefunction are sampled,
rendering the procedure somewhat inefficient for such levels. This latter
problem was overcome recently by Pajunen (55) through the reformulation of the
perturbation problem in terms of the Priifer phase function. The method does
not involve wavefunctions explicitly, but the natural oscillatory behaviour of
the Prifer function makes the procedure more reliable for high vibrational
levels, where the highly oscillatory structure of the wavefunction could make

previous methods less reliable due to insufficient sampling.

2.10 The Method of Least-Squares

2.10.1 Introduction

The fruitful interplay between the experimentalist and the theoretician
during the first half of this century led to the development of theoretical
models which could be applied to the representation of spectroscopic data.
However, without the modern electronic computer, the spectroscopist was
required to draw upon tedious and often unreliable methods for relating
spectral features to physical models.  Although approximate graphical
procedures (56) allowed the experimentalist to become more directly involved
with the analysis by exploiting an intimate familiarity with the experimental
information, they failed to provide reliable estimates for the molecular
parameters and their uncertainties, and were inherently limited in power and
scope.

Nowadays, fast digital computers are readily available; this has

contributed tremendously to the growth and maturity of the field of molecular
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spectroscopy.  With a variety of options available for fitting equations to
data, it is necessary to justify a preference for any one in particular. Some
of the better known fit criteria are, least absolute deviation, least-squared
deviation, maximum likelihood, minimum chi-squared, the simplex method, and
others. However, the method of minimum-variance, or least-squares (57), has
gained an almost universal acceptance as a standard fitting techmique. In
molecular spectroscopy, whether it is used for the purpose of calibrating the
wavelengths of a spectrum on a photographic plate, or for extracting
meaningful estimates of molecular constants from spectral line positions, the
method of least-squares enjoys wide popularity, primarily because of the
advantageous properties associated with the estimates it provides.

The estimates furnished by least-squares are the most precise unbiased
estimates that are linear functions of the measurements (57). These are
usually termed minimum-variance linear unbiased (MVLU) estimates. The
‘unbiased’ attribute is the most important because it indicates that the
procedure iself will not introduce any systematic error into the estimates,
whereas this is often not the case for other fit criteria.

It is important to examine briefly the assumptions of the least-squares
method. First, a perfect model is presumed. This is rarely the case, as it
appears that time and again nature evades being modelled perfectly by
mathematics; hence it is important to establish the adequacy of a chosen model
through critical tests where possible or practical, before applying it to
experimental data. The linear regression method assumes a model which depends
linearly on the parameters, although it is possible to obtain MVLU estimates
for a nonlinear model. Another important assumption is that the measurements

must be described by some distribution function (not necessarily Gaussian)
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with zero-mean and a finite error variance. Accordingly, the systematic
component in the measurement error should be zero; that is, if an estimate is
determined from the same data set measured many times, with measurements
subject only to random error, the deviation from the “true” value would
average to zero. When this is not the case, as is found occasionally for
spectroscopic data, it should be realized that the ‘unbiased” property is
rendered useless and the estimates should be viewed with suspicion. Finally,
the independent variable is assumed to be without error. While this is
normally not a problem for many spectroscopic applications, as the independent
variables are often quantum numberss, the general problem in which both

variables are subject to finite errors has been solved (58).

2.10.2 Weighted Linear Least-Squares

The general linear least-squares problem can be expressed most concisely

in matrix notation as,

y = X8 + €, (2.58)
where
4 A €
y = 72 , B= ’.32 o=l 2]. (2.59)
};n 3’1 én

y contains the experimental data, § is the column vector containing the
parameters to be estimated, € contains the (unknown) measurement errors, and X
is the coefficient matrix. Application of the least-squares criterion to this

linear system yields the MVLU values B that minimize the swn of the squares
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between the measurements y and the calculated values ;, as
B = (X'wx) X wy. (2.60)
Alternatively,
B = xo )Xo, (2.61)

where the weight matrix (W) is the reciprocal of the measurement error
dispersion matrix M, which is in turn given in terms of the diagonal matrix ¢

of the measurement errors. More specifically, in matrix form,

2
a0 ] [T e

0 g 0 ‘1

so that = aiM, The of are unknown variances, but the ratios of/of , for

, (2.62)

[ # jare assumed to be known. oi is an unknown common factor and the weight
matrix is simply W = M. The common unknown factor G'Zl is calculated

from
o’ =y - XYWy - XB), (263)

where f are the degrees of freedom. The variance-covariance matrix, ©, of the

molecular parameters is calculated from

e = o’X'wxy! = ¢’v

v, (2.64)
where V is the dispersion matrix with the obvious value (XTWX)'l. This matrix
is important as it gives an indication of the degree of interdependence of the
least-squares estimates, An often more immediately helpful indicator of

parameter interdependence is the correlation coefficient matrix element, Cij’

given by
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C. = @../(éﬁéﬁ)’/z, (2.65)
the diagonal elements of which have values of unity and the off-diagonal
elements take values which range from ~1 to +1. Absolute off-diagonal values
near unity indicate strong correlation between the pair of estimates involved;
this means that there is a mutual influence in the determination of the two
estimates. In applications to real data this usually serves to reduce the
physical significance of both estimates.

Finally, it should be obvious that if the weight matrix equals the unity
matrix I, that is, if all the data are weighted equally, the results given

above collapse precisely to those of the unweighted formulation.

2103 Correlated Least-Squares (Merging)

The problem of combining multiple estimates of least-squares parameters
for the purpose of obtaining an optimum set of single MVLU values cannot be
resolved satisfactorily by a simple weighted averaging scheme. Although this
takes account of the potentially different precisions of such estimates, it
overlooks correlations that link a set of estimates together.

A procedure which facilitates a statistically sound solution to this
problem has been described by Albritton et al. (57). Here, a single-step
meige formulation was proposed whereby results from separate unweighted single
band fits were merged together to yield an optimum set of constants. The
unattractive alternative of a simultaneous weighted multi-band fit makes the
single-step approach advantageous in terms of the significantly reduced
computational demands on storage and execution time that can be achieved. An

additional benefit of this approach is the improved manner in which relative
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systematic error in a subset can be unmasked. Furthermore, the results of the
single-step approach are completely equivalent to those of the weighted
multi-band fit.

The merge approach considers the output of k individual band fits as the
input to another least-squares fit which reduces a set of m redundant input

parameters to a final set of p unique estimates. The solution of m equations
of the type
g =XB + 9, (2.66)

is considered where

¢ is the vector containing m input parameters,

X maps the input and output parameters,

£ contains the p output parameters,

0 are unknown (inferrelated) errors.
Albritton et al. (57) stressed that the O are interrelated through the
variance-covariance matrices associated with the redundant input constants,
and that it is precisely these (known) interrelations which form the basis of
the merge approach. A minimization of 616 yields p ncnredundant parameters

B, = X% Koy, (2.67)

where @ is a matrix containing the individual variance-covariance matrices
associated with each separate single band fit, so that
e . 0

A 1
& = ©, . : (2.68)

0 8,

The estimated variance of the merge fit if given by
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~2 -1 38 \Ta-1 xn
Oy = fM (g — XﬂM) O (g - X,BM), (2.69)
where fM = m — p are the degrees of freedom of the merge fit. The

variance-covariance matrix associated with the merged constants is

8 = 02V, (2.70)

defined with the p X p dispersion matrix
v, = X% . (2.71)
Despite the advantages gained by adopting the single-step merge approach,
in large applications it quickly becomes apparent that detection of systematic
error in individual subsets can be a time consuming matter. It must be
accomplished through the systematic exclusion of suspect subsets in repeated
single-step merges. For this reason, Coxon (59) investigated the possibility
of carrying out merge fits in a stepwise fashion. The stepwise approach
considers the output of several single-step merges as input into a grand
merge, shown to give results that are identical to that of a single-step

procedure. In direct analogy to the single-step result, the stepwise approach

gives the expression

~ ~TA_1~ _1~TI\_1A

Bom = X D X)X Dy B (2.72)
for the stepwise merge MVLU parameter estimates ﬁ M The estimated stepwise

merge variance is given by

‘;gm = fsﬂal(ﬁ M X5 SM)T&)I‘:AI(ﬁ M Xp s (273)

The weight matrix @y is not composed by the variance-covariance matrices

associated with the single-step merged constants, as might first be expected.

Coxon (59) found that in order to obtain results identical to those of the
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single-step approach, the weight matrix had to be defined as
) Oy o, O
&, = Vi , 274)
0 Vo,

where the (QM)i are the dispersion matrices from the q single-step merge fits.
This difference is at the heart of the stepwise approach. The variance of an

equivalent single-step grand merge of several stepwise merges is calculated by

Oomfom = “smifomr t T fove T o (2.75)

where f = fSMl + fSMz + ..., fiy Deing the degrees of freedom for

stepwise merge i,

2.104 Weighted Nonlinear Least-Squares

Therz are many interesting intrinsically nonlinear problems in chemical
physics and molecular spectroscopy. The direct reduction of line positions to
molecular constants for 2IT states, the fitting of spectral line profiles to
Gaussian, Lorentzian, or Voigt models, and the representation of RKRV turning
points by flexible analytical potential functions, are just a few.

For a set of k observations Y, the nonlinear problem can be written as,
Y=f§,8,. . -5:0,0,..., Op) + €, (2.76)
or simply, ¥ = f(¥, ©®) + €. The object here is to obtain least-squares
estimates § in an iterative fashion from a linearized problem.  The
linearization is achieved by expanding f(=Z, ©) in a Taylor series,

f(&, ©) = f(5, ©) + i [6 g, ©

6. - 6.) +
39 ; ]e=eo( ! ‘0)
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where the ©, are initial trial values of the parameters. Birss (60) has
proposed using the Hellmann-Feynman theorem (61, 62) in evaluating the second
derivatives to achieve improved convergence. These terms are neglected here.

The resultant pseudolinear system of equations can be written succinctly in

matrix form as

AY = ZA6, (2.78)
where, for the jth iteration,
I Aylj 1 [ AOlj |
Ay, Ad,.
Ay = | 7, Ab=| ¥ (2.79)
| Vg | | A% |

and

)y Bl o By

o)y Bely o e,
Z = . : : , (2.80)

), &), - B,

where AY = f(E, ©) — f(&, ©), from Eq. (2.77) above,and A@ = 6, — 6. The

key to rapid convergence is the method of estimation of the first derivatives.

e b €
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Although methods can vary in degree of sophistication, a simple finite-
difference approach was found adequate in applications found in this work.

A minimization must be applied to the error sum of squares,
S = (AY)T(AY), (2.81)
to obtain the parameter correction estimates
A6 = (Z'Wz)ZzTay, (2.82)
such that the 8 of the current (jth) iteration are

6. .=80. .. + A0, . 2.83
L] iy j-1 ) ( )
The procedure is iterated until a specified convergence criterion in the sum
of the squares is met. After convergence, an indication of the goodness of

the fit can be obtained from

.[\/J=

G = f"i[ Ayf]’/z. (2.84)

1

]

The variance-covariance matrix is
6 = a%v, (2.85)

defined with the dispersion matrix
V = 2'wz)l, (2.86)

The square roots of the diagonal variance-covariance elements give estimated

standard errors for the parameters.

2.11 Numerical Solution of the Radial Wave Equation
2.11.1 Truly Bound States

One the most useful applications of numerical methods to the field of
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molecular spectroscopy is undoubtedly in obtaining solutions of the central-
field eigenvalue problem. The present work rests on the availability of a
trustworthy solution of the radial wave equation.

The location of truly bound levels, that is, those which lie below the
dissociation limit, is accomplished through the procedure usually ascribed to
Cooley (63). The computer program used in this work includes the subsequent
modifications of Zare and Cashion (64). For a diatomic molecule regarded as a
symmetric top, solution of the Schrédinger equation expressed in polar
spherical coordinates is preceded by a separation of the problem into angular

and radial parts so that

¥ = p(R) Y,,,(®, @, ¢), (287)

is an acceptable solution, The Y\ are hypergeometric functions and should
not be confused with Dunham’s Y, (16). p(R) are the solutions of the radial

wave equation expressed in dimensionless form as,
d’o(R)IdR* = [UR) - E] p(R), (2.88)
where U(R) is the effective rotational potential,
UR) = ER) + ZZ,/R + [ — A)R, (2.89)

and E js the vibrational eigenvalue. E_(R) is the electronic energy having a
parametric dependence on internuclear distance, and Z Z /R is the nuclear
Coulombic repulsion term. The last term in Eq. (2.89) is the kinetic energy

of nuclear rotation.

The program of Zare and Cashion (64) considers the modified second-order

differential equation,

d’S(R)/dR = [U(R) ~ E] S(R), (2.90)
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where S(R) = R p(R), automatically ensuring the inclusion of volume element
R dR in subsequent expectation value calculations.

Application of Numerov’s (65) sixth-order difference equation,
2 =
T, +2I,-T_, + h“(U, — E) P, = Q, (2.91)
where P, = P(R) is an initial non-normalized solution and,
T, = [l - (112)(U, - B)] P,

U, = UR), (2.92)

14

h=R, , -R,

yields a solution associated with an error of (116/240) déPi/dRG. The
integration is performed in a bidirectional mode with inward and outward
integrations starting at the last and first mesh points, respectively. The

inward integration is initialized by applying the boundary conditions,

— 1030
P =107, (2.93)
and
P =P Uy TE-R YU TE] (2.94)

with a trial value E. Eq. (2.94) is derived from the JWKB wavefunction and
its use at the beginning of the inward solution is justified so long as the
potential is slowly approaching an asymptote near R . The inward
(decreasing-R) integration continues wuntil the first extremum of the
wavefunction is detected, at Rm.

The outward (increasing-R) integration begins with the boundary

conditions,
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P =0,P =107 (2.95)

The solution proceeds in accord with Eq. (2.91) until the radial distance R
is reached, that is, at the place where the inward integration was terminated.
At this point, the inward and outward solutions are made mutually consistent
through division by their respective non-normalized values at R ; hence at the
joint between the inward and outward integrations the solution has the same
value (P = 1), but likely suffers from a discontinuity in slope.

The potentially different slopes between the two curves at the

crossing-point R~ are used to correct the trial energy value, E. A simple

expression for such a correction is given by,

A = @), = B)/[ PR dR (296)

where P;u , and P give the first derivatives at Rm from the outward and
inward integration, respectively.  Improved convergence can be achieved
through the use of the Newton-Raphson result,

AE = —F(E)/F'(E), (2.97)

where the correction function is

A
FE) =h*-T _ +2T -T )+ U -EP, (2.98)

and its derivative is given by

FE)=-) P, (2.99)

n
=1
The procedure is iterated until |AE| < €, where € is a preset convergence

~.

criterion. Following convergence, the normalized solution is obtained as,

- i tnstn

R e A -
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S, =P /[h Jilpf]% i=1,2... 1. (2.100)

It was decided to test the accuracy of the procedure using model
potential functions for which the wave equation is solvable exactly. For the
case of no nuclear rotation (J = 0), the radial wave equation can be solved

essentially exactly with the Morse potential function,

2
UR) = ge{1 — R - Rc)] . (2.101)
An analvtical expression for the vibrational eigenvalue emerges,
2
G, =0+ %) -ox@+ %), (2.102)
with
_ Y
o, = 206(2,)"" , (2.103)
— 2
wx, = (ap). (2.104)

Choosing appropriate values for ¢ and @, allows for the procedure to be tested
very near dissociation. Table 2.1 gives the parameters a, 2, o, and Wx
for the Morse potential employed here. Cashion (64) also tested the procedure
using a Morse potential; variables such as integration interval size and
number of points were thus not investigated here. It should be noted,
however, that in specific applications, these factors were thoroughly
explored. The main objective of the present test is to ensure and demonstrate
the proper operation of the computer program, which is of critical importance
to this research. The eigenvalue convergence criterion employed was 1078
1

cm. Results from the program are compared to the true (exact) energies in

Table 2.2.



TABLE 2.1

Test of Algorithm for Solution of Radial Wave Equation:
Parameters of Analytical Potential Functions

Morse Potential Fues-Kratzer Potential
R, =1.000 A R =0916 835 9 A
@ =31 250 cm™ L @, =49 375 cm
¢ =1.685 763 14 amu p =0957 055 282 amu
R . =040 A R . =040 A
min min
R =640 A R =840 A
max max
B =0.002 A h =0.0025 A
€ =1O'6 cm™! € =10—4 cm"1

w, =2500 em’t

wx =50 cm™t
(4

Morse potential can be constructed from Eq. (2.101).
Fues-Kratzer potential is defined by Eq. (2.109). R, is the
equilibrium internuclear separation, 9, is the dissociation
limit and u is the reduced molecular mass. The functions
were constructed in the range Rmin to Rmax with a mesh size
of h. The radial wave equation was solved with a
convergence criterion of . The energy parameters o, and
o x, are defined by Egs. (2.103) and (2.104), respectively.
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TABLE 2.2

Test of Algorithm for Solution of Radial Wave Equation:

A Comparison of Calculated with Exact Energies (cm'l)

Morse Potential

v E™ 105 x AE v E™ 105 x AE
0 1237.5 2 12 234375 1530
1 3637.5 15 13 246375 1646
2 5937.5 49 14 257375 1725
3 8137.5 111 15 267375 1762
4 10237.5 205 16 276375 1752
5 12237.5 330 17 284375 1695
6 14137.5 482 18 291375 1589
7 15937.5 654 19 297375 1436
8 17637.5 839 20  30237.5 1241
9 19237.5 1028 21 3063735 1008
10 20737.5 1212 22 309375 743
11 22137.5 1382 23 31137.5 456
24 312375 -753
Fues-Kratzer Potential®
v J=0 J=5 J=10 J=15 J =20
0 0.0000 0.0000 -0.0001 -0.0001 -0.0001
4 -0.0001 -0.0001 -0.0001 -0.0001 -0.0002
8 -0.0002 -0.0002 -0.0001 -0.0001 -0.0001
12 -0.0013  -0.0006 -0.0002 -0.0002 -0.0002
16 -0.0044 -0.0022 -0.0003 -0.0001 -0.0002
20 -0.0109  -0.0055 -0.0009 -0.0001 -0.0003

“Entries for Fues-Kratzer potential are the discrepancies between
the exact (Eq. 2.106) and calculated (numerical solution of the
radial wave equation) energies, in cm .

1
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In order to ensure the proper operation of the program for the rotational

case, the Fues-Kratzer potential,
UR) = 91 + x* - 2, (2.105)
with y = R /R, was used. The Fues-Kratzer Schrodinger equation is solvable

exactly for all values of v and J. The terms are given by (66),

k9,
E, =@, - — (2.106)
[(v+1/2)+[J(J+1)+%+k]2]

where
k=R @8 (2.107)
The parameters of the potential and the rotational eigenvalue test results are
given in Tables 2.1 and 2.2, respectively.
It is noteworthy that the Cooley predictor-corrector procedure is not the
only method available for solving the one-dimensional Schrédinger equation. A
series of papers (67-69) dealing with an application of the quantum mechanical
variational method appeared in the late 1960’s and early 1970’s. Basis sets
were constructed as linear combinations of the well-known wavefunctions of the
harmonic oscillator, and later the eigenfunctions of a Morse potential. All
these attempts met with moderate success. In view of an already existing
successful method (64), application of the variational method to the problem
appears to be of academic value only. More reliable alternatives include the
“Log-Derivative Method” (70), the Priifer phase function method (55), and the
“Canonical Functions Method” (CFM) proposed by Kobeissi et al. (71).
Recently, Tellinghuisen (72) showed that the CFM method is formally and

numerically equivalent to the procedure of Cooley (63), provided that both

[p——
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algorithms are implemented with the Numerov integration formula. The
Cooley-Numerov method was, however, shown to be computationally more

efficient.

2.11.2 Quasibound States (Orbiting Resonances)

Adjustment of the rotationless potential by the centrifugal term
ﬁ2J J + 1)/R2 yields effective rotational functions, characterized by a
barrier. As shown in Figure 2.2, energy states which exist above the
asymptote are associated with three turning points. These quasibound states
are not fruly bound but possess a finite probability of penetrating the
barrier in a nonradiative fashion. Associated with these metastable levels
are finite lifetimes and widths related by the uncertainty principle of energy
and time. The spectroscopic detection, in emission, of a gradual broadening
of rotational lines with increasing J, followed by an abrupt disappearance of
the structure, provides convincing proof that a predissociation is occurring.
A quantitative analysis of this information yields an estimate for the
dissociation energy.

The theoretical description of quasibound states can be accomplished by a
variety of methods. Since the “exact” methods of quantum mechanics are often
tedious to use, approximate boundary condition schemes have proven to be of
great value in locating orbiting resonances. These were reviewed and tested
by Le Roy and Liu (73). Their results suggested that the Airy function
boundary condition is reliable for the type of resonances encountered in this
work.

The Airy function boundary condition derivation assumes that the

rctational potential near the third turning point can be approximated by a

8 e A A W P repon e e Rt Beacramne



Figure 2.2
Graphical representation of a quasibound level. E,and E ;
are vibrational energies corresponding to rotationless and
rotational potential curves, respectively. (RO, Rg), and
(R{, R;) are the inner and outer classical turning points
for the case of rotationless and rotational potentials,
respectively.  The third turning point for the rotational

potential curve is given by Rg.
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straight line. Application of the uniform approximation (73) to the problem
casts the wavefunction at the outermost turning point as an Airy function of
the second kind, Bi(—z) (74). Along with a boundary condition at R = 0, the
problem is transformed into the one-dimensional eigenvalue type, which allows
the procedure to be incorporated directly in Cooley’s algorithm. Since the
approximation requires the three turning points to be spaced well apart, the
increasing proximity of the second and third turning points with increasing
energy makes the method more reliable for resonances well below the barrier
maximum and totally inapplicable above it. It was shown (73) that the error
in the prediction of quasibound energies with the Airy BC is approximately 5%
of I, where T' is the full width at half-height of the energy state.
Tiemann (75), however, has shown recently that these estimates could deviate
by as much as 20% and in an unpredictable direction. For the types of
resonances that can be detected spectrographically (' < 1 cm’l), the error in
the calculated position is almost indistinguishable from the experimental
uncertainty.

The treatment of the resonance widths follows a different path.
Conceptually, the simplest approach views the width as the ratio of the
probability of barrier penetraiion to the period of oscillation in the

potential well (76, 77), so that by the uncertainty principle,

T = holt,, (2.108)
where
0 = exp{— @l:;l__ [UR) - E]" dR}, (2.109)

Ry(E)
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and

Y rz(E) R

i = (2u) [E — UR)I"" dR. (2.110)
R,(E)

This semiclassical recipe was found (77) to yield widths that were within
~ 12% of more accurate estimates, for H,(X 12"'). The widths reported in the
present work were calculated by a more complicated prescription. Le Roy’s
QBOUND subroutine (78) originally provided the simple width given above;
however, following the recent article of Connor and Smith (79), the code
appears to have been modified to calculate the width in the semiclassical

uniform approximation as,

I = 2#t  w(e)lx, (2.111)
where .
1+ 7"~ 1
w(e) = : , (2.112)
1+ ™% + 1

and € is the quadrature through the barrier.

Unfortunately, it is not as easy to verify the accuracy of Ilevel
positions for quasibound states as it was for truly bound states. The
rotational solution for the Morse oscillator is, as stated above, not truly
exact. The Fues-Kratzer eigenvalue formula is of little use here since this
potential cannot form a potential barrier. There simply does not appear to be
any absolute standard for direct comparison. This has forced previous
investigators to relv on ab initio results for positions, and well-studied
experimental systems for widths. Some promise was offered by a relatively
obscure article by Tietz (80) where an analytical potential was developed,

having an exact solution in closed form for the eigenvalues. It was found
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that adjustment of one of the potential parameters led to the fori..tion and
controlled the magnitude of an inherent potential maximum, With the exact
eigenvalue expression at hand it appeared at first that this might offer a
sound way of evaluating the accuracy of approximate methods. However, there
appears to be an error associated with the energy expression; in any case, a
solution was only considered for a real wavefunction; the case E = 9, where

the wavefunction enters the complex plane, was not considered by Tietz (80).



CHAPTER 3
IMPROVED HAMILTONIAN OPERATORS FOR RADIAL MOTION
PART A: SEMICLASSICAL METHODS

The first-order RKRV potential inversion procedure is popular because of
the relatively easy calculations involved and the usually excellent potentials
it provides.  Additionally, it is an almost unique procedure, failing to
define the behaviour of the curve only below the ground vibrational level.
Reliable evaluation of the improper integrals f and g has been the subject of
numerous articles in the literature (81-85), and the first-order problem can
be considered adequately resolved.

However, the advent of laser and interferometric methods brought an
accompanying improvement in the precision of spectroscopic data; this has
served to demonstrate convincingly the limitations of the first-order RKRV
approximation. It is often found that the quantum mechanical expectation
values of first-order RKRV functions fail to describe observables within the
measurement uncertainties. A case in point is the fundamental band of HF,
obtained experimentally by Fourier transform techniques (86). Table 3.1 shows
a comparison of observed frequencies and those calculated on the basis of
quantum mechanical eigenvalues of the RKRV curve of Di Lonardo and
Douglas (87).

The inadequacy of the semiclassically approximate RKRV potential
inversion procedure derives primarily from the neglect of higher-order JWKB
phase integrals in its derivation. On account of the correspondence

principle (88), a semiclassical JWKB formulation is expected to be less
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TABLE 3.1

Fundamental Band of HF(X 1}‘..”*): Demonstration of Inadequacy of RKRV
Potential in Predicting Observables

J P(J) AP(J) | AP(J)/e| R(J) AR(J) |AR(J)/c|

0 4001.0127 -0.0235 47.0
1 39203328 -0.0210 42.0 4038.9882 -0.0259 51.8
2 3877.7289 -0.0214 428 40753231 -0.0295 59.0
3 3833.6846 -0.0320 46.0 4109.9709 -0.0343 68.6
4 37882533 -0.0255 51.0 41428863 -0.0401 80.2
5 37414890 -0.0291 582 4174.0267 -0.0469 93.8
6 3693.4467 -0.0336 67.2 4203.3509 -0.0548 109.8
7 3644.1822 -0.0395 79.0 4230.8197 -0.0638 127.6
8 3593.7520 -0.0465 93.0 4256.3958 -0.0736 147.2
9 35422127 -0.0537 107.4 4280.0442 -0.0838 167.6
10 3489.6214 -0.0620 124.0 4301.7319 -0.0953 190.6
11 3436.0358 -0.0698 139.6 4321.4284 -0.1080 216.0

The quantities AP(J) and AR(J) refer to observed-calculated line
positions (cm'l) for the P- and R-branches, respectively. € is the
experimental error estimate; € = 0.0005 cm™! for this band.
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reliable where quantal effects are significant. Better results can therefore
be obtained for heavy molecules and high values of the quantum numbers. In
this section, methods for improving first-order RKRV Hamiltonians are

reviewed.

3.1 Direct Inclusion of 3rd-Order JIWKB Phase Integral

The first documented method for incorporating exactly the second finite
JWKB integral in the RKRYV procedure is due to Vanderslice and co-workers (89).
This derivation was followed by an application to the ground state of
molecular hydrogen (90). A solution was obtained in an iterative fashion,
whereby a repetitively improved firsi-order curve was used to estimate the
second-order RKRYV (third-order JWKB) corrections to the turning points. Some
difficulty was encountered in fitting the potential derivative required for
the second-order corrections to a power series in Ul/z. This was due to the
large values of dU/dR at small internuclear separations and led to problems
with the uniqueness and stability of the procedure.  Furthermore, the
corrections obtained were of the order of the uncertainties in the firsi-order
turning points indicating that highly precise data are required for a proper
evaluation of such effects.

A mathematically equivalent procedure for second-order RKRV calculations
was presented by Kirschner and Watson (47). This was applied to the ground
X'z* state of CO, and despite the need for intermediate least-squares fits,
the calculations provided a potential which could recover satisfactorily the
input G, and B, values. The Rydberg-Klein-Dunham second-order calculations of

McKeever (9I) for the ground state of H, appear to be equally successful.

Here, it was shown that the previous results of Davies and Vanderslice (90)
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were overestimates of the second-order corrections to the turning points.

A rigorous derivation of a two-term RKRYV procedure was undertaken by
Le Roy (92). The resulting expressions for the f and g integrals included
explicitly the effects of the third-order JWKB integral.  The solution
proceeds in an iterative fashion but so far there do not appear to be any

published applications of this procedure.

3.2 Indirect Inclusion of Higher-Order JWKB Terms

It is possible to include the effects of higher-order phase integrals
while avoiding the mathematical and numerical complexities associated with
their explicit evaluation.

By far the simplest procedure of this type was proposed by Kaiser (93).
The contributions from the second JWKB term were considered in the modified

quantization condition,
{V E, = UR)dR = 218(v + %2 + A), (3.1)

where A was treated most concisely by Kirschner and Watson (47), obtaining
- B i 2 =512
A=-F—1im ¢ (dU/AR)[E — UR)] "dR. (3.2)
64w E=>0

Ke.ser (93) gave the simple result,

A=Y Y, (3.3)

where the Dunham coefficient Y, was approximated by

B, - (uexe) aw, (aw,)

Y, = + +
00 3
4 2B, 1448
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defined with the usual vibrational-rotational parameters. This adjusts the
positions of all vibrational levels by a constant amount and simply requires

that first-order RKRYV integrals be evaluated from the modified lower limit,

vl = — 1 - A, (3.5)

reducing sharply the work required to obtain what is presumably in effect a
second-order RKRV potential. Recent work (94), however, has shown that the
Kaiser modification may lead to results for the g integral that are often
inferior to those of an unmodified first-order calculation. This is because,
even though the Kaiser correction considers the second JWKB term, it fixes its
value to that at the potential minimum (94), i.e. the condition that E — 0 in
Eq. (3.2) above.

The approach of Huffaker (95) considered the evaluation of turning points
in terms of two power series given as analytic functions of the spectroscopic
constants. Second-order JWKB terms were introduced effectively by making
corrections to spectroscopic constants based on Huffaker’s Perturbed Morse
Oscillator (PMO) model (96),

UPMOR) = ¢ [yz + z b, y"}, (3.6)
n

where

y =1-exp[~aR — R)] 3.7
This method was applied to the ground electronic states of CO and HF (95) with
moderate success, encountering particularly significant problems near the
dissociation limit. A breakdown of JWKB theory might be expected immediately
near dissociation (97), but it is unlikely that the levels considered by

Huffaker (95) enter into this region.
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By a similar approach, Coxon and Ogilvie (46) followed Watson’s (42)
suggestion of correcting experimental values of the U, for higher-order
effects, and used these in a Kaiser unmodified first-order RKRV calculation.
The resulting potential should then have been equivalent to one obtained by
considering higher-order JWKB phase integrals explicitly. ~Along the same
lines, expressions for higher-order coniributions to some Dunham coefficients
were obtained by Bouanich (98) through perturbation theory.

In more recent work, Schwartz and Le Roy (94) proposed to eliminate the
third-order JWKB integral by considering information on two isotopomers
simultaneously. The resulting simple expressions were thus exact within the
third-order JWKB approximation. Maodel calculations showed that results were
superior to those of both an unmodified first-order calculation and the Kaiser
corrected first-order results. At the same time, the model testing suggested
that care should be exercised in applying the method. In particular, the
procedure was found to be highly sensitive to the precision of the input data,
and should be used for very precise measurements only. Also, since the two
isotopomers were assumed to have the same potential, the method should not be
applied to systems for which the Born-Oppenheimer approximation is
significantly deficient. = This limitation is unfortunate as it makes the
procedure less reliable for light diatomics, the very systems for which
higher-order JWKB effects are most significant. = These warnings were
apparently not heeded in a recent application of the procedure to the isotopic
LiH molecules (99). Not surprisingly, improvement over the first-order
results was not realized.

A most inieresting application of Watson’s (100) semiclassical inversion

procedure was proposed by Gouedard and Vigue (Z01). In an attempt to improve
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a first-order RKRV potential iteratively, these authors identified a function
X (R) with a small potential correction, AU(R), and inverted AG, and AB _ values
to this function. AG _ and AB , the differences between the experimental and
quantum mechanical values, became gradually smaller, but it was found that
after convergence, the final differences displayed oscillatory behaviour for
CC(x 12+), with better results realized for heavier diatomics. The authors
speculated that for a light molecule like CO, quantum effects may be
significant, and pointed io their inability in separating calculational from
quantum limitations on the method.

A chief criticism of methods that rely on a partial intermediate set of
molecular constants is that these constants are not true observables of a
system, but have significance only as parameters that define an infinite
perturbation expansion. Putting aside, for the moment, any inconsistencies
and loss of mechanical significance that may result owing to the method of
their estimation, the quantum mechanical identities of these constants, and
their effect on the physical significance of RKRYV potentials must be
considered.

Since the molecular constants employed in the estimation of RKRV turning
points are derived by considering experimental line positions, they must
reflect the nonadiabatic interactions experienced by the electronic state in
question. This contamination will, to some extent, enter into the classical
turning poinis of motion. In order to gain more insight into this, it is
helpful to examine qualitatively the influence of neighbouring -electronic
states on the values taken by the derived G, and B, constants that serve as
input for such a calculation. The vibrational terms will deviate from their

(generally unknown) adiabatic values through homogeneous mixing of the
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unperturbed eigenfunctions. This type of perturbation is fully compatible
with a JWKB transformation of the eigenvalue problem, Eq. (2.1), since it will
contribute to the adiabatic potential and to the adiabatic rotational
constants in a J-independent fashion. Thus the RKRV procedure can recover
homogeneously perturbed potential curves. However, even though a
heterogeneous interaction will have no additional effect on the rotationless
term values, it can significantly alter the adiabatic (or even homogeneously
nonadiabatic) identity of rotational constants. No provisions were made for
this type of interaction in the derivation of the RKRV equations; the
formulation of Klein’s g integral assumes that rotational constants are
expectation values of R?%.  More significantly, a fundamental neglect of
heterogeneous coupling is made in the JWKB transformation of the radial wave
equation, Eq. (2.1). It is Eq. (2.32) that should be subjected to this
transformation. Therefore, although the rotational constants contain all the
information on the heterogeneous couplings, the RKRV equations have not been
set up tc extract such information in a theoretically proper fashion. It
appears, then, in the matter of electronic state interactions, that
semiclassical methods face similar limitations as ab initio descriptions; in
order to describe the couplings properly, knowledge of excited state potential
functions is required. In spite of this, a truly inverse JWKB procedure
taking this implicitly into account appears to be possible; the recent work of
Watson (42) offered an as yet unexplored semiclassical scheme for achieving

such a task.

3.3 Extended Dunham and Dunham-type Methods

Recently Bessis et al. (102) proposed a method for the direct reduction
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of vibrational-rotational data to analytical functions describing the radial
dependences of various interesting effects. The coefficients of such
functions were expressed in terms of familiar spectroscopic parameters. The
starting point in a computer-aided perturbation calculation was the Dunham
potential.  Additional functions were employed to describe the effects of
interest, and the coefficients of these were given by unwieldy expressions in
terms of the potential parameters and known spectroscopic constants. One
application of the method was to the description of the radial variations of
the spin-rotation and spin-orbit couplings in the ground state of OH, with
encouraging results.

More recently, Ogilvie (103) developed an analogous inversion procedure
modelled with the Ogilvie-Tipping reduced potential coordinate (104). In
addition to providing less complicated expressions for the coefficients of the
radial functions, the work of Ogilvie was superior in another aspect; the
Dunham reduced coordinate x° = (R -- R)/R employed by Bessis et al. (102),
suffers from a limited radius of convergence (0 < R = 2R ), whereas use of
T = 2R = R)I(R - R), with 0 < R_ < o, is preferable.

The main criticism of these approaches concerns their ability to describe
properly the potential function all the way up to dissociation. It is
doubtful whether any single analytic function can achieve this. In addition,
the power series functions employed above fail to describe the long-range
behaviour of an internuclear potential function.  Finally, neither of the
analytic formulations has been adapted to include heterogeneous interactions
in a theoretically proper fashion. The coefficients would then partially

absorb such effects, losing their originally intended identity.
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PART B: QUANTUM MECHANICAL METHODS

3.4 Direct Perturbation Methods

Initial efforts involving the application of quantum wmechanical
perturbation theory to the improvement of potential functions were concerned
with systematic corrections to a variety of analytical model functions. Galin
et al. (105) considered the calculation of Dunham parameters in high orders of
perturbation  theory, obtained through computer algebraic methods.
Subsequently, Burenin (106) formally perturbed a Fues-Kratzer oscillator,
using the exact solution for this system as a zeroth-order starting basis.
The perturbation expansion was carried out in terms of inverse powers of the
internuclear distance, but use of the conventional Rayleigh~-Schridinger
approach was avoided. Instead, a different perturbation theory (706) was
used, involving a finite number of terms for the emergy corrections, in
contrast to the conventional infinite expansion method. Only the theoretical
layout was presented, and application of the resulting {complicated) procecure
does not appear to have been undertaken.

The first “perturbative” expansion on the basis of a Morse oscillator can
be attributed to Dunham (Z6). In more recent work, expressions sirnilar in
structure to those of Dunham emerged from the formal perturbative treatment of
Huffaker (96). The model was coined the Perturbed Morse Oscillator (PMO) and
in later work (107) it was applied to a variety of diatomic states. In its
purely theoretical form, the PMO expansion was only moderately successful,
encountering particular problems for the ground states of HF and HCL Thus,
despite jargon suggesting otherwise, its current applications find it as a

flexible analytic fitting model for the representation of RKRV turning
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points (95, 108), or ab initio results (109).

3.5 Inverse Methods

The label for methods to follow herein as “inverse” is only loosely
applied. A frue inverse method determines the internuclear potential directly
from experimental data rather than assume some parametrized functional form
and adjust it in a fit to the data (Z10). In this section, methods which
systematically impose corrections to radial Hamiltonian operators to attain
agreement with the experimental data are considered. On the other hand,
Dunham’s procedure can be regarded as a true inversion of the experimental
data to the internuclear potential. This also applies to the procedures

considered in sections 3.2.1 and 3.2.2 above.

3.5.1 Semiempirical Correction Methods

The possibility of removing the disagreement between experimental results
and those of approximate theoretical methods by using the correction function
approach, was first explored by Le Roy and Bernstein (Z11). The method was
applied to H (X 12;) where the ab initio potential of Kotos and
Wolniewicz (112) was adjusted by an empirical correction function in an effort
to resolve a serious discrepancy in the calculated vibrational intervals from
those known precisely from experiment. An interesting result of this work was
that either of a pair of empirical correction functions could remove the
discrepancy, indicating a displeasing lack of uniqueness.

Kuriyan and Pritchard (113, 114) constructed effective nonadiabatic

potential functions for diatomic hydrogen and deuterium, and their molecular

-
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ions using a correction function approach. The method of estimation of such
functions involved the interactive piecemeal determination of linear
correction patches (Z13), applied only to the outer limbs of the trial
potentials. The work of Ref. (11I1) showed that the nonuniqueness of the
correction procedure would be greatest for the low vibrational levels
considered here, so that adjustment of either limb near the minimum would
result in similar changes to the eigenvalues. A small criticism of this
work (113) concerns the failure to consider any possible alteration of the
centrifugal term by heterogeneous nonadiabatic coupling. The importance of
these two articles (113, 114) is that they offered an interesting, albeit
somewhat unrefined alternative to expensive high-level ab initio nonadiabatic
calculations.

Some consideration to heterogeneous effects in hydrogen was given in an

article by Bunker et al. (41), where a centrifugal term of the type,
#_(R) = fI(J + D[1 + a(R)R, (3.8)
was included in fits to low vibrational-rotational energy levels of H2 and DZ'

However, only partial success was demonstrated, most likely due to the

modelling of a(R) by a simpie constant.

3.5.2 Inverse Perturbation Analysis (IPA)

A more methodical approach for obtaining potential correction functions
from experimental data was proposed by Kosman and Hinze (715). This method

begins with a zeroth-order radial Schrédinger equation for a > state,

() + o ) = E 0, (3.9)

vib Tot

=,
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where
0 2.2, 52
) = —fd’ R + UYR), (3.10)
and
_ p2 2
* = BIJ + VIR (3.11)

It is then assumed that the “true” (effective) rotationless potential differs
fromm the approximate function Ug(R) in Eq. (3.10), by a radial correction
function AU(R), so that

= UJR) + AUR), (3.12)

where the -as yet unknown- correction function can be regarded as a perturbing
operator.  Rayleigh-Schrédinger perturbation theory provides the first-order

energy corrections,

AE ;= ) | AUR) ), (3.13)
in terms of the zeroth-order radial cigenvectors. Eq. (3.13) is normally
encountered in direct applications, whereby an assumed AU(R) function is
employed to calculate the first-order energy corrections. Alternatively, a
known AU(R) function can be used in conjunction with parametrized eigenvectors
ltpg,(al, a,, - - -, @; R)) in a variational calcuiation.

The inverted perturbation approach seeks to determine AU(R) by assuming
that the differences AE .y between the approximate eigenvalues, Egj, and the
experimental terms, Ez"p, can be described entirely by a firsi-order model.

These differences should actually be expressed as,

- <vJ AU|wK>
= (uJ|AU v + Z ASadind. l + higher order terms. (3.14)

vIEWK vJ - EwK
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The IPA assumes that second- and higher-order terros are small in relation to
the first term in Eq. (3.14), and unimportant with regard to the experimental
errors.

If the perturbing Hamiltonian AU(R) is expanded in terms of a flexible

mathematical basis set,
AU(R) = c; fi(R), (3.15)

and substituted back into Eq. (3.13), a set of linear equations,

AE,; = ) KU, (316)

is obtained. In typical applications, this set of linear equations is
overdetermined and can be treated effectively by a least-squares minimization
procedure to provide estimates of the c,.

The key approximation of IPA is that the Ezp - Eg] differences can be
equated to the AE  first-order corrections of Eq. (3.14). This can be
ensured by choosing a trial potential, Ug(R), which forms a close
approximation for the final effective potential, Ugff(R). Since this might
not always be possible, and since a finife basis set is used to approximate
AU(R), it is not expected that the perturbation calculation will converge in
one cycle. Therefore, in the IPA formulation of Kosman and Hinze (115), an
iterative approach was adopted. This might equally be thought of as an
application of the variational theorem since the stepwise improvement of the
potential causes a concomitant optimization of the radial eigenfunctions.

Vidal and Scheingraber (116) formulated the IPA in much the same fashion
as the previous investigators (115). The key difference was their choice of a

basis set; improved convergence was claimed with the nonlinear interpolation,
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(R - Re)(Rmax - Rmin)

x = , (3.17)
R_._+ Rmin)(Rc + R) - Z(Rmamein + ReR)

max
with R and R . chosen as the outermost and innermost classical turning
points, respectively. Their representation for AU(R) was,
.xQn
AU(R) = z ¢, P e* (1=ns5) (3.18)

[

where Pi(x) are Legendre polynomials. These authors employed Eq. (3.18) in a
fit using a partial set of term value differences.

The inverted perturbation procedure can also be discussed in terms of the
Hellmann-Feynman (61, 62, 117) theorem (HFT). The HFT equates the rate of
change of an eigenvalue with respect to a real parameter, with the expectation
value of the rate of change of the potential function with respect to the same
parameter, that is,

f;—; = <l1f|?%-}9|4'>- 1)
It is easy to show that the first-order perturbation result is actually a
limiting case of the HFT. In fact, Epstein (118) went on to derive the
conventional second-order resuit from the HFT, and intimated that the entire
Rayleigh-Schrédinger perturbation theory follows from the HFT. However, the
relationship between the IPA and the HFT is not as simple as this and derives
from the use of a least-squares minimization procedure in the optimization of
Ugff(R). Consider the simple case of a single electronic state =,

characterized by a potential,
UR) = [UOR) + BT + 1)/RY + AU (R), (3.20)

with associated eigenvalues
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E  =E +AE . (3.21)

n
The IPA procedure considers the minimization of eigenvalue residuals, AE .,
to obtain AU(R). It is possible to write a Hellmann-Feynman theorem for
Eq. (3.21) with respect to a set of parameters c; that define the potential

correction AU(R), as
0E_jloc, = 9E] loc, + AAE_Jac, (3.22)
which is also equal to
ff,
OE_ Joc, = <nv]|aU (R)ac,|nvl >, (3.23)
leading to the relationship,
0AE Joc, = <nv]|dAU (R)/dc,|nvl>. (3.24)

I. AU (R) is given by Eq. (3.15) above, the partial derivatives given here

assume the explicit form,
IAE  Jdc, = Lmul [f(R)|nv]). (3.25)

These are identically the expectation values (c¢f. Eq. (3.16)) which form the
coeffiicient matrix for the least-squares fit of the IPA.

The need for an initial potential which forms a close approximation to
the final potential has been discussed previously in terms of the reliability
of a first-ordexr perturbaticn model; a good initial potential can reduce the
number of iterations required to achieve convergence. However, a slightly
different interpretation here finds the use of first-order perturbation theory
as the means of linearizing an inherently nonlinear probleia, that is, the
exact relationship between a Hamiltonian operator and its point spectrum. 1t

appears that perturbation tueory acts as the agent of a pseudolinearization of
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the exact ncnlinear problem; partial derivatives required for the
least-squares analysis are obtained most accurately as Hellmann-Feynman
integrals. = The quality of partial derivatives in nonlinear least-squares
analysis is a crucial factor in determining the rate of convergence of the
problem.

The expressions Eqgs. (3.23-3.25) given above were written in terms of the
wavefunctions of the final effective potential; in fact, in equating the

Hellmann-Feynman treatment with the first-order perturbation setup, the subtle

assuraption,

OE, 3, = ULl ®I¥5 > = Wo iRy, (3:26)
was made. In the usual perturbative treatment, the true wavefunction is
expanded,

Wy > = Wi > + A WS> + 2 > + .., (3:27)

in terms of the zeroth-order eigenfunctions and perturbation corrections.
This shows clearly the nature of the first-order perturbation assumption; the
first- and higher-order wavefunction corrections are neglected in the first
cycle and as the potential function is improved iteratively,

IPA | crf

[lPA S s yeil s, (3.28)

that is, the IPA wavefunctions approach ihe exact wavefunctions. This is the
inverse perturbation formulation of the problem of correcting wavefunctions
which is, of course, implicit in the procedure. The IPA wavefunctions are
implicitly, and nonlinearly, dependent on the c, coefficients of the potential
correction. This demonstrates the importance of a good initial potential.

The expectation values employed in the correction procedure depend critically
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on the quality of the trial wavefunctions and will affect the convergence
properties of the solution.

Despite the demonstrated success of IPA in describing systems to which it
had been applied, it remains theoretically deficient in its ability to
describe  rotational shifts that arise from a global heterogeneous
perturbation. The validity of Eq. (3.i1) was not in any way questioned
despite the existing article of Herman and Asgharian (39). It would have
taken little additional labour to implement a Bunker et al. (41) a(R)J(J + 1)
contribution to the eigenvalues in the IPA algorithm. The importance of such
a term in relation to the experimental errors must be established
statistically and not a priori ignored.  Finally, although Koeman and
Hinze (115) claim the method to be within the adiabatic approximetion, it is
easy to see that the scheme can absorb homogeneous nonadiabatic perturbations
as additional corrections to the rotationless potential curve.  Thus, the
claim of adiabaticity in the functions derived Uy the IPA is not proven simply
by obtaining a satisfactoty representation of the spectral data. Adiabatic
and homogeneously nonadicbatic corrections are experimentally inseparable and

potential functions derived in this fashion must reflect both effects.

3.5.3 A Hamiltoriian Correction Approach
3.5.3 (a) Introduction

The procedure described in this section has been developed by
Coxon (119, 120) and applied to the description of the quantum energy levels
and electronic structure of hydrogen chloride isotopomers. The method is
employed in the nresent work to improve the understanding of the spectra,

molecular structures, and electronic state interactions in the hydrides HF,
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DF, HCI and DCl. The formulation rests soundly on the theoretical results of

Watson (42), allowing Coxon to write an effective radial Hamiltonian for a Iz

electronic state n as,

AR) = PLi2u ) + B2IU + D1 + ¢ RVR® + UT(R), (3.29)

defined with atomic masses to take into account the general tendency of the
inner electrons to follow closely the motion of the nuclei. The inclination
of the valence electrons to “slip” from rapid nuclear vibrations is described
by applying a correction to the Born-Oppenheimer potential, as given
previously by Eq. (2.45), with radial functions §';(R) for each atomic centre
i. The §’;(R) can be expressed in terms of two other functions, S}(R) and
Q';(R), as in Eq. (243). In the formulation of Watson, the S'lf(R) are pure
adiabatic corrections, whereas the work of Bunker and Moss (40) shows that
they contain some (small) nonadiabatic component. The functions Q’i'(R)
describe homogeneous nonadiabatic inieractions and allow for the vibrationally
induced slippage effect.

The slippage of valence electrons during particularly energetic nuclear
rotations is characterized by the purely nonadiabatic function qn(R) given in

terms of 1sotopically invariant functions ﬁ';(R),

q(R) = Z(me/Mi)ﬁ';(R), (3.30)

where, as indicated by Eq. (2.42), ﬁ';(R) is expressed in terms of two
functions RY(R) and Q7(R). The functions R}(R) are responsible for
heterogencous electronic state mixing. Due to the contributions from Q';(R),

the total function g (R) is purely nonadiabatic but not purely heterogeneous.
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3.53 (b) Numerical Procedure

Unlike the IPA, the Hamiltonian Correction Approach (HCA) considers the
adjustment of line position residuals by optimizing term value residuals for
two states simultaneously. ~ This is statistically more correct than the
separate adjustment of term values, as the process of measuring a speciral
line position correlates the two levels. It is also more pleasing
conceptually to operate on true obsefvables, the spectral line positions,
rather than on derived quantities. The residuals Av, between the measured

line positions, v__, and those constructed from the eigenvalues of the trial

nbs?

Hamiltonians, v, are given by,

09
— —— 0 — and
AVn’U’]’n”?J”J" - (Enlvlll En'v']’) (En"'U"J" Egnvnju). (3-31)
The simultancous adjustment of two AE . is accomplished by applying the
principles of IPA. Starting with the approximate radial operator
#°®) = Plrap + R + I + IR, (3.32)
the terms

AU (R) + BLJU + 1)q (R)R, (3.33)

associated with the difference between the trial and final effective

operators, Egs. (232) and (3.29), yield the corrections to the eigenvalues,

AE = I RS + e RIWETHIT + 1), (334)

where g (R} = ﬂ:tqn(R)/R?‘. Note that the exact corrections are given as
expectation values of the final effective wavefunctions. Now, a first-order

approximation for Eq. (3.34) is obtained,
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0 0 0 0
AE, = W0 IAU RS> + Wl ®WLSIT + 1), (339)
and the individual kernels are expanded as

AU (R) = Z ¢, R), (3.36)

3
and

&R =) dIR) (337)

casting the Av problem into,

Byt = ) GKED ) AQODTTHY) -
i i

) e — ) dpIET, (338)
i i
where
= @° 19 R 3> = @’ |9R)|¢° 3.39
9> = Y BN, 2, B> = <Y, I8 BIY,,»- (3:39)
Weighted linear least-squares optimization is applied to determine estimates
2

of the coefficients. The weighting is achieved as 0; , Where o, is the

estimated measurement uncertainty of the i™ line position.

353 (c) Mathematical Model

In retrospect, the most important consideration in the success of any
inverted perturbation approach, is the choice of a mathematical basis for
representing the unknov.2 functions. It is also the main weakness of any suci.
procedure; one attempts to determine functions with no prior knowledge of
their radial variations. This requires thoughtful selection of a basis set.

Also, at the fitting stage, much time consuming trial and error optimization
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is not unusual. More will be said on this later, when the HCA is scrutinized
through model calculatiors.

Coxon (120) realized that the use of global functions, which exert an
influence over the entire domain of molecular existence, can lead to
difficulties. ~In particular, the determination of such functions is weigated
strongly towards the lower vibrational levels, for which highly precise data
are often available, paying little regard for spectrographically obtained
electronic data. Thus, it was found (119) that highly precise low-v data
could be fitted quite satisfactorily, whereas electronic data fits were
characterized by systematic residuals that increased with v and J. In later
work (120), use of functions that imposed corrections in localized regions of
coordinate space, removed the systematic trend in the fitted residuals and
allowed the inclusion of highly excited rotational levels in the fits.

The mathematical model employed for AUn(R) in this work is,

AU(R) = AT+ a8 (R) + z b, G (R) + z C iR (3.40)
i ij
ATM is an adjustment to a trial electronic term value. The second function,

§ (R), is the first derivative of the trial rotationless potential,
S (R) = dU(R)/R, (3.41)

which is approximated by the c2ntral-difference formula (121),

- U + 8U -8U, .+ U
S:(R) _ k+2 k-; ;,, k-1 k2 (3.42)

h being the radial distance between adjacent points in the numerical
potential. The derivative term is aimed at translating the potential function

along the internuclear coordinate axis without changing the positions of the

7 * e e |
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energy levels. Use of the first derivative term alone is not correct
mathematically. The increment form of the Taylor series (122) defines,
UR + &) = UR) + h UR) lﬁgfg%}g) + ’i3-d3U3R + ol (343)
dR 2! dR 3! dR
as the mathematical transformation required to achieve a tramslation of the
rotationless potential by h units along the radial axis. Clearly, then, use
of the Sn(R) function alone ignores second and higher derivative terms.
However, the approximation is good for small translations >nd use of the first
derivative alone in this work is justified a posteriori. The explicit use of
higher than first derivatives in the fitting procedure is possible but would
necessitate the wuse of nonlinear least-squares since the coefficients of
derivative terms in the Taylor series expansion, Eq. (3.43), are interrelated.
The G, (R) are modified Gaussian functions,
G (R) = (R - R)=xp[-a (R - R )], (3.44)
constructed about a central radial distance Rm.. The damping parameters a
are in general different on either side of R . (k = 1 ard 2 refer to R < R .

and R > R ., respectively). For two adjacent Gaussians, G, and Gn,i +1° %o
and @ .., are chosen such that the damping components of both functions

have a value of 0.75 midway between R . and R . . (/20). The 0.75 factor is
ni ni+1

somewhat arbitrary but Coxon has shown (120) that a fitted function is

relatively insensitive to this, provided sufficient overlap between adjacent

functions is ensured. Similar conclusions were reached by Hamilton et

al. (I123) in a recent application of a correction procedute employing local

Gaussian functions as a basis.

Finally, the Fm.j(R) functions are defined by

g



.

82

F.R=@®-R) forR<R andF_ (R)=0forR>R (349
and
F (R) = (R - R)Y foR>R andF ,(R)=0forR<R , (346)

allowing for separate radial correction functions for the imner (j = 1) and
outer (j = 2) limbs. R  is the R, value for electronic state n.

The representation chosen for the nonadiabatic function gn(R) is
g (R) = Z d_ H (R), (3.47)
i
where
- (p _ i_ _ i
HRY=R-%)~-R, ~ &), (3.48)

with R chosen to be the smallest internuclear seperation to which the data

are sensitive.

3.5.3 (d) Model Testing
3.5.3 (d.1) General Description of the Problem

A major assumption of the least-squares method is that the selected model
describes the physical problem perfectly,. —In practice this condition is
almost never fulfilled. Here, the a priori assumption is made that the
effective radial operator given by Eq. (3.29), portrays an adequate
theoretical description of the p’ ical problem. The reliability of this
assumption can be established absolutely only by extensive ab initio
calculations that consider explicity the electronic structures and
interactions of all possible states of a quantum mechanical system. This is

clearly not practical here. In general, Eq. (3.29) can be trusted insofar as
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a contact transformation of the exact Hamiltonian is valid. This requires
that electronic states remain fairly well-separated so that any nonadiabatic
interactions can be managed by a second-order nondegenerate perturbation
scheme.

The primary objective of the model calculations is to test the general
reliabilty of the mathematical basis in reproducing known Hamiltonian
operators from synthetic spectra. This will be of help in assessing the
strengths and weaknesses of the HCA and will give an indication of the ranges
of reliability of derived functions.

The model problem is designed to approximate closely the situations
encountered later in this work, where the procedure is applied to real data.
Figure 3.1 portrays a hypothetical layout of three electronic states, labelled
X, A, and B. The ground singlet X state possesses no axial electronic angular
momentum in its unperturbed configuration. It does, however, gain a net
magnetic moment through an interaction with its repulsive A neighbour state.
The nonadiabatic mixing is small for the low vibrational levels of the ground
state, but becomes quite significant as X I3* vibrational levels approach the
dissociation limit, where neutral atomic products are shared by the two
electronic states. Also, a unique perturber approximation is made, whereby
other T states are too far away from X 15* to influence its energy level
manifold to the precision of the measurements. The (second-order) energy of

interaction from the L-uncoupling can then be given approximately by (124),

_ 2 L(L + 1)h2
Wy = =J(J + DBR)} TSy (3.49)

where only valence electron excitation contributes to the kinetic energy of

the muclei.  This expression bears a striking resemblance to the term
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Figure 3.1
Arrangement of electronic states for the model calculations.
The system is composed of a valence ground state X 12+, a
repulsive electronic state AT which correlates with the X
state dissociation products, and an ionic B'st state at

higher energy.
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q(R)J(J + 1) in the effective operator, Eq. (3.29). In fact, by analogy with

a more rigorous treatment (124), q(R) would be given by,

(3.50)

|<a'm|L | X'z
4(R) = ~4{B (R)}Z[Z”ZZ Nz, + Ua'm - U(Xlz')]’

where the summation is over closed-shell electrons around nuclei of distance
T away from the centre of mass. The approximation of pure-preccssion is not
used as it is clearly not realistic for the particular problem at hand

It is evident that the perturbation to bound rotational energy levels
will always be negative.  This is fully consistent with the second-order
Rayleigh-Schrédinger perturbation theory result which dictates that the
unperturbed levels of the lower state adjust away (ie. in a negative
direction) from the higher-lying perturber. With respect to the electronic
state mixing, it is also assumed that the matrix element <A1H|Lx| X 12} from
which the L(L + 1) term in Eq. (3.49) is derived, is slowly-varying and tends
to zero at very small separations and in the limit of dissociation. These
arguments are not only helpful in obtaining a reasonable radial variation for
the model g(R) function, but also in providing a description that may later be
of value in understanding the physics of real molecules.

On the “experimental” front, the emission from the lower vibrational
levels of the ionic B'E" state to the upper vibrational levels of the X g+
state has been “studied” photographically in the ultraviolet. The coupling of
B'=* t0 AT is assumed to be too small to characterize spectrographically, and
mixing of B'=* with high-lying Rydberg states is not of measurable magnitude
for the low vibrational levels considered here. The ground state lower

vibrational levels are known precisely from Fourier transform spectroscopy,
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and an ensuing flame emission “study”, examining intermediate vibrational
levels, has closed-up the gap between the infrared and ultraviolet data.
Spectral data are available both for a hydride HX and its deuteride DX,
covering similar energy ranges. The hypothetical halogen atom X has only one
stable nuclide. Synthetic spectroscopic information is summarized in Table
3.2. The entire system has admittedly been designed to resemble HF and DF,

for reasons that will become apparent as this work progresses.

3.5.3 (d.2) Model Hamiltonians and Synthetic Spectra

Herein, the model molecular systems are defined mathematically. The X Iyt
valence ground state for the hydridle HX has been represented by a Morse
potential function, Eq. (2.101), the relevant parameters given in Table 3.3.
The potential function of the deuteride has been constructed by adding the

simple polynomial form,

AUL(R)

6
Z (R - RY, (3.51)
i=1

to the hydride Morse function. The hi are listed in Table 3.3. The
rotational perturbations from A1 are described by the nuclear-mass-
independent part of the g(R) function, Eq. (3.37), as

~X
2, MR 2 3 4
(r /2)—31-2-2—- =aR-R) +a,R~-RY +aR-R), (352

constructed by considering the theoretical scenario described above.
Parameters a, are listed in Table 3.3. It is assumed that the same functional

form: (ie. the isotopically invariant part) of g(R) applies to both
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TABLE 3.2

Synthetic Spectroscopic Data Base for the Model Calculations

HF DF

Fourier Transform Infrared Spectra

Bands: 1-0, 2-0 Bands: 1-0, 2-0
Precision: 0.0002 cm”] Precision: 0.0002 cm™?

Infrared Flame Emission Spectra

ends: 1-0, 2-1, 3-2, 4-3, 5-4,  Bands: 1-0, 2-1, 3-2, 4-3, 5-4,
4-2, 5-3, 6-4, 7-4, 8-4, 6-5, 7-4, 8-5, 9-5, 9-6,
8-5 10-6, 11-6, 12-7

1 1

Precision: 0.05 cm™ Precision: 0.05 cm”™

B — X Electronic Emission Spectra

Bands: 0-12, 0-13, 0-14, 0-16, Bands: 0-20, 0-21, 0-22, 1-17,

1-11, 1-15, 1-16, 2-10, 1-18, 1-19, 2-12, 2-16,

2-14, 2-17, 3-15, 3-17, 2-17, 3-14, 3-15, 3-16,

3-18, 3-19, 4- 9, 4-10, 4-12, 4-13, 4-14, 5-23,

4-18, 4-19, 5- 9, 5-13, 5-24, 5-25, 6-22, 6-26,

6-11, 6-12 7-12, 7-13, 8-24, 8-26
1 1

Precision: 0.030 cm™ Precision: 0.035 cm™

Underlined data subsets were excluded in fit II (see text).



TABLE 33

Parameters of Hamiltonian Operators for the
Model Calculations”

Potential Functions

HF(X!=*) Eq (2.101) HF(B'Z%) Eq. (2.105)

P, =49 380 em! @, = 45 000 cm!

R, =09168 A R, = 2.1000 A
B =2.382 704 898 3 A’

Radial Range: 0.40 - 4.00 A
Number of Points: 2001

Radial Range: 1.20 - 420 A
Number of Points: 1201

AU(R) Function, Eq. (3.51)

h, = -420 h,= 602
h2 = 10.16 h5 = -1.47
113 = -11.60 h, = 014

(*/2)m_RE(R)/R® Function, Eq. (3.52)

a, = -40 X 1073 a, = 4.0 X 103 4 .= 20 X 1073

ahi are in cm A units and a, in units of amuZcm LA™
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isotopomers. This implies that only contributions from ﬁg(zz) in Eq. (3.30)
are considered spectroscopically significant.

B'=* is assumed to be a Born-Oppenheimer state. Its representation has
been chosen to reflect the ionic nature of the interaction, and is given by a
Fues-Kratzer potential, Eq. (2.105), with R, and 9, given in Table 3.3.

Following the construction of model operators, the point spectra
(eigenvalues) were obtained. The ground state rovibrational eigenvalues for
the two isotopomers were obtained through numerical solution of the radial
wave equation, whereas the eigenvalues for the B's* state were obtained
directly from Eq. (2.106). The spectra described briefly above were then
calculated from the true eigenvalues, normally distributed zero-mean random
errors were generated using the Box-Muller method (Z25) and added onto the

synthetic line positions. These errors are known precisely and facilitate a

later comparison with the fitted values.

3.5.3 (d.3) Trial Operators and Least-Sijuares Fit

Although trial operators for a real data set are normally found from
least-squares estimates of the molecular constants, this was not required for
the model calculations; it sufficed to identify the quantum mechanical
definitions of the traditionally derived rotational constants and wvibrational
term values. In defining properly the true rotational constant of the ground

state, it is helpful to write,
2 3
E,=G, +B[({J +1)] - Dv[J(J + D"+ HJJ + ) + ..., (333)

so that the partial derivative
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oE
—— ¥ B —UJ+ DI +3HIJ + D +..., (354
IV + 1) v Y b
evaluated at J = 0, gives precisely the rotational constant B . This partial
derivative may be estimated by applying the Hellmann-Feynman theorem with

A =J{ + 1) to yield,

B s i) 3.55)
= |l=—| =<l I¥> :
CoBve + Y, TG+l (
where, as a result of the heterogeneous mixing,

U(R) = U,R) + FI( + DL + qRVR. (3.56)

Evaluation of the partial derivative on the right-hand side of Eq. (3.55),

gives

B, = fw,|ll + gRVR|,>, (3:57)
which is composed of the usnal mechanical R? expectatior: value, and a
nonmechanical contribution, /32<q(R)/R2>v. Identical results are obtained by
applying the first-order Rayleigh-Schrodinger perturbation expression, showing
once again the intimate relationship between the HFT and ordinary perturbation
theory. It is important to realize that a conventional Dunham-style
rotational analysis would estimate precisely these constants, as the energy
levels, however parametrized, reflect fully the L-uncoupling effects. The
constants of Eq. (3.57) can then be safely regarded as the experimental
constants, demonstrating the futility of performing time consuming
band-by-band and merge fits. However, it is only fair to comment that
constants obtained traditionally would be slightly different than these
quantum mechanical constants owing to interparameter correlations and

truncation of the series in the least-squares procedure. At the same time,
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for the lowest-order constants B , these should be of the order of the
uncertainties. The true rotational constants were thus calculated and the
vibrational terms, G,, were obtained by numerical integration of the radial
wave equation with Uy(R), the true rotationless potential. The G , B, pairs
were employed to calculate first-order RKRV curves which serve as the trial
potentials.

In order to introduce uncertainty in the RKRV calculations, the
rotational constants and the vibrational term values were truncated at the
fourth and second decimal places, respectively. Additional error arises from
the use of a simple first-order RKRV procedure, although for the Morse
potential this would be very small, as there exists an exact quantization
condition for this oscillator, which resembles that of Bohr and
Sommerfeld (126). This can be expected also by calculating the Dunham Y
correction, which turns out to be zero, suggesting that the third-order JWKB
contributions are small, at least near the minimvin.  The eight-point
interpolation of Lagrange introduces yet more error, and finally, the RKRY
potential for X Is* was purposely extrapolated to a false dissociaiion limit,
20 cm™! lower than the true value. This might be a common problem for hydride
molecules, as the dissociation energy is rarely known with more certainty,
chiefly due to the relatively sparse distribution of vibrational levels near
dissociation. =~ With the pointwise trial potential known, it is possible to
calculate exactly what correction is required to give back the model
potential. The main objective of the model testing is to examine to what
extent the least-squares procedure employed here can recover the model
functions. RKRV calculations were also carried out for the B'Z' state

employing rotational constants which were simple expectation values of RZ
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For the B'=* state, a dissociation energy 2000 cm™! lower than the true limit
was assumed.

In order to set up the least-squares problem to take into account data
for two isotopomers simultaneously, the rotationless potential functions for

xls* resulting from such an analysis are written as,

U (R = USR)yy + AULR), (3.58)
U (R)px = U (R + AUSR), (3.59)

where AU;(R) relates the hydride and deuteride effective functions. For the

Born-Oppenheimer Bzt state,
ff
U Ry px = UpR)yy + AULR), (3.60)
for both isotopomers. The ground state rotational perturbations can be
handled simultaneously for both HX and DX, having already made the

approximation that the halogenic contribution to g(R) is spectroscopically

insignificant. Thus, the relationship

GNR) = (MM )40 R), (3.61)
is built into the fit.

The mathematical model employed in the representation of correction
functions is given by Eq. (3.40). Table 3.4 lists the basis functions that
represented correction functions in the least-squares fit. Initial fits were
concerned with finding an adequate representation for the basic correction
functions, AU(R) and AUL(R), as well as for the function 8y(R), by employing
a small representative hydridic data base. This was accomplished by numerous
trial and error fits. Once satisfactory representations of these functions

were obtained, a partial representative data base for both isotopomers was set

P i I

e = e e e Pea o

ke e 3 b e

[P ——



TABLE 3.4

Basis Functions for Model Calculations

X I+ State
AU(R) AUYR)
inn inn
Gv=0 and Gv=3 FX11 and FX31
Fyay Fxep and Fygy Faw Fyzp Fysp Fxp,
out
Gpeo-13 and Fy,,
H
Sx Sx
&,(R) AU(R)
Hy,, Hys and Hy, Fpyp Fpey and Fpg
Fpap Fpsy Fgrp Fpoy

The functions are defined in the text by Eqgs. (3.42, 3.44,

345, 3.46, and 3.48).

Gaussian functions centered on inner/outer turning points of

The superscripts

the vibrational levels denoted as subscripts.

nOut  yefer to

The subscripts

X B for functions F identify the electronic state.
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up. Numerous subsequent fits optimized the additional functions required to
take the effective hydride functions to those of the deuteride. Finally, the
entire data set was included in a two-isotopomer fit.

Before a comprehensive discussion is made of the results, it is “elpful
to snmmarize briefly the final findings. The reduced standard deviation,

which is defined as,
i2 Y

5 = wp Z {(v(ibs; Vi) } (3.62)

€

with f being the degrees of freedom and €; the measurement error of the i™
line position, is ideally are g = 1 for a model representing the data within
the precision of the measurements, on average. The value obtained here in fit
A (complete data base) was 0 i
Some numerical results of interest are summarized in Table 3.5; with a full

= 1.07, which is considered satisfactory.

data set, the ability of the method to extract the mndel electronic term value
is excellent. However, the fact that the final equilibrium bond lengths are,
for the ground state, further away from the model values than the trial
estimates is somewhat disconcerting. It can be noted, however, that the
fitted difference, RI:X - R?X, was obtained very accurately.

A second data base was collected, excluding all spectroscopic information
for the deuteride in the region v = 5-14 of the ground electronic state. This
simulates the situation which is found for the spectral data base of the
diatomic DF, considered later in this thesis. A subsequent least-squares fit
(B), gave a reduced standard deviation identical to that of fit A. Moreover,
it was found (Table 3.5) that the electronic term values of the BIS* state
were obtained in very good agreement with the model parameters, despite the

gap of several thousand wavenumbers in DX(X 12+). The interpolated data were




TABLE 3.5

Results of the Model Calculations: Radial Functions

Quantity HF DF
R‘:"d(xlz*) 0.916 800 0 A 0.916 807 5(1) A
R xIzty 0916 791 7(1) A 0.916 799 3(1) A

(4
R™B zh* 2.100 0 A
RItpls*y 2.099 999 5(5) A

e
T7@B'sY) 84 780.00 cm™ 84 800.00 cm™

FIT 1
T Blst) 84 780.01(2) cm’’ 84 799.98(2) cm™
[
FIT I

fit, pl+ -1 -1
itz 84 779.98(3) cm 84 799.88(6) cm

4

Quantities X™% and X™ are associated with the model and
fitted operators, respectively. R, is the equilibrium bond
length and Te is the term value of B'Z™.
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typically within two to three standard measurement errors.

Results for selected J for a representative model band, the 4-14
electronic band of DX, are shown in Table 3.6, The random normally
distribuied errors Ail'm added onto the synthetic line positions are <hown to
be in better than expected agreement with the fitted residuals, Ai!'ﬁt. This
situation is typical of the vast majority of line positions and is indicative
of the large flexibility of the mathematical model. This shows the ability of
the procedure in representing accurately spectroscopic line positions subject
to random error. From the application of the procedure to real data, later in
this work, it is found that systematic error is also readily detected.

The ability of the procedure to predict energies and widths of quasibound
states is shown by the results given in Table 3.7. It is particularly
interesting to note that for the levels (v, J) = (24, 29) and
(v, J) = (25, 26) of DX, which were not sampled by the least-squares fit, the
agreement in the widths is nevertheless satisfactory. It should be mentioned,
however, that several line positions associated with high-lying orbiting
resonances, could not be fitted by the model and had to be excluded from
consideration. There does not appear to be any distinguishing characteristic
linking these levels together.  While they all have fairly short lifetimes,
levels with even shorter lifetimes were included in the fit and represented
satisfactorily. Perhaps these problems are associated with local

discrepancies between the true and fitted correction functions.

3.53 (d4) Radial Functions and Discussion

Substantial effort with trial and error optimization was required to

provide the success described above for the model calculations. During the

o et 2
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TABLE 3.6
Results of Least-Squares Fit for the Model DF 4-14 (B — X) Band

P-Branch (cm'l) R-Branch (cm"l)

I vmod"'Avcrr A"’err Avﬁt vmod+Averr Averr Avﬁt

51780.361 0.065 0.072
51662.825 0.027  0.033 51697.194  -0.041 -0.035
51393.582  -0.037 -0.033 51458358  -0.002  0.002
12 50973.535 -0.082 -0.081 51068.081  -0.020 -0.020
16 50410245  -0.004 -0.007 50533.660 -0.010 -0.013
20  49713.670 -0.037 -0.042 49864.980  -0.043 -0.049
24 48896913 0.024 0.016 49074.877 0.024  0.015
28 47975435 -0.014 -0.027 48178.587  -0.042  -0.055
32 46967.943 0.016 -0.002 47194.756 0.023  0.006
36 45896.094 0.004 -0.013 46144.908 0.103  0.086
40  44785.619 -0.01¢ -0.018 45054.435  -0.006 -0.012
44 43667558 -0.036 -0.038 43954.653 0.031  0.031
48 42581491 -0.034 -0.039 42884.820 -0.032 -0.034
52 41583.730 0.065 0.071 41901.408 0.047  0.056

(o B S e

17m0 ¢ are line positions synthesized from the eigenvalues of

the model operators. Aierr are the random normally distributed
errors and AV, represent the fitted residuals.



99
TABLE 3.7

Results of the Model Calculations: Energies, and Widths
of Selected Quasibound Levels

T
HF(X's)
10 40 51 617.77 0.30 51 617.76 0.30
11 38 51 390.69 1.71 51 390.70 1.73
12 35 50 831.06 0.11 50 831.07 0.12
13 33 50 704.76 1.49 50 704.77 1.55
14 30 50 318.86 0.27 50 318.86 0.30
15 27 50 023.86 0.08 50 023.85 0.06
16 24 49 812.24 0.06 49 812.22 0.04
17 21 49 671.96 0.15 49 671.76 0.11
18 17 49 463.07 0.09 49 463.00 0.08
19 14 49 454.01 1.46 49 454.09 1.33
v J Emod rr?gﬁm Eﬁt rf f‘; rtlm
DF(x'z*)
*24 29 49 746.69 0.30 49 746.81 0.19
*25 26 49 667.91 1.02 49 668.69 0.81
26 21 49 478.25 0.13 49 478.24 0.11

e

Quantities X™ and X™ are associated with the model and
fitted operators, respectively. E (cm'l) are the
eigenenergies and I'. . (cm'1) are the full widths at half
intensity maximum. Levels marked with an asterisk (*) were
not represented in the least-squares fits.

ML

g

[EYTNE I S

at P e d



100

course of this intermediate phase of the analysis it was possible to identify
some interesting aspects of the physical problem which deserve some
discussion.

Since information pertaining to energy is employed to determine the
radial variation of elements of the Hamiltonian operators, it seemed natural
to consider a mapping of the vibrational-rotational energy eigenvalues onto
the radial domain. This can be achieved by linking the energy levels to the
classical turning points of motion for the outer limb, or to the internuclear
separations at which the probability function w:J(R) has decreased to a small
percentage (eg. 10%) of the outermost peak magnitude. The resulting
distribution peaks at mid-v,J and finds the highest vibrational-rotational
levels relatively isolated and sparsely distributed. Determining a correction
function at large-R then places a large burden on these few implicitly
outweighted levels. While low-v,J levels near the potential minimum are also
somewhat similarly distributed, these are often more precisely studied. The
total weighting, then, derives explicitly from the precision of the data and
the frequency of observation, and implicitly from the distribution of levels
along the radial coordinate.

A number of correction functions were obtained in various fits, differing
only slightly from the true correction at short/large-R, while providing
equally satisfactory representation of the data.  This demonstrates the
expected difficulties in obtaining a unique solution of the radial functions
in regions of lower weights. Fortunately, it was also noted that as
statistical correlations among fit parameters were reduced, by careful choice
of basis functions, the fitted corrections reproduced the true functions

essentially exactly. The nonuniqueness problem is depicted in Figure 3.2,



Figure 3.2
The correction function AUX(R) for the model calculations.
The solid line represents the model correction function and
the broken lines are functions obtained in two independent
fits (see text). R . and R are the innermost and
outermost turning points respectively, obtained by
considering all the fitted E ;.  Filled circles represent
the radial distances where the probability function w,sz(R)
declines to 10% of its value at the outermost maxima for
J=0and J = J o of given v. For HF vibrational levels
v = 16-19, the open circles indicate the analogous positions
for other high-J rotational levels, with J decreasing in

steps of unity from J A"
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which shows two fitted AU (R) functions, both representing the line positions
equally well, but with only one being a good representation of the true radial
correction functions, also shown in the figure. Some indication is given of
the distzibution of the higher rovibronic levels along the radial coordinate,
which helps in rationalizing the onset of nonuniqueness with a sharp decline
in the distribution. The range defined by Rmin and Rmax in Fig. 3.2, is that
of the innermost and outermost turning points obtained by considering all the
fitted E_.

The agreement between the fitted and model g(R) functions is also very
good, as shown in Fig. 3.3. The systematic disagreement at large-R is due to
the rapidly diminishing implicit weighting in this region. For the functions
AUL(R) and AU;,{(R), Figures 3.4 and 3.5 show excellent agreement in regions of
ample weighting, but exhibit clear disagreement at both extremities of the
function, where only a relatively few (implicitly outweighted) line positions
influence the determination of the functions. It is interesting to note,
however, that the disagreement for the two limbs is of opposite sign; it is
hence found that the model eigenvalues are predicted considerably better,
despite the nonuniqueness in the determination of the radial functions at
small/large-R.

Although it is essential to choose radial ranges for the generation of
first-order perturbation expectation values (Hellmann-Feynman/least-squares
partial derivatives) which sample the rovibrational eigenfunctions adequately,
it is not expected that the fitted corrections will be physically meaningful
in this entire range of R. While this would be the case for a perfect model,
the collective results of the model testing indicate clearly that the true

functions fall within the 95% confidence intervals of the fitted functions in



Figure 3.3
The isotopically invariant component of the ground state
g(R) function for the model calculations. The solid curve
represents the model function and the two broken curves give
the 95% confidence limits of the fitted function. For the
definitions of R . and R . and the filled circles see the

legend to Figure 3.2.
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Figure 34
The function AUG(R) for the model calculations. The solid
curve represents the model correction and the two broken
curves represent the 95% confiderce limits of the fitted
function. For the definitions of R . and R __ and the

filled circles see the legend to Figure 3.2.
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Figure 3.5
The function AU?((R) for the model calculations. The solid
curve represents the model correction and the two broken
curves represent the 95% confidence limits of the fitted
function. For the definition of R . ad R and the

filled circles see the legend to Figure 3.2.
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a slightly less extensive range of R. It is found that the innermost and
outermost classical turning points (Rmin and Rmax), obtained by considering
all the fitted eigenvalues, define a more realistic range of R for a
statistically meaningful determination of the correction functions. It is
evident that outside this range, the calculated statistical confidence limits
have little significance.

In summary, the overall results of the model testing are very
satisfactory and quite enlightening. While the intermediate regions of the
fitted corrections are trustw...y, the extreme inner and outer sections of
the derived potential functions are less reliable and should be regarded with
caution. This is partly due to the inherent nonuniqueness of the
central field problem, which unavoidably correlates the corrections on the
inner and outer limbs, and also due to a slight inadequacy of the mathematical
correction model. In regions of low weighting, the procedure is more
committed to the determination of a unique set of eigenvalues than unique
determinations of the radial variations of the Hamiltonian operator elements.
The uniqueness in the determination of radial functions can be improved by
careful choice of basis functions as to decrease interparameter correlaticns,

and hence also by the careful choice of trial operators.



CHAPTER 4
ROTATIONAL ANALYSIS OF THE B'z* - x!s*
EMISSION BANDS OF D>Ct

4.1 Introduction

The X'S* state of HCY/DCI is not a pure covalent state. While it does
yield neutral products upon dissociation, its chemical properties in the
ground vibronic level reflect some degree of ionmicity. This is due to an
avoided crossing with the excited Bzt state, as a recent ab initio study has
shown (127). The ground state is mainly ionic, 4% 2*50° , at small (=< 3.5
bohr) internuclear separations while at larger bond lengths (= 5.2 bohr) the
46%27*5060  valence configuration is dominant. Contributing in the
intermediate internuclear separation region is yet a third configuration,
40%25"66” , peaking at about 15% of the total contribution at approximately 4.8
bohr. The valence contribution increases rapidly at large R leading to the
neutral dissociation products CI(ZP) + H(ZS). Correspondingly, the Bls*
interaction is wvalence at small separations, becoming increasingly ionic at
long-range and yielding the products Cl"(lS) + HY. Also, at very small (= 1.5
bohr) internuclear distances, the B state intersects a set of tightly bound
Rydberg states which converge gradually to, and resemble, the HC1+(X 2I’I) core
in character.

A single electron (@ — o*) excitation gives rise to the A repulsive
state, lying between X * and B'=* and sharing neutral dissociation products
with X!S*. This state contributes heterogeneously to the energy level

manifold of the ground state in a rctationally dependent fashion. The smooth
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vibrational dependence of this effect makes it impossible to detect the 4 - X
interaction from a spectroscopic analysis based on molecular constants for a
single isotopomer. Figure 4.1 shows some of the low-lying electronic states
of HCI(DCI).  The experimental spectrum (I28) displays severe local
perturbations beginning approximately above v = 9(13) for HCI(DCI) of the B'=*
state due to interactions with the neighbouring Rydberg states.

The ground electronic state of hydrogen chloride has been the subject of
numerous Spectroscopic  studies. Very precise molecular constants are
available for the lowest vibronic level (129). Far-infrared transitions in
v” = 0 have been studied by tunable laser techniques and serve as reliable
spectral standards. The first eight vibrational levels are known well from
experiment and the higher vibrational levels (7 < ¢" < 17) have been
characterized by the rotational analysis of Coxon and Roychowdhury (130).
These authors observed emission from the lower (0 < v' =< 6) levels of the B
state. The B'Z* state has also been detected in absorption from v" = 0 of the
ground state by Douglas and Greening (1238). The higher vibrational levels
accessed in this study were found to be highly perturbed so that the quoted
molecular constants must be viewed with caution. This study also reported
fragmentary structure attributed to several high-lying Rydberg states.

The spectroscopic characterization of the X 3% state of DCI is less well
established. Only levels with v" = 0-5 have been studied experimentally and
no information is available for the higher vibrational levels, the emission
from B'S* not having been hitherto observed. A principal aim of the present
work is therefore to provide an analysis of the B - X system of DCl in
emission to complement the information already available for the

hydride (130). A combined treatment of HCl and DCI line positions will result



Figure 4.1
Arrangement of low-lying electronic states of HCI(DCI). The
potentials for X Is* and B'3* are RKRV curves (130). Al

other potentials were taken from an ab initio study (127).
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in radial Hamiltonian operators for each isotopomer and will allow for a
reliable extirapolation to the energy levels of tritium chloride, as well as

providing an improved understanding of the electronic structures of HCI/DCI

4.2 Experimental Details

Experimental spectroscopy in the ultraviolet region is faced with special
problems. The strongly absorbinngz; - X 32; (Schumann-Runge) band system of
atmospheric oxygen in the 1950-1759 A region interferes even if air is present
at very low concentrations. Carbon dioxide and water vapour absorb below
1750 A and molecular nitrogen poses problems below 1450 A (131). Thus for
meaningful spectroscopic work below 2000 A, it is necessary to evacuate the
chamber containing the dispersive element and the detector.

The pioneering work of Victor Schumann (131) was instrumental in
establishing a sound understanding of the special problems of vacuum
ultraviolet (VUYV) spectroscopy. Schumann recognized that ordinary quartz
optics become opaque below 1850 A and employed fluorite prisms instead. Since
the gelatin based emulsions employed traditionally also become opaque around
1850 A, Schumann developed photographic plates which were essentially free of
gelatin. Having established methodology with respect to optics, medium and
deteciors, Schumann can be regarded as the founder of VUV spectroscopy.

The emission spectrum of DCl in the ultraviolet has been recorded with
the 10.7-m vacuum spectrograph at the Herzberg Institute of Astrophysics. A
detailed account of the construction and operation of this instrument has been
published (132). It is useful, however, to review briefly some important
features. The general layout of the spectrograph is shown in Figure 4.2. The

entrance slit, diffraction grating, and photographic plate holder all lie
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Figure 4.2

Schematic of the 10.7-m concave grating vacuum spectrograph.
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along the perimeter of what is known as a Rowland circle (13). The radius of
curvature of the concave dispersion element is 10.685-m and its ruled area is
198 x 100 mm. The slightly curved plate holder is 93-cm long and can hold two
5 X 45 cm photographic plates. The entire assembly is contained within a
vacuum tank a little over 11-m in length and equipped with a powerful pumping
system composed of a parallel arrangement of a 22-cm Edwards 1500 L/s oil
diffusion pump and a 52 L/s Kinney mechanical pump. In addition to this “fast
system”, there is a “stand-by system” consisting of a 15-cm National Research
Corp. fractionating pump backed by a 5-cm Edwards diffusion pump and a 0.9 L/s
Kinney mechanical pump. The plate holder assembly can be isolated from the
rest of the tank by means of a gate valve, so that changing photographic
plates can be accomplished without subjecting large parts of the tank surface
to the atmosphere.

The slit is also associated with a gate valve so that changes to its
height and width can be made without breaking the vacuum in the tank; it is
thus possible to operate the spectrograph for months without significant
contamination from atmospheric gases. Since inert gases are transparent far
into the ultraviolet (131), for certain studies it is possible to “flush” the
surface of the grating with a steady stream of argor or helium. Two gratings
were employed for the present study. The first is a 600 line/mm grating
blazed at 11 600 A. Blazing is a process whereby the shape of the ruled
groove is adjusted to cause the incident intensity to diffract with the
highest possible efficiency at a particular angle (133). This grating has
been coated with MgF2 in order to increase its reflectivity at approximately
1200 A. A 1200 line/mm platinum coated grating blazed at 1200 A was employed

in its first-order for lower resolution exploratory work. This grating is
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particularly helpful for the vacuum ultraviolet region owing to the high
reflectivity of platinum at such wavelengths, and was used by Di Lonardo and
Douglas in recording the electronic absorption spectrum of HF (87).

The B'=" state was populated by flowing DCl (Matheson, 99.9% purity) and
helium (Matheson, 99.995%) through a 2450 MHz microwave discharge, at total
pressures of about 5 Torr. Order separation was attempted by predispersing
and refocussing the emission onte the 20-um slit of the 10.7-m concave grating
vacuum spectrograph. Spectra were recorded in the wavelength region 1660 to
2400 A in the fourth to sixth orders of the 600 line/mm grating. Kodak SWR
and 103a-0 as well as Ilford Q2 photographic plates were used with exposure
times ranging from 7 min to 2% hr and reciprocal dispersions of 0.018 to 0.035
nm/mm. The exposed plates were subsequently developed and photographic
prints of all the spectra were obtained.

Measurement of the plates was made with the aid of a comparator
accompanied by an oscilloscope display of the spectral line profiles. Atomic
calibration lines were measured during the same sessions as the molecular
lines to avoid any systematic shifts in the vacuum wavenumbers from different
plates. Each plate required three separate measuring sessions and care was
exercised to obtain slightly overlapped measurement regions between sessions
so that any systematic shifts could be readily detected. The position of the
plate along the platform was automatically punched onto a card after a
conversion of the (analog) comparator translation wheel position into a
digital signal. = Additional information, relating to the reiative intensity
and shape characteristics of spectral line contours were manually punched onto
cards. The cards were assembled and the information was transferred onto

magnetic tape so it could be more easily manipulated.
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4.3 Wavelength Calibration

The first step of the analysis involved wavelength calibration of the
molecular line positions. Initial efforts were concerned with the
identification of atomic lines from the measurements with the vacuum
wavelengths of Crosswhite (134). Here, the photographic prints were .ery
useful, but it was found that the job of identifying manually lines recorded
in overlapping orders was very time consuming, with an average processing time
of several hours for the results of each measuring session. Thus, the task of
identifying atomic line measurements with standards, the least-squares
construction of a dispersion curve relating the distance along the plate with
the vacuum wavelength, and the generation of vacuum wavenumbers for molecular
line measurements, were combined into an automated computer program.

Program SPECTRUM (Appendix A-1) accomplishes the same tasks as the
preliminary manual analysis in a matter of a few minutes. A brief description
follows here, and is extended by comment statements in the source listing.
The spectral order containing most assignments was selected (e.g 3rd) and
approximate dispersion curve coefficients were used to make additional
identifications and improve the preliminary dispersion curve. This iterative
increase of identifications was carried out in an interactive fashion as the
desired convergence was in a few cases not immediately realized, with fits
latching-on to false dispersion curves. In such cases, the program was halted
and a manual least-squares fit provided better trial coefficients. In all
cases the desired convergence was achieved eventually. Following this, lines
not identified previously were calculated in all other expected orders (an,

4™, Sth) and a search was performed to make the remaining identifications.
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Finally, a least-squares fit employing all identified lines was carried out,
excluding lines involved in coincidences between different orders. The fitted
dispersion curve was then transformed to the order of the molecular emission
spectrum. This made possible the rapid estimation of vacuum wavenumbers for
the DCI(B - X) measurements.

Small adjustments (< 0.10 cm'l) were made to the wavenumbers of a small
portion of the data to establish internal consistency, and multiple
measurements of the same transition were averaged to produce a unique set of

measurements.

4.4 Analysis of Molecular Spectrum

The high rotational temperature of DCl(B12+) formed in the discharge
leads to severe overlapping between different vibronic bands,  yielding
spectra which lack any apparent regularity. In addition, the presence of two
predominant nuclides of chlorine lends further complexity to the spectrum. A
feature that is often helpful in initiating the process of assigning quantum
numbers to spectral line positions is a well-defined band head. In this case,
however, the rapidly dirminishing line intensities toward low-J make the visual
identification of bandheads an almost impossible task. An appreciation for
these problems can be gained by examining Figure 4.3 which shows a small
partially assigned portion of the spectrum.

A modern technique that could be employed to simplify the appearance of
complex spectra involves a supersonic jet expansion apparatus, leading to
spectra with a “cold” rotational distribution. However, this technique is
useful for absorption spectroscopy only. Initial efforts at making

assignments consisted of drawing “stick-spectra” from approximate term values
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Figure 4.3
A smali portion of the B's* - Xx'=* emission band system of

DCl. Assignments are shown for the D¢l isotopomer.
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obtained by solving the radial wave equation with the H¥Cl potentials (130).
Shifting these along the appropriate photographic prints led to visual
matches. Although some success was realized, it was decided to abandon such
traditional methodology and devise a computer-aided search procedure for
obtaining quick and reliable rotational assignments.

The computer search was developed on the basis of the conventional

combination relations. These can be written as,

AFIJ)=RJ -1) - PJ + 1) =F(J +1) - F(J - 1, (4.1)

AF(J) = RJ) - PU) = Fi(J + 1) = Fi(J - 1), (42)

for the lower and upper states, respectively. In past years, analyses of
moderately resolved spectra employed these expressions in a graphical fashion
to yield estimates of molecular constants. However, with better resolved
spectra now available, and with the wide availability of computers and
software, the role of combination differences in spectroscopic analyses has
been somewhat diminished. These were found to be very helpful in the present
work mainly for their rather low sensitivity to small smooth changes to the
internuclear potentials. In preliminary efforts towards the development of
molecular line search software, it was found that term wvalues for p¥al
obtained by employing the H*Cl RKRV potentials of Coxon and
Roychowdhury (130), gave synthetic line positions that deviated from the
observed values by several wavenumbers. At the same time, however, the
synthetic combination differences were in remarkably good agreement with those
observed. This provided for a stable and trustworthy means of obtaining quick
and reliable rotational assignments.

As the analysis progressed, better potentials and combination differences
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became available. Two separate computer search programs were written, one
each for the upper and lower combination differences. The algorithms were
designed to search Av, wavenumber units on either side of the cailculated
combination difference, and AvR wavenumbers on either side of the calculated
R(J) lines; thus, the amount of output could be controlled. From the several
possibilities provided, it was quite straightforward to recognize a nonrandom
J-dependent pattern in the residuals between observed and calculated
frequencies, signifying the discovery of a vibronic band.

Using the progressively improved potentials for both states, it was
possible to decide which bands to search for, on the basis of calculated

Franck-Condon factors (FCF). These are defined as,

® 2

4yrr = U w.:waz,(R)dR] , 43)
0

the square of the overlap integral between rovibronic wavefunctions involved
in a transition. The FCF for DCI were found to be highly J-dependent, and a
simple J = 0 calculation did not offer an accurate prediction of the
observations. Table 4.1 shows FCF calculated for various values of J, on the
basis of the final RKRV potential functions given below. These were extremely
useful in rationalizing observed intensity patterns and in avoiding futile
searches for structure with predicted low transition probabilities. Even with
this insight in hand, however, the poor extrapolation properties of a power
series in J(J + 1) often precluded the identification of structure which
commenced or resumed at higher J.

Assignments were made for 56 bands of D*Cl with 0 < v' < 7 and
11 = 9" =< 23. Rotational lines belonging to a vibronic transition were fitted

to a band origin and rotational parameters for both electronic states, in
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TABLE 4.1
Franck-Condon Factors® for the B'=* - X'=* Band System of D¥Cl

for Selected Values of Vi
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TABLE 4.1 (Cont'd)

Franck-Condon Factors® for the B'S* - X'=* Band System of D3l

for Selected Values of J°

6 v =7

= 5 v

4 v

3

I

vVv=0v =19 =27

e

1.56-1 9.51-2 6.47-7 5.25-2 3.86-2 3.17-4 337-2 2.35-2
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accord with the model,
v' p" ) = @' + F'N ) - PN+ o, (4.4)
where
') =T, + G - G, (4.5)
and
Fv, I) = Z X®pa + oy, (4.6)
n

and €, are the associated measurement errors. This individual band fitting
approach of 2784 lines led to a set of 560 parameters, most of which were
redundant estimates. The results for individual band fits are given in Table
4.2. These results were merged to a set of single-valued estimates composed
of 32 upper state and 65 lower state rotational parameters (Table 4.3) and 56
band origins (Table 4.2). The standard deviation of this merge was aM = 1.70,
dictating that reported standard error estimates for the parameters should be
multiplied by this factor. A subsequent merge in which the 56 band origins
were reduced to a set of vibronic term values relative to the energy of the
lowest observed level, v" = 11, gave a standard deviation of GM = 1.81,
indicating that there is little relative systematic error in the data across
the extensive band system. The relative vibronic terms are listed in Table

4.4,

4.5 RKRV Potentials and Electronic Isotope Shift

Since energy data are not available for ground state levels with
v" = 6-10, the energy of v" = 11 relative to the energy of v" = 0 can only be

obtained by interpolating vibrational intervals above »" = 5 and below
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TABLE 4.2

Least-Squares Fits” for Individual Bands of the
B's* - x's* Band System of D*Cl.

v v Yy o N JP JR

0 16 49529.90(2) 0.030 49 22-58 27-54
0 17 48316.34(2) 0032 58 11-52 9-52
0 18 47167.78(2) 0030 72 7-49  8-50
0 19 46085.99(2) 0.032 65 6-48 5-48
0 20 45075.07(3) 0.031 50 3-31  6-37
0 21 44139.38(2) 0.031 47 4-38  0-39
0 22 43284.35(2) 0.033 23 3-28 3-30
1 15 51417.28(2) 0.026 56 24-56 22-56
1 16 50142.48(2) 0.030 82 7-55 7-56
1 17 48929.40(2) 0.026 72 2-51 5-50
1 18 47780.34(1) 0.026 58 4-38 4-38
1 19 46698.58(3) 0.030 23 12-22 11-31
1 21 4475196(3) 0.036 36 16-40 17-40
1 22 43896.94(2) 0.029 47 5-37 4-37
2 14 53347.83(2) 0034 82 3-60 3-59
2 15 52013.35(2) 0.030 85 6-56 6-56
2 16 50738.56(1 0032 73 7-50 4-50
2 17 49525.48(1) 0.030 58 2-38  2-40
2 18 48376.41(2) 0.035 27 3-23  3-24
2 19 4729463(3) 0.041 24 32-47 33-47
2 20 46283.75(4) 0.034 33 16-38 16-37
2 21 45348.04(3) 0.029 31 13-40 16-41
2 22 44493.05(3) 0.027 15 24-37 24-37
2 23 43725.28(2) 0.026 19 6-22 7-19
3 13 55320.20(1) 0.027 87 4-64 8-63
3 14 53927.88(1) 0.024 82 6-55 5-54
3 15 52593.40(1) 0.027 73 3-49  3-49
3 16 51318.58(1) 0.030 45 5-35 4-35
3 18 48956.52(2) 0.030 36 24-48 23-49
3 19 47874.73(2) 0.033 40 6-32 3-31
3 21 45928.09(3) 0.037 19 28-39 25-38
3 22 45073.11(3) 0.025 29 7-30 7-28
4 12 57333.89(1 0028 79 4-62  2-59
4 13 55884.83(1) 0.029 79 2-52  3-53
4 14 54492.51(1) 0.032 80 1-58 0-56
4 15 53158.02(1) 0.032 66 2-47 1-49
4 17 50670.19(2) 0.039 34 27-50 27-49
4 18 49521.12(1 0.028 52 3-40 0-38
4 19 48439.33(3) 0.036 17 7-24  9-26
4 3

21 46492.76 0.037 21 14-32 13-30

5 g o R



TABLE 4.2 (Cont'd)

Least-Squares Fits® for Individual Bands of the
B'=* - x'=* System of D¥CIL

t (.4

v v Y o N JP JR

5 11 59388.12(2) 0.030 64 8-53 7-47
5 12 57883.70(1) 0.027 67 5-48 4-41
5 13 56434.65(2) 0.030 63 7-47  6-38
5 14 55042.31(1) 0.030 45 3-37 1-36
5 17 51219.96(2) 0.033 42 8-40 9-38
5 20 47978.23(3) 0.032 24 7-29  9-31
6 11 59923.86(2) 0.025 56 9-48  8-42
6 12 58419.46(2) 0.030 47 4-41  3-40
6 13 56970.39(2) 0.036 56 7-51 10-53
6 16 52968.79(2) 0.035 45 6-37 2-40
6 19 49524.94(3) 0.036 30 8-31 9-31
7 11 60446.45(3) 0.031 67 13-55 15-55
7 12 58942.04(3) 0.032 55 9-48  7-54
7 15 54766.16(2) 0.036 40 6-37 8-35
7 16 53491.34(2) 0.043 33 7-41  3-33
7 18 51129.25(3) 0.039 26 12-41 12-41

“The merged band

origins (v,) and standard
deviations (o) are in cm™; N is the number of
lines fitted; JP and JR indicate the ranges of
Standard

fitted lines in the P and R branches.

errors (in parentheses) are given in units of the

last quoted decimal place.
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TABLE 43

Merged Parameters” (cm"l) for the X'=* and BIZ* States of D¥Cl

131

V" X -10°x@ 108x® 101x(® 1015x ()
v v v v v
11 41692,(2) 1312,(3) -005,(3) 004,.(1)  -0.09,,(1)
12 40554,(1) 1325,(2) -0.04,4(1) 0033,(4)  -0.078_(4)
13 39389,,(1) 1329,.(2) -0.136,,(9) 0047,(3)  -0.103,(3)
14 38210 (1) 1354,(2) -014,(1) 0038,(4) -0.116,(4)
15 36094, (1) 1376, (2) -022,.(2) 0048,(6)  -0.164,,(7)
16 35741,(1) 1403,,(2) -038,,(2) 0092,(5)  -0.284,(7)
17 34449,(2) 1452,(3) 047, (3) 010 (1)  -040.,(2)
18 3.3085,(2) 1497,(3) -076,(4) 019,(2) 071, (3)
19 3.1653,(2) 1558,(5) -121.,(6) 038,,(3)  -136.,(5)
20 30145,(4) 1702 -08,(3) 00,02  -11,7
21 28504,(3) 179,(1) -21,(2) 08,1  -43,.(2)
22 26716,(4) 195, (2) -34,3) 16,2 9.7, (T)
23 2470,(6) 18, (6) -30.,,,(2T) 92.(55) -1087(411)
v’ x -10°x2 10°x 1083x ™
v v v v

0 14082 (1) 295,.(1) 127,(7)  -0.59.(11)

1 14165.(1)  337,(1) 180,(5)  -097.(8)

2 14263,(1) 3831 232,(5) -128,(7)

3 14381,,(1)  436,5(1) 3.05,(4)  -179,(5)

4 14517,(1)  5.00,(1) 414,05 287 (7)

5 14670,,(1) 570,(2) 526,(9)  -3.754(17)

6 14838,(1) 648.,(2) 6708  -5.16(15)

T 150114(1) 7.23,,(2) 784,(8)  -5.99,(14)

®The standard errors (in parentheses) are given in units of the last
decimal place preceding the subscript figures which have been added to

reproduce the original data.




Merged Vibronic Energies (cm'l) for the B'=* and X'+
States of D>CI*

TABLE 4.4

ground state.

v Tv. v Tv,,
0 56484.955(3) 11 0.0
1 57097.53 4(3) 12 1504.412(3)
2 57693.619(3) 13 2953.471(3)
3 58273.676(3) 14 4345.794(3)
4 58838.301(3) 15 5680.276(3)
5 59388.111(3) 16 6955.075(3)
6 59923.868(3) 17 8168.13 4(3)
7 60446.425(3) 18 9317.187(3)
19 10398.952(3)
20 11409.88 4(4)
21 12345.570(4)
22 13200.599(4)
23 13968.3 4(2)
%See footnote ¢ of Table 4.3.
The term values in the table refer to v = 11 of the

They may be referred to v = 0 by
adding 20077.0 = 1.0 cm™ (see text).
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v" = 11. This procedure gave G(v" = 11) — G(¥" = 0) = 20 077.0 cm™! with a
rather conservative error estimate of * 1.0 cm™. Following a similar
interpolation of the missing rotational constants, through a fit to a power
series in (v + %2), a first-order RKRV potential was constructed. The turning
points and energies for the X I>* and B'S" states are listed in Table 4.5.

With an absolute energy scale for the ground state levels established, it
was possible to estimate the electronic term of the B'=* state of D*Cl and
hence any isotopic shift from H¥CL  The value obtained here was
Te(DCl) = 77 318 = 1.0 cm'l, which, when compared to the value of
T (HCl) = 77 307.13 cm™ (119), gave an electronic isotope shift of
AT, = —=11 = 1.0 cm™. The approximate eqaation of Bunker (135),

AT, = 0.000068[T ] + [B,(HCI) — B (DCD] L%,

~ [B,(HCI) - B (DCY] KLY, , (4.7)

where <L2> was approximated by the sum of the values of L(L + 1) for the
dissociation products for each electronic state, gave a value of AT, = -5.0

cm'l, in only approximate agreement with the experimental value,

4.6 Rydberg = non-Rydberg Interactions

The inner limb of the ionic B'S™ state intersects the 0% components of a
set of high-lying Rydberg states which are derived from the ground 2[1 state of
the ion. This gives rise to marked irregularities in large portions of the
Bist « x 122+(v = () absorption spectrum (136-139), which samples higher
vibrational levels of the B state. A deperturbation of these primarily local
interactions has yet to be attempted; nor has an unequivocal vibrational

numbering been established for the levels of B's* involved in the absorption
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TABLE 4.5
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RKRV Turning Points® for the X!=* and B'=* States of D3Cl

X12+ BIE+
v G, +Y, R. R G, + Yy R . R .
0 1066.60  1.19091 137364 31059 234579  2.68207
1 3157.66  1.13797 1.45779 923.17  2.22567 2.81597
2 5195.03  1.10512 1.52250 1519.26  2.14205 2.91318
3 7179.05  1.08041 1.57976 2099.31  2.07266  2.99563
4 9109.99  1.06041 1.63305 2663.94  2.01118 3.06964
5 10988.03  1.04356 1.68397 3213.75 195486 3.13814
6  12813.25* 1.02899 1.73347 3749.51  1.90229  3.20267
7  14585.68* 1.01619 1.78214 4272.06  1.85275 3.26435
8 16305.20* 1.00479 1.83042
9 17971.62* 0.99454 1.87866
10 19584.59* 0.98526 1.92716
11 21143.62 097681 1.97618
12 22648.05  0.96908 2.02601
13 24097.07 0.96199 2.07692
14 2548941  0.95546 2.12929
15 26823.89 0.94946 2.18335
16  28098.70  0.94393 2.23971
17 2931177 0.93885 2.29874
18  30460.84  0.93421 2.36115
19 3154257 092995 2.42798
20  32553.63  0.92609 2.50001
21 3348922  0.92255 2.57944
22 3434420 091940 2.66797
23 3511195 091676 2.77001

“Both Rmin and Rmax are given in Angstrom units; Gv + Y00 is in cm™.

* Interpolated energies.

Y, (X'z*) = 082 em™; ¥, (B'S") = -1.97 em’.
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spectrum of DClL. Progress in the latter had been curtailed due to the total
absence of B - X emission data prior to the present work.

Douglas and Greening (128) reported the vibrational numbering of Bzt on
a relative basis and proposed that the vibrational quantum number
corresponding to the lowest level observed on their plates was v = 12. On the
basis of the vibronic term values presented earlier in this chapter and the
current 7, value, it has been possible to confirm this prediction. A
graphical display of the determination of the absolute vibrational numbering
of the BIE* state of DCI is given in Figure 4.4. Also shown are the positions
of B'<* vibrational levels reported in the more recent resonance enhanced
multipnoton ionization (REMPI) study of Callaghan et al. (139). These authors
reported an additional level Blz"'(v = 11), as shown in Fig. 4.4. The position
of v = 11 is predicted in the present work to lie approximately 100 cm™! from
the value reported in Ref. (139). In view of the absence of a perturbation in
HC1(312+) at similar energy, the assignment of BIE+(v = 11) (139), which was
supported by fragmentary data only, is clearly erroneous.

The lowest energy interaction of B'=" has been identified (138) as that
with the H's* Rydberg electronic state. The sequence of B'=* vibrational
levels proceeds in a smooth fashion up to an energy of approximately 84 000
cm.  Above this energy, the vibronic structure begins to display anomalous
behaviour. It is possible to gain a qualitative understanding of these local
perturbations quite effectively in a graphical manner. Figures 4.5 and 4.6,
for HClI and DCl respectively, show clearly that discontinuities in the
behaviour of rotational constants of B'Z* occur precisely at the reported
energies for the vibrational levels of Hs* 1t is interesting to note that

the positions of B's* levels can be rationalized qualitatively from the

- il
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Figure 4.4
Determination of the absolute vibrational numbering for the
B'S™ state of DCL. Column A contains levels involved in the
emission spectrum from the present study, as solid lines;
the dashed lines are levels obtained by extrapolation on the
basis of the smooth behaviour of levels observed in
emission. Levels in column B are from the work of Douglas
and Greening (I28). The levels in column C are from

Ref. (139). N is found to be 12.
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Figure 4.5
Perturbations in the B'S™ state of HCl. The discontinuities
in the vibrational dependence of the rotational constant,
B, on the lower part of the figure, correspond to local
interactions with the H(O+) Rydberg state’s vibrational
levels. The upper part of the figure displays the potential
energy curves of B’V and H(0™), as well as the /(1) Rydberg
state. The plot predicts an additional vibronic level v = 2
of the H(0") state which is responsible for the local
interaction near an energy of 89500 cm™’. The B'S™ state
potential is from an RKRYV calculation (130) and the Rydberg
state potentials are Morse functions chosen to give
eigenvalues corresponding to the observed vibronic energies

(128).
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Figure 4.6
Perturbations in the B'S* state of DCl. The discontinuities
in the vibrational dependence of the rotational constant,
Bv, shown in the lower part of the figure, are due to local
interactions with the H(0%) Rydberg state’s vibrational
levels v = 0 and 1. The upper part of the figure displays
the potential energy curves of B!z* and H(0%). A diabatic
crossing of B'=* and H(0+) is anticipated near v = 0 of the

Rydberg state.
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diagrams, given the positions of the perturbing H'=* vibrational levels. It
is evident in Fig. 4.5 from the slightly larger than average gap between B'=*
vibrational levels v = 18 and v = 19 that an additicnal local interaction
occurs between B'S¥ and another electronic state. This interaction is likely
due to the experimentally unobserved v = 2 level of H'=* and not due to the
ground vibronic level of I(1), also shown in the figure. The latter level is
too close to the v = 18 vibronic level of B'S™ and hence cannot be the local
perturber.

An additional conclusion that can be made on the basis of the diagrams is
that the the B'S* state potential is not characterized by a well-defined
double minimum, in contrast to the results of a recent theoretical work (127).
Instead, the two curves are shown to interact in a diabatic fashion near an
energy of 84 500 em™, However, a satisfactory quantitative interpretation of
the experimental observations will probably not be achieved by employing
solely diabatic electronic wavefunctions. Neither will a model constructed on
the basis of purely adiabatic eigenvectors succeed in rationalizing the data.
Unfortunately, it is not a simple matter to predict which formulation might
achieve the best description of the data.

A comprehensive interpretation of the B's* = H's* interaction is
complicated further by the observation that perturbing H'=* levels are not of
pure 1% character. These acquire partial spin and orbital momentum through

interactions with 3l’I(O*') and 32'(0‘*) states which also derive from the same

Rydberg ! complex.



CHAPTER 5
SPECTROSCOPIC INVESTIGATIONS OF DEUTERIUM FLUORIDE
PART A: FOURIER TRANSFORM SPECTROSCOPY OF DF

5.1 Basic Principles of Fourier Transform Spectroscopy

Experimental spectroscopists concerned primarily with the infrared region
benefitted tremendously from the advent of Fourier transform spectrometric
instruments. Fourier transform spectroscopy (140) has a profitable advantage
over more conventional methods. For most of the latter, it is necessary to
record portions of a spectrum in a consecutive fashion so that each wavelength
must be sampled individually for a selected period of time. Photographic
studies, on the other hand, often involve long exposure times over which a
source or experimental conditions must be sustained. Interferometric
techniques have improved the quality of spectroscopic information and reduced
significantly the time required for data acquisition.

Consider a hypothetical spectral transition in emission with frequency v,
and of infinitely small line width. The radiation associated with this
emission is characterized by a pure sine wave of constant frequency v, . If an
additional transition of frequency v, is also considered from the same source,
the radiation will now be described by a linear combination of these two sine
waves. The two waves may combine constructively or destructively at each
point in time yielding a complex waveform known as an interferogram. The
pattern is still easily decomposed into the individual sine waves. The

process of decomposing the waveform into individual frequencies v, and v, and

1
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intensities I, and 12 is a well-known mathematical operation known as Fourier
transformation (Z41). Essentially, this corresponds to an integration of the
complex waveform from the time domain to the frequency domain. For a real
emitting source composed of many spectral transitions that now also possess
finite line widths, it is easy to appreciate the complexity of the waveform in
the time domain. However, the Fourier transform operation can be performed
quite efficiently by a computer; in practice this poses little difficulty.

A Fourier transform spectrometer operating in emission consists of a
detector which considers the incoming radiation as a function of time. The
signal is stored as an interferogram and the computer carries out a Fourier
transformation to resolve the individual components of the waveform. A
familiar frequency domain spectrum is the result. What is important to
realize is that the radiation, or the interferogram, with all its disguised
frequency information, can be recorded almost instantaneously, leading to
significant improvement in the time required for an experiment.  The
transformation also requires short periods of time, so that the total time for
an experiment is still sharply reduced over conventional methods.

Most of the Fourier transform work in the infrared and far-infrared is
performed in absorption. The arrangement here is different than in emission
and is similar to that employed by Michelson earlier in this century to
measure the speed of light. Figure 5.1 shows the basic components of the
interferometer unit in a Michelson-type Fourier transform spectrometer. The
“white” reference source, which emits a broad range of spectral frequencies,
is directed to a beam splitter; 50% of the emission is directed onto two
mirrors, M_ and M_. M is siationary while M_ is moved smoothly over a

specified distance. The combined reflected signal from the two mirrors, which
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Figure 5.1

Interferometer unit of a Fourier transform spectrometer.
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Figure 5.1

146



147

constitutes an interferogram, is then directed into the sample. Upon exiting
the cell, carrying now information about the absorbing resonances of the
species under investigation, it is guided into a detector and the output
stored into computer memory. A Fourier transform of this waveform will result
in the familiar absorption pattern, since the absorptions in the sample
correspond to gaps in the frequency distributicn of the original
interferogram.

It is found that a series of n scans increases the level of the noise in

1 1 1
/2. Thus, the signal to noise ratio is n/n/2 or n /2.

the recorded spectrum as n
This is known as the multiplex advantage (133). Normally, then, many scans of
a sample are performed to average out the random noise, resulting in spectra

with high S/N ratios.

5.2 Experimental

A far-infrared spectrum of deuterium fluoride involving pure rotational
transitions with J" = 1-8 has been obtained. DF gas was introduced into the
11-cm cell of a Bomem DA3.002 Fourier transform spectrometer at total
pressures of approximately 100 mTorr. The detector was a Ge bolometer cooled
to less than 1 K by a liquid helium cryostat. A bolometer is a
background-limited thermal detector measuring the rise in temperature in the
sample from absorption of radiation as a change in electrical
resistance (133). Cooling is required to reduce the surrounding thermal noise
and thus increase the sensitivity. The bolometer was very sensitive and could
detect low-level external microphonic noise such as conversation near the

1

instrument. A spectral resolution of approximately 0.002 cm™ was employed

and several scans were performed, usually overnight. The calibration was



148

based on HF pure rotational transitions which are known extremely precisely
from laser heterodyne measurements (Z42); HF is conveniently an impurity in
the DF sample. Unfortunately, so is HZO, eliminating the use of one HF line
(= 123 cm™) due to an overlap with a water line.

A trace of a small portion of the Fourier transform spectrum of DF

containing the J = 3 « J = 2 pure rotational transition is shown in Fig. 5.2.

53 Analysis

Calibration of the Fourier transformed spectrum was not achieved in the
normal fashion. First, measurements of the spectral features were obtained
automatically by the computer from the intersections on the abscissa of the
spectrum first derivative. The differences between the measured and standard
HF frequencies were then plotted against frequency, giving a fairly linear
plot (Fig. 5.3). The raw DF measurements were corrected using the
relationship between calibrant error and frequency. A final, corrected, set
of DF pure rotational transitions is listed in Table 5.1. Dr. J. W. Johns at
the Herzberg Institute of Astrophysics recorded the fundamental band of DF
subsequent to the far-infrared work and provided the set of wavenumbers also
listed in Table 5.1.

These new data were combined with the laser emission transitions of
Sengupta et al. (143) in a simultaneous merge fit to Dunham coefficients for
0 = v" = 4. The results are presented in Table 5.2.

The main reason for conducting this research was to make available data
of high precision to complement similarly precise data on HF in this range of
v" so that an extrapolation to the energy levels and transitions of TF could

be achieved with comparable precision.
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Figure 5.2
A small portion of the far-infrared spectrum of DF. The
: J = 3 « J = 2 pure rotational transition near 65 em’! s

shown.
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Figure 5.3
A plot of calibrant error versus frequency. The calibration
was achieved with heterodyne measurements (129) of HF pure
rotational transitions in v = 0. The HF line near 123 cm™*
is overlapped by a transition of HDO and is hence excluded

from consideration in the construction of the solid line.
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TABLE 5.1
Fourier Transform Line Positions of DF(X 12+)

Pure Rotational Transitions in v = (

I il'(cm'l) J i-'(cm'l)
1 43.42268(40 5 129.81770(20
2 65.09863(20 6 151.24126(20
3 86.73251(20 7 172.56709(20
4 108.31021(20 8 193.78167(40)

Fundamental Band

J P(I)em™) R()(em™)
0 2927.78725
1 2884.94325 2948.30660
2 2862.64640 2968.20599
3 2839.78537 2987.47230
4 2816.37489 3006.09249
5 2792.42963 3024.05393
6 2767.96456 3041.34460
7 2742.99505 3057.95269
8 2717.53624 3073.86638
9 2691.60400 3089.07498

10 2665.21349 3103.56756

11 2638.38085 3117.33405

12 2611.12169 3130.36458

The experimental error estimate for the fundamental band line

positions is € = 5 X 107 em™

RN

Py

301066 X 107> 3.39 x 107

-4.5930 x 10°°

469 x 1076

TABLE 5.2
Dunham Coefficients (cm"l) for DF(X 12+)

Yu Estimate 23 Yk] Estimate 23
Y,, 300009251 783 x 107 Y, -593259 X 107% 5.11 x 1078
Y, ~— -47.283395 659 x 103 Y, 117476 x 107 124 x 107
Yy 0.357898 1.96 x 107 Y, -1874 X 107 612 x 1078
Y, -5.4702 x 107 192 x 16™*
Yy, 11.0106910 1.88 x 107 Y, 2375 X 108 130 x 107

. -0.3021884 533 x 107 Y, -5.188 x 10 101 x 10710
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PART B: SPECTROGRAPHIC STUDY OF THE DF B'z* - xlz*
EMISSION BAND SYSTEM IN THE ULTRAVIOLET

54 Introduction

Hydrogen fluoride has been investigated extensively in its ground
electronic state by experimental as well as theoretical methods.  The
pioneering efforts of Deutsch (I144) showed HF to be a viable chemical laser
medium based on vibrational-rotational transitions. @ For this reason, the
lower vibrational levels of the ground state have been the subject of numerous
spectroscopic studies (86, 143, 145, 146); the pure rotational transitions in
the lowest vibrational level have been examined (129, 142, 14/) by a variety
of techniques and very precise molecular constants are available. These
pure-rotational transitiocns have established HF zs a frequency standard in the
infrared and far-infrared regions of the spectrum.

The X'E* state is also interesting because of its unusually high degree
of ionicity (I148). This observation has been explained in terms of a strongly
avoided crossing with the B's* state in the rigorous ab initio study of
Bettendorff et al. (149). The ground electronic state is primarily ionic,
(10)2(20)2(3U)2(17r)4, at small (< 2.5 bohr) internuclear separations. At
approximately 3.0 bohr, it is approximately 50% ionic and 50% valence,
(10)2(20)2(30)1(1704(40)1. The valence contribution increases rapidly leading
to the neutral dissociation products F(ZP) + H(ZS). The calculated (149)
nonadiabatic coupling matrix element (X 1Z‘L|a/aR|BlE+> reaches its maximum
value at approximately 3.5 bohr. Correspondingly, the B'=" state has valence

character at small separations, becomes increasingly ionic at long-range and

yields the dissociation products F'(lS) + H". Also, at very small (= 15
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bohr) internuclear distances, the B state mixes with igh-energy Rydberg
states which arise from the HE*(X 2I'I) core. Figure 5.4 displays some of the
low-lying electronic states of HF(DF). The main difference with the analogous
diagram for HCI (Fig. 4.1) is that the Rydberg = non-Rydberg interactions on
the inner limb of the B!E' state occur at relatively lower energies for
hydrogen chloride.

The low-lying repulsive (10)2(20)2(30)2(1n)3(40)—AlII state of HF, which
approaches the X I3+ state dissociation limit asymptotically, has been observed
in continuous absorption by Safary et al. (150). This state is shown later in
this work to be responsible for rotational energy shifts in the ground state
that become especially noticeable at high vibrational energies. The quantum
mechanical description of such significant nonadiabatic coupling can be given
by the Hamiltonian operator Eq. (3.29).

Past spectroscopic investigations of the ecxcited electronic states of HF
were limited to the B - X emission and absorption band systems (87) and the
vacuum ultraviolet absorption (128) from X(v" = 0) to several excited states,
The observations are much less complete for deuterium fluoride. The B - X
bands of the deuteride were first detected in emission by Johns and
Barrow (I51); rotational analysis provided molecular constants for
15 < v" < 24and 0 < o' < 3. The CII state was detected in absorption by
Douglas and Greening (728) and more recently in the resonance enhanced
multiphoton ionization study of Tashiro et al. (152).

The present work reports a reinvestigation of the ultraviolet Bzt - xlzt
emission bands of DF. The higher dispersions afforded by the 10.7-m vacuum
spectrograph employed here give significantly better resolved spectra than

obtained previously (151). This has a twofold advantage. First, it provides



Figure 5.4
Low-lying electronic states of hydrogen fluoride. The X s+
and B'z* potentials are from RKRV calculations (87). The
repulsive AMI state was modelled on the basis of ab initio
calculations (727). The Rydberg states were constructed

with the aid of experimental results (128).
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a general improvement in the precision of the measurements which gives in turn
more precise estimates of the molecular constants. Second, it resolves the
congested rotational structure associated with very high " Piecise
estimates of the positions of these levels are important in giving an improved
value for the dissociation energy and a more reliable estimation of the
significant nonadiabatic mixing shifts. The present study also extends the
information on the B'E™ state to higher vibrational levels and gives better
estimates for the electronic term value of B'S' and the electronic isotope
shift from HF. In addition, an improved data set for DF, used in association
with the similarly precise HF data of Di Lonardo and Douglas (87), enables a

reliable prediction of the energy levels of tritium fluoride.

5.5 Experimental Details

The ultraviolet emission spectrum of DF was recorded with the 10.7-m
spectrograph at the Herzberg Institute of Astrophysics. Emission of
ultraviolet photons follows the population of lower vibrational leveis of the
B's* statc.  Electronic excitation was accomplished by flowing 99.2%
isotopically pure DF gas (Matheson 99.9%) and helium (Matheson 99.995%), at
pressures near 5 Torr, through a hollow cathode discharge operating at 300-500
mA. Spectra were recorded in the wavelength range 2050-2750 A in the fourth
and fifth orders of a 600 line/mm grating, with reciprocal dispersions of
0.18-0.35 A/mm. Lower resolution exploratory spectra were also recorded in
the first-order of a 1200 line/mm grating blazed at 1200 A, Emission from an
Fe/Ne hollow cathode lamp (125 mA, 220 V), in overlapping orders, was recorded
separately (onto the same plates but at different times) to calibrate the

molecular spectra. The emitted radiation was predispersed and refocussed in

o
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an attempt to minimize the o-erlap between different spectral orders. It then
entered the 10.7-m spectrograph through a Z0-um wide slit and was diffracted
by the concave grating. The dispersed light was then projected onto the focal
plane containing the photographic plates. Exposure times varied from 10 min
to 1 hr on ultraviolet sensitive Iiford Q2, Kodak SWR and 103-a0 plates.

A small portion of the B'=* 5 X'z* emission spectrum of DF is shown in
Fig. §.5. Assignments are shown for three vibronic bands.

The measurements were made with the comparator described previously and
the the spectra were calibrated against iron/neon standards (134). Standard
deviations of calibration line fits were typically 0.0008 A, which corresponds
to 0015 cm™ at 2350 A. Since the molecular lines were broader than the
atomic lines, their measurement error should be slightly higher, approximately
0.020-0.025 cm™ for sharp, strong, unblended lines. Such is not the case for
most of the lines measured here. Owing to the high rotational temperature in
the discharge, extensive overlapping of different vibronic bands occurs. The
concomitant blending, complicated further by the observation that some hydride
impurity specirum was identified on the plates, makes the average measurement
error approximately 0.030-0.035 cm™. This, however, does not take into
account any relative systematic error in the data across the entire band
system.

In order to detect any systematic shifts from plate-to-plate that are
often encountered in spectrographic work, careful computer-aided comparisons
were made of slightly overlapped regions from independent measuring sessions,
and larger overlapped regions from plate-to-plate. The session-to-session
measurenients were in excellent agreement, any systematic shifts being

wavelength independent and less than the measurement errors (< 0.02 cm"l).
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Figure 5.5
A small portion of the DF(B12+ - X 1}3+) emission spectrum.

Rotational assignments are shown for three vibronic bands.
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The plate-to-plate comparisons revealed slightly larger inconsistencies, for
the most part < 0.04 cm™ in magnitude, and wavelength independent. In one
case, the shift was approximately 0.15 cm™), consistently, for that plate
alone. Following a careful computer evaluation of the shifts, all
measurements were made mutually consistent by adjustment to a common
reference, chosen by observing that the vast majority of the measurements were
already well-consistent with each other.  The adjusted lines were then
averaged where multiple measurements of the same transition existed, resulting
in a set of precise unique vacuum wavenumbers. It should be clear, however,
that because of the need to make adjustments in the first place, the absolute
error in the wavenumbers could be as high as the largest observed systematic
shift, 0.15 cm™. In a reduction of line positions to molecular constants,
this will only affect estimates of the band origins.

As mentioned above, the causes for the presence of such shifts are often
not well-understood, calling for intuitive speculation. A first possibility
has to do with the fact that calibration spectra were recorded at separate
times. While small time intervals were spanned between the recording of
atomic and molecular spectra, it is entirely possible that small vibrations
moved the plate very slightly during this time period. Vibrations due to
“nearby construction projects” caused rather significant shifts in the
HF(B - X) plates of Di Lonardo and Douglas (87). Another possibility deals
with small temperature variations in the tank during recording sessions. The
shift in the position of a spectral line due to changes in the index of
refraction of the grating has been estimated (I31) at approximately 0.5 A per
degree Celsius for a flint glass spectrograph. Assuming a similar temperature

coefficient for the index of refraction of the 10.7-m spectrograph concave
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grating, a 0.02° C temperature fluctuation would be quite sufficient in causing
a shift of 0.15 cm™. While this is not inconceivable, it would necessarily
cause an accompanying serious loss in definition of spectral features,
resulting in “fuzzy”, badly focussed spectra. This was not found to be the
case for the plate with the 0.15 cm™ shift, therefore making the temperature
shift theory unlikely.  Other possibilities include small pressure variations
in the vacuum tank, a mechanical imperfection of the slit, or small defects in
the plate holder curvature; mevertheless, the most probable cause appears to

be small vibrations between recordings of calibration and molecular spectra.

5.6 Rotational Assignments

Rotational assignments were facilitated in part by the availability of
approximate term values for the B's* and X's* states from the previous
rotational  analysis (151). Additional assignments, particularly those
involving vibrational levels not observed previously, were achieved by
employing the molecular line search computer program described in the previous
chapter. A helpful guide to the search was the preliminary and periodically
improved set of Franck-Condon factors over a range of J. An extensive
calculation of the rotationally dependent FCF is found in Table 7.18. Some
very interesting intensity patterns were predicted by the FCF, as for example
for the 2~22, 3-23, and 1-20 bands. For these bands, the calculated low-J
intensities are quite high, in accord with observations, but decline with
increasing J to reach a minimum at mid-J, where no rotational structure was in
fact observed, and pick-up again at higher J. Without the rotationally

dependent FCF, the search for rotational structure may have been abandoned

prematurely at mid-J, at the onset of a noticcable decrease in intensity.
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5.7 Molecular Parameters

Initial assignments were obtained with the computer search program
described previously. They were extended, where possible, by performing fits
to the linear least-squares model Eqgs. (4.4-4.6) with the summation index
taken to n = 3 and 4 for the excited and ground states, respectively, a model
which represents adequately the vast majority of assigned line positions. For
some high-J lines of high-v", the model is clearly not adequate, requiring
additional X 1()”). Inclusion of such parameters for bands which did not require
them resulted in poorly determined estimates for the lower-order constants,
chiefly due to high correlations between parameters. It is important to make
the definitions of parameters as consistent as possible by employing the same
model throughout, even at the expense of a few tramsitions. In analyzing the
highly rotationally =xcited B - X emission bands of HF, Di Lonardo and
Douglas (87) encountered a similar problem. In their work, this was rectified
by reducing the line positions directly to relative rovibrational term values
using the method of Aslund (153). Estimates for the rotational parameters
were then obtained by least-squares fits to Eq. (4.6), employing low- and
mid-/ energies only.

Assignments were made for 41 bands in the present conventional analysis,
covering 0 < v’ =5 and 16 < v" = 26. The results of individual band
least-squares fits are listed in Table 5.3. The table contains the estimated
standard deviations (3) of such “free” fits, the total number of lines fitted
(N), the range of J fitted for each branch (J p and Jp), and estimates of the
band origins (vo), obtained by merging the entire collection of bands. A

total of 1240 line positions was fitted and the root-mean square of the



TABLE 53

Least-Squares Fits® for Individual Bands of the B — X Band

System of DF

v v v, i N e JR

0-16 47426.32(6 0.035 19 29 - 42 30 - 43
0-17 45857.35(2 0.027 26 22 -36 21~ 36
0-18 44376.29(2 0.027 43 6-33 5-34
0-19 42986.01(2 0.031 49 2-30 2-31
0-20 41691.07(1 0.02¢9 55 2-32 1-32
0-21 40496.77(2 0.039 36 2-31 0-31
0-22 39410.32(1 0.031 47 1-27 0-28
0-23 38440.32(2 0.028 26 2-20 3-21
1-17 46679.02(2 0.027 49 5-35 1-37
1-18 45198.03(2 0.024 47 4-31 6-32
1-19 43807.74(1 0.025 45 3-29 0-30
1-20 42512.84(2 0.039 19 4-17 2-17
1-22 40232.08(2 0.032 41 3-27 1-25
1-23 39262.06(2 0.029 41 2-271 2-127
1-24 38419.43(2 0.025 27 5-19 2-17
2-16 49051.29(7 0.034 52 11 -42 13 - 41
2 -17 47482.43(2 G.032 57 6-37 2-139
2 -18 46001.47(2 0.036 38 2-23 1-22
2-20 43316.26(2 0.036 31 14 - 34 15 - 35
2-21 42122.02(2 0.027 35 4-25 2-24
2-22 41035.54(2 0.040 16 3-10 2-16
2-23 40065.48(2 0.025 20 13 - 25 11 - 25
2-24 39222.83(2 0.031 27 6-22 1-22
2-25 38521.23(3 0.034 26 2-19 2-19
3-16 49836.81(8 0.033 28 17 ~ 34 18 - 36
3-17 48267.94(2 0.032 42 2-28 3-30
3-20 44101.75(2 0.035 33 7~27 5-28
3-24 40008.38(3 0.019 15 10-18 9-19
3-25 39306.75(3 0.029 21 5-18 4 -18
4 - 19 46164.80(3 0.034 33 9-30 7-30
4 - 22 42589.14(3 0.032 20 7-19 7-19
4 -24 40776.52(2 0.027 14 3-10 1-12
4 - 25 40074.85(4 0.032 20 4-19 5-19
5-18 48306.09(4 0.035 14 13-22 14-24
5-19 46915.78(3 0.032 15 4-14 6-14
5-21 44426.59(4 0.031 21 7-20 7-21
5-26 40283.42(6 0.027 14 2-14 10 - 13

“The merged band origins (v ) and standard deviations (0) are in
units of cm ; N is the number of lines fitted; J and J are

the J ranges of the fitted lines for the P and R branches
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individual ¢ in Table 5.3 was approximately 0.035 cm‘l, in agreement with the
estimate given above. This serves as a rough incicator of the precision of
the data, but does not take into acccunt any relative systematic error.

In order to reduce the 328 parameters obtained from individual
least-squares fits, many of which are multiple estimates, to a set of 103
single-valued parameter estimates, the method of correlated least-squares
(merging) was applied in a stepwise fashion Of these 103 values, 41 are the
band origin estimates given in Table 5.3; the remaining parameters consist of
the 18 X 5’,’) and 44 X 1(;,') rotational parameter estimates given in Table 5.4.
The standard deviation of this merge fit was 3M = 130 with f,, = 225 degrees
of freedom. A subsequent merge was carried out to reduce the 41 band origin
estimates to a set of relative vibronic terms for both electronic states. The
results are given in Table 5.5. The standard deviation of this merge was
EM = 1.44 with fM = 250 degrees of freedom, indicating a small degree of
systematic error across the entire band system. In view of this,
0.035 x (1.44/1.30) cm™, or = 0.040 cm™, might be a more honest estimate of
the precision of the measurements. Two additional merge fits furnished the

equilibrium vibrational-rotational parameters presented in Table 5.6.

5.8 RKRYV Potential Curves for DF

Past spectroscopic investigations in the far-infrared (154, 155) and
infrared (143, 145) have characterized vibrational levels with 0 < v" = 4 of
the ground state of DF. The electronic emission from B's* involved levels
with 15 < v" < 26, leaving a significant 20 000 cm’! gap in the range
v" = 5-14 where no spectroscopic information exists. The chemical laser work

of Sileo and Cool (156) was aimed at rationalizing intensities. Though bands
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TABLE 54
Merged Parameters” (cm'l) for the X'=* ard B'S" States of DF
o XD -10%x(? 10%x &) 10"x<P
16 6.5467,(5)  4.963,,(9) 1.30..(7) -0.64,.,(2)
17 6.2699,,(2)  4.964,.(5) 0.20,,.(5) -0.52,.,(2)
18 5.9881,(2)  5.113,(8) 0.0,,,(1) ~0.82,44(5)
19 5.6927,,2)  5.28,.(1) =0.6,0.,(2) 11,
20 5.382,(2) 5.61,,(1) ey -2.53.(5)
21 5.0510,,3)  5.96,(1) -0.8,,4(2) -3.8 5(1)
22 4.6917,(3)  6.46,,(2) ~2.26,7(4) -6.0,..(2)
23 42971,,4)  7.264.(2) -1.2,.(4) -13.4,,(3)
24 385315  827,(4) =5.616701) -24.,.(2)
25 3.343,(1) 102,,(1) 406370 -91..(6)
26 2717,,3) 119,,,(6) -100.,(45)  -128., (104)
oo XD -10°x% 10°x5)
0 21154,(1)  5.60,,,(3) 24,2
1 21079,,(1)  5.97,,,(2) 2.555(1)
2 21001,,(1)  6.33,(2) 2.75,,(1)
3 2.092236(2) 6'76619(3) 3.3387(1)
4 20840,(2)  7.24,,.(6) 42,4
50 20758,(4)  T44(2) 5305002

“To reproduce the original data, entries are quoted with
more significant figures (as subscripts) than the associated

standard errors (in parentheses) require.
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TABLE 5.5

Merged Vibronic Terms® (cm™) for the

Bls* and X!s* States of D}"b

v T, v T »
v v

0 47426.10 4(7) 16 0.0

1 48247.85 4(7) 17 1568.84 4(7)

2 4905 1.128(7) 18 3049.817(7)

3 49836.795(7) 19 4440.106(8)

4 50604.939(8) 20 5735.031(8)

5 51355.879(8) 21 6929.262(8)
22 8015.77.(8)
23 8985.792(8)
24 9828.42(8)
25 10530.05,(8)
26 11072.4 (1)

%See footnote ? of Table 5.4.

5The term values in this table refer to » = 16 of
the ground state. They may be referred to the

minimum of the X 12+

adding G, = 37792 = 5 em™.

state potential by
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TABLE 5.6
Equilibrium Vibrational-Rotational Parameters

for the B'S* State of DF?

@, 840.46,(3)
0x, 9.47,,(1)
-2
@Y, 7.0,,(2) x 10
B, 2.1191,(2)
-3
a, 7.28,,(12) X 10
X -4
Ve -1.21,,(24) x 10

“All quantities are in cm™® units. Numbers in

parentheses are the 95% confidence iimits.
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with v" up to 12 were observed, no band origin estimates were reported. The
resolution of the spectra was too poor to give reliable energy estimates and
these authors resorted to the molecular constants of Johns and Barrow (151) to
construct the RKRYV curves required for evaluation of Einstein coefficients.
Since more precise estimates of the molecular constants became available
in this work, it was decided to repeat the inierpolation of the missing data.
Precise AG(v" + %) estimates for v" = 0-3 were derived by merging the laser
data of Sengupta et al. (143). These were fitted to a power series in
(" + %), along with the AG"(16%2) - AG"(25%2) values obtained in this work and
the mtermediate AG" values were interpolated.  This procedure gave
G'l'6 + Y”O0 =377% £ 5 cm'l, for the lowest observed level in this work. This
serves as a reference for the vibronic terms in Table S5.5. After
interpolating the rotational constants in an analogous fashion, first-order
RKRYV turning points were calculated and are presented in Table 5.7, along with

those of the B'S* state. These potentials can be regarded as approximate

initial descriptions of the X 3% and B'S* radial operators.

5.9 Dissociation Energy of DF(X'=")

The results of the conventional rotational analysis presented above can
be used to obtain an estimate for the dissociation energy of the ground state.
For the levels v" = 23-26 an abrupt breaking-off of rotational structure at
high-J has been observed. Although there was no indication of noticeable
broadening for the last observed line positions, this phenomenon can still be
attributed to a predissociation mechanism. The tunnelling for the deuteride
is not as efficient as that for the hydride, for which measurable broadening

was reported (87) in predissociated levels.
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TABLE 5.7
RKRV Turning Points® for the X'=* and B'S* States of DF
X12+ B1>2+
v G +Y¥, R, R G, +Y, R, R_
0 149034  0.84540 1.00365 41614 194778 224550
1 439700 080112 1.07876 1237.89  1.84934 2.37044
2 721215 077406 113728 204132 178399  2.46327
3 993769 075394 118953 2826.83 173206  2.54345
4 1257538 073782 123851 359497 168792 2.61662
5 1512699* 0.72435 1.28556 434591 164894  2.68547
6 17594.08* 071275 133144
7 19978.05% 070262 137669
8  22280.03* 0.69363 1.42167
9 2450091* 0.68559 1.46670
10 26641.30* 0.67834 151204
11 2870157* 0.67177 155792
12 3068L76* 0.66580 1.60461 g
13 32581.63* 0.66035 1.65235
14 34400.63* 0.65538 1.70141
15 36137.79* 0.65082 1.75213 !
16 3779L75* 0.64665 1.80487 :
17 39360.60  0.64284 1.86014 %
18 4084158  0.63933 1.91856
19 4223187 063613 198074 a
20 4352680  0.63321 2.04819 ;
21 44721.03  0.63058 2.12208 i
22 45807.55  0.62825 2.20515 a
23 46777.57 0.62620 2.30081
24 4762020  0.62445 241527
25  48321.83  0.62304 2.55985
26 48864.24  0.62211 276072

an + Y, are given in cm} R .,and R  arein Angstrom units. Energies
marked with an asterisk (*) were obtained by interpolation (see text).
Yy(X'2%) = 203 em™; v, (B'E%) = -1.57 cm™.
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The independence of this effect from excited state vibrational levels
signifies a predissociation in the ground electronic state. This can also be
expected from a purely theoretical argument. The behaviour of the BIs* state
potential of HF(DF) at large-R has been shown from experimental results (87),
to follow primarily an 1/R (ionic) dependence. For this type of interaction,
the rotationless potential approaches the dissociation limit at a slower rate
than the centrifugal 1/R? term, precluding the formation of a potential
barrier.

Biittenbender and Herzberg (157) have shown how these observations can be
utilized to furnish an estimate of the dissociatic.a energy, @ . By plotting
the energies of ground state levels associated with the abrupt breaking-off of
rotational structure versus J(J + 1), as well as the estimated energies of
first unobserved levels, and extrapolating a curve drawn between the two sets
of energies to J = 0, an estimate for the dissociation limit is given
directly. This type of plot was termed the limiting curve of dissociation
(LCD). Soon afterwards, Schinid and Gerd (158) showed that the slope of the
LCD could be related to the R value corresponding to the rotational barrier
maximum.

One problem with the LCD method is that the last observed levels need not
correspond to the last bound levels, particularly when no significant
broadening of lines has been detected. It is pcssible that bound levels above
the last observed exist but have lifetimes which make them difficult to detect
experimentally. This is especially true for light molecules. It was shown in
Chapter 2 that the tunnelling efficiency through a centrifugal barrier
increases for systems with smaller reduced masses. Thus, P, estimates

obtained from the LCD method are usually lower than the true limit.
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In order to gain a better appreciation of the quantitative behaviour of
the LCD method, model czlculations were carried out using a Morse potential
with @ = 50000 cm™, R, = 1.00 &, 0z, = 100.0 cm™ and g = 2.000 amu. A
nonadiabatic g(R) function need not be considered; its inclusion serves only
to alter the slope of an LCD plot and has no effect on the intercept (@e), as
the pure centrifugal and nonadiabatic rotational contributions both tend to
zero, albeit at different rates, as J — 0.

The wave equation was then solved for all quasibound levels of
vibrational levels with v" = 16-20 to obtain estimates for thei" positions and
widths. The results are listed in Table 5.8. In the lower solic curve of

1 were included. This

Figure 5.6, levels which had widths of less than 1 cm™
plot allows for the estimation of the error that might arise where large
widths preclude the experimental observation of levels which still lie below
the barrier maximum. A second solid curve was plotted on Fig. 5.6 including
all levels below the barrier maximum. It is evident from the plots that the
LCD method provides slight overestimates of @ when all bound levels are
considered. Theoretically, the slope of the LCD at J = 0 should be zero, yet
as can be seen from the true LCD points on Fig. 5.6 this does not occur for
the range of J considered. The tendency to “flatten” the LCD towards J = 0 in
order to satisfy the theoretical behaviour is the reason that experimental
LCD’s give slightly higher vstimates of @ . When levels with Lot = 1 cm™t
are considered, the @e estimate is understandably lower, which implies that
for light molecules the LCD method may be somewhat self-compensating. It is
also obvious that @, estimates obtained through the LCD method are associated

with a large uncertainty due to the large extrapolation to J = 0.

A second method was therefore explored. If a numerical potential is



TABLE 5.8

A Test of the LCD Method: Energies and Widths of

Mrdel Potential Quasibound Levels®

QM

v J EXN T AE, AE,

16 31  50017.179 b 864988  847.809
16 32 50211.494 b 936.360 724.867
16 33 50407.148 b 1011394 604.246
16 34  50603.288 b 1090.178  486.890
16 35  50798.823 b 1172.805 373.982
16 36 50992239 0016 1259369 267.130
16 37 51181054 0505 1349.966 168.912
16 38 51361275  5.558 1444689  83.415
17 27 50012.396 b 614305  601.909
17 28  5C166.301 b 671931  505.630
17 29  50321.487 b 732.862 411374
17 30  50477.069 b 797.185  320.116
17 31 50631.850  0.006  864.988 233.139
17 32 50783.941 0242 936360 152419
17 33 50930181 3328 1011.394 81213
18 23 50038479 b 415.132 376,653
18 24 50154.619 b 460.396  305.776
18 25  50271.752 b 508.623  236.870
18 26  50388.840  0.007  559.808 171.058
18 27 50504204 0312 614305 110.101
18 28 50615236  3.761 671931  56.695
19 19  50074.864 b 262.044 187179
19 20 50156017  0.004 296286 140.270
19 21 50237.360 0057  333.160  95.801
19 22 50316988 1279 372748  55.759
19 23 50393772 8733 415132 21360
20 13 50002.003 0019 107256 105.254
20 14  50049.548 0072 127432  77.885
20 15 50097.894 0292  149.747  51.853
20 16 50145703 1770  174.284  28.581
20 17 50193.067 11994  201.125 8058

“Energies and Widths are given in units of em™.

AE)

is the energy from the dissociation limit to the

barrier maximum.

AE, is the energy from E , to the barrier maximum.

b
I-‘fwhm

true
@ =

[

<

0.0005 cm™L.
50000 cm™.
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Figare 5.6
Limiting curve of dissociation (LCD) plots of model data.
The points represented by open triangles fall along the true
LCD plot found by numerical determination of the barrier
height for various values of J. The lower solid curve
represents an LCD plot for levels with widths of I’ < 1 e
the upper solid curve represents an LCD plot in which all
bound vibrational levels were considered. The data employed
in the construction of this figure are listed in Table 5.8.
The filled circles represent the last “observed” levels.
The open circles represent extrapolated levels with J one
unit higher than those of the last “observed” levels. The

model dissociation limit is denoted by D;“’e and corresponds

to an energy of 50000 cm’L.
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available, it is possible to find the position of the barrier maximum using
numerical methods. Moreover, it has been found here that these energies can

be represented very well by,

2 3
Ef=e0+elg+e2g te g7+ ..., (5.1)

where & = m, and ¢, is the disscciation limit, 9,. Use of the
variable 4 in Eq. (5.1) is not supported theoretically but was suggested Ly
the analytical LCD expression of Waech and Bernstein (159). The Ef values
for the rotational barrier maxima with 10 < J < 20 were found numerically and
fitted to Eq. (5.1). The value of @, was slightly model dependent but for a
satisfactory fit, without systematic error in the residuals, it was always a
few wavenumbers higher than the true limit.

With a quantitative appreciation for the errors expected in the LCD
estimates, a plot was constructed for the real DF data. Table 5.9 gives term
values for the last observed rotational levels for v" = 23-26, as well as
estimates of the energies for the first unobserved levels. The experimental
LCD plot is shown in Figure 5.7. Extrapolation to J = 0 with the constraint
of a zero slope at the intercept, gave the estimate P, = 49400 < 55 cm™.. The
uncertainty not only considzrs the extrapolation to J = 0; on the basis of the
model calculations an additional error estimate is included to consider the
possible exclusion of quasibound levels that cannot be detected by
spectrographic methods. Finally, the uncertainty in the absolute energies is
also included. In comparison with the most recent estimate for HF,
P, = 49380 = 60 cm™ (87), there does not appear to be a significant

difference between the @, values for the two isotopomers.




TABLE 5.9

Rotational Predissociation in the X 12+ State of DF;

Determination of the Dissociation Energy”

v J E@,J))(@mY) J+1 E@, J+1) (cm)
23 29 49879 30 50026
24 25 49715 26 49831
25 20 49522 21 49606
2% 15 49433 16 49489

“J is the value of the rotational quantum numter for the last

observed level of vibrational state v.
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Figure 5.7
Limiting curve of dissociation (LCD) plot for DF(X 12+). The
filled circles represent the last observed levels and the
open circles represent extrapolated levels with J one unit
higher than those of the last observed levels. An LCD

estimate of @e = 49 400 = 50 cm™! is obtained.
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5.10 Electronic Isotope Shift

Since an absolute energy scale for the ground state has been established,
it is now possible to obtain an estimate for the electronic isotope shift of
the B'S* state. This shift represents the difference in the term values, T,
for HF and DF. The presence of a significant electronic isotope shift would
occur because of breakdown of the Born-Oppenheimer approximation. Van
Vleck (37) indicates that this shift arises because the centre of mass of the
bare dinuclear framework is not the same as that of the diatomic molecule,
including the motions of the electrons. In reality, one wobbles about the
other, in a nuclear-mass-dependent fashion, so that electronic term energies
for excited states are not exactly the same upon isotopic substitution of the
constituent nuclides.

Di Lonardo and Douglas (87) obtained a value T, = 84783 cm™! for the B
state of HF. In the present work, the corresponding value for DF was found to
be Te = 84806 = 5 cm™.. If the electronic isotope shift is defined as the
difference T (HF) — T (DF), thenavalue AT = —23 * 5 cm™! is obtained. The
uncertainty reflects primarily the error in the interpolation of AG values to
obtain absolute energy estimates for the missing ground state levels. This
experimental value may be compared with a theoretical estimate obtained by

Bunker’s (135) equation,

AT, = 0.000068(7,] + [B,(HF) — B (DF)],<L%,

~ [B(HF) - B (DF)]<L%, (5.2)

where <L2> is approximated by the sum of the values of L(L + 1) for the
dissociation products, for each electronic state. The ground state

dissociation products, F(2P) + H(ZS), give a value for <L2::>X = 2, whereas the
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corresponding value for the excited state ionmic products is <L2>B = (.
Eq. (5.2), which gives an approximate description only, furnishes a value
AT, = ~141 em™\. This is in reasonable agreement with the value derived

experimentally.



CHAPTER 6
ISOTOPIC BEHAVIOUR OF BORN-OPPENHEIMER BREAKDOWN:
THE B'S* AND X'=* STATES OF HCl AND DCl

6.1 Introduction

The interpretation of spectroscopic frequencies in terms of theoretical
models involving internuclear potentials and functions describing electronic
state interactions, fonus an important theme of contemporary chemical physics.
The tkrust of this chapter is to achieve an interpretation of spectral line
positions within the framework of an effective radial Schrodinger equation
that considers both adiabatic and nonadiabatic corrections.

In Chapter 3, a modern method for reducing experimentally measured line
positions to elements of the radial operators was described. Also, an
application was made to a set of model data, giving insight into the
effectiveness of the procedure. Here, the procedure is applied to
experimental line positions of the X s* and B'S* electronic states of the four
isotopically related diatomics, g Cl, H37Cl, D35C1, and D*'CL

Before the analysis is described, it is wuseful to review, briefly,
previous works in which the molecular potentials for the HCl isotopomers were
calculated.  First, we consider the work of Coxon and Ogilvie (46). This
analysis was based on the Watson-Dunham analytical expression for E
Eq. (2.47), which makes corrections for omission of higher-order JWKB terms
and breakdown of the Born-Oppenheimer approximation. Ground state spectral

data for four isotopomers were considered, namely, H¥Cl @" = 0-7), 3ol
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(" = 0-7), p¥cl (®" = 0-5), and ol (v" = 0-4). It was also possible to
determine the Born-Oppenheimer potential for X'=* over a limited range of R.
It must be noted, however, that the quoted (46) range of R = 0.987 - 1.920 A,
which defines UBO(R) up to 52% of @, is unduly optimistic. Rather, the
smaller range R = 1.03 - 1.70 A, which accounts for the fact that data for DCI
up to 30% of the dissociation limit were employed, gives a more realistic
indication of the physically significant range for the Born-Oppenheimer
potential curve.

In later work by Coxon and Roychowdhury (130), the electronic emission
bands of the B=t — X't system of H¥Cl were analyzed rotationally,
providing reliable and extensive information on the higher vibrational levels
of the ground state. Tne quantum mechanical eigenvalues of a first-order RKRV
potential constructed for the ground state did not succeed in recovering the
experimentally derived vibrational spacings; furthermore, it was demonstrated
convincingly that the failure of experimentally derived rotational constants,
B, , to correspond to the RK)V averages <R'2)v was accompanied by significant
breakdown of the Born-Oppenheimer approximation. In short, this work was
important in bringing to light the difficulties encountered in a conventional
rotatio::al analysis of high quality spectral data for a hydride.

Improved understanding of the nature of these problems was demonstrated
in subsequent work by Coxon (119). Here, the principles of IPA were at the
heart of an improved numerical procedure that was superior in its theoretical
interpretation of J-dependent nonadiabatic corrections. It was possible for
the first time to incorporate systematically the entire spectroscopic
information for a hydride over a wide range of vibrational levels, spanning

from the potential minimum to near dissociation and taking full account of
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adiabatic breakdown. The method was applied to the X g+ (v* = 0-17) and Bls*
(v' = 0-6) states of H35C1, and the rather limited ground state data on H37Cl,
p¥cl, and D¥CL

A significantly enhanced procedure, containing improvements to the
mathematical correction model, was reported in further work by Coxon (120).
Using this more reliable predictor, Coxon was able to extend the assignments
for the B — X system of H35Cl, particularly to higher J, and made the first
extensive rotational assignments for the corresponding band system of Hcl.
The J-dependent nonadiabatic contributions from g(R) (¢f. Eq. (3.29)) to the
higher rovibrational levels of X 3% were explained in terms of a significant
heterogeneous interaction with the repulsive AT state. Previously,
Mulliken (160) had implicated the AMI state as the likely single-perturber of
the rotational level manifold mear the X'=* potential minimum. The small
effects encountered in v" = 0 are relatively unimportant in comparison with
the rapidly increasing energy shifts experienced by high-v",J" levels, the
latter shown (119) to be of the order of several wavenumbers.

The unavailability of spectroscopic dszia for the higher vibrational
levels of deuterium chloride hitherto precluded verification of the
predicted (42) theoretical isotopic dependence of g(R).  This limitation
served as the primary motivation for the spectrographic study reported in
Chapter 4. With information on the ground states of HCl and DCl nearly
complete, it is now possible to examine reliably the isotopic dependence of
Born-Oppenheimer breakdown in X I3+ over a large range of R. The analysis also
allows for a sound estimation of the Born-Oppenheimer potentials for the X g+

and B'T* electronic states of HCl, and thus a reliable extrapolation to the

energy levels of the tritivm chloride isotopomer.
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6.2 The Multi-Isotopomer Problem

The analysis furnishes effective rotationless potentials for electronic

states n that can be expressed as,
BO
UTR) = USOR) + UARYM, + UDR)IM,,. (6.1)

The inverse dependence on the atomic masses in this expression is
theoretically incomplete; smaller terms & (1/M2) also predicted, are omitted.
The 1/M dependence accounts fully for adiabatic corrections and largely for
homogeneous nonadiabatic contributions to the rotationless curve. Bunker and
Moss (40) have shown that secondary (homogeneous) nonadiabatic terms which are
inversely dependent on the square of mass also contribute to U:ff(R) if the
contact transformation of the exact Hamiltonian is carried out to sufficiently
high order. Fortunately, these are predicted to be much smaller than the
primary homogeneous contributions; this is confirmed experimentally (46), for
even the most highly precise data.

Even if daia are available for only a single isotopomer, the present
method of analysis can yield direct information on the J-dependent shifts
arising from heterogeneous coupling of two nearby electronic states. This is
not possible with the approach of molecular constants. The isotopic
dependence of g(R) has been given previously, with regard to the model

calculations, but is written here also in slightly different notation, as
.. A B
q,R) = ¢ (R)M, + ¢ (R)/M. (6.2)

For the multi-isotopomer problem, it is reasoned that, for 9';‘(R) and 7‘:(R) of

comparable magnitude, and M, usually much smaller than M_, the J-dependent
P g A y » P
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shifts can be explained adequately in terms of ,‘;‘(R) alone. It is stressed
that this is not a necessary condition for the simultaneous consideration of
data for many isotopomers. This can be achieved without difficulty, albeit
with reduced compactness; the validity of using g‘:(R’) alone in all work was
tested critically at intermediate stages of the analysis. A determination of
separate g(R) functions for different isotopomers does not improve the quality
of the fits significantly. It is found that, within the precision of the
data, such an approximation is absorbed at negligible cost to the physical
significance of g‘:(R).

The aim of incorporating spectroscopic line positions for different
isotopomers in a least-squares fit to radial functions is to determine
functions UfO(R), U‘;\(R), U]: (R), and 9‘:(16). The determination of USO(R)
requires isotopic substitution at both atomic centres and can thus be achieved

in the present analysis of HCI/DCl data. The four-isotopomer problem is setup

as,
Ui®, Han) = UOR) + AU (R), (6.3)
U(®, B0 = UTR, BYQ) + AUCR), (6.4)
U(®, D¥Cl) = VSR, H¥ Q) + AUR(R), (6.5)
U(R, D'C)) = R, HPQ) + AUNR) + AUS(R), (6.6)

where U'EO)(R) is a trial potential for the predominant isotopomer, E¥cL
There are simple mass relationships between the correction functions AUSI(R)
and AUI:(R), and the isotopically invariant functions USI(R) and UI:(R) (cf.

Eq. (6.1)).
A ¢(R) function is determined significantly for the ground electronic
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state only. The individual functions for H*Cl and D*C can be written as,

g, 1%Cl) = m [RERYM, + RIRYM ] (6.7)
g4, (D¥Cl) = m [RYRM, + ROR)M, ] (6.8)

Since it has already been established that the ﬁ§l(R)/Mc1 term is not

significant to the precision of the data, the multi-isotopomer problem can be

cast as,

qX(DCI) = (MH/MD)qX(HCI). (6.9)
The simultaneous incorporation of data for the four isotopomers thus leads to
the isotopically invariant function (ﬁ2/2)me§§(R)/R2.

The results of the present analysis make it possible to extrapolate to
the energy levels of tritium chloride. The calculation of numerical
Hamiltonian: operators for T°Cl and T3'Cl is quite straightforward; from these
functions, quantum mechanical eigenvalues can be obtained and synthetic
spectra constructed. These can then be compared to available experimental

spectra giving an incication of the isotopic self-consistency of the model.

6.3 Determination of Effective Hamiltonian Operators

6.3.1 Selection of Data

The vibrational-rotational spectrum of hydrogen chloride has been known
since the pioneering days of infrared absorption spectroscopy. The
spectroscopic characterization of the ground electronic state has since been
well-established. Here, a brief discussion is given of the data base employed
in the least-squares fit to Hamiltonian operators.  The information is

summarized in Table 6.1, which refers to the ground state HCl/DCl data. The



TABLE 6.1
Summary of Vibrational-Rotational Data for HCl/DCI®
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H¥cx'z)

v'-v" Reference e(cm’l) N P, R,
v =10 163 33 x 106 1 J=1«J=0
v =0 129 657 x 108 6 J" = 1-6
v =20 129 117 x 10° 3 J" =79
v =0 166 0.0197 16 J* = 18-40
v=1 166 0.016 8 J" = 19-26
v =2 166 0.016 2 J" = "1-25
1-0 162 0.001 15 1- 2 0-13
1-0 163 0.0022 31 2-29 5-34
1-0 164 0.0045 51 1-30 0-31
2-0 86 0.0002 25 1-12 0-12
2-0 164 0.004 50 1-26 0-25
2-1 163 0.0019 45 1-26 0-29
3-0 162 0.0025 18 1- 9 0- 8
3-0 164 0.007 15 1- 8 0-11
3-1 164 0.0055 21 2-16 0-16
3-2 163 0.0022 44 1-24 0-29
4-2 164 0.0048 11 3-10 4-15
5-3 164 0.007 3 5-7

5-4 163 0.0025 21 3-15 1-17
6-5 163 0.006 3 2-9

Hcx's"

1o -1

v'-v Reference e(cm™) N P, R,
v =0 161 33 x 10° 1 J=1J=0

0 129 6.7 x 10° 6 J = 1-6

v =0 129 115 x 10° 3 J' =179
v =1 166 0.008 1 J" =20
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TABLE 6.1 (Cont’d)
Summary of Vibrational-Rotational Data for HC/DCI®

B cx=h
V=" Reference e(cm'l) N P, R,
1-0 162 0.0006 13 1- 2 0-12
1-0 167 0.0085 24 3-19 13-22
2-0 86 0.0002 22 1-11 0-11
2-0 168 0.0093 21 1-13 0-13
3-0 162 0.0028 12 2- 17 0-5
3-0 169 0.0039 17 1- 8 0- 9
D¥ax’sh)
v'-v" Reference e(cm'l) N P, R,

v =0 161 10 x 10°% 1 J=1J=0
v =0 161 37 x 106 1 J=2cJ=1
1-0 164 0.0021 13 1- 8 0- 7
1-0 164 0.005 5 12-16
2-0 162 0.00024 26 1-15 0-16
2-0 164 0.002 27 1-15 0-14
3-0 162 0.00054 22 1-11 0-11
3-0 170 0.0034 9 12-16 12-16
DY cyxish

1 " ‘1
v'-v Reference €(cm ) N P, R,
v =20 161 11 x10% 1 J=1J=0
v =0 161 10 x 10° 1 J=2¢J=1
1-0 167 0.0125 29 1-15 0-17
2-0 162 0.0005 29 1-14 0-15

2-0 168 0.0082 25 1-13 0-15
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TABLE 6.1 (Cont'd)
Summary of Vibrational-Rotational Data for HCl/DCI®

pYcx!s")
v'-v" Reference e(cm'l) N P, R,
3-0 162 0.0013 12 2- 8 1=y
3-0 170 0.0044 15 1-15 0-14

% is the estimated precision of the data; N is the number of
lines fitted; P, and R, are the ranges of J fitted for the P and
R branches, respectively.
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weights of individual line positions were calculated as the inverse squares of
the precision estimates.

The ground state v" = 0 pure rotational transitions of H¥Cl and H'Cl
have been studied by COZ-laser heterodyning techniques, resulting in very
precise molecular constants (729). Although there has not been an analogous
study for DCl, the J = 0, 1 microwave transitions are known (I16I) with
comparable precision. There have been many investigations (86, 162-171) of
the infiarc ° vibrational-rotational bands, involving levels v” = 0-6 in H35C1,
and v" = 0-3 in B>'Cl, D¥CL, and D¥CL A vatiety of spectroscopic
techniques has been employed, including absorption Fourier transform, laser
emission, and classical spectrographic absorption methods.

Information on the higher vibrational levels of the ground states of HCI
and DCl has become available by analyzing the complex emission rotational
structure of B'=* - X'=* bands (130, 172, 173). For HCI, vibrational levels
v" = 7-17 have been studied (130); for DCI the levels v" = 10-24 are involved
in emission from the lower vibrational levels of B'E* (I73). 1t is obvious,
then, that there is still a significant gap in the information on the ground
state of DCI, involving levels v = 4-9. Although Deutsch (166) obtained data
on levels v = 4 and 5, these were found to be contaminated with significant
systematic error and were not included in the final least-squares fit.
Systematic error in these data has also been detected by Coxon and
Ogilvie (46). Similarly, Zughal’s (165) data, which were obtained in a study
of the pressure broadening of spectral lines, were found to contain systematic
error, possibly due to pressure shift effects, and were also excluded from the

global fit.

|r
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632 Assignment of D>’Cl B'=* - X's* Bands

In the conventional rotational analyses of emission spectra of HCl and
DCI, no effort was made to assign lines associated with the el nuclide; the
traditional mass-transformation of molecular constants is simply unreliable.
The assignments for H’Cl and D*'Cl were thus accomplished by obtaining
effective Hamiltonian operators for these isotopomers from the assigned a1
isotopomer data, Coxon (120) fitted HCl line positions to obtain operators
for the X =¥ and B!S* states of this isotopomer, and mass-transformed them to
obtain approximate operators for ECL.  The eigenvalues of such functions
predicted the B - X emission band structure to within two standard measurement
errors. This enabled a reliable assignment of the rotational linc positions
of H¥'CL. A similar analysis of D*Cl data in this work yielded quick and
unequivocal assignments for D¢l through a computer search program.

The B'=* —s X'S* line positions were assigned labels describing the
spectral line contours (eg. asymmetric, broad, shoulder, diffuse, etc.) as
they appeared on the oscilloscope display during the plate-measuring process.
It was thus possible to gain a better understanding of the blending problem
and justify the exclusion of certain line positions from the global fits. As
expected, the blending was worse for the deuteride, as there are more

vibrational and rotational levels involved in observed transitions.

6.3.3 Initial Operators and Hamiltonian Correction Model

The most accurate potential functions for the majority of diatomic
molecules are available through RKRYV calculations. However, there are two

distinct disadvantages associated with these potentials.

. W
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First, experimentally derived molecular constants are used as input. The
associated uncertainties have been demonstrated (174) to give rise to an inner
limb ripple, despite the “buffering” action that is inherent on account of the
structure of the RKRV equations. Such ripple may be reduced somewhat by
smoothing input values through fitting power series in (v + 1%).

This, however, does not address the second problem. It is simply not
sufficient to report the coefficients of such power series to define the
potentials uniquely; many procedures have been proposed to evaluate the RKRV
integrals and the slight nonuniqueness would probably result in differences
large enough to cause problems in the description of highly precise pure
rotational lines. In addition, and as others have pointed out (95, 175), the
extensive multi-digit numerical information required to define the RKRV
potentials is a somewhat undesirable feature.

It was decided therefore to explore the possibility of representing RKRV
turning points entirely by analytic functions. However, in anticipation of a
potential lack of smoothness on the inncr limb, a method was devised for the
smoothing of raw turning points before any attempt was made to represent the
potentials by flexible functions. Some time ago, it was found by Coxon (176)
that the Morse § parameter (c¢f. Eq. (2.101)) obtained locally for the inner

limb turning points as,
g = i1 + URVRY®) (R, - R), (6.10)

displayed a linear dependence on the square root of energy, for the higher
vibrational levels of diatomic halogen and interhalogen ground states. For
the hydrogen halide molecules considered here, it was found that local values

of B could be represented very well by,
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N
pU) = z b, (6.11)

where "
u = [l + CRVRY D)%, (6.12)

After imposing small corrections on the inner limb, corresponding adjustments
were made to the outer limb turning points. This method then assumes that
there is essentially no error in the vibrational terms and makes corrections
for any lack of smoothness introduced from error in the rotational constants.
Although this is not strictly correct, the major source of ripple is expected
from error in the g integral (174).

Following the smoothing of the raw RKRV turning points and the generation
of extrapolated points in accord with the theoretically expected behaviour of
the potential beyond the innermost and outermost points, an attempt was made
to find a simple, yet flexible, analytical function for representing the
numerical information. Many functions were tested, and it was concluded that
no single expression was uniformly successful for all diatomic molecules

considered in the tests. For HCI, the function,
2
-B(R)R - R
UR) = @e[1 ~ PRI e]] : (6.13)
with
2 )
BR) =B, +BR-R)+BR-R) +...+8 (R-R)", (614)
was successful at describing the smoothed numerical information. Both
electronic states were represented by Egs. (6.13, 6.14). The weighted

nonlinear least-squares analysis gave the fitted parameters listed in Table

6.2. The residuals between the smoothed and fitted functions do not exceed
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TABLE 6.2

Trial Potential Functions® for the Xs* and Bls*

States of HCI

Parameter X 1E+ BIE"'
R, 1274 558 3 A 2.511 547 2 A
B, 1.867 940 8 0.863 721 98
B, 1401 745 1 x 107 0.275 610 08
B, 0.239 770 33 -0.123 991 54

B,  -1350400 0 x 10  -3351 652 7 x 107
B, 4566623 4 x 107 8137 865 9 x 1072
B, -3574987 1 x 107 1.284 928 8 x 107
B, 12429201 x 1070  -1718 832 9 x 107
B, 2510 519 2 x 107

D, 37 243 cmt 15 000 cm™*
R 070 A 1.40 A
R 420 A 3.90 A

max
h 0.0025 A 0.0025 A

: 0.90 A 175 A

mner

330 A 3.55

outer

R 0.90 A

“Potentials constructed from Egs. (6.13, 6.14) (see
text); units of #  are Rlm+l) R is the equilibrium
internuclear separation, &, is ‘e dissociation limit
and the functions are defined from R . to R___in a
mn max
mesh of h. R R and & are defined in the

inner’ ~ outer
text.
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2 cml

on the outer limb, with a root-mean square deviation of approximately
0.7 cm™.

There are several advantages in representing the potential functions by
analytical models.  First, the trial functions are defined unequivocally,
eliminating any error fiom interpolation. Smooth initial functions also lead
to increased economy in the representation of correctior functions in the
fitting procedure. Of equal importance is the avoidance of discontinuities
associated with potential functions that have been constructed by splicing
together different analytic forms with little regard for derivative
continuity.  This latter concern should be of importance in the numerical
integration of the radial wave equation. Finally, the analytical
representation approach leads to compact functions, an undeniable advantage
over the alternative of long lists of multi-digit RKRV energies and classical
turning points.

A trial g(R) function was not considered. This is not found to affect
the ability of first-order perturbation theory to describe properly the
rotational shifts after just one iteration. = Omitting g(R) in the trial
operator is not a matter of necessity but of expedience, and it is shown here
how to estimate such a trial function. As demonstrated previously, the
experimentally derived rotational constants contain a nonmechanical
contribution from g(R). If one calculates the expectation values,

BYRY = g2 (yRIRV| Ry RIRVs, (6.15)

at

then a first-order approximation to q(R) may be or+*ained from the differences,

AB, = BJ® - BV = B2 i lq@RP Y. (6:16)

o r g e oy o
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q(R) could be expressed in terms of some radial power series expansion and the
unknown coefficients determined in accord with the principles of IPA.
Normally, however, there is too much noise in the experimentally determined
rotational constants to give reliable results. Also, this procedure requires
initial potentials (and hence rovibronic wavefunctions) which form close
approximations for the effective functions that would be obtained by a full
analysis.

Nonetheless, anomalously large systematic AB  differences should, at the
very least, signal the need to conmsider inclusion of a g(R) function in the
effective Hamiltonian. The AB residuals were plotted for the ground state by
Coxon and Roychowdhury (130) for H>Cl in the rotational analysis of the
B — X transition. These were found to increase with v and were several times
greater than their estimated statistical uncertainties.

A least-squares fit to spectroscopic line positions of the four HCI
isotopomers was performed to determine the functions AU (R), AU?((R), AU}C(.l(R),
AUL(R), AU;}(R), and the mass-invariant part of g(R), that is, the function
(szI Z)melré?(R)/Rz. The correction functions AU,(R) and AU(R), were modelied

as linear combinations of types of functions appearing in Eq. (3.40).

6.34 Least-Squares Fit and Radial Operators

A total of 73 paramerers was required to describe 8497 line positions

with a reduced standard deviation of Sre = 0.961. The only marginal increase

d
in the value of ?;re , from that obtained in a similar analysis of H3amal
spectroscopic data by Coxon (120) (are ; = 0945), indicates that the
constraint Eq. (6.9) is valid within the precision of the bulk of the data.

Tables 6.3 and 6.4 describe the final fitted Blz+ - X 1E+ data sets for HCl and



TABLE 6.3
Final Assignments for HCI(B - X)*
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250 13ele]

Band PJ RJ N rms PJ RJ N rms
0-11 12-40 11 -41 51 0.021

0-12 6 - 42 5-42 67 0.021 21 -41 21 -42 37 0.022
0-13 3 -138 3-38 67 0.019 12 -37 11 -38 46 0.024
0-14 2-35 1-35 66 0.021 6-34 5-34 51 0.023
0-15 5-30 2-30 47 0.018 9 -30 7-30 39 0.027
0-16 5-22 2-24 39 0025 5-19 6-19 20 0.023
1-10 10-45 10-43 58 0.029 25-44 24 -44 34 0.019
1~11 5 - 44 5-42 72 0.027

1-12 4 - 38 0-39 71 0.016 4 -36 3-37 57 0.017
1-13 3-29 5-31 49 0.021 18-27 15-29 20 0.023
1-14 26-34 26-34 18 0.021

1~-15 10-30 11-29 33 0.020 20-30 23-30 18 0.023
1-16 4 -25 1-25 42 0.019 14-25 10-25 24 0.031
1-17 3-19 2-19 29 0.016 7-17 7-17 17 0.023
2- 8 8-34 10-35 44 0032

2-9 3 -45 2-42 74 0.027 10 - 27 8-25 26 0.030
2 -10 2 - 44 1-43 78 0.024 7 - 38 4 -39 56 0.028
2 -11 6 - 38 4 -38 64 0.022 15-34 15-33 36 0.030
2 -12 3-28 3-29 45 0.018 10 - 22 9-22 23 0.016
2-14 13-32 14-32 36 0.015 20-30 22-30 19 0.016
2 -15 3-22 3-23 35 0019 11-16 12-20 14 0.019
2-16 17-25 17-24 16 0.028 18-25 20-25 11 0.027
2 -17 5-19 3-19 29 0.026 14-19 11 -18 13 0.029
3- 7 11-35 11-33 34 0.033

3-8 4 - 36 5-38 64 0.024 11-33 10-33 33 0.033
3-9 3 - 40 1-39 68 0.022 6 -32 7-31 46 0.027
3-10 2 -40 2-39 71 0.026 7 - 37 7-37 52 0.027
3-11 5-32 3-33 53 0.026 26-31 25-33 14 0.026
3-12 32-39 35-38 11 0.024

3-13 8-35 6-34 51 0018

3-14 7-21 8-24 29 0.016

3-15 22-29 23-28 12 0.027

3-16 7-21 5-21 27 0.019

4 - 17 6 -35 8§-34 50 0.024 23 ~-33 28-32 11 0.028
4 - 8 2 -37 2-38 68 0.027 15-35 14 -36 38 0.027
4- 9 3-36 3-35 66 0.023 10 - 33 7-34 47 0.026
4 -10 6 - 27 1-28 45 0017 12-22 15-24 18 0.021
4-12 19-34 21-34 27 0.017

e T



TABLE 6.3 (Cont'd)

Final Assignments for HCI(B - X)*

200

B¢ 2 el
Band PJ R] N rms PJ RJ N rms
4 - 13 4-25 5-27 39 0.022 10-22 13 -23 20 0.020
4-15 12-26 14-25 25 0.018
5- 1 5-29 2-28 48 0.029
5- 8 4 - 32 2-31 55 0.028 10-26 10-25 30 0.032
5-9 4 - 30 4-29 44 0.037 13-27 11 -25 23 0.036
5-12 20-30 19-29 19 0.020
6- 7 11-20 10-21 19 0.030
6- 8 11-22 10-20 23 0.037
6-11 13-23 9-22 21 0.020

aPJ and R, define the ranges of J fitted for the P and R branches,
respectively. N are the number of lines fitted and the quantity rms is the
root-mean-square of the residuals (cm’l) between observed and calculated line

positions.



TABLE 6.4
Final Assignments for DCI(B - X)°
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p¥al pYcl
Band PJ RJ N rms PJ RJ N rms
0-16 25-60 25-62 51 0.036 35-59 35-61 26 0.042
0-17 12 -59 9-59 71 0.032 39 -5 39-56 26 0.041
0-18 8-55 8-54 80 0.036 27 -54 27 -54 38 0.041
0-19 6 - 51 5-51 65 0.037 22-51 22-51 43 0.041
0-20 3-46 6-45 62 0.036 11-46 10 - 46 38 0.048
0-21 4 - 38 0-39 44 0.032 7 - 28 7-26 21 0.031
1-14 36-45 36-45 11 0.042 39-44 39-44 10 0.056
1-15 24-63 22-63 69 0.035 28-63 24 -61 30 0.039
1-16 7 - 57 7-58 82 0034 18-55 16 -58 54 0.042
1-17 2 -51 5-50 73 0.033 4 - 50 3-49 54 0.041
1-18 7 - 38 4 -38 52 0.032 2 - 40 2 ~-38 39 0.041
1-19 12-50 11 -50 37 0.036
1-20 30-47 30-47 32 0.036 34-46 34-44 13 0.044
1-21 16-42 17 - 42 43 0.041 22 -42 19-39 26 0.036
1-22 4 - 37 4 -37 50 0.033 18-36 15-36 15 0.050
1-23 12-28 11 -28 29 0.040
2-12 31-59 31-~-5 24 0.052
2-13 16-54 16~ 54 47 0.040
2-14 10 - 64 3-63 84 0.037 13-64 13 -64 40 0.055
2-15 6 - 57 7-57 87 0.039 18-48 21 -49 33 0.043
2 -16 7 - 62 2-~-63 81 0037 15-40 14 -38 30 0.042
2-17 2-57 2-57 61 0.033 13-33 12 -33 32 0.044
2-~18 h-153 5-55 39 0.040
2-19 32-47 33-47 23 0.040 40-45 39-45 12 0.043
2-20 16-38 17-39 33 0.039
2-21 13-41 16-42 30 0.043
2-22 24-37 24-37 17 0.030 28-36 26-36 13 0.046
2-23 7 - 30 9-31 29 0.040
2-~-24 8§ -22 8§-22 13 0.051
2-12 10 - 60 8-60 58 0.042 20-40 22-40 19 0.049
3-13 4 - 64 8-64 94 0.042 6 - 60 9-60 57 0.048
3-14 6-359 5-58 90 0.035 8-55 7-53 60 0.048
3-15 3-49 4-51 78 0.035 11-50 12-50 48 0.045
3-16 5-35 4 -37 48 0.043 11-38 11 -39 29 0.048
3-17 8-~ 55 8-55 25 0044
3-18 24-48 24-50 35 0.033
3-21 23-39 25-40 24 0.046
3-22 11-26 10-28 26 0.047
3-23 24-31 24 -30 12 0.046
3-24 15-21 13-22 11 0.049
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TABLE 6.4 (Cont'd)

Final Assignments for DCI(B - X)*

Dl D¥q
Band PJ R : N rms PJ R . N rms

4-11 5-48 5-51 59 0044 27 -48 29-50 18 0.045
4 -12 4 - 64 2-64 90 0.036 7 - 43 8-42 36 0.054
4-13 2-59 0-5 91 0036 8 -60 9-59 56 n.043
4-14 4 - 56 2-55 82 0.038 5-41 7-45 51 0.041
4 -15 2 - 46 1-49 67 0.038
4-17 27-50 27-49 35 0.042
4 -18 3-40 0-40 56 0.040
4-19 10-24 9-20 15 0.042
14 -26 11 0.023

23-46 23 -46 29 0.042
7~ 55 7-57 79 0043 17-47 16 -48 28 0.046
3-358 2-59 97 0.045 5-49 5-48 52 0.046
7 - 53 6-51 78 0.036 4 - 47 4 - 47 47 0.041
1-43 1-44 57 0038 14-28 15-32 21 0.041
35-50 22 0.037
8-45 9-46 52 0040 19-43 19-39 17 0.049
26-41 28-41 14 0.045
9-31 21 0.041

6-10 26-57 26-55 35 0.045
6-11 9 - 57 9-57 73 0041 15-48 15-48 37 0.047
6 - 12 4 - 54 3-53 69 0.049 9 -42 9-42 38 0.050
6 - 13 7-49 10-53 61 0042 18-42 18 -41 27 0.045
6 - 16 6 - 43 2-44 50 0.045
6-17 14-38 17-35 17 0.042
6-19 11-35 11-36 27 0.040

7-10 27-49 27-49 29 0.040
7-11 13-52 15-50 60 0.056 21-48 18 -48 31 0.050
7-12 15-47 15-47 39 0.048
7-15 11 -46 8-46 43 0.050
7-16 11 - 37 4 -39 27 0.056
7-18 18-43 12 -43 24 0.045

-
]
N
ot
p—t
~3
!
[\
(=Y

i 1
—
W=

Githihiit
' I ! 1
I O T T
O SO\ B 3] [w]

w
S
1
(¥ 3
[en)

[}
b
S
o5}

1
[\
O

“PJ. and RJ define the ranges of J fitted for the P and R branches,
respectively. N are the number of lines fitted and the quantity rms is the
root-mean-square of the residuals (cm’l) between observed and calculated line
positions.
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DCl, respectively.

A calculation of the line positions from the eigenvalues of the corrected
operators gave a reduced standard deviation of 3re g = 0.979. This slight
increase from the value obtained in the fit can be interpreted in terms of
breakdown of first-order perturbation theory. The breakdowz is insignificant
however, and the data are still described within the measurement precisions.

Also in view of the fact that the increase in (?re was global and not

d
restricted to individual line positions, an iteration was considered
unwarranted.

The fitted values of the 73 parameters required to reconstruct the
correction functions are given in Table 6.5. No uncertdinties are given here,
but the determinations were typically ten to one. Watson’s prescription (177)
for rounding-off least-squares parameter estimates has been followed. The
trial and error method of constraining systematically individual parameters
proposed recently by Tellinghuisen (I78), would clearly be impractical for
this work.

It is realized that a fair amount of labour is required to reconstruct
the functions from the coefficients. Such is the price that must be paid,
however, for achieving accuracy in the rotational spacings of = 10 em™ near
the potential minimum. For some purposes it is sufficient to consult the
RKRV-type of listings given in Tables 6.6-6.9. An 8-point Lagrangian
interpolation of the function RZU(R) has been recommended (J11, 179) to keep
the associated errors small, and its use is also suggested here. A more
complete numerical listing of the fundamental functions UBO(R), UH(R), UCI(R)
and ﬁg(R) is given in Appendix A-~2.

The quantum mechanical eigenvalues of the eight operators obtained in



TABLE 6.5
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Fitted Coefficients (p,) for Correction Functions®

X

k Function I

Ground State AU (R) function
1 Fy, 3.118 25 x 10*
2 Fyo 6.004 643 x 10°
3 Fyo 5.019 099 x 10°
4 Fyy 2.118 461 1 x 10’
5 Fyp 4391 117 9 x 10’
6 Fyo, 3.599 082 x 10
7 Gy, (12725/1.37364) 2099 8 x 107
8 Gy, (1.45779) -1.429 01 x 107!
9 Gy (1.45729) -9.803 5 x 1072
10 Gy, (1.57897) -3.907 0 x 107
11 Gys (165262) -9.107 5 x 1072
12 Gy, (1.72238) -3.357 x 107
13 Gy (1.79028) 2436 x 1071
14 Gy, (1.85752) 4397 x 107!
15 Gy (1.92500) 1.086 9
16 Gy (1:99348) 1.669 3
17 Gy,,(2.06377) 2144 2
18 Gy (2-13663) 2.646 9
19 Giyy5(2:21300) 3115 9
20 Gy, (2:29430) 3.199 0
21 Gy 5(2.38202) 2.886 9
22 Gy (2:47880) 2.244 1
23 Giy,(2.58849) 9.272 9
24 Gyyg(271724) 1.799 4
25 Giyyo(2.87796) 1.040 3 1
26 Gy (2:97300) 1.024 3 x 10
27 Gy (3.183/3.40) -8.630
28 S 1219 225 x 107




TABLE 6.5 (Cont’d)

Fitted Coefficients (pk) for Correction Functions’

k Function P,
Ground State gX(R) function
29 H,, 3.807 1 x 107™*
30 H,, -3.188 4 x 107
31 H,, 2312 6 x 107
-4
32 H,, -6.441 0 x 10
Ground State AU)?(R) function
33 Fy, 6.349 1
34 Fyp 7.760 8 x 10
35 Fyu 2252 2 x 10
-2
36 Fy, 5.880 x 10
-2
37 Fyp -3.906 x 10
-7
38 Sya 1.96 x 10
Ground State AU(R) function
39 Fy, -2.225 35 x 10°
40 Fy -2.648 27 x 10
41 Fy, -1.061 16 x 10°
5
42 F, -1.387 53 x 10
43 F, 3.980 59 1
44 F, -2.118 331 x 10
1
45 Fg, 1.494 713 x 10
46 F,, -1.506 01 1
47 Fy, -7.938 1 x 10
-5
48 Sym -3.022 3 x 10
Excited State AU(R) function
49 Fg -3.980 60 x 10°
50 Fp, 1.173 982 x 10*
51 F 8.291 192 x 10°

B51
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TABLE 6.5 (Cont'd)
Fitted Coefficients (p,) for Correction Functions®

k Function P,

52 Foo 1.144 334 x 10*

53 Fyro 4567 71 x 10°

54 G, (2.50/2.68207) -1.019 0

55 G4, (2.81597) -4.045 2

56 Gy, (2.87585) -4.484 2

57 G5, (299438) -8.579 4

58 G 5<(3.09621) -4.437 0

59 Gy (318869) -7.021 1

60 G4, (3.27476) 1.419 6

61 G g(3.35686/3.45) -2.360

62 S, 4.001 0 x 107
Excited State AUI;(R) function

63 Fg., -1.884 4 1

64 Fo, -1.441 4 x 10

65 Fo 1.785 2 x 10

66 F. -2.688 31 x 10

67 Fo, 1.513 62 x 10°

68 Foo -3.181 49 x 10°

69 F, 2.956 45 x 10°

70 Foe -1.020 568 x 10°

71 Sy 7753 1 x 107

Excited State Te Corrections
72 AT (HCI) -3.318
73 AT (DCI) 7.791

“The internuclear distances used for the generagon of expectation
values are R: = 127455363 A and R® = 25104848 A. For the G,
the values in parentheses are the R ; for Gyt and Gp, the values

given are the RnO and Rnl; similarly, for GX21 and GBS,
values in parentheses are the pivot points for the & o

the second



TABLE 6.6

Internuclear Potentials for the X I3+ States of H35 Cl and H37Cl“

207

Hcx=") Hcixizh
v Gv Rmin Rmax Gv Rmin Rmax
0 1483880 1177176 1393424 1482768  1.177209 1393374
1 4369.857 1LII7191  1.497280 4366.639 1117241  1.497179
2 7151864 1.080690  1.578958 7146.695  1.080748  1.578813
3 9830.658 1053654  1.652589 9823.697  1.053717  1.652400
4 12406715 1032069 1722353 12398117  1.032136  1.722119
5 14880158 1014122 1790229  14870.080  1.014191  1.789948
6 17250770 0998818 1857456 17239370 0998888  1.857125
7 19517.840 0985546 1924922 19505281 0985617  1.924537
8 21680.085 0973901 1993401  21666.533 0973973 1992956
9 23735620 0963604 2.063649 23721253 0963675  2.063136
10 25681690 0954452 2136476  25666.696 0954523  2.135885
11 27514689 0946298 2212857 27499271 0946367 2212174
12 29229.726 0939033 2294050 29214111 0939100  2.293255
13 30820375 0932579 2381762  30804.819 0932644  2.380826
14 32278243 0926885 2478470  32263.044 0926946 2477350
15 33592316 0921918 2588014  33577.829 0921975  2.586636
16 34747970 0917673 2716789 34734628 0917725  2.715024
17 35725102 0914168  2.877233 35713409 0914212  2.874839

a . . . - . . .
Energies are in units of cm ! and internuclear separations in A



TABLE 6.7

Internuclear Potentials for the XS States of D35 Cl and D*'CP?
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Dy x=™ pcix’sh
v G, Rmin Rmax Gv Rmin Rmax
0 1066603 1190909 1373633 1065044 1190965  1.373553
1 3157663 1137970 1457786  3153.105 1138057  1.457630
2 5195034 1105120 1522496  5187.633 1105222  1.522275
3 7179055 1.080413 1579754 7168967 1080526  1.579471
4 9109984 1060410 1633036 9097365 1060531  1.632692
5 10988.018 1.043554 1683963  10973.024 1043680  1.683557
6 12813238 1.028984 1733454 12796026 1029115  1.732985
7 14585653 1.016170 1782105 14566378 1016304  1.781571
8 16305222 1.004756 1830367 16284041 1004892  1.829764
9 17971.695 0994493 1878585 17948769 0994631  1.877909
10 19584715 0985199 1927055 19560208 0985337  1.926303
11 21143.818 0976733 1976062 21117.896 0976872 1975226
12 22648301 0968991 2025880 22621139 0969129  2.024954
13 24097277 0961889 2076794  24069.056 0962025  2.075769
14 25489.663 0955358 2129116  25460.573 0955494  2.127982
15 26824102 0949347 2183208 26794345 0949481  2.181952
16 28098.921 0943813 2239502 28068.715  0.943944 2238106
17 29312.064 0938720 2298526 29281645 0938848  2.296967
18 30461.041 0934043 2360945  30430.667 0934167  2.359195
19 31542.848 0929761 2427633 31512806 6929881  2.425651
20 32553.829 0.925860  2.499769 32524441 0925975  2.497500
21 33480.525 0922332 2578988 33461160 0922441  2.576353
22 34344501 0919174  2.667652 34317584 0919275  2.664533
23 35111924 0916390 2769687 35086966 0916483  2.765877
24 35782945 0913995 2891090 35760567 0914077  2.886313

“Energies are in cm™! and internuclear distances in A.

RS,



TABLE 6.8

Internuclear Potentials for the Blz+ States of H35Cl and H37C1”

209

H>CI(B'z) HcB'=")
v Gv Rmin Rmax Gv Rmin Rmax
0 430936 2317497 2714873 430616 2317569  2.714794
1 1276358 2175088  2.876472 1275421 2175217  2.876323
2 2090344 2074589 2995175 2088.838  2.074760  2.994970
3 2874378  1.990216  3.096697 2872343  1.990425  3.096442
4 3630282 1914810  3.189113  3627.756 1915055  3.188811
5 4359904  1.845365  3.274896 4356921  1.845644  3.274548
6 5065210 1780419 3357174  5061.800  1.780729  3.356778

“Energies are given in cm~

1

units and internuclear distances in A.
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TABLE 3.9 210
Internuclear Potentials for the BIS* States of D3¢l and D¥Cy
D¥CB'=") pciBls)

v Gv Rmin Rmax Gv Rmin Rmax
0 310.570 2.345892 2.682145 310.119 2.346011 2.682016
1 923.148 2225790 2.816166 921.820 2.226000 2.815926
2 1519.189 2.141985 2913145  1517.030 2.142261 2.912821
3 2099.183 2.072417 2.995614  2096.239 2.072751 2.995216
4 2663.796 2.010812 3.069400  2660.109 2.011201 3.068932
5 3213.602 1.954403 3.137904  3209.211 1.954843 3.137366
6 3749.364 1.901710 3.202499  3744.305 1.902199 3.201898
7 4271.750 1.851890 3.263793  4266.056 1.852426 3,263129

“Energies are in units of cm™! and internuclear distances in A.
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this work are listed in Appendix A-3. From these eigenvalues, the fitted line
positions were calculated and the residuals from the observed frequencies
formed. These are listed in Appendix A-4.

The functions U;{.(R), U;l(R), end U*;(R) are plotted in Figures 6.1, 6.2,
and 6.3, respectively. Also shown in these plots are the innermost and
outermost turning points obtained by considering all the fitted E ., and some
indication of the radial distribution of rotational levels for the highest
vibrational levels. The function ﬁ?(R) is plotted in Figure 6.4. Shown in
all plots of radial functions are the 95% confidence limits as obtained by
standard methods (57).

According to the theory of Watson (42), the function ﬁg(R) can be

expressed as,

sH H -1 H

RX(R) = RX(R) - R Jﬁ QX(R) dR, (6.17)
Ry

where the function Q?(R) accounts for homogeneous coupling of X I3* to excited

I* electronic states, and R?((R) signifies pure heterogeneous mixing. In

regions where R?(R) » Q?(R), the coupling can be thought of as purely

heterogeneous, and the radial variation of the matrix element <A1II|LXH|X 12+>

can be examined. The function R?(R) (= ﬁg(R)) can be written as,

RA(R) = [;.Tl;ﬂ] Z{Kn L | X'Ery)?

+ |(n|LyH|X12+>|2}/{UX(R)-Un(R)} + Zg, (6.18)

where ZH is the charge of the hydrogen nucleus and the summation is taken over

all excited 'II states. It is assumed that A'MT - X!S* is the predominant
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Figure 6.1
The estimated function U?(R) for HCl/DCI(X 12+). The dotted
and broken curves represent the 95% confidence limits of the
fitted function. R_. and R__ represent the innermost and
mun max
outermost classical turning points respectively, obtained by

considering all the fitted E .
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Figure 6.2
The estimated function U (R) for HCYDCI(X'=*). The dotted
and broken curves represent the 95% confidence limits of the
fitted function. R . and R__ represent the innermost and
min max
outermost classical turning points respectively, obtained by

considering all the fitted E .
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Figure 6.3
The estimated function U5(R) for HC/DCI(B'Z). The dotted
and broken curves represent the 95% confidence limits of the
fitted function. R_. and R__ represent the innermost and
min max
outermost classical turning points respectively, obtained by

considering all the fitted E ;.
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Figure 6.4
The estimated function RE(R) for HC/DC(X'E™). The two
solid lines represent .he 95% confidence limits of the

fitted function.
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heterogeneous interaction in regions where homogeneous coupling is small.
From the results of ab initio calculations (127), this range has been chosen
as 1.80 - 3.20 A for HCI/DCL Based on this single heterogeneous perturber
hypothesis, the matrix elenent <A1H|LxH|X 1E+> can be found from,
1 I+ SH 2 7
[ATILG | X2 = [@G®) - Zm RI9U® -~ U,®)]] , (619)
having assumed <LxH>2 = <LyH>2' The potential for the repulsive AT state was

represented by the analytical expression,

]

U®R) = 9X'5%) + we™, (6.20)

obtained by fitting parameters .« and n to the ab inifio potential (127); the

fitted parameters are « = 140 998 cm™!

and n = 1.745 390 5, and the
dissociation limit & (X 1E“L) was constrained to the thermochemical value of
37 243 om’} (119). Values of the matrix element obtained in this fashion are
presented in Table 6.10. This restricted type of calculation shows the matrix
element to possess a smooth radial variation with increasing R, reaching a
fairly constant value in the range 2.8 =< R < 3.2 A. Beyond this internuclear
separation the function g(R) (and hence ﬁg(R)) is not known with certainty.
Also, as AMI continues to approach X % towards larger R, there is an expected
breakdown of the Van Vleck transformation, which is essentially a second-order

nondegenerate perturbation description.

6.4 Isotopic Variation of Equilibrium Bond Lengths

The isotopic dependence of equilibrium rotational constants has received
considerable attention.  Fortunately, the spectroscopic characterization of

the low-v,J levels of the isotopomers of HCl has been accomplished through
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TABLE 6.10
Radial Variation of Matrix Element <A1H|Lx|X 12".+) for HCI*

R AU(R) R IKA'TI|L | X'y
22 -12711 ~1.09 0.44
2.4 ~7529 ~1.88 1.14
2.6 —4230 -3.16 1.46
2.8 —2271 -5.28 1.62(8)
3.0 —1184 ~8.86 1.69(9)
32 —620 ~14.89 1.74(8)

“R are in A units and AU(R) in units of cm™.. For the last
three entries, the numbers in parentheses signify estimated
errors.
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techniques which provide very precise results; the isotopic variation of R,
for HCI can therefore also be described with comparable certainty.

The work of Kaiser (93) dealt primarily with the hyperfine structure and
parameters of v" = 0-2,J" = 1-2in H35Cl, andv” = 0-1,J" = 1-3in D35Cl, as
well as with the influence of the electric dipole moment on the moment of
inertia. = The rotational g factor was determined as g = 0.47 = 0.03 for
v",J" = 0, 1of H*Cl from a measurement of the rotational magnetic moment of
the perturbed ground state. Kaiser also reported estimates of R, for H>Cl
and D3501; these appear to be the adiabatic values, even though they were not
explicitly identified as such. They were obtained by considering the effect
on the moment of inertia of the nonspherical electron distribution around the
two atoms.

Shortly thereafter, improved measurements of submillimeter-wave
transitions were made for several hydrogen halides (161). These included the
first reliable measurements on the H'Cl and D>'Cl isotopomers. A detailed
theoretical interpretation of these frequencies was made to obtain R?O, the
equilibrium bond length in the Born-Oppenheimer approximation. This result
was in slight error because an assumption was made that g is proportional to
,u'l; gy has a more complicated mass dependence. This oversight led to
slightly erroneous estimates of the correction for the nonspherical electron
distribution.

A rigorous theoretical investigation into the isotopic variation of R,
was made by Watson (180). An important result of this work was the

expression,

_ pBO
R(Y,) = REO{1 + m (d /M + d M)}, (6.21)
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which enables the estimation of the Born-Oppenheimer equilibrium bond length
by considering R, values obtained from uncorrected estimates of Yor- The
parameters ¢, comprise adiabatic, nonadiabatic and semiclassical corrections.
Collectively, they describe the small difference betwezn B, and Y, .

Another important expression in Watson’s article (180) relates the
adiabatic equilibrium bond length to that obtained in the clamped nuclei

approximation, as

ad __ pBO ad ad
R = R2O(1 + m (@%0/M, + d3IM )} (6.22)

€

The parameters d?d refer to adiabatic corrections exclusively. A solution of

the electronic wave equation in spaced-fixed coordinates gives these as,

ad _ _ BO,BO\[ d Is+ ) p2) ylet
& = —(1/2m JPORE )[d_ﬁaz 1P x'E >]RBO, (6.23)
€
where P, are the momenta of the nuclei relative to space-fixed axes. A
space-fixed coordinate system was employed (180) as it leads to a simpler
expression for the adiabatic correction, the expectation value in Eq. (6.23).
K20 is the Born-Oppenheimer harmonic force constant, or dZUBQ(R)/dR2 evaluated
at REO. The relation between R:d and RI:O can also be written as (180),

¢ e dr R

(6.24)
where AUP(R) is the adiabatic correction.

Improved atomic masses (181) and fundamental constants (182) have become
available since the analysis of Watson (180); his analysis was therefore
repeated here for the isotopomers of HCl. Table 6.11 lists estimates of
R (Y;,) obtained by using the conversion factor, B(MHz) = 505 379.075/yR§, for

# in amu and R in A, where @ is calculated from improved estimates of the



TABLE 6.11

Isotopic Dependence of Equilibrium Internuclear Separations for HCI®

Isotopomer R (Y) RC(U;IE) Rid
H¥Cl 1274 556 710(40)  1.274 545 903(18)  1.274 709 86
HYCl 1274 556 631(40)  1.274 545 797(10) 1274 709 73
D¥Cl 1274 579 071(55) 1274 576 083(20) 1274 656 13
DYCi 1274 578 989(60)  1.274 575 964(12) 1274 656 01
TCl 1274 587 254(1140) 1.274 585 960(55)  1.274 638 25
T3Cl  1.274 586 171(1140) 1.274 585 935(47)  1.274 638 13

BO BO
R° = 1274 604 3(1) from UC(R).
REC = 1274 600 0(6) from Eq. (6.21) and R (Y,,) above.

3

“All quantities are in Angstrom units.

224
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atonmic masses. The atomic masses and reduced molecular masses employed in
this work are listed in Table 6.12. Table 6.11 also contains the Rgff values
corresponding to the minima of the numerical functions Ueff(R) determined in
the present analysis. The quantal values, R‘:ff, differ from the semiclassical
R (Y,,) values in a clearly mass-dependent way. A weighted least-squares fit
of Eq. (621) to the semiclassical estimates gave R.C = 1.274 600 0(6) A,
dy = —0.06451(12), and d, = 0.075(34).

The Born-Oppenheimer potential for X 15+ has also been obtained from the
individual isotopically dependent potential functions. Its minimum has been
found numerically at Rfo = 1.274 604 3(1) A, in good agreement with the value
given above, considering that the errors on these quantities do not reflect
the uncertainties in the fundamental constants. In particular, the
uncertainty in Planck’s constant would introduce a corresponding uncertainty
in the Rf'o value of approximately 1 X 10" A. This alone does not explain the
observed discrepancy; nor is it clear why a deviation of such magnitude is
found. One may speculate that, while the potentials obtained in this work
inextricably contain radiative and relativistic corrections, Eq. (6.21) may
not be capable of extracting such effects in a theoretically proper fashion.
Along the similar theme of a deficiency in Eq. (6.21), a separate fit found

the coefficient of (mc/MH)2 to be marginally supported; this indicates that

RBO
e

the other hand, since the correction functions determined in this work are

and d, determined in accord with Eq. (6.21) are slightly contaminated. On

expanded about a frial R, estimate and hence forced to assume zero values at

the trial potential minimum, it may not be unreasonable to expect a

eff

model-dependent error on the R,

estimates which would also display isotopic

dependence; this could lead to a slightly (= 107 A) erroneous Rfo estimate.
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TABLE 6.12

Atomic and Reduced Molecular Masses®

Atomic Masses

M(H) 1.007 825 037
M(*H) 2.014 01 787
M(H) 3.016 049 286
Ma) 34,968 852 729
1Y (6e)) 36.965 902 624

Reduced Molecular Masses

u(H¥C)) 0.979 592 544
e o) 0.981 077 299
u(*H*CI) 1.904 413 254
wCr¥a 1.910 032 891
Plesse) 2.776 571 155
uCHan) 2.788 532 798

? Atomic masses taken from Ref. (181).
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With R}jo and dz. now available, it was possible to obtain new estimates of

the adiabatic parameters d?d from the expressions (180),

d. = g% _ pAY,, 8 ;)g (6.25)
H “H ) .
2m B 2m
€ e P
ca - “al ’ )
2m B 2m
e e P

where m, is the protonic mass and AYO1 the Dunham correction. The

isotopically independent values (”gl)i are given by (180),

gy = mg, + 20c1mpMc21/(MH + M), (6.27)
and
U8y = H8; + ZCHmpMH/(MH + M), (6.28)
so that
8 = (Ug)/My + (MgP/My, (6.29)

showing clearly that g, is not simply dependent on ,u"l. Egs. (6.27, 6.28)

introduce the formal charges ¢, and ¢, discussed further below. The Dunham

H
correction in Eqs. (6.25, 6.26) is given in terms of the anharmonic potential

derivatives, a,as
32 2 3 _ -
AY, = (Be/4a)e)(30 + 28a, + 21a1 + 2la] — 18a, — 46a.a, + 30a3). (6.30)

Precise a for HCI(X 1Z+) have been reported by Coxon and Ogilvie (46).
Despite these improved estimates, we do not obtain a significant difference in
the estimates of d?d from those of Watson (180). Using d;ld = 0.155 and
dé‘li = 0.116 (180), estimates of Rid are also presented in Table 6.11. It is

interesting to note that, given the expression for d?d, Eq. (6.23) above, the
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adiabatic matrix elements (X It |P§|X 12+> must possess negative slopes near the
equilibrium configuration of the Born-Oppenheimer curve. Hence, the total
adiabatic correction must similarly be associated with a negative slope near
RO,

€

According to Watson (180), there exists a relationship between d, and d?d

and c;, the formal charges associated with each atom. It is given by

— gad _ jad _
dy—dy=d dey — ¢

_. gad _ ad
H - g =9 —dq t (6.31)

where |c,| = |D/eR |, D being the equilibrium dipole moment and e the
electronic charge. From the d. and d?d obtained in this work, we calculate
€y = 0.1786 and €oq = —0.1786. Using Kaiser’s (93) equilibrium dipole moment,
M, = 1.0933 D and R, = 1.27456 A, we also obtain |c,| = 0.1786, indicative of
the consistency in the theory. The small formal charges on atoms H and Cl
imply a HYCI" distribution of electronic charge, in accord with chemical
intuition.  This slight imbalance of charge is related to a finite dipole
moment, and is also linked to the small degree of ionicity in the ground
electronic state. For HF, the significantly higher degree of ionicity in the
ground state is reflected in the formal charges €y = 0.4083, and ¢, = —0.4083
obtained by using a dipole moment of 1.7982 D (183). Ultimately, these
observations reflect the orbital composition of the electronic wavefunctions
for HCl and HF ground states, shown by ab initio calculations (127, 149) to be
admixtures of ionic with valence configurations.

It is clear that the equilibrium bond lengths in the adiabatic
approximation follow a mass-dependent trend which is opposite to that of both
the R (Y,,) and R:ff. As indicated by Eq. (6.24), above, in order for the

adiabatic de values to be larger than R]?O, it is necessary for the adiabatic
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correction, AUad(R), to possess a negative slope at Rfo. An examination of
Fig. 6.1 of U;.I(R) obtained in this work reveals a positive slope mnear the
potential minimum; hence the opposite isotopic trend is observed in ijf.
This observation is important. It implies that the function U?(R) is
considerably different from the true adiabatic correction, AU;d(R).
Therefore, the experimentally derived function Ug(R) must contain significant
homogeneous nonadiabatic contributions, most likely due to interactions
between X'= and the lowest excited bound electronic state, B12+, which has a
vertical excitation energy of approximately 10.9 eV (I173), and the Rydberg
H12+(O+) state, which undergoes a diabatic curve crossing with Bz at

approximately the same energy.

6.5 Penturbation Calculation of Centrifugal Distortion

A nonuniqueness has been discussed previously regarding the potential
energy functions for individual isotopomers. Coxon (120) has demonstrated
numerically that the nonuniqueness parameter 4 has negligible effect on the
quantum mechanical eigenvalues, when applied in the prescription suggested by
Watson (42). This is discussed further in Section 6.8. Any parametrization
of energy must also be independent of A. Hence, the rotational energy

expression,
F,=BW( + 1] =00 + )F + BTG + )P + ..., (632)

will also be affected only slightly by use of different 4 as prescribed by

Watson (42). Beff, Deff, Heff, etc., are rotational and centrifugal
v v v

’

distortion constants contaminated with nonmechanical effects. They are the

perturbed constants determined through a fit of experimental line positions to
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a power series in J(J + 1). The theoretically correct expression for Bﬁff has
been given previously as Eq. (3.57). The centrifugal distortion constants can
be calculated most efficiently through the methodology laid out by
Hutson (53). The computer code of Hutson was modified, however, to account
for the effects of g(R). Constants were calculated in this fashion for the
B'=* and X!=% states of all four isotopomers and are listed in Tables
6.13-6.16.

A particularly rigid test of the physical significance of such constants
was carried out for v" = 0 of H>°Cl and H37Cl, by comparing synthetic pure
rotational line positions for J" = 0-9 with those obtained very precisely
through tunable far-infrared laser spectroscopy {129). The comparison is
shown in Table 6.17. Also shown is a comparison of rotational and centrifugal
constants obtained from perturbation theory and experimentally. The agreement
is found to be exceptional. These observations provide strong support for the
physical significance of the calculated constants and hence also the derived
operators.

There is a twofold benefit in obtaining molecular constants through
perturbation theory. First, the physical significance of the results derived
from a Hamiltonian correction analysis may be evaluated. In some cases it is
even possible to diagnose the progressive lack of physical meaning of
rotational parameters obtained traditionally; this problem is of particular
concern for the coefficients of increasing powers of J(J + 1). Second, the
availability of constants which are quantum mechanically consistent with the
derived operators offers the possibility of representing the eigenvalues
compactly.

This latter potential benefit was investigated further. The -calculated



TABLE 6.13
Quantum Mechanical Molecular Constants for HCI(X 'z +)?

231

Hcxis)
v Gv Bv Dv Hv LU M‘U
0 1483.8803 104401982 5.280772-4 1672182-8 -8.64924-13 3.086-17
1483.8803 10.4402186 5.280302-4 1.673014-8 -8.64250-13 3.091-17
1 4369.8569 101361830 5.214313-4 1.61678-8 -8.963-13  2.698-17
4369.8569 101362482 5.213716-4 1.61775-8 -8955-13  2.704-17
2 7151.8635 9.8345962 5.154519-4 1.55218-8 -9.418-13  2.37-17
7151.8635 90.8347122 5.153782-4 155330-8 -9.408-13  2.38-17
3 9830.6584 9.5347866 5.102765-4 147755-8 -1.0107-12 1.22-17
0830.6584 9.5349600 5.101873-4 1.47885-8 -1.0095-12 1.23-17
4 124067146 9236010  5.061039-4 13866-8 -1.088-12  8.78-18
12406.7146 9.236248  5.059975-4 13881-8  -1.087-12  8.99-18
5 14880.1579 8937344  5.03084-4  1.2828-8  -1.20-12  -6.2-17
148801579 8937655  5.02957-4  12846-8  -1.19-12  -6.2-17
6 17250770 863780  5.0155-4  1.13-8
17250.770 863820  5.0140-4  1.13-8
7 19517.840 833580  5.01924-4  9.7025-9  -1.560-12 -1.699-16
19517.840 833629  5.01749-4 973019  -1.556-12 -1.690-16
8 21680.085 802993  5.04502-4 7273-9  -2.076-12 -1.01-16
21680.085 803052  5.04294-4  7309-9  -2.069-12 -9.91-17
9 23735620  7.717943  5.10297-4 4438-9  -2.4018-12 -3.507-16
23735620 7718651  5.10048-4  4.484-9  -2.3919-12 -3.481-16
10 25681690  7.397450  5.19730-4  4.233-10  -3.4461-12 -5.812-16
25681.690 7398296  5.19429-4  4.869-10  -3.4298-12 -5.764-16
11 27514689  7.065210  5.34621-4 -5286-9  -4.630-12 -9.420-16
27514.689  7.066220  5.34250-4 -5.195-9  -4.603-12 -9.328-16
12 29229726  6.716843  5.56686-4 -13414-8  -6.969-12 -1.6540-15
20229726  6.718049  5.56217-4 -13278-8 -6.921-12 -1.6350-15
13 30820375 634665  5.88966-4 -2.5465-8  -1.0929-11 -3.469-15
30820.375 634810  5.88351-4 -2.5247-8  -1.0835-11 -3.424-15
14 32278243 594685  6.3632-4  -4.4865-8  -1.8549-11 -6.784-15
32278243 594861  6.3547-4 -4.4487-8  -1.8348-11 -6.670-15
15 33592316 550610  7.0716-4  -7.757-8  -3.493-11 -1.675-14
33592316 550829  7.0591-4  -7.684-8  -3.444-11 -1.640-14




TABLE 6.13 (Cont’d)
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Quantum Mechanical Molecular Constants for HCI(X ")

H¥cxsh)
v G B D H L M
v v v v v v
16 34747970 5.00723  8.1828-4 -1.4130-7 -7.738-11 -4.81-14
34747970  5.01007  81621-4  -13965-7 -7.587-11 -4.66-14
17 35725102 442018  1.0097-3  -2.901-7  -2.259-10 -2.25-13
35725102 442411  1.0057-3  -2.853-7  -2.196-10 -2.16-13
Hloxizt
v G B D H L M
v v v v v v
0 14827679 ° 4245153 5.64830-4 1.664659-8 -8.5075-13 3.058-17
148277679 14245357 5.264361-4 1.665487-8 -8.5908-13 3.063-17
1 43666391 10.121190 5.19863-4  1.6095-8 -89-13  2.7-17
4366.6391 10121256  5.19804-4  1.6104-8 -89-13  2.7-17
2 71466954 9.820285 5.1390-4  154-8  -94-13  24-17
7146.6954 9.820401  5.1383-4  1.55-8  -93-13  24-17
3 9823697 9.521148 5.0874-4  147-8  -10-12  12-17
0823.697 9521321  5.0865-4  147-8  -1.0-12  12-17
4 12398117 6223043 5.0458-4 1388  -L1-12  85-18
12398.117 9223280  5.0447-4  138-8  -11-12  87-18
5 14870.080 8925051  5.0156-4  128-8  -12-12  -62-17
14870080 8925361  5.0144-4  128-8  -12-12  -6.1-17
6 17239370 862619  5.0002-4  1124-8  -1.390-12  1.035-17
17239370 862659  4.9988-4  1126-8  -1387-12  1.086-17
7 19505281 832489  5.0039-4  9.666-9  -1.5482-12 -1.678-16
19505281 832537  5.0021-4  9.694-9  -1.5439-12 -1.669-16
8 21666533 801974  5.0293-4 72569  -2.0615-12 -1.003-16
21666533  8.02032  5.0273-4  7291-9  -2.0549-12 -9.886-17
9 23721253 770850  5.0869-4  4.438-9  -2.3822-12 -3.447-16
23721253 770921  5.0844-4  4.484-9  -2.3723-12 -3.421-16
10 25666696 7.38881  5.1805-4  4.578-10  -3.4175-12 -5.750-16
25666696  7.38965  5.1775-4  5.210-10  -3.4015-12 -5.703-16
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TABLE 6.13 (Cont'd)
Quantum Mechanical Molecular Constants for HCI(X 12+)“
Hoxlzt)
v G B D H L M
v v v v v v

11 27499271  7.05744 5.3283-4  -5.206-9 -4.5895-12 -9.280-16

27499.271  7.05844 5.3246-4  -5.116-9 -4.5626-12 -9.189-16
12 29214.111  6.71003 5.5474-4  -1.326-8 -6.9031-12 -1.633-15

29214.111  6.71123 5.5427-4  -1.313-8 -6.8550-12 -1.614-15
13 30804.819  6.34092 5.8678-4  -2.520-8 -1.0808-11 -3.419-15

30804.819  6.34237 5.8616-4  -2.498-8 -1.0715-11 -3.375-15
14 32263.044  5.94239 6.3376-4  -4.440-8 -1.8326-11 -6.674-15

32263.044  5.94415 6.3292-4  -4.402-8 -1.8128-11 -6.562-15
15 33577.829  5.50319 7.0400-4  -7.672-8 -3.4440-11 -1.644-14

33577.829  5.50537 7.0275-4  -7.600-8 -3.3955-11 -1.609-14
16 34734.628  5.00629 8.1405-4  -1.396-7 -7.6103-11 -4.701-14

34734.628  5.00911 8.1200-4  -1.379-7 -7.4629-11 -4.560-14
17 35713.469  4.42197 1.0033-3  -2.856-7 -2.2075-10 -2.181-13

35713.469  4.42587 9.9930-4  -2.809-7 -2.1458-10 -2.100-13

“All quantities are in units of cm .
and bottom

entries

1

represent

perturbed and deperturbed
respectively. 5.280772-4 reads as 5.280772 x 107,

For each vibrational level, the top

values,
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TABLE 6.14

Quantum Mechanical Molecular Constants for HCI(B'=*)?

H2ciBiz)
v G B D H L M
v v v v v v
0 430936 273990 11614-4 1.2638-8 -2.836-12 7.866-16
1 1276358 276407 14032-4 2.0484-8 -5753-12 1.980-15
2 2090344 279491 16994-4 31703-8 -1059-11 4.298-15
3 2874378  2.83232 20529-4 4.6962-8 -1.829-11 8.601-15
4 3630282 287564 2.4691-4 6.7482-8 -2.985-11 1.578-14
5 4359904 292435 2.9469-4 9.3524-8 -4.642-11 2.688-14
6 5065210 297732 34872-4 12576-7 -6.561-11 3.453-14
155l01(: 00
v G B D H L M
v v v v v v

0 430616 273574 11578-4 1.2578-8 -2.818-12 7.803-16
1 1275421 275985 13986-4 2.0381-8 -5714-12 1.963-15
2 2088838 279061 1.6936-4 31534-8 -1.052-11 4.259-15
3 2872343  2.82793 2.0457-4 4.6702-8 -1815-11 8521-15
4 3627756 287113 24601-4 6.7097-8 -2.962-11 1.563-14
5 4356921 291971 29359-4 9.2979-8 -4.606-11 2.665-14
6 5061798 297254 3.4740-4 12504-7 -6517-11 3.435-14

“All quantities are in units of cm™~. 1.1614-4 reads as 1.1614 x 107
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TABLE 6.15
Quantum Mechanical Molecular Constants for DCI(X 12+)“
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D¥cix=h
v G, B, D, H L M,
0 10666029 53922719 139956-4 2.286-9  -6.0-14
10666029 53922756 1.39950-4  2.286-9  -6.0-14
1 3157.6629 52798470 1.38663-4 2.233-9  -6.1-14
3157.6629 52798587 1.38656-4 2234-9  -61-14
2 51950340 51681217 137451-4 21759  -64-14
5195.0340 51681422 137443-4 2.176-9  -6.4-14
3 7179.0550 50569848 1.36338-4 21119  -6.6-14
7179.0550 50570148 1.36328-4 2.112-9  -6.6-14
4 9109934 4946317 13533-4 20469 -7.1-14
9109.984 4946358 13532-4  2.046-9  -7.1-14
5 10988018  4.836002 1.3447-4  1.955-9  -7.3-14
10988018  4.836053 13446-4  1956-9  -7.3-14
6 1281324 472582  1337-4 1889  -7-14
1281324 472589  1337-4 1889  -7-14
7 1458565 461568  1331-4  176-9  -9-14
1458565 461576  1331-4 1769  -9-14
8 1630522 450533  1328-4  1.62-9
1630522 450542  1328-4  1.62-9
9 1797169 439446  1327-4  149-9  -95-14
1797169 439457  1326-4 1499  -95-14
10 19584.715 428280  132754-4  13069-9 -1.239-13 -6.12-18
19584.715 428301  132730-4 13088-9 -1237-13 -6.10-18
11 21143818 417026  1.33226-4  1.0716-9 -1280-13 -2.35-19
21143818 417041  133199-4  1.0739-9 -1278-13 -2.14-19
12 22648301 405615  134063-4  8.3554-10 -1.522-13 -9.43-18
22648301 405631  134034-4  8.3825-10 -1.520-13 -9.39-18
13 24097.277 394017  135335-4  5.2349-10 -1.890-13 -1.39-17
24097278 394036 1353014  5.2682-10 -1.886-13 -1.39-17
14 25489.663  3.82182  137176-4  1.2495-10 -2.256-13 -1.85-17
25489.663  3.82204  137137-4  12913-10 -2.250-13 -1.84-17
15 26824.102  3.70047  1.39706-4 -3.8342-10 -2.943-13 -2.54-17
26824.102 370071  139661-4 -3.7807-10 -2.935-13 -2.52-17
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Quantum Mechanical Molecula: Constants for DCI(X'=*)*

D¥cx'=h
v G B D H L M
v v v v v v
16 28098921  3.57533  143119-4 -1.0286-9 -3.728-13 -4.30-17
28098921  3.57561  143066-4 -1.0216-9 -3.717-13 -428-17
17 29312064 344549  147618-4 -1.8675-9 -4.89%6-13 -6.75-17
20312064 344581  147556-4 -1.8580-0 -4.879-13 -6.71-17
18 30461.041 330983  1.53505-4 -3.0010-9 -6.792-13 -1.03-16
30461041 331018  1.53429-4 -2.9878-9 -6.764-13 -1.03-16
19 31542848 316690  1.61244-4 -45743-9 -9.817-13 -1.640-16
31542848 316731  161150-4 -45552-0 -9.771-13 -1.628-16
20 32553.829  3.01486  1.71494-4 -6.7729-9 -1435-12 -2.878-16
32553.820 301534  171374-4 -6.7440-9 -1.426-12 -2.853-16
21 33489525 285132  185153-4 -1.0003-8 -2.278-12 -5.713-16
33489.525  2.85187  1.84993-4 -99563-9 -2.262-12 -5.657-16
22 34344501 267303  2.03930-4 -1.5309-8 -4.052-12 -1.161-15
34344501  2.67369  2.03706-4 -1.5229-8 -4.018-12 -1.146-15
23 35111924 247496  231046-4 -2.4092-8 -6.929-12 -2.288-15
35111924 247576 230710-4 -23937-8 -6.849-12 -2.245-15
24 35782945 224989  2.71069-4 -4.1184-8 -1.875-11 -1218-14
35782.945 225092  2.70509-4 -4.0832-8 -1.850-11 -1.198-14
Dcyx'sh
v G B D H L M
v v v v v v
0 10650435 5376490 139134-4  2266-9  -5.96-14
10650435 5376494  139128-4  2266-9  -5.96-14
1 31531050 5264562  137852-4 2214-9  -6.07-14
31531050 5264573  137845-4 22149  -6.07-14
2 51876325 5153328  1.36648-4  2156-9  -6.28-14
5187.6325  5.153349  136639-4 21569  -6.28-14
3 71689668  5.042678  135541-4  2.093-9  -6.54-14
7168.9668  5.042708  135532-4 2.093-9  -6.53-14
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Quantum Mechanical Molecular Constants for DCI(X 12+)"

D37C1(X12+)
v G B D H L M
v v v v v v
4 9097.365 4.93249 1.3454-4 2.028-9 -6.98-14
9097.365 4,93253 1.3453-4 2.029-9 -6.98-14
5 10973.024 4.82266 1.3368-4 1.938-9 -7.18-14
10973.024 4.82271 1.3367-4 1.939-9 -1.17-14
6 12796.026 4.71297 1.3296-4 1.8599-9  -7.02-14
12796.026 4.71303 1.3295-4 1.8610-9 -7.02-14
7 14566.378 460331 1.3236-4 1.7439-9 -8.93-14
14566.378 4.60339 1.3235-4 1.7451-9 -8.92-14
8 16284.041 4.49345 1.3202-4 1.6046-9 -8.65-14
16284.041 4.49354 1.3200-4 1.6060-9 -8.64-14
9 17948.769 4.38308 1.3188-4 1.4738-9 -9.33-14
17948.769 4.38318 1.3186-4 1.4754-9 -932-14
10 19560.208 4.27200 1.31966-4  1.2984-9 -1.221-13 -6.144-18
19560.208 427213 1.31943-4  1.3003-9 -1.219-13 -6.127-18
11 21117.896 4159893  1.32428-4  1.0656-9 -1.264-13 -1.40-19
21117.896 4160036  1.32402-4 1.0678-9 -1.262-13 -1.19-19
12 22621.139 4046311  1.33253-4  8.3269-10 -1.498-13 -9.179-18
22621.139 4046475  1.33223-4  8.3538-10 -1.496-13 -9.145-18
13 24069.056 3.930885  1.34505-4  5.2550-10 -1.861-13 -1.365-17
24069.056 3.931072  1.34471-4  5.2879-10 -1.857-13 -1.360-17
14 25460.573 3.813111 1.36320-4  1.3277-10 -2.219-13 -1.786-17
25460.573 3.813324  1.36282-4  1.3689-10 -2.214-13 -1.779-17
15 26794.345 3.692363  1.38814-4 -3.6722-10 -2.894-13 -2.488-17
26794.345 3.692605 1.38769-4 -3.6195-10 -2.887-13 -2.476-17
16 28068.715 3.567880  1.42180-4 -1.0021-9 -3.661-13 -4.193-17
28068.715 3.568154  1.42127-4 -9.9521-10 -3.650-13 -4.173-17
17 29281.645 3.438742  1.46616-4 -1.8267-9 -4.801-13 -6.557-17
29281.645 3.439053  1.46554-4 -1.8174-9 -4.784-13 -6.523-17
18 30430.667 3.303843 1.52418-4 -2.9392-9 -6.652-13 -1.001-16
30430.667 3.304198  1.52343-4 -2.9263-9 -6.625-13 -9.947-17
19 31512.806 3.161776  1.60041-4 -4.4814-9 -9.606-13 -1.596-16
31512.806 3.162182  1.59948-4 -4.4627-9 -9.560-13 -1.585-16
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Quantum Mechanical Molecular Constants for DCI(X '=*)*

D37C](X12+)

v G B D H L M

v v v v v v
20 32524.441 3.010703  1.70132-4 -6.6355-9 -1.400-12 -2.785-16
32524.441 3.011173  1.70013-4 -6.6073-9 -1.392-12 -2.761-16
21 33461.160 2 848275 1.83567-4 -9.7900-9 -2.214-12 -5.491-16
33461.160 2.848825  1.83410-4 -9.7448-9 -2.199-12 -5.437-16
22 34317.584 2.671313  2.02000-4 -1.4951-8 -3.930-12 -1.124-15
34317.584 2.671968  2.01781-4 -1.4873-8 -3.897-12 -1.110-15
23 35086.966 2.47488 2.28584-4 -2.3516-8 -6.712-12 -2.158-15
35086.966 2.47568 2.28255-4 -2.3365-8 -6.635-12 -2.117-15
24 35760.567 2.25191 2.67676-4 -3.9802-8 -1.768-11 -1.142-14
35760.567 2.25293 2.67131-4 -3.9464-8 -1.744-11 -1.123-14

®All quantities are in units of cm ™.
and bottom entries

1

respectively. 1.39956-4 reads as 1.39956 X 107,

For each vibrational level, the top
represent perturbed and deperturbed values,



TABLE 6.16

Quantum Mechanical Molecular Constants for DC1(812+)“

D¥ciBz")

v G, B, D, H L M,

0 310570 1.40843 2.9958-5 1.6002-9 -1.774-13 2.421-17
1 923148 1.41680 3.4313-5 22925-9 -3.034-13 4.934-17
2 1519.189  1.42695 3.9391-5 3.2069-9 -4.873-13 9.017-17
3 2000.183  1.43804 4.5198-5 4.3541-9 -7.559-13 1.587-16
4 2663796 145264 5.1871-5 5.8182-9 -1.115-12 2.608-16
5 3213.602 146798 5.9310-5 7.6400-9 -1.633-12 4.100-16
6 3749364 1.48495 6.7683-5 9.7565-9 -2.283-12 6.561-16
7 4271750 150312 7.6932-5 12508-8 -3.118-12 9.434-16

DYciB's")
v G B D H L M
v v v v v v

0 310119 140428 29779-5 1.5856-9 -1.752-13 2.384-17
1 921820 141261 3.4101-5 227069 -2.995-13 4.855-17
2 1517030 142271 3.9139-5 3.1749-9 -4.808-13 8.866-17
32096239 143464 4.4900-5 4.3092-9 -7.454-13 1.559-16
4 2660109 1.44827 5.1520-5 5.7562-9 -1.099-12 2.562-16
5 3209211 1.46353 5.8898-5 7.5579-9 -1.609-12 4.025-16
6 3744305 148041 6.7201-5 9.6476-9 -2250-12 6.439-16
7 4266056 149849 7.6376-5 1.2366-8 -3.069-12 9.252-16

“All quantities are in units of cm”

1 2.9958-5 reads as 2.9958 x 107,
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TABLE 6.17

Rotational and Centrifugal Distortion Constants for HCI:
Calculation of Far-Infrared Transitions for H>>Cl and HY'CI?

H¥Cl Hcl
By(calc) 10440 198 2(23) 10.424 515 3(23)
(exp) 10440 197 4(5) 10.424 514 9(5)
10°D (cal)) 5280 771 8§(74) 5.264 829 7(73)
(exp)  5.280 49(11) 5.264 75(9)
10°H (calc) 1672 182(72) 1.664 659(72)
(exp) 1.644 8(63) 1.650 1(54)
-10"L(calc)  8.649 24(65) 8.597 54(65)
10"M(calc) ~ 3.086 4(47) 3.058 2(47)
J 170bs Res. R Eobs Res. R
0 20878284 0.000000 00 20846 923 -0.000 002 -0.3
1 41743 895 -0.000 003 -0.4 41681 215 -0.000 002 -0.3
2 62584183  0.000 001 01 62490 255 -0.000 002 -0.3
3 83386 501 -0.000 002 -03 83261 445 -0.000 002 -0.3
4 104138 260 0.000 000 00 103.982 226 -0.000 001 -0.1
5 124.826 909 0.000 004 0.6 124.640 084  0.000 000 0.0
6 145439 949  0.000 004 06 145222 562 -0.000 002 -0.3
7 165964 971  0.000 011 09 165.717 277 -0.000 006 -0.5
8 186389 616 0.000 007 0.6 186.111 934 -0.000 006 -0.5
9 206701 655 0.000 002 02 206394 337 0.000 011 0.9

“Rotational parameters and line positions are in cm™.  The column

labelled ‘Res.” contains the residuals of observed—calculated line
positions and the R are ratios of the residuals and the experimental
uncertainty. The experimentally derived constants and the observed
line positions are from Ref. (129).
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constants were employed to calculate the positions of B's* - Xx=* rovibronic
transitions. The agreement was within the experimental errors for low- and
mid-J but deteriorated rather significantly for the high-J lines, particularly
for bands involving high vibrational levels of the ground state. It appears
that as the dissociation limit is approached, constants beyond the available
B - M are required. This is supported by order-of-magnitude estimates of
the missing higher-order constants and their expected contribution with
increasing J, as well as by the obvious inability of the fifth-order
rotational energy expression to reproduce the precisely known quantum
mechanical eigenvalues. In order to estimate the number of additional
constants required for given v, the quantum mechanical eigenvalues were fitted
to a power series in J(J + 1) while constants B - M, were constrained to the
calculated values. This test was not fully conclusive on account of the
relatively high  statistical correlations that exist between adjacent
higher-order parameters. It was possible nevertheless to determine that the
perturbation in the wavefunction needs to be calculated to fourth or fifth
order; in other words, terms up to [J(J + 1)]11 may in fact be required to
describe the experimental observations within the uncertainties of the
measurements. It is clear, then, from these results that the parameters x®
presented in Tables 4.3 and 5.4 for D¥Cl and DF, respectively, lack any
strict physical significance; they are parameters aimed simply at representing
the data within the experimental errors.

Despite the failure of a fifth-order rotational energy expression in
representing spectroscopic information satisfactorily, the constants given in
Tables 6.13-6.16 are the true perturbation expansion coefficients, obeying

identical boundary conditions as the associated radial operators and having
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proper theoretical meanings, free from the contamination of interparameter
statistical correlations.

Currently, all methods available for calculating centrifugal distortion
constants for diatomic molecules are set up to evaluate constants up to M.
Tellinghuisen (54) recently improved on Hutson’s (53) algorithm by eliminating
instabilities in the nonclassical region, and remarked that the method could
now be extended to higher orders of perturbation theory. This would be highly
desirable in view of the results presented in this work.

It is not entirely clear whether there is full convergence of the
perturbation expansion for the rotational energy, given the relatively large
magnitude of the perturbation for the diatomic hydrides considered here. This
might be of special concern for the higher vibrational levels of the ground
state, for despite the rapid decrease in the rotational constant, the
distortion constants become increasingly singular and dominant. For the ionic
Bzt state, the perturbation expansion appears to converge at a slower rate

than that of the ground state.

6.6 Tritium Chloride

An appealing test of the isotopic self-consistency of the model consists
of evaluating the accuracy of purely synthetic operators for tritium chloride.

The Born-Oppenheimer potential for HCI is given by,

UP°®R) = (1 - My - .,«CI)UH3 5C1(R) + .,«HUD35C‘(R) + .,(cClU“37C‘(R)(6.33)

where

_ D
My = ——D (6.34)
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and

M,
M = 37C1 ) (6.35)

(o]
M37C 1 M35Cl

The rotationless potential functions for TCl are given by,

UTSSCI(R) =1+ .,«)U“3 SCl(R) — M UD35C‘(R), (6.36)
UTWC'(R) =(1+ .,«)u“3 7C’(R) - M U°37C‘(R), (6.37)
where
= "o M~ MT], (6.38)
My~ My, - My,

defined with the atomic masses. The g(R) function for TCl is calculated from,
HCl
4 R) = M /M) OR). (6.39)

A calculation of the eigenvalues was carried out for X I3* of TCI and T37C1,
and the precisely known (I184) microwave J = 1 «- J = 0 transitions were
constructed. The comparison with the experimental lines is shown in Table
6.18 to be excellent, the residuals between observed and calculated
transitions lying well within the experimental uncertainties. It is
interesting to note that the TCl energy levels ¢, J" = 0, 0 and 0, 1 lie
below the v", J" = 0, 0 levels of HCl and DCl so that, in a sense, their
prediction amounts to an extrapolation.

Also listed in Table 6.18 are rotationless eigenvalues, and rotational
and centrifugal distortion constants for the lowest four levels of TClI(X 12+).
Only B, and D, have been reported in the literature (161) from analyses of

experimental data; these are shown to be in reasonable agreement with the
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TABLE 6.18
Calculated Eigenvalues and Rotational Constants? for TCl: Comparison
of Observed and Calculated Microwave Transitions®
v G B 10°D 10'%H -10ML
v v v v Y
0 884.192 867 3.705 093 3 6.589 038 7.389 4 1.331 7
882.305 310 3.689 268 9 6.532 684 7.295 2 1.309 5
1 2 623.648 7 3.641 162 6.538 20 7.250 0 1.348 0
2 618.106 5 3.625 749 6.482 43 7.157 9 1.325 3
2 4326212 1 3.577 570 6.489 75 7.099 5 1.382 5
4 317.170 5 3.562 565 6.434 46 7.008 4 1.357 2
3 5992091 7 3.514 279 6.444 25 6.931 2 1.446 3
5 979.707 6 3.499 678 6.389 38 6.842 8 1422 0
=0 J=1¢1J=0 Microwave Transition of T>°Cl (MHz)
Calculated Experimental Residual Uncertainty Ratio
222 143.90 222 143.78 -0.12 0.40 -0.30
vW=0 J=0¢&J=1 Microwave Transition of T>'Cl (MHz)
Calculated Experimental Residual Uncertainty Ratio
222 195.16 221 195.40 0.24 0.40 0.60

“Top and bottom entries correspond to T°°Cl and ”[37(31, respectively.

bExperimental frequencies are from Ref. (184). Eigenvalues and rotational

parameters are in units of cm™t

. Ratio = Residual/Uncertainty.

& T e
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calculated constants, The infrared TCl measurements (I85) appear to be in
systematic discrepancy with the wavenumbers calculated from the constants in
Table 6.18. Systematic error in these measurements has also been discussed by
Guelachvili er al. (162), as well as by Coxon and Ogilvie (46), the latter
attributing such discrepancy to unreliable DBr calibration standards (186).

The eigenvalues of B'=* and X'=* for T33Cl and T°Cl have been calculated
and are listed in Appendix A-5. The prediction of the TCl (B — X) emission
band spectrum from these energies should provide a rather stringent test of
the isotopic self-consistency of the method. An estimate of the electronic
term value for B'T* is required to predict the absolute positions of the
expected rotational lines. The chlorine independent estimates for T, obtained
in this work for HCl and DCl have been employed to construct the empirical

relationship,

i ® . H

T, =t, +1,IM, (6.40)
with t? = 77 329.477 cm'l, the separation between the minima of the
Born-Oppenheimer curves, and tI;I = —22.409 cm™! amu. This expression predicts

TICI = 77 32205 cm™. An expression similar to Eq. (6.40) but employing

molecular reduced masses gives the same result.

6.7 Higher-Order IWKB Effects in the RKRV Procedure

It is possible to use the results from the present analysis to estimate
the effects of neglected higher-order JWKB integrals in the RKRV procedure.
Using quantum mechanical rotational constants which have had the effect of
q(R) subtracted from them, and the quantal rotationless eigenvalues, a

first-order RKRV potential is constructed. This was then compared with the
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numerical potential obtained from the Hamiltonian correction analysis; the
difference between the quantal and semiclassical potentials gives the
higher-order JWKB corrections.

A set of deperturbed B , obtained simply by setting g(R) = 0, and the
corresponding eigenvalues for J = 0 are listed in Tables 6.13 and 6.15 for the
Xzt state of H35Cl, and DCL  From these, first-order RKRV curves were
constructed and the difference functions from the quantal potentials were
obtained. These were multiplied by K and plotted in Figure 6.5. It is clear
that the discrepancies scale in accord with expected mass behaviour (89). The
small undulations in the difference functions are due to lack of smoothness in

the semiclassical turning points.

6.8 Nonuniqueness in the Hamiltonian Operators: Further Comments.

As discussed previously, Watson (42) predicts that addition of (1/2)aU/oR
onto the rotationless potential with a corresponding modification of g(R) by
—AIR, for any real A4, should have no effect on the rovibrational eigenvalues.
This appeared to be confirmed numerically by Coxon (120). Under closer
scrutiny, however, this was found to be true for small (< 10'4) values of 4
only. For greater values of A, noticeable discrepancies begin to appear.

It was decided to investigate this apparently puzzling behaviour of the
radial Hamiltonian operator mathematically, in order to find a prescription
that gives an exact agreement for any value of A. The results presented below
indicate that it is not possible to obtain exact agreement for all values of
A, but the range of A that can be employed is significantly enlarged. Also,
the results shed more light on the physical significance of Watson’s (42)

prescription.



Figure 6.5
Mass-scaled higher-order JWKB corrections for the X Is* state
of H”C/D®CL. The raw JWKB corrections for each
isotopomer are multiplied by the respective reduced masses
and the two piots are found to be virtually superimposed in
the entire range of R with the exception of the point at

R = 095 A
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We begin with a general, nonadiabatically perturbed rotational potential
energy function,

UR) = UR) + U + DI + qRVR. (6.41)

We then proceed to transform this expression into the increment form of a

Taylor series (122), as

UR + 1) = UfR) + AQ@U/JSR) + (A*/2)(8°UJaR%) + (A°/31)(8°U JoR’)

+ @aneUseRY + .., (6.42)

which can then be considered as a lateral translation of the rotational
poteniial by A units along the R axis. After considerable algebra and some

simplification, it is useful to consider a translation operator T,

T=7,+7, (6.43)

where f‘o, which modifies the rotationless potential by

UyR) = UgR) + T, (6.44)
is defined as
N n
™ - Z £ BOYR), (6.45)
n=1"
where
o™ = d*1ar", (6.46)

is a differentiation operator. The effect of ?'J is shown by the difference,

2 A
VYR) - UAR) = ﬂ_ﬂk{ii_ll {1 + g(R) + TJ}, (647)

with
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T = Z e Y(F/IR - DY'q(R) + Z - 1(FYR™ (6.48)
which can be written more succinctly as,
700 Z ) {(F/R DY'q®) + (FYR™, (6.49)
where the factorial operator Fis assigned the property,
FY = % = 0 + 1)1, (6.50)

and the operators D and F do not commute. The first term in curly brackets in
Eq. (6.49) represents a shift along the internuclear axis of the perturbation
due to q(R) and the second term gives the shift of the usual kinetic energy of
rotation.

It is helpful to write the first few terms of these operators explicitly
to give an appreciation for their effects. The rotationless part ?’0 has been
given previously in this thesis, as Eq. (3.43), and corresponds simply to a
radial shift of the rotationless function by A units. The first few terms of

»~

T, are quite interesting; these are

J
TV = Mdg(R)/dR — 2[1 + q(R)I/R}, (6.51)
T® = ﬁ{dzq(R),'dRZ ~ (4/R)dg(R)/dR + 6[1 + q(R)J/R’}, (6.52)
T3 = ’13 BgR)AR® — (6/R)YP(R)AR® + (18/R1)dq(R)/dR —
24[1 + q(R)J/R>}. (6.53)

Now, for small values of 4(R) we can write the first term as
T = ~21R. (6.54)

If we write the shifted rotational potential, including the effects of f"(()l)
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and ’7\"(,1) only, we find
UAR + 4) = {UYR) + MdUYR)/dR} +
BAIJ + D1 + {g(R) — 24/R}Y/R?, (6.55)

which is exactly Watson’s (42) mathematical description of nonuniqueness in
the radial operators; that is, modification of the rotationless potential by
addition of a constant k£ multiplied by the potential first derivative should
be accompanied by addition of —2k/R to the function g(R). This also
illustrates why Watson’s procedure fails for larger values of A; simply, more
terms of T are required. However, convergence in Eq. (6.42) is not guaranteed
for all values of A. The determination of the radius of convergence of this
expression is not a trivial undertaking; neither is it of particular value
when the physical meaning of 1 is examined.

From Egs. (2.42, 2.43) and Eq. (6.55) above, it is easy to see that

(-4

A = r 0"(R) dR, (R, > R), (6.56)
Ry

where Ae is a special value of A. Essentially, this is a small amount of

homogeneous mixing that is neglected. This neglect is made inadvertently when
q(R) is constrained to vanish at R, (42). For small values of 4 the
contribution from QE”)(R), or the homogeneous mixing of electronic states, for
arbitrary values of R, corresponds to a shift of the rotational potential
energy along the internuclear coordinate. The value of A, increases in
proportion to the total homogeneous periurbation experienced by the electronic
state in question. Since it is assumed to be zero, finite values of A, would
lead to small discrepancies in the derived Riff values.

Consider a hypothetical situation where the first bound excited (Blz+)
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state of HCI is lowered in energy. According to Eq. (6.42), this would affect
the inertial properties of the ground X 3% state by causing a radinl shift of
its potential. As the B's* state is continuously brought closer to X 3%, an
apparent contradiction begins to form. Will the ground state shift endlessly
along R? Of course not! The ground state will shift by a certain amount, but
as the excited state continues its approach, the wave equation which describes
X'=* will become progressively inapplicable due to a increasing breakdown of
the perturbation theory on which it is based. It will then be necessary to
apply degenerate perturbation theory to describe the system, and the

nondegenerate perturbation parameter Ae has little physical meaning.

6.9 The Adiabatic Correction at the Potential Minimum

Homogeneous nonadiabatic coupling of X >* shifts the adiabatic curve by a
negative amount along R, requiring that the perturbation function possess a
positive slope near the equilibrium configuration. Since the isotopic trend
of equilibrium bond lengths found from Y, requires a positive slope for
U?((RB), and since the adiabatic correction is found to have a negative slope
near R , the homogeneous perturbation must be of greater magnitude than the
. liabatic function near the potential minimum. This can also be seen from the

* inction,
§R) = stm) + 1 "’Ui_lrQX(R) dR, (657)

where SE(R) is the pure adiabatic correction and the second term corresponds
to the homogeneous nonadiabatic contribution to the rotationless potential.

Since Q};(R) is of the order of the number of valence electrons (42) and thus
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positive, and since the slope of the potential derivative is similarly always
positive near R, the effect of the second term on R, is contrary to that of
the pure adiabatic correction. Since the UI;(R) function, which is related
directly to the composite function §§(R), has a net positive slope near R,
the homogeneous coupling must overtake the adiabatic contribution in this
region.

This can be seen yet more clearly by differentiating Eq. (6.57), above,
and evaluating the derivatives at R = R,. Assuming that Q?(R) is fairly

constant near the potential minimum we can write,

- H eU(R)
rsx(R)] - ["SX(R)] + (/1612)[-—-———————6[ 2 ]} , (658
dR R=Re aR R=Rc R R=Re

It is obvious that there is a competing slope mechanism here and that the
second term on the RHS dominates. This occurs mainly because of the large
potential derivative term. The net slope is responsible for the observed
trend in the R (¥, ) values.

Given the adiabatic bond lengths in Table 6.11 and Eg. (6.24), it is
possible to obtain an estimate of the slope of the pure adiabatic correction

at R2C. Expanding AU™(R) as,

AVR) = (Up)le,(R = R°) + c,(R = RO + ..}, (6.59)

“
near the equilibrium configuration, the first derivative evaluated at R, = R?O
yields,

dAUPY(R)

iR

= ¢ /p. (6.60)

R
e

For HCl and D% Cl, Eq. (6.24) may now be written as,

M

PUpCp e
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REm*al = R% - ¢ [*Cu@®an), (6.61)

and
RO = R - ¢ /k* D ). (6.62)

Obtaining c, separately for each isotopomer and averaging, gives a predicted
value of c, = -28 + 2 «m™ A for the slope of the adiabatic correction of
x=*at RE’O. The adiabatic corrections for HCl and DCl] have been computed by
ab inific methods (187) and clearly possess negative slopes near the
equilibrium configuration. The average mass-adjusted theoretical slope
obtained from Fig. 3 of Ref. (187) is c, = =29 em’? A‘l, in gratifying
agreement with the present estimate.

The overall results here infer that the adiabatic equilibrium bond length
in well-isolated ground states is always displaced at larger equilibrium
separations from the Born-Oppenheimer potential minima; in other words, the
adiabatic parameters d?d are always positive. Watson (180) found this to be
the case for the molecules CO, HCl, and LiCl. Further confirmation is found
in Figs. 1 and 2 of Kotos' (24) article, from explicit calculations of the
diagonal motion corrections for the various staies of H; and Hz; these have
negative slopes at R . Additional support is found from Saykally’s laboratory
for the cations ArH*/ArD* and OH*/OD* (188), where it is found that the
quantity RI:O occurs at smaller internuclear separations than R?d. Negative
d?d values should serve as an indication of anomalies arising from significant

breakdown of the adiabatic approximation.



CHAPTER 7
ISOTOPIC BEHAVIOUR OF BORN-OPPENHEIMER BREAKDOWN:
THE B's* AND X's* STATES OF HF AND DF

7.1 Introduction

Hydrogen fluoride has been the subject of numerous theoretical and
experimental investigations dealing with electronic effects on isotopic
exchange equilibria (189), the electronic potential energy curves (108, i49,
190), the electric dipole moment (156, 183), and Einstein coefficients (108,
156). Consisting of only two nuclei and ten electrons, HF is a particularly
attractive candidate for ab inifio studies.

Although the excited electronic states are not known in great detail from
experiment, the ground state hLas been characterized rather weli. The analyses
of the B'=* - X'=* emission band systems of HF and DF by Johns and
Barrow (151) resulted in rotational parameters and vibrational energies.
These were employed later by Alvarifio ef al. (191) to construct RKRV curves
for the two states.  The potentials were in turn used to calculate
Franck-Condon factors for the B — X transition. The B'S* - X'S* emission
band system of HF was reinvestigated by Di Lonardo and Douglas (87) under
higher resolution. The rotational analysis yielded precise vibrational terms
and rotational parameters on the vibrational levels with »" = 7-19 and
v’ = 0-10. Analysis of the electronic absorption spectrum (87) gave
information on B state levels with v’ = 14-73.  Vibrational levels with

v' 2z 26 were found to be highly perturbed. RKRYV potentials were reported for

255
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both electronic states.

The accuracy of the RKRV function for HF(X 1X"') has been tested in the
present work. The Schridinger equation was solved with this potential to
yield rotationless eigenvalues, Elz‘KRV, and vibrational wavefunctions,
y)i‘KRV(R), which were then employed to calculate expectation values of R2 and
thus mechanical rotational constants. The differences between these
quantities and those derived experimentally are plotted in Figure 7.1. The
unsmooth behaviour of these differences is due to a corresponding lack of
smoothness in the potential function; experimental uncertainties in G, and B
are much smaller than the scatter. This shows clearly that the RKRV function
is quite inconsistent with the experimental information from which it was
derived. @ The reasons for this lack of agreement have been discussed
previously; briefly, one must consider higher-order JWKB effects and breakdown
of the Born-Oppenheimer approximation.

Such considerations were taken into account in the recent work of Coxon

and Ogilvie (190). The rotationless potential was modelled as

UR) = c’(1 + L ¢, (1.1)
n=1
where the reduced internuclear coordinate is given by
z=2R - R)R +R). (7.2)

A further hydrogenic radial function KH(z)
K@) = 3 h7, (13)
n=1
was determined from experimental data on HF and DF and together with U(z)

account for adiabatic, nonadiabatic, semiclassical, radiative and relativistic



Figure 7.1
Quantum mechanical inconsistency of an RKRV potential for
the X'=* state of HF. The potential was constructed from
the results of Ref. (87). The upper half of the figure
shows a plot of the differences AB = BYT - BEKRV. The

lower half of the figure gives a plot of the differences

AG = G™P - GRERV
v v v
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effects. The coefficients ¢ and hil were found by an analytical inversion of
the Dunham U, and AIIEI coefficients in Eq. (2.47). Radial functions were
determined up to 65% of the well depth.

There are two problems with this work. First and foremost, the effect of
q(R) was neglected in the generation of analytical relationships linking Uy
and A, with the coefficients ¢, and hn. Thus, heterogeneous contributions to
the rotational energy levels were inverted onto the J = 0 potential functions.
The theory supports homogeneous but not heterogeneous nonadiabatic adjustment
of the rotationless potential. Although g(R) is of small magnitude near the
potential minimum, its effect on the eigenvalues can be quite significant in
relation to the high precision with which low-v levels are studied
spectroscopically. The second problem is similar to that discussed in Chapter
6 for HCI/DCl. A fifth-order rotational energy expansion in J( + 1) is found
to be inadequate in representing some of the energy levels within their
spectroscopic precision. This is especially true for low-v levels known very
accurately from heterodyne measurements and for high-v,J levels even though
these might be known with only moderate precision. The estimates of Ukl and
A,, obtained by Coxon and Ogilvie (190) do not therefore retain their proper
quantum mechanical identities but contain contributions from missing constants
and interparameter statistical correlations; this in turn contaminates the
functions U(z) and KH(z). This is a general problem with the reduction of
spectroscopic line positions to “molecular constants”.

In the recent work of Huffaker (108), the RKRYV potential of Di Lonardo
and Douglas (87) for the ground state of HF was represented analytically by a
Perturbed Morse Oscillator/Extended Geometric Series (PMO/EGS) model.

Huffaker claimed the J = 0 representation to correspond to the adiabatic



260

potential. This was derived by considering not only the RKRV turning points
but also the rotational and centrifugal distortion constants B and D. A
chief criticism of this work is that effective rotational constants, which are
perturbed significantly by excited I states, are employed to determine the
J = 0 potential while the rotational Hamiltonian operator is constrained to
the kinetic energy of rotation expression. It is thus not surprising that
considerable problems were encountered (108) in finding a satisfactory
representation for all vibrational levels, forcing Huffaker to consider two
separate fits, one for v" < 16 and another for v" < 19. A smaller problem is
associated with the fact that the HF(X 1}2+) RKRY potential of Di Lonardo and
Douglas (87) is not particularly smooth.  There was no indication in
Huffaker’s paper (Z08) that it had been smoothed prior to the fit to the
PMO/EGS model. Although the fit itself can be considered a smoothing of the
raw turning points, lack of smoothness can require more terms in the model and
hence increase interparameter correlations and instability. Another criticism
of the PMO/EGS study of HF (108) is the apparent need to fit the residual
“nonadiabatic” eigenvalue corrections to a sinusoidal function, which in
Huffaker’s opinion is an indication of a true physical effect. This
conclusion was made on the basis of previous results on H,(X 12*’) (109). 1t
seems likely, however, that for HF all that is being fitted is the residual
inadequacy of the PMO/EGS model in fitting the adiabatic/homogeneously
nonadiabatic potential, as i is impossible to extract the nonadiabatic
component of the rotationless eigenvalues from the results of first-order
spectroscopic experiments.

In summary, no investigation has previously taken into account the

contributions from gq(R) to the rotational energies. Franck-Condon factors,
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Eiustein coefficients, and other intensity related information continue to be
reported in the literature in complete ignorance of this potentially important
effect. The purpose of this chapter is to undertake a rotational analysis of
all X!'=* and the lowv' B'S* spectroscopic line position data on the basis of
an effective Hamiltonian operator. The effect of g(R) on intensity

calculations will be examined.

7.2 Analysis
7.2.1 Selection of Data

There have been several studies of the pure rotational transitions of
HE(X 13*) in vibrational levels v" = 0-5. Akitt and Yardley (192) observed HF
pure rotational transitions in v" = (-3 by examining laser emission in pulsed
discharges through BF, apparently without the presence of any intentional
hydrogen source.  Cuellar and Pimentel (7193} observed pure rotational
transitions of HF (" = 0-2) in a CIF-H, chemical laser. ~Mason and
Neilsen (194) studied pure rotational transitions of HF in v" = 0 using a
simple absorption setup and atmospheric vapour lines to calibrate their
spectrum. Revich and Stankevich (195), Sengupta et al. (I43), and
Rothschild (196) also examined the pure rotational spectrum of HF. More
recently, highly precise heterodyne measurements of HF(v" = 0) were reported
by Jennings e al. (142).

The vibrational-rotational spectrum of HF has been similarly well studied
in various laboratories (143-146). The most extensive and significant study
is that of Mann er al. (146); here, the H,/F, flame emission spectrum was
analyzed specirographically to yield information on vibrational levels

v" = 0-9, This work is important because it connects the lower-v" data in the
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infrared region to the 'ucaum ultraviolet B — X emission data.

The spectroscopic information available for deuterium fluoride is much
less complete, consisting of only 9 far-infrared transitions (154, 156) and
101 vibrational-rotational transitions (143, 145).  Improved »" = 0 pure
rotational measurements and a Fourier transform spectrum of the fundamental
band in the infrared were presented in Chapter 5. Sengupta & al. (143)
obtained spectroscopic measurements from DF chemical laser emission for the
1-0, 2-1, 3-2 and 4-3 bands. The rotational analysis of the B'S" — X1&* band
system presented in Chapter 5 provides information on levels v" = 16-26 in the
ground state and v’ = 0-5 in B'=*. The emission measurements are interpreted
further in this chapter to yield information on levels v” = 9-26 in X 5% and
v = 0-7 in B'=*. For most of the bands presented in Chapter 5, it was
possible to extend the rotational assignments to higher and/or lower J.

The individual spectroscopic line positions heave been assigned weights
which are inversely proportional to the square of their precision estimates.
Precision estimates for line positions obtained previously in other studies
were obtained by reference to the original papers, or by performing mew fils
to power series in J(J/ + 1). A summary of the HIF/DF ground state pure
rotational and vibrational-rotational information employed in this work is

given in Table 7.1.

7.2.2 Trial Operators

The initial radial operator for the ground state was modelled after the
RKRYV potential of Di Lonardo and Douglas (87); however, instead of working
with the turning points provided in Table 9 of Ref. (87), which were only

quoted to four decimal points, the molecular constants given in Table 5 of

W e e
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HF Pure Rotational Data in X 12+

v Reference e(cm’l) N J-Range
0 142 75 x 10° 4 0- 3
0 142 0.0003 3 4- 6
0 142 0.0018 3 17-19
0 142 0.01 5 20-21, 26-28
0 192 0.70 8 13-24
0 193 0.20 12 21-32
0 194 0.05 10 0- 9
0 195 0.50 32 9-40
0 143 0.0037 5 17-21
0 196 0.20 11 0-10
1 192 0.20 4 14-23
1 193 0.20 7 22-28
i 195 0.575 23 10-34
1 143 0.01 6 18-23
2 192 0.20 1 15
2 193 0.10 2 23-24
2 195 0.50 16 10-28
2 143 0.014 6 14-23
3 192 0.20 1 16
3 143 0.013 3 14-22
4 195 0.20 2 16-24
5 195 0.50 2 16-18

HF Vibrational-Rotational Data in Xz*

! "

-1
V'~ Reference €(cm ") N U, Tq
10 b 0.03 9 1-9 0-9
1-0 144 0.10 5  6-10
1-0 86 0.0005 22 1-16 0-11
1-0 146 0.014 32 515 7-27
1-0 143 0.009 10 6-15
1-0 ¢ 0.10 1 1-6 0-5
1-0 168 0.02 29 115 0-14
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HF Vibrational-Rotational Data in X 12+

v'=v" Reference e(cm"l) N T
2-0 b 0.04 16 1-7 0-8
2~0 86 0.0008 17 1-8 0-8
2-0 146 0.22 52 1-28 2-26
2-0 168 0.016 15 1-9 0-7
2-1 144 0.10 13 2-14
2-1 146 0.12 36 1-12  0-24
2-1 143 0.012 12 2-13
3-0 d 0.025 16 1-7 0-8
3-2 146 0.075 29 1-9 0-22
3-2 143 0.025 9 3-13
4-0 146 0.10 41 1-19 0-21
4-2 146 0.23 47 1-22 0-24
4-3 i43 0.012 9 3-14
5-0 146 0.12 16 4-14 1-13
5-1 146 0.05 4 1-22 0-23
5-2 146 0.05 28 1- 8 0-20
5-3 146 0.12 35 1-18 0-19
6-1 146 0.12 29 2-16 1-16
6-2 146 0.045 41 120 0-21
6-3 146 0.03 12 1-13
6-4 146 0.03 32 1-14 0-18
6-5 143 0.04 3 4-9
7-2 146 0.055 34 2-18 2-18
7-3 146 0.034 35 2-16 0-19
8-3 146 0.058 34 1-15 0-21
8-4 146 0.058 24 2-11 1-16
9-4 146 0.06 18 2- 8 0-15
DF Ground State Data
2 -1
Reference e(cm ™) N J p J R

v=20 161 33x 107 1 J=1e&J

- o~ - =

P e
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Summary of Experimental Dats Base for HF/DF®

DF Ground State Data

' -1

v'-v Refererce elcm”) N Ip I

v = Present Work 0.0002 6 2-7

v = Present Work 0.0004 2 1 and 8
1-0 e 0.00005 25 1-12 1-12
1-0 143 0.005 20 2-17 0-14
2-0 154 0.01 19 1-8 0-10
2-1 143 0.003 12 3-16

3-2 143 0.003 11  3-14

4-3 143 0.01 5 4-8

% is the estimated precision; N is the number of lines fitted;

J p and J g are the ranges of J fitted for the P and R branches.

"W. F. Herget, W. E. Deeds, N. M. Gailar, R. J. Lovell, and A. H.
Neilsen, J. Opt. Soc. Am. 52, 1113 (1962).

‘R. M. Talley, H. M. Kaylor, and A. H. Neilsen, Phys. Rev. 77,

529 (1950).

“E, S. Fishburne and K. N. Rac J. Mol. Spectrosc. 19, 290 (1966).

°DF fundamental band data obtained oy J. W. Johns (see Chapter 5).
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Assigned Lines and Least-Squares Results for Bands of DF (B —» X)

Band PJ RJ N rmms Band PJ RJ N rms
0-12 55-60 57-61 10 0.041 2-21 3-22 2-25 35 0.041
0-14 42-57 39-57 24 0.045 2-22 3-25 2-24 20 0.036
0-15 36-55 39-55 26 0.045 2-23  11-29 11-28 27 0.050
0-16 29-52 30-51 36 0.04¢ 2-24 6-22 1-22 27 0.049
0-17 22-49 21-49 48 0.038 2-25 2-19 2-19 23 0.034
0-18 7-46 7-46 54 0.034 2-26  10-13 10-14 7 0.055
0-19 2-43 2-43 59 0.042
0-20 2-38 3-38 62 0.049 3-9  63-67 - 4 0.046
0-21 i-34 0-36 45 0.039 3-10 59-65 59-66 12 0.054
0-22 1-33 0-27 45 0.026 3-11 51-65 52-63 20 0.048
0-23 3-20 3-21 29 0.039 3-12 45-60 47-60 26 0.049
3-13  39-56 40-55 28 0.030
1-9  68-69 68 3 0.044 3-14  32-48 33-47 24 0.040
1-10 61-66 65-66 6 0.041 3-15  25-43  27-43 33 0.030
1-11  59-63 60-65 9 0.039 3-16 17-34 18-36 30 0.039
1-12 51-60 53-59 12 0.047 3-17 2-41 3-48 55 0.040
1-13  39-59 40-60 28 0.036 3-18 5-38 6-38 25 0.043
1-14  32-55 34-55 30 0.043 3-19 20-35 21-36 23 0.050
1-15 20-50 22-53 48 0.040 3-20 7-27 5-28 35 (.042
1-16  12-52  13-52 54 0.045 3-22  12-26 16-25 20 0.049
1-17 5-42 i-40 62 0.043 3-23 2-28 4-28 29 0.052
1-18 4-45 3-45 57 0.040 3-24  10-23 9-25 24 0.042
1-19 3-36 0-42 52 0.031 3-25 5-18 4-18 21 0.052
1-20 4~-39 2-39 35 0.045
1-21  15-35 18-36 29 0.036 4-9  67-69 - 3 0.024
1-22 3-31 1-31 44 0.039 4-11 50-62 53-63 17 0.045
1-23 3-26 2-26 34 0.054 4-12  46-54 47-57 13 0.051
1-24 6-19 2-13 23 0.047 4-13  39-50 40-52 19 0.043
4-14 35-44  36-47 22 0.028
2-9  60-70 67 8 0.030 4-15 29-42 30-46 19 0.040
2-10 51-66 57-63 1z 0.027 4-16 22-49 23-50 28 0.049
2-11 57-65 60-64 12 0.040 4-17 36-43 40-43 9 0.038
2-12 44-62 47-58 19 0.046 4-18 19-34 20-36 24 0.032
2-13  40-57 40-56 29 0.041 4-19 9-30 7-30 31 0.034
2-14  32-54 32-55 37 0.044 4-20 27-34 32-37 12 0.049
2-15  23-50 24-47 40 0.031 4-21 1829 16-32 18 0.042
2-16 11-41 12-40 52 0.039 4-22 7-19 7-20 22 0.045
2-17 6-35 n-34 57 0.034 4-24 3-10 1-10 10 0.045
2-18 2-43 1-45 54 0.044 4-25 4-19 5-19 21 0.042
2-19 29-38 30-39 14 0.052
2-20 16-33 14-31 26 0.043 5-10 54-67 56-65 14 0.046




TABLY 7.1 (Cont’d)

Summary of Experimental Data Base for HF/DF*
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Assigned Lines and Least-Squares Results for Bands of DF (B — X)

Band P

) R .y N rmms Band PJ R : N s
5-11  52-58 51-61 15 0.041 5-26 3-14  10-14 14 0.041
5-12  48-54 47-53 11 0.051
5-13  42-48 43-48 10 0.028 6-9 60-68 60-67 13 0.058
5-16 36-45 38-47 14 0.054 6-15 39-46 42-51 9 0.040
5-18 13-21 14-26 14 0.034 6-19 25-32 21-37 15 0.051
5-19 4-37 6-41 24 0.034
5-20 18-30 25-32 13 0.036 7-9 62-66 62-64 6 0.031
5-21 7-20 10-21 18 0.034 7-14  45-52  47-52 7 0.026
5-22 23-30 24-27 8 0.044 7-18 30-36 32-39 10 0.038
5-23 8-16 4-18 16 0.036 7-25  10-18 8-19 13 0.048

“For each band, the table shows the J-ranges of fitted lines in the P and R
branches, the number of fitted lines (N), and the root mean square residual
(rms) between the observed line positions and those calculated from the

fitted B and X Hamiltonian operators.

o
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Ref. (87) were employed to generate RKRV potentials with the computer program
developed in this laboratory by Coxon and Foster (197). Furthermore, the
turning points were smoothed with the variable-8 Morse procedure described
previously in section 6.3.3.

Following the smoothing of the inner limb and the corresponding
adjustments to the outer turning points, an attempt was made to fit the RKRV
curve to the analytical potential given by Eq. (6.13). Initial efforts met
with considerable difficulty in achieving such a description for the ground
state; above approximately 80% of the potential well depth, the analytic
representation obtained herein deviated from the numerical RKRYV function in an
oscillatory fashion, with average peak deviations on the outer limb of several
wavenumbers. Slight improvement was realized by resorting to the

representation,

B®) =) B, ~ RR", (74

which has an improved radius of convergence (17) over Eq. (6.14), but the
final representations obtained even with this model were not satisfactory. It
is clearly not desirable to introduce additional, artificial, error for the
fitting procedure to have to reproduce, particularly at larger-R (higher
energy), where the model calculations presented in Chapter 3 have shown a
slightly reduced effectiveness. It was decided therefore to employ the
smoothed interpolated RKRV potentials as the trial operators, for both
electronic states. Extrapolated points were obtained by applying the
smoothing computer program locally to the innermost and outermost regions of

the potential.
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7.2.3 Least-Squares Fitting

It is important to plan wisely the choice of correction functions in the
long-R region. Clearly, Gaussian correction functions +would not be
appropriate in representing a systematic error in the extrapolation. Local
basis functions are inappropriate in this region for another reason. It was
found in preliminary model fits that these functions were extremely sensitive
to the magnitudes of local weights; in many cases the determination of
Gaussian functions at large-R became unstable, giving correction functions
with large oscillatory structure.

It was thus decided to distribute Gaussian functions locally on the outer
limb up to the last rotationless turning point and combine them with a few
higher-order global radial functions, Fm.j(R). In this fashion, the Gaussian
functions looked after local structure and the radial functions represented
smooth systematic corrections, as well as systematic extrapolation corrections
that may be required at large R.

In preliminary work, a small representative data set for HF was employed
to determine finear combinations of terms for AUL(R), AUL(R), and ¢,(R). A
qB(R) function could not be significantly determined for the Bzt state. A
representative data set for DF was then added and initial descriptions of the
additional corrections AUg(R) and AUI;(R) were obtained. The least-squares

fit was organized on the basis of the relations,

UrI®) = UDR) + AUR), (75)
UER) = USR) + AUT(R), (1.6)

9prR) = (My/Mp);e(R), (7.7
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so that the determina‘ion of functions AU(R), AUH(R} and g(R) depends on data
for both isotopomers. After initial linear combinations fo the correction
functions were obtained, the entire set of 3939 spectral line positions was
included in a final fit (A) and a total of 60 parameters was fitted with a
reduced standard deviation of & _, = 0.961.

This is considered satisfactory. A reduced standard deviation near unity
indicates that the data, on average, are being represented by the fitted
parameters in accord with the experimental error~ within a first-order
perturbation model.  However, an attempt to calculate .hese same line
positions from the quantum mechanical eigenvalues of the corrected Hamiltonian
operators failed to give corresponding agreement. Some line positions at
high-v,J and very highly precise data for v" = 0 could not be represeuwd by
the calculated eigenvalues within the precision of the measurements. This
observation has a twofold interpretation. It can be seen as a breakdown of
first-order perturbation theory, or it may mean that, within the
pseudolinearized problem framework, the trial potential was not uniformly a
close enough approximation to the final solution. In any case, the results
signalled a necessity to iterate.

Before the iteration was carried out, however, a search was made for
additional assignments in the electronic spectrum of DF, using the corrected
eigenvalues. The assignment of the measured frequencies was until this point
less than half-complete. A search for additional rciational structure on the
basis of traditional methods was neither a realistic nor a desirable option.
The structure predicted on the basis of intensity calculations occurs at very
high-J and the approach of constants is not reliable for such extrapolations.

A significant number of previously unassigned measurements were identified as
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newly discovered band structure. Rotational lines associated with quasibound
levels at very high-J (J = 60) were found, involving new ground state
vibraiional leveis v" = 9-15,

Since the isotopic constraints, Egs. (7.6-7.7) were employed, the
iteration (fit B) proceeded in the following manner. Smaller, secondary
corrections were determined to improve further on U;flf;(R), and the functions
AU;{/B(R) and ¢, (R) were redetermined. These latter functions were found to
differ insignificantly from those determined in fit A. This is indicative of
the stabilitv of the procedure in determining functions from different initial
choices for the potentials and also shows the relatively small correlations
between the functions AUH(R) and AU(R). The reduced standard deviation of fit
B was raised slightly to Gre g = 0997, chiefly due to the inclusion of the new
DF assignments. The secondary corrections were easily represented by linear
combinations of global radial functions and required no additional Gaussian
functions.  Also, no adcitional shift functions were supported, indicating
that the determination of Re had converged after the first cycle.

A total of 94 DF(B — X) bands was included in fit B which can be
compared with the previously identified 41 bands from the conventional
analysis. A total of 2374 fitted DF(B — X) lines in this analysis can also
be compared with the 1240 fitted lines from the conventional analysis. The
assignments for the electronic spectrum of DF are now approximately 75%
complete. A significant portion of the remaining 25% of the measurements can
be attributed to other sources and are not necessarily due to DF. A computer-
aided search revealed the presence of the HF(B — X) system on the DF plates;
obviously the small amount of HF impurity in the DF gas was sufficient to

excite the strongest HF bands. The few remaining lines are probably due to
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incomplete spectral order separation. Although a serious attempt was made to
separate different spectral orders by employing a prism/cylinder combination,
the degree of order separation breakdown was not nvestigated rigorously. A
valuable method of evaluating the extent of this effect would consist of
recording atomic standards, under identical conditions as the molecular
spectra, followed by a critical examination of the photographic plates.

A total of 5213 line positions was included in fit B, 2482 for DF and
2729 for HF. The final assignments for the DF(B — X) band system can be
found in Appendix A-6. Here, all DF experimental lines included in the final
fit are provided, as well as estimates of their positions calculated from the
quantum mechanical eigenvalues of the corrected operators. Also listed here
are the hydrogen fluoride lines employed in fit B, including those of the
B's* - X'=* emission band system (87). The present work has revealed
previously undetected systematic error in the 155 nm region. A small portion
of the data in this region, for more than one band, is found to be
systematically inconsistent (= 0.2 cm'l) with the rest of the measurements.
It appears that although Di Lonardo and Douglas (87) allude to an attempt to
correct their plates for systematic inconsistencies, they were not fully
successful. There were a few additional incorrect assignments found quite
readily by using the present fitting procedure. These were primarily pairs of
lines which satisfied upper state combination differences but not those of the
lower state,  Here, then, is a distinct advantage of the Hamiltonian
correction approach; all line positions must arise from the same radial
operators. ‘The approach of fitting molecular constants to individual bands
often masks incorrect assignments, particularly at high-J. The resulting

representations need not then be characterized by a self-consistent set of
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molecular constants.  Although the process of merging constants from
individual bands to a nonredundant set might reveal such inconsistencies, this

approach was not followed for tie HF(B - X'} data (87).

7.3 Results and Discussion

7.3.1 Radial Functions and Eigenvalues for HF and DF

The functions U;I(R) and Ug(R) are shown in Figures 7.2 and 7.3,
respectively. There is a striking qualitative similarity between these
functions for HF/DF and the corresponding functions derived for HCI/DCL. A
similar otservation is made for the ﬁ;lv(R) function obtained here for HF/DF
(Fig. 7.4) and that given in Fig. 6.4 for HCI/DCl. The experimental function
ﬁ?{(R) for HF/DF, however, increases in magnitude more rapidly than the
corresponding HCI/DCl function. This indicates that the perturbing M state
and the X'3* ground state are approaching each other at a faster rate in the
case of HF than for HCl; this is confirmed from the results of ab initio
calculations (127, 149).

These observations are significant and provide experimental evidence for
the large similarity between the structure and arrangement of electronic
states in the two hydrogen halides.

The final operators are available in numerical form only. A detailed
listing of relevant radial functions is found in Appendix A-7 but for certain
applications it may simply be sufficient to refer to the functions given in
Tables 7.2 and 7.3, arranged in RKRV-style output. The energies corresponding
to the vibratiorial levels are the quantum mechanical eigenvalues of the
rotationless functions, and the turning points were obtained by inverse

interpolation. ~ The mass-independent part of the function g,(R) can be



Figure 7.2
The experimentally determined function Ui(R) for
HF/DF(X'="). The two broken curves represent the 95%
confidence limits of the fitted function. For the
definitions of R_. and R and the filled circles see the
min max

legend to Figure 3.2. Jmax is not shown for HF level
v = 19.
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Figure 7.3
The experimentally determined function Ug(R) for
HF/DF(B12+). The two broken curves represent the 95%
confidence limits of the fitted function. For the
definitions of R . and Rmax and the filled circles see the

legend to Figure 3.2. J _ is not shown for HF level
v = 10,
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Figure 7.4
The function R(R) for the X' state of HF/DF. The two

solid curves represent the 95% confidence limits of the

fitted function.
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TABLE 7.2

Internuclear Potentials for the X 12+ Stares of HF and DF*

280

HF(X's™) DF(X'z*)
v Egm™) R_A) R_(A) E(em™) R_(A) R_(&)
0 2050.771 0.834 164 1.020 550 1 490.304 0.845 388 1.003 648
1 6012194 0784 496 1113 087 4396966 0801 118 1.078 758
2 9801566 0.754 791 1186891 7212122 0.774 065 1.137 284
3 1> 423.603 0.733 069 1254 045 9 937.659 0.753 947 1.189 533
4 16 882.448 0715 908 1318 066 12 575326 0.737 814 1.238 503
5 20181824 0.701 767 1.380 656 15 126.697 0.724 331 1.285 559
6 23 324620 0.689 804 1.442 824 17 593323 0712 762 1.331 487
7 26 313.146 0.679 499 1.505 310 19 976.491 0.702 655 1.376 810
8 29 148927 0.670 513 1568 760 22 277236 0.693 708 1.421 889
9 31 832367 0.662 607 1.633 766 24 496.553 0.685 708 1.467 016
10 34 362909 0.655 612 1701 027 26 635.187 0.678 499  1.512 448
11 36 738.405 0.649 403 1771 358 28 693.560 0.671 965 1.558 424
12 38 954943 0.643 888 1.845 822 30 671.873 0.666 015 1.605 167
13 41 006593 0.639 001 1925 881 32 570.069 0.660 578 1.652 923
14 42 884443 0.634 696 2.013 706 34 387.697 0.655 598 1701 981
15 44 576055 0.630 945 2112 621 36 123.796 0.651 030 1752 658
16 46 064207 0.627 740 2228 215 37 777.013 0.646 838  1.805 331
17 47 325663 0.625 087 2370 656 39 345461 0.642 993  1.860 502
18 48 328541 0.623 019 2561 877 40 826504 0.639 472 1.918 780
19 49 026508 0.621 598 2.867 114 42 216725 0.636 259  1.980 990
20 43 511.763 0.633 341 2.048 302
21 44 705951 0.630 711  2.122 254
2 45 792421 0.628 367 2205 242
23 46 762391 0.626 312 2.300 913
24 47 605.014 0.624 555 2.415 284
25 48 306.664 0.623 111  2.559 779
26 48 848.868 0.622 006 2.760 675

found in Table 7.13 as the quantities

aEv are the eigenvalues of the fitted operators for J = 0. The R
RM
4

values are
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TABLE 7.3
Internuclear Potentials for the B!s* States of HF and DF*

281

HF(B'z*) DF(B'z*)

v E(m™) R_ (& R_(A)  E(m) R_A R_A&
0 572063 1924 812 2.274 901 416314 1.947 980 2.245 681
1 1695839 1810700 2425988 1238076 1.849 486 2.370 632
2 2785236 1735175 2540 126 2 041493 1784 075 2.463 405
3 3 841363 1.675277 2.640 226 2 827.016 1732 106 2.543 55%
4 4865358 1.624 431 2732 818 3 595.063 1.687 937 2.616 743
5 5858351 1579 658 2.820 844 4 346103 1.649 008 2.685 506
6 6821455 1539306 2905935 5080534 1.613 904 2.751 255
7 7755644 1502 346 2989 174 5798834 1581 743 2.814 838
8 8661873 1468 079 3.071 041

9 9541073 1436 001 3.152 239

10 10 394194 1405 725 3.232 950

“Ev are the eigenvalues of the fitted operators for J = 0.

RT(B'=") = 2.091024(1) A and RO°(B'E") = 2.090461(3) A.
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calculated from the d,. coefficients and other required information listed in
Table 7.4. The full set of eigenvalues for both electronic states of both

isotopomers is found in Appendix A-8.

7.3.2 Predissociation in X'=*

Johns and Barrow (I51) as well as Di Lonardo and Douglas (87) observed
the sudden breaking-off of votational structure at high-J for several bands of
the HF(B — X) system. These observations were independent of the vibrational
quantum number of the upper electronic state and were thus attributed to a
rotational predissociation mechanism in the ground X 13* state.  Further
support for a predissociation mechanism was provided by the observation of
measurably broadened contours for the last observed lines in several bands
involving v" = 16 and 17. For the case of DF, Johns and Barrow (151) reported
a similarly abrupt cutoff in rotational structure at high-J, but no unusual
broadening of any rotational lines. In the present analysis of the B - X
emission band system of DF, similar observations were made, although the range
of observed J was increased slightly.

The observation of broadened line positions immediately prior to a
complete disappearance of rotational structure at high-J can in many cases be
explained adequately by a pure rotational predissociation mechanism. However,
this adiabatic mechanism need not be solely responsible for the
predissociation observations for HF/DF. Predissciation mechanisms have been
categorized by Herzberg (198) and by Mulliken (799). A useful review has been
given recently by Lefebvre-Brion and Field (200). A broadening of line
contours with increasing J can also be due to a gyroscopic predissociation

mechanism involving a nonadiabatic mixing of the rovibronic wavefunctions of
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Coefficients dM for Nuclear-Mass-Independent

Part of g(R)"

d.. =-2.154 796 %107

X3
_ -4
dy, = 9.484 920 x10
o -4
dyys =-5.062 229 X 10
R, = 0916 843 A

&, = 0.60 A

“The function is defined by Egs. (3.47, 3.48) (see
text).
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two different electronic states. This type of mechanism is most appropriate
for HF/DF where the A'Il state interacts significantly with high-lying
rovibrational levels of X'=*. The classical effect of this interaction is to
cause the X!z levels to occur at lower energy than they would in the absence
of 4MT; the R?,(R) function, for both HF and HCl, adds negatively to the
kinetic energy of rotation. However, as there exists an infinite number of
short-lived collision induced energy levels for the repulsive A state, for
every orbiting resonance in X Is* there must exist a degenerate interaction
with the wavefunction of a continuum level lying at the same energy. This is
shown graphically in Figure 7.5. The interaction provides an additional
averue by which penetration of the potential barrier can occur.  The
wavefunction mixing reduces the lifetimes of the X Iyt quasibound levels and
must therefore contribute positively to the observed line widths.

This can be interpreted in yet another way. The orbiting resonances that
can be detected by classical spectrography all lie below the barrier maximum.
Since the effect of q(R) is to add negatively to the energy of rotation in a
monotonic way, it follows that g(R) would decrease the position of the barrier
maximum more than it decreases the position of a bound level. The energy
level is therefore brought relatively closer to the barrier top than it would
otherwise be. This induces a decrease in the lifetime of the quasibound state
and provides a contribution to the width additional to that predicted on a
simple rotational predissociation mechanism alone. Also, since g(R) increases
negatively with increasing R, it must displace the third turning point towards
smaller R by a greater amount than it does the second turning point; this
decreases the barrier width and hence the lifetimes of quasibound levels.

Due to the 4'T1 =~ X'=* interaction the observed width is a composite of

[

O U g

s



Figure 7.5
Interaction between the 4'TT and X =™ states of HF(DF). The
rovibrational wavefunction of ground state level v is seen
to interact with the continuum wavefunction of the repulsive
state near an energy E .. The wavefunction mixing is found
to reduce the non-radiative lifetime of the X'Z* state

quasibound level.

285
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the two mechanisms, and a reliable resolution to the individual contributions
is difficult to achieve in the absence of a proper quantum mechanical model.
It is then not correct to invert observed widths, either quantum mechanically
or semiclassically, on the basis of the usual centrifugal barrier expression,
to obtain the rotationless potential or the dissociation limit. In the
present work, however, it was possible to decompose the total calculated
widths, which predict magnificently their observed counterparts, to the
gyroscopic and pure centrifugal contributions.

Table 7.5 lists energies and calculated widths for several selected
levels of ground state HF and DF. The agreement with widths measured
experimentally for levels o, J" =16, 23 and 2", J" =17, 19 is a good
indication of the physical significance of the present results. It is noted,
also, that experimental estimates are Doppler limited values and that typical
widths of normal lines on the plates of Ref. (87) were approximately 0.30
cm™. The Heisenberg widths calculated in the present work should therefore
be slightly smaller than those observed experimentally, as is indeed the case.
Also shown in Table 7.5 are the energies and widths calculated in the absence
of J-dependent coupling, i.e. with g(R) set to zero. The contribution from
the pure centrifugal barrier then becomes apparent; it can be seen that g(R)
contributes significantly both {o the energies and widths of quasibound
levels. Experimental observation cannot be rationalized without an explicit

consideration of g(R).

7.3.3 The Dissociation Energy of X Iyt

The determination of the dissociation energy of X I3* states of HF and DF

can be accomplished by a variety of methods. The LCD method has been



TABLE 7.5

Rotational Predissociation in X'=*: Calculated Energies

and Widths of Selected Quasibound Levels for HF and DF*

Hydrogen Fluoride

A L B
v J EvJ I“‘f\whm Ev] 1 fwhm
9 44 * 53 150.78 0.82 53 160.99 0.57
10 41 * 32 358.26 0.16 52 367.39 0.10
10 42 * 52 902.45 6.18 52 914.87 5.22
11 38 51 689.46 0.04 51 697.81 0.02
11 39 * 52 197.62 2.78 52 208.78 1.97
12 35 * 51 143.67 0.02 51 15144 G.01
12 36 * 51 607.16 1.41 51 617.43 0.91
13 32 * 50 716.29 0.01 50 723.65 0.004
13 33 * 51 12824 1.13 51 137.98 0.69
14 29 50 398.45 0.02 50 405.58 0.01
14 30 * 50 75298 1.68 50 762.57 1.02
15 26 50 175.91 0.08 50 183.10 0.03
15 27 * 50 46728 4.61 50 477.20 3.01
16 23 50 026.64 1.16 (1.25) 50 034.59 0.54
17 19 49 746.14 0.65 (0.86) 49 753.00 0.32
18 14 49 473.15 0.20 49 477.58 0.16
Deuterium Fluoride
A B

v J Ev! l-“‘;"whm Ev] fwhm
9 70 54 943.35 210 54 948.29 0.08
10 67 54 145.01 0.01 54 149.54 0.008
11 65 53 901.92 0.09 53 906.91 0.07
12 63 * 53 672.04 0.69 53 677.68 0.57
13 60 53 041.03 0.14 53 046.15 0.11
14 58 * 52 86791 1.49 52 873.86 1.22
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TABLE 7.5 (Cont'd)

Rotational Predissociation in X'=¥: Calculated Energies
and Widths of Selected Quasibound Levels for HF and DF*

B
v J E‘:‘J r?whm E.; r}:whm
15 55 52 346.21 0.50 52 351.67 0.39
16 52 51 885.26 0.2¢ 51 890.36 0.15
17 49 51 484.71 0.11 51 489.53 0.08
18 47 * 51 425.62 2.58 51 431.65 2.46
19 43 50 856.53 0.12 30 861.08 0.08
19 44 * 51 111.16 3.55 51 117.10 2.90
20 40 50 621.06 0.27 50 625.63 0.19
21 37 * 50 429.54 1.01 50 434.31 0.73
22 33 50 101.33 0.20 50 105.31 0.12
22 34 * 50 27228 4.63 50 27743 3,75
23 29 49 859.59 0.07 49 863.04 0.04
23 30 * 50 004.75 3.13 50 009.22 2.26
24 25 49 695.74 0.08 49 698.96 0.05
24 26 * 49 810.09 4.24 49 814.47 2.98
25 21 * 49 592.25 0.68 49 595.79 0.50
26 15 * 49 413.39 0.26 49 415.32 0.24
26 16 * 49 469.03 1.36 49 471.76 1.22

“Quantities X** and X® are from calculations including and

excluding q(R), respectively. For HF, widths given in
parentheses are experimental estimates from Ref. (87). E
are energies (cm'l) and T, (cm"l) are full widths at
half maximum of intensity, and entries marked with an
asterisk (*) have not been experimentally observed.

o
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considered previously in this work and the cautionary measures associated with
its use were discussed. One method not discussed so far is Bernstein’s Locus
of Barrier Maximum (LBM) (201) procedure. A natural extension of the LCD
method, the LBM assumes an explicit form for the internuclear potential as
predicted by long-range theory. For a potential that varies asymptotically

as,
UR) = @, - C /R, (7.8)

the energy of the barrier maximum is given by

E=g +5[{J + )2, (7.9)
where
_ n+2 41/n-2)
S fem™t = B2 A : (7.10)
" 4melnp)™ c?

n

involving the reduced mass x# and a collection of constants, including the
long-range potential parameter Cn. However, in order for this method to be
applicable it is necessary to employ data that fall into the long-range region
of the potential so that Eq. (7.9) is a valid representation. Le Roy (49) has

proposed a criterion for determining the onset of the long-range region as,
2V 2\ Y
Ry > AT D"+ x>, (7.11)

where the expectation values of atomic centres A/B are over electronic
coordinates and refer to the first state with an outermost unfilled shell.
This expression attempts to justify the use of Eq. (7.8) for an internuclear
separation & , beyond which the electron clouds do not overlap significantly.
For the case of HF/DF, using the relativistic (r%.) value of Lu et al. (202)

for the fluorine ground state, 2P3 o and estimating the hydrogenic

§in mm mawi ot e e e
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expectation value from the analytical 1s orbitals (203), it is found that
.%LR(HF) > 3.12 A. This is greater than the outermost turning points of HF and
DF and indicates that the use of the LBM procedure is not warranted. The
validity of a previous LBM analysis for HF/DF by Byrne ¢ al. (204) has been
questioned (49) despite the deceptively linear behaviour of the associated
plots. When valid, the LBM method gives an estimate for the leading inverse
power dispersion coefficient, C, for HF (X 12+), for which ab initio estimates
are unavailable. = An approximate estimate has been obtained (205) as
Ce, = 37 856 cm™ A6; this was calculated by scaling the C value for NeH (206)
with the polarizabilities of hydrogen, neon and fluorine. S, is given by the

expression,

Sgfem™” = o] —=— (7.12)

(6u)°cH
6

for C, in erg cm™ units. From this, the limiting slopes of the LBM for

1_ﬁ2[ 1 ]%

HF/DF(X 12+) were estimated. LBM plots were then constructed for HF and DF as
shown in Figure 7.6 and extrapolated to J = 0. The limiting slopes aie also
included and it is obvious that they deviate significantly from those which
are suggested from a simple extrapolation of the plotted data.  This
demonstrates the danger of using the LBM blindly, as it is clear that in the
long-range region, the behaviour of the curve is altered dramatically. The
results indicate that the LBM @, values for HF/DF will be slight overestimates
if the extrapolation is carried out on the basis of the existing data,

Since internuclear potentials are available in this work, it is possible,
in principle, to employ more direct methods for estimating 9. It could be

possible to fit the outer limb potential points to an inverse power potential

expansion,

B



Figure 7.6
Locus of barrier maximum (LBM plots for HF/DF(X 1Z""). The
filled circles represent the last observed rotational levels
of given v. The open circles represent extrapolated
energies for J one unit higher than the last observed
levels. The limiting slopes indicated by dashed lines were
calculated on the basis of C, = 37856 cm™ A® (205) and Eg.

(7.12). The dissociation limits @I:F = 49335(30) cm™ and

@DF
e

= 49310(40) cm! are obtained from the intercepts of the

dashed curves.

292



50500

E (cm™)

50000

49 500

l

10 15
(0(J+1)1"*x 10

Figure 7.6

3

20 25

293

e ot Bt G et i -



294

UR) = @, - CJR® — C/R® - C, JR® - .., (7.13)

a result predicted by a perturbational treatment of the polarization of the
electronic clouds as the two atoms approach each other from infinity, but
which is inapplicable in the chemical bonding region, at intermediate R. It
is found, unfortunately, that this method of estimating @e is sensitive to the
range of R considered, and the number of terms included in the potential
expansion. Employing C and &, as free-floating parameters, it is even
possible to obtain unphysical negative values for Cy Cp ctc. Using the
approximate values C; = 172 470 em™ A8, and C,, = 103 810 em™? A0 (205)
along with the Cs estimate given above, it was possible to obtain a more
physically meaningful fit to @ and an additional constat C,,. It was found
that @ (HF) = 49 370 £ 30 cm™), where the error limit is intuitive. The value
of the fitted constant Cp, = 72 x 105 cm™ A is positive and of the right
order of magnitude but it is not clear that any strict physical significance
should be attached to it. The correlation between @, and C,, could not be
obtained since the geometrical simplex fitting method (207) was employed. The
fitted @, value appears to be conmsistent with the LCD estimate given in
Chapter 5. The same methodology applied to DF(X 12+) furnished the fitted
constants &, = 49 355 = 40 cm™! and C,=TX 10° em™ A1

A different method exploiting the behaviour of the internuclear potential
was also used to estimate &,. It was reasoned that as the potential
approaches the dissociation limit, the slope of U(R) tends asymptotically to
zero. If a plot is constructed with the potential slope as the abscissa and
energy as the ordinate, the y-intercept corresponding to zero slope would give

precisely @. In mathematical terms, E, = AU'R)}. It was found that
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AU'(R)} could be well represented by,
2 3
E, = @, + d,(3U/3R), + d,(3U/oR), + d,(aU/aR), + . . .. (7.14)

Also, an expression involving half-powers of the slope was used, giving
similar results. This method appears to give estimates for &, which are
consistently lover than those obtained with the methods described above. For
HF the value @, = 49 315 30 cm™ was obtained and for DF @, = 49 295 40
em™! was determined. It is interesting to note that the results derived frrm
the radial functions infer that 2, for HF is approximately 20 em™ higher than
that of DF. Although this, of course, is inconclusive on the basis of the
error estimates, it should be noted that the difference appears to be somewhat
supported by the use of idenfical models throughout for both HF and DF.
Another piece of evidence supporting this small difference is the behaviour of
the AU?(R) function, which is essentially one half of the mirror image of the
function UE(R), shown in Fig. (7.2). At large-R, if one disregards the
obviously unphysical anomaly beyond the outermost v,J turning point (Rmax), we
see that the difference function UX(DF) — U/HF), or AUI;(R), begins to
approach constancy at a value of approximately —(15-20) em™, indicating that
the potential asymptote for HF lies higher than that of DF. These arguments
are not conclusive, but it would seem unlikely that the potential difference
function would change its behaviour in the long-range region. A situation
similar to the present was found for the ground state of LiH (208). As R
increases, homogeneous mixing contributions to the rotationless curve approach
zero so that the dominant contribution to any difference in the dissociation

limits of the two isotopomers becomes the difference in the adiabatic

contributions to the separated atoms H/D, as compared to the total adiabatic
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and nonadiabatic corrections at the potential minima of HF and DF.

There appears to be, however, an inconsistency between these results and
those obtained from the LLCD method. For comparison purposes the estimates of
@, obtained in this work by different methods are listed in Table 7.6. The
LCD method infers slightly that the dissociation limit of DF lies higher than
that of HF. There is significant disagreement between the &, value for DF
obtained by the LCD method and the slope/energy method. This could be
explained only if the LCD gives estimates which are in fact less precise than
first thought.

In Chapter 5 a semiclassical potential for DF(X 12"') was obtained by
interpolating AG(v + '2) and B, values in the region v" = 5-15. Despite the
care exercised in accomplishing these interpolations, the present results show
unequivocally that the previous absolute energy estimates above G, are in
large error. Specifically, the energies of the RKRV potential given in Table

5.7 should be lowered by approximately 20 em™

. Similarly, the 9, estimate
for the ground state outained by the LCD method should be lowered by the same
amount. This is yet another demonstration of the problems that can be
encountered in traditional methods of analysis.

The most reliable results are perhaps those obtained by using Eq. (7.13)
with constrained estimates of the C . Averaging all results, however, the
final values reported in this work are @ (HF) = 49 350 = 40 cm™ and
9 (DF) = 49 338 £ 45 cm™. More precise values may be obtained only through
the observation of higher vibrational levels of X I+ and further manipulation
of the present data will not reduce the error estimates. Alternatively, the

behaviour of the long-range section of the potential could be obtained by

improved theoretical calculations to give more precise estimates of 9,
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TABLE 7.6

The Dissociation Energies (cm"l) of Ground State HF and DF:
A Comparison of Several Methods of Determination

Method HF DF

Eq. (7.13) 49 370 = 30 49 355 = 40
Energy-Slope 49 315 = 30 49 295 * 40
LCD 49 380 = 60 49 390 = 50
LBM (Corrected) 49 335 = 30 49 310 = 40
Average 49 350 + 40 49 338 * 45
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7.3.4 The Electronic Isotope Shift

The present analysis furnishes a more reliable estimate of the electronic
isotope shift, AT, = T]:F - TI:F, than was reported in Chapter 5. The error
estimate of * 5 cm™! given therein has now been reduced by two orders of
magnitude. This is made possible by the plentiful newly assigned DF(B — X)
data which vrovide information that reduces the gap in X I+, Also, the
reduction in the uncertainty of this quantity is due to the smooth behaviour
of the UE(R) function in the region of missing DF experimental information.

The electronic terms of B'S™ obtained here are T?F = 84 783.93(3) em™!
and YI:F = 84 786.41(7) cm™?, giving an electronic term value difference of
—2.48(7) cm™l.  There is now a large discrepancy between this experimental
result and the approximate theoretical estimate presented earlier, AT, = -141

cm'l.

7.3.5 Perturbation Calculation of Centrifugal Distortion

The interaction between A'TI and X'=* contributes significantly to the
molecular constants of bound vibrational levels of X'S*. As Herzberg
indicates (209), such coupling requires that the rotational energy be

expressed as,

FW) =B + D] -DUJ + DI + ... + @), (7.15)

where d)v(J ) is a small nonadiabatic ccntribution to the energy levels.
Although Herzberg (209) obtained this expression for A = 1 states, it was also
stated that 'S states also require a function ® (J) to account for electronic

state mixing. The nonadiabatic function ® (/) can be written as,
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Q) =0+ ¢,00 + D]+ U0 + D +..., (7.16)

where ¢ , can be regarded as a purely homogeneous contribution to the

rotationless eigenvalues. The experimentally derived quantities,

eff _
B =B +¢ (7.17)

v1’

eff _
D" =D +¢ (7.18)

v2’
are written in terms of the mechanical Bv and Dv values and the nonmechanical

contributions ¢, and ¢ .. From Egs. (2.53, 2.54) it follows that,

6,1 = BV 1a® R 19, (7.19)

By = Bocty 1aRIR* |y, (7.20)
where wﬁo) is the zeroth-order wavefunction and '/’,(,1) the first-order
wavefunction correction.

The modified version of Hutson’s computer program was employed to
calculate rotational and centrifugal distortion constants which are quantum
mechanically consistent with the derived Hamiltonian operators.  These
constants should compare well with experimentally derived estimates.
Calculated constants are listed in Tables 7.7-7.8 for both electronic states
of HF and DF. Also shown in these tables are constants which have been
deperturbed from m - !s coupling, as well as some experimentally derived
estimates. As was the case for HCYDCI, the calculated constants fail to
predict the high-v,J energy levels within the experimental uncertainties. It
is thus currently not possible to employ calculated constants to represent the
eigenvalues in a compact fashion. Additional constants beyond M, are required

to remove the discrepancy.



TABLE 7.7
Quantum Mechanical Molecular Constants for HF/DF(X 12+)”
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HF(X 'z
v G B D H L M
v v v v v v
0 2050.7710 205597286 2.119864-3 1.638279-7 -1.55883-11  1.5866-15
2050.7710 20.5597459 2.119800-3 1.638472-7 -1.55853-11  1.5870-15
1 60121941 19.787464 2.06366-3 1.5910-7 -1551-11  1.53-15
6012.1941 19.787521 2.06357-3 15912-7 -1.550-11  1.54-15
2 98015656 19.034953 2.00993-3 1.5395-7 -1.563-11  149-15
98015656 19.035057 2.00982-3 15398-7 -1.563-11  1.49-15
3 13423603 1830054 1.9594-3  1484-7  -1.55-11 1.5-15
13423603 1830070  1.9592-3  1485-7  -1.55-11 1.5-15
4 16882.448 1758250 1.9119-3  1426-7  -162-11 8.1-16
16882.448 17.58273  19117-3 1426-7  -1.62-11 8.1-16
5 20181.824 168789  1.8692-3 13487  -16-11 2-15
20181.824 168792  1.8689-3  1349-7  -16-11 2-15
6 23324620 161866  1.8308-3 12837  -L7-11
23324620 16.1870  18305-3  1.284-7  -1.7-11
7 26313.146 1550367 1.79505-3 1.17866-7 -18832-11  1.918-15
26313146 1550419  1.79770-3 1.17969-7 -1.805-11  1.925-15
8 29148927 1482591  1.77324-3 1.07709-7 -1.8968-11  -2.245-16
29148927 14.82657 177281-3 1.07845-7 -1.8929-11 -2.119-16
9 31832367 14.14955 175630-3 9.41247-8 -23822-11  -9.63-16
31832367 1415037  1.75576-3 9.43083-8 -2.3761-11  -9.41-16
10 34362909 1346938  1.75184-3 7.54613-8 -2.7967-11 -8.41-16
34362909 13.47041  1.75115-3 7.57169-8 -2.7871-11  -8.02-16
11 36738405 1277819  1.76272-3 5.33445-8 -3.2861-11  -5.60-15
36738.405 12.77945  1.76184-3 537111-8 -32703-11  -~5.52-15
12 38954943 1206805 1.79254-3 2.03685-8 -4.9355-11  -1.03-14
38954943 12.06963  1.79139-3 2.09184-8 -4.9072-11  -1.01-14
13 41006593 1132752  1.85214-3 -2.71396-8 -6.5140-11  -2.05-14
41006593 1132050  1.85059-3 -2.62693-8 -6.4613-11  -2.02-14
14 42884.443 1054127  1.95094-3 -9.93635-8 -1.0864-10  -4.532-14
42884.443 10.54377  1.94875-3 -9.78894-8 -10755-10  -4.447-14
15 44576055 968820  2.11135-3 -2.15406-7 -1.7531-10  -9.859-14
44576055  9.69144  210810-3 -2.12674-7 -1.7281-10  -9.619-14




TABLE 7.7 (Cont’d)
Quantum Mechanical Molecular Constants for HF/DF(X 1E+)“
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HF(X's%)
v G B D H L M
v v v v v v
16 46064207 873866  2.36411-3 -4.20960-7 -3.6377-10  -2.769-13
46064207 874300  2.35886-3 -4.15214-7 -35691-10  -2.683-13
17 47325663 764712  2.78434-3 -8.28972-7 -8.1981-10  -1.004-12
47325.663  7.65327  2.77468-3 -8.14288-7 -7.9543-10  -9.603-13
18 48328541 633740  3.5528-3 -1.97089-6 -2.9881-9  -5.6478-12
48328541 634701  3.5306-3 -191658-6 -2.8402-9  -5.2110-12
19 49026508 462302  5.5237-3 -7.99298-6 -2.6476-8  -8.6457-11
49026508 464212  54335-3 -749756-6 -23626-8  -7.1805-11
DF(x 'zt
v G B D H L M
v v v v v v
0 149030435 10.8603442 5.87456-4  2.3856-8  -1.189-12 6.4-17
0 149030435 10.8603475 5.87447-4  23857-8  -1.189-12 6.4-17
1 439696596 10.5640266 5.76080-4  2.3367-8  -1.188-12 6417
1 439696596 10.5640370 5.76070-4 2.3368-8  -1.188-12 6.4-17
2 7212122 10273310  5.65060-4  2.288-8  -1.19-12
2 7212122 10273329  5.65047-4 2288-8  -1.19-12
3 9937.659 9987962  5.54433-4 22298  -120-12
3 9937.659  9.987990  5.54417-4  2230-8  -1.20-12
4 1257533 970753  5.4430-4 2178 -12-12
4 1257533 970757  5.4428-4  217-8  -12-12
5 1512670 943175  53448-4  2.12-8  -12-12
5 1512670 943181  5.3445-4  2.12-8  -12-12
6 1759332  9.16036  52532-4  2.04-8  -12-12
6 1759332 916043  52530-4  2.04-8  -12-12
7 1997649 889260  5.1692-4  197-8  -12-12
7 1997649 889268  5.1688-4  197-8  -12-12
8 2227724 862808  5.0892-4  190-8  -13-12
8 2227724 862818  5.0888-4  190-8  -13-12
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Quantura Mechanical Molecular Constants for HF/DF(X 12"')“
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DF(Xx'z™)
v G B D H L M
v v v v v v

9 24496553 8366478  5.01781-4  1.79888-8 -1.3601-12 4.757-17
90 24496553 836659  5.01739-4  1.79952-8 -1.3593-12 4.769-17
10 26635187 8106936  4.95713-4  1.69437-8 -1.3283-12 6.875-17
10 26635187 8107077 4.95664-4  1.69514-8 -1.3272-12 6.890-17
11 28693.560  7.848704  4.90587-4  1.58876-8 -1.4755-12 3.435-17
11 28693560  7.848870  4.90530-4  1.58970-8 -14741-12 3.458-17
12 30671.873  7.591084  4.86605-4  1.46594-8 -1.6280-12 -1.273-16
12 30671.873  7.591280  4.86538-4  1.46710-8 -1.6261-12 -1.269-16
13 32570069  7.333189  4.84164-4  1.28246-8 -1.9593-12 4.097-17
13 32570.069  7.333419  4.84085-4  1.28392-8 -1.9567-12 4.148-17
14 34387.697 7073612 4.83811-4  1.08876-8 -1.9602-12 3.103-17
14 34387.697  7.073881  4.83716-4  1.09062-8 -1.9565-12 3.178-17
15 36123.796  6.810974  4.85380-4  8.79691-9 -2.4364-12 -2.603-16
15 36123.796 6811289  4.85267-4  8.82094-9 -2.4311-12 -2.590-16
16 37777013 6543884  4.89551-4  5.72304-9 -3.1552-12 -2.885-16
16 37777.013 6544253  4.89414-4  575486-9 -3.1473-12 -2.864-16
17 39345461 6270235  4.97372-4  1.73736-9 -3.7806-12 -2.621-16
17 39345461 6270667  4.97204-4  1.78059-9 -3.7687-12 -2.587-16
18 40826504 5987431  5.09441-4 -2.97870-9 -4.7748-12 -9.348-16
18 40826504 5987940  5.09233-4 -2.91849-9 -4.7560-12 -9.284-16
19 42216725 5692641  5.26927-4 -1.01133-8 -7.4062-12 -1.340-15
19 42216725 5693243  5.26663-4 -1.00260-8 -7.3745-12 -1.328-15
20 43511763 5381704  5.52572-4 -1.96418-8 -8.8254-12 -1.538-15
20 43511763 5382425  5.52227-4 -1.95101-8 -8.7714-12 -1.515-15
21 44705951  5.049735  5.87204-4 -322107-8 -1.5123-11 -6.306-15
21 44705951  5.050608  5.86739-4 -3.20026-8 -1.5020-11 -6.251-15
22 45792421 4690747  6.36854-4 -5.46591-8 -2.3155-11 -5.810-1¢
22 45792421 4691824  6.36199-4 -5.43034-8 -2.2946-11 -5.686-15
23 46762391 4295201  7.06882-4 -8.49462-8 -3.9393-11 -2.325-14
23 46762391 4296563  7.05901-4 -8.42886-8 -3.8915-11 -2.287-14
24 47605014  3.85212  80910-4 -1.4701-7 -8.568-11 -5.308-14
24 47605014  3.85391  80750-4 -14561-7 -8434-11 -5.171-14
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Quantum Mechanical Molecular Constants for HF/DF(X 12+)“

DF(x 'z
v G B D H L M
v v v v v v
25 48306.664  3.34091  9.7460-4  -27546-7  -2132-10 -2.125-13
25 48306.664  3.34341  9.7162-4  -27174-7  -2.081-10 -2.050-13
26 48848.868 272418  1.2835-3  -6.6639-7  -9.078-10 ~1.724-13
26 48848868 272809  1.2762-3  -6.5121-7  -8.710-10 -1.626-12

%A1l quantities are in cm’. units.

For each vibrational level the top and

bottom entries represent perturbed and deperturbed constants, respectively.
5.87456-4 reads as 5.87456 x 10°*,



TABLE 7.8

Quantum Mechanical Molecular Constants for HF/DF(312+)”

HF(B'zH)
v G B D H L M
v v v v v v
0 572063 4.02042 2.0494-4 19332-8 -3.674-12 8.33-16
1 1695839 400106 2.2574-4 2.4880-8 -5353-12 141-15
2 2785236 3.98038 24752-4 3.1595-8 -7.601-12 2.23-15
3 3841363 395895 2.7033-4 3.9345-8 -1.048-11 3.46-15
4 4865358 393681 29415-4 4.8438-8 -1.429-11 5.27-15
5 5858351 39713 3.1910-4 59213-8 -1.937-11 7.76-15
6 6821455 3.89119 3.4558-4 7.1586-8 -2.571-11 1.15-14
7 7755.644 386793 3.7355-4 8.6515-8 -3.413-11 1.62-14
8 8661.873 3.84469 4.0326-4 1.0364-7 -4.386-11 2.21-14
9 9541.073 3.82169 4.3436-4 1.2257-7 -5.609-11 2.94-14
10 10394194 379872 4.6745-4 14379-7 -6.659-11 3.66-14
DF(B'=%)
v G B D H L M
v v v v v v

0 416314 211520 5.5878-5 2.7060-9 -2.651-13 3.073-17
1 1238076 210799 6.0002-5 3.2590-9 -3.494-13 4.576-17
2 2041493 210034 6.4251-5 3.9042-9 -4.583-13 6.526-17
3 2827016 209243 6.8666-5 4.6289-9 -5.818-13 8.899-17
4 3595063 2.08432 7.3162-5 5.4130-9 -7.441-13 1.277-16
5 4346103  2.07595 7.7909-5 63401-9 -9.206-13 1.643-16
6 5080534 2.06746 82711-5 7.3310-9 -1.171-12 2322-16
7 5798.833 205882 8.7760-5 8.4788-9 -1.431-12 2.999-16

“All quantities are in units of cm™l. 2.0494-4 reads as 2.0494 x 10°7%

304
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The calculated constants for v* = 0 of HF and DF were employed to
calculate the very highly precise far-infrared measurements. The comparison
shown in Table 7.9 is very satisfactory, providing support for the physical

significance of the present resuits.

7.3.6 Vibrational Index at Dissociation

Estimates of the vibrational index of dissociation, have been

Uy
reported for the ground states of HF and DF (48, 210). These were derived
from experimental estimates of centrifugal distortion constants which are
admixtures of mechanical with nonmechanical effects. Effects from excited I
states were not subtracted from these constants before they were employed to
obtain Ve

These contributions were separated from the molecular constants in the
previous section. The resulting constants are only partially deperturbed from
excited states; the homogeneous contributions to the rovibrational
eigenfunctions cannot be estimated. The concept of a rotationless potential
in this work is of one which contains homogeneous contributions. This is an
unavoidable consequence of the electronic contact transformation, the
inability of the nuclear Laplacian operator to commute with Born-Oppenheimer
homogeneous breakdown matrix elements, and the subsequent manipulation of the
radial wave equation to overcome this problem. This means that the estimate
of v, obtained here will be for such an effective rotationless potential. The
heterogeneous contributions become especially significant as the dissociation
limit is approached and must be subtracted from the effective constants. The

extrapolation to v is particularly sensitive on the constants of these higher

vibrational levels and it is thus plausible that the determinztion of vy could

PO



TABLE 7.9

Calculation of HF(X 12‘.*") Pure Rotational Transitions from
Quantum Mechanical Rotational and Centrifugal Distortion

Constants®
~ -1 - -1 —— |
J+1 « J Y s ) Vel ) Av(ecm ™)
1 0 41.110 983 2(30 41.110 979 1 0.000 004 1
2 1 82.171 117 9(60 82.171 112 8 0.000 005 1
3 2 123.129 670 3(90 123.129 673 6  ~0.000 003 3
4 3 163.936 164 5(120) 163.936 168 9  ~0.000 004 4
5 4 204.540 45(20 204.540 46 ~-0.000 01
6 5 244.892 83(20 244.892 86 ~0.000 03
7 6 284.944 44(30 284.944 28 0.000 16
aiobs are taken from Ref. (142) with precision estimates in

parentheses. ¥ _  are line positions calculated on the basis

calc

of the quantum mechanical constants found in Table 7.7. The Av

are the differences v ., — v .
obs calc

306
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be significantly influenced.

The prescription described by Barwell (48) was followed to estimate vy

for the ground states of HF and DF. The equations,

D' = (wy - VX )7, (7.21)
15 |7? = wy - 91X 77, (7.22)
LI = (v, - v)|X )77, (7.23)

were employed to construct the plots shown in Figures 7.7 and 7.8 for HF and
DF, respectively. The average extrapolated values are ng = 20.4(4) and
ng = 29.2(5). These are not found to be significantly different from the
values reported previously (48, 210).

The value quoted by Barwell (48), ng = 20.9(5), suggests the possible
existence of vibrational level v = 21, whereas the present estimate casts
doubt on this. In fact, even vibrational level v = 20 is not predicted
unequivocally to exist from the present estimate. In preliminary stages of
the Hamiltonian correction analysis an attempt was made to assign the most
probable Franck-Condon transitions to »” = 20 on the HF emission plates (87).
No definite assignments could be made. The final results from this work
predict that, if v" = 20 in fact exists, it must extend so far into the
long-range region that the Franck-Condon overlap with the most populated Bzt
(v' = 0-3) levels is very small. An additional problem is apparent from the
observation that under discharge excitation conditions, the rotational level
populations shift to higher J. Since the predicted maximum value of J in a
v' - 20 band is approximately 5, it is highly unlikely that these transitions

would be observed in discharge spectra.
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Figure 7.7
Estimation of v for HEF(X 1‘2..""). The plots according to

Egs. (7.21-7.23) give an average value vy = 204 = 04.
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Figure 7.8
Estimation of v for DF(X 1I>..“""). The plots according to

Egs. (7.21-7.23) give an average value vy = 292 x 0.5.



Q4 2andTd

00l

00¢

100V

. loog

0001

000¢

TS




312

The Vg estimate for DF predicts with confidence the existence of level
v" = 27. The search for lines of the 6-27 band, which has the largest v" = 27
calculated J-dependent Franck-Condon factors, resulted in several promising
lines. These satisfied the known v’ = 6 combination differences but no
additional v" = 27 bands could be found to confirm the lower state combination
differences. The assignments for the 6-27 band, listed in Table 7.10, thus
remain tentative. The position of »" = 27 with respect to the potential
minimum is revertheless predicted at G, = 49 203 = 1 cm’}, a mere 135 cm™!
away from the estimated dissociation limit. Owing to the uncertainty in the

assignments, however, this band was not included in the Hamiltonian correction

analysis.

7.3.7 Tritium Fluoride

The combined treatment of HF and DF spectral data has resulted in
functions Ung(R) and ¢,(R). These can be employed to construct synthetic
Hamiltonian operators for TF. The rotationless potential function for TF is

given by,

UF®R) = (I + M) UTR) - 4 UPER), (7.24)
where  has been given previously by Eq. (6.38). The g(R) function for TF is
found from,

g R) = MM (R). (7.25)

The only experimental information available for TF consists of relatively
low resolution spectrographic data for the fundamental and first-overtone
bands in the infrared (211). These line positions could not be predicted

satisfactorily from (simple) mass-transformed molecular constants for HF and



Tentative Rotational Assignments (cm'l) for the 6-27 Band
of the B - X System of Deuterium Fluoride

TABLE 7.10

J P(J) R(J)

2 40 655.736 40 676334
3 40 652.802 40 681.735
4 40 650.587 40 687.800
5 40 649.227 40 694.635
6 40 703.177
7 40 712.899
8 40 724.526
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DF. Part of the reason for this inconsistency is due to semiclassical and
Born-Oppenheimer breakdown errors, but even when such effects were
considered (190), there was a residual disagreement.  This implies that
unreliable calibration standards are at least partly responsible. Additional
evidence for the lack of reliability in the absolute line positions is
provided by the anomaly in the sign of the constant ,Be and the apparent
inaccuracy in the reported value of R. Coxon and Ogilvie (190) excluded TF
data in determining isotopically invariant parameters Ukl because of a clear
inconsistency.

It was decided to repeat the analysis of the TF data in order to obtain
estimates for the parameters which have a full statistical significance.
Although the method of least-squares was employed in Ref. (211), a merge of
separately fitted constants could not be undertaken. In the present work, the
two bands were fitted individually and the constants were merged together to
provide the best set of nonredundant constants for TF(v" = 0-2). The data

were fitted with a merge standard deviation of g, = 2.7, which is reasonable

M
for just two degrees of freedom. The merged parameters and error estimates
are listed in Table 7.11.

When the quantum mechanical eigenvalues of the present synthetic TF
operators were employed to calculate the 1-0 and 2-0 rotational transitions,
it was found that there was a smooth wavelength dependent deviation from the
experimental spectral lines of the fundamental band, and a constant
(= 04 cm'l) discrepancy from the experimental first-overione transitions. A
resolution of this disagreement appears to be almost certainly in favour of

the present results; however, new, more highly resolved spectra for TF are

required to make an unequivocal statement. The quantum mechanical molecular



TABLE 7.11
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Merged Molecular Constants (cm'l) for TF(X 12"')

Constant Estimate Standard Error
B, 7.60598 468 x 1073
B 7.43385 452 x 1073
B, 7.26354 720 % 107
D, 27034 x 107 1.81 x 107
D, 27821 x 107*  1.60 x 107
D, 2.783 % 107 489 x 107
» 2443.86 0.07

v, 0 4823.80 0.12
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constants of TF(X 12"') have been calculated from the synthetic operators and
are listed in Table 7.12. It would be of interest to compare these with

molecular constants extracted from improved experimental spectra.

7.3.8 Equilibrium Bond Lengths

A comparison of the X Iyt equilibrium bond lengths obtained by direct
fitting of the effective potentials from this work (R?M) and those obtained
from the ¥ Dunham coefficients (R?UN) estimated from the results of Coxon
and Ogilvie (190), is given in Table 7.13.

Agreement between the two sets of values need not necessarily be found.
Dunham has shown (16) that the semiclassical estimates are slightly deficient
because of the incompleteness of the JWKB approximation in his theory and, by
extension, the slight inappropriateness of a (v + ') expansion variable in the
representation of the vibrational dependence of rotational constants. This
leads to a small difference between Y,, and B, which is proportional to Bz/a;g,
or dependent on ;[2, predicting in turn that the difference RSM - RBUN should
be proportional to y'l. This is confirmed from the results in Table 7.13; the
quantity HAR, is shown to be nearly constant for all three isotopomers.

Since there is only one stable fluorine nuclide, it is not possible to
determine the Born-Oppenheimer potential from a combined treatment of HF/DF

data. It is similarly impossible to perform a fit to the expression (182),
DUN _ ,BO
R =Rl + m(d /M. + d /M), (7.26)

uniess the term d /Mg is ignored. This neglect would result in an effective

Rfo value that deviates from the true value by



TABLE 7.12

Quantum Mechanical Molecular Constants (cm’l) for TF(X DR

v G, B, 10°D, 1°H, 10°L

0 12478523 76150756 2879776 8181 01 —2.846 3
1 36917500 7441 1311 2832942 8041 14  —2.856 8
2 60713004 7.269 952 2787 456 7907 14  —2.823 8
3 8387.6086 7.101 476 2743031 774816 —2.870 7
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TABLE 7.13

Isotopic Dependence of Equilibrium Internuclear Separations”

Isotopomer RSM(A) R?UN(A)

AR (A)

HF(X's*) 0916 839 54(4) 0916 852 3
DF(x'=*) 0916 910 9(5)  0.916 918 0
TR(X'S*) 0916 934 5(6)  0.916 939 9

—0.000 012 3
—0.000 012 9
—0.000 014 1

were estimated from the results of

aRSM are the minima of the quantal potentials constructed in
this work. R?UN
Ref. (190).
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R(eff) = REC(true)[1 + m d /M), (1.27)

estimated as a difference of the order of 10° A. The effective value
obtained here is REO(eﬁ) = 0916 982 1(7) A, in good agreement with the
estimate of Coxon and Ogilvie (192), R°°(¢ff) = 0.916 983 9(23) A.

The equilibrium internuclear separation for TF calculated from Eq.(7.26),
RICDUN = 0.916 940(2) A, differs from the present least-squares estimate,
R = 0917 65(32) A, by more than three standard errors. This might be
indicative of a problem with the data employed in the determination of the

latter estimate.

7.3.9 Radiative Transition Probabilities

The effect of nonadiabatic coupling on transition probabilities has not
been investigated for the hydrogen halide diatomics considered here.
Recently, the vibrational-rotational dependence of Einstein coefficients for
spontaneous emission has been examined by Oba et al. (212) for the isotopomers
HF/DF and HCI/DCl. The calculations were performed with a variety of dipole
moment functions derived from ab initio as well as experimental studies.
Internuclear potentials were constructed with the RKRV procedure from
molecular constants found in the literature. No consideration was given to a
nonadiabatic g(R) function and it was thus decided to investigate here whether
neglect of ¢g(R) has a serious effect on the calculated transition
probabilities.

A computer program was written to employ rovibronic wavefunctions from a
solution of the effective nonadiabatic radial wave equation to estimate the

transition matrix elements,
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R = | VR HR) 9,y (®) dR, (7.28)

required for a calculation of the Einstein coefficients for spontaneous
emission. u(R) is the electric dipole moment function normally expressed as a

power Series,

U(R) = Z M® - R). (7.29)

o'

The Einstein coefficients for spontaneous emission, Av, n are obtained as,

7 _ 64nt 3 72
Ay = —;:— v DR (7.30)

where the rotational factor is,

fdy=1 (J = 0), (7.31)
f)y = |mj/(2J +1) (J >0), (7.32)
with m = J" + 1 for the R-branch and m = ~J for a P-branch line.

In preliminary work it quickly became apparent that the dipole moment
function has a greater effect on the transition matrix elements than the form
of the internuclear potential.  Furthermore, since dipole functions are
usually known with certainty only for fairly low-v, it is mnecessary to
extrapolate #(R). This form of the extrapolation is crifical and must be
considered carefully. The best available experimental dipole moment is that
of Sileo and Cool (156) obtained by a meticulous treatment of infrared band
intensity ratios from a chemical laser emission source. The simple
extrapolation on the basis of Eq. (7.29) is hopeless; large negative values
for u(R) arise at large R. A model devised here to ensure both a flexible

representation in the region of R where u(R) is known experimentally, and a
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sensible extrapolation to larger and smaller R is,
4 .
u(R) = e ®R) Z D(R - R). (7.33)
i

Sileo and Cool’s dipole moment functions for HF and DF given in Table IV of
Ref. (156) were employed in a fit to this expression; results are listed in
Table 7.14. D, of this model is equivalent to M, of Eq. (7.29).

Vibrational (J = 0) Einstein coefficients were calculated here for HF/DF.
The rotational dependence of Az'g: is quite interesting (212) and will be
investigated thoroughly in the future. It would appear, however, that on
account of the uncertainty in the exact form of x(R) at large R, the eifect of
q(R) cannot be properly evaluated at present. The results in Tables 7.15-7.16
for HF and DF respectively, are in excellent agreement with those tabulated by
Oba et al. (212) for lower vibrational levels of both isotopomers. For HF,
however, there are clear discrepancies for v = 13. This is most likely due to
the difference in the extrapolation of u(R) beyond the region sampled by the
experimental data. It is obvious from this that the transition matrix
elements are more sensitive to the radial variation of x(R) than to that of
U(R). Additional support for this is provided by the excellent agreement
found for DF, where an RKRV potential from the molecular constants of Johns
and Barrow (Z51) was used in Ref. (156). This potential is different from our
final potential since there was an earlier error (I5I) in the absolute
vibrational terms of approximately 40 cm'l; apparently this has little effect
on the matrix elements. A comprehensive interpretation of the differences
between the results of this work and those of Oba and co-workers (212) is not
possible since these investigators failed to define explicitly the fashion in

which u(R) was extrapolated in their study.
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TABLE 7.14 322

Dipole Moment Coefficients for the X I3+ States of HF and DF*

HF DF
Di Estimate Error Estimate Error
D, 1796115 1.4 x 107 1.795866 2.8 x 107
D, 152116 1.1 x 107 151979 2.0 x 107
D, -0.14816 8.0 x 1073 005703 1.5 x 1072
D, -1.1293 21 x 10%  -1.3981 3.7 x 107
D, 1.8315 77 x 1072 1.0811 1.5 x 107!
D, 1.756 2.1 x 107! 2.563 3.8 x 107!
D, -1.565 14 x 101 -2.016 2.6 x 107!

Parameters and their standard errors are in Debye units. The Di
are defined in Eq. (7.33). 0, = 0.00028; o, = 0.00056.



TABLE 7.15

Rotationless Matrix Elements and Einstein Coefficients for HF(X 12+)"

323

L4

N

v ORI Ay vV RIS A,

0 1 9.8376-20  1.8868+02

0 2 -12771-20 2.3816+01 1 2 1.3742-19 3.2223+02
0 3 1.8847-21 1.6386+00 1 3 -22863-20 6.6739+01
0 4 -3.6123-22 1.3352-01 1 4 3.9243-21 6.2352+00
0 5§ 7.9756-23  1.1890-02 1 5 -86432-22 6.6653-01
0 6 -2.0337-23 1.2488-03 1 6 2.1352-22 7.4188-02
0 7 6.2044-24  1.7242-04 1 7 -59389-23 9.2545-03
0 8 -2.3878-24 3.5580-05 1 8 1.9029-23  1.4065-03
0 9 1.1756-24  1.1449-05 1 9 -73214-24 28937-04
0 10 -6.9901-25 5.1696-06 1 10 3.4992-24 8.7504-05
0 11 4.6475-25 2.8272-06 1 11  -2.0291-24 3.7456-05
0 12 -3.2785-25 1.6943-06 1 12 1.3370-24  2.0042-05
0 13 2.3866-25 1.0560-06 1 13 -9.4673-25 1.2046-05
0 14 -1.7687-25 6.6800-07 1 14 6.9886-25 7.6785-06
0 15 1.3264-25  4.2430-07 1 15  -52997-25 5.0517-06
0 16 -1.0034-25 2.6922-07 1 16 4.0900-25 3.3707-06
0 17 7.6240-26  1.6917-07 1 17 -3.1791-25 2.2349-06
0 18 -5.7401-26 1.0241-07 1 18 2.4427-25 1.4179-06
0 19 4.0483-26  5.3279-08 1 19 -1.7479-25 7.6258-07
2 3 1.6534-19  4.0740+02

2 4 -3.3435-20 1.2447+02 3 4 1.8632-19  4.5049+02
2 5 6.4716-21 1.4691+01 3 5 -4.4689-20 1.9333+02
2 6 -1.5967-21 1.9772+01 3 6 9.4929-21 2.7430+01
2 7 4.3565-22 2.6794+01 3 7 -25946-21 4.5210+00
2 8 -1.3154-22 3.9298-02 3 8 7.7466-22  7.3184-01
2 9 4.4651-23  6.6856-03 3 9 -25214-22 1.2438-01
2 10 -1.7417-23 1.4096-03 3 10 9.1069-23  2.3879-02
2 1 8.0738-24  3.9957-04 3 11  -3.6879-23 5.4057-03
2 12 -45037-24 1.5761-04 3 12 1.7051-23  1.5174-03
2 13 2.9215-24  8.1338-05 3 13 -9.1372-24 5.4947-04
2 14  -2.0830-24 4.9268-05 3 14 5.6369-24  2.5481-04
2 15 1.5602-24  3.2102-05 3 15  -3.8828-24 1.4294-04
2 16 -1.1963-24 2.1403-05 3 16 2.8719-24 8.9951-05
2 17 9.2464-25 1.4167-05 3 17 -22011-24 5.9204-05
2 18 -7.0701-25 8.9649-06 3 18 1.6888-24  3.8037-05
2 19 5.0429-25 4.8133-06 3 19 -1.2115-24 2.0774-05

b bt v bt &



TABLE 7.15 (Cont'd)

Rotationless Matrix Elements and Einstein Coefficients for HF(X£*)?

Sak

v v QT [aR)|vD A v'ov QM uR) vy A

4 5 2.0152-19  4.5743+02

4 6 -5.6796-20 2.7047+02 5 6 2.1106-19  4.3366+02
4 7 1.2989-20 4.4376+01 5 7 -6.9992-20 3.5412+02
4 8 -3.8921-21 8.7687+00 S5 8 1.6958-20  6.5029+01
4 9 1.2661-21 1.6798+00 5 9  -5.5195-21 1.5109+01
4 10 -4.4216-22 3.2750-01 5 10 1.9523-21  3.4088+00
4 11 1.6956-22  7.0582-02 5 11 -72954-22 7.5753-01

4 12 -7.1784-23 1.7378-02 5 12 2.9700-22  1.8302-01

4 13 3.3827-23  5.0382-03 5 13 -1.3246-22 4.9691-02

4 14 -1.7953-23 1.7769-03 5 14 6.4634-23  1.5330-02
4 15 1.0739-23  7.6817-04 S 15 -34635-23 5.4612-03

4 16 -7.1136-24 3.9438-04 5 16 2.0424-23  2.2682-03

4 17 5.0577-24  2.2634-04 5 17  -13121-23 1.0798-03

4 18 -3.7072-24 1.3402-04 5 18 8.9207-24  5.5651-04
4 19 2.5952-24  7.0154-05 S 19 -5.9577-24 2.6714-04
6 7 2.1434-19  3.8456+02

6 8 -84585-20 44332+02 7 8 2.1012-19 3.1577+02
6 9 2.1424-20 8.8641+01 7 9 -1.0101-19 5.3796+02
6 10 -7.4952-21 23696+01 7 10 2.6482-20 1.1472+02
6 11 2.8866-21 6.3068+00 7 1 -9.8131-21  3.4219+01
6 12  -1.1540-21 1.5947+00 7 12 4.1285-21 1.0799+01
6 13 4.9732-22  4.2880-01 7 13 -1.7739-21 3.1306+00
6 14 -2.3416-22 1.2868-01 7 14 8.0911-22  9.3429-01

6 15 1.1990-22  4.3274-02 7 15 -4.0168-22 3.0823-01

6 16 -6.6476-23 1.6296-02 7 16 2.1666-22  1.1343-01

6 17  39717-23 6.8398-03 7 17 -12567-22 4.5952-02

6 18 -2,5177-23 3.1077-03 7 18 7.7153-23  1.9919-02
6 19 1.5941-23  1.3530-03 7 19 -47488-23 8.2871-03

8 9 1.9645-19  2.3388+02

8§ 10 -11973-19 6.3729+02 9 10 1.7051-19  1.4775+02
8 1l 3.2392-20 1.4385+02 9 11  -1.41i3-19 7.3766+02
8 12 -1.2436-20 4.5735+01 9 12 3.9749-20  1.7905+02
8 13 5.7286-21 1.7159+01 9 13  -1.5315-20 5.6795+01
8 14 -26720-21 5.8025+00 9 14 7.6877-21  2.5022+01
8 15 1.2957-21 1.9332+00 9 15 -3.9480-21 1.0117+01
8 16 -6.7731-22 6.9632-01 9 16 2.0621-21 3.8440+00
8 17 3.8367-22 2.7724-01 9 17 -11384-21 1.5115+00
8 18 -23166-22 1.1875-01 9 18 6.7041-22  6.3274-01

8 19 1.4092-22  4.8912-02 9 19 -4.0129-22 2.5672-01




TABLE 7.15 (Cont'd)
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Rotationless Matrix Elements and Einstein Coefficients for HF(X 1E+)°

L

.4

[}

v RN A, v v OB A

10 11 1.2853-19 6.9452+01

10 12 -1.6509-19 8.2769+02 11 12 6.6006-20 1.4879+01
10 13 49733-20 2.2746+02 11 13 -1.9011-19 8.8135+01
10 14  -1.8522-20 6.6580+01 11 14 6.4364-20 3.0163+02
10 15 9.8923-21 3.2694+01 11 15 -2.2660-20 7.7528+01
10 16  -5.6553-21 1.6070+01 11 16 1.2109-20  3.7299+01
10 17 3.2425-21 7,1818+00 11 17  -7.6180-21 2.1599+01
10 18 -1.9076-21 3.1084+00 11 18 4.8295-21 1.1388+01
10 19 1.1274-21 1.2568+00 11 19  -2.9547-21 5.0803+00
12 13 -2.1603-20 1.2640+00

12 14 -21175-19 85320402 13 14 -1.3689-19 3.8916+01
12 15 8.6421-20 4.1601+02 13 15 -2.2005-19 6.9064+02
12 16 -2.9826-20 1.0025+02 13 16 1.1771-19  5.6219+02
12 17 1.4454-20 3.8428+01 13 17 -4.4983-20 1.6012+02
12 18 -9.2297-21 2.2003+01 13 18 1.9422-20 4.6436+01
12 19 6.0160-21 1.1596+01 13 19 -1.0448-20 1.7661+01
14 15 -2.7634-19 1.1592+02

14 16 -1.9679-19 3.9045+02 15 16 -4.2321-19 1.8512+02
14 17 1.5277-19 6.4116+02 15 17 -1.1665-19 8.8715+01
14 18 -7.4408-20 2.8016+02 15 18 1.6425-19 4.4705+02
14 19 3.4372-20 8.5849+01 15 19 -1.0583-19  3.0964+02
16 17  -5.3954-19 1.8325+02

16 18 3.4623-20 4.3646+00 17 18 -5.6821-19 1.0213+02
16 19 9.1824-20 6.8738+01 17 19 2.0380-19 6.4091+01
18 19  -4.5986-19

2.2550+01

%9.8376-20 reads as 9.8376 x 10,



TABLE 7.16
Rotationless Matrix Elements and Einstein Coefficients for DF(X 12+)a
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v”

v

ORIV 4,

L4

()

,vl

QRS A,

OO OCOOT O OO OO0 OO

NN

VRN WNPE W

8.4216-20
-8.4344-21
8.2692-22
-1.0788-22
1.9344-23
-3.9293-24
2.8481-24
-1.6223-24
9.6484-25
-3.8070-25
3.5047-25
~2.1109-25
1.2686-25
-7.6484-26
4.6686-26
-2.9108-26
1.8655-26
-1.2349-26
8.4967-27
-6.1226-27
4.6431-27
-3.6937-27
3.0429-27
-2.5492-27
2.1257-27
-1.7119-27

1.4375-19
-2.2424-20
2.9272-21
-4.8377-22
9.7998-23
-2.9072-23
1.3637-23
-8.2342-24
5.3314-24
-3.4749-24
2.2631-24
~1.4843-24

5.4621+01
4.1794+00
1.2926-01
4.9717-03
2.9758-04
4.6039-05
1.6071-05
7.4133-06
3.5550-06
1.6813-06
1.7547-07
3.4726-07
1.5151-07
6.5316-08
2.8397-08
1.2696-08
5.9203-09
2.9110-09
1.5294-09
8.7233-10
5.4568-10
3.7204-10
2.6944-10
1.9986-10
1.4541-10
9.7624-11

1.3120+02
2.4327+01
1.3323+00
8.2115-02
6.2637-03
9.0630-04
3.0116-04
1.5581-04
8.8362-05
4.8892-05
2.6190-05
1.3867-05
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15

17
18
19
20
21
22
23
24
25
26

1.1844-19
-1.5224-20
1.7514-21
-2.5945-22
4,9448-23
-1.4944-23
7.1886-24
-4.2429-24
2.6277-24
-1.6434-24
1.0351-24
-6.5626-25
4.1729-25
-2.6558-25
1.6991-25
-1.1046-25
7.3971-26
-3.1494-26
3.7258-26
-2.7785-26
2.1114-26
-1.6186-26
1.2429-26
-9.4906-27
7.0833-27

9.8686-25
-6.6516-25
4.5265-25
-3.0992-25
2.1355-25
-1.4868-25
1.0524-25
-7.6124-26
5.6361-26
-4.2594-26
3.2537-26
-2.4534-26

9.8154+01
1.2364+01
5.2623-01
2.6078-02
1.7622-03
2.6483-04
9.2642-05
4.5843-05
2.3814-05
1.2148-05
6.0949-06
3.0203-06
1.4731-06
7.0645-07
3.3672-07
1.6334-07
8.2962-08
4.4984-08
2.6052-08
1.5857-08
9.9178-09
6.2473-09
3.9082-09
2.3915-09
1.3821-09

7.3811-06
3.9620-06
2.1320-06
1.1441-06
6.1344-07
3.3162-07
1.8308-07
1.0436~07
6.1630-08
3.7499-08
2.3041-08
1.3625-08
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v Q| pB)|v'> A v QR[> A
1.6381-19  1.5443+02
-3.0145-20 3.9820+01 4 5 1.7988-19 1.6853+02
4.3687-21 2.6857+00 4 6 -3.8442-20 5.8560+01
-7.9481-22 2.0044-01 4 7 6.0904-21 4.7161+00
1.7118-22  1.7266-02 4 8§ -1.2084-21 4.1818-01
-5.0350-23  2.4535-03 4 9 27631-22 4.0566-02
2.2689-23  7.5158-04 4 10 -8.1214-23 5.7491-03
-1.3640-23  3.8498-04 4 11  3.5227-23 1.6297-03
9.1258-24 2.3281-04 4 12 -2.0807-23 8.0461-04
-6.2422-24 1.4167-04 4 13  1.4089-23 4.9759-04
4.2582-24 8.3118-05 4 14 -9.9406-24 3.2161-04
-2.8939-24  4.7161-05 4 15 7.0683-24 2.0460-04
1.9739-24  2.6365-05 4 16 -5.0172-24 1.2636-04
-1.3621-24 1.4798-05 4 17  3.5538-24 7.5986-05
9.5492-25 8.4282-06 4 18 -2.5226-24 4.4999-05
-6.7988-25 4.8756-06 4 19 1.8057-24 2.6630-05
4.9017-25 2.8517-06 4 20 -1.3105-24 1.5946-05
-3.5695-25 1.6794-06 4 21 9.6719-25 9.7314-06
2.6237-25 9.9511-07 4 22 -7.2595-25 6.0575-06
-1.9477-25 5.9407-07 4 23  5.5270-25 3.8279-06
1.4607-25 3.5761-07 4 24 -42506-25 2.4356-06
-1.1017-25  2.1502-07 4 25 3.2744-25 1.5339-06
8.2023-26 1.2431-07 4 26 -2.4748-25 9.1675-07
1.9244-19  1.7430+02
-4.7364-20  8.0254+01 6 7 20160-19 1.7252+02
8.1075-21 7.5368+00 6 8 -5.6983-20 1.0464+02
-1.7415-21 7.8246-01 6 9 1.0441-20 1.1248+01
4.2350-22 8.5735-02 6 10 -24117-21 1.3484+00
-1.2528-22  1.2291-02 6 11 6.2455-22 1.6731-01
5.2179-23  3.2075-03 6 12 -1.8799-22 2.4794-02
-2.9996-23  1.4976-03 6 13  7.5451-23 5.9976-03
2.0394-23  9.3205-04 6 14 -4.1580-23 2.5684-03
-1.4682-23  6.2579-04 6 15 2.8033-23 1.5682-03
1.0733-23  4.1985-04 6 16 -2.0520-23 1.0858-03
-7.8806-24  2.7668-04 6 17  1.5387-23 7.6419-04
5.7988-24 1.7900-04 6 18 -1.1608-23 5.2994-04
-4.2778-24 1.1410-04 6 19 8.7861-24 3.6144-04
3.1692-24  7.2038-05 6 20 -6.6795-24 2.4362-04
-2.3643-24  4.5369-05 6 21 5.1066-24 1.6299-04
1.7813-24  2.8696-05 6 22 -3.9289-24 1.0856-04
-1.3572-24 1.8291-05 6 23  3.0416-24 7.2006-05
1.0448-24  1.1728-05 6 24 -23661-24 4.7462-05
-8.0681-25 7.4571-06 6 25 1.8382-24 3.0702-05
6.1200-25 4.5045-06 6 26 -1.3985-24 1.8727-05
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Vv QR A, v v RS A,
7 8 2.0725-19 1.6405+02

7 9 -6.7368-20 1.3144+02 8 9  2.0910-19 1.4988+02
7 10 1.3117-20 1.5931+01 8 10 -7.8599-20 1.6035+02
7 11 -3.2381-21 2.1781+00 8 11 1.6169-20 2.1657+01
7 12 8.9354-22 3.0634-01 8 12 -4.2401-21 3.3354+00
7 13 -2.7605-22 4.7732-02 8 13 1.2486-21 5.3315-01
7 14 1.0804-22 1.0957-02 8 14 -3.9878-22 8.8581-02
7 15 -5.6764-23 4.2544-03 8 15 1.5395-22 1.9731-02
7 16 3.7273-23 2.4574-03 8 16 -7.7326-23 6.9827-03
7 17 -2.7374-23 1.7077-03 8 17 4.8877-23 3.7254-03
7 18  2.0954-23 1.2481-03 8 18 -3.5443-23 2.5144-03
7 19 -1.6231-23 9.0887-04 8 19 2.7352-23 1.8600-03
7 20 1.2614-23 6.5055-04 8 20 -2.1607-23 1.4019-03
7 21 -9.8313-24 4.5842-04 8§ 21 1.7202-23  1.0471-03
7 22 7.6952-24 3.1952-04 8 22 -1.3735-23 7.6936-04
7 23 -6.0518-24 2.2074-04 8 23 1.0983-23 5.5537-04
7 24 4.7755-24 1.5083-04 8 24 -8.7825-24 3.9303-04
7 25 -3.7554-24 1.0057-04 8 25 6.9780-24 2.6931-04
7 26 2.8839-24 6.2779-05 8 26 -54000-24 1.7157-04
9 10 2.0670-19 1.3106+02

9 11 -9.0781-20 1.9108+02 10 11 1.9942-19 1.0877+02
9 12 1.9650-20 2.8515+01 10 12 -1.0402-19 2.2319+02
9 13 -5.4362-21 4.8772+00 10 13 2.3640-20 3.6639+01
9 14 1.7112-21 8.8862-01 10 14 -6.8442-21 6.8448+00
9 15 -5.6939-22 1.5982-01 10 15  2.3060-21 1.4247+00
9 16 2.1930-22 3.5327-02 10 16 -8.0560-22 2.8152-01
9 17 -1.0593-22 1.1523-02 10 17  3.1331-22 6.3213-02
9 18 6.4020-23 5.5973-03 10 18 -1.4711-22 1.9398-02
9 19 -4.5237-23 3.5710-03 10 19  8.4882-23 8.5478-03
9 20 3.4744-23 2.6030-03 10 20 -5.7744-23 5.0265-03
9 21 -2.7697-23 1.9858-03 10 21 4.3532-23 3.5071-03
9 22 2.2409-23 1.5210-03 10 22 -3.4599-23 2.6395-03
9 23 -1.8214-23 1.1485-03 10 23 2.8133-23  2.0239-03
9 24 1.4791-23 8.4668-04 10 24 -2.3022-23 1.5327-03
9 25 -1.1904-23 5.9988-04 10 25 1.8704-23 1.1167-03
9 26 9.3004-24 3.9176-04 10 26 ~1.4739-23 7.4676-04
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Vv QER) VY A v'ov Qu®)|vy A
11 12 1.8648-19 8.4441+01

11 13 -1.1839-19 2.5606+02 12 13  1.6689-19 5.9739+01
11 14 2826520 4.6256+01 12 14 -13392-19 2.8859+02
11 15 -84811-21 9.2535+00 12 15 3.3725-20 5.7801+01
11 16 3.0607-21 22018+00 12 16 -10367-20 1.2091+01
11 17 -11318-21 4.8555-01 12 17  4.0018-21 3.2773+00
11 18 44973-22 1.1329-01 12 18 -15813-21 82109-01
11 19 -2.0803-22 3.3565-02 12 19  6.5009-22 2.0394-01
11 20 11535-22 1.3578-02 12 20 -3.0016-22 5.9813-02
11 21 -7.5038-23 7.2499-03 12 21  1.6186-22 22711-02
11 22 54697-23 4.6906-03 12 22 -1.0108-22 1.1077-02
11 23 -42653-23 3.3658-03 12 23  7.0669-23 6.5247-03
11 24 34353-23 25033-03 12 24 -53184-23 4.3069-03
11 25 -27820-23 1.8313-03 12 25 4.1475-23 2.9586-03
1126 21959-23 1.2382-03 12 26 -32127-23 1.9440-03
13 14 1.3945-19  3.6622+01

13 15 -1.5055-19 3.1899+02 14 15 10281-19 1.7346+01
13 16  4.0335-20 72031401 14 16 -16793-19 3.4432+02
13 17 -12542-20 15345+01 14 17  4.8554-20 9.0096+01
13 18 5.1490-21 4.6796+00 14 18 -1.5098-20 1.9083+01
13 19 -21949-21 1.3563+00 14 19  6.5101-21 63780+00
13 20 9.4832-22 3.6946-01 14 20 -3.0161-21 2.1670+00
13 21 -44394-22 1104701 14 21 1.3938-21 6.6924-01
13 22 23584-22 4.0323-02 14 22 -67517-22 2.1207-01
13 23 -14267-22 18247-02 14 23  3.5979-22 7.6930-02
13 24 95910-23 90.8045-03 14 24 -2.1373-22 3.3079-02
13 25 -69072-23 5.8308-03 14 25  1.3902-22 1.6344-02
13 26 5.0837-23 3.4965-03 14 26 -9.5025-23 8.5641-03
15 16  5.5534-20 4.3701+00

15 17 -1.8531-19 3.6011+02 16 17 -3.7243-21 1.6784-02
15 18 59023-20 1.1363+02 16 18 -2.0125-19 3.6019+02
15 19 -1.8243-20 23608+01 16 19  7.2574-20 1.4455+02
15 20 80795-21 82555+00 16 20 -2.2443-20 2.9792+01
15 21 -4.0785-21 3.2975+00 16 21  9.8687-21 1.0160+01
15 22 2051621 11931400 16 22 -53748-21 4.6656+00
15 23 -1.0530-21 4.1874-01 16 23  2.9848-21 2.0269+00
15 24 57659-22 15780-01 16 24 -1.6653-21 8.2557-01
15 25 -3.4277-22 6.6626-02 16 25  9.6252-22 3.3920-01
15 26 2171622 3.0476-02 16 26 -5.8249-22 1.4442-01
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17 18 -7.5901-20 5.8694+00

17 19 -21317-19 3.3734+02 18 19 -1.6092-19 2.1820+01
17 20 9.0054-20 1.8393+02 18 20 -2.1692-19 2.8572+02
17 21 -2.8643-20 3.9631+01 18 21  1.1189-19 2.2922+02
17 22 1.2039-20 1.2180+01 18 22 -3.8507-20 5.6948+01
17 23 -6.8333-21 5.9748+00 18 23 1.5254-20 1.5261+01
17 24  4.1864-21 3.0970+00 18 24 -8.4249-21 6.9332+00
17 25 -2.5784-21 1.5004+00 18 25  5.4811-21 3.9433+00
17 26  1.5988-21 6.8801-01 18 26 -3.6497-21 2.1568+00
19 20 -25679-19 4.4915+01

19 21 -2.0626-19 2.0579+02 20 21 -3.5836-19 6.8588+01
19 22 1.3695-19 2.6893+02 20 22 -1.7298-19 1.1132+02
19 23 -5.4480-20 8.7429+01 20 23 1.6036-19 2.7700+02
19 24 21414-20 2.2497+01 20 24 -7.8642-20 1.3302+02
19 25 -1.0724-20 8.1454+00 20 25 3.4393-20 4.0895+01
19 26 6.6620-21 4.0604+00 20 26 -1.6428-20 1.2868+01
21 22 -45572-19 8.3531+01

21 23 -1.0838-19 3.2035+01 22 23 -5.3354-19 8.1472+01
21 24 1.7021-19 2.2137+02 22 24 -8.1163-21 1.2303-01
21 25 -1.0811-19 1.7113+02 22 25 1.4509-19 1.0493+02
21 26 5.7684-20 7.4203+01 22 26 -1.2422-19 1.3818+02
23 24 -5.7243-19 6.1481+01

23 25 1.1756-19 1.5961+01 24 25 -~5.5489-19 3.3356+01
23 26 6.1870-20 1.0904+01 24 26 23107-19 3.2224+01
25 26 1.1191+01

~4.7315-19

484216-20 reads as 8.4216 x 10720,
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Table 7.17 lists the averages <¢v|y(R) |,> found in the present work and
compares them to the results of Sileo and Cool (156), as well as to those of
Huffaker (108) for HF.

A low sensitivity to the potential form is found for the DF(B - X)
Franck-Condon factors also. An extensive caiculation including the rotational
dependence has been performed here; the results are listed in Table 7.18. The
effect of g(R) on the radial wavefunctions has been considered explicitly in
the present calculation. The factors are not significantly different when

q(R) is neglected in the calculation.



>,

Electric Dipole Moment (D) for the Ground States of HF and DF

TABLE 7.17

v Present work Sileo and Cool” Huffaker®
HF DF HF DF HF
0 1.823 1.817 1.819 1.814 1.819
1 1.869 1.852 1.865 1.848 1.865
2 1.913 1.885 1.909 1.882 1.907
3 1.956 1.918 1.953 1.915 1.953
4 1.997 1.950 1.994 1.947 1.994
5 2.035 1.981 2.032 1.977 2.032
6 2.069 2.009 2.066 2.006 2.066
7 2.096 2.035 2.094 2.032 2.094
8 2.115 2.058 2.113 2.056 2.113
9 2.122 2.078 2.121 2.075 2.122
10 2112 2.093 2.090 2.113
11 2.079 2.102 2.100 2.093
12 2.013 2.103 2.102 2.047
13 1.905 2.096 1.973
14 1.746 2.078 1.866
15 1.531 2.046 1.720
16 1.268 1,998 1.528
17 0.980 1.930 1.281
18 0.698 1.839 0971
19 0.412 1.724 0.587
20 1.582
21 1.415
22 1.229
23 1.034
24 0.841
25 0.656
26 0.467

“Ref. (156); "Ret. (108).

332



333

3333333322

31327
OO O

------

=17

6 v

-

------

4 v'=5 v

5555544433

5397611
Vo nNnnNO<t\O

-------

=3 v

-------

TABLE 7.18

A Calculation of the Rotational Dependence of Franck-Condon Factors

=2 v

1 v

Y

-------

for the B'=* - X!=* Band System of DF*

=0 v

---------

J v

,v"

3333332222

----------

2&8077437
QSO riny

2222357135

4443333422
6548332240
NOAN—ANNTS—=OW0

nnnnnnnnnn

4444443322
O =W \D 00 T Qi en T
NN N NN

NN NV OO0 ™t vdcn

22T TIINTS
581276088
CACOET T v

uuuuuuuuuu

OWOL =N U i

55.\_45554434
3032982440
NAONOONANMW\D

----------

2260006000048
NOAQAT-NNn OtV

0262491904
TONWHOW T

----------

PPPPVPAFYY
Nt O
NV = OO $ O OoOw

VWit NN O N
NN N
| I AU AR N I R g |

OV =VIN=QRQRO~O
O v=o0 N0 N < v vt

----------

Lo [
(=L a X 259223
N Ualo cRVell ol R ol

----------

IIIITR00RY
ONRXVO NN riO I~
SO NT N0 00

NNTWNV =NV

(=23 Sl Yol 92291
8383m57077

----------

2063066364
=HANTONITNOWY

----------

rd = NN \D v TN

7766665543
8488511268
RV ONEAVOO

FRIFVFFIY
NN TN = \O
SO ==~

ooooooooo

nnnnnnnnn

06958 21..__3
NN =IO AN~

.........

Tt~ on
W <t <t <t <t ol
[ LA 1111




33k

=7
57-2
4.49-2
17-2
39-3

81-2 2
71-3

67-2
74-2
84-2
86-2

64-2

nnnnnn

2

=
---------

4 v'=5 v'=6 v

3 v

ooooooooo

TABLE 7.18 (Cont'd)

---------

1 vi=2 v

for the B'=* - X!=* Band System of DF
=0 v

A Calculation of the Rotational Dependence of Franck-Condon Factors
J v’

v"

FPYIIRRRY
o N \O I~ O
NELENISET S
it aNgtT NN
YIFRIVLEPY
OOy o
RRNNRLIIZ
Vo RVoRVaRVaRVe R < o\ Ke oW o]
LRRINIINY

t~ S~~~
U ERE
[ToR Vo RVo Ao RV RIS RV W o\ B o8
FRRIRIYYD
[« [} t~ONt o on
RENRERITLH
Nttt HO~N0ON
QIIFIFYYY
VY >~ -
SSARBSRG R
NONONANNIS0 o
PPTIIYIYT
SRIEBRBS
NNt 0D -
aeeaeeeqat
NFTUVHN~-NT O T
EXMNS{I RS
i i N OF) W) O\ vl < vy
¥ITIToPNR
87769901%
RR&EIRA=RR
NNt QO
< o3 00 [ o)

CHIZISLSR
~r

54-2
41-2
08-2
71-3
62-4
59-3
64-2

-------

83-2 9
10-1 1

-----

79-2 5
20-2 1

........

24 3
30 7
36 1
42 5

NN Al
AR L NN

--------

--------

--------

oooooooo

--------

aFIYXITT
AQANOhVITON
NSO N \O ™

— i N N <F 06— o
coNtovd
CEEIKRRS

~
i




335
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A Calculation of the Rotational Dependence of Franck-Condon Factors
for the B'=* - X'=* Band System of DF
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for the B'=* - X!=* Band System of DF

) ,v"

Jv=0 v=1 v'=2 v'=3 v'=4 v=5 v=6 v'=7

4.63-3 1.28-2 5.65-2

0 6.13-4 3.57-3 1.68-1 4.05-1 6.44-2 6.97-3 2.36-2 1.59-2
847-4 7.26-4 1.28-1 4.16-1 1.08-1 3.25-3 1.95-2 2.50-2
18 2.12-4 935-3 7.69-3 7.86-2 3.75-1 136-1 2.61-2 1.11-1

6
12 1.06-3 2.32-3 3.67-2 3.59-1 2.67-1

25

JA5-1 1.63-2  6.15-2
64-1 3.04-2 6.32-2
87-1 894-2 6.77-2
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49.69-9 reads as 9.69 x 107°.



CHAPTER 8
REVIEW OF HAMILTONIAN CORRECTION APPROACH

8.1 Comparison with a Conventional Rotational Analysis

8.1.1 Physical Significance

The approach of reducing a set of spectroscopic line positions to
molecular constants often yields parameters that lack a strict physical
significance. Before proceeding any further, it is important to define what
is meant by “physical significance”.

Our understanding of a molecular system can be described easily in
qualitative terms, often involving such classically influenced terminology as
“electron cloud”, “internuclear bond”, “angles”, etc. A quantitative
description is obtained by adopting a theoretical or mathematical model, which
approaches the physical reality of the system to a varying extent. What is
meant by physical significance here, then, is the ability of derived
parameters obtained empirically to correspond to those predicted by a formal
theoretical treatment of the assumed model. The ability of such derived
parameters to describe the physical reality of a system can only be as good
as, and is often worse than, that of the theoretical model.

Returning to the subject under discussion, finite measurement errors and
J ranges limit the number of higher-order centrifugal constants that can be
determined significantly, in the statistical sense. Furthermore, high
correlations among parameters and truncation of the power series force the

constants that are determined to absorb unphysical contributions. As a
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result, inversion of such diatomic constants to the potentials governing
nuclear motion will result in functions having reduced physical meaning.

The Hamiltonian Correction Approach (HCA) employed here goes a step
further furnishing functions that have improved physical significance. The
corrected operators are fully quantum mechanically consistent with the
observables from which they were derived. Moreover, an extension of the HCA
has been devised to evaluate quantum mechanical estimates of the molecular
constants, From this effort, it has been shown conclusively for the systems
studied, that considerably higher orders in J(V + 1) than normally employed
are in fact required to describe the data within the measurement errors for
the experimentally derived constants to preserve their proper quantum
mechanical meanings.

Here, it is interesting to note that with each progressive application of
a contact transformation, explicit information is lost. = For example, the
theorist begins with the exact infinite block Hamiltonian of a diatomic system
and applies the electronic contact transformation to obtain a perturbational
expansion that operates within a single electronic state. The experimentalist
applying such an effective operator to the interpretation of spectroscopic
line positions obtains the total effect of all perturbing states but cannot
separate the perturbation into its individual components. An example of this
is found in the present work where the fitted functions §§")(R) and ﬁg")(R)
describe adiabatic effects and nomadiabatic coupling well but cannot provide
information on the individual perturbations exerted by other states. A rare
case where the perturbation has been decomposed into individual electronic
state contributions, concerns an elegant ab initio study of the spin-orbit

interaction in the ground state of the hydroxyl radical (213). This type of
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decomposition is only possible for direct theoretical studies.

Similarly, when a vibrational contact transformation is applied to the
Van Vleck transformed operator, the perturbational coefficients B,D, et.,
obtained experimentally on the basis of the associated model, cannot yield
information explicitly on nonadiabatic perturbations, even though these are
contained implicitly in such estimates. It is clear from these considerations
that although the approach of molecular constants can provide a satisfactory
description of the observables, it fails to achieve a separation of mechanical
and nonmechanical contributions to the energy levels. Due to this
unpreventable loss of information, the HCA, which also achieves an equally
satisfactory description of the observables, is to be preferred.

An additional benefit of the HCA is that the corrected operators are
found to predict information not included in the least-squares fits, such as
widths of spectral lines and line positions of isotopomers not considered
explicitly in the fitting procedure. Although an analogous procedure exists,
describing the isotopic variation of molecular constants and accounting fully

for Born-Oppenheimer breakdown, it is found that constants obtained in this

fashion fail to correspond to the formal perturbational coefficients.

81.2 General Fitting, Extrapolation, and Interpolation Ability

The work performed in this thesis provides a rare opportunity to compare
reliably the properties of the molecular constant and Hamiltorian correction
approaches. It has been demonstrated that the use of local correction
functions in the HCA is of undeniable advantage. As Coxon has shown (120),
the distribution of these functions is not critical as long as adjacent

Gaussians are placed as to ensure sufficient overlap and smooth corrections
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throughout. The results of the model testing showed that the fitted residuals
actually represent the random errors quite closely, indicating that the model
has a lot of flexibility and can be very accurate, not merely precise.

From the conventional rotational analyses described in Chapters 4 and 5
it became apparent that polynomial representations in J(J + 1) for the
rotational energy do not have satisfactory extrapolation properties; in fact,
the extrapolation over a single J is often highly uncertain. On the other
hand, the fit of spectroscopic lines to a global model improves tremendously
the extrapolation to highly excited J levels. This feature of the HCA proved
to be particularly helpful in rationalizing predissociation observations in
the HF and DF ground states.

Another demonstration of the extrapolation properties of the HCA
operators was given by the successful prediction of the T9Cl and T'Cl
microwave transitions. It must be noted that the levels involved in these
transitions lie below the lowest levels of HCl and DCl employed in the
least-squares fit so that their prediction is essentially an extrapolation.

The matter of interpolation was settled quite decidedly from the resuits
of the model calculations in Chapter 3, and also by the ability of an
intermediate operator for DF(X 12*’) in Chapter 7 to provide effortlessly sound
rotational assignments for intermediate (v" = 9-15) vibrational levels not
detected previously from a conventional analysis. The prediction of the
intermediate DF(X 12'*') levels by a conventional treatment was fraught with
large error.

It is concluded that the general fitting ability, extrapolation and
interpolation properties of the HCA are considerably better than those of a

conventional rotational analysis.
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813 Stability

The stability of a fit of spectroscopic lines in accord with a power
series expansion for the rotational energy in terms of J(J + 1) is dependent
largely on the quality of the matrix inversion method employed in the
least-squares procedure. It is often found that inclusion of one more
parameter than is warranted by the precision of the data results in the
deterioration of the lower-order constants. Also, in the extended Dunham
treatment of data from several isotopomers (cf. Eq. (2.47)), Watson (42) has
shown that large (unphysical) values of the A can be associated with
accidentally small values of some Ukl' There are cases, then, where stability
can be a problem for the conventional approach.

The stability of the HCA depends squarely on the choice and distribution
of basis functions and the local weights along the radial coordinate. If, for
example, a Gaussian function is placed in a region of low weighting the fit
runs the risk of becoming unstable, the calculation often diverging.
Additional instability can result in the extreme inner and outer regions of
the fitted correction functions which can cause subsequent problems with the
numerical solution of the radial wave equation. The HCA has its speciai types
of problems but these were understood in the model testing. To quote
Albritton et al. (57): “a devil known is better than a devil unknown even

though it cannot be exorcised.”

8.1.4 Compactness

A considerable amount of effort was expended in devising a method by
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which initial operators could be represented by flexible analytic functions.
This would not only eliminate ambiguities in the definitions of the trial
operators, but also lead to more compact representations of the final
functions. Such an approach was possible for HCI/DCl but could not be
followed for HF/DF.

For HCI/DCl, eight Hamiltonian operators were represented by
approximately 100 parameters, that is, approximately 12 parameters per
operator. One ought to consider that highly precise data (, 107 cm'l) were
incorporated, and that all the reliable data included for all four isotopomers
and two electronic states could be described simultaneously. This is a
testament not only to the relative compactness that can be achieved in this
fashion but also the general success of the fitting procedure.

Clearly, however, a considerable amount of labour is required to
reconstruct the corrected operators from the fitted parameters. This is part
of the reason RKRV-like numerical potentials have been tabulated. Although
the interpolated potentials cannot achieve an accuracy of 107 cm'l, they are
far more accurate than first-order RKRYV potentials. For many purposes, it is
not necessary to have an accuracy of 1078 cm™L, Thus, in the end, the HCA can
be likened somewhat to the RKRV procedure in compactness. This is still as
good or better than the approach of constants in representing a set of line
positions.

The final HCA representations must be viewed as a compromise between
compactness and accuracy.  Earlier efforts (119) employed global basis
functions which gave more compact representations but had relatively poor
flexibility —properties. The local basis functions vyield the desired

flexibility but fail to provide as compact a representation of the radial
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functions.

With regard to the representation of eigenvalues, significant advantage
would be gained if energy levels could be described more compactly. The
problems with fitting terms to J(J + 1) power series have been explained
previously. These problems are amplified with decreasing reduced mass.
Therefore, efforts were directed in obtaining molecular constants which could
not only represent within the measurement errors the experimental data, but
also obey the same boundary conditions as the derived operators. Although
this approach would lead to a 5-10 fold reduction in the parameters required
to specify the energies, it was found that considerably high orders of the
perturbation have to be invoked to achieve the desired consistency. The
computational algorithm for this purpose has been developed only for a

fifth-order energy calculation.

8.2 Suggestions for Improved Procedures

8.2.1 Improved Compactness

In keeping with the first-order perturbation determination of radial
operators in numerical form, with the functions tabulated on a radial grid, it
is possible to achieve, in some cases, much improved compactness. Upon
reflection, the main weakness of the HCA is its relative complexity; there are
simply too many variables left to intuition and much effort is required to
reconstruct correction functions. On the other hand, no other method proposed
so far has been able to achieve a successful simultaneous fit of data from the
potential minimum to the dissociation limit for many isoctopomers and more than

one electronic state.
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An extension of the procedure that improves the compactness in the radial
function representations is suggested here. Suppose that the trial potentials

can be represented by the general Dunham-type power series (2i4),

U0, = 456 + L 4T, (8:1)
where
E = (m+n)R - R)/(mR + nR). (8.2)

A correction function AU(R) could be modelled as,

AUG,,) = I &6 (83)
where a linear term has also been included here to take into account the
probability that the adiabatic component of the correction possesses a finite
slope at R.. This correction function could then be estimated with the
Hamiltonian correction approach. The final, corrected, potential would be

expressed as,

UE,,) = 1%, + @' + M2+ (@g'd7” + e,

+ @A)+ D+ @+ TE L, (8.4)

in other words, one additional term only is generated; small corrections (c':.’")

are imposed onto the known coefficients of the trial function. An iteration,

should it prove necessary, would not increase the total number of parameters
but simply refine already existing ones.

The effectiveness of this procedure is controlled critically by the

radius of convergence of the reduced internuclear coordinate Smn. It is not

expected, for any choice of m and n, that the long-range region could be

represented well by such an expansion. This type of model should be used with
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care and only for low and intermediate vibrational levels.

8.2.2 Extension to Higher-Order Perturbation Theory

It is possible, with a proportional increase in labour, to extend the HCA
to higher-order in the perturbation. First, let us examine the breakdown of
first-order perturbation theory more closely.

Employing the trial potential given in Table 6.2 for the X Is* state of
HCl, as the zeroth-order function, and the model correction function AU(R),
plotted in Fig. 3.2, as the perturbation, it is possible to calculate exactly

the first-order correction,
1 _ © )
E7 =<y, |AUR) Y, ™D, (8.5)

add it onto the trial eigenvalues E'()O) and examine to what degree first-order
perturbation theory can approach the eigenvalues Ef}mr) of the known corrected
potential.  Subsequently, the perturbation is doubled, a new corrected
potential and new Ef)wr) are obtained, and the ability of first-order
perturbation theory in recovering these is reexamined. The perturbation is
then tripled and similar calculations are carried cut.

Table 8.1 shows that as the perturbation is doubled, the discrepancies
from the true exact eigenvalues are slightly more than quadrupled and when the
perturbation is tripled the discrepancies are a bit over nine times the
initial values. This is in accord with the expectation that the omitted
second-order corrections go as the square of the expectation value (cf.
Eq. (8.6)), and hence as the square of the perturbation. The ratios given in
Table 8.1 provide general support for this argument, the small disagreement

from the exact squares most likely due to third-order corrections.

5o,

e 2
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2 = AU(R) o = 2AU(R) 3 = 3AUR)

v AE, AE,  AEJ/AE, AE,  AE/AE,
0  0.000000 0000001 - 0.000 003 -
1 0000001 0000005 - 0000 012 -
2 0000006 0000 024 4.00 G.000 054  9.00
3 0.000 014 0000 057 4.07 0.000 128 9.14
4 0000019 0.000 077 4.05 0000 175 9.21
5 0090 024  0.000 097 4.04 0.000 219 9.13
6 0000 044  0.000 173 3.93 0.000 391 889
7 0000094 0.000 375 3.99 0.000 846  9.00
8  0.000 189  0.000 757 4.01 0.001 705 9.02
9 0000331 0001327 401 0.002 991 9.04
10 0000 511 0002 050 4.01 0.004 621 9.04
11 0.000 710  0.002 846 4.01 0.006 417 9.04
12 0.000900 0003 606 4.01 0.008 132 9.04
13 0001 052 0.004 219 4.01 0.009 517 9.05
14 0001146 0004 597 4.01 0.010 370  9.05
15 0001171 0.004 698 4.01 0.010 601  9.05
16 0001 133 0004 545 4.01 0.010 258  9.05
17 0.001 045 0004 191 4.01 0.009 464  9.06
18 0.000 915  0.003 674 4.02 0.008 292  9.06
19 0.000 %8  0.003 642 4.01 0.008 214  9.04

?Quantities AE(cm'l) are the differences between the exact and

first-order perturbation results.
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In terms of the absolute magnitudes of the breakdown of first-order
perturbation theory, it appears that for the most part first-order theory is
sufficient. It is possible, however, to include second and higher orders of
the perturbation in the Hamiltonian correction method. The correction to an

eigenvalue could be modelled as,

1<v9) |aUR) [ D> |
(0) _ 0
EwK EQ(JJ)

AE = O au®)|pD> + 1 ,  (86)
vJ#EwK

which can be simplified further by avoiding the sum-over-states and writing

explicitly,

AE,; = QAR DS + @DIAUR) D> 87)
If the perturbation is expanded as in Eq. (3.15), then we obtain,
AE ; = ¢ {KOIf |0> + COIf |1} + ¢, {<015,|0> + <OIf,|1>}

c;{O0If510> + <OIf| 1D} + ¢ {OIF 10> + LOIf, |1} + .., (8.8)
which requires simply the additional generation of expectation values (0] fi| 1>
doubling the amount of labour needed to obtain expectation values, but not the

time required to perform least-squares fits. The |1> vectors can be obtained

by Hutson’s (53) method.

8.2.3 Direct Nonlinear Least-Squares Fits to Analytical Operators

In recent work, Gruebele et al. (188) explored the possibility of fitting
spectral line positions directly to the relevant elements of the radial
Hamiltonian operators.  This calculation is exact within the Schrodinger

equation picture but requires nonlinear least-squares optimization and a more
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frequent numerical solution of the wave equation. As discussed previously,
the HCA can also be interpreted in terms of a pseudolinearized problem with
partial derivatives obtained by the Hellmann-Feynman theorem.  These
derivatives can also be obtained in a brute-force way in accord with,
0E, _ Ep) - E (0t op)
ap, op, ’

(8.9)

where dpk is chosen to avoid numerical problems or instabilities. The
procedure is iterated, since the brute-force method does not obtain as
accurate partial derivatives as the Hellmann-Feynman method. The p, are
parameters defining an analytical potential function, or other elements of the
operator.

This method is far more demanding computationally than the HCA. This is
because a calculation of new partial derivatives is required with every fit
whereas the HCA operates on the same set of expectation values. It is
estimated that for models with similar numbers of parameters and identical
data sets, the direct method would required approximately 10-20 times the
amount of execution time. Work carried out in this laboratory with the direct
method has so far been restricted to the lower vibrational levels of HI(X 12+)
and CO(XIE"'). The analytical model Eq. (6.13) has been employed as well as
the Perturbed Morse Oscillator expansion, Eq. (3.6).

Despite the increased computational labour, this method is preferable
over the HCA since it eliminates a lot of the complexity and ambiguity
associated with the indirect numerical procedure. Some effort has gone into,
and is still required, in devising flexible analytical functions for use with
the direct method. In particular, the PMO and the radial-8 Morse functions

can only be relied on for up to approximately 50% of @,. A model which will

o i o Ao o s o g e
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be tested in the future is,

UR) = f,UR) + f,U B + fU4R), (8.10)

where U(R), Uy, (R), and U,(R) are analytical forms appropriate for the inner,
middle, and outer regions of the potential, respectively, —The functions j;
are mathematical filters which allow for a smooth tranmsition from one

potential form to another as the internuclear distance is varied.

8.3 Concluding Remarks

The work presented in this thesis has extended our understanding of the
diatomic molecules HF and HCl and their isotopomers. The interpretation of
spectroscopic observables in terms of a fully quantum mechanical model has
been demonstrated tn be very effective not only in representing information
included in the fits, within experimental precision, but also at predicting
with remarkable accuracy such information not obtained readily by traditional
methods.

Despite this, as the precision of spectroscopic data continues to
improve, development of improved procedures will undoubtedly be required. It
will indeed be interesting tc see to what extent very precise observations
over the entire potential weli will lend themselves to an interpretation by
approximate theoretical models. In Steinfeld’s words: “. .. in every case
the molecule has solved its own Schrodinger equation exactly, and is probably
laughing at our attempts at attaining to some approximate solution” (215).

It s my belief that through this work we have quieted down some of the

laughter.
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