# Electronic and Structural Properties of Model $\mathrm{S}_{\mathrm{N}} 2$ Reactions 

 byZheng Shi

# Submitted in partial fulfilment of the requirements for the degree of 

Doctor of Philosophy
at
Dalhousie University
October 1989

|  | National Library of Canada | Bibliothéque natworale du Canada |
| :---: | :---: | :---: |
|  | Canadian Theses Service | Service des theses canadiennes |
|  | Otlawa, Canada KIA ONG |  |

The author has granted an irrevocable nonexclusive licence allowing the National Library of Canada to reproduce, ban, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.

L'auteur a accordé une licence irrévocable et non exclusive"permettant à la Bibfothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

## Canadä

To my parents and
my husband

## Table of Contents

Table of Contents ..... v
List of Figures and Tables ..... vil
Abstract ..... xil
List of Symbols ..... xiii
Acknowledgements ..... XV
Chapter 1 Introduction ..... 1
1.1 Overview ..... 1
1.2 Gradient vector field of the charge density ( $\nabla \rho$ ) ..... 3
1.3 The scalar field of the charge density $\left(\nabla^{2} \rho\right)$ ..... 11
Chapter 2 Theoretical Methods ..... 16
2.1 Hartree-Fock method ..... 16
2.2 Moller-Plesset perturbation theory ..... 23
2.3 Basis sets ..... 30
Chapter 3 Transition State Structures of Model $S_{N} 2$ Reactions ..... 34
3.1 Overview ..... 34
3.2 Computational methods ..... 37
3.3 Transition state properties ..... 39
3.4 Electronic structures of the transition states ..... 53
3.5 Mulliken population analysis and the charge ..... 81integration method
3.6 Comparison of computational methods ..... 89
Chapter 4 Intrinsic Barriers of Model $\mathrm{S}_{\mathrm{N}} 2$ Reactions ..... 108
4.1 Overview ..... 108
4.2 Intrinsic barriers of model $\mathrm{S}_{\mathrm{N}} 2$ reactions ..... 110
4.3 The rate-equilibrium relationship and $\alpha$ values ..... 127
Chapter 5 The Laplacian of the Charge Density as a ..... 138
Probe in the Study of Chemical Problems
5.1 Overview ..... 138
5.2 The shell structure of free atoms ..... 139
5.3 Electronegativity ..... 147
$5.4 \mathrm{~S}_{\mathrm{N}}{ }^{2}$ reactions at carbon and silicon ..... 162
Conclusions ..... 180
Appendices Optimized Structures and Energies of
Various Species ..... 182
References ..... 217

## List of Figures and Tables

Figure Page
1.2.1 Gradient vector field of the $\mathrm{H}_{2} \mathrm{O}$ molecule. ..... 5
1.2.2 Molecular graph of the $\mathrm{H}_{2} \mathrm{O}$ molecule. ..... 7
1.3.1 The Laplacian of $\rho(r)$ in the molecular plane of $\mathrm{H}_{2} 0$. ..... 14
3.3.1 Schematic energy profile of a gas-phase $S_{N}$ reaction. ..... 40
3.3.2 Comparison of $\Delta E^{b}$ with $\Delta E_{c}^{b}$ at the MP2' level. ..... 50
3.3.3 Comparison of $\Delta E_{t}^{\circ}$ with $\Delta E_{c}^{\circ}$ a'c the MP2' level. ..... 51
3.4.1 Charge development or $H$ a.s a function of $\Delta E_{t}^{\circ}$ for the reaction $\mathrm{H}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{3} \mathrm{H}+\mathrm{X}^{-}$
3.4.2 Charge development on $X$ as a function of $\Delta E_{t}^{\circ}$ for the ..... 78 reaction $\mathrm{H}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{3} \mathrm{H}+\mathrm{XX}^{-}$.
3.4.3 Charge development on $F$ as a function of $\Delta E_{t}^{\circ}$ for the ..... 79 reaction $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{X}_{\rightarrow} \mathrm{CH}_{3} \mathrm{~F}+\mathrm{X}^{-}$.
3.4.4 Charge development on $X$ as a function of $\Delta E_{t}^{\circ}$ for the ..... 80 reaction $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{3} \mathrm{~F}+\mathrm{X}^{-}$.
3.5.1 Comparison of charges on $F$ in $\mathrm{AF}_{\mathrm{n}}$ and X in $\mathrm{CH}_{3} \mathrm{X}$ as ..... 83 obtained by the MPA and AIM methods.
3.5.2 Charges on $N$ and $X$ in the $T S$ as obtained by the MPA ..... 84
and AIM methods.
3.5.3 Comparison of Mulliken population analysis charges ..... 90
obtained at the HF level with the integration results obtained at the MP2 level.
3.5.4 Comparison of the charges obtained by the MPA and ..... 91AIM methods.
3 6.1 Comparison of the $\mathrm{R}_{\mathrm{c}-\mathrm{x}}$ bond length in $\mathrm{CH}_{3} \mathrm{X}$ as ..... 93 calculated by the HF and MP2 methods.
3.6.2 Comparison of the $T S$ bond length $R_{C-N}$ and $R_{C-X}$ ..... 95 obtained at the HF and MP2 levels.
3.6.3 Comparison of integrated charges at the HF and MP2 levels ..... 96
3.6.4 Comparison of integrated charges obtained at the HF and ..... 97 MP2' levels.
3.6.5 Integrated charges on $N$ and $X$ obtained at the MP2' ..... 98 and MP2 levels.
3.6.6 Comparison of $\Delta E_{c}^{b}$ obtained at the HF and MP2 levels. ..... 100
3.6.7 Comparison of $\Delta E_{c}^{\circ}$ obtained at the $H F$ and MP2 levels. ..... 101
3.6.8 Comparison of $\Delta E^{b}$ obtained at the $H F$ and MP2 levels. ..... 102
3.6.9 Comparison of $\Delta E_{t}^{\circ}$ obtained at the $H F$ and MP2 levels. ..... 103
3.6.10 Comparison of $\Delta E_{c}^{b}$ obtained at the MP2' and MP2 levels. ..... 104
3.6.11 Comparison of $\Delta E_{c}^{\circ}$ obtained at the MP2' and MP2 levels. ..... 105
3.6.12 Comparison of $\Delta E^{b}$ obtained at the MP2' and MP2 levels. ..... 106
3.6.13 Comparison of $\Delta E_{t}^{\circ}$ obtained at the MP2' and MP2 levels. ..... 107
4.2.1 A plot of $\Delta E^{\neq}$versus $\Delta E^{\circ}$ for reactions $H^{-}+\mathrm{CH}_{3} X \rightarrow \mathrm{CH}_{3} \mathrm{H}+\mathrm{X}^{-}$. ..... 114
4.2.2 A plot of $\Delta \mathrm{E}^{\neq}$yersus $\Delta \mathrm{E}^{\circ}$ for reactions $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{3} \mathrm{~F}+\mathrm{X}^{-}$. ..... 115
4.2.3 Reaction profiles for the reactions $\mathrm{H}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{3} \mathrm{X}+\mathrm{H}^{-}$. ..... 118
4.2.4 Reaction profiles for the reactions $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{3} \mathrm{X}+\mathrm{F}^{-}$. ..... 119
4.2.5 A plot of $\Delta E^{\neq}$obtained from eq. 4.2.6 versus $\Delta E^{\neq}$ ..... 123
obtained from eq. 4.2.4.
4.3.1 Plot of $\Delta E^{\neq}$versus $\Delta E^{\circ}$ for the reactions $H^{-}+\mathrm{CH}_{3} X \rightarrow \mathrm{CH}_{3} X+H^{-}$. ..... 130
4.3.2 Plot of $\Delta E^{\neq}$versus $\Delta E^{\circ}$ for the reactions $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{3} \mathrm{~F}+\mathrm{X}^{-}$. ..... 131
4.3.3 Comparison of $\alpha$ values calculated from eq. 4.3.5 and ..... 134from eq. 4.3.8.
4.3.4 Plot of $\alpha$ versus $\Delta E^{\circ}$ for the reactions $H^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{3} \mathrm{X}+\mathrm{H}^{-}$. ..... 135
4.3.5 A plot of $\alpha$ versus $\mathrm{R}_{\alpha}$ for the reactions $\mathrm{H}^{-}+\mathrm{CH}_{3} \mathrm{X}-\mathrm{CH}_{3} \mathrm{X}+\mathrm{H}^{-}$. ..... 137
5.2.1 Radii of minima in $\nabla^{2} p(r)$ as a function of atomic number. ..... 148
5.3.1 Schematic plot of $\nabla^{2} \rho(r)$ versus $r$ for a free atom ..... 151
which has $K$ and $L$ shells.
5.3.2 $\quad \nabla^{2} \rho$ contour map of LiF. ..... 154
5.3.3 $\nabla^{2} \rho$ contour map of NF. ..... 155
5.3.4 Plot of Pauling electronegativities versus $S(A F)$ ..... 158
values obtained from the radius of the outermost minimum in $\nabla^{2} \rho$.
5.3.5 Plot of Sanderson electronegativities versus $S(A F)$ ..... 159
values obtained from the radius of the outermost minimum in $\nabla^{2} \rho$.
5.3.6 Plot of Allred-Rochow electronegativities versus S(AF) ..... 160
values obtained from the radius of the outermostminimum in $\nabla^{2} \rho$.
5.3.7 Plot of Allred-Rochow electronegativities versus ..... 161
$S(A F)$ values obtained from the radius of outermostmaxim: in $\nabla^{2} \rho$.
5.3.8 Plot of Allred-Rochow electronegativities versus ..... 163$S(A F)$ values obtained from the radius of outermostodd numbered zero in $\nabla^{2} \rho$.
3.3.9 Contours of $\nabla^{2} \rho$ a) $F$ b) $B F$. ..... 164
5.4.1 $\nabla^{2} \rho$ contour map of $\mathrm{CH}_{3} \mathrm{Cl}$. ..... 167
5.4.2 $\nabla^{2} \rho$ contour map of $\mathrm{CH}_{3} \mathrm{Li}$. ..... 172
5.4.3 $\nabla^{2} \rho$ contour map of $\mathrm{SiH}_{3} \mathrm{Cl}$. ..... 174
Table ..... Page
3.3.1 Energies calculated at the RHF level. ..... 42
3.3.2 Energies calculated at the MP2' level. ..... 45
3.3.3 Energies calculated at the MP2 level. ..... 47
3.3.4 Experimental activation energies and heats of ..... 48reactions.
3.3.5 Electronic dipole moments of FX molecules. ..... 52
3.3.6 RHF and MP2 bond lengths in the transition state. ..... 54
3.3.7 Critical points of transition state structures at the ..... 56 RHF, MP2' and MP2 levels.
3.4.1 Integrated charges on $X$ in $C_{3} X$ at the $R H F, M P 2^{\prime}$ and ..... 59 MP2 levels.
3.4.2 Transition state integrated charges obtained at the ..... 60 RHF, MP2' and MP2 levels.
3.4.3 Configuration analysis at the RHF level. ..... 65
3.4.4 Configuration analysis at the MP2' level. ..... 67
3.4.5 Configuration analysis at the MP2 level. ..... 69
3.4.6 Integrated charges on $N$ and $X$ in icn-molecule complexes ..... 71 $N^{-} \cdots \mathrm{RX}$ at the MP2 level.
3.4.7 Configuration analysis in terms of ion molecule complexes ..... 72 at the MP2 level.
3.4.8 Configuration analysis in terms of VB configurations at ..... 74 the MP2 level.
3.5.1 Critical radii of binary fluorides. ..... 87
3.6.1 $\mathrm{C}-\mathrm{X}$ bond length in $\mathrm{CH}_{3} \mathrm{X}$. ..... 92
4.2.1 Intrinsic barriers at the MP2' level. ..... 113
4.2.2 Calculated $G$ values for $R X$ and intrinsic barriers of ..... 121 symmetric reactions $X^{-}+R X+X^{-}+R X$.
4.2.3 Charges on $X$ in molecule RX. ..... 125
4.2.4 Basicity of $X^{-}$in gas phase and in solution. ..... 126
5.2.1 Radii of minima in the Laplacian of the charge ..... 143density of the spherical atoms Li to Xe.
5.3.1 Radii of the outermost minimum, odd zero and ..... 152 maximum in $\nabla^{2} \rho$.
5.3.2 $S(A F)$ values obtained from vaı ious radii. ..... 156
5.4.1 Extrena in VSCC of carbon in $\mathrm{CH}_{3} \mathrm{X}$. ..... 169
5.4.2 Integratea charges on atom $X$ in $\mathrm{SiH}_{3} \mathrm{X}$. ..... 176
5.4.3 $\rho$ and $\nabla^{2} \rho$ values at selected puints in $\mathrm{SiH}_{3} F$ ..... 178
and $\mathrm{SiH}_{3} \mathrm{Cl}$.


#### Abstract

NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfitming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendmenis.


#### Abstract

AVIS

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualiée d'mpression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.


#### Abstract

The properties of the electronic charge distribution are used to study the electronic structures, reactivities and intrinsic barriers of some model $S_{N}{ }^{2}$ reactions. Computations were carried out at the Hartree-Fock and second-order Moller-Plesset (MP2) levels. The systems examined are $\mathrm{N}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{3} \mathrm{~N}^{-} \mathrm{X}^{-}$, where N and X are $\mathrm{H}, \mathrm{CCH}, \mathrm{CN}, \mathrm{NC}, \mathrm{NH}_{2}, \mathrm{OH}$, $\mathrm{OOH}, \mathrm{F}, \mathrm{PH}_{2}, \mathrm{SH}$ and Cl . Using the integrated clarges obtained from the molecular structure theory, a way of analysing the electronic structure of the transition state is proposed and is used to study the electronic structures of model $\mathrm{S}_{\mathrm{N}} 2$ reactions. Results at the MP2 level show that for asymmetric reactions, the reactant and product do not make equal contributions to the transition state wavefunction. However, in some of the reactions, valence-bond configurations $N$ : $R \cdot X$ and $N \cdot R X:$, which are constituents of the reactant and product wavefunctions, respectively, make similar contributions to the transition state. Thus, in these reactions N and X do have equal charges at the transition state. The charge development on the leaving group is related not only to the exothermicity of the reaction but also to the electronic structure of the transition state and to the electronegativity of the leaving group. The factors determining the height of the intrinsic barrier are discussed. For symmetric reactions, the type of C-X bonding affects the barrier significantly. Within the same type of reaction, the intrinsic barrier is related to the electronegativity of the $X$ group. The Laplacian of the charge density is used to study the shell structures of free atoms and also the different reaction processes of nucleophilic substitution at carbon and at silicon. It is shown that electronegativity and polarizability play an important role in the reaction process. The stereochemistry of silicon is explained by the Laplacian of the charge density.


## List of Symbols

| Symbol | Meaning |
| :---: | :---: |
| ¢ | Planck's constant divided by $2 \pi$ |
| m | mass of an electron |
| $e$ | charge of an electron |
| z | charge of a nucleus |
| M | mass of a nucleus |
| $\rho$ | charge density |
| $\nabla \rho$ | gradient of the charge density |
| $\nabla^{2} \rho$ | the Laplacian of the charge density |
| $\Delta E_{c}(\mathrm{I})$ | energy change upon the formation of the reactant ion-molecule complex from reactant |
| $\Delta E_{c}(I I)$ | energy change upon the formation of the product ion-molecule complex from product |
| $\Delta E_{c}^{b}$ | energy barrier for the second step of the reaction |
| $\Delta E_{c}^{\circ}$ | energy change for the second step of the reaction |
| $\Delta E^{\text {b }}$ | energy barrier for the entire reaction |
| $\Delta E_{\mathrm{t}}^{\circ}$ | energy change for tne entire reaction |
| $\mathrm{R}_{\text {A-B }}$ | bond length between atoms A and B |
| $r_{\text {C-A }}$ | distance between bond critical point and atom A |

net charge on $A$
charge development on $A$
potential energy barrier
intrinsic barrier
elementary reaction energy
TS bond length change parameter
radial density function
radius of the ith minimum in $\nabla^{2} \rho$
radius of the outermost minimum in $\nabla^{2} \rho$
radius of the outermost odd numbered zero
of $\nabla^{2} \rho$
radius of the outermost maximum in $\nabla^{2} \rho$
difference in $\nabla^{2} \rho$ values

## Acixnowledgements

The research discussed in this thesis was done under the supervision of Dr. R. J. Boyd to whom $I$ would like to express my sincere gratitude for his encouragement, guidance and assistance throughout the years and for spending a lot of time going through the thesis and making it more readable.

Special thanks go to Choi and Poh for their help with computer programs and their friendship and assistance in various matters.

Thanks also go to Prof. L. C. Wang. His assistance in computer programming has been an important factor.

I wouit also thank Dr. J. L. Ginsburg with whom I enjoyed helpful discussions.

A Killam postgraduate scholarship and a graduate fellowship from Dalhousie University are gratefully acknowledged.

The generous allocation of computer time from the Dalhousie University computer center and assistance from the group and department members are acknowledged with gratitude.

I would also like to thank my husband for his encouragement, support and confidence in me and also for the discussions and arguments from which I have benefitted.

## Chapter 1

## Introduction

### 1.1 Overview

A fundamental postulate of quantum mechanics states that everything that can be known about a system is contained in the state function $\Psi$. This postulate has been used by Bader and coworkers to develop a molecular structure theory, 1 in which the gradient vector field and the scalar field of the electronic charge distribution $\rho(r)$ are used to study the bonds, atomic interactions, reactivities and stabilities of molecular systems.

According to the theory, the properties of the gradient vector field $\nabla \rho(r)$ provide a definition of the elements of molecular structure. Thus, the molecular charge density is uniquely partitioned into atoms bounded by the zero-flux surfaces in $\nabla \rho(r)$ and chemical bonds are manifested by the existence of bond paihs in the gradient vector field of $\nabla \rho(r)$. Furthermore, the network of bonds linking the atoms in a molecule enables one to assign a structure and to determine whether or not the structure is stable. On the other hand, the properties of the scalar field of the charge density, the Laplacian distribution $\nabla^{2} \rho(r)$, provide an understanding of atomic interactions and the reactivity of a molecule. As noted by Morse and Feshbach, ${ }^{2}$ the Laplacian is an extremely important property of a scalar field. In particular, the Laplacian of the charge density identifies the regions of space wherein the electronic charge of a molecule is locally concentrated or depleted.

Moreover, an expression derived from the quantum mechanical stress tensor relates the sign of the Laplacian of $\rho$ to the relative magnitudes of the local contribution of the potential and kinetic energy density to their virial theorem average.

Studies on molecular systems using the properties of $\nabla \rho(r)$ and $\nabla^{2} \rho(r)$ show that bonds can be characterized in terms of the properties of the bond path and of $\rho$ at the bond critical point. ${ }^{3}$ The ellipticity of the bond provides a measure of the extent to which charge is preferentially accumulated in a given plane. Also the Laplacian of the charge density demonstrates the existence of a local concentration of electronic charge in both the bonded and nonbonded regions of an atom in a molecule. The numbers, locations and relative sizes of the bonded and nonbonded concentrations of charge in the valence shell of a bonded atom, as determined by the Laplacian of $\rho$, agree in general with the corresponding VSEPR model. ${ }^{4}$ Furthermore, it has been found that the regions of charge concentration and charge depletion in the Laplacian distribution coincide with the regions of space where the HOMO (the highest occupied molecular orbital) and the LUMO (the lowest unoccupied molecular orbital), respectively, are most concentrated. ${ }^{5}$ Also, the regions of maximum electronic charge concentration and depletion, as determined by the Laplacian of $\rho$, correlate with the positions of electrophilic and nucleophilic attack, ${ }^{4 b, 5,6}$ respectively.

The properties of the electronic change density provide an attractive tool for the study of atomic and molecular systems. In this thesis the properties of the electronic charge density are used to study the structures of atoms and to study some model $S_{N} 2$ reactions, with the aim
of providing further insight into the electronic structures of the transition states of the reactions. A second goal is to provide a deeper understanding of intrinsic barriers and the reactivities of the model systems.

Transition state studies of model $\mathrm{S}_{\mathrm{N}^{2}}$ reactions $\mathrm{N}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{X}^{-}+\mathrm{CH}_{3} \mathrm{~N}$ where N and X are $\mathrm{H}, \mathrm{CCH}, \mathrm{CN}, \mathrm{NC}, \mathrm{NH}_{2}, \mathrm{OH}, \mathrm{OOH}, \mathrm{F}, \mathrm{PH}_{2}, \mathrm{SH}$ and Cl are reported in chapter 3 . In chapter 4 , intrinsic barriers of model reactions and the rate-equilibrium relationship are discussed. In chapter 5, the Laplacian of the charge density is used to study the electronic structures of the free atoms Li to Xe and electronegativities. Furthermore, the Laplacian of the charge density is used to study the reactivity and sterec:hemistry of nucleophilic substitution reactions at carbon and silicon.

### 1.2 Gradient Vector Field of the Charge Density ( $\nabla \rho$ )

For a fixed configuration of nuclei, the charge distribution for a system containing $N$ electrons is defined by

$$
\begin{equation*}
\rho(r)=N \sum_{\operatorname{spin}} \int^{*} \Psi^{*}\left(x_{1}, x_{2}, \ldots x_{n}\right) \Psi\left(x_{1}, x_{2}, \ldots x_{n}\right) d r_{2}, \ldots d r_{n} \tag{1.2.1}
\end{equation*}
$$

where $\Psi$ is a properly antisymmetrized solution to the general time-independent Schrödinger equation, $\mathbf{x}_{\mathbf{i}}$ is a combination of the space and $\operatorname{spin}$ coordinates of the $i t h$ electron and $r_{i}$ denotes the space coordinates of the ith electron.

For a given nuclear configuration, the topological properties of $\rho$ are faithfully mapped out by the associated gradient vector field of the
charge density, $\nabla \rho$. As an example, the gradient vector field of the water molecule is illustrated in Fig. 1.2.1. In this vector field, the vector $\nabla \rho$ points in the direction of maximum increase in $\rho$ and $a$ gradient path is generated by following the path traced out by a succession of such vectors starting at some initial point. A gradient path is orthogonal to a contour of constant $\rho$ at any of its points.

The essential topological properties of $\rho$ can be summarized by the complete specification of its critical points at which $\nabla \rho=0$. A critical point, denoted by $r_{c}$, is classified according to its rank and signature $(\lambda, \sigma) .{ }^{1 a, 7}$ The rank $\lambda$ of a critical point equals the number of non-zero eigervalues of the Hessian matrix of $\rho\left(r_{c}\right), H(p)=\left[H_{i j}(\rho)\right]$, while the signature $\sigma$ is the algebraic sum of the signs of the eigenvalues.

The Hessian matrix of $\rho(r)$ is the matrix of second derivatives of $\rho(r)$ with respect to the position coordinates

$$
\begin{equation*}
H_{i j}(\rho)=\left[\frac{\partial^{2} \rho}{\partial r_{i} \partial \mathbf{r}_{j}}\right]_{r=r_{c}} \tag{1.2.2}
\end{equation*}
$$

There can be two types of critical points: a nondegenerate or rank-three critical poinc with

$$
\begin{equation*}
\operatorname{det}|H(\rho)|_{\mathbf{r}}=\mathbf{r}_{\mathbf{c}} \neq 0 \tag{1.2.3}
\end{equation*}
$$

and a degenerate critical point, for which $\operatorname{det} \mid \mathrm{H}(\rho)$ | vanishes, since $H(\rho)$ is of rank less than three at such a point.

The eigenvalues of $H(\rho)$ at each critical point indicate the


Figure 1.2.1 Gradient vector field of the $\mathrm{H}_{2} \mathrm{O}$ molecule.
curvatures of $p\left(r_{c}\right)$ and determine the three orthogonal eigenvectors of gradient paths which either terminate or originate at the critical point. If the eigenvalue is positive its associated eigenvector or gradient path originates at the critical point and is directed away from the critical point. If the eigenvalue is negative, the associated gradient path terminates at the critical point and is directed toward the critical point, see Fig. 1.2.2.

In the case of a nondegenerate critical point, four types of critical point are possible, i.e., $(3,-3),(3,+3),(3,+i)$ and $(3,-1)$.

A $(3,-3)$ critical point has three negative eigenvalues of the Hessian matrix, corresponding to three negative curvatures. Hence, it is a local maximum in $\rho$ and also all gradient paths in the vicinity of the critical point terminate at this critical point. A $(3,-3)$ critical point exhibits the properties which define an attractor of the gradient vector field of the charge distribution. For a ground state system, a (3,-3) critical point exists only at nuclei (non-nuclear maxima have been found in the charge distribution of Li and Na clusters and may be typical of the alkali metals). ${ }^{7 b, 8}$ Due to the nuclear coalescence cusp condition on the state function and hence on the charge density, $\nabla \rho(r)$ is undefined at a nucleus. Consequently the maximum in $\rho(r)$ at the position of a nucleus is not a true critical point, as $\nabla \rho(r)$ does not vanish. However, the topological behaviour of $\rho(r)$ in the region of a nuclear cusp is the same as if it were a true $(3,-3)$ critical point. $1 a, 8 a$

A local minimum in $\rho(r)$ has three positive curvatures, each associated with a positive eigenvalue. Such a minimum corresponds to a $(3,+3)$ critical point and is observed in a cage structure. These


Figure 1.2.2 Molecular graph of the $\mathrm{H}_{2} \mathrm{O}$ molecule.
a) bond critical point;
b) bond path;
c) interatomic surface.
critical points are also known as cage critical points.
A $(3,+1)$ critical point is a saddle point which has two positive eigenvalues and one negative eigenvalue. Motion along the unique axis, associated with the negative eigenvalue, towards the critical point leads to an increase in $\rho(\mathbf{r})$. A $(3,+1)$ critical point can be found in a ring structure and therefore is called a ring critical point.

A $(3,-1)$ critical point has two negative and one positive eigenvalues. The two eigenvectors associated with the negative eigenvalues define a surface on which the critical point is a local maximum. The eigenvector associated with the positive eigenvalue defines a unique axis along which the charge density decreases for motion towards the critical point. The value of $\rho\left(r_{c}\right)$ is the local minimum along this axis. A $(3,-1)$ critical point appears between every pair of neighboring bonded atoms and is therefore called a bond critical point.

For a system with a finite number of nuclei, the number of $(3,-3)$ critical points $\left(n_{-3}\right),(3,+3)$ critical points $\left(n_{+3}\right),(3,+1)$ critical points $\left(n_{+1}\right)$ and ( $3,-1$ ) critical points $\left(n_{-1}\right)$ are related by eq. $(1.2 .4)^{1 a, 7 b, 8 a}$

$$
\begin{equation*}
n_{-3}-n_{+3}+n_{+1}-n_{-1}=1 \tag{1.2.4}
\end{equation*}
$$

With information on the gradient vector field and the critical points of $\rho$ at hand, the definitions of bonds and interatomic surfaces can be made immediately. The necessary and sufficient condition for the existence of a bond is the existence of a bond path. The bond path is a pair of gradient paths which originate at a $(3,-1)$ critical point and
terminate at neighboring nuclei. ${ }^{1 a, 7 b, 9}$ It is defined by the eigenvector associated with the unique positive eigenvalue of a $(3,-1)$ critical point. A bond path is a line through the charge density along which $\rho(\mathrm{r})$ is a maximum with respect to any lateral displacement, see Fig. 1.2.2.

The network of bond paths defines the molecular graph of a molecule, ${ }^{1 a, 7 b}$ The set of molecular graphs which contain the same number of bond paths linking the same nuclei define a molecular structure ${ }^{1 a, 7 b}$. For a molecular strucuure to be stable, it must satisfy two requirements: a) every critical point in $\rho$ must be nondegenerate i.e. have three non-zero eigenvalues; b) the critical points of a charge distribution are linked by trajectories of $\nabla \rho .^{1 a, 9}$

The gradient paths defined by the eigenvectors associated with the negative eigenvalues of the Hessian matrix of a $(3,-1)$ critical point generate an interatomic surface. The interatomic surface and the surfaces at infinity are the only closed surfaces which satisfy the equation ${ }^{8 a, 10}$

$$
\begin{equation*}
\nabla \rho(r) \cdot n(r)=0 \quad \forall r \in s \tag{1.2.5}
\end{equation*}
$$

where $n(r)$ is the unit vector normal to the surface at $r$. A surface that satisfies this equation is known as "a zero-flux surface" since there is no flux in $\nabla \rho$ through the surface. An atom is defined by a real space surrounded by a zero-flux surface. ${ }^{8 a, 10}$ This definition of an atom is not only unique, but as we will see later, the virial relationship is followed.

By appealing to quantum mechanics, ${ }^{1 b}$ one finds that the zero-flux
surface condition (eq. (1.2.5)) leads to a variational definition of its average properties. One consequence of this definition is that any atomic property $F$ is the average over the atomic basin of an effective single-particle density $f(r)$. Thus the value of the property $F$ for atom $\Omega$ is

$$
\begin{equation*}
F(\Omega)=\int_{\Omega} f(r) d r \tag{1.2.6}
\end{equation*}
$$

It follows from this definition that the average value of $F$ for a total molecular system is given by the sum over the atoms in the molecule of the corresponding atomic values.

$$
\begin{equation*}
F=\sum_{\Omega} F(\Omega) \tag{1.2.7}
\end{equation*}
$$

The atomic charge of an atom is obtained by integrating $p$ over the basin of the atom to obtain its average electron population $N(\Omega)$ followed by the subtraction of this average electron population from the nuclear charge $Z_{\Omega}$

$$
\begin{equation*}
Q(\Omega)=Z_{\Omega}-\int_{\Omega} \rho(r) d r=Z_{\Omega}-N(\Omega) \tag{1.2.8}
\end{equation*}
$$

Kinetic energy is obtained by int grating the local kinetic energy over the basin of an atom,

$$
\begin{equation*}
K(r)=-\frac{\hbar^{2}}{2 m} \nabla \nabla \Gamma\left(r, r^{\prime}\right)_{r=r^{\prime}} \tag{1.2.9}
\end{equation*}
$$

$$
\begin{equation*}
G(r)=\frac{\hbar^{2}}{2 m} \nabla \cdot \nabla^{\prime} \Gamma\left(r, r^{\prime}\right)_{r=r^{\prime}} \tag{1.2.10}
\end{equation*}
$$

$\Gamma\left(r, r^{\prime}\right)$ is the one-electron spinless density matrix ${ }^{11}$
$\Gamma\left(r, r^{\prime}\right)=N \sum_{\operatorname{spin}} \int \Psi^{*}\left(x_{1}, x_{2}, \ldots x_{n}\right) \Psi\left(x_{1}^{\prime}, x_{2}, \ldots x_{n}\right), d r_{2}, \ldots d r$

These two kinetic densities yield the same average kinetic energy of an atom

$$
\begin{equation*}
K(\Omega)=\int_{\Omega} K(r) d r=\int_{\Omega} G(r) d r \tag{1.2.12}
\end{equation*}
$$

This follows from the fact ${ }^{12}$ that

$$
\begin{align*}
K(\mathbf{r}) & =L(\mathbf{r})+G(\mathbf{r})  \tag{1.2.13}\\
L(\mathbf{r}) & =-\frac{h^{2}}{4 \mathrm{~m}} \nabla^{2} \rho(\mathbf{r})  \tag{1.2.14}\\
L(\Omega) & =\int_{\Omega} L(\mathbf{r}) d \mathbf{r}  \tag{1.2.15}\\
& =-\frac{h^{2}}{4 m} \int_{\Omega} \nabla^{2} \rho(\mathbf{r}) \mathrm{d} \mathbf{r} \\
& =-\frac{h^{2}}{4 \mathrm{~m}} \oint_{\mathrm{s}} \nabla \rho(\mathbf{r}) \cdot \mathrm{n}(\mathbf{r}) \mathrm{ds}(\mathbf{r})
\end{align*}
$$

and from the definition of an interatomic surface, eq. (1.2.5), $L(\Omega)=0$.
1.3 The Scalar Field of the Charge Density ( $\nabla^{2} \rho$ )

The Laplacian of the charge density is defined as the sum of the three principal curvatures of the function at each point in space, that is ${ }^{2,10}$

$$
\begin{equation*}
\nabla^{2} \rho(r)=\frac{\partial^{2} \rho}{\partial x^{2}}+\frac{\partial^{2} \rho}{\partial y^{2}}+\frac{\partial^{2} \rho}{\partial z^{2}} \tag{1,3.1}
\end{equation*}
$$

In one dimension, the curvature of $\rho(x)$ is a measure of the difference between the average value of $\rho$ at points neighboring $x$ and its value at $x$. This follows from the fundamental definition of the derivative ${ }^{2}$

$$
\begin{align*}
& \lim \left\{\rho(x)-\frac{1}{2}[\rho(x-d x)+\rho(x+d x)]\right\} \\
= & -\frac{1}{2} \lim \{[\rho(x+d x)-\rho(x)]-[\rho(x)-\rho(x-d x)]\} \\
= & -\frac{1}{2}\left[\frac{d^{2} \rho}{d x^{2}}\right]\left(d x^{2}\right) \tag{1.3.2}
\end{align*}
$$

When $\nabla^{2} \rho(x)<0, \rho$ at $x$ is larger than the average of $\rho$ at $x+d x$ and $x-d x$ and $\rho$ will have a downward curvature at that point when plotted against x. Similarly when $\nabla^{2} \rho(x)>0, \rho$ at $x$ is less than its average value at neighboring points. Similarly, in three dimensions, when $\nabla^{2} \rho(r)<0$, then the $\rho$ at point $r$ is greater than its average value at neighboring points and when $\nabla^{2} \rho(r)>0$, the value of $\rho$ at $r$ is less than its average value at neighboring points. Thus a minimum in $\nabla^{2} \rho(r)$ with a negative value means that the electronic charge is locally concentrated in that region of space, even though the charge density itself exhibits no corresponding maximum. This property of $\nabla^{2} \rho(r)$ must be distinguished from local maxima and minima in $\rho(r)$. An example of a Laplacian of $\rho$
plot for a molecule is shown in Fig. 1.3.1.
The Laplaciars of the charge density is directly related to the local contributions to the electronic energy of a system via the equation ${ }^{2,3}$

$$
\begin{equation*}
\frac{h^{2}}{4 \mathrm{~m}} \nabla^{2} \rho(r)=V(r)+2 G(r) \tag{1.3.3}
\end{equation*}
$$

where $V(r)$ is the potential energy density as defined in eq. (1.3.4) and $G(r)$ is the kinetic energy density as defined in eq. (1.2.10)

$$
\begin{equation*}
V(\mathbf{r})=\{-\mathbf{r} \cdot \nabla \cdot \ddot{\sigma}(\mathbf{r})+\nabla \cdot[\mathbf{r} \cdot \vec{\sigma}(\mathbf{r})]\} \tag{1.3.4}
\end{equation*}
$$

$\ddot{\sigma}(r)$ is the stress tensor defined by

$$
\begin{equation*}
\left.\ddot{\sigma}(r)=\frac{\hbar^{2}}{4 m}\left\{\left(\nabla \nabla+\nabla^{\prime} \nabla^{\prime}\right)-\left(\nabla \nabla^{\prime}+\nabla^{\prime} \nabla\right)\right\} \Gamma\left(r, r^{\prime}\right) \right\rvert\, r=r^{\prime} \tag{1.3.5}
\end{equation*}
$$

Integration of the potential density over an atomic basin yields the average electronic potential energy of the atom. As the integral of the Laplacian of $\rho$ vanishes over an atomic basin (eq. 1.2.15), integration of eq. (1.3.3) over an atom yields

$$
\begin{equation*}
\mathrm{V}(\Omega)+2 \mathrm{~T}(\Omega)=\int_{\Omega} \mathrm{V}(\mathbf{r}) \mathrm{d} \mathbf{r}+2 \int_{\Omega} \mathrm{G}(\mathbf{r}) \mathrm{d} \mathbf{r}=\frac{h^{2}}{4 \mathrm{~m}} \int_{\Omega} \nabla^{2} \rho(\mathbf{r}) \mathrm{d} \mathbf{r}=0 \tag{1.3.6}
\end{equation*}
$$

which is the same as for the total system, i.e. $V+2 T=0$. Thus eq. (1.3.3) is the local expression for the virial theorem.

Since the potential and kinetic energy density are everywhere negative and positive respectively, the sign of the Laplacian of the


Figure 1.3.1 The Laplacian of $\rho(\mathbf{r})$ in the molecular plane of $\mathrm{H}_{2} \mathrm{O}$.
charge density determines which of the two contributions to the total energy is in excess over their virial average $|V(\Omega) / T(\Omega)|=2$. In regions of space where the Laplacian is negative and electronic charge is concentrated, the potential energy dominates both the local total energy $E(r)=V(r)+G(r)$ and the local virial relationship. In general, the more negative the value of the Laplacian over some region of space, the greater is the contribution of the electronic charge in that region to the total energy of the system. Furthermore, as a consequence of the vanishing of the integral of the Laplacian of $\rho$ over a system or a subsystem bounded by a zero-flux surface, there is a constraint on the relative extents of concentration and depletion of charge, i.e. if charge is concentrated in some regions of an atom, it must be depleted to a corresponding extent in other regions.

## Chapter 2

## Theoretical Methuds

### 2.1 Hartree-Fock Method

For a system of $N$ elecicrons and $M$ nuclei, the time-independent Schrödinger equation is

$$
\begin{equation*}
H \Phi=E \Phi \tag{2.1.1}
\end{equation*}
$$

where $H$ is the molecular Hamiltonian operator, $\Phi$ is a state function in Hilbert space $H$, which completely defines the dynamical state of the system, and $E$ is an allowed energy value. Within the framework of non-relativistic quantum mechanics, the total molecular Hamiltonian takes the form

$$
\begin{equation*}
H=T_{n}+T_{e}+V_{n}+V_{e}+V_{n e} \tag{2.1.2}
\end{equation*}
$$

with nuclear kinetic energy operator

$$
\begin{equation*}
T_{n}=-\frac{\hbar^{2}}{2} \sum_{A}^{M} \frac{1}{M_{A}} \nabla_{A}^{2} \tag{2.1.3}
\end{equation*}
$$

where $M_{A}$ is the mass of nucleus $A$. The electronic kinetic energy operator is

$$
\begin{equation*}
T_{e}=-\frac{h^{2}}{2 m} \sum_{p}^{N} \nabla_{p}^{2} \tag{2.1.4}
\end{equation*}
$$

and the nucleus-nucleus repulsion term is

$$
\begin{equation*}
\mathbf{v}_{\mathrm{n}}=\sum_{\mathrm{A}<\mathrm{B}}^{\mathrm{M}} \frac{\mathrm{Z}_{\mathrm{A}} \mathrm{Z}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{AB}}} \tag{2.1.5}
\end{equation*}
$$

where $Z_{A}$ is the charge on nucleus $A$. The electron-electron repulsion term is

$$
\begin{equation*}
v_{e}=\sum_{p<q}^{N} \frac{e^{2}}{r_{p q}} \tag{2.1.6}
\end{equation*}
$$

and the electron-nucleus attraction term is

$$
\begin{equation*}
v_{n e}=-\sum_{\mathrm{p}}^{\mathrm{N}} \sum_{\mathrm{A}}^{\mathrm{M}} \frac{\mathrm{Z}_{\mathrm{A}} \mathrm{e}}{\mathrm{r}_{\mathrm{pA}}} \tag{2.1.7}
\end{equation*}
$$

The Schrödinger equation (2.1.1) is a second-order differential equation in $3(N+M)$ variables. The solution of the equation is no simple matter and can only be obtained by resorting to various approximations. Invariably, the first approximation invoked is the Born-Oppenheimer approximation. Born and Oppenheimer's mathematical treatment showed that ${ }^{13}$ the true molecular wavefunction is adequately approximated as

$$
\begin{equation*}
\Phi(r, R)=: \Psi_{e}(r ; R) \Psi_{n}(R) \tag{2.1.8}
\end{equation*}
$$

$$
\left(\frac{m}{M}\right)^{1 / 4} \ll 1
$$

where $\Psi_{e}$ is an electronic wavefunction and $\Psi_{n}$ is a nuclear wavefunction. Physically, it is expected that the disparity of the mass of the electron and the mass of the nuclei in a molecule will lead to electronic and nuclear motions at dramatically different speeds ana therefore the electrons can respond almost instantaneously to any change in the position of the nuclei. Consequently, the electronic and nuclear motion can be treated separately to a very good approximation. Thus, eq.
(2.1.1) can be separated into two equations

$$
\begin{equation*}
H_{e}(r ; R) \Psi_{e}(r ; R)=E_{e}(R) \Psi_{e}(r ; R) \tag{2.1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{n}(R) \Psi_{n}(R)=E \Psi_{n}(R) \tag{2.1.10}
\end{equation*}
$$

where $H_{e}$ is the electronic Hamiltonian of the form

$$
\begin{equation*}
H_{e}(r ; R)=T_{e}(r)+V_{e}(r)+V_{n e}(r ; R) \tag{2.1.11}
\end{equation*}
$$

and $H_{n}$ has the form

$$
\begin{equation*}
H_{n}(R)=T_{n}(R)+V_{n}(R)+E_{e}(R) \tag{2.1.12}
\end{equation*}
$$

Eq. (2.1.9) depends on the electronic coordinates at a fixed position $\mathbf{R}$ of the nuclei and yields as solution the electronic wavefunction $\Psi e$ and electronic energy $E_{e}$ for a given nuclear arrangement. $E q$ (2.1.10)
describes the nuclear motion in the potential

$$
\begin{equation*}
\mathbf{U}(R)=V_{n}(R)+E_{e}(R) \tag{2.1.13}
\end{equation*}
$$

Hence, in order to obtain the potential energy surface $\mathbf{U}(\mathrm{R})$, one has to solve the electronic Schrödinger equation (2.1.9) for a number of nuclear positions. The further term $V_{n}(R)$ is easily evaluated. Eq. (2.1.10) can be solved without much problem. ${ }^{14}$ Thus the most difficult part of all molecular calculations is to solve the electronic Schrödinger equation (2.1.9). From now on, as we only consider the solution of the electronic Schrödinger equation, the subscript "e" is dropped.

The electronic Schrödinger equation (2.1.9) is a many-electron problem whose solution is normally obtained within the independent electron model. The most widely used form of the independent electron model is the Hartree-Fock model.

The essence of the Hartree-Foak approximation ${ }^{15}$ is to replace the complicated many-electron problem by a one-electron problem in which electron-electron repulsion is treated in an average way. The electronic wavefunction is represented by a single determinant of the products of single-electron spin orbitals eq (2.1.14), in which the orbitals are

$$
\begin{equation*}
\Psi_{0}=(N!)^{-1 / 2}\left|x_{1} x_{2} \cdots x_{N}\right| \tag{2.1.14}
\end{equation*}
$$

optimized according to the variation principle, such that the electronic energy

$$
\begin{equation*}
E_{0}=\left\langle\Psi_{0}\right| \mathbf{H}\left|\Psi_{0}\right\rangle \tag{2.1.15}
\end{equation*}
$$

is minimized. In doing so, one obtains an equation that defines the best spin orbitals, the one that minimize $E_{0}$. This equation for the best spin orbitals is the Hartree-Fock integro-differential equation

$$
\begin{equation*}
f \chi_{i}=\varepsilon_{i} \chi_{i} \tag{2.1.16}
\end{equation*}
$$

where $f$ is an effective one-electron operator, called the Fock operator, of the form

$$
\begin{equation*}
f(p)=h(p)+v_{(p)}^{H F} \tag{2.1.17}
\end{equation*}
$$

$h(p)$ is a core-Hamiltonian operator which in atomic units takes the form (from now on, atomic units are used exclusively in this chapter unless otherwise indicated)

$$
\begin{equation*}
h(p)=-\frac{1}{2} \nabla_{p}^{2}-\sum_{A}^{M} \frac{Z_{A}}{r_{p A}} \tag{2.1.18}
\end{equation*}
$$

$v_{(p)}^{\mathrm{HF}}$, the average potential experienced by electron $p$ due to the presence of the other electrons, has the form

$$
\begin{equation*}
v_{(p)}^{H F}=\sum_{j}^{N}\left(J_{j}(p)-K_{j}(p)\right) \tag{2.1.19}
\end{equation*}
$$

where $J_{j}(p)$, the Coulomb operator, is given by

$$
\begin{equation*}
\left.J_{j}(p)=\left\langle x_{j}(q)\right| \frac{1}{r_{p q}} \right\rvert\, x_{j}(q) \tag{2.1.20}
\end{equation*}
$$

and $K_{j}(p)$, the exchange operator, has the rroperty

$$
\begin{equation*}
K_{j}(p) x_{i}(p)=\left\langle x_{j}(q)\right| \frac{1}{r_{p q}}\left|x_{i}(q)\right\rangle \cdot x_{j}(p) \tag{2.1.21}
\end{equation*}
$$

The Hartree-Fock potential $v^{H F}$ or equivalently the "field" seen by electron $p$, depends on the spin orbitals of the other electrons (i.e. the Fock operator depends on its eigenfunctions). Thus the Hartree-Fock equations are nonlinear and must be solved iteratively. The procedure for solving the Hartree-Fock equations is called the self-consistent-field (SCF) method. The eigenvalue of the Fock operator $\varepsilon_{i}$ is

$$
\begin{equation*}
\varepsilon_{i}=h_{i}+\sum_{j}^{N}\left(J_{i j}-K_{i j}\right) \tag{2.1.22}
\end{equation*}
$$

where

$$
\begin{align*}
& h_{i}=\left\langle x_{i}\right| \mathrm{h}\left|x_{i}\right\rangle  \tag{2.1.23}\\
& J_{i j}=\left\langle x_{i}\right| J_{j}\left|x_{i}\right\rangle  \tag{2.1.24}\\
& \mathrm{K}_{i j}=\left\langle x_{i}\right| \mathrm{K}_{\mathrm{j}}\left|x_{i}\right\rangle \tag{2.1.25}
\end{align*}
$$

and the total Hartree-Fock electronic energy $E$ is

$$
\begin{equation*}
E=\sum_{i}^{N} \varepsilon_{i}-\frac{1}{2} \sum_{i}^{N} \sum_{j}^{N}\left(J_{i j}-K_{i j}\right) \tag{2.1.26}
\end{equation*}
$$

Exact solutions to the Hartree-Fock equations (2.1.16) are only possible, in practice, for atoms where the spherical symmetry of the system permits reduction to a system of coupled one-dimensional equations (for diatomic molecules, numerical solutions have been recently reported ${ }^{16}$ ). For molecules, approximate solutions of the equation may be obtained by expanding all functions $\chi$ which arise in terms of some set of fixed basis functions. If the basis functions $\phi_{r}(r$ $=1,2, \cdots \infty)$ constitute a complete set, then any function may be expressed in the form

$$
\begin{equation*}
\chi=\sum_{r} c_{r} \phi_{r} \tag{2.1.27}
\end{equation*}
$$

with negligible error by including sufficient terms in the expansion. By employing the basis set expansion technique, the problem of finding the best function $\chi$ is simplified to finding the best set of coefficients and the integro-differential equations are converted into matrix equations. If a sufficiently large number of terms are included in eq (2.1.27), results obtained by the expansion methr. tend to the exact solutions of the Hartree-Fock equations and are, of course, independent of the nature of the basis functions. In practice, it is often not feasible to include sufficient terms in the expansion for convergence to accurate Hartree-Fock solutions and the quality of the approximation equation (2.1.27) is then critically dependent on the choice of basis functions. Basis functions are discussed further in section 2.3.

Hartree-Fock calculations account for the majority of molecular calculations. The Hartree-Fock method is capable of recovering a large
fraction of the total energy of a system and also leads to expectation values of some one-electron properties which are of an acceptable accuracy. Furthermore, the Hartree-Fock method provides a simple orbital picture of electronic structure. The Hartree-Fock method does, however, have a number of deficiencies. The primary deficiency is the inadequate treatment of the correlation between motions of electrons. In particular, single-determinant wavefunctions take no account of correlation between electrons with opposite spin. Correlation of the motions of the electrons with the same spin is partially, but not completely accounted for by virtue of the determinantal form of the wavefunctior. This results in quantitatively inadequate energies of chemical interest. Furthermore, the single-determinant wavefunction leads to a number of qualitatively incorrect descriptions of electronic structure. In fact, whenever two or more molecular states from different configurations have similar total energies and interact strongly, the Hartree-Fock method breaks down. To improve upon a Hartree-Fock calculation, the effects of electron correlation must be included. This will be the subject of the next section.

### 2.2 Møller-Plesset Perturbation Theory

Due to the limitations of the current computers, even with orbital expansion in a finite basis, a full configuration interaction calculation is only possible for small systems. A great deal of effort has been made to develop methods which are efficient and accurate enough to give an adequate approximation to the full configuration interaction result. The frequently used methods include limited configuration
interaction (CI), perturbation and coupled cluster methods. ${ }^{17}$
Møller-Plesset perturbation theory is based on many-body perturbation theory, in which, the Hartree-Fock operator $H_{0}$ is taken as the zero-order Hamiltonian ${ }^{17 b}$

$$
\begin{equation*}
H_{0}=\sum_{p}^{N} f(p) \tag{2.2.1}
\end{equation*}
$$

and the Hartree-Fock wavefunction is taken as the zero-order wavefunction

$$
\begin{equation*}
\Psi^{(0)}=\Psi_{0} \tag{2.2.2}
\end{equation*}
$$

The many-electronic Hamiltonian is written in the form

$$
\begin{equation*}
H=H_{0}+V \tag{2.2.3}
\end{equation*}
$$

where $V$ is regarded as a small perturbation

$$
\begin{align*}
V & =\mathrm{H}-\mathrm{H}_{0}  \tag{2.2.4}\\
& =\sum_{\mathrm{p}<\mathrm{q}} \frac{1}{\mathrm{r}}_{\mathrm{pq}}-v_{(\mathrm{p})}^{\mathrm{HF}}
\end{align*}
$$

The exact eigenfunction $\Psi$, which is supposed to lie near the Hartree-Fock solution $\Psi_{0}$ and the exact eigenvalue $E$, which is supposed to lie near the corresponding $E_{0}$, can be expressed in the following series

$$
\begin{align*}
& \Psi=\Psi^{(0)}+\Psi^{(1)}+\Psi^{(2)}+\cdots  \tag{2.2.5}\\
& E=E^{(0)}+E^{(1)}+E^{(2)}+\cdots \tag{2.2.6}
\end{align*}
$$

where $\Psi^{(i)}, E^{(i)}$ are the ith-order correction to the wavefunction and energy, respectively. In practice, the expansion is truncated after finite order. The method is referred to by the highest order energy term allowed, that is, truncating after second-order energy as MP2, after third-order as MP3 and so forth.

The correction terms $\Psi^{(1)}, \Psi^{(2)}, \ldots$ are developed in terms of the complete set of Hartree-Fock eigenfunctions $\Psi_{s}(s=0,1,2, \cdots)$

$$
\begin{align*}
\Psi^{(1)} & =\sum_{S} a_{S}^{(1)} \Psi_{S}  \tag{2.2.7}\\
\Psi^{(2)} & =\sum_{S} a_{S}^{(2)} \Psi_{S} \tag{2.2.8}
\end{align*}
$$

$\Psi_{s}(s=0,1,2, \cdots)$ are single-determinants and may be classified (apart from $s=0$ which has the lowest eigenvalue and is used as the reference configuration) as single substitutions $i \longrightarrow a$, double substitutions $i j \rightarrow a b$, and so forth. $i, j \rightarrow a b$ implies that $\chi_{i}$ is replaced by $\chi_{a}$ and $\chi_{j}$ by $\chi_{b}$. Their corresponding eigenvalues are denoted as $E_{S}$

$$
\begin{gather*}
E_{0}=\sum_{i}^{N} \varepsilon_{i}  \tag{2.2.9}\\
E_{i \rightarrow a}-E_{0}=\varepsilon_{a}-\varepsilon_{i} \tag{2.2.10}
\end{gather*}
$$

$$
\begin{equation*}
E_{i j \rightarrow a b}-E_{0}=\varepsilon_{a}+\varepsilon_{b}-\varepsilon_{i}-\varepsilon_{j} \tag{2.2.11}
\end{equation*}
$$

Application of Rayleigh-Schrc̈dinger perturbation theory ${ }^{18}$ leads to the correction terms directly. The first-order correction to the energy is

$$
\begin{equation*}
E^{(1)}=\left\langle\Psi_{0}\right| V\left|\Psi_{0}\right\rangle=V_{00} \tag{2.2.12}
\end{equation*}
$$

The energy corrected to the first-order is, therefore

$$
\begin{align*}
E^{(0)}+E^{(1)}= & \sum_{i}^{N} \varepsilon_{i}+\left\langle\Psi_{0}\right| V\left|\Psi_{0}\right\rangle  \tag{2.2.13}\\
& =\sum_{i}^{N} \varepsilon_{i}-\frac{1}{2} \sum_{i}^{N} \sum_{j}^{N}\left(J_{i j}-K_{i j}\right)
\end{align*}
$$

which is exactly the Hartree-Fock energy. Thus the Hartree-Fock energy is said to be correct to the first-order.

The second-order term, the leading term for the energy correction, has the form

$$
\begin{equation*}
E^{(2)}=\sum_{s}^{D} \frac{V_{O s} \cdot V_{s 0}}{E_{0}-E_{s}} \tag{2.2.14}
\end{equation*}
$$

The sum over $s$ is in the first place over all eigenfunctions of $H_{0}$ except $\Psi_{0}$. However, as a consequence of Brillouin's theorem ${ }^{19}$ which states that the matrix element of the many-electron Hamiltonian $H$ between the determinant $\Psi_{0}$ and the determinant $\Psi_{S}$ vanishes if $\Psi_{S}$ differs
from $\Psi_{0}$ by one spin orbital and the fact that $H$ contains only one- and two-electron terms, the matrix element vanishes too if $\Psi_{s}$ differs from $\Psi_{0}$ by more than two spin orbitals. Thus $V_{O S}$ is non-zero only when $\Psi_{s}$ is a double substitution.

The third- and fourth-order terms are

$$
\begin{equation*}
E^{(3)}=\sum_{s, t}^{D} \frac{V_{0 s}\left(V_{s t}-V_{00} \delta_{s t}\right) V_{t 0}}{\left(E_{0}-E_{s}\right) \cdot\left(E_{0}-E_{t}\right)} \tag{2.2.15}
\end{equation*}
$$

and

$$
\begin{align*}
E^{(4)}= & -\sum_{s, t}^{D} \frac{V_{0 s} V_{s 0} V_{0 t} V_{t 0}}{\left(E_{0}-E_{s}\right)\left(E_{0}-E_{t}\right)^{2}}  \tag{2.2.16}\\
& +\sum_{s, u}^{D} \sum_{t} \frac{V_{0 s}\left(V_{s t}-V_{00} \delta_{s t}\right)\left(V_{t u}-V_{00} \delta_{t u}\right) V_{u 0}}{\left(E_{0}-E_{s}\right)\left(E_{0}-E_{t}\right)\left(E_{0}-E_{u}\right)}
\end{align*}
$$

where $\delta_{x y}$ is called the Kronecker delta and is defined by

$$
\delta_{x y}= \begin{cases}1, & \text { if } x=y \\ 0, & \text { if } x \neq y\end{cases}
$$

The third-order term involves only double substitutions, whereas, the fourth-order term has contributions from single, double, triple and quadruple substitutions. Higher substitutions do not contribute to the fourth-order energy because of the one- and two-electron character of the Hamiltonian.

The coefficients ${\underset{s}{(i)}}_{(i)}$ can alsc be obtained directly. ${ }^{18}$ The first-order waveriunction coefficients have the form

$$
\begin{equation*}
a_{s}^{(1)}=\frac{V_{s 0}}{\left(E_{0}-E_{s}\right)} \tag{2.2.17}
\end{equation*}
$$

r.nd because $V_{s 0}$ vanishes unless $s$ is $a$ double substitution, the first-order wavefunction correction is

$$
\begin{equation*}
\Psi^{(1)}=\sum_{s}^{D} a_{s}^{(1)} \Psi_{s} \tag{2.2.18}
\end{equation*}
$$

The second-order wavefunction coefficients can be expressed as

$$
\begin{gather*}
a_{s}^{(2)}=-\frac{V_{00} V_{s 0}}{\left(E_{0}-E_{s}\right)^{2}}+\sum_{t}^{D} \frac{V_{t 0} V_{s t}}{\left(E_{0}-E_{s}\right)\left(E_{0}-E_{t}\right)}  \tag{2.2.19}\\
\Psi^{(2)}=\sum_{s}^{S D T Q} a_{s}^{(2)} \Psi_{s} \tag{2.2.20}
\end{gather*}
$$

Thus, single, triple and quadruple substitutions appear in the second-order wavefunction through their coupling with the doubles.

For any one-electron property $P$, the expectation value can be obtained from

$$
\begin{align*}
& \langle\Psi| P|\Psi\rangle  \tag{2.2,21}\\
& =\overline{\mathrm{N}}\left\langle\Psi^{(0)}+\Psi^{(1)}+\Psi^{(2)}+\cdots\right| \mathrm{P}\left|\Psi^{(0)}+\Psi^{(1)}+\Psi^{(2)}+\cdots\right\rangle \\
& =\overline{\mathrm{N}}\left(\mathrm{P}^{(0)}+\mathrm{P}^{(1)}+\mathrm{P}^{(2)}+\cdots\right)
\end{align*}
$$

where $\bar{N}$ is the normalization factor and $P^{(i)}$ is the ith-order correction
to the one-electron property

$$
\begin{gather*}
\mathrm{P}^{(0)}=\left\langle\Psi_{0}\right| P\left|\Psi_{0}\right\rangle=P_{00}  \tag{2.2.22}\\
\mathrm{~F}^{(1)}=2\left\langle\Psi_{0}\right| P\left|\Psi^{(1)}\right\rangle=0  \tag{2.2.23}\\
\mathrm{P}^{(2)}=2\left\langle\Psi_{0}\right| P\left|\Psi^{(2)}\right\rangle+\left\langle\Psi^{(1)}\right| P\left|\Psi^{(1)}\right\rangle  \tag{2.2.24}\\
= \\
2 \sum_{S}^{S} a_{S}^{(2)} P_{0 s}+\sum_{s, t}^{D} a_{S}^{(1)} a_{t}^{(1)} P_{S t}
\end{gather*}
$$

The matrix element $P_{\text {st }}$ is defined as

$$
\begin{equation*}
P_{s t}=\left\langle\Psi_{s}\right| P\left|\Psi_{t}\right\rangle \tag{2.2.25}
\end{equation*}
$$

which is non-zero only when $\Psi_{s}$ and $\Psi_{t}$ differ by not more $t$ aan one spin orbital. Since $\mathrm{P}^{(1)}$ is zero, Hartree-Fock one-electron properties are correct to the first-order too. However, unlike energy, to have the one-electron properties corrected to the second-order, both single and double substitutions must be included.

Møller-Plesset perturbation theory is currently practical to the fourth-order. ${ }^{20}$ It has the advantage of being size-consistent, that is the approximation scheme is equally good for molecules with different numbers of electrons. Nevertheless, like all other approximate methods, it has deficiencies, the most serious one is that the convergence is slow, i.e., in order to give an adequate approximation to the full configuration interaction result, many correction terms should be
included. 21

### 2.3 Basis Sets

As mentioned in section 2.1, the use of basis sets is central to the quantum mechanics of molecular systems. Since the inclusion of complete basis sets is impractical, the choice of basiz sets is critical for the accuracy of the calculations.

There are two main considerations in the choice of a basis function. The first is that one desires to use the most efficient and accurate functions possible, in the sense that the expansion

$$
\begin{equation*}
\chi=\sum_{\Gamma} c_{r} \phi_{\Gamma} \tag{2.1.27}
\end{equation*}
$$

will require the fewest possible terms for an accurate representation of the molecular orbitals $\chi_{i}$. The second consideration in the choice of $a$ basis function is the speed of two-electron integral evaluation. Two types of functions, STOs (Slater-type-orbitals) and GTOs (Gaussian-type-orbitals) have assumed a dominant position in SCF calculations on molecules. ${ }^{22}$ Both sets of basis functions are usually centred on the nuclei. Slater-type functions (2.3.1), which were first

$$
\begin{equation*}
\phi_{\mathrm{nlm}}(r, \theta, \varphi)=\bar{N}_{n} r^{n-1} e^{-\xi r} Y_{l m}(\theta, \varphi) \tag{2.3.1}
\end{equation*}
$$

suggested by Slater, ${ }^{23}$ provide a useful rough approximation to atomic SCF orbitals. However, the two-electron integrals involving Slater-type functions on several different centres are very difficult to evaluate.

Gaussian-type functions (2.3.2), which were proposed by Boys ${ }^{24}$, have the

$$
\begin{equation*}
\phi_{\mathrm{kmn}}(x, y, z)=\overline{\mathrm{N}}_{\mathrm{kmn}} x^{\mathrm{k}} \mathrm{y}^{\mathrm{m}} z^{\mathrm{n}} \mathrm{e}^{-\xi \mathrm{r}^{2}} \tag{2.3.2}
\end{equation*}
$$

advantage that the multi-center, two-electron integrals can be easily evaluated. Gaussian-type functions have an inappropriate form however both in regions of space close to the nucleus upon which they are centered (they have no cusp) and in the long range region (they decay too rapidly). More Gaussian-type functions than Slater-type functions are required to approximate a given molecular orbital to a certain accuracy. By using a contracted Gaussian-type function, one can increase the efficiency of basis sets of Gaussian-type functions. A contracted Gaussian-type function is defined as a linear combination of Gaussian functions (primitives) ${ }^{17 e}, 20,22,25$

$$
\begin{equation*}
\phi=\bar{N} \sum_{i} d_{i} g_{i} \tag{2.3.3}
\end{equation*}
$$

where $\left\{g_{i}\right\}$ denotes a set of primitive functions of the same symmetry type and centred on the same nucleus, the $d_{i}$ are a set of fixed contraction coefficients and $\overline{\mathrm{N}}$ is a normalization constant. A contracted Gaussian-type function is a compromise between STOs and GTOs and are widely used in molecular calculations.

The choice of basis set is based on the consideration that the basis set should be flexible enough to provide "good" results over a wide range of inolecular geometries and still small enough to leave the problem computationally tractable and economically within reason. There
are a vast number of basis sets in the literature. In the following paragraphs a few of the basis sets enjoying current widespread use and related to this thesis will be discussed.

Minimum basis sets (STO-nG), ${ }^{17 e, 20,22 b, d, e}$ consist of one basis function, which is a linear combination of $n$ primitive functions, for each SCF occupied atomic orbital. The main attraction of this basis set, other than its small size, is its effectiveness in predicting geometries and its interpretative value.

A minimum basis set has rather limited flexibility. The first step in improving upon the minimum basis set involves using two functions for each occupied SCF atomic orbital. The resulting basis set is called a double-zeta basis set. If two functions are used for valence orbitals only, the basis set is termed a split-valence basis set, ${ }^{17 e}, 20,22 \mathrm{~d}$ for example, 4-31G and 6-31G. Addition of six cartesian $d$ functions for heavy atoms gives the 6-31G* basis set. Further addition of a set of $p$ functions to hydrogen results in the $6-31 G^{* *}$ basis. ${ }^{17 e}, 20,22 d$ The added higher angular momentum functions are called polarization functions as they describe the distortion of the atomic orbitals in the molecular environment. Polarization functions contribute significantly to calculated bond energies and are even more important for the treatment of electron correlation. Polarization functions are essential for an accurate description of the electronic structure of molecules. $20,22 \mathrm{~b}, \mathrm{~d}, \mathrm{e}, 26$

Augmenting the basis set with a set of diffuse $s$ and $p$ functions (which have small exponents, hence contribute significantly in the long range region) on heavy atoms gives the $6-31+G$ basis set and further
addition of a set of $s$ functions on hydrogen atoms results in the $6-31++G$ basis set. ${ }^{20,22 d}$ Since the radial extension of electrons in anions is greater than in neutral or positively charged molecules, the addition of diffuse functions is required for calculations on anions. Also, it is found that diffuse functions improve the description of lone pairs on first-row atoms as well. ${ }^{22 d, e}$

To improve upon the 6-31G* and 6-31G** basis sets, triple-zeta or quadruple-zeta basis sets are desirable, Also, more than one set of polarization functions and even higher angular momentum functions should be added.

## Chapter 3

## Transition State Structures of Model $\mathrm{S}_{\mathrm{N}}{ }^{2}$ Reactions

### 3.1 Overview

Transition state theory has achieved widespread acceptance as a tool for the interpretation of chemical reaction rates and has led to much insight into chemical and physical processes. ${ }^{27 a, b}$ The fundamental assumptions involved in conventional transition state (TS) ìheory are that ${ }^{27 c, d}$ molecules must traverse saddle points (transition states) of the potential energy surface and that the rate of reaction is proportional to the concentration of molecules in the $T S$, which in turn, is in "quasi-equilibrium" with the reactants. Thus, the position (in energy space) and structure (by structure I mean both geometrical and electronic) of the TS are key factors in interpreting the activation process and predicting reactivities.

The original concept of the TS structure is associated with the names of Polanyi, Evans and Bell. ${ }^{28}$ The TS structure is believed to be a mixing of initial (reactants) and final (products) states. The electronic structure of the TS is characterized by $28 \mathrm{c}, \mathrm{g}$

$$
\begin{equation*}
\Psi_{\mathrm{TS}}=2^{-1 / 2}\left(\psi_{\mathrm{i}}+\psi_{\mathrm{f}}\right) \tag{3.1,1}
\end{equation*}
$$

where $\psi_{i}$ is the initial state and $\psi_{f}$ is the final state. The equal contribution of initial and final states to the TS is based on the assumption that the TS occurs in the vicinity of the intersection point
of initial and final states. The closely related Leffler-Hammond postulate states that the properties of the TS are intermediate between those of reactants and products, 29 For an exothermic reaction, the $T S$ comes early and resembles the reactants more than the products while for an endothermic reaction, the TS comes late and resembles the products more than the reactants. Thornton ${ }^{30}$ first realized that the topological character of the potential surface allows both parallel and perpendicular motion of the $T S$ along the reaction coordinate. Parallel motion corresponds closely to predictions based on the Leffler-lammond postulate. The $T S$ resembles the one which has relatively high energy. However, the perpendicular motion enables the $T S$ to take on characteristics which differ from those of the reactants and products and the TS resembles the one which has relatively low energy. Thornton pointed out that the previously neglected perpendicular motion is not small in all cases. Thus, the $T$, in general, can not be completely described only by reactants and products.

Recently, Shaik and Pross proposed a valence-bond configuration mixing model ${ }^{31}$ (VBCM) to conceptualize $T S$ structures, activation barriers and reactivities. According to this model, the reaction profile may be built up using a linear combination of valence-bond configurations and the TS can be approximated as a linear combination of valence-bond configurations as well. Thus, for simple $S_{N}{ }^{2}$ (for substitution, nucleophilic, bimolecular) reactions

$$
\begin{equation*}
\mathrm{N}^{-}+\mathrm{RX} \rightarrow \mathrm{NR}+\mathrm{X}^{-} \tag{3.1.2}
\end{equation*}
$$

where $\mathrm{N}^{-}$is the entering nucleophile and $\mathrm{X}^{-}$is the leaving group, the important configurations are:

| N: R $\cdot$ - X | $\mathrm{N} \cdot \cdot \mathrm{R}$ X: | $\mathrm{N}^{-} \mathrm{R}^{+} \mathrm{X}$ - | $N \cdot \mathrm{R}^{-} \cdot \mathrm{X}$ |
| :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 |

and the $T S$ wavefunction can be approximated as ${ }^{31 \mathrm{~d}}$

$$
\begin{equation*}
\Psi_{\mathrm{TS}}=a^{\prime}\left[2^{-1 / 2}\left(\psi_{1}+\psi_{2}\right)\right]+b^{\prime} \psi_{3}+c^{\prime} \psi_{4} \tag{3.1.3}
\end{equation*}
$$

where

$$
\left(a^{\prime}\right)^{2}+\left(b^{\prime}\right)^{2}+\left(c^{\prime}\right)^{2}=1 \text { and } a^{\prime}>b^{\prime}, c^{\prime}
$$

The form of the TS wavefunction assumes that the charges on $N$ and $X$ are equal and not related to the position of the $T S$ along the reaction coordinate. ${ }^{31 b}$

Whereas transition states are not subject to experimental scrutiny, at least at present, the development of analytical procedures for the calculation of first and second derivatives of the energy and of methods for the location of minima and saddle points using this information have made theoretical studies of equilibrium geometries routine and studies of transition states tractable. ${ }^{32}$ A reliable charge partitioning scheme is available now due to the work of Bader and co-workers ${ }^{33 a}$. The corresponding post-Hartree-Fock analysis is made practical by Boyd and Wang. ${ }^{33 b}$

The purpose of this study is to provide ab initio results on $S_{N}{ }^{2}$
reactions with emphasis on the electronic structure of the $T S$. In this chapter, the $T S$ structures of model $S_{N} 2$ reactions (eq. 3.1.2) are reported. In all model reactions $R=\mathrm{CH}_{3}$ and $\mathrm{N}=\mathrm{H}$ or F , where $\mathrm{X}=\mathrm{H}$, $\mathrm{NH}_{2}, \mathrm{OH}, \mathrm{F}, \mathrm{NC}, \mathrm{CCH}, \mathrm{CN}, \mathrm{SH}$ and Cl ; when $\mathrm{N}=\mathrm{OH}, \mathrm{CN}, \mathrm{SH}$ and $\mathrm{Cl}, \mathrm{X}=\mathrm{H}$, $\mathrm{OH}, \mathrm{F}, \mathrm{CN}, \mathrm{SH}$ or Cl . In ambiguous cases the atom bonded directly to R is underlined. The computational details are given in the next section, while energies, geometries and topological properties are reported in section 3.3 followed by the charge and electronic structure analysis in section 3.4. In section 3.5, the results obtained by Mulliken population analysis are compared with the results obtained by integrating the electron density over the atomic basins. In the final section, 3.6, several computational methods are compared.

### 3.2 Computational Methods

The properties of interest in this study are geometries, one-electron distributions and associated properties, and the energetics of reactions (3.1.2). The basis sets and computational methods have been chosen so as to obtain, at least, qualitatively accurate results. Thus, the extended basis set 6-31G augmented with polarization functions was selected since previous research has shown that split-valence plus polarization basis sets yield similar trends for topological properties as the larger basis sets. ${ }^{34}$ Also, diffuse functions were added to the basis sets to account for the long radial distributions of anionic systems. Diffuse functions and polarization functions were added to the basis sets of all atoms (standard notation 6-31++G**) except the three methyl hydrogen atoms for which the 6-31G basis set was used. This is justified by the fact that
omission of the polarization and diffuse functions on these atoms has only a small effect on the calculated results, while making the computation tractable. ${ }^{35}$

The simple single-determinant HF method is believed ${ }^{36}$ to give a qualitatively correct description of the potential surface of the reactions, and therefore the $H F$ wavefunction is used as the zero-order wavefunction.

To account for the electron correlation effect, the post-Hartree-Fock method, second-order Møller-Plesset perturbation theory (MP2), was chosen, since it has the advantage of being size consistent, a very important property in the study of chemical reactivity. ${ }^{37}$ At the MP2 level, two types of calculation were performed, namely, the single point calculations carried out at the geometries optimized by $H F$ method (MP2/6-31++G**//HF/6-31++G**) and the optimized MP2 calculations (i.e. MP2/6-31++G**//MP2/6-31++G**). The purpose is to investigate the quality of the single point calculation especially on one-electron properites. Although single point calculations are frequently performed for the $T$, detailed comparisons have not appeared in the literature.

At the MP2 level, all single- and double-substitutions are included. Therefore, the energies and one-electron properties are both corrected to the second-order.

The HF and MP2 calculations were obtained by using the GAUSSIAN 80 and GAUSSIAN 86 computer programs. ${ }^{38}$ Topological properties were calculated by using the PROAIM package ${ }^{33 a}$ and a modified PROAIM package. ${ }^{33 \mathrm{~b}}$ All calculations were performed on Perkin-Elmer 3230 and VAX 8800 computers.

All geometries were fully or partially optimized subject to $C_{3 v}, C_{2}$ and $C_{s}$ symmetry constraints as indicated. Only the brack-side attack path ${ }^{39}$ is considered in this thesis.

### 3.3 Transition State Properties

The experimental study of gas-phase $S_{N} 2$ reactions became possible in the late 1960's with the development of a number of mass spectrometric techniques. ${ }^{40}$ Studies of $S_{N} 2$ reactions in the gas phase and in solution revealed two important differences. ${ }^{41}$ Firstly, gas-phase reactions are up to 20 orders of magnitude faster than their counterparts in solution, i.e., the gas-phase activation barriers are much lower. Secondly, the potential energy profile is of a double-well type in the gas phase (Fig. 3.3.1), but it has a unimodal shape in solution. The gas-phase reaction involves three steps, 41a-c (see eq.3.3.1.). The first step is the

$$
\begin{equation*}
N^{-}+\mathrm{RX}=\mathrm{N}^{-} \cdots \mathrm{RX}=\mathrm{NR} \cdot \cdot \mathrm{X}^{-} \neq \mathrm{NR}+\mathrm{X}^{-} \tag{3.3.1}
\end{equation*}
$$

formation of the reactant ion-molecule complex, the second step is the conversion of the reactant ion-molecule complex to the product ion-molecule complex, and the third and final step involves the relaxation of the product ion-molecule complex to yield the product. The energies shown in Fig. 3.3.1 are defined in eq. 3.3.2 to 3.3.7.

$$
\begin{equation*}
\Delta E_{c}(I)=E\left(N^{-} \cdots R X\right)-E\left(N^{-}+R X\right) \tag{3.3.2}
\end{equation*}
$$

is the energy change upon the formation of the reactant ion-molecule


Figure 3.3.1 Schematic energy profile of a gas-phase $S_{N}{ }^{2}$ reaction.
complex from the reactant,

$$
\begin{equation*}
\Delta E_{c}(I I)=E\left(N R \cdot \cdots X^{-}\right)-E\left(N R+X^{-}\right) \tag{3.3.3}
\end{equation*}
$$

is the energy change upon the formation of the product ion-molecule complex from the product,

$$
\begin{equation*}
\Delta E_{c}^{b}=E\left([N \cdot \cdot R \cdots X]^{-}\right)-E\left(N^{-} \cdots R X\right) \tag{3.3.4}
\end{equation*}
$$

is the energy barrier for the second step of the reaction,

$$
\begin{equation*}
\Delta E_{c}^{\circ}=E\left(N R \cdot \cdots X^{-}\right)-E\left(N^{-} \cdots R X\right) \tag{3.3.5}
\end{equation*}
$$

is the energy change for the second step of the reaction,

$$
\begin{equation*}
\Delta E^{b}=E\left([N \cdot \cdots R \cdot \cdot X]^{-}\right)-E\left(N^{-}+R X\right) \tag{3.3.6}
\end{equation*}
$$

is the energy barrier for the entire reaction and

$$
\begin{equation*}
\Delta E_{t}^{\circ}=E\left(N R+X^{-}\right)-E\left(N^{-}+R X\right) \tag{3.3.7}
\end{equation*}
$$

is the energy change for the gas-phase reaction. Table 3.3.1 gives the HF results, while Tables 3.3 .2 and 3.3 .3 list the MP2 single point (MP2') and MP2 optimized results (MP2), respectively. Some available experimental results ${ }^{42}$ are listed in Table 3.3 .4 together with the MP2' results. 43 A direct comparison of the experimental activation energies

Table 3.3.1 Energies ${ }^{a}$ calculated at the $R H F$ level $^{\mathrm{b}}(\mathrm{kJ} / \mathrm{mol})$.

| $\mathrm{N}^{-}+\mathrm{RX}$ | $\Delta E_{C}(\mathrm{I})$ | $\Delta E_{\mathrm{C}}(\mathrm{II})$ | $\Delta E_{\mathrm{C}}^{\mathrm{b}}$ | $\Delta \mathrm{E}_{\mathrm{C}}^{0}$ | $\Delta \mathrm{E}^{\mathrm{b}}$ | $\Delta \mathrm{E}_{\mathrm{t}}^{0}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{H}^{-}+\mathrm{RH}$ | -0.63 | -0.63 | 264.12 | 0.00 | 263.49 | 0.00 |
| $\mathrm{H}^{-}+\mathrm{RNH}$ | -6.18 | -2.92 | 210.76 | -38.90 | 204.57 | -42.16 |
| $\mathrm{H}^{-}+\mathrm{ROH}$ | -15.55 | -5.35 | 149.50 | -112.05 | 133.95 | -122.26 |
| $\mathrm{H}^{-}+\mathrm{RF}$ | -31.43 | -4.10 | 82.11 | -194.73 | 50.67 | -222.06 |
| $\mathrm{H}^{-}+\mathrm{RNC}$ | -45.02 | -1.65 | 83.40 | -282.88 | 38.38 | -326.35 |
| $\mathrm{H}^{-}+\mathrm{RCCH}$ | -18.68 | -1.39 | 194.88 | -116.98 | 176.20 | -134.27 |
| $\mathrm{H}^{-}+\mathrm{RCN}$ | -47.14 | -1.26 | 142.51 | -200.71 | 95.37 | -246.59 |
| $\mathrm{H}^{-}+\mathrm{RSH}$ | -20.65 | -1.51 | 68.35 | -285.91 | 47.70 | -305.05 |
| $\mathrm{H}^{-}+\mathrm{RCl}$ | -36.17 | -1.25 | 16.41 | -373.94 | -19.76 | -408.86 |
| $\mathrm{~F}^{-}+\mathrm{RH}$ | -4.10 | -31.43 | 276.84 | 194.73 | 272.74 | 222.06 |
| $\mathrm{~F}^{-}+\mathrm{RNH}$ | -15.73 | -50.51 | 210.39 | 145.11 | 194.67 | 179.90 |
| $\mathrm{~F}^{-}+\mathrm{ROH}$ | -30.28 | -55.50 | 145.84 | 74.58 | 115.56 | 99.81 |
| $\mathrm{~F}^{-}+\mathrm{RF}$ | -53.74 | -53.74 | 77.55 | 0.00 | 23.81 | 0.00 |
| $\mathrm{~F}^{-}+\mathrm{RNC}$ | -70.91 | -36.16 | 76.00 | -69.43 | 5.09 | -104.18 |
| $\mathrm{~F}^{-}+\mathrm{RCCH}$ | -35.82 | -36.66 | 191.88 | 86.95 | 156.06 | 87.79 |
| $\mathrm{~F}^{-}+\mathrm{RCN}$ | -71.97 | -32.52 | 143.07 | 14.92 | 71.10 | -24.52 |
| $\mathrm{~F}^{-}+\mathrm{RSH}$ | -37.52 | -31.28 | 67.01 | -76.75 | 29.49 | -82.98 |
| $\mathrm{~F}^{-}+\mathrm{RCl}$ | -60.73 | -33.64 | 12.51 | -159.70 | -48.22 | -186.80 |

Table 3.3.1 (continued)

| $\mathrm{N}^{-}+\mathrm{RX}$ | $\Delta E_{c}{ }^{(I)}$ | $\Delta E_{c}(I I)$ | $\Delta E_{c}^{\text {b }}$ | $\Delta E_{c}^{\circ}$ | $\Delta E^{\text {b }}$ | $\Delta E_{t}^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{HO}^{-}+\mathrm{RH}$ | -5.35 | -15.55 | 261.56 | 112.05 | 256.21 | 122.26 |
| $\mathrm{HO}^{-}+\mathrm{ROH}$ | -31.93 | -31.93 | 135.61 | 0.00 | 103.69 | 0.00 |
| $\mathrm{HO}^{-}+\mathrm{RF}$ | -55.50 | -30.28 | 71.25 | -74.58 | 15.75 | -99.81 |
| $\mathrm{HO}^{-}+\mathrm{RCN}$ | -76.70 | -17.12 | 140.10 | -64.75 | 63.41 | -124.33 |
| $\mathrm{HO}^{-}+\mathrm{RSH}$ | -40.87 | -16.71 | 64.15 | -158.63 | 23.28 | -182.79 |
| $\mathrm{HO}^{-}+\mathrm{RCl}$ | -63.46 | -17.88 | 12.42 | -241.01 | -51.04 | -286.60 |
| $\mathrm{NC}^{-}+\mathrm{RH}$ | -1.26 | -47.14 | 343.22 | 200.71 | 341.96 | 246.59 |
| $\mathrm{NC}^{-}+\mathrm{ROH}$ | -17.12 | -76.70 | 204.86 | 64.75 | 187.74 | 124.33 |
| $\mathrm{NC}^{-}+\mathrm{RF}$ | -32.52 | -71.97 | 128.15 | -14.92 | 95.63 | 24.52 |
| $N \underline{C-}+\mathrm{RCN}$ | -45.87 | -45.87 | 194.19 | 0.00 | 143.32 | 0.00 |
| $\mathrm{NC} \mathrm{C}^{-}+\mathrm{RSH}$ | -20.99 | -47.36 | 117.38 | -84.83 | 96.39 | -58.46 |
| $\mathrm{NC}^{-}+\mathrm{RCl}$ | -35.16 | -49.08 | 48.19 | -176.19 | 13.03 | -162.27 |
| $\mathrm{HS}^{-}+\mathrm{RH}$ | -1.51 | -20.65 | 354.26 | 285.91 | 352.75 | 305.05 |
| $\mathrm{HS}^{-}+\mathrm{ROH}$ | -16.71 | -40.87 | 222.78 | 158.63 | 206.07 | 182.79 |
| $\mathrm{HS}^{-}+\mathrm{RF}$ | -31.28 | -37.52 | 143.76 | 76.75 | 112.48 | 82.98 |
| $\mathrm{HS}^{-}+\mathrm{RCN}$ | -47.36 | -7.86 | 202.21 | 84.83 | 154.85 | 58.46 |
| $\mathrm{HS}^{-}+\mathrm{RSH}$ | -22.00 | -22.00 | 120.25 | 0.00 | 98.24 | 0.00 |
| $\mathrm{HS}^{-}+\mathrm{RCl}$ | -34.71 | -22. 66 | 49.55 | - 91.77 | 14.85 | -103.81 |

Table 3.3.1 (continued)

| $\mathrm{N}^{-}+\mathrm{RX}$ | $\Delta E_{C}(I)$ | $\Delta E_{C}(I I)$ | $\Delta E_{C}^{b}$ | $\Delta E_{C}^{0}$ | $\Delta E^{b}$ | $\Delta E_{t}^{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{Cl}^{-}+\mathrm{RH}$ | -1.25 | -36.17 | 390.35 | 373.94 | 389.10 | 408.86 |
| $\mathrm{Cl}^{-}+\mathrm{ROH}$ | -17.88 | -63.46 | 253.44 | 241.02 | 235.56 | 286.60 |
| $\mathrm{Cl}^{-}+\mathrm{RF}$ | -33.64 | -60.73 | 172.21 | 159.70 | 138.58 | 186.80 |
| $\mathrm{Cl}^{-}+\mathrm{RCN}$ | -49.08 | -35.16 | 224.38 | 176.19 | 175.30 | 162.27 |
| $\mathrm{Cl}^{-}+\mathrm{RSH}$ | -22.66 | -34.71 | 141.32 | 91.77 | 118.66 | 103.81 |
| $\mathrm{Cl}^{-}+\mathrm{RCl}$ | -37.15 | -37.15 | 64.72 | 0.00 | 27.57 | 0.00 |

a Energies are defined in Fig. 3.3.1 and the accompanying text.
b The energy of methane was first calculated at $\mathrm{HF} / 6-31+\mathrm{G}^{*} / / \mathrm{HF} / 6-31+\mathrm{G}^{*}$ and HF/6-31++G**//HF/6-31+G* levels and then these values were used to extrapolate the energy corresponding to a basis set which has diffuse and polarization functions added to carbon and one of the hydrogen atoms. In doing so, the basis set is consistent with those used in ion-molecule complex and transition state calculations.

Table 3.3.2 Energies calculated at the MP2' level ${ }^{\text {a }}(\mathrm{kJ} / \mathrm{mol})$.

| $\mathrm{N}^{-}+\mathrm{RX}$ | $\Delta E_{c}(\mathrm{I})$ | $\Delta E_{c}(I I)$ | $\Delta E_{c}^{\text {b }}$ | $\Delta E_{\sim}^{\circ}$ | $\Delta E^{\text {b }}$ | $\Delta E_{t}^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{H}^{-}+\mathrm{RH}$ | -1.53 | -1.53 | 235.15 | 0.00 | 233.62 | 0.00 |
| $\mathrm{H}^{-}+\mathrm{RNH}_{2}$ | -10.03 | -6. 07 | 150.45 | -87.92 | 140.42 | -91.88 |
| $\mathrm{H}^{-}+\mathrm{ROH}$ | -20.62 | -9. 23 | 87.14 | -176.57 | 66.52 | -187.97 |
| $\mathrm{H}^{-}+\mathrm{RF}$ | -36.71 | -7.00 | 32.93 | -257.47 | -3.78 | -287.18 |
| $\mathrm{H}^{-}+\mathrm{RNC}$ | -55.74 | -3.92 | 60.83 | -308. 41 | 5.09 | -360.23 |
| $\mathrm{H}^{-}+\mathrm{RCCH}$ | -23.93 | -3.30 | 172.35 | -127.13 | 148.42 | -147. 77 |
| $\mathrm{H}^{-}+\mathrm{RCN}$ | -51.49 | -2.97 | 127.25 | -206. 61 | 75.76 | -255.13 |
| $\mathrm{H}^{-}+\mathrm{RSH}$ | -24.92 | -4.12 | 56.50 | -275.74 | 31.58 | -296. 54 |
| $\mathrm{H}^{-}+\mathrm{RCl}$ | -38.53 | -3.47 | 15.35 | -364.49 | -23.18 | -399. 55 |
| $\mathrm{F}^{-}+\mathrm{RH}$ | -7.00 | -36.71 | 290.40 | 257.47 | 283.40 | 287.18 |
| $\mathrm{F}^{-}+\mathrm{RNH}_{2}$ | -20.92 | -57.64 | 188.95 | 158.58 | 168.03 | 195.30 |
| $\mathrm{F}^{-}+\mathrm{ROH}$ | -35.76 | -60.89 | 115.85 | 74.09 | 80.08 | 99.21 |
| $\mathrm{F}^{-}+\mathrm{RF}$ | -58.24 | -58.24 | 52.70 | 0.00 | -5. 54 | 0.00 |
| $\mathrm{F}^{-}+\mathrm{RNC}$ | -80.23 | -40.16 | 76.26 | -32.97 | -3. 98 | -73.05 |
| $\mathrm{F}^{-}+\mathrm{RCN}$ | -73.19 | -37.32 | 153.94 | 67.92 | 80.75 | 32.05 |
| $\mathrm{F}^{-}+\mathrm{RSH}$ | -40.34 | -38.68 | 79.79 | -7.70 | 39.45 | -9.36 |
| $\mathrm{F}^{-}+\mathrm{RCl}$ | -57.97 | -39.31 | 25.13 | -93.71 | -32.84 | -112.37 |
| $\mathrm{HO}^{-}+\mathrm{RH}$ | -9. 23 | -20.62 | 263.72 | 176.57 | 254.49 | 187.97 |
| $\mathrm{HO}^{-}+\mathrm{ROH}$ | -38.59 | -38.59 | 98.49 | 0.00 | 59.90 | 0.00 |
| $\mathrm{HO}^{-}+\mathrm{RF}$ | -60.89 | -35.76 | 41.76 | -74.09 | -19.13 | -99. 21 |
| $\mathrm{HO}^{-}+\mathrm{RCN}$ | -79.78 | -21.80 | 145.76 | -9.19 | 65.98 | -67.16 |
| $\mathrm{HO}^{-}+\mathrm{RSH}$ | -45.07 | -22.60 | 69.84 | -86.11 | 24.77 | -108.57 |

Table 3.3.2 (continued)

| $\mathrm{N}^{-}+\mathrm{RX}$ | $\Delta \mathrm{E}_{\mathrm{c}}(\mathrm{I})$ | $\Delta \mathrm{E}_{\mathrm{c}}(\mathrm{II})$ | $\Delta \mathrm{E}_{\mathrm{c}}^{\mathrm{b}}$ | $\Delta \mathrm{E}_{\mathrm{c}}^{\circ}$ | $\Delta \mathrm{E}^{\mathrm{b}}$ | $\Delta \mathrm{E}_{\mathrm{t}}^{0}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{HO}^{-}+\mathrm{RCl}$ | -61.39 | -23.81 | 20.20 | -174.00 | -41.19 | -211.59 |
| $\mathrm{NC}^{-}+\mathrm{RH}$ | -2.97 | -51.48 | 333.86 | 206.61 | 330.89 | 255.13 |
| $\mathrm{NC}^{-}+\mathrm{ROH}$ | -21.80 | -79.78 | 154.95 | 9.19 | 133.15 | 67.16 |
| $\mathrm{NC}^{-}+\mathrm{RF}$ | -37.32 | -73.19 | 86.02 | -67.92 | 48.70 | -32.05 |
| $\mathrm{NC}^{-}+\mathrm{RCN}$ | -48.50 | -48.50 | 191.02 | 0.00 | 142.52 | 0.00 |
| $\mathrm{NC}^{-}+\mathrm{RSH}$ | -24.76 | -53.82 | 117.25 | -70.47 | 92.49 | -41.41 |
| $\mathrm{NC}^{-}+\mathrm{RCl}$ | -36.59 | -54.24 | 56.94 | -162.08 | 20.35 | -144.42 |
| $\mathrm{HS}^{-}+\mathrm{RH}$ | -4.12 | -24.92 | 332.24 | 275.74 | 328.12 | 296.54 |
| $\mathrm{HS}^{-}+\mathrm{ROH}$ | -22.60 | -45.07 | 155.94 | 86.11 | 133.34 | 108.57 |
| $\mathrm{HS}^{-}+\mathrm{RF}$ | -38.68 | -40.34 | 87.49 | 7.70 | 48.81 | 9.36 |
| $\mathrm{HS}^{-}+\mathrm{RCN}$ | -53.82 | -24.76 | 187.72 | 70.47 | 133.90 | 41.41 |
| $\mathrm{HS}^{-}+\mathrm{RSH}$ | -27.59 | -27.59 | 110.83 | 0.00 | 83.24 | 0.00 |
| $\mathrm{HS}^{-}+\mathrm{RCl}$ | -40.10 | -27.43 | 52.61 | -90.34 | 12.51 | -103.02 |
| $\mathrm{Cl}^{-}+\mathrm{RH}$ | -3.47 | -38.53 | 379.84 | 364.49 | 376.37 | 399.55 |
| $\mathrm{Cl}^{-}+\mathrm{ROH}$ | -23.81 | -61.39 | 194.20 | 174.00 | 170.39 | 211.59 |
| $\mathrm{Cl}^{-}+\mathrm{RF}$ | -39.31 | -57.97 | 118.84 | 93.71 | 79.53 | 112.37 |
| $\mathrm{Cl}^{-}+\mathrm{RCN}$ | -54.24 | -36.59 | 219.02 | 162.08 | 164.78 | 144.42 |
| $\mathrm{Cl}^{-}+\mathrm{RSH}$ | -27.43 | -40.10 | 142.95 | 90.34 | 115.53 | 103.02 |
| $\mathrm{Cl}^{-}+\mathrm{RCl}$ | -39.72 | -39.72 | 75.44 | 0.00 | 35.72 | 0.00 |

${ }^{2}$ The energy of methane was calculated at $M P 2 / 6-31+C^{*} / / H F / 6-31+G^{*}$ and MP2/6-31++G**//HF/6-31+G* levels and then the energy corresponding to a basis with polarization and diffuse functions added to carbon and one of the hydrogen atoms was extrapolated.

Table 3.3.3 Energies calculated at the MP2 level ${ }^{\text {a }}(\mathrm{kJ} / \mathrm{mol})$.

| $\mathrm{N}^{-}+\mathrm{RX}$ | $\Delta E_{\mathrm{C}}(\mathrm{I})$ | $\Delta E_{\mathrm{C}}(\mathrm{II})$ | $\Delta E_{\mathrm{C}}^{\mathrm{b}}$ | $\Delta E_{\mathrm{C}}^{0}$ | $\Delta E^{b}$ | $\Delta E_{\mathrm{t}}^{0}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{H}^{-}+\mathrm{RH}$ | -2.07 | -2.07 | 230.86 | 0.0 | 228.78 | 0.00 |
| $\mathrm{H}^{-}+\mathrm{RNH}$ | -10.95 | -6.88 | 149.48 | -87.37 | 138.53 | -91.44 |
| $\mathrm{H}^{-}+\mathrm{ROH}$ | -21.39 | -9.30 | 88.59 | -174.83 | 67.20 | -186.42 |
| $\mathrm{H}^{-}+\mathrm{RF}$ | -37.42 | -7.17 | 37.36 | -254.61 | -0.06 | -284.86 |
| $\mathrm{H}^{-}+\mathrm{RNC}$ | -57.30 | -4.32 | 59.48 | -308.37 | 2.19 | -361.34 |
| $\mathrm{H}^{-}+\mathrm{RCCH}$ | -24.23 | -3.66 | 170.69 | -125.32 | 146.46 | -145.90 |
| $\mathrm{H}^{-}+\mathrm{RCN}$ | -51.42 | -3.35 | 126.23 | -203.48 | 74.81 | -251.55 |
| $\mathrm{H}^{-}+\mathrm{RSH}$ | -25.63 | -5.61 | 53.65 | -276.04 | 28.02 | -296.06 |
| $\mathrm{H}^{-}+\mathrm{RCl}$ | -39.31 | -4.01 | 13.11 | -363.79 | -26.20 | -399.08 |
| $\mathrm{~F}^{-}+\mathrm{RH}$ | -7.17 | -37.42 | 291.98 | 254.61 | 284.80 | 284.86 |
| $\mathrm{~F}^{-}+\mathrm{ROH}$ | -35.96 | -61.40 | 116.13 | 73.00 | 80.17 | 98.44 |
| $\mathrm{~F}^{-}+\mathrm{RF}$ | -58.21 | -58.21 | 54.09 | 0.00 | -4.12 | 0.00 |
| $\mathrm{~F}^{-}+\mathrm{RCl}$ | -58.83 | -39.92 | 25.56 | -95.31 | -33.27 | -114.22 |
| $\mathrm{Cl}^{-}+\mathrm{RCl}$ | -40.42 | -40.42 | 72.54 | 0.00 | 32.12 | 0.00 |

${ }^{\text {a }}$ The energy of methane was calculated at $\mathrm{MP} 2 / 6-31+\mathrm{G}^{*} / / \mathrm{MP} 2 / 6-31+\mathrm{G}^{*}$ and MP2/6-31++G**//MP2/6-31+G* levels and then the energy corresponding to a basis set with polarization and diffuse functions added to the carbon and one of the hydrogen atoms was extrapolated.

Table 3.3.4 Experimental activation energies and heats of reactions ( $\mathrm{kJ} / \mathrm{mol}$ ).

| $\mathrm{N}^{-}+\mathrm{RX}$ | $\mathrm{E}_{\mathrm{a}}$ | $-\Delta \mathrm{H}$ | $\mathrm{MP2}^{\prime}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\Delta \mathrm{E}^{\mathrm{b}}$ | $-\Delta \mathrm{E}_{\mathrm{t}}^{0}$ |
| $\mathrm{H}^{-}+\mathrm{RF}$ | $16 \pm 0.4$ | $230 \pm 30$ | -3.8 | 287 |
| $\mathrm{HO}^{-}+\mathrm{RF}$ | $11 \pm 0.8$ | $75 \pm 40$ | -19.1 | 99 |
| $\mathrm{NC}^{-}+\mathrm{RF}$ | $\geq 16$ | $20 \pm 46$ | 48.7 | 32 |
| $\mathrm{H}_{2^{-}+\mathrm{RF}}$ | $12 \pm 0.4$ | $130 \pm 40$ | -27.3 | 195 |
| $\mathrm{H}^{-}+\mathrm{RCl}$ | $2.6 \pm 3.1$ | $370 \pm 40$ | -23.2 | 400 |
| $\mathrm{~F}^{-}+\mathrm{RCl}$ | $0.4 \pm 0.4$ | $130 \pm 46$ | -32.8 | 112 |
| $\mathrm{HO}^{-}+\mathrm{RCl}$ | $1.2 \pm 0.60$ | $210 \pm 42$ | -41.1 | 212 |
| $\mathrm{NC}^{-}+\mathrm{RCl}$ | $\geq 20$ | $150 \pm 50$ | 20.4 | 144 |
| $\mathrm{HS}^{-}+\mathrm{RCl}$ | $12 \pm 0.4$ | $92 \pm 40$ | 12.5 | 103 |

with potential barrier heights is not possible, in general, without taking into account the zero-point energy, rotational, translational, $\Delta(\mathrm{PV})$ and RT corrections. Furthermore, the $\mathrm{E}_{\mathrm{a}}$ values were obtained by a different model for the rate constant calculations. ${ }^{41 f}$ For a reaction with $N=H, X=F$, a recent study indicates that a $\Delta E^{b}$ value of about 4.2 $\mathrm{kJ} / \mathrm{mol}$ would give a rate constant which agrees closely with the experimental results. ${ }^{84}$ This work produced a $\Delta E^{b}=-3.8$ and $-0.06 \mathrm{~kJ} / \mathrm{mol}$ at the MP2' and MP2 levels, respectively.

Brauman et al. ${ }^{44}$ have assumed that the well depth ( $\Delta \mathrm{E}_{\mathrm{c}}(\mathrm{I})$ or $\Delta E_{c}$ (II)) for the same $X$ should be almost equal, as it mainly depends on the polarizability and dipole moment of the neutral molecule and not on the structure of the ion. The data in Tables 3.3.1-3.3.3 indicate that when $X=H$ (or when $N=H$ ), $\Delta E_{c}(I)$ (or $\Delta E_{C}$ (II)) has its smallest absolute values. This can be understood by noting that RH does not have a permanent dipole moment, whereas when $X=\underline{C N}$ and $N C, R X$ has a large permanent dipole moment (see Table 3.3.5). Thus, $\Delta \mathrm{E}_{\mathrm{c}}(\mathrm{I})$ values are large when $R X$ has a large dipole moment. Also, for the hard nucleophiles $O H$ and $F$, the $\Delta E_{c}(I)$ values are usually large. Since the difference between $\Delta E^{b}$ and $\Delta E_{c}^{b}$ is equal to $\Delta E_{c}(I)$, the plot of $\Delta E^{b}$ vs. $\Delta E_{c}^{b}$ shows a good correlation except in the cases where CN is involved (see Fig. 3.3.2). A similar observation holds for the plot of $\Delta E_{t}^{0}$ vs $\Delta E_{c}^{\circ}$ (Fig. 3.3.3). For gas-phase $S_{N}{ }^{2}$ reactions, the second step is the critical step which is responsible for the wide variation in efficiencies. ${ }^{41 c}$

Nucleophilicity $i s$ defined as a kinetic property of a nucleophile and is measured by its rate constant for an $S_{N} 2$ reaction. ${ }^{46}$ The value of $\Delta E^{b}$ or $\Delta E_{c}^{b}$ serves as an index of the nucleophilicity. The data in Tables


Figure 3.3.2 Comparison of $\Delta E^{b}$ with $\Delta E_{c}^{b}$ at the MP2' level.


Figure 3.3.3 Comparison of $\Delta E_{t}^{\circ}$ with $\Delta E_{C}^{\circ}$ at the MP2' level.

Table 3.3.5 Electronic dipole moments of $R X$ molecules (D).

|  | RX |  | Method |  | Expt. ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | RHF | MP2' | MP2 |  |
|  | RH | 0.00 | 0.00 | 0.00 | 0.00 |
|  | $\mathrm{RNH}_{2}$ | 1.50 | 1.49 | 1.52 | 1.238 |
|  | ROH | 1.97 | 1.85 | 1.91 | $1.70^{\text {b }}$ |
|  | RF | 2. 19 | 1.83 | 1.95 | 1.857 |
|  | RNC | 3.70 | 4.88 | 4.90 | 3.83 |
|  | RCCH | 0.75 | 0.92 | 0.94 | 0.75 |
|  | RCN | 4.20 | 3.95 | 3.94 | 3.913 |
|  | RSH | 1.83 | 1.76 | 1.74 | $1.52{ }^{\text {b }}$ |
|  | RCl | 2.31 | 2.02 | 1.99 | 1.869 |
| ${ }^{\text {a }}$ Experimental data from reference 45. |  |  |  |  |  |
| ${ }^{\text {b }}$ Data from reference 20 and references therein. |  |  |  |  |  |

3.3.1-3.3.3 show that the nucleophilicity order is usually $\mathrm{H}^{-}>\mathrm{OH}^{-}>\mathrm{F}^{-}$ $>\mathrm{SH}^{-} \sim \mathrm{CN}^{-}>\mathrm{Cl}^{-}$and the leaving group follows the order $\mathrm{Cl}^{-}>\mathrm{F}^{-}>\mathrm{NC}^{-}$ $>\mathrm{SH}^{-}>\mathrm{OH}^{-}>\mathrm{CN}^{-}>\mathrm{NH}_{2}^{-}>\mathrm{CCH}^{-}>\mathrm{H}^{-}$. The theoretical results are consistent with the experimental results. ${ }^{41}$, 42

Table 3.3.6 lists optimized bond lengths between $C$ and $N\left(R_{C-N}\right)$ and $C$ and $X\left(R_{C-X}\right)$ in the TS. The detailed geometry structures can be found in the appendix.

Table 3.3.7 gives critical point data in the $T S$, where $r_{C-N}$ is the distance between N and $\mathrm{C}-\mathrm{N}$ bond critical point and $\rho_{\mathrm{C}-\mathrm{N}}$ is the electron density at $\mathrm{C}-\mathrm{N}$ bond critical point. The results demonstrate that the electron density at the bond critical point is related to the bond length. For a series of reactions with the same $N$ and different $X$, as the bond length increases, the distance between $N$ and the bond critical point increases and the electron density decreases.

### 3.4 Electronic Structures of the Transition States

According to the valence-bond configuration mixing model, the TS wavefunction can be approximated as a linear combination of the important valence bond (VB) configurations. Shaik and Prc s proposed that for simple $\mathrm{S}_{\mathrm{N}} 2$ reactions, the TS wavefunction can be written as in eq. 3.1.3, i.e. valence bond configurations 1 and 2 make equal contributions to the TS. Based on this assumption, they further stated that the charges on nucleophile $N$ and leaving group $X$ are equal in the TS and not related to the position of the $T S$ along the reaction coordinate. ${ }^{31 b}$

The concept of charge transfer is central to organic chemistry in

Table 3.3.6 RHF and MP2 bond lengths in the transition state ( $\AA$ ).

| $[N \cdots \mathrm{Cl} \cdot \mathrm{X}]^{-}$ | $\mathrm{R}_{\mathrm{C}-\mathrm{N}}$ |  | $\mathrm{R}_{\mathrm{C}-\mathrm{X}}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Kilf | MP2 | RHF | MP2 |
| $[\mathrm{H} \cdot \mathrm{R} \cdot \mathrm{CH}]^{-}$ | 1.690 | 1.589 | 1.690 | 1.589 |
| $\left[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{NH}_{2}\right]^{-}$ | 1.738 | 1.712 | 2.029 | 1.962 |
| [ $\mathrm{H} \cdots \mathrm{CR} \cdots \mathrm{OH}]^{-}$ | 1.791 | 1.803 | 1.890 | 1.821 |
| $[H \cdots \mathrm{R} \cdot \mathrm{F}]^{-}$ | 1.874 | 1.928 | 1.764 | 1.696 |
| $[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{NC}]^{-}$ | 2.004 | 1.964 | 1.851 | 1.774 |
| [H. $\cdot \mathrm{R} \cdots \mathrm{CCH}]^{-}$ | 1.846 | 1.780 | 2.057 | 1.982 |
| $[\mathrm{H} \cdots \mathrm{C} \cdots \cdots \mathrm{CN}]^{-}$ | 1.909 | 1.845 | 1.996 | 1.927 |
| $[\mathrm{H} \cdot \mathrm{R} \cdot \mathrm{CSH}]^{-}$ | 2.029 | 1.952 | 2. 253 | 2. 183 |
| [ $\mathrm{H} \cdots \mathrm{CR} \cdots \mathrm{Cl}]^{-}$ | 2.235 | 2.152 | 2.086 | 2.027 |
| $\left[\mathrm{F} \cdot \mathrm{R} \cdot \cdots \mathrm{NH}_{2}\right]^{-}$ | 1.761 | 1.710 | 2.144 | 2.178 |
| $[F \cdots \mathrm{CR} \cdots \mathrm{OH}]^{-}$ | 1.795 | 1.760 | 1.990 | 2.008 |
| $[F \cdots R \cdots F]^{-}$ | 1.846 | 1.836 | 1.846 | 1.836 |
| $[F \cdots \mathrm{R} \cdot \cdots \mathrm{NC}]^{-}$ | 1.950 |  | 1.903 |  |
| $[\mathrm{F} \cdot \mathrm{R} \cdot \cdots \mathrm{CCH}]^{-}$ | 1.840 |  | 2. 143 |  |
| $[F \cdots \mathrm{R} \cdot \mathrm{CN}]^{-}$ | 1.882 | 1.829 | 2.072 | 2.065 |
| $[F \cdots \mathrm{R} \cdot \mathrm{SH}]^{-}$ | 1.977 | 1.887 | 2. 331 | 2.328 |
| $[F \cdots \mathrm{R} \cdot \mathrm{Cl}]^{-}$ | 2.126 | 2.013 | 2. 133 | 2. 142 |
| $\left[^{\mathrm{HO}} \cdots \mathrm{R} \cdot \cdots \mathrm{OH}\right]^{-}$ | 1.931 |  | 1.931 |  |
| $[\mathrm{HO} \cdots \mathrm{R} \cdot \mathrm{CN}]^{-}$ | 2.013 |  | 2.026 |  |
| [ $\mathrm{HO} \cdots \mathrm{R} \cdot \mathrm{CSH}]^{-}$ | 2.119 |  | 2.287 |  |
| $[\mathrm{HO} \cdots \mathrm{R} \cdot \mathrm{Cl}]^{-}$ | 2.267 |  | 2.103 |  |

Table 3.3.6 (continued)

| $[N \cdots R \cdot X]^{-}$ | $\mathrm{R}_{\mathrm{C}-\mathrm{N}}$ |  | $\mathrm{R}_{\mathrm{C}-\mathrm{X}}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | RHF | MP2 | RHF | MP2 |
| $[\mathrm{NC} \cdot \cdots \mathrm{R} \cdot \cdots \underline{\mathrm{CN}}]^{-}$ | 2. 136 |  | 2.136 |  |
| $[\mathrm{NC} \cdots \mathrm{R} \cdot \cdots \mathrm{SH}]^{-}$ | 2. 198 |  | 2.418 |  |
| $[\mathrm{NC} \cdots \mathrm{R} \cdot \cdots \mathrm{Cl}]^{-}$ | 2.318 |  | 2.247 |  |
| [ $\mathrm{HS} \cdot \cdots \mathrm{R} \cdot \mathrm{CH}]^{-}$ | 2.474 |  | 2.474 |  |
| [ $\mathrm{HS} \cdots \mathrm{CR} \cdot \mathrm{Cl}]^{-}$ | 2.602 |  | 2.282 |  |
| $\left[\mathrm{Cl} \cdots \mathrm{R} \cdots \mathrm{Cl}{ }^{-}\right.$ | 2.393 | 2.316 | 2.393 | 2.316 |

Table 3.3.7 Critical points of transition state structures at the RHF, MP2' and MP2 levels (a.u.).

| $[N \cdots R \cdot \cdots]^{-}$ | $\mathrm{r}_{\mathrm{C}-\mathrm{N}}$ |  |  | $\mathrm{P}_{\mathrm{C}-\mathrm{N}}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | RHF | MP2' | MP2 | RHF | MP2' | MP2 |
| $[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{H}]^{-}$ | 1.351 | 1.286 | 1.189 | 0.068 | 0.071 | 0.086 |
| $\left[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{NH}_{2}\right]^{-}$ | 1.440 | 1.363 | 1.340 | 0.061 | 0.064 | 0.066 |
| $[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{OH}]^{-}$ | 1.512 | 1.456 | 1.446 | 0.058 | 0.058 | 0.054 |
| $[H \cdots R \cdots F]^{-}$ | 1.608 | 1.533 | 1.592 | 0.045 | 0.048 | 0.042 |
| $[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{NC}]^{-}$ | 1.739 | 2.114 | 1.633 | 0.035 | 0.038 | 0.039 |
| $[\mathrm{H} \cdot \mathrm{CR} \cdots \mathrm{CCH}]^{-}$ | 1.556 | 1.484 | 1.420 | 0.049 | 0.052 | 0.058 |
| $[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{CN}]^{-}$ | 1.622 | 1.554 | 1.491 | 0.043 | 0.046 | 0.050 |
| $[\mathrm{H} \cdots \mathrm{R} \cdot \mathrm{SH}]^{-}$ | 1.712 | 1.646 | 1.567 | 0.035 | 0.036 | 0.041 |
| $[\mathrm{H} \cdot \mathrm{CR} \cdots \mathrm{Cl}]^{-}$ | 1.941 | 1.883 | 1.793 | 0.023 | 0.024 | 0.027 |
| $[F \cdots \mathrm{R} \cdot \mathrm{H}]^{-}$ | 1.945 | 1.853 | 1.818 | 0.090 | 0.105 | 0.123 |
| $\left[\mathrm{F} \cdot \mathrm{R} \cdot \cdots \mathrm{NH}_{2}\right]^{-}$ | 1.962 | 1.874 | 1.844 | 0.089 | 0.103 | 0.117 |
| $[\mathrm{F} \cdot \mathrm{OR} \cdot \mathrm{OH}]^{-}$ | 1.986 | 1.903 | 1.879 | 0.081 | 0.095 | 0. 103 |
| $[F \cdots R \cdots F]^{-}$ | 2.019 | 1.943 | 1.937 | 0.071 | 0.084 | 0.086 |
| $[F \cdots \mathrm{R} \cdot \cdots \mathrm{NC}]^{-}$ | 2.079 | 2.023 |  | 0.057 | 0.066 |  |
| $[\mathrm{F} \cdot \mathrm{R} \cdot \cdots \mathrm{CCH}]^{-}$ | 2.002 |  |  | 0.074 |  |  |
| $[F \cdots \mathrm{R} \cdot \mathrm{CN}]^{-}$ | 2.026 | 1.961 | 1.924 | 0.068 | 0.079 | 0.089 |
| $[\mathrm{F} \cdot \mathrm{MR} \cdot \mathrm{SH}]^{-}$ | 2.080 | 2.015 | 1.948 | 0.056 | 0.065 | 0.079 |
| $[F \cdots \mathrm{R} \cdot \mathrm{Cl}]^{-}$ | 2. 191 | 2.143 | 2.052 | 0.040 | 0.046 | 0.059 |
| $[\mathrm{HO} \cdots \mathrm{R} \cdot \cdots \mathrm{H}]^{-}$ | 2.044 | 1.955 | 1.905 | 0.081 | 0.089 | 0.106 |
| [ $\mathrm{HO} \cdots \mathrm{Cr} \cdots \mathrm{OH}]^{-}$ | 2.099 | 2.016 |  | 0.071 | 0.079 |  |
| $[\mathrm{HO} \cdots \mathrm{R} \cdot \cdots \mathrm{F}]^{-}$ | 2.146 | 2.069 | 2.080 | 0.061 | 0.068 | 0.066 |

Table 3.3.7 (continued)

| $[N \cdots R \cdots X]^{-}$ | $r_{\text {C-N }}$ |  |  | $\rho_{\mathrm{C}-\mathrm{N}}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | RHF | MP2' | MP2 | RHF | MP2' | MP2 |
| [ $\mathrm{HO} \cdot \cdots \mathrm{R} \cdot \mathrm{CN}]^{-}$ | 2.146 | 2.077 |  | 0.059 | 0.066 |  |
| $[\mathrm{HO} \cdots \mathrm{R} \cdots \mathrm{SH}]^{-}$ | 2.214 | 2. 142 |  | 0.048 | 0.053 |  |
| $[\mathrm{HO} \cdots \mathrm{R} \cdot \mathrm{Cl}]^{-}$ | 2.327 | 2.273 |  | 0.034 | 0.038 |  |
| [ $\mathrm{NC} \cdots \cdot \mathrm{R} \cdot \cdots \mathrm{H}]^{-}$ | 2. 166 | 2.076 | 2.010 | 0.079 | 0.083 | 0.095 |
| $[\mathrm{NC} \cdots \mathrm{R} \cdot \mathrm{OH}]^{-}$ | 2.230 | 2. 144 |  | 0.072 | 0.076 |  |
| [ $\mathrm{NC} \cdots \mathrm{P} \cdot \cdots \mathrm{F}]^{-}$ | 2.279 | 2.196 | 2.186 | 0.064 | 0.068 | 0.068 |
| [ $\mathrm{NC} \cdots \mathrm{R} \cdot \cdots \underline{\mathrm{CN}}]^{-}$ | 2.319 | 2.244 |  | 0.057 | 0.060 |  |
| [ $\mathrm{NC} \cdot \cdots \mathrm{R} \cdot \mathrm{SH}]^{-}$ | 2.360 | 2.279 |  | 0.051 | 0.054 |  |
| [ $\mathrm{CC} \cdots \mathrm{R} \cdot \cdots \mathrm{Cl}]^{-}$ | 2. 481 | 2. 408 |  | 0.039 | 0.041 |  |
| [ $\mathrm{HS} \cdot \cdots \mathrm{R} \cdot \cdots \mathrm{H}$ ] ${ }^{-}$ | 2.463 | 2. 366 | 2.288 | 0.071 | 0.073 | 0.084 |
| [ $\mathrm{HS} \cdot \mathrm{R} \cdot \mathrm{OOH}{ }^{-}$ | 2.546 | 2.444 |  | 0.064 | 0.068 |  |
| [ $\mathrm{HS} \cdot \mathrm{CR} \cdot \mathrm{CF}]^{-}$ | 2.605 | 2.502 | 2.506 | 0.058 | 0.062 | 0.061 |
| [HS $\cdots$ R $\cdots$ CN] ${ }^{-}$ | 2.680 | 2.586 |  | 0.050 | 0.053 |  |
| [HS. . $\mathrm{R}^{\text {. }}$. $\mathrm{SH}^{-}$ | 2.716 | 2.619 |  | 0.045 | 0.048 |  |
| $[\mathrm{HS} \cdots \mathrm{R} \cdot \mathrm{Cl}]^{-}$ | 2.866 | 2.778 |  | 0.034 | 0.037 |  |
| $[\mathrm{Cl} \cdots \mathrm{R} \cdots \mathrm{H}]^{-}$ | 2.343 | 2.243 | 2. 183 | 0.086 | 0.092 | 0.105 |
| $\left[\mathrm{Cl} \cdots \mathrm{R} \cdots \mathrm{OH}^{-}\right.$ | 2.393 | 2. 294 |  | 0.081 | 0.087 |  |
| $[\mathrm{Cl} \cdots \mathrm{R} \cdots \mathrm{F}]^{-}$ | 2.428 | 2.329 | 2.339 | 0.075 | 0.081 | 0.079 |
| $[\mathrm{Cl} \cdots \mathrm{R} \cdots \mathrm{CN}]^{-}$ | 2.521 | 2. 433 |  | 0.059 | 0.064 |  |
| $[\mathrm{Cl} \cdots \mathrm{R} \cdots \mathrm{SH}]^{-}$ | 2.540 | 2. 445 |  | 0.055 | 0.060 |  |
| $\left[\mathrm{Cl} \cdots \mathrm{R} \cdots \mathrm{Cl}^{-}\right.$ | 2.657 | 2.571 | 2.494 | 0.043 | 0.047 | 0.055 |

that most reactions involve electron transfer in the transition state to some extent. In this section, the charges obtained by integration of the electron density over atomic basins (eq. 1.2.8) are reported and the configuration analysis is followed. Also the question of whether or not the charge development is related to the position of the $T S$ is discussed.

To understand the charge distribution in the $T S$, it is helpful to study the charge distribution in the reactants and products. For this purpose, the integrated charges on $X$ in molecules $R X\left(R=\mathrm{CH}_{3}\right)$ are provided in Table 3.4.1. The MP2 charges on $X$ vary from +0.069 to -0.651. This large variation in charge transfer is a direct result of the different electronegativities of the $X$ groups.

Integrated charges on nucleophile $N\left(Q_{N}\right)$ and leaving group $X\left(Q_{X}\right)$ in the $T S$ are tabulated in Table 3.4.2. There are several immediate observations. First of all, at all three computational levels, the charges on $N$ or $X$ differ from reaction to reaction. Secondly, at the RHF level, the charges on $N$ are not equal to the charges on $X$ unless $N=X$, i.e., in a symmetric reaction. This is also observed at the MP2' level. However, at the highest level, MP2, there are certain cases where $Q_{N} \approx$ $Q_{X}$.

Using the integrated charges, it is possible to estimate the upper bounds of the contributions of various configuration to the TS.

For simple $S_{N} 2$ reactions, the important valence-bond configurations are: ${ }^{31 d}$

Table 3.4.1 Integrated charges on X in $\mathrm{CH}_{3} \mathrm{X}$ at the RHF, MP2' and MP2 levels (e).

| RX | $-Q_{X}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | RHF | MP2' | MP2 |
| RH | 0.007 | -0.066 | -0.069 |
| $\mathrm{RNH}_{2}$ | 0.465 | 0.350 | 0.337 |
| ROH | 0.652 | 0.545 | 0.508 |
| RF | 0.741 | 0.626 | 0.600 |
| RNC | 0.708 | 0.650 | 0.651 |
| RCCH | 0.293 | 0.290 | 0.247 |
| RCN | 0.391 | 0.328 | 0.325 |
| RSH | 0.048 | -0.003 | -0.008 |
| RCl | 0.323 | 0.224 | 0.219 |

Table 3.4.2 Transition state integrated charges obtained at the RHF, MP2' and MP2 levels (e).

| $[\mathrm{N} \cdot \mathrm{P} \cdot \mathrm{C} \cdot \mathrm{X}]^{-}$ | RHF |  | MP2' |  | MP2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }^{-Q} \mathrm{~N}$ | ${ }^{-Q} X$ | ${ }^{-Q}{ }_{N}$ | ${ }^{-Q} X$ | $-Q_{N}$ | ${ }^{-Q} \mathrm{X}$ |
| $\left[\mathrm{H} \cdot \mathrm{R} \cdot \mathrm{CH}{ }^{-}\right.$ | 0.601 | 0.601 | 0.520 | 0.520 | 0.516 | 0.516 |
| $\left[\mathrm{H} \cdot \mathrm{R} \cdot \cdots \mathrm{NH}_{2}\right]^{-}$ | 0.648 | 0.720 | 0.554 | 0.640 | 0.597 | 0.603 |
| $[\mathrm{H} \cdot \mathrm{R} \cdot \mathrm{COH}]^{-}$ | 0.674 | 0.779 | 0.586 | 0.677 | 0.643 | 0.635 |
| $[H \cdots R \cdots F]^{-}$ | 0.711 | 0.832 | 0.629 | 0.717 | 0.700 | 0.679 |
| $[\mathrm{H} \cdot \mathrm{R} \cdot \cdots \mathrm{NC}]^{-}$ | 0.750 | 0.792 | 0.657 | 0.724 | 0.698 | 0.705 |
| $[\mathrm{H} \cdot \mathrm{R} \cdot \cdots \mathrm{CCH}]^{-}$ | 0.687 | 0.722 | 0.582 | 0.665 | 0.598 | 0.655 |
| $[\mathrm{H} \cdot \mathrm{CR} \cdot \cdots \mathrm{CN}]^{-}$ | 0.705 | 0.734 | 0.601 | 0.667 | 0.617 | 0.683 |
| $[\mathrm{H} \cdot \mathrm{CR} \cdot \mathrm{SH}]^{-}$ | 0.727 | 0.607 | 0.626 | 0.519 | 0.637 | 0.488 |
| [ $\mathrm{H} \cdot \mathrm{CR} \cdot \mathrm{Cl}]^{-}$ | 0.799 | 0.636 | 0.719 | 0.535 | 0.725 | 0.513 |
| $\left[\mathrm{F} \cdot \mathrm{R} \cdot \cdots \mathrm{NH}_{2}\right]^{-}$ | 0.835 | 0.795 | 0.727 | 0.718 | 0.700 | 0.750 |
| $[\mathrm{F} \cdot \mathrm{CR} \cdot \mathrm{OH}]^{-}$ | 0.845 | 0.827 | 0.740 | 0.738 | 0.723 | 0.749 |
| $[F \cdot \cdots R \cdot \cdots]^{-}$ | 0.862 | 0.862 | 0.764 | 0.764 | 0.762 | 0.762 |
|  | 0.890 | 0.821 | 0.771 | 0.788 |  |  |
| $[\mathrm{F} \cdot \mathrm{R} \cdot \cdots \mathrm{CCH}]^{-}$ | 0.857 | 0.779 |  |  |  |  |
| $[\mathrm{F} \cdot \mathrm{CR} \cdot \mathrm{CN}]^{-}$ | 0.868 | 0.779 | 0.765 | 0.721 | 0.746 | 0.746 |
| $[\mathrm{F} \cdot \mathrm{CR} \cdot \mathrm{SH}]^{-}$ | 0.889 | 0.679 | 0.791 | 0.584 | 0.757 | 0.628 |
| $[\mathrm{F} \cdot \mathrm{CR} \cdot \mathrm{Cl}]^{-}$ | 0.926 | 0.681 | 0.849 | 0.585 | 0.814 | 0.625 |
| [ $\mathrm{HO} \cdot \mathrm{CR} \cdot \mathrm{OH}{ }^{-}$ | 0.803 | 0.803 | 0.708 | 0.708 |  |  |
| $[\mathrm{HO} \cdot \mathrm{CR} \cdots \mathrm{CN}]^{-}$ | 0.830 | 0.753 | 0.732 | 0.703 |  |  |
| [ $\mathrm{HO} \cdot \mathrm{CR} \cdot \mathrm{CSH}{ }^{-}$ | 0.855 | 0.651 | 0.759 | 0.553 |  |  |

Table 3.4.2 (continued)

| $[N \cdot \cdots R \cdot \cdots]^{-}$ | RHF |  | MF2' |  | MP2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }_{-}^{-}{ }_{N}$ | ${ }^{-Q} \mathrm{X}$ | ${ }^{-} \mathrm{Q}_{\mathrm{N}}$ | ${ }^{-} Q_{X}$ | $-_{\text {- }}$ N | $-Q_{K}$ |
| $[\mathrm{HO} \cdot \mathrm{CR} \cdot \mathrm{Cl}]^{-}$ | 0.897 | 0.661 | 0.819 | 0.564 |  |  |
| [NC. $\cdot \mathrm{R} \cdot \cdots \underline{\mathrm{CN}}]^{-}$ | 0.794 | 0.794 | 0.722 | 0.722 |  |  |
| $[\mathrm{NC} \cdots \mathrm{R} \cdot \mathrm{SH}]^{-}$ | 0.794 | 0.709 | 0.738 | 0.600 |  |  |
| $\left[\mathrm{NC} \cdots \mathrm{R} \cdot \mathrm{Cl}^{\text {] }}\right.$ | 0.851 | 0.730 | 0.804 | 0.607 |  |  |
| $[\mathrm{HS} \cdots \mathrm{R} \cdot \mathrm{SH}]^{-}$ | 0.719 | 0.719 | 0.618 | 0.618 |  |  |
| $[\mathrm{HS} \cdots \mathrm{R} \cdot \mathrm{Cl}]^{-}$ | 0.782 | 0.740 | 0.682 | 0.641 |  |  |
| $[\mathrm{Cl} \cdots \mathrm{R} \cdot \mathrm{Cl}]^{-}$ | 0.794 | 0.794 | 0.703 | 0.703 | 0.695 | 0.695 |


| $N: \mathrm{R} \cdot \mathrm{X}$ | $N \cdot \cdot \mathrm{R} \times$ : | $\mathrm{N}^{-} \mathrm{R}^{+} \mathrm{X}^{-}$ | $N \cdot R^{-} \cdot \mathrm{X}$ | $N^{-} \mathrm{R}^{-} \mathrm{X}^{+}$ | $\mathrm{N}^{+} \mathrm{R}^{-} \mathrm{X}^{-}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 |

Thus, the TS wavefunction can be written as a linear combination as follows:

$$
\begin{equation*}
\Psi_{\mathrm{TS}}=c_{1} \psi_{1}+c_{2} \psi_{2}+c_{3} \psi_{3}+c_{4} \psi_{4}+c_{5} \psi_{5}+c_{6} \psi_{6} \tag{3.4.1}
\end{equation*}
$$

The reactant wavefunction ( $\Psi_{r}$ ) can be written as a linear combination of VB configurations which contain a negative charge on $\mathrm{N}^{47}$

$$
\begin{equation*}
\Psi_{r}=a_{1} \psi_{1}+a_{2} \psi_{3}+a_{3} \psi_{5} \tag{3.4.2}
\end{equation*}
$$

and the product ( $\Psi_{p}$ ) can be written as an equivalent linear combination of $V B$ configurations involving a negative charge on $X^{47}$

$$
\begin{equation*}
\Psi_{p}=b_{1} \psi_{2}+b_{2} \psi_{3}+b_{3} \psi_{6} \tag{3.4.3}
\end{equation*}
$$

The contributions of $\psi_{5}$ and $\psi_{r}$ to $\Psi_{T S}$ are small and relatively unimportant since they involve a two-electron transfer to form high-energy configurations. ${ }^{31 \mathrm{~d}}$ Hence

$$
\begin{equation*}
\Psi_{\mathrm{TS}} \approx c_{1} \psi_{1}+c_{2} \psi_{2}+c_{3} \psi_{3}+c_{4} \psi_{4} \tag{3.4.4}
\end{equation*}
$$

or using reactant and product wavefunction

$$
\begin{equation*}
\Psi_{\mathrm{TS}} \approx a \Psi_{\mathrm{r}}+b \Psi_{\mathrm{p}}+c \psi_{3}+d \Psi_{4} \tag{3.4.5}
\end{equation*}
$$

According to the molecular structure theory, ${ }^{1}$ the charge on atom $A$ in the TS is defined as

$$
\begin{equation*}
Q_{A}=Z_{A}-\int_{A} p_{T S}(r) d r \tag{3.4.6}
\end{equation*}
$$

Substituting eq. 3.4.5 into eq. 3.4.6 and assuming that cross terms are zero leads to the relationship between the charge on atom $A$ in the TS and the charges on atom $A$ in various configurations

$$
\begin{equation*}
Q_{A}=a^{2} Q_{A}\left(\Psi_{r}\right)+b^{2} Q_{A}\left(\Psi_{p}\right)+c^{2} Q_{A}\left(\psi_{3}\right)+d^{2} Q_{A}\left(\psi_{4}\right) \tag{3.4.7}
\end{equation*}
$$

where $Q_{A}\left(\psi_{X}\right)=Z_{A}-\int_{A} \rho_{X}(r) d r$.

This leads to a set of linear independent equations

$$
\left\{\begin{array}{l}
Q_{X}=a^{2} Q_{X}\left(\Psi_{r}\right)+b^{2} Q_{X}\left(\Psi_{p}\right)+c^{2} Q_{X}\left(\psi_{3}\right)+d^{2} Q_{X}\left(\psi_{4}\right)  \tag{3.4.8}\\
Q_{N}=a^{2} Q_{N}\left(\Psi_{r}\right)+b^{2} Q_{N}\left(\Psi_{p}\right)+c^{2} Q_{N}\left(\psi_{3}\right)+d^{2} Q_{N}\left(\psi_{4}\right) \\
a^{2}+b^{2}+c^{2}+d^{2}=1
\end{array}\right.
$$

The charges $Q_{A}, Q_{A}\left(\Psi_{r}\right)$ and $Q_{A}\left(\Psi_{p}\right)$ can be obtained by integrating the corresponding wavefunction over the atomic basin of $A$. The results are shown in Tables 3.4.1-3.4.2. The charges $Q_{A}\left(\psi_{3}\right), Q_{A}\left(\psi_{4}\right)$, etc., can be obtained directly from the VB configurations. They are

$$
\begin{array}{ll}
Q_{X}\left(\psi_{1}\right)=0, & Q_{N}\left(\psi_{1}\right)=-1 \\
Q_{X}\left(\psi_{2}\right)=-1, & Q_{N}\left(\psi_{2}\right)=0 \\
Q_{X}\left(\psi_{3}\right)=-1, & Q_{N}\left(\psi_{3}\right)=-1 \\
Q_{X}\left(\psi_{4}\right)=0, & Q_{N}\left(\psi_{4}\right)=0
\end{array}
$$

By setting $c^{2}$ or $d^{2}=0$, it is possible to evaluate $a^{2}, b^{2}, d^{2}$ or $c^{2}$. In each case, the choice between $c^{2}=0$ or $d^{2}=0$ is made on the basis that only one of these two possibilities yields reasonable results, i.e., the coefficients are real numbers. For example, if $c^{2}$ is set equal to zero for $N=X=H$, then $a^{2}=b^{2}=0.50$ at the RHF level. In which case $d^{2}$ is a complex number. Consequently, the solution given in Table 3.4.3 ( $a^{2}=$ $b^{2}=0.40$ and $c^{2}=0.20, d^{2}=0$ ) is chosen. The results obtained at the MP2' and MP2 levels are given in Table 3.4.4 and 3.4.5, respectively.

At all three calculation levels, the reactant contributions to the transition state $\left(a^{2}\right)$ are not equal to the product contributions $\left(b^{2}\right)$. In some of the reactions, there is considerable contribution from VB configuration $\psi_{3}$ to the $\mathrm{TS}\left(c^{2}>0.1\right.$ at the MP2' level $\left.{ }^{48}\right)$. Thus, using Thornton's parallel and perpendicular concept, these reactions involve considerable perpendicular motion of the $T S$ along the reaction coordinate. Furthermore, it appears that these reactions usually consist of $N$ and $X$ which have small electronegativities, for example $H, C C H, C N$, SH and Cl (the data in Table 3.4.1 provide information on the electronegativity of $X$ in $R X$, since a electronegative $X$ has a large negative charge). Thus, the reaction can be classified according to the contribution of $\psi_{3}$ to the transition state. With the same nucleophile and within each type of reaction, the ratio of the product contribution

Table 3.4.3 Configuration analysis at the RHF level.

| $[N \cdots \mathrm{~m} \cdot \mathrm{X}]^{-}$ | $a^{2}$ | $b^{2}$ | $c^{2}$ | $d^{2}$ | $-\frac{b^{2}}{a^{2}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $[H \cdot \cdots \mathrm{R} \cdot \mathrm{H}]^{-}$ | 0.40 | 0.40 | 0.20 | 0.00 | 1.00 |
| $\left[\mathrm{H} \cdots \mathrm{C} \cdot \cdots \mathrm{NH}_{2}\right]^{-}$ | 0.52 | 0.35 | 0.12 | 0.00 | 0.68 |
|  | 0.63 | 0.33 | 0.04 | 0.00 | 0.52 |
| $[H \cdots R \cdots F]^{-}$ | 0.66 | 0.29 | 0.05 | 0.00 | 0.45 |
| $[\mathrm{H} \cdots \mathrm{R} \cdot \cdots \mathrm{NC}]^{-}$ | 0.71 | 0.25 | 0.04 | 0.00 | 0.35 |
| $[\mathrm{H} \cdot \mathrm{CR} \cdots \mathrm{CCH}]^{-}$ | 0.39 | 0.32 | 0.29 | 0.00 | 0.80 |
| $[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{CN}]^{-}$ | 0.44 | 0.30 | 0.27 | 0.00 | 0.68 |
| $\left[\mathrm{H} \cdots \mathrm{R} \cdot \mathrm{CSH}{ }^{-}\right.$ | 0.41 | 0.28 | 0.31 | 0.00 | 0.67 |
| $[\mathrm{H} \cdots \mathrm{C} \cdot \mathrm{Cll}]^{-}$ | 0.53 | 0.20 | 0.27 | 0.00 | 0.38 |
| $[F \cdots \mathrm{R} \cdot \mathrm{H}]^{-}$ | 0.29 | 0.66 | 0.05 | 0.00 | 2.23 |
| $\left[\mathrm{F} \cdot \mathrm{R} \cdots \mathrm{NH}_{2}\right]^{-}$ | 0.37 | 0.62 | 0.00 | 0.00 | 1.66 |
| [F..R...OH] ${ }^{-}$ | 0.45 | 0.53 | 0.00 | 0.02 | 1.19 |
| $[F \cdots R \cdots F]^{-}$ | 0.49 | 0.49 | 0.00 | 0.01 | 1.00 |
| $[F \cdots \mathrm{R} \cdot \cdots \mathrm{NC}]^{-}$ | 0.59 | 0.40 | 0.00 | 0.01 | 0.68 |
| $[\mathrm{F} \cdot \mathrm{R} \cdot \mathrm{CCH}]^{-}$ | 0.31 | 0.55 | 0.13 | 0.00 | 1.76 |
| $[F \cdots \mathrm{R} \cdot \mathrm{CN}]^{-}$ | 0.36 | 0.51 | 0.13 | 0.00 | 1.40 |
| $[F \cdots \mathrm{R} \cdot \mathrm{SH}]^{-}$ | 0.32 | 0.43 | 0.25 | 0.00 | 1.32 |
| $[\mathrm{F} \cdot \mathrm{CR} \cdots \mathrm{Cl}]^{-}$ | 0.47 | 0.29 | 0.24 | 0.00 | 0.61 |
| [ $\mathrm{HO} \cdots \mathrm{CR} \cdots \mathrm{H}]^{-}$ | 0.33 | 0.63 | 0.04 | 0.00 | 1.94 |
| [ $\mathrm{HO} \cdot \cdots \mathrm{R} \cdot \mathrm{OH}]^{-}$ | 0.49 | 0.49 | 0.00 | 0.03 | 1.00 |
| $\left[\mathrm{HO} \cdots \mathrm{C} \cdot \mathrm{Cl}^{-}\right.$ | 0.53 | 0.45 | 0.00 | 0.02 | 0.84 |
| $\left[\mathrm{HO} \cdots \mathrm{R} \cdots \mathrm{CN}^{-}\right.$ | 0.41 | 0.49 | 0.11 | 0.00 | 1.20 |

Table 3.4.3 (continued)

| $[N \cdots R \cdots X]^{-}$ | $a^{2}$ | $b^{2}$ | $c^{2}$ | $d^{2}$ | $-\frac{b^{2}}{a^{2}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left[\mathrm{HO} \cdot \mathrm{R} \cdot \mathrm{C} \cdot \mathrm{SH}^{-}\right.$ | 0.37 | 0.42 | 0.22 | 0.00 | 1.14 |
| [ $\mathrm{HO} \cdot \cdots \mathrm{R} \cdot \mathrm{Cl}]^{-}$ | 0.50 | 0.29 | 0.21 | 0.00 | 0.59 |
| $[\mathrm{NC} \cdots \mathrm{R} \cdot \cdots \mathrm{H}]^{-}$ | 0.30 | 0.44 | 0.27 | 0.00 | 1.47 |
| [ $\mathrm{NC} \cdots \cdot \mathrm{R} \cdots \mathrm{OH}^{-}$ | 0.49 | 0.41 | 0.11 | 0.00 | 0.83 |
| $[\mathrm{NC} \cdots \mathrm{R} \cdot \cdots \mathrm{F}]^{-}$ | 0.51 | 0.36 | 0.13 | 0.00 | 0.71 |
| $[\mathrm{NC} \cdot \cdots \mathrm{R} \cdot \mathrm{CN}]^{-}$ | 0.34 | 0.34 | 0.32 | 0.00 | 1.00 |
| [NC. $\cdot$ R $\cdots$ SH] ${ }^{-}$ | 0.31 | 0.34 | 0.36 | 0.c0 | 1.10 |
| $[\mathrm{NC} \cdots \mathrm{R} \cdot \cdots \mathrm{Cl}]^{-}$ | 0.40 | 0.24 | 0.36 | 0.00 | 0.61 |
| [HS $\cdots$ R $\cdots$ H] ${ }^{-}$ | 0.28 | 0.41 | 0.31 | 0.00 | 1.50 |
| [ $\mathrm{HS} \cdot \cdots \mathrm{R} \cdot \mathrm{OH} \mathrm{O}^{-}$ | 0.42 | 0.37 | 0.22 | 0.00 | 0.88 |
| [HS $\cdots$ R $\cdots$ F] ${ }^{-}$ | 0.43 | 0.32 | 0.25 | 0.00 | 0.76 |
| [HS $\cdots$ R $\cdots$ CN] ${ }^{-}$ | 0.34 | 0.31 | 0.36 | 0.00 | 0.91 |
| [HS $\cdot \cdots$ R $\cdot$. SH] ${ }^{-}$ | 0.29 | 0.29 | 0.41 | 0.00 | 1.00 |
| [HS $\cdot \cdots \mathrm{R} \cdot \mathrm{Cl}]^{-}$ | 0.38 | 0.23 | 0.39 | 0.00 | 0.59 |
| $[\mathrm{Cl} \cdots \mathrm{R} \cdots \mathrm{H}]^{-}$ | 0.20 | 0.53 | 0.27 | 0.00 | 2.66 |
| $[\mathrm{Cl} \cdots \mathrm{R} \cdot \mathrm{OH}]^{-}$ | 0.29 | 0.50 | 0.21 | 0.00 | 1.70 |
| $[\mathrm{Cl} \cdots \mathrm{R} \cdot \cdots \mathrm{F}]^{-}$ | 0.29 | 0.47 | 0.24 | 0.00 | 1.65 |
| $\left[\mathrm{Cl} \cdots \mathrm{R} \cdots{\underline{\mathrm{CN}}]^{-}}^{-}\right.$ | 0.24 | 0.40 | 0.36 | 0.00 | 1.64 |
| $[\mathrm{Cl} \cdots \mathrm{R} \cdot \cdots \mathrm{SH}]^{-}$ | 0.23 | 0.38 | 0.39 | 0.00 | 1.68 |
| $[\mathrm{Cl} \cdots \mathrm{R} \cdot \mathrm{Cl}]^{-}$ | 0.30 | 0.30 | 0.39 | 0.00 | 1.00 |

Table 3.4.4 Configuration analysis at the MP2' level.

| $[N \cdots \mathrm{R} \cdot \cdots \mathrm{X}]^{-}$ | $a^{2}$ | $b^{2}$ | $c^{2}$ | $d^{2}$ | $-\mathrm{b}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $[H \cdots R \cdots H]^{-}$ | 0.45 | 0.45 | 0.10 | 0.00 | 1.00 |
| $\left[\mathrm{H} \cdot \mathrm{R} \cdot \cdots \mathrm{NH}_{2}\right]^{-}$ | 0.55 | 0.42 | 0.03 | 0.00 | 0.76 |
| $[\mathrm{H} \cdots \mathrm{R} \cdot \mathrm{OH}]^{-}$ | 0.61 | 0.34 | 0.00 | 0.05 | 0.57 |
| $[H \cdots R \cdots F]^{-}$ | 0.65 | 0.31 | 0.00 | 0.04 | 0.48 |
| $[\mathrm{H} \cdot \mathrm{CR} \cdot \cdots \mathrm{NC}]^{-}$ | 0.68 | 0.28 | 0.00 | 0.04 | 0.42 |
| $[\mathrm{H} \cdot \mathrm{R} \cdot \mathrm{CCCH}]^{-}$ | 0.47 | 0.39 | 0.14 | 0.00 | 0.83 |
| $[\mathrm{H} \cdot \mathrm{CR} \cdots \mathrm{CN}]^{-}$ | 0.50 | 0.37 | 0.13 | 0.00 | 0.76 |
| $[\mathrm{H} \cdot \mathrm{CR} \cdots \mathrm{SH}]^{-}$ | 0.48 | 0.35 | 0.17 | 0.00 | 0.73 |
| $[\mathrm{H} \cdot \mathrm{CR} \cdot \mathrm{Cl}]^{-}$ | 0.60 | 0.26 | 0.14 | 0.00 | 0.44 |
| $[F \cdots \mathrm{R} \cdot \cdots \mathrm{H}]^{-}$- | 0.31 | 0.65 | 0.00 | 0.04 | 2.09 |
| $\left[F \cdots \mathrm{R} \cdots \mathrm{NH}_{2}\right]^{-}$ | 0.36 | 0.59 | 0.00 | 0.05 | 1.67 |
| $[\mathrm{F} \cdot \cdot \mathrm{R} \cdot \cdots \mathrm{OH}]^{-}$ | 0.42 | 0.51 | 0.00 | 0.07 | 1.21 |
| $[F \cdots R \cdots F]^{-}$ | 0.47 | 0.47 | 0.00 | 0.07 | 1.00 |
| $[F \cdots \mathrm{R} \cdot \cdots \mathrm{NC}]^{-}$ | 0.47 | 0.48 | 0.00 | 0.05 | 1.03 |
| $[F \cdots \mathrm{R} \cdots \mathrm{CN}]^{-}$ | 0.40 | 0.59 | 0.00 | 0.01 | 1.49 |
| $[\mathrm{F} \cdot \mathrm{CR} \cdot \mathrm{SH}]^{-}$ | 0.42 | 0.56 | 0.03 | 0.00 | 1. 35 |
| $[5 \cdots \mathrm{R} \cdot \mathrm{Cl}]^{-}$ | 0.54 | 0.40 | 0.06 | 0.00 | 0.75 |
| [ $\mathrm{HO} \cdots \mathrm{l}$ R $\cdots \mathrm{H}]^{-}$ | 0.34 | 0.61 | 0.00 | 0.05 | 1.77 |
| $\left[^{\mathrm{HO}} \cdots \mathrm{R} \cdot \mathrm{COH}\right]^{-}$ | 0.46 | 0.46 | 0.00 | 0.08 | 1.00 |
| $[\mathrm{HO} \cdots \mathrm{R} \cdot \mathrm{CF}]^{-}$ | 0.51 | 0.42 | 0.00 | 0.07 | 0.83 |
| $\left[^{\mathrm{HO}} \cdots \mathrm{R} \cdot \cdots \mathrm{CN}^{-}\right.$ | 0.42 | 0.56 | 0.00 | 0.41 | 1.33 |

Table 3.4.4 (continued)

| $[N \cdots R \cdots X]^{-}$ | $a^{2}$ | $\mathrm{b}^{2}$ | $c^{2}$ | $d^{2}$ | $-\frac{b^{2}}{a^{2}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left[^{\mathrm{HO}} \cdots \mathrm{R} \cdot \mathrm{CSH}\right]^{-}$ | 0.45 | 0.53 | 0.02 | 0.00 | 1.19 |
| $[\mathrm{HO} \cdots \mathrm{R} \cdots \mathrm{Cl}]^{-}$ | 0.57 | 0.40 | 0.04 | 0.00 | 0.71 |
| $[\mathrm{NC} \cdots \mathrm{R} \cdot \cdots \mathrm{H}]^{-}$ | 0.37 | 0.50 | 0.13 | 0.00 | 1.32 |
| $\left.{ }^{\mathrm{NC}} \cdot \cdots \mathrm{R} \cdots \mathrm{OH}\right]^{-}$ | 0.56 | 0.42 | 0.00 | 0.01 | 0.75 |
|  | 0.59 | 0.40 | 0.00 | 0.01 | 0.67 |
| $[\mathrm{NC} \cdot \cdots \mathrm{R} \cdots \underline{\mathrm{CN}}]^{-}$ | 0.41 | 0.41 | 0. 17 | 0.00 | 1.00 |
| $[\mathrm{NC} \cdots \mathrm{R} \cdot \cdot \mathrm{SH}]^{-}$ | 0.40 | 0.39 | 0.21 | 0.00 | 0.98 |
| [ $\mathrm{NC} \cdot \cdots \mathrm{R} \cdots \mathrm{Cl}]^{-}$ | 0.51 | 0.29 | 0.20 | 0.00 | 0.58 |
| [ $\mathrm{HS} \cdots \mathrm{R} \cdot \cdots \mathrm{H}]^{-}$ | 0.35 | 0.48 | 0.17 | 0.00 | 1.37 |
| [ $\mathrm{HS} \cdot \cdots \mathrm{R} \cdot \mathrm{OH}{ }^{-}$ | 0.53 | 0.45 | 0.02 | 0.00 | 0.84 |
| [HS $\cdots$ R $\cdots$ F] ${ }^{-}$ | 0.56 | 0.42 | 0.03 | 0.00 | 0.74 |
| [HS $\cdots$ R $\cdots \underline{C N}^{-}$ | 0.39 | 0.40 | 0.21 | 0.00 | 1.02 |
| [HS $\cdots$ R $\cdot$. $\mathrm{SH}^{-}$ | 0.38 | 0.38 | 0.24 | 0.00 | 1.00 |
| [ $\mathrm{HS} \cdot \mathrm{CR} \cdot \mathrm{Cl}]^{-}$ | 0.46 | 0.32 | 0.22 | 0.00 | 0.69 |
| $[\mathrm{Cl} \cdots \mathrm{R} \cdot \cdots \mathrm{H}]^{-}$ | 0.26 | 0.60 | 0.14 | 0.00 | 2.27 |
| $[\mathrm{Cl} \cdots \mathrm{R} \cdots \mathrm{OH}]^{-}$ | 0.40 | 0.57 | 0.04 | 0.00 | 1.41 |
| $[\mathrm{Cl} \cdots \mathrm{R} \cdots \mathrm{F}]^{-}$ | 0.40 | 0.54 | 0.06 | 0.00 | 1.33 |
| $[\mathrm{Cl} \cdots \mathrm{R} \cdot \mathrm{CN}]^{-}$ | 0.29 | 0.51 | 0.20 | 0.00 | 1.73 |
| $\left[\mathrm{Cl} \cdots \mathrm{R} \cdots \mathrm{SH}^{-}\right.$ | 032 | 0.46 | 0.22 | 0.00 | 1.46 |
| $\left[\mathrm{Cl} \cdot \mathrm{R} \cdot \cdots \cdot \mathrm{Cl}^{-}\right.$ | $0.3{ }^{7}$ | 0.39 | 0.23 | 0.00 | 1.00 |

Tabke 3.4.5 Configuration analysis at the MP2 level.

| $[\mathrm{N} \cdots \mathrm{R} \cdots \mathrm{X}]^{-}$ | $\mathrm{a}^{2}$ | $\mathrm{~b}^{2}$ | $\mathrm{c}^{2}$ | $d^{2}$ | $-\frac{b^{2}}{a^{2}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{H}]^{-}$ | 0.45 | 0.45 | 0.09 | 0.00 | 1.00 |
| $\left[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{NH}_{2}\right]^{-}$ | 0.60 | 0.38 | 0.02 | 0.00 | 0.63 |
| $[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{OH}]^{-}$ | 0.66 | 0.30 | 0.00 | 0.04 | 0.45 |
| $[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{F}]^{-}$ | 0.72 | 0.25 | 0.00 | 0.03 | 0.35 |
| $\left[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{NC}^{-}\right.$ | 0.71 | 0.24 | 0.00 | 0.05 | 0.34 |
| $[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{CCH}]^{-}$ | 0.46 | 0.38 | 0.17 | 0.00 | 0.82 |
| $[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{CN}]^{-}$ | 0.47 | 0.36 | 0.17 | 0.00 | 0.76 |
| $[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{SH}]^{-}$ | 0.51 | 0.34 | 0.15 | 0.00 | 0.67 |
| $[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{Cl}]^{-}$ | 0.62 | 0.26 | 0.12 | 0.00 | 0.41 |
| $[\mathrm{~F} \cdots \mathrm{R} \cdots \mathrm{H}]^{-}$ | 0.25 | 0.72 | 0.00 | 0.03 | 2.89 |
| $[\mathrm{~F} \cdots \mathrm{R} \cdots \mathrm{NH}]^{-}$ | 0.31 | 0.64 | 0.00 | 0.04 | 2.06 |
| $[\mathrm{~F} \cdots \mathrm{R} \cdots \mathrm{OH}]^{-}$ | 0.39 | 0.55 | 0.00 | 0.06 | 1.40 |
| $[\mathrm{~F} \cdots \mathrm{R} \cdots \mathrm{F}]^{-}$ | 0.48 | 0.48 | 0.00 | 0.05 | 1.00 |
| $[\mathrm{~F} \cdots \mathrm{R} \cdots \mathrm{CN}]^{-}$ | 0.37 | 0.63 | 0.00 | 0.00 | 1.69 |
| $[\mathrm{~F} \cdots \mathrm{R} \cdots \mathrm{SH}]^{-}$ | 0.37 | 0.61 | 0.02 | 0.00 | 1.65 |
| $[\mathrm{~F} \cdots \mathrm{R} \cdots \mathrm{Cl}]^{-}$ | 0.48 | 0.47 | 0.05 | 0.00 | 0.96 |

to the reactant contribution is related to the exothermicity (or endothermicity) of the reaction. As the reaction becomes more exothermic, the $T S$ comes early and the ratio $b^{2} / a^{2}$ becomes small (see Tables 3.4.4 and 3.4.5).

It is also possible to analyse the $T S$ wavefunction in terms of reactant ion-molecule complex ( $\Psi_{r c}$ ) and product ion-molecule complex $\left(\Psi_{p c}\right)$. If $\Psi_{r c}$ and $\Psi_{p c}$ are written as

$$
\begin{equation*}
\Psi_{r c}=\alpha_{1} \psi_{1}+\alpha_{2} \psi_{3}+\alpha_{3} \psi_{5} \tag{3.4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{\mathrm{pc}}=B_{1} \psi_{2}+\mathrm{B}_{2} \psi_{3}+\mathrm{B}_{3} \psi_{6} \tag{3.4.10}
\end{equation*}
$$

then the TS wavefunction can be approximated as

$$
\begin{equation*}
\Psi_{\mathrm{TS}}=\alpha \Psi_{\mathrm{rc}}+B \Psi_{\mathrm{pc}}+\lambda \psi_{3}+\gamma \psi_{4} \tag{3.4.11}
\end{equation*}
$$

Using the integrated charges $Q_{A}\left(\Psi_{r c}\right)$ and $Q_{A}\left(\Psi_{p c}\right)$, see Table 3.4.6 and following the same arguments, the coefficients can be evaluated. The results obtained at the MP2 level are listed in Table 3.4.7. The results indicate that the reactant ion-molecule complex and the product ion-molecule complex still do not make equal contributions to the $T S$ wavefunction. However, the contribution from configurations other than the reactant ion-molecule complex and the product ion-molecule complex is small. This indicates that upon the formation of the reactant or

Table 3.4.6 Integrated charges on $N$ and $X$ in ion-molecule complexes $\mathrm{N}^{-} \cdot \mathrm{RX}$ at the MP2 level (e).

| $\left[\mathrm{N}^{-} \cdots \mathrm{RX}\right]$ | $-\mathrm{Q}_{\mathrm{N}}$ | $-\mathrm{Q}_{\mathrm{X}}$ |
| :--- | :--- | :--- |
| $\left[\mathrm{H}^{-} \cdots \mathrm{RH}\right]$ | 0.975 | 0.048 |
| $\left[\mathrm{H}^{-} \cdots \mathrm{RNH}_{2}\right]$ | 0.959 | 0.406 |
| $\left[\mathrm{H}^{-} \cdots \mathrm{ROH}\right]$ | 0.946 | 0.548 |
| $\left[\mathrm{H}^{-} \cdots \mathrm{RF}\right]$ | 0.927 | 0.633 |
| $\left[\mathrm{H}^{-} \cdots \mathrm{RNC}\right]$ | 0.924 | 0.718 |
| $\left[\mathrm{H}^{-} \cdots \mathrm{RCCH}\right]$ | 0.948 | 0.395 |
| $\left[\mathrm{H}^{-} \cdots \mathrm{RCN}\right]$ | 0.931 | 0.444 |
| $\left[\mathrm{H}^{-} \cdots \mathrm{RSH}\right]$ | 0.936 | 0.121 |
| $\left[\mathrm{H}^{-} \cdots \mathrm{RCl}\right]$ | 0.911 | 0.339 |
| $\left[\mathrm{H}_{2} \mathrm{~N}^{-} \cdot \mathrm{RH}\right]$ | 0.978 | 0.082 |
| $\left[\mathrm{HO}^{-} \cdots \mathrm{RH}\right]$ | 0.986 | 0.079 |
| $\left[\mathrm{~F}^{-} \cdots \mathrm{RH}\right]$ | 0.991 | 0.061 |
| $\left[\mathrm{CN}^{-} \cdots \mathrm{RH}\right]$ | 0.988 | 0.058 |
| $\left[\mathrm{HCC}^{-} \cdots \mathrm{RH}\right]$ | 0.988 | 0.053 |
| $\left[\mathrm{NC}^{-} \cdots \mathrm{RH}\right]$ | $\left.\mathrm{HS}^{-} \cdots \mathrm{RH}\right]$ | $\left.\mathrm{Cl}^{-} \cdots \mathrm{RH}\right]$ |

Table 3.4.7 Configuration analysis in terms of ion-molecule complexes at the MP2 level.

| $[N \cdots R \cdot \mathrm{X}]^{-}$ | $\alpha^{2}$ | $\beta^{2}$ | $\lambda^{2}$ | $\gamma^{2}$ | $-\frac{\beta^{2}}{\alpha^{2}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $[H \cdots \mathrm{R} \cdot \mathrm{H}]^{-}$ | 0.50 | 0.50 | 0.01 | 0.00 | 1.00 |
| $\left[\mathrm{H} \cdot \mathrm{R} \cdot \cdots \mathrm{NH}_{2}\right]^{-}$ | 0.59 | 0.37 | 0.00 | 0.04 | 0.63 |
| $[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{OH}]^{-}$ | 0.65 | 0.28 | 0.00 | 0.07 | 0.43 |
| $[\mathrm{H} \cdot \mathrm{CR} \cdot \mathrm{F}]^{-}$ | 0.74 | 0.21 | 0.00 | 0.05 | 0.29 |
| $[\mathrm{H} \cdot \mathrm{R} \cdot \cdots \mathrm{NC}]^{-}$ | 0.74 | 0.17 | 0.00 | 0.08 | 0.23 |
| $[\mathrm{H} \cdot \mathrm{R} \cdot \cdots \mathrm{CCH}]^{-}$ | 0.56 | 0.40 | 0.04 | 0.00 | 0.71 |
| $[\mathrm{H} \cdots \mathrm{R} \cdot \mathrm{CN}]^{-}$ | 0.56 | 0.36 | 0.07 | 0.00 | 0.65 |
| $[\mathrm{H} \cdots \mathrm{C} \cdot \mathrm{SH}]^{-}$ | 0.58 | 0.35 | 0.08 | 0.00 | 0.60 |
| $[\mathrm{H} \cdot \mathrm{CR} \cdot \mathrm{Cl}]^{-}$ | 0.73 | 0.22 | 0.05 | 0.00 | 0.30 |

product ion-molecule complex, the electron distribution is shifted such that $R$ becomes more positively charged and $X$ or $N$ is more negatively charged, i.e. the contribution of $\psi_{3}$ to the reactant ion-molecule complex and the product ion-molecule complex is larger and as a result the interactions between $N^{-}$, $R X$ and $X_{:}^{-}, R N$ are enhanced.

The TS wavefunction can also be analyzed in terms of VB configurations. Substitution of eq. 3.4.4 into eq. 3.4.6, yields another set of equations

$$
\left\{\begin{array}{l}
Q_{X}=c_{1}^{2} Q_{X}\left(\psi_{1}\right)+c_{2}^{2} Q_{X}\left(\psi_{2}\right)+c_{3}^{2} Q_{X}\left(\psi_{3}\right)+c_{4}^{2} Q_{X}\left(\psi_{4}\right)  \tag{3.4.12}\\
Q_{N}=c_{1}^{2} Q_{N}\left(\psi_{1}\right)+c_{2}^{2} Q_{N}\left(\psi_{2}\right)+c_{3}^{2} Q_{N}\left(\psi_{3}\right)+c_{4}^{2} Q_{N}\left(\psi_{4}\right) \\
c_{1}^{2}+c_{2}^{2}+c_{3}^{2}+c_{4}^{2}=1
\end{array}\right.
$$

Also by setting $c_{3}^{2}$ or $c_{4}^{2}=0$, it is possible to evaluate $c_{1}^{2}, c_{2}^{2}, c_{4}^{2}$ or $c_{3}^{2}$. In all the cases studied, $Q_{X}$ and $Q_{N}$ are more negative than -0.5 . Hence, $c_{3}^{2}=0$ is not reasonable, and therefore in all the cases $c_{4}^{2}$ is set equal to zero. The results obtained at the MP2 level are shown in Table 3.4.8. From the form of the $T S$ wavefunction eq. 3.4 .4 or eq. 3.4.12, it is apparent that if $\psi_{1}$ and $\psi_{2}$ make the same contribution to the TS, then the charges on $N$ and $X$ in the $T S$ will be approximately equal. Conversely, if the charges are equal, $c_{1}^{2} \approx c_{2}^{2}$. The results in Table 3.4 .8 show that in some cases, $c_{1}^{2}$ and $c_{2}^{2}$ are equal while in some others they are quite close (compare with the difference between $a^{2}, b^{2}$ and $\alpha^{2}, B^{2}$ ) and in still other cases, $c_{1}^{2}$ and $c_{2}^{2}$ are quite different. Thus, the assumpion that the $T S$ occurs in the vicinity of the

Table 3.4.8 Configuration analysis in terms of VB configurations at the MP2 level.

| $[\mathrm{N} \cdots \mathrm{R} \cdots \mathrm{X}]^{-}$ | $c_{1}^{2}$ | $c_{2}^{2}$ | $c_{3}^{2}$ | $c_{4}^{2}$ |
| :--- | :--- | :--- | :--- | :--- |
| $[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{H}]^{-}$ | 0.48 | 0.48 | 0.03 | 0.00 |
| $\left[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{NH}_{2}\right]^{-}$ | 0.40 | 0.40 | 0.20 | 0.00 |
| $[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{OH}]^{-}$ | 0.36 | 0.36 | 0.28 | 0.00 |
| $[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{F}]^{-}$ | 0.32 | 0.30 | 0.38 | 0.00 |
| $\left[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{NC}^{-}\right.$ | 0.29 | 0.30 | 0.40 | 0.00 |
| $\left[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{CCH}^{-}\right.$ | 0.35 | 0.40 | 0.25 | 0.00 |
| $\left[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{CN}^{-}\right.$ | 0.32 | 0.38 | 0.30 | 0.00 |
| $[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{SH}]^{-}$ | 0.51 | 0.36 | 0.12 | 0.00 |
| $[\mathrm{H} \cdots \mathrm{R} \cdots \mathrm{Cl}]^{-}$ | 0.49 | 0.28 | 0.24 | 0.00 |
| $[\mathrm{~F} \cdots \mathrm{R} \cdots \mathrm{H}]^{-}$ | 0.30 | 0.32 | 0.38 | 0.00 |
| $\left[\mathrm{~F} \cdots \mathrm{R} \cdots \mathrm{NH}_{2}\right]^{-}$ | 0.25 | 0.30 | 0.45 | 0.00 |
| $[\mathrm{~F} \cdots \mathrm{R} \cdots \mathrm{OH}]^{-}$ | 0.25 | 0.28 | 0.47 | 0.00 |
| $[\mathrm{~F} \cdots \mathrm{R} \cdots \mathrm{F}]^{-}$ | 0.24 | 0.24 | 0.52 | 0.00 |
| $[\mathrm{~F} \cdots \mathrm{R} \cdots \mathrm{CN}]^{-}$ | 0.25 | 0.25 | 0.49 | 0.00 |
| $[\mathrm{~F} \cdots \mathrm{R} \cdots \mathrm{SH}]^{-}$ | 0.37 | 0.24 | 0.38 | 0.00 |
| $[\mathrm{~F} \cdots \mathrm{R} \cdots \mathrm{Cl}]^{-}$ | 0.38 | 0.19 | 0.44 | 0.00 |

intersection point of the two $V B$ configurations $\psi_{1}$ and $\psi_{2}$ is better than the assumption that the IS occurs in the vicinity of the intersection point of the reactant and product configurations, or of the intersection point of the configurations corresponding to the reactant ion-molecule complex and product ion-molecule complex.

In most cases $\psi_{3}$ makes a large contribution to the $T S$ and is responsible for the large negative charges on $N$ and $X$. As mentioned previously, the charges on $N$ and $X$ differ from system to system. What are the factors responsible for the difference? In the ground state, electronegativity plays a leading role in affecting the charge on $X$. At the $T S$, the electronegativity is responsible for the charge difference on $N$ and $X$. Thus, all things being equal, the more electronegative $N$ or $X$, the greater the negative charge on $N$ or $X$. For example, the reactions $N=X=O H$ and $N=X=F$ are thermoneutral reactions and $\psi_{4}$ makes similar contributions to the $T S\left(d^{2}=0.08\right.$ and 0.07 , respectively at the MP2' level). The charge aifference between $O H$ and $F$ is a result of the electronegativity difference. The more electronegative atom $F$ has more negative charge $(0.764$ compared with 0.708 on OH , see Table 3.4.2). However, the $T S$ has contributions not only from reactant and product configurations but also from the $V B$ configurations $\psi_{3}$ and $\psi_{4}$. The contributions from the latter will certainly affect the charge on $N$ and X. Therefore, all things being equal, the larger contribution of $\psi_{3}$ to the TS will resuit in a large charge on $N$ and $X$. For example, $H$ and $S H$ have similar electronegativities. For symmetric reactions $N=X=H$ and $N=X=S H, \Delta E_{t}^{\circ}$ is zero. Since the latter has a larger $\psi_{3}$ contribution to the $\operatorname{TS}\left(c^{2}=0.24\right.$ at the $\mathbb{M P 2}^{\prime}$ level), there are larger charges on the

SH groups at the $T S, Q_{N}=Q_{X}=0.618$, whereas, for the former, $c^{2}=$ $0.10, Q_{N}=Q_{X}=0.520$. Finally, the charges on $N$ and $X$ are related to the position of the $T S$ along the reaction coordinate. At the $T S$, regardless of the difference in electronegativity between $N$ and $X$, the charges on N and X can still be equal. This is explained by the fact that the position of the $T S$ is not in the middle (i.e. $\Delta E_{t}^{0} \neq 0$ ). For example, the reaction with $\mathrm{N}=\mathrm{H}$ and $\mathrm{X}=\mathrm{OH}$ is exothermic and the TS comes early. Thus, fewer electrons are shifted away from $H$ and also fewer electrons are transferred to OH . Therefore, even though H has a smaller electronegativity than OH , it bears negative charge comparable to that of OH . The three factors discussed above are illustrated by Fig. 3.4.1-3.4.4. Fig. 3.4.1 shows the charge development $\Delta Q_{N}=\left|Q_{N}-Q_{N}\left(\Psi_{p}\right)\right|$, $N=H$, as a function of the reaction energy $\Delta E_{t}^{0}$. As $\Delta E_{t}^{0}$ becomes more negative, the TS resembles the reactant more, and there is greater charge transfer from the TS to the product. Fig. 3.4.2 shows the charge development on $X$ in the same reactions, $\Delta Q_{X}=1 Q_{X}-Q_{X}\left(\psi_{r}\right) \mid$. Since the electronegativities of $X$ are not equal, the $c^{2}$ values are not the same and the charge development is not related to $\Delta E_{t}^{\circ}$ by a simple linear relationship. Rather, it appears that these $X$ fall within three groups according to their electronegativities. Within each group the charge development is related to $\Delta E_{t}^{0}$. Negative $\Delta E_{t}^{\circ}$ is associated with an early TS and the transition structure resembles the reactants. Hence small charge development on X is observed in going from reactant to the TS and $\Delta Q_{X}$ is small. Fig. 3.4.3 and 3.4.4 show the corresponding plots for reactions with $N=F$. They exhibit the same pattern, although Fig. 3.4.3 shows a better correlation than that of Fig. 3.4.1. This is explained by


Figure 3.4.1 Charge development on $H$ as a function of $\Delta E_{t}^{\circ}$ for the reactions $\mathrm{H}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{4}+\mathrm{X}^{-}$(MP2 results).


Figure 3.4.2 Charge development on $X$ as a function of $\Delta E_{t}^{0}$ for the reactions $\mathrm{H}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{4}+\mathrm{X}^{-}$.
a) $X=H, S H(0)$;
b) $\mathrm{X}=\mathrm{CCH}, \underline{\mathrm{CN}}$ and $\mathrm{Cl}(\Delta)$;
c) $X=\mathrm{NH}_{2}, \mathrm{OH}, \mathrm{F}$ and NC (a).


Figure 3.4.3 Charge development on $F$ as a function of $\Delta E_{t}^{\circ}$ for the

$$
\text { reactions } \mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{3} \mathrm{~F}+\mathrm{X}^{-} \text {. }
$$



Figure 3.4.4 Charge development on $X$ as a function of $\Delta E_{t}^{\circ}$ for the reactions $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{3} \mathrm{~F}+\mathrm{X}^{-}$.
a) $\mathrm{X}=\mathrm{H}$ and SH (ㅁ);
b) $\mathrm{X}=\mathrm{CN}$ and $\mathrm{Cl}(\mathrm{A})$;
c) $X=\mathrm{NH}_{2}$, OH and $\mathrm{F}(0)$.
the fact that for reactions with $N=F$, the contributions from $\psi_{3}$ and $\psi_{4}$ are all relatively small.

In summary for $S_{N} 2$ reactions the assumption that the $T S$ occurs in the vicinity of the two VB configurations, $\psi_{1}$ and $\psi_{2}$, generally holds at the MP2 level. A shift of the transition state away from the equal contribution point is caused by the exothermicity of the reaction and more importantly by the different bonding character in $C-N$ and $C-X$ bonds. The charge development on $X$ or $N$ in the $T S$ is related to the electronegativity of $X$ or $N$, the electronic structure of the $T S$ and the exothermicity of the reaction. For those $X$ or $N$ which have similar electronegativities and TS electronic structures, the charge transfer is related to the exothermicity of the reaction.

### 3.5 Mulliken Population Analysis and the Charge Integration Method

As discussed previously, the charge distribution in the transition state has great significance for understanding the reaction process and for conceptualizing the transition state. The distribution of charge in molecular systems is also important for molecular structure and reactivity. The description of the charge distribution is undoubtedly a primary goal of any electronic structure theory. One of the most widely used charge distribution analysis methods is Mulliken's population analysis method (MPA). Unfortunately, it is also the most widely criticized method. ${ }^{49}$ Mulliken populations can have unphysical negative values and the method is unduly sensitive to the basis set. Furthermore, even with the same electron distribution the result is not unique since it varies with the unitary transformation. The molecular structure
theory proposed by Bader and co-workers gives a unique definition of an atom in the molecule and a unique charge partitioning scheme. ${ }^{1}$ In this section, the charges obtained by both methods are compared and the difference is explained. The systems reported in this section not only include the $\mathrm{S}_{\mathrm{N}} 2$ reactions reported in this chapter, but also contain some binary fluoride molecults. For the latter, [5s4p]* and [6s5p]* contracted basis sets were used respectively for first-row and second-row atoms. ${ }^{50}$ The calculations were done at the experimental geometries 51 in order to economize on computer time.

The charges on F in $\mathrm{AF}_{\mathrm{n}}$ and X in $\mathrm{CH}_{3} \mathrm{X}$ obtained by APA and integration of the electron density over atomic basins are plotted against each other in Fig. 3.5.1. The atoms in molecules (AIM) method usually yields a more negative charge than the MPA method. The charges on the entering nucleophile $\left(Q_{N}\right)$ and on the leaving group $\left(Q_{X}\right)$ in the $T S$ are compared in Fig. 3.5.2. Once again, the AIM method usually results in larger net charges.

Proinov et al. ${ }^{52}$ proposed a definition of the MO-LCAO effective atomic charge, based on the concept of the topological atom. Using this definition, the MPA and AIM methods can be compared directly.

Proinov et al. have shown that the LCAO representation of the atomic electron occupancy, defined via the electron occupancy of the corresponding topological atom in the molecule, is

$$
\begin{equation*}
N(A)=\sum_{a \in A} \tilde{q}(A a) \int_{A} \varphi_{A a}^{2}(r) d r \tag{3.5.1}
\end{equation*}
$$

where the orbital occupancies of the topological atom are


Figure 3.5.1 Comparison of charges on F in $\mathrm{AF}_{\mathrm{n}}$ and X in $\mathrm{CH}_{3} \mathrm{X}$ as obtained by the MPA and AIM methods.


Figure 3.5.2 Charges on $N$ and $X$ in the TS as oitained by the MPA and AIM methods.

In eq. 3.5.2 $\mathrm{P}\left(\frac{\mathrm{Aa}}{\mathrm{Aa}}\right)$ are elements of the density matrix and $\mathrm{S}_{\mathrm{Aa}}, \mathrm{Bb}$ are elements of the overlap matrix. Atoms are labelled as $\mathrm{A}, \mathrm{B}, \ldots$ and $\mathrm{AO}^{\prime} \mathrm{s}$ are labelled as $a, b, \ldots$ The equation

$$
\begin{equation*}
N(A)=\sum_{a \in A} q(A a) \tag{3.5.3}
\end{equation*}
$$

where

$$
\begin{equation*}
q(\mathrm{Aa})=\mathrm{P}\left(\frac{\mathrm{Aa}}{\mathrm{Aa}}\right)+\sum_{\substack{\mathrm{B}, \mathrm{~b} \\ \mathrm{~B} \neq \mathrm{A}}}^{\mathrm{S}_{\mathrm{Aa}}, \mathrm{Bb}} \mathrm{P}^{\left(\frac{\mathrm{Bb}}{\mathrm{Aa}}\right)} \tag{3.5.4}
\end{equation*}
$$

contains the expression for the Mulliken gross atomic population as a special case. By comparison of eq. 3.5 .1 with 3.5 .3 , it follows that the Mulliken population analysis emerges as an approximation to the electron occupancy of the topological atom. The topological occupancies $\tilde{q}(A a)$ are quadratic functions of the overlap integrals, whereas Mulliken orbital occupancies are linear functions of the overlap integrals. As noted by Proinov et al., ${ }^{52}$ the linear two-center contribution to $\tilde{q}(A a)$ is twice as large as the corresponding contribution to $q(A a)$. In contrast to the equal, but arbitary, sharing of the two-center overlap term in MPA, an appropriate sharing of the LCAO charge density is achieved by means of the topological weight factors appearing in eq. 3.5.1

$$
\begin{equation*}
\int_{A} \varphi_{\mathrm{Aa}}^{2}(r) \mathrm{d}(r)=F_{\mathrm{Aa}}<1 \tag{3.5.5}
\end{equation*}
$$

The weight factor $F_{A a}$ is directly related to the topological definition of an atom. For two atoms at infinite separation, the interatonic surface is at infinity. Hence, the integration (eq. 3.5.5) is carried out to infinity. Thus, $F_{A a}=1$ for any orbital $\varphi_{A a}$ and there is ro sharing of electrons between the two atoms. In the case of two directly bonded atoms, the interatomic surface passes through the bond critical point and it is apparent that the size of an atom is related to the position of the bond critical point. Furthermore, the distance between an atom and its bond critical point is related to the relative electronegativity of the two directly bonded atoms. ${ }^{53}$ The more electronegative the atom the greater the critical radius, (see Table 3.5.1.) Furthermore, the more electronegative atom has a more contracted density distribution. The result is that the more electronegative atom has a larger weight factor and the two-center MO-LCAO electron density is not equally shared by the bonded atoms but rather the more electronegative one has the larger share. In the Mulliken population analysis, the weight factor does not exist and the two-center MO-LCAO electron density is assumed to be equally shared between the two atoms. As a result, the less electronegative atom is assigned more electrons than it should be, while, the more electronegative atom is assigned fewer electrons than it should be. Therefore, the MPA method usually yields smaller net charges than the integration method.

Proinvo et al. have pointed out that, in general, $\tilde{q}(A a)>q(A a)$ for any orbital $\varphi_{A a}$. However, in the final result for the effective atomic charge (eq. 3.5.1), this inequality is compensated for by the reducing effect of the weight factor. The present calculations indicate that this

Table 3.5.1 Critical radii of binary fluorides (a. u.).

| $\mathrm{AF}_{\mathrm{n}}$ | $\mathrm{r}_{\mathrm{c}-\mathrm{A}}^{\mathrm{a}}$ | $\mathrm{r}_{\mathrm{C}-\mathrm{F}}^{\mathrm{b}}$ |
| :--- | :--- | :--- |
| $\mathrm{LiF}_{2}$ | 1.138 | 1.817 |
| $\mathrm{BeF}_{2}$ | 0.962 | 1.739 |
| $\mathrm{BF}_{3}$ | 0.826 | 1.643 |
| $\mathrm{CF}_{4}$ | 0.799 | 1.695 |
| $\mathrm{NF}_{3}$ | 1.122 | 1.457 |
| $\mathrm{OF}_{2}$ | 1.272 | 1.384 |
| $\mathrm{NaF}_{3}$ | 1.682 | 1.957 |
| $\mathrm{MgF}_{2}$ | 1.492 | 1.853 |
| $\mathrm{AlF}_{3}$ | 1.330 | 1.751 |
| $\mathrm{SiF}_{4}$ | 1.221 | 1.715 |
| $\mathrm{PF}_{3}$ | 1.175 | 1.775 |
| $\mathrm{SF}_{2}$ | 1.160 | 1.849 |
| $\mathrm{ClF}^{2}$ | 1.259 | 1.818 |

Table 3.5.1 (continued)

|  | AF | $r_{C-A}($ a. u. ) | $r_{c-F}(\mathrm{a} . \mathrm{u}$. |
| :---: | :---: | :---: | :---: |
|  | BeF | 0.920 | 1.652 |
|  | BF | 0.808 | 1.578 |
|  | CF | 0.762 | 1.641 |
|  | NF | 0.979 | 1.510 |
|  | OF | 1. 162 | 1.344 |
|  | MgF | 1.479 | 1.828 |
|  | AlF | 1.348 | 1.778 |
|  | SiF | 1.255 | 1.771 |
|  | PF | 1.196 | 1.809 |
|  | SF | 1.167 | 1.858 |
| ${ }^{\text {a }}$ Distance between atom A and AF bond critical point. |  |  |  |
| b Distance be | betw | d AF bond | $n t$. |

compensation factor is not big enough to make the results obtained by the two methods comparable. In some cases there is a fortuitous cancellation of errors. It is well documented that the HF method overestimates the importance of ionic character, ${ }^{54}$ whereas, the MPA method underestimates the ionic character. The results obtained at the HF MPA level are compared with the results obtained by the MP2 AIM method in Fig. 3.5.3 and by the HF AIM in Fig. 3.5.4. The agreement with the MP2 AIM is better than with the HF AIM. Nevertheless, it is difficult to find a general relationship between the MPA and AIM results except the qualitative statement that MPA underestimates the ionic character and usually yields smaller net charges.

### 3.6 Comparison of Computational Methods

There have been substantial studies of ground state systems and much information is available in the literature. For the study of transition states greater computer time is usually involved and in order to make the study affordable, quite often, the electron correlation calculations are carried out at the geometries optimized at a lower level. In this section, we will report the effect of geometry optimization on calculated energies and charge distributions.

The ground state bond lengths $\mathrm{C}-\mathrm{X}\left(\operatorname{in} \mathrm{CH}_{3} \mathrm{X}\right)$ optimized by the RHF and MP2 methods are shown in Table 3.6.1 together with experimental bond lengths. ${ }^{51 b}$ As usual, the MP2 calculations show a better agreement with the experimental results. The difference between the RHF and MP2, however, is quite small (Fig. 3.6.1)

The calculated dipole moments for the ground states are shown in


Figure 3.5.3 Comparison of Mulliken Population Analysis charges obtained at the HF level with the integration results obtained at the MP2 level.


Figure 3.5.4 Comparison of the charges obtained by the MPA and AIM methods.

Table 3.6.1 $\mathrm{C}-\mathrm{X}$ bond length in $\mathrm{CH}_{3} \mathrm{X}(\AA)$.

| $\mathrm{CH}_{3} \mathrm{X}$ | $R_{c-x}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | RHF | MP2 | EXPT |
| $\mathrm{CH}_{3} \mathrm{H}$ | 1.084 | 1.091 | 1.094 |
| $\mathrm{CH}_{3} \mathrm{NH}_{2}$ | 1. 452 | 1.464 | 1.471 |
| $\mathrm{CH}_{3} \mathrm{OH}$ | 1.401 | 1.429 | 1.425 |
| $\mathrm{CH}_{3} \mathrm{~F}$ | 1.371 | 1.406 | 1.382 |
| $\mathrm{CH}_{3} \mathrm{NC}$ | 1.423 | 1.425 | 1.424 |
| $\mathrm{CH}_{3} \mathrm{CCH}$ | 1.469 | 1.462 | 1.458 |
| $\mathrm{CH}_{3} \mathrm{CN}$ | 1.469 | 1.462 | 1.458 |
| $\mathrm{CH}_{3} \mathrm{SH}$ | 1.818 | 1.815 | 1.814 |
| $\mathrm{CH}_{3} \mathrm{Cl}$ | 1.786 | 1.779 | 1.785 |



Figure 3.6.1 Comparison of the $\mathrm{R}_{\mathrm{c}-\mathrm{x}}$ bond length in $\mathrm{CH}_{3} \mathrm{X}$ as calculated by the HF and MP2 methods.

Table 3.3.5. The RHF method results in dipole moments which are about $10 \%$ larger than the experimental values. The MP2' and MPZ results are very similar.

The integrated charges on $X$ in the ground states are provided in Table 3.4.1 and here again, a larger difference between the RHF and MP2 results than between the $M P 2^{\prime}$ and $M P 2$ results is observed. The RHF mathod yields a larger negative charge on $X$. This is consistent with the tendency of the $H F$ method to overestimate the importance of ionic character.

The TS bond lengths, $R_{C-N}$ and $R_{C-X}$, obtained at the RHF and MP2 levels are compared in Fig. 3.6.2 (see also Table 3.3.6). Compared to the ground states, larger differences in bond lengths are observed. The RHF method usually gives a longer bond length. Table 3.3.7 provides the critical point values calculated at the RHF, MP2' and MP2 levels. The RHF method gives the smallest electron density at the bond critical point and the longest critical radius. The MP2' yields a electron density larger than that of RHF and smaller than that of MP2. Similarly, the MP2' critical radius is generally longer than that of MP2 and shorter than that of RHF.

The integrated charges on $N$ and $X$ in the $T S$ are compared in Fig. 3.6.3-3.6.5. The charges obtained at the RHF level are always the most negative ones (Fig. 3.6.3-3.6.4). The MP2' method lowers the charge on $N$ and $X$ similarly, Fig. 3.6.4. The MP2 method lowers the charge on $N$ and $X$ unequally. Depending on the electronegativity of $N$ and $X$, MP2 lowers the charge on the more electronegative group to a larger extent than on the less electronegative group (Fig. 3.6.3 and Fig. 3.6.5).


Figure 3.6.2 Comparison of the $T S$ bond lengths $R_{C^{\prime}-N}$ and $R_{C-X}$ obtained at the HF and MP2 levels.


Figure 3.6.3 Comparison of integrated charges at the HF and MP2 levels.
$\square$ is the more electronegative group betweem $N$ and $X$,
0 indicates the less electronegative group.


Figure 3.6.4 Comparison of integrated charges obtained at the HF and MP2' levels. a indicates the more electronegative group between N and $\mathrm{X}, \mathrm{O}$ indicates the less electronegative group.


Figure 3.6.5 Integrated charges on $N$ and $X$ obtained at the MP2' and MP2 levels. $\square$ indicates more electronegative group, 0 indicates the less electronegative group.

The configuration analysis results obtained at the RHF level (Table 3.4.3) have a large contribution from $\psi_{3}$ ( $c^{2}$ is large). The contributions from $\psi_{3}$ and $\psi_{4}$ calculated at the MP2' and MP2 levels are usually small (Tables 3.4.4-3.4.5) and show the same trend. The large contribution of $\psi_{3}$ at the $R H F$ level is a result of overestimating the importance of ionic character.

Various energies defined in eq. 3.3.2-3.3.7 are compared in Fig. 3.6.6-3.6.13. Fig. 3.6.6-3.6.9 compare the energies calculated at the RHF and MP2 levels. Fig. 3.6.10-3.6.13 compare the energies calculated at the MP2' and MP2 level. The RHF energy barriers $\Delta E_{c}^{b}$ and $\Delta E^{b}$ are usually larger than the MP2 results, while the $R H F \Delta E_{c}^{\circ}$ and $\Delta E_{t}^{\circ}$ are less exothermic than the MP2 values. The energies calculated at the MP2' and MP2 levels correlate well (Fig. 3.6.10-3.6.13).

In summary, geonetries optimized by the RHF and MP2 methods are closer to each other in the ground state than in the transition state. This is understandable in light of the fact that the single determinant wave function gives a good description of the equilibrium geometry. Since the difference between the MP2' and MP2 ground state results is mainly caused by the difference in the geometry, the MP2' and MP2 calculations yield similar results (see dipole moments in Table 3.3.5 and integrated charges on $X$ in Table 3.4.1). However, in the $T S$ the MP' results are not close to the $M P 2$ results (see charges on $X$ and $N$ in Table 3.4.2 and critical point values in Table 3.3.7). Nevertheless, for properties which involve more than one state, for example energy differences and configuration analysis, the MP2' results are comparable with the MP2 results despite the significant differences in geometries.


Figure 3.6.6 Comparison of $\Delta E_{c}^{b}$ obtained at the $H F$ and MP2 levels.


Figure 3.6.7 Comparison of $\Delta E_{c}^{\circ}$ obtained at the $H F$ and MP2 levels.


Figure 3.6.8 Comparison of $\Delta E^{\mathrm{b}}$ obtained at the $H \Gamma$ and MP2 levels.


Figure 3.6.9 Comparison of $\Delta E_{t}^{0}$ obtained at the $H F$ and $M P 2$ levels.


Figare 3.6.10 Comparison of $\Delta E_{c}^{b}$ obtained at the MP2' and MP2 levels.


Figure 3.6.11 Comparison of $\Delta E_{c}^{\circ}$ obtained at the MP2' and MP2 levels.


Figure 3.6.12 Comparison of $\Delta E^{b}$ obtained by the MP2' and MP2 methods.


Figure 3.6.13 Comparison of $\Delta E_{t}^{\prime}$ calculated at the MP2' and MP2 levels.

## Chapter 4

## Intrinsic Barriers of Model $S_{N} \mathbf{N}$ Reactions

### 4.1 Overview

The concept of an intrinsic barrier was introduced by Marcus when he developed a theory for electron-transfer reactions. 55 He proposed an equation (see eq. 4.1.1), in which the free energy of activation is

$$
\begin{equation*}
\Delta G^{\neq}=\Delta G_{0}^{\neq}+0.5 \Delta G^{0}+\frac{\left(\Delta G^{0}\right)^{2}}{16 \Delta G^{\neq}} \tag{4.1.1}
\end{equation*}
$$

related not only to the free energy of a reaction $\left(\Delta G^{\circ}\right)$ but a.lso to $\Delta G^{\neq}$. Marcus interpreted the new term $\Delta G^{\neq}$as the reorganization energy, i.e., the energy changes necessary to reach the $T S$ by bond lengthening, compression and/or torsion, bond angle changes and reorganization of solvent molecules. According to eq. 4.1.1, $\Delta G^{\neq}$equals $\Delta G^{\neq}$when $\Delta G^{\circ}$ is zero. That is, $\Delta \mathrm{G}^{\boldsymbol{7}}$ is the activation barrier that would exist in the absence of any thermodynamic driving force. Therefore, it is called the intrinsic barrier and may be thought of as the purely kinetic contribution tc the reaction barrier.

The concept of an intrinsic barrier provides a way of thinking and valuable insight into the reaction process. For example, the anomalous values of the Brönsted coefficient ( $\alpha>1$ ) can be explained by the large variation of the intrinsic barriers within a series of reactions. ${ }^{55 c}$ Also the breakdown of the rate-equilibrium relationship and the reactivity-selectivity principle can be explained in terms of the
variation of the intrinsic barriers. ${ }^{31 d}$
The Marcus equation has been successfully used in a wide range of reactions. In the application of the Marcus equation to the deprotonation of carbon acids, Bunting and Stefanidis 56 found that the $\Delta \mathrm{G}^{\boldsymbol{*}}$ calculated from eq. 4.1.1 vary systematically with the energies of reactions. Since $\Delta G^{\neq}$is linear in $\Delta G^{\circ}$ within each series of ketones, they suggested a two-parameter modification of the simple Marcus relationship, in which $\Delta \mathrm{G}^{\neq}$is replaced by eq. 4.1.2

$$
\begin{equation*}
\Delta \mathrm{G}^{\neq}=\mathrm{A}+\mathrm{B} \Delta \mathrm{G}^{\circ} \tag{4.1.2}
\end{equation*}
$$

In this expression, $A$ is interpreted as the "true" intrinsic barrier at $\Delta G^{\circ}=0$ and the parameter $B$ is the main reflection of imbalances between those factors (resonance, solvation, etc.). And they indicate that $B$ values should be the largest in those systems in which Bernasconi's principle of nonperfect synchronization is most important. $56 a$

The Marcus relationship has been used also in the study of methyl transfer $\left(S_{N} 2\right)$ reactions. ${ }^{57}$ The $S_{N} 2$ reaction is one of the most widely studied families of reactions in chemistry. Investigations of $\mathrm{S}_{\mathrm{N}} 2$ reactions have played an important role in the development of fundamental ideas in physical organic chemistry, such as structure-reactivity relationships, linear free energy relationships, steric inhibition, kinetics as a probe of mechanism, stereochemistry as a probe of mechanism, and solvent effects. Nevertheless, there are still some fundamental problems with the $S_{N} 2$ reactions. In fact, it is still not possible to predict the reactions in simple terms. ${ }^{46,58}$ Attempts
have been made to correlate the intrinsic barriers with thermodynamic properties. $44,58 \mathrm{a}, 59$

In this chapter, results obtained at the MP2' computational level (unless otherwise indicated) are used to study the intrinsic barriers and reactivities of the following reactions

$$
\mathrm{N}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{3} \mathrm{~N}+\mathrm{X}^{-}
$$

where $\mathrm{N}=\mathrm{H}, \mathrm{X}=\mathrm{H}, \mathrm{NH}_{2}, \mathrm{OH}, \mathrm{OOH}, \mathrm{F}, \mathrm{NC}, \mathrm{CCH}, \mathrm{CN}, \mathrm{PH}_{2}, \mathrm{SH}$ and $\mathrm{Cl} ; \mathrm{N}=\mathrm{F}$,
 details are given in section 3.2. The justification of using the MP2' results is discussed in section 3.6. The intention is to provide a molecular understanding of the factors that determine the height of the intrinsic barrier. Furthermore, the rate-equilibrium relationship and the parameter $\alpha$ are discussed.


#### Abstract

4.2 Intrinsic Barriers of Model $\mathrm{S}_{\mathrm{N}} 2$ Reactions

Strictly speaking, the Marcus equation is only valid for an elementary reaction. Gas phase $S_{N} 2$ reactions involve three elementary steps. The second step which involves the conversion of the reactant ion-molecule complex to the product ion-molecule complex is the main step which affects the efficiency of the reaction. Thus, the Marcus equation is used to analyse this elementary step. The potential energy form of the Marcus equation 4.1 .1 is ${ }^{55 a}$


$$
\begin{equation*}
\Delta E^{\neq}=\Delta E_{\circ}^{\neq}+0.5 \Delta E^{\circ}+\frac{\left(\Delta E^{\circ}\right)^{2}}{16 \Delta E_{\circ}^{\neq}} \tag{4.2.1}
\end{equation*}
$$

According to eq. 3.3.4 and 3.3.5, $\Delta E_{c}^{b}$ is equivalent to $\Delta E^{\neq}$(energy barrier) and $\Delta E_{c}^{\circ}$ is equivalent to $\Delta E^{\circ}$ (energy change of the reaction). $\Delta E^{\neq}$is called an intrinsic barrier as well.

The concept of an intrinsic barrier provides a better understanding of reaction processes. If the intrinsic barriers are equal for a series of reactions, then the different reactivities are a direct result of different thermodynamic driving forces. Ir this case, the $\mathrm{Brönsted}$ equation is equivalent to the Marcus equation. However, if the intrinsic barriers are not equal, the reactivities can not be explained merely by the thermodynamic properties. The reason why the linear relationship only exists for a series of reactions is explained by the intrinsic barrier. The intrinsic barrier for a symmetric reaction can be understood intuitively. For asymmetric reactions, however, it is not obvious. Nevertheless, by making some approximations, the meaning of the intrinsic barrier can be revealed. If the activation energy for the forward reaction is denoted as $\Delta \mathrm{E}_{f}^{\neq}$and that for the reverse reaction is denoted as $\Delta \mathrm{E}_{r}^{\neq}$, then by omitting the quadratic term (which is usually small ${ }^{60}$ ) in eq. 4.2.1, we have

$$
\begin{equation*}
\Delta E_{f}^{\neq}+\Delta E_{r}^{\neq}=2 \Delta E_{0}^{\neq}+\frac{\left(\Delta E^{\circ}\right)^{2}}{8 \Delta E_{\circ}^{\neq}} \approx 2 \Delta E_{\circ}^{\neq} \tag{4.2.2}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\Delta \mathrm{E}_{0}^{\neq}=0.5\left(\Delta \mathrm{E}_{f}^{\neq}+\Delta \mathrm{E}_{r}^{\neq}\right) \tag{4.2.3}
\end{equation*}
$$

That is, the intrinsic barrrier of an asymmetric reaction is the average
activation energy of the forward and reverse reactions.
For asymmetric reactions, $\Delta E_{\circ}^{\neq}$values can be calculated from eq. 4.2.1 or eq. 4.2.4

$$
\begin{equation*}
\Delta E_{(x y)}^{\neq}=0.5\left(\Delta E_{(x x)}^{\neq}+\Delta E_{(y y)}^{\neq}\right) \tag{4.2.4}
\end{equation*}
$$

where $\Delta E^{\neq 0}(x x)$ and $\Delta E^{\neq}(y y)$ are intrinsic barriers to symmetric reactions $X^{-}+R X \rightarrow X^{-}+R X$ and $Y^{-}+R Y \rightarrow Y^{-}+R Y$, respectively. Table 4.2.1 provides values of $\Delta E^{\neq}$calculated by means of eq 4.2.1 together with $\Delta E^{\circ}$ and $\Delta E^{\circ}$ values. Clearly, the $\Delta E_{0}^{\neq}$values differ from reaction to reaction. Plots of $\Delta E_{o}^{\neq}$ versus $\Delta E^{\circ}$ are shown in Fig. 4.2.1 and 4.2.2 for reactions with the same nucleophile $N=H$ and $N=F$, respectively. It appears that in these plots, the reactions manifest themselves into groups. Within each group, $\Delta E^{\circ} \stackrel{\circ}{\circ}$ is a function of $\Delta E^{\circ}$. Using the Bunting and Stefanidis two-parameter relationship (eq. 4.1.2) to analyse the data, when $N=H$, the first group with $X=C C H, \quad C N$ and $N C$ has an $A=269.57(\mathrm{~kJ} / \mathrm{mol})$ and $B=0.27$. The second group, $X=P H_{2}, S H$ and $C l$, has an $A=249.86$ and $B=0.30$. The third group, $X=\mathrm{NH}_{2}, \mathrm{OH}, \mathrm{OOH}$ and $F$, has an $\mathrm{A}=225.35$ and $\mathrm{B}=0.36$. Whereas when $N=F$, the group $X=C C H, \underline{C N}$ and $N C$ has an $A=100.08$ and $B$ $=0.18$. The group $X=\mathrm{PH}_{2}, \mathrm{SH}$ and Cl has an $\mathrm{A}=84.96$ and $\mathrm{B}=0.23$. The Group $X=\mathrm{NH}_{2}, \mathrm{OH}$ and F has an $\mathrm{A}=53.69$ and $\mathrm{B}=0.25$.

Bunting and Stefanidis interpreted $A$ as the "true" intrinsic barrier. However, the $A$ value for a reaction can be different depending on the reactions with which it is grouped. For example, for reaction $\mathrm{N}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow$ $\mathrm{CH}_{3} \mathrm{~N}+\mathrm{X}^{-}$, the A value can be obtained by grouping the reactions which have the same $N$ but different $X$ or by grouping the reactions which have

Table 4.2.1 Intrinsic barriers at the MP2' level ( $\mathrm{kJ} / \mathrm{mol}$ ).

| $\mathrm{N}^{-}+\mathrm{RX}$ | $\Delta \mathrm{E}^{*}$ | $\Delta E^{*}$ | $\Delta E^{\circ}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{H}^{-}+\mathrm{RCCH}$ | 231. 56 | 172.35 | -127.13 |
| $\mathrm{H}^{-}+\mathrm{RCN}$ | 218.34 | 127.25 | -206.61 |
| $\mathrm{H}^{-}+\mathrm{RNC}$ | 182.45 | 60.83 | -308.41 |
| $\mathrm{H}^{-}+\mathrm{RPH}_{2}$ | 190.20 | 108.07 | -187.31 |
| $\mathrm{H}^{-}+\mathrm{RSH}$ | 173.73 | 56.50 | -275.74 |
| $\mathrm{H}^{-}+\mathrm{RCl}$ | 135.97 | 15.35 | -364.49 |
| $\mathrm{H}^{-}+\mathrm{RNH}_{2}$ | 191.90 | 150.45 | -87.92 |
| $\mathrm{H}^{-}+\mathrm{ROH}$ | 163.51 | 87.14 | -176.57 |
| $\mathrm{H}^{-}+\mathrm{ROOH}$ | 152.95 | 68.03 | -203.77 |
| $\mathrm{H}^{-}+\mathrm{RF}$ | 129.72 | 32.93 | -257.47 |
| $\mathrm{F}^{-}+\mathrm{RCCH}$ | 122.55 | 200.79 | 137.26 |
| $\mathrm{F}^{-}+\mathrm{RCN}$ | 117.52 | 153.94 | 67.92 |
| $\mathrm{F}^{-}+\mathrm{RNC}$ | 92.00 | 76.26 | -32.97 |
| $\mathrm{F}^{-}+\mathrm{RPH}_{2}$ | 103.12 | 147.14 | 80.23 |
| $\mathrm{F}^{-}+\mathrm{RSH}$ | 83.60 | 79.79 | -7.70 |
| $\mathrm{F}^{-}+\mathrm{RCl}$ | 63.31 | 25.13 | -93.71 |
| $\mathrm{F}^{-}+\mathrm{RNH}_{2}$ | 92.70 | 188.95 | 158.58 |
| $\mathrm{F}^{-}+\mathrm{ROH}$ | 74.18 | 115.85 | 74.09 |



Figure 4.2.1 A plot of $\Delta E_{\circ}^{\neq}$versus $\Delta E^{\circ}$ for reactions $H^{-}+\mathrm{CH}_{3} X \rightarrow \mathrm{CH}_{4}+\mathrm{X}^{-}$. Data set ( 0 ), $X=C C H, \underline{C N}$ and NC ; data set ( $\square$ ), $\mathrm{X}=\mathrm{PH}_{2}$, SH and Cl ; and data set ( $\Delta$ ), $\mathrm{X}=\mathrm{NH}_{2}, \mathrm{OH}, \mathrm{OOH}$ and F .


Figure 4.2.2 A plot of $\Delta E_{\circ}^{\neq}$versus $\Delta E^{\circ}$ for reactions $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{3} \mathrm{~F}+\mathrm{X}_{2}^{-}$.
Data set ( 0 ), $X=C C H, \underline{C N}$ and NC ;
data set ( $\square$ ), $\mathrm{X}=\mathrm{PH}_{2}, \mathrm{SH}$ and Cl ;
and data set $(\Delta), X=\mathrm{NH}_{2}, \mathrm{OH}$ and F .
the same $X$ but different $N$. If $N$ and $X$ are not the same, the $A$ value is likely to be different as well. Therefore, A and B are really group properties. Nevertheless, if reactions are correlated by the Bunting and Stefanidis equation, the rate-equilibrium relationship is observed. This will be discussed further in the next section. Thus, the Bunting and Stefanidis relationship can be used to distinguish different reaction processes. With the same nucleophile, $X=C C H, \underline{N}$ and $N C$ are related by the Bunting-Stefanidis equation and they are said to belong to the first group. $\mathrm{X}=\mathrm{PH}_{2}, \mathrm{SH}$ and Cl is the second group, and $\mathrm{X}=\mathrm{NH}_{2}, \mathrm{OH}, \mathrm{OOH}$ and $F$ is the third group. The different behaviour of $\mathrm{CCH}, \mathrm{CN}$ and NC is observed in experiments as well. Brauman et al. explained this difference by hybridized orbitals. ${ }^{44,61}$ The concept of hybridized orbitals provides a simple picture of bonding. If an atom uses its $s p$ hybridized orbital to form a bond, it usually uses the two perpendicular $p$ orbitals to form $\pi$ bonds at the same time. For a $\mathrm{CH}_{3} \mathrm{X}$ molecule in which the $X$ group is $s p$ hybridized, the $X$ group can not form a triple bond with the central carbon, but some kind of delocalization or hyperconjugation may exist. Here, CCH, $\underline{C N}$ and $N C$ have $s p$ hybridized orbitals whereas the other groups have $s p^{3}$ hybridized orbitals. Hydrogen is a special case, since it only has one occupied $s$ orbital, and it is expected to behave differently. The differences between the second and the third group can be explained in terms of their electronic structures in the $T S$ which in turn are a result of differences in electronegativities and polarizabilities. The second group needs $\psi_{3}$ (corresponding to the configuration $N^{-} R^{+} X$ :) to reach the $T S$ while the third group does not need the $\psi_{3}$ configuration (see Table 3.4.4).

Actually, the first group is a combination of two groups which have different electronic structures in the TS, i.e. one group contains $C C H$ and CN and while the other group contains only $\mathrm{X}=\mathrm{NC}$. It would be desirable to include more $X$ which have the same properties as NC, i.e. $s p$ hybridized and large electronegativity. However, it is difficult to identify such groups which are computationally manageable.

The different behaviours of these groups also manifest themselves in Fig. 4.2.3 and Fig. 4.2.4 where the plots are obtained by the following procedure. Firstly, for the reactions with the same nucleophile the position of the product is assigned a reaction coordinate equal to unity (point a in Fig. 4.2.3) and its energy is taken to be zero. Secondly, assuming that the energy profile of the product configuration is not a function of the leaving group ( $X$ ), for different $X$ the product energy profile can be approximated by the same straight line (line ab). This is justified by the fact that the properties of $N$ affect the shape of the product energy profile more than those of $X$. Thirdly, using the $\Delta E^{\circ}$ value for the reaction $N^{-} \cdots \mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{3} \mathrm{~N} \cdots \mathrm{X}^{-}$, the relative position of the reactant is located at a reaction coordinate equal to zero (point c). Fourthly, using the assumption that the $T S$ occurs at the intersection point of the reactant and product energy profiles, the TS must lie on line $a b$ and using the value of $\Delta E^{\neq}$, the $T S$ is located (point d). And finally, by connecting points $c$ and $d$, the reactant energy profile is obtained. Fig. 4.2.3 and 4.2.4 show that for those $X^{\prime}$ s (first group) which are $s p$ hybridized and have large $A$ in Fig. 4.2.1 and 4.2.2, their reactant energy profiles exhibit a rapid ascent of the potential energy as a function of reaction coordinate. For those $X$ 's (third group)


Figure 4.2.3 Reaction profiles for the reactions $\mathrm{H}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{4}+\mathrm{X}^{-}$.
Legend: $\mathrm{X}=\mathrm{CCH}, \underline{\mathrm{CN}}$ and $\mathrm{NC}(\longrightarrow \longleftarrow \leftarrow)$;
$\mathrm{X}=\mathrm{PH}_{2}, \mathrm{SH}$ and $\mathrm{Cl}(-\longrightarrow)$;
and $\mathrm{X}=\mathrm{NH}_{2}, \mathrm{OH}, \mathrm{OOH}$ and $\mathrm{F}(\rightarrow \longrightarrow)$.


Figure 4.2.4 Reaction profiles for the reactions $\mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{3} \mathrm{~F}+\mathrm{X}^{-}$. Legend: $X=C C H, \underline{C N}$ and $N C(\backsim \leftarrow)$;
$\mathrm{X}=\mathrm{PH}_{2}, \mathrm{SH}$ and $\mathrm{Cl}(-\infty-)$;
and $X=\mathrm{NH}_{2}, \mathrm{OH}$ and $\mathrm{F}(\rightarrow-)$.
which have small A in Fig. 4.2.1 and 4.2.2, the energy profiles exhibit a slow ascent of the potential energy as a function of the reaction coordinate.

For the symmetric reactions, $\Delta E_{o}^{\neq}=\Delta E^{\neq}=A$. Thus, the value of $A$ is not a group property and it is the "true" intrinsic barrier. The intrinsic barrier of the symmetric reaction is a very important property. If the intrinsic barriers of the symmetric reactions are known, the $\Delta E^{\neq}$values of asymmetric reactions can be obtained immediately from eq. 4.2.4. Moreover the activation energy $\Delta E^{\neq}$can be calculated easily from eq. 4.2.1. Table 4.2.2 lists the calculated $\Delta E^{\neq}$ values for symmetric reactions together with the topological $G$ values, which are defined by

$$
\begin{equation*}
G=\rho r_{c} \tag{4.2.5}
\end{equation*}
$$

where $\rho$ is the electron density at the position of the $\mathrm{C}-\mathrm{X}$ bond critical point in molecule $\mathrm{CH}_{3} \mathrm{X}$ and $r_{c}$ is the distance between carbon and the bond critical point. Studies ${ }^{3}$ have shown that the $\rho$ value at the critical point provides informatior about the type of bond involved, whereas the distance $r_{c}$ provides information about relative electronegativities of the bonded atoms as mentioned in section 3.5. The large $\rho$ and $r_{c}$ values mean that the relative electronegativity of carbon is large. Thus, a large $G$ value indicates that the electronegativity of $X$ is relatively small. Data in Table 4.2.2 indicate that the $\Delta \mathrm{E}^{\neq}$velues of symmetric reactions are related to $G$ values within each group of reactions. To predict the intrinsic barrier of symmetric reactions, the

Table 4.2.2 Calculated $G$ values for $R X$ and intrinsic barriers of
symmetric reactions $X^{-}+R X \rightarrow X^{-}+R X$ (a.u.).

| RX | $\Delta \mathrm{E}^{ \pm \ldots}$ | G |
| :---: | :---: | :---: |
| RH | 0.08956 | 0.364 |
| RCCH | 0.08683 | 0.341 |
| RCN | 0.07676 | 0.328 |
| RNC | 0.04942 | 0.234 |
| $\mathrm{RPH}_{2}$ | 0.05533 | 0.327 |
| RSH | 0.04278 | 0.296 |
| RCl | 0.01478 | 0.267 |
| $\mathrm{RNH}_{2}$ | 0.05662 | 0.305 |
| ROH | 0.03499 | 0.245 |
| ROOH | 0.02695 | 0.238 |
| RF | 0.00925 | 0.216 |
| $\text { en } \mathrm{c}$ | $\begin{aligned} & (\mathrm{HX})^{\mathrm{c}} \\ & (\mathrm{HH})^{\text {to }} \end{aligned}$ | by us |

following equation is proposed

$$
\begin{equation*}
\Delta \mathrm{E}_{0}^{\neq}=0.8275 \mathrm{G}-\mathrm{G}^{\prime} \tag{4.2.6}
\end{equation*}
$$

The $G^{\prime}$ value varies from one group to another. The groups are classified according to the type of hybridization and the electronic structure of the transition state. Thus, for group $I(X=C C H$ and $\subseteq \mathbb{N}) G^{\prime}=0.1963$; for group II $(X=\underline{N C}), G^{\prime}=0.1444$; for group $\operatorname{III}\left(X=\mathrm{PH}_{2}\right.$, SH and Cl$), \mathrm{G}^{\prime}=$ 0.2075 , and for group IV $\left(X=\mathrm{NH}_{2}, \mathrm{OH}, \mathrm{OOH}\right.$ and $\left.F\right), G^{\prime}=0.1696$. The $\Delta \mathrm{E}_{0}^{\neq}$ values calculated by use of eq. 4.2 .6 are compared with the values calculated by use of eq. 4.2.4 in Fig. 4.2.5. Except for $\mathrm{NH}_{2}$, the correlation is generally good. Thus, as long as the ground state $G$ value is available, it is possible to predict the $\Delta E_{0}^{\neq}$value. For example, $G$ values for $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad \mathrm{CHCl}_{3}$ and $\mathrm{CCl}_{4}$ are $0.278,0.296$ and 0.309 , respectively at the $H F$ calculation level while at the same level the $G$ value for $\mathrm{CH}_{3} \mathrm{Cl}$ is 0.254 . Since they all belong to group III, their $\Delta E_{\circ}^{\neq}$ values increase as the $G$ value increases. This prediction is consistent with that of Shaik and Pross. ${ }^{31 d, 62}$ The present analysis may be compared with that of Shaik and Pross, in which they use a curvature factor $f$ and an energy gap factor ( $\mathrm{I}_{\mathrm{N}:}-\mathrm{A}_{\mathrm{RX}}$ ) to explain the intrinsic barrier. The $f$ factor is proportional to $W_{R}$ which accounts for the delocalization properties of the charge-transfer states. The $f$ factor appears to be equivalent to the hybridization factor discussed above. However, the results are not all the same. According to their calculation: CCH and OH have similar factors $\left(W_{R}:=0.36\right) ; F$ and $C l$ have similar $f$ factors $\left(W_{R:} \sim 0.24-0.25\right)$; and $W_{R:}=0.30$ for $C N$. According to their model,


Figure 4.2.5 A plot of $\Delta \mathrm{E}^{\neq}$obtained from eq. 4.2.6 (horizontal axis) versus $\Delta E^{\neq}$obtained from eq. 4.2.4 (vertical axis).

The data point for $\mathrm{X}=\mathrm{NH}_{2}$ (denoted by $a$ ) is excluded from the best fit line.
the $\Delta E^{*}$ value for the symmetric reaction $N=X=F$ is larger than that of the reaction $N=X=C l$, since the energy gap ( $I_{N}-A_{R X}$ ) is larger for the reaction $N=X=F$. This prediction is consistent with the $H F$ results reported in this thesis (Table 3.3.1) and HF calculations in the literature. ${ }^{63}$ The experimental result for reaction $N=X=C l$ is available, but not for $\mathrm{N}=\mathrm{X}=\mathrm{F}$. Brauman et al. predicted that $\mathrm{N}=\mathrm{X}=$ Cl has a lower intrinsic barrier. ${ }^{44}$ In this work, results obtained at the MP2' and MP2 levels show that $N=X=F$ has a lower intrinsic barrier. It would be interesting to see the results of calculations at even higher levels.

It is also noted that within each group, the intrinsic barrier $\Delta E_{\circ}^{\neq}$of a symmetric reaction is related to the charge ( $Q_{X}$ ) on $X$ in molecule $\mathrm{CH}_{3} \mathrm{X}$, (see Table 4.2.3). As discussed above, the $\Delta \mathrm{E}^{\neq}$value is related to the electronegativity of $X$ within each group. Since $Q_{X}$ is a measure of the electronegativity of $x$, the relationship between $\Delta E_{0}^{\neq}$and $Q_{X}$ is not unexpected. Furthermore, it is noted that within each group the intrinsic barrier is related to the base strength of $\mathrm{X}^{-}\left(\mathrm{pK}_{a}\right)$, see Table 4.2.4. As the base strength increases ( $\mathrm{pK}_{\mathrm{a}}$ increases), the intrinsic barrier increases. This can be understood by the fact that the base strength of $\mathrm{X}^{-}$reflects the electron loosing ability of $\mathrm{X}^{-}$. And it is an indication of the electronegativity of $X$ as well.

In summary, the intrinsic barrier is a reorganization energy. For a symmetric $\mathrm{S}_{\mathrm{N}} 2$ reaction, it is mainly related to the type of bonding between carbon and the leaving group (or entering nucleophile). The reactions can be classified according to the hybridization of $X$, specificaily, the atom adjacent to carbon, and the electronic structure

Table 4.2.3 Charge on $X$ in molecule $R X$.

| RX | $\Delta \mathrm{E} \cdot \stackrel{\text { a }}{ }(\mathrm{kJ} / \mathrm{mol})$ | $-Q_{X}(e)$ |
| :---: | :---: | :---: |
| RH | 235.15 | -0.066 |
| RCCH | 227.97 | 0.290 |
| RCN | 201.52 | 0.328 |
| RNC | 129.76 | 0.650 |
| $\mathrm{RPH}_{2}$ | 145.26 | -0.515 |
| RSH | 112.31 | -0.003 |
| RCl | 38.80 | 0.224 |
| $\mathrm{RNH}_{2}$ | 148.64 | 0.350 |
| ROH | 91.87 | 0.545 |
| ROOH | 70.75 | 0.604 |
| RF | 24.30 | 0.626 |

[^0]Table 4.2.4 Basicity of $X^{-}$in gas phase and in solution.

of the $T S$. A $s p$ hybridized atom results in a rapid ascent or a large curvature of the potential energy profile and a high intrinsic barrier. A large contribution of $\psi_{3}$ to the TS lowers the intrinsic barrier. Within each group, the intrinsic barrier is related to the electronegativity of the $X$ group. As the electronegativity of the $X$ group increases, the intrinsic barrier is lowered. The interpretation of the A value in the Bunting and Stefanidis equation needs caution. For a symmetric reaction, $A=\Delta E^{\neq}$is the "true" intrinsic barrier. However, for an asymmetric reaction, the values of $A$ and $B$ are clearly group properties.

### 4.3 The Rate-Equilibrium Relationship and $\alpha$ Values

Due to the rapid development of computer technology and gradient techniques in electronic structure calculations, the transition states of relatively simple reactions can be determined by means of theoretical calculations. Nonetheless for the visualization of the reaction process, there is still a need for simple relationships and simple pictures. In the past, many attempts have been made to correlate reactivity with structural or thermodynamic properties. The first linear relationship was proposed by Brönsted and Pedersen in $1924{ }^{65}$ when they studied the decomposition of nitramide by base catalysis. They found that the rate of the reaction ( $k$ ) is related to the base strength of the catalyst ( $K$ ) by eq. 4.3.1

$$
\begin{equation*}
\log k=\alpha \log K+c \tag{4.3.1}
\end{equation*}
$$

Eq. 4.3.1 is often written in its free energy form

$$
\begin{equation*}
\Delta G^{\neq}=\alpha \Delta G^{\circ}+C \tag{4.3.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta\left(\Delta G^{\neq}\right)=\alpha \delta\left(\Delta G^{0}\right) \tag{4.3.3}
\end{equation*}
$$

A molecular interpretation of eq. 4.3.3 was first given by Horiuti and Polanyi in $1935 .{ }^{66}$ They proposed that the energy of the TS corresponds to the intersection of the potential energy curves representing the forming bond and the breaking bond. The parameter $\alpha$ is defined as

$$
\begin{equation*}
\alpha=\frac{s 1}{s 1+s 2} \tag{4.3.4}
\end{equation*}
$$

where $s 1$ and $s 2$ are the slopes of the two curves at their point of intersection. Leffler ${ }^{29 a}$ gave a physical interpretation of the $\alpha$ value. By assuming the TS properties are intermediate between reactants and products, the $\alpha$ value is interpreted as a parameter that measures the degree of resemblance of the transition state to the products, as compared to its resemblance to the reactants. A more quantitative relationship was given by Marcus 55

$$
\begin{equation*}
\Delta G^{\neq}=\Delta G^{\neq}+0.5 \Delta G^{\circ}+\frac{\left(\Delta G^{0}\right)^{2}}{16 \Delta G^{\neq}} \tag{4.1.1}
\end{equation*}
$$

or in the potential energy form ${ }^{55 a}$

$$
\begin{equation*}
\Delta E^{\neq}=\Delta E_{0}^{\neq}+0.5 \Delta E^{0}+\frac{\left(\Delta E^{0}\right)^{2}}{16 \Delta E_{0}^{\neq}} \tag{4.2.1}
\end{equation*}
$$

According to the Marcus equation $\alpha$ is defined as ${ }^{55 c}$

$$
\begin{equation*}
\alpha=0.5(1+x) \tag{4.3.5}
\end{equation*}
$$

if $\Delta E^{\neq}$is a constant. Otherwise

$$
\begin{equation*}
\alpha=0.5(1+x)+\left(1-x^{2}\right) \alpha^{\prime} \tag{4.3.6}
\end{equation*}
$$

where $x=\frac{\Delta E^{\circ}}{4 \Delta E^{\neq}}$and $\alpha^{\prime}=\frac{\delta \Delta E^{\neq}}{\delta \Delta E^{\circ}}$. If $\Delta E^{\neq}$is a constant, from eq. 4.2.1 $\Delta \mathrm{E}^{\neq}$ and $\Delta E^{\circ}$ can be considered to be linearly related in a small segment. 67 The Marcus equation reduces to the Brönsted equation. However, for a series of reactions, $\Delta E_{\circ}^{\neq}$is usually not a constant. Thus, the requirement for a linear relationship to exist is that $\Delta E^{\neq}$and $\Delta E^{\circ}$ are linearly related to each other. The Bunting and Stefanidis equation is actually the basic requirement for the existence of a linear relationship and the $B$ value in the Bunting and Stefanidis equation is actually the $\alpha^{\prime}$ value in the Marcus equation 4.3.6. Plots of $\Delta E^{\neq}$versus $\Delta E^{\circ}$ for $N=H$ and $N=F$ are shown in Fig. 4.3.1 and 4.3.2. For those reactions which are related by the Bunting and Stefanidis equation, $\Delta E^{\neq}$ is related to $\Delta E^{\circ}$.

The Leffler interpretation of $\alpha$, according to which $\alpha$ is considered to be an index of the position of the $T S$ along the reaction coordinate, is widely used in organic chemistry. However, there has been some debate about the validity of using $\alpha$ as a measure of the position of the $T S$


Figure 4.3.1 Plot of $\Delta E^{\neq}$versus $\Delta E^{\circ}$ for the reactions $H^{-}+\mathrm{CH}_{3} X \rightarrow \mathrm{CH}_{4}+X^{-}$. Legend: $\mathrm{X}=\mathrm{CCH}, \mathrm{CN}$ and $\mathrm{NC}(0)$; $\mathrm{X}=\mathrm{PH}_{2}, \mathrm{SH}$ and Cl ( a ); $\mathrm{X}=\mathrm{NH}_{2}, \mathrm{OH}, \mathrm{OOH}$ and $\mathrm{F}(\Delta)$.


Figure 4.3.2 Plot of $\Delta E^{\neq}$versus $\Delta E^{\circ}$ for the reactions $\mathrm{F}^{-}+\mathrm{CH}_{3} X \rightarrow \mathrm{CH}_{3} \mathrm{~F}+\mathrm{X}^{-}$. Legend: $X=C C H, \underline{C N}$ and $N C$ ( 0 );

$$
\begin{aligned}
& \mathrm{X}=\mathrm{PH}_{2}, \mathrm{SH} \text { and } \mathrm{Cl}(\mathrm{\square}) ; \\
& \mathrm{X}=\mathrm{NH}_{2}, \mathrm{OH} \text { and } \mathrm{F}(\Delta) .
\end{aligned}
$$

structure. ${ }^{68}$ Before discussing $\alpha$ further, it is important to clarify which $\alpha$ is discussed in this thesis. Marcus indicated ${ }^{55 c}$ that only the $\alpha$ calculated from eq. 4.3 .5 can be used as a TS index and it has a normal range of between zero and one. The $\alpha$ obtained from eq. 4.3 .6 or the linear plot can not be used as an index of the TS, since the $\alpha$ value so obtained is no longer a property of the reaction. It is a group property as discussed in the previous section. Nevertheless, if the $B$ value (i.e. the $\alpha^{\prime}$ value in eq. 4.3.6) of the Bunting and Stefanidis equation is small, the $\alpha$ value so obtained can be considered to be an index of the TS, since it does not change much from one reaction to another. By definition, $\alpha$ is an energy index. This is further demonstrated below. The activation energies for the forward and reverse reactions can be expressed using the Marcus equation (eq. 4.2.1). Thus,

$$
\begin{align*}
& \frac{\Delta \mathrm{E}_{f}^{\neq}}{\Delta \mathrm{E}_{f}^{\neq}+\Delta \mathrm{E}_{r}^{\neq}}=\frac{\Delta \mathrm{E}_{0}^{\neq}+0.5 \Delta \mathrm{E}_{f}^{\circ}+\frac{\left(\Delta \mathrm{E}^{\circ}\right)^{2}}{16 \Delta \mathrm{E}_{0}^{\neq}}}{\Delta \mathrm{E}^{\neq}+0.5 \Delta \mathrm{E}_{f}^{\circ}+\frac{\left(\Delta \mathrm{E}^{\circ}\right)^{2}}{16 \Delta \mathrm{E}_{\circ}^{\neq}}+\Delta \mathrm{E}_{0}^{\neq}+0.5 \Delta \mathrm{E}_{r}^{0}+\frac{\left(\Delta \mathrm{E}^{\circ}\right)^{2}}{16 \Delta \mathrm{E}_{\circ}^{\neq}}}  \tag{4.3.7}\\
&=0.5+0.25 \frac{\Delta \mathrm{E}^{\circ}}{\Delta \mathrm{E}^{\neq}+\frac{\left(\Delta \mathrm{E}^{\circ}\right)^{2}}{16 \Delta \mathrm{E}_{0}^{\neq}}}
\end{align*}
$$

and by omitting the quadratic term

$$
\frac{\Delta E_{f}^{\neq}}{\Delta E_{f}^{\neq}+\Delta E_{r}^{\neq}} \approx 0.5+0.25 \frac{\Delta E^{\circ}}{\Delta E_{o}^{\neq}}
$$

Thus,

$$
\begin{equation*}
\alpha \approx 0.5 \frac{\Delta E_{f}^{\neq}}{\Delta E_{f}^{\neq}+\Delta E_{r}^{\neq}}+0.25 \tag{4.3.8}
\end{equation*}
$$

Fig. 4.3.3 compares the $\alpha$ calculated from eq. 4.3 .5 with that calculated from eq. 4.3.8. $\alpha$ is an index of the activation energy in the forward direction for the complete forward and reverse reactions. If the forward activation energy is smaller than the reverse activation energy, then the reaction is exothermic and $\alpha<0.5$. If the forward activation energy is larger than the reverse activation energy, the reaction is endothermic and $\alpha>$ 0.5. Fig. 4.3.4 shows the plot of $\alpha$ (obtained from eq. 4.3.5) versus $\Delta E^{\circ}$. It appears that for those reactions which are related by the Bunting and Stefanidis equation, $\alpha$ is related to $\Delta E^{\circ}$.

It is not obvious from the definition of $\alpha$ that $\alpha$ can be used as an index of transition state structure change. However, since both $\alpha$ and structure change are related to the energy, it is possible that under certain circumstances a relationship may exist. To measure the geometry change of the $T S$, parameters $f_{R}$ and $f_{P}$ are proposed. $f_{R}$ and $f_{P}$ measure the relative geometry change of the $T S$ as compared to the reactant and product, respectively. For a $S_{N} 2$ reaction, the major cause of the reorganization energy is the $C-X$ and $C-N$ bond stretching energy. 59 Thus, $f_{R}$ and $f_{P}$ are defined as:

$$
\begin{equation*}
f_{R}=\frac{R_{c-x(T S)}-R_{c-x \text { (Ground }}}{R_{c-x(\text { Ground })}} \tag{4.3.9}
\end{equation*}
$$



Figure 4.3.3 Comparison of $\alpha$ values calculated from eq. 4.3.5 (horizontal axis) and from eq. 4.3 .8 (vertical axis).


Figure 4.3.4 Plot of $\alpha$ values versus $\Delta E^{\circ}$ for the reactions $H^{-}+\mathrm{CH}_{3} X \rightarrow$ $\mathrm{CH}_{4}+\mathrm{X}^{-}$. a) $\mathrm{X}=\mathrm{CCH}, \mathrm{CN}$ and NC ; b) $\mathrm{X}=\mathrm{PH}_{2}, \mathrm{SH}$ and Cl ; c) $\mathrm{X}=\mathrm{NH}_{2}, \mathrm{OH}, \mathrm{OOH}$ and F .
and

$$
\begin{equation*}
f_{p}=\frac{\left.R_{c-n(T S}\right)^{-R_{c-n}} \text { (Ground) }}{R_{c-n(G r o u n d)}} \tag{4.3.10}
\end{equation*}
$$

where $R_{c-x(T S)}$ is the $C-X$ bond length at the $T S$. To normaiize the geometry change, a parameter $\mathrm{R}_{\alpha}$ is introduced

$$
\begin{equation*}
R_{\alpha}=\frac{f_{R}}{f_{i}+f_{P}} \tag{4.3.11}
\end{equation*}
$$

Thus, if the TS resembles the reactant more than the product, $f_{R}<f_{P}$ and $R_{\alpha}<0.5$. Otherwise, $R_{\alpha}>0.5$. A plot of $R_{\alpha}$ versus $\alpha$ is shown in Fig. 4.3.5 in which the ground state is taken to be the ion-molecule complex and the reactions have the same nucleophile $N=H$ and the results are obtained at the MP2 level.

In summary, the $\alpha$ values obtained from linear plots should be interpreted with caution. It is only under the circumstances where the $a^{\prime}$ value is small that the $\alpha$ value obtained from a linear plot can be used as an index of the position of the $T S$ along the reaction coordinate. If a set of reactions are correlated by the Bunting and Stefanidis equation, the $\alpha$ values are an index of the position of the TS ii the forward and reverse activation energy space. The $\alpha$ value can be used as index of the TS structure, if the geometry parameter chosen is the major cause of the reorganization energy.


Figure 4.3.5 A plot of $\alpha$ versus $\mathrm{R}_{\alpha}$ for the reactions $\mathrm{H}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{CH}_{4}+\mathrm{X}^{-}$.

## Chapter 5

## The Laplacian of the Charge Density as a Probe in the study of Chemical Problems

### 5.1 Overview

Although the important property of the Laplacian of a scale function was first recognized as early as 1953 by Morse and Feshback, ${ }^{2}$ more than twenty-five years passed before the Laplacian of the charge density was used to study chemical problems. Bader and co-workers ${ }^{1 d, 4 b}$ showed that the Laplacian of the charge density identifies regions of space wherein the charge density is either locally concentrated or depleted. The Laplacian of the charge density reveals the existence of local concentrations of electronic charge in both the bonded and non-bonded regions of an atom in a molecule. It has also been found that the number, relative size and locations of the bonded and non-bonded charge concentrations in the valence shell of an atom in a molecule are in more or less general agreement with the localized pair model and with Gillespie's theory of molecular geometry. ${ }^{4}$ The form of the Laplacian of the charge density has been shown to reflect the shell structure of light atoms. ${ }^{1 d, 4 b}$ For each principal quantum shell of an isolated atom, there are pairs of spherical shells of alternating charge concentration and charge depletion. Furthermore, there is a correspondence between the Laplacian of the charge density and frontier orbital theory since maximizing the overlap between the $H O M O$ and LUMO of two reactants is equivalent to correlating the region of charge concentration in one
reactant with the region of charge depletion in the other. ${ }^{5}$
In this chapter, the Laplacian of the charge density is used to study the shell structure of atoms, electronegativity and nucleophilic substitution reactions in which the central atom is carbon or silicon. The purpose is not only to enhance our knowledge in these areas but also to show the advantages and disadvantages of using the Laplacian of the charge density in the study of chemical problems.

### 5.2 The Shell Structure of Free Atoms

The planetary model of the atom in which the electrons move in various orbits around the nucleus was proposed by Rutherford in 1911. Bohr further developed the model when he applied the concept of quantization of energy to the hydrogen atom. ${ }^{14 b}$ According to the Bohr model, each electron moves in one of the orbits permitted by certain quantum conditions. Even though this simple picture is not retained by wave mechanics, it is useful to describe the electronic structure of atoms in terms of spherical shells denoted by $K, L, M$, etc.

To study the shell structure of free atoms, the radial density function $D(r)$, see eq. 5.2.1, has been used.

$$
\begin{equation*}
D(r)=r^{2} \int \rho(\mathbf{r}) d \Omega_{r} \tag{5.2.1}
\end{equation*}
$$

where $\Omega_{r}$ is the angular coordinates of the electron. For the first three periods, the radial density function exhibits the expected numbers of spherical shells by showing corresponding numbers of maxima. ${ }^{69}$ The existence of three maxima in $D(\mathbf{r})$ for Ar has been demonstrated by the
electron diffraction results of Bartell and Brockway. ${ }^{70}$ However, for heavier atoms, only the inner shells which correspond to lower principal quantum numbers are revealed by $D(r) .{ }^{69}$ A study done in momentum space indicates that the radial momentum distribution function does not reveal all occupied shells, but only the innermost ones (highest principal quantum number) which correspond to the outermost ones in position space. ${ }^{71}$ The Laplacian of the charge density in the atoms Li to Ne and Ar demonstrates the existence of corresponding shells in these atoms. $1 d, 4 b$ However, further investigation is needed to see whether the Laplacian of the charge density can reveal all the shell structure of heavier atoms. For this purpose, the analytical Hartree-Fock wavefunctions of Clementi and Roetti ${ }^{72}$ were used for free atom calculations. A program was written to calculate the critical point of the Laplacian of the charge density $\left(\nabla\left(\nabla^{2} \rho(r)\right)=0\right)$. The calculations were carried out on the Perkin-Elmer 3230 computer.

The Laplacian of the charge density is defined as:

$$
\begin{equation*}
\nabla^{2} \rho(r)=\frac{\partial^{2} \rho}{\partial x^{2}}+\frac{\partial^{2} \rho}{\partial y^{2}}+\frac{\partial^{2} \rho}{\partial z^{2}} \tag{1.3.1}
\end{equation*}
$$

A free atom has spherical symmetry and therefore the charge density is constant on a spherical surface whose centre is at the nucleus. Consider such a spherical surface of constant density. An axis, say the $z$ axis, through the nucleus is normal to the surface and intersects it at the point $(0,0, z)$. Since the charge density decreases monotonically with increasing $z, \partial \rho / \partial z<0$ and, in general, the curvature is found to be positive, that is, $\partial^{2} \rho / \partial z^{2}>0$. Thus, $\rho(0,0, z)$ is less than the average
of its values at the points $(0,0, z \pm d z)$. However, in the tangent plane. the charge density is a maximum at $(0,0, z), \partial \rho / \partial x=\partial \rho / \partial y=0$ and $\partial^{2} \rho / \partial x^{2}=\partial^{2} \rho / \partial y^{2}<0$. Thus $\rho(0,0, z)$ is greater than the average of its values at $( \pm d x, \pm d y, z)$. If the sum of the magnitudes of the two negative curvatures exceeds the value of the positive curvature, then $\nabla^{2} \rho(0,0, z)$ $<0$, and the value of $\rho(0,0, z)$ is greater than the average of $\rho$ at all points neighboring $(0,0, z)$. The charge density is concentrated at this point relative to its value averaged over all neighboring points. By determining a radius in an atom at which $\nabla^{2} \rho(r)$ is a minimum (or a maximum), it is possible to determine a radius at which electronic charge is maximally concentrated (or depleted). Because the atomic integral over all space of the Laplacian of the charge density of a free atom must vanish, there exist alternating minima and maxima in $\nabla^{2} \rho$. In other words, in addition to regions where the contraction of $\rho(r)$ along radial lines toward the nucleus is dominant and $\nabla^{2} \rho(r)>0$, there must exist regions in which $\nabla^{2} \rho(r)<0$. On the basis of calculations for a few 'ight atoms, $L i$ through $N e$ and $A r$, it has been suggested that $\nabla^{2} \rho(r)$ exhibits pairs of regions, one negative and one positive, for each principal quantum shell. Thus $\nabla^{2} \rho(r)$ is said to exhibit the shell structure of atoms with each shell separated by a spherical node in $\nabla^{2} \rho(r)$. In each case, $\nabla^{2} \rho(r)<0$ in the innermost region and a maximum of charge concentration is observed at the position of the nucleus.

Given that a region of charge concentration and one of charge depletion correspond to each principal quantum shell, the shell structure can be revealed by finding all radii corresponding to minima in $\nabla^{2} \rho(r)$. For every free atom, the charge density is a maximum at the
position of the nucleus and $\nabla^{2} \rho(r)$ is a minimum at $r_{1}=0$. Table 5.2.1 lists the calculated radii of minima in $\nabla^{2} \rho$ for the atoms from Li to Xe. In each case the minimum at the nucleus, $r_{1}$, is omitted. In Table 5.2.1, $r_{i}$ is the radius of the ith minimum in $\nabla^{2} p$. For the $H$ and $H e$ atoms the only minimum in $\nabla^{2} \rho$ occurs at the position of the nucleus.

From the data in Table 5.2.1, it is clear that two minima are obtained for the atoms $L i$ through $N e$ corresponding to $K$ and $L$ shells. For the third period elements, Na to Ar , the third minimum corresponds to the $M$ shell. In the fourth period, the $N$ shell is discernible from the properties of $\nabla^{2} \rho(r)$ for $K$ and Ca. From Sc $(Z=21)$ to $\operatorname{Ge}(Z=32)$ the $N$ shell is not distinguishable from the $M$ shell. The $M$ and $N$ shells separate in As $(Z=33)$. The pattern is very similar in the fifth period: five shells are observed $f r \operatorname{Rb}(Z=37)$ and $\mathrm{Sr}(Z=38)$, but from $Y(Z=39)$ to $T e(Z=52)$ only four shells are observed. The resolution of the $N$ and $O$ shells is regained in $I$ and Xe.

From the preceding discussion it may be concluded that the form of the Laplacian of the charge density reflects the shell structure of the first twenty atoms. For the heavier atoms, the complete shell structure is resolved for the $s$-block elements and the later $p$-block elements, but only the inner shells are resolved in the $d$-block elements. Furthermore, the sign of the Laplacian of the charge density at the outermost minimum is reversed in those atoms of the fourth and fifth periods for which the full shell structure is resolved, the one exception being Kr . These observations eaphasize that the resolution of the shell structure of heavy atoms is less complete than implied by the results of light atoms. 73

Table 5.2.1 Radii of minima in the Laplacian of the charge density of the spherical atoms Li to $\mathrm{Xe}^{\mathrm{a}}$

| Atom | State | $r_{2}$ | $r_{3}$ | $r_{4}$ | $r_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Li | ${ }^{2}$ S | $\begin{aligned} & 2.494 \\ & 0.002 \end{aligned}$ |  |  |  |
| Be | ${ }^{1} S$ | $\begin{aligned} & 1.594 \\ & 0.027 \end{aligned}$ |  |  |  |
| B | ${ }^{2} P$ | $\begin{aligned} & 1.188 \\ & 0.141 \end{aligned}$ |  |  |  |
| C | $3_{P}$ | $\begin{aligned} & 0.942 \\ & 0.506 \end{aligned}$ |  |  |  |
| N | ${ }^{4} S$ | $\begin{aligned} & 0.776 \\ & 1.447 \end{aligned}$ |  |  |  |
| 0 | $3_{P}$ | $\begin{aligned} & 0.658 \\ & 3.480 \end{aligned}$ |  |  |  |
| F | ${ }^{2} p$ | $\begin{aligned} & 0.569 \\ & 7.592 \end{aligned}$ |  |  |  |
| Ne | ${ }^{1} S$ | $\begin{aligned} & 0.500 \\ & 15.29 \end{aligned}$ |  |  |  |
| Na | ${ }^{2} S$ | $\begin{aligned} & 0.442 \\ & 29.99 \end{aligned}$ | $\begin{aligned} & 3.436 \\ & 1.5 \mathrm{E}-4 \end{aligned}$ |  |  |
| Mg | ${ }^{1} S$ | $\begin{aligned} & 0.396 \\ & 55.61 \end{aligned}$ | $\begin{aligned} & 2.549 \\ & 0.002 \end{aligned}$ |  |  |
| Al | ${ }^{2} P$ | $\begin{aligned} & 0.359 \\ & 96.15 \end{aligned}$ | $\begin{aligned} & 2.081 \\ & 0.009 \end{aligned}$ |  |  |
| Si | $3_{P}$ | $\begin{aligned} & 0.327 \\ & 157.4 \end{aligned}$ | $\begin{aligned} & 1.760 \\ & 0.038 \end{aligned}$ |  |  |
| P | ${ }^{4}$ S | $\begin{aligned} & 0.301 \\ & 247.4 \end{aligned}$ | $\begin{aligned} & 1.522 \\ & 0.115 \end{aligned}$ |  |  |
| S | $3_{P}$ | $\begin{aligned} & 0.278 \\ & 375.3 \end{aligned}$ | $\begin{aligned} & 1.341 \\ & 0.273 \end{aligned}$ |  |  |
| Cl | ${ }^{2} P$ | $\begin{aligned} & 0.258 \\ & 553.3 \end{aligned}$ | $\begin{aligned} & 1.198 \\ & 0.592 \end{aligned}$ |  |  |
| Ar | ${ }^{1} S$ | $\begin{aligned} & 0.241 \\ & 794.7 \end{aligned}$ | $\begin{aligned} & 1.080 \\ & 1.196 \end{aligned}$ |  |  |

Table 5.2.1 (continued)

| Atom | State | $r_{2}$ | $r_{3}$ | $r_{4}$ | $r_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| K | $2_{S}$ | $\begin{array}{r} 0.226 \\ 1115 \end{array}$ | $\begin{aligned} & 0.981 \\ & 2.219 \end{aligned}$ | $\begin{gathered} 4.938 \\ -3.1 \mathrm{E}-5 \end{gathered}$ |  |
| Ca | ${ }^{1} S$ | $\begin{array}{r} 0.213 \\ 1544 \end{array}$ | $\begin{aligned} & 0.898 \\ & 3.818 \end{aligned}$ | $\begin{gathered} 3.773 \\ -1.2 \mathrm{E}-4 \end{gathered}$ |  |
| Sc | ${ }^{2} D$ | $\begin{array}{r} 0.201 \\ 2067 \end{array}$ | $\begin{aligned} & 0.834 \\ & 5.804 \end{aligned}$ |  |  |
| Ti | $3_{F}$ | $\begin{array}{r} 0.190 \\ 2712 \end{array}$ | $\begin{aligned} & 0.779 \\ & 8.478 \end{aligned}$ |  |  |
| V | $4_{F}$ | $\begin{array}{r} 0.181 \\ 3507 \end{array}$ | $\begin{aligned} & 0.731 \\ & 12.05 \end{aligned}$ |  |  |
| Cr | $5_{D}$ | $\begin{array}{r} 0.172 \\ 4433 \end{array}$ | $\begin{aligned} & 0.691 \\ & 15.84 \end{aligned}$ |  |  |
| Mn | ${ }^{6}$ S | $\begin{array}{r} 0.165 \\ 5614 \end{array}$ | $\begin{aligned} & 0.652 \\ & 22.71 \end{aligned}$ |  |  |
| Fe | $5_{D}$ | $\begin{array}{r} 0.158 \\ 6993 \end{array}$ | $\begin{aligned} & 0.618 \\ & 30.39 \end{aligned}$ |  |  |
| Co | $4_{F}$ | $\begin{array}{r} 0.151 \\ 8648 \end{array}$ | $\begin{aligned} & 0.587 \\ & 39.84 \end{aligned}$ |  |  |
| Ni | $3_{F}$ | $\begin{aligned} & 0.145 \\ & 10554 \end{aligned}$ | $\begin{aligned} & 0.559 \\ & 51.67 \end{aligned}$ |  |  |
| Cu | ${ }^{2} S$ | $\begin{aligned} & 0.140 \\ & 12705 \end{aligned}$ | $\begin{aligned} & 0.535 \\ & 63.72 \end{aligned}$ |  |  |
| Zn | ${ }^{1} S$ | $\begin{aligned} & 0.134 \\ & 15398 \end{aligned}$ | $\begin{aligned} & 0.510 \\ & 83.76 \end{aligned}$ |  |  |
| Ga | $2_{P}$ | $\begin{aligned} & 0.130 \\ & 18494 \end{aligned}$ | $\begin{aligned} & 0.487 \\ & 109.0 \end{aligned}$ |  |  |
| Ge | $3_{P}$ | $\begin{aligned} & 0.125 \\ & 22126 \end{aligned}$ | $\begin{aligned} & 0.466 \\ & 140.2 \end{aligned}$ |  |  |
| As | ${ }^{4} S$ | $\begin{aligned} & 0.121 \\ & 26303 \end{aligned}$ | $\begin{aligned} & 0.446 \\ & 179.7 \end{aligned}$ | $\begin{array}{r} 2.175 \\ -0.026 \end{array}$ |  |
| Se | $3_{P}$ | $\begin{aligned} & 0.117 \\ & 31124 \end{aligned}$ | $\begin{aligned} & 0.427 \\ & 226.9 \end{aligned}$ | $\begin{array}{r} 1.833 \\ -0.025 \end{array}$ |  |

Table 5.2.1 (continued)

| Atom | State | $\mathrm{r}_{2}$ | $r_{3}$ | $r_{4}$ | $\mathrm{r}_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Br | ${ }^{2} P$ | $\begin{aligned} & 0.113 \\ & 36615 \end{aligned}$ | $\begin{aligned} & 0.410 \\ & 288.3 \end{aligned}$ | $\begin{array}{r} 1.652 \\ -0.010 \end{array}$ |  |
| Kr | ${ }^{1}$ | $\begin{aligned} & 0.110 \\ & 42961 \end{aligned}$ | $\begin{aligned} & 0.394 \\ & 361.4 \end{aligned}$ | $\begin{aligned} & 1.503 \\ & 0.052 \end{aligned}$ |  |
| Rb | ${ }^{2} S$ | $\begin{aligned} & 0.106 \\ & 49977 \end{aligned}$ | $\begin{aligned} & 0.381 \\ & 435.2 \end{aligned}$ | $\begin{aligned} & 1.376 \\ & 0.152 \end{aligned}$ | $\begin{gathered} 5.516 \\ -3.5 E-5 \end{gathered}$ |
| Sr | ${ }^{1} \mathrm{~S}$ | $\begin{aligned} & 0.103 \\ & 58191 \end{aligned}$ | $\begin{aligned} & 0.367 \\ & 541.4 \end{aligned}$ | $\begin{aligned} & 1.278 \\ & 0.275 \end{aligned}$ | $\begin{gathered} 4.369 \\ -2.0 \mathrm{E}-4 \end{gathered}$ |
| Y | ${ }^{2}$ D | $\begin{aligned} & 0.100 \\ & 67246 \end{aligned}$ | $\begin{aligned} & 0.354 \\ & 653.7 \end{aligned}$ | $\begin{aligned} & 1.204 \\ & 0.517 \end{aligned}$ |  |
| Zr | $3_{F}$ | $\begin{aligned} & 0.098 \\ & 77430 \end{aligned}$ | $\begin{aligned} & 0.342 \\ & 788.6 \end{aligned}$ | $\begin{aligned} & 1.140 \\ & 0.879 \end{aligned}$ |  |
| Nb | $4_{F}$ | $\begin{aligned} & 0.095 \\ & 88851 \end{aligned}$ | $\begin{aligned} & 0.331 \\ & 943.2 \end{aligned}$ | $\begin{aligned} & 1.082 \\ & 1.438 \end{aligned}$ |  |
| Mo | $5_{D}$ | $\begin{array}{r} 0.092 \\ 101420 \end{array}$ | $\begin{array}{r} 0.320 \\ 1116 \end{array}$ | $\begin{aligned} & 1.031 \\ & 2.277 \end{aligned}$ |  |
| Tc | ${ }_{6}$ S | $\begin{array}{r} 0.090 \\ 115450 \end{array}$ | $\begin{array}{r} 0.310 \\ 1320 \end{array}$ | $\begin{aligned} & 0.984 \\ & 3.450 \end{aligned}$ |  |
| Ru | $5_{D}$ | $\begin{array}{r} 0.088 \\ 131010 \end{array}$ | $\begin{array}{r} 0.301 \\ 1551 \end{array}$ | $\begin{aligned} & 0.940 \\ & 4.976 \end{aligned}$ |  |
| Rh | $4_{F}$ | $\begin{array}{r} 0.086 \\ 148210 \end{array}$ | $\begin{array}{r} 0.292 \\ 1807 \end{array}$ | $\begin{aligned} & 0.901 \\ & 7.074 \end{aligned}$ |  |
| Pd | $3_{F}$ | $\begin{array}{r} 0.084 \\ 167080 \end{array}$ | $\begin{array}{r} 0.284 \\ 2092 \end{array}$ | $\begin{aligned} & 0.865 \\ & 9.772 \end{aligned}$ |  |
| Ag | $2^{2}$ | $\begin{array}{r} 0.082 \\ 187700 \end{array}$ | $\begin{array}{r} 0.276 \\ 2413 \end{array}$ | $\begin{aligned} & 0.830 \\ & 13.22 \end{aligned}$ |  |
| Cd | ${ }^{1} \mathrm{~S}$ | $\begin{array}{r} 0.080 \\ 210880 \end{array}$ | $\begin{array}{r} 0.269 \\ 2691 \end{array}$ | $\begin{aligned} & 0.802 \\ & 17.66 \end{aligned}$ |  |
| In | ${ }^{2} P$ | $\begin{array}{r} 0.078 \\ 236010 \end{array}$ | $\begin{array}{r} 0.261 \\ 3186 \end{array}$ | $\begin{aligned} & 0.770 \\ & 23.23 \end{aligned}$ |  |
| Sn | $3_{P}$ | $\begin{array}{r} 0.076 \\ 263580 \end{array}$ | $\begin{array}{r} 0.254 \\ 3662 \end{array}$ | $\begin{aligned} & 0.740 \\ & 30.14 \end{aligned}$ |  |

## Table 5.2.1 (continued)

| Atom | State | $r_{2}$ | $r_{3}$ | $r_{4}$ | $r_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |

Both the radial density function and the Laplacian of the charge density reveal the shell structure of light atoms. It should be stressed, however, that the radial density function reflects shell structure only through an averaging over the angular coordinates of the electrons to yield a one-electron distribution function, whereas the shell structure exhibited by the Laplacian distribution function is a property of the charge density in three-dimensional space. Also, it should be stressed that the charge density itself does not exhibit shell structure. For the atoms of the fourth and fifth periods, the number of shells distiqguishable in $D(r)$ is always one or two less than the number expected on the basis of the ground state electron configurations. 69: The $M$ and $N$ shells do not give rise to separate maxima in $D(r)$ until $Z=$ 40 is reached. Moreover, the indistinguishability of the $N$ and $O$ shells remains throughout the fifth period with only a slight shoulder for the 0 shell appearing in $D(r)$ for Xe. ${ }^{69 c}$ In order to emphasize that $\nabla^{2} \rho(r)$ provides a more complete resolution of the shell structure of atoms than $D(r)$, Fig. 5.2.1 shows the $r_{i}$ values obtained from minima in $\nabla^{2} \rho(r)$ and the $r_{i}$ obtained from partitioning $D(r)$ as a function of atomic number. Fig. 5.2.1 also illustrates that where radii are obtained by both methods the results parallel one another closely.

### 5.3 Electronegativity

Electronegativity is of utmost importance to the chemist and chemical physicist. The concept of electronegativity finds its application in all fields of chemistry. Indeed, electronegativity is an inherent property of a species. However, the property is not directly measurable. The


Figure 5.2.1 Radii ( 0 ) of minima in $\nabla^{2} \rho(r)$ as a function of atomic number. For comparison radii ( $\square$ ) obtained from the partitioning of the radial density are plotted as a function of the atomic number.
original concept of electronegativity has been traced back to Pauling. He defined electronegativity "as the power of an atom in a molecule to attract electrons to itself". ${ }^{75}$ There are several experimental scales of electronegativity. ${ }^{74}$ Unfortunately, it has been very difficult to arrive at a unique unequivocal quantitative scale of electronegativity. Parr and co-workers ${ }^{76}$ proposed a definition of electronegativity based on the quantum mechanical theorems of Hohenberg and Kohn, according to which electronegativity is equal to the negative of the electronic chemical potential, the latter being the derivative of the energy $E$ with respect to the number of electrons in the species, with the external potential being held fixed. Several other theoretical studies of electronegativity have been reported in the literature. ${ }^{77}$ It is the intention of this section to show that the property of the Laplacian of the charge density can be used to define the relative size of free atoms and to study the property of electronegativity. .

According to Pauling's definition electronegativity is a property of an atom in a molecule. Upon molecule formation, the differences in the electronegativities of atoms and groups of atoms cause the shift of electrons. As a result, some atoms gain electrons while others lose electrons. At the end, the electronegativities of the various atoms are equalized. The electron redistribution will certainly affect the size of atoms. Furthermore, this size change is related to the electronegativity of the atoms involved. In a diatomic molecule, the equilibrium bond length $r_{e}(A B)$ is directly related to the size of atoms $A$ and $B$. Hence, a quantity $S(A B)$ is defined which measures the size change of atoms $A$ and B upon formation of the molecule. Therefore, it should provide
information about the electronegativities of the atoms involved. The quantity $S(A B)$ is defined as

$$
\begin{equation*}
S(A B)=\frac{r_{e}(A B)-\left(r_{A}+r_{B}\right)}{\left(\bar{r}_{A}+r_{B}\right)} \tag{5.3.1}
\end{equation*}
$$

where $r_{e}(A B)$ is the equilibrium bond length of molecule $A B$ and $r_{X}$ is the relative size of free atom $X$. Equilibrium bond lengths are available from experimental clata or from theoretical calculations whereas, in general, the relative radii of free atoms are not available from experiments and can be obtained from theoretical calculations. For this purpose it is helpful to recall from the discussion in the last section, that the Laplacian of the charge density reveals the shell structure of an atom. For each shell, there is a local minimum and a local maximum radius in $\nabla^{2} \rho$, and there is a zero (a radius at which $\nabla^{2} \rho=0$ ) between the minimum and maximum radii. This zero is called the odd numbered zero because if the zeros are numbered from the nucleus outerward then each even numbered zero lies between a maximum and a minimum which do not belong to the same shell, whereas each odd numbered zero lies between a minimum and a maximum which belong to the same shell (see Fig. 5.3.1). The properties of the Laplacian of the charge density can be used to obtain a definition of the relative size of an atom. For example, the radius of the outermost maximum, minimum or odd numbered zero of the Laplacian of the charge density can be used as an index of the relative size of an atom. Sagar et al. ${ }^{78}$ reported that the radius of the outermost odd numbered zero of the Laplacian of the charge density exhibits a good correlation with the Bohr theory of an atom. Table 5.3.1


Figure 5.3.1 Schematic plot of $\nabla^{2} \rho(r)$ versus $r$ for a free atom which has $K$ and $L$ shells. a) odd numbered zero; b) even numbered zero.

Table 5.3.1 Radii of the outermost minimum, odd zero and maximum in $\nabla^{2} \rho$.

| Atom | $r_{\min }^{a}$ | $\mathbf{r}_{\text {odd }}^{b}$ | $r_{\max }^{c}$ |
| :---: | :---: | :---: | :---: |
| Li | 2.494 | 3.670 | 4.562 |
| Be | 1.594 | 2.403 | 2.980 |
| B | 1.188 | 1.783 | 2.219 |
| C | 0.942 | 1.404 | 1.754 |
| N | 0.776 | 1. 153 | 1.446 |
| 0 | 0.658 | 0.973 | 1.224 |
| F | 0.569 | 0.840 | 1.058 |
| Na | 3.436 | 3.927 | 4.947 |
| Mg | 2.549 | 2.973 | 3.713 |
| Al | 2.081 | 2.542 | 3.131 |
| Si | 1.760 | 2.241 | 2.741 |
| P | 1.522 | 1.991 | 2.425 |
| S | 1.341 | 1.780 | 2. 165 |
| Cl | 1.198 | 1.610 | 1.954 |

${ }^{\mathrm{a}}$ Radius (a.u.) corresponds to the outermost minimum in $\nabla^{2} \rho$.
${ }^{\mathrm{b}}$ Radius (a. u.) corresponds to the outermost odd numbered zero of $\nabla^{2} \rho$.
${ }^{c}$ Radius (a.u.) corresponds to the outermost maximum in $\nabla^{2} \rho$.
lists the radii corresponding to the outermost minimum, odd numbered zero and maximum of $\nabla^{2} \rho$ for free atoms. In the following discussion the three types of radii are used as indices of the size of free atoms.

First of all, let us discuss how the values of $S(A B)$ change with the electron attracting ability of atoms $A$ and $B$. Suppose we have $a$ molecule, $A B$, in which the ability of atom $B$ to attract electrons is much higher than that of atom A. Let us further suppose that in forming the molecule, atom $A$ loses one electron, while atom $B$ gains one electron. Such would be the case if atom $A$ is a group IA element, and atom $B$ is a group VIIA element. Since atom $A$ loses a valence electron, its valence shell disappears, while for atom $B$, the valence shell is completed (see Fig. 5.3.2). Therefore, we would expect that the equilibrium bond length of molecule $A B\left(r_{e}(A B)\right)$ is shorter than the sum of the outermost shell radii of the two atoms and, therefore, $S(A B)<0$. If the electron attracting ability of atom $A$ increases so that the difference between the electron attracting abilities of the two atoms is small, then electrons are shared by the two atoms rather than being transferred (see Fig. 5.3.3). In this situation, no shell annihilation occurs. Consequently we would predict the equilibrium bond length $r_{e}(A B)$ to be longer than the sum of the outermost minimum radii of the free atoms, $S(A B)>0$. With a further increase of the electron attracting ability of atom $A$, the value of $S(A B)$ would increase further.

On the basis of the above discussion, it is reasonable to assume that $S(A B)$ provides a measure of the electronegativity of atom $A$ relative to atom B. In order to test this hypothesis, Table 5.3.2 presents calculated values of $S(A F)$ where the experimental bond lengths of the


Figure 5.3.2 $\nabla^{2} \rho$ contour map of LiF. Dotted line corresponds to regions in which $\nabla^{2} \rho<0$; solid line corresponds to regions in which $\nabla^{2} \rho>0$. Only the inner shell of Li is observed.


Figure 5.3.3 $\nabla^{2} \rho$ contour map of NF. Valence shells of both atoms are observed and there is a charge concentration in the bonding region ( $\nabla^{2} \rho<0$ ).

Table 5.3.2 $S(A F)$ values obtained from various radii.

| Atom | $S(A F)^{\text {a }}$ | $S(A F)^{\text {b }}$ | $S(A F)^{\text {c }}$ | $\chi_{A}{ }^{\text {d }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Li | -0.035 | -0.345 | -0.474 | 1.04 |
| Be | 0.189 | -0. 207 | -0.363 | 1.55 |
| B | 0.358 | -0.091 | -0.272 | 1.93 |
| C | 0.591 | 0.071 | -0.145 | 2.46 |
| N | 0.850 | 0.249 | -0.006 | 3.04 |
| 0 | 1.042 | 0.382 | 0.098 | 3.47 |
| F | 1.344 | 0.588 | 0.261 | 4. 16 |
| Na | -0.091 | -0.237 | -0.394 | 1.10 |
| Mg | 0.061 | -0.133 | -0.307 | 1.26 |
| Al | 0.130 | -0.076 | -0.254 | 1.41 |
| Si | 0.299 | -0.018 | -0.204 | 1.80 |
| P | 0.437 | 0.061 | -0.138 | 2.11 |
| S | 0.583 | 0.155 | $-0.061$ | 2.44 |
| Cl | 0.741 | 0.256 | 0.021 | 2.79 |
| ${ }^{\text {a }}$ Obtained using $r_{\text {min }}$ in Table 5.3.1. |  |  |  |  |
| ${ }^{\text {b }}$ Obtained using $r_{\text {odd }}$ in Table 5.3.1. |  |  |  |  |
| ${ }^{\text {c }}$ Obtained using $r_{\text {max }}$ in Table 5.3.1. |  |  |  |  |
| Obtained from eq. 5.3.2. |  |  |  |  |

diatomic flourides are taken from the compilation of Huber and Herzberg. ${ }^{79}$ The bond lengths for LiF through $\mathrm{F}_{2}$ and NaF through ClF are $1.564,1.361,1.263,1.272,1.317,1.326,1.412,1.926,1.750,1.654$, 1.601, 1.590, 1.601 and 1.628 angstroms. The Pauling, Sanderson and Allred-Rochow electronegativities of atom A correlate linearly with the computed $\mathrm{S}(\mathrm{AF})$ values of the diatomic fluorides, as shown in Fig. 5.3.4, 5.3.5 and 5.3.6, respectively, where the $S(A F)$ values are obtained by taking the radius of the outermost minimum as the relative size of free atoms. The respective correlation coefficients are $0.991,0.982$ and 0.998. The correlation with the Allred-Rochow electronegativities is especially strong.

Linear regression analysis of the data in Fig. 5.3.6 leads to the following equation

$$
\begin{equation*}
x_{A}=2.26 \frac{r_{e}(A F)-\left(r_{A}+r_{F}\right)}{\left(r_{A}+r_{F}\right)}+1.12 \tag{5.3.2}
\end{equation*}
$$

In effect eq. 5.3 .2 converts the $S(A F)$ values to electronegativities on the Allred-Rochow scale. This formula can also be used to predict the equilibrium bond length of molecule $A F$ given $r_{A}$ and $r_{F}$, and the electronegativity of atom $A$ in the molecule. In addition, the radius of the outermost minimum of an element can be estimated from eq. 5.3.2, provided an estimate of $r_{e}(A F)$ is available.

Allred-Rochow electronegativities are plotted against $S(A F)$ values calculated by using the radius of outermost maximum as the relative size of a free atom in Fig. 5.3.7. Clearly the correlation is weaker than in Fig. 5.3.6 where the radius of the outermost minimum is used as the


Figure 5.3.4 Plot of Pauling electronegativities versus $\mathrm{S}(\mathrm{AF})$ values obtained from the radius of the outermost minimum in $\nabla^{2} \rho$.


Figure 5.3.5 Plot of Sanderson electronegativities versus $S(A F)$ values obtained from the radius of the outermost minimum in $\nabla^{2} \rho$.


Figure 5.3.6 Plot of Allred-Rochow electronegativities versus S(AF) values obtained from the radius of the outermosc minimum in $\nabla^{2} \rho$.


Figure 5.3.7 Plot of Allred-Rochow electronegativities versus S(AF) values obtained from the radius of the outermost maximum in $\nabla^{2} \rho$. (0) indicates the first-row element and (a) indicates the second-row element.
relative size of a free atom. Fig. 5.3.8 shows the plot of Allred-Rochow electronegntivities versus the $\mathrm{S}(\mathrm{AF})$ values obtained by using the radius of the outermost odd numbered zero as the relative size of free atoms. Here again, the correlation is not as good as that in Fig. 5.3.6. Thus, using the radius of the outermost minimum in $\nabla^{2} \rho(r)$ as the relative size of free atoms gives the best correlation with the Allred-Rochow electronegativity scale, which is the widely accepted one. ${ }^{74}$ S(AF) values obtained by using the outermost maximum or odd numbered zero suggest that the difference in electronegativities between first-row and second-row elements should be smaller than indicated by the Allred-Rochow scale. Unless the suggestion is true, the choice of the radius of the outermost minimum as the relative size of a free atom is the best one. The fact that the outermost minimum provides information about the relative size change of an atom in the molecule is also illustrated in Fig. 5.3 .9 where the $\nabla^{2} \rho$ maps for free atom $F$ and molecule BF are shown. Since all free atoms have spherical symmetry, a spherical shell with $\nabla^{2} \rho<0$ is observed in $F$. In molecule $B F$ the valence shells of $B$ and $F$ are distorted so that the valence shell $\nabla^{2} \rho$ < 0 regions are no longer spherical. The radius of the outermost minimum corresponds to the region of valence shell charge concentration in which the major chemical changes occur.

## 5.4 $\mathrm{S}_{\mathrm{N}} 2$ Reactions at Carbon and Silicon

The chemistry of first-row elements differs consider $y$ from that of the second-row elements. The differences are exhibited in the bonding arrangement, molecular stabilities, reaction processes and other


Figure 5.3.8 Plet of Allred-Rochow electronegativities versus S(AF) values obtained from the radius of the outermost odd numbered zero in $\nabla^{2} \rho$. ( 0 ) indicates the first-row element and (ם) indicates the second-row element.


Figure 5.3.9 Contours of $\nabla^{2} \rho$, a) $F$ b) BF.
properties. Such effects are normally attributed to the so called d-orbital effect. ${ }^{80}$ For second-row elements, d-arbitals can be used to form bonds while for the first-row elements, this is not possible. Nevertheless, the explanation needs to be proven. Recent success in synthesizing conjugated compounds of second-row elements 81 is a challenge to the classical belief that second-row elements can not form delocalized $\pi$-bonds which are common for first-row elements. In this section, the focus is on the different reaction pathways for first-row and second-row elements. To be more specific, the bimolecular nucleophilic substitution reactions of carbon and silicon are considered.

Bimolecular nucleophilic substitution reactions with carbon at the center $\left(S_{N} 2(C)\right)$ invariably take place by an inversion process. In the gas phase, the potential energy surface has a double well shape and the pentacoordinated carbon is the transition state. However, a considerable body of evidence has been accumulated 82 showing that-bimolecular substitution reactions at tetracoordinated silicon ( $\mathrm{S}_{\mathrm{N}} 2(\mathrm{Si})$ ) proceed via a pentacoordinated intermediate and that both the retention and inversion processes compete with one another. The reactions exhibit a $V$ shape potential energy surface with the pentacoordinated silicon at the bottom of the energy surface. Furthermare, the reaction at silicon is considerably faster than at carbon. Studies indicate that the stablization of pentacoordinated silicon is not due to the d-orbitals and the destabilization of pentacoordinated carbon is attributed to the small size of the carbon . stom and hence to the crowded packing of the ligands. ${ }^{82 e}$ The retention process (front-side attack) is explained ${ }^{82 d}$ by
increasing the favorable interaction between the nucleophile and Si and/or decreasing the unfavorable interaction between the nucleophile and the leaving group. To gain further insight into differences in $\mathrm{S}_{\mathrm{N}} 2(\mathrm{C})$ and $\mathrm{S}_{\mathrm{N}} 2(\mathrm{Si})$ reactions, the Laplacian of the charge density is employed in this thesis. It has been suggested that the Laplacian of the charge density can be used to study chemical reactivity. ${ }^{5}$ The initial approach of the reactants can be determined by aligning regions of local charge concentration with regions of local charge depletion as determined by the Laplacian of the charge density. Thus, the Laplacian of the charge density of $\mathrm{CH}_{3} \mathrm{X}$ and $\mathrm{SiH}_{3} \mathrm{X}$ molecules has been calculated, where the leaving group X is $\mathrm{H}, \mathrm{NH}_{2}, \mathrm{OH}, \mathrm{OOH}, \mathrm{F}, \mathrm{PH}_{2}, \mathrm{SH}, \mathrm{Cl}, \mathrm{CCH}, \mathrm{CN}$ or NC for $\mathrm{CH}_{3} \mathrm{X}$ and $\mathrm{H}, \mathrm{OH}, \mathrm{F}$, SH or Cl for $\mathrm{SiH}_{3} \mathrm{X}$. The calculations for $\mathrm{SiH}_{3} \mathrm{X}$ are similar to those for $\mathrm{CH}_{3} \mathrm{X}$ (see section 3.2), except that they are only carried out at the Hartree-Fock level.

Before discussing the results, it is helpful to review the properties associated with the extrema in $\nabla^{2} \rho$. As discussed earlier, the Laplacian of the charge density provides information about where in space the charge is concentrated or depleted. If $\nabla^{2} \rho<0$, then the charge is concentrated in the region of space being considered. If $\nabla^{2} \rho>0$, then the charge is depleted from the region of space. The local minimum in $\nabla^{2} \rho$ is the local minimum of charge depletion or the local maximum of charge concentration. The local maximum in $\nabla^{2} \rho$ is the local maximum of charge depletion.

The $\nabla^{2} \rho$ contour map of $\mathrm{CH}_{3} \mathrm{Cl}$ is shown in Fig. 5.4.1. Two observations should be addressed. First of all, instead of a spherical valence-shell charge concentration, as observed in free atoms, the valence-shell


Figure 5.4.1 $\nabla^{2} \rho$ contour map of $\mathrm{CH}_{3} \mathrm{Cl}$ in the ClCH plane.
charge of carbon is distorted such that the valence-shell charge is concentrated along each bond with H and $\mathrm{Cl}\left(\nabla^{2} \rho<0\right)$ and opposite to every bond, there is a valence-shell charge depletion region ( $\nabla^{2} \rho>0$ ). Secondly, the $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{Cl}$ bonds are predominantly covalent as shown by the charge concentration regions between bonded atoms $\left(\nabla^{2} \rho<0\right)$. This may be compared with the predominantly ionic bond illustrated in Fig. 5.3.2, where the charge is depleted from the bonding region ( $\nabla^{2} \rho>0$ ). Calculations of the valence-shell charge concentration ${ }^{5}$ (VSCC) of $C$ in $\mathrm{CH}_{3} \mathrm{X}$ show that there are four minima of $\nabla^{2} \rho$ (maximum charge concentration), each located along the bond path and there are four maxima in $\nabla^{2} \rho$ (maximum charge depletion), each located opposite to the boind. The values of VSCC are listed in Table 5.4.1. For all the $\mathrm{CH}_{3} \mathrm{X}$ molecules studied, the values of the nonbonding maxima opposite to the C-X bond are larger than those opposite to the C-H bond, which means that the charge is more depleted in the region opposite to the $C-X$ bond than in the region opposite to the $\mathrm{C}-\mathrm{H}$ bond. It is also noted that the charge densities ( $\rho$ values) are different, though the differences are small, in these areas as well. The local maximum of $\nabla^{2} \rho$ opposite to the C-X bond has a even smaller charge density than that at the local maximum opposite to the $\mathrm{C}-\mathrm{H}$ bond. Thus, the region opposite to the $\mathrm{C}-\mathrm{X}$ bond is easier to subject to nucleophilic attack which explains why back side attack is observed in $\mathrm{S}_{\mathrm{N}} 2(\mathrm{C})$ reactions. According to Bader et al., 5 the region with the large maximum $\nabla^{2} \rho$ value corresponds to the LUMO of the molecule. Thus, the region opposite to the $C-X$ bond is the region where the LUMO is mainly concentrated. The $\nabla^{2} \rho$ contour map of $\mathrm{CH}_{3} \mathrm{Li}$ is shown in Fig. 5.4.2. Instead of charge depletion in the nonbonding area

Table 5.4.1 Extrema in VSCC of carbon in $\mathrm{CH}_{3} \mathrm{X}$ (a.u.).

| $\mathrm{CH}_{3} \mathrm{X}$ | CY | CY bond minima |  |  | Associated maxima |  |  | $\Delta\left(\nabla^{2} \rho_{\max }\right)^{\mathrm{d}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\rho^{\text {b }}$ | $\nabla^{2} \rho^{c}$ |  | $\rho$ | $\nabla^{2}$ |  |
| $\mathrm{CH}_{3} \mathrm{H}$ | CH | 0.969 | 0.295 | -1.177 | 1.008 | 0.170 | 0.117 | 0.000 |
|  |  | (1.014 | 0.296 | -1.246 | 1.009 | 0.169 | 0.081 | $0.000)^{e}$ |
| $\mathrm{CH}_{3} \mathrm{CCH}$ | CC | 1.013 | 0.276 | -0.958 | 1.019 | 0.166 | 0.158 | 0.025 |
|  | CH | 0.960 | 0.302 | -1.244 | 1.008 | 0.168 | 0. 133 |  |
| $\mathrm{CH}_{3} \mathrm{CN}$ | CC | 1.029 | 0.268 | -0.894 | 1.023 | 0.163 | 0.169 |  |
|  |  | (1.041 | 0.269 | -0.910 | 1.017 | 0.163 | 0.134) |  |
|  | CH | 0.956 | 0.306 | -1.275 | 1.008 | 0.169 | 0.131 | 0.038 |
|  |  | (1.000 | 0.307 | -1.332 | 1.012 | 0.169 | 0.091 | $0.044)$ |
| $\mathrm{CH}_{3} \mathrm{NC}^{\mathrm{C}}$ | CN | 1.056 | 0.265 | -0.758 | 1.064 | 0.144 | 0.261 | 0.076 |
|  | CH | 0.949 | 0.314 | -1.371 | 1.021 | 0.158 | 0.185 |  |
| $\mathrm{CH}_{3} \mathrm{PH}_{2}$ | CP | 0.976 | 0.244 | -0.805 | 1.011 | 0.170 | 0.108 | 0.032 |
|  | $\mathrm{CH}_{1}{ }^{\text {f }}$ | 0.965 | 0.298 | -1.200 | 1.002 | 0.173 | 0.076 | 0.047 |
|  |  | 0.967 | 0.296 | -1.181 | 1.001 | 0.173 | 0.061 | 0.042 |
|  |  | 0.966 | 0.297 | -1.187 | 1.002 | 0.173 | 0.066 |  |
| $\mathrm{CH}_{3} \mathrm{SH}$ | CS | 1.003 | 0.222 | -0.660 | 1.037 | 0.156 | 0.186 |  |
|  |  | (1.017 | 0.221 | -0.666 | 1.026 | 0.157 | 0.148) |  |
|  |  | 0.958 | 0.305 | -1.270 | 1.002 | 0.170 | 0.062 | 0.124 |
|  |  | (1.001 | 0.306 | -1.329 | 1. 005 | 0.169 | 0.030 | 0.119) |

Table 5.4.1 (continued)

| $\mathrm{CH}_{3} \mathrm{X}$ | CY bond minima |  |  | Associated_maxima |  |  | $\Delta\left(\nabla^{2} \rho_{\max }\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $r$ | $\rho$ | $\nabla^{2} \rho$ | r | $\rho$ | $\nabla^{2} \rho$ |  |
| $\mathrm{CH}_{3} \mathrm{SH}$ | $\mathrm{CH}_{2} 0.957$ | 0.306 | -1.282 | 1.004 | 0.169 | 0.088 | 0.098 |
|  | (1.000 | 0.307 | -1.342 | 1.008 | 0.168 | 0.057 | 0.052) |
|  | CH 0.957 | 0.306 | -1.278 | 1.003 | 0.169 | 0.079 | 0.107 |
|  | (1.000 | 0.307 | -1.338 | 1.007 | 0.169 | 0.048 | 0.100) |
| $\mathrm{CH}_{3} \mathrm{Cl}$ | CCl 1.038 | 0. 197 | -0.496 | 1.079 | 0.137 | 0.251 |  |
|  | (1.052 | 0.197 | -0.568 | 1.046 | 0.144 | 0.209) |  |
|  | CH 0.948 | 0.315 | -1.377 | 1.010 | 0.162 | 0.096 | 0. 155 |
|  | (0.990 | 0.316 | -1.433 | 1.013 | 0.162 | 0.062 | 0.146) |
| $\mathrm{CH}_{3} \mathrm{NH}_{2}$ | CN 1.021 | 0.276 | -0.933 | 1.040 | 0.155 | 0.223 | 0.036 |
|  | $\mathrm{CH}_{1} 0.961$ | 0.300 | -1.246 | 1.016 | 0.160 | 0.187 | 0.089 |
|  | $\mathrm{CH}_{2} 0.958$ | 0.305 | -1.287 | 1.010 | 0.164 | 0.135 | 0.071 |
|  | CH 0.959 | 0.303 | -1.273 | 1.012 | 0.163 | 0.152 |  |
| $\mathrm{CH}_{3} \mathrm{OH}$ | CO 1.057 | 0.273 | -0.741 | 1.076 | 0.139 | 0.281 |  |
|  | (1.054 | 0.273 | -0.728 | 1.043 | 0.146 | 0.235) |  |
|  | $\mathrm{CH}_{1} 0.950$ | 0.314 | -1.384 | 1.015 | 0.159 | 0.149 | 0.132 |
|  | (0.992 | 0.315 | -1.437 | 1.015 | 0.159 | 0.116 | $0.119)$ |
|  | $\mathrm{CH}_{2} 0.954$ | 0.308 | -1.331 | 1.022 | 0.155 | 0.198 | 0.083 |
|  | (0.998 | 0.308 | -1.383 | 1.020 | 0. 156 | 0.160 | $0.075)$ |
|  | $\mathrm{CH} \quad 0.952$ | 0.310 | $-1.349$ | 1.020 | 0.156 | 0.181 | 0.099 |
|  | 10.996 | 0.311 | -1.401 | 1.019 | 0.15\% | 0.145 | 0.090) |

Table 5.4.1 (continued)

| $\mathrm{CH}_{3} \mathrm{X}$ | CY | CY bond minima |  |  | Associated_maxima |  |  | $\Delta\left(\nabla^{2} \rho_{\max }\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\rho$ | $\nabla^{2} \rho$ |  | $\rho$ | $\nabla^{2} \rho$ |  |
| $\mathrm{CH}_{3} \mathrm{OOH}$ | CO | 1.079 | 0.278 | -0.732 | 1.091 | 0.133 | 0. 284 | 0.124 |
|  | $\mathrm{CH}_{1}$ | 0.951 | 0.312 | -1.372 | 1.012 | 0.160 | 0. 160 | 0.088 |
|  | $\mathrm{CH}_{2}$ | 0.949 | 0.313 | -1.379 | 1.020 | 0.159 | 0.196 | 0.100 |
|  | CH | 0.949 | 0.313 | -1.377 | 1.018 | 0.159 | 0. 184 |  |
| $\mathrm{CH}_{3} \mathrm{~F}^{\mathrm{i}}$ | CF | 1.057 | 0.i.52 | -0.379 |  |  |  |  |
|  |  | (1.0'50 | 0.256 | -0.442 | 1.065 | 0.134 | 0.277) |  |
|  | CH | 0.944 | 0.319 | -1.443 | 1.033 | 0.149 | 0.204 |  |
|  |  | (0.986 | 0.319 | -1.489 | 1.029 | 0.149 | 0.187 | $0.090)$ |

${ }^{\text {a }}$ Distance between extreme point and carbon (a.u.).
${ }^{\mathrm{b}}$ Charge density at extreme point (a.u.).
c Value of the Laplacian of the charge density at the extreme point (a.u.).
${ }^{d}$ The value is defined in eq. 5.4.1.
e Values in parentheses are obtained from $\mathrm{HF} /[5 \mathrm{~s} 4 \mathrm{p} / 3 \mathrm{~s}]^{* *} / / \mathrm{HF} / 6-31+\mathrm{G}^{*}$ calculations.
${ }^{f}$ For molecules with $C_{s}$ symmetry, there are two types of C-H bond. The C-H bond corresponds to the one which lies in the symmetry plane.
${ }^{g}$ Ihe C-H bonds correspond to the ones symmetric to the symmetry plane.
${ }^{h}$ The average values of the three methyl $C-H$ bonds.
${ }^{\text {i }}$ With the $6-31+G^{*}$ basis set no local maximum was found in regions opposite to the C-F bond.


Figure 5.4.2 $\nabla^{2} \rho$ contour map of $\mathrm{CH}_{3} \mathrm{Li}$ in the HCLi plane.
opposite to the C-X bond, a negative value of the Laplacian of the charge density is observed in the region opposite to the C-Li bond. Hence, nucleophilic attack is favoured in the region opposite to the C-H bond where the charge is depleted (local maximum in $\nabla^{2} p=0.035$ ) and the leaving group would be H .

Another important note from Table 5.4.1 is that the value of the nonbonding maximum of $\nabla^{2} \rho$ opposite to the $C-X$ bond changes with $X$. Using the classification of $X$ described in section 4.2, the value of $\nabla^{2} \rho$ correlates with the electronegativity of $X$ within each group. Hence, it is correlated with the intrinsic barriers of the symmetric reactions $\mathrm{X}^{-}+\mathrm{CH}_{3} \mathrm{X} \rightarrow \mathrm{X}^{-}+\mathrm{CH}_{3} \mathrm{X}$ as well.

Thus, for $\mathrm{S}_{\mathrm{N}}{ }^{2(C)}$ reactions, due to the cominant covalent bonding feature, the valence-shell charge concentrations of carbon are directed toward each bond path and holes are created in regions opposite to each bond. The depth of the hole is related to the electronegativity of X . The greater the electronegativity of X , the greater the contribution of $X$ to the bonding orbital. The contribution of carbon to the bonding orbital is correspondingly small and as a result, the C contribution to virtual orbital is large. Hence, the hole opposite to the C-X bond is deeper and it is the best target for nucleophilic attack. Also carbon is "reluctant" to form pentacoordinated species due to its covalent dominant bonding feature. thus, the pentacoordinated TS has a higher energy.

The $\nabla^{2} \rho$ contour map of $\mathrm{SiH}_{3} \mathrm{X}$ is shown in Fig. 5.4.3. Comparison with Fig. 5.4.1, indicates the absence of the valence shell of Si. Valence-shell charge concentration calculations were performed for $\mathrm{SiH}_{3} \mathrm{X}$


Figure 5.4.3 $\nabla^{2} \rho$ contour map of $\mathrm{SiH}_{3} \mathrm{Cl}$ in the ClSiH plane.
but no local maxima and no local minima of $\nabla^{2} \rho$ were found. Charge integration results using the molecular structure theory ${ }^{1}$ are provided in Table 5.4.2. Comparison with the results for $\mathrm{CH}_{3} \mathrm{X}$ (Table 4.2.3), indicates that the $\mathrm{Si}-\mathrm{H}$ and $\mathrm{Si}-\mathrm{X}$ bonds have more ionic character and that silicon has a charge of about +3 . Obviously, the large positive charge makes nucleophilic attack much easier. This is one of the reasons why $\mathrm{S}_{\mathrm{N}} 2(\mathrm{Si})$ reactions are much faster. Moreover, the large positively charged $c$ ster can attract a nucleophile from all directions and substituents effect are small. Thus, the reaction can proceed via both the retention and inversion processes. Furthermore, the predominantly ionic bonding involved with Si makes the pentacoordinated Si more stable. Thus, instead of having a pentacoordinated transition state as in the case of a $S_{N} 2(C)$ reaction, a $S_{N} 2(S i)$ reaction has a pentacoordinated intermediate, which lies at the bottom of the potential energy surface. This explains why the $\mathrm{S}_{\mathrm{N}} 2(\mathrm{Si})$ reactions are much faster.

Although, different substituents play a minor role in $S_{N} 2(S i)$ reactions, they do, however, affect the ratio of retention to inversion products or in another words the ratio of front- to back-side attacks. VSCC calculations of Si can not provide information about the ratio, as noted earlier. Nonetheless, an interesting relationship is observed between the ratio and VSCC study of $\mathrm{CH}_{3} \mathrm{X}$. Table 5.4 .1 provides values of the difference between the local maximum of $\nabla^{2} \rho$ opposite to the $C-X$ bond and that opposite to the $C-H$ bond $\left(\Delta\left(\nabla^{2} \rho_{\max }\right)\right.$ )

$$
\begin{equation*}
\Delta\left(\nabla^{2} \rho_{\max }\right)=\nabla^{2} \rho_{\max (b)}-\nabla^{2} \rho_{\max (f)} \tag{5.4.1}
\end{equation*}
$$

Table 5.4.2 Integrated charges on atom $X$ in $\operatorname{SiH}_{3} X(e)$.

| $\mathrm{SiH}_{3} \mathrm{X}$ | $-\mathrm{Q}_{\mathrm{H}}$ | $-\mathrm{Q}_{\mathrm{X}}$ |
| :--- | :--- | :--- |
| $\mathrm{SiH}_{3} \mathrm{H}$ | 0.726 | 0.726 |
| $\mathrm{SiH}_{3} \mathrm{OH}$ | $0.734^{\mathrm{a}}$ | 0.866 |
| $\mathrm{SiH}_{3} \mathrm{~F}$ | 0.725 | 0.916 |
| $\mathrm{SiH}_{3} \mathrm{SH}$ | $0.725^{a}$ | 0.725 |
| $\mathrm{SiH}_{3} \mathrm{Cl}$ | 0.720 | 0.791 |

${ }^{\text {a }}$ Average charge on three methyl hydrogens.
where $\nabla^{2} \rho_{\max }(b)$ is the local maximum value of $\nabla^{2} \rho$ at the back side of the $\mathrm{Si}-\mathrm{X}$ bond and $\nabla^{2} \rho_{\max (f)}$ is the local maximum value of $\nabla^{2} \rho$ at the front side of the Si-X bond. In principle, if this difference is large, back-side attack is preferred. In the case of $\mathrm{S}_{\mathrm{N}} 2(\mathrm{C})$ reactions, the different substituents play a leading role in deciding which way the nucleophilic attack will proceed, because carbon does not have a large charge and does not have as large an attracting power as Si. Furthermore, the entering nucleophile always chooses to attack the deeper hole even though, the difference between the depths of the holes is quite small. Thus, back-side attack is always observed for $S_{N}{ }^{2}$ (C) reactions. Hence, the value $\Delta\left(\nabla^{2} \rho_{\text {max }}\right)$ does not relate to the ratio of front- and back-side attack in $S_{N} 2(C)$ reactions. However, this number seems related to the ratio of front-and back-side attack in $S_{N} 2(S i)$ reactions. From Table 5.4.1, the preference for back-side attack increases in the order $\mathrm{H}<\mathrm{CCH}<\mathrm{CN}, \mathrm{PH}_{2}<\mathrm{NH}_{2}, \mathrm{NC}<\mathrm{OH}, \mathrm{OOH}, \mathrm{F}<\mathrm{SH}<$ Cl . The experimentally observed order is $\mathrm{H}<\mathrm{OR}<\mathrm{F}, \mathrm{SR}<\mathrm{Cl} .{ }^{82 \mathrm{~b}, \mathrm{c}}$ Therefore, it suggests that although the difference in $\nabla^{2} \rho$ between front and back side can not be revealed by VSCC in $\mathrm{SiH}_{3} \mathrm{X}$, the difference in the extent of charge depletion still exists. Thus, point by point calculations were carried out. The results for molecules $\mathrm{SiH}_{3} \mathrm{~F}$ and $\mathrm{SiH}_{3} \mathrm{Cl}$ are provided in Table 5.4.3. The points were selected both at front and back side of X (i.e. opposite to $\mathrm{Si}-\mathrm{H}$ and Si X bond) with the distance to Si within the range $1.76 \pm 0.5 \mathrm{a}$. u.. This radius was chosen sinc $\equiv$ in $\mathrm{CH}_{3} \mathrm{X}$, the calculated extrema in VSCC of carbon occur at distances about 1.00 a. u. (see Table 5.4.1) which is very close to the radius of the outermost minimum of a free carbon atom ( $0.342 \mathrm{a} . \mathrm{u}$.). Thus

Table 5.4.3 $\rho$ and $\nabla^{2} \rho$ values at selected points in $\mathrm{SiH}_{3} \mathrm{~F}$ and $\mathrm{SiH}_{3} \mathrm{Cl}$.

| $\mathrm{SiH}_{3} \mathrm{X}$ | Point opposite to Si-H |  |  | Point_opposite_to_Si-x |  |  | $\Delta\left(\nabla^{2} \rho\right)^{\mathrm{d}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{r}^{\text {a }}$ | $\rho^{\text {b }}$ | $\nabla^{2} \rho^{c}$ | r | $\rho$ | $\nabla^{2} \rho$ |  |
| $\mathrm{SiH}_{3} \mathrm{~F}$ | 1.259 | 0.063 | 1.083 | 1.259 | 0.061 | 1.102 | 0.019 |
|  | 1.516 | 0.036 | 0.223 | 1.516 | 0.035 | 0.236 | 0.014 |
|  | 1.753 | 0.027 | 0.088 | 1.753 | 0.025 | 0.095 | 0.007 |
|  | 2.004 | 0.020 | 0.055 | 2.004 | 0.019 | 0.056 | 0.001 |
|  | 2.247 | 0.015 | 0.040 | 2.247 | 0.013 | 0.039 | -0.001 |
| $\mathrm{SiH}_{3} \mathrm{Cl}$ | 1.245 | 0.067 | 1.171 | 1.245 | 0.065 | 1.191 | 0.020 |
|  | 1.515 | 0.039 | 0.208 | 1.515 | 0.036 | 0227 | 0.018 |
|  | 1.767 | 0.029 | 0.071 | 1.767 | 0.026 | 0.084 | 0.013 |
|  | 1.991 | 0.023 | 0.046 | 1.991 | 0.020 | 0.053 | 0.007 |
|  | 2.241 | 0.017 | 0.037 | 2.241 | 0.014 | 0.038 | 0.001 |

${ }^{\mathrm{a}}$ The distance to Si (a.u.).
${ }^{b}$ The $\rho$ value at the point (a.u.).
${ }^{c}$ The $\nabla^{2} \rho$ value at the point (a.u.).
${ }^{d}$ The difference in $\nabla^{2} \rho$ values between points at back and at front.
the outermost minimum of a free Si atom (1.76 a. u. see Table 5.2.1) is used here. The data in Table 5.4.3 indicate that incieed there are differences in charge density and $\nabla^{2} \rho$ values at front and back side of molecules $\mathrm{SiH}_{3} \mathrm{~F}$ and $\mathrm{SiH}_{3} \mathrm{Cl}$. Furthermore, as observed in $\mathrm{CH}_{3} \mathrm{X}$, the back side nas a small charge density and larger positive $\nabla^{2} \rho$ values. Moreover, the difference is larger in SiH. ${ }^{\mathrm{Cl}}$ than in $\mathrm{SiH}_{3} \mathrm{~F}$. Therefore, the difference in the extent of charge depletion at front and back side seems to be the reason for the different ratio of front- and back-side attacks.

In summary, the difference between $S_{N} 2(C)$ and $S_{N} 2(S i)$ reactions is mainly caused by the different electronegativities, polarizabilities and bonding characteristics of carbon and silicon. Gronert et al. ${ }^{83}$ have recently reached a similar conclusion. Silicon forms ionic dominated bonds and it possesses a large positive charge in molecules. This enables $S_{N} 2(S i)$ reactions to proceed via both the retention and inversion processes. Moreover, the predominantly ionic bonds make the pentacoordinated silicon stable. Thus, instead of having a transition state, the reaction has a stable pentacoordinated intermediate which makes the reaction much faster. Hence, electronegativity and bonding character are important factors which make the chemistry of first-row elements different from that of the second-row elements. The observed stereochemistry of $S_{N} 2(\mathrm{Si})$ reactions is apparently related to the extent of charge depletion in different regions of space. If other conditions are the same, large differences in charge depletion between front and back side regions will result in a inversion dominated process. Otherwise, a retention dominated reaction process will be favoured.

## Conclusions


#### Abstract

Properties of the electronic charge distribution provide valuable insight into chemical problems. The integrated charges obtained from the molecular structure theory can be used to study the electronic structure of the transition state. The results indicate that the assumption that the reactant and product make the same contribution to the transition state wavefunction does not bear out for asymmetric reactions. The contributions of reactant and product to the $T S$ are related to the type of reaction and to the exothermicity of the reaction. An exothermic reaction has an early $T S$, and the reactant contribution to the $T S$ is larger than that of the product. Nevertheless, in some reactions, valence-bond configurations $N: R \cdot X$ and $N \cdot \cdot R$ X: (which are constituents of the reactant and product wavefunctions, respectively) make very similar contributions to the $T S$ wavefunction. Therefore, in these reactions, the entering nucleophile and leaving group have equal charges at the TS.


The charge development on a leaving group (or entering nucleophile) is related not only to the exothermicity of the reaction but also to the electronegativity of X (or N ) and to the contributions of $\psi_{3}$ or $\psi_{4}$ to the TS. If the electronegativities are equal and the contributions of $\psi_{3}$ or $\psi_{4}$ to the TS are equal, then the charge development on $X$ (or N) correlates linearly with the exothermicity of the reaction.

The height of intrinsic barriers of symmetric reactions is affected by the type of the $\mathbb{C}-X$ bonding, the electronic structure of the $T S$ and
the electronegativity of $X$. An $s p$ hybridized $X$ group leads to a relatively higher barrier. A large contribution from $\psi_{3}$ results in a lower barrier. A highly electronegative X yields a lower barrier.

For the $S_{N}{ }^{2}$ (C) reactions reported in this thesis, the rate-equilibrium relationship is observed when the reactions belong to the same type of reaction (as classified in section 4.2) and the $\alpha$ parameter appears to correlate with the properly defined geometry parameter $R_{\alpha}$.

The Laplacian of the charge density study reveals that the differences in $S_{N} 2$ (C) and $S_{N} 2$ (Si) reaction processes are mainly caused by the different electronegativities, polarizabilities and bonding characteristics of carbon and silicon. The large positively charged Si can attract a nucleophile from all directions. The stereochemistry of silicon appears to correlate with the extent of charge depletion in various regions of space.

## Appendices Optimized Structures and Energies of Various Species

Energies are in atomic units, bond lengths are in angstroms and angles are in degrees. Unless specified otherwise, the basis sets are 6-31++G** except for the three methyl hydrogens for which the 6-31G basis sets is used.

## 1 Ions

Geometry parameters are defined in scheme 1.


Scheme 1
1.1 At the HF and MP2' levels.

| $X^{-}$ | -EHF | -EUMP2 | $r_{1}$ | $\beta$ |
| :--- | :---: | :---: | :---: | :---: |$r_{2}$

1.1 (continued)

| $\mathrm{x}^{-}$ | -EHF | -EUMP2 | $\mathrm{r}_{1}$ | $\beta$ | $\mathrm{r}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OH | 75.38419 | 75.60481 | 0.9481 |  |  |
| SH | 398.11122 | 398.25287 | 1.3377 |  |  |
| CCH | 76.21247 | 76.48269 | 1.2331 | 180.0 | 1.0604 |
| $\mathrm{NH}_{2}$ | 55.52768 | 55.73527 | 1.0161 | 103.489 |  |
| $\mathrm{PH}_{2}$ | 341.85785 |  | 1.4250 | 93.596 |  |
| OOH | 150. 16502 |  | 1. 4689 | 101.804 | 0.9461 |
| 1.2 At the MP2 level. |  |  |  |  |  |
| $\chi^{-}$ | -EUMP2 | $\mathrm{r}_{1}$ | $\beta$ |  |  |
| CN | 92.61141 | 1. 2007 |  |  |  |
| OH | 75.60530 | 0.9705 |  |  |  |
| SH | 398.25287 | 1.3392 |  |  |  |
| CCH | 76.48399 | 1.2616 | 180.000 |  |  |
| $\mathrm{NH}_{2}$ | 55.73553 | 1.0294 | 102.969 |  |  |
| $\mathrm{PH}_{2}$ | 341.99299 | 1.4222 | 92.101 |  |  |

## 2 Molecule $\mathrm{CH}_{3} \mathrm{X}$ and $\mathrm{SiH}_{3} \mathrm{X}$

$2.1 \mathrm{C}_{3 \mathrm{v}}$ symmetry.
Geometry parameters are defined in scaeme 2.1.


Scheme 2.1
2.1.1 At the HF and MP2' levels.

| $\mathrm{AH}_{3} \mathrm{X}$ | $-E^{a}$ | $r_{x}$ | $\alpha$ | $r_{h}$ | $r_{1}$ | $r_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CH}_{3} \mathrm{H}^{\mathrm{b}}$ | $\begin{aligned} & 40.19567 \\ & 40.33849 \end{aligned}$ | 1.0840 | 109.471 | 1.0840 |  |  |
| $\mathrm{CH}_{3} \mathrm{H}^{\mathrm{C}}$ | $\begin{aligned} & 40.20217 \\ & 40.37141 \end{aligned}$ | 1.0840 | 109.471 | 1.0840 |  |  |
| $\mathrm{CH}_{3} \mathrm{~F}$ | $\begin{aligned} & 139.04423 \\ & 139.35979 \end{aligned}$ | 1.3714 | 108.493 | 1.0807 |  |  |
| $\mathrm{CH}_{3} \mathrm{Cl}$ | $\begin{aligned} & 499.09416 \\ & 499.37238 \end{aligned}$ | 1.7855 | 108.421 | 1.0779 |  |  |
| $\mathrm{CH}_{3} \mathrm{CN}$ | $\begin{aligned} & 131.93117 \\ & 132.35444 \end{aligned}$ | 1.4690 | 109.748 | 1.0821 | 1.1356 |  |
| $\mathrm{CH}_{3} \mathrm{NC}$ | $\begin{aligned} & 131.90083 \\ & 132.31441 \end{aligned}$ | 1.4233 | 109. 437 | 1.0808 | 1.1521 |  |
| $\mathrm{CH}_{3} \mathrm{CCH}$ | $\begin{aligned} & 115.87154 \\ & 116.26951 \end{aligned}$ | 1.4689 | 110.510 | 1.0837 | 1.1900 | 1.0568 |
| $\mathrm{SiH}_{3} \mathrm{H}^{\mathrm{b}}$ | 291.22630 | 1.4746 | 109.471 | 1. 4746 |  |  |
| $\mathrm{SiH}_{3} \mathrm{~F}$ | 390.15539 | 1.6048 | 108.201 | 1.4681 |  |  |
| $\mathrm{SiH}_{3} \mathrm{Cl}$ | 750.18467 | 2.0690 | 108.227 | 1. 4668 |  |  |
| The RHF Basis s Basis hydroge MP2/6-3 | $\begin{aligned} & \text { nergy is f } \\ & 6-31+G^{*} \\ & \text { t } 6-31++G^{*} \\ & \text { Calculat } \\ & +G^{* *} / / \mathrm{HF} / 6 \end{aligned}$ | owed by <br> for all s done +G* lev | he MP2' <br> the aton the $\mathrm{HF} /$ . | $\begin{gathered} \text { includ } \\ 31++G= \end{gathered}$ | the $4 F / 6-31$ | and |

2.1.2 At the MPZ level.

| $\mathrm{CH}_{3} \mathrm{X}$ | -EUMP2 | $r_{x}$ | $\alpha$ | $r_{\text {h }}$ | $r_{1}$ | $\mathrm{r}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CH}_{3} \mathrm{H}^{\mathrm{b}}$ | 40.33861 | 1.0905 | 109.471 | 1.0905 |  |  |
| $\mathrm{CH}_{3} \mathrm{H}^{\mathrm{C}}$ | 40.37134 | 1.0905 | 109.471 | 1.0906 |  |  |
| $\mathrm{CH}_{3} \mathrm{~F}$ | 139.36074 | 1.4056 | 108. 104 | 1.0900 |  |  |
| $\mathrm{CH}_{3} \mathrm{Cl}$ | 499.37263 | 1.7787 | 108.880 | 1.0885 |  |  |
| $\mathrm{CH}_{3} \mathrm{CN}$ | 132.35876 | 1.4621 | 110.030 | 1.0919 | 1.1795 |  |
| $\mathrm{CH}_{3} \mathrm{NC}^{\mathrm{N}}$ | 132.31695 | 1.4254 | 109.253 | 1.0907 | 1. 1862 |  |
| $\mathrm{CH}_{3} \mathrm{CCH}$ | 116.27158 | 1.4623 | 110.735 | 1.0935 | 1.2211 | 1.0625 |

$2.2 \mathrm{C}_{\mathrm{s}}$ symmetry.
Geometry parameters are defined in scheme 2.2.



Scheme 2.2
2.2.1 At the HF and MP2' level.


| $\mathrm{SiH}_{3} \mathrm{SH}$ | -EHF 688.77627 | $r_{x}$ | 2.1525 | $\alpha_{1}$ | 105.304 | $r_{1}$ | 1.3293 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | $r_{h 1}$ | 1.4693 | $\alpha_{2}$ | 110.960 | $\beta$ | 97.460 |
|  |  | $r_{h 2}$ | 1.4716 | $\delta$ | 108.856 |  |  |

2.2.2 At the MP2 level.


## 3 Ion-molecule Complexes

3. $1 \mathrm{C}_{3 \mathrm{v}}$ symmetry

Geometry parameters are defined in scheme 3.1


Scheme 3.1

### 3.1.1 At the HF and MP2' levels.

$$
\begin{array}{lccc}
\mathrm{H}^{-} \cdots \mathrm{RH} & \text {-EHF } 40.68460 & r_{\mathrm{n}} 5.1677 & \alpha 110.031 \\
& \text {-EUMP2 40.85093 } & r_{\mathrm{x}} 1.0868 & \\
\mathrm{H}^{-} \cdots \mathrm{RF} & \text {-EHF 139.54327 } & r_{\mathrm{h}} 1.0830 & \\
& & & r_{\mathrm{n}} 3.2381
\end{array} \quad \alpha 108.433
$$



| HCC－${ }^{-} \cdot \mathrm{RH}$ | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 116.41029 \\ & 116.83067 \end{aligned}$ | $r_{n} 4.3898$ | 人 110.260 | $r_{1}^{\prime} 1.2329$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{r}_{\mathrm{x}} 1.0877$ |  | $r_{2}^{\prime} 1.0603$ |
|  |  |  | $r_{h} 1.0827$ |  |  |
| $\mathrm{F}^{-} \cdot \cdot \mathrm{RF}$ | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 238.48328 \\ & 239.00804 \end{aligned}$ | $r_{n} 2.6739$ | 人 108.125 |  |
|  |  |  | $r_{x} 1.4155$ |  |  |
|  |  |  | $r_{h} 1.0739$ |  |  |
| $\mathrm{F}^{-} \cdot \cdot \mathrm{RCl}$ | $\begin{gathered} \text {-EHF } \\ - \text { EUMP2 } \end{gathered}$ | $\begin{aligned} & 598.53587 \\ & 599.02053 \end{aligned}$ | $r_{n} 2.5851$ | 人 107.034 |  |
|  |  |  | $r_{x} 1.8628$ |  |  |
|  |  |  | $r_{h} 1.0700$ |  |  |
| $\mathrm{Cl}^{-} \cdot \mathrm{RF}$ | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 598.59670 \\ & 599.05622 \end{aligned}$ | $r_{n} 3.4224$ | 人 108.381 |  |
|  |  |  | $r_{x} 1.3982$ |  |  |
|  |  |  | $r_{h} 1.0765$ |  |  |
| $\mathrm{F}^{-} \cdot \cdot \mathrm{RCN}$ | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 231.37717 \\ & 232.00838 \end{aligned}$ | $\mathrm{r}_{\mathrm{n}} 2.7222$ | $\alpha 111.317$ | $\mathrm{r}_{1} 1.1395$ |
|  |  |  | $r_{x} 1.4769$ |  |  |
|  |  |  | $r_{h} 1.0785$ |  |  |
| $\mathrm{NC} \mathrm{C}^{-} \cdots \mathrm{RF}$ | $\begin{gathered} \text {-EHF } \\ -\mathrm{EUMP2} \end{gathered}$ | $\begin{aligned} & 231.37149 \\ & 231.98251 \end{aligned}$ | $\mathrm{r}_{\mathrm{n}} 3.2880$ | ＜ 108.409 | $r_{1}^{\prime} 1.1604$ |
|  |  |  | $\mathrm{r}_{\mathrm{x}} 1.3971$ |  |  |
|  |  |  | $r_{h} 1.0766$ |  |  |


| F-. RNC | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 231.34643 \\ & 231.97104 \end{aligned}$ | $\begin{gathered} r_{n} 2.6641 \\ r_{x} 1.4547 \\ r_{h} 1.0748 \end{gathered}$ | a 109.833 | $r_{1} 1.1493$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CN}{ }^{-} \cdot \cdot \mathrm{RF}$ | $\begin{aligned} & \text {-EHF } \\ & \text {-EUMP2 } \end{aligned}$ | $\begin{aligned} & 231.37287 \\ & 231.98359 \end{aligned}$ | $\begin{aligned} & r_{n} 3.0348 \\ & r_{x} 1.3994 \\ & r_{h} 1.0762 \end{aligned}$ | \& 108.375 | $\mathrm{r}_{1} 1.1614$ |
| $\mathrm{F}^{-} \cdot \cdots \mathrm{RCCH}$ | -EHF | 215.30377 | $\begin{aligned} & r_{n} 2.8665 \\ & r_{x} 1.4755 \\ & r_{h} 1.0801 \end{aligned}$ | < 111.885 | $\begin{array}{ll} r_{1} & 1.1949 \\ r_{2} & 1.0557 \end{array}$ |
| $\mathrm{HCC}^{-} \cdots \mathrm{RF}$ | -EHF | 215.27066 | $\begin{aligned} & r_{n} 3.2690 \\ & r_{x} 1.4013 \\ & r_{h} 1.0761 \end{aligned}$ | ( 108.380 | $\begin{aligned} & r_{1}^{\prime} 1.2313 \\ & r_{2}^{\prime} 1.0601 \end{aligned}$ |
| $\mathrm{Cl} \cdots \mathrm{RCl}$ | $\begin{aligned} & \text {-EHF } \\ & \text {-EUMP2 } \end{aligned}$ | $\begin{aligned} & 958.64797 \\ & 959.06898 \end{aligned}$ | $\begin{aligned} & r_{n} 3.3670 \\ & r_{x} 1.8244 \\ & r_{h} 1.0735 \end{aligned}$ | a 107.965 |  |
| $\mathrm{Cl}^{-} \cdot \mathrm{RCN}$ | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 591.48953 \\ & 592.05656 \end{aligned}$ | $\begin{aligned} & r_{n} 3.4190 \\ & r_{x} 1.4738 \\ & r_{h} 1.0798 \end{aligned}$ | a 110.731 | $r_{1} 1.1382$ |



### 3.1.2 At the MP2 level.

$$
\begin{array}{llll}
\mathrm{H} \cdots \cdot \mathrm{RH} & \text {-EUMP2 } 40.85121 & \mathrm{r}_{\mathrm{n}} 4.2644 & \alpha 110.386 \\
& & r_{\mathrm{x}} 1.0889 & \\
& & r_{\mathrm{h}} 1.0839 & \\
& & & \\
\hline \mathbf{H} \cdot \cdot \cdot \mathrm{RF} & \text {-EUMP2 139.87862 } & r_{\mathrm{n}} 2.9963 & \alpha 108.120 \\
& & r_{\mathrm{x}} 1.4407 & \\
& & r_{\mathrm{h}} 1.0859 &
\end{array}
$$

$$
\begin{aligned}
& \text { F?..RH -EIMP2 } 139.97559 \\
& \mathrm{H}^{-} \cdots \mathrm{RCl} \quad \text {-EUMP2 } 499.89122 \\
& \mathrm{Cl}^{-} \cdot \cdot \mathrm{RH} \quad \text {-EUMP2 } 500.02978 \\
& r_{n} 4.0175 \\
& r_{x} 1.0893 \\
& r_{h} 1.0891 \\
& \mathrm{H}^{-} \cdot \cdot \mathrm{RCN} \quad \text {-EUMP2 } 132.88198 \quad \mathrm{r}_{\mathrm{n}} 3.0863 \\
& r_{x} 1.4646 \\
& r_{h} 1.0902 \\
& \text { NC-••RH -EUMP2 } 132.95948 \quad r_{n} 4.0347 \quad \alpha 110.436 \quad r_{1}^{\prime} 1.2005 \\
& r_{x} 1.0889 \\
& r_{h} 1.0892 \\
& \mathrm{H}^{-} \cdot \mathrm{RNC} \quad \text {-EUMP2 } 132.84240 \quad r_{\mathrm{n}} 2.9579 \\
& r_{x} 1.4444 \\
& r_{h} 1.0874
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{CN}^{-} \cdot \cdot \mathrm{RH} \quad \text {-EUMP2 } 132.95985 \\
& r_{n} 3.5918 \\
& \alpha \cdot 110.586 \quad r_{1}^{\prime} 1.2006 \\
& r_{x} 1.0893 \\
& r_{h} 1.0891
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}^{-} \cdot \cdot \mathrm{RF} \quad \text {-EUMP2 } 239.00898 \\
& r_{n} 2.6266 \\
& \text { \& } 107.728 \\
& r_{x} 1.4542 \\
& r_{h} 1.0835 \\
& \begin{array}{llll}
\mathrm{F} \cdots \cdot \mathrm{RCl} & \text {-EUMP2 599.02110 } & r_{\mathrm{n}} 26154 & \alpha 108.542 \\
& r_{\mathrm{x}} 1.8309 & \\
& r_{\mathrm{h}} 1.0822 & \\
& & \\
\mathrm{Cl} \cdots \mathrm{RF} & \text {-EUMP2 599.05741 } & r_{\mathrm{n}} 3.2513 & \alpha 108.022 \\
& & r_{\mathrm{x}} 1.4366 & \\
& r_{\mathrm{h}} 1.0857 &
\end{array}
\end{aligned}
$$

$$
\begin{array}{ccc}
\mathrm{Cl}^{-} \cdots \mathrm{RCl} \cdot \text {-EUMP2 959.06949 } & \mathrm{r}_{\mathrm{n}} 3.2664 & \alpha 108.888 \\
& r_{\mathrm{x}} 1.8085 & \\
& r_{\mathrm{h}} 1.0845 &
\end{array}
$$

## $3.2 \mathrm{C}_{\mathrm{s}}$ symmetry

Geometry parameters are defined in scheme 3.2






dihedral angle $D\left(H^{\prime} \mathrm{CX}_{\mathrm{A}}{ }^{\mathrm{H}}\right)$
Scheme 3.2
3.2.1 Results at the HF and MP2' levels.

$$
\begin{array}{lllllll}
\mathrm{H}^{-} \cdots \mathrm{ROH} & \text {-EHF } 115.54084 & r_{\mathrm{n}} & 3.6187 & \alpha_{1} 107.474 & \mathrm{r}_{1} 0.9416 \\
& \text {-EUMP2 115.88780 } & \mathrm{r}_{\mathrm{x}} 1.4200 & \alpha_{2} 111.704 & \beta 109.208 \\
& & \mathrm{r}_{\mathrm{h} 1} 1.0780 & \mathrm{D} & 118.840 &
\end{array}
$$

| $\mathrm{HO}{ }^{-} \cdot \mathrm{RH}$ | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | 115.58352 <br> 115.95505 | $r_{\text {h2 }}$ | 1.0824 |  | $72.526^{\text {a }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $r_{n}$ | 3.2754 | $\alpha_{1}$ | 69.385 | $r_{1}^{\prime}$ | 0.9476 |
|  |  |  | $r_{x}$ | 1.0910 | $\alpha_{2}$ | 6U. 830 | $\beta^{\prime}$ | 179.338 |
|  |  |  | $r_{\text {h1 }}$ | 1.0817 | D | 119.885 |  |  |
|  |  |  | $r_{\text {h2 }}$ | 1.0817 | $\tau$ | 110.265 |  |  |
| $\mathrm{H}^{-} \cdot \cdot \mathrm{RSH}$ | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 438.20019 \\ & 438.49614 \end{aligned}$ | $r_{n}$ | 3.4738 | $\alpha_{1}$ | 107.316 | $\mathrm{r}_{1}$ | 1.3283 |
|  |  |  | $\mathrm{r}_{\mathrm{x}}$ | 1.8317 | $\alpha_{2}$ | 111.478 |  | 98.510 |
|  |  |  | $r_{\text {h1 }}$ | 1.0790 | D | 118.549 |  |  |
|  |  |  | $\mathrm{r}_{\mathrm{h} 2}$ | 1.0775 |  | $72.684^{\text {a }}$ |  |  |
| HS ${ }^{-} \cdot \mathrm{RH}$ | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 438.30909 \\ & 438.60116 \end{aligned}$ | $r_{n}$ | 4.2546 | $\alpha_{1}$ | 08.827 | $\mathrm{r}_{1}^{\prime}$ | 1.3372 |
|  |  |  | $r_{x}$ | 1.0881 | $\alpha_{2}$ | 70.284 | $\beta^{\prime}$ | 171.191 |
|  |  |  | $r_{\text {h1 }}$ | 1.0828 | D | 120.295 |  |  |
|  |  |  | r h2 | 1.0827 | $\tau$ | 110.187 |  |  |
| $\mathrm{H}^{-} \cdot \cdot \mathrm{ROOH}$ | $\begin{array}{cc} - \text { EHF } & 1 \\ - \text { EUMP2 } & 1 \end{array}$ | $\begin{aligned} & 190.30217 \\ & 190.83463 \end{aligned}$ | $r_{n}$ | 3.4716 | ${ }_{\sim}$ | 105.399 | $r_{1}$ | 1.4032 |
|  |  |  | $\mathrm{r}_{\mathrm{x}}$ | 1.4162 | $\alpha_{2}$ | 110.802 | $\beta 1$ | 106.599 |
|  |  |  | $r_{\text {h1 }}$ | 1.0788 | D | 118.876 | $\mathrm{r}_{2}$ | 0.9440 |
|  |  |  | $r_{\text {h2 }}$ | 1.0795 | $\tau$ | $74.601^{\text {a }}$ |  | 101.085 |
| HOO-. $\cdot \mathrm{RH}$ | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 190.36408 \\ & 190.91225 \end{aligned}$ | $r_{n}$ | 3.5510 | $\alpha_{1}$ | 69.710 | $r_{1}^{\prime}$ | 1.4691 |
|  |  |  | $\mathrm{r}_{\mathrm{x}}$ | 1.0901 | $\alpha_{2}$ | 69.042 | $\beta^{\prime}$ | 73.856 |
|  |  |  | $r_{\text {h1 }}$ | 1.0827 | D | 120. 153 | $r_{2}^{\prime}$ | 0.9415 |
|  |  |  | $\mathrm{r}_{\mathrm{h} 2}$ | 1.0817 | $\tau$ | 110.290 |  | 101.790 |



$$
\begin{aligned}
& r_{\mathrm{X}} \begin{array}{lllll}
1.4148 & \alpha_{2} & 74.195 & \beta^{\prime} 168.997
\end{array} \\
& r_{h 1} 1.0737 \text { D } 121.172 \\
& r_{h 2} 1.0744 \quad \tau \quad 117.526 \\
& \mathrm{~F}^{-} \cdots \mathrm{RSH} \quad \begin{array}{c}
\text {-EHF } \\
\text {-EUMP2 } \\
537.13813 \\
\text { 537.62446 }
\end{array} \quad \mathrm{r}_{\mathrm{n}} 2.8038 \quad \alpha_{1} 107.450 \quad \mathrm{r}_{1} 1.3288 \\
& r_{\mathrm{x}} \quad 1.8419 \quad \alpha_{2} 111.541 \quad \beta \quad 98.851 \\
& r_{h 1} 1.0771 \text { D } 118.563 \\
& r_{h 2} 1.0752 \quad \tau \quad 72.550^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccccccc}
\mathrm{F}^{-} \cdots \mathrm{RNH}_{2} & \text {-EHF } 194.64641 & \mathrm{r}_{\mathrm{n}} 3.0425 & \alpha_{1} 114.655 & \mathrm{r}_{1} 1.0015 \\
& & \mathrm{r}_{\mathrm{x}} 1.4723 & \alpha_{2} 110.006 & \beta 106.669 \\
& & \mathrm{r}_{\mathrm{h} 1} 1.0832 & \mathrm{D} & 121.324 & \gamma 110.415
\end{array} \\
& \begin{array}{llllllll}
\mathrm{H}_{2} \mathrm{~N}^{-} \cdots \mathrm{RF} & \text {-EHF } & 194.59114 \\
\text {-EUMP2 } & 195.11701
\end{array} \mathrm{r}_{\mathrm{n}} \quad 2.9533 \quad \alpha_{1} 71.627 \quad r_{1}^{\prime} 1.0144 \\
& \begin{array}{lllll}
r_{x} & 1.4135 & \alpha_{2} 71.787 & \beta^{\prime} & 103.337
\end{array} \\
& r_{h 1} 1.0738 \quad \text { D } 120.234 \quad \gamma^{\prime} 128.327 \\
& r_{h 2} 1.0746 \quad \tau 108.373^{a} \\
& \mathrm{~F}^{-} \cdots \mathrm{RPH}_{2} \begin{array}{cccccccc}
\text {-EHF } & \text {-EUMP2 } & 480.91917 \\
481.39677
\end{array} \mathrm{r}_{\mathrm{n}} \quad 2.9729 \quad \alpha_{1} 114.752 \quad \mathrm{r}_{1} 1.4102
\end{aligned}
$$



| $\mathrm{NC}^{-} \cdot \mathrm{ROH}^{-}$ | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 207.36924 \\ & 207.99313 \end{aligned}$ | $r_{n} 3.5385$ | $\alpha_{1} 107.470$ | $\mathrm{r}_{1} 0.9416$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{r}_{\mathrm{x}} 1.4192$ | $\alpha_{2} 111.690$ | - 109.283 |
|  |  |  | $\Gamma_{\text {h1 }} 1.0779$ | D 118.835 | $\mathrm{r}_{1}^{\prime} 1.1609$ |
|  |  |  | $\mathrm{r}_{\mathrm{h} 2} 1.0823$ | $\tau \quad 72.530^{\text {a }}$ |  |
| $\mathrm{HO}^{-} \cdot \mathrm{RCN}$ | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 207.34458 \\ & 207.98963 \end{aligned}$ | $r_{n} 2.7431$ | $\alpha_{1} 67.276$ | $\mathrm{r}_{1} 1.1397$ |
|  |  |  | $\mathrm{r}_{\mathrm{x}} 1.4754$ | $\alpha_{2} 69.186$ | $r_{1}^{\prime} 0.9453$ |
|  |  |  | $r_{\text {h1 }} 1.0788$ | D 120.393 | $\beta^{\prime} 180.134$ |
|  |  |  | $\mathrm{r}_{\mathrm{h} 2} 1.0788$ | $\tau 113.887$ |  |
| $\mathrm{NC}^{-} \cdot \cdots \mathrm{RSH}$ | $\begin{aligned} & \text {-EHF } \\ & \text {-EUMP2 } \end{aligned}$ | $\begin{aligned} & 530.02812 \\ & 530.60096 \end{aligned}$ | $\mathrm{r}_{\mathrm{n}} 3.4983$ | $\alpha_{1} 107.324$ | $\mathrm{r}_{1} 1.3282$ |
|  |  |  | $\mathrm{r}_{\mathrm{x}} 1.8297$ | $\alpha_{2} 111.468$ | - 98.474 |
|  |  |  | $r_{\text {h1 }} 1.0789$ | D 118.561 | $\mathrm{r}_{1}^{\prime} 1.1608$ |
|  |  |  | $\mathrm{r}_{\mathrm{h} 2} 1.0774$ | $\tau \quad 72.676^{\text {a }}$ |  |
| $\mathrm{HS}^{-} \cdot \cdot \mathrm{RCN}$ | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 530.06043 \\ & 530.62780 \end{aligned}$ | $r_{n} 3.4139$ | $\alpha_{1} 69.361$ | $r_{1} 1.1381$ |
|  |  |  | $\mathrm{r}_{\mathrm{x}} 1.4724$ | $\alpha_{2} 69.526$ | $\mathrm{r}_{1}^{\prime} 1.3342$ |
|  |  |  | $r_{\text {h1 }} 1.0807$ | D 120.102 | $\beta^{\prime} 168.097$ |
|  |  |  | $\mathrm{r}_{\mathrm{h} 2} 1.0803$ | $\tau 110.867$ |  |
| $\mathrm{HO}^{-} \cdot \cdot \mathrm{ROH}$ | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 190.44420 \\ & 190.99583 \end{aligned}$ | $r_{n} 2.9050$ | $\alpha_{1} 107.617$ | $r_{1} 0.9415$ |
|  |  |  | $\mathrm{r}_{\mathrm{x}} 1.4325$ | $\alpha_{2} 111.738$ | $\begin{array}{ll}\beta & 108.812\end{array}$ |
|  |  |  | $r_{\text {h1 }} 1.0758$ | D 118.828 | $r_{1}^{\prime} 0.9464$ |


| $r_{h 1} 1.0742$ | $D 121.155$ |
| :--- | :--- |
| $r_{h 2} 1.0738$ | $\tau 107.943$ |

$$
\begin{array}{ccc}
\mathrm{NC}^{-} \cdots \mathrm{ROH} & \text {-EHF } & 207.36924 \\
\text {-EUMP2 } 207.99313
\end{array}
$$

$$
\begin{array}{ccc}
\text { HO } & -\cdots \text { RCN } & \text {-EHF } \\
\text {-EUMP2 } 207.34458 \\
207.98963
\end{array}
$$

$$
r_{n} \quad 2.7431
$$

$$
\alpha_{1} 67.276
$$

$$
r_{1} \quad 1.1397
$$

$$
r_{x} \begin{array}{llll}
1.4754 & \alpha_{2} 69.186 & r_{1}^{\prime} & 0.9453
\end{array}
$$

$$
r_{\mathrm{h} 1} 1.0788 \quad \text { D } 120.393 \quad \beta^{\prime} \quad 180.134
$$

$$
\mathrm{r}_{\mathrm{h} 2} 1.0788 \quad \tau 113.887
$$

$$
\begin{array}{llllllll}
\text { NC- }-\cdots \mathrm{RSH} & \text {-EHF } 530.02812 & & r_{\mathrm{n}} 3.4983 & \alpha_{1} 107.324 & r_{1} 1.3282 \\
& \text {-EUMP2 } 530.60096 & r_{\mathrm{n}} & & & \\
& & r_{\mathrm{x}} 1.8297 & \alpha_{2} 111.468 & \beta & 98.474 \\
& & r_{\mathrm{h} 1} 1.0789 & \mathrm{D} & 118.561 & \mathrm{r}_{1}^{\prime} & 1.1608 \\
& & \mathrm{r}_{\mathrm{h} 2} 1.0774 & \tau & 72.676^{\mathrm{a}} & &
\end{array}
$$

$$
\begin{array}{ccc}
\mathrm{HS}-\cdots \mathrm{RCN} & \text {-EHF } & 530.06043 \\
\text {-EUMP2 } & 530.62780
\end{array}
$$

$$
\text { -EHF } 190.44420
$$

$$
\text { -EUMP2 } 190.99583
$$

$$
r_{n} 2.9050
$$

$$
\alpha_{1} 107.617
$$

$$
r_{1} \quad 0.9415
$$

$$
r_{x} \quad 1.4325 \quad \alpha_{2} 111.738 \quad \beta \quad 108.812
$$

$$
r_{h 1} 1.0758
$$

$$
\text { D } 118.828
$$

$$
r_{1}^{\prime} 0.9464
$$



$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~N}^{-} \cdots \mathrm{RNH}_{2}-\text {-EUMP2 } 150.75471 \quad \mathrm{r}_{\mathrm{n}} \quad 3.3838 \quad \alpha_{1} 114.731 \quad \mathrm{r}_{1} 1.0014 \\
& r_{x} 1.4716 \quad \alpha_{2} 109.919 \quad \beta \quad 106.710 \\
& r_{\mathrm{h} 1} 1.0832 \quad \mathrm{D} \quad 121.476 \quad \gamma \quad 110.339 \\
& r_{h 2}{ }^{1.0802} \quad \tau \quad 65.269^{a} \quad r_{1}^{\prime} \quad 1.0156 \\
& \beta^{\prime} 103.241 \\
& \gamma^{\prime} 128.378 \\
& \mathrm{H}_{2} \mathrm{P}^{-} \cdots \mathrm{RPH}_{2} \text {-EHF } 723.35386 \quad \mathrm{r}_{\mathrm{n}} 4.1242 \quad \alpha_{1} 113.971 \quad \mathrm{r}_{1} 1.4083 \\
& r_{x} 1.8542 \quad \alpha_{2} 109.798 \quad \beta \quad 94.940 \\
& r_{\mathrm{h} 1} 1.0807 \quad \mathrm{D} 121.495 \quad \gamma \quad 99.733 \\
& r_{h 2} 1.0831 \quad \tau \quad 66.029^{\mathrm{a}} \quad \mathrm{r}_{1}^{\prime} \quad 1.4239 \\
& \beta^{\prime} \quad 93.756 \\
& \gamma^{\prime} 133.121 \\
& \text { a The angle is fixed so that the back-side attack is studied. }
\end{aligned}
$$

3.2.2 At the MP2 level.

$$
\begin{array}{llllll}
\text { H} \cdots \mathrm{ROH} & \text {-EUMP2 115.88924 } & r_{\mathrm{n}} 3.3142 & \alpha_{1} 106.485 & r_{1} 0.9632 \\
& & r_{\mathrm{x}} 1.4524 & \alpha_{2} 111.840 & \beta 107.114 \\
& & r_{\mathrm{h} 1} 1.0867 & \mathrm{D} 118.623 & & \\
& & r_{\mathrm{h} 2} 1.0911 & \tau & 73.515^{\mathrm{a}} & \\
\\
& & & & & \\
\mathrm{HO}^{-} \cdots \mathrm{RH} & \text {-EUMP2 115.95583 } & r_{\mathrm{n}} & 3.0966 & \alpha_{1} 69.160 & r_{1}^{\prime}
\end{array} 0.9706
$$

| $\mathrm{H}^{-} \cdot \mathrm{PRSH}$ | -EUMP2 438.49666 | $\begin{array}{ll} r_{n} & 3.2350 \\ r_{x} & 1.8273 \\ r_{h 1} & 1.0887 \\ r_{h 2} & 1.0876 \end{array}$ | $\begin{array}{lc} \alpha_{1} & 107.675 \\ \alpha_{2} & 112.223 \\ \mathrm{D} & 118.354 \\ \tau & 72.325^{\mathrm{a}} \end{array}$ | $\begin{aligned} & r_{1} 1.3307 \\ & \beta 97.201 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| HS ${ }^{-} \cdot{ }^{\text {RH }}$ | -EUMP2 438.60180 | $\begin{array}{ll} r_{n} & 3.8328 \\ r_{x} & 1.0895 \\ r_{h 1} & 1.0897 \\ r_{h 2} & 1.0890 \end{array}$ | $\begin{array}{ll} \alpha_{1} & 69.748 \\ \alpha_{2} & 69.387 \\ \text { D } & 119.991 \\ \tau & 110.252^{\mathrm{a}} \end{array}$ | $\begin{array}{cc} r_{1}^{\prime} & 1.3390 \\ \beta^{\prime} & 150.258 \end{array}$ |
| $\mathrm{H}^{-} \cdot \mathrm{RNH}_{2}$ | -EUMP2 96.05166 | $\begin{array}{ll} r_{n} & 3.6158 \\ r_{x} & 1.4783 \\ r_{h 1} & 1.0942 \\ r_{h 2} & 1.0899 \end{array}$ | $\begin{array}{lc} \alpha_{1} & 115.104 \\ \alpha_{2} & 109.415 \\ \mathrm{D} & 121.513 \\ \tau & 64.896^{\mathrm{a}} \end{array}$ | $\begin{array}{ll} r_{1} & 1.0137 \\ \beta & 106.324 \\ \gamma & 109.855 \end{array}$ |
| $\mathrm{H}_{2} \mathrm{~N}^{-} \cdot \mathrm{RH}$ | -EUMP2 96.08494 | $\begin{array}{ll} r_{n} & 3.4112 \\ r_{x} & 1.0916 \\ r_{h 1} & 1.0884 \\ r_{h 2} & 1.0887 \end{array}$ | $\begin{array}{ll} \alpha_{1} & 68.452 \\ \alpha_{2} & 68.860 \\ \text { D } & 120.277 \\ \tau & 111.548^{\mathrm{a}} \end{array}$ | $\begin{array}{lr} r_{1}^{\prime} & 1.0300 \\ \beta^{\prime} & 102.654 \\ \gamma^{\prime} & 128.672 \end{array}$ |
| $\mathrm{F}^{-} \cdot \mathrm{CROH}$ | -EUMP2 215.01723 | $\begin{array}{ll} r_{n} & 2.8116 \\ r_{x} & 1.4619 \\ r_{h 1} & 1.0849 \\ r_{h 2} & 1.0890 \end{array}$ | $\begin{array}{cc} \alpha_{1} & 106.727 \\ \alpha_{2} & 111.838 \\ \mathrm{D} & 118.647 \\ \tau & 73.273^{\mathrm{a}} \end{array}$ | $\begin{aligned} & r_{1} \quad 0.9631 \\ & \beta \quad 106.856 \end{aligned}$ |
| $\mathrm{HO}^{-} \cdot \cdot \mathrm{RF}$ | -EUMP2 214.98943 | $r_{n} 2.6728$ | $\alpha_{1} 60.825$ | $r_{1}^{\prime} 0.9688$ |


| $r_{\mathrm{x}}$ | 1.4524 | $\alpha_{2} 77.941$ | $\beta^{\prime}$ | 156.276 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $r_{\mathrm{h} 1}$ | 1.0837 | D 122.325 |  |  |  |
| $r_{\mathrm{h} 2}$ | 1.0845 | $\tau$ | 108.741 |  |  |

${ }^{a}$ The angle is fixed so that the back-side attack is studied.

## 4 Transition State

4.1 $\mathrm{C}_{3 \mathrm{~V}}$ symmetry

Geometry parameters are defined in scheme 4.1


Scheme 4.1
4.1.1 Results at the HF and MP2' levels. The first column is the nucleophile $N$ and the second column is the leaving group $X$.
$\begin{array}{llllll}\mathrm{H} \quad \mathrm{H} & \begin{array}{ccc}\text {-EHF } & 40.58401 \\ \text {-EUMP2 } & 40.76137\end{array} & r_{\mathrm{n}} 1.6897 & \alpha 89.997 \\ & & r_{\mathrm{x}} 1.6900 & \\ & & r_{h} 1.0613 & \end{array}$
$\begin{array}{lllll}\text { H } \quad \text { F } \quad \text {-EHF } 139.51200 & & & \\ & & r_{n} 1.8742 & \alpha 4.353 \\ & & r_{x} 1.7640 & \\ & & r_{h} 1.0622 & \end{array}$

$$
\begin{aligned}
& \begin{array}{llll}
\mathrm{H} & \mathrm{Cl} & \text {-EHF } & 499.58875 \\
& & \text {-EUMF } & 499.88484
\end{array} \\
& \text { H } \quad \text { CN } \quad \text {-EHF } 132.38192 \\
& \text {-EUMP2 } 132.82921 \\
& r_{n} 1.9093 \\
& r_{x} 1.9960 \\
& r_{h} 1.0620 \\
& \begin{array}{llcc} 
& & \text { NC } & \text {-EHF } \\
& 132.37329 \\
\text {-EUMP2 } & 132.81609
\end{array} \\
& r_{n} 2.0038 \\
& \text { a } 96.502 \\
& r_{1} 1.1563 \\
& r_{x} 1.8513 \\
& r_{h} 1.0618 \\
& \begin{array}{llll}
\mathrm{H} & \mathrm{CCH} & \text {-EHF } & 116.29150 \\
\text {-EUMP2 } & 116.71660
\end{array} \\
& r_{n} 1.8463 \\
& \alpha 93.456 \\
& r_{1} 1.2167 \\
& r_{x} 2.0568 \\
& r_{2} 1.0585 \\
& r_{h} 1 . \operatorname{CS} 10 \\
& \begin{array}{llcl}
\text { F } & F & \text {-EHF } & 238.45374 \\
& \text {-EUMP2 } & 238.98797
\end{array} \\
& r_{n} 1.8461 \\
& \text { a } 90.010 \\
& r_{x} 1.8460 \\
& r_{h} 1.0609 \\
& \begin{array}{llll}
\mathrm{F} & \mathrm{Cl} & \text {-EHF } & 598.53111 \\
\text {-EUMP2 } & 599.01096
\end{array} \\
& r_{n} 2.1255 \\
& \alpha 97.277 \\
& r_{x} 2.1332 \\
& r_{h} 1.0619 \\
& \begin{array}{llll}
\text { F } & \text { CN } & \text {-EHF } & 231.32268 \\
& \text {-EUMP2 } & 231.94975
\end{array} \\
& r_{n} 1.8816 \\
& \text { a } 91.055 \\
& r_{1} 1.1519 \\
& r_{x} 2.0720
\end{aligned}
$$

|  |  |  |  | $r_{h} 1.0615$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F | NC | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 231.31748 \\ & 231.94199 \end{aligned}$ | $\begin{aligned} & r_{n} 1.9503 \\ & r_{x} 1.9029 \\ & r_{h} 1.0607 \end{aligned}$ | \& 93.2425 | $\mathrm{r}_{1} 1.1564$ |
| F | CCH | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 215.23069 \\ & 215.83418 \end{aligned}$ | $\begin{aligned} & r_{n} 1.8399 \\ & r_{x} 2.1433 \\ & r_{h} 1.0610 \end{aligned}$ | $\alpha 89.300$ | $\begin{aligned} & r_{1} 1.2190 \\ & r_{2} 1.0588 \end{aligned}$ |
| Cl | Cl | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 958.62331 \\ & 959.04024 \end{aligned}$ | $\begin{aligned} & r_{\mathrm{n}} 2.3931 \\ & \mathrm{r}_{\mathrm{x}} 2.3937 \\ & \mathrm{r}_{\mathrm{h}} 1.0617 \end{aligned}$ | 人 89.994 |  |
| Cl | CN | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 591.40406 \\ & 591.97314 \end{aligned}$ | $\begin{aligned} & r_{n} 2.2472 \\ & r_{x} 2.3180 \\ & r_{h} 1.0619 \end{aligned}$ | 人 86.253 | $\mathrm{r}_{1} 1.1539$ |
| NC | CN | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 224.18955 \\ & 224.90867 \end{aligned}$ | $\begin{aligned} & r_{\mathrm{n}} 2.1356 \\ & \mathrm{r}_{\mathrm{x}} 2.1356 \\ & \mathrm{r}_{\mathrm{h}} 1.0616 \end{aligned}$ | < 90.000 | $\begin{array}{ll} r_{1} & 1.1520 \\ r_{1}^{\prime} & 1.1520 \end{array}$ |
| CN | NC | -EHF | 224.18311 | $\begin{aligned} & r_{n} 2.0315 \\ & r_{x} 2.0315 \\ & r_{h} 1.0608 \end{aligned}$ | < 90.000 | $\begin{array}{ll} r_{1} & 1.1581 \\ r_{1}^{\prime} & 1.1581 \end{array}$ |


| HCC CCH | -EHF | 192.00726 | $r_{n} 2.1454$ | $\alpha 90.00$ |  | 1.2182 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{r}_{\mathrm{x}} 2.1454$ |  |  | 1.0589 |
|  |  |  | $r_{h} 1.0605$ |  |  | 1.2182 |
|  |  |  |  |  |  | 1.0589 |

4.1.2 At the MP2 level.
$\begin{array}{llll}\mathrm{H} & \mathrm{H} & \text {-EUMP2 } & 40.76328\end{array}$
$r_{n} 1.589^{\circ} \quad \alpha 90.000$
$r_{x} 1.5891$
$r_{h} 1.0728$

H $\quad$ F $\quad$-EUMP2 139.86439
$r_{n} 1.9278 \quad \alpha 98.018$
$r_{x} 1.6955$
$r_{h} 1.0759$
$\mathrm{H} \quad \mathrm{Cl}$-EUMP2 499.88623
$r_{n} 2.1524 \quad \alpha 102.464$
$r_{x} 2.0266$
$r_{h} 1.0778$

H $\quad$ CN $\quad$-EUMP2 132.83390
$r_{n} 1.8454$
~ 96.559
$r_{1} 1.1926$
$r_{x} 1.9271$
$r_{h} 1.0741$

H $\quad \mathrm{NC} \quad$-EUMP2 132.81974
$r_{n} 1.9642$
$\alpha 98.893$
$r_{1} 1.1936$
$r_{x} 1.7743$
$r_{h} 1.0753$
$\mathrm{H} \quad \mathrm{CCH}$-EUMP2 116.71942
$r_{n} 1.7799$
$\alpha 94.830$
$r_{1} 1.2467$
$r_{x} 1.9824$
$\mathrm{r}_{2} 1.0671$
$r_{h} 1.0733$
F F -EUMP2 238.98838
$r_{\mathrm{n}} 1.8355 \quad \alpha 90.000$
$r_{x} 1.8355$
$r_{h} 1.0740$
$\mathrm{F} \quad \mathrm{Cl} \quad$-EUMP2 599.01137
$r_{\mathrm{n}} 2.0134 \alpha 95.598$
$r_{x} 2.1419$
$r_{h} 1.0733$
F CN -EUMP2 231.95356
$r_{n} 1.8290$
$\alpha 89.473$
$r_{1} 1.1933$
$r_{x} 2.0651$
$r_{h} 1.0742$
Cl Cl -EUMP2 959.04186
$r_{n} 2.3158$
$\alpha 90.001$
$r_{x} 2.3159$
$r_{h} 1.0724$
4.2 $\mathrm{C}_{\mathrm{s}}$ symmetry.

Geometry parameters are defined in scheme 4.2



dihedral angle $D\left(H^{\prime} \mathrm{CX}_{A} \mathrm{H}\right)$
Scheme 4.2
4.2.1 Results at the HF and MP2' levels.

$$
\begin{array}{llllll}
\mathrm{H} \quad \mathrm{OH} & \begin{array}{c}
\text {-EHF } \\
\text {-EUMP2 115.48390 } \\
\end{array} & \mathrm{r}_{\mathrm{n}} 1.7905 & \alpha_{1} 89.930 & \mathrm{r}_{1} 0.9459 \\
& \mathrm{r}_{\mathrm{x}} 1.8901 & \alpha_{2} 94.256 & \beta 109.651 \\
& & r_{\mathrm{h} 1} 1.0617 & \mathrm{D} 119.637 & \\
& & r_{h 2} 1.0620 & \tau 88.123 &
\end{array}
$$

| H | SH | $\begin{gathered} \text {-EHF } \\ - \text { EUMP2 } \end{gathered}$ | $\begin{aligned} & 438.17416 \\ & 438.47462 \end{aligned}$ | $r_{n}$ | 2.0292 | $\alpha_{1} 96.058$ | $r_{1} 1.3321$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $r_{x}$ | 2.2526 | $\alpha_{2} 97.905$ | B 97.284 |
|  |  |  |  | $r_{\text {h1 }}$ | 1.0639 | D 119.534 |  |
|  |  |  |  | $\mathrm{r}_{\mathrm{h} 2}$ | 1.0626 | T 83.413 |  |
| H | OOH | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 190.25718 \\ & 190.80872 \end{aligned}$ | $\mathrm{r}_{\mathrm{n}}$ | 1.8346 | $\alpha_{1} 91.178$ | $r_{1} 1.4289$ |
|  |  |  |  | $r_{x}$ | 1.8346 | $\alpha_{2} 94.638$ | - 104.699 |
|  |  |  |  | $r_{\text {h1 }}$ | 1.0643 | D 120.033 | $r_{2} 0.9419$ |
|  |  |  |  | $r_{\text {h2 }}$ | 1.0628 | $\tau 86.117$ | \% 101.832 |
| H | $\mathrm{NH}_{2}$ | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 95.63099 \\ & 95.99351 \end{aligned}$ | $r_{n}$ | 1.7381 | $\alpha_{1} 94.486$ | $r_{1} 1.0116$ |
|  |  |  |  | $r_{x}$ | 2.0286 | $\alpha_{2} 90.074$ | ß 104.412 |
|  |  |  |  | $r_{\text {h1 }}$ | 1.0619 | D 120.282 | r 108.612 |
|  |  |  |  | $r_{\text {h2 }}$ | 1.0620 | т 87.539 |  |
| H | $\mathrm{PH}_{2}$ | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 381.93181 \\ & 382.22843 \end{aligned}$ | $r_{n}$ | 1.8984 | $\alpha_{1} 95.369$ | $r_{1} 1.4173$ |
|  |  |  |  | $r_{x}$ | 2.4065 | $\alpha_{2} 94.886$ | $\beta \quad 94.134$ |
|  |  |  |  | $r_{\text {h1 }}$ | 1.0620 | D 120.220 | $\gamma \quad 97.417$ |
|  |  |  |  | $\mathrm{r}_{\mathrm{h} 2}$ | 1.0627 | т 84.567 |  |
| F | OH | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 214.42242 \\ & 214.97188 \end{aligned}$ | $r_{n}$ | 1.7949 | $\alpha_{1} 84.949$ | $r_{1} 0.9456$ |
|  |  |  |  | $r_{x}$ | 1.9900 | $\alpha_{2} 89.694$ | $\beta 112.910$ |
|  |  |  |  | $r_{\text {h1 }}$ | 1.0610 | D 119.779 |  |
|  |  |  |  | $r_{\text {h2 }}$ | 1.0610 | $\tau \quad 97.465$ |  |
| F | SH | $\begin{aligned} & \text {-EHF } \\ & \text {-EUMP2 } \end{aligned}$ | 537.11261 <br> 537.59407 | $r_{n}$ | 1.9769 | $\alpha_{1} 91.935$ | $r_{1} 1.3332$ |


|  |  | $r_{x} 2.3309$ | $\alpha_{2} 93.876$ | $\beta 98.620$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |


4.2.2 At the MP2 level.
$\mathrm{H} \quad \mathrm{OH} \quad$-EUMP2 115.85549

| $r_{n}$ | 1.8034 | $\alpha_{1} 92.709$ |  |
| :--- | :--- | :--- | :--- |
| $r_{x}$ | 1.8211 | $\alpha_{2} 97.625$ |  |
| $r_{h 1}$ | 1.0755 | $D 119.427$ |  |
| $r_{h 2}$ | 1.0763 | $\tau$ | 85.349 |

$r_{1} 0.9699$
B 104.229
$r_{h 2} 1.0763 \quad \tau \quad 85.349$
$\mathrm{H} \quad \mathrm{SH} \quad$-EUMP2 438.47622
$r_{n} 1.9518$
$\alpha_{1} 98.230$
$r_{1} 1.3336$
$r_{x} 2.1830$
$\alpha_{2} 100.303$
$\beta 94.127$
$r_{h 1} 1.0771$ D 119.386
$r_{h 2} 1.0759 \quad \tau \quad 81.493$
$\mathrm{H} \quad \mathrm{NH}_{2} \quad$-EUMP2 $95.99473 \quad r_{\mathrm{n}} 1.7123 \quad \alpha_{1} 97.386 \quad r_{1} 1.0258$

$$
\begin{array}{lll}
r_{x} 1.9416 & \alpha_{2} 92.169 & \beta 104.097 \\
r_{h 1} 1.0761 & D 120.337 & \gamma 105.416 \\
r_{h 2} 1.0760 & \tau 84.689 &
\end{array}
$$

$\begin{array}{llll}\mathrm{H} & \mathrm{PH}_{2} & \text {-EUMP2 } & 382.22995\end{array}$

$$
\begin{array}{lllll}
r_{\mathrm{n}} & 1.8224 & \alpha_{1} 97.407 & r_{1} & 1.4153 \\
r_{\mathrm{x}} & 2.3224 & \alpha_{2} 96.622 & \beta & 93.609 \\
r_{\mathrm{h} 1} & 1.0747 & \mathrm{D} 120.354 & \gamma & 95.671 \\
r_{\mathrm{h} 2} & 1.0758 & \tau 82.226 & &
\end{array}
$$

| $\mathrm{F} \quad \mathrm{OH}$ | -EUMP2 214.97300 | $\mathrm{r}_{\mathrm{n}}$ | 1.7601 |  | 83.109 |  | 10.9692 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{r}_{\mathrm{x}}$ | 2.0084 |  | 88.650 |  | 108.202 |
|  |  |  | 1.0749 |  | 119.739 |  |  |
|  |  | $r^{\prime}$ | 1.0749 |  | 94.073 |  |  |

F $\quad \mathrm{SH} \quad$-EUMP2 537.59468

| $r_{n}$ | 1.8868 | $\alpha_{1} 90.070$ | $r_{1} 1.3350$ |  |
| :--- | :--- | :--- | :--- | :--- |
| $r_{x}$ | 2.3283 | $\alpha_{2} 91.742$ | $\beta$ | 95.780 |
| $r_{h 1}$ | 1.0750 | $D 119.543$ |  |  |
| $r_{h 2}$ | 1.0733 | $\tau$ | 89.286 |  |


| $\mathrm{F} \quad \mathrm{NH}_{2}$-EUMP2 195.10604 | $r_{\mathrm{n}} 1.7101$ | $\alpha_{1} 88.366$ | $r_{1} 1.0263$ |  |
| ---: | :--- | :--- | :--- | :--- |
|  | $r_{\mathrm{x}} 2.1782$ | $\alpha_{2} 82.033$ | $\beta 103.698$ |  |
|  | $r_{\mathrm{h} 1} 1.0756$ | D 120.401 | $\gamma 110.727$ |  |
|  | $r_{\mathrm{h} 2} 1.0760$ | $\tau$ |  |  |
|  |  |  |  |  |

## 4.3 $\mathrm{C}_{2}$ symmetry

Geometry parameters are defined in scheme 4.3.

dihedral angle $D_{1}\left(H^{\prime} C X_{A} X_{B}\right), D_{2}\left(C X_{A} X_{B} X_{C}\right)$ and $D\left(H^{\prime} C X_{A} H\right)$.

dihedral angle $D_{1}\left(H^{\prime} C X_{A} X_{B}\right), D_{2}\left(H^{\prime} C X_{A} X_{B}^{\prime}\right)$ and $D\left(H^{\prime} C X_{A} H\right)$.
Scheme 4.3
4.3.1 Results at the HF and MP2' level.

| HO OH | -EHF 190.39255 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $r_{x} 1.9306$ | $\alpha_{1} 90.921$ | $r_{1} 0.9455$ |
|  |  | $r_{h 1} 1.0610$ | $\alpha_{2} 86.603$ | $\beta 111.033$ |
|  |  | $r_{h 2} 1.0613$ | $D_{120.296}$ | $D_{1} 65.754$ |

HS SH $\begin{array}{lllllllll} & \text {-EHF } & 835.77905 \\ \text {-EUMP2 } & 836.20418 & r_{x} & 2.4736 & \alpha_{1} & 90.313 & r_{1} & 1.3336\end{array}$

$$
r_{h 1} 1.0609 \quad \alpha_{2} 88.829 \quad \beta 97.599
$$

$$
r_{h 2} 1.0618 \quad D 120.243 \quad D_{1} 56.476
$$

HOO OOH -EHF $339.94196 \quad r_{\mathbf{x}} 1.8924 \quad \alpha_{1} 91.230 \quad r_{1} 1.4323$

|  |  |  |  | $r_{\text {h1 }} 1.0629$ | $\alpha_{2} 88.341$ | - 103.960 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\mathrm{r}_{\mathrm{h} 2} 1.0647$ | D 119.800 | $\mathrm{r}_{2} 0.9417$ |
|  |  |  |  |  |  | \% 101.945 |
|  |  |  |  |  |  | $\mathrm{D}_{1} 62.300$ |
|  |  |  |  |  |  | $\mathrm{D}_{2} 180.000$ |
|  | $\mathrm{NH}_{2}$ | $\begin{gathered} \text {-EHF } \\ \text {-EUMP2 } \end{gathered}$ | $\begin{aligned} & 150.68312 \\ & 151.23093 \end{aligned}$ | $\mathrm{r}_{\mathrm{x}} 2.0339$ | $\alpha_{1} 88.276$ | $\mathrm{r}_{1} 1.0118$ |
|  |  |  |  | $\mathrm{r}_{\mathrm{h} 1} 1.0622$ | $\alpha_{2} 87.765$ | $\gamma 110.107$ |
|  |  |  |  | $\mathrm{r}_{\mathrm{h} 2} 1.0621$ | D 119.798 | $\mathrm{r}_{1}^{\prime} 1.0115$ |
|  |  |  |  |  |  | $\gamma^{\prime} 109.747$ |
|  |  |  |  |  |  | $\mathrm{D}_{1} 177.760$ |
|  |  |  |  |  |  | $\mathrm{D}_{2} 63.428$ |
| $\mathrm{H}_{2} \mathrm{P}$ | $\mathrm{PH}_{2}$ | -EHF | 723.28566 | $\mathrm{r}_{\mathrm{x}} 2.5731$ | $\alpha_{1} 90.010$ | $r_{1} 1.4185$ |
|  |  |  |  | $r_{\text {h1 }} 1.0624$ | $\alpha_{2} 89.781$ | $\gamma \quad 96.430$ |
|  |  |  |  | $\mathrm{r}_{\mathrm{h} 2} 1.0620$ | D 119.852 | $\mathrm{r}_{1}^{\prime} 1.4184$ |
|  |  |  |  |  |  | $\gamma^{\prime} 96.401$ |
|  |  |  |  |  |  | $\mathrm{D}_{1} 168.338$ |
|  |  |  |  |  |  | $\mathrm{D}_{2} \quad 73.510$ |

## References

1 (a) R. F. W. Bader, Y. Tal, S. G. Anderson and T. T. Nguyen-Dang, Isr. J. Chem., 19, 8 (1980).
(b) R. F. W. Bader and T. T. Nguyen-Dang, Adv. Quantum Chem., 14, 63 (1981).
(c) R. F. W. Bader, T. T. Nguyen-Dang and Y. Tal, Rept. Progr. Phys., 44, 893 (1981).
(d) R. F. W. Bader and H. Essén, J. Chem. Phys., 80, 1943 (1984).

2 P. M. Morse and H. Feshbach "Methods of Theoretical Physics", Part I, McGraw-Hill, New York, (1953).

3 (a) R. F. W. Bader, T. Tang, Y. Tal and F. W. Biegler-König, J. Am. Chem. Soc., 104, 946 (1982).
(b) K. B. Wiberg, R. F. W. Bader and C. D. H. Lau, J. Am. Chem. Soc., 109, 985 (1987).

4 (a) R. F. W. Bader, R. J. Gillespie and P. J. MacDougall, J. Am. Chem. Soc., 110, 7329 (1988).
(b) R. F. W. Bader, P. J. MacDougall and C. D. H. Lau, J. Am. Chem. Soc., 106, 1594 (1984).

5 R. F. W. Bader and P. J. MacDougall, J. Am. Chem. Soc., 107, 6788 (1985).

6 (a) P. J. MacDougall and R. F. W. Bader, Can. J. Chem., 64, 1496 (1986)
(b) T. Tang, R. F. W. Bader and P. J. MacDougall, Inorg. Chem., 24, 2047 (1985).

7 (a) K. Collard and G. G. Hall, Int. J. Quantum Chem. , 12, 523 (1977).
(b) R. F. W. Bader, T. T. Nguyen-Dang and Y. Tal, J. Chem. Phys., 70,

4316 (1979).

8 (a) R. F. W. Bader, S. G. Anderson and A. J. Duke, J. Am. Chem. Soc., 101, 1389 (1979).
(b) C. Gatti, P. Fantucci and G. Pacchioni, Theor. Chim. Acta, 72, 433 (1987).
(c) W. L. Cao, C. Gatti, P. J. MacDougall and R. F. W. Bader, Chem. Phys. Le:tters, 141, 380 (1987).

9 R. F. W. Bader, Acc. Chem. Res., 18, 9 (1985).

10 R. F. W. Bader and P. M. Beddall, J. Am. Chem. Soc., 95, 305 (1973).

11 P. O. Löwdin, Phys. Rev., 97, 1474 (1955).

12 (a) R. F. W. Bader and H. J. T. Preston, Int. J. Quantum Chem., 3, 327 (1969).
(b) R. F. W. Bader and P. M. Beddall, J. Chem. Phys., 56, 3320 (1972).

13 M. Born and J. R. Oppenheimer, Ann. Phys., 84, 457 (1927).

14 (a) F. L. Pilar, "Elementary Quantum Chemistry", McGraw-Hill, 1968
(b) I. N. Levine "Quantum Chemistry", 3rd edition, Allyn and Bacon, Boston, 1983.

15 (a) D. R. Hartree, Proc. Cambridge Philos. Soc., 45, 230 (1948).
(b) V. Fock, Z. Phys., 61, 126; 62, 795 (1930).
(c) V. Fock, Z. Phys., 75, 622 (1932).
(d) C. C. J. Roothaan, Rev. Mod. Phys., 23, 69 (1951).
(e) G. G. Hall, Proc. Roy. Soc. (London), A205, 541 (1951).

16 L. Laaksonen, P. Pyykko and D. Sundholm, Int. J. Quantum Chem.,

23, 309 and 319 (1983).

17 (a) E. A. Hylleraas, Z. Phys., 48, 469 (1928).
(b) C. Moller and M. S. Dlesset, Phys. Rev., 46, 618 (1934).
(c) H. P. Kelly, Phys. Rev., 131, 684 (1963).
(d) J. Cizek, J. Chem. Phys., 45, 4256 (1966).
(e) A. Szabo and N. S. Ostlund, "Modern Quantum Chemistry", Macmillan London, 1982.

18 Reference 14 (b) p193.

19 L. Brillouin, Actualités sci. et ind., 71 (1933); 159 (1934).

20 W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, "Ab Initio Molecular Orbital Theory", Wiley, New York, 1986, p38.

21 (a) P. J. Knowles, K. Somasundaram, N. C. Handy and K. Hirao, Chem. Phys. Lett., 113, 8 (1985).
(b) W. D. Laidig, G. Fitzgerald and R. J. Bartlett, ibid, 113, 151 (1985).

22 (a) A. C. Hurley "Introduction to the Electron Theory of Small Molecules", Academic Press, London, 1976.
(b) T. H. Dunning Jr. and P. J. Hay in " Methods of Electronic Structure Theory", H. F. Schaefer III, Ed., Plenum, New York, 1977.
(c) S. Wilson " Electron Correlation in Molecules", Clarendon Press, Oxford, 1984.
(d) E. R. Davidson and D. Feller, Chem. Rev., 86, 681 (1986).
(e) S. Wilson, Adv. Chem. Phys., 67, 439 (1987).
J. C. Slater, Phys. Rev., 36, 57 (1930).
S. F. Boys, Proc. Roy. Soc., A200, 542 (1950).
J. L. Whitten, J. Chem. Phys., 44, 359 (1966).
R. K. Nesbet, Rev. Mod. Phys., 32, 272 (1960).

27 (a) K. J. Laidler and M. C. King, J. Phys. Chem., 87, 2657 (1983).
(b) D. G. Truhlar, W. L. Hase and J. T. Hynes, J. Phys. Chem., 87 2664 (1983).
(C) J. E. Leffler and E. Grunwald "Rates and Equilibria of Organic Reactions", John Wiley \& Sons Inc., 1963.
(d) K. J. Laidler "Chemical Kinetics", 3rd edition, Harper \& Row, New York, 1987.

28 (a) R. A. Ogg, Jr., and M. Polanyi, Trans. Far. Soc., 31, 604 (1935).
(b) R. A. Ogg, Jr., and M. Polanyi, ibid., 31, 1375 (1935).
(c) A. G. Evans and M. G. Evans, ibid., 31, 1400 (1935).
(d) M. G. Evans and M. Polanyi, ibid., 32, 1333 (1936).
(e) R. P. Bell, Proc. R. Soc., London, Ser. A, A154, 414 (1936).
(f) M. G. Evans, Trans. Far. Soc., 34, 49 (1938).
(g) M. Polanyi, Nature, 151, 96 (1943).
(h) R. P. Bell, J. Chem. Soc. Faraday Trans. 2, 72, 2088 (1976).

29 (a) J. E. Leffler, Science, 117, 340 (1953).
(b) G. S. Hammond, J. Am. Chem. Soc., 77, 334 (1955).

30 (a) E. R. Thornton, J. Am. Chem. Soc., 89, 2915 (1967).
(b) E. K. Thornton and E. R. Thornton in "Transition States of Biochemical Processes" R. D. Gandour and R. L. Schowen, Eds., Plenum Press, New York, 1978, Chap. 1.

31 (a) S. S. Shaik, J. Am. Chem. Soc., 103, 3692 (1981).
(b) A. Pross and S. S. Shaik, Tetrahedron Lett., 23, 5467 (1982).
(c) A. Pross and S. S. Shaik, Acc. Chem. Res., 16, 363 (1983).
(d) S. S. Shaik, Prog. Phys. Org. Chem., 15, 197 (1985).
(e) A. Pross, Adv. Phys. Org. Chem., 21, 99 (1985).

32 (a) For a recent review of application of the derivative techniques to the determinacion of stationary points on energy surfaces see H. B. Schlegel, Adv. Chem. Phys., 67, 249 (1987).
(b) For a recent article about the energy derivative method see $P$. Pulay, Adv. Chem. Phys., 69, 241 (1987).

33 (a) F. W. Biegler-KÖnig, R. F. W. Bader and T. Tang, J. Comput. Chem., 3, 317 (1982).
(b) R. J. Boyd and L. C. Wang, J. Comput. Chem., 10, 367 (1389).

34 (a) N. C. J. Stuchbury and D. L. Cooper, J. Chem. Phys. , 79, 4967 (1983).
(b) K. E. Edgecombe and R. J. Boyd, Int. J. Quantum. Chem., 29, 959 (1986).

35 (a) M. Urban, I. Cernušak and V. Kellö, Chem. Phys. Lett., 105, 625 (1984).
(b) C. I. Bayly and F. Grein, Can. J. Chem., 66, 149 (1988).

36 R. Vetter and L Zülicke, Theochem, 47, 85 (1988).

37 (a) Reference $17(\mathrm{e})$ p261.
(b) Reference 20, p6 and p31.
(c) Reference 22(c) p60.

38 (a) J. S. Binkley, R. A. Whiteside, R. Krishnan, R. Seeger, D. J. DeFrees, H. B. Schlegel, S. Topiol, L. R. Kahn and J. A. Pople, Gaussian 80, Carnegie-Mellon Quantum Chemistry Publishing Unit: Pittsburgh, PA.
(b) M. J. Frisch, J. S. Binkley, H. B. Schlegel, K. Raghavachari, C. F. Melius, R. L. Martin, J. J. P. Stewart, F. W. Bobrowicz, C. M. Rohlfing, L. R. Kahn, D. J. DeFrees, R. Seeger, R. A. Whiteside, D. J. Fox, E. M. Fleuder and J. A. Pople, Gaussian 86, Carnegie-Mellon Quantum Chemistry Publishing Unit: Pittsburgh,

PA, 1984.

39 For the ion-molecule complex, there are systems in which frontside attack may have low energy (ref. 36). All ion-molecule complexes reported in this thesis correspond to back-side attack.

40 (a) A. G. Harrison, J. J. Myher and J. C. J. Thynne in "Ion-molecule Reactions in the Gas Phase", Advances in chemistry series No. 58 R. F. Gould Ed., Am. Chem. Soc., Washington 1966.
(b) E. W. McDaniel, V. Cermak, A. Dalgarno, E. E. Ferguson and L. Friedman "Ion-Molecule Reactions", Wiley-Interscience, New York, 1970.
(c) J. L. Franklin in "Ion-Molecule Reactions", J. L. Franklin Ed., Plenum Press, New York, 1972.

41 (a) W. N. Olmstead and J. I. Brauman, J. Am. Chem. Soc., 99, 4219 (1977).
(b) O. I. Asubiojo and J. I. Brauman, J. Am. Chem. Soc., 101, 3715 (1979).
(c) M. J. Pellerite and J. I. Brauman, J. Am. Chem. Soc., 102, 5993 (1980).
(d) J. H. Bowie, Acc. Chem. Res., 13, 76 (1980).
(e) N. M. M. Nibbering, J. R. Netherlands Chem., 100, 297 (1981).
(f) J. M. Riveros, S. M. José and K. Takashima, Adv. Phys. Org. Chem., 21, 197 (1985).

42 K. Tanaka, G. I. Mackay, J. D. Payzant and D. K. Bohme, Can. J. Chem., 54, 1643 (1976).

As shown in section 3.6, the use of MP2' data is justified because the energies calculated at the MP2' and MP2 levels are consistent with each other.

2672 (1983).
R. D. Harcourt, Theochem, 165, 329 (1988).

As discussed in section 3.6, the results of configuration analysis obtained at the MP2' and MP2 levels are similar. Thus, the use of MP2' data here is justified.

49 (a) R. Mulliken, J. Chem. Phys., 23, 1833 (1955).
(b) Reference 20, p25, p324, p330 and references therein.
(c) P. A. Kollman, J. Am. Chem. Soc., 100, 2974 (1978).
(d) S. Huzinaga and S. Narita, Isr. J. Chem., 19, 242 (1980).
(e) V. H. Smith Jr., Phys. Scr., 15, 147 (1977).
(f) J. E. Grabenstetter and M. A. Whitehead, J. Chem. Soc., Faraday Trans. 2, 69, 962 (1973).
(g) J. Baker, Theor. Chim. Acta, 68, 221 (1985).
(h) D. W. J. Cruickshank and E. J. Avramides, Philos. Trans. R. Soc. London, Ser. A, 304, 533 (1982).

50 (a) T. H. Dunning, Jr., J. Chem. Phys., 55, 716 (1971).
(b) A. D. Mclean and G. S. Chandler, J. Chem. Phys., 72, 5639 (1980).
(c) R. Ahlrichs and P. R. Taylor, J. de Chim. Phys., 78, 315 (1981).

51 (a) K. P. Huber and G. Herzberg "Constants of Diatomic Molecules",

Van Nostrand Reinhold, New York, 1979.
(b) J. H. Callomon, E. Hirota, K. Kuchiisu, W. J. Lafferty, A. G. Maki and C. S. Pote, "Structure Data of Free Polyatomic Molecules", K. -H. Hellwege and A. M. Hellwege Eds., Landolt-Börnstein, New Series, Group II, Vol. 7, Springer-Verlag, Berlin-Heidelberg, 1976.
(c) Data from "Tables of Interatomic Distance and Configuration in Molecules and Ions", special publication No 18, L. E. Sutton, O. Kennard, H. M. Powell, D. H. Whiffen, A. A. McConnell, G. M. Lander, A. D. Mitchell, A. E. Somerfield and L. C. Cross Eds. The Chemical Society, Burlington House, W. 1, London, 1965.
(d) B. A. R. Seiders, W. L. Luken, R. P. Blickensderfer and K. D. Jordan, Chem. Phys., 39, 285 (1979) and references therein.
E. Proinov, N. Neshev and A. Andreev, Int. J. Quantum Chem., 30, 119 (1986).

53
R. J. Boyd and K. E. Edgecombe J. Am. Chem. Soc., 110, 4182 (1988).

54 (a) See for example, R. McWeeny and B. T. Sutcliffe "Methods of Molecular Quantum Mechanics", Academic Press, New York, 1969, P61.
(b) Reference 14(a) p241 and p517.
(c) This is clearly illustrated in a recent analysis of correlation effects in the oxygen difluoride molecule, L. C. Wang and R. J. Boyd, J. Chem. Phys., 90, 1083 (1989).

55 (a) R. A. Marcus, J. Phys. Chem., 72, 891 (1968).
(b) A. O. Cohen and R. A. Marcus, ibid., 72, 4244 (1968).
(c) R. A. Marcus, J. Am. Chem. Soc., 91, 7224 (1969).

56 (a) J. W. Bunting and D. Stefanidis, J. Am. Chem. Soc., 110, 4008 (1988).
(b) J. W. Bunting and D. Stefanidis, ibid., 111, 5834 (1989).

57 (a) W. J. Albery and M. M. Kreevoy, Adv. Phys. Org. Chem., 16, 87 (1978).
(b) W. J. Albery, Annu. Rev. Phys. Chem., 31, 227 (1980).
(c) E. S. Lewis, S. Kukes and C. D. Slater, J. Am. Chem. Soc., 102, 1619 (1980).

58 (a) J. I. Brauman, J. A. Dodd and C. C. Han in "Nucleophilicity", Advances in Chemsity series No 215, J. M. Harris and S. P. McManus Eds., Am. Chem. Soc., Weshington D. C., 1987, p23.
(b) R. G. Pearson, J. Org. Chem., 52, 2131 (1987).

59 D. J. Mitchell, H. B. Schlegel, S. S. Shaik and S. Wolfe, Can. J. Chem., 63, 1642 (1985).

60 E. S. Lewis, M. L. McLaughlin and T. A. Douglas, J. Am. Chem. Soc., 107, 6668 (1985).

61 C. C. Han, J. A. Dodd and J. I. Brauman, J. Phys. Chem., 90, 471 (1986).

62 S. S. Shaik and A. Pross, J. Am. Chem. Soc., 104, 2708 (1982).

63 S. Wolfe, D. J. Mitchell and H. B. Schlegel, J. Am. Chem. Soc., 103, 7694 (1981).

64 (a) T. H. Lowry and K. S. Richardson "Mechanism and Theory in Organic Chemistry", 3rd edition, Harper \& Row, New York, 1987.
(b) J. E. Bartmess, J. A. Scott and R. T. McIver, Jr., J. Am. Chem. Soc., 101, 6046 (1979).
(c) R. E. Dickerson, H. B. Gray and G. P. Haight, Jr., "Chemical Principles", 3rd edition, The Benjamin/Cummings, Menlo Park, California, 1979, p184.

65 J. N. Brönsted and K. Pedersen, Z. Phys. Chem., 108, 185 (1924).

66 J. Horiuti and M. Polanyi, Acta Physicochim. U.R.S.S., 2, 505 (1935).

67 L. Eberson, "Electron Transfer Reactions in Organic Reaction", Springer-Verlag, Berlin Heidelberg, 1987, p28.

68 (a) J. R. Murdoch, J. Am. Chem. Soc., 94, 4410 (1972).
(b) F. G. Bordwell and D. L. Hughes, J. Am. Chem. Soc., 108, 7300 (1986).
(c) H. Yamataka and S. Nagase, J. Org. Chem., 53, 3232 (1988).

69 (a) J. T. Waber and D. T. Cromer, J. Chem. Phys., 42, 4116 (1965).
(b) R. J. Boyd, J. Phys. B, 9, L69 (1976).
(c) R. J. Boyd, J Chem. Phys., 66, 356 (1977).

70 L. S. Bartell and L. O. Brockway, Phys. Rev., 90, 833 (1953).

71 A. M. Simas, W. M. Westgate and V. H. Smith, Jr. , J. Chem. Phys., 80, 2636 (1984).

72 E. Clementi and C. Roetti, At. Data Nucl. Data Tables, 14, 177 (1974).

73 For recent study using other method see R. P. Sagar, A. C T. Ku and V. H. Smith, Jr., Can J Chem., 66, 1005 (1988).

74 J. E. Huheey, "Inorganic Chemistry", 2nd edition, Harper and Row, New York, 1978.

75
L. Pauling and D. M. Yost, Proc. Nat1. Acad. Sci. U. S., 14, 414 (1932).
R. G. Parr, R. A. Donnelly, M. Levy and W. E. Palke, J. Chem. Phys., 68, 3801 (1978).

77 (a) G. Simons, M. E. Zandler, E. R. Talaty, J. Am. Chem. Soc., 98 7869 (1976).
(b) K. H. Johnson, Int. J. Quan. Chem., Quan. Chem. Sym., 11, 39 (1977).
(c) P. Politzer and H. Weinstein, J. Chem. Phys., 71, 4218 (1979).
(d) J. A. Alonso and L. A. Girifalco, J. Chem. Phys., 73, 1313 (1980).
(e) J. L. Reed, J. Phys. Chem., 85, 148 (1981).
(f) R. J. Boyd and G. E. Markus, J. Chem. Phys., 75, 5385 (1981).
(g) J. Mullay, J. Am. Chem. Soc., 106, 5842 (1984).
(h) J. L. Gázquez and E. Ortiz, J. Chem. Phys., 81, 2741 (1984).
(i) R. J. Boyd and K. E. Edgecombe, J. Am. Chem. Soc., 110, 4182 (1988).

78 R. P. Sagar, A. C. T. Ku and V. H. Smith, Jr., J. Chem. Phys., 88, 4367 (1988).

79 K. P. Huber and G. Herzberg "Constants of Diatomic Moīecules", Van Nostrand Reinhold, New York, 1979.

80 Reference 74 p708.

81 N. Burford, B. W. Royan, A. Linden and T. S. Cameron, Chem. Commu., 842 (1988).

82 (a) L. H. Sommer, "Stereochemistry, Mechanism and Silicon", McGraw-Hill, New York, 1965.
(b) N. T. Anh and C. Minot, J. Am. Chem. Soc., 102, 103 (1980).
(c) R. J. P. Corriu and C. Guerin, J. Organometallic Chem., 198, 231 (1980).
(d) R. J. P. Corriu and C. Guerin, Adv. Organometallic Chem., 20,

265 (1982).
(e) M. J. S. Dewar and E. Healy, Organometallics, 1, 1705 (1982).
(f) J. C. Sheldon, R. N. Hayes and J. H. Bowie, J. Am. Chem. Soc., 106, 7711 (1984).
(g) J. A. Deiters and R. R. Holmes, J. Am Chem. Soc., 109, 1686 (1987).
(h) J. A. Deiters and R. R. Holmes, J. Am. Chem. Soc., 109, 1692 (1987).
(i) R. Damrauer, L. W. Burggraf, L. P. Dovis and M. S. Gordon, J. Am. Chem. Soc., 110, 6601 (1988).

83 S. Gronert, R. Glaser and A. Streitwieser, J. Am. Chem. Soc., 111, 3111 (1989).

84 A. Merkel, Z. Havlas and R. Zahradník, J. Am. Chem. Soc., 110, 8355 (1988).


[^0]:    a See footnote $a$ in Table 4.2.2.

