

National Library of Canada Bibliothèque nationale du Canada

Canadian Theses Service

Ottawa, Canada K1A 0N4 Service des thèses canadiennes

1

NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments.

AVIS

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents. Visible Electronic Emission Spectra of Diatomic Molecules: Analysis of the AlO (B-X) and BI(a-X) Systems, and First Observations of Some 11-Valence Electron Cations, SeO⁺, PCl⁺, PBr⁺, and AsCl⁺. ŀ

í

assume and a set of the

Ŧ

,

ł

by

Stavros Naxakis

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

at

Dalhousie University Halifax, Nova Scotia August, 1990

National Library of Canada Bibliothèque nationale du Canada

Canadian Theses Service

Ottawa, Canada K1A 0N4 Service des thèses canadiennes

The author has granted an irrevocable nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printec' or otherwise reproduced without his/her permission. L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-315-64559-8

DEDICATION PAGE

To my family

:

Conte	ents .	• • • • • • • • • • • • • • • • • • • •	•	•	v						
List	of Fi	iqures	•	•	viii						
List	of Ta	ables	•	•	xi						
Absti	ract .		9	•	xiv						
Defin	nition	ns of Terms and Symbols	•	•	xv						
Acknowledgements											
1	Intro	Dauction									
	1.1	General Introduction	•	•	1						
2	A Rev	view of Some Spectroscopic Tcchniques									
	2.1	Introduction	•	•	4						
	2.2	Molecular Hamiltonian	•	•	5						
	2.3	Band-by-Band Least-Squares Fits	•	•	19						
	2.3.3	1 Non-Linear Fitting Procedure $(^{2}\Pi - ^{2}\Pi$									
		System)	•	•	19						
	2.3.3	2 Linear fitting procedure $({}^{2}\Sigma^{+}-{}^{2}\Sigma^{+}$ system)	•								
	2.4	Single-step merging	•	•	22						
	2.5	Stepwise Merging	•	•	25						
	2.6	RKR Potentials	•	•	27						
3	Rota	tional Analysis of the B-X System of AlO									
	3.1	Introduction	•	•	30						
	3.2	Nature of the Electronic Transition	•	•	35						
	3.3	Experimental Details and Rotational									
		Assignment	•	•	40						
	3.4	Results and Discussion	•	•	50						

4 Excitation of Spectra by Species of a Helium Discharge and Details of the Flowing Afterglow System

:

1

ţ

7 Vibrational Analysis of PCl⁺, AsCl⁺ and SeO⁺ New Visible Emission Spectra

ĺ.

8	Rotat	ional:	Analy	ysis	; 0;	E t	:h e	A	+	X	: 8	ys.	ite	m	of	5 1	PC]	+		
	8.1	Introd	luctio	on.	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	192
	8.2 Nature of the Transition, and Rotational																			
		Assigr	ments	з.	v	•	•	•	•	•	•	•	•	•	•	•	•	•	•	193
	8.3	Result	s.	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	198
	8.4	Discus	sion	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	208
9	Unass	signed	Bands	3 01	: P)	Br ⁺														
	9.1	Intro	luctio	on.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	212
	9.2	Result	s and	i Di	sc	uss	sio	n	•	•	•	٠	•	•	•	•	•	•	•	212
10	Addit	tional	React	tior	1S	of	Di	sc	ha	ırç	jeo	11	He	liı	ım	•	•	•	•	220
	Bibli	iograpi	hy .	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	236

we state an inter a supply of

8**4**19

an more

vii

List of Figures

È

.

ŧ

8 2 5

3.1	Energy level diagram for the first lines of a
	${}^{2}\Sigma^{+-2}\Sigma^{+}$ transition. The spin-splitting has been
	much exaggerated
3.2	The flow system used for the production of AlO
	$(B^{2}\Sigma^{+})$
3.3	Photoelectric trace of the $\Delta v = -1$ and $\Delta v = -2$
	sequences of the B - X system of AlO 46
3.4	A portion of the $\Delta v = 2$ sequence and the
	rotational assignment of the 5-3 band in the
	$B^2\Sigma^+ - X^2\Sigma^+$ system of Alo
3.5	Plots of $(\gamma_v - \gamma_e^{"})$ for the $B^2\Sigma^+$ and $X^2\Sigma^+$ states
	of AlO. The points shown for the B state and the
	smooth curve from the fit of Merge C (Table 3.3).
	The straight line for the B state is from the fit
	of Merge C (Table 3.4). Error bars are two
	standard deviations
3.6	RKR polential curves for the $B^2\Sigma^+$ and $X^2\Sigma^+$ states
	of aluminum monoxide; vibrational energy levels are
	shown
4.1	The flowing afterglow apparatus
5.1	A portion of the BI emission spectrum from ~ 5890
	to ~ 6325 Å 116

.

ı.

- 7.1 A portion of the PCl⁺ emission spectrum 157
- 7.2 Vibrational isotope effect in the $X^2\Pi$ state of PC1⁺. Plot of subbandhead differences of $P^{35}C1^+$ and $P^{37}C1^+$ for the v' = 0 progression according to eq. (7.4); see text. The solid line corresponds to the theoretical slope, $1 - \rho = 0.01277 \dots 160$
- 7.4 Vibrational isotope effect in the $X^2\Pi$ state of AsCl⁺. Plot of sub-bandhead differences of As³⁵Cl⁺ and As³⁷Cl⁺ for the v⁺ = 0 progression according to eq. (7.4); see text. The solid line corresponds to the theoretical slope $1 - \rho = 0.01859$ 176

8.1	Energy level diagram for the lirst rotational lines
	of the $A^2II - X^2II$ transition of the PCl^+ ion 197
8.2	The $A^2 \Pi_{1/2} - X^2 \Pi_{1/2} 0-17$ sub-band of $P^{35}Cl^+$. 202
9.1	A portion of the PBr^{\dagger} emission spectrum from
	~ 5750 to ~ 6350 Å · · · · · · · · · ·
10.1	A portion of the NS emission spectrum, showing
	bandheads belonging to the $B^2 \Pi$ - $X^2 \Pi$ system $~$ 225
10.2	A portion of the $B^2 II - X^2 II$ emission spectrum
	of PS
10.3	A portion of the $PS^+(A \rightarrow X)$ emission spectrum . 229
10.4	A portion of the A_1 - X emission spectrum of
	sbCl

, t

ı ł

List of Tables

I

1 1 4

ł

-6

1

2.1	Matrix Elements Within The Same nvJSA Block 10
2.2	Matrix Elements Connecting A $^{2}\Pi$ State with
	Perturbing ² Σ States
2.3	Effective Hamiltonian Matrix Elements of $^{2}\Pi$
	States
3.1	Individual Band Fits in the $B^2\Sigma^+ \rightarrow X^2\Sigma^+$ System
	of Alo
3.2	Least-Squares Fitting of γ_v^{t} - $\gamma_v^{"}$ (cm ⁻¹), from
	Individual Bands of AlO($B^2\Sigma^+ \rightarrow X^2\Sigma^+$)
3.3	Merged Parameters (cm $^{-1}$) for the $X^2\Sigma^+$ and $B^2\Sigma^+$
	States of AlO
3.4	Merged Dunham Coefficients (cm ⁻¹) for the $X^2\Sigma^+$
	and $B^2\Sigma^+$ states of AlO 61
3.5	Calculated Line Positions and Residuals for the
	$B \rightarrow X$ System of AlO 63
3.6	Term Values and Vibrational Parameters (cm ⁻¹)
	for the $X^2\Sigma^+$ and $B^2\Sigma^+$ States of AlO
3.7	RKR Turning Points (Å) for the $X^2\Sigma^+$ and
	$B^2\Sigma^+$ States of Ald
5.1	Deslandres Table for the $a^{3}\Pi_{0}^{+}$ - $X^{1}\Sigma^{+}$ System of
	¹¹ BI
5.2	Deslandres Table for the $a^{3}\Pi_{0}^{+}$ - $X^{1}\Sigma^{+}$ System
	of ¹⁰ BI

1

۰

۱

ı.

5.3	Deslandres Table for the $a^{3}II_{1}$ - $X^{1}\Sigma^{+}$ System
	of ¹¹ BI
5.4	Isotopically Invariant Dunham Coefficients (cm $^{-1}$) for
	the $X^1\Sigma^+$ and $a^3\Pi$ States of BI
5.5	Molecular Constants (cm ⁻¹) for the $X^1\Sigma^+$ and $a^3 { m I\!I}$ States
	of the Boron Monohalides
6.1	Individual Band Fits in the $a^{3}\Pi(0^{+},1)$ - $X^{1}\Sigma^{+}$ System of
	¹¹ BI
6.2	Merged Parameters (cm^{-1}) for the X and a States of
	¹¹ BI
6.3	Molecular Constants (cm $^{-1}$) for the X and a States of
	¹¹ BI
6.4	Line positions (cm ⁻¹) for the $a^{3}\Pi(0^{+})$ - $X^{1}\Sigma^{+}$ System of
	¹¹ BI
6.5	Line Positions (cm ⁻¹) for the $a^{3}II(1) - X^{1}\Sigma^{+}$ System of
	¹¹ BI
6.6	Term Values and Vibrational Parameters (cm^{-1}) for the
	$X^{1}\Sigma^{+}$ and $a^{3}II(0^{+},1)$ States of ¹¹ BI
7.1	Vibrational Isotope Effect in the $^{2}\Pi$ - $X^{2}\Pi$ System of
	$P^{35}Cl^+$ and $P^{37}Cl^+$
7.2	Deslandres Table for the $^2\Pi$ - $X^2\Pi$ System of PCl $^+$. 161
7.3	Isotopically Invariant Parameters (cm ⁻¹) for the $X^2 II$ and
	$A^2 II$ States of PCl ⁺
7.4	Molecular Constants (cm^{-1}) for the Ground and Low-lying
	Excited States of Selected 11-valence Electron
	Diatomics

r

.

7.5	Vibrational Isotope Effect in the ${}^{2}\Pi$ - $X^{2}\Pi$ System of
	$As^{35}Cl^+$ and $As^{37}Cl^+$
7.6	Deslandres Table for the $^{2}\Pi$ - $X^{2}\Pi$ System of
	$AsCl^{+}$
7.7	Isotopically Invariant Parameters (cm ⁻¹) for the X^2II and
	Excited ² II States of $AsCl^+$
7.8	Molecular Constants (cm^{-1}) for Selected States of Some
	11-valence Electron Diatomics
7.9	Deslandres Table for the $A^2 II - X^2 II$ System of
	SeO ⁺
7.10	Molecular Constants (cm ⁻¹) for the $X^2 II$ and $A^2 II$ States of
	SeO ⁺
7.11	Molecular Constants (cm ⁻¹) for the $A^2 II$ and $X^2 II$
	states of Some Diatomic Species with 11-valence
	Electrons
8.1	Least Squares Fits for Individual Bands of the $A^2 \Pi \rightarrow$
	$X^{2}II$ System of $P^{35}Cl^{+}$
8.2	Fitted Constants for the $A^2 II$ and $X^2 II$ States
	of P ³⁵ Cl ⁺
8.3	Calculated Line Positions for the 0-16, 0-17, 0-18
	Bands of $P^{35}Cl^{+}(A-X)$
9.1	Wavelengths and Vacuum Wavenumbers for the
	Unassigned Band System of PBr^{\dagger}
10.1	Survey of Some Emission Spectra Arising from
	Discharged Helium Impact Reactions

) |

.

ъ

7 |

1

-4

4

I

L

xiii

ABSTRACT

Twenty-five bands of the $B^2\Sigma - X^2\Sigma$ system of AlO with $0 \le v' \le 9$ and $0 \le v'' \le 6$ have been photographed at high resolution. The measured positions of the assigned lines of each band have been fitted by least-squares to obtain estimates of the constants (B',D',B'',D'') the band origin, and $\Delta \gamma_{v'v''}$, the difference of the upper and lower state spindoubling constants. The parameters from individual bands have been merged to single-valued estimates, as well as to polynomial representations in (v + 1/2).

New visible systems of red-degraded bands have been observed in emission from reactions of discharged helium with PCl₃, AsCl₃ and SeOCl₂, and assigned as ${}^{2}\Pi \rightarrow X^{2}\Pi$ transitions of PCl⁺, AsCl⁺ and SeO⁺. The same excitation technique with BI₃ substrate was employed for the observation of the $a^{3}\Pi(0^{+},1) \rightarrow X^{1}\Sigma^{+}$ band systems of BI; the $a(1) \rightarrow X$ system was observed for the first time. Head positions measured from photoelectrically recorded spectra have been fitted by least-squares to obtain estimates of the vibrational constants of the states involved in the In addition, eight bands of the $a(0^+) \rightarrow X$ transitions. system and two bands of the a(1) \rightarrow X system of ¹¹BI have been rotationally analyzed. Three bands (0-16, 0-17, 0-18) of the ${}^{2}\Pi$ - X ${}^{2}\Pi$ system of P ${}^{35}Cl^{+}$ have been rotationally analyzed. The determined constants include the first estimated spin-orbit coupling constants for both states. The reliability of these estimates is discussed.

Finally, the results of the reactions of discharged helium with PBr_3 , and various other substrate molecules are also discussed.

xiv

Definitions of Terms and Symbols

- H Hamiltonian Operator
- σ Standard deviation
- f Degrees of freedom
- h Planck's constant (6.626176 x 10^{-34} Js)
- Å Angstrom $(1 \times 10^{-10} m)$
- μ Reduced mass
- **A**^T Transpose of matrix **A**
- **A**⁻¹ Inverse of matrix **A**
- δ_{ij} Kronecker delta (0, if $i \neq j$)
- \underline{X} is a vector

1 4

i

Acknowledgements

I wish to extend my sincerest gratitude to my professor and project supervisor, Dr. J.A. Coxon. His professional expertise and positive support throughout my Ph.D. work has made this undertaking a memorable one.

Thanks goes to Dr. A.B. Yamashita and Dr. U.K. Roychowdhury with whom I collaborated on joint projects.

I extend my thanks to Professor W.E. Jones for access to the 3.5-m spectrograph in his laboratory.

いちちょう ちがちょうちょうちょう ちょうちょう

5

4

Dr. K. Brabaharan's friendship made student life in Halifax an enjoyable one.

Mr. P. Hajigeorgiou is thanked for proofreading and overlooking final preparations for submission.

Mr. J. Mueller's expertise is appreciated for the construction of the apparatus used in this work.

Thanks is also due to the graduate students, staff and faculty of the Department of Chemistry for their friendship and support.

Ms. D. Cosman, Mrs. C. Slaunwhite, and Mrs. J. Walsh are acknowledged for typing the thesis at such short notice.

A special thanks goes to Anna for her continued enthusiasm and company during those late nights in the lab.

Finally thanks is extended to Dalhousie University and NSERC for the award of Graduate Scholarships.

xvi

Chapter 1

1

Introduction

1.1 General Introduction

The subject matter contained in this thesis deals with the spectroscopic investigation of diatomic molecules and molecular ions. Although, a common factor of this work is that all the diatomic species were observed in emission, the methods of excitation and signal detection broadly divide this thesis into two parts.

In the first part, the $B^2\Sigma^+ \rightarrow X^2\Sigma^+$ band system of aluminum monoxide has been recorded and rotationally analyzed using photographic techniques. The excited AlO was produced by flowing trace quantities of oxygen and AlCL₃ through an electrodeless discharge. The analysis of the spectrum has either improved or provided the first reliable vibrational dependences of the various molecular constants of the electronic states involved. Details of this work are given in Chapter 3.

In the second part, a flowing afterglow method has been applied to reactions of helium ions and/or metastable atoms with small molecules and established as a powerful tool for observing new emissions from diatomic molecules. All these emissions have been detected photoelectrically, and are discussed in Chapters 5 through 10. Details of the

excitation method used and of the flowing afterglow system are presented in Chapter 4.

In Chapter 5, the vibrational analysis of $a^{3}\Pi_{0,1} \rightarrow X^{1}\Sigma^{+}$ system of BI, a molecule with 10-valence electrons, has been completed with the observation of the a(1) $\rightarrow X^{1}\Sigma^{+}$ sub-system for the first time.

In Chapter 7, three isoelectronic ions with 11-valence electrons, PCl⁺, AsCl⁺ and SeO⁺, were identified by analyzing vibrationally their corresponding new visible band emission spectra.

In Chapters 6 and 8, rotational analyses of two of the spectra, namely those of BI and PC1⁺, were undertaken with the assistance of a digital electronic interface which allows a laboratory mini-computer to assume complete control of a modern, commercial scanning spectrometer. The dual capability of this interface to generate stepping motor drive pulses for control of grating rotation, and to collect photon-counts before passing these data to the computer for storage and eventual processing, has established the above mentioned analyses as comparable in accuracy as the tedious spectrographic techniques.

Furthermore, in Chapters 9 and 10 unassigned bandheads of a new ion, PBr⁺, are reported and several reactions of discharged helium with various reagents are summarized. Once more, the merit of the flowing afterglow method for generating "clean" spectra is demonstrated.

The correlation of the experimental molecular

parameters to an effective Hamiltonian and some modern fitting procedures, used throughout this work, are reviewed in Chapter 2.

- ---

- -- -- --

In conclusion, apart from the obvious spectroscopic and kinetic interest, the discovery of new gaseous molecular ions is important in such systems as electrical discharges and flames.

3

2

L

ł

Chapter 2

A Review of Some Spectroscopic Techniques

2.1 Introduction

In this thesis the direct fitting method of Zare et al. (1) has been employed for the reduction of observed line positions to molecular parameters. This method utilizes the complete data set, in contrast with the traditional combination differences method (2), which uses only part of the data and implicitly assumes that all measurement errors are associated with the state under analysis.

Briefly, in the direct fitting method calculated line positions are iteratively compared to the measured line positions in a nonlinear least-squares fit. The calculated line positions are the differences between the eigenvalues of the upper and lower state Hamiltonians, in which the molecular constants appear as adjustable parameters. Algebraic expressions for the roots of secular determinants are not required since this procedure is numerical. Furthermore, the estimated values of the molecular constants are the minimum-variance, unbiased estimates with statistically meaningful errors.

The development of the model Hamiltonians used to represent the molecular states involved in the observed transitions, will be discussed in the next section.

In the remaining sections of this chapter, the following topics will be presented,

i) the equations and the correlation matrices of the nonlinear and linear band-by-band least-squares fit,
ii) the method of correlated least-squares fitting (3,4) for reducing multiple estimates of the same parameters to the best single valued estimates, and
iii) the method used to construct the potential curves of

AlO.

2.2 Molecular Hamiltonian

For each of the rotationally analyzed transitions of the present work, namely AlO $(B^2\Sigma^+ - X^2\Sigma^+)$, $PCl^+(^2\Pi - ^2\Pi)$, and $BI(a^3\Pi_{0,1} - X^1\Sigma^+)$, two effective Hamiltonians are required to describe all the observed line frequencies.

The problem of deriving an effective Hamiltonian for a vibrating rotating molecule has been considered at length by numerous authors. In the present work the methodology Zare and co-workers (1) has been adopted. In the absence of external fields, the Hamiltonian can be written as:

$$H = H_0 + H_{rot} + H_{fs}$$
(2.1)

where H_0 represents the nonrelativistic Hamiltonian of the nonrotating molecule, H_{rot} symbolizes the rotational motion of the nuclei, and H_{fs} contains magnetic terms that cause the fine structure. The exact form of H_0 is of little concern in a rotational analysis, because it depends only on the electronic and vibrational quantum numbers n and v. The rotational part, H_{rot} given by

$$H_{rot} = B(r) \underline{R}^{2}$$

= $B(r) (\underline{J} - \underline{L} - \underline{S})^{2}$
= $B(r) [(\underline{J}^{2} - \underline{J}^{2}_{z}) + (\underline{L}^{2} - \underline{L}^{2}_{z}) + (\underline{S}^{2} - \underline{S}^{2}_{z}) + (\underline{L}_{+}\underline{S}_{-} + \underline{L}_{-}\underline{S}_{+})$
 $- (\underline{J}_{+}\underline{L}_{-} + \underline{J}_{-}\underline{L}_{+}) - (\underline{J}_{+}\underline{S}_{-} + \underline{J}_{-}\underline{S}_{+})]$
(2.2)

plays the major role. In Eq. (2.2)

$$B(r) = h/8\pi^2 c \mu r^2$$
 (2.3)

is the radial part of the rotational operator in wavenumber units, in terms of the internuclear distance r and the reduced mass μ ,

$$\underline{\mathbf{R}} = \underline{\mathbf{J}} - \underline{\mathbf{L}} - \underline{\mathbf{S}} \tag{2.4}$$

is the rotational angular momentum operator of the nuclei, in terms of the total angular momentum (\underline{J}), electronic orbital angular momentum (\underline{L}), and spin angular momentum \underline{S} operators, and

$$J_{\pm} = \underline{J}_{x} \pm i \underline{J}_{y}, \ S_{\pm} = \underline{S}_{x} \pm i \underline{S}_{y}, \ L_{\pm} = \underline{L}_{x} \pm i \underline{L}_{y}$$
(2.5)

The fine structure Hamiltonian represents the major magnetic interactions by a limited set of parameters; terms that cause shifts rather than splittings of the fine structure components are omitted. The fine structure Hamiltonian is regarded as a sum of three forms,

$$H_{fs} = H_{S0} + H_{SS} + H_{SR}$$
 (2.6)

where

$$H_{SO} = A(r)\underline{L} \cdot \underline{S} = A(r)[\underline{L}_{2}\underline{S}_{z} + \frac{1}{2}(\underline{L}_{+}\underline{S}_{-} + \underline{L}_{-}\underline{S}_{+})]$$
(2.7)

is the spin-orbit interaction,

$$H_{ss} = \epsilon(r) \left(3\underline{S}_{z}^{2} - \underline{S}^{2}\right) \qquad (2.8)$$

is the spin-spin interaction, and

 $H_{SR} = \gamma(r)\underline{N} \cdot \underline{S} = \gamma(r) (\underline{J} - \underline{S}) \cdot \underline{S} = \gamma(r) [-\underline{S}^2 + \underline{J}_{\underline{z}}\underline{S}_{\underline{z}} + 1/2 (\underline{J}_{\underline{z}}\underline{S}_{\underline{z}} + \underline{J}_{\underline{z}}\underline{S}_{\underline{z}})] \quad (2.9)$ is the spin rotation interaction. The z axis lies along the internuclear axis, and in Eq. (2.9), $\underline{N} = \underline{J} - \underline{S}$ is the operator for total orbital angular momentum apart from spin.

The energy levels of a diatomic molecule are given by the solutions to the time-independent Schrödinger equation

$$H\Psi = E\Psi$$
(2.10)

In practice, Ψ can be expanded in terms of a convenient finite basis set ϕ_i . Eq. (2.10) can be solved by finding the roots of the secular determinant

$$|H_{ii} - E\delta_{ii}| = 0 (2.11)$$

The basis set can be chosen arbitrarily, but it is convenient to partition the determinant into diagonal blocks that weakly interact with one another. The diagonal blocks refer to Born-Oppenheimer states. Hund's case (a) coupling gives a basis set with good quantum numbers J, S, Λ and Σ . Ω is also good but it is redundant ($\Omega = \Lambda + \Sigma$). For a given electronic state n, $|nJS\Lambda\Sigma \rangle$ are eigenfunctions of the operators \underline{J}^2 , \underline{S}^2 , \underline{J}_z , \underline{S}_z , and \underline{L}_z with eigenvalues J(J+1), S(S+1), Ω , Σ , and Λ respectively. Matrix elements, off diagonal with respect to Ω and Σ are given according to phase convention (4a) as,

$$|J_{\Omega}\pm 1|J_{\tau}|J_{\Omega}\rangle = [J(J+1) - \Omega(\Omega\pm 1)]^{1/2}$$
(2.12)

$$\langle \mathbf{S}\Sigma \pm \mathbf{1} | \mathbf{S}_{+} | \mathbf{S}\Sigma \rangle = \left[\mathbf{S} \left(\mathbf{S} \pm \mathbf{1} \right) - \Sigma \left(\Sigma \pm \mathbf{1} \right) \right]^{1/2}$$
(2.13)

7

}

An advantage of the case (a) basis is that the absence of intermediate angular momenta (N, J_a) and the presence of the maximum number of molecule-fixed z-components $(\Lambda, \Sigma, \Omega)$ enable H_{rot} and H_{SO} matrix elements to be evaluated using elementary raising and lowering operator techniques.

For a given electronic state and vibration level, the energy levels can be found by diagonalizing a $(2S+1)(2-\delta_{\Lambda 0})$ by (2S+1)(2- $\delta_{\Lambda 0}$) submatrix which is called the nvJSA block (Born-Oppenheimer state). If the magnitude of the offdiagonal matrix elements that connect different nvJSA blocks are small, their effect can be included simply by perturbation theory. A convenient way to include these perturbations arising from distant states without the knowledge of the exact energy position, is to transform the original Hamiltonian to a new Hamiltonian in which firstorder interactions between the states under consideration and the distant states are eliminated. This transformation is the well-known Van Vleck transformation (5). Therefore, the Van Vleck transformation is an approximate diagonalization procedure which facilitates the factoring of an infinite energy matrix into small submatrices which can be treated individually. The energy matrix can be expanded as:

$$H = H_0 + \lambda H_1 + \lambda^2 H_2 + ...$$
 (2.14)

Elements of H_0 lie entirely in diagonal blocks, while H_1 , H_2 are the perturbation terms that may have elements inside and outside these blocks. The transformation is applied to H to

remove the off-diagonal elements of H_1 ; the most important off-diagonal terms which remain are second-order elements that contribute to the energy in the fourth order, and the energy matrix is now diagonal up through third-order.

A further simplification results if the energy separation between the interacting blocks is much larger than the energy separation between the fine structure of the nvJSA block. Then, the second order correction may be written,

$$\sum_{n}^{m} \frac{\langle m | H_{1} | n \rangle \langle n | H_{1} | m' \rangle}{E_{m} - E_{n}}, \qquad (2.15)$$

where $E_m - E_n$ is the energy difference between the unperturbed blocks and m,m' are matrix elements of the nvJSA block of interest. Table 2.1 lists case (a) matrix elements within the same nvJSA block (1), that are used in the present work. The derivation of these matrix elements will not be repeated since this has been considered by various authors, (see for example, Hougen (6), Kovacs (7), Freed (8)). The parameters T_v , B_v , γ_v , A_v appearing in Table 2.1 represent the expectation values of the radial parts of their respective operators,

Table 2.1: Matrix Elements Within The Same nvJSA Block

$$\begin{split} & < \Lambda \Sigma \left| \left. H_{o} \right| \Lambda \Sigma \right> \ = \ T_{v} \\ & < \Lambda \Sigma \left| \left. H_{rot} \right| \Lambda \Sigma \right> \ = \ B_{v} [J (J+1) - \Omega^{2} + S (S+1) - \Sigma^{2}] \\ & < \Lambda \Sigma \left| \left. H_{rot} \right| \Lambda \Sigma \pm 1 \right> \ = \ -B_{v} [J (J+1) - \Omega (\Omega \pm 1]^{1/2} [S (S+1) - \Sigma (\Sigma \pm 1)]^{1/2} \\ & < \Lambda \Sigma \left| \left. H_{SR} \right| \Lambda \Sigma \right> \ = \ \gamma_{v} [\Sigma \Omega - S (S+1)] \\ & < \Lambda \Sigma \left| \left. H_{SR} \right| \Lambda \ \Sigma \pm 1 \right> \ = \ \frac{1}{2} \gamma_{v} [J (J+1) - \Omega (\Omega \pm 1)]^{1/2} [S (S+1) - \Sigma (\Sigma \pm 1)]^{1/2} \\ & < \Lambda \Sigma \left| \left. H_{SR} \right| \Lambda \ \Sigma \pm 1 \right> \ = \ \frac{1}{2} \gamma_{v} [J (J+1) - \Omega (\Omega \pm 1)]^{1/2} [S (S+1) - \Sigma (\Sigma \pm 1)]^{1/2} \\ & < \Lambda \Sigma \left| \left. H_{SO} \right| \Lambda \Sigma \right> \ = \ A_{v} \Lambda \Sigma \end{split}$$

· _

$$T_{v} = \langle nv | H_{0} + B(r) (L_{x}^{2} + L_{y}^{2}) | nv \rangle$$

$$B_{v} = \langle nv | B(r) | nv \rangle$$

$$A_{v} = \langle nv | A(r) | nv \rangle$$

$$\gamma_{v} = \langle nv | \gamma(r) | nv \rangle.$$
(2.16)

The use of the Van Vleck transformation described in the last paragraph becomes necessary because of the radial dependence of the operators of Table 2.1. As the molecule rotates it couples neighbouring vibrational levels within the same electronic state. Probably the most easily observable of the second order terms are the centrifugal distortion effects associated with the off-diagonal matrix elements of B(r), since B(r) has fairly strong dependence on r and also since levels with relatively high values of the quantum number J can be observed. The second order effect of B(r) with itself gives the parameter

2.77000

í,

$$D_{v} = -\Sigma' \frac{\langle nv | B(r) | nv' \rangle \langle nv' | B(r) | nv \rangle}{E_{nv} - E_{nv'}}$$
(2.17)

while the cross-term between B(r) and a function X(r), e.g. spin-orbit function A(r) or the spin-rotation function $\gamma(r)$, gives,

$$X_{pv} = \Sigma' \frac{[\langle nv | B(r) | nv' \rangle \langle nv' | X(r) | nv \rangle + \langle nv | X(r) | nv' \rangle \langle nv' | B(r) | nv \rangle]}{E_{nv} - E_{nv'}}$$
(2.18)

Because of the stronger radial dependence of B(r) than other functions, the cross-term needs more extended data in order to be determined experimentally. To obtain the second-order correction matrix element for H_{rot} , the radial part given in Eq. (2.17) must be multiplied by the angular part of the rotational Hamiltonian, given in Eq. (2.2). It can be seen that centrifugal distortion may be treated as if H_{rot} were replaced by an effective rotational Hamiltonian of the form

 $H_{rot} = B_v \ \underline{R}^2 - D_v \ \underline{R}^4 + H_v \ \underline{R}^6 + \dots$ (2.19) The spin-orbit and the spin-rotation interactions may also couple together neighbouring vibrational levels through the weak radial dependence of A(r) and γ (r).

So far the nvJSA block separates into two identical diagonal subblocks, one for $+\Lambda$ and one for $-\Lambda$, provided $\Lambda \neq 0$. To remove this degeneracy, perturbations from neighbouring electronic states, must be considered. Different electronic states can be connected by terms of the form J₊L₋ + J₋L₊ arising from H_{rot} and connecting electronic states differing by one unit in Λ . This interaction is Jdependent and affects the $\pm\Lambda$ components differently. Another type of interaction, that is J-independent is of the form L₊S₋ + L₋S₊ arising from H_{rot} and H_{so}. It contributes to the J-independent shifts in the Λ doublets.

A further simplification in the Hamiltonian will result if a transformation is made to a basis set symmetrized with respect to reflection in the plane containing the internuclear axis. These new wavefunctions refer to energy levels which can be labeled as either having e or f parity (9), depending on whether a set of levels transforms as

either a ${}^{1}\Sigma^{+}$ or a ${}^{1}\Sigma^{-}$ state. This parity convention, then, designates the electronic parity of a set of levels according to the following scheme (half-integral spin):

e levels
$$\sigma_v \psi = +(-1)^{J^{-1/2}} \psi$$

f levels $\sigma_v \psi = -(-1)^{J^{-1/2}} \psi$ (2.20)

It follows that the resulting wavefunctions necessary to evaluate the Hamiltonian for ${}^{2}\Sigma^{+}$ (AlO) and ${}^{2}II$ (PCl⁺) states are given by,

$${}^{2}\Sigma_{1/2} \begin{pmatrix} e \\ f \end{pmatrix} = 1/\sqrt{2} \{ |^{2}\Sigma_{1/2}^{+} \ge \pm |^{2}\Sigma_{-1/2}^{+} \}$$

$${}^{2}\Pi_{3/2} \begin{pmatrix} e \\ f \end{pmatrix} = 1/\sqrt{2} \{ |^{2}\Pi_{3/2} \ge \pm |^{2}\Pi_{-3/2}^{-} \}$$

$${}^{2}\Pi_{1/2} \begin{pmatrix} e \\ f \end{pmatrix} = 1/\sqrt{2} \{ |^{2}\Pi_{1/2} \ge \pm |^{2}\Pi_{-1/2}^{-} \}$$

$$(2.21)$$

As a result of these symmetrized wavefunctions the secular determinants of ${}^{2}\Sigma - {}^{2}\Sigma$ and ${}^{2}\Pi - {}^{2}\Pi$ transitions can be factored into two diagonal blocks of order 1 x 1 and 2 x 2 respectively, corresponding to levels with definite parity.

The energy levels of a ${}^{2}\Sigma$ electronic state can be represented by analytical expressions. Taking into consideration the matrix elements of Table 2.1 and the rotational centrifugal distortion, the rotational energy levels for a ${}^{2}\Sigma^{+}$ state are given by,

 $F_{1}(J,e) = B_{v}(J-\frac{1}{2}) (J+\frac{1}{2}) - D_{v}[(J-\frac{1}{2}) (J+\frac{1}{2})]^{2} + \frac{1}{2}\gamma_{v}(J-\frac{1}{2})$ (2.22) and

$$F_{2}(J,f) = B_{v}(J+\frac{1}{2}) (J+3/2) - D_{v}[(J+\frac{1}{2}) (J+3/2)]^{2} - \frac{1}{2}\gamma_{v}(J+3/2) (2.23)$$

Equations (2.22) and (2.23) have a more familiar form if $J+\frac{1}{2}$ is replaced by the quantum number N, so that each rotational level (except the N=0 level) occurs as a closely spaced pair. Because of the functional form of the $^{2}\Sigma$ analytical expressions, the molecular constants absorb the effects of any perturbation due to ${}^{2}\Pi$ electronic states. The result is that there is no simple way to ascertain whether the rotational and spin-rotation coupling constants have the separate mechanical and magnetic meanings usually attributed to them.

²II states may be perturbed heterogeneously by ² Σ and/or ² Λ states. However, the matrix elements <²II_{1/2}($_{T}^{*}$) $|H_{rot}|^{2}\Sigma_{1/2}(_{T}^{*}) >$ are parity dependent because a ² $\Sigma_{1/2}$ basis function is involved. This parity dependent matrix element is mainly rcsponsible for the splitting of ²II rotational levels that is called Λ -doubling. Therefore, it is reasonable to assume that the Λ -doubling of a ²II state is usually accounted for only by consideration of ² Σ states. It should be noted that the observed splitting of a ²II_{1/2} component of a ²II state is more significant than for ²II_{3/2}, since the ²II_{1/2} component experiences two types of interactions with a ² Σ state, namely the spin-orbit, L₄S₋ + LS₊, and the L-uncoupling J₊L. + J₋L₄; however, the ²II_{3/2} component experiences only the L-uncoupling.

]

ł

í

The weakness of distant ${}^{2}\Pi - {}^{2}\Sigma$ interactions permits the use of the Van Vleck transformation to uncouple the interacting states. In Table 2.2 the matrix elements connacting a ${}^{2}\Pi$ state with perturbing ${}^{2}\Sigma$ states are given. The derivation of these elements is a direct result of Eq. (2.15) and the matrix elements of Ref. (1) connecting nvJSA blocks with different values of A or S. Table 2.2: Matrix Elements Connecting $a^2 \Pi$ State with Perturbing $^2\Sigma$ States

$$\begin{split} H_{3/2,3/2}(\stackrel{e}{f}) &= 1/2q_v(J+3/2)(J-1/2) \\ H_{1/2,1/2}(e) &= 1/2q_v(J-1/2)^2 - 1/2p_v(J-1/2) + o_v \\ H_{1/2,1/2}(f) &= 1/2q_v(J+3/2)^2 - 1/2p_v(J+3/2) + o_v \\ H_{3/2,1/2}(e) &= 1/2q_v(J+3/2)^{1/2}(J-1/2)^{3/2} \\ &- 1/4p_v(J+3/2)^{1/2}(J-1/2)^{1/2} \\ H_{3/2,1/2}(f) &= -1/2q_v(J+3/2)^{3/2}(J-1/2)^{1/2} \\ &- 1/4p_v(J+3/2)^{1/2}(J-1/2)^{1/2} \end{split}$$

,

,

-1

ł

ر ۲

,

í

The parameters o_v , p_v and q_v introduced in Table (2.2), are defined by,

16

$$o_{v} = 1/4 \sum_{n',v'} \frac{|\langle n^{2}\Pi v | AL_{4} | n'^{2}\Sigma v' \rangle|^{2}}{E_{nv} - E_{n'v'}}$$
(2.24)

$$p_{v} = \sum_{n', v'} \frac{|\langle n^{2}\Pi v | AL_{+} | n^{*2}\Sigma v' \rangle \langle n^{2}\Pi v | BL_{+} | n^{*2}\Sigma v' \rangle}{E_{nv} - E_{n'v'}}$$
(2.25)

$$q_{v} = 2 \sum_{n', v'} \frac{|\langle n^{2}\Pi v | BL_{+} | n^{*2}\Sigma v' \rangle|^{2}}{E_{nv} - E_{n'v'}}$$
(2.26)

The centrifugal distortions of the above parameters $(o_{Dv}, o_{Hv}, \dots, p_{Dv}, p_{Hv}, \dots, q_{Dv}, q_{Hv}, \dots)$ are not indicated in Table (2.2).

Comparison of the functional forms of Table 2.2 and analytic expressions (2.22) and (2.23) for ${}^{2}\Sigma$ states show that ${}^{2}\Pi$ perturbations cordinibute a term o_{v} to the effective band origin, a term q_{v} to the effective B_{v} value and a term $-p_{v}$ to the effective spin-rotation constant γ_{v} . This illustrates how the presence of a ${}^{2}\Pi$ state impairs the mechanical meaning of the rotational constants of a ${}^{2}\Sigma$ state, as mentioned in the previous paragraph. In conclusion, Table 2.3 lists matrix elements of the effective ${}^{2}\Pi$ Hamiltonian used in the analysis of the ${}^{2}\Pi-{}^{2}\Pi$ system of PC1⁺. The matrix elements used in the present nonlinear least-squares fitting routine are essentially identical with those formulated by Brown and co-workers (10). However, the effects of these matrix elements are identical to those obtained by Zare et al (1). The main differences are in the definitions of $B_{v},$ and γ_{v} and of the parameters used to describe centrifugal distortion of Λ -doubling. However, the latter are not required in the PC1⁺ analysis.

ţ

•

Table 2.3: Effective Hamiltonian Matrix Elements of ²I States^{*}

			E(1,1)	1		
			(2,2)	1		
в	(1,1)	x ²			D (1,1)	-x ⁴ -x ² +1
	(2,2)	∽ ² −2			(2,2)	$-x^{4}+3x^{2}-3$
	(1,2)	$-(x^2-1)^{1/2}$			(1,2)	2 (x ² -1) ^{3/2}
A	(1,1)	-12			γ (1,1)	-1
	(2,2)	1			(1,2)	¹ ₂ (x ² -1) ^{1/2}
q	(1,1)	±x			p (1,1)	±≩x
	(1,2)	$\pm \frac{1}{2} x (x^2 - 1)^{1/2}$				

^a $1 \equiv {}^{2}\Pi_{1/2}$; $2 \equiv {}^{2}\Pi_{3/2}$; $(\pm) = ({}^{e}_{f})$

2.3 Band-by-Band Least-Squares Fits

2.3.1 Nonlinear Fitting Procedure (${}^{2}_{\Pi}$ - ${}^{2}_{\Pi}$ system)

The nonlinear least-squares fitting routine accepts transitions as input data, together with initial trial values of the spectroscopic constants and their estimated uncertainties. These initial values of the parameters of the band system are used to evaluate the Hamiltonian matrix, which is then diagonalized. The resulting eigenvalues form a set of term emergies from which calculated transitions are obtained. These calculated transitions are compared to the experimentally observed frequencies. Corrections to the parameters are computed, and a new set of term emergies is constructed using the adjusted parameters.

This procedure is repeated until convergence is achieved. Mention should be made here of the commonly made assumptions that the measured errors of each band are randomly scattered with variance $\hat{\sigma}^2$ and zero covariance.

The final molecular parameters which are obtained by the nonlinear least-squares fitting are minimum-variance, linear unbiased estimated (MVLU); this is in accord with the approximately linear nature of the model in the region about the estimated values of the parameters, as follows.

The molecular parameters $(\beta_1, \beta_2, \dots, \beta_p)$ can be derived from the measured line wavenumbers $Y(y_1, y_2, \dots, y_n)$ using the non-linear expression,

$$\mathbf{Y} = \mathbf{f}(\mathbf{X}, \boldsymbol{\beta}) + \boldsymbol{\epsilon} \tag{2.27}$$

Į

1

ĩ,

where $\mathbf{X}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m)$ are the independent variables, and $\epsilon(\epsilon_1, \epsilon_2, \dots, \epsilon_n)$ are the unknown measurement errors. Eq. (2.27) can be expanded by Taylor series with respect to $(\Delta\beta_1, \Delta\beta_2, \dots, \Delta\beta_p)$, the corrections of the molecular parameters. The first term of this expansion for the ith line measurement will yield,

 $\Delta y_i = y_i (observed) - y_i (calculated)$

 $= (\partial f/\partial \beta_1)_i \Delta \beta_1 + (\partial f/\partial \beta_2)_i \Delta \beta_2 + \ldots + (\partial f/\partial \beta_p)_i \Delta \beta_p \qquad (2.28)$ where $(\partial f/\partial \beta_1), \ldots, (\partial f/\partial \beta_p)$ are the partial derivatives of Eq. (2.27), and the initial values of $(\beta_1, \beta_2, \ldots, \beta_p)$ are the given trial values. The linearized equation (2.28) can be expressed in matrix form as,

$$\Delta \mathbf{Y} = \mathbf{A} \Delta \boldsymbol{\beta} \tag{2.29}$$

where, ΔY and $\Delta \beta$ are column vectors of order n x 1 and p x 1 respectively, and the lirst row of n x p matrix has elements given by,

$$(\partial f/\partial \beta_1)_1, (\partial f/\partial \beta_2)_1, \ldots, (\partial f/\partial \beta_p)_1.$$

The linear least-square fitting of Eq. (2.29) is very well documented in a review article (11), and a summary of the derived least-squares equations will be presented. For every iteration the sum of the squared deviations between the measured and the calculated line positions.

$$\Delta \mathbf{y}^{\mathsf{T}} \mathbf{y} = \sum_{i=1}^{n} (\Delta y_i)^2$$
(2.30)

is minimized, and a set of $\Delta\beta$ is given by,

$$\Delta \beta = (\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}} \Delta \mathbf{Y}. \qquad (2.31)$$

This process is repeated until a preset convergence
criterion is satisfied.

The variance, $\hat{\sigma}^2$, and standard deviation, $\hat{\sigma}$, of a fit are given by,

$$\hat{\sigma}^2 = 1/f(\Delta \mathbf{Y}^{\mathsf{T}}\mathbf{Y}) = 1/f \sum_{i=1}^{\mathsf{n}} (\Delta \mathbf{y}_i)^2 \qquad (2.32)$$

and

$$\hat{\sigma} = |(\hat{\sigma}^2)^{1/2}|,$$
 (2.33)

where f represents the number of degrees of freedom of the fit,

$$f = (n-p)$$
 (2.34)

The variance of the estimated parameters are taken as the corresponding diagonal elements of the square-symmetric variance-covariance matrix, $\hat{\theta}$. Thus, the variance of a parameter β_i is taken as $\hat{\theta}_{ii}$, where

$$\hat{\boldsymbol{\Theta}} = \hat{\sigma}^2 \boldsymbol{\nabla}. \tag{2.35}$$

The dispersion matrix, \mathbf{V} , is given by,

$$\mathbf{V} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1} \tag{2.36}$$

The covariances are the off-diagonal elements of $\hat{\theta}$, denoted by $\hat{\theta}_{ij}$. The normalized variance-covariance matrix is called the correlation-coefficient matrix and given by the symbol c,

$$\mathbf{c}_{ij} = \hat{\theta}_{ij} / \left(\hat{\theta}_{ii} \hat{\theta}_{jj} \right)^{1/2}$$
(2.37)

This symmetric matrix, having unity valued diagonal elements and off-diagonal elements in the range -1 to +1, relates the degree of correlation between the estimated parameters of a fit. Thus an off-diagonal element c_{ij} gives a measure of the interdependence of parameter β_i upon parameter β_j . The correlation is large if $|c_{ij}| \approx 1$ and $\log^{1/2}$ if $|c_{ij}| \approx 0$.

2.3.2 Linear fitting procedure $(2\Sigma^+ - 2\Sigma^+)$ system)

The expressions (2.22) and (2.23) for the energy levels of a $^{2}\Sigma$ state lead to a linear least-squares solution of the equation,

$$\mathbf{Y} = \mathbf{A}\boldsymbol{\beta} + \boldsymbol{\epsilon} \tag{2.38}$$

where \mathbf{Y} , β , and ϵ are the column vectors containing the n known measured line positions of a band, the p molecular parameters to be determined and the n unknown measurement errors respectively. **A** is the known n x p coefficient matrix with elements given by Eqs. (2.22) and (2.23).

The resulting least-squares values $\hat{\beta}$ of molecular parameters together with expressions for σ^2 , $\hat{\Theta}$, and c are given by Eqs. (2.31), (2.32), (2.35) and (2.37).

2.4 Single-step merging

The band-by-band reduction of the systems analyzed, presently, leads to multiple estimates of various molecular parameters. Simple averaging of these overdetermined constants, weighted or unweighted, does not give satisfactory results. The discrepancy appears due to the fact that no account has been taken of the correlations between the various parameters of each fit. Therefore, the problem is to merge the redundant values from the band-by-

band fits into the "best" nonredundant minimum variance, linear, and unbiased, values.

1

Albritton and co-workers (3) have developed a satisfactory approach for obtaining MVLU nonredundant values. This method is called merged least-squares fitting and it takes the output of the band-by-band fits, $\hat{\beta}$ and $\hat{\Theta}$, to be the input of another least-squares fit that "merges" the redundant values.

Since the variance-covariance matrices $\hat{\mathbf{\Theta}}$ associated with the $\hat{\beta}$ generally do not have equal diagonal elements and zero off-diagonal elements, the solution of the leastsquares fit must employ the weighted, correlated leastsquares formalism (11). Using this, the nonredundant molecular constants that minimize their standard errors subject to the interrelations contained in $\hat{\mathbf{\Theta}}$ are given by

$$\hat{\beta}^{M} = (X^{T}\hat{\Phi}^{-1}X)^{-1}X^{T}\hat{\Phi}^{-1}Y$$
(2.39)

where matrix X relates the redundant values of the column vector \mathbf{y} to the corresponding nonredundant column vector $\boldsymbol{\beta}$, matrix $\hat{\boldsymbol{\phi}}$ is a nondiagonal matrix composed of the individual $\hat{\boldsymbol{\theta}}_{i}$, $i = 1, 2, \ldots$ number of bands merged,

$$\hat{\Phi} = \begin{bmatrix} \hat{\Theta}_1 & 0 \\ & \hat{\Theta}_2 & \\ 0 & \hat{\Theta}_k \end{bmatrix}, \qquad (2.40)$$

where the circumflex denotes that $\hat{\beta}^{M}$ values are MVLU estimates, and the superscript M denotes that they are estimates of the merge Method. The precision of the estimates $\boldsymbol{\beta}^{\mathsf{M}}$ is indicated by their standard errors, which are the square roots of the diagonal elements of the variance-covariance matrix associated with $\hat{\boldsymbol{\beta}}^{\mathsf{M}}$,

$$\hat{\mathbf{\Theta}}^{\mathsf{M}} = \hat{\sigma}_{\mathsf{M}}^2 \, \hat{\mathbf{V}}^{\mathsf{M}}, \qquad (2.41)$$

where the merged dispersion matrix is given by

$$\mathbf{V}^{\mathsf{M}} = (\mathbf{X}^{\mathsf{T}} \hat{\mathbf{\Phi}}^{-1} \mathbf{X})^{-1}. \qquad (2.42)$$

The estimated variance of the merged fit $\hat{\sigma}_{M}^{2}$ is given by

$$\hat{\sigma}_{\mathrm{M}}^{2} = (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}^{\mathrm{H}})^{\mathrm{T}}\hat{\mathbf{g}}^{-1}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}^{\mathrm{H}})/\mathbf{f}_{\mathrm{M}}, \qquad (2.44)$$

where the degrees o. freedom of the merged fit are denoted by f_M . When the degrees of freedom in the individual bandby-band fits are greater or equal to about 30, the estimated molecular constants and standard errors have their usual statistical meaning. Confidence limits can be constructed by

$$\hat{\beta}_{i} - t(f, 1 - a/2) \hat{\theta}_{ii}^{1/2} \leq \beta_{i}^{true} \leq \hat{\beta}_{i} + t(f, 1 - a/2) \hat{\theta}_{ii}^{1/2}$$
 (2.45)
within which one can be 100(1-a)% confident that the unknown
"true" value lies. In other words, if the set of
measurements could be repeated many times in an identical
fashion except for random measurement errors, then the set
of $(\hat{\beta}_{i} - \beta_{i}^{true})/\hat{\theta}_{ii}^{1/2}$ value would be distributed symmetrically
about zero in a fashion described by the t(f) function,
which is a tabulated function of statistics, for the given
degrees of freedom f. Similarly if only random errors in
the measurements are considered and the degrees of freedom
of band-by-band fits are greater than about 40 then the

estimated variance of the merge $\hat{\sigma}_{M}^{2}$ divided by its unknown "true" values has a χ^{2}/f distribution which again is a commonly tabulated function of statistics for the given degrees of freedom f. Unlike the symmetric t function with range $-\infty \leq t \leq +\infty$ and a mean of zero, the asymmetric χ^{2}/f function has a range of $0 \leq \chi^{2}/f \leq \infty$ and mean of unity. The 100(1-a)% confidence limits for $\hat{\sigma}_{M}^{2}$ are

 $\hat{\sigma}_{\rm M}^2/p({\rm f},1-{\rm a}/2) \leq \hat{\sigma}_{\rm Mtrue}^2 \leq \hat{\sigma}_{\rm M}/p({\rm f},{\rm a}/2), \qquad (2.45)$ and are asymmetric.

If these limits, whose variation about unity is due to random measurement errors, are exceeded, then one can conclude that it is likely that systematic errors are present in some or all of the data sets or Hamiltonians.

2.5 Stepwise Merging

A useful approach for the identification and (if necessary) rejection of data that are likely to contain relative systematic error, is the method of stepwise merging formulated by Coxon (4). In Coxon's work it was established that two or more sets of separately merged parameters can themselves be merged together to a single set of parameters using a least-squares grand merge approach. The output constants and dispersion matrix of such a grand merge are identical with those derived from the equivalent single-step merge. The only difference in the stepwise merge approach is that the weight matrix to be used is derived not from the variance-covariance matrices of the separately merged input parameters, but from the corresponding dispersion matrices,

$$\hat{\Phi}_{M} = \begin{bmatrix} (\hat{\nabla}^{M})_{1} & 0 \\ (\hat{\nabla}^{M})_{3} & \\ 0 & \hat{\nabla}^{M} \end{pmatrix}_{3} & \\ 0 & \ddots & \\ 0 & & \hat{\nabla}^{M} \end{pmatrix}_{k} \end{bmatrix} (2.46)$$

It was also demonstrated that in the absence of systematic errors, confidence limits for a set of merged molecular constants can be derived from the dispersion matrix element, \hat{V}_{ii} , rather than estimated variance $\hat{\theta}_{ii} = \hat{\sigma}_M^2 \hat{V}_{ii}$. Alternatively, if $\hat{\sigma}_M^2$ lies outside of the confidence limits expected from the χ^2/f distribution the standard errors of $\hat{\beta}^M$ derived from \hat{V}^M should be multipled by \hat{c}_M (4). The estimated variance for a merge performed in a stepwise manner is calculated from:

$$f_{M1}\hat{\sigma}_{M1}^{2} + f_{M2}\hat{\sigma}_{M2}^{2} + f_{GM}\hat{\sigma}_{GM}^{2} = f_{M}\hat{\sigma}_{M}^{2}, \qquad (2.47)$$

with

$$f_{M1} + f_{M2} + f_{GM} = f_{M},$$
 (2.48)

where f_{M1} and $\hat{\sigma}_{M1}^2$ and f_{M2} and $\hat{\sigma}_{M2}^2$ are the degrees of freedom and variances of two merges, consolidated as a single set of parameters, in the grand merge, with degrees of freedom and variance f_{GM} and $\hat{\sigma}_{GM}^2$. The degrees of freedom and variance of the single step merge are denoted by f_M , $\hat{\sigma}_M^2$. Finally, the stepwise approach is simpler and less expensive in computer usage.

2.6 RKR Potentials

ł

One of the best methods of obtaining accurate potentials for diatomic molecules is by means of the so-called RKR procedure developed by Rydberg, Klein and Rees (12).

The RKR method is based on the W.K.B. (Wentzel-Kramers-Brillouin) approximation (13). In this approximation, the eigenvalues for the one-dimensional motion of a particle in a potential well are given by the phase integral condition,

$$\oint p(r)dr = h(v + \frac{1}{2}) = I, \qquad (2.49)$$

where p(r) is the total radial momentum of the particle, I is the action variable arising from the quantization of the radial momentum, and v is the vibrational quantum number. \oint denotes the integral taken over a complete cycle of the classical motion.

Klein (12) suggested a procedure to solve the integral (2.49), leading to an explicit relationship between the turning points, r_1 and r_2 , and the auxiliary terms f and g. In the case of a rotationless state of the molecule (J=0), r_1 and r_2 are given by,

$$f = \frac{1}{2}(r_2 - r_1)$$
 (2.50)

$$g = \frac{1}{2}(1/r_1 - 1/r_2)$$
 (2.51)

so that

$$r_{1,2}(U) = (f/g + f^2)^{1/2} \pm f.$$
 (2.52)

The functions f and g are given by,

$$f(U) = [h/8\pi^{2}c\mu]^{1/2} \int_{-\frac{1}{2}}^{V} \frac{dV'}{\sqrt{U - G(V')}}$$
(2.53)

and

$$g(U) = [8\pi^{2}c\mu/h]^{1/2} \int_{-\frac{1}{2}}^{V} \frac{B_{v}dv'}{\sqrt{U-G(v')}}, \qquad (2.54)$$

where v' is regarded as a continuous variable, and v is the vibrational quantum number for E=U=G(v). In order to evaluate these integrals it is necessary that the rotational constants (B_v) and energy levels (G(v)) be known accurately. The integrals in Eqs. (2.53) and (2.54) may be evaluated by numerical integration except at the upper limits, where the denominators of the integrands become infinite.

This difficulty can be overcome (14) by assuming that the intervals between pairs of energy levels can be adequately represented by local Morse parameters $\tilde{\omega}_{e}$ and $\tilde{\omega}_{e}\tilde{x}_{e}$; the simple Morse polynomial can be integrated to give analytical expressions for f and g. This approach seems a good approximation for most molecules, but is not very adequate for light hydride molecules, especially as the molecule approaches dissociation. However, a new program has been developed recently in this laboratory by Coxon and Foster (15) in which the energy levels are fitted to slowly varying function of the type proposed by Gilmore (16). As a consequence of the weak vibrational dependence, accurate interpolation is achieved with a low-order polynomial. Using the aforementioned program, the available rotational

and vibrational constants have been used to determine for both electronic states of the AlO molecule.

;

ł

5

1

ł

ì

, , **Chapter 3**

Rotational Analysis of the B-X

System of AIO

3.1 Introduction

The work presented in this chapter is concerned with rotational analyses of twenty-five bands, specifically 0-1, 0-2, 1-0, 1-2, 1-3, 2-0, 2-1, 2-3, 2-4, 3-1, 3-4, 3-5, 4-1, 4-2, 4-5, 5-2, 5-3, 5-6, 6-3, 6-4, 7-4, 7-5, 8-5, 8-6, and 9-6 bands, of the $B^2\Sigma^+ \rightarrow X^2\Sigma^+$ system of AlO; this system is also well-known as the blue-green system of AlO. Effective molecular parameters are determined by linear least-squares fitting of the measured line frequencies.

The $B \rightarrow X$ system of AlO is readily observed both in emission and absorption. Many different types of sources excite the system in emission. Examples are: [i] an arc running between aluminum electrodes in air or oxygen (17-20); [ii] exploding aluminum wires in an oxidizing atmosphere (21,22); [iii] shock excited Al_2O_3 or $Al+O_2$, (23); [iv] in a high current hollow cathode lamp containing pellets of an $Al-Al_2O_3$ mixture (24); and [v] from a microwave discharge through gaseous $AlCl_3$ and O_2 (25). Aluminum monoxide is of interest for a number of reasons. In particular, temperatures and densities in the upper

atmosphere, as well as the differential extinction of solar radiation, have been calculated from observations in AlO $(B \rightarrow X)$ following release of aluminum containing compounds (26-29). It is also known from thermochemical data that AlO is one of the numerous products occurring in the vapour of alumina, the formation and dissociation of which is exceedingly complex (30).

31

The AlO molecule has already been the subject of a great deal of spectroscopic work. The most complete vibrational analysis published is that of Shimauchi (19) who has extended the observed levels to v"=12 for the $X^2\Sigma^+$ state and v'=16 for the $B^2\Sigma^+$ state. In the same paper it was reported that the v"=9 level of the X state is displaced by a perturbation (due to the low-lying $A^2\Pi$ state).

A rotational analysis of the $B \rightarrow X$ system was first accomplished in 1927 by Pomeroy (20). The 1-0, 0-0, and 0-1 bands were analyzed and the rotational constants, B and D, for both states were reported.

Ten years later Sen (31) using a similar experimental arrangement to that described by Pomeroy, photographed in a high dispersion spectrograph, 1-0, 0-0, 0-1, 2-1, 1-1, and 1-2 bands in emission. The rotational constants obtained by Sen were in good agreement with Pomeroy's values.

Sen initially used a graphical method (2) for determination of the difference of the B and X state spinrotation constants ($\Delta\gamma$) from the experimentally obtained spectrum. The reported absolute values of the spin-rotation constants for the v"=0, v"=1 and v'=0 vibrational levels were derived by solving simultaneously the equations involving $\Delta\gamma$.

In 1957, Lagerquist et al. (18) rotationally analyzed bands involving the vibrational levels v'=0,1,2, and 3, v"=0,1,2,3,4, and 5, and effective rotational parameters B and D were determined graphically. The differences between the splitting constants γ' and γ " were determined in a similar way as that of the previously mentioned analysis. The absolute values for γ' and γ " were obtained from the 0-0 band, where the line positions were most accurately known. However, the reported absolute values were poorly determined.

Finally, in 1975, Mahieu et al. (32) attempted to determine the spin-doubling constants in several vibrational levels of the $X^2\Sigma^+$ and $B^2\Sigma^+$ states from high-resolution spectra obtained from low-temperature discharges. In this paper, eight bands of the $B^2\Sigma^+ \rightarrow X^2\Sigma^+$ system with $v^+ \leq 2$ and $v^- \leq 3$ were analyzed. The advantage of this excitation source was that it gave "sharp lines" and bands with relatively low rotational quantum number. Therefore, the troublesome band overlapping obtained in the previously mentioned high-temperature sources was avoided. The most interesting consequence of the source used was that the analysis could be performed fairly easily and the correct assignment of the P_1 , R_1 and P_2 , R_2 branches could be deduced. This was accomplished using the Mulliken relation

(33) which indicates that the $P_1(N+\frac{1}{2})$ line is always a little more intense than the $P_2(N-\frac{1}{2})$ line, where N is the nuclear rotation quantum number. The photoelectric trace of the 0-0 band obtained from Mahieu's work suggested that the intense component was always that of lowest wavenumbers. However, this result is just opposite to the conclusions of Sen (31) and Lagerquist et al. (18), derived from their studies of spectra from an arc discharge, a source which is not favorable for obtaining spectral regions with only one branch present. The spin-rotation constants were approximately two orders of magnitude less than those previously reported and the γ' was negative. However, the lack of smooth vibrational dependence for the γ_v^{\prime} and γ_v^{\prime} values and their experimental errors limit the significance of the work by Mahieu et al. (12) for obtaining accurately even the difference of the spin-rotation interactions of the X and B states.

In summary, the high resolution work which has been performed on the $B^2\Sigma^+ \rightarrow X^2\Sigma^+$ system of AlO is of less than optimum value given the fact that the evaluated molecular constants from the previous works were determined by analyzing small numbers of bands involving levels v" ≤ 4 and v' ≤ 3 and by using the combination differences method, a method which does not utilize all the available data and which yields overly optimistic error limits.

In the present work, the rotational analysis has been extended to v'' = 6 and v' = 9. Band origins, effective

rotational parameters and spin-rotation coupling constants have been obtained by reducing the line positions of the individuals bands with the method of direct linear leastsquares fitting. Multiple determinations of the parameters are merged to obtain single-valued estimates of the same parameters, as well as Dunham coefficients describing their vibrational dependences. However, despite the improved quality of data in the present work, the accuracy of the measured line positions is still not sufficient to provide a determination of the absolute magnitude of the spin-rotation coupling constants of both states. The spin-rotation interaction parameters have been found, nevertheless, to within a common undetermined constant. This constant would be provided from a future microwave spectrum of AlO in the ground electronic state. Furthermore, no interactions between either or both the X and B states with the A^{2II} state could be detected for the analyzed vibrational levels. Rotational analysis of bands with higher vibrational numbers of the system under study was not possible with the excitation source used. The present work is concluded with calculations of RKR potentials curves for the two states.

34

Mana water and the state

Shortly after this work was published (34), a similar analysis was reported (35) in which ten bands of the B-X system of AlO were photographed with $v' \leq 7$ and $v'' \leq 5$. All the bands analyzed overlapped with the Coxon and Naxakis (34) work. Although rotational constants of the B state (B_v , D_v and γ_v) and the bands origins were determined by simultaneous least-squares fit of the line frequencies, the³⁵ constants B_v and D_v of the ground electronic state were constrained from the work of Lagerquist et al. (18) and the spin-rotation constants were constrained from the work of Mahieu et al. (32). In conclusion, the recent work of Singh et al. (35) does not contribute anything novel to the analysis of the B-X system of AlO.

3.2 Nature of the Electronic Transition

The ground state of the AlO molecule can be formed from an oxygen and an aluminum atom in their ground atomic states with term symbols ${}^{3}P_{g}$ and ${}^{2}P_{u}$ respectively.

According to Wigner and Witmer (36), Σ^+ , Σ^+ (2), Π (2), and Λ molecular states can be derived from the lowest states of the separated atoms. Experimental evidence supported by SCF calculations (37) suggests that the ground state configuration of AlO can be written as $(KKL) (z\sigma)^2 (y\sigma)^2 (w\pi)^4 (x\sigma)^{1/2}\Sigma^+$. By promotion of one $y\sigma$ electron to the x σ outer orbital, the second excited state (B) can be obtained. Furthermore, because Σ^+ states cannot combine with Σ^- states (2), the B state is also Σ^+ . Therefore, both the X and B states of AlO have zero component of electronic orbital angular momentum in the direction of the internuclear axis ($\Lambda = 0$). The spin vector $S = \frac{1}{2}$ couples with the nuclear rotation vector (R) perpendicular to the internuclear axis, to give the

35

-

resultant total angular momentum (J) of the molecule. This zero coupling of spin to the internuclear axis is the characteristic of Hund's case (b).

*** **

In Hund's case (b) the quantum number N of the total angular momentum apart from spin (N=R+L) is defined, and if both states belong to case (b), the following selection rule holds for this quantum number (2), $\Delta N = 0$, ±1 with the added restriction of $\Delta N \neq 0$ for $\Sigma - \Sigma$ transitions.

These rules are similar to the selection rules for J and hold to the extent that the interaction of the electron spin S with N can be neglected. It is well-known that transitions with $\Delta J = 1$ (or $\Delta N = 1$) compose the R branch and with $\Delta J = -1$ (or $\Delta N = -1$) the P branch. In branches for which $\Delta J \neq \Delta N$ the intensity falls off very rapidly with increasing N; these branches are called satellite branches, since their lines lie very close to those of the corresponding main branches with the same ΔN but having $\Delta J = \Delta N$. In the AlO molecule, the satellite branches are completely overlapped by the main R and P branches. Finally, the symmetry selection rules for electric dipole radiation hold quite generally; positive parity terms combine only with negative parity and vice versa. The energy level pattern of a ${}^{2}\Sigma^{+} \rightarrow {}^{2}\Sigma^{+}$ electronic transition is shown schematically in Fig. 3.1. The separation of the two rotational sublevels with $J = N + \frac{1}{2}$ (F₁) and $J = N - \frac{1}{2}$ (F₂) for a given N is very small compared to the separation of successive rotational levels. With the instrumental

ł

resolution of this work, it was normally possible to resolve the doublet R (R₁, R₂) and the doublet P (P₁, P₂) branches for lines with N \geq 15.

:

Figure 3.1: Energy level diagram for the first lines of a ${}^{2}\Sigma^{+} - {}^{2}\Sigma^{+}$ transition. The spin-splitting has been much exaggerated.

a ⊷, •,

1

* ***

Figure 3.1

3.3 Experimental Details and Rotational Assignment

Electronically excited AlO $(B^2\Sigma^+)$ radicals were produced in the flow system shown in Fig. 3.2. Anhydrous aluminum trichloride (Anachemia) was placed in a side tube connected to the emission cavity and was heated by a nichrome wire. AlCl₃ vapour was produced. Trace quantities of oxygen (Linde, commercial, 99.5%) were flowed through a 2.45 GHz electrodeless discharge (EMS Microtron 200) operated at a power level of ~100 W and the discharged gases were removed by a 20 m³/hr single-stage pump (Leybold-Heraeus S16A).

The pressure in the system was typically less than \sim 3 torr. The flow rate of oxygen and the heating temperature of AlCl₃ were adjusted to maintain the blue-green AlO discharge and to optimize the emission.

In order to decide which bands would be rotationally analyzed, a low resolution spectrum in the region 4200-5400 Å was r=corded in the first order of a Spex 1704X 1-m spectrometer fitted a 1200 groove/mm (120 x 140 mm) grating blazed at 5000 Å. The reciprocal dispersion in the first order is ~8.0 Å mm⁻¹. The detection system consisted of an RCA-C31014A GaAs photomultiplier (dark count ~4 counts/sec at -20°C and cathode voltage -1500 V) mounted inside an R.F. shielded, water-cooled housing (Products for Research, TE-192-RF) equipped with a heated window assembly and focussing lens. The photomultiplier output was displayed on a

ŧ.

P.,

stripchart recorder (Brinkmann 2541), a section of which has been reproduced in Fig. 3.3. The slit width was 50 μ m and slit height was 50 mm. The spectrum was scanned at 1 Å/sec.

· ·····

ł

Ł

1.

1

;

ł

I

ľ

١

ŧ

Figure 3.2: The flow system used for the production of AlO $(B^2\Sigma^+)$ molecule.

.

:

It was decided that high resolution spectra would be recorded photographically in the following regions:

[i] 4400 Å - 4645 Å ($\Delta v = 3, 2$, sequences),

[ii] 5080 Å - 5490 Å ($\Delta v = -1, -2$ sequences). Spectra in these regions were recorded on Kodak 103a0 and 103aD photographic plates. A 3.5-m R.S.V. Ebert spectrograph was used in the 2nd order of a 1200 line/mm grating (reciprocal dispersion of about 1 Å mm^{-1}). The grating was blazed at 10000 Å. Exposure times were 4 hours with a slit width of 15 μ m. A quartz filter was inserted for cutting off the third-order wavelengths. Wavelength calibration was made by reference to emission lines in overlapping orders of a commercial hollow cathode iron/neon discharge lamp (Westinghouse WL22810A) operated at 20 mA with exposure time 30 minutes. Spectral and calibration lines were measured on a horizontal, Abbé type comparator (0.5 μ m resolution). The dispersion curve of each measured plate was established by fitting the iron and neon standard lines (38) to a second or third-order polynomial in distance; the dispersion curve could be used to generate the wavenumbers of the AlO spectral lines. The standard deviations of these calibration fits were typically 0.004 Å.

ł

ан, 11 11

Figure 3.3: Photoelectric trace of the $\Delta v = -1$ and $\Delta v = -2$ sequences of the B - X system of AlO.

Figure 3.3

•

ŕ

nites and a second of the second

For many of the photographed bands with low v' or v", 4^{7} combination differences agreed with the constants determined by Lagerquist et al. (18). Preliminary fits of these bands provided approximate constants for higher levels. Thus, the assignments for other bands were obtained progressively. In the case of blended lines, assignments were made in accord with intensity considerations. Because of the similar magnitude of the rotational constants of the X and B states, the observed vibrational sequences are quite compact; this causes considerable and unavoidable blending of lines, particularly within the latter members of the sequences. A portion of the $\Delta v = 2$ sequence is shown in Fig. 3.4. The rotational assignment of the 5-3 band is also indicated. From the spectrum it is obvious that the AlO B-X system is red-degraded with extensive overlapping of R-branch lines of low J near the band heads. As a consequence, it was not possible to make any assignments for the R branch to lines with N < 27.

Figure 3.4: A portion of the $\Delta v = 2$ sequence and the rotational assignment of the 5-3 band in the $B^2\Sigma^+ - X^2\Sigma^+$ system of AlO.

and Sa

Figure 3.4

The problem of unresolved doublets at the beginning of each branch was solved by fitting these doublets to the average of the respective calculated branches. Since the components of each doublet have similar intensities, this procedure is quite satisfactory. It also represents a major improvement over the commonly employed alternatives of either inclusion of each blended line twice in the fit to the experimental data, or exclusion of the blended data.

The high correlation of the spin-rotation coupling constants did not allow determination of the absolute magnitude of γ in both electronic states. Therefore, it was necessary to constrain one of γ_v^* or γ_v^* in order to obtain the magnitude of the other or the difference $\gamma_v^* - \gamma_v^*$ as in the present work. Approximate values for the constrained spin-rotational parameters γ_v^* were obtained from the work Mahieu et al. (32). Finally, the present analysis adopted the negative sign of γ' , first because the experimental method used by Mahieu et al. (32) was better for obtaining the absolute intensity of the spectral lines, as explained in the introduction of this chapter, and second, because the variance of the band-by-band reduction of the system was slightly smaller with γ_v^* negative.

3.4 **Results and Discussion**

A computer program was written for direct least-squares fitting of the measured line positions of individual bands.

The program employs the well-known expressions for a ${}^{2}\Sigma^{+}$ state, as described in Chapter 2,

$$F_{v}(J,e) = B_{v}x(x-1) - D_{v}x^{2}(x-1)^{2} + 1/2\gamma_{v}(x-1)$$
(3.1)

$$F_{v}(J,f) = B_{v}x(x+1) - D_{v}x^{2}(x+1)^{2} - 1/2\gamma_{v}(x+1), \qquad (3.2)$$

where x=(J+1/2), and e and f denote the parity labellings, corresponding to the F_1 and F_2 components respectively. Higher-order parameters (H_v ..., γ_{Dv} ...) can also be fitted, but these were not required for any of the bands. Several parameters associated with the least-squares fits are given in Table 3.1. For each band, the table gives the band origin, the number of lines fitted, the rotational extent and the standard deviation $(\hat{\sigma})$ of the fit. The values of $(\hat{\sigma})$ range from 0.015 to 0.058 cm⁻¹, a spread which is due to the variation of intensity, and hence measurement precision, of the measured bands and/or the degree of accidental blending of branches. Although the sequence with $\Delta v = -1$ is stronger than the other three measured sequences $(\Delta v = 3, 2, -2)$, the vibrational spacings of the B and X electronic states cause considerable overlapping of the latter members of the $\Delta v = -1$ sequence. This effect is in accord with the standard deviations and the number of lines listed in the Table 3.1. Blending of lines was expected to be least troublesome in the sequence with $\Delta v = 3$; accordingly, more bands were analyzed within this sequence, even though it was the weakest one. In order to obtain the parameters given in Table 3.1, several preliminary leastsquares fits were performed for each band with the purpose

of identifying and removing any lines with anomalously large residuals. Such lines were removed from subsequent fits. Systematic error that was not revealed in the individual band fits was identified in preliminary merge fits of the constants. Additional lines were then removed from the data set; the magnitudes of the residuals of such lines were nearly always considerably more than two standard deviations of the final fits.

1

3

v'	- V ^H	ν_{o} (cm ⁻¹)	n	N _{max}	$\hat{\sigma}$ (cm ⁻¹)	rms/ô
0	1	19669.792(6)	124	65	0.016	1.00
U	4	10/10.405(0)	49	20	0.028	1.02
1	0 ^b		26	64	0.015	1.02
1	2	19581.512(6)	93	55	0.016	0.99
1	3	18644.137(7)	57	41	0.024	1.00
2	0	22354.059(12)	63	47	0.028	1.08
2	1 ^b		38	64	0.030	1.03
2	3	19499.921(6)	76	53	0.017	1.06
2	4	18576.598 (11)	47	38	0.035	0.97
3	1	22237.069(9)	111	54	0.026	0.99
3	4	19425.054 (8)	57	42	0.023	1.10
3	5	18515.829(14)	25	30	0.026	1.83
4	1	23078.060(11)	39	33	0.031	1.10
4	2	22126.759 (8)	74	32	0.026	1.17
4	5	19357.057 (20)	41	42	0.058	1.08
5	2	22960.453(10)	52	38	0.030	0.99
5	3	22023.177(9)	63	49	0.028	1.09
5	6	19295.479 (17)	12	22	0.028	2.44
6	3	22849.526(12)	52	34	0.039	1.12
6	4	21926.325(9)	74	46	0.028	1.01
7	4	22745.338(13)	58	40	0.042	1.01
7	5	21836.299(10)	58	42	0.031	1.11
8	5	22647,985(20)	36	36	0.057	1.14
Ř	6	21752,905(15)	57	40	0.037	1.20
Ŭ	Ŭ	21/02/00(10)	.			2120
9	6	22557.230(20)	37	31	0.055	1.05

Table 3.1: Individual Band Fits^{*} in the $B^2\Sigma^+ \rightarrow X^2\Sigma^+$ System of AlO

^a For each band fitted, n is the total number of fitted lines, $\hat{\sigma}$ is the standard deviation, and N_{max} is the maximum value of the quantum number N" of the fitted lines. The band origins (ν_o) and estimated standard errors (in parentheses) were obtained from a subsequent merge fit (see text); rms/ $\hat{\sigma}$ represents the ratio of the root mean square of the residuals for lines calculated with merged parameters to the estimated standard deviation.

^b For these bands, the measurements were limited to the doublet separations, $R_1(N) - R_2(N)$ and $P_1(N) - P_2(N)$, and the fit led to a single estimated parameter, $\Delta \gamma_{v',v''}$.

As indicated in Table 3.1, special considerations were necessary in the fits for four of the bands. For the 3-5 and 5-6 bands, the rotational development did not permit the determination of all four parameters B', D', B", and D" simultaneously. For the 3-5 band, the fit led to estimates of B¹₃, Bⁿ₃, and the difference, D¹₃ - Dⁿ₃; for the 5-6 band, only two effective rotational parameters, B¹₅ - Bⁿ₅ and D¹₅ - Dⁿ₅ were fitted. In the case of the 1-0 and 2-1 bands, the calibration spectrum of the plate was incomplete, and absolute wavenumbers of the lines were obtained necessarily by extrapolation. Despite systematic error in the absolute line positions, the doublet spacings in the P and R branches were obtained reliably, and were fitted as such.

Ξ.

1

ł

The measured line positions of 25 bands in the $B \rightarrow X$ system of AlO have been employed in a least-squares fitting procedure to give 137 estimated parameters. As mentioned previously, except for the 3-5, 5-6, 1-0 and 2-1 bands, the individual band fits yielded six parameters, ν_0 , B¹_v, D¹_v, B¹_v, D¹_v, and $(\gamma_v^{\dagger} - \gamma_v^{\dagger})$. For the 1-0 and 2-1 bands, only a single estimated parameter, $(\gamma_v^{\dagger} - \gamma_v^{\dagger})$, is obtained from the spinrotation splittings, P₁(N)-P₂(N) and R₁(N)-R₂(N). Several merges of the 137 estimated constants from the individual band fits have been performed in a stepwise fashion (4) to obtain the best single-valued estimates of the constants (X_v) for each level, and of "Dunham coefficients" $(X^{(i)})$ in polynomial representation of X_v

$$X_{v} = \sum_{i=0}^{m} X^{(i)} (v + 1/2)^{i}.$$
 (3.3)

In the first such merge (A), the reduced set of estimated parameters consists of 23 band origins, 20 parameters for the $B^2\Sigma^+$ state (B_v , D_v ; v = 0 - 9), 14 parameters for the $X^2\Sigma^+$ state (B_v , D_v ; V = 0,6) and 25 unmerged ($\gamma_v^+ - \gamma_v^+$) constants for individual bands.

The estimated variance of the merge (A) with f = 137 - 82 = 55 degrees of freedom is given by $(\hat{\sigma}_{H})^{2} = (1.255)^{2}$.

The constraints introduced in Merge A improved the vibrational dependence of the estimated values of $(\gamma_v^{*} - \gamma_v^{*})$ over those given by the individual band fits. The estimates of $(\gamma_v^{*} - \gamma_v^{*})$ for the 1-0 and 2-1 bands were unchanged as expected. The estimated values of $(\gamma_v^{*} - \gamma_v^{*})$ output from merge A are listed in the first column of Table 3.2.

It is immediately obvious that γ_v^u changes significantly with v", while γ_v^i varies slowly with v'. For example, in the v' = 4 progression, $(\gamma_s^i - \gamma_v^u)$ changes from -0.01536 to -0.03151 cm⁻¹ over the range v"=1 to v"=5; but in the v" = 3 progression only a small change in $(\gamma_v^i - \gamma_s^u)$ occurs from -0.01809 to -0.01928 cm⁻¹ in the range v'=1 to v'=6. Unfortunately, the precision of the measured line positions only permitted the determination of the differences $(\gamma_v^i - \gamma_v^u)$ from the individual bands. However, it was possible to determine the spin-rotation constants γ of the B and X states within an undetermined common constant, as follows. The ground state equilibrium parameter, γ_e^u , was arbitrarily selected as the undetermined constant.

Expressing $\gamma_v^{"}$ as

$$\gamma_{v}^{H} = \gamma_{\bullet}^{H} + \gamma_{\bullet}^{H^{(1)}}(v^{H} + 1/2) + \dots \qquad (3.4)$$

then

$$(\gamma_{v}^{!} - \gamma_{v}^{!}) = (\gamma_{v}^{!} - \gamma_{\bullet}^{!}) - \gamma_{\bullet}^{!(1)}(v^{!!} + 1/2) + \dots \qquad (3.5)$$

3 [

> 5 5

> ł

ŧ
v'	- V"	Estimated ^{*)}	Fitted ^{b)}	Residual	Res/o	Ref. (32)
0	1	-0.01414	-0.01399	-0.00015	-2.0	-0.0136
0	2	-0.01636	-0.01573	-0.00063	-1.8	-0.0135
1	0	-0.01276	-0.01289	0.00013	2.1	-0.0119
1	2	-0.01569	-0.01587	0.00018	1.8	-0.0129
1	3	-0.01809	-0.01864	0.00055	2.1	-0.0154
2 2 2 2	0 1 3 4	-0.01400 -0.01442 -0.01856 -0.02379	-0.01303 -0.01428 -0.01878 -0.02314	-0.00097 -0.00014 0.00022 -0.00065	-3.2 -1.2 1.9 -1.5	-0.0124 -0.0135 -0.0159
3	1	-0.01449	-0.01442	-0.00007	-0.5	-0.0137
3	4	-0.02371	-0.02328	-0.00043	-1.8	
3	5	-0.03019	-0.02979	-0.00040	-0.8	
4	1	-0.01536	-0.01456	-0.00080	-1.8	-0.0161
4	2	-0.01599	-0.01629	0.00030	1.6	
4	5	-0.03151	-0.02993	-0.00158	-2.5	
5	2	-0.01658	-0.01644	-0.00014	-0.4	
5	3	-0.01823	-0.01920	0.00097	3.4	
5	6	-0.03999	-0.03928	-0.00071	-0.8	
6	3	-0.01927	-0.01935	0.00008	0.2	
6	4	-0.02406	-0.02371	-0.00035	-1.5	
7	4	-0.02400	-0.02385	-0.00015	-0.3	
7	5	-0.03121	-0.03036	-0.00085	-2.7	
8	5	-0.03198	-0.03050	-0.00148	-1.9	
8	6	-0.03883	-0.03971	0.00088	2.3	
9	6	-0.03799	-0.03985	0.00206	2.1	

Table 3.2: Least-Squares Fitting of $(\gamma_v^! - \gamma_v^{"})$ (cm⁻¹), from Individual Bands of AlO $(B^2\Sigma^+ \rightarrow X^2\Sigma^+)$

* The estimated values for individual bands were given by the output of a fit (Merge A, see text) in which multiple estimates of B_v and D_v for the two states were reduced to single-valued estimates.

^b The fitted values are those given by the parameters (Table 3.3) of a fit (Merge B) which separates the spin-rotation coupling in the two states to within an undetermined value of γ".

1

1

1

The 25 estimated values of $(\gamma_v^{"} - \gamma_v^{"})$ can be reduced by least-squares to a fitted set of 10 parameters $(\gamma_v^{!} - \gamma_v^{"})$, v' = 0-9, and a small number of coefficients, $\gamma^{(1)}$, $\gamma^{(2)}$, $\gamma^{(3)}$, representing the vibrational dependence of $\gamma^{(3)}_{...}$. This fit was performed in merge B, with the fitted parameters given in Table 3.3. The estimated variance of this merge B with f = 137 - 70 = 67 degrees of freedom is given by $(\hat{\sigma}_{M})^{2} = (1.401)^{2}$. The success of the model used in merge B. can be demonstrated by the small residuals between the input values and those given by the fitted parameters, as is also indicated in Table 3.2. It is worth mentioning that the residuals are larger on average by a factor of ~1.7 than the standard errors of the input values. The values of B_v and D_v for the two states given in Table 3.3 are considered the best single-valued estimates which the data can provide. A further reduction in the number of parameters was obtained in merge C which was performed by adopting Eq. (3.3) for the rotational constants of both states, as well as of $(\gamma_{v}^{\dagger} - \gamma_{v}^{\dagger})$. The order of the expansion required for each constant was determined by performing fits to increasingly higher-order until the standard deviation of the fitted coefficient (X⁽ⁱ⁾) was larger than its magnitude. The output of merge C consisted of the 16 Dunham parameters listed in Table 3.4 and 23 new estimates of the band origins, listed in Table 3.1. The variance of the equivalent single-step merge from the constants of the individual bands to the parameters of merge C was $(\hat{\sigma}_{M})^{2} = (1.829)^{2}$ with

58

f = 137 - 39 = 98 degrees of freedom.

1

,

		Β ² Σ ⁺		x ² Σ ⁺		
v	B _v	10 ⁶ D _v	$-10^2(\gamma_v^{\prime}-\gamma_e^{\prime\prime})$) B _v	10 ⁶ D _v	
9	0.56267(22)	0.98(20)	1.07(16)			
8	0.567008(115)	1.317(73)	1.211(95)			
7	0.571067(65)	1.174(30)	1.365(52)			
6	0.575437(60)	1.201(25)	1.343(38)	0.603547(130)	1.442(85)	
5	0.579662(55)	1,145(19)	1.265(40)	0.609343(55)	1.250(19)	
4	0.584132(56)	1.176(18)	1.291(36)	0.615285(56)	1.222(20)	
з	0.588482(53)	1.164(14)	1.288(31)	0.621103(56)	1.170(18)	
2	0.592953(58)	1.180(20)	1,269(27)	0.626928(53)	1.136(16)	
1	0.597389(55)	1.156(17)	1.224(20)	0.632775(54)	1.140(14)	
0	0.601936(51)	1.1834(134)	1.248(31)	0.638576(67)	1.133(25)	

Table 3.3: Merged Parameters a (cm $^{-1}$) for the $X^2\Sigma^+$ and $B^2\Sigma^+$ States of AlO

I

đ

۰.

^a Values in parentheses are estimated standard errors given by $\sigma_{\rm M} (V_{\rm ii})^{1/2}$, in units of the last significant figure of the corresponding constant. The ground state spin-rotation constant varies with v" according to $\gamma_{\rm W}^{-} - \gamma_{\rm e}^{-} = 1.20(38) \times 10^{-3}(v" + 1/2) - 2.1(15) \times 10^{-4}(v" + 1/2)^2 + 1.03(18) \times 10^{-4}(v" + 1/2)^3$.

	В	D	γ - γ. ¹¹
X(0)	6.04160(64)x10 ⁻¹	1.1739(162)x10 ⁻⁶	-1.206(24)x10 ⁻²
X(1)	-4.5338(90)x10 ⁻³	-4.70(140)x10 ⁻⁹	-1.42(51)x10 ⁻⁴
X(2)	$1.11(24) \times 10^{-5}$		
X(3)	6.1(22)x10 ⁻⁷		
X(0)	6.41369(70)x10 ⁻¹	1.099(19)x10 ⁻⁶	
X(1)	-5.7302(114)x10 ⁻³	1.83(24)x10 ⁻⁸	1.29(34)x10 ⁻³
X(2)	-1.915(160)x ⁻⁵		-1.73(136)x10 ⁻⁴
X(3)			9.23(148)x10 ⁻⁵
	X(0) X(1) X(2) X(3) X(0) X(1) X(2) X(3)	B $X(0) 6.04160(64) \times 10^{-1}$ $X(1) -4.5338(90) \times 10^{-3}$ $X(2) 1.11(24) \times 10^{-5}$ $X(3) 6.1(22) \times 10^{-7}$ $X(0) 6.41369(70) \times 10^{-1}$ $X(1) -5.7302(114) \times 10^{-3}$ $X(2) -1.915(160) \times^{-5}$ X(3)	BD $X(0)$ $6.04160(64) \times 10^{-1}$ $1.1739(162) \times 10^{-6}$ $X(1)$ $-4.5338(90) \times 10^{-3}$ $-4.70(140) \times 10^{-9}$ $X(2)$ $1.11(24) \times 10^{-5}$ $X(3)$ $6.1(22) \times 10^{-7}$ $X(0)$ $6.41369(70) \times 10^{-1}$ $1.099(19) \times 10^{-6}$ $X(1)$ $-5.7302(114) \times 10^{-3}$ $1.83(24) \times 10^{-8}$ $X(2)$ $-1.915(160) \times 10^{-5}$ $X(3)$

ų

Table 3.4: Merged Dunham Coefficients^a (cm⁻¹) for the $X^2\Sigma^+$ ⁶¹ and $B^2\Sigma^+$ States of AlO

^a Values in parentheses are estimated standard errors given by $\sigma_{M} (V_{ii})^{1/2}$ in units of the last significant figure of the corresponding constant. Table 3.5: Calculated Line Positions and Residuals for the B \rightarrow X System of AlO

All data are in units of wavenumbers (cm^{-1}) . Lines flagged with * were excluded from the final least-squares fitting procedure. The columns labelled "Res" are the residuals defined by

Res = observed position - calculated position

Unresolved $P_1(N)$ and $P_2(N)$ or $R_1(N)$ and $R_2(N)$ blends are listed between the corresponding branches.

1

ý

62

	P2		P ₁		^R 2		R ₁	
N	Calc	Res	Calc	Res	Calc	Res	Calc	Res
012345678901123456789011232456789012345678901234567890123456789012345678901234567890123456789012345678901234567	$\begin{array}{c} 13\\ 14\\ 15\\ 15\\ 14\\ 15\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16$	9668.529 9667.202 9665.813 9664.363 9662.851 9662.851 9652.848 99557.946 99552.488 99552.488 99552.488 99552.488 99552.488 99552.488 99552.488 99552.488 99552.488 99552.488 99552.488 99552.488 99552.488 99552.488 99552.488 99552.488 99552.488 99552.488 99552.488 90010 0.0010 0.0010 0.0010 0.0020 0.0015 0.0007 0.0020 0.0016 0.0020 0.0015 0.0015 0.0007 0.0020 0.0016 0.0007 0.0020 0.0016 0.0007 0.0020 0.0016 0.0007 0.0020 0.0016 0.0007 0.0020 0.0016 0.0007 0.0020 0.0016 0.0007 0.0020 0.0016 0.0007 0.0020 0.0016 0.0007	$\begin{array}{c} -0.039 \\ +0.039 \\ +0.029 \\ 0.006 \\ 0.030 \\ 0.001 \\ -0.005 \\ 0.005 \\ 19648.454 \\ 19644.248 \\ 19644.248 \\ 19644.248 \\ 19637.479 \\ 19632.660 \\ 19637.479 \\ 19632.660 \\ 19637.479 \\ 19632.660 \\ 19637.479 \\ 19632.2286 \\ 19637.479 \\ 19632.2869 \\ 19637.479 \\ 19632.595 \\ 19613.830 \\ 19607.938 \\ 19601.770 \\ 19598.593 \\ 19558.595 \\ 1$	0.024 0.007 -0.026 0.015 -0.038 -0.018 -0.009 -0.013 -0.005 -0.005 -0.002 -0.000 -0.013 -0.002 -0.003 -0.002 -0.003 -0.003 -0.002 -0.003 -0.002 -0.003 -0.026 0.028 0.012 -0.012 -0.013 -0.012 -0.014	$\begin{array}{l} 19671.008\\ 19672.157\\ 19673.244\\ 19676.3244\\ 19676.3244\\ 19676.136\\ 19676.776\\ 19675.234\\ 19676.976\\ 19677.754\\ 19679.125\\ 19679.717\\ 19680.247\\ 19680.247\\ 19680.247\\ 19681.466\\ 19681.426\\ 19681.747\\ 19682.221\\ 19665.220\\ 19655.652\\ 19655.803\\ 19$	$\begin{array}{c} -0.042*\\ -0.056*\\ -0.019*\\ -0.030*\\ 0.036*\\ 0.036*\\ 0.0391*\\ 0.0365*\\ -0.019\\ 0.036\\ 0.091*\\ 0.162*\\ -0.019\\ 0.026\\ -0.026\\ -0.028\\ -0.014\\ -0.015\\ -0.003\\ -0.$	$\begin{array}{c} 19670.989\\ 19672.124\\ 19674.209\\ 19675.159\\ 19676.673\\ 19676.673\\ 19676.673\\ 19676.673\\ 19677.637\\ 19678.339\\ 19678.339\\ 19679.558\\ 19680.529\\ 19681.518\\ 19681.521\\ 19681.518\\ 19681.518\\ 19681.518\\ 19681.647\\ 19663.645\\ 19675.645\\ 19675.645\\ 19675.5645\\ 19675.5645\\ 19675.5645\\ 19675.5645\\ 19675.5645\\ 19675.551\\ 19665.047\\ 19666.047\\$	0.004 -0.017 0.012 0.022 0.0017 0.013 -0.008 0.002 -0.0001 -0.002 -0.0013 -0.002 -0.0013 -0.002 -0.0010 -0.019 -0.019 -0.019 -0.019 -0.012 0.0112 -0.0014 -0.0012 -0.0014 -0.0

İ.

	CALCULATED	LINE POSIT	TIONS AND RES	SIDUALS FO	ALS FOR THE 0 - 2 BAND OF A10 $(B^2\Sigma - X^2\Sigma)$			
	P		P.	1	R2		R_1	
N	Calc	Res	Calc	Res	Calc	Res	Calc	Res
01234567890123456789012345678901233456789012345678901234	18692.481 18690.437 18680.344 18686.201 18684.008 18684.766 18677.133 18674.742 18672.301 18669.811 18669.811 18669.811 18669.811 18669.811 18669.811 18669.9355 18659.9355 18659.9355 18659.993 18645.172 18645.172 18645.172 18639.152 18639.152 18639.152 18639.155 18613.039 18613.039 18613.039 18659.811 18609.614 18598.871 18591.474 18597.698	18717.154 18714.497 18713.093 18710.135 18708.582 18703.622 18703.622 18703.622 18703.622 18703.869 18703.622 18703.869 18703.622 18703.869 18703.869 18703.869 18694.359 18694.359 18694.359 18694.359 18694.359 18694.359 18694.359 18694.359 0.042 0.037 0.042 0.035 0.042 0.035 0.042 0.025 -0.016 0.032	$\begin{array}{c} -0.003\\ -0.001\\ 0.032\\ -0.014\\ -0.020\\ -0.025\\ 0.029\\ -0.007\\ -0.038\\ 0.011\\ -0.036\\ 18692.174\\ 18688.065\\ 18692.174\\ 18688.065\\ 18683.698\\ 18681.440\\ 18674.369\\ 18664.246\\ 18664.851\\ 18664.246\\ 18664.246\\ 18664.246\\ 18655.3331\\ 18664.246\\ 18655.3331\\ 18664.554\\ 18655.3331\\ 18664.554\\ 18655.3331\\ 18664.554\\ 18655.3331\\ 18664.554\\ 18655.3331\\ 18664.554\\ 18655.3331\\ 18664.554\\ 18655.3331\\ 18664.554\\ 18655.3331\\ 18664.554\\ 18655.3331\\ 18664.554\\ 18655.3331\\ 18664.554\\ 18655.3331\\ 18664.554\\ 18655.3331\\ 18664.554\\ 18655.3331\\ 18664.554\\ 18655.3331\\ 18664.554\\ 18655.3331\\ 18664.554\\ 18655.3331\\ 18664.554\\ 18655.3331\\ 18664.554\\ 18655.3331\\ 18664.554\\ 18565.3331\\ 18608.835\\ 18608.835\\ 18598.112\\ 18598.335\\ 18608.835\\ 18598.356\\ 18558.356$	0.026 -0.024 -0.025 -0.044 -0.042 -0.022 -0.022 -0.023 -0.023 -0.060 0.021 0.027 -0.105* 0.004 0.014 0.024	$\begin{array}{l} 18719.622\\ 18720.784\\ 18720.784\\ 18722.956\\ 18723.967\\ 18723.967\\ 18724.928\\ 18725.839\\ 18726.510\\ 18728.269\\ 18728.269\\ 18728.269\\ 18730.246\\ 18730.246\\ 18730.246\\ 18730.246\\ 18730.246\\ 18732.532\\ 18732.532\\ 18733.448\\ 18733.295\\ 18733.448\\ 18733.450\\ 18733.448\\ 18733.450\\ 18733.450\\ 18733.450\\ 18733.450\\ 18733.450\\ 18733.450\\ 18733.450\\ 18733.450\\ 18733.450\\ 18733.450\\ 18733.450\\ 18733.450\\ 18733.450\\ 18733.450\\ 18733.450\\ 18732.839\\ 18732.839\\ 18732.839\\ 18732.839\\ 18732.839\\ 18732.839\\ 18732.428\\ 18732.456\\ 18728.236\\ 18728.236\\ 18728.236\\ 18728.236\\ 18728.236\\ 18728.236\\ 18728.236\\ 18728.236\\ 18728.236\\ 18728.486\\ 18722.468\\ 18722.468\\ 18722.468\\ 18722.468\\ 18722.468\\ 18722.468\\ 18722.468\\ 18722.468\\ 18722.468\\ 18722.468\\ 18722.468\\ 18722.846\\ 18723.475\\ 18723.475\\ 18724.851\\ 18723.475\\ 18724.851\\ 18723.475\\ 18724.851\\ 18723.551\\ 18711.254\\ 18712.751\\ 18711.254\\ 18709.704\\ \end{array}$		$18719.602\\18720.748\\18721.844\\18722.849\\18723.845\\18723.885\\18724.830\\18725.725\\18726.569\\18726.569\\18727.364\\18728.108\\18728.108\\18728.108\\18731.513\\18731.513\\18731.513\\18731.522.544\\18732.254\\18732.2772\\18732.960\\18733.1072\\18732.960\\18733.1072\\18732.960\\18733.12072\\18732.960\\18733.204\\18732.633\\18733.204\\18733.204\\18733.204\\18733.204\\18733.204\\18733.204\\18733.204\\18733.204\\18733.204\\18733.622\\18732.633\\18724.171\\18731.2663\\18732.633\\18725.998\\18725.998\\18725.998\\18725.100\\18724.171\\18723.179\\18722.136\\18724.171\\18723.179\\18724.171\\18723.179\\18724.171\\18724.171\\18723.179\\18724.171\\18723.179\\18724.171\\18723.179\\18724.171\\18723.179\\18724.171\\18723.179\\18724.171\\18723.179\\18724.171\\18723.179\\18724.179\\18724.170\\1871.6138\\1871.4742\\1871914\\18728935\\18728914\\1871914\\18$	

CALCULATED LINE POS	ITIONS AND RESIDUALS FOR	THE 0 - 2 BAND OF	A10 (B2E - X2E)
n	Ð	TD I	D

,

	P2(N)	- P ₁ (N)	R ₂ (N)	- R ₁ (N)
N	Calc	Res	Calc	Res
0123456789011234567890123456789012335567890123456789012345678901234	$\begin{array}{c} 0.007\\ 0.0033\\ 0.00459\\ 0.00459\\ 0.00459\\ 0.00459\\ 0.00459\\ 0.00459\\ 0.00459\\ 0.00459\\ 0.0000\\ $	-0.011 0.003 -0.005 0.022 -0.018 0.031 0.001 0.011 -0.011 0.015 0.001 0.006	$\begin{array}{c} 0.019\\ 0.032\\ 0.044\\ 0.057\\ 0.070\\ 0.083\\ 0.122\\ 0.135\\ 0.148\\ 0.173\\ 0.189\\ 0.212\\ 0.238\\ 0.225\\ 0.238\\ 0.2254\\ 0.22779\\ 0.2382\\ 0.2254\\ 0.22779\\ 0.2382\\ 0.2254\\ 0.22779\\ 0.2382\\ 0.2254\\ 0.22779\\ 0.2382\\ 0.2254\\ 0.22779\\ 0.2382\\ 0.2254\\ 0.22779\\ 0.2382\\ 0.2254\\ 0.22779\\ 0.2382\\ 0.2554\\ 0.2553\\ 0.2554\\ 0.2553\\ 0.5556\\ 0.5595\\ 0.5599\\$	0.004 -0.018 -0.027 -0.004 0.014 -0.012 -0.017 -0.021 -0.021 -0.021 -0.030*

1

÷

CALCULATED SPIN SPLITTINGS AND RESIDUALS FOR THE 1 - O BAND OF ALO (B2E - X2E)

65

ł

	P	2	p	·	R 2		R	
N	Calc	Rea	Calc	Rea	Calc	Rea	Calc	Res
01294567890112345678901234567890123456789012345678901234567890123456	$\begin{array}{l} 19564.651\\ 19566.7187\\ 19556.6718\\ 19556.7187\\ 19556.7187\\ 19555.7197\\ 19555.7197\\ 19555.7197\\ 19555.7197\\ 19557.7197\\ 19557.7197\\ 19557.7197\\ 19557.7197\\ 19551.7197\\ 19551.7197\\ 19551.7197\\ 19551.7197\\ 19551.7197\\ 19551.7199\\ 19485.2299\\ $	$\begin{array}{c} 195& 0.262\\ 195& 78.949\\ 195& 77.5& 77\\ 195& 76.146\\ 195& 73.10& 7\\ 195& 77.5& 77\\ 195& 77.5& 77\\ 195& 77.5& 77\\ 195& 77.5& 77\\ 195& 77.5& 77\\ 195& 77.5& 77\\ 195& 77.5& 77\\ 195& 77.5& 77\\ 195& 77.5& 77\\ 195& 77& 77\\ 100& 77& 77\\ 100$	$\begin{array}{c} -0.125 \\ +0.066 \\ +0.010 \\ -0.004 \\ 0.031 \\ 0.012 \\ -0.001 \\ 19562.485 \\ 19562.485 \\ 19562.485 \\ 19556.516 \\ 19558.489 \\ 19552.054 \\ 19555.628 $	-0.357* -0.0266 -0.0206 -0.017 -0.0012 -0.0017 -0.0012 -0.0010 -0.0012 -0.0010 -0.0012 -0.0010 -0.0012 -0.0010 -0.0012 -0.0010 -0.0010 -0.0015	$\begin{array}{c} 19582.721\\ 19583.864\\ 19584.974\\ 19586.947\\ 19586.947\\ 19586.947\\ 19586.947\\ 19586.947\\ 19586.947\\ 19587.847\\ 19589.212\\ 19599.212\\ 19599.212\\ 19599.212\\ 19599.212\\ 19599.2337\\ 19559.2337\\ 19559.2357\\ 19557.2357\\ 19557.2357\\ 195555.2557\\ 195555.2557\\ 195555.2557\\ 195555.2557\\ 195555.2557\\ 195555.2557\\ 195555.2557\\ 195555557\\ 195555557\\ 195555557\\ 1955555557\\ 195555557\\ 195555557\\ $	0.003 -0.018 -0.213* 0.001 -0.013 0.017 0.019 -0.005 0.018 0.007 -0.026	$\begin{array}{c} 19582.700\\ 19583.828\\ 19584.897\\ 19585.906\\ 19586.8567\\ 19586.8567\\ 19586.8567\\ 19589.3525\\ 19590.719\\ 19591.313\\ 19592.324\\ 19592.324\\ 19593.639\\ 19593.639\\ 19593.639\\ 19593.984\\ 19593.984\\ 19593.984\\ 19593.984\\ 19593.984\\ 19593.984\\ 19593.802\\ 19558.802\\ 19565.902\\ 19565.972\\ 19555.972\\ 105555\\ 10555\\ 10555\\ 10555\\ 10555\\ 10555\\ 10555\\ 10555$	0.028 c 030 -0.021 0.011 0.040*

	CALCULATED	LINE POSIT	IONS AND RES	IDUALS FOR	R THE 1 - 3 B.	AND OF AL	$0 (B^2\Sigma - X^2\Sigma)$	
	P2		P 1		R 2		R ₁	
N	Calc	Res	Calc	Res	Calc	Res	Calc	Res
01234567890112345678901234567890123456789012335333334444444444455555	18622.581 18620.687 18616.760 18614.725 18616.760 18614.5760 18614.5760 18608.3420 18608.3420 18599.766 18599.766 18594.311 18591.809 18589.260 18584.023 18571.809 18584.023 18572.990 18557.990 18557.990 18557.990 18557.990 18557.990 18557.990 18557.990 18557.990 18557.990 18557.990 18557.990 18555.048 18554.215 18558.452 18558.452 18555.048 18542.452 18555.048 18535.439 18525.049 18535.439 18525.049 18535.439 18525.049 18535.439 18525.041 18535.439 18525.041 18535.439 18525.041 18535.439 18525.041 18535.439 18525.041 18535.439 18525.041 18535.042 18545.042 18555.042	18642.899 18642.899 18637.457 18638.889 18637.457 18635.2979 18632.880 18629.592 18629.592 18627.678 18624.307 -0.031 18624.307 -0.024 0.002 -0.004 0.031 0.042 0.003 -0.007 -0.033 -0.016 0.007 -0.033 -0.023 0.057* -0.033 -0.026* -0.029 0.013	$\begin{array}{c} -0.003\\ 0.011\\ -0.008\\ 0.004\\ 0.002\\ 0.048\\ -0.035\\ -0.030\\ 18622.323\\ 18620.411\\ 18616.446\\ 18614.393\\ 18612.293\\ 18612.293\\ 18612.293\\ 18612.293\\ 18605.713\\ 18605.713\\ 18605.713\\ 18605.713\\ 18593.810\\ 28593.810\\ 28593.810\\ 28593.810\\ 28593.810\\ 28593.810\\ 28593.810\\ 28593.810\\ 28593.810\\ 28593.810\\ 28593.810\\ 28593.810\\ 28593.810\\ 28593.810\\ 28593.810\\ 28593.820\\ 18555.111\\ 18556.284\\ 18557.988\\ 18557.412\\ 18554.287\\$	-0.004 0.029 0.002 -0.023 0.011 0.017 -0.024 0.006 -0.012 -0.012 -0.012 -0.012 -0.013 0.044 -0.020 -0.035 -0.031 0.001 -0.031 0.001 0.003 0.023 0.036	$\begin{array}{c} 18645.347\\ 18646.504\\ 18648.675\\ 18649.689\\ 18651.575\\ 18653.270\\ 18653.270\\ 18653.270\\ 18653.270\\ 18653.270\\ 18654.775\\ 18653.270\\ 18654.775\\ 18655.2446\\ 18655.2446\\ 18655.2446\\ 18655.2446\\ 18655.2446\\ 18655.2446\\ 18655.243\\ 18655.243\\ 18655.2434\\ 18659.434\\ 18659.434\\ 18659.434\\ 18659.434\\ 18659.524\\ 18659.434\\ 18659.524\\ 18659.524\\ 18659.524\\ 18659.524\\ 18659.524\\ 18659.524\\ 18659.524\\ 18659.524\\ 18659.524\\ 18659.524\\ 18659.524\\ 18659.524\\ 18659.524\\ 18655.293\\ 18655.295\\ 18655.29$		$18645.325 \\18646.463 \\18648.597 \\18648.597 \\18648.593 \\18650.541 \\18651.441 \\18652.294 \\18653.100 \\18653.857 \\18655.230 \\18655.230 \\18655.230 \\18655.230 \\18655.244 \\18655.420 \\18655.420 \\18655.420 \\18655.420 \\18655.420 \\18655.420 \\18655.420 \\18655.420 \\18655.420 \\18655.420 \\18655.420 \\18655.420 \\18655.420 \\18655.420 \\18655.420 \\18655.420 \\18655.421 \\18658.420 \\18658.420 \\18658.411 \\18658.420 \\18658.411 \\18658.411 \\18658.411 \\18658.411 \\18658.411 \\18658.411 \\18658.411 \\18658.411 \\18658.411 \\18658.411 \\18658.411 \\18658.411 \\18658.411 \\18658.412 \\18658.411 \\18658.412 \\18658.411 \\18658.412 \\18658.411 \\18658.51 \\18658.411 \\18655.612 \\18655.512 \\18655.512 \\18655.512 \\18655.512 \\18655.512 \\18655.512 \\18655.512 \\18655.512 \\18654.290 \\18655.551 \\18655.512 \\18654.290 \\18655.512 \\18654.290 \\18655.512 \\18654.290 \\18655.512 \\18654.290 \\18655.551 \\18654.290 \\18654.290 \\18654.200 \\18655.552 \\18654.290 \\18654.200 \\18655.552 \\18654.290 \\18654.200 \\18655.552 \\18654.290 \\18654.200 \\18655.552 \\18655.552 $	

.

* * *

•

	CALCULATED	LINE POSIT	P		<u> 196 2 - 0 B</u>	AND UP ATU	(826 - 126)	
		2	^p _1		<u> </u>		ĸ	
N	Calc	Res	Calc	Res	Calc	Res	Calc	Res
012345678901123456789012345678901234567890123456789	22284.082 22280.264 22276.356 22264.265 22264.265 22264.265 22264.9811 22255.448 22255.448 22250.931 22241.811 22237.084 22227.354 22227.354 22227.354 22227.354 22227.354 22227.354 22227.354 22227.354 22215.077 22216.802 22201.436 22195.979 22190.436 22195.979 22190.436	22352.785 22351.417 22349.957 22346.765 22344.209 22345.039 22341.295 22337.192 22337.192 22332.726 22337.192 22332.726 22337.192 22332.726 22337.896 22327.896 22327.896 22327.896 22327.896 22327.896 22327.896 22327.896 22327.896 22327.896 22327.896 22327.896 22231.1278 22304.939 22298.290 22294.830 22294.830 22294.836 -0.016 -0.027 -0.005 0.023 0.014 0.045 -0.045 -0.045 -0.045	0.050* -0.002 0.057* 0.017 0.024 0.033 0.023 -0.029 0.010 -0.007 0.017 0.027 0.017 0.027 0.018 0.046 0.028 0.046 0.028 0.028 0.028 0.023 -0.012 -0.002 0.012 -0.002 0.012 -0.002 22275.970 22275.970 22275.970 22275.971 22254.997 22254.997 22254.997 22254.997 22254.997 22254.997 22254.997 22254.997 22254.997 22254.997 22254.997 22226.825 22221.812 22221.812 22221.812 22220.843 222195.373 22195.373 22195.373 22195.373	-0.004 0.033 -0.015 -0.043 0.013 -0.037 -0.020 -0.020 -0.042	22355.257 22356.358 22357.368 22359.114 22359.114 22359.850 22360.494 22361.047 22361.6047 22362.158 22362.158 22362.158 22362.345 22362.345 22362.345 22362.345 22362.345 22362.345 22362.357 22361.906 22361.540 22359.901 22359.901 22359.901 22355.324	22353.953 22352.662 -0.073* 0.014 -0.027 0.032 -0.005* 0.077* 0.106* 0.123* 0.097* 0.197* 0.197* 0.213* 0.264*	22355.238 22356.326 22357.323 22358.229 22359.043 22359.043 22359.043 22359.043 22360.997 22360.997 22360.997 22361.386 22361.743 22362.256 22362.155 22362.256 22362.155 22361.963 22361.678 22361.678 22360.834 22360.834 22356.092 22356.092 22356.092 22356.092 22356.092 22356.092 22351.086 22351.086 22351.086 22351.086 22348.028 22348.	-0.019 -0.028 -0.032 -0.019 -0.0071 -0.0037 -0.008 -0.007 -0.0078 -0.007 -0.0078 -0.0078 -0.0078 -0.0078 -0.0078 -0.0037 -0.0059 -0.0059 -0.0059 -0.0059 -0.0059 -0.0059 -0.0059 -0.0057 -0.00

ŝ

Ľ,

,

	P_(N)	- P ₁ (N)	R ₂ .(2)	- R ₁ (N)
К	Calc	Res	Calc	Res
01234567890123456789012234567890012335555555555555555555555555555555555	$\begin{array}{c} 0.009\\ 0.023\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0099\\ 0.1123\\ 0.1152\\ 0.1152\\ 0.1152\\ 0.1152\\ 0.1152\\ 0.1152\\ 0.1152\\ 0.1233\\ 0.2238\\ 2.228\\ 0.2238\\ 0.2335\\ 0.2335\\ 0.2555\\ 0.$	-0.024 -0.007 0.045 0.063 -0.009 0.083* 0.137* 0.027 0.007 0.007 0.007 0.047 0.057	0.034 0.034 0.042 0.0577 0.1134 0.0577 0.1134 0.0577 0.1134 0.11791 0.12019 0.02010 0.02000 0.02000 0.02000 0.020000000000	0.062* 0.042 0.042 0.043 0.049 0.009 0.020 0.156* 0.037 0.020 -0.043 0.021 -0.043 0.023 0.014 -0.023 0.014 -0.023 0.014 -0.071* 0.0011 -0.047 -0.041 -0.027 0.003 -0.124* 0.009 -0.124* 0.009 -0.124* -0.094* -0.094* -0.094* -0.094* -0.094* -0.094* -0.094* -0.094* -0.009 -0.147* -0.052 -0.003 -0.169* -0.016

•

.

.

CALCULATED SPIN SPLITTINGS AND RESIDUALS FOR THE 2 - 1 BAND OF A10 (B2E - X2E)

,

î ,

, 1.

;

\$ \$

ί

	P2		P ₁		R2		R ₁	
N	Celc	Res	Calc	Res	Calc	Res	Calc	Res
012345678901123456789012345878901234587893333444444444455555555	$\begin{array}{c} 194\\ 194\\ 194\\ 194\\ 194\\ 194\\ 194\\ 194\\$	98.6381 97.620399 99.66504 99.655399 99.655399 99.6550400000000000000000000	-0.009 0.058* 0.012 0.004 -0.025 0.072* 0.022* -0.009 19475.254 19475.254 19475.254 19475.254 19475.254 19475.254 19475.254 19454.403 19455.4228 19465.4557 19455.4228 19455.4403 19455.4687 19445.4507 19445.687 19445.687 19445.687 19445.687 19445.687 19445.063 19445.063 19445.063 19445.063 19445.063 19445.063 19445.063 19445.063 19445.063 19445.063 19445.063 19445.063 19445.063 19445.063 19455.067 19435.062 19395.502 19395.502 19395.502 19395.502 19395.502 19395.502 19395.502 19395.502 19395.502 19395.502 19395.602 19375.889 19368.911 19366.791 19356.648 19356.648	-0.017 -0.051* -0.023 0.048* -0.049* 0.010 -0.003 0.017 -0.009 0.008 0.014 0.063* 0.013 0.041 0.063* 0.013 0.041 0.062* -0.066* -0.014 -0.028 0.030 0.014 -0.028 0.030 0.014 -0.028 0.031 0.014 -0.028 0.031 0.015 -0.012 -0.005 -0.019 0.005 -0.014 -0.028 0.0014 -0.028 0.0014 -0.028 0.0014 -0.028 0.0014 -0.005 -0.010 -0.005 -0.010 -0.005 -0.010 -0.005 -0.010 -0.005 -0.010 -0.005 -0.010 -0.005 -0.010 -0.005 -0.010 -0.005 -0.010 -0.005 -0.001 -0.005 -0.005 -0.011 -0.005 -0.001 -0.007 -0.001 -0.005 -0.001 -0.005 -0.001 -0.005 -0.001 -0.005 -0.001 -0.005 -0.001 -0.	$\begin{array}{l} 19501.123\\ 19502.262\\ 19503.345\\ 19505.340\\ 19505.340\\ 19507.100\\ 19507.100\\ 19507.100\\ 19507.100\\ 19511.520\\ 19512.500\\ 19512.500\\ 19512.500\\ 19512.500\\ 19512.500\\ 19512.500\\ 19512.500\\ 19512.500\\ 19512.600\\ 19505.470\\ 19500.460\\ 19500.460\\ 19500.400\\ 19500.400\\ 19500.400\\ 19500.400\\ 19500.400\\ 19500.400\\ 19500.400\\ 19500.400\\ 19500.400\\ 19500.400\\ 19500.400\\ 19500.400\\ 19500.600\\ 19496.711\\ 19490.000\\ 19486.711\\ 19483.1112\\ 19479.275\end{array}$	-0.030 -0.051* 0.001 -0.099* 0.119* -0.044* -0.032* -0.027* -0.017* 0.105*	$\begin{array}{l} 19501.101\\ 19502.222\\ 19503.285\\ 19504.292\\ 19506.243\\ 19506.575\\ 19506.975\\ 19506.975\\ 19507.756\\ 19509.760\\ 19510.315\\ 19509.760\\ 19510.315\\ 19511.639\\ 19512.238\\ 19512.238\\ 19512.238\\ 19512.753\\ 19552.753\\ 19552.753\\ 19552.753\\ 19552.753\\ 19552.753\\ 19552.753\\ 19552.753\\ 19552.753\\ 19552.753\\ 19552.753\\ 19552.753\\ 19552.734\\ 19552.232\\ 19482.734\\ 1948$	0.022 0.031 -0.149* 0.017 0.018 -0.023 -0.022 -0.072* -0.017

CALCULATED LINE POSITION	5 AND	RESIDUALS FO	R THE :	2 -	3 B	AND	OF	A10	(B2E -	X2E)	
--------------------------	-------	--------------	---------	-----	-----	-----	----	-----	--------	------	--

	P2		P ₁		R ₂		R ₁	
N	Calc	Res	Calc	Rea	Calc	Res	Calc	Res
012345678901234567890123456789012345678901234567890123456	18555.496 18553.655 18551.772 18549.842 18549.842 18547.872 18545.856 18541.692 18537.353 18537.353 18535.118 18528.149 18525.738 18523.738 18523.738 18523.738 18523.738 18523.738 18523.738 18523.738 18523.738 18523.738 18523.738 18523.738 18523.488 18523.488 18520.088 18499.244 18515.6624 18513.0362 18504.899.2444 18515.6634 18507.638 18499.2444 18496.356 18499.452 18484.375 18484.375 18484.272 18474.938	18575.373 18574.098 18572.779 18571.415 18570.006 18563.553 18565.514 18563.928 18563.298 18563.298 18563.298 18557.142 0.028 0.028 0.028 0.024 -0.003 -0.033 -0.056 0.032 -0.028 0.023* -0.024 0.024 0.024 -0.023* -0.024 0.024 0.024 -0.023* -0.024 0.024 0.024 -0.023* -0.024 0.024 0.024 -0.023* -0.024 0.024 0.024 -0.023* -0.024 0.024 0.024 -0.024 0.024 -0.024 0.024 -0.024 0.024 -	0.086* 0.027 0.110* 0.005 0.107* 0.019 -0.040 -0.016 0.077 18555.173 18553.310 12551.403 18547.457 18545.417 18545.417 18545.417 18539.056 18532.261 18522.614 18522.614 18522.614 18522.614 18522.614 18522.614 18522.614 18522.614 18522.614 18504.057 18504.271 18504.271 18504.271 18504.271 18504.271 18504.271 18504.271 18504.271 18504.271 18504.271 18504.271 18504.271 18504.271 18498.365 18495.454 18495.380 18498.380 18489.380 18480.254 18473.374	-0.112* -0.004 0.016 -0.044 -0.011 -0.054 -0.035 -0.036 0.018 -0.044 0.038 0.009 -0.052 0.009 0.052 0.009 0.052 0.009 0.052 0.009 -0.046 -0.042 -0.027 -0.018	$\begin{array}{c} 18577.801\\ 18578.954\\ 18580.062\\ 18582.144\\ 18580.062\\ 18582.144\\ 18583.118\\ 18584.932\\ 18585.772\\ 18586.567\\ 18587.317\\ 18588.683\\ 18589.298\\ 18590.394\\ 18590.394\\ 18590.394\\ 18590.394\\ 18590.394\\ 18592.047\\ 18592.047\\ 18592.047\\ 18592.047\\ 18592.047\\ 18592.047\\ 18593.102\\ 18593.102\\ 18593.102\\ 18593.021\\ 18593.022\\ 1859$		$\begin{array}{c} 18577.777\\ 18578.907\\ 18578.907\\ 18578.907\\ 18578.907\\ 18582.028\\ 18582.028\\ 18582.028\\ 18582.028\\ 18582.028\\ 18582.028\\ 18582.028\\ 18585.563\\ 18585.563\\ 18585.563\\ 18585.520\\ 18587.744\\ 18588.381\\ 18588.381\\ 18588.384\\ 18590.023\\ 18590.023\\ 18590.023\\ 18590.023\\ 18590.023\\ 18590.023\\ 18590.023\\ 18590.023\\ 18592.480\\ 18592.518\\ 18592.518\\ 18592.577\\ 18592.578\\ 18592.577\\ 18592.578\\ 18592.577\\ 18592.578\\ 18592.578\\ 18592.578\\ 18592.578\\ 18592.578\\ 18592.578\\ 18592.578\\ 18592.578\\ 18592.578\\ 18592.576\\ 18592.578\\ 18592.578\\ 18592.578\\ 18592.578\\ 18592.578\\ 18592.578\\ 18592.578\\ 18592.578\\ 18592.578\\ 18592.578\\ 18592.578\\ 18592.578\\ 18592.578\\ 18592.578\\ 18585.576\\ 18585.576\\ 18585.576\\ 18585.568\\ 18587.248\\ 18586.531\\ 18585.768\\ 18584.959\\ 18584.599\\ 1858$	

ALCULATED LINE POSITIONS AND RESIDUALS FOR THE 2 - 4 EAND OF A10 (B^2C - X^2C)

n 1

*****	P	2	1083 880 86.	LIDORES FOR	<u> </u>	<u></u>	R ₁	
N	Calc	Res	Calc	Res	Calc	Rea	Calc	Res
0123456789012345678901222222223333333333344444456789012	22175.643 22172.089 22168.448 22164.718 22156.995 22153.001 22148.920 22144.750 22140.492 22131.712 22122.580 22117.882 22103.260 22108.222 22103.260 22093.071 22087.845 22087.845 22087.1637 22060.392 22060.392	22235.808 22234.454 22233.012 22231.481 22228.134 22228.134 22228.535 22224.473 22224.473 22226.558 22224.473 22226.259 22216.051 22213.725 22211.310 22203.537 22203.537 22200.770 22194.971 22194.971 22194.971 22194.971 22194.971 22194.971 22194.971 22194.971 22195.611 22194.971 22194.971 22195.611 22194.930 -0.089* 0.021 -0.001 0.0021 -0.001 0.0021 -0.001 0.0022 -0.001 0.012* 0.028* -0.016 -0.016 -0.028* -0.019 0.060 -0.020	0.068* 0.022 0.010 -0.023 -0.016 -0.014 -0.007 -0.022 -0.005 0.032 0.022 0.032 0.022 0.032 0.022 0.005 0.2175 .273 22156 .545 2213 .184 22107.622 22007.580 22005.380 2205.380 2205.380 2205.380 2205.380	0.012 0.053 -0.001 -0.020 0.007 -0.011 -0.020 -0.063 0.001 -0.020 -0.181* 0.042* 0.027 -0.025 -0.005 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.005 -0.025 -0.001 -0.020 -0.025 -0.025 -0.005 -0.025 -0.055	22238.261 22239.356 22240.363 22241.281 22242.852 22243.504 22244.542 22244.542 22244.5225 22244.5225 22245.552 222245.552 222245.555 222245.555 222245.555 222225.5550 22223.542 22227.457 222225.550 222207.560 222207.560 22219.356 22219.355 22219.555 222245.555 222245.555 222245.555 222245.555 222225.5550 222223.525 222214.625 222214.555 222223.5550 222223.525 22223.5550 222223.5550 222223.5550 222223.5550 222223.5550 222223.5550 222223.5550 222223.5550 222223.5550 222223.5550 222223.5550 222223.5550 222223.5550 222225.5500 222207.560 222195.3560 222195.3560 222195.3576 222195.3576 222195.3576 222183.7460 22180.7460 22180.7460	-0.040 -0.046 0.028 -0.001 0.055 0.093* -0.082* 0.018 -0.002 0.001 0.071* 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 -0.001 0.025 -0.001 0.025 -0.001 0.025 -0.001 0.025 -0.001 0.025 -0.001 0.025 -0.001 0.025 -0.001 0.025 -0.001 0.025 -0.001 0.025 -0.001 0.001 0.001 0.005 -0.001 0.002 -0.001 0.001 0.002 -0.000 0.002 -0.000 0.000 -0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.0000 -0.00000 -0.0000 -0.0000 -0.00000 -0.0000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000000	22238,241 22239,322 22240,315 22242,034 22242,034 22242,760 22243,398 22243,398 22243,397 22244,407 22244,407 22244,397 22244,397 22244,397 22245,254 22245,359 22245,359 22245,371 22244,387 22244,387 22244,399 22244,3598 22244,3598 22244,547 22244,547 22244,547 22244,547 22244,547 22244,547 22244,547 22244,547 22244,547 22244,547 22243,598 22224,5990 22224,299 22224,299 22224,3996 22224,299 22223,299 22224,299 22	-0.030 -0.021 -0.007 -0.003 -0.003 -0.003 -0.0022 -0.0022 -0.0058 -0.0032 -0.0032 -0.0032 -0.0030 -0.0032 -0.0030 -0.0030 -0.0030 -0.0032 -0.0030 -0.0030 -0.0032 -0.0032 -0.0032 -0.0030 -0.0032 -0.0054 -0.0054 -0.0055 -0.0
52 53 54 55 56	22054.637 22048.794 22042.863 22036.843 22030.736	0.029 -0.042	22053.892 22048.035 22042.089 22036.056 22029.934	0.006 0.047	22176.884 22173.317 22169.659 22165.909 22162.069	0.037 -0.055* -0.020	22176.115 22172.533 22168.860 22165.096 22161.241	-0.00 -0.00 -0.06

CALCULATED LINE POSITIONS AND RESIDUALS FOR THE 3 - 1 BAND OF ALO (B2E - X2E)

	P	2 ·	P ₁		R2		R ₁	
N	Calc	Res	Calc	Rea	Calc	Res	Calc	Res
0	19423.841		19423-819		19426.250		19426.225	
2	19422.569		19422.523		19428.466		19428.395	
3	19421.243		19421.175		19429.494		19429.400	
4	19419.864		19419.772		19430.468		19430.351	
5		19418.374	0.036		19431.389		19431.248	
27		19415 326	0.040		19432.256		19432.092	
Á		19413.722	-0.000		19433.829		19433.619	
ğ		19412.065	0.033		19434.535		19434.301	
10		19410.355	0.038		19435.187		19434.930	
11		19408.591	0.011		19435.786		19435.506	
12		19406.774	0.042		19436.331		19436.027	
13		19404.903	-0.028		19430.822		19935.995	
15	19401 180	-0.026	19400-832	0.005	19437 642		19437.269	
îĕ	19399.163	0.039	19398.791	-0.030	19437.971		19437.575	
17	19397.092	-0.001	19396.697	-0.011	19438.247		19437.827	
18	19394.969	-0.016	19394.551	0.007	19438.469		19438.025	
19	19392.793	-0.003	19392.352	-0.021	19438.636		19438.170	
20	19390.304	0.003	19390.099	-0.029	19438./30		19438.200	
22	19385.948	0.014	19385.437	-0.020	19438.816		19438.279	
23	19383.561	-0.039	19383.026	-0.037	19438.768		19438.208	
24	19381.121	-0.042	19380.563	0.041	19438.666		19438.083	
25	19378.628	-0.001	19378.047	-0.012	19438.510		19437.903	
26	19376.083	-0.003	19375.479	0.005	19438.299		19437.670	
27	193/3.486	-0.016	19372.858	-0.011	19438.735		19437.382	
29	19368.133		19367.454	-0.010*	19437.345		19436.645	
30	19365.378	-0.030	19364.680		19436.919		19436.196	
31	19362.570	-0.001	19361.849	-0.023	19436,438		19435.692	
32	19359.710	0.036	19358.966	0.059*	19435.904		19435.135	
33	19356,798	-0.008	19356.031	0.035	19435.315		19434.523	
34	19353.834	0.027	19353.043	-0.009	19434.6/3		19433.857	
36	19347.749	0.010	19346.911	-0.021	19433.225		19432.363	
37	19344.628	0.004	19343.767	0.033	19432.420		19431.534	
38	19341.455	-0.029	19340.571	-0.043	19431.561		19430.652	
39	19338.230	0.028	19337.323	0.057*	19430.648		19429.715	
40	19334.954	0.073*	19334.023	-0.024	19429.680		19428.725	
41	19331.623	0.033	19330.6/1	-0.020	19427 543		1942/ 680	
43	19324 812	0.074+	19323 812		19426.453		19425.428	
44	19321.328	VLV/-1"	19320.305		19425.269		19424.220	
45	19317.792		19316.746		19424.031		19422,959	

CAL	LCULATE	<u>D LINE</u>	POSITI	ONS AND	RESIDUALS	FOR THE	3 - 4	BAND OF	A10 (I	$32\Sigma - \chi^2$	5)
_											

í

ĩ

	P2	2			R2		R1	
N	Calc	Rea	Calc	Res	Calc	Res	Calc	Res
01234567890112345678901234567890123333334444	18514.633 18513.388 18512.101 18510.773 18509.403 18507.991 18506.538 18505.044 18503.508 18501.931 18500.313 18498.54 18495.211 18493.428 18487.832 18487.832 18487.832 18487.832 18485.885 18487.832 18485.885 18487.832 18485.885 18487.832 18485.885 18485.885 18485.885 18485.885 18485.885 18485.885 18485.885 18485.885 18485.525 18473.343 18477.5535 18477.1111 18468.837 18475.535 18477.343 18471.111 18468.837 18475.535 18473.343 18471.111 18468.837 18451.755 18459.340 18451.755 18451.755 18451.755 18451.755 18451.755 18455.241 18435.621 18438.887 18443.887 18443	-0.019 0.112* 0.061 0.067 0.0058 0.002 0.036 0.041 0.051 0.058 0.077 0.13	$18514.601\\18513.326\\18510.651\\18509.2510\\18509.2510\\18504.803\\18504.803\\18504.803\\18504.803\\18504.803\\18499.9834\\18499.9834\\18499.9834\\18499.9984\\18499.9984\\18499.9984\\18499.9984\\18499.9984\\18499.9984\\18499.9984\\18499.9984\\18499.9984\\18499.9984\\18499.9984\\18499.9984\\18492.978\\184492.978\\184492.978\\184492.978\\184492.978\\184487.299\\184487.299\\184487.299\\184487.299\\184485.316\\18468.031\\18445.488\\18440.79\\18445.488\\18445.79\\18445.488\\18445.488\\18445.70\\18431.252\\18431.563\\18428.658$	0.036 0.011 -0.019 0.058 0.012 0.044 0.033 0.035 0.035 0.045 0.075 0.037 0.161*	$\begin{array}{c} 18517.026\\ 18518.176\\ 18520.351\\ 18520.351\\ 18521.376\\ 18522.3601\\ 18524.201\\ 18524.201\\ 18524.201\\ 18525.058\\ 18525.074\\ 18526.648\\ 18527.380\\ 18528.071\\ 18529.390\\ 18530.412\\ 18530.492\\ 18530.492\\ 18532.391\\ 18532.395\\ 18532.395\\ 18532.395\\ 18533.227\\ 18533.387\\ 18532.387\\ 18522.387\\ 185$		18516.999 18518.119 18520.235 18521.230 18522.183 18523.965 18524.793 18525.579 18526.323 18527.686 18527.686 18527.686 18527.686 18527.686 18527.686 18527.686 18527.686 18527.686 18527.686 18527.686 18527.686 18527.686 18527.686 18527.686 18532.41 18530.767 18531.742 18531.742 18532.555 18532.557 18532.557 18532.557 18533.856 18532.557 18533.856 18532.557 18533.257 1	

1

CALCULATED LINE POSITIONS AND RESIDUALS FOR THE 3 - 5 BAND OF ALO ($B2\Sigma - X^2\Sigma$)

•

ŧ

	CALCOLATED P	LIRE POSTI	1083 880 823. P1	LDUALS EVI	R ₂	ND OF ALL	(6-2 - x-2) R ₁	
N	Calc	Res	Calc	Rea	Calc	Rea	Calc	Res
012345678901123456789012345678901233555789012234444444444445555	23027.928 23024.533 23021.041 23009.984 23006.104 23002.128 22993.885 22993.845 22993.618 22980.794 22976.237 22971.583 22966.832 22936.860 22946.80 22940.80 22940.80 22883.954	23076.799 23073.976 23073.976 23072.418 23070.764 23069.012 23065.216 23065.216 23055.216 23055.408 23054.428 23054.428 23054.428 23051.497 23048.871 23048.871 23044.847 23043.327 23044.847 23043.327 23043.327 23043.428 23031.075 0.057 -0.088* -0.004 23017.273 23013.580 -0.010 -0.042 0.067 -0.018 0.083* 0.137* 0.058	$\begin{array}{c} 0.006*\\ 0.116*\\ 0.121*\\ 0.071*\\ 0.079*\\ 0.054*\\ -0.003\\ 0.003\\ -0.002\\ 0.009\\ 0.007\\ -0.053\\ -0.011\\ -0.008\\ -0.060\\ -0.035\\ -0.060\\ -0.035\\ -0.060\\ -0.035\\ -0.060\\ -0.035\\ -0.093*\\ -0.101*\\ -2.003\\ -0.093*\\ -0.101*\\ -2.003\\ -2.0093*\\ -0.101*\\ -2.003\\ -2.0093*\\ -2.0093$	-0.003 -0.003 0.008 -0.025 0.007 -0.025 -0.001 -0.042 -0.014	$\begin{array}{c} 23079.242\\ 23080.320\\ 23081.301\\ 23082.184\\ 23082.969\\ 23083.657\\ 23084.248\\ 23085.433\\ 23085.433\\ 23085.433\\ 23085.433\\ 23085.435\\ 23085.455\\ 23085.445\\ 23085.445\\ 23085.445\\ 23085.445\\ 23085.445\\ 23085.455\\ 23085.455\\ 23085.455\\ 23085.455\\ 23085.455\\ 23085.455\\ 23085.455\\ 23085.455\\ 23085.455\\ 23085.546\\ 23084.779\\ 23083.030\\ 23082.251\\ 23084.294\\ 23083.030\\ 23082.251\\ 23084.294\\ 23083.030\\ 23085.515\\ 23074.049\\ 23074.049\\ 23074.049\\ 23075.455\\ 23074.198\\ 23075.515\\ 23074.049\\ 23075.455\\ 23075.416\\ 23053.963\\ 23055.416\\ 23055.416\\ 23055.416\\ 23055.416\\ 23055.416\\ 23055.416\\ 23055.416\\ 23055.416\\ 23055.416\\ 23053.963\\ 23051.412\\ 23040.216\\ 23053.963\\ 23051.412\\ 23040.216\\ 23037.169\\ 23027.434\\ 23023.990\\ 23022.434\\ 23023.990\\ 23022.434\\ 23023.990\\ 23022.479\\ 23022.479\\ 23022.479\\ 23023.279\\ 23025.279\\ 23062.279\\ 23005.279\\ 2300$	0.037 0.048 0.005 0.023 -0.039* -0.0201* 0.015* 0.031* 0.052* 0.077* 0.049*	23079.222 23080.225 23081.252 23082.120 23083.564 23083.564 23084.999 23085.282 23085.282 23085.555 23085.555 23085.555 23085.535 23085.231 23084.526 23084.526 23084.526 23084.526 23084.526 23084.526 23084.526 23084.526 23084.526 23084.526 23084.526 23084.526 23084.526 23084.526 2307.738 23084.526 2307.738 23086.510 2307.5117 2307.510 2307.558 2306.510 2306.510 2305.8727 23064.753 23066.727 23064.753 23066.510 2305.872 23065.872 23064.523 2305.8722 2305.8722 2305.8722 2305.8722 2305.8	0.038 0.018 0.055

•

CALCULATED LINE POSITIONS AND RESIDUALS FOR THE 4 - 1 BAND OF ALD (820 - X20)

....

.

٦

L I

.

1

I

r

	P	2	P ₁	•	R ₂		R ₁	
N	Calc	Res	Calc	Res	Calc	Res	Calc	Res
0123456789 111211111122222222222233333333333394444444444	22079.588 22076.462 22073.250 22069.954 22066.572 22066.572 22063.106 22055.917 22052.195 22048.388 22044.496 22040.519 22032.311 22023.762 22019.361 22014.874 22010.303 22005.6477 22005.647 22005.647 22095.931 21996.081 21995.931 21975.931 21975.931 21975.931 21975.931 21974.828 21948.839 21948.839 21943.167	22125.508 22124.168 22122.743 22121.232 22119.635 22114.332 22114.332 22112.393 22116.182.58 22114.332 22112.393 22110.368 22106.062 22103.781 22096.426 22095.424 22095.424 22095.424 22095.424 22095.424 22095.424 22095.424 22095.424 22095.424 22085.424 22095.424 22085.424 22085.424 22085.424 22085.424 22085.424 22085.424 22085.424 20055 -0.001 0.025 0.0055 -0.001 0.025 0.0055 -0.001 0.025 0.007 0.001 0.025 0.007 0.025 0.007 0.001 0.007 0.001 0.007 0.001 0.007 0.001 0.0025 0.007 0.001 0.0025 0.007 0.001 0.0025 0.007 0.001 0.0025 0.007 0.001 0.0025 0.007 0.001 0.0025 0.007 0.001 0.001 0.0025 0.007 0.001 0.0025 0.007 0.001 0.001 0.0025 0.001 0.001 0.0025 0.007 0.001 0.001 0.0025 0.001 0.001 0.0025 0.001 0.001 0.0025 0.001 0.001 0.001 0.0025 0.001 0.001 0.0025 0.001 0.001 0.0025 0.001 0.0025 0.001 0.0025 0.001 0.0025 0.001 0.001 0.0025 0.001 0.0025 0.001 0.0025 0.001 0.0025 0.001 0.0025 0.001 0.001 0.0025 0.001 0.001 0.0025 0.001 0.001 0.0025 0.001 0.001 0.0025 0.001 0.0022 0.0012	$\begin{array}{c} -0.033 \\ -0.046 \\ -0.006 \\ -0.007 \\ -0.006 \\ -0.038 \\ -0.038 \\ -0.038 \\ -0.038 \\ -0.012 \\ -0.054 \\ -0.052 \\ -0.054 \\ -0.052 \\ -0.054 \\ -0.053 \\ -0.054 \\ -0.053 \\ -0.037 \\ -0.037 \\ -0.037 \\ -0.033 \\ -0.037 \\ -0.033 \\ -0.009 \\ 22072.864 \\ 22065 \\ 551 \\ 22062.670 \\ 22055.449 \\ 22055.449 \\ 22055.449 \\ 22055.908 \\ 22031.745 \\ 22031.748 \\ 22005.5908 \\ 22031.745 \\ 22035.908 \\ 22031.745 \\ 22035.908 \\ 22031.745 \\ 22035.908 \\ 22031.745 \\ 22055.908 \\ 22031.745 \\ 22055.908 \\ 22031.745 \\ 22004.984 \\ 22004.984 \\ 22005.5908 \\ 22031.745 \\ 22031.745 \\ 22031.745 \\ 22031.745 \\ 22031.745 \\ 22035.908 \\ 22031.745 \\ 22035.908 \\ 2205.908 \\ 2205.908 \\ 2205.908 \\ 2205.908 \\ 2205.908 \\ 220$	-0.037 -0.037 -0.069* -0.011 -0.058 -0.027 -0.035 0.001 0.028 0.027 0.030 0.023 0.001 0.028 0.021 0.030* 0.013 0.013 0.014 -0.013 0.037 -0.026 0.037 -0.030* 0.031 0.037 -0.030* 0.031 0.037 -0.030 0.035 0.030 0.037 -0.035 0.027 0.035 0.027 -0.035 0.027 -0.035 0.027 -0.035 0.027 -0.035 0.027 -0.035 0.027 -0.035 0.027 -0.035 0.027 -0.035 0.027 -0.035 0.027 0.030 0.037 -0.035 0.027 -0.035 0.027 0.030 0.027 -0.035 0.001 0.028 0.030 0.001 0.037 -0.030* 0.031 0.031 0.028 0.030 0.001 0.037 -0.030 0.001 0.037 -0.030 0.001 0.028 0.001 0.037 -0.030 0.001 0.027 0.030 0.001 0.001 0.005 -0.037 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.005 0.001 0.001 0.001 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	22127.940 22129.031 22130.035 22130.035 22131.787 22132.534 22133.195 22134.259 22134.262 22134.262 22134.262 22134.262 22134.262 22135.354 22135.355 22135.354 22135.355 22135.354 22135.354 22135.354 22135.354 22135.355 22135.354 22135.355 22135.354 22136.3521 22126.357 22096.357 22096.357 22006	-0.062* -0.043 -0.017 0.047 0.033 0.071* 0.181* 0.043 -0.013 0.043 0.108* 0.043 0.108* 0.028 0.043* 0.016 0.020 -0.010 -0.021 -0.037 0.005	22127.920 22128.994 22130.884 22131.701 22132.432 22133.676 22133.675 22134.494 22134.795 22135.136 22135.138 22135.138 22135.138 22135.138 22135.136 22125.456 22116.114 22105.262 22096.235 22096.235 22096.235 22006.2349	-0.020 -0.005 0.018 -0.020 0.005 -0.0520 0.054 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.027 0.057 0.027 0.057 0.027 0

CALCULATED LINE POSITIONS AND RESIDUALS FOR THE 4 - 2 BAND OF A10 (B2E - X2E)

1

ŝ

.

.

.

-

CALCULATED LINE POSITIONS AND RESIDUALS FOR THE 4 - 5 BAND OF AID (B4E -	<u> </u>
P ₂ P ₁ R ₂	R ₁
N Calc Res Calc Res Calc Res Calc	Res
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	218 2321 373 375 3226 076 623 326 6275 321 9568 412 9568 416 049 2568 416 5647 773 508 7773 0596 5416 1999 245 5544 2826 3554 2826 2834 2855 4166 5541 1999 2245 5642 2855 5641 4199 9324 2855 5641 4166 5641 4657 7753 7755 7755 7757 7757 7757 7755 7757 7757 7757 7757 7757 7757 7757 77

.

•

.

77

-	CALCULATED	LINE POSIT	IONS AND RES	IDUALS FO	$\frac{1}{1000} \text{ THE 5 - 2 B}$	AND OF AL	$0 (B^2\Sigma - X^2\Sigma)$	
	P	2	P1		R 2		R1	
N	Calc	Res	Calc	Res	Calc	Res	Calc	Res
0123456789011234567890112345678901234567890123456789	22959.209 22957.869 22954.906 22954.906 22889.945 22889.945 22886.063 22882.068 22873.856 22860.806 22856.250 22860.806 22856.250 22860.806 22856.251 62832.184 22842.091 22837.184 22798.778	22956.412 22953.243 22951.517 22949.697 22947.782 22945.773 22943.670 22934.314 22934.314 22934.314 22934.314 22934.314 22934.314 22934.314 22932.452 22920.501 22917.456 22914.318 22917.456 22914.318 22900.823 22900.823 22900.823 22900.823 22900.823 -0.071 0.051 0.082* 0.036 -0.030 0.021 J.110*	22959.197 22957.841 0.066* 22954.844 0.017 -0.010 -0.007 -0.020 -0.076* -0.020 -0.028 -0.062* -0.062* -0.067* -0.028 -0.048 -0.048 -0.048 -0.048 -0.044 -0.044 -0.044 -0.0041 -22893.293 -22851.5395 22860.626 22851.635 228851.635 22855.635 22855.655 22855.6555 22855.6	0.004 -0.012 0.004 -0.013 -0.046 -0.070* 0.019	22961.627 22962.700 22963.678 22964.562 22966.046 22966.646 22967.151 22967.561 22968.097 22968.097 22968.223 22968.223 22968.223 22968.190 22968.032 22968.032 22965.813 22965.084 22965.0782 22955.0782 22955.7317 22955.7317 22955.720 22954.240 22955.759 22954.240 22954.240 22954.270 22934.870 22935.670 22933.129 22935.670 22933.129 22924.931 22922.007 22918.987 22912.660	0.102* 0.020 -0.039 -0.031 -0.011 -0.011 -0.004 0.020 -0.025 -0.017 -0.018 0.048*	22961.606 22962.663 22965.265 22965.265 22965.943 22967.015 22967.015 22967.708 22967.912 22968.036 22967.912 22968.036 22967.912 22968.036 22967.912 22968.036 22967.910 22968.036 22967.800 22967.800 22968.036 22966.685 22966.685 22966.685 22966.801 22955.480 22955.480 22955.480 22955.480 22955.480 22955.480 22955.480 22955.480 22955.480 22955.480 22955.480 22955.485 22956.685 22956.685 22956.685 22956.685 22956.251 22956.251 22956.251 22958.345 22955.345 22955.345 22955.345 22955.345 22955.264 22955.264 22937.486 22937.486 22937.486 22937.486 22937.486 22937.486 22937.486 22937.486 22937.485 22935.024 22937.485 22935.024 22937.485 22935.024 22937.485 22935.024 22935.	-0.027 -0.038 0.005 0.031 -0.050 -0.079* 0.029 -0.035 0.002 -0.035 0.008 -0.036 0.011

•

~ ~

.

۰.

,

	CALCULATED	LINE POSIT	IONS AND RES	EDUALS FOR	THE 5 - 3 B	AND OF ALO	$(B^2\Sigma - X^2\Sigma)$	
	P.	2	P1		R2		R1	
N	Calc	Rea	Calc	Res	Calc	Res	Calc	Res
012345678901123456789012345678901234567890123456789012345678901	22021.948 22020.633 22019.235 22017.754 22017.754 21979.947 21976.982 21973.935 21970.806 21967.594 21960.925 21957.468 21953.929 21950.307 21946.604 21946.604 21938.953 21935.055 21932.670 21934.953 21932.670 21936.082 21900.481 21905.082 21900.481 21905.082 21900.481 21905.082 21905.082 21905.602 21905.602 21866.192 21866.002 21866.002 21866.752 21855.421	22016.144 22014.488 22012.749 22009.024 22009.024 22004.928 22004.938 22004.938 22002.818 22004.948 21998.267 21995.869 21993.387 21998.2450 21998.450 21982.450 21982.450 21982.450 0.013 -0.013 -0.013 -0.013 -0.013 -0.003 -0.003 -0.001 -0.003 -0.003	$\begin{array}{c} 22021.932\\ 22020.938\\ 22017.680\\ 0.095*\\ -0.041\\ 0.056\\ 0.077*\\ 0.020\\ 0.029\\ -0.037\\ 0.020\\ 0.029\\ -0.037\\ -0.039\\ -0.021\\ -0.038\\ -0.021\\ -0.038\\ -0.021\\ -0.038\\ -0.021\\ -0.038\\ -21976.563\\ 21976.3496\\ 21875.3660\\$	0.066 0.000 0.028 0.057 0.023 -0.054 -0.031 0.017 -0.025 0.002 0.024 0.016 -0.008	$\begin{array}{c} 22024.353\\ 22025.439\\ 22026.442\\ 22027.363\\ 22028.200\\ 22028.200\\ 22038.954\\ 22030.214\\ 22030.214\\ 22030.214\\ 22031.3480\\ 22031.3480\\ 22031.399\\ 22031.399\\ 22031.929\\ 22022.105\\ 22$	-0.104 -0.009 -0.049 -0.015 -0.056 -0.186 -0.083 -0.083 -0.085 -0.085 -0.085 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.050 -0.055 -0.021 -0.055 -0.021 -0.055	22024.331 22025.397 22026.381 22027.282 22028.101 22028.836 22029.488 22030.057 22030.946 22031.266 22031.266 22031.266 22031.727 22031.439 22031.439 22031.176 22031.176 22031.176 22031.176 22031.556 22031.556 22027.652 22027.655 22027.655 22027.655 22027.659 22027.659 22027.569 22017.236 22017.236 22017.236 22017.236 22017.236 22017.236 22017.236 22017.236 22017.236 22017.236 22017.236 22017.236 22017.236 22017.236 22017.236 22004.310 22006.399 22004.300 22006.399 22004.316 22008.399 22004.316 22008.399 22004.316 22008.399 22004.300 22006.399 22004.300 22006.399 22004.300 22006.399 22004.300 22006.399 22004.300 22006.399 22004.300 22006.399 22004.300 22006.399 22007.2567	0.026 0.027 0.009 0.010 0.025 0.028 0.028 0.028 0.028 0.028 0.029 -0.005 -0.007 -0.007 -0.040 0.001 0.001 0.045 0.047 0.026

Į

1

;;

ł

ı

	P ₂		P ₁	<u> </u>	R ₂		R ₁	
N	Calc	Res	Calc	Res	Calc	Res	Calc	Rea
01234567890112345678901239456789978934567890012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345667800000000000000000000000000000000000	19294.305 19293.070 19291.789 19289.084 19287.661 19284.674 19283.11c 19284.574 19278.135 19276.383 19266.923 19264.813 19266.300 19254.036 19254.036 19254.036 19234.5273 19234.5273 19234.5273 19234.575 19220.438 19220.438 19217.536 19220.438 19217.536 19220.438 19220.438 19220.438 19220.438 19220.576 19208.576	0.067 0.069 0.033 0.059 0.068 0.110 0.084	19294.259 19292.985 19291.664 19290.296 19280.296 19284.881 19285.909 19284.353 19284.749 19284.353 19285.909 19277.657 19277.657 19277.657 19277.4028 19275.866 19272.143 19266.209 19264.138 19265.389 19255.389 19255.389 19255.389 19255.389 19255.389 19255.389 19255.389 19255.389 19255.389 19255.389 19255.389 19255.389 19255.389 19255.389 19255.389 19255.389 19255.309 19235.679 19238.303 19233.009 19233.093 19221.532 19224.726 19218.978 19213.049 19213.049 19213.049 19213.049 19213.049 19213.049 19213.049 19213.049 19213.049 19214.188 19197.443 19194.188 19190.889	0.003 0.007 0.065 0.045 0.218* 0.108	$\begin{array}{l} 19296.664\\ 19297.796\\ 19298.880\\ 19299.917\\ 19300.906\\ 19301.848\\ 19302.743\\ 19303.590\\ 19305.142\\ 19305.142\\ 19305.142\\ 19305.142\\ 19305.142\\ 19305.142\\ 19305.113\\ 19307.675\\ 19309.776\\ 19309.772\\ 19309.772\\ 19309.076\\ 19309.076\\ 19309.076\\ 19309.048\\ 19309.076\\ 19310.279\\ 19310.460\\ 19310.594\\ 19310.594\\ 19310.552\\ 19310.552\\ 19310.552\\ 19310.552\\ 19310.552\\ 19310.552\\ 19310.552\\ 19310.552\\ 19310.552\\ 19310.552\\ 19310.552\\ 19310.552\\ 19310.552\\ 19310.552\\ 19310.552\\ 19310.552\\ 19308.504\\ 19309.566\\ 19309.566\\ 19308.504\\ 19308.504\\ 19308.504\\ 19308.504\\ 19308.504\\ 19308.504\\ 19308.504\\ 19308.504\\ 19308.504\\ 19308.504\\ 19308.504\\ 19308.504\\ 19308.504\\ 19308.504\\ 19308.504\\ 19308.561\\ 19302.467\\ 19301.561\\ 19302.467\\ 19300.609\\ 19299.609\\ \end{array}$	·	$\begin{array}{c} 19295.631\\ 19297.724\\ 19282.769\\ 19282.769\\ 19282.769\\ 19300.717\\ 19301.619\\ 19302.475\\ 19302.475\\ 19302.475\\ 19305.421\\ 19305.421\\ 19305.403\\ 19305.403\\ 19307.132\\ 19305.403\\ 19307.132\\ 19306.609\\ 19307.607\\ 19308.035\\ 19309.745\\ 19309.700\\ 19309.700\\ 19309.745\\ 19309.745\\ 19309.745\\ 19309.745\\ 19309.745\\ 19309.745\\ 19309.745\\ 19309.745\\ 19309.602\\ 19309.602\\ 19309.602\\ 19309.603\\ 19309.603\\ 19309.603\\ 19309.603\\ 19309.603\\ 19309.603\\ 19309.603\\ 19309.605\\ 19305.400\\ 19305.405\\ 19306.614\\ 19306.614\\ 19306.614\\ 19306.645\\ 19307.605\\ 19307.605\\ 19304.767\\ 19304.767\\ 19304.767\\ 19304.767\\ 19304.767\\ 19304.765\\ 19303.299\\ 19302.495\\ 19301.644\\ 19300.745\\ 19209.800\\ 19299.800\\ 19297.769\end{array}$	

	CALCULATED	LINE	POSITIONS	AND	RESIDUALS	FOR	THE	5 -	6	BAND	OF	A10	(822	- X2	C) (3	
--	------------	------	-----------	-----	-----------	-----	-----	-----	---	------	----	-----	------	------	-------	--

Ę

l

_		CALCULATED	LINE POSIT	IONS AND RES	IDUALS FOR	<u>2 THE 6 - 3</u>	BAND OF ALC	$(B^2\Sigma - X^2\Sigma)$	
		P	2	P		R	2	^R 1	
	М	Calc	Res	Calc	Rea	Calc	Res	Calc	Res
	012345678901123456789012345878282878901234567	22848.298 22846.974 22845.559 22842.454 22842.454 22842.454 22842.454 22807.535 22804.535 22804.535 22804.479 22801.535 22794.094 22794.094 22794.765 22784.236 22780.545 22776.763 22776.763 22776.763 22776.4876 22764.876 22764.876 22764.876 22764.876 22764.876 22764.876 22764.876 22764.876 22764.876 22764.876 22773.256 22773.256 22774.339 22774.339 22779.203 22709.203	22840.708 22838.917 22837.035 22835.062 22832.998 22828.595 22826.257 22823.828 22815.995 22815.995 22815.995 22815.902 -0.039 -0.044 0.111* 0.035 0.084 0.051 0.006 0.019 -0.031 -0.034 -0.019 0.005	22848.282 22846.939 22845.504 22843.978 22842.360 -0.060* -0.109* 0.131* -0.028 0.009 -0.056 -0.028 -0.056 -0.028 -0.056 -0.056 -0.056 -0.056 -0.058 -0.056 -0.058 -0.059 -0.058 -0.058 -0.059 -0.058 -0.058 -0.058 -0.058 -0.058 -0.058 -0.059 -0.058 -0.058 -0.058 -0.058 -0.059 -0.058 -0.058 -0.059 -0.058 -0.059 -0.058 -0.059 -0.058 -0.059 -0.058 -0.059 -0.058 -0.059 -0.058 -0.057 -0.058 -0.077 -0.056 -0.077 -0.056 -0.077 -0.056 -0.077 -0.056 -0.077 -0.056 -0.077 -0.058 -0.077 -0.0722 -0.077 -0.058 -0.077 -0.0722 -0.077 -0.078 -0.077 -0.07	-0.061 -0.004 0.051 0.071 0.184* 0.065 -0.003 -0.016 -0.034 0.012 0.023 -0.045	22850.694 22851.763 22852.740 22853.626 22854.420 22855.122 22855.733 22856.252 22857.015 22857.015 22857.259 22857.411 22857.439 22857.439 22857.316 22857.316 22857.316 22855.903 22855.903 22855.903 22855.903 22855.903 22855.903 22855.903 22855.903 22855.903 22844.430 22843.634 22843.335 22824.834 22835.531 22833.475 22833.475 22833.475 22833.705 22813.705 22813.705 22813.705 22813.705 22804.769	22854.441 22853.664 22852.795 22851.835 0.026 0.038 0.105* -0.017 -0.021 0.046 -0.113*	22850.671 22851.721 22852.679 22853.545 22854.320 22855.094 22855.094 22856.502 22856.502 22856.502 22857.043 22857.165 22857.165 22857.165 22857.165 22857.165 22857.165 22857.165 22857.165 22857.165 22857.165 22857.539 -0.049 -0.025 -0.016 22850.539 22849.384 22844.138 22845.369 22844.2846 22845.369 22844.5345 22845.369 22855.5395 22855.5395 22855.5395 22855.5395	C.077* -0.051 0.030 0.102* 0.017 -

•

.

.

							-				· · · · · · · · · · · · · · · · · · ·		
LCULATED	LINE	POSITIONS	AND	RESIDUALS	FOR	THE	6 -	3 BAND	OF	A10	$(B^2\Sigma - \Sigma)$	K4E)	

۰.

.

	P2		P1	•	R2 R1			
N	Calc	Rea	Calc	Res	Calc	Rea	Calc	Res
012	21925.113 21923.815	01000 400	21925.090		21927.495 21928.578 21929.581		21927,470 21928,529 21929,509	
745561		21922.402 21920.932 21919.383 21917.755	0.052* 0.006 -0.021		21930.504 21931.347 21932.111 21932.794		21930.408 21931.228 21931.967 21932.627	
8 9 10		21914.259 21912.392 21910.445	-0.044 0.022 0.011		21933.356 21933.921 21934.365 21934.729		21933.207 21933.707 21934.127 21934.467	
12 13 14		21906.313 21904.129 21901.865	-0.002 0.041 -0.024		21935.013 21935.216 21935.340 21935.384		21934.907 21935.007 21935.027 21935.027	
16 17 18	21897.288 21894.798 21892.229 21892.581	-0.009 0.064 0.013	21896,909 21894,396 21891,803 21889,131	0.025 0.002 0.042	21935.231 21935.034 21934.758 21934.401		21934.827 21934.607 21934.306 21934.306	
20 21 22 23	21886.854 21884.047 21881.162 21878.198	0.019 0.016 0.044 0.025	21886.380 21883.551 21880.642 21877.654	-\\.045 -C.003 -0.026 -0.02	21933.964 21933.447 21932.850 21932.173		21933.465 21932.925 21932.304 21931.603	
24 25 26 27	21875.155 21872.034 21868.833 21865.554	0.084* -0.014 0.033 -0.005	21874.588 21871.442 21868.218 21864.915	-0.028 -0.059 -0.007 0.012	21931.416 21930.578 21929.660 21928.663		21930.822 21929.961 21929.019 21927.998	
28 29 30 31	21862.196 21858.760 21855.245 21851.652	0.032 -0.012 0.049 -0.015	21861.534 21858.074 21854.535 21850.918	0.011 -0.027 -0.046 0.025	21927.585 21926.427 21925.188 21923.870	-0.023	21926.896 21925.714 21924.452 21923.110	0.035 0.006 -0.014
32 33 34 35	21847.980 21844.230 21840.401 21836.494	-0.013	21847.222 21843.448 21839.596 21835.666	-0.021	21922.471 21920.992 21919.433 21917.794	0.041 -0.008 -0.044# -0.060*	21921.688 21920.185 21918.602 21916.940	0.164* 0.001 -0.095* 0.002
36 37 38 39	21832.509 21828.446 21824.305 21820.086	-0.010 0.048 0.010	2183 ⁺ .657 2182 ⁺ .570 21823.405 21819.162	-0.045 0.023 0.005	21916.075 21914.276 21912.396 21910.436	-0.023* -0.061* 0.018* 0.020*	21915.197 21913.374 21911.470 21909.487	0.023 0.002 0.005 0.050*
40 41 42 43	21815.789 21811.414 21806.961 21802.430	-0.052 -0.001 -0.033 -0.003	21814.842 21810.443 21805.966 21801.412	-0.069 -0.129* -0.015 -0.050	21208.397 21906.277 21904.077 21901.797	-0.026* 0.034*	21907.423 21905.280 21903.056 21900.752	-0.028* -0.186* 0.049*
44 45 46 47	21797.822 21793.136 21788.373 21789.373 21763.532	0.008	21796.780 21792.070 21787.283 21782.418	0.006	21899.437 21896.996 21894.476 21891.876		21898.369 21895.905 21893.361 21893.361 21890.737	-0.082

CALCULATED LINE POSITIONS AND RESIDUALS FOR THE 6 - 4 BAND OF ALO (820 - X20)

٠,

:

· chaite a sere

k

	P ₂		P ₂ P ₁ R ₂			R1		
Я	Calc	Res	Calc	Res	Calc	Res	Calc	Res
012345678901121345678901223456789001223456789001223456789001223456789001223456789001223456789001223456789001223456789001223456789001223456789001223456789001223456789001223456789001223456789001223456789001223456789001223456789001223456789001223456789000000000000000000000000000000000000	22744.125 22742.818 22741.423 22739.940 22739.940 22707.127 22704.238 22695.043 22695.043 22695.043 22695.043 22695.043 22695.041 22688.476 22685.061 22657.970 22674.294 22670.531 22665.684 22654.609 22654.609 22654.6127 22641.756 22637.299 22652.744 2264.127 22647.127 22647.	22738.309 22736.638 22734.878 22733.030 22731.095 22724.759 22724.759 22722.471 22720.096 22717.632 22717.632 22715.081 22712.442 0.028 -0.115* -0.032 0.045 0.045 0.045 -0.032 0.045 0.045 0.059 0.058 0.058 0.058	22744.102 22742.772 22741.353 22739.846 0.104* 0.056 0.043 0.023 0.017 -0.020 -0.000 0.027 -0.000 0.017 -0.000 0.017 -0.000 0.017 22709.502 22706.676 22709.502 22700.6676 22709.502 22709.502 22694.495 22694.495 22697.672 22687.881 22687.881 22687.881 22687.881 22687.881 22687.881 22653.799 2265.943 2265.943 2265.943 2265.943 2265.943 2265.943 2265.943 2265.943 2265.943 2265.943 2265.943 2265.943 2265.943 2265.943 2265.943 2265.943 2265.943 2265.943 2265.9578 2265.944 2265.9578 2265.9578 2265.9578 2265.9578 2265.9578 2265.9578 2265.9578 2265.944 2265.9578 2265.944 2265.9578 2265.944 2265.944 2265.9578 2265.944 2265.9578 2265.944 2265.945 2265.9444 2265.9444 2265.9444 2265.9444 2265.9444 2265.9444 2265.9444 2265.9444 2265.94444 2265.	-0.004 0.029 0.089 -0.040 0.032 -0.009 0.003 -0.026 0.131* 0.019 -0.019	$\begin{array}{c} 22746.498\\ 22747.564\\ 22748.541\\ 22749.430\\ 22750.231\\ 22750.943\\ 22752.506\\ 22752.101\\ 22752.548\\ 22753.175\\ 22753.356\\ 22753.368\\ 22753.368\\ 22753.368\\ 22753.368\\ 22753.452\\ 22748.452\\ 22749.452\\ 22749.452\\ 22734.909\\ 22734.909\\ 22734.909\\ 22734.909\\ 22734.909\\ 22734.909\\ 22734.909\\ 22734.909\\ 22724.451\\ 22722.430\\ 22722.430\\ 22714.944\\ 22722.433\\ 22714.944\\ 22712.338\\ 22722.338\\ 2272$	0.064 -0.069* -0.007 -0.075 -0.014 0.003* 0.002* 0.003* 0.002* 0.002* 0.0054* 0.0054* 0.0054* 0.0054* 0.0054* 0.0054* 0.0054*	22746.473 22747.515 22748.469 22749.334 22750.798 22750.798 22751.309 22752.332 22752.912 22752.912 22753.137 22752.912 22753.137 22752.912 22753.137 22752.4811 22751.136 22752.4811 22751.136 22752.481 22751.136 22754.948 22748.041 22748.041 22745.962 22748.948 22748.041 22745.962 22748.948 22744.789 22745.962 22744.789 22744.789 22744.039 22735.831 22735.831 22735.831 22735.831 22735.831 22732.215 22730.244 22742.178 22732.215 22730.244 22742.178 22732.8185 22730.244 22742.178 22732.8185 22730.244 22742.178 22732.8185 22732.8185 22726.037 22723.807 22721.475 22719.061 22711.287	-0.027 0.016 -0.050 -0.050 0.075 *-0.036 -0.049 -0.049 -0.026

	CALCULATED LINE	POSITIONS AND	RESIDUALS	FOR THE 7	- 4 BAND	OF ALO	$(B^2\Sigma - X^2\Sigma)$	
--	-----------------	---------------	-----------	-----------	----------	--------	---------------------------	--

	CALCOLATED	LINE PUSIT.	D	100AL3 PUT	<u> 1 Inc / - 5 81</u>	AND OF ALL	(<u>646 - 146)</u>	
	ء ، 	2			<u> </u>		<u>~1</u>	
N	Calc	Rea	Calc	Res	Calc	Res	Calc	Res
01234567890123456789012345678901234567890123	21835.104 21833.824 21833.824 21833.824 21812.516 21810.246 21802.980 21805.478 21802.980 21805.478 21795.032 21795.032 21795.032 21786.405 21786.405 21786.378 21770.519 21776.116 21763.638 21760.086 21756.459 21755.459 21755.459 21755.459 21755.459 21756.459 21776.	21832.421 21830.974 21829.450 21826.172 21826.172 21824.419 21822.590 21816.646 0.062* -0.013 0.068 -0.023 -0.015 0.006 -0.096* -0.024 0.005 0.001 0.046 -0.001 0.046 -0.001 0.036 -0.013 -0.017* -0.010 0.027	21835.072 21833.761 0.078* 0.132* 0.101* 0.062 -0.003 0.064 0.057 0.131* 0.032 21814.314 21812.089 21809.789 21807.412 21804.960 21802.431 21795.824 21795.825 21785.674 21785.674 21785.674 21775.4855 21776.277 21775.485 21769.636 21765.635 21765.635 21765.255 21755.1522 21744.034 21727.763 21727.763 21723.509 21719.162 21714.780	0.234* 0.049 0.025 -0.0063 0.000 -0.004 -0.002 0.008 -0.003 0.000 -0.024 -0.007 -0.035 -0.035 0.007 -0.035	$\begin{array}{c} 21837.463\\ 21838.543\\ 21839.548\\ 21840.475\\ 21842.799\\ 21842.799\\ 21843.420\\ 21843.420\\ 21843.420\\ 21844.433\\ 21844.833\\ 21844.833\\ 21844.833\\ 21844.833\\ 21845.537\\ 21845.629\\ 21845.537\\ 21837.680\\ 21837.680\\ 21837.680\\ 21837.680\\ 21837.680\\ 21837.680\\ 21837.680\\ 21837.680\\ 21837.680\\ 21837.680\\ 21827.693\\ 21822.603\\ 21822.803\\ 21822.803\\ 21822.803\\ 21822.803\\ 21822.803\\ 21822.803\\ 21844.711\\ 21844.71\\ 21844.711\\ 21844$	-0.012 0.020 -0.101* -0.149* -0.093*	$\begin{array}{c} 21837.434\\ 21838.485\\ 21838.485\\ 21839.456\\ 21841.356\\ 21841.377\\ 21841.528\\ 21842.588\\ 21843.1693\\ 21844.4921\\ 21844.4921\\ 21844.492\\ 21844.776\\ 21844.492\\ 21844.786\\ 21844.786\\ 21844.870\\ 21844.870\\ 21844.888\\ 21845.166\\ 21844.888\\ 21845.888\\ 21845.888\\ 21845.888\\ 21845.888\\ 21845.888\\ 21845.888\\ 21845.888\\ 21845.888\\ 21845.888\\ 21837.868\\ 2$	0.068* -0.075* -0.003 -0.040 -0.040 -0.043 -0.066

ł,

	P2		P ₁	·	R2		R1	
N	Calc	Res	Calc	Res	Calc	Res	Calc	Res
012345678901123456789012345678901233456789012334567890122345678901223456789012333333333333333333333333333333333333	22646.790 22645.501 22645.501 22645.501 22616.012 22613.370 22610.644 22604.940 22601.961 22595.753 22595.753 22585.812 22585.812 22585.812 22585.812 22585.812 22585.630 22551.483 22557.489 22557.489 22557.489 22557.480 22551.483 22557.480 22551.483 22552.9505	22644.082 22642.608 22633.408 22633.408 22633.680 22633.971 22633.923 22625.537 20058 -0.024 0.0537 -0.021 -0.031	$\begin{array}{c} 22646.757\\ 22645.438\\ 0.027*\\ 0.162*\\ -0.110*\\ 0.028\\ -0.121\\ -0.102\\ 0.100*\\ -0.285*\\ 2.55*\\ -0.233*\\ 0.100*\\ -0.285*\\ 22615.491\\ 22612.491\\ 22612.491\\ 22612.491\\ 22612.491\\ 22612.491\\ 22595.019\\ 22595$	-0.133* -0.154* 0.009 -0.038 0.079 0.135* 0.029 0.031 0.057 -0.100 -0.053 0.032 -0.132* -0.132*	$\begin{array}{c} 22649.140\\ 22650.204\\ 22651.483\\ 22652.885\\ 22652.885\\ 22653.609\\ 22654.801\\ 22655.2653\\ 22655.2653\\ 22655.2653\\ 22655.2653\\ 22655.2653\\ 22655.2653\\ 22655.2653\\ 22655.5652\\ 22655.5652\\ 22655.5652\\ 22655.267\\ 22655.267\\ 22655.267\\ 22655.252\\ 22655$	0.117 0.125 0.079 -0.101* 0.085 -0.018 0.007* 0.044* 0.037* 0.037* 0.007* -0.005*	$\begin{array}{c} 22649.111\\ 22650.145\\ 22651.093\\ 22652.735\\ 22653.428\\ 22654.559\\ 22654.559\\ 22655.350\\ 22655.350\\ 22655.836\\ 22655.836\\ 22655.836\\ 22655.836\\ 22655.836\\ 22655.836\\ 22655.836\\ 22655.436\\ 22655.436\\ 22655.436\\ 22655.436\\ 22655.436\\ 22655.436\\ 22655.436\\ 22655.436\\ 22655.436\\ 22655.436\\ 22655.436\\ 22655.436\\ 22655.436\\ 22655.436\\ 22655.436\\ 22655.436\\ 22653.468\\ 22653.468\\ 22644.516\\ 22644.516\\ 22639.954\\ 22634.626\\ 22639.954\\ 22634.626\\ 22639.954\\ 22634.626\\ 22639.650\\ 22634.626\\ 22634.626\\ 22634.626\\ 22634.626\\ 22634.626\\ 22634.626\\ 22634.626\\ 22634.626\\ 22634.626\\ 22634.626\\ 22634.626\\ 22634.626\\ 22634.626\\ 22624.049\\ 22621.679\\ 22621.679\\ 22616.685\\ \end{array}$	-0.068 -0.120 -0.039

CALCULATED LINE	POSITIONS AND	RESIDUALS FOR	THE 8 - 5 B	AND OF A10	(82E - X2E)

			p		R ₂		R ₁	
К	Calc	Rea	Calc	Res	Calc	Rea	Calc	Red
012345678901234567890123456789012335567890123456789012345678901234567890123456789012335567890123444444	21751.731 21750.471 21749.138 21747.733 21744.703 21737.769 21735.854 21737.854 21737.854 21731.806 21729.673 21727.468 21727.468 21727.468 21727.418 21707.225.190 21722.840 21727.418 21707.21712.718 21707.225 21704.418 21707.225 21704.418 21707.225 21704.418 21707.225 21704.418 21707.225 21704.418 21698.377 21695.377 21695.377 21695.377 21695.377 21695.377 21695.377 21695.377 21695.377 21695.377 21695.377 21695.375 21668.5740 21668.5740 21668.254 21664.544 21666.56912 21656.912 21656.912 21656.913 21656.600 21636.600 21632.327,985	21746.151 21742.936 21741.219 21739.429 -0.032 -0.023 -0.148* 0.030 -0.082 -0.060 -0.016 -0.023 -0.060 -0.019* -0.031 -0.031 -0.031 -0.035 0.038 0.079* 0.109* 0.160*	21751.684 21750.385 21747.567 -0.012 21744.458 -0.035 -0.035 -0.078* 21735.410 21735.410 21735.410 21735.410 21735.410 21735.410 21724.548 21729.110 21724.548 21729.110 21724.548 21724.548 21772.156 21717.165 21774.548 21709.127 21706.305 21703.411 21709.445 21697.408 21697.408 21697.408 21697.682 21691.118 21687.866 21659.287 21655.396 21655.396 21653.143 21639.128 21639.128 21639.128 21639.128 21639.128 21639.128 21639.128 21639.128 21639.128 21639.128 21639.128 21639.128 21639.128	-0.030 -0.156* 0.060 -0.141* -0.047 0.026 -0.003 0.004 0.079 -0.120* 0.014 -0.030 -0.050 -0.008 0.022 0.061* -0.065* 0.074 0.065* 0.074 0.065 0.074 0.065 0.086 0.074*	$\begin{array}{c} 21754.064\\ 21755.145\\ 21755.145\\ 21757.086\\ 21757.987\\ 21758.735\\ 21759.450\\ 21760.692\\ 21760.660\\ 21761.1557\\ 21761.926\\ 21762.201\\ 21762.201\\ 21762.201\\ 21762.533\\ 21762.533\\ 21762.533\\ 21762.531\\ 21762.317\\ 21762.317\\ 21762.60,929\\ 21760.929\\ 21760.929\\ 21760.929\\ 21759.121\\ 21759.121\\ 21758.372\\ 21759.55.684\\ 21759.531\\ 21753.531\\ 21753.531\\ 21753.531\\ 21753.531\\ 21753.531\\ 21753.531\\ 21753.531\\ 21753.531\\ 21753.531\\ 21743.694\\ 21749.752\\ 21744.346\\ 21745.317\\ 21743.694\\ 21734.3885\\ 21734.489\\ 21734.489\\ 21734.489\\ 21734.489\\ 21734.490\\ 21734.301\\ \end{array}$	-0.042 -0.073 -0.025 -0.034 0.081 -0.029 0.101* -0.105*	21754.031 21755.072 21756.040 21756.934 21757.934 21757.954 21759.179 21759.780 21760.309 21760.309 21760.309 21761.456 21761.456 21761.456 21761.456 21761.903 21761.903 21761.903 21761.903 21761.904 21761.904 21761.904 21765.90 21755.509 21755.444 21755.444 21755.444 21755.444 21755.404 21755.445 21756.44521756.445 21756.4	0.004 0.019 -0.023 -0.005 0.026 0.048 -0.053 0.026 0.071 -0.037* -0.053* -0.057*

÷

	P ₂		P	L	R ₂		R ₁	
N	Calc	Res	Calc	Res	Calc	Res	Calc	Res
0123456789011234567890123456789012333333333333333333333333333333333333	22556.057 22554.769 22553.440 22553.440 22553.440 22530.916 22526.029 22523.465 22520.820 22515.289 22523.465 22509.436 22509.436 22509.436 22509.436 22509.436 22509.436 22509.436 22509.436 22499.403 22509.436 22499.403 22499.403 22486.430 22486.430 22486.430 22487.139 22475.375	22551.926 22550.394 22548.781 22547.086 22545.311 22543.454 22539.454 22539.458 22539.458 22539.458 22539.458 22539.458 22538.191 -0.005 22528.191 -0.062 -0.062 -0.062 -0.062 -0.059 -0.125 -0.159* 0.005 -0.105 0.084 0.004 -0.021 -0.026	22556.011 22554.703 22553.313 0.026 -0.006 -0.018 0.027 0.095 -0.118 0.053 0.023 -0.1404 0.019 22532.674 22525.345 22522.741 22517.291 22514.445 225517.291 22514.445 22551.519 22508.513 22495.687 22495.687 22495.286 22495.286 22485.228 22481.583 22485.228 22481.583 22485.228	0.030 0.111 -0.004 -0.044 0.076 -0.022 0.076 -0.018 -0.013 -0.174* 0.009 0.041 -0.019 0.124*	22558.382 22559.446 22560.429 22562.886 22562.886 22564.117 22564.610 22565.3542 22565.352 22565.352 22565.4610 22565.352 22565.4610 22565.452 22565.456 22565.456 22565.456 22565.456 22565.456 22565.456 22563.597 22563.597 22563.597 22563.597 22563.597 22563.597 22563.597 22558.482 22558.482 22558.482 22559.482 22554.826 22554.826 22554.826 22551.982		22558.349 22559.373 22560.176 22561.956 22561.956 22563.270 22563.270 22563.200 22564.258 22564.258 22564.258 22565.27 22565.128 22565.128 22565.148 22565.146 22565.14666 22564.303 22562.334 22562.334 22562.334 22562.334 22562.468 22556.4195 22559.463 22556.195 22558.463 22556.195 22558.459 2258.459 2258 2	

.

CALCULATED LINE POS	SITIONS AND RESIDUALS	FOR THE 9 - 6	5 BAND OF A10	$(B^2E - \chi^2E)$

.

5

,

1 1

ŀ

This estimate lies, bowever, outside the limits $(0.8828)^2 \leq (\hat{\sigma})^2 \leq (1.11)^2$ given by the $\chi^2/98$ distribution at the 95% confidence level for random measurement error. Such a result is not unusual; in nearly all applications of the merge method to date, estimated variances of merges have been found to be well outside the limits set by the χ^2/f_m distribution. The values of the present work are, in fact, unusually small. It could be concluded, therefore, that the systematic error in the present work is also unusually small, and that the effect on merged parameters (\hat{X}_i) can be accommodated satisfactorily by calculating standard errors $(\hat{\sigma}_i)$ for each constant from (4)

$$\hat{\sigma}_{i} = (\hat{\sigma}_{M}) (V_{ii})^{1/2}$$
(3.6)

In Eq. (3.6), ∇ is the dispersion matrix of the merged constants. All estimated standard errors reported in the present work were obtained from Eq. (3.6). The parameters output in merge C, in fact, reproduce the measured line positions very satisfactorily. This is shown in Table 3.5 which lists line positions and residuals calculated from the parameters of Table 3.1 and 3.4.

The ratio of the root mean square of the residuals (rms), $\{\Sigma(v_i^{obs} - v_i^{cal})^2 n^{-1}\}^{1/2}$, for lines calculated with parameters from merge C to the estimated standard deviation, is given in the right-hand column of Table 3.1. The ratios are in general very satisfactory, except the very weak 3-5 and 5-6 bands with few lines fitted.

The presence of significant, but not unusually large,

systematic error was revealed in merge D, in which the band³⁷ origins were reduced to a set of relative term values. In merge D, the output consisted of the sixteen term values listed in Table 3.6 which are determined relative to $X^2\Sigma^+$, v = 0. The variance of the equivalent single-step merge of the individual band-by-band constants (105 degrees of freedom, f = 137 - 32) to this output set was $(\hat{\sigma}_M)^2 =$ $(3.70)^3$, significantly larger than those of the merges described earlier; the large value is due to the presence of relative systematic error between different bands.

It is worth noticing, however, that the estimates in merge D of all the Dunham coefficients of Table 3.4 were unchanged to within the estimated one standard errors when these were defined by $\hat{\sigma}_i = 3.70 \ (V_{ii})^{1/2}$; this is in agreement with the general conclusion that contamination of leastsquares parameter estimates due to systematic error is assessed reliably when Eq. (3.6) is used to specify the standard errors. Vibrational Dunham coefficients given by a final fit, merge E, are included in Table 3.6. Merge E has variance $(\hat{\sigma}_{\rm M})^2 = (3.84)^2$ and f = 137 - 25 = 112 degrees of freedom, for the equivalent single-step merge. It was necessary to determine nine (five for the B²\Sigma⁺ state, and four for the X²\Sigma⁺ state) vibrational coefficients in order to represent the sixteen relative vibrational term values.

The Dunham coefficients in Tables 3.4 and 3.6 are considered the best available for the $B^2\Sigma^+$ and $X^2\Sigma^+$ states of AlO.

Finally, the vibrational dependence of $(\gamma_{v}^{"} - \gamma_{v}^{"})$ and $(\gamma ! - \gamma !)$ are shown in Fig. 3.5. For $(\gamma ! - \gamma !)$, the curve is calculated from the parameters of Merge B (Table 3.3), and shows that the magnitude of $\gamma_v^{"}$ changes rapidly with v" for v" \leq 6. The conclusion is valid on the assumption that the magnitude of γ " is small. Approximate estimates of γ " of 0.01 and 0.005 cm^{-1} obtained in references (18) and (32) respectively, would support this assumption. For $(\gamma_v^{\prime} - \gamma_v^{\prime})$ the points in Fig. 3.5 are the estimates listed in Table 3.3 and the straight line is from merge C (Table 3.4). The different vibrational behavior of $(\gamma_v^{+} - \gamma_v^{+})$ is in accord with the expectation that the major contribution to the spin-rotational constants comes from the low-lying $A^2 \Pi$ state. The potential minimum of this state lies at ~5400 cm⁻¹, between the v" = 5 and 6 levels of the $X^2\Sigma^+$ state.

It would be of much interest to examine spin-doubling in levels above v" = 6 since the levels of the A and X states overlap and large varying spin-doubling would be expected.

The observed v"-dependence within the individual v'progressions from the present analysis is not reproduced in the work of Mahieu et al. (32), as it can be seen from the comparison made between the first and the last column of Table 3.2 for the v' = 0,1 and 2 progressions. It is clear though that reasonable agreement exists in terms of the absolute $(\gamma' - \gamma'')$ values. As a conclusion to this analysis, the effective 91 rotational and vibrational constants were used to calculate the RKR turning points for each state (Table 3.7). These results were obtained using the method described in section 2.6; the data used were the term values of Table 3.6 and the rotational constants (B_v) of Table 3.3. The reduced mass of 10.041951 amu was based on the atomic masses of 16 O and 27 Al. The RKR curves have been plotted in Fig. 3.6.

	Merge (D)		tlerge (E)	
• •	τ _ν (Β ² Σ+)	_{G_v} (χ ² Σ ⁺)		Β ² Σ ⁺	x²Σ+
9	28133.989(55)		T.	20688.726(49)	0.0
8	27334.618(45)		ω _e	870 535(32)	978,256(58)
7	26522.831(37)		ω _e xe	3.7206(131)	6,9182(302)
6	25703.715(32)	5581,729(37)	10 ² ω _e y _e	0.870(207)	-1.93(64)
5	24877.260(30)	4686,570(35)	$10^3 \omega_e z_e$	-0,443(109)	1.10(46)
4	24043.508(30)	3777.418(31)			
3	23202.452(30)	2854.120(27)			
2	22354.034(24)	1916,762(26)			
1	21498.278(25)	965,399(23)			
0	20635.181(26)	0.000			

Table 3.6: Term Values and Vibrational Parameters^a (cm⁻¹) for the $X^2\Sigma^+$ and $B^2\Sigma^+$ States of AlO.

ار

^a Values in parentheses are estimated standard errors given by $\sigma_{\rm M}~({\rm V_{ii}})^{1/2}$, in units of the last significant figure of the corresponding constant.

;

ł,

.!

....

ţ

ļ
Figure 3.5: Plots of $(\gamma_v - \gamma_e^u)$ for the $B^2\Sigma^+$ and $X^2\Sigma^+$ states of AlO. The points shown for the B state and the smooth curve for X state were obtained from Merge B (Table 3.3). The straight line for the B state is from the fit of Merge C (Table 3.4). Error bars are two standard deviations.

-

1

· · · · · · · · · · · · ·

ţ

/	анта _{на) -} цвото од на се на тре се се на тр _е у ци	$B^2\Sigma^+$	ан, _у лар ал ан		<u></u>	
v	G _v	r _{min}	r _{max}	G _v	r_{min}	r _{max}
0	434.592	1.60780	1.73227	487.998	1.56251	1.67995
1	1297.689	1.56850	1.78480	1453.397	1.52596	1.73062
2	2153.445	1.54306	1.82330	2404.760	1.50257	1.76840
3	3001.863	1.52337	1.85614	3342.118	1.48452	1.80102
4	3842.919	1.50701	1.88570	4265.416	1.46956	1.83071
5	4676.671	1.49289	1.91307	5174.568	1.45672	1.85855
6	5503.126	1.48043	1.93889	6069.727	1.44542	1.88507
7	6322.242	1.46915	1.96344			
8	7134.029	1.45892	1.98709			
9	7938.400	1.44942	2.00992			

Table 3.7: RKR Turning Points (Å) for the $X^2\Sigma^+$ and $B^2\Sigma^+$ States of AlO^a

^a $Y_{oo}(B) = 0.2558 \text{ cm}^{-1}$; $Y_{oo}(X) = -0.0113 \text{ cm}^{-1}$.

~7

4

.

95

ŗ.

Figure 3.6: RKR potential curves for the $B^2\Sigma^+$ and $X^2\Sigma^+$ states of aluminum monoxide; vibrational energy levels are shown.

ļ

1

ł

ŝ

.

.

97

Chapter 4

1.90

Excitation of Spectra by Species of a Helium Discharge and Details of the Flowing Afterglow System.

For the second part of this work a fast-flow system was constructed in which a discharge could be excited in helium with the long-lived energetic species then being removed from the active discharge and later mixed downstream with a second gas. Collins and Robertson (39) have experimentally established that in a similar afterglow system the helium active species present were $He(2^{3}S)$, $He_{2}(a^{3}\Sigma_{u}^{*})$, the molecular ion (He_{2}^{*}) and the atomic ion He^{+} .

Interaction of these active helium species with various substrate gas molecules is responsible for the presently observed luminescence.

In the following chapters spectral analysis of these luminescence reactions gives direct information on the electronic states of the products. The mechanism of the reactions leading to the excited products is beyond the purpose of the present thesis. However, energy conservation requirements together with the Franck resonance rule (40), are generally useful in suggesting reactions and the reasons for predominance of certain reactions, established by other considerations, but they are not specific in themselves. The maximum available energy from the active helium species

are given in Ref. (39) as, $\text{He}^+(24.58 \text{ eV})$, $\text{He}(2^3\text{S} 19.82 \text{ eV})$, $He_2^{\dagger}(18.80-21.80 \text{ eV})$ and $He_2(a^3\Sigma_{11}^{\dagger} 14.60-17.40 \text{ eV})$.

Three independent investigations (39, 41, 42) on the intensity of various band systems observed from flowing afterglow systems suggest that the intensity is strongly dependent upon the helium pressure. Three characteristic classes of reactions may be distinguished, namely those that show an intensity peak at ~1 Torr, ~2 Torr and ~3 Torr, with metastable He $(2^{3}S)$, He⁺ and He⁺₂ being dominant active species, respectively. In the following paragraphs the flowing afterglow apparatus used in the present work will be discussed in detail together with the dispersion, the detection and the data acquisition systems. More experimental details of the reactions of discharged helium with BI_3 , PCl_3 , $AsCl_3$ and $SeOCl_2$ will be given in the final part of this chapter.

The experimental arrangement, shown in Figure 4.1, was similar to that used for production of the $A^2 II_i$ state of $SO^{+}(43)$. Prepurified helium (Linde 99.996%) was purified further by passage through two traps containing molecular sieve (Davison, 4-8 mesh; 0.5 nm pore size), maintained in liquid nitrogen baths. The helium was passed through a dcdischarge maintained between tantalum foil electrodes 4 cm apart. A ballast resistor (18 k Ω) was included in series with the power supply to reduce power fluctuations. Typical current flows were 15 mA for a supply voltage of ~600 V.

Figure 4.1: The flowing afterglow apparatus.

~

\$

~*

~

100

.

t

i i

. .

•

Small flows of various substrate molecules were admitted from a resistively heated side tube positioned a few centimeters downstream of the discharge. The system was pumped by a 170 $m^{3}h^{-1}$ pump (Leybold Heraeus E 150) at total pressures between 1.5 and 4 Torr. The emissions could be observed visually.

Spectra were recorded in the first-order of 1.26-m scanning monochromator (Spex 1269) fitted with a 2400-groove mm⁻¹ grating (Bausch and Lomb) blazed at 5000 Å. The slit width was 200 μ m, corresponding to a spectral width of 0.6 Å. Signals were detected by a GaAs photomultiplier (RCA C31014A) maintained at -20°C in a RF-shielded, water-cooled housing (Products for Research TE-192-RF); the dark current was ~ 8 counts s⁻¹. The photomultiplier signal was processed with an SSR 1120 Amplifier/Discriminator and a PAR 1105 photon counter, the count rate being displayed on a strip chart recorder (BBC Goerz, Servogor 210).

In the following sections, the automation of the spectrometer and the data acquisition system, which were employed for higher resolution analysis of the spectra of BI and PCl⁺, will be discussed.

The monochromator was operated under full computer control (Digital MINC MNC11-AA, PDP 11/23). The computer is equipped with two 16-bit parallel digital input modules and a 16-bit parallel digital output module which are used to receive data from and send instructions to an interface (44) which contains logic circuits for operations.

The spectrometer is scanned in a stepwise fashion. Depending on the desired resolution interval, a train of pulses is supplied to the spectrometer stepper motor. Signals from the photomultiplier are counted by the interface for a given time interval. After the signal count has been passed to the computer, the above procedure is repeated enabling a spectrum to be recorded digitally as a set of measured counts at a large number of equally spaced wavelengths. In the present work, the resolution interval was 0.02 Å in accord with the spectral slit width of ~0.1 Å which corresponds to a mechanical slit width of 20 μ m. With counting times ~4 s, the total count for the more intense lines was typically a few hundred counts, giving good signal-to-noise ratio for all the bands analyzed presently.

Spectra were calibrated by reference to emission lines of either Fe/Ne or U/Ar hollow cathode discharge lamps operated at ~15 mA. The calibration lines were recorded simultaneously with the recorded spectra using the electronic shutter described in detail in Ref. (44). Several calibration lines were obtained both before and after, as well as within, the band being recorded, and were spaced as evenly as possible. Measured (drum) calibration line positions (λ_d) were fitted by a nonlinear least-squares routine according to

$$\Delta \lambda (\mathbf{\dot{A}}) = \sum_{i=0}^{2} a_{i} \lambda_{d}^{i} + \alpha \sin[2\pi (\lambda_{d} - \delta)/50] \qquad (4.1)$$

where $\Delta \lambda$ are the residuals $(\lambda_d - \lambda_t)$ between the measured (λ_d)

and true wavelengths (λ_t) . Eq. (4.1) takes account of a small periodic (50 Å) error in the grating rotation lead screw.

The parameters α and δ were fitted for each calibration along with the set of a_i . The spectra were displayed on a graphics terminal (Digital VT105) and measured manually. A computer program was then employed to obtain vacuum wavenumbers from the calibration parameters. The rotationally analyzed bands of BI and PCl⁺ and portions of the low resolution spectra of PCl⁺ and AsCl⁺ were drawn with a digital plotter (Tektronics 4662) through the interface with the MINC computer.

Boron Iodide

The $a^{3}II_{0,1}$ state of BI was populated by the reaction of discharged helium with boron triiodide (Alpha products 95%). Small flows of BI₃ were admitted from the resistively heated side tube and the emission could be observed as a red diffuse flame. The helium pressure was kept at 1.5 Torr in order to maximize the intensity of the band systems.

The wavelengths of neon atomic emission lines, which were recorded simultaneously, from a light pen source (Oriel) were used to calibrate the low-resolution spectrum. These neon lines were fitted by least-squares to a quadratic in "d", the distance along the trace (38). The standard deviation of this fit was 0.32 Å. The band head positions were determined at half-maximum intensity above the baseline, and are accurate to ~1 Å.

For the higher resolution analysis the spectra were ¹⁰⁵ calibrated by reference to emission lines of either Fe/Ne or U/Ar hollow cathode lamps. The standard deviations of the calibration lines fits were typically 0.01 Å. Phosphorous chloride cation

Electronically excited PCl⁺ was produced by the reaction of PCl₃ vapour with discharged helium at total pressures near 4 Torr. The PCl₃ flow was introduced into the reaction cell from the liquid (BDH chemicals, 98%) contained in a side tube 5 cm downstream fitted with a Teflon needle valve to maximize the brightness of the conical bluish flame. Prepurified helium (Linde, 99.996%) was purified further by passing the gas through the two traps containing molecular sieve cooled by liquid nitrogen.

It was found that the pore size and the physical state of the molecular sieve are more critical factors for obtaining PC1⁺ and AsC1⁺ emission spectrum than any other emission spectra studied. Experimental trials with either different pore size (1 4 nm) or traps only partially free from impurities (i.e. water) did not give the optimum intensity of the PC1⁺ or AsC1⁺.

The calibration of the low resolution PC1⁺ spectrum was obtained by emission lines of atomic Cl and He (45) which were fitted by least-squares to a linear function in "d".

The standard deviation of this fit was 0.27 Å. The $PC1^+$, bandhead positions were determined at half maximum intensity above the baseline and have an estimated

uncertainty of ~ 0.6 Å (based on a 0.4 mm uncertainty in the distance along the trace).

For the higher resolution work on PCl⁺, a uranium hollow cathode lamp was used for wavelength calibration. Usually, 25-30 uranium lines were fitted for each sub-band with a standard deviation of about 0.008 Å.

Arsenic chloride cation

Electronically excited AsCl⁺ was produced by the reaction of AsCl₃ vapour with discharged helium at total pressures approximately 4 torr. AsCl₃ (BDH chemicals, 99%) was kept in the side tube which was not heated since the room temperature vapour pressure of liquid AsCl₃ was sufficient to maintain a constant flow of AsCl₃ for the production of excited AsCl⁺.

The band head positions were measured manually and were determined with an estimated uncertainty of ~0.6 Å. Emission lines of atomic Cl(45), He (45) and As (46) were fitted by least-squares to provide wavelength calibration of the spectrum. The quality of this fit was similar to the corresponding fit of PCl^{+} .

Selenium oxide cation

SeO^{*} was formed in the reaction of selenium dichloride oxide vapour with discharged helium at total pressures of ~3 torr. Liquid SeOCl₂ (Alpha, 97%) was heated (~50°C) in order to maintain a constant flow of SeOCl₂. The band head positions were obtained with an internal calibration provided by emission lines of atomic helium and selenium (45,46). Estimated uncertainties in the bandhead measurements are $\sim 2 \text{ cm}^{-1}$.

ست م م بند م و وموال د مع معدم الاستخدامة الارد الله الله

- P

ŀ

;

Р ,

Chapter 5

Vibrational Analysis of the a - X System of the BI

5.1 Introduction

In the present chapter, an investigation of the reaction of BI, with discharged helium is described. It was found that the reaction was chemiluminescent, the emission spectrum consisting of systems of violet degraded bands in the 5400-6800 Å region. These bands have been assigned to the $a^{3}\Pi_{0}^{*} \rightarrow X^{1}\Sigma^{*}$ and $a^{3}\Pi_{1} \rightarrow X^{1}\Sigma^{*}$ systems of BI. The $a^{3}\Pi_{0,1}^{*} \rightarrow X^{1}\Sigma^{*}$ Cameron bands of the boron monohalides have been studied principally by Lebreton and coworkers (47-51); the spectra were excited using a Schuler-type discharge. These investigations comprise rotational analyses of the 0-0 band of the $a^{3}II-X$ system of EF (47), the 0-0 and 1-1 bands of the $a^{3}\Pi_{1}$ -X system of BCl (48) and of selected bands of the many bands identified in the spectra of BBr (49,50) and BI (51). In the case of BBr, rotational constants were derived from an analysis (50) of three bands in the $\Delta v = 0$ sequence (0-0, 1-1 and 2-2). The work of Lebreton et al. (51) on BI is the first observation of this molecule and the bands were obtained from a discharge of a mixture of argon and BI, Twelve head positions (v' ≤ 9 , v" ≤ 7) of the $a^3 \Pi_0^{\dagger} \rightarrow$ vapour. $X^1\Sigma^+$ system were reported in the range 5680-6210 Å, together

with a rotational analysis of the 0-0 and 1-0 bands. However, the observation of additional bands was precluded by strong interfering emission due to I_2 . In addition, Lebreton et al. (51) tentatively assigned two bands in the ultraviolet region, obtained by flash photolysis, as due to the $A^{1}\Pi \leftarrow X^{1}\Sigma^{+}$ system of BI. Briggs and Piercy (52) observed the same UV bands near 3490 Å but they also observed several other bands in the range 2660-2790 Å which were assigned to the $\Delta v = -1, 0, 1$ sequences of BI $(A^{1}\Pi \leftarrow {}^{1}\Sigma^{+})$. However, the latter bands should be attributed to BCl from BCl₃ impurity, as discussed by Lebreton et al. (51) and Huber and Herzberg (53). In the more recent work by Briggs and Simmons (54), there was no discussion of the possibility that BCl₃ impurity was responsible for their incorrect interpretation (52) of the flash photolysis experiments.

Finally, Bredohl has very recently reported (55) a complete analysis of the 0-0 band of the $a^3\Pi_r - {}^{1}\Sigma^{+}$ system of BCl. The spectrum was well-developed and the spin-orbit constant of the $a^3\Pi$ state could be determined. In the present study, on BI, most of the bands observed by Lebreton et al. (51) in the $\Delta v \approx 1$ sequence of the $a^3\Pi_0 - X^{1}\Sigma^{+}$ system were also obtained. In addition, the $\Delta v = 2$ and 3 sequences were recorded together with several bands of the less abundant 10 BI isotope. The vibrational parameters of the $a^3\Pi_0 - X^{1}\Sigma^{+}$ system were determined with greater reliability and differed significantly from the previous work. Another contribution of the present analysis was the observation of

ł

ł

109

the $a^{3}\Pi_{1} - X^{1}\Sigma^{+}$ system of BI which was completely absent or overlapped in Lebreton's work (51). Fifteen bands with clearly resolved P and Q heads have been assigned and the molecular parameters of the $a^{3}\Pi_{1}$ state of BI were well determined.

It should be mentioned also that the presently used source of excitation demonstrates an efficient method of obtaining weak emission spectra without interferences from strong extensive systems that can result when a substrate molecule 1s introduced into a microwave discharge cavity.

5.2 Results and Discussion

Part of the visible emission spectrum of BI is shown in Figure 5.1. Sequences of violet-degraded bands are observed with the strongest bands near 6000 Å. Assignment of bands to the $a^3 \Pi_0^+ - X^1 \Sigma^+$ system was straightforward since some bands have been identified previously (51). Twenty-three bands were assigned to the ${}^3\Pi_0^+ - {}^1\Sigma^+$ system and are shown in a Deslandres array in Table 5.1. For two sequences ($\Delta v = 1$ and 2), additional heads were observed with lower intensity, and are due to corresponding transitions of the less abundant (~20%) ${}^{10}BI$ isotope; Table 5.2 shows the ten heads which were assigned to the $a^3\Pi_0^+ - {}^1\Sigma^+$ system of ${}^{10}BI$. After the assignments of the $a(0^+) \rightarrow X$ system had been made, three sequences remained that did not belong to this system. These bands have been assigned to the $a(1) \rightarrow X$ system of

110

1 片 乾

Ţ

;† 1

ľ

ł

111 ¹¹BI. The validity of this assignment was justified by two principal arguments; i) when the bandheads were arranged in a Deslandres table, Table 5.3, the lower state vibrational intervals were similar to those of the $a(0^{\dagger}) \rightarrow system$ of ¹¹BI; and ii) all the observed bands in the three sequences were double-headed, as expected for a Hund's case (c) $\Delta \Omega = 1$ transition for which $\Delta J = 0, \pm 1$. (A more detailed description of case (c) coupling case is presented in the following chapter.) The two heads are formed by the P and Q branches, with the P head ~7 cm⁻¹ lower in energy. For $\Delta \Omega =$ 0, as in $a(0^+) \rightarrow X^1 \Sigma^+$, $\Delta J = 0$ is forbidden, and the corresponding bands of this system show only single heads. It can be noted also that the separations of $\sim 300 \text{ cm}^{-1}$ between the $a(0^+) \rightarrow X^1\Sigma^+$ and $a(1) \rightarrow X^1\Sigma^+$ sub-systems provide an approximate estimate for the spin-orbit coupling constant of the excited state. The corresponding separation of the two sub-systems in BBr (50) is ~180 cm⁻¹, significantly smaller, as expected.

ŀ

1 Aug

Table	5.1:	Deslandres	table	for	the	a ³ Π0 ⁺	- x	¹ Σ ⁺	system	of	11 _{BI}

ł

v'	v'=0		v"=1	v	[™] ≈2	۲	/"=3		∨" ≈4		v"=5	v"=6
0	16087.1	569.0	15518,1			·····	- <u></u>		. <u></u>			
	641.0		641.6									
1	16728.1	568.4	16159.7	562.7	15597.0							
	629.7	629.3										
2	17357.8	568.8	16789.0									
	617.5		619.8									
3	17975.3	566.5	17408.8	563.1	16845.7							
			606.5		608.8							
4			18015.3	560.8	17454.5	558.2	16896.3					
					595.0		596.4					
5					18049.5	556.8	17492.7	549.0	16943.7			
							587.3		585.9			
6							18080.0	550.4	17529.6	544.7	16984.9	
									574.0		573.0	
7									18103.6	545.7	17557.9	
											561.0	
8											18118.9	537.3 17581.6

112

:

v'	v"=0	v"=1		v"=2		v"=3		v"=4
0	<u></u>	15495.2		<u></u>				
1	16758.5			15575.0				
2		16821.3						
		644.2						
3		17465.5	586,4	16879.1				
				531.5				
ł				17510.6	582.0	16928.6		
						625.1		
;						17553.7	575.3	16978

Table 5.2: Deslandres Table for the $a^3\Pi_0^+$ - $X^1\Sigma^+$ System of ¹⁰BI

.

à

v'	v"=0		v"=1		v"=2		v"=3		v"=4	v"=5
	16391.3	570.6	15820.7	564.9	15255.8		-			
U	16384.0	570.1	15813.9	563.4	15250,5					
	630.6 630.0		634.8 634.3		633.6 633.5					
	17021.9	566.4	16455.5	566.1	15889.4	559,5	15329.9			
T	17014.0	565.8	16448.2	564.2	15884.0	558.7	15325,3			
			621.1 621.0		623.9 622.7		621.8 621,4			
•			17076.6	563.3	16513.3	561.6	15951.7	550.9	15400.8	
Z			17069.2	562.5	16506.7	560.0	15946.7	551.9	15394.8	
					612.6 610.4				617.6 617.0	
•					17125.9				16018,4	
3					17117.1				16011.8*	
							*			
4							*			
5									17204.9	
									17198.7	
6										17238.0
5										17229,

Table 5.3: Deslandres Table^a for the $a^3\Pi_1 - X^1\Sigma^+$ system of ¹¹BI

a) For each band, the upper and lower entries denote the positions of the Q and P heads, respectively, heads flagged with an asterisk were overlapped by intense atomic lines.

Figure 5.1: A portion of the BI emission spectrum from ~5890 to ~6325 Å.

.

1. . .

list and a second of the

ŧ

,

. .

١

L Marrie Kangdri Mar

-

;

.

ł

.

Since the present measurements refer to positions of band heads, rather than origins, it is appropriate to determine the reliability of the derived vibrational intervals in Tables 5.1, 5.2, and 5.3. This can be achieved by calculating head-toorigin separations for P or R branches from the equation (2),

$$\nu_{\text{head}} - \nu_0 = -\frac{(B_v^{\dagger} + B_v^{\dagger})^2}{4(B_v^{\dagger} - B_v^{\dagger})}.$$
 (5.1)

If it is assumed that $\alpha_{*}^{"}$ is similar to $\alpha_{*}^{!} \sim 0.004 \text{ cm}^{-1}$ (51), the calculated head-to-origin spacings increase with $\Delta v =$ v' - v". For example, the spacings are $\sim 4 \text{ cm}^{-1}$ for $\Delta v = -3$, ~5.4 cm⁻¹ for $\Delta v = 0$, and ~10 cm⁻¹ for $\Delta v = 3$. Such separations are of the same order as that of the measurement precision of the present work. It can be expected, therefore, that the head measurements are quite suitable for deriving effective vibrational parameters that differ insignificantly from their true values. For the $a(1) \rightarrow X$ bands, the error introduced with the use of head data is negligible, because the Q-heads are available. It is interesting to note that the P- and Q-head separations, Table 5.3, are in accord with the calculated headto-origin spacings for the $a(0^+) \rightarrow X$ system. The measured Pand Q-head positions of the $a(0^+) \rightarrow X$ and $a(1) \rightarrow X$ systems respectively can be represented adequately by the difference between the two power series expansions in vibrational quantum number,

ì

144

$$\nu_{iv'v''} = T_{e} + \sum_{k=0}^{\infty} Y_{ik}^{*} (v' + 1/2)^{k} - \sum_{k=0}^{\infty} Y_{ik}^{*} (v'' + 1/2)^{k}, \qquad (5.2)$$

where i represents a particular isotope. The Y_{ik} coefficients can be related to isotopically invariant parameters, U_k (56), by,

$$Y_{ik} = \mu_i^{(-k/2)} U_k, \qquad (5.3)$$

where μ_i is the reduced mass of the isotopic molecule i. The expression (5.2) is valid strictly only for sub-band origins; however, from the earlier discussion, it was not expected, nor found, that such a model introduces any systematic trend in the residuals between the fitted and observed band positions. Instead, the head-to-origin shifts are accommodated by the determination of effective T values of the two excited states $({}^{3}\Pi_{0}^{\dagger}, {}^{3}\Pi_{1})$. It was found that the accuracy of the measurements and the vibrational extension of the heads permitted the evaluation of only the first two effective isotopically invariant vibrational parameters (k = 1, 2). The six parameters $(U_{10} \text{ and } U_{20} \text{ for the } {}^{1}\Sigma^{+}, {}^{3}\Pi_{0}^{+}, \text{ and } {}^{3}\Pi_{1} \text{ electronic states})$ have been derived using a simultaneous least-squares fit to the model given by equations 5.2, 5.3, and are listed in Table 5.4. The standard deviation of the fit was $\hat{\sigma} = 1.6 \text{ cm}^{-1}$ with 40 degrees of freedom, and is in accord with estimated uncertainties in the In Table 5.5, the equilibrium term values, T, and ω_{e} , data. $\omega_{\rm e} x_{\rm e}$, $(U_{10}/(\mu_{\rm i})^{1/2}$, $-U_{20}/\mu_{\rm i})$ are reported and compared with the corresponding constants for the X, $a(0^+)$ and a(1) states of BCl and BBr. From Table 5.5, it is immediately obvious that, i) the a(1) states lie at higher energy than the $a(0^+)$ states and,

119 ii) the similar magnitudes of the vibrational parameters of the a(1) and a(0) electronic states of BBr and BCl suggest that both states correlate with the same electronic configuration. In accord with Barrow's discussion (57) on the low-lying states of the Group 3B halides, the observed energy ordering of the excited states of BBr and BI can be correlated only with the lowest excited configuration, $(z\sigma)^2(y\sigma)^2(w\pi)^4(x\sigma)(v\pi)$, ${}^1\Pi$, ${}^3\Pi_r$. If a bonding $w\pi$ electron is promoted to the $x\sigma$ orbital, the resulting state will be ${}^3\Pi_i$. Furthermore, Barrow argued that the $a{}^3\Pi_r$ excited states of the boron monohalides are correlated with $B({}^2P_{3/2})$ and $X({}^2P_{3/2})$ atomic states.

.

ł

	U ₁₀	U ₂₀
$X^{1}\Sigma^{+}$	1830.4(21)	-30.1(12)
$a^{3}\Pi_{0}+$	2076.3(17)	-56.0(7)
$a^3 \Pi_1$	2050.5(29)	-55.4(13)

Table 5.4: Isotopically Invariant Dunham Coefficients^a) (cm⁻¹) for the $X^{1}\Sigma^{+}$ and $a^{3}\Pi$ States of BI

 a) Values in parentheses are estimated standard errors in units of the last digit of the corresponding parameters. These errors do not include contributions arising from the use of head data, rather than origin data; see text.

		10 _{BI}	11 _{BI}		11 _B 79 _{Br}	11 _B 35 _{Cl}	
		this work	this work	(51)	(42,49,50)		
x¹Σ⁺	ω _e	600,84(69)	575.08(66)	574	684.3	839.12	
	ω _e xe	3,24(13)	2.97(12)	2.4	3.52	5.11	
$a^3 \Pi_0^+$	T _e	16049	.0(10)	16058	18673.80(5)	-	
	ω	681,55(56)	652,34(53)	645	759.80(10)	-	
	ω _e xe	6.030(76)	5 \$24(70)	5	4,80(2)	-	
$a^3\Pi_1$	Te	16355.	2(13)	-	18851.48(4)	20234.86 ^{b,c}	
	ω _e	673.08(95)	644.24(91)	-	757.10(10)	911	
	ω _e xe	5.97(14)	5.47(13)		4.81(3)	5.7	

Table 5.5: Molecular Constants (cm⁻¹) for the $X^{1}\Sigma^{+}$ and $a^{3}\Pi$ States of the Boron Monohalides^a.

²) Values in parentheses are estimated standard errors in units of the last aigit of the corresponding constant. Reduced masses of BI, calculated from the atomic masses of Ref. (58), are ¹⁰BI 9.2806796, ¹¹BI 10.130461 amu.

b) T₀ values

Þ

-

ł

c) A = 49.541 (22)

1 - 1

It is quite clear that the coupling of the angular momenta changes from Hund's case (b) in BF to an intermediate case (a)-case (c) in the BCl, BBr and BI molecules. With increasing mass, case (c) coupling becomes predominant; as a consequence, the total electronic angular momentum about the internuclear axis is well-defined, the $\Delta S = 0$ selection rule holds less and less rigorously, and larger transition moments for the ${}^{3}\Pi(0^{+},1) \rightarrow X$ transitions are expected. In addition, the case (c) selection rule $\Delta \Omega = 0, \pm 1$ forbids the ${}^{3}\Pi(2) \rightarrow X$ transition, which is observed in BF (47).

Ĩ

LUN DA MARA VA

I

-

1

Į

In conclusion, some consideration should be given to the difference in intensity between the two sub-systems of the Cameron bands for the BC1, BBr and BI molecules. The coupling of electronic states which are derived from the same configurations, presently $a^3\Pi$ and $A^1\Pi$, are of greatest importance in understanding the strong spin-orbit mixing toward the case (c) limit. As the selection rule for the spin-orbit operator is always $\Delta\Omega = 0$, only the states having $\Omega = 1$ can interact. Thus, non-zero spin-orbit matrix elements will occur between the a(1) and $A^1\Pi$, states.

The factors affecting the intensity of forbidden transitions in diatomic molecules are discussed in the work of James (59). He assumed that the $a \rightarrow X$ transition of the Cameron system is allowed by the spin-orbit perturbation which mixes the ${}^{1}\Pi_{1}$ state with ${}^{3}\Pi_{1}$. Perturbation theory was followed to derive the first-order correction to the zeroth-

order wavefunctions of the a(1) state. The corrected ¹²³ wavefunction was employed to determine the transition moment matrix element between the a(1) and $X^{1}\Sigma^{+}$ states.

The approximate final expression for the effective electronic transition moment, the square of which is proportional to the band emission intensity, is given by

$$(\mathbf{R}_{\mathbf{e}})_{\mathbf{a},\mathbf{X}} = \mathbf{A} \quad (\mathbf{R}_{\mathbf{e}})_{\mathbf{A},\mathbf{X}} \quad \Delta \mathbf{E}^{-1} \tag{5.4}$$

where $(R_e)_{a,X}$ and $(R_e)_{A,X}$ are the electronic transition moments between the forbidden and allowed transitions respectively, A is the spin-orbit constant of the $a^3\Pi$ state and ΔE is the energy difference between the A ${}^{1}\Pi_{1}$ and a(1) states. Using Eq. (5.4) with the data of Table 5.5, the spin-orbit mixing of the a(1) and A ${}^{1}\Pi$ states becomes more significant with increasing mass, so that the transition probability of the a(1) \rightarrow X system relative to the a(0⁺) \rightarrow X system is expected to be largest in BI. However, the a(0⁺) \rightarrow X bands of BI have approximately twice the intensity of the a(1) \rightarrow X bands. It can be concluded, therefore, that the reaction of discharged helium with BI₃ favours population of the lowerlying a(0⁺) state.

Chapter 6

Rotational Analysis of the $a \rightarrow X$ System of ¹¹Bl

6.1 Introduction

ŝ

ALC: NOT THE

į

Ł

Although the present technique for excitation of emission from BI is relatively clean, with only few atomic lines as significant interference, the intensity of the observed bands is weak compared to a discharge source. However, the present work has established that spectra recorded with a scanning spectrometer and photoelectric detection show sufficient resolution for a useful rotational analysis. For the $a(0^+) \rightarrow X$ system of BI, the analysis has been extended considerably to eight bands (2-0, 3-1, 4-2, 1-0, 2-1, 3-2, 0-1, 0-0) with better rotational development than was possible in the work of Lebreton et al. (51).

In addition, two bands (0-0, 0-1) of the $a(1) \rightarrow X$ system have been analyzed, and rotational constants for the a(1) state are obtained for the first time.

For the eight bands of the $a(0) \rightarrow X^{1}\Sigma^{+}$ system, the measured line positions have been reduced by direct least squares fitting to four parameters (ν_{0} , B'_{v} , D'_{v} , B''_{v}). For the two bands of the $a(1) \rightarrow X^{1}\Sigma^{+}$ system, five parameters have been determined (ν_{0} , B'_{v} , D'_{v} , B''_{v} and the Ω -doubling parameter (q) of the excited state). Multiple determinations of the parameters are reduced by the method

of merging to optimum single-valued estimates, as well as Dunham coefficients describing their vibrational dependences. The optical data of the present study are not sufficiently precise and extended to provide reliable estimates of absolute D', D" values simultaneously. Accordingly, values of D" calculated by Hutson's method (60) from a preliminary RKR potential were used as a constraint in the direct least-squares fitting.

6.2 Nature of the Transition, Analysis and Data Fitting

As indicated in Chapter 5, the excited $a(0^+, 1)$ state of BI can be described by a coupling scheme close to Hund's case (c). The interaction between the orbital angular momentum and spin of the electrons (L and S) is stronger than the interaction with the internuclear axis of the molecule. In this case, Λ and Σ (the projections of L and S on the axis) are not defined; rather, L and S first form a resultant J_a which is then coupled to the internuclear axis with a component Ω . The electronic angular momentum Ω and the angular momentum of nuclear rotation (R) then form the resultant total angular momentum J. Therefore, electronic states which are represented by case (c) cannot be classified as ${}^{1}\Sigma, {}^{1}\Pi, {}^{1}\Lambda$ states, but instead are simply called 0,1,2,, according to the value of Ω .

Since the excited state of BI is formally $a^{3}\Pi$ in Hund's case (a), three separate states with Ω values of 0, 1 and 2

Ĩ

are obtained in case (c). However, since the ground state is ${}^{1}\Sigma^{+}$, the case (c) selection rule $\Delta\Omega = 0, \pm 1$ restricts the observed transitions to two independent systems, $a(1) \rightarrow X^{1}\Sigma^{+}$ and $a(0^{+}) \rightarrow X^{1}\Sigma^{+}$. In addition, the a(1)-X individual bands show $P(\Delta J = -1)$, $Q(\Delta J = 0)$, $R(\Delta J = 1)$ structure with P and Q bandheads; while the $a(0^{+}) \rightarrow X$ bands only show P and R structure with one P bandhead in accord with the restriction that if both states have $\Omega = 0$, no Q branch occurs.

The criterion in the selection of BI bands for analysis was that they be sufficiently intense to yield good signalto-noise. For this reason, no attempt was made to analyze bands of the less abundant (~20%) 10 BI isotope observed at low resolution.

The line frequencies (ν_i) of individual bands were fitted by least-squares to determine the parameters in the equation

ALT & A VILLEY AND

 $\nu_{i} = \nu_{0} + \{B_{vk}^{\prime}J^{\prime}(J^{\prime} + 1) - D_{vk}^{\prime}[J^{\prime}(J^{\prime} + 1)]^{2}\}$ - $\{B_{vk}^{\prime}J^{\prime\prime}(J^{\prime\prime} + 1) - D_{vk}^{\prime}[J^{\prime\prime}(J^{\prime\prime} + 1)]^{2}\} + \varepsilon_{i},$ (6.1)

where ν_0 is the band origin of the v' - v" band, B", D" are the ground state rotational constants, B'_{vk}, D'_{vk}, k = e or f are the effective rotational constants for the two Ω -doubled e and f components of the a(1) state, and ε_i are the unknown measurement errors. For the a(0⁺) state, the rotational levels are nondegenerate and hence they can be represented by a single set of rotational constants (B'_v, D'_v), as in the ground state. Furthermore, the sets of e and f levels are each associated with different branches in the $a(1) \rightarrow X$ system; as indicated in the rotational level energy diagram in Figure 6.1, the P and R branches are associated with e levels, and the Q branch with f levels.

In practice, Eq. (6.1) was modified by introduction of the Ω -doubling parameter $q_v = B_{ve} - B_{vf}$, so that the constants employed in the computer fits to describe the excited state a(1) were B_{vf} , D_{vf} together with q_v . Higher-order centrifugal distortion terms were not required in the band-by-band fits. In fact, due to the high correlation of the centrifugal distortion constants, D_v^* and D_v^* , and the extension of the available data, D_v^* always constrained at the value $D_v^* =$ 5.97×10^{-7} cm⁻¹ calculated using Hutson's method (60) with the $X^1\Sigma^+$ potential energy curve. The D_v^* parameter did not show any significant variation for v'' = 0,1,2. In addition, the same parameter at the potential minimum, D_v^* as given by the Dunham relationship (2) $D_v^* = 4B_e^3/\omega_e^2$, had the same value as D_v^* .

Firstly, bands belonging to the $a(0^+) \rightarrow X$ system were analyzed. The numbering of the lines in the P and R branches was by no means obvious. In the vicinity of the bandheads and the origins, the lines appear as closely spaced doublets composed of a P(J) line with an R(J) line of low-J or a P(J) line of high-J. These doublets were not resolved with the present resolution so that the P(1) or R(0) lines could not be identified directly. Although intensity considerations of the rotational lines in the neighbourhood of the central gap (space between the P(1) and R(0) lines) reduced the possibilities of a correct absolute numbering to two or three different schemes, an unequivocal assignment could not be obtained. However, the problem was resolved as follows. Approximate estimates for B", were calculated from B", and α ", assuming that α ", is similar to α ., $\sim 0.004 \text{ cm}^{-1}$ (51).

The r^u_e value that defines B^u_e was estimated by using Badger's rule (2), $\mu \omega_e^2 (r_e - \delta)^3 = C$. The parameters δ and C were calculated from the known r_e and ω_e for BCl and BBr (53), and gave r^u_e = 2.10 Å for BI. This estimate is consistent with the estimate calculated from the covalent radii of Cl, Br and I.

For the band-by-band fits of the $a(0^+) \rightarrow X$ system, the rotational constants of the X state were constrained to values less than, close to, and greater than the estimated values. The three absolute trial numberings of the rotational lines led to fits with similar standard deviations. However, for only one case of the absolute numbering were the multiple estimates of the same molecular constant in agreement to within two standard errors. For the other numbering schemes, such multiple estimates differed by many standard errors (typically ~15 standard errors). Furthermole, the J numbering found by this approach is in agreement with that used by Lebreton et al.
(51) for the two bands common to both studies. It should be noted that the numbering which was given in Ref. (51) was not assumed at the outset of the present work since no discussion about its validity was presented, and it is not obvious from the published spectrum that an unequivocal absolute numbering had been properly considered. It has been mentioned already that the P(J) and R(J) lines near the origins of the analyzed bands of the $a(0^+) \rightarrow X$ system are blended with P(J) lines of high J-values in the returning limb of this branch. In order to accommodate these blended lines into the least-squares fit and obtain the best possible results, it was decided to fit the blends of lines of similar intensity as the weighted means of the separate transitions; however, blended lines with an intensity ratio greater than four were fitted as single lines in the corresponding strong branch. For the $a(0^{\dagger}) - X$ bands, the blends were (P(J)+P(n-J-1)) and (R(J) + P(n+J)). The range of n is broad, from n = 27 for 0-1 band to n = 43 for the 4-2 band. The weights were taken as the corresponding squares of intensity factors for a ${}^{1}\Sigma$ - ${}^{1}\Sigma$ transition given in Ref. (2) by,

$$I \sim S_J \exp(-B_v J'(J'+1)/kT)$$
 (6.2)

where T is the rotational temperature, $k = 0.695 \text{ cm}^{-1}\text{K}^{-1}$ is the Boltzmann constant, and S_J is the line strength given by $S_J = J' + 1$ for the R branch, and $S_J = J'$ for the P branch.

From an intensity analysis of the 0-1 band recorded

129

under stable conditions, and using Eq. (6.2), it was found that the rotational temperature of BI was close to 300 K. In the 3-1 band, the blending of the PP and RP lines was not so close as in the other bands; therefore, the rotational lines in the region of the band origin appear to be broader and with low signal-to-noise ratio. For this reason, only lines which can be assigned as essentially unblended R(J) were included in the fit.

The blending problem in the bands of the a(1) - Xsystem is similar but more complicated. Figure 6.2 shows that many of R(J) lines are blended not only with P(n+J) lines, as in the 0⁺ - X bands, but also with much stronger Q(n'+J) lines. In this case, the weights were obtained from the intensity factors for a ${}^{1}\Pi - {}^{1}\Sigma$ transition; the line strengths are then (2),

 $S_J = 0.25 (J' + 1)$ for the R branch,

 $S_J = 0.25 (2J' + 1)$ for the Q branch,

and $S_J = 0.25 J'$ for the P branch.

The contributions of P(n + J) lines were so much smaller than those of Q(n'+ J) that they were neglected entirely. Thus for the a(1) - X bands only blends of P(J) + P(n, J-1)and R(J) + Q(n' + J) were considered.

Figure 6.1: An energy level diagram for the first lines of a ${}^{1}\Pi - {}^{1}\Sigma^{+}$ transition. The Ω -doubling of the $\Omega = 1$ state has been much exaggerated.

r

,

٠

.

mark and

e t

,

. ,

,

Figure 6.2: Rotational structure of the 0-0 band of the $a(1) \rightarrow X^{1}\Sigma^{+}$ system of ¹¹BI. The trace illustrates the extensive blending of the R and Q branches. The intense emission near the R(7) line is an unidentified atomic line.

:

6.3 Results and Discussion

A summary of the final individual band least-squares fits is given in Table 6.1. Lines were excluded in all bands when the magnitudes of their residuals exceeded ~ 2.5 standard deviations of the fits. The standard deviations of the fits in Table 6.1 range between 0.018 and 0.042 cm^{-1} , and are consistent with the estimated measurement precision for single lines. The measured line positions of the ten individual bands in the $a \rightarrow X$ system of BI thus provided a set of 42 estimated parameters. Each band yielded four constants, ν_0 , B'_v , D'_v , B''_v , and for the 0-0 and 0-1 bands of the a(1) \rightarrow X system, the Ω -doubling parameter q¹₀ was obtained. The method of merging, discussed in Chapter 2, was employed subsequently to reduce the 42 parameters to a smaller set of parameters which takes account (in the leastsquares sense) of the entire data set simultaneously. Merging was performed in a stepwise fashion. In the first merge (A), account is taken of the fact that many of the 42 parameters are multiple estimates of the same molecular constants. Therefore, the 42 parameters were reduced to a new set of 25 estimated constants (ten origins, ten B; and D_v' values for v' = 0-4, three B_v'' for v'' = 0-2, B_0' for the a(1) state and the Ω -doubling parameter q_0^{l}).

The estimated variance of the merge is $\hat{\sigma}^2 = (1.140)^2$, with f = 17 degrees of freedom, and the results are given in Table 6.2.

A second step in the fit, merge (B), was performed to

	V' V"	$\nu_{o}(\mathrm{cm}^{-1})$	n	σ̂(cm-1)	rms/ô
0 ⁺ - X	0 - 1	15525.316(16)	38	0.029	1.00
	0 - 0	16095.250(11)	49	0.018	1.00
	1 - 0	16735.902(13)	36	0.032	1.16
	2 - 1	16796.967(13)	35	0.032	1.09
	3 - 2	16853.512(16)	33	0.031	1.07
	2 - 0	17366.931(13)	30	0.026	1.31
	3 - 1	17418.063(19)	13	0.032	0.91
	4 - 2	17464.338(19)	28	0.042	0.98
1 - X	0 - 1	15820.780(13)	52	0.029	1.00
	0 - 0	16390.690(15)	49	0.036	1.00

Table 6.1: Individual Band Fits^a in the $a^{3}\Pi(0^{+},1) - X^{1}\Sigma^{+}$ System of ¹¹BI

^aFor each band, n is the number of fitted lines and $\hat{\sigma}$ is the standard deviation. The band origins (ν_o) and estimated standard errors were obtained from Merge (B) (see text).

rms/ $\hat{\sigma}$ represents the ratio of the root mean square of the residuals for lines calculated with merged parameters to the estimated standard deviation.

ł

obtain B_e and α_{e} for the a(0⁺) and X states, according to Eq. (6.3),

$$B_v = B_e - \alpha_e (v + \frac{1}{2}).$$
 (6.3)

The results of merge (B) are summarized in Tables 6.1 and 6.3, which list the 10 band origins and the coefficients defined by Eq. (6.3) respectively. The centrifugal distortion constant of the $a(0^{+})$ state did not show any significant vibrational dependence, so it was kept constant over the range of v', $0 \le v' \le 4$. The estimated variance $(\hat{\sigma}_{M}^{2} = (1.784)^{2}$ with f = 25) indicates the presence of only small systematic error in the data, assuming the model is adequate. However, in this case, the results is very acceptable compared with similar merges for other band systems. The output parameters in merge (B) reproduce the measured line positions very satisfactorily. This is shown in detail by the listing of line positions and residuals calculated from the parameters of Tables 6.1 and 6.3, and listed in Tables 6.4 and 6.5, and in summary by the entries in the last column of Table 6.1.

متعالي والمعالية والمعالمة

そうちょう ちょうかい いいしょう ちょうちょう ひょうせい ひょうちょう かいしょう ちょうちょう ひょうちょう ひょうちょう ひょうちょう ひょうちょう ひょうしょう ひょうしょう ひょうしょう ひょうしょう ひょうしょう

	v	B _v	10 ⁷ D _v	10 ⁵ q _v
$a^{3}\Pi(0^{+})$	4	0.37716(10)	5.68(39)	
	3	0.380649(66)	5.72(39)	
	2	0.384286(56)	6.75(23)	
	1	0.387769(72)	6.22(42)	
	0	0.391093(52)	5.59(12)	
a ³ II(1)	0	0.390581(56)	b	-4.1(11)
$X^{1}\Sigma^{+}$	2	0.359697(71)		
	1	0.362350(55)		
	0	0.365104(54)		

Table 6.2: Merged Parameters^a (cm⁻¹) for the X and a States of ¹¹BI

^aParameters are fitted values output from Merge (A) (see text). Values in parentheses are estimated standard errors given by $\hat{\sigma}_{M}(V_{ii})^{1/2}$ in units of the last significant figure of the corresponding constant.

^bThe merge assumes that D'_{o} for v' = 0 of $a^{3}\Pi(1)$ is the same as D'_{o} for v' = 0 of $a^{3}\Pi(0^{+})$.

Table 6.3: Molecular Constants^a (cm⁻¹) for the X and a States of ¹¹BI

	a ³ II(1)	a ³ II (0 ⁺)	$X^{1}\Sigma^{+}$
Be		0.392939(70)	0.366510(80)
B ₀	0.390692(77)		
10 ³ α.		3.493(11)	2.726(17)
10 ⁷ D	5.89	(15)	[5.97]
$10^{5}q_{0}$	-4.8(16)		

^aParameters are fitted values output from Merge (B) (see text). Values in parentheses are estimated standard errors given by $\hat{\sigma}_{M}(V_{ii})^{1/2}$ in units of the last significant figure of the corresponding constant. The fit assumes that D' is independent of v, and has the same for the a(0+) and a(1) states. D" was held fixed at the value listed, see text.

_		0 - 0			1 - 0			2 - 0	
_	p*	Calc	Res	p*	Calc	Res	p*	Calc	Res
P(9)	20	16090.558	0.036						
8	21	16090.872	-0.020	25	16731.267	-0.048	31	17362.130	-0.028
7	22	16091.239	0.003	26	16731.673	-0.051	32	17362.591	-0.021
6	23	16091.658	0.027	27	16732.124	-0.043	33	17363.090	-0.064
5	24	16092.130	0.029	28	16732.619	0.043	34	17363.627	-0.064
4	25	16092.654	0.021	29	16733.157	-0,093*	35	17364.202	-0.110*
3	26	16093.231	-0.002	30	16733.738	-0.009	36	17364.813	0.000
2	27	16093.861	-0.014	31	16734.360	0.077*	37	17365.461	0.023
1	28	16094.545	-0.000	32	16735.020	-0.000	38	17356.144	-0.123*
	29	16095.284	-0.007	33	16735.712	0.044	39	17366.854	-0.042
R(0)	30	16096.068	0.013	34	16736.479		40	17367.624	
1	31	16096.901	-0.007	35	16737.350	0.103*	41	17368.463	-0.031
2	32	16097.787	0.003	36	16738.239	0.060	42	17369.321	-0.002
3	33	16098.724	0.002	37	16739.169	-0.025	43	17370.212	-0.078*
4	34	16099.714	-0.004	38	16740.141	-0.007	44	17371.139	-0.044
5	35	16100.756	-0.004	39	16741.156	0.002	45	17372.102	-0.049
6	36	16101.849	0.013	40	16742.213	-0.031		17373.110	-0.002
7	37	16102.995	0.011	41	16743.313	-0.143*	r	17374.144	-0.075*
8	38	16104.192	0.005	42	16744.457	0.039		17375.217	0.005
9	39	16105.442	0.001		16745.683	-0.027		17376.328	-0.099*
10	40	16106.744	0.036		16746.909	-0.096*	t	17377.477	-0.042
11	41	16108.097	-0.014		16748.180	-0.055		17378.664	0.026
12		16109.479	0.066*		16749.495	-0.031		17379.889	0.048
13		16110.937	0.013		16750.856	-0.068		17381.151	0.009
14		16112.448	0.022		16752.261	-0.025		17382.452	0.004
15		16114.010	0.012		16753.712	-0.004		17383.791	0.034
16		16115.624	-0.025		16755.207	-0.030		17385.167	0.027
17		16117.290	0.009		16756.747	-0.042		17386.581	0.005
18		16119.007	-0.021		16758.332			17388,034	-0.007
19		16120.777	-0.022		16759.962	-0.013		17389.524	0.002
20		16122.599	-0.038		16761.637	0.038		17391.052	0.035
21		16124.472	-0.012		16763.356	0.015		17392.618	0.018
22		16126.397	-0.011		16765.121	0.011		17394.222	0.007
23		16128.374	0.014		16766.930	0.042		17395.863	0.090*
24		16130.403	-0.010		16768.784	0.017		17397.543	0.107*
25		16132.483	0.020		16770.683	0.015		17399.260	0.057
26		16134.615	-0.023		16772.627	0.022		17401.015	-0.008
27		16136.800	0.011		16774.615	0.042		17402.808	0.060
28		16139.035	0.029		16776.649	0.030		17404.639	0.279*
29		16141.323	-0.024		16778.727	0.073		17406.507	0.036
30		16143.663	0.011		16780.849	-0.026		17408.413	-0.148*
31		16146.054	-0.025		16783.017	-0.043			
32		16148.497	-0.011		16785.229	0.060			

Table 6.4: Line Positions^a (cm⁻¹) for the $a^{3}II(0^{+}) - X^{1}\Sigma^{+}$ System of ¹¹8I

٤

ŋ

ş

2

the arts and an internation

3 1 4

dari sebina dari sana berber sebendari dari

(cont'd.)

140

d,

.

•

		0 - 0		1 - 0			2 - 0		
	p*	Calc	Res	p*	Calc	Res	p*	Calc	Res
33		16150.991	-0.009		16787.486				
34		16153.537	-0.007		16789.788	0.022			
35		16156.135	-0.028						
36		16158.785	0.017						
37		16161.486	0.068*						
38		16164.239	0.013						
39		16167.044	-0.016						
40		16169.901	0.023						

Table 6.4: Line Positions^a (cm⁻¹) for the $a^{3}\pi(0^{+})$ - $X^{1}\Sigma^{+}$ System of ¹¹BI (cont'd)

.

State Carte

ないとうます

ł

۲.

;

1

	0 - 1			2 - 1			3 - 1		
	p*	Calc	Res	р*	Calc	Res	P*	Calc	Res
9				25	16791.985	0.063			
8				26	16792.357	-0.021			
7	19	15521.421	-0.157*	27	16792.772	-0.011			
6	20	15521.794	-0.157*	28	16793.231	0.056			
5	21	15522.224	-0.158*	29	16793.733	0.001			
4	22	15522.711	-0.110*	30	16794.278	-0.020			
3	23	15523.254	-0.030	31	16794.866	0.006			
2	24	15523.853	-0.008	32	16795.495	0.047			
1	25	15524.508	-0.023	33	16796.164	-0.019			
	26	15525.217	0.056	34	16796.869	0.168*			
K(O)	27	15526.000	0.085*	35	16797.647				
1	28	15526.848	0.013	36	16798.476	0.112*			
2	29	15527,753	0.017	37	16799.345	0.049			
3	30	15528.715	0.011	38	16800.255				
4	31	15529.735	-0.007	39	16801.206	0.028			
5	32	15530.811	-0.021	40	16802.200	-0.091*			
6	33	15531.945	0.032	41	16803.235	-0.065			
7	34	15533.135	0.048	42	16804.313	-0.025			
8	35	15534.383	0.040	43	16805.433	-0.085*			
9	36	15535.687	0.001		16806.609	-0.099*		17427.321	0.0
10	37	15537.049	-0.030		16807.813	-0.064		17428.428	0.0
11	38	15538.468	-0.021		16809.050	-0.048		17429.611	
12	39	15539.943	0.037		16810.350	-0.064		17430.810	
13		15541.499	0.033		16811.683	-0.023		17432.046	-0.0
14		15543.086	-0.008		16813.060	0.022		17433.318	-0.0
15		15544.730	0.025		16814.481	-0.013		17434.626	-0.0
16		15546.431	0.012		16815.945	0.045		17435.971	-0.0
17		15548.190	0.011		16817.452	-0.065		17437.353	
18		15550.006	-0.009		16819.002	-0.051		17438.770	
19		15551.879	-0.060		16820.596	0.034		17440.224	0.0
20		15553.809	0.025		16822.233	0.075*		17441.715	
21		15555.797	-0.039		16823.913	0.006		17443.241	
22		15557.842	0.027		16825.637	0.004		17444.804	-0.0
23		15559.945	-0.017		16827.404	-0.004		17446.404	-0.0
24		15562.104	-0.027		16829.214	0.017		17448.039	0.0
25		15564.321	0.025		16831.068	0.022		17449.711	-0.0
26		15566.595	-0.025		16832.965	0.019		17451.419	
27		15568.927	-0.037		16834.905	0.027		17453.164	-0.0
28		15571.315	-0.020		16836.888	0.028		17454.944	0.0
29		15573.761	0.009		16838.915	0.030			
30		15576.264	-0.038		16840.985	0.010			
31		15578.824	0.022		16843.098	-0.007			
32		15581.441	-0.043		16845.254	-0.007			
33		15584.116	0.038						
71		15584 847	-0.002						

,

•

Table 6.4: Line Positions^a (cm⁻¹) for the $a^{3}\pi(0^{+}) - X^{1}\Sigma^{+}$ System of ¹¹BI (cont'd)

aí.

P* 27 28	3 - 2 Calc	Res		4 - 2		
P* 27 28	Calc	Res				
27 28			P.*	Calc	Res	
28	16848.914	-0.026				·
~~	16849.336	-0.043	35	17460.073	0.023	
29	16849.801	-0.013	36	17460.586	-0.008	
30	16850.308	0.007	37	17461.135	0.053	
31	16850.856	-0.000	38	17461.721	0.009	
32	16851.446	-0.097*	39	17462.345	0.059	
33	16852.077	-0.053	40	17463.009	-0.010	
34	16852.748	-0.029	41	17463.720	-0.035	
35	16853.457	-0.096*	42	17464.501		
36	16854.226	0.081*	43			
37	16855.041	0.007	44	17465.976	-0.044	
38	16855.895	0.097*	45	17466.776	0.107*	
39	16856.789	-0.053	46	17467.620	0.153*	
40	16857.724	0.067	47	17468.504	0.013	
41	16858.699	0.050		17469.390	0.091*	
42	16859.716	0.000		17470.354	-0.019	
43	16860.774	0.081*		17471.354	-0.010	
44	16861.873	-0.096*		17472.388	0.076	
	16863.015	-0.045		17473.457	0.078	
	16864.197	0.023		17474.561	0.032	
	16865.419	0.029		17475.701	-0.069	
	16866.684	0.026		17476.875	-0.005	
	16867.991	0.036		17478.083	-0.020	
	16869.339	0.043		17479.327	-0.037	
	16870.730	-0.008		17480.606	-0.003	
	16872.162	-0.019		17481.919	-0.100*	
	16873.636	0.020		17483.267	0.044	
	16875.152	-0.009		17484.650	0.022	
	16876.709	0.039		17486.068	-0.036	
	16878.309	0.018		17487.521	-0.064	
	16879,950			17489.008	-0.068	
	16881.633	0.003		17490.531	-0.016	
	16883.357	0.017		17492.088	0.021	
	16885, 124	-0.020		17493_679	0.050	
	16886.932	0.048		17495.306	-0.030	
	16888.782	-0.006			*****	
	16890_674	0.013				
	16892 607	-0.034				
	16894 582	-0.028				
	16806 500	-0.0/3				
	30 31 32 33 34 35 36 37 38 9 40 41 42 44 44	30 16850.308 31 16850.856 32 16851.446 33 16852.077 34 16852.748 35 16853.457 36 16854.226 37 16855.041 38 16855.895 39 16856.789 40 16857.724 41 16858.699 42 16859.716 43 16860.774 44 16861.873 16863.015 16864.197 16864.197 16865.419 16864.684 16867.991 16867.91 16869.339 16870.730 16870.730 16875.152 16876.709 16876.709 16878.309 16879.950 16881.633 16883.357 16885.124 16886.932 16888.782 16890.674 16894.582 16894.582 16894.582 16894.582 16896.599	30 16850.308 0.007 31 16850.856 -0.000 32 16851.446 -0.097* 33 16852.077 -0.053 34 16852.748 -0.029 35 16853.457 -0.096* 36 16854.226 0.081* 37 16855.041 0.007 38 16855.895 0.097* 39 16856.789 -0.053 40 16857.724 0.067 41 16858.699 0.050 42 16859.716 0.000 43 16860.774 0.081* 44 16861.873 -0.096* 16863.015 -0.045 16864.197 0.023 16864.197 0.023 16865.419 0.029 16865.419 0.029 16866.684 0.026 16867.991 0.036 16869.339 0.043 16870.730 -0.008 16875.152 -0.009 16875.152 -0.009 16876.709 0.039 16876.709 0.039 16876.309 0.018 <	30 16850.308 0.007 37 31 16850.856 -0.000 38 32 16851.446 -0.097* 39 33 16852.077 -0.053 40 34 16852.748 -0.029 41 35 16853.457 -0.096* 42 36 16854.226 0.081* 43 37 16855.041 0.007 44 38 16855.895 0.097* 45 39 16856.789 -0.053 46 40 16857.724 0.067 47 41 16858.699 0.050 42 42 16859.716 0.000 43 43 16860.774 0.081* 44 44 16861.873 -0.096* 16863.015 44 16861.873 -0.023 16865.419 0.029 16865.419 0.029 16866.684 0.026 16867.991 0.036 16872.162 -0.019 16875.152 -0.009 16875.152 -0.009 16876.709 0.039 16876.	30 16350.308 0.007 37 17461.135 31 16850.856 -0.000 38 17461.721 32 16851.446 -0.097* 39 17462.345 33 16852.077 -0.053 40 17463.009 34 16852.748 -0.029 41 17463.720 35 16853.457 -0.096* 42 17464.501 36 16855.041 0.007 44 17465.976 38 16855.895 0.097* 45 17466.776 39 16856.789 -0.053 46 17467.620 40 16857.724 0.067 47 17468.504 41 16856.6789 -0.050 17469.390 42 16859.716 0.000 17470.354 43 16860.774 0.081* 17471.354 44 16861.873 -0.096* 17472.388 16863.015 -0.045 17475.701 16864.197 0.023 17474.561 16867.991 0.036 17480.606 16872.162 -0.019	30 16850.308 0.007 37 17461.155 0.003 31 16850.856 -0.000 38 17461.721 0.009 32 16851.446 -0.097* 39 17462.345 0.059 33 16852.077 -0.053 40 17463.709 -0.035 35 16852.748 -0.029 41 17463.720 -0.035 35 16853.457 -0.096* 42 17464.501 36 16854.226 0.081* 43 37 16855.041 0.007 44 17465.976 -0.044 38 16855.895 0.097* 45 17464.501 .153* 40 16857.724 0.067 47 17468.504 0.013 41 16857.724 0.067 47 17478.850 0.091* 42 16857.724 0.081* 17471.354 -0.019 43 16860.774 0.081* 17472.388 0.076 16863.015 -0.045 17475.617 0.020 16864.197 0.023 17475.61 0.032

Table 6.4: Line Positions^a (cm⁻¹) for the $a^{3}\pi(0^{+}) - \chi^{1}\Sigma^{+}$ System of ¹¹BI (cont'd.)

- -

^aThe table lists positions of single lines and intensity-weighted blends calculated from the parameters of Merge (B). Blended positions are those for which P*(J) is listed in addition to P(J) or R(J). The residuals are defined as res = $v_{obs} - v_{calc}$. Data not included in the least-squares fits are indicated by as asterisk.

		9-Sran	ch	Blen	ds	R-Br	anch	
0 - 0	Band	Calc	Res	Calc	Res	Calc	Res	
P(10)	P(20)			16385.746	0.046			
9	21			16386.031	-0.088*			
8	22			16386.368	0.000*			
7	23			16386.758	0.057			
6	24			16387.202	-0.047			
5	25			16387.700	0.022			
4	26			16388.254	-0.001			
3	27			16388.865	0.050			
2	28			16389.539	-0.028			
1	29			16390.283	-0.017			
Q(0)		16390.690						
1		16390.741						
2		16390,843						
3		16390,997						
4		16391.201						
5	R(0)	16391.456				16391.471		
6		16391.763						
7	1	16392.121				16392.304		
8		16392.529						
9		16392.989	-0.017					
10	2			16393.446	0.058			
11	3			16394.074	-0.007			
12		16394.675	0.029					
13	4			16395.289	0.108*			
14	5			16396.075	0.023			
15	6			16396.925	-0.072			
16		16397.639	0.023					
17	7			16398.469	0.056			
18	8	16399.427				16399.556		
19	9			16400.520	-0.069	44400 007		
20	10	16401.420	0.028			16402.087	0.011	
21		16402.493	-0.034					
22	11			16403.551	0.046			
23	12			16404.803	-0.025			
24	15			16406.112	-0.016		0.040	
25	14	16407.297	-0.020			10407.757	0.000	
26	15	10408.626	0.044			10409.302	-0.004	
27	10	10410.006	0.009			10410.898	-0.042	
28	17	16411.457	0.004			10412.544	-0.009	
29	40	10412.919	-0.052	42/4/ 757	0.047			
50	UQ 40			10414.335	0.007			
51	19			10410.014	0.010			
3C 77	20			16417.731	0.015			
33 7/	21			10419.203	0.020			
34	22			10421.330	-0.020			

Table 6.5: Line Positions^a (cm⁻¹) for the $a^{3}\pi(1) - \chi^{1}\Sigma^{+}$ System of ¹¹BI

*

		Q-bran	ich	Blends		R-Br	anch
0 - 0	Band	Calc	Res	Calc	Res	Calc	Res
35	23	16422.888	-0.014			16423.489	-0.105*
36	24	16424.729	0.006			16425.490	-0.040
37	25	16426.621	-0.018			16427.543	-0.061
38	26	16428.564	-0.035			16429.645	-0.047
39		16430.558					
40	27	16432.604				16431.799	0.014
41	28	16434.701				16434.004	-0.018
42	29	16436.849				16436.259	
43	30	16439.048				16438.565	-0.103*
44	31	16441.299				16440.921	-0.029
45	32	16443.600				16443.328	
46	33	16445.954				16445.786	-0.005
47	34	16448.358				16448.294	
48	35	16450.814				16450.853	-0.083*
49	36	16453.321				16453.463	-0.053

Table 6.5: Line Positions^a (cm⁻¹) for the $a^{3}\Pi(1) - X^{1}\Sigma^{+}$ System of ¹¹BI (cont'd.)

`**.**

u

Į

 		Q-bran	ch	Blen	ds	R-Bra	anch	
0 - 1	Band	Calc	Res	Calc	Res	Calc	Res	
 P(8)	P(19)			15816.633	0.019			
7	20			15816.979	-0.119*			
6	21			15817.383	-0.057			
5	22			15817.847	0.025			
4	23			15818.371	0.037			
3	24			15818.957	-0.012			
2	25			15819.608	-0.006			
1	26			15820.328	-0.062*			
Q(0)		15820.780						
1		15820.837						
ť		15820.950						
3		15821.119						
4		15821.345						
5	R(0)	15821.628				15821.561		
6		15821.967						
7	1	15822.363				15822.399		
8		15822.815	-0.037					
9	2	15823.324				15823.293		
10		15823.890	-0.078*					
11	3			15824.459	0.058			
12	4			15825.204	-0.009			
13	_	15825.925	-0.095*					
14	5			15826.622	0.032			
15	6			15827.532	0.006			
16	7			15828.508	0.006			
17	8	15829.431	0.018			15829.843		
18	9	15830.449	-0.025			15851.131	-0.019	
19		15831.524	-0.006					
20	10			15832.597	0.016			
21	11			15855.854	-0.008			
22	12	4507/ 707	o	15835.175	0.015	4507/ 050		
25	15	15856.587	-0.025			12820.820	0.02/	
24	14	1585/./45	0.035			15858.420	-0.001	
27	17	12039.139	-0.029			159/1 720	-0.001	
20	10	15040.030	-0.071			15041-767	-0.027	
20	17	159/2 7/1	-0.051			15045.400	-0.037	
20	10	12042-141	-0,047	158/5 328	-0.003			
27	10			158/7 005	0.003			
21	20			158/8 023	-0.001			
31	20			15850 811	100.00			
72	22	15852 500	ויכת ה	12020.011	0.044	15853,007	-0.050	
33	22	15854 477	0.021			15855 083	0,003	
35	24	15856-413	0.013			15857.216	-0.027	
36	25	15858,450	0.000			15859.404	-0_027	
37	26	15860.543	0.001			15861.649	0.005	
38	27	15862.694				15863.950	-0.032	

Table 6.5: Line Positions^a (cm⁻¹) for the $a^{3}II(0^{+}) - X^{1}\Sigma^{+}$ System of ¹¹BI (cont'd.)

ļ

		Q-brar	ich	Blends		R-Br	anch	
0 - 1	Band	Calc	Res	Calc	Res	Calc	Res	
39	28	15864.901				15866.307	-0-093*	
40	29	15867.164	-0.008			15868.720	0.003	
41	30	15869.485	0.018			15871.190	-0.008	
	31					15873.715	-0.052	
	32					15876.297		
	33					15878.934	-0.002	
	34					15881.628		
	35					15884.378		
	36					15887.184	0.054	
	37					15890.045	0.049	

Table 6.5: Line Positions^a (cm⁻¹) for the $a^{3}II(1) - X^{1}\Sigma^{+}$ System of ¹¹BI (cont'd.)

^aThe table lists positions of single lines and intesity-weighted blends calculated from the parameters of Merge (B). The residuals are defined as res = $\nu_{obs} - \nu_{calc}$. Data not included in the least-squares fits are indicated by as asterisk. ł

These entries are the ratios of the root-mean squares (rms) of the residuals to the standard deviations for the individual bands. The final merges, (C) and (D), employed the output of merge (B) as input to obtain estimates of vibrational term values and vibrational constants respectively for the $a(0^+)$ and X.

In conclusion, the following observations can be emphasized:

The estimates in Table 6.2 of B_0^{\prime} , B_1^{\prime} , B_0^{\prime} , and these reported by Lebreton et al. (51) (B_0^{\prime} = 0.389, B_1^{\prime} = 0.385, B_0^{\prime} = 0.363 cm⁻¹), are in very good agreement.

Since the latter constants were derived from conventional spectrographic data, there is much confidence in the reliability of the present approach for gaining useful fundamental data from weak spectra.

The present work demonstrates, then, the advantages of the photoelectric technique. These are: the very high

Ţ

sensitivity permitting the use of the weak, but specific emission source, without the problems of spectral interference. The analysis of the $a(0^+) \rightarrow X$ system has thus been extended considerably and the first data on the a(1) state have been obtained. Table 6.6: Term Values and Vibrational Parameters⁴ (cm⁻¹) for the $X^{1}\Sigma^{+}$ and $a^{3}\Pi(0^{+},1)$ States of ¹¹BI

^aValues in parentheses are estimated standard errors given by $\hat{\sigma}_{\rm M}({\rm V}_{\rm ii})^{1/2}$, in units of the last significant figure of the corresponding parameter.

a subject of some lives on

150

Chapter 7

Vibrational Analysis of PCI⁺, AsCI⁺ and SeO⁺. New Visible Emission Spectra

7.1 Introduction

A relatively small number of diatomic molecular ions have been observed spectroscopically. The present chapter describes experiments that have been carried out to produce new emission spectra of 11-valence electron diatomic ions. Specifically, two new ionic emissions were analyzed and attributed to Group 5 halides (PCl⁺, AsCl⁺) and one new emission (SeO⁺) extended the knowledge of the relatively well characterized diatomic ions of Group 6. Although the homonuclear O_2^+ (61, 62), S_2^+ (63, 64, 65), Se_2^+ (66), Te_2^+ (66) and heteronuclear SO⁺ (43, 67, 68) and TeO⁺ (69) ions have been the subjects of varying degrees of analysis, only three observations of the isovalent Group 5 monohalides are known.

Douglas and Frackowiak (70) have rotationally analyzed five red-degraded bands of the $A^2\Sigma^+ - X^2\Pi$ band system of the PF⁺ ion, excited in a discharge through helium mixed with a trace of PF₃. Dyke and coworkers (71) studied the ground state of NF⁺ via the photoelectron spectrum of NF, NF($X^3\Sigma^-$, $a^1\Delta$) \rightarrow NF⁺($X^2\Pi$) + e⁻. Finally, in a similar study by the same group (72), the photoelectron spectrum of the products of the F + PH₃ reaction was observed in the ionization energy region 9.5-10.0 eV. This spectrum has been assigned

151

as the first ionization band of PF, $PF(X^{3}\Sigma^{-}) \rightarrow PF^{+}(X^{3}\Sigma^{-}) \rightarrow PF^{+}(X^{2}\Pi) + e^{-}$.

PC1⁺

Earlier experimental work in this laboratory (73) was concerned with the study of the reaction of phosphorous trichloride with metastable $Ar({}^{3}P_{2,0})$ atoms of energy ~11.5 eV. Numerous red-degraded emission bands in the 4000-6000 Å region were assigned to the $A^{3}\Pi_{r} - X^{3}\Sigma^{-}$ system of PCl, and weak system in the 8100-8300 Å region was assigned to the $b^{1}\Sigma^{+} - X^{3}\Sigma^{-}$ system of PCl.

Presently, the reaction of PCl_3 with the products of discharged helium were examined under the experimental conditions described in Chapter 4. Numerous red-degraded bands have been observed in the 4000-6900 Å region and assigned to a ${}^{2}\Pi \rightarrow X^{2}\Pi$ system of the PCl^{+} ion.

Although this ion has been detected mass spectrometrically from electron-impact ionization of phosphorous trichloride and phosphoryl chloride (74), there have been no previous spectroscopic observations.

<u>AsCl⁺</u>

2112412

As was the case with most of the ionic species studied in this laboratory, electronic excitation of $AsCl^+$ was achieved in the reaction of discharged helium with a suitable substrate, in this case $AsCl_3$. An extensive system of reddegraded bands has been observed in the visible (4800 Å - 7850 Å); the system is similar in appearance to that of PC1⁺ and it was assigned as a ${}^{2}\Pi$ - X ${}^{2}\Pi$ transition of AsC1⁺.

$\underline{Se0}^{+}$

By analogy with the use of S_2Cl_2 as substrate for excitation of S_2^+ (A \rightarrow X) (63), the first observation of an emission spectrum of the selenium monoxide cation has been obtained from the reaction of discharged helium with SeOCl₂. The observed spectrum (3900 Å - 6700 Å) is similar in appearance to the A \rightarrow X system of SO⁺, and is assigned to the same ${}^2\Pi$ - ${}^2\Pi$ transition in SeO⁺. The only previous observation of SeO⁺ was by mass spectrometric detection in the vapour above SeO₂ and SeO₃ at high temperature (75).

7.2.1 PCI⁺: Vibrational Assignment

The PCl⁺ emission spectrum consists of an extensive series of double-headed, red-degraded bands in the range 14550-25000 cm⁻¹. A small portion of the spectrum is shown in Figure 7.1, which illustrates the intensity difference of the two spin-orbit components. The shorter wavelength spinorbit sub-bands are approximately three times more intense than the longer wavelength sub-bands. For the less abundant $P^{37}Cl^+$ ion, only the more intense shorter wavelength subbands can be observed.

The absolute vibrational numbering in the ground state

was obtained from the observed isotopic splittings between corresponding bands of $P^{35}Cl^+$ and $P^{37}Cl^+$ in the v' = 0 progression, as follows. Letting δG_v denote the difference between the vibrational term values for two isotopically related diatomics,

$$SG_v = G(v) - G'(v),$$
 (7.1)

 δG_v is given to a good approximation (73) by

$$\delta G_{v} = (1 - \rho) (v + 1/2) \Delta G_{v} \qquad (7.2)$$

where ΔG_v is the vibrational frequency for the v^{th} level and ρ is the square root of the ratio of the reduced masses, $\rho = (\mu/\mu^i)^{1/2}$. If the frequency of the $v' = 0 \rightarrow v''$ transition is denoted by $\nu_{0,v''}$, then the observed isotope shift, $\delta \nu_{0v''}$ is given by

$$\delta \nu_{0v''} = \delta G_{v'} - \delta G_{v'-0}$$

= $(1 - \rho) [(v'' + 1/2) \Delta G_{v'} - 1/2 \Delta G_{v'-0}]$ (7.3)

or

}

$$\delta \nu_{0v''} / \Delta G_{v''} = (1 - \rho) [(v'' + 1/2) - 1/2 \Delta G_{v'} = 0/\Delta G_{v''}]$$
 (7.4)
 $\Delta G_{v''}$ were obtained from the plot of $\Delta G(v'' + 1/2)$ against
 $(v'' + 1/2)$. The second term of the right-hand side of
Eq. (7.4) is small and almost constant. The approximate
value used to calculate this term was $\Delta G_{0'} = 318.5 \text{ cm}^{-1}$. The
results are given in Table 7.1 and are plotted according to
Eq. (7.4) in Figure 7.2.

It should be noted that only strong sub-band heads with reliable $P^{37}Cl^+$ measurements were used in Table 7.1. The

solid line in Figure 7.2 is drawn with a slope of 0.01277, which is the value of $(1-\rho)$ calculated for $P^{35}Cl$ and $P^{37}Cl$ (58). Ruling out the possibility that the spectrum obtained in the present work was actually due to PCl, there is no doubt that the emitter is PCl⁺. Further confirmation about the nature of the emitter will be given in the next section. Finally, the ground state numbering is established unequivocally and is presented in the Deslandres Table, Table 7.2.

Figure 7.1: A portion of the PC1⁺ emission spectrum.

1

156

ı

•

h

r T

δν _{0v"}	∆G _{v"}	V"	$(\mathbf{v}^{\prime\prime} + \frac{1}{2}) - \frac{\Delta G_0}{2\Delta G_{\mathbf{v}^{\prime\prime}}}$	δν _{0ν"} /ΔG _{ν"}
109.8	615.5	14	14.24	0.1784
118.3	610.7	15	15.24	0.1937
127.2	606.0	16	16.24	0.2099
135.2	600.0	17	17.23	0.2253
141.5	593.6	18	18.23	0.2384
148.5	586.2	19	19.23	0.2533

Table 7.1: Vibrational Isotope^a Effect in the ${}^{2}\Pi-X^{2}\Pi$ System of $P^{35}Cl^{+}$ and $P^{37}Cl^{+}$

^aSee Eq. (7.4) for definitions of the symbols.

.

Figure 7.2: Vibrational isotope effect in the $X^2 II$ state of PC1⁺. Plot of sub-bandhead differences of $P^{35}C1^+$ and $P^{37}C1^+$ for the v' = 0 progression according to Eq. (7.4); see text. The solid line corresponds to the theoretical slope, 1 - ρ = 0.01277

3 }

ì

•

160

ł

4

ł.

t . .

Table 7.	2:	Deslandres	Table ^a	for	the	² п	-	х ² п	System	of	PCI ⁺	
									-,			

i

P ³⁵ Cl						P ³⁷ Cl				
VII		v ¹ =	0		VI =	1		v ¹ = 0	v ¹ = 1	
6	24623.9	199.8	24424.1*							
7	650.6	102.9	645.0	717 7	2/200 7				3/7/4+	
1	644 0	192.0	23700.3" 638 0	211.2	24290.3				24341*	
8	23328.4	185.9	23142.5	331.1	23660*					
5	642.2	10517	634.4	55.11	655					
9	22686.2	178.1	22508.1	317.8	23004.0*					
•	633.4		637.3		632.2					
10	22052.8	182.0	21870.8	314.2	22371.8	191.7	22180.1	22138.7* 316	.2 22454.9*	
	627.3		626.6		634.6		626.8		628.6	
11	21425.5	181.3	21244.2*	310.4	21737.2*	183.9	21553.3		21826.3	
	627.7		636.5		622.5		631.2		618.0	
12	20797.8*	190.1	20607.7	315.7	21114.7	192.6	20922.1	20892.5* 315	.8 21208.3	
	628.2		625.4		624.5		622.6	620.9	621.0	
13	20169.6	187.3	19982.3	318.9	20490.2	190.7	20299.5	20271.6 315	.7 20587.3	
	619.0		614.5		620.1			611.2		
14	19550.6	182.8	19367.8	319.5	19870.1			19660.4		
	612.4		611.2		614.4			603.9		
15	18938.2	181.6	18756.6	317.5	19255.7			19056.5		
	609.1		608.5					600.2		
16	18329.1	181.0	18148.1					18456.3		
	603.3		603.2					595.3		
17	17725.8	180.9	17544.9					17861.0		
	598.0		594.7					591.7		
18	17127.8	177.6	16950.2					17269.3		
	589.8		588.0					582.8		
19	16538.0	175.8	16362.2					16686.5		
	582.1							581.0		
20	15955.9*							16105.5		
~	579.2	400 4	45404 44							
21	153/6./	182.6	15194.1*							
22	5/6.5	475 0	5/0	740 4	45440 7					
<u> </u>	14800.2	1/5.8	14024.4*	518.1	15118.3					
77					565.9					
25					14552.4					

^aBands not included in the least squares fits are flagged by an asterisk, see text.

161

L

7.2.2 PCI⁺: Results and Discussion

It is clear from Table 7.2 that the spectrum consists of a long progression of bands from v' = 0 and a shorter progression from v' = 1. This intensity distribution is consistent with a considerable difference in the equilibrium internuclear separations and vibrational frequencies of the two states; the single excited state spacing, $\Delta G'(\frac{1}{2}) \sim$ 320 cm⁻¹, is about half the $\Delta G''(v + \frac{1}{2})$ intervals, indicating a relatively shallow and weakly bound excited state.

The head positions $\nu(i\Omega v'v'')$ of both isotopic bands can be represented adequately by Eq. 5.3, involving a difference of two Dunham power series in $(v' + \frac{1}{2})$ and $(v'' + \frac{1}{2})$:

 U_{k0} and A_{k0} are mass-invariant parameters describing the vibrational terms and spin-orbit splittings of the two states as a function of mass reduced quantum number, $x_i = (v + \frac{1}{2})/\mu_{1}^{1/2}$, where i denotes a particular isotope. The isotopically invariant parameters U_{k0} are related (56) to the usually reported Y_{k0} Dunham coefficients by Eq. (5.3) given in Chapter 5.

It should be noted that Eq. (5.3) is correct only when higher-order Dunham and/or Born-Oppenheimer breakdown terms are neglected, as in the present case of a low resolution spectrum. For the present data on PC1⁺, with only two vibrational levels for the excited state being observed, and with the accuracy of the measurements inadequate for detection of any vibrational dependence of the ground state spin-orbit separation, Eq. (7.5) could be reduced to the 5parameter expression,

$$\nu(i\Omega v'v'') = T'_{i} + U'_{10}x'_{i} - [U''_{10}x''_{i} + U''_{20}x''_{i}] + (\Omega - 1)\Delta A \qquad (7.6)$$

When the assignment of the sub-bands is $\Pi_{\Omega} \Leftrightarrow \Pi_{\Omega}$ with, $\Delta \Omega = 0$ and the designation $\Omega = 1/2$ or 3/2 unknown, as in the present case, only $|\Delta A| = |A_{\bullet}^{*} - A_{\bullet}^{*}|$ can be calculated.

It was found possible to fit simultaneously most of the bandheads of Table 7.2 by weighted least-squares to the model given by Eq. 7.6. In this way, estimates of the vibrational parameters of the two states and ΔA could be obtained. The rejected data from Table 7.2 were mostly weaker heads overlapped by strong atomic lines. The weight of each band was taken as inversely proportional to the square of the estimated wavenumber uncertainty, which corresponds to a constant value of 0.6 Å.

This uncertainty varied from 3.6 cm⁻¹ at short wavenumber to 1.2 cm⁻¹ at long wavenumber. The results of this fit according to Eq. (7.6) of 35 heads of $P^{35}Cl^+$ and 10 heads of $P^{37}Cl^+$ are listed in Table 7.3. The estimated standard deviation of the fit was $\hat{\sigma} = 1.4$ with f = 40degrees of freedom; the difficulty encountered in locating the heads of several of the weaker bands is the principle factor leading to residuals of the fit being somewhat larger than the estimated measurement precision. Confirmation that the emitting species is PC1⁺ can be established from two observations: i) The relative intensity of the isotope bands is in accord with the ³⁵Cl:³⁷Cl natural abundance. In addition the presence of spin-orbit doublets indicate a chlorine-containing diatomic with an odd number of electrons. ii) An electron-impact study (74) reported that an energy of 16.5 \pm 0.5 eV is required for the formation of PC1⁺ from dissociative ionization of PC1₃. Combining this result with the energy required for formation of the excited (v' = 0) state of PCl⁺, ~20 eV is needed to form PCl⁺ from PCl₃. This is larger than the 19.82 eV available from the metastable $He({}^{3}S)$ but less than that of He_{2}^{+} (~21 eV). In accord with this energy consideration the large helium flow rate and pressure (~ 4 Torr) used experimentally to induce the emission, are conditions known to enhance production of He_2^+ (39,41,42), as mentioned in Chapter 4. Additional evidence for PC1⁺ as the carrier of the emission is provided by a comparison of the ground state vibrational frequency with those of isovalent species. Values of T_{*}^{i} , $|\Delta A|$, $\omega_{e,i}^{i}$, ω_{e}^{ii} , $(U_{10}/\mu_{i}^{1/2})$, and of $\omega_{e}^{ii}x_{e}^{ii}$, $(-U_{20}/\mu_{i})$, calculated for $P^{35}Cl^{+}$ from the results in Table 7.3 are listed in Table 7.4, and compared with the corresponding constants of selected isovalent molecules having excited states with $\omega'_{e} < \omega''_{e}$. The ratios of ω " (X) of PCl⁺ with those of the isoelectronic species SiCl and PS, 1.26 and 0.93, are similar in magnitude to the ratios of $\omega_{*}^{"}$ (%) of PF⁺ with those of the
corresponding isoelectronic molecules, SiF and PO, 1.23 and 0.85. The ratios $\omega_{\bullet}^{"}(X)$ to $\omega_{\bullet}^{!}(A)$ for the isovalent PF^{\dagger} and PCl^{\dagger} molecules are 1.70 and 2.15 respectively.

The observed system of PC1⁺ can be attributed to either a ${}^{2}\Pi \rightarrow X^{2}\Pi$ or to a ${}^{2}\Sigma \rightarrow X^{2}\Pi$ system. In the latter case, the spin-orbit splitting is directly correlated with the spinorbit coupling constant of the ground state. However, there are several indications that the excited state is a ^{2}II state, and not ${}^{2}\Sigma$, as in the observed PF⁺ system (70). First, the observed spin-orbit coupling constant in PF⁺ $(X^{2}II)$ about 324 cm⁻¹, almost twice the sub-band separation in PCl⁺. However, comparing the spin-orbit constants of the ground state of the isovalent molecules SiF, SiCl and PO, PF^{+} , (Table 7.4), a larger magnitude of A for the heavier molecule is observed; second, work at higher resolution indicates the absence of any Q branches ($\Delta J = 0$) which is characteristic for a transition with $\Delta \Lambda = 0$. More details of the nature of a ${}^{2}\Pi$ - ${}^{2}\Pi$ transition will be presented in the next chapter. Finally, a considerable intensity difference between the sub-bands is consistent with a $^{2}\Pi$ excited state where the higher energy spin-orbit component has a lower rate of population than the lower one.

	A	X ² II
T _e	28753.3(64)	0.00
U ₁₀	1299.2(43)	2795.8(31)
U ₂₀		-42.69(40)
$ \Delta \mathbf{A} ^{\mathbf{b}}$	183.1	(11)

Table 7.3: ^aIsotopically Invariant Parameters (cm⁻¹) for the $X^{2}\Pi$ and $A^{2}\Pi$ States of PCl⁺

*Values in parentheses correspond to one standard deviation in units of the last digit of the corresponding parameters.

 $^{b}\Delta A = A_{e}' - A_{e}''$

ł

Table 7.4: Molecular Constants^a (cm⁻¹) for the Ground and

Low-lying Excited States of Selected 11-valence

Electron Diatomics.^c

		Te	ω _e	ω _e x _e	A _e	A A	Ref.
Sif	$A^2\Sigma^+$	22858.3	718.5(8)	10.167			
	х ² п	0.0	857.19	4.735	161.88 ^b		(53)
PF ⁺	$A^2\Sigma$	35434.64	619.00	4.62			
	x²π	0.0	1053.25	5.05	323.95		(70)
PO	в' ² п	33120.7	759.2	3.8(5)	-13.3 ^b		
						237.3	(53)
	х ² п	0.0	1233.34	6.56	224.03		
si ³⁵ cl	A ² Σ	23010.4	296.4	0.73			
	х ² п	0.0	535.60	2.16 ₈	207.21		(76)
P ³⁵ Cl ⁺	A	28753.3(64	320.6(1	D			
						183(1)	this
	х ² п	0.0	689.8(8)	2.60(2)			work
PS	в ² п	22573.3	510.80(2)	1.79(2)	91.85		
						230.1	(77)
	х ² п	0.0	739.49(2)	2.97(2)	321.93 ^b		

^a Values in parentheses correspond to one standard deviation in units of the last digit of the corresponding parameters.

b v = 0

^c Reduced masses of P³⁵Cl⁺ and P³⁷Cl⁺, calculated from the atomic masses of ref. [58] are 16.425144 and 16.852792 amu respectively.

The eleven valence electrons of the PCl⁺ ion can be correlated with the following electron configuration, ... $(z\sigma)^2(y\sigma)^2(\omega\pi)^4(x\sigma)^2(v\pi)$ leading to a ²II regular ground state. A weakly bound excited $^{2}\Pi$ state can be obtained only by promotion of a bonding $\omega\pi$ electron to the $v\pi$ orbital, giving the configuration $(z\sigma)^2(y\sigma)^2(\omega\pi)^3(x\sigma)^2(v\pi)^2$, with possible states $^{2,4}\Pi$, $^{2}\Phi$. The corresponding $^{2}\Pi$ states of SiF and SiCl have not been observed. It can be noted, however, that Verma (78) tried to correlate the observed higher lying $^{2}\Pi$ states of SiF and SiCl with strong bonding character to a $(\omega \pi)^{3} (x\sigma)^{2} (v\pi)^{2}$ configuration. Johns and Barrow (79) suggested that the $(\omega \pi)^3 (x\sigma)^2 (v\pi)^2$ electronic configuration gives rise only to repulsive states in the SiF molecule. A better understanding of the electronic states of the 11valence electrons molecules can be obtained from the ab initio CI calculations on SiF published recently by Bialski and Grein (80). In this work, a minimal basis set was used and states with $\omega_{*}^{\prime} > \omega_{*}^{\prime\prime}$ (X) and/or $r_{*}^{\prime} < r_{*}^{\prime\prime}$ (X) were considered to be Rydberg states. An unobserved stable excited ²II(3) state of SiF with calculated $T_{e} = 31800 \text{ cm}^{-1}$ was found to have a leading configuration $(\omega \pi)^3 (x\sigma)^2 (v\pi)^2$ and $r_{e}^{1} \sim 2.4$ Å compared to $r_{e}^{n} = 1.6011$ Å for the ground $^{2}\Pi$ state. The spectroscopic constants ω_e and D_e for this state were not given due to its shallow potential curve.

VILLER F. P. P. J.

ţ

and the second
From the preceding discussion, it would be reasonable to assume that the excited ${}^{2}\Pi$ state of PCl⁺ observed

presently, corresponds to the ${}^{2}\Pi(3)$ state predicted in SiF, and observed in NS as $H^2\Pi$ (81). Another $^2\Pi(2)$ state has the same configuration as the ${}^{2}\Pi(3)$ state but in the CI calculations was found to be repulsive, in accord with the expected correlation with ground state $Si(^{3}P) + F(^{2}P)$ atoms. As in SiF, but not NS, the lower ${}^{2}\Pi(2)$ state of PCl⁺ could be repulsive. In their conclusion, Bialski and Grein reported (80) that the three low-lying Σ^{+} valence states of CCl, SiF, NS and PO were all repulsive. The observed $A^2\Sigma^+$ states in PO and NS should be almost pure Rydberg states corresponding to $v\pi \rightarrow ns$ transitions. In the case of PF^{\dagger} emission observed by Douglas and Frackowiak (70) the $A^2\Sigma^+$ state with T_e ~ 35 435 cm⁻¹ is probably a higher-lying valence state and not a Rydberg state. Finally, after the present work was complete, Nguyen (82) reported an ab initio investigation, with a split-valence plus diffuse and polarization basis set extended by Moller-Plesset perturbation theory up to fourth-order, of the lower-lying bound electronic states of three diatomic molecules PH, PF, PCl and their cations. In this work the vibrational frequency of the ground state $X^2 \Pi$ of PCl⁺ was calculated as 696 cm^{-1} . The value of 690 cm^{-1} for the same constant in the present experimental work is further confirmation that the emitting molecule is PC1⁺. It should be noted that within the Moller-Plesset perturbation theory only the lowest state of a given symmetry and multiplicity can be reliably

calculated; hence, the excited ²II state with configuration $(\omega\pi)^3 (x\sigma)^2 (v\pi)^2$ could not be obtained in the recent ab initio study. Furthermore, Nguyen reports an excited ² Σ state derived from $\dots (x\sigma)^1 (v\pi)^2$ with an extremely shallow potential and lying ~ 6696 cm⁻¹ higher than ²II excited state reported in the present work. Therefore, the lack of agreement between the calculated ² $\Sigma \rightarrow X^2II$ and the observed ²II $\rightarrow X^2II$ energies supports the assignment of the latter as the system responsible for the PCl⁺ emission spectrum.

7.3.1 AsCI⁺: Vibrational Assignment

-9

Ń

ļ

4

1

" 4

月月

The AsCl⁺ emission spectrum consist of a large number of red-degraded sub-bands in the range 12800-21000 cm⁻¹, with the most intense emission around 16000 cm⁻¹. Figure 7.3 shows a portion of the spectrum. As in the case of PCl⁺, the higher energy member of the spin-orbit coupled pairs is more intense than the lower energy member; but since the constant separation of the spin-orbit components is ~1390 cm⁻¹, the weaker sub-band of each (v',v") transition was either very close to or overlapped by the stronger sub-band of the (v',v" + 3) transition. For this reason, measurements of the weaker heads were less certain, or impossible. Although complicating the spectrum, the two isotopes of AsCl⁺ provided a means for establishing the correct vibrational numbering for the observed transitions using Eq. (7.4) as for the PCl⁺ ion. The approximate value

ì.

used for ΔG_0 , was 240.3 cm⁻¹. The results are given in Table 7.5 and are plotted according to Eq. (7.4) in Fig. 7.4. The solid line in Figure 7.4 is drawn with a slope of 0.01859, which is the value of $(1 - \rho)$ calculated for As³⁵Cl and As³⁷Cl(58). However, since the possibility that the spectrum obtained presently was due to AsCl (83) is ruled out, there is no doubt that the emitter is AsCl⁺.

Finally, the head positions of both isotopes with unequivocal numbering are arranged in a Deslandres array in Table 7.6.

Figure 7.3: A portion of the $AsCl^+$ emission spectrum, showing bandheads belonging to the ${}^{2}\Pi - X^{2}\Pi$ systems of $As^{35}Cl^+$ and $As^{37}Cl^+$. The long wavelength member of each of spin-orbit coupled pair (----) is weak, and often overlapped (see text)

J

Eil Sauga

δν _{0ν"}		11	$\Delta G_0,$	Sur IAC
	ΔG _{v"}	v	$(\sqrt{2} + \frac{1}{2}) - 2\Delta G_{v}$	ον _{0ν"} /ΔG _{ν"}
165.1	463.0	19	19.24	0.3566
172.8	457.3	20	20.24	0.3779
186.9	450.0	22	22.23	0.4153
192.6	444.7	23	23.23	0.4331
206.4	440.0	25	25.22	0.4691
211.6	434.3	26	26.22	0.4872

Table 7.5: Vibrational isotope^a effect in the ${}^{2}\Pi-X^{2}\Pi$ system of As ${}^{35}Cl^{+}$ and As ${}^{37}Cl^{+}$

^aSee Eq. (7.4) for definitions of the symbols.

Figure 7.4: Vibrational isotope effect in the X^2II state of AsCl⁺. Plot of sub-bandhead differences of As³⁵Cl⁺ and As³⁷Cl⁺ for the v' = 0 progression according to Eq. (7.4); see text. The solid line corresponds to the theoretical slope 1 - ρ = 0.01859.

\ , •

Table 7.6: Deslandres Table for the ${}^{2}\Pi$ - X ${}^{2}\Pi$ System of AsCl⁺

				As ³⁵ Cl	+			1	15 ³⁷ Cl ⁺			
٧ ⁿ		A_H ≂	٥		V ¹¹ =	1		v [#] ≖ 0		Ň	/= 1	
9			20004.1	243.9			20247.9					
10	20892.3						19758.9					
11	20403.4 483.3	1375.1	19028.3 487.0	250.6	20653.9 484.0	(1380)	19274.0*	20510.5				
12	19920.1 (471)	1378.8	18541.3	245.7	20169.9	1386.9	18783.0	20030.0*				
13	19449.5* (487)			(237)	19686.9 479.8			19558.8 469.8				
14	18962.1 474.9	1386.1	17576.0	245.1	19207.1 477.6	1386.0	17821.2	19089.0		:	241.1	19330.1 470.3
15	18487.2 467.9			242.4	18729.5 474.5							18859.8 468.3
16	18019.3 466.1			235.7	18255.0 467.7			18162.2 (457)			229.3	18391.5 457.3
17	17553.2 (465)			234.1	17787.3 467.5			17705.3* (454)		(229)	17934.2
18	17087.8* (465)	(1395)	15693.2	246.6	17319.8 458.4	1380.0	15939.8	17251.0* (463)	(1399)	15851.6 455.6		
19	16623.0	(1394)	(455)	238.4	16861.4 458.4			16788.1	1392.0	15396.0		
20	453.6	138/./	453.2	241.0	10403.0			10334.8	1363.4	447.5		
21	452.7	1307.5	448.9					445.7 15442 6	1207.4	14430,9		
23	447.2	(1381)	(445)	r				441.5				
24	442.2	(1381)	(442)	r				438.6				
25	443.8 13922.5							433.6 14128.9				
	436.1		*Keads	s not in	ncluded i	n the		430.9				
26	13486.4		least	t-square	es fit, s	ee text.		13698.0				
27	13053.9											

.

To Take a much

111 11

ĸ

7.3.2 AsCl⁺: Results and Discussion

42 د

A Par Wash

ţ

The head positions of the bands of both sub-systems and of both isotopes were, fitted simultaneously by weighted least-squares to the same model as that employed for PCl^+ , as given by Eq. (7.6). The isotopically invariant parameters of Table 7.7, U_{k0} , are related to the more familiar vibrational Dunham coefficients Y_{k0} by Eq. (5.3).

Heads not included in the fit are flagged by an asterisk in the Deslandres Table (7.6), and are mostly weak heads overlapped by atomic lines. Weights were chosen as $1/\sigma^2$ where σ are the uncertainties in the measurements of band-heads, and varied from 0.9 cm⁻¹ at the red end of the spectrum to 2.7 cm⁻¹ at the blue end.

The 39 heads of $As^{35}Cl^{+}$ and the 20 heads $As^{37}Cl^{+}$ were fitted satisfactorily only for the numbering given in Table 7.6. As mentioned earlier, the numbering was established initially from the observed isotope shifts. The standard deviation of the fit was 1.4 with 54 degrees of freedom. This standard deviation increased considerably to ~ 3.0, where the vibrational numbering, was changed up or down by one unit. The spin-orbit coupling separations were represented by a single parameter $|\Delta A|$, which corresponds to the difference between the spin-orbit coupling constants of the upper and lower ${}^{2}\Pi$ states. Additional parameters representing the v"-dependence could not be obtained from the present experimental data. Although the magnitude of $|\Delta A| \sim 1386 \text{ cm}^{-1}$ is considerably larger than the

corresponding constant of the isovalent phosphorous cation, ~ 183 cm⁻¹, it is similar to $|\Delta A|$ of the isovalent arsenic species, AsS and AsO, as shown in Table 7.8. The observed transitions of $AsCl^{\dagger}$ from v' = 0,1 to the vibrational levels v'' = 9-27 of the ground state are consistent with a weakly bound excited state having $r_{*}^{*} > r_{*}^{*}(X)$, and can be readily correlated with the similar observed progressions of the isovalent PCl⁺ cation. It is reasonable to assume that the configuration and the nature of the electronic states involved in the observed AsCl⁺ emission are the same as for PCl^{\dagger} . The assignment of the excited state as ${}^{2}\Pi$, as opposed to ${}^{2}\Sigma$, is also in accord with the difference in intensity between the two sub-systems in AsCl⁺; this observation implies different rates of population of the F_1 and F_2 components of the excited ${}^{2}\Pi$ state. It should also be noted from Table 7.8 that for the isovalent AsO and AsS molecules, an excited $^{2}\Pi$ state is known at similar energy.

Presently, the problem of whether the $AsCl^+$ excited state is regular or inverted cannot be resolved unequivocally. However, it is believed that much of the observed spin-orbit separation can be attributed to large spin-orbit coupling in the ground state, as in AsO (84). In addition, an examination of Table 7.8 shows that the ground vibrational frequency of $AsCl^+$ is similar to that of the AsS mclecule but that the $\Delta G^+(\frac{1}{2})$ value determined for $AsCl^+$ is significantly lower than those of the ${}^2\Pi$ states of AsO and

AsS. This anomalously low vibrational spacing in the excited state is also observed in PCl⁺. Small vibrational intervals in the excited states of other isovalent species have also been found, for example, the $A^2\Sigma$ states of the silicon halide molecules. In conclusion, Shimauchi (88) has compared the ω " values of the phosphorus and arsenic oxide and sulphide ions with those of the neutral molecules; the magnitude of the ratios, ω "(ion)/ ω "(neutral), is 1.14 in all cases. The ratios of the ω " values for AsCl⁺ and AsCl (83), and for PCl⁺ and PCl (73) are 1.24 and 1.25 respectively.

	2 _{II}	х ² п
T _e	25435(5)	0.0
U ₁₀	1183(4) ^b	2576.6(24)
U ₂₀		-41.5(3)
∆A [°]	1386	.3(7)

Table 7.7: Isotopically Invariant Parameters^a (cm⁻¹) for the $X^2\Pi$ and Excited ²II States of AsCl⁺

^a Values in parentheses correspond to one standard deviation in units of the last digit of the corresponding parameters.

^b v' = 0,1 only.

11

] 5 Å

、 たいち いっとうか とうちついろ 、 たままちの日本になるない

 $^{\circ} \Delta A = A_{e}! - A_{e}!!$

		Te	ω _e	ω _e x _e	A _e	ΔA Ref.
As0	G ² II _{1/2}	26485.2	630.30	3.006	-316.8	
						1342.8 (84)
$X^{2}\Pi_{1/2}$	0	.0 967.08	4.850	1025.9	7	
SiBr	$A^2\Sigma$	20937.6	250.3	0.5		
	$X^{2}\Pi_{1/2}$	0.0	424.5	1.5	419.2	(85)
AsS	$A^2 \Pi_{1/2}$	~20475	402.26	1.21		
						~1210 (86,87)
	$X^{2}\Pi_{1/2}$	0.0	567.94	1.97		
As ³⁵ Cl ⁺	²∏	25435(5)	242.4(9) ^b			
						1387(1) this
	X²∏	0.0	527.7(5)	1.74(1)		work ^c

Table 7.8: Molecular Constants^a (cm⁻¹) for Selected States of Some 11-valence Electron Diatomics

^a Values in parentheses correspond to one standard deviation in units of the last digit of the corresponding parameters.

^b ΔG(1/2)

٤,

^c Reduced masses of As³⁵Cl⁺ and As³⁷Cl⁺, calculated from the atomic masses of ref. (58) are 23.841219 and 24.752939 amu, respectively.

7.4.1 SeO⁺: Vibrational Assignment

٩

The numerous red-degraded bands of the SeO⁺ emission are in the range 15000-25500 cm⁻¹. Figure 7.5, shows a portion of the SeO⁺ spectrum, and its characteristic feature, namely the presence of "double-headed" bands. This closeness of heads cannot be attributed to any selenium isotope effect, and arises instead from the similarity in magnitude of the spin-orbit splittings and the ground state vibrational spacings. More specifically, one head is the first head of a spin-orbit comp nent of a (v', v") transition, while the other is the second head of the neighbouring (v' - v'' - 1) band. This accidental overlapping causes considerable difficulty in measuring accurately the longer wavelength member of each pair. The measured head positions are arranged in a Deslandres array given in Table 7.9. In this table, which was obtained taking into consideration the similar intensity of the two spin-orbit coupled pairs of the same (v', v") transition, there is also good agreement between the several estimates of the upper and lower state vibrational intervals, which decrease steadily with increasing v.

In addition, the intensity distribution of the bands is consistent with the larger vibrational frequency of the ground state, and is similar to the observed intensity of the $A \rightarrow X$ system of SO⁺. With this type of distribution, there is little doubt that the absolute vibrational numbering in Table 7.9 is correct.

Figure 7.5: A portion of the SeO⁺ emission spectrum from ~ 19750 to ~ 22050 cm⁻¹

.

÷

Figure 7.5

,

1

) 1

ī

۰,

۷'	v" ≃ 0		v ¹¹ = 1		v" = 2		v" = 3		v ^H = 4		v [#] = 5		v ¹¹ = 6		v" = 7	v ¹² = 8
			21913.5		20943.4		19981.6		19031.4	<u></u>	18104.9ª		17179.3ª		b	
0				972. 0		962.6		951.2		937.2		928.1		912.2		
			21025.0		20051.0		19087.7		18135.6		17198.4		16270.3		15358.	1
			659.6		656.5		655.8		658.3							
	23548.3		22571.5		21598.1		20635.9		b							
1		983.1		975.2		936.2		951.2								
	22675.7		21686.3		20709.3		19745.1		18793.9							15111.7
	649.8		649.5		648.1		649.2									
	24194.9		23212.6		Ъ		ь		20336.8ª		ь		b			
2		987.6		978.4		963.1										
	23328.6		22335.8		21357.4		20394.3		19470.6 ^ª		18509.5ª		17576.3			
	643.2		645.0		641.9											
	24840.9		23846.6 ^a		ь											
3		988.3		981.5												
	23969.1		22980.8		21999.3											
	634.7		632.1													
			24485.6ª													
4		990.9														
	14603.8		23612.9													
	628.0															
5																
	25231.8															

Table 7.9: Deslandres Table for the $A^2\pi$ - $X^2\pi$ System of SeO^+

÷._.

.

.

a Not included in the least-squares fit

b Band head overlapped by an adjacent band

186

4

ь

7.4.2 SeO⁺: Results and Discussion

ļ

The estimates of the vibrational and spin-orbit parameters of the two states were obtained using a leastsquares fitting procedure with the head positions given in Table 7.9. It was found that these data are represented adequately by a simple expression involving a difference of two Dunham series in $(v' + \frac{1}{2})$ and $(v'' + \frac{1}{2})$,

$$\nu_{v'v''} = T_{\bullet}^{i} + \sum_{k=1}^{i} Y_{k}^{i} (v' + \frac{1}{2})^{k} - \sum_{k=1}^{i} Y_{k}^{i} (v'' + \frac{1}{2})^{k}$$

$$+ (\Omega - 1) (A_{\bullet}^{i} + \alpha'_{A} (v' + \frac{1}{2}) - A_{c}^{ii} - \alpha''_{A} (v'' + \frac{1}{2})) \qquad (7.7)$$

However, A' and A' are totally correlated, so that only the magnitude of the difference of $\Delta A_{\bullet} = A'_{\bullet} - A''_{\bullet}$ could be determined. The constants α'_{A} and α''_{A} represent the variation of the unknown individual spin-orbit coupling constants with vibrational quantum number. If ΔA_{\bullet} has negative sign, which will be argued in the following sections, α'_{A} and α''_{A} will have positive sign.

In addition, the two vibrational Dunham coefficients obtained for each state are listed in Table 7.10. The least-squares fit had a standard deviation of 2.2 cm⁻¹ and 27 degrees of freedom. The molecular constants given in Table 7.10 follow the expected trends of those of a number of isovalent species, as shown in Table 7.11. It is clear that for all the molecules in this table, the nature of the ground and first excited electronic states is well-known, and that definite overall trends in the values of the constants are clearly established. For example, except for O_2^+ , the ratios of $\omega_{\bullet}(X)/\omega_{\bullet}(A)$ are in the range 1.45-1.62. For SeO⁺, this ratio is 1.51. It should be mentioned also that in all of T_• (A), $\omega_{\bullet}(A)$, $\omega_{\bullet}x_{\bullet}(A)$, $\omega_{\bullet}(X)$ and $\omega_{\bullet}x_{\bullet}(X)$, there is a decrease in magnitude with increasing reduced mass.

Although the molecular constants given in Table 7.10 are very similar, as expected, to those of NSe (90,91), the possibility that the spectrum obtained in this work actually belonged to NSe was el_minated by comparing the bandhead positions determined in the present work with those of Refs. (90,91). In a similar way, Se_2 (92) and SeO (93,94) were also eliminated as possible carriers of the bands observed presently.

Finally, the question concerning the sign of $\Delta A_e = A_e^* - A_e^*$ can be resolved with reasonable certainty by examination of the data of Table 7.11. It can be seen from the isoelectronic pairs NS, SO⁺ and NSe, SeO⁺ that there is a close similarity in the molecular parameters. The spinorbit coupling constant of the ground state, A_e^* , for SO⁺ is considerably larger than for NS, while the same constants for the excited state, A_e^* , are smaller and have opposite signs. Accordingly, A_e^* for SeO⁺ should be not only positive, but probably of larger magnitude than the value for NSe (~890 cm⁻¹). Taking into consideration the magnitude of $|\Delta A_e|$ (~878 cm⁻¹) that has been obtained in the present work, it is reasonable to expect that the excited $A^2\pi$ state of SeO⁺ is also regular. There is also little doubt then that $\Delta A_{\bullet} = A_{\bullet}^{*} - A_{\bullet}^{*}$ is negative for SeO⁺, in accord with all the isovalent molecules in Table 7.11 for which A₊^{*} and A₊^{*} are known.

I

ł

<u> </u>	A ² II	X ² II	
T _e	22625.7(17)	0.00	
ω _e	663.1(9)	999.7(6)	
$\omega_{e}X_{e}$	3.65(18)	6.31(8)	
$ \alpha_{\rm A} ^{\rm b}$	3.0(9)	5.0(7)	
$ \Delta \mathbf{A}_{\mathbf{e}} ^{\mathbf{b},\mathbf{c}}$	878.4	ł(28)	

Table 7.10: Molecular Constants^a (cm⁻¹) for the $X^2 II$ and $A^2 II$ States of SeO⁺

* Values in parentheses correspond to one standard deviation in units of the last digit of the corresponding parameters.

^b Although the signs of α' and α" are not known, both parameters have sign opposite to that of ΔA_e, see text.
^c ΔA_e = A_e' - A_e"

	0 ₂ + (61,89)	NS (81)	s0 ⁺ (67)	NSe ^d (90)	SeO [†] this work	s₂⁺ (65)	se₂† (66)	TeU* (65)	14] (66)
ſ _e '	40570.7	30296.4 ^b	31432	24205 ^{be}	22625.7	22344.69	19200	19760	145,'0
Je'	898.24	797.31 ^b	805.25	658.9 ^{bf}	663.1	552.72			
exe'	13.57	3.72 ^b	6.34 ^c		3.65	3.14			
e	-3.496 ^a	90.4	-53.91	449 ^a		13.5			
, "	1904.77	1219.14 ^b	1311.4	957.37 ^b	999.7	805.9			
exe"	16.26	7.28 ^b	8.30	5.72 ^b	6.31	3.38			
е. -	200.289 ^a	223.15	363.8	890.84		469.7	1935	4840	3790
_ ∆A _e ∣	203.785ª	132.8	417.7	-440	878.4	456.2			

Table 7.11: Molecular Constants (cm⁻¹) for the $A^2\pi$ and $X^2\pi$ States of Some Diatomic Species with 11-valence Electrons.

--

^a v = 0

4

ć

.

^b $2_{\Pi_{1/2}}$ - $2_{\Pi_{1/2}}$ sub-system

^c constrained value

d 14_N80_{Se}

^e T_o value

 $f_{\Delta G_{1/2}}$ value

Chapter 8 Rotational Analysis of the A \rightarrow X System of PCI⁺

8.1 Introduction

The only previous work on a rotationally resolved spectrum of a Group 5 monohalide cation is the analysis of five red-degraded bands of PF^{\dagger} (70). The present chapter is concerned with the first rotational (spectroscopic) analysis of $A^2 \Pi \rightarrow X^2 \Pi$ system of PCl⁺. In the low-resolution study (Chapter 7) of this system of PCl⁺, a considerable number of red-degraded bands were observed in the range of 4000-7000 Å. In view of the time available for the completion of the present thesis, it was necessary to limit the present work to the analysis of only three of the most intense bands of P³⁵Cl⁺. No attempt was made to investigate any bands of the less abundant isotope molecule P³⁷Cl⁺. The recorded spectra were clean and free of overlap from any other species. The bands studied belong to the v' = 0 progression (0-16, 0-17 and 0-18), and the molecular constants for the two electronic states were fitted directly to the measured line positions of individual bands. The multiple estimates of the constants for v' = 0 were reduced to single-valued parameters by the method of merging, and estimates of the spin-orbit coupling constants for both states are reported for first time. It should be noted here that the three bands analyzed by the author represent a

contribution to the more extensive analysis undertaken subsequently by Coxon et al. (95).

8.2 Nature of the Transition, and Rotational Assignments

when are of the

13°.

Since the observed transition of PCl^+ has been assigned as $A^2\Pi \rightarrow X^2\Pi$, the X and A states have a non-zero component of electronic orbital angular momentum in the direction of the internuclear axis ($\Lambda = 1$). This vector couples strongly with the corresponding component ($\Sigma = \frac{1}{2}, -\frac{1}{2}$) of the spin angular momentum, S to form the resultant electronic angular momentum ($\Omega = 3/2, 1/2$). Ω couples with the nuclear rotation vector (R) perpendicular to the internuclear axis, giving the resultant total angular momentum (J) of the molecule. The coupling of Λ and Σ to the internuclear axis is characteristic of Hund's case (a).

If both states belong to case (a), besides the general selection rules ($\Delta J = 0 \pm 1$; $\Delta S = 0$; + + -), the following additional restrictions hold: $\Delta \Sigma = 0$; $\Delta \Omega = 0$, ± 1 . As a result, a ${}^{2}\Pi - {}^{2}\Pi$ band splits into two sub-bands, ${}^{2}\Pi_{1/2} - {}^{2}\Pi_{1/2}$ and ${}^{2}\Pi_{3/2} - {}^{2}\Pi_{3/2}$, as presently observed. In general, as a result of the selection rules and the fine splitting of each rotational level into two distinct levels of opposite parity (Λ -doubling), each sub-band has six branches which form three close pairs, two P ($\Delta J = -1$), two Q ($\Delta J = 0$), and two R ($\Delta J = 1$) branches, the two Q-branches being very weak.

With the 0.06 Å resolution of the present analysis, there was no evidence for any Λ -doubling splitting. In addition, there was no indication for the presence of Q-branches. The energy level pattern of a ${}^{2}\Pi \rightarrow {}^{2}\Pi$ electronic transition, with the four observed branches R_{11} , P_{11} , R_{22} , P_{22} , is shown schematically in Figure 8.1.

As described in Chapter 7, one sub-band is approximately three times more intense than the other. The stronger sub-band always lies at higher energy, and was assigned as the $I_{1/2} - I_{1/2}$ transition. This conclusion was based on the fact that all the isovalent molecules in Table 7.4 have a regular ground state ($\Omega = \frac{1}{2}$ component has lower energy), and the spin-orbit splitting of the ground state is larger in magnitude than the corresponding splitting of the excited state. The difference in intensity arises from the different rates of population of the two spin-orbit components of the excited ${}^{2}I$ state.

The weak spin-orbit components of the $P^{37}Cl^+$ isotope were not observed in the present work, since they were overlapped with the intense sub-band of the $P^{35}Cl^+$ isotope. Both sub-bands of the more abundant isotope $P^{35}Cl^+$ were recorded for the 0-16, 0-17, and 0-18 bands. These bands are well-separated, free from any overlapping, and showed well-resolved rotational structure even for low J. Therefore, these three bands were selected for preliminary rotational assignment by the method of combination

differences. For two bands with same upper state vibrational number, the combination differences,

 $R(J) - P(J) = \Delta_2 F'(J) \simeq 4B'_v (J + \frac{1}{2})$ (8.1) (neglecting centrifugal distortion, D) must agree exactly for each J value. Thus, in order to find the correct relative numbering, a trial numbering of the lines in the two bands is used. The trial numbering is then varied systematically until the R(J) - P(J) values agree exactly. This can be achieved by changing the numbering in one of the branches of each band by 1,2,3 units.

ł

Figures 8.1: Energy level diagram for the first rotational lines of the $A^2\Pi - X^2\Pi$ transition of the PCl⁺ ion.

ŝ

,1

It is obvious that in order to employ this procedure, the rotational lines must be first assigned as R or P branch transitions. In the present work, the red degradation $(B_{*}^{\prime} < B_{*}^{\prime})$ of the bands and the intensity contours of the branches enabled an unequivocal identification of the lines as P or R branches. Once the correct relative numbering has been established, successive $\Delta_2 F'$ values differ by $4B_{\nu}$, in accord with Eq. (8.1). Consequently, dividing one of the Δ_2 F' values by 4B' estimated in this way, the absolute J value can be obtained. Confirmation for the absolute Jnumbering was provided by the requirement for D₀ to be close to the theoretical value of $4B_e^3/\omega_e^2$. For the three bands analyzed, estimates of seven constants (ν_0 , B', D', A', B", D", A") could be obtained by fitting directly the measured line positions of both sub-bands. Line positions were calculated as the differences of the eigenvalues of a standard ²II Hamiltonian containing the molecular constants as variables for the upper and lower states of the transition, as discussed earlier in Chapter 2. Trial values of the constants were then improved iteratively using nonlinear least-squares fitting to yield the final set of estimated molecular parameters.

8.3 Results

A portion of the ${}^{2}\Pi_{1/2} - {}^{2}\Pi_{1/2}$ sub-band of the 0-17 band is shown in Fig. 8.2. This is a characteristic trace which illustrates the quality of the spectra for all the sub-bands recorded presently. The two branches, P_{11} and R_{11} , are easily distinguished, and there is little blending with overlapping weak structure of the other bands. The results of the present investigation are summarized in Table 8.1.

The standard deviations $(\hat{\sigma})$ of the final least-squares fits for individual bands, along with the number and maximum value of J" of lines fitted, can be obtained from this table. The standard deviations, are in accord with the estimated measurement precision. Band origins of the individual bands are also listed in Table 8.1. These estimates were obtained after merging (4) the parameters from the individual band-fits.

The three individual band-fits yielded 21 estimated constants, with three estimates of the same excited state constants (B¹₀, D¹₀, A¹₀). Single-valued estimates were obtained by merging the individual band constants to a new set of 15 constants (merge (A)). Since the centrifugal distortion constants of the ground state (Dⁿ₀) in the output of merge (A) did not show any significant vibrational dependence, it was decided to reduce these 3 constants to a single vibrationally independent parameter Dⁿ (merge (B)). The variance of the equivalent single step merge to the 13 output parameters of merge (B) is $\hat{\sigma}^2 = (1.59)^2$ with f = 8degrees of freedom. This estimate lies just outside the limits $(0.584)^2 \le \hat{\sigma}^2 \le (1.40)^2$ given by the $\chi^2/8$ distribution at the 95% confidence level. This satisfactory merge is considered to indicate the absence of any significant systematic error. The constants from merge (B) are listed in Table 8.2, and the band origins are listed in Table 8.1.

Finally, calculated line positions for the bands analyzed have been obtained with the parameters of merge (B) and are listed in Table 8.3, along with the corresponding residuals (observed-calculated). The merged parameters reproduce the analyzed bands very successfully, as indicated by the similar magnitudes of the stan. ord deviations and root mean-squares (rms) of the residuals for individual bands. The rms of the residuals for the 0-16, 0-17, and 0-18 bands are also listed in Table 8.1.
1

ł

COUNTS/SEC

t

Table 8.1: Least squares fits^a for individual bands of the $A^2 \Pi \rightarrow X^2 \Pi$ system of $P^{35}Cl^+$

Band	ν	N	σ	rms	\mathbf{J}_{\max}	
0-16	18236.635(13)	115	0.0405	0.0398	52.5	
0-17	17634.819(11)	131	0.0383	0.0379	58.5	
0-18	17038.661(14)	101	0.0477	0.0507	54.5	

^a For each band fitted, N is the total number of fitted lines, $\hat{\sigma}$ is the standard deviation, ν_0 is the fitted band origin from merge (B), rms is the root mean square of the residuals between the observed and calculated line positions, and J_{max} is the maximum value of the quantum number J" of the fitted lines. All data are in cm⁻¹ units. Values in parentheses are estimated standard errors given by $\hat{\sigma}_{\rm M}(V_{\rm ii})^{1/2}$ in units of the last significant figure of the corresponding constant. ì

ł

f.

ι

	A ² II							
v	B_v	10 ⁷ D _v	A_v					
0	0.18770(12)	2.09(34)	98.52(320)					
	х ² п							
v	B _v	A_v						
16	0.25933(J2)	282.56	5(320)					
17	0.25781(12)	282.19	9(320)					
18	0.25621(12)	281.43	8(320)					
	D = 1.52(34)) x 10 ⁻⁷						

Table 8.2: Fitted Constants^{*} for the A^2II and X^2II States of $P^{35}Cl^+$

^a The results, in cm⁻¹ units, are from merge (B) (see text). Values in parentheses are estimated standard errors given by $\hat{\sigma}_{\rm M} (V_{\rm ii})^{1/2}$ in units of the last significant figure of the corresponding constant.

٦

ą

	P1		Rl		P2		R	2
J	Calc.	Res.	Calc.	Res.	Calc.	Res.	Calc.	Res.
J 0.1234555555555555555555555555555555555555	P1 Calc. 18426.895 18327.072 18326.195 18325.174 18322.703 18321.252 18319.658 18317.920 18314.014 18314.831 1846.039 18314.014 18311.846 18309.534 18307.079 18304.480 18304.480 18305.821 18292.648 18285.8700 18285.8700 18285.8700000000000000000000000000000000000	Res. -0.018 0.036 0.021 0.037 -0.016 0.041 -0.133** 0.001 -0.026 -0.026 -0.026 0.002 0.043 0.014 0.030 -0.026 -0.001 -0.020 -0.0000 -0.0000 -0.0000 -0.0000 -0.	R1 Calc. 18329.144 18329.304 18329.304 18329.320 18328.921 18328.921 18328.921 18326.401 18325.412 18325.412 18324.280 18322.996 18321.584 18316.463 18316.463 18316.463 18316.463 18316.463 18316.463 18316.463 18316.463 18316.463 18316.463 18316.463 18316.463 18329.336 18299.481 18296.479 18296.479 18296.479 18296.479 18297.311 18275.445 18271.435 18277.281 18265.539 18265.539 18253.951	Res. 0.088 0.031 -0.041 -0.102* 0.007 0.013 0.021 0.048 -0.049 0.019 0.003 -0.011 0.000 0.095* -0.013 0.056 0.070 0.016 -0.075	P2 Calc. 18045.383 18143.176 18142.299 18141.280 18140.117 18138.812 18137.363 18135.771 18134.037 16132.159 18130.138 18127.974 18125.668 18123.218 18127.974 18125.668 18125.668 18125.613 18102.061 18098.465 18094.455 18059.658 18059.286 18054.629 18044.544 18059.456 18054.629 18044.440 18054.629 18044.440	Res. -0.106* -0.127* -0.058 0.026 -0.071 -0.138* 0.104* 0.074 -0.004 0.074 -0.024 0.016 0.050 0.105* 0.121* 0.066 0.000 -0.031 0.070 -0.000 -0.014 0.016 -0.014 0.026 -0.014 0.026 -0.014 0.026 -0.014 0.026 -0.014 0.026 -0.014 0.026 -0.014 0.026 -0.014 0.026 -0.014 0.026 -0.014 -0.026 -0.026 -0.026 -0.026 -0.024 -0.024 -0.026 -0.026 -0.026 -0.024 -0.026 -0.026 -0.024 -0.024 -0.026 -0.026 -0.024 -0.024 -0.026 -0.026 -0.024 -0.024 -0.026 -0.026 -0.024 -0.024 -0.026 -0.026 -0.024 -0.024 -0.026 -0.026 -0.024 -0.024 -0.026 -0.026 -0.026 -0.024 -0.026 -0.026 -0.026 -0.024 -0.024 -0.026	R: Calc. 18145.253 18145.414 18145.433 18145.433 18145.041 18144.077 18143.380 18142.540 18142.540 18142.540 18137.750 18137.750 18136.194 18132.654 18132.654 18123.659 18123.853 18121.294 18112.758 18109.325 18109.325 18109.349 18102.929 18099.365 18099.808 18083.675 18079.393 18074.966 18070.396	2 Res. -0.073 -0.021 -0.067 -0.059 0.149* -0.010 -0.084 -0.006 0.049 0.027 0.038 -0.016 0.023 -0.016 0.023 -0.009 -0.052 0.009 * 0.082* 0.142* 0.089* 0.221 0.082* 0.089* 0.021 0.022 0.091* 0.022 0.091* 0.082* 0.022 0.022 0.022 0.009 0.022 0.009 0.009 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000000
29.5 30.5 31.5 32.5 33.5 34.5 35.5	18253.009 18248.254 18243.355 18238.312 18233.125 18227.793 18222.318	-0.042 0.018 -0.061 0.010 -0.007 -0.071 -0.017	18275.445 18271.435 18267.281 18262.982 18258.539 18253.951 18249.219	0.095* ~0.013 0.056 0.070 0.016 ~0.075 ~0.022	18069.286 18064.544 18059.658 18054.629 18049.456 18044.140 18038.680	-0.000 -0.046 -0.014 0.010 -0.049 0.026 -0.035	18091.808 18087.813 18083.675 18079.393 18074.966 18070.396 18065.682	0.091* 0.082* 0.142* 0.089* 0.021
30.5 37.5 38.5 39.5 40.5 41.5 42.5 43.5 44.5	18210.935 18205.028 18198.976 18192.779 18186.438 18179.953 18173.323 18166.549	-0.041 -0.034 -0.055 0.320** 0.008 -0.042 0.039 0.076 -0.013	18244.342 18239.321 18234.155 18228.845 18223.390 18217.790 18212.045 18206.155 18200.121	-0.034 -0.025 -0.011 0.018 -0.027 -0.001 0.036 -0.015 0.002	18033.076 18027.328 18021.427 18015.401 18009.222 18002.899 17996.431 17989.820 17983.064	0.020 0.051 0.115* 0.071	18060.823 18055.821 18050.674 18045.383 18039.947 18034.388 18028.643 18022.775 18016.761	-0.008 0.028 -0.007 -0.021 -0.045 -0.029 0.034 -0.010 0.082*
45.5 46.5 47.5 48.5 49.5 50.5 51.5 52.5	18159.630 18152.567 18145.359 18138.006 18130.508 18122.865 18115.078 18107.145	-0.041 -0.043	18193.941 18187.616 18181.146 18174.531 18167.771 18160.865 18153.813 18146.617	0.054 -0.016 -0.073 0.010 0.031 0.071 0.012	17976.164 17969.120 17961.932 17954.599 17947.122 17939.501 17931.734 17923.823		18010.603 18004.300 17997.853 17991.260 17984.523 17977.641 17970.613 17963.441	-0.103*

Table 8.3: Calculated Line Positions for the 0-16 Band of $p^{35}Cl^{*}$ (A - X).

٠

٦

,

و منه منه منهم المسلم و مراجع من منهم منهم منهم و المراجع منهم المراجع المراجع المراجع المراجع المراجع المراجع

TABLE 8.3 cont'd...

	- 1								25 J		
TABLE 8.3 cont'd	"Calculated	Line	Positions	for	the	0-17	Band	of	P32C1	(A - X))

ł

•

, 1

.

	P1		Rl		P	2	R	2
J	Calc.	Res,	Calc.	Res.	Calc.	Res.	Calc.	Res.
U.5		<u></u>	17727.146				17543.619	
1.5	17824.901		17727.310		17443.754		17543.785	
2.,	17725.085		17727.333		17541.554		17543.811	
3.5	17724.219		17727.216		17540.688		17543.697	
4.5	17723.212		17726.959		17539.682		17543.443	
5.5	17722.065		17726.561		17538.536		17543.049	
6.5	17720.777	0.007	17726.022	0.071	17537.250		17542.516	
7.5	17719.349	-0.009	17725.343	-0.019	17535.825	0.062	17541.842	
8,5	1//1/./81	-0.083	1//24.524	0.007	1/534.259		17541.028	
3.5	17714 222	-0.013	17723.304	-0.009	17532.503	0 009	17540.074	-0.006
11 5	17717 222	0.010	17721 222	0.100	17528 721	-0.102	17537 745	-0.000
12 5	17710.101	-0.009	17719 840	-0.014	17526.595	0.158*	17536.371	-0.033
13.5	17707.830	0.025	17718.317	-0.045	17524.329	01200	17534.856	
14.5	17705.419	0.002	17716.654	0.001	17521.923	0.032	17533.201	0.015
15.5	17702.867	-0.004	17714.850	0.053	17519.377		17531.406	-0.045
16.5	17700,174	-0.075	17712.905	0.010	17516.691		17529.471	-0.023
17.5	17697.341	0.019	17710.820	0.056	17513.865	-0.015	17527.396	-0.068
18.5	17694.367	-0.010	17708.394	0.033	17510.899		17525.180	-0.145*
19.5	17691.252	0.049	17706.227	0.038	17507.792	0.048	17522.824	-0.020
20.5	17687.997	0.003	17703.719	-0.031	17504.546	0.019	17520.327	0.016
21.5	17684.601	-0,002	17701.070	-0,036	17501.159	-0.005	17517.691	-0.036
22.5	17681.065	-0.014	17698.281	-0.052	17497.632	-0.089*	17514.913	0.030
23.5	17677.388	- 0.034	17695.350	0.045	17493.965	-0.018	17511.996	0.015
24.5	17673.570	-0.010	17692.279	0.032	17490.158	-0.070	17508.937	0.094
25.5	17669.611	-0.041	17689,066	0.038	17486.210	-0.018	17505.739	-0.051
20.5	1/665.512	0.019	1/685./13	0.028	1/482.122	0.072	17502.399	
2/.5	17666 001	-0.038	1/082.218	-0.003	17477.893	-0.001	17498.919	0 050
20.0	17652 360	-0.080	17674 906	-0.023	174/3.323	-0.049	17493.299	-0.006
30.5	17647 706	-0.016	17670 888	-0.020	17469.010	-0.079	17491.537	-0.000
31 5	17642 002	-0.014	17666 828	-0.042	17459 576		17483 592	0.006
32.5	17637 950	0.014	17662 628	0.010	17454.645	0.034	17479.408	-0.012
33.5	17632.872	0.025	17658.286	-0.007	17449.574	-0.357*	17475.084	
34.5	17627.645	0.049	17653.803	0.042	17444.362		17470.618	
35.5	17622.277		17649.178	0.022	17439.009		17466.011	
36.5	17616.768	0.018	17644.412	0.031	17433.516		17461.264	
37.5	17611.118	-0.022	17639.504	0.014	17427.882		17456.375	
38.5	17605.327	-0.046	17634.454	0.055	17422.108		17451.345	
39.5	17599.394	-0.013	17629.263	0.095	17416.192		17446.124	
40.5	17593.320	-0.064	17623.931	-0.003	17410.135		17440.861	
41.5	17587.105	-0.020	17618.456	0.062	17403.938		17435.407	
42.5	17580.748	0.156*	17612.840	-0.015	17397.600		17429.812	
43.5	17574.250	-0.045	17607,082	-0.317*	17391.120		17424,075	
44.5	17567.610	0.030	17601.182	-0.011	17384.499		17418.196	
45.5	17560.829	-0.031	17595.139	0.002	17377.738		17412.176	
46.5	17553.906	0.005	17588.955	-0.048	17370.835		1/406.015	
47.5	17546.841	-0.020	17582.629	-0.023	17363.790		17202 200	
48.5	17539.635	-0.010	17560 540	-0.062	17340 270		17395,200	
49.0	17524.207	0 043	17562 704 17562 704	-0.014	17343.2/8		17370 0/9	
50.5	17517 144	0.043	17555 901	0.007	17334.1009		17373.079	
52.5	17509.301	0.041	17548.862	-0.020	17326.447		17366.065	
53.5	17501.475		17541.682	0.000	17318.554		17358.909	
54.5	17493.417	-0.027	17534.358	-0.045	17310.519		17351.611	
55.5	17485 217	-0.055	17526.892		17302.342		17344.171	
56.5	17476.874	0.051	17519,284	0.009	17294.023		17336.588	
57.5	17468.390	0.005	17511.532	-0.067	17285.562		17328.863	

206

1

TABLE 8.3 cont'd...

Pl			Rl	P2			R2	
J	Calc.	Res.	Calc.	Res.	Calc.	Res.	Calc.	Res.
J 555555555555555555555555555555555555	P1 Calc. 17229.367 17128.560 17127.705 17126.712 17125.583 17124.316 17122.912 17121.371 17119.692 17117.876 17115.923 17113.832 17113.832 17113.832 17113.832 17115.923 17113.832 17115.923 17109.406 17095.354 17085.374 17085.374 17085.374 17085.374 17085.374 17085.374 17085.374 17052.708 17052.708 17032.165 17038.186 17038.185 17038.185 17038.186 17032.424 17012.227 1705.421 16999.477 16993.394 16987.174 16987.174	Res. Res. -0.214* -0.013 -0.152* -0.071 0.023 0.001 0.045 -0.003 -0.045 0.078 0.002 -0.059 -0.058 0.019 0.020 0.014 0.023 0.014 0.025 -0.059 -0.058 0.019 0.020 0.014 0.021 0.021 0.025 0.014 0.022 0.014 0.021 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.015 0.059 0.020 0.014 0.025 0.014 0.025 0.017 0.055 0.017 0.055 0.017 0.055 0.017 0.025 0.014 0.020 0.014 0.025 0.014 0.025 0.014 0.025 0.017 0.055 0.017 0.055 0.017 0.055 0.017 0.055 0.017 0.055 0.017 0.055 0.017 0.055 0.017 0.055 0.014 0.017 0.055 0.014 0.017 0.055 0.014 0.017 0.055 0.014 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.002 0.014 0.005	R1 Calc. 17130.608 17130.776 17130.808 17130.702 17130.459 17130.702 17130.459 17129.561 17128.906 17128.114 17127.184 17123.571 17122.091 17122.091 17122.633 17123.571 17122.091 17126.475 17116.829 17116.829 17116.829 17116.328 17105.306 17105.306 17105.306 17105.306 17105.306 17005.741 17096.741 17096.741 17096.743 17083.611 17096.743 17085.961 1705.889 17075.889 17075.889 17075.889 17075.835 17063.600 17055.228 17054.717 17050.068 17054.747 17050.068 17045.280 17035.290 17030.087 17024.746 1701.934 16995.953 16989.785 16983.472	Res. 0.011 -0.027 -0.027 -0.027 0.006 -0.034 -0.010 0.050 -0.016 -0.048 -0.010 0.014 0.014 0.071 -0.027 -0.043 -0.016 0.072 -0.043 -0.016 0.072 -0.043 -0.016 0.071 -0.027 -0.043 -0.016 0.072 -0.043 -0.056 0.071 -0.027 -0.044 -0.010 0.050 -0.056 0.072 -0.056 -0.050 -0.026 -0.027 -0.027 -0.044 -0.027 -0.043 -0.027 -0.043 -0.050 -0.026 -0.031 -0.056 -0.05	P2 Calc. Cal	Res. -0.153* -0.009 0.030 -0.039 0.143* -0.021 -0.151* 0.039 -0.083 0.084 0.059	R2 Calc. 16947.841 16943.012 16948.046 16947.943 16947.704 16947.328 16946.815 16946.815 16946.815 16944.455 16943.394 16942.197 16940.863 16937.784 16936.039 16934.156 16932.137 16929.981 16927.688 16925.257 16922.690 16919.985 16917.143 16914.163 16914.163 16914.163 16917.792 16893.401 16893.401 16885.381 16885.381 16885.381 16885.381 16885.381 16885.381 16852.968 16872.312 16852.968 16847.786 16852.968 16847.786 16852.968 16847.786 16852.968 16847.786 16852.968 16847.786 16852.968 16847.786 16852.968 16852.968 16847.786 16852.968 16852.968 16852.968 16852.968 16852.968 16852.968 16852.968 16852.968 16852.968 16852.968 16855.674 16813.785 16807.638 16801.349 16724.921	Res. 0.046 0.076 0.066 0.044 -0.121 0.064 -0.262* 0.079 0.167* 0.014 -0.019 -0.026 0.157* -0.049 -0.026 0.157* -0.049 -0.026 0.157* -0.049 -0.026 0.157* -0.049 -0.026 0.157* -0.049 -0.026 0.019 -0.126 0.046 -0.019 -0.046 -0.072 -0.1057* -0.037 -0.136 -0.071

TABLE 8.3 cont'd ^{a)}Calculated Line Positions for the 0-18 Band of $P^{35}Cl^+$ (A - X)

~

•

1

* Lines flagged by * were excluded from the least squares fits. All calculated lines positions are obtained from the parameters of merge (B) (see text). Residuals are defined as Res. = $\nu_{observed} - \nu_{calculated}$.

.

۱

r

.

8.4 Discussion

l

The estimated molecular constants of the PCl⁺ ion in Table 8.2 merit further discussion. The rotational constants B for both states of the isoelectronic SiCl molecule (76) are similar in magnitude with the corresponding constants of PCl⁺, as indicated by the following numerical values;

SiCl:
$$B_{10}^{"} = 0.2397 \text{ cm}^{-1} (X^2 \Pi)$$

 $B_0^{!} = 0.1983 \text{ cm}^{-1} (A^2 \Sigma^+)$
PCl⁺: $B_{16}^{"} = 0.25933(12) \text{ cm}^{-1} (X^2 \Pi)$
 $B_0^{!} = 0.18770(12) \text{ cm}^{-1} (A^2 \Pi)$

The spin-orbit coupling constant in the ground ${}^{2}\Pi$ state of PF⁺ is well-determined (70) from a ${}^{2}\Sigma - X{}^{2}\Pi$ transition as 323.95 cm⁻¹. For the isovalent species SiF and SiCl, the ground state A" values are 161.9 (17) and 207.2 (18) cm⁻¹ (53) respectively. If a similar halogen dependence holds for PF⁺ and PCl⁺, A" for PCl⁺ should be ~370 cm⁻¹, considerably larger than the value in Table 8.2 of ~282 cm⁻¹.

A probable explanation for this anomaly can be obtained by considering the absolute spin-orbit constants obtained recently for a similar ${}^{2}\Pi - {}^{2}\Pi$ system, namely SiN D ${}^{2}\Pi -$ A ${}^{2}\Pi$. For the 4-3 band of this system Linton (96) estimated A ${}^{1}_{4}$ = -45.14(97) cm⁻¹ and A ${}^{n}_{3}$ = -72.18(94) cm⁻¹. Bredohl et al. (97) analyzed the same band with the A ${}^{n}_{3}$ value already determined from the K ${}^{2}\Sigma - A{}^{2}\Pi$ transition as A ${}^{n}_{3}$ = -88.65 cm⁻¹. Knowing the spin-orbit constant of the A ${}^{2}\Pi$ state a corresponding estimate of A for the D^2II state could be determined from the term values $F_2(J) - F_1(J)$ using the Hill-Van Vleck expression (2). The calculated value of A! was -61.80 cm⁻¹. Since the reported spin-orbit constants differed significantly between these two analyses, it was decided to reexamine the SiN data from both studies, and if possible to determine the source of disagreement.

Firstly, the program for direct fitting of the measured line positions was used to obtain estimates of the spinorbit coupling constants using first Linton's data then those of Bredohl et al. In these initial fits, trial values of A were taken from Ref. (97) and the spin-rotation constants were constrained to zero. The estimates of A' and A" obtained from both fits were similar to the values reported by Linton, within the experimental error.

In the second set of fits, the spin-rotational constants of both states were set at approximate trial values calculated using the expression of Brown and Watson (98) relating γ and A_D , and with Veseth's formula (99) for A_D (centrifugal distortion of spin-orbit coupling) and neglecting the first-order effect. The numerical values were calculated to be: $\gamma \downarrow \simeq -1.6 \times 10^{-2} \text{ cm}^{-1}$ and $\gamma _3^{"} \simeq 2.9 \times 10^{-3} \text{ cm}^{-1}$. The precision of the measured line positions from both studies was not sufficient to permit the simultaneous determination of $\gamma _v^{"}$ and $\gamma _v^{"}$. However, when $\gamma \downarrow$ was constrained to its trial value, it was of much interest

to find that the estimated spin-orbit parameters were $A_{1}^{\prime} = -57.7(1) \text{ cm}^{-1}$, $A_{3}^{\prime\prime} = -84.8(1) \text{ cm}^{-1}$; very close to the values reported by Bredohl et al. (97). From this discussion, it can be concluded that the absolute values of A" and A' of PCl⁺ determined in Table 8.2 are considerably less reliable than is suggested by the quoted standard errors, and it is of some interest to consider this topic in more detail. The two spin-orbit coupling constants A' and A" of a ${}^{2}\Pi$ - ${}^{2}\Pi$ transition are highly correlated. The determination of separate values of A' and A" with direct fitting program such as that employed presently is made possible only when the Y = A/B values for the two states are significantly different, since the spin-orbit splittings then have different J-dependences for the two states, as follows. In Hund's case (a), the analytical expressions for the rotational term values of the spin-orbit components of a $^{2}\Pi$ state are given quite adequately by expression (2),

$$F(J) = B_{eff} J(J + 1) - D_v J^2 (J + 1)^4$$
(8.2)

where the effective rotational constant B_{eff} is slightly different for each spin-orbit component and where terms independent of J have been omitted. Furthermore, Mulliken (33) showed that B_{eff} can be expanded as a series, with the first two members given by,

$$B_{eff} = B (1 \pm B/A)$$
 (8.3)

where B is the mechanical rotational constant and the "+" and "-" are for the F_2 and F_1 components respectively. For a transition in which both Y values are large, the magnitudes of the J-dependences become small, and can be comparable with higher order effects (centrifugal distortion of spin-orbit coupling and second order spin-rotation, which are strongly correlated (98)). As a result, the absolute magnitude of the fitted spin-orbit coupling constants obtained from a ${}^{2}\Pi$ - ${}^{2}\Pi$ transition can depend significantly on the corresponding γ (or A_{D}) values. The precision of the present data on PCl⁺ could not afford determinations of γ_{v} for either state, so that A' and A" are then strictly effective parameters that absorb unknown spin-rotational/ centrifugal distortion effects. Data of better precision from a future study or from the photoelectron spectrum of PCl might resolve this problem.

ĭ

1

Chapter 9

Unassigned Bands of PBr⁺

9.1 Introduction

After the observation and analysis of the emission due to the phosphorous monochloride cation, it was of interest to investigate the chemiluminescence reaction of discharged helium with PBr_3 . The emission observed was not known hitherto, and is tentatively attributed to a new ion, PBr^+ .

Although it has not been possible to arrange the numerous bands of PBr^{\dagger} in a Deslandres table, and hence to derive the vibrational constants, it is believed that this work will stimulate other spectroscopic investigations on this molecule.

9.2 Results and Discussions

The PBr⁺ emission spectrum obtained at low resolution in the present work, under the same conditions as for the other ions, consists of a large number of red-degraded bands in the range 13000-24500 ch^{-1} , with the most intense emission in the range 15300-17350 cm⁻¹. Figure 9.1 shows a portion of the spectrum and illustrates the presence of "quadruple-headed" bands. As discussed later, this characteristic feature is a principal source of difficulty in vibrationally assigning the PBr⁺ bands.

The wavelengths (Å) and vacuum wavenumbers of the

unassigned band-heads are given in Table 9.1. The calibration of the spectrum was obtained by least squares fitting of emission lines of atomic Br, P and He (45) to a linear function in d, the distance along the trace. The standard deviation of this fit was ~ 0.07 Å. The PBr⁺ single bandhead positions were determined at half maximum intensity above the baseline and have an estimated uncertainty of ~ 0.6 Å.

By comparison with the isovalent ions $PC1^+$ and $AsC1^+$, it is reasonable to believe that the two states involved in this emission should have a similar well-bound ${}^{2}\Pi$ ground state and a weakly-bound excited state, most probably ${}^{2}\Pi$. However, the two factors that complicate the PBr⁺ spectrum to a greater degree than for the other reported ions are, i) the similarity in magnitude of the spin-orbit splitting and the ground state vibrational spacings, and ii), the existence of two equally abundant 79 Br and 81 Br isotopes. The corresponding closeness of heads causes difficulty in obtaining accurate measurements of the heads of the overlapped longer wavelength members of each "quadrupleheaded" band, which are very important in determining accurately the isotope shift.

Recently, the vibrational constant $\omega_{e}^{"}$ (X), of the PSe molecule, isoelectronic with PBr⁺, was reported in Ref. (100) as 556.8 cm⁻¹. Considering that the ratio of $\omega_{e}^{"}$ (X) for the isoelectronic species PCl⁺ + PS, which was reported 0.93, is probably very similar to the corresponding ratio for PBr^+ and PSe, the ground state vibrational constant of PBr^+ is estimated as ~530 cm⁻¹.

This value is in very good agreement with the observed difference of $\sim 490 \text{ cm}^{-1}$ between the shorter wavelength members of the multiple-headed bands assigned to PBr⁺. The expected value of ω ; for the excited state of PBr⁺, should be similar to the estimate of ω'_{\perp} for the $A^2\Sigma$ state of the SiBr and the $^{2}\Pi$ excited state of the AsCl⁺ ion. On the other hand, a value for the spin-orbit separation cannot be predicted from the isoelectronic species, since the question of whether the excited state, if ${}^{2}\Pi$, is regular or inverted, cannot be addressed at the present time. Nevertheless, there is little doubt that much of the spin-orbit separation is due to spin-orbit coupling in the ground state. Therefore, ΔA is expected to be greater than ~183 cm⁻¹, as for PC1⁺, assuming the halogen dependence for the ground state spin-orbit coupling constants of PCl⁺ and PBr⁺ is similar to that of their isoelectronic species SiCl (A" ~207.2 cm^{-1}) and SiBr (A" ~419.2 cm^{-1}), see Tables 7.4, 7.8.

In conclusion, it seems likely that the use of isotopically pure PBr₃ as the substrate molecule would be of much help in obtaining a simplified spectrum, from which an unequivocal assignment of the bands could be achieved. It should also be mentioned that photoelectron spectroscopy on PBr will be very helpful in determining the spin-orbit coupling constants of the ground or of both the electronic states of PBr⁺.

Figure 9.1: A portion of the PBr^+ emission spectrum from ~5750 to ~6350 Å.

£

ŧ

217

ł

2

,

1 1 1

1 1 1

-1

٤

.

í s

λ (Å)	$\nu_{\rm vac} ({\rm cm}^{-1})$	λ (Å)	$\nu_{\rm vac} (\rm cm^{-1})$
4055 A	24652 2		
4055.4	24651.2	4817.5	20751.7
4085.4	24470.8	4819.6	20742.6
4087.8	24406.3	4852.1	20603.7
4113.8	24301.8	4884.8	20466.1
4123.7	24243.3	4887.6	20454.2
41/8.1	23927.3	4911.7	20353.8
41/9.0	23922.1	4941.5	20231.1
4181.2	23910.1	4957.4	20166.0
4220.4	20087.8	4975.9	20091.4
4221.8	23680.0	5009.4	19957.0
4223.4	26670.9	5012.8	19943.3
4270.2	23411.4	5036.5	19849.4
4318.4	23150.4	5040.8	19832.4
4220.1	23141.0	5083.2	19667.3
4361.8	22919.8	5086.6	19654.0
4366.5	22895.2	5100.6	19599.9
4372.5	22864.0	5108.5	19569.9
4418.0	22628.5	5139.6	19451.4
4419.4	22621.1	5143.6	19436.4
4463.1	22399.7	5171.5	19331.4
4466.3	22383.7	5183.2	19287.9
4474.2	22344.3	5217.1	19162.4
4515.1	22141.5	5221.3	19146.9
4532.0	22058.9	5239.4	19080.9
4565.0	21899.5	5243.6	19065.5
4569.9	21876.1	5280.0	18934.0
4580.6	21825.0	5309.2	18829.9
4590.5	21778.1	5315.4	18807.9
4621.7	21631.2		
4639.7	21547.0	5357.4	18660.6
4675.3	21382.8	5362.2	18643.9
4677.6	21372.4	5375.9	18596.3
4680.0	21361.4	5377.8	18589.6
4701.5	21263.8	5385.0	18564.9
4703.5	21254.8		2000119
4733.0	21122.4		
4734.8	21114.3		
4766.0	20976.2		
4766.7	20973.1		
4791.2	28065.6		
4793.2	20857.2		(cont'd.)
			• • • • •

Table 9.1: Wavelengths and Vacuum Wavenumbers for the Unassigned Band System of PBr⁺

ţ

i

1. Y

λ (Å)	$\nu_{\rm vac} (\rm cm^{-1})$	λ (Å)	$\nu_{\rm vac} ({\rm cm}^{-1})$
5444.7	18361.5	6475.2	15439.2
5459.7	18310.9	6489.8	15404.6
5503.8	18164.3	6497.0	15387.4
5509.7	18144.8	6511.4	15353.5
5527.7	18085.5		
5531.0	18074.7	6618.7	15401.6
	· · · ·	6626.7	15086.3
5600.3	17851.3	6680.7	14964.4
5614.4	17806.4	6715.1	14887.6
5621.0	17785.4	6734.9	14843.9
5639.4	17727.4		
5645.0	17710.0	6836.7	14623.0
5695.2	17553.8	6844.1	14607.1
		6853.4	14587.3
5753.2	17376.9		
5760.3	17355.4	6935.5	14414.7
5771.5	17321.8	6971.3	14340.6
5778.7	17300.2	6979.1	14324.6
5809.1	17209.5		-
5819.4	17179.1	7083.8	14112.9
5892.7	16965.5	7094.0	14092.6
5908.7	16919.6	7121.2	14038.8
		7129.1	14023.2
5920.2	16886.7	7223.8	13839.4
5928.0	16864.4	7232.4	13822.8
5939.1	16832.9		
5983.7	16707.3	7238.6	13622.8
6078.5	16447.0	7348.0	13605.4
		7349.8	13602.1
6092.5	16409.0	7384.0	13539.0
6097.3	16396.2	7393.4	13521.8
6105.0	16375.4		
		7492.6	13342.8
6124.0	16324.6	7502.6	13325.0
6170.2	16202.5		
6188.0	16155.9	7610.4	13136.4
		7624.1	13112.7
6280.5	15917.9	7665.0	13042.7
6285.6	15904.9	7676.2	13023.6
6290.9	15891.6		
6300.3	15867.7		
6391.9	15640.4		
6412.5	15590.2		

Table 9.1: Wavelengths and Vacuum Wavenumbers for the

ļ

•,

Unassigned Band System of PBr⁺ (cont'd.)

Chapter 10

Additional Reactions of Discharged Helium

The spectra described in Chapters 5-9 from various reactions of discharged helium have been investigated quite thoroughly. In the present chapter, preliminary observations on reactions with additional substrates will be described. Most of the spectra have been observed previously by other means of excitation and have been analyzed with different degrees of completeness by other workers.

The observations are summarized in Table 10.1. Each entry of this table indicates the reagent used, the excited molecule, the nature of the transition, and the spectral range. The following sections provide further detail on the individual reactions:

Reagent	Observed Emission	Range (Å)	Ref.
$N_3S_3Cl_3$	$NS(B^{2}II_{r}-X^{2}II_{r})$	3150-5500	(81,102)
PSCl ₃	$PS(B^{2}\Pi_{r}-X^{2}\Pi_{r})$	3400-6300	(77)
	PS ($C^2\Sigma - X^2\Pi_r$)	2700-3400	(102,104)
	$PS^+(A^1\Sigma^+-X^1\Sigma^+)$	2480-2750	(105)
VOCl3	VO ($C^{4}\Sigma^{-}-X^{4}\Sigma^{-}$)	4300-6200	(106)
POCl ₃	$PO(B^{2}\Sigma^{+}-X^{2}\Pi_{r})$	3250-3450	(107)
BCl ₃	BCl $(A^{1}\Pi - X^{1}\Sigma^{+})$	2700-2850	(107)
BBr ₃	BBr ($a^{3}\Pi_{1,0}+-X^{1}\Sigma^{+}$)	5100-5600	(50)
SbCl ₃	$SbCl(A_1-X^3\Sigma^-)$	4750-7000	(110,111)
NCl3			(112)

Table 10.1: Survey of Some Emission Spectra Arising from Discharged Helium Impact Reactions

• • •

1

.

(a) NS $(B \rightarrow X)$

ç

Į,

Trithiazyl chloride (N₃S₃Cl₃) was prepared following the procedure of Ref. (101). The NS spectrum obtained from the reaction of discharged helium with N₃S₃Cl₃ was free from other interfering species. This can be compared with the method of microwave excitation of NS through a mixture of nitrogen and sulphur (81, 102) in which the high v" NS bands are overlapped strongly by the $B^{3}\Sigma_{u}^{-} \rightarrow X^{3}\Sigma_{s}^{-}$ system of S_{2} . As a consequence, bands of NS with $v^* \ge 2$ could not be analyzed. Presently, the $B \rightarrow X$ system of the NS was extended towards longer wavelengths, and bands were observed with v'' = 10. In Figure 10.1 a portion of the NS spectrum is shown. Quite recently, Karna and Grein (103) have performed ab initio CI calculations on NS⁺, using double-zeta basis sets with diffuse and polarization functions. Nine stable excited states of NS⁺ were found. Among these excited states, only one ¹II state is stable and lies at ~6 eV above the ${}^{1}\Sigma^{+}$ ground state. It is possible then that the unsuccessful search for a spectrum of NS⁺ emission is due to the lack of response of the present spectrometer/photomultiplier outside the range 2200-7500 Å.

(b) PS (B, $C \rightarrow X$) and PS^+ ($A \rightarrow X$)

The PS and PS⁺ emission spectra observed in the present work are among the best examples of the helium afterglow method for providing very specific excitation. The extensive red-degraded band systems of PS and PS⁺ were free from overlap by any other bands, in particular emission due to P_2 or S_2 . In Figures 10.2 and 10.3 portions of the PS and PS^+ spectra are shown. Jenouvrier and Pascal (77) have studied the $B \rightarrow X$ system of PS and rotationally analyzed 50 sub-bands with vibrational quantum numbers $v' \leq 11$ and $v'' \leq 6$. The C $\rightarrow X$ system has been studied vibrationally by Narasimham and Subramanian (102); the 2-0 and 1-0 bands have been rotationally analyzed by Narasimham and Balasubramanian (104). It was not possible to analyze more bands of this system because of P_2 and S_2 interference.

The $A \rightarrow X$ emission spectrum of PS^{+} was first observed by Dressler (105). An attempt was made to analyze the present spectrum in order to obtain the first rotational constants of PS^{+} . However, the intensity of the observed bands was not sufficient for high-resolution work. Improved techniques to obtain a more intense PS^{+} emission spectrum would be advantageous.

Figure 10.1: A portion of the NS emission spectrum, showing bandheads belonging to the $B^2\Pi - X^2\Pi$ system.

÷

.

,

~

Figure 10.2: A portion of the $B^2 II - X^2 II$ emission spectrum of PS.

Figure 10.3: A portion of the PS^+ (A \rightarrow X) emission spectrum.

,

.

-\$

.

:

.

*

(c) $\operatorname{He}_{2}^{\star} + \operatorname{BCl}_{3}$; $\operatorname{He}_{2}^{\star} + \operatorname{BBr}_{3}$

In the pursuit of identification of new ions through their emission spectra, the Group 3 monohalide cations were the prime target since no optical emissions were known hitherto for these molecules. However, the reactions of BCl₃ and BBr₃ with discharged helium, generated in the fast flow system described previously, only produced emissions assigned to the corresponding neutral diatomics. According to a mass spectrometric study of photoionization of BCl₃ by Dibeler and Walker (108), $\Delta E = 18.37 \pm 0.02$ eV for the formation of BCl⁺ in the ground state. It was not surprising then that even at large helium flow rates and pressure (~4 Torr), conditions which are known to enhance production of He⁺₂, insufficient energy (~21 eV) was available from He⁺₂ to form electronically excited BCl⁺.

However, in recent work by Yamaguchi et al. (109), a new emission spectrum was observed in the 4700-5150 Å region from the flowing afterglow reaction of BBr₃ and assigned to the $A^2\Pi_r - X^2\Sigma^+$ transition of BBr⁺. From the vibrational analysis, the vibrational constants of both states of ¹¹BBr⁺ were determined. Although the afterglow apparatus was similar to the one used during the present study, lower total pressures (~0.5 Torr) of the discharged helium were achieved at high flow rates using a fast 600 m³/h mechanical booster pump. This supports the claim of Yamaguchi and coworker (109) that the active helium species responsible for the BBr⁺ emission was He⁺, and that the minimum energy required for the production of the $A^2 II_{1/2}$ state of BBr⁺ was 19.2 ± 0.5 eV.

(d) $He_2^* + SbCl_3$.

Most of the red-degraded bands in the range of 17800-20900 cm⁻¹ observed from the reaction of discharged helium with SbCl₃ have been assigned to the $A_1 - X$ system of SbCl. This system has been studied vibrationally by two separate groups. Ferguson and Hudes (110) had first seen this emission and assigned the most intense bands to a v' = 0 progression. In the later analysis by Avasthi (111), the spectra were recorded at higher resolution and a larger number of bands were vibrationally assigned. Although the same system seems to have been observed by both groups, the common bands were not assigned to the same quantum numbers. In the present work on SbCl, all the bands of the $A_1 \rightarrow X$ system reported previously were also observed.

The relative intensity distribution of the bands was more consistent with the original assignment by Ferguson and Hudes (110). Figure 10.4 shows a portion of SbCl spectrum. In addition, however, several new bands were observed in the longer wavelength region. The wavenumbers of the most intense of these bandheads, which were obtained directly from the wavelength drum reading of the spectrometer with an estimated uncertainty of ~4 cm⁻¹, are as follows: 16930, 16576, 16222, 15871, 15519, 15171, 14824 cm⁻¹. It can be readily seen that the difference between adjacent heads is ~350 cm⁻¹, similar to the corresponding difference of the bands belonging to the $A_1 \rightarrow X$ system. Therefore, it is suggested that either these bands are members of the v' = 0 progression with high v" of the $A_1 \rightarrow X$ system or that they belong to a new system or SbCl having the same ground state or a state with similar vibrational constant.

The work on this molecule was not completed. Further work was precluded because the substrate molecule (SbCl₃), which is a solid compound at room temperature and which boils at 283°C, requires modifications on the existing apparatus in order to increase the amount of vapour reaching the reaction zone; with more intense spectra it would be possible to identify bands of the Sb³⁷Cl isotope. In addition, more intense emission would allow the spectrum to be recorded at higher resolution, as is necessary in obtaining more accurate band head measurements for both chlorine isotopes.

(e) $He_2^* + NCl_3$.

k,

Recently, Obase and co-workers (112) observed a new emission system in the 4400-5700 Å region from the reaction of He⁺ with NF₃. This emission is assigned to the NF($c^{1}\Pi - b^{1}\Sigma^{+}$) transition. Prior to this publication a 12% mixture of NCl₃ in CCl₄ was prepared in this laboratory, according to the procedure reported by Noyes (113), and

reacted with discharged helium. The recorded spectrum did not indicate the existence of any emitting diatomic species. It is believed, now, that a more concentrated NCl₃ solution might produce a corresponding $c^1\Pi - b^1\Sigma^+$ emission of NCl and/or a ${}^2\Pi - X^2\Pi$ emission of NCl⁺.

In conclusion, a significant portion of the research presently undertaken and presented in Chapters 5 through 10 of this thesis might encourage research on the kinetic aspects of the reactions reported.

Figure 10.4: A portion of the $A_1 - X$ emission spectrum of SbCl.

,

234

- --

ŧ

÷

" . Shatting as and

ļ

BIBLIOGRAPHY

ł

1. R.N. Zare, A.L. Schmeltekopf, W.J. Harrop and D.L. Albritton, J. Mol. Spectrosc., 46, 37 (1973).

1

- G. Herzberg, Spectra of Diatomic Molecules, 2nd Ed.,
 Van Nostrand Co. Inc., Princeton, NJ (1950).
- D.L. Albritton, A.L. Schmeltekopf and R.N. Zare, J.
 Mol. Spectrosc., 67, 132 (1977).
- J.A. Coxon, J. Mol. Spectrosc., 72, 252 (1978).
 4a) E.V. Condon and G.H. Shortley, The Theory of Atomic Spectra, Cambridge Univ. Press, NY (1953).
- 5. E.C. Kemble, Quantum Mechanics, Dover Publications, New York, NY (1958).
- 6. J.T. Hougen, The Calculation of Rotational Energy Levels and Rotational Line Intensities in Diatomic Molecules. National Bureau of Standards Monograph 115, U.S. Government Printing Office, Washington, DC (1970).
- J. Kovacs, Rotational Structure in the Spectra of Diatomic Molecules, American Elesvier, New York, NY (1969).
- 8. K.F. Freed, J. Chem. Phys., 45, 4214 (1966).
- 9. J.M. Brown, J.J. Hougen, K.P. Huber, J.W.C. Johns, I. Kopp, H. Lefebvre-Brion, A.J. Merer, D.A. Ramsay, J. Rostas and R.N. Zare, J. Mol. Spectrosc., 55, 500 (1975).
- J.M. Brown, E.A. Colbourn, J.K.G. Watson and F.D.
 Wayne, J. Mol. Spectrosc., 74, 294 (1979).
- 11. D.L. Albritton, A.L. Schmeltekopf and R.N. Zare, in "Molecular Spectroscopy: Modern Research", Vol. 2, pp. 1-67, Academic Press (1976).
- 12. R. Rydberg, Z. Physik, 73, 376 (1931); O. Klein, Z. Physik, 76, 226 (1932); A.L.G. Rees, Proc. Phys. Soc., 59, 998 (1947).
- 13. J.L. Dunham, Phys. Rev., 41, 713 (1932).
- 14. J.A. Coxon, J. Quant. Spectrosc. Rad. Transf., 11, 443 (1971).
- 15. S.C. Foster, Ph.D. Thesis, Dalhousie University, Halifax, NS (1982).
- 16. F.R. Gilmore, J. Quant. Spectrosc. Rad Transf., 5, 369
 (1965).
- 17. A.S. King, Astrophys. J., 62, 283 (1925).
- 18. A. Lagerqvist, N.E. Nilsson and R.F. Barrow, Arkiv for Fysik, 12, 543 (1957).
- 19. M. Shimauchi, Science of Light, 7, 101 (1958).
- 20. W.C. Pomeroy, Phys. Rev., 29, 59 (1927).
- 21. B. Rosen, Phys. Rev., 68, 124 (1945).
- 22. V.A. Loginov, opt. i spectroskopiya, 6, 67 (1959).
- 23. R.W. Nicholls, W. Parkinson and E.M. Reeves, Applied Optics, 2, 919 (1963).
- 24. J.K. McDonald and K.K. Innes, Nature, 183, 243 (1959).
- 25. V.W. Goodlett and K.K. Innes, Nature, 183, 243 (1959).
- 26. B. Authier, J.E. Blamond and G. Carpentier, Ann. Geophys., 20, 342 (1964).

- 27. B. Authier, Ann. Geophys., 20, 353 (1964).
- 28. O. Harang, Planet. Space Science, 12, 567 (1964).
- 29. E.R. Johnson, J. Geophys. Res., 70, 1275 (1965).
- 30. J. Drowart, G. De Maria, R.P. Burns and M.G. Inghram, J. Chem. Phys., 32, 1366 (1960).
- 31. K.M. Sen, Ind. J. Phys., 11, 251 (1938).
- 32. M.J. Mahieu, D. Jacquinot, J. Schamps and A.J. Hall, J. Phys. B, 8, 308 (1975).
- 33. S.R. Mulliken, Rev. Mod. Phys., 3, 89 (1931).
- 34. J.A. Coxon and S. Naxakis, J. Mol. Spectrosc., 111, 102 (1985).
- 35. M. Singh, G.V. Zope and S.L.N.G. Krishnamachari, J. Phys. B, 18, 1743 (1985).
- 36. E. Wigner and E.E. Witner, Z. Physik, 51, 859 (1928).
- 37. J. Schamps, Chem. Phys., 2, 352 (1973).
- 38. H.M. Crosshwite, J. Res. Nat. Bur. Stand., 79A, 17 (1975).
- 39. C.B. Collins and W.W. Robertson, J. Chem. Phys., 40, 701 (1964).
- 40. J. Franck, Naturwiss., 14, 211 (1926).
- 41. L.G. Piper, L. Gundel, J.E. Velazco and D.W. Setser, J. Chem. Phys., 62, 3883 (1975).
- 42. M. Tsuji, H. Obase, M. Matsuo, M. Endoh and Y. Nishimura, Chem. Phys., 50, 195 (1980).
- 43. J.A. Coxon and S.C. Foster, J. Mol. Spectrosc., 103, 281 (1984).

- 44. L. Ramaley, S.C. Foster and J.A. Coxon, Chem. Biomed. Environ. Inst., 12, 229 (1982/83).
- 45. A.R. Striganov and N.S. Sventitskii, Tables of Spectral Lines of Neutral and Ionized Atoms, IFI/Plenum Data Corp., New York, NY (1968).
- 46. J. Reader, C.H. Corliss, W.L. Wiese, and G.A. Martin, Wavelengths and Transition Probabilities for Atoms and Atomic Ions, (NSRDS-NBS68) National Bureau of Standards, Washington, DC (1980).
- 47. J. Lebreton, J. Ferran and L. Marsigny, J. Phys. B, 8, L465 (1975).
- 48. J. Lebreton, L. Marsigny and J. Ferran, C.R. Acad. Sci. (Paris), **272**, 1094 (1971).
- 49. J. Lebreton, L. Marsigny and G. Bosser, C.R. Acad. Sci. (Paris), **271**, 1113 (1970).
- 50. J. Lebreton, J. Chim. Phys., 70, 738 (1973).
- 51. J. Lebreton, J. Ferran, A. Chatalic, D. Iococca and L. Marsigny, J. Chim. Phys., **71**, 587 (1974).
- 52. A.G. Briggs and R. Piercy, Spectrochim. Acta, **29A**, 851 (1973).
- 53. K.P. Huber and G. Herzberg, Molecular Structure and Molecular Spectra, Vol. 4, Constants of Diatomic Molecules, Van Nostrand Co., Inc., Princeton, NJ (1979).
- 54. A.G. Briggs and R.E. Simmons, Naturwissenschaften, 67, 402 (1980).

55. H. Bredohl, I. Dubois and F. Mélen, J. Mol. Spectrosc., 121, 135 (1987).

- 56. J.K.G. Watson, J. Mol. Spectrosc., 80, 411 (1980).
- 57. R.F. Barrow, Trans. Faraday Soc., 56, 952 (1960).
- 58. A.H. Wapstra and K. Bos, At. Data Nucl. Data Tables, 19, 185 (1977).
- 59. T.C. James, J. Chem. Phys., 55, 4118 (1971).
- 60. J.M. Hutson, J. Phys. B, 14, 851 (1981).
- 61. J.A. Coxon and M.P. Haley, J. Mol. Spectrosc., 108, 119 (1984).
- 62. P.H. Krupenie, J. Phys. Chem. Ref. Data 1, 423 (1972).
- 63. J.A. Coxon and K. Brabaharan, J. Mol. Spectrosc., **128**, 540 (1988).
- 64. M. Tsuji, I. Murakami and Y. Nishimura, Chem. Phys. Letters, **75**, 536 (1980).
- 65. A.J. Capel, J.H.D. Eland and R.F. Barrow, Chem. Phys. Letters, 82, 496 (1981).
- 66. D.G. Streets and J. Berkowitz, J. Electron Spectrosc.,9, 269 (1976).
- 67. J.L. Hardwick, Y. Luo, D.H. Winikur and J.A. Coxon,Can. J. Phys., 62, 1792 (1984).
- M. Tsuji, C. Yamagiwa, M. Endoh and Y. Nishimura, Chem.
 Phys. Letters, 73, 407 (1980).
- 69. A.W. Potts and T.A. Williams, Chem. Phys. Letters, 42, 550 (1976).

- 70. A.F. Douglas and M. Frackowiak, Can. J. Phys., **40**, 832 (1962).
- 71. J.M. Dyke, N. Jonathan, A.E. Lewis and A. Morris, J. Chem. Soc., Faraday Trans. 2, 78, 1445 (1982).
- 72. Unpublished data, quoted by J.M. Dyke, N. Jonathan andA. Morris, Intern. Rev. Phys. Chem., 2, 3 (1982).
- 73. J.A. Coxon and M.A. Wickramaaratchi, J. Mol. Spectrosc., 68, 372 (1977).
- 74. M. Halman and Y. Klein, J. Chem. Soc., 4324 (1964).
- 75. P.J. Ficalora, J.C. Thomson and J.L. Margrave, J. Inorg. Nucl. Chem., 31, 3771 (1969).
- 76. S.R. Singhal and R.D. Verma, Can. J. Phys., **49**, 407 (1971).
- 77. A. Jenouvrier and B. Pascat, Can. J. Phys., 56, 1088 (1978).
- 78. R.D. Verma, Can. J. Phys., 40, 586 (1962); 42, 2345 (1964).
- 79. J.W.C. Johns and R.F. Barrow, Proc. Phys. Soc. London,
 71, 476 (1958).
- M. Bialski and F. Grein, J. Mol. Spectrosc., 61, 321 (1976).
- 81. A. Jenouvrier and B. Pascat, Can. J. Phys., 51, 2143 (1973).
- 82. M.T. Nguyen, Molec. Phys., 59, 547 (1986).
- H. Kruse, R. Winter, E.H. Fink, J. Wildt and F. Zabel, Chem. Phys. Letters, 111, 100 (1984).

- 84. V.M. Anderson and J.H. Callomon, J. Phys. B, 6, 1664 (1973).
- 85. K. Babu Rao and R.B.V. Haranath, J. Phys. B, 2, 1381 (1969).
- 86. M. Shimauchi, H. Iwata, T. Matsuno, Y. Sakaba, S.K. Lee and S. Karasawa, Sci. Light, 21, 145 (1972).
- 87. M. Schimauchi and S. Karasawa, Sci. Light, 22, 127 (1973).
- 88. M. Shimauchi, Sci. Light, 18, 90 (1969).
- D.L. Albritton, W.J. Harrop, A.L. Schmeltekopf and R.N.
 Zare, J. Mol. Spectrosc, 46, 89 (1973).
- 90. D. Daumont, A. Jevourier and B. Pascat, Can. J. Phys., 54, 1292 (1976).
- 91. K.V. Subbaram and D.R. Rao, J. Mol. Spectrosc., 36, 163 (1970).
- 92. R.F. Barrow, G.C. Chandler and C.B. Meyer, Phil. Trans. Roy. Soc. London, **260A**, 395 (1966).
- 93. V.S. Kushwaha and C.M. Pathak, Spectrosc. Lett., 5, 393 (1972).
- 94. K.K. Verma, M. Azam and S.P. Reddy, J. Mol. Spectrosc., 65, 289 (1977).
- 95. J.A. Coxon, S. Naxakis, U.K. Roychowdhury, Can. J. Chem., 65, 980 (1987).
- 96. C. Linton, J. Mol. Spectrosc., 55, 108 (1975).

1

97. H. Brehohl, I. Dubcis, Y. Houbrechts and M. Singh, Can.J. Phys., 54, 680 (1976).

- 98. J.M. Brown and J.K.G. Watson, J. Mol. Spectrosc., 65, 65 (1977).
- 99. L. Veseth, J. Mol. Spectrosc., 38, 228 (1971).
- 100. S.N. Vempati, J.L. Ma and W.E. Jones, J. Mol. Spectrosc., 110, 301 (1985).
- 101. W.L. Jolly and K.D. Maquire, Inorg. Syntheses, 9, 103 (1963).
- 102. N.A. Narasimham and T.K. Balasubramanian, J. Mol. Spectrosc., 29, 294 (1969).
- 103. S.P. Karna and F. Grein, Chem. Phys., 109, 35 (1986).
- 104. .A. Narasimham and T.K. Balasubramanian, J. Mol. Spectrosc., **37**, 371 (1971).
- 105. K. Dressler, Helv. Phys. Acta, 28, 563 (1955).
- 106. J.A. Harrington, R.M. Seel, G.R. Hébert and R.W. Nicholls, Identification Atlas of Molecular Spectra, York University, 7 (1970).
- 107. B. Rosen, Spectroscopic Data Relative to Diatomic Molecules, Pergamon Press (1970).
- 108. V.H. Dibeler and J.A. Walker, Inorg. Chem., 1, 50 (1969).
- 109. S. Yamaguchi, M. Tsuji and Y. Nishimura, Chem. Phys. Letters, **138**, 29 (1987).
- 110. W.F.C. Ferguson and I. Hudes, Phys. Rev., **57**, 705 (1940).
- 111. M.N. Avasthi, Spectrosc. Lett., 3, 291 (1970).

- 112. H. Obase, M. Tsuji and Y. Nishimura, Chem. Phys. Letters, **126**, 134 (1986).
- 113. W.A. Noyes, Inorg. Syntheses, 1, 65 (1955).

,

;