Acquisitions and Biblographic Services Branch

395 Welington Stupal Ottawd Ontark KIAON4

NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments.

AVIS

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité sıpérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.

Canadä'

MoDELS

Francisco Marmolejo

STBMITVLD IN PARTLALHDLILLLMENI OY THE
REQCIREMENTS FOR THE: DEGRLEOT DO("TOR OI PHLLOSOPHY
$A{ }^{\circ}$
DALHONSIE UNIVERSITY
HALPAX NONA SCOTA
JULY 1995
(c) ('opyright by Francisco Marmolejo. 199.)

Acquisitions and
Bibliographic Services Branch
395 Wellington Street Ottawa Ontano
K+A ON4

Bibliotineque nationale du Canada

Directior, des acquisitione et des services bibliograpi yues

395 rue Wellingtor Otrawa (Ontano) KIAON4

The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or formai, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.

L'auteur a accordé une licence irrévocable et non exclusive permettant i la Bibliothèque nationale du Canada de reproduire, prêter, distiibuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse ̀̀ la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent êtǐe imprimés ou autrement reproduits sans son autorisation.

Canadä'

- Hiltraprodects aud Centinuevs Foumhes ot Merdis Dissertaton Abssrakts intomational is arranged by broad, general subiect caregories Please seleci the one subject which most nearty describes the contont of your dissertation Enter the corresponding four-argit code in the sooces provided

Sutiect Calogories

THE RUMANATIES ANE SOCIAL SCIENCES

0422
0318
0321
0319
0320
0322
0469

2578

whe gciences AND ENGINEERING

molockial samacs

De aquel lado. a ('ristina!! Juan. mis padres.
 To Kiartll on this sidt.

Table of Contents

Table of Contents v
Abstract vii
Acknowledgements viii
Introduction 1
1 Pretoposes 8
1.1 Definitio: and Bachgromad 8
1.2 Some properties of pretopose 11
1.3 (onceptual completeness 17
1.1 Lon' Throrem 15
1.5 Slice pretoposes 19
1.6 Left exact categories and pretoposes 21
1.6.1 ('oherent ohjects of Set $t^{{ }^{*}}$:5
1.6.2 Free Pretopos Generated By a Left Exact (ateqory 2
2 Ultracategories 40
2.1 Pre-Uliracategories 111
2.2 Ultragraphs and Iltramorphisms 11
2.3 Ultracategories 11
3 Continuous Families of Models 64
3.1 Indexed ('ategory Theory 65
3.1.1 Stability 70
3.1.2 Well Powered Categories 70
3.1.3 Adjoint Functors 71
3.1.4 Internal Functors 72
3.2 Fimetor ('atagories 71
3.3 Contimums Families of Mordels 76
3.1 Los ('ategories T
3.5 ('haracterization of C'ltratinitr Functions אl
4 Algebras 89
1.1 2-Nonads s!
1.2 Functorial Wak (Co)Limits, 91
1.3 Psende-retractions 91
1.1 Protoposes Revisited 9
1.5 2-Algebras Over ('AT 102
4.5. $\quad C A T$ over ('AT $10:$
1.i.2 LEX over CAT 10.5
1.r.: $\mathrm{B} \quad$ PRETOP over CAT 10.
5 Algebras Over Los Categories 120
 120
5. 2 Agebras Over Los Categorien 121
6 Indexed Categories of Coalgebras 124
6.1 The ('otriple $G^{\text {Y }}$ 1:1
6.: Indeved ('ategories of ('oalgehras 12.
6.3 Filtered ('olimits and Abolute Equalizers 126
6. 5 Some Topological Spaces and Their Associated Coalgehora 1.7
6.5 The (ategory $A^{X_{n}^{+}}$ 12:
6.6 The Finetor (-$)^{1}:$ Top-ind $\left.A, B\right) \rightarrow \boldsymbol{F i l t}(A . B)$ 131
6.7 'ihe Functor (-1) Filt $(\boldsymbol{A}, B) \rightarrow$ Top-ind (A, B) 134
6.8 The [ltraproduct Transition Morphisms. 131
6.9 Reduced !roducts and Vltraprobincts 1316
6.10 Top-ind(.1, B) equivaleut to Filt (A,B) 137
6.11 Subatequries ('losed Coder (Itraproducts 139
Conclusion 142
Bibliography 143

Abstract

Le P be a matll petopor. Makkai showed that the pretopos (i.e. the langnage) an be recovered from the category of models of the pretopos (i.e. Set-valued functors preserving the pretopes structure). The realization that ultraproduct functors can be expresed as compusition of fuictors on categonies of sleaven over topological space opens the door for using contimums families of models, that is. cateouries indexed ower topological spares.

We introduce a special kind of ategory indexed orer topolugical spaces in whish it is posible to deiine ult rapoduct fructors. This involves contimous functions $l: Y^{\prime} \rightarrow$ I for which the functors $f_{*}: \operatorname{sh}(1) \rightarrow \sin (\mathrm{X})$ premerve the pretopon structure We give a characterization of such fumetions. Each of thene indexed waterimp produces a pre-ultracategory in the sense of Makkai.
 it gemerates. We show that carli algetra for this 2 -monad carries a pre-ultracategory structure as well. We induce another e-monad over the category of algebras and show that these new algelras carry the structure of ultracategorien.

We combine both approaches by defining a 2 -adjunction over the 2 -eategory of special inh wodretegorien memidned above and show that the corresponding algehras also carry ulfracategory structures.

Finally, aiming at giving filtered colimits a bigger role in the picture we generalize a theorem of Lewer, namely, that indexed functors from the indexed category that has the category f sheaves, $\boldsymbol{s}^{\prime}(X)$ over the topological space X, to it self is equi:alent to the category of filtered colimit preserving functors from Set to itself.

Acknowledgements

 than atigthing efoe. "Thank von" will hate to do.

Leopolfu Roman I thank for phehing me both, in 'he dinection of ateoons theors and in the direction of Halifax.

 Serenere for their uppert. I was awarded the I-athe Halton hillam Vemoral behol-

 Mexico do well.
 - ipport.

 Clandia for nee dectronic perhological help, Maria for speahing Spanish. Pand for retaining so murh information. Howein for abamoning the dhel ided, Kelii, Rick. Comnie, Sott, Rick, Bll, Ama, Piotr. Irudy, Diane, Adriand, Roh. Amanda, Lomaz . . . for inthencing my philowophy of existence.

Francisco Marmolejo
Summer 199.5

Introduction

The concen of pretopes was introulued be (irothemdier in [1] in relation with oo herent tupses. A pretopos in a atequry wih finite limits, stict initial ohject, stable
 twe pretopeses that prexree the pretopos structure are called chementary: Small
 the catreory Set of sets is a phoubor. Makkal ad Reyes in [1N] study the rela tion beotween coberent theorien and pretoperes. 'Lhey show there how to construct a small pretopors for any colerent theory that :asentia thy codities the information -i the theory in the wense that the category of modeln for the cohement the ory and the rategory of chmonary fine tor, from the pretopos are equivalent. That is we can replace the theors the pretopos. The construction of the pretopos moves as a thes tep the roustruction of a logical catequry. A category is logiral if it han finite limits, stable finite naps of sulompects and stable inagen. This logical category cat also replare the theorv. howere thete are two good reasons to nse pretoposes instend of legical categorise. The first une is that there is a miterid to detemine whether ant elementary fincter het ween pretoposers is an equivalence (see T. 1.8 in [18] or Lemma 1.15 below). The second reason is the so catled concepthal completeness: If an elt enertary $F: \boldsymbol{P} \rightarrow \boldsymbol{Q}$ between pretoposess induces ly composition an equialence $\operatorname{Mad}(\boldsymbol{C}) \rightarrow \operatorname{Mod}(\boldsymbol{P})$ then F is an equivalenee (see $\overline{\mathrm{i}} .1 . \mathrm{S}$ in [1N] or Theoremi 1.16 below). Here $\operatorname{Mod}(\boldsymbol{P})$ denotes the category of elementary fumers from \boldsymbol{P} to $\boldsymbol{B e t}$. There are some questions to be asked in this context. One is whether it i; possible to re cover the language from the categoty of models. Another une is muder what conditions a categoy is a category of models. (On the one hand we want to mever
 ditions on a catigons A for it to he of the form $\operatorname{Mod}(\boldsymbol{P}$ fin ome whatl petopor

 for exery ultratiler ($I .(A)$. Functor between them have tranithon inomorphinn w-

 ultracategories in [15]. The other side of the quention i- - till open.

The ideat that arted his paper in that we can recor the ult rapromet funt or

 $\xrightarrow{l l^{*}}$ Set where $A I$ is the Stone-Cech compactitication of $I, \mu: I \rightarrow I I$ in the ublat embedding and $l 1^{*}$ is the functor ansoriated to the contimems finction id: 1 - il
that pirk the ultrafilter $\mathcal{U} \in\{I$. Sio we consider categories indexed over the catrgory Top of topological spaces and contimons functions. We follow Pare and Schmmacher [19]. the approach in Benabon [3] is via fibrations. A Top-indexed rategory \mathcal{A} consists of a category $\mathcal{A}^{\mathbb{X}}$ for every topological space \mathbb{X} and a functor $f^{*}: \mathcal{A}^{X} \rightarrow \mathcal{A}^{1^{*}}$ for every continuons function $f: Y \rightarrow X$ subject to some coherence conditions. In particular if we take the category $\operatorname{sh}(\mathrm{X})$ for every topological space X and the usual $f^{*}: S^{\prime} h\left(X^{*}\right) \rightarrow S^{\prime} h\left(Y^{*}\right)$ we obtain a Top-indexed category that we denote by $\mathcal{S E T}$. This category plays the rôle of sets in Top-indexed categnies. $f^{*}: \operatorname{sh}\left(\mathrm{N}^{*}\right) \rightarrow \sin ^{\prime}(Y)$ is left exact and has a righ adjoint. Thus f^{*} is elementary. We can define then, for every pretopos \boldsymbol{P} the Top-indexed categury of models of P. We take the category $\operatorname{Mod}_{S k}(X)(P)$ for every space X and define
 every continuons $f: Y^{\prime} \rightarrow \mathrm{X}$. where $\operatorname{Mod}_{\operatorname{sh}(X)}(\boldsymbol{P})$ denotes the ategory of elementary functors from \boldsymbol{P} to sih(X°). We denote this Top-indexed caregory ly $\mathcal{M O D}(\boldsymbol{P})$. To be able to recover the ultraproduct fumetors we have to take into accoment the functors of the form μ_{*} as above. For this purpose we introduce the concept of ultratinite function: A contimoms function $f: Y \rightarrow X$ is called ultrafinite if the functor $f_{x}: \operatorname{sh}^{\prime}\left(Y^{\prime}\right) \rightarrow \operatorname{s}^{\prime} h\left(\mathrm{~N}^{\prime}\right)$ is dementary. Notice that for an ultrafinite f the functor $f^{*}: \operatorname{Mod}_{s h(Y)}(P) \rightarrow \operatorname{Mod}_{s_{h}(Y)}(P)$ has a right adjoint. Furthermore we recover the ultraproduct functors $[\mathcal{U}]: \operatorname{Mod}(P)^{I} \rightarrow \operatorname{Mod}(P)$ as the composition $\operatorname{Mod}(P)^{\prime} \xrightarrow{\simeq} \operatorname{Mod}_{\text {sh }(I)}(P) \xrightarrow{\mu_{*}} \operatorname{Mod}_{\text {sht }(, I)}(P) \xrightarrow{\mathcal{U}^{*}} \operatorname{Mod}(P)$. Accordingly we characterize those contiumons functions that are ultrafinite and restrict to Top-indexed categuries for which f* has a right adjoint f_{x} for every ultrafinite f. Functors between these are those that behave nicely with these adjoints. We demote this categury by Eos. With the category $\mathfrak{L a}$ we can recover the pre-ultracategory structure !nt $1 \times$ fortunately it is not enough to recover the general ultramorphisms.

There is another way to recover the pre-ultracategory structure via algebras over CAT. and with a monad over thece algebras we can also recover the ultramorphisms. Cousider the $2 \cdot$ monad T generated ly the 2 -adjunction PRETOP ${ }^{\prime 7} \frac{\text { Set }^{(-1}}{\operatorname{Mod}(-)} C A T$. We can define a functor $\boldsymbol{T}-A L \boldsymbol{C}^{\prime} \rightarrow \boldsymbol{P U C}$ where $\boldsymbol{T} \cdot A L G^{\prime}$ denotes the 2-category of T-algebras and PUC denotes the 2 -category of pre-ultracategories. We ohtain ant
 T-algebra structures we define below. Let S denote the 2 -monad generated by this adjunction. We can define then a 2 -functor $S-1 L G \rightarrow V C$ where $U C$ denetes the 2-category of ultracategories.

Our proofs about algebras are based on the following observation. Suppose we have functors $H: \boldsymbol{A} \rightarrow \boldsymbol{B}, R: \boldsymbol{B} \rightarrow \boldsymbol{A}$ and a natural transformation $\boldsymbol{\theta}: R H \rightarrow 1_{\boldsymbol{A}}$. If \boldsymbol{B} has a functorial weak initial object then \boldsymbol{A} has a functorial weak initial object as well. A functorial weak initial object is a weak initial object with a functorial choice of arrows from it to any other object. When the natural transformatin θ is an isomorphism, the existence of functorial weak colimits in B implies the existence of functorial weak colimits in \boldsymbol{A}. It is well known that colimits extst if the category has functonial weak colimits and split idempotents. In this context it is easy to sere that \boldsymbol{A} has split idempotents if \boldsymbol{B} does.

The above setting is specially well suited for algebras over a 2 -monari. If we have a 2 -monad $\boldsymbol{T}=(T . \eta \cdot \mu)$ over $\boldsymbol{C} \boldsymbol{A} \boldsymbol{T}$ for example and a strict algehra ($\boldsymbol{A} . \Phi$) then ome of the diagrams for Φ is

If $T \boldsymbol{A}$ is a good" category then \boldsymbol{A} will meresarily inherit some of the good properties of $T \boldsymbol{A}$. In particular the existence of certain kinds of limits or colimit. Furt hermore. the other commutative diagram for algebras will tell us how to calculate these limit. and colimits on \boldsymbol{A} : Simply take the diagran wer \boldsymbol{A}, compose with $\boldsymbol{\eta} \boldsymbol{A}$. calculate the limit or colimit in $T \boldsymbol{A}$ and apply Φ. For example $\begin{gathered}\text { ansider the } 2 \text {-monad given } b y . y y y y y\end{gathered}$ the ${ }^{2}$-adjumetion Set ${ }^{(-)} \dashv \operatorname{Set}^{(-)}: \boldsymbol{C} \boldsymbol{A} \boldsymbol{T}^{\prime \prime} \rightarrow \boldsymbol{C A T}$. In this case having an algebra structure on a category \boldsymbol{A} implies that \boldsymbol{A} is complete and cocomplete. We note here that there are some size problems to be resolved.

One way of trying to settle these size problems and at the same time give a good framework in which to attempt a solution to the second prublem (iamely characterizing those categories that are of the form $\operatorname{Mod}(P)$) is to combine the last two

erate the corresponding 2 -monad T and define a fumetor $T-A L A \rightarrow \boldsymbol{U C}$.
Tinally, in a closely related development we generalize a theorem of Lever [11]. Lever showed that there was an equivalence between the rategon'es Filt(Set, Set) of filtred colimit preserving functors from Set to Set and Top-ind $(S E \mathcal{T}, \mathcal{S E T})$ of Top-indesed functors from $\mathcal{S E T}$ to $\mathcal{S E T}$. We define a Top-indexed category \mathcal{A} for every category A with filtered colimits and products by taking coalgehan over $\boldsymbol{A}^{|X|}$ for every topologiral space X and show that we get an equivalence between Filt $(\boldsymbol{A}, \boldsymbol{S e t})$ and $\boldsymbol{T o p}-\operatorname{ind}(\mathcal{A}, \mathcal{S E T})$. The definition of the cotriple is vely similar to the one induced by the adjunction $S h(X) \leftrightarrows S e t^{|N|}$. This will allow us to prowe that whenever we have a $T o p$-indexed functor $F: \mathcal{M O D}(P) \rightarrow \mathcal{S E} T$ we have that the functor $F^{1}: \operatorname{Mod}(\boldsymbol{P}) \rightarrow$ Set preserves filtered colimits.

The account chapter by chapter is as follows.
In chapter 1 we review the definition of pretojon and its relation to coherent toposes: we consider some properties of pretoposes we will need later, especially the ones concerning equivalence relations. We show that for any pretopos \boldsymbol{P} and any object P^{\prime} in \boldsymbol{P} the category $\boldsymbol{P} / l^{\prime}$ is a pretopos and that for any other pretopo. Q, the category $\operatorname{Mod}_{Q}\left(P / H^{\prime}\right)$ is equivalent to the category whone objects are perss (M, a) with M in $\operatorname{Mod}(P)$ and a a global element of $M P$. We use this description to give a categorical proof of the existence of an arrow into an ultrapower of another model under certain conditions. Finally we give a combinatorial description of the left adjoint to the forgedful functor Pretop \rightarrow Lex.
(hapter 2 is devoted to the concepts of ultracategory and ultramophism. There we give a proof of Makkais theorem (the equivalence of a small pretopos \boldsymbol{P} and the category $\boldsymbol{U C}(\boldsymbol{\operatorname { M o d }}(\boldsymbol{P})$. Set $)$. We follow Makkais [15] in this chapter fairly closelv.

In cnapter 3 we consider categories inlexed by topolugical spaces. We first review the concepts of indexed category theory drawing mainly from Pare and Schumacher [19] and also from Lever [11]. We then introduce the concepts of ultrainite continuous function. The Top-indexed categories that have right adjoints for the functors induced by ultrafinite functions are introduced next and are called Lon categories. We close the chapter with a characterization of ultrafinite continuous functions.

In chapter 4 we start with a brief review of the folklore of functorial weak (co) limits. We then explore the relation between functorial weak (ro)limits and retractions of

 in a pretopon. This point the way to thom that the forget ful finctor Pretop \rightarrow Lex

 limits and colimits. We consider then in detail the two suce wise monad of pete pores over $\boldsymbol{C A T}$ we are interested in dind theil meldion with pee ultad ategonien and pltatatconice.
 - Et the ategor \mathfrak{E} os. Weagain relate thinategne of algebas with ultat tequich.

In chapter 6 we delme $\boldsymbol{T o p}$ indeved ategorien of codgehan oner ategorion with thltered colimits and produts. We genemalie the tenult in Lever [11] and we this
 $\mu^{1}: \operatorname{Mod}(P) \rightarrow$ Set preselem till ted colmith.

A Word About Size

We work in the sedting of Crothendieck miverses. That is we fix Grothendieck miversess $\boldsymbol{U}_{1} \in \boldsymbol{U}_{2} \in \boldsymbol{U}_{3}$. Sets, pretoposes, categories in \boldsymbol{U}_{1} are called small. The categorien of small sets, smail pretoposes, small categorie's are denoted low Set, Pretop, Cat respectively. We denote the category of sets in U_{2} by $S E T$, similarly PRETOP and CAT denote the categorien (2 -categories rather) of pretoposes and categories in the second universe U_{2} respectively. Then Set in an object in SET. $\boldsymbol{S E T}$ is not a cotegory in \boldsymbol{U}_{2} but it is a category in \boldsymbol{U}_{3}.

In this paper it is always assumed that limits and colimits are taken over diagrams with small domain.

Chapter 1

Pretoposes

1.1 Definition and Background

As we pointed ont in the introduction the concept of pretopen come from [1]. In this paper however we adop, the detinition eiven in [15] that is equivalent exrept that the former definition asks for smallness.

Definition 1.1. The eategory P is a pretopon if and only if

1. \boldsymbol{P} hat finite limits.
2. \boldsymbol{P} han a strict initial object.
3. \boldsymbol{P} has stable disjosint tinite coproducts.
4. P han table quotient of equivalence elations.

A functor $F: P \rightarrow Q$ between petoposen is called elementaly if and only if it prenerver finite limits. initial whect, finite coproduct and quotient of equivalence relations.

If we denote the initial ohject ly 0 , it being atrict means that for every P in \boldsymbol{P}. an arrow $P \rightarrow 0$ is necessarily an i-onorphinm.

Given objects $Q_{1}, \ldots Q_{n}$ in \boldsymbol{P}, the coproduct is di.joint it tor every,$k \in\{1, \ldots n\}$ $j \neq k$ implies that the square

is a pullbark. (iven $R \rightarrow \coprod_{k=1}^{n} Q_{k}$ in P we can form the pullbark

for every k. We say the coproduct is stable if the induced map

$$
\coprod_{k=1}^{n} P_{k} \xrightarrow{\left\langle\pi_{k 2}\right\rangle_{k}} R
$$

is an somorphism. It is not hard to see that, if the coproducts are disjoint and stable, then the injections into the coproduct are monomorphisms.

Given an equivalence relation $P \underset{!}{\stackrel{f}{\longrightarrow}} Q$ in P. a quotient for the equivalence relation is a coequalizer $Q \xrightarrow{r} R$ of f and g such that the square

is a pullback. I is stable if the pullback of r alung any arrow $A \rightarrow R$ in the quotient of some equivalence relation.

Given pretoposes P and Q we denote by $\operatorname{Mod}_{Q}(P)$ the category whose objects are elementary functors from P to Q and whese arrows are natural transformations between these. We call $\operatorname{Mod}_{Q}(P)$ the category of models of P in Q. ('learly, the category $\boldsymbol{S e t}$ is a pretopos and for any pretopos \boldsymbol{P} we denote $\operatorname{Mod}_{\boldsymbol{\operatorname { S e t }}(\boldsymbol{P}}(\boldsymbol{P})$ simply by $\operatorname{Mod}(P)$.

Following the notation from [8] (that refers in its turn to [1]), a topos \boldsymbol{E} is called coherent if it is equivalent to a category of the form $S^{\prime} h(C, J)$ for some site (C, J) with C a small left exact category and J generated by a pretopology in which every covering family is finite. An object X in a topos E is called compact if every epimorphic famly $\left\{Y_{i} \rightarrow X\right\}_{I}$ with codomain X contains a finite epimorphic subfamily. X is called stable if, for any pair of arrows $S \rightarrow X \leftarrow T$ with S and T compact we have that the pullback $S \times{ }_{X} T$ is compact, X is called coherent if it is both, compact and stable. We have (see 7.37 in [8])

Theorem 1.1. If \boldsymbol{E} is a cohtrent topos and $\boldsymbol{E}_{\text {whin }}$ is the full subrategory of \boldsymbol{E} of
 \boldsymbol{E} is clementary.

Given a small pretopos P we can consider the precanonical topology.I (. $\bar{\prime}$ is generated by the pretopology whose covering familien are all finite epimor, hice familien). We have (see 7.40 is $[\mathrm{x}]$)

Theorem 1.2. A toposi \boldsymbol{E} is coht $\mathrm{r}^{\prime} \mathrm{a}^{t}$ if and only of there crints a suall pretopon

 and 7.17 in $[8]$ we have

Theorem 1.3. If \boldsymbol{F} is a small pretopos, , the percanomi al topolig! on P and M_{0}

 \square

From [18$]$ we krow that finitary cherent theoric- sorre-pond to smal pretoposes. so what the theorm abome nays in that $s h(P, I)$ is the classifying topers for the colerent theory \boldsymbol{P} over $\boldsymbol{S e t}$, that is $\boldsymbol{S} \boldsymbol{S}(\boldsymbol{P}, I)=\boldsymbol{S e t} \boldsymbol{P}]$.

We will have the oppor unit. 'to ase Defigue's themen (see T. 11 in [$[\mathrm{B}]$)
Theorem 1.4. A coherem topes hus enoryh points.
 Hencin completenss theorem for finitary first-urder theories This s done in [18$]$.

We will use the following resut as well (see 7.17 in $[8]$). Recall h. (in $[8]$'s notation) a surjection $\boldsymbol{F} \rightarrow \boldsymbol{E}$ is a geom 4 ic morphism $\boldsymbol{F} \frac{f^{*}}{f_{*}^{*}} \boldsymbol{E}$ such that f^{*} reflect, isonorphisms (equivalently f^{*} is faithtul, equivalently te* ${ }^{\text {mint }}$ for the adjunction $f^{*}+f_{x}$ is: nono (see 4.11 is [iv)).

Lemma 1.5. If a (irothendieck topos E has anough points then the re trists a surjuction Set/I \rightarrow E for some I l/ Set.

1.2 Some properties of pretoposes

In this section we include some propertion of pretop wes we will use later on. Many more properties can be fond in [18]. Following the notation in [18] we call a morphism $f: A \rightarrow B$ in a category C surjective if for every commutative diagram

with m a monomorphism, m is necessarily an isomorphism. Then an image of an arrow $f: A \rightarrow B$. if it exists, is a subobject $m: B_{0} \rightarrow B$ such that there exists a surjective $g: A \rightarrow B_{11}$ with

commutative. In a catenory with pullhacks images are unique up to isomorphsm. Images are called stable if the fullback of a surjective is a surjective.

Lemma 1.6. Let $C_{1} \ldots, C_{n}$ be objects in a category C with finite limits and finite coproducts. The following condition in tquiralent to $\coprod_{k=1}^{n}\left({ }_{k}^{\prime}\right.$ be ing stable.

For , ver! diagram $\coprod_{k=1}^{n}\left({ }_{k} \xrightarrow{\left\langle f_{i}\right)} D \xrightarrow{g} A\right.$ the square

is a pullback. if for +itry k the square

is a pullback.
Now, fix a pretopos \boldsymbol{P} for the rest of this section. We have (wee 3 3.9 in [IN]
Lemma 1.7. P hato stablit amayts.

(sere 3.3.10 in [1s])

Lemma 1.8. P has stuble finite sup..
(sere 3.3.5 in [15])
 ${ }_{k}: P_{t} \rightarrow \coprod_{t=1}^{n} P_{i}^{2}$ is a monomorphism.

As a matter of fact it can be shown that a category with tinite limits, stable finite sup, stable images, stable quotients of equivalence relations and stable finite disjoint sums is a pretopos. This is the definition of pretopos given in [18]. From there it follows that the definition adopted here and the one given in [1] are equivalent exerpt for the smalluess condition (ree the disension after detinition 3.1 .3 in [18] .

Suppose now we have a finite family $\left\{Q_{4} \xrightarrow[y_{k}]{\stackrel{f_{k}}{\rightarrow}} R\right\}_{i=1}^{h}$ in P. Comsider the pulltark diagram,

Lemma 1.10. With the above notations the square

is a pullback.
Proof. We do it for $n=2$. Since finite coproducts are stable it follows from Lemmat 1.6 that for any $a: A \rightarrow P$ the following square is a pullback

where $A \times_{\mu} Q_{1}$ is the pullback of g_{1} along a and $A \times_{P} Q_{2}$ is the pulliback of y_{2} along a. For $a=\left\langle f_{1} \cdot f_{2}\right\rangle: Q_{1} \amalg Q_{2} \rightarrow P$ we can substitute $A \times P Q_{1}$ with $P_{11} \amalg P_{21}$ and $A \times_{P} Q_{2}$ with $P_{12} \amalg P_{22}$.

Suppose now that for every $k=1, \ldots, n$ we have a pullback diagram

Lemma 1.11. With the abore notation the squart

is s pullback (i.t. U_{k} preserves pullback).
Proof. In view of Lemma 1.10 it is enough to show that for all k we bave $P_{k} \simeq$ $Q_{k} \times \amalg_{k} \cdot{ }_{k} R_{k}$ and that for $j \neq k$ we have $Q_{j} \times \amalg_{k} \times_{k} R_{k} \simeq 0$. For the second one notice first that $S_{J} \times \amalg_{k} s_{k} s_{k} \simeq 0$ since finite coproducts are disjoint, second that we can induce a map from $Q_{,}{ }^{\times} \amalg_{k} s_{k} R_{k}$ to $s_{j} \times \amalg_{k} s_{k} s_{k}$ and finally that the initial object is
strict. For the fir consider the diagram

Since by Lemma 1.9 the injections ar" mono we have that the bottom right equare above is a pullback, the other thee squates are also pullbacks w the exterior one in a pullback.

Suppose we have a pair of arrows $Q \xrightarrow[!]{f} P$ in P. ('ombider the image of : $f . g\rangle$

We say that $\left\langle r_{1}, r_{2}\right\rangle$ is the relation gemerated $\boldsymbol{x}\langle\boldsymbol{\langle}, \underline{g}\rangle$.
 ff $\rho=1_{1}$, and $g \rho=1_{1}$, the ${ }^{g}$ the relation $R \xrightarrow[r_{2}]{\stackrel{r_{1}}{\longrightarrow}} P^{\prime} g+$ me rated by $\langle f \cdot g\rangle$ in reflextort.

Proof. Consider the commuative diagram

Lemma 1.13. (iint $n(\underset{y}{f} P$ in P. if thert fxint. an arrour $\sigma: Q \rightarrow Q$ nuth that
the diagram

commutes. the n the relation $h \xrightarrow[r_{2}]{r_{1}} l^{\prime}$ ye nerated by $\langle f, g\rangle$ is symmetric.
Proof. By hypotheses the diagram

commutes. Taking the image of $\langle f, g\rangle$ twice we get

So there exists a unique σ as shown above such that the resulting diagram commutes.
Now we have a condition that is enongh for transitivity. (iiven $Q \underset{g}{\stackrel{f}{\rightarrow}} P$ as before, and the gemerated relation $R \underset{r_{2}}{\stackrel{r_{1}}{\Longrightarrow}} P$ consider the following diagram

where both squares are pullbarks, By the pullbark property we vatu imdure h atove
 , is a surjection it is casy to nee that h is ato a surjection.
 $t: T \rightarrow Q$ nurh that thr diggrom

commutts.

$$
1 \stackrel{a}{b} u \xrightarrow{\left(r_{1, n}, r_{2+1}, r_{2 n}\right)} p \cdot P^{3} \cdot 1
$$

 r a we have a $-h$. Since h in urgective we have a maje tion-mome factorization
and 1 ine the propertes we are asmming for the dideram

clearly commutes. Consider the following surjective-mono factorizations

and

Then by the commetativity of 1.1 we have that

alse commutes. Notice that both compesitions are sujertive-mono, so we can induce I as shown such that both resulting traingles commute. Define $\hat{f}: f^{\prime} \rightarrow K$ as the composition $s \xrightarrow{\prime \prime} l \xrightarrow{f} l \xrightarrow{r^{\prime}} R$. Now it is casy to see that

commotes. This is enomgh for $R \underset{r_{2}}{\stackrel{r_{1}}{\Longrightarrow}} P$ to be transitive (see exercise (TRAN) in [2]).

1.3 Conceptual completeness

In [18] from any given tinitary coherent theory they construct a pretopos that has the "same" category of models. This is done in two steps, first a logical category is constructed, a very detailed construction of it is given in [6]. The construction of a pretopos from a logical category is the second step.

The advantage of using pretoposen instead of logical categories in the following two theorems from [i 8], but first we need a definition (also from [18])

Definition 1.2. Given an elementary functor $F: P \rightarrow \boldsymbol{Q}$ between pretoposes we say that

1. The functor F s subohject full iff for cerers P in \boldsymbol{P}. P induces an epinumphism $S_{u} u\left(P^{\prime}\right) \rightarrow S^{\prime} u b\left(F^{\prime} P^{\prime}\right)$
2. The functor F is conservative iff for P in P. P induces a monemmphism $S_{u b(P)} \rightarrow S^{\prime} u b(F P)$
3. An object Q in Q has a tinite cover via F^{\prime} if there exist a finite family

$$
\left\{Q \cdot \frac{f_{2}}{\left(Q_{2} \rightarrow F P_{i}\right\}_{2=1}^{n}, ~}\right.
$$

such that the family $\left\{Q_{2} \xrightarrow{f_{2}}(Q\}_{i=1}^{\prime}\right.$ is epimorphic.
Observe that f heing conserative is equivalemi in this context to f relle tine isomorphisms.

We have (see 7.1 .7 in $[1 N]$)
Lemma 1.15. If \boldsymbol{P} is a pretopos then an thementary functor $F: \boldsymbol{P} \rightarrow \boldsymbol{Q}$ betweth

1. F is subobject full.
$\therefore F$ is constreation.

And (see 7.1. N in [1s])
Theorem 1.16. If $F: \boldsymbol{P} \rightarrow \boldsymbol{Q}$ is an thementary functor betaren small put trpesen
surh that _ c $F: \operatorname{Mod}(Q) \rightarrow \operatorname{Mod}(P)$ is at squmale net then F is an 'qu" ltmet.

Theorem 1.16 is called conceptual completemess. The proof in [18]. besider involving lemma 1.1%, involves sounduces and completeness theorems and Los-Tarskis, theomem on sentences preserved by structures.

1.4 Łos' Theorem

A very important example for us of an elementary functor is given by Lor theorem. Let (I, G) be an ult ratilter, then we have the ultraproduct functor $\lim _{l \in a} \prod_{\in}(-):$ Set ${ }^{I} \rightarrow$ Set. We also denote this functor by $\Pi_{I}(-) / \mathcal{G}$ or simply by Π_{G}. This version of Los' Therrem comes from [15]
 tary.

Proof. (sketch) The proof is not hard but deserves some lines. $\Pi_{\mathfrak{G}}$ preserves finite limits since for every $I \leq I$ the functor $\Pi_{j \in J}: \boldsymbol{S e t} \boldsymbol{H}^{J} \rightarrow$ Set preserves limits and the colimit over elements of \mathcal{G} is filtered. "' ce epimorphisms ia $\boldsymbol{S e} \boldsymbol{t}^{I}$ are split, we have that Π_{G} preserves epimorphisms (Clearly Π_{G} preserves 0 . Finally, given $\left\langle A_{2}\right\rangle,\left\langle B_{2}\right\rangle$ in Set ${ }^{l}$, we use the fact that \mathcal{G} is an ultrafilter to show that the induced map $\prod_{I} A_{\imath} / \mathcal{G}+\Pi_{I} B_{2} / \mathcal{G} \rightarrow \prod_{I}\left(A_{\mathrm{z}}+B_{1}\right) / \mathcal{G}$ is outo.

1.5 Slice pretoposes

Let P be a pretopos and P an ubject of P. We have
Lemma 1.18. The slice category P / P is a pretopos
Proof. Since P is left exact then P / P is left exact. If 0 is the initial object in P then $0 \rightarrow P$ is a strict initial object in P / P. The coproduct of $Q \xrightarrow{q} P$ and $R \xrightarrow{r} P$ is $Q \amalg R \xrightarrow{[4 \cdot r]} P$ and is easily shown to be disjoint and stable. If a pair of arrows $q \underset{h^{\prime}}{\boldsymbol{h}} r$ in $\boldsymbol{P} /{ }^{\prime \prime}$ with $Q \xrightarrow{q} \mu^{\prime}$ and $R \xrightarrow{r} P$ is an equivalence relation then the corresponding $Q \underset{k_{i}}{\stackrel{h}{\longrightarrow}} R$ is an equivalence relation in \boldsymbol{P}. ('onsider its quotient $R \xrightarrow{\ell} G$ in \boldsymbol{P}. Using the universal property of the quotient we induce a map $s \rightarrow P$ such that $r \xrightarrow{f} s$ is a morphism in \boldsymbol{P} / P. This last arrow is the quotient in \boldsymbol{P} / P.

Then we have the forgetful functor $I: P / P \rightarrow P$ that has a right adjoint $\Delta_{P}: \boldsymbol{P} \longrightarrow \boldsymbol{P} / P$. Given $f: Q \rightarrow R$ in \boldsymbol{P} we have that $\Delta_{P}(Q)=\pi_{P}: Q \times P \rightarrow P$ and $\Delta_{P}(f)=f \times P$. We are ready for

Proposition 1.19. The functor $\Delta_{P}: \boldsymbol{P} \longrightarrow \boldsymbol{P} / P$ is elementary.
Proof. Δ_{P} clearly preserves finite limits since it has a left adjoint. $\Delta_{P}(0)=\pi_{P}$: $0 \times P \rightarrow P$ but $0 \times P \simeq 0$ due to the fact that 0 is strict in P. Since binary coproducts
are stable and for every \mathcal{Q}, K in \boldsymbol{P} we have that hoth squares in the diagram

are pullbacks, we have that $(Q \amalg i) \times P \simeq(Q \times P) \amalg(R \times P)$. Then Δ_{P}, preserves hinary coproducts. The proof for preserving quotients of equialence relation is left to the reader.

For any pretopos \boldsymbol{A} we can induce the functor

$$
-\circ \Delta_{P}: \operatorname{Mod}_{A}(P / P) \rightarrow \operatorname{Mod}_{A}(P)
$$

What we want to do now is to give an equivalent description of the category $\operatorname{Mod}_{A}(P / P)$ in terms of the category $\operatorname{Mod}_{A}(P)$.

Define the category $E l_{A}\left(C_{P}\right)$ as follows. The objects of $E l_{A}\left(r_{P}\right)$ are pairs $(1, a)$. where $M \in \operatorname{Mod}_{A}(P)$ and a is a global clement of $M P$, that is, $a: 1 \rightarrow M I$ in A. An arrow $h:(M, t) \rightarrow(N, b)$ in $E l\left(r_{P}\right)$ is an arrow $h: M \rightarrow N$ in $\operatorname{Mod}_{A}(P)$ su h that the diagram

commutes, As usial, when $A=S e t$ we drop the shbseript.
Theorem 1.20. If \boldsymbol{A} is , pretopns then the categorit. $E l_{A}\left(\& r_{P}\right)$ and $\operatorname{Mod}_{A}(P / P)$ art +quivale int.

Proof.- We define a functor $\Theta: E l_{A}\left(\in v_{P}\right) \rightarrow \operatorname{Mod}_{\boldsymbol{A}}(\boldsymbol{P} / \Gamma)$ as follows. (iiven (M, a) in $E l_{A}\left({ }^{\prime} P_{P}\right)$ define $\Theta(M, a): P / P^{P} \rightarrow \boldsymbol{A}$ such that $\Theta(M, a)(Q \xrightarrow{q} P)$ is the pullback

and if

is a morphisin in P / P^{2}, we define $\Theta(M, a)(f): \Theta(M, a)(Q \xrightarrow{q} P) \rightarrow \Theta(M, a)(Q \xrightarrow{r}$ P^{\prime}) as the unique morphis on that makes the diagram

commute. $\theta(M, a)$ turns out to be an elementary functor from $\boldsymbol{P} / P^{\prime}$ to \boldsymbol{A}. Now, if $h:(M, a) \rightarrow\left(M^{\prime}, b\right)$ is in $E l_{A}\left(c c^{\prime}\right)$, then define $\Theta(h): \Theta(M, a) \rightarrow \theta\left(M^{\prime}, b\right)$, whech that for every $\left(Q \xrightarrow{q} P^{\prime}\right.$ in $P / P, \Theta(h)(q)$ is the unique morphism that makes the diagram

commute. We define now a functor in the other direction. Define $\Xi: \operatorname{Mod}_{A}(P / P) \rightarrow$ $E l_{A}\left(r^{\prime} P\right)$ as follows. (Given a model N in $\operatorname{Mod}_{A}(P / P)$, when we apply N to

where δ is the diagonal map, we ohtain a morphism $N \dot{N}: 1 \rightarrow N\left(\Delta_{I^{\prime}}\left(I^{\prime}\right)\right)$. Wi detine $\Xi(N)=\left(N \circ \Delta_{P}, N \delta\right)$. If $k: N \rightarrow N^{\prime}$ is a morphism in $\operatorname{Mod}_{A}(P / P)$ then it is clear that the diagram

$$
\begin{gathered}
1 \xrightarrow{N\left(\Delta_{P}\left(I^{\prime}\right)\right)} \\
N^{\prime} \delta \Delta_{P^{\prime}}\left(I^{\prime}\right) \\
\left.N^{\prime}\left(\Delta_{r}\right)\right)
\end{gathered}
$$

commutes. Define $\Xi(k)=k \Delta_{I^{\prime}}:\left(N \circ \Delta_{I^{\prime}}, V \delta\right) \rightarrow\left(N^{\prime} \circ \Delta_{P^{\prime}}, N^{\prime} \delta\right)$. It is hot hated te prove that Ξ is a quasi-inverse for (θ).

It is casy fo see that the forgetful functor $E l_{A}\left(\right.$ r $\left.^{\prime} p\right) \rightarrow \operatorname{Mod}_{A}(P) .(M, u) \mapsto M$

We nse this description to give a categorical proof, instead of the mental model theoretic argument, of the following theorem from [15] We will need later. First a little notation. (iven an ultrafiler ($I . \mathcal{G}$), we have the ultraproduct functor

$$
\Pi_{c}=\lim _{\epsilon} \prod_{\in}(\cdots): \operatorname{Mod}\left(\Gamma^{I} \rightarrow \operatorname{Mod}(P)\right.
$$

 we apply this functor to the constant l-family $\langle M\rangle_{I}$ we denote the result by M^{s}. We denote by $\delta: M \rightarrow M^{G}$ the matal diagonal morphism. If we have a monomorphism $Q \longleftrightarrow P$ in P and a model M in $\operatorname{Mod}(P)$ we have that $M(\rightarrow . M P$. We may assmme that this mono is actmal contamment of sets. If we have a homomorphism $h: A \rightarrow M$ and elements $a \in M P^{\prime}, b \in V P^{\prime}$ for some P^{\prime} in P such that $h^{\prime}(b)=\delta \Gamma^{\prime}(a)$, then it is not hard to see that for every $Q \longmapsto P$ in $P, b \in N Q$ implies $a \in M(\mathcal{Q}$. The converse also holds.

Theorem 1.21. Assume P is small. Let $(M, a),(\lambda, b) \in E l\left(c v_{P}\right)$, suppost that for
 an ultrafilter (I, \mathcal{G}) and a homomorphism $h: \nu \longrightarrow M^{\mathcal{G}}$ ach that $h P^{\prime}(b)=d(a)$.

We will prove the case $P=1$ first
Lemma 1.22. Let M, N in $\operatorname{Mod}(P)$, suppose that for cotry monomorphism $Q \longmapsto 1$. $N()=1$ implies $M(\mathcal{V}=1$, then there exist an ultrafilter $(, \mathcal{G}, \mathcal{G})$ and a homomorphism $N \longrightarrow M^{\mathcal{G}}$.

Proof. Notice first that the condition of the lemma is equivalent to saying that for every $P^{\prime} \in P$ such that $N P \neq \emptyset$ we have that $M P^{\prime} \neq \emptyset$. To see this, consider the image of $P \longrightarrow 1$. Since N preserves images, if $N P \neq \emptyset$, then N of the image must be 1. Then M of the image must also be 1 , therefore $M P \neq \theta$. The converse is clear. Define s to be the set of tinitely generated subategories of $E l(N)$. If $I \in S$, there exists a didgram $\Gamma_{I}: I \longrightarrow E l(M)$ suth that the diagram

commuter, where the functors to P are forgefful functors. To show this, consider the diagram $I \xrightarrow{t} E l(V) \longrightarrow P$. Since P has finite limits and I is finitely generated we have that the limit $\frac{l}{i n \in N P \mid \in I} P$ of the diagram exists in P. It in clear

termines a $\Gamma_{I}: I \rightarrow E l(M)$ such that the square atove commutes. For every $I \in i$ choose a $l_{\boldsymbol{I}}$. (iiven $\boldsymbol{I} \in \boldsymbol{S}$, let $\uparrow(\boldsymbol{I})=\{\boldsymbol{K} \in \boldsymbol{S} \mid \boldsymbol{I} \in \boldsymbol{K}\}$. It is clear that $\uparrow(\boldsymbol{I}) \neq \boldsymbol{\eta}$. (iiven \boldsymbol{I} and \boldsymbol{I}^{\prime} in S^{\prime}, Let \boldsymbol{J} be the subcategory of $E l(N)$ generated by $\boldsymbol{I} \cup \boldsymbol{I}^{\prime}$. (learly $\boldsymbol{J} \in S^{\prime}$, and $\uparrow(\boldsymbol{I}) \cap \uparrow\left(\boldsymbol{I}^{\prime}\right)=\uparrow(\boldsymbol{J})$. Let \mathcal{G} be an ultratilter on S^{\prime} such that for every $\boldsymbol{I} \in \boldsymbol{Z}$ we have that $\uparrow(I) \in \mathcal{G}$. ('onsider the ultrapower M^{G}, and defile $h: N \longrightarrow M^{G}$ as follows. (iven $b \in N P$ consider the subrategory of $E l(N)$ that consists of one object. $\left(b \in N P^{\prime}\right)$, and its identity arrow. Let, $h P(b)=\left\langle\Gamma_{I}(b \in N P)\right\rangle_{I \in \mid(b \in N P)}$. So, we have a function $h P: N P \longrightarrow M^{G} P$. We have to show that h is natural. Let $f: P \longrightarrow P^{\prime}$ in \boldsymbol{P}, consider the diagram

Let $b \in N P$, and let I be the subcategory of $E l(N)$ generated by $(b \in N P) \xrightarrow{f}$
$\left(N f(b) \in N P^{\prime}\right)$. For cery $J \in S_{I}$ we have that $M f\left(\mathrm{I}_{I}(b \in N P)\right)=\mathrm{I}_{I}(N f(b) \in$ $N P^{\prime \prime}$). Therefore the previous square commutes.

The proof of the next le mma is easy
 ralent;

For cory monomorphism ()$\longrightarrow P, b \in N()$ implies a $\in \mathbb{M Q}$
For ever! monomorphism $r \nrightarrow 1 \mathrm{mP} P / P . \Theta(N, i)(r)=1$ implins $\Theta(M, h) r)=1$

Iroof of the orem 1.21. Suppose that for every monomorphism $Q \longrightarrow P$ ' we have that $b \in N(C$ implies $a \in M P$, then, by lemma 122 there exist a filter (S, G) and a homomorphism $k: \Theta(N, b) \longrightarrow \Theta(M, a)^{i}$. This corresponds to a homomorphism $h: N \rightarrow M$ such that $h P(h)=\lambda P(a)$.

1.6 Left exact categories and pretoposes

It is shown in [18] that given a small site ($C, . J$) with C a left exact category and I generated by a pretopology (in the sense of $[x]$) all of whose covering families are tinite. a small pretopoe $F(C . J)$ can be constructed such that the category $\operatorname{Mod}(F(C . J))$ is equivalent to $\boldsymbol{S} h(C, J)$. Whis is done by producing first a theory $\boldsymbol{T}_{(C . J)}$ such that for any logical category $\boldsymbol{R}, \boldsymbol{R}$-models of (C, J) are "the same thing" as \boldsymbol{R} models of $T_{(C, J)}$ (see 6.1 .1 in [18]). From $T_{(C, J)}$ a logical category $R(C . I)$ is constructed 1ugether with a canonical model $M_{1}: T_{(C, J)} \rightarrow R(C, J)$ with the universal property that for every logical category $\boldsymbol{R}, \boldsymbol{R}$ models of $\boldsymbol{T}_{(C, n}$ are "the same thing" as lugical functors from $K(C, I)$ to R, the passage given $l_{s} M_{t 1}$. Finally $R(C, I)$ is completed to a pretopos $F(C, J)$ and a logical functor $N_{11}: R(C, J) \rightarrow F(C, I)$ with the miversal property that for every pretopos \boldsymbol{P}, logical functors from $R(C, I)$ to \boldsymbol{P} are in correspondence with elementary functors from $F(C, J)$ to P. In panicular, when J is generated by the pretopology whose covering families are singletons containing isomorphisms a \boldsymbol{P} model of (C, J) is simply a left exact functor from \boldsymbol{C} to \boldsymbol{P}. Then the construction described above gives a left exact functor $F_{0}: C \rightarrow F(C, J)$ with the universal property that composition with F_{0} induces an equivalenere from $\operatorname{Mod}_{P}(F(C, J))$ to $\operatorname{Lex}(\boldsymbol{C}, \boldsymbol{P})$ for any pretopos \boldsymbol{P}. We have a forgetful functor
$I: \operatorname{Pretop} \rightarrow L e x$. The discussion above gives a small pretopos $F(C)$ for every left exact category C together with a universal functor $F_{0}: C \rightarrow F(C)$. This clearly produces a left adjoint for I^{\prime}. $F(C)$ turns out to be the category (Set ${ }^{C o p}$) sut (see 9.2 .5 in [18]). What we do in this section is to give a combinatorial deseription of $F(C)$ using only C.

1.6.1 Coherent objects of Set ${ }^{C^{a r}}$

Start then with a small left exact category C.
Lemma 1.24. A functor $F: C^{p} \rightarrow$ Set in a compact object in Set $C^{\text {ar }}$ if and omly if it is finitely generated (that is, thert exist objects $\left({ }_{1}, \ldots C_{n}\right.$ in C and an tpmorphism $\amalg_{k=1}^{n} C\left({ }_{-},\left(r_{k}\right) \rightarrow F\right)$

Proof. Suppose F is compact. Fon every $x \in F\left({ }^{\prime}\right.$ consider $r_{\left(x \in F C^{\prime}\right)}: C\left(-, C^{\prime}\right) \rightarrow F$
 pimerphic family. Since F is compart there exist $x_{1} \in F\left({ }_{1}, \ldots, r_{n} \in F\left({ }_{n}\right.\right.$ such that $\left\{C\left(\ldots, r_{k}\right) \xrightarrow{\tau_{\left(r_{s} \in E C_{n}^{\prime}\right)}} F\right\}_{k=1}^{n}$ is an epimorphic family. This clearly means that $\left\langle\tau_{\left(x_{k} \in F r_{k}\right)}\right\rangle: \amalg_{k} \boldsymbol{C}\left(-, r_{k}\right) \rightarrow F$ is an cpimorphism.

Assume now that we have an epimorphism $\left\langle\tau_{k}\right\rangle: \coprod_{k=1}^{n} C\left({ }_{-},\left({ }_{k}\right) \rightarrow F\right.$ and an epimorphic family $\left\{i_{\alpha_{\alpha}} \xrightarrow{f_{x}} F\right\}_{x}$. Then for every $k=1, \ldots, n$ there exists some α_{k} and $x_{k} \in\left(i_{a_{k}}\left({ }_{k}\right.\right.$ such that $f_{v_{k}}\left(\gamma_{k}\left(x_{k}\right)=r_{k}\left(C_{k}\left(l_{c_{k}}\right)\right.\right.$. It follows that the family $\left\{f_{i, x} \xrightarrow{f_{x_{k}}} F\right\}_{k=1}^{n}$ is an epimorphic family.

Proposition 1.25. A functor $F: C^{o p} \rightarrow$ Set is a coherent object if and only if there is a coequalizer of the form

$$
\coprod_{J=1}^{m} C\left(\ldots, D_{J}\right) \Longrightarrow \coprod_{k=1}^{n} C\left(\ldots, C_{l}\right) \rightarrow F
$$

in Set ${ }^{\text {Cop }}$ such that $\coprod_{j=1}^{m} C\left(-, D_{j}\right) \Longrightarrow \coprod_{k=1}^{n} C\left(\ldots\left({ }_{k}\right)\right.$ gfnerates an equivale nce relation
Proof. Let F in $\left(\text { Set }^{C^{o p}}\right)_{\text {coh }}$. By Proposition 1.24 we can find an epimorphism $\mathrm{U}_{k=1}^{n} C\left(\ldots,\left(_{k}\right) \xrightarrow{\left\langle\tau_{k}\right\rangle} F\right.$. ('onsider its kernel pair $\left.R \xrightarrow[r_{2}]{\stackrel{r_{1}}{\longrightarrow}} \coprod_{k=1}^{n} C_{-}, C_{k}\right)$. Since R is
compart (it is coherent by Theorem 1.1) there exist-an epmorphism

$$
\prod_{i=1}^{m} C\left(-, D_{3}\right) \xrightarrow{\left\langle b_{j}\right\rangle} R .
$$

This produces a coequalizer diagram

$$
\left.\coprod_{l=1}^{m} C(\ldots)_{j}\right) \Longrightarrow \coprod_{k=1}^{n} C\left(.\left({ }_{k}\right) \rightarrow l^{\prime}\right.
$$

with $\left(r_{1}, r_{2}\right)$ the equivalenee relation generated by the pair of atew on the left in the diagram above.
('onversely, assume $\left.\amalg_{i=1}^{\prime \prime} C\left({ }_{-},\right)_{1}\right) \rightrightarrows \coprod_{k=1}^{n} C\left(\ldots, C_{h}\right) \rightarrow F$ in a coedudizer such that the pair of arrows on the ieft eeneraten an equivaleme relation $R \underset{r_{2}}{r_{1}} \mathrm{~L}_{k=1}^{n} C\left(\ldots, C_{h}\right)$.
 culated as in S Set ${ }^{C^{\prime \prime}}$ we conclude that R is coherent. Since $\left(r_{1}, r_{2}\right)$ is an equivalence relation with coequalizer F it follows that F is coherent.

Re mark 1.1. Withont the equivalence relation condition in Proposition 1.25 we wond simply have that F is finitely presentable. So being coletent is a tronger condition on a functor F that being finitely presentable.

1.6.2 Free Pretopos Generated By a Left Exact Category

Considering the previons section, the idea to con-truct the pretopos from C is to characterize the pairs of arrow of the form

$$
\left.\prod_{i=1}^{m} C(\ldots,)_{i}\right) \Longrightarrow \prod_{k=1}^{n} C\left(\ldots, C_{h}\right)
$$

that generate equivalence relations (that is, that the image of

$$
\coprod_{k=1}^{m} C\left(-, I_{3}\right) \longrightarrow\left(\coprod_{k=1}^{n} C\left(-,\left(_{k}\right)\right) \times\left(\prod_{k=1}^{n} C\left(\ldots\left({ }_{k}\right)\right)\right.\right.
$$

is an equivalence relation).

$$
\left.\left\{C_{(\ldots} D_{3}\right) \cdots \prod_{k=1}^{n} C\left(\ldots C_{k}\right)\right\}_{j=1}^{\cdots n}
$$

 $\left\langle\left(t, f_{i}\right)_{1}\right.$. Or put anther way, there exists a function $f:\{1,2, \ldots, m\} \rightarrow\{1 \ldots, a\}$ and a family of arrows $\left\{f_{2}: O_{0} \rightarrow\left({ }_{f 0, n}\right\}_{j=1}^{m}\right.$ suth that for avery, the hagram

commates. Let's stant with two finctions $\{1, \ldots, \ldots\} \xrightarrow{f}\{1, \ldots n\}$ and two familes of

$$
\left.\prod_{k=1}^{m} C(\ldots)_{j}\right) \frac{\left(i_{f(n)} \circ C\left(-f_{1}\right)\right)}{\left(i_{n, f)} \circ C\left(-q_{3}\right)\right\rangle} \prod_{k=1}^{n} C\left(\ldots r_{k}\right)
$$

generates a reflexime relation. Consider then the epi-mono fanturization

We are spyposing then that $\left\langle r_{1}, r_{2}\right\}$ is a reflexive relation. Then there exists an arrow $r:\lfloor C(\ldots(k) \rightarrow B$ such that the diagran

rommutes. Sinese 3 is epi we can fimt a function $r:\{1, \ldots n\} \rightarrow\{1 \ldots, m\}$ and a fanily of arrows $\left\{C_{k} \xrightarrow{r_{k}} D_{r(k)}\right\}_{k=1}^{n}$ such that for every $k_{n}, a C_{k}^{\prime}\left(r_{k}\right\}=\tau\left({ }_{k}^{\prime}\left(\Lambda_{r_{k}}\right)\right.$. This implies
 the diagram

commuter. I he exibence of a commutative dideram an above implien that the gen erated relation is reflevive. We will hase to take care of the same way, and show that they work in dily petopon.

For the formal construction that follow we are quing to nse the concept of limit , ketch, for which we refer the reader to [16i].

Let \mathcal{S} be the limit ketch $\mathcal{S}=(\boldsymbol{G}, I) . I)$. where G is the eraph

1) compists of the following diagram

and L only has the cone

We are going to consider models of the sketch \mathcal{S} in Set $_{0}$. (Given a model Φ : $S \rightarrow \operatorname{Set}_{11}$ we are thinking of $\Phi(0)$ as the set $\{1 \ldots, n\}$ and $\Phi(1)$ as the set $\{1, \ldots m\}$ in the discussion above. and $f .!$ and r as the functions with the same names as above. The introduction of the pullback $\Phi(2)$ is necessary for transitivity. The names in the graph G are not accidental, r relates to reflexivity, s to symmetry and t to transitivity: Notice that the diagrams in D that have r in them represent the condition on the indexing sets that we found necessary on the discussion above for the generated relation to be reflexive.

For every model $\Phi: \mathcal{S} \rightarrow \boldsymbol{S e t}_{0}$ we can construct a new limit sketeh $\mathcal{S}_{\Phi}=$ $\left(G_{\Phi} . D_{\Phi}, L_{\Phi}\right)$ as follows. The graph G_{Φ} has as set of nodes the set $\Phi(0) \amalg \Phi(1) \amalg \Phi(2)$. To make the notation easier we are going to denote the elements of $\Phi(0)$ by the variable r, possibly with subindexes, the elements of $\Phi(1)$ by the variable y again with possible subindexes and the elements of $\Phi(2)$ as pairs $(1 / 1, \not / 2)$. We have the following arrows in $\mathcal{G}_{\boldsymbol{D}}$
$y \xrightarrow{f} \Phi f(y)$ for every $y \in \Phi(1)$.
$y \xrightarrow{g} \Phi(y)$ for every $y \in \Phi(1)$.
$x \xrightarrow{r} \operatorname{\Phi r}(x)$ for every $x \in \Phi(0)$.
$y \xrightarrow{s} \Phi s(y)$ for every $y \in \Phi(1)$.
$\left(y_{1}, y_{2}\right) \xrightarrow{t} \Phi t\left(y_{1}, y_{2}\right)$ for every $\left(y_{1}, y_{2}\right) \in \Phi(2)$.
$\left(y_{1}, y_{2}\right) \xrightarrow{p_{01}} \Phi\left(y_{1}, y_{2}\right)=y_{1}$ for every $\left(y_{1}, y_{2}\right) \in \Phi(2)$.
$\left(y_{1}, y_{2}\right) \xrightarrow{p_{12}} \Phi p_{12}\left(y_{1}, y_{2}\right)=y_{2}$ for every $\left(y_{1}, y_{2}\right) \in \Phi(2)$.
Notice that we have given the same name to many different arrows. if $y_{1} \neq y_{2}$ then $\left(\left(y_{1} \xrightarrow{f} \Phi f\left(y_{1}\right)\right) \neq\left(y_{2} \xrightarrow{f} \Phi f\left(y_{2}\right)\right)\right.$ so it will be necessary to specify domain and codomain when confusion may arise.
D_{Φ} mirrors l) in the following way. For every $, r \in \Phi(0), y \in \Phi(1)$ and $\left(y_{1} \cdot y_{2}\right) \in$ $\Phi(2))$ the following diagrams are in D_{Φ}.

and for every $\left(1 / 1_{1}, 2_{2}\right) \in \Phi(2)$, Lo has the cone

(iiven a left exact ategory C we dre emong tormbider model- $1: S_{0} \rightarrow C^{\prime}$. We

 diagrams

Proposition 1.26. (ieven a pretopo, P. a madtl $\Phi: S \rightarrow$ Set $_{13}$ and a montrl|:
 ($\hat{4}, 1$) is all rquivalener relation.

commutes. Since the diagrams

commute we have that $\varphi \rho={ }^{1} \mathrm{U}_{\underline{t \in(0)} \Gamma_{t}}=\psi \cdot \rho$. it follows from Lemma 1.12 that the generated relation is reflexive.

Similarly induce $\sigma: \coprod_{y \in \Phi(1)} \Gamma_{y} \rightarrow \coprod_{y \in \Phi(1)} \Gamma_{y}$ such that for every $y \in \Phi(1)$ the diagram

rommutes. It is easy to show that the diagram

commutes. Then by Lemm; 1.13 the generated relation is symmetric.
For $x \in \Phi(0)$ denote by $\Phi(2)_{:}$the set $\left\{\left(y_{1}, y_{2}\right) \in \Phi(2) \mid \Phi f\left(y_{2}\right)=x\right\}$. By Lemma 1.10 we have that
is a pullback. It follows by Lemma 1.11 that

is a pullback. So induce $\tau: \coprod_{\left(y_{1}, y_{2}\right) \in \Phi(2)} \Gamma_{y_{1} y_{2}} \rightarrow \coprod_{\psi \in \Phi(1)} \Gamma_{4}$ unch that the diagiam

commute, for every $\left(y_{1}, y_{2}\right) \in \Phi(2)$. It is casy to nee that the diagram

rommutes. Then bey Lemma 1.14 the generated relation is transitive.
Now, for a left exact category C the objects of $F(C)$ are pairn of motel,

$$
\left(\mathcal{S} \xrightarrow{\Phi} \text { Set }_{1}, \mathcal{S}_{\Phi} \xrightarrow{\Gamma} C\right)
$$

We are thinking that the pair ($Ф, \Gamma$) represents the quotient of the equivalence relation
 asking for finite limits in C.

Now, for the arrows in $F(C)$ we need to retain unly the information given by f and y. To do this we consider the graph $\boldsymbol{H}=1 \xrightarrow[!]{f} 0$ and regard it as a limit sketeh where the set of commutative diagrams and the set of limit diagrams are both empty. That is, we romider the sketch $T=(\boldsymbol{H}, \boldsymbol{\eta},($) $)$. We have an whions sketch arrow $i: T \rightarrow \mathcal{S}$. We are alo going to mee the netch $I=(1, \emptyset, \emptyset)$ and the sketch morphisms $\mathcal{I} \xrightarrow{0} T$. (iiven a model $\Phi: \mathcal{S} \rightarrow$ Set $_{0}$ we can detine the graph H_{Φ} whore set of nodes is $\Phi(1) \amalg \Phi(0)$ and with arrows $f: y \rightarrow \Phi f(y)$ and $y: y \rightarrow \Phi y(y)$ for every $y \in \Phi(1)$. Then let $\mathcal{T}_{\Phi}=\left(\boldsymbol{H}_{\Phi}, \boldsymbol{O}, ⿹\right)$. In the same fashion let $\mathcal{I}_{\Phi 0}=\left(\boldsymbol{H}_{\Phi 0}, \emptyset, \emptyset\right)$ and $\mathcal{I}_{\Phi 1}=\left(\boldsymbol{H}_{\Phi 1}, \emptyset, \emptyset\right)$ where $\boldsymbol{H}_{\Phi 0}$ is the discrete graph with nodes $\Phi(0)$ and $H_{\Phi 1}$ is the discrete graph with nodes $\Phi(1)$. We have the obvious sketch arrows $\mathcal{T}_{\Phi} \rightarrow \mathcal{S}_{\Phi}, \mathcal{I}_{\Phi 0} \rightarrow \mathcal{T}_{\Phi}$ and $\mathcal{I}_{\Phi 1} \rightarrow \mathcal{T}_{\Phi}$.
(Given models $\Phi, \Psi: \mathcal{S} \rightarrow$ Set $_{0}$, an arrow $h: \Phi i \rightarrow \Psi$ of models induces an
 and $\left(\mathcal{S} \xrightarrow{\Psi}\right.$ Set $_{1}, \mathcal{S}_{\Psi} \rightarrow(\stackrel{\perp}{\rightarrow}$) and a pair of arrows of models

Let" A take at chere look at what thene arows ate. h is a pair of functions maxing the diagram

nequentially commutative. Then σ gives an arrow $\sigma, r: \Gamma_{y} \rightarrow \Delta_{h u(x)}$ in C for every $x \in \Phi(0)$ and an arrow $\sigma!: \mathrm{I}_{4} \rightarrow \Delta_{i, 1(4)}$ in C for every $\eta \in \Phi(1)$ in such a way that the diagram

commutes for all $\| \in \Phi(1)$. What this represents in our infomal disinssion is a sequentially commutative diagram

that would induce an arrow bet ween the coequalizers. There is, of course, no unique way to induce arrows between coequalizers so wa will need equivalence classes. The definition is as follows.

Given a left exact category C let $F(C)$ be the categury whose objects ate pair of models $\left(\mathcal{S} \xrightarrow{\Phi} \boldsymbol{S e t}_{10}, \mathcal{S}_{\boldsymbol{W}} \xrightarrow{I} C\right.$). A morphism

$$
\left(\mathcal{S} \xrightarrow{\Phi} \text { Set }_{11}, \mathcal{S}_{\Phi} \xrightarrow{\Gamma} C\right) \rightarrow\left(\mathcal{S} \xrightarrow{\Psi} \text { Set }_{11}, \mathcal{S}_{\Psi} \xrightarrow{\lrcorner} C\right)
$$

is an equivalence ciass $[(h, \sigma)]$ such that (h, σ) are as in 1.3 . The equivalence relation is detined an follow, $(h, \sigma) \sim(h, T)$ if there exist morphisms of models d and θ

such that the following diagrams

commute. We show that \sim is an equivalence relation. (Given (h, σ) detine $d=$ $(\Phi(0) \xrightarrow{h 0} \Psi(0) \xrightarrow{\Psi r} \Psi(1))$ and for every $r \stackrel{(}{=} \Phi(0)$ detine or as the compusition

$$
\Gamma_{x} \xrightarrow{\sigma r} \Delta_{/ \mu(:)} \xrightarrow{\Delta r} \Delta_{\Phi_{r}(h)(x)} .
$$

With thene definitions it is clear that $(h, \sigma) \sim(h, \sigma)$. Suppose now that $(\hat{h}, \sigma) \sim$ (k, T), then there exist d and o with the corresponding properties atove. Define $d^{\prime}=(\Phi(0) \xrightarrow{d} \Psi(1) \xrightarrow{\Psi \cdot} \Psi(1))$, and $\delta^{\prime}(x \in \Phi(0))$ as the comporition

$$
\mathrm{I}_{x} \xrightarrow{\partial x} \Delta_{d(x)} \xrightarrow{\Delta_{n}} \lambda_{\Psi s(h u(x))}
$$

It is not hard to see that d^{\prime} and λ^{\prime} satisfy the conditions for $(k, \tau) \sim(h, \sigma)$. Suppose now that $(h, \sigma) \sim(\tau)$ and $(k, \tau) \sim(l, \theta)$, with d and δ gnaranteeing the first
equivalence and d^{\prime}, δ^{\prime} the second. Then there exist a anique arrow $\Phi(0) \rightarrow \Psi(2)$ that makes the diagram

commute. For every $x \in \Phi(0)$ there exists a unique arrow $\Gamma_{x} \rightarrow د_{d(x) d^{\prime}(x)}$ that makes the diagram

commute. Define $d^{\prime \prime}=(\Phi(0) \rightarrow \Psi(2) \xrightarrow{\Psi t} \Psi(1))$, and for every $x \in \Phi(0)$, define $\delta^{\prime \prime}, x$ as the composition

$$
\Gamma_{x} \rightarrow \Delta_{d(x) d^{\prime \prime}(x)} \xrightarrow{\Delta t} \Delta_{\Psi t\left(d(x), d^{\prime}(x)\right)} .
$$

It is easy then to show that $(h, \sigma) \sim(l, i)$.
Composition in $F(C)$ is defined as follows. (iven

$$
(\Phi, \Gamma) \xrightarrow{[(h, \sigma)]} \rightarrow(\Psi, \Delta) \xrightarrow{[(k, \tau)]}(\Upsilon, \Xi)
$$

its composition is simply $[(k h, \tau \sigma)]$. It is not hard to prove that the composition is well defined. It is clearly associative and the identity morphism of (Φ, Γ) is $[(1,1)]$.

If P is a pretopos we know from Proposition 1.26 that for any object $\left(\mathcal{S} \xrightarrow{\Phi} \boldsymbol{S e}_{0} \boldsymbol{t}_{0}\right.$, $\mathcal{S}_{\Phi} \xrightarrow{\Gamma} \boldsymbol{P}$) in $F \boldsymbol{P}$ we obtain a pair of arrows (see 1.2) $\amalg_{\Phi(1)} \Gamma_{y} \xrightarrow[\|]{\stackrel{\varphi}{\longrightarrow}} \amalg_{\Phi(0)} \Gamma_{x}$ whose generated relation is an equivalence relation. This in particular means that the pair of arrows has a coequalizer $\Pi_{\Phi(1)} \Gamma_{y} \xrightarrow{\hat{\varphi}}{ }_{\vec{h}} \Pi_{\Phi(0)} \Gamma_{x} \xrightarrow{u} C^{r}$ (the quotient of the generated
equivalence relation）．（iven a pair（ h, σ ）as in 1.3 we ohtain a commutative diagram

therefore we can iudure $t_{(h, ⿱ 亠 ⿻ ⿰ 丨 丨 八 又}$ atwe makine the diagram commutative．
Proposition 1．27．With the whom motatron，if $(h, \sigma) \sim(k,-7)$ then $t_{\text {fin，}}=f_{(R,-1}$
Proof．Let d and the an in 1.4 suth that the correspending didgrame commute
 commatativity of 1.5 we have that the diagram

commutes．Since a coequalizes $\left(\boldsymbol{r}^{\prime}, r^{\prime}\right)$ it follows that
commutes．Th refore $山_{\Phi(1)} \mathrm{I}_{r} \xrightarrow{\prime \prime} I^{\xrightarrow{t_{(h, r)}} \xrightarrow[t_{(k, T)}]{ }} \prime^{\prime}$ also commuter．Sinee＂in epi we are done．

Proposition 1．28．For any small left wact category C the category $F C$ in tquimate nt to the cattegory（Set ${ }^{C^{\prime p}}$ ）whe

Proof．Define（i ：FC $\rightarrow\left(S e t^{C^{\prime}}\right)_{\text {osh }}$ such that any object（ Φ, Г）in FC the diagram

$$
\left.\coprod_{\Phi(1)} C\left(\ldots, \Gamma_{y}\right) \frac{\left\langle i_{\Phi f(y)} C(,, \Gamma f)\right\rangle}{\left\langle i_{\Phi, y(y)} C(-, \Gamma y)\right\rangle} \underset{\Phi(0)}{ } C\left(\ldots, \Gamma_{x}\right)\right) \rightarrow(i(\Phi, \Gamma)
$$

is a coequalizer. The coequalizer exisus as a consequence of lropusition 1.26 . (iven $[(h, \sigma)]:\left(\Phi, \Gamma^{\prime}\right) \rightarrow(\Psi . \Delta)$ detine $(i([(h, \sigma)])$ as the imluced arrow such that

$$
\begin{aligned}
& \mathrm{L}_{\Phi(0)} C\left(\ldots \mathrm{I}_{s}\right) \longrightarrow C_{i}\left(\Phi, \mathrm{I}^{\prime}\right)
\end{aligned}
$$

commuter. It follows from Proposition 1.5 that $([f(h, \sigma)]$ is well defined.
In the other direction detine $I I:\left(\operatorname{Set}^{C^{\prime \prime}}\right)_{\text {wh }} \rightarrow F C$ as tollows. For every h
 (pinomphism $\amalg_{\Phi(1)} C\left(\rightarrow \Gamma_{x}\right) \longrightarrow K$. Consider $R \underset{r_{2}}{\stackrel{r_{1}}{\longrightarrow}} \amalg_{\Phi(0)} C\left(\ldots, \Gamma_{x}\right)$, kernel pair of this epimorphism. Since R is compart we can chosse a finite set $\Phi(1)$, an object l_{y} in C for every $y \in \Phi(1)$ and an epimorphimm $\coprod_{\Phi(1)} C\left(, \Gamma_{y}\right) \longrightarrow R$. Wio obtain then a pair of arrows

$$
\coprod_{\Phi(1)} C\left(-, \Gamma_{y}\right) \stackrel{\varphi}{\longleftrightarrow} \coprod_{\Phi(1)} C\left(-, \Gamma_{x^{2}}\right)
$$

whose generated relation is the equavence relation $\left(r_{1}, r_{2}\right)$. We can then find funs1ions $\Phi f, \Phi g: \Phi(1) \rightarrow \Phi(0)$ and arrow: $\Gamma_{\phi f(t)} \stackrel{\Gamma f}{-} \Gamma_{y} \xrightarrow{\Gamma_{y}} \Gamma_{\Phi g(y)}$ for every $y \in \Phi(1)$ such that the diagrams

commute. Since $\left(r_{1}, r_{2}\right)$ is reflexive and $\amalg_{\Phi(1)} C\left(, \Gamma_{4}\right) \rightarrow \rightarrow R$ epimorphic we can choose a function $\Phi r: \Phi(0) \rightarrow \Phi(!)$ and arrows $\mathrm{I}^{\prime} r:\left({ }_{x} \rightarrow D_{\Phi r(n)}\right.$ stich that the diagrams

comminte
Similary, using symmetry and transitivity we can define the reat of the element necessary toobtain an where (Φ, V^{\prime}) of $F C$. Detime then $M(K)=(\Phi, \Gamma)$. (iven an ar-
 is epimorphic there exists a map $K \rightarrow \coprod_{\Psi(0)} C\left(, \Delta_{1}\right)$ such that

$$
\Pi_{\Psi, 0)}{ }^{\wedge}\left(\stackrel{\wedge}{\wedge} \Delta_{1},\right)
$$

commutes. This indurev an arrow

$$
\coprod_{\Psi(11)} C\left(, \Gamma_{1}\right) \longrightarrow \coprod_{\Psi(1)} C\left(\ldots, \lambda_{1},\right) .
$$

Therefore we can tind a function $h\left(0: \Phi(0) \rightarrow \Psi(0)\right.$ and arrow $\sigma_{l} r: \Gamma_{2} \rightarrow \Delta_{h(m)}$ for every $x \in \Phi(0)$ such that the diagram

commmers. There exists then an arrow $h \rightarrow h^{\prime \prime}$ sheh that the diagram

is secpuentially commutative. Since $\coprod_{\Psi(1)} C\left(-\Delta_{q^{\prime}}\right) \rightarrow R$ is an epimorphism we can find an trrow $\coprod_{\Phi(1)} C\left(\ldots \Gamma_{4}\right) \rightarrow \coprod_{\Psi_{(1)}} C\left(\ldots, \Delta_{4}\right)$ such that the diagram

commutes. This gives a function $h 1: \Phi(1) \rightarrow \Psi(1)$ and arrows $\sigma y: \Gamma_{y} \rightarrow \Delta_{h(y)}$ for every $y \in \Phi(1)$ such that.

commutes. It is casy to show that h and σ as defined above are arrows of sketches as in 1.8 . Detine $H(\mu)=[(h, \sigma)]$. It is not hard to see that if we change the choices made above to produce (h, σ) we obtain an equivalent pair. (i is the pembe-inverse of H

Chapter 2

Ultracategories

The concepts of pre-ultracategory, ultramorphism, ultracategory and Makkai h theorem (Theorem '.3) all are taken from [1.7].

Given a pretopos P we want to consider the category $\operatorname{Mod}(\boldsymbol{P})$ of models of P. $\operatorname{Mod}(\boldsymbol{P})$ has filtered colimits (and they are calculated pointwise) but in general we can not gnaranter the existence of any other kime of colimits. The sitnation for limits in $\operatorname{Mod}(\boldsymbol{P})$ is even worse. However, $\operatorname{Mod}(\boldsymbol{P})$ has ultraphoduct, and they are pointwise. That is, given an ultratilter ($I, l(f)$ (a set I with an ultratilter $(f$ on I) we have that for every family $\left\langle M_{t}\right\rangle_{I}$ of models of P the ultraproduct $\lim _{1 \in \mathcal{E}, ~} \prod_{B} M_{3}$ is a model of P. where the products ame the filtered colimit are taken in Set ${ }^{P}$. So we have a functor $\left[\ell C_{]}:(\operatorname{Mod}(\boldsymbol{P}))^{I} \rightarrow \operatorname{Mod}(\boldsymbol{P})\right.$ that assigns to any I-family of models its ultraproduct. Pre-nltracategories are an at ${ }^{\text {npt to capt ine this situation. }}$

2.1 Pre-Ultracategories

Definition 2.1. A pre-ultracategory \boldsymbol{A} consists of a category \boldsymbol{A} together with a functor $[l C]_{\boldsymbol{A}}: \boldsymbol{A}^{l} \rightarrow \boldsymbol{A}$ for every ultratilter (I.li). We refer to the functor $[l 1]_{\boldsymbol{A}}$ as the ultraproduct functor associated to \mathbb{C} in \boldsymbol{A}.

Given pre-ultracategories $\underline{\boldsymbol{A}}$ and $\underline{\boldsymbol{B}}$, a pre-ultrafunctor $\underline{\boldsymbol{E}}: \underline{\boldsymbol{A}} \rightarrow \underline{\boldsymbol{B}}$ is a functor
$F: \boldsymbol{A} \rightarrow \boldsymbol{B}$ together with a natural isomorphism $[\mathcal{U}, E]$

for every ultratilter (I, \mathcal{U}). Pre-ultrafunctors compose in the obvions way.
 $\underline{F} \rightarrow \underline{(i}$ is a natural transformation $\tau: F \rightarrow(i: A \rightarrow B$ such that

commutes. Pre-nltranatural transformations also compose in the obvions way.
Let $\boldsymbol{P U C}$ denote the 2 -rategory of pre-ultracategories, pre-ultrafunctors and preultranatural transformations whose underlying categories are categories in the second universe.

Whenever we have a pre-ultracategory $\underline{\boldsymbol{A}}$, an ultranlter (I, \mathcal{U}) and a family $\left\langle A_{i}\right\rangle_{1}$ in \boldsymbol{A}^{\prime} we denote $[\mathcal{U}]_{\underline{A}}\left\langle A_{2}\right\rangle$ by $\prod_{I} A_{2} / \mathcal{U}$ or sometimes by $\prod A_{1} / \mathcal{U}$. Similarly, if $\left\langle f_{2}\right\rangle$ is a morphism in \boldsymbol{A}^{l} we have $[\mathcal{U}]_{\underline{A}}\left\langle f_{i}\right\rangle=\Pi_{I} f_{1} / \mathcal{U}$.

If \boldsymbol{P} is a pretopos then $\operatorname{Mod}(\boldsymbol{P})$ is clearly a pro-ultracategory $\operatorname{Mod}(\boldsymbol{P})$ with the usual ultraproduct functors. In particular we can consider the pre-ultracategory Set of sets together with the usual ultraproduct functors.

2.2 Ultragraphs and Ultramorphisms

The ultraproduct defined above for models is a combination of limits and colimits, therefore we are in very short supply of canonical maps in or out of an ultraproduct (as oppose to an honest limit or colimit). Here is where ultramorphisms try to fix this
lack. But before considering the concept of ultramorphism we need the concept of ultragraphs. Ittragraphs are to ult raprohucts whai limit sketches are to limits. That is, in an ultragraph we want to specify nodes that will represent the ultraproduct of wher notes (the same way as we want some nodes in a limit sketch to represent the limit of some other nodes).
Definition 2.2. An ultragraph \underline{G} is a graph \boldsymbol{G} together with a partition $\boldsymbol{G}^{f} \cup \boldsymbol{G}^{\boldsymbol{f}}$ of the nodes of \boldsymbol{G} and such that for every $d \in \boldsymbol{G}^{b}$ we have assigned a triple $\left(I_{a},\left\langle\mathcal{L}_{a}, g_{i}\right)\right.$ where $\left(I_{i}, \mathcal{U}_{3}\right)$ is an ultratilter and $g_{1,}: I_{i} \rightarrow G^{f}$ is a function. The nodes in G^{f} are called free noden and the nodes in G^{b} are called bonnd noder.

Then an ultradiagram is the equivalent of a model of a linnit sketch. That is, an ult radiagram is a diagram that assigns to a bound node an ultraproduct of the images of the modes associated with the bomed node.

Definition 2.3. (iiven a pre-nltracategory $\underline{\boldsymbol{A}}$ and an ultragraph $\underline{\boldsymbol{G}}$. an ultradiagran $\underline{I}: \underline{\boldsymbol{G}} \rightarrow \underline{\boldsymbol{A}}$ is a diagram $I): \boldsymbol{G} \rightarrow \boldsymbol{A}$ together with an isomorphism

$$
\left.D(x) \xrightarrow{d_{i z}} \Pi_{l,} I_{(y+}(i)\right) / d_{i}
$$

for every $\boldsymbol{j} \in \boldsymbol{G}^{h}$.
(iven ultradiagrams $\underline{D}, \underline{D^{\prime}}: \underline{G} \rightarrow \underline{A}$ a morphism $\underline{a}: \underline{D} \rightarrow \underline{D}^{\prime}$ is a matural transformation $\sigma: D \rightarrow D^{\prime}$ between diagrams stech that the square

commutes for every $\left\{\in \boldsymbol{G}^{\prime}\right.$. Morphisms between ultradiagrams compose in the obvious way. se we have a category $\boldsymbol{U D}(\underline{\boldsymbol{G}}, \underline{\boldsymbol{A}})$.

If we have a pre-ultrafunctor $\underline{F}: \underline{\boldsymbol{A}} \rightarrow \underline{\boldsymbol{B}}$ and an viltragraph $\underline{\boldsymbol{G}}$ then it is not hard to see that \underline{E} indures a functor $\boldsymbol{U} \boldsymbol{D}(\underline{\boldsymbol{G}}, \underline{F}): \boldsymbol{U} \boldsymbol{D}(\underline{G}, \underline{\boldsymbol{A}}) \rightarrow \boldsymbol{U} \boldsymbol{D}(\underline{\boldsymbol{G}}, \underline{B})$ by composition.
(iiven a node k in $\underline{\boldsymbol{G}}$ we define the functor $c_{k}: \boldsymbol{U} \boldsymbol{D}(\underline{\boldsymbol{G}}, \underline{\boldsymbol{A}}) \rightarrow \boldsymbol{A}$ at evaluation at k, that is $\left.c_{k}(\underline{D})=I\right)(k)$ and $c_{k}(\underline{\sigma})=\sigma k$ for every $\underline{\sigma}: \underline{I} \rightarrow \underline{\underline{I}} \underline{l}^{\prime}$ in $\boldsymbol{U} \boldsymbol{D}(\underline{G}, \underline{\boldsymbol{A}})$.

We have the following corollary of Los theorem 1.1
Corollary 2.1. For any ultragraph \underline{G} the category $\boldsymbol{U} \boldsymbol{D}(\underline{\boldsymbol{G}}, \underline{\boldsymbol{S e t})}$ is a pretoper and the forgetful functor $\boldsymbol{L}^{\boldsymbol{T}} \boldsymbol{D}(\underline{\boldsymbol{G}}, \underline{\underline{S e t}}) \rightarrow \boldsymbol{S e t}^{\boldsymbol{G}}$ is the me ntary.

We are ready now for the definition of ultramorphism.
Definition 2.4. (iven a pre-ultracategory $\underline{\boldsymbol{A}}$, an ultragraph \underline{G} and nodes k and l in \boldsymbol{G} an ultramorphism δ of type $(\underline{\boldsymbol{G}}, k, l)$ on $\underline{\boldsymbol{A}}$ is a natural transformation $\delta:\left(c_{k} \rightarrow\right.$ $(\because: U D(\underline{G}, \underline{A}) \rightarrow A$.

An example of an ultramorphism on Set in the following. Let (I. U) he an ultrafilter and $f: I \rightarrow J$ he a function. ('onsider the ultratilter $\mathcal{V}=\left\{J_{0} \in J \mid f^{-1}, J_{0} \in \mathbb{U}\right\}$ on J. Define the ult ragraph \underline{G} as follows. $\underline{G}^{\prime \prime}=\{3, \gamma\}$ and $\underline{G}^{f}=J$. There are no arrows in \underline{G}. Detine $\left(I_{i^{3}}, \mathcal{U}_{j}, g_{i}\right)=(I, \mathcal{U}, f: I \rightarrow J)$ and $\left(I_{2},\left(\ell_{1}, \ell_{2}\right)=\left(J, V, i d_{J}\right)\right.$. We
 let $\delta\left\langle A_{j}\right\rangle_{J}: \Pi A_{J} / \mathcal{V} \rightarrow \Pi A_{f}(i) / \ell$ be the unique map that makes the diagram

commute for every $J_{0} \in \mathcal{V}$. It is not hard to show that δ defined this way is a natural transformation $\delta: c c_{\gamma} \rightarrow c_{\gamma}$. That is, δ is an ultramorphism. As a particular case observe that when $J=1$ we obtain the diagonal function $A \rightarrow A^{4}$ for every set A.

Denote by $\boldsymbol{\Delta} \underline{\text { Set }}$ the set of all the ultramorphisms on Set. This makes Δ Set a set in our second universe.

2.3 Ultracategories

Definition 2.5. An ultracategory $\underline{\underline{A}}$ consists of a pre-nlt racategory \underline{A} together with
 $U D(\underline{G}, \underline{\text { Set }}) \rightarrow \underline{\text { Set }}$ in Δ Set.
(iiven ultracategoriess $\underline{\underline{A}}$ and \underline{B} an ultrafunctor $\underline{F}: \underline{A} \rightarrow \underline{B}$ is a prent wafuntor $\underline{F}: \underline{A} \rightarrow \underline{B}$ such that $F \delta_{\underline{A}}=\delta_{\underline{B}} U D(\underline{G} . \underline{\underline{E}})$.
(iven ultrafunctors $\underline{\underline{H}}, \underline{\underline{\theta}}: \underline{\underline{A}} \rightarrow \underline{\underline{E}}$ an ultranatmal transformation $\underset{\sim}{\underline{\sigma}}: \underline{\underline{F}} \rightarrow \underline{\underline{B}}$ in simply a pre-nlt ranatural transtormation $\sigma: \underline{p} \rightarrow \underline{(i}$.

Iltrafunctors and ultranatural transformations compone in the obriom was and
 ultracategorios belong to PUC. ultrafinctors as 1 -cells and alt ramatural tran-fomm
 no risk of confusion we will omit the corresponting underlinine for pre-ultracatemorice and altracategoriest the context shomld make clear which one we mean.

It P is a pretopos we can eive the pre-ultracategory $\boldsymbol{M o d} \boldsymbol{P}$) an ultraca weors struc*ure as follows. Fins notice that for every ultragraph (iand every $P=P$ we
 and $\sigma \mapsto \sigma(-)(P)$ for any $\sigma: I) \rightarrow)^{\prime}$ in $\boldsymbol{I}^{\top} D(\underline{G} . \operatorname{Mod}(P)$ where of conree we have that $\left.D_{-}\right)\left(P^{\prime}\right)(k)=D_{(}(k)\left(P^{\prime}\right)$ for any node $k \neq \underline{G}$. (iiven an ultamorphinm $a: r_{n}-$
 unch that for every $\left.P=P\left(i_{\operatorname{Mod} P} P D\right)^{\prime}=\delta D\right)_{-} P$. In this way we whain the witracategory $\operatorname{Mod}(P)$ of models of P.
 Furthermort, the corresponding finite limits and colmeto art alculated pointarise.

We finally arrive at the main theorem of [15], Makkais theorem. Lee P be a small pretopos. For every $P^{\prime} \in P$ we have that the functom ($\left.\mathrm{r}^{\prime}: \operatorname{Mod} \boldsymbol{P}\right) \rightarrow \boldsymbol{S e t}$
 $\epsilon r: P \rightarrow \boldsymbol{U C}\left(\underline{\underline{M o d}(P), \underline{S e t})}\right.$ such that $P \mapsto\left(r^{\prime}\right)$.

Theorem 2.3. (inc n a small pretopo. P the functor cr $: P \rightarrow \boldsymbol{U C}(\underline{\operatorname{Mod}(P)}(\underline{\underline{S e t}})$ in an equivalenct.

Notice first that according to Lemma 1.15 it suffices to show that $(0: P \rightarrow$ $U C(\underline{\operatorname{Mod}}(\boldsymbol{P}), \underline{\underline{S e t}})$ is subobject full, conservative and that every object in the category $U C(\underline{\underline{\operatorname{Mod}}}(P), \underline{\underline{\text { Set}}})$ has a finite cover via er. We start with subobject full.

Assume first that we have an object P of P and a monomorphism $\tau: F \rightarrow\left(r^{\prime} P\right.$ in $U C(\underline{\operatorname{MoU}}(P), \underline{S e t})$ in which for every model M in $\operatorname{Mod}(P), \tau M: F M \rightarrow M P$ i.s actual inclusion. Notice that in this case for every ultratilter (I.li) and any family $\left\langle M_{2}\right\rangle_{I}$ in $\operatorname{Mod}(P)^{I}$ the commutativity of the diagram

implies that $[U, F]\left\langle M_{2}\right\rangle: F\left(\Pi M_{2} / \mathcal{U}\right) \rightarrow \Pi F M_{2} / \mathcal{U} \quad \eta$ identity. Let $\mathcal{S}=\{Q \multimap P$ in $\boldsymbol{P} \mid F N \subset \mathcal{N} Q$ for every N in $\operatorname{Mod}(\boldsymbol{P})\}$

Lemma 2.4. For tery M in $\operatorname{Mod}(P), F M=\bigcap_{\left.(Q) \rightarrow I^{\prime}\right) \in S} M()$
Proof. Let $M \in \operatorname{Mod}(\boldsymbol{P})$. ('learly $F M \subset \cap_{(Q \rightarrow P) \in S} M Q$. So suppose a \in $\cap_{\left(Q^{-} \rightarrow P\right) \in S} M Q$. Define $\mathcal{T}=\{(Q \longmapsto P)$ in $P \mid a \notin M Q\}$. (Clearly $\mathcal{S} \cap \mathcal{T}=\emptyset$, thus: fur ever: $(Q \hookrightarrow P) \in \mathcal{T}$ we can choose a model N_{Q} in $\operatorname{Mod}(P)$ and an element $b_{Q} \in F N_{Q}-N_{Q} Q$. Observe that $(0 \mapsto P) \in T$ and if $Q_{1} \rightarrow P . Q_{2} \longrightarrow P \in \mathcal{T}$ then $Q_{1} \vee Q_{2} \hookrightarrow P \in \mathcal{T}$. (iiven $Q \longrightarrow P \in \mathcal{T}$ define $\uparrow(Q \longrightarrow P)=\left\{Q^{\prime} \multimap P \in \mathcal{T} \mid Q \longrightarrow P \leq\right.$ $Q^{\prime} \longleftrightarrow P^{\prime}$ as subobiects of $\left.P\right\}$. For any family $\left\{Q_{2} \multimap P\right\}_{t=1}^{n}$ of elements of \mathcal{T} we have $\bigcap_{t=1}^{n} \uparrow\left(Q_{t} \longrightarrow P^{\prime}\right)=\uparrow\left(V_{t=1}^{n}\left(Q_{t} \longleftrightarrow P\right)\right.$. Therefore there exists an ultrafilter \mathcal{U} on T surh that for ever: $Q \hookrightarrow P \in \mathcal{T}$ we have that $\uparrow(Q \rightarrow P) \in \mathcal{U}$.

Consider $\left\langle b_{Q}\right\rangle_{T} \in \Pi_{T} N_{Q} I^{\prime} / \mathcal{U}$.
Let $R \hookrightarrow P$ in P and assume that $\left\langle b_{Q}\right\rangle \in \prod_{T} N_{Q} R / \mathcal{U}$. We want to show that $a \in$ $M R$. Suppose not, then $R \succ P \in \mathcal{T}$ and $\uparrow(R \succ P) \in \mathcal{U}$. Since $\left\langle b_{Q}\right\rangle_{T} \in \prod_{T} N_{Q} P / \mathcal{U}$ there exists $J \in \mathcal{U}$ such that for every $Q \longrightarrow P \in J, b_{\mathcal{Q}} \in N_{Q} R$. Since $J \cap \uparrow(R \longrightarrow P) \in$ \mathcal{U} we have that there exists $\left(R^{\prime} \hookrightarrow P\right) \geq(R \hookrightarrow P)$ such that $b_{R^{\prime}} \in N_{R^{\prime}} R$. Since
$N_{R^{\prime}} R \subset N_{R^{\prime}} R^{\prime}$ we have $b_{R^{\prime}} \in N_{R^{\prime}} R^{\prime}$. This is a contradiction, su we catn conclude that $a \in M R$.

We have showed that for every $R \longrightarrow P,\left\langle b_{\psi}\right\rangle_{I} \in \Pi_{T} V_{Q} R / U$ implies $a \in M R$. Therefore by Theorem 1.21 there exist an ultratilter (I, \mathcal{V}) and an arrow

$$
h: \prod_{I} N_{Q} / U-M^{V}
$$

in $\operatorname{Mod}(P)$ such that $h P^{\prime}\left\langle b_{Q}\right\rangle=\delta P^{\prime}(a)$ where $\delta: M \rightarrow M^{\mathcal{V}}$ is the diagonal. Since $\left\langle b_{Q}\right\rangle \in F\left(\Pi_{T} N_{Q} / \mathcal{U}\right)$ we have that $\langle a\rangle_{I}=\delta P^{\prime}(a)=h P^{\prime}\left(b_{Q}\right\rangle \in F^{\prime}\left(M^{\nu}\right)=\left(F^{\prime} M\right)^{\nu}$. Therefore there exists $I_{0} \in \mathcal{V}$ such that for every $i \in I_{0}, a \in M P$. That is, $a \in M P$.
 wuch that $F=\epsilon r_{R}$.

Proof. Suppose not. That is, assume that for cerery $Q \rightarrow l^{\prime} E \mathcal{S}$ there exist a model M_{Q} in $\operatorname{Mod}(P)$ and an mement $a_{Q} \in M_{Q} Q-F\left(M_{Q}\right)$. Now, $\left(1_{P}: P \rightarrow P\right) \in \mathcal{S}$ and if $Q_{1} \rightarrow P, Q_{2} \rightarrow P \in \mathcal{S}$ then $Q_{1} \wedge Q_{2} \rightarrow P \in \mathcal{S}$. For avery $Q \rightarrow P \in \mathcal{S}$ detine $\downarrow\left(Q \rightarrow P^{\prime}\right)=\left\{Q^{\prime} \succ P^{\prime} \in \mathcal{S} \mid\left(Q^{\prime} \rightarrow P^{\prime}\right) \leq\left(Q \rightarrow P^{\prime}\right)\right.$ as subobjects of $\left.P\right\}$. We have that $\cap_{i=1}^{2}\left(\downarrow\left(Q_{2} \multimap P\right)\right)=\downarrow\left(\Lambda_{t=1}^{n}\left(Q_{2} \longmapsto P\right)\right.$. There exists then an uitratilter \mathcal{W} on \mathcal{S} surh that for every $Q \rightarrow P \in \mathcal{S}$ we have $\downarrow(Q-P) \in \mathcal{W}$.
('onsider $\left\langle a_{Q}\right\rangle_{s} \in \Pi_{s}, M_{Q} P / \mathcal{W}$.
Let $R \rightarrow P \in \mathcal{S}$. We have that for every $R^{\prime} \rightarrow P \in J\left(R \rightarrow l^{\prime}\right)$. $u_{R^{\prime}} \in M_{k^{\prime}} R^{\prime} G$ $M_{R^{\prime}} R$. That is $\left\langle a_{Q}\right\rangle \in \Pi_{s} M_{Q} R / \mathcal{W}$. Therefore $\left\langle u_{Q}\right\rangle \in \bigcap_{\left(R \rightarrow i^{\prime}\right) \in \mathcal{S}} \Pi_{s} M_{Q} h / \mathcal{W}$. Su according to the previon lemma we have that $\left\langle u_{Q}\right\rangle \vDash F\left(\Pi_{s}, M_{Q} / \mathcal{W}\right)=\Pi_{s} I M_{Q} / \mathcal{W}$. This means that we can find $(Q \rightarrow P) \in S$ such that $\alpha_{Q} \in P \cdot M_{Q}$. Ihi is a contradiction.
('onsider now an arbitrary arrow $\sigma:\left(\dot{r} \rightarrow+r^{\prime}\right.$ in $\boldsymbol{U C}(\underline{\operatorname{Mod}}(\boldsymbol{P})$. Set $)$. ('onsider its image

Since images in $U C(\underline{\underline{M o d}}(\boldsymbol{P})$. $\underline{\underline{S e t}})$ are pointwise we may assume that for every M in $\operatorname{Mod}(\boldsymbol{P}), m M: I M \rightarrow M H^{\prime}$ is really an inclusion. Then there exists $R \rightarrow P$
 abuere in at isomorphism in $\operatorname{VC}(\underline{\underline{M o d}(P)} \boldsymbol{\underline { S e t }})$. We have proved

Proposition 2.6. If \boldsymbol{P} is a small pretopon the 1 the functor

$$
r: P \rightarrow U C(\underline{\operatorname{Mod}}(P) \text { Set })
$$

is subobliget full.
We turn our attention now to a being conservative. (Given a small pretopos \boldsymbol{P} we can consider the peramonieal categeny on \boldsymbol{P} and form the category $\sin ^{\prime} h(\boldsymbol{P}, I)$. Ching Theorem 1.1 and Proposition 1.5 we can find I in Set and a surjection

$$
\text { Set } / I \frac{f^{*}}{f_{*}^{*}} . h(\boldsymbol{P}, I) .
$$

Notice that we need \boldsymbol{P} to be small to apply 1.4 . We have then that the composi$\mathrm{tion} P \xrightarrow{y} \operatorname{Sh}(\boldsymbol{P}, . I) \xrightarrow{f^{*}} \operatorname{Set} / I$ is elementary and conservative, where $!$ is the usual functor.

Proposition 2.7. If \boldsymbol{P} is a small pretopos then $1: \boldsymbol{P} \rightarrow \boldsymbol{U C}(\underline{\underline{M o d}(P)} \boldsymbol{\underline { S e t }})$ is comservation.

Proof. Suppose we have two subobject $Q \hookrightarrow P$ and $R \hookrightarrow P$ of an object P^{\prime} in
 Set $/ I$ defined above and define $M_{2}=\left(P \xrightarrow{y}, i h(P, J) \xrightarrow{f}\right.$ Set $/ I \xrightarrow{i^{*}}$ Set) for every $i \in I$. Then for every i in I we have that M_{2} is in $\operatorname{Mod}(P)$ and $c_{Q_{2}} M M_{2}=\left({ }_{R} M_{i}\right.$. Therefore $i^{*} f^{*} y\left(Q=i^{*} j^{*} y R\right.$ for every $i \in I$. Therl clearly $f^{*} y\left(Q=f^{*} y R\right.$. since $f^{*} y$ is conservative we conclude that $(Q \succ P)=\left(R \hookrightarrow P^{\prime}\right)$ as subobjects of I^{P}.

Now we turn our attention to the other part of the proof namely, that every object F in $\boldsymbol{U C}(\underline{\operatorname{Mod}}(\boldsymbol{P}), \underline{\underline{S e t}}$) has a finite cover via $(c$. Let M be a model in $\operatorname{Mod}(\boldsymbol{P})$ and $x \in F M$. If we are hoping to find a finite cover for F via $t v$ we should be able to find an ultranatural transformation $\Phi: \omega_{P} \rightarrow F$ for some P in \boldsymbol{P} such that $x \in \operatorname{lm}(\Phi M)$. That is to say, there exists $a \in M P$ such that $\Phi M(a)=r$. Notice that if this happens then for any two arrows $h, k: M \rightarrow N$ in $\operatorname{Mod}(P)$ we have that if $h P(a)=k \cdot P(a)$ then $F h(x)=F k(x)$.

Definition 2.6. (Given $F^{\prime}: \operatorname{Mod}(P) \rightarrow \operatorname{Set}, V$ in $\operatorname{Mod}(P)$ and l^{\prime} in P we say that an element $a \cdot W P$ is a support for an element x E $F M$ if for every pair of anow $h, k: M \rightarrow N$ in $\operatorname{Mod}(\boldsymbol{P})$ we have that $h^{\prime}(1)=k l^{\prime}(t)$ implies that $f^{\prime} h(x)=F^{\prime} k(f)$. We say that $r \in F^{\prime} M$ has a smport if there exist an ohject P^{\prime} in P and ath element $\| \in M I$ that is a support for $x \in F M$.

We will show that if $a \in M P$ is a support for $x \in I \cdot M$ where P is an ultrafuctor
 formation $\Phi: \operatorname{cog}_{2} \rightarrow F$ such that $\Phi M(a)=x$. Since we alrealy know that wery
 P in P all we need is a monomorphism $\left(i \rightarrow+r_{r}\right.$ and a transfomation $\Psi: G \rightarrow F$

 family $\left\{\left(a_{2} \in P_{t}\right)\right\}_{t=1}^{n}$ wach that for arery puer of armars $h, k: M \rightarrow X$ wh har that

Proof. The only if part is clear. For the if part cimp! comender $\left(a_{1} \ldots, a_{2}\right)$ f $\prod_{i=1}^{n} M P_{2} \simeq M\left(\prod_{i=1}^{n} P_{i}\right)$

Proposition 2.9. (iirth F in $I(C \underline{M o d}(P)$ Set $)$. $1 /$ m Mod (P) we hate that (rery, fer h han a suppert.

Proof. Suppose not. That is suppose that for every tinite family $d=\left\{\left(a_{2} E P_{i}\right)\right\}_{i=1}^{n}$ there exists a pair of arrow $h_{1}, k_{f}: M \rightarrow V_{i}$ in $\operatorname{Mod}(P)$ suth that $h_{i} P_{i}\left(t_{t}\right)=$ $k_{1} P_{i}^{\prime}\left(a_{2}\right)$ for every $i=1, \ldots n$ but $F h(x) \neq F k($.$) . Let D$ be the set of finite families of the form $d=\left\{\left(d_{2} E P_{2}\right)\right\}_{i=1}^{n}$ ordered $h_{y} y$ contamment. For wery d in D chose a pair of arrows $h_{i}, k_{1}: M \rightarrow V_{i}$ satisfying the property written above. Denote $\uparrow(d)=\left\{d^{\prime} \approx D \mid d \Xi d^{\prime}\right\}$. Now, $M 1=1$ and therefore D is nonempty. and for every $d, d^{\prime} \in D$ we have that $\left\lceil(d) \cap \uparrow\left(d^{\prime}\right)=\uparrow\left(d, d^{\prime}\right)\right.$. Therefore there exists an ult rafilter \mathcal{L} on D such that for every $d \in D$ we have $\uparrow(d) \in \mathcal{U}$. Consider the dia ram

$$
M \xrightarrow{\delta . M} M \xrightarrow{M_{D} k_{i} / U} \prod_{D} N_{d} / u
$$

where δ is the diagonal ultramorphism. (iven $a \in M P$ consider $d=\{(a \in M P)\} \in$ D. Then for every $d^{\prime} \in \uparrow(d)$ we have that $h_{i^{\prime}} P(a)=k_{i^{\prime}} P(a)$, therefore we have that $\left\langle h_{d^{\prime}} P(a)\right\rangle_{\left.d^{\prime} \in\right|_{d}}=\left\langle k_{d^{\prime}} P(u)\right\rangle_{\left.d^{\prime} \in\right|^{d}}$ in $\prod_{D} N_{d} P / \mathcal{L}$. Therefore

$$
\prod_{D} h_{d} / \mathcal{U} \circ \circ M=\prod_{D} k_{d} / \mathcal{U} \circ \delta M .
$$

('onsider the following diagram

The left triangle commutes because F is an ultrafuctor and the right square clearly commutes sequentially. Therefore both componitions in

$$
F M \xrightarrow{\delta F M}(F M)^{d} \xrightarrow[\Pi_{D} F h_{d} / U]{\Pi_{D} F k_{d} / U} \prod_{D} r^{\prime} N_{d} / d
$$

are equal. We then have that $\left\langle F h_{d}(x)\right\rangle=\left\langle F k_{d}(x)\right\rangle$ in $\prod_{D} F N_{d} / \mathcal{U}$. Since we asmomed that $F h_{d}(x) \neq F k_{d}\left(x^{2}\right)$ for every $d \in D$ we have a contradiction.

For the next couple of propositions we use the notation from Proposition 1.20).
Lemma 2.10. Gieen $F: \operatorname{Mod}(P) \rightarrow \operatorname{Set}, P$ in $P, x \in F M$ and $a \in M P$, we hut that a $\mathcal{M P}$ is a support for x if and only if the omly tlement of $\Theta(M, a)(1)$ is a support for $x \in F \circ\left(-\circ \Delta_{p}\right)(\Theta(M, u))$

Proposition 2.11. Let $F: \operatorname{Mod}(\boldsymbol{P}) \rightarrow$ Set be an ultrafunctor, P be an objet of P, M in $\operatorname{Mod}(P), a \in M P$ and $x \in F M$. If the r t x rist a subobject $r \hookrightarrow 1$ in P / P and an ultranatuial transformation $\Phi: c c_{r} \rightarrow F \circ\left(-0 \Delta_{P}\right)$ such that $\Theta(M, a)(r)=1$ and $x \in \operatorname{Im} \Phi(-)(M, a)$ then there fxists a subowifet $Q \longmapsto P \quad 4 \quad a \in M Q$ and an ultranatural tram.formation $\Psi: \in v_{Q} \rightarrow F$ such that $\Psi M(a)=x$

Proof. ('onsider a diagram

 satisfying the requirement of the proposition. By the definition of Θ it is clean that $a \in M Q$. Define $\Psi: \in r_{Q} \rightarrow F$ as follows. (iven N in $\operatorname{Mod}(P)$ and $b \in N Q$ we fave $\Phi \Theta(N, h): \Theta(N, b)(r) \rightarrow F . V$. Since $b \in N O$: $\boldsymbol{\sim}$ have that $\Theta(N, b)(r)=1$. De dine $\Psi . V(b)=\Phi \theta(N, h)(\bullet)\left(\right.$ where \bullet is the ouly element of $\Theta(N, b)\left(r^{\prime}\right)$. It is mot hard to see that Ψ is an ultranatural transformanion and that $\Psi(\mathcal{L}(1)=x$.

The propositom above and the lemma preceding it tell us that when we hawe d support $a \in M D^{\prime}$ for $x \in F M$ it is emomph to danme that $P=-1$ and that a in the only clement of $M 1$. Now, $\in M 1$ is a support for $r \in M$ if for every pair of morphisms $M \xrightarrow[h]{h} N$ in $\operatorname{Mod}(P)$ we have that $P h(r)-F k(x)$

If $F: \operatorname{Mod}(\boldsymbol{P}) \rightarrow \boldsymbol{\operatorname { S e t }}$ is a pre-nltrafunctor consider the category $\operatorname{Mod}^{\boldsymbol{*}}(\boldsymbol{P})$ $\operatorname{Mod}(P) \amalg E l(F)$, where $E l(F)$ is the category of elemuts of F with forge thul functor $E l(F) \rightarrow \operatorname{Mod}(P)$. If M is an object of $\operatorname{Mod}(P)$ we denote it lig (M. *) when we see it as an object in $\operatorname{Mod}^{*}(\boldsymbol{P})$, whereas an object $\left(N, r^{r}\right)$ in $E(l)$ in also itnoted
 if $\boldsymbol{x} \neq *$, otherwise we say it in improper. We give $\operatorname{Mod}^{*}(\boldsymbol{P})$ a pre-ultracategory structure an follows. If (I, U) is an ultrafilter and $\left\langle\left(V_{l}, x_{l}\right)_{I}\right.$ is an I-family of objects of $\boldsymbol{M o d}^{*}(\boldsymbol{P})$, consider the set $J=\left\{i \in I \mid r_{i} \neq *\right\}$. Detine
and if $\left\langle f_{2}\right\rangle:\left\langle\left(M_{2}, x_{i}\right)\right\rangle \rightarrow\left\langle\left(\lambda_{i}, y_{2}\right)\right\rangle$ is a morphism in $\operatorname{Mod}^{*}(P)^{t}$ then $\left\langle f_{2}\right\rangle \mapsto \Pi f_{2} /(l$. We have a forgetful preultrafunctor $\operatorname{Mod}^{*}(P) \rightarrow \operatorname{Mod}(P)$ urh that $(M, x) \mapsto M$.

If we carry out the construction above with $d:$ Set \rightarrow Set instear of F we get a pre-ultracategory that we denote by Set*.

The prenltrafunctor $F: \operatorname{Mod}(\boldsymbol{P}) \rightarrow$ Set induces a functor $F^{*}: \operatorname{Mod}^{*}(\boldsymbol{P}) \rightarrow$ Set such that $F^{*}(M, x)=(F M, x)$ and $I^{*} h=F h$ for every $h:(M, x) \rightarrow(N, y)$ in $\operatorname{Mod}^{*}(\boldsymbol{P}) . F^{*}$ turns into a pre-ultrafunctur if we define $\left[l t, F^{* *}\right]\left(\left(M_{2}, x_{2}\right)\right\rangle=[i f, F]\left\langle M_{2}\right\rangle$ for every $\left\langle\left(M_{1}, x_{1}\right)\right\rangle$ in $\operatorname{Mod}^{*}(\boldsymbol{P})^{I}$.

Lemma 2.12. (iiven a pre-ultrafunctor (ultrufunctor) $F: \operatorname{Mod}(\boldsymbol{P}) \rightarrow$ Set we have that subobjects of F in $\operatorname{PUC}(\operatorname{Mod}(\boldsymbol{P}), \operatorname{Set})(\boldsymbol{U C}(\operatorname{Mod}(P), S e t))$ art in one to one
 below
0) For arry M in $\operatorname{Mod}(\boldsymbol{P})$ M han ($M, *) \in C^{\text {a }}$.

1) If $(M, x) \in \mathcal{C}$ and $f:(M, x) \rightarrow(N, y)$ is a mophhsm in $\operatorname{Mod}^{*}(\boldsymbol{P})$ then $(N, y) \in \mathcal{C}$.
i) For any ultrafilter (I, \mathcal{U}) and any object $\left\langle\left(M_{t}, x_{t}\right)\right\rangle$ in $\operatorname{Mod}^{*}(\boldsymbol{P})$ with $\left(M_{t}, r_{2}\right) \in$

A) If (I, \mathcal{U}) is an ultrafilter and $\left\langle\left(M_{2}, x_{2}\right)\right\rangle$ is an object of $\operatorname{Mod}^{*}(\boldsymbol{P})^{I}$ such that

Proof. Start with a subobject $\left({ }_{i}{ }^{\prime \prime} F^{\prime}\right.$. Define the chass

$$
\mathcal{C}_{i_{i}}=\operatorname{Mod}(P) \amalg\{(M, x) \in E l(F) \mid x \in I m \mu M\} .
$$

(learly \mathcal{C}_{G} satinties (1). If $(M, x) \in \mathcal{C}_{G}$ is proper and $f:(M, . r) \rightarrow(V, y)$ in $\operatorname{Mod}^{*}(P)$ then, since $x \in I m \mu M$ and the diagram

commuter, we have that $y \in I m \mu N$. If (M, x) is improper then $(\lambda, \eta)=(N, *) \in \mathcal{C}_{(;}$. Therefore $\mathcal{C}_{;}$satisfies 1). Let (I, \mathcal{U}) be an ultratilter and $\left\langle\left(M_{i}, r_{i}\right)\right\rangle$) $\mathfrak{l n}$ an object in $\boldsymbol{M} \omega \boldsymbol{d}^{*}(\boldsymbol{P})^{I}$. Let $J=\left\{i \in I \mid x_{i} \neq *\right\}$. If $J \notin \mathbb{U}$ then clearly $\Pi\left(M_{i}, d\right) / \mathbb{U} \in \mathcal{C}_{(i}$. A sume then that $J:=\mathcal{l}$. Then for every $j \in, J$ we have that $x_{j} \in I m \mu M_{j}$. Since μ is a pre-ultranatural tranformation we have that the diagram

commutes. Then it is clear that $[\mathcal{U}, F]\left\langle M_{z}\right\rangle^{-1}\left(\left\langle x_{j}\right\rangle_{J}\right) \in I m \mu \Pi M_{z} / \mathcal{U}$, that is \mathcal{C}_{G} satisfies 2). For 3) Assume that $\Pi\left(M_{t}, x_{i}\right) / \mathcal{U} \in \mathcal{\mathcal { C } _ { G }}$. if $J=\left\{i \in I \mid x_{i} \neq *\right\} \notin \mathcal{U}$ then
 that $[U, V]\left\langle M_{3}\right\rangle^{-1}\left(\left\langle r_{1}\right\rangle . J\right) \in I m \mu\left(\Pi M_{2} / U\right)$. We then can timd an element $\left\langle U_{k}\right\rangle_{K} E=$
 means that $\Pi \mu M_{2} / \mathcal{L}\left(\left\langle\mu_{k}\right\rangle_{K}\right)=\left\langle r_{,}\right\rangle_{J}$. Therefore there exists a set $\left.L, I\right) K$ with L E U such that for every $f=I$ we have $\mu M_{f}\left(y_{f}\right)=x_{t}$. That is for every $t+I$ we have that $\left(M_{i}, r_{e}\right) \in \mathcal{C}_{(} ;$so we have 3$)$. It is casy to show that if the clases determine by two subbibets of F coineide then they are the same sublebect.

Assume now that we have a class C^{\prime} of ohjects of $\operatorname{Mod}^{*}(P)$ that satisfies 0)-3) above. Define $\left(i_{i}: \operatorname{Mod}(P) \rightarrow\right.$ Set such that $\left(a_{i}(M)=\{r \in I M \mid(M, x) \in C\}\right.$.

It $h: M \rightarrow N$ is a morphism of models then cometition 11 guaranteres that $F h:$ $F U \rightarrow F V$ restrins

With these definitions we have that $\left(i_{i}\right.$ is a subfunctor of P.
We want to detine $\left[\mathcal{U},(i]\left(M_{i}\right)_{I}:\left(i_{0}\left(\Pi, M_{i} / U\right) \rightarrow \Pi\left(i_{i}, M_{i} / \mathcal{U}\right.\right.\right.$ such that the diagram 2.1 commutes. Let $r \in\left(i_{c}\left(\Pi M_{i} / \mathcal{L}\right)\right.$. We have then that $\left(\Pi X_{2} / \mathcal{L} \ldots\right.$) $\in C^{\prime}$. Let $\left\langle r_{0}\right\rangle_{J}=[U, V]\left\langle M_{2}\right\rangle_{I}(x)$. Then by 3$)$ there exists K - J. $K E U$ such that for
 $\left\langle r_{h}\right\rangle_{k}$. Since $[\mathcal{U}, F]\left\langle M_{2}\right\rangle$ is an isomorphism it is easy to see that ? $U,(G]\left\langle M_{i}\right\rangle$ is mono. Use 2) to show that $\left[\left\{t,(i]\left\langle M_{i}^{\prime}\right\rangle\right.\right.$ is outo. This gives us a subobject (ic of F in
 bet ween classes satisfying 0)-3) and shohjects of F in $\operatorname{PUC}(\boldsymbol{\operatorname { M o d }}(\boldsymbol{P})$, Set $)$ are inverses. It is not hard to see that if F is an ultafunctor then ($\boldsymbol{i}_{\mathrm{C}}$ is also an ult rafunctor.

Assume now that the only element of $M_{0} 1$ is a support for $r_{11} \in F \cdot M_{11}$. A diagram of the form

is the same thing as a subobject $\left(i \rightarrow C H \times F \simeq F\right.$ that satisties $x, x^{\prime} \in(i M$ implies $x=x^{\prime}$. That is, we need a (lass \mathcal{C} satisfying 0)-3) above plus
4) $(M, x),\left(M, r^{\prime}\right) \in \mathcal{C}$ with $x, x^{\prime} \in F M$ implies that $x=x^{\prime}$.

We also want the class \mathcal{C} to satisfy
5) $\left(M_{1}, r_{11}\right) \in C^{\prime}$.

For the proof we will heve to consider ligger and bigeer small subcategories of the rategory $\operatorname{Mod}^{*}(\boldsymbol{P})$. Here is the definition of the small subcategories we will need.

Definition 2.7. Let P be a small pretopos and $F: \operatorname{Mod}(P) \rightarrow$ Set be an ultafunctor. A pair (C, S) is called a small approximation of $\operatorname{Mod}^{*}(P)$ provided that
i. C is a small subcategory of $\operatorname{Mod}^{*}(P)$
ii. \mathcal{S} is a set of triples of the form $(I, U, I \xrightarrow{g}() H(C))$ where $(I . U C)$ is an ultratiter.
iii. For every $(I, U, g) \in \mathcal{S}$ the uli raproduct $\Pi g(i) / u$ is in C.
iv. For every $!:\{0\} \rightarrow O(C)$ we have that $\left(\{0\}, U_{1}, g\right) \in \mathcal{S}$ where $\left(\{0\}, U_{0}\right)$ is the only possible ultratilter over $\{0\}$.
v. If $(I, \mathcal{U}, y) \in \mathcal{S}$ and $g^{\prime}: I \rightarrow O b(C)$ is such that

$$
I \xrightarrow[!^{\prime}]{\stackrel{!}{x}} O h(C) \xrightarrow{i} \operatorname{Mod}^{*}(P) \xrightarrow{\zeta^{i}} \operatorname{Mod}(P)
$$

commutes then $\left(I .21, g^{\prime}\right) \in \mathcal{S}$.
Let κ he the cardinality of \boldsymbol{P} (that is $\kappa=\#(A r(\boldsymbol{P}))$). We say that a small approximation $(\boldsymbol{C}, \mathcal{S})$ of $\operatorname{Mod}^{*}(\boldsymbol{P})$ is closed if it satisfies
vi. For every M in $\operatorname{Mod}(P)$ such that $\# M:=\#\left(\amalg_{P \in P} M P\right) \leq \kappa$ there exists $(N, *) \in C$ such that $\# N \leq \kappa$ and $N \simeq M$.
vii. For every $(M, *) .(N, *)$ in C such than $M \equiv N$ (elementary equivalent) there is an ultrafilter (I, \mathcal{U}) such that $\left(I, \mathcal{U}, g_{1}\right),\left(I, \mathcal{U}, g_{2}\right) \in \mathcal{S}$, with $g_{1}: I \rightarrow O b(C)$ is the constant map with value $(M . *), g_{2}: I \rightarrow O b(C)$ is the constant map with value $(N, *)$ and $M^{z t} \simeq N^{t}$.

Given a small approximation $(\boldsymbol{C}, \mathcal{S})$ of $\operatorname{Mod}^{*}(\boldsymbol{P})$ a $(\boldsymbol{C}, \mathcal{S})$-subobject of F is a family $\mathcal{C} \subset O b(C)$ satisfying 0$)-3$) above when 2) and 3) are restricted to elements of \mathcal{S}.

A partial cover of F relative to (C, \mathcal{S}) is a $(\boldsymbol{C}, \mathcal{S})$-subobject of F that satisfies 4).

Remark 2.1. (iiven a pair (C, S) satisfying i-iii we ran always time a pair $\left(C^{\prime \prime}, \mathcal{S}^{\prime}\right)$ satisfying $i-v$ aut such that C is a subcategory of $\left({ }^{\prime}\right.$ duld $\mathcal{S} C \mathcal{S}^{\prime}$.

Remark 2.2. (ivern a small approximation ($C . S$) we can always find a small cone approximation $\left(C^{\prime}, \mathcal{S}^{\prime}\right)$ such that C is a subategory of C^{\prime} and $\mathcal{S} \therefore \mathcal{S}^{\prime}$. This is a consequence of the Keisler-Shelah isomorphism theorem that saty that given two models M, N such that $M \equiv V$ there exists an ultratilter (I, C) such that $M^{24} \simeq V^{24}$.

We now show that for every small approximation ($C^{\circ} . S$) and any $x_{0} \not f^{\prime} M_{0}$ with support the unique element of $M_{n} 1$ we can lind a partal cover C of F relative to ($C . S$) such that \mathcal{C} satisties 5). We start heputing ($\left(1 / 1, x_{01}\right)$ in \mathcal{C}. Nutice that conditions (1)-2) (an always be fultilled by adding more and more objects to C°. howewer condition 3) involven the choice of a set in an ultatilter. We will make all the necessary choien and repeat the proces. In this way we can obtain a $\left(\begin{array}{c}\text { c that } \\ \text { atistion (1)-3) and }\end{array}\right.$,) but not neressarily 1). We will assme that for all posible choices we obtain a family \mathcal{C} that fails to fultill 11 and we will get a contratiction. This procens involves the recursive construction of an ultragraph.

So let ($\boldsymbol{C}^{\prime}, \mathcal{S}$) be a small approximation of $\operatorname{Mod}^{*}(\boldsymbol{P})$ and assume that $\bullet \in \cdot M_{0} 1$ is a support for $x_{11} \in F^{\prime} M_{0}$. Let $n=\# C$ and $a_{n}=\kappa^{+}$.

We construct the ultragraph G and the ultratiagram $D: G \rightarrow \operatorname{Mod}^{*}(P)$ an follows.

For every (M.*) in C we put a node qu. We dho put a note pat. Define
$\boldsymbol{G}_{0}^{f}=\left\{\hat{\theta}_{0}\right\} \cup\left\{\left.\begin{array}{r}\mathrm{M}\end{array} \right\rvert\,(11,+)\right.$ is in $\left.\boldsymbol{C}\right\}$
$G_{0}^{i}=\eta$
No edpes in G_{11}
$\Theta_{0}=\emptyset$
$D_{0}: \boldsymbol{G}_{01} \rightarrow C$ is such that in $\mapsto\left(M_{10}, r_{0}\right)$ and $\hat{\text { f }} \mathrm{V} \mapsto(M, *)$.
Let 0 - $\alpha<\sigma_{0}$ and suppose we have made the corresponding definition for all n^{\prime} - \quad. Detine

$$
\begin{aligned}
& G_{<, x}^{f}=\bigcup_{x^{\prime}<x} G_{x^{\prime}}^{f}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{G}_{<x x}=\bigcup_{x^{\prime}<\langle x} \boldsymbol{G}_{x^{\prime}} \\
& \Theta_{<\alpha r}=U_{x^{\prime}<\alpha} \Theta_{x^{\prime}} \\
& D_{<u}=\bigcup_{a^{\prime}<a} D_{a^{\prime}}
\end{aligned}
$$

Let Θ_{a} be the set whose elements are of the form $\left\langle a, I . U 4, I ; f ; J, \mathcal{V}, g^{\prime}\right\rangle$ nuch that
I. $\left(J, \mathcal{V}, g^{\prime}\right) \in \mathcal{S}$.
II. $g: I \rightarrow G_{<18}^{f}$.
III. $\left(I, U, I \xrightarrow{U} G_{i, r}^{f} \xrightarrow{D_{\leq}} C\right) \in \mathcal{S}$.
IV. $I_{0}=\left\{i \in I \mid D_{\text {a }}(g(i))\right.$ is proper $\} \in \mathbb{U}$
V. $f: \Pi D_{n}, \ell(i) / U \rightarrow \Pi!!^{\prime}(j) / \mathcal{V}$ is a morphism in C.

Notice that condition $I V$ implies that $\Pi D_{-} g(i) / U$ is a proper object.
For every $t=\left\langle a, I_{t}, \mathcal{U}_{t}, I_{t}: f_{t}: J_{t}, \mathcal{V}_{t}, g_{t}^{\prime}\right\rangle \in \Theta_{a}$ take two nodes $, j_{6}, \gamma_{t}$ and for every $j \in J_{t}$ take a node (t, j). Define then
$G_{\Delta x}^{b}=\left\{h_{t} \mid t \in \Theta_{t}\right\} \cup\left\{\gamma_{t} \mid t \in \Theta_{z}\right\}$.
$\boldsymbol{G}_{*}^{f}=\left\{(t, j) \mid t \in \Theta_{i z}\right.$ and $\left.j \in J_{t}\right\}$.
For every $t \in \Theta_{a z}$ put an elge $r_{t}: B_{t} \rightarrow \gamma$ in G_{12}.
$I_{x x}\left(h_{t}\right)=\Pi I_{x_{0}, ~\left(I_{t}\right.}(i) / \mathcal{U}_{t}$.
$D_{a}\left(\gamma_{t}\right)=\Pi y_{t}^{\prime}(j) / \mathcal{L}_{t}$.
$D_{a z}(t, j)=g_{t}^{\prime}(j)$.
$D_{x x}\left(r_{t}\right)=f$.
 D is an ult radiagram. Notice as well that D factorn throtoh C.

Next we make formal the concept of posible choices of elements of ultrafilters for the family to satisfy ; 3).

Let Θ be a subset of $\Theta_{x_{0}}$, and $\overrightarrow{1}=\left\langle 1_{t}\right\rangle_{t \in \Theta}$ be a Θ-indexed family of sets: such that $A_{t} \in \mathcal{V}_{t}$ for every $t \in \Theta$. We define recursively what it means for $t \in \Theta_{a}$ and \hat{y} node of G to be \vec{A}-accessible.

First, φ_{0} is \vec{A}-accessible.
For every $M . \varphi_{M}$ is not \vec{A}-acessible.
 $0<\alpha<n_{11}$. Then
$t \in \Theta_{x}$ is \vec{A}-accessible if and only if $\left\{i \in I_{t} \mid g_{t}(i)\right.$ is \vec{A}-accessible $\} \in U f_{t}$.
β_{t} is \vec{A}-accessible if and only if t is \vec{A} accessible.
γ_{t} is \vec{A} accessible if and only if t is \vec{A}-accessible.
(t, j) is \vec{A}-accessible if and only if t is \vec{A}-accessible, $t \in \Theta$ and $j \in A_{t}$.

 $\mathcal{A}=\{\overrightarrow{1} \mid \overrightarrow{1}$ is regular $\}$.

Notice that \mathcal{A} is a meet semilattice. (iven $\overrightarrow{1}=\langle 1\rangle_{\Theta \rightarrow \text { and }} \vec{B}=\langle B\rangle_{(-)}$comstrut $\vec{C}=\left\langle C^{v}\right\rangle_{-\infty \prime}$ recurnively a follows. Suppore we know already what $\Theta^{\prime \prime} \mid 1 \Theta$. , is and that we have already detined (${ }^{\prime}$, for every $t \in \Theta^{\prime \prime} \| \Theta$. . Thent $t \in \Theta^{\prime \prime} \| \Theta$, if and
 is regulat and $\vec{r} \ldots \overrightarrow{1} \wedge \vec{B}$ in \mathcal{A}.

commutso. whiter is the forgetful jundor.

 that there is a mique b with thia property). Detine $E^{*}\left(r_{t}\right)=l_{\text {a }}\left(r_{t}\right)$. (hoone $I=\mathcal{V}_{+}$ and $a_{3}=E^{\prime}(t, j)$ for every $\mid \in I$ uth that $b=\{a,\}_{s}$. Detme $E^{*}(t, j)=(F(t, 1), a)$ if $j E J$ and $E^{*}(t, j)=(E(t, j),+1$ if $J \notin I$

 defined above.
万).

Asome ($M, x) \in \mathcal{C}^{\prime}$ is proper. We how that there exists $) \in G^{f} \| G(\overrightarrow{1})$ such that $D(\eta)=(M, x)$. If $(M, x)=D\left(, \beta_{2}\right)$ with $t \vec{A}$-accemible, $t \in \Theta_{2}, a \quad \sigma_{0}$ then $\left\{i \in I_{t} \mid g_{t}(i)\right.$ is,\vec{i} acressible $\} \equiv \mathcal{U}_{t}$. Let $\left.t^{\prime}=\left\langle a, I_{t}, u_{t}, g_{t} ; d_{1} ;\{1)\right\}, U_{1}, g^{\prime}\right\rangle$ where $g^{\prime}(1)=$
(M.. r^{\prime}). Then $t^{\prime} \in \Theta_{a}, t^{\prime}$ is \vec{A}-accessible and we have $D\left(t^{\prime}, 0\right)=\left(M, x^{r}\right) \quad$ ('learly $\left(t^{\prime}, 0\right) \in G^{f} \cap G(\overrightarrow{1})$. The case $D(\gamma t)=(M, x)$ is similar.
\mathcal{C} satisties 1): Let $(M, x)=D(\gamma)$ with $) \in G^{f} \cap G(\vec{A})$ and $h:(M, x) \rightarrow(N, y)$ in C. Suppose $\gamma \in \boldsymbol{G}_{-1,}^{f}$ with $a<a_{0}$. Let $t=\left\langle a ;\{0\}, \mathcal{U}_{10}, \underline{y}: h ;\{0\}, \mathcal{U}_{0}, g^{\prime}\right\rangle$ where $g(0)=\gamma$ and $g^{\prime}(0)=(N, y)$. Then $t \in \Theta_{a}$. Since γ is \vec{A}-accessible we have that t is \vec{A}-acressible, this means that β_{t} and γ_{t} are also $\overrightarrow{1}$-accessible. (learly $\left.I\right)(\gamma t)=(N, y)$. That is $(N, y) \in C$.
 proper $\} \notin \mathcal{U}$ then clearly $\Pi g(i) / \mathcal{U} \in \mathcal{C}$. Assume then that $J \in \mathcal{U}$. For every $J \in I$ let $\gamma_{i} \approx G_{i,}^{f} \cap G(A)$ such than $\left(M_{y}, x_{i}\right)=D\left(\gamma_{i}\right)$. Asmme furthermore that $\left(M_{1}, x_{i}\right)=$
 $a<a_{0}=n^{+}$such that $a_{0}<a$ for corry $j \in J$. Let $t=\left\langle a ; I, \mathcal{U}, g ; i d ;\{0\},\left\langle h_{0}, g^{\prime}\right\rangle\right.$ wher. $g(i)=\eta(i)$ if $, \in J, g(i)=\rho M_{1}$ and $g^{\prime}(0)=\Pi I(g(d)) / \mathcal{L}$. Notice that $\Pi I(g(i)) / \mathcal{U}=\Pi\left(M_{2}, x_{2}\right) / \mathcal{U}$. Now, $t \in \Theta_{\alpha}$ and for every $j \in J, \gamma_{t}$ is \vec{A}-accessible, therefore t and β_{t} are $\overrightarrow{1}$-accessible. We have $\Pi\left(M_{2}, x_{2}\right)=D\left(\beta_{t}\right)$.
\mathcal{C} satistion 3$)$: Let $\left(M_{2}, x_{2}\right)$ in r^{\prime} ' $0_{1} ; \in I$ and assume $\Pi\left(M_{2}, r_{2}\right) / \mathcal{L} \in C^{\prime}$ with $\left(I, \mathcal{L},\left\langle\left(M_{2}, r_{2}\right)\right\rangle\right) \in \mathcal{S}$. If $\Pi\left(M_{2}, r_{2}\right) / \mathcal{L} \in \mathcal{C}$ is improper then the condusion in chear, so assume it is proper. Assimme $\Pi\left(M_{i}, x_{t}\right) / d \in \mathcal{C}=I(\gamma)$ with $\gamma \in \boldsymbol{G}_{a}^{f} \cap \boldsymbol{G}(A)$ and $a<\alpha_{0}$. Let $t=\left\langle a,\{0\}, \mathcal{U}_{1}, \underline{,}, i d ; I, \mathcal{U},\left\langle\left(1 I_{2}, r_{2}\right)\right\rangle\right\rangle \in \Theta_{1,}$ with $g(0)=\gamma$. Since γ is \vec{A}-acressible we have that t is \vec{A} accessible. Since $\vec{A}=\left\langle A_{t^{\prime}}\right\rangle_{t^{\prime} \in \Theta}$ is regular we have that $t \in \Theta$. Then (t, j) is \vec{A} accessible for every $j \in A_{t}$ and $D(t, j)=\left(M_{1}, x_{j}\right)$ for $j \in A_{t}$.

Lemma 2.15. Gietn an ultrafunctor $F: \operatorname{Mod}(\boldsymbol{P}) \rightarrow \boldsymbol{S e t},(\boldsymbol{C}, \mathcal{S})$ a small approximation of $\operatorname{Mod}^{*}(\boldsymbol{P})$ and $x_{0} \in F M_{0}$ with support the only tement of $M_{0} 1$. There wists a partal cover \mathfrak{C}^{2} of F relative to $(\mathbb{C}, \mathcal{S})$ such that $\left(M_{0}, x_{0}\right) \in \mathfrak{C}$.

Proof. (consider the ultradiagram $D: G \rightarrow \operatorname{Mod}^{*}(P)$ defined above. We have seen that for \vec{A} regular the family $\mathcal{C}_{\vec{A}}=\{(M, *) \mid(M, *)$ in $\boldsymbol{C}\} \cup\left\{\left.D(\gamma)\right|_{\gamma} \in \boldsymbol{G}(\vec{A})\right\}$ satisfies 0)-3) and 5). If for some regular \vec{A} the family $\mathcal{C}_{\vec{A}}$ also satisfies, 4) we are done. So let's assume that for every $\vec{A} \in \mathcal{A}=\{\vec{B} \mid \vec{B}$ in regular $\}$ the family $\mathcal{C}_{\vec{B}}$ does not satisfy 4). Then for every $\vec{A} \in \mathcal{A}$ we can find nodes $\gamma_{1}(\vec{A}), \gamma_{2}(\vec{A}) \in G^{f} \cap G(\vec{A})$ such that $D\left(\gamma_{1}(\vec{A})\right)=\left(M_{\vec{A}}, x_{\vec{A} 1}\right)$ and $D\left(\gamma_{2}(\vec{A})\right)=\left(M_{\vec{A}}, x_{\vec{A} 2}\right)$ are proper and $x_{\vec{A} 1} \neq x_{\vec{A} 2}$.
 lemmal). We know that \mathcal{A} is a meet nemilattice, oo there exats an ult atilte \mathcal{W} on \mathcal{A} unch that for evers $\overrightarrow{1} E \mathcal{A}, \| \overrightarrow{1}) \in \mathcal{W}$. We contrut a new ultaghah G_{1} a

 the ultadiaenam $I^{\prime \prime}=\left.F_{G}\right|_{G} \rightarrow$ Set and utire that l^{\prime} memtidll detemmine

 $\Pi F\left(\gamma_{1}(\overrightarrow{1})\right) / \mathcal{W}$. It in not hatid to are that $\left.h_{1} I^{\prime}: a\right) \neq t$, that it doen mot depend on the

 monphimm $d_{2}: f_{n}, \rightarrow+c_{1}: \mathbf{U} D\left(G_{2}\right.$. Set $) \rightarrow$ Set.
 I is the tongettul tumetor. We (an extend l / t to ultadianame

$$
I_{1}: G_{1} \rightarrow \operatorname{Mod}(P) \quad I_{2}: G_{2} \rightarrow \operatorname{Mod}(P)
$$

 We obtain a pail of bomomorphism-

$$
I_{1}\left(r_{1}\right)=I_{2}\left(\varphi_{0}\right)=U_{0} \xrightarrow[\partial_{1} D_{2}]{\delta_{1} I_{1}} \Pi U_{i} / \mathcal{L}-I_{1}(n)-I_{2}(t
$$

Applying F we hate

$$
I U_{0} \xrightarrow[\Gamma\left(\delta_{2} D_{2}\right)]{\Gamma\left(\delta_{1} D_{1}\right)} \Gamma\left(\Pi U_{i}, W^{\prime}\right)
$$

Gince $r_{01} \in F V V_{0}$ had nupport $-\equiv U_{0} 1$ we hate

$$
\begin{equation*}
F\left(o_{1} I D_{1}\right)\left(r_{10}\right)=F\left(o_{2} D_{2}\right)\left(r_{0}\right) \tag{22}
\end{equation*}
$$

have that the diagram

$$
\begin{aligned}
& F M_{0} \xrightarrow{F\left(\delta_{1} \rho_{1}\right)} F\left(\Pi M_{\vec{j}} / \mathcal{W}\right) \\
& \delta_{1} F I_{1} \\
& \left(\Pi F M_{\vec{j}} / \mathcal{W}\right)
\end{aligned}
$$

commutes. So what wr want to show is that $\delta_{1} F D_{1}\left(x_{0}\right)=\left[\left\langle x_{\vec{A}}\right\rangle\right]$. According to the definition of δ_{1} we need a lifting of $F D_{1}$. Define $D^{*}: \boldsymbol{G}_{1} \rightarrow \operatorname{Mod}^{*}(\boldsymbol{P})$ such that $D)\left.^{*}\right|_{G}=D$ and $D^{*}(\theta)=\left(\prod M_{-1} / \mathcal{W} \cdot[\mathcal{W}, F]\left\langle M_{\overrightarrow{4}}\right\rangle^{-1}\left(\left\{\left\langle x_{n}\right\rangle\right]\right)\right.$. It is clear that the diagram

commuter, where $F^{*}\left(1 i, x^{\prime}\right)=(F M, x)$. We couclude that $\delta_{1} F D_{1}\left(x_{0}\right)=\left[\left\langle x_{x_{1}}\right\rangle\right]$.
Similarly we can show that $\delta_{2} F D_{2}\left(x_{0}\right)=\left[\left\langle x_{r_{2}}\right\rangle\right]$. By the way we chose x_{11} and $r_{\overrightarrow{12}}$ that $\left[\left\langle r_{\cdot 11}\right\rangle\right] \neq\left[\left\langle r_{\overrightarrow{12}}\right\rangle\right]$. This is in contradict ${ }^{\circ}, n$ with 2.2 .

Lemma 2.16. Let $F: \operatorname{Mod}(\boldsymbol{P}) \rightarrow$ Set be an ultrafunctor. (C.S) be a small clontd
 in C with $\# M \leq \pi$ and $\operatorname{ter} r \in F M$ wt havt $(M, x) \in C$ if and only if $(M, x) \in D$. then $\mathcal{C}=D$.

Proof. Let $(N, *)$ be an object of C. Since (C, S) is a closed approximation we can find $(M, *)$ in C with $\# M \leq \kappa$ and $M \equiv N$ together with an ult raliter (I, \mathcal{U}) with the following properties. There is an isomorphism $h: M^{2 d} \rightarrow N^{2 t}$ and $\left(I, \mathcal{U}, g_{1}\right),\left(I, \mathcal{U}, g_{2}\right) f \mathcal{S}$ where $g_{1} \cdot g_{2}: I \rightarrow O b(C)$ are constant functions with values (II.*) and ($N, *$) respectively. ('onsider the following diagram

where δ denotes the diagonal. Notice that sime F^{\prime} is an ultrafimetor the abow diagram commites.

Let $y \in F V$. We show that ($N, y) \in C^{\prime}$ if and only if there exis $I f V$ and an

Assume first that $(N, y) \in \mathcal{C}$. Since \mathcal{C} is a $(\mathbb{C}, \mathcal{S})$-subobject we have $\Pi(\lambda, y) /(\mathbb{C} \in$ \mathcal{C}. Let $z \in F\left(M^{\prime \prime}\right)$ such that $F h(z)=F^{\prime}(\delta N)(y)$. Then $h^{-1} \cdot\left(X^{u} . F(A V)(!)\right) \rightarrow$ $\left(M^{\prime \prime}, z\right)$ is in C. Therefore $\left(M^{\prime \prime}, z\right) \in \mathcal{C}$. Since \mathcal{C} is a $\left(C^{\prime}, \mathcal{S}\right)$-subulject we can find a,$I \in U$ and oljects $\left(M, x^{\prime}\right) \in C$ for every $j \in J$ much that $\left[U . F^{\prime}\right\}\langle M)^{-1}\left[\left\{, r_{1}\right\rangle\right]=:$

 $(N, F(\delta . V)(y)) \in G^{\prime}$. Whis means that ($\left.N,!!\right)$ E C^{\prime}.

We clearly have the same result for D. Therefore $C^{\prime}=D$.
 and $x_{0} \in F \cdot I_{0}$. Anomme that • $M_{10} 1$ in a support for $r_{0} 三 F M_{0}$. Then ther on a diagram of the form

$-U_{18} C_{c x}=\operatorname{Mod}^{*}(\boldsymbol{P})$.
 ult rafilter and $g: I \rightarrow O b\left(\operatorname{Mod}^{*}(P)\right)$.

It is not hard to see that such a sequence of mall closed approximations exists. Since $\left(C_{0}, \mathcal{S}_{0}\right)$ is a small clues approximation we can find a small set I and a family of models $\left\{M_{i}\right\}_{\in \in A}$ such that

- \# $M_{i} \leq \kappa$ for every 1 E 1.
- ($\left.M_{i, *}\right)$ is an object in C_{0} for every $\ell \in \mathcal{A}$.
- For every model M in $\operatorname{Mod}(\boldsymbol{P})$ with $\# M \leq \kappa$ there is an $\ell \in \Lambda$ such that $M \simeq M_{e}$.

For every ordinal α let $\mathcal{C}_{\alpha r}$ be a partial cover of F relative to $\left(C_{\alpha}, \mathcal{S}_{\alpha}\right)$ with $\left(M_{0}, x_{0}\right) \in \mathcal{C}_{6}$. For every ordinal α and every $\ell \in \Lambda$ define $X_{a} \ell=\left\{x \in F M_{f} \mid\left(M_{f}, r\right) \in\right.$ $\left.\mathcal{C}_{a x}\right\}$. Every o determines the family $\left\langle X_{a r}\right\rangle$. Notice that suce Λ is small and F is fixed there is a small set of such families. It follows that there is a family $\left\langle X_{e}\right\rangle$ such that the set (in the second universe) $\Xi=\left\{\alpha \mid \alpha\right.$ is an ordinal and $\left.\left\langle X_{a}\right\rangle=\left\langle X_{\ell}\right\rangle\right\}$ is mubonded. If $\alpha, \beta \in \Xi$ with $\alpha<\beta$ then by lemma 2.16 we have that $\mathcal{C}_{c \gamma}=\mathcal{C}_{\alpha r} \cap \mathcal{C}_{\beta, \beta}$, that is, $\mathcal{C}_{\alpha} \subset \mathcal{C}_{\alpha}$. Define $\mathcal{C}=\bigcup_{\alpha \in E} \mathcal{C}_{\alpha}$. By the remarks after the proof of lemma 2.12 \mathcal{C} corresponds to a diagram of the form 2.3 above.

By proposition 2.11 we have
Corollary 2.18. Let $F: \operatorname{Mod}(\boldsymbol{P}) \rightarrow$ Set be an wltrafunctor, M_{u} in $\operatorname{Mod}(P), x_{u} \in$ $F M_{0}, P$ in \boldsymbol{P} and $a \in M_{u} P$ such that a is a support for x_{0}. There is a diagram of the form

in $U C(\operatorname{Mod}(P)$, Set $)$ such that $a \in\left(i M\right.$ and $\Phi M_{0}(a)=x_{0}$.
In a result similar to 2.16 we show that an ultranatiral transformation is determined by its values at models of size at most $\kappa=\# \boldsymbol{P}$

Lemma 2.19. If $\Phi, \Psi: F \rightarrow(i: \operatorname{Mod}(P) \rightarrow$ Set art ultra-natural transformations: between ultrafunctors such that for every model M in $\operatorname{Mod}(\boldsymbol{P})$ of cardinality $\# M \leq \kappa$ we have $\Phi M=\Psi M$ then $\Phi=\Psi$

Proof. Let N be a model. ('hoose a model M of (ardinality at most κ, an ultrafilter (I, \mathcal{U}) and an isomorphism $h: M^{u} \rightarrow N^{u}$. Let $y \in F N$. Since h is an isomorpuism there exists $z \in F^{\prime}\left(M^{d d}\right)$ such that $F h(z)=F \delta N(y)$. Let $J \in \mathcal{U}$ and $x_{j} \in F M$ for every $j \in J$ such that $[\mathcal{U}, F]\langle M\rangle(z)=\left[\left\langle x_{j}\right\rangle_{J}\right]$. Since Φ is an ultranatural

Transfomation the diagram

commutes. It follows that $\Phi\left(M^{2 t}\right)(z)=\left[U,(i) \mid\langle M)^{-1}[\langle\Phi M(, r, \eta]\right.$. 「ning the nat uralit. of Φ applied to h we conclude that $\Phi\left(X^{\prime \prime}\right)(F \lambda N(!))=\left(i h\left(\left[U,(i][M)^{-1}\left[(\Phi) /\left(x^{\prime},\right)\right\rangle\right)\right.\right.$. Using the commotativity of

we have $\left(i d N(\Phi N(y))=\left(i h\left(\left[l,(i][M\rangle^{1}[\langle\Phi . M(x)\rangle],\right)\right.\right.\right.$. The same reanoming show
 $\Phi M\left(x_{1}\right)=\Psi M\left(x_{1}\right)$ for every $j \in J$. The renult follow. (rom this.
 has a finitt cover via $\boldsymbol{r}: \boldsymbol{P} \rightarrow \boldsymbol{U} \boldsymbol{C}(\operatorname{Mod}(\boldsymbol{P})$, Set $)$.

Proof. Since \boldsymbol{P} is small there is a small set of ultrafunctors of the form tor with P^{2} in P. According to Lemma 2.19 an ultrafunctor $r P \rightarrow F$ is determined by its value on models of size at most κ. From lemma ?. (i we know that fry $\boldsymbol{P} \rightarrow \boldsymbol{U} C(\operatorname{Mod}(\boldsymbol{P}), \boldsymbol{S e t})$ is subobject full. It follow that there is a small set T of diagrams of the form $F \stackrel{\Phi}{\leftrightarrows}\left(; \rightarrow+C\right.$ such that for any diagram $H^{\Phi}\left(C^{\prime \prime} \rightarrow C_{P}\right.$ there is a diagam $\left(F \stackrel{\Phi}{ }\left(i \rightarrow \epsilon^{\prime} P^{\prime}\right) \in T\right.$ and an ixomorphism $\left(i \rightarrow\left(i^{\prime}\right.\right.$ such that the diagram

commutes.

For every model M in $\operatorname{Mod}(\boldsymbol{P})$ and $x \in F M$ we hnow that there is a diagran of the form ($F \stackrel{\Phi}{-}\left(i_{\hookrightarrow} \rightarrow C^{\prime}\right)$ with $x \in I m \Phi M$. By what we said above w. may assume that $\left(F^{\prime} \stackrel{\Phi}{-}\left(; \rightarrow\left(\eta_{r}\right) \in \mathcal{T}\right.\right.$.

Let $\Gamma_{w}(\mathcal{T})$ denote the set of finite subsets of \mathcal{T} ordered by inclusion. Assume
 $F^{\prime} M_{I^{\prime}}$ such that $x_{l} \notin \bigcup_{i=1}^{n} \Phi_{i} M_{T}$. Let \mathcal{U} be an ultrafilter on $\mathcal{P}_{\omega}(\mathcal{T})$ surh that fon every $T \in T$ we have that $\uparrow(T) \in \mathcal{U}$. Consider $[\mathcal{U}, F]\left\langle M_{r}\right\rangle^{-1}\left[\left\langle r_{T}\right\rangle\right] \in F\left(\Pi M_{T} / \mathcal{U}\right)$. We can find $\left(F \xrightarrow{\Phi}\left(i \mapsto\left(r_{r}\right) \in \mathcal{T}\right.\right.$ such that $[\mathcal{U}, F]\left\langle M_{r}\right\rangle^{-1}\left[\left\langle r_{r}\right\rangle \in I m \Phi \Pi M_{I} / \mathcal{U}\right.$. This means that there is $I \in \mathcal{U}$ such that for every $T \in I . x_{r} \in \operatorname{lm} \Phi M_{T}$. If $T \in \uparrow\left\{F^{\Phi}\left(\underset{i}{\Phi} \rightarrow\left(r_{p}\right)\right\} \cap J \in \mathcal{U}\right.$ then we have that $r_{T} \in I m \Phi M_{T}$. On the other hand, since $\left(F \stackrel{\Phi}{\longrightarrow}\left(i \nrightarrow\left(l_{r}\right) \in T\right.\right.$ we have $x_{I} \notin I m \Phi M_{T}$. A contratiction. There exists then $T \in \boldsymbol{P}_{\omega}(T)$ such that for every model M and every $x \in F M$ there is an dement $(F \stackrel{\Phi}{(}) \longrightarrow\left(n_{r}\right) \in T$ with $r \in I m \Phi M . T$ is then a finite cover of F via $\rightarrow \boldsymbol{r}: \boldsymbol{P} \rightarrow \boldsymbol{U C}(\operatorname{Mod}(\boldsymbol{P})$. Set $)$.

We have shown that for a small pretopos \boldsymbol{P} the functor

$$
\subset: P \rightarrow U C(\operatorname{Mod}(P), \text { Set })
$$

is conservative (Proposition 2.7), subobject full (Proposition 2.6) and that every F in $\boldsymbol{U C} \boldsymbol{C}(\boldsymbol{M o d}(\boldsymbol{P}), \operatorname{Set})$ has a tinite cover via e $($ (Proposition 2.20). This is enough to poove Makkai's Theorem (Theorem 2.3).

Chapter 3

Continuous Families of Models

In this chapter we are going to consider categories of models of pretoposes an catequries indexedover Top, the category of topological spaces and contimbun functions. Before we go into the definitions we want to give some motivation for taking this approach.

Given a continuons function $f: Y \rightarrow X$ in Top we ohtain a geometrie morphinm $\operatorname{sh}(\mathrm{X}) \underset{f_{*}}{\stackrel{f^{*}}{\rightleftarrows}} \operatorname{S}^{\prime} h\left(\mathrm{Y}^{*}\right) . N^{*}, f^{*}$ preserves finite limits and all colimits, this in particular
 composition with f^{*} induces a functor $\operatorname{Mod}_{\varphi_{h(\lambda)}(\boldsymbol{P})} \rightarrow \operatorname{Mod}_{\operatorname{Gh}_{(1)}(\boldsymbol{P}}(\boldsymbol{P})$ which we also call f^{*}. We want to relate this wish the ultraproduct functors (see 1.1). Let I be a set and consider it ats a topological space ith discrete topology let $3 I$ be its Stome-C'er' compactitication and $\xi I: I \rightarrow \$ I$ be the usual embleding. i $I=$ $\{l|\mid \mathcal{U}$ is a.s ultratilter eal $I\}$, and a basis for the topology on $3 I$ is given by sets of the form $J^{*}=\{l \in \in\{I \mid I \in \mathcal{Z}\}$ for subsets $J: I$. We will show later that $\xi I_{*}: S h(I) \rightarrow$, $\boldsymbol{S} h(\beta I)$ is an elementary functor (see Proposition 3.1S). We have an equivalence of categories given by $P:$ Set $^{I} \rightarrow s h(I)$ where $P\left(A_{i}\right)(. J)=\prod_{s \in J} A_{z}$ and $P^{P}\left(f_{2}\right\rangle(. J)=\prod_{j \in J} f_{1}: \Pi_{j \in J} 1_{J} \rightarrow \prod_{i \in J} B_{1}$ for every $I \subset I$ and $\left\langle f_{2}\right\rangle:\left\langle 1_{2}\right\rangle \rightarrow\left\langle B_{2}\right\rangle$ in Set ${ }^{l}$. If \mathcal{U} is an ultratilter on I then we have a function $1 \xrightarrow{l 4} 3 I$ that sends the only element of 1 to $l d$.
Lemma 3.1. The compostion Set $\xrightarrow{P} S^{\prime} h(I) \xrightarrow{\xi I_{*}} S^{\prime} h(, S I) \xrightarrow{U^{*}}$ Set in naturally isomorphic to the ultraproduct funrtor de fincd by \mathcal{U}.

Proof. Denute by $L: S h(3 I) \rightarrow L H / \beta I$ the usual equivalence where $L H / 3 I$ is
the category of local homeomorpinisms over , II. If we start with a fanily $\left\langle A_{t}\right\rangle_{t \in I}$ in Set ${ }^{I}$ we have that
using the fact that the sets of the form J^{*} form a basis for the tepology of $\{I$ we have

$$
\begin{aligned}
& =\amalg_{F \in \beta I} \lim _{H_{T}} P\left(A_{2}\right\rangle_{t \in I} I(I)
\end{aligned}
$$

Therefore, the fiber arer \mathbb{A} is $\lim _{i \in \mathbb{T}} \prod_{2 \in J} \cdot 1_{2}$. We proce similarly with familien of morphisms.

 (called ξI_{*} as well) for ats pretopos \boldsymbol{P}. We heve an equivalence $F: \operatorname{Mod}(\boldsymbol{P})^{I} \rightarrow$ $\operatorname{Mod}_{\text {suit })}(\boldsymbol{P})$ given by $F\left(M_{t}\right\rangle\left(P^{\prime}\right)=\left\langle M_{t} I^{\prime}\right\rangle$ and $F\left\langle\tau_{2}\right\rangle(P)=\left\langle\tau_{i} P\right\rangle$ for every P^{\prime} in P and every $\left\langle\tau_{2}\right\rangle:\left\langle M_{2}\right\rangle \rightarrow\left\langle N_{2}\right\rangle$ in $\operatorname{Mod}(\boldsymbol{P})^{I}$.

Corollary 3.2. The composition
is naturally isomorphie to the ultraproduct functor defined by it.
We obtain then the ultraproduct functors from continuons functions in Top.

3.1 Indexed Category Theory

Basic Definitions

We review indexed ategory theory, as in [19]; in [3] the approach is via fibrations. To start with. we need a category T with finite limits, that we call the base category.

We further assume that \boldsymbol{T} is locally mall.
Definition 3.1. A T indexed category \mathcal{A} consists of the following data

1. A category \mathcal{A}^{X} for every object X in T.
2. A functor $f^{*}: \mathcal{A}^{Y} \rightarrow \mathcal{A}^{Y}$ for every arrow $Y \xrightarrow{f} X$ in T.
3. A natural isomorphism

for every X in T.
4. A natural inomorphism

for every $Z \xrightarrow{\prime} Y \xrightarrow{f} X$ in T.
Subject to the following coherence axiom,
A1. The diagram.

commute for every $Y \xrightarrow{f} X$ in T.
A2. The diagram

commutes for every $W \xrightarrow{h} Z \xrightarrow{\perp} Y \xrightarrow{f} X$ in T.
Definition 3.2. (Given T-indexed categories \mathcal{A} and \mathcal{B}, a T-indexed functor $F: \mathcal{A} \rightarrow$ \mathcal{B} consists of the following data:
5. A functor $F^{X}: \mathcal{A}^{X} \rightarrow \mathcal{B}^{X}$ for every \mathcal{X} in T.

2. A natural isomorphism

for every $\dagger \xrightarrow{f} \mathrm{X}$ in T.
Subject to the following coherence axioms:
Bl. The diagram

commuter for every X in T.
B2. The diagram

commuten for every $Z \xrightarrow{n} \mathrm{Y} \xrightarrow{f} X$ in T.
('omposition of T-indexed functor is defined in the obvions way.
Definition 3.3. (iiven \boldsymbol{T}-indexed functors $F,(\underset{\gamma}{\boldsymbol{\prime}}: \mathcal{A} \rightarrow \mathcal{B}$, a \boldsymbol{T}-indexed natural transformation $\tau: F \rightarrow\left(\mathcal{B}^{\prime}\right.$ consist of a matural transformation $\tau^{\mathrm{Y}}: F^{\mathrm{X}} \rightarrow \mathcal{A}^{\mathrm{Y}}$ for ever: X in \boldsymbol{T}, such that the diagram

$$
\begin{aligned}
& F^{\vee} \circ f^{*} \xrightarrow{\tau^{\lambda} f^{*}}\left(i^{2} \circ f^{*}\right.
\end{aligned}
$$

commutes for every $Y \xrightarrow{f} \mathrm{X}$ in T.
\boldsymbol{T}-indexed natural transformations also compose in the ubrious way.

Examples

We will be interested in the case where \boldsymbol{T} in the category $\boldsymbol{T o p}$ of topological spacen. As an cample we have the Top-indexed category $\mathcal{S E T}$. (iiven a topological opace
 continuons function then $f^{*}: \mathcal{S E} T^{t} \rightarrow \mathcal{S E} T^{\dagger}$ in the mual $f^{*}: \sin ^{\boldsymbol{t}}(\mathrm{V}) \rightarrow$ sh(t).

Ilere is another example. If \mathcal{A} is a T-immerd ategorv dud. C in a mall (ondindry) category then we detine the T-indexed category $[\boldsymbol{C}, \mathcal{A}]$ as follows: $\left[C^{\prime}, \mathcal{A}\right]^{8}=\left(\mathcal{A}^{1}\right)^{C}$ for X in T. If $Y \xrightarrow{f} X$ is an arron of T. then $)^{*}:\left[\mathcal{C}^{\prime} . \mathcal{A}\right]^{]} \rightarrow\left[C^{\prime} . \mathcal{A}\right]^{]}$is muth that $\left(C \xrightarrow{H} \mathcal{A}^{\top}\right) \mapsto\left(C \xrightarrow{H} \mathcal{A}^{\top} \xrightarrow{f^{*}} \mathcal{A}^{y}\right)$

If \mathcal{A} is a \boldsymbol{T}-indexed catenorve we detine the \boldsymbol{T}-indeved ategory $\mathcal{A}{ }^{\prime \prime}$, wheh that $\left(\mathcal{A}^{\prime \prime \prime}\right)^{Y}=\left(\mathcal{A}^{\prime}\right)^{\prime \prime \prime}$ and for $Y \xrightarrow{f} \mathrm{~A}$ in \boldsymbol{T}. the tranition functor is $\left(f^{*}\right)^{\prime \prime}$. If \mathcal{B} is another T-indexed category, we can detine the T-indexed cateqory $\mathcal{A} \cdot \mathcal{B}$ wh h that $(\mathcal{A} \times \mathcal{B})^{Y}=\mathcal{A}^{Y} \times \mathcal{B}^{\mathrm{Y}}$ athe the finctor correcponding to f in $f^{*} \cdot f^{*}: \mathcal{A}^{\mathrm{X}} \times \mathcal{B}^{\mathrm{Y}} \rightarrow$ $\mathcal{A}^{\mathbf{Y}} \times \mathcal{B}^{\mathrm{I}}$.
T itself can be regated an a T-indexed categors T in the following way: Detine
 l.

Small Homs

Quention of size concerning a \boldsymbol{T}-indexed category hombld be con idered with wespect to the bare category. Given 1 and A^{\prime} in \mathcal{A}^{\prime}. we have the functer

$$
H_{1,1^{\prime}}:(\boldsymbol{T} / \mathrm{X})^{4} \rightarrow \boldsymbol{S} \boldsymbol{E} \boldsymbol{T}
$$

mich that for every

in $\mathcal{T} / \mathcal{X}$, we have $H_{1},(f)=\mathcal{A}^{Y}\left(f^{*} \cdot 1, f^{*} \cdot I^{\prime}\right)$, and

$$
H_{1,4^{*}}(h): \mathcal{A}^{3}\left(f^{*} .1, f^{*} \cdot 1^{\prime}\right) \rightarrow \mathcal{A}^{Z}\left(g^{*} .1, g^{*}, 1^{\prime}\right)
$$

is such that

$$
\left(f^{*} A \xrightarrow{a} f^{*} A^{\prime}\right) \mapsto\left(y^{*} A=(f h)^{*} A \xrightarrow{\simeq} h^{*} f^{*} A \xrightarrow{h^{*} a} h^{*} f^{*} \cdot 1^{\prime} \xrightarrow{\simeq}(f h)^{*} A^{\prime}=y^{*} A^{\prime}\right) .
$$

Definition 3.4. $1 T$ indexed rategory \mathcal{A} in said to have small homs if for every X in T, A. A^{\prime} in \mathcal{A}^{X} there exists an object hom ${ }^{\mathrm{x}}\left(\mathrm{A}, \mathrm{A}^{\prime}\right): \operatorname{Hom}{ }^{\mathrm{x}}\left(\mathrm{A}, \mathrm{A}^{\prime}\right) \rightarrow \mathrm{I}$ in T / X and a matural inomorphism

$$
\boldsymbol{T} / \mathrm{A}\left(\ldots \mathrm{hm}^{\mathrm{r}}\left(.1, \mathrm{~A}^{\prime}\right)\right) \rightarrow H_{A, 1^{\prime}}
$$

Wie say that \mathcal{A} han small homs at 1 if the ahove condition is satistied for $X=1$
Whenerer we have such an isomorphism we represent it by a horizontal line an follows

$$
\frac{f^{*} .1 \rightarrow f^{*} \cdot 1^{\prime}}{f \rightarrow h_{0 n}{ }^{\mathrm{r}}\left(A .1^{\prime}\right)} \quad \text { in } \mathcal{A}^{1} .
$$

Suppose that of has small homb. A morphism $\left(b, b^{\prime}\right):\left(A, A^{\prime}\right) \rightarrow\left(B, B^{\prime}\right)$ in $\left(\mathcal{A}^{X}\right)^{\text {m }} \times \mathcal{A}^{\mathrm{Y}}$ induces a natural transformation $H_{b, h^{\prime}}: H_{1.4^{\prime}} \rightarrow H_{B, B^{\prime}}$ in the obvions way. This correpponds to a natural transformation

$$
\boldsymbol{T} / \mathrm{X}\left(-\operatorname{hom}^{\mathrm{Y}}\left(A, A^{\prime}\right)\right) \rightarrow \boldsymbol{T} / X\left(-\operatorname{hom}^{\mathrm{Y}}\left(B . B^{\prime}\right)\right) .
$$

By Yoneda, this last transformation is sepresented by a mique morphimm in T / A
 and $Y \xrightarrow{f} X$ in T. hem

This means that $h o m^{r}\left(f^{*} A, f^{*} . A^{\prime}\right) \simeq f^{*} h o m^{r}\left(A .1^{\prime}\right)$ in T / Y. Therefore, if we define hom $(\ldots) \cdot \mathcal{A}^{m} \times \mathcal{A} \rightarrow \mathcal{T}$ such that for wery X in $T, \operatorname{hom}(\ldots)^{\mathrm{Y}}\left(.1, \mathcal{A}^{\prime}\right)=\operatorname{hom}^{\mathrm{r}}\left(.1, \mathcal{A}^{\prime}\right)$ and $\operatorname{hom}(\ldots,)^{Y}\left(b, b^{\prime}\right)=$ hom $^{x}\left(b, b^{\prime}\right)$ we oldain

Lemma 3.3. If the \boldsymbol{T}-indextd category \mathcal{A} hu-small homs then hom $(-, .):. \mathcal{A}^{\omega T} \times \mathcal{A} \rightarrow$ \mathcal{T} is a T-indexed functor.

3.1.1 Stability

Definition 3.b. We say that a T-indexed category \mathcal{A} has T-故ahte colimits if for every X in T, \mathcal{A}^{X} has colimits and for every $\left.f:\right\} \rightarrow X^{\prime}$ the fimetor $f^{*}: \mathcal{A}^{X} \rightarrow \mathcal{A}^{3}$ preserves colimits.

Similarly we detine the coucepts of \boldsymbol{T}-stable wproducts. \boldsymbol{T} stable limte limits etc. This concept of \boldsymbol{T}-stability should not he confined with the womewhat related concept of stability nuder pullbacks. To avoid confunion we will nee the word miversal to mean wable under pulback in this sertion.

A related concept is

 have that $f^{*} m$ is a monomorphism in \mathcal{A}^{\prime}. We ndy that \mathcal{A} han T-stable monomor phismo if erery monomorphism in \mathcal{A}^{x} in T-atable for every I in T. We ndy that a subobject $m: A_{n} \rightarrow 1$ in \mathcal{A}^{\prime} is T-stable if m is a T-stable monomorphinn.

3.1.2 Well Powered Categories

(iiven a T-indexed rategory d and 1 in \mathcal{A}^{Y}. detime the functor

$$
\therefore \operatorname{sul} \ln _{\left.(-)^{*} .1\right):(T / X)^{p} \rightarrow S E T}
$$

such that for ewery

 for every T-stable subobject $B \rightarrow f^{*} .1$.

Definition 3.7. $A T$ indexed category \mathcal{A} is said to be well powered if for every X in T, A in \mathcal{A}^{X}, there exists an object $s u b^{Y}(A): S_{u} b^{S}(A) \rightarrow A$ in T / X, and a natural isomorphism $T / X\left(-, s u b^{x}(A)\right) \rightarrow S_{s u b}((-) A)$. We say that \mathcal{A} is well powered at 1 if the above condition is satisfied for $\mathrm{X}=1$.

If the \boldsymbol{T}-indexed category \mathcal{A} has T-stable pullbacks and is well powered, then for every $a: A \rightarrow A^{\prime}$ in \mathcal{A}^{X} we can define the natural transformation S^{\prime} aub $\left.(1-)^{*} a\right):$ S_{s} uct $\left.(-)^{*} A^{\prime}\right) \rightarrow S_{s} s u b\left((-)^{*} A\right)$ such that for any $Y \xrightarrow{f} X$ in T / X we have that \therefore sutb $\left(f^{*} u\right)\left(B \longrightarrow f^{*} A^{\prime}\right)$ is the pullback

 Yoneda this last matural transfurmation is represented by a morphism in T / X that we denote by sub ${ }^{X}(a): s u b^{X}\left(A^{\prime}\right) \rightarrow \operatorname{sub}^{Y}(A)$.

Detine sub(-) : $\mathcal{A}^{\prime \prime \prime} \rightarrow \mathcal{T}$ such that $\operatorname{sub}(-)^{X}(A)=\operatorname{sub}^{Y}(1)$, and $\operatorname{sub}(-)^{Y}(a)=$ nu $b^{X}(a)$, for cevery $X \in T$ and $A \xrightarrow{a} .1^{\prime}$ in \mathcal{A}^{X}. As for hom we have

Lemma 3.4. If the T-indesed category \mathcal{A} has, T-stable pullbarks and is we ll pouc red then subl(.) : $\mathcal{A}^{\prime \prime \prime} \rightarrow T$ is a T-indexel functor.

Notice that if \mathcal{A} has T-stable pullbarks then every monomorphism is T-stable.

3.1.3 Adjoint Functors

Definition 3.8. If $F: \mathcal{A} \rightarrow \mathcal{B}$ in a T-indexed functor, we say that F has a right adjoint if there exists a T-indexed finctor $R: \mathcal{B} \rightarrow \mathcal{A}$ and T-indexed natural tranformations $\eta: 1_{F} \rightarrow R F$ and $:: F R \rightarrow 1_{R}$ such that the diagrams

commute.

3.1.4 Internal Functors

Let \mathbb{D} le the T-rategory

$$
H_{2} \xrightarrow[\pi_{1}]{\stackrel{\pi_{11}}{\theta_{1}}} H_{1} \xrightarrow[\delta_{1}]{\stackrel{i!}{i_{1}}} H_{11}
$$

that is, \mathbb{D} is a catequry object in T.
Definition 3.9. Let \mathcal{A} be a T-indexed category, and \mathbb{D} a T-eatequry ar abowe. An
 morphism in $\mathcal{A}^{1 / 2}$. such that the diamamis

 $n, A \rightarrow B$ in $\mathcal{A}^{f_{0}}$ anch that the diagram

commutes.
Internal natral tran formations compore in the obvions way. and we obtain the category $\mathcal{A}^{\prime \prime}$ whese orj its are internal functors from D to \mathcal{A} and whose morphisms are internd natural tran formations. Furthermore, we can T-index \mathcal{A} as follows. (iven an object X in T, form the T eategory $\mathbb{D} \times X$ and detine $\left(\mathcal{A}^{-}\right)^{X}=\mathcal{A}^{-X} \times$. If
 $\delta_{1}^{*}\left({ }^{\prime}\right) \rightarrow\left(\left(I_{0} \times f\right)^{*}\left({ }^{\prime},\left(D_{1} \times f\right)^{*} \mu\right)\right.$.

If $I: \mathbb{D} \rightarrow \mathbb{C}$ is $\mathrm{h}_{\mathrm{h}} \mathrm{T}$-functor

 $\left.\left.\left.\left(H_{0}^{*} \cdot 1, \delta_{11}^{*} H_{0}^{*} \cdot 1 \xrightarrow{\leftrightharpoons} H_{1}^{*}\right\rangle_{11}^{*} \cdot 1 \xrightarrow{H_{0}^{(\xi)}} H_{1}^{*}\right\rangle_{1}^{*} \cdot 1\right) \xrightarrow{\simeq} \delta_{1}^{*} H_{0} \cdot 1\right)$.

If $F: \mathcal{A} \rightarrow \mathfrak{b}$ is a T-indexed functor between T-modexed cathorics. we can induce

 above we have the following commutative diagram

Small Limits

We can detime a T-indexed functor $\Delta_{\mathbb{r}}: \mathcal{A}-\mathcal{A}^{\mathbb{E}}$ such that for every X in T and $a: A \rightarrow A^{\prime}$ in $\mathcal{A}^{X}, \Delta_{i n}^{Y}(A)=\left(\pi_{Y}^{*} A,\left(\delta_{0} \therefore X\right)^{*} \pi_{Y}^{*} A \xrightarrow{\sim}\left(\delta_{1} \vee X\right)^{*} \pi_{Y}^{*} A\right)$, and $\lambda^{X}(a)=\pi_{X}^{*}$ a, where $\pi_{Y}: D_{1} \times \lambda \rightarrow \lambda$ is the projection

Definition 3.10. We say that the \boldsymbol{T}-indexed category \mathcal{A} has \mathbb{D}-limits it the \boldsymbol{T} indexed functor Δ_{s} has right adjoint lime.

Decolimits are defined in the same fashion, requiring a left acioint instead of a right adjoint.

3.2 Functor Categories

We consider now categories of the form \boldsymbol{T} ind $(\mathcal{A}, \mathcal{B})$ of \boldsymbol{T} inde wd functors form \mathcal{A} to \mathcal{B}. As in ordinary category theory T-ind $(\mathcal{A}, \mathcal{B})$ inherits it , properties from \mathcal{B}.

Proposition 3.5. I.t \mathcal{A} and \mathcal{B} br T-indt.xtd rategorits. If \mathcal{B} has T-stable lamit., then th: category \boldsymbol{T}-ind $(\mathcal{A}, \mathcal{B})$ has limits and if $F: \mathcal{A} \rightarrow \mathcal{C}$ is a T-inde \boldsymbol{x}, functor then the functr, T-ind $(F, \mathcal{B}): T$-ind $\mathcal{C} . \mathcal{B}) \rightarrow T$-ind $(\mathcal{A}, \mathcal{B})$ proteres limit.s.

Proof, let l : $\boldsymbol{I} \rightarrow \boldsymbol{T}$-ind $(\mathcal{A}, \mathcal{B})$ be a diagram. For every I in T we ohtain a
 $i: I \rightarrow I^{\prime}$ in I. Define $\Theta^{X}=\frac{l i m}{T} I^{X} /$. Since \mathcal{B}^{X} has limits we have that for every . 1 in $\mathcal{A}^{X} \cdot \Theta^{Y}(.1)=\frac{\lim }{I}\left(1^{\prime} I^{X}(1)\right)$. (iiven $f: Y \rightarrow X$ we obtain a matural isemorphism

$$
\Theta^{Y} f^{*}=\frac{l i m}{i} I^{1} I^{Y} f^{*} \xrightarrow{\sim} \frac{l i m}{I} f^{*} I^{Y} \simeq f^{*}\left[\frac{l i m}{I} I^{Y} I^{Y}=f^{*} \Theta^{\mathrm{X}}\right.
$$

where the first arrow is induced by the inomorphismes $\left[I^{3} f^{*} \xrightarrow{\sim} f^{*} I^{Y}\right.$ and the second isomorphism by the fact that f preserves limits. It is not hard to see that these isomorphisms satisfy coherence, making $\Theta: A \rightarrow B$ a T-imbexd functor. For very I in I we define $\pi_{I}^{Y}: \Theta^{X} \rightarrow \Gamma I^{X}$ an the projection. It is eaty to see that this definition makes π_{l} a T-indexedi functor and the family $\left\langle\Theta \xrightarrow{\pi_{i}} \Gamma 1\right\rangle$ a cone. The miversal property is clear.

Remark 3.1 . Notice that the above proposition remains tree if we replace limits by tinite limits or coproducts ate, provided they are T-stable in B. Notice furthermore that the limits (or colimits, etc) are calculated dondly point wise. that is they are cal culated as the limit in \boldsymbol{T}-ind $\left(\mathcal{A}^{X}, \mathcal{B}^{\mathrm{X}}\right.$) and they are pent wise at erery \boldsymbol{T}-ind $\left.\mathcal{A}^{Y}, \mathcal{B}^{X}\right)$.
Lemma 3.6. If \mathcal{B} has T-stable strict initial whject then \boldsymbol{T}-ind $\mathcal{A}, \mathcal{B})$ har atrict initial object.

Proposition 3.7. If \mathcal{B} huti T-stablt finite limits. a T-stable initial abject. T-stablt coproducts and for each X in \boldsymbol{T} the roproducts are disjoint and unire rsal. then \boldsymbol{T} ind $(\mathcal{A}, \boldsymbol{S})$ has coproducts and the!, are disjoint and umiet rsal.

I'roof. By remark 3.1, T-ind $(\mathcal{A}, \mathcal{B})$ has coproducts and they are calculated pointwise at each X in T. Since finite limits are peintwise too at every X and so is the initial whect the result follows.

Proposition 3.8. If \mathcal{B} has T-stable fimitr limits and T-stable quotients of equivalenct relations and for eerry X in \boldsymbol{T} these quotients are unirersal then T-ind($\mathcal{A}, \mathcal{B})$ han. quotients of equivale net relations and the! are univerand.
l'roof. It is easy to see that an equivalence relation $F \underset{T}{\stackrel{\sigma}{\longrightarrow}}(\dot{i}$ in \boldsymbol{T}-ind $(\mathcal{A}, \mathcal{B})$ produces an equivalence relation $F^{\mathrm{S}} \xrightarrow[\tau^{\mathrm{X}}]{\sigma^{Y}}$. \dot{B}^{X}. Then proceed an before.

Proposition 3.9. If \mathcal{B} has T-stable finite limits. T-stable sups of subobjects and for reery X in T they art uninersal then T-ind $(\mathcal{A}, \mathfrak{B})$ has supps of subobjects and they art uninersal.

Assume now that T has coproducts. Let \mathcal{A} be a T-indexed category and $\left\{\mathrm{X}_{a}\right\}_{\text {a }}$ a family of objects in \boldsymbol{T}. ('onsider its coproduct $\left\langle\mathrm{X}_{4} \xrightarrow{i_{x}} \amalg_{A_{x}} X_{a}\right)_{1,}$. We obtain the functor $\left\langle i_{a,}^{*}\right\rangle: \mathcal{A} \amalg_{\alpha}{ }^{X_{a}} \rightarrow \Pi_{\alpha} \mathcal{A}^{X_{x}}$. We say that \mathcal{A} distributes coproducts if for every family $\left\{X_{z}\right\}_{, ~}$ of ohjects in T the functor $\left\langle i_{a}^{*}\right\rangle: \mathcal{A} \bigcup_{a} X_{x} \rightarrow \prod_{a} \mathcal{A}^{X_{x}}$ is an equivalence of categories with pseudo-inverse $\left\langle i_{\Delta}^{*}\right\rangle^{-}$. Notice that if we have a T-indexed functor
 induces an isomorphism

and if both \mathcal{A} and \mathcal{B} distribute coproducts we obtain then a natural isomorphism

Definition 3.11. Let T ind be the full. 2 full subategon of T ind when whents are \boldsymbol{T}-indexed categories that distribute coproducts.

Remark 3.2 . Since for any \mathcal{A} and \mathcal{B} in T-inis we have T-inn $(\mathcal{A}, \mathcal{B})-T$ indl \mathcal{A}, \mathcal{B}) it is chear that the propositions abowe remain true when we are dealine with T-IND.

The category SET is clearly an object of Top-InD.

3.3 Continuous Families of Models

 $\operatorname{sh}(\mathrm{X}) \rightarrow \operatorname{sh}(\mathrm{y})$
 we hate then that the composition with M is inded a mondel. It is not hard to see that $\mathcal{M O} \mathcal{O}(P)$ is in Top-inn.
 Indeed, we know from Theorem 1.3 that we have an ennivaltene

$$
\text { Topos } / \operatorname{Set}(\operatorname{sih}(X), \operatorname{sh} P . . I) \simeq \operatorname{MOD}()^{S}
$$

where I is the precamonical topolong on P, and isee $[\mathrm{F}] 6.33$,

We have (see [11] 1.s)
Proposition 3.10. The Top-indt vel rategrry SET hus Top-n all finitt limits. Topstable colimits. Top-stable quotients of equivalenee re lations and they art unier mal at
 Top.

 small se to of subobjects, umere ssal mages. wuteral quotients of equivale ner relations and unine rasal dis.joint crproducts).

I'roof. Ther result follows from Propusitions 3.5, 3.7. :3.6 and Lemma 3.6.
It is chown in [1] that the Top indexed cancory $\mathcal{S C} T$ is well powered, cowell ponered and has small homs. We have

Proposition 3.12. The Top-mde ct deategory. $\mathcal{M O D (P)}$ han small homs at 1 .
l'roof. Let $M \in \operatorname{Mod}(\boldsymbol{P})$, and $N \in \operatorname{Mod}_{\text {Sta }}^{\mathrm{Y})}(\boldsymbol{P})$. Conditer the diagram I': E'UM) $\rightarrow \boldsymbol{T o p} / \mathrm{X}$ such that $\mathrm{I}\left(a F M M^{\prime}\right)=N P$ where we consider $N P$ as a local homeomorphism over X, and $\Gamma\left(\left(1, \in M P^{\prime}\right) \xrightarrow{\sim}\left(b \in M P^{\prime \prime}\right)\right)=\left(N P^{N} \xrightarrow{N} N l^{\prime \prime}\right)$.

$$
\frac{h: f \rightarrow \frac{l_{l} m}{\left.T M M_{1}\right)}}{\left\langle\left\langle h_{\left(u \in M I^{\prime}\right)}: f \longrightarrow V P\right\rangle_{\left(u \in M P^{\prime}\right)}\right\rangle_{l^{\prime}}} \text { in } \operatorname{Top} / \mathrm{X}
$$

where for every $p: P \rightarrow I^{\prime}$ and any $a \in M P$ the diagram

commater. Now,

$$
\frac{\left\langle\left\langle h_{\left(u \in M H^{\prime}\right)}: f \rightarrow N P\right\rangle_{\left(a \in M I^{\prime}\right)}\right\rangle_{I^{\prime}}}{\left\langle\left\langle k_{\left(u \in M H^{\prime}\right)}: 1 \longrightarrow f^{*} N P\right\rangle_{\left(u \in M P^{\prime}\right)}\right\rangle_{F},} \text { in } \operatorname{Top} / \boldsymbol{I}
$$

where for every $n . P \rightarrow P^{\prime}$ and any $a \in M P$ the diagram

commutes. Then

$$
\begin{aligned}
& \left\langle\left\langle k_{\left(1+M I^{\prime}\right)}: 1 \longrightarrow f^{*} N P\right\rangle_{\left(n \in M I^{\prime}\right)}\right\rangle_{l^{\prime}} \quad i n \operatorname{Top} / Y
\end{aligned}
$$

Notice that this sives a topology to the sets $\operatorname{Mod}(P)(M, N)$ for $M . N$ in $\operatorname{Mod}(P)$. Indeed. for the topological space I we have the correqumbling inomorphism

$$
\operatorname{Top}\left(1, \operatorname{lom}^{1}(M, V) \rightarrow \operatorname{Mod}(P)(V, W\right.
$$

 $M \rightarrow X \mid h P^{\prime}(a)=b$ with P in $P . a \leftarrow M P$ and b 巨 $\mathcal{X} P$.

Further analysis of mallness conditions for Top-indexed categorion of mondeln wiil be done chewhere.

3.4 Los Categories

So far we have not dealt with arrow of the form f_{*} that allowed n- to obtain the ultraproduct finctore at the hegiminge of thin chatpor. We now take care of this.

Definition 3.12. Let $f: Y \rightarrow A$ be a morphiom in Top. We say that f is ultratizite

Notice that $f: Y \rightarrow I$ ultatinite mean in pationla that $f *$ is an chement

 to $f^{*}: \operatorname{MOD}(P)^{x} \rightarrow M O D(P)^{x}$.

As we mentioned hefore, given a disente tepological space I the unal emblueding $I \rightarrow 3 I$ into its Stone-(ech compactification is ultrafinite. We show this fatt and give some more examples of ultrafinite functions below (see 3.3).

Definition 3.13. (iven \mathcal{A} in Top-ivi) we say that \mathcal{A} is a Los category if for ever? ultratinite morphism $f: Y \rightarrow X$ the functor $f^{*}: \mathcal{A}^{X} \rightarrow \mathcal{A}^{1}$ has a right adjoint $f_{*}: \mathcal{A}^{Y} \rightarrow \mathcal{A}^{Y}$.
(iiven \mathcal{A} and \mathcal{B} in $\operatorname{Top-In}$ we say that a Top-indexed functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is a Los functor if for every ultratinite $f: \zeta \rightarrow X$ in $\boldsymbol{T o p}$ we have that the composition
is an isomorphism where η is the mint of $f^{*}+f_{*}: \mathcal{B}^{V} \rightarrow \mathcal{B}^{\mathbb{Y}}$, ϵ^{\prime} is the comnit of $f^{*} \dashv f_{*}: \mathcal{A}^{Y} \rightarrow \mathcal{A}^{Y}$ and the modde isomorphism is induced by $f^{*} r^{\dot{Y}} \xrightarrow{\simeq} l^{\text {Y }} f_{*}$

Given a pretopon P and an object P^{\prime} in P is is easy to wer that the evaluation Top-indexed functor $r^{\prime} P: \mathcal{M O D}(P)-S E T$ is a hos functor.

Definition 3.14. Let $\mathfrak{Z a}$ be the 2-category whose obperts are Lon categones, its 1-cell hos functors and its D-eells Top-indexed natural transformations.

Thms \mathfrak{E} os is a locally full subeategory of Top-ind.
Proposition 3.13. If \mathcal{B} is a ins category that has
-Top-stable finite lumits.
-Top-stable initalal obje. at strict at enery A A Top.
-Top-stable finit. coproducts that are disinent and uneersal at every X.
-Top-stable quotie ats of equiralence relations uniot mal at a wely X in Top.
The n for cerery lo. category \mathcal{A} the cutcgory $\operatorname{Los}(\mathcal{A}, \mathcal{B})$ is a pre tojos. Iurthermort . the colvenponding limits and rolimit, are calculuted as in $\operatorname{Top}-\operatorname{IND}(\mathcal{A}, \mathcal{B})$.

Proof. By 'ropositions 3.5, 3.7, 3.8 and Lemma 3.6 we have thet $\operatorname{Top} \operatorname{-ind}(\mathcal{A}, \mathcal{B})$ is a pretoper All we haw to show is that finite limits (coproducts, etc) of Loo functors in Top - $\operatorname{Ind}(\mathcal{A}, \mathcal{B})$ produce Los functors. (learly the terminal functor $1: \mathcal{A} \rightarrow \mathcal{B}$ is Los. Let I, $\left(\dot{B}\right.$ be functors in $\mathfrak{L} \mathfrak{G}(\mathcal{A}, \mathcal{B})$ and $f: Y^{+} \rightarrow X$ ultratinite. ('onsider the
following diagram

where the top square commentes becanse $f=f$ preserves finite products and η is natural. the one in the middle commute be coherenee and the thitom ore commentes becanse $\left(F \cdot(i)^{t}\right.$ is penintwise. Since F and $(B$ are Lo the vertical composition on the right is an isomorphism Therefore the vertical componition on the left in an isemuphism. A rery smilar aremment shows that the pullback of hos fanctors is ath Los. Therefore $\log (\mathcal{A}, \mathcal{B})$ has tinite limits.

The initial functor $0: \mathcal{A} \rightarrow \mathcal{B}$ is clearly Lus. Showing that $\mathfrak{E o s}(\mathcal{A}$. $\mathcal{B})$ hav finite surns is a similar aremont as before mine the fort that f preserves finite smos. Finally we show that $\mathfrak{L o s}(\mathcal{A}$. \mathcal{B}) han quotient of equivalence relations. Suppose that $F \underset{r}{\sigma}(;$ is an equivalume retation in $\mathfrak{E o s}(\mathcal{A}, \mathcal{B})$. It is easy to see that $; \sigma, r)$ in then an equivelence relation in Top-Ivo. Consider $(i \rightarrow H$ its quotient. We have to show
that H is los . Consider the following diagram

It is not hard to preve that the deagam commutes. Sinee f_{*} preserves epimorphisms we hate that $f_{x^{\prime}}{ }^{1}$ is an epi. Since

is a pullback we have that the last rew in the diagram is a coequalizer. Since the first row is also a coequalizer and the tirst two vertiral rompositions are inomorphisms we romelnde that the third vertical composition is alsu an isemerphism. So we have that H is in $\mathfrak{L} \mathfrak{a}(\mathcal{A}, \mathcal{B})$.

It is eass to see that if \mathcal{B} satisthes the conditions of Proposition 3.13 and $F: \mathcal{A} \rightarrow \mathcal{C}$ is a Los functor between Los categories then $\mathfrak{L o g}(P, \mathcal{B}): \mathfrak{L o s}(\mathcal{C}, \mathcal{B}) \rightarrow \mathfrak{L} \mathfrak{G}(\mathcal{A}, \mathcal{B})$ is an elementary functor. We therefore ontain a functor $\mathfrak{L a} \mathfrak{s}^{4 \prime \prime} \rightarrow P R E T O P$.

3.5 Characterization of Ultrafinite Functions

We non turn our attention to ultrafinite functions in Top.

In what follown we will nee the well known equivalent description of $\mathcal{S e} T^{\prime}$ an the ustal sh $^{\prime \prime}(\lambda)$ and as the category $L / H / X$ of local homeomorphisms wee X, for
 $L: S^{\prime} h(Y) \longrightarrow L H / Y$ (ser [2] for cxample).
 preserves the inital object of and only if $f(\mathrm{X})$ is de nae in Y.
 of i , and let 0 represent the initid shealf, then $f_{*}(0)\left(V^{\prime}\right)=0$. That is, $0\left(f^{1} I\right)=0$. Therefore, $f^{-1} V^{\prime}$ can not be the empty set, ath then $V^{\prime} \mid f(X) \neq 0$

In the other direction, suppose f in denes. Let \mathfrak{i} be open in $\}$, sime $f(\mathrm{D} / \mathrm{i}$

For the rest of the section rather that workine with $\left.f_{\infty}: s^{\prime} h(X) \rightarrow s^{-} h()^{\circ}\right)$, we will be workine with $L I I / \mathrm{X} \xrightarrow{\mathrm{I}} \underset{\rightarrow}{ } h(\mathrm{X}) \xrightarrow{f_{*}}, S_{h}(\mathrm{Y}) \xrightarrow{L} L I / \mathrm{Y}$. If we have

in $I H / \mathrm{X}$, then we have that the map

$$
\lim _{\overrightarrow{\rightarrow y}} \Gamma(E, p)\left(f^{-1}(\mathrm{I})\right) \quad L f_{*} \mathrm{I}^{\prime}(h) \longrightarrow \prod_{4 \in Y} \lim _{\overrightarrow{4} \mathrm{t}} \Gamma\left(F^{\prime} \cdot p^{\prime}\right)\left(f^{-1}\left(\mathrm{I}^{\prime}\right)\right)
$$

Lemma 3.15. Let $f: \mathrm{X} \rightarrow \mathrm{I}$ be a continuous function with de mas imaty. Then

 trists WCI open with $y \in \mathbb{I}^{\circ}$ such that $f^{-1}(\mathbb{H})$ is contained in one of them.

Proof. Suppose f_{*} preserves finite coproducts. therefore $L f_{*} I$ preserver linite coproduets. ('omsider the following coprodact in $L / H / X$

Since $L f_{*} I^{*}$ preserves finite coproducts. we have that the induced cont innons function

$$
I f_{*} \Gamma\left(X, i d_{X}\right) \amalg L f_{*} \Gamma\left(X, i d_{\Lambda}\right) \xrightarrow{き} I f_{*} \Gamma\left(X \amalg X,\left\langle i d_{X}, i d d_{X}\right\rangle\right)
$$

is a homeomorphism. Take V^{\prime} Y an open set, ! $\because I^{\circ}$, and suppose that $f^{-1}\left(V^{\circ}\right)=$ $A \| B$ with I and B open and disjoint. Define $s: f^{-1}\left(l^{\prime}\right) \rightarrow$ I $\amalg \mathbb{I}$ such that. $\left.s\right|_{A}$ is the inelngon of A into the first factor, and $\left.s\right|_{B}$ is the inchasion of B into the second factor. Then s is continuons and $[s]_{y} \in I_{*} f_{*} \Gamma\left(X \amalg X,\left\langle i d_{X}, i d y\right\rangle\right)$. Therefore there exists an open set W of Y, and a contimuns function $l: f^{-1}\left(W^{\prime}\right) \longrightarrow$ Anch that one of the following diagrams commute

In any case, we have $f^{-1}\left(\mathrm{H}^{r}\right) \subset A$ or $f^{-1}(\mathrm{II})$, B.
In the other direction, consider the coproduct

in the category $L H / X$. Then we induce the unique morphism φ that makes the

diagram

commute. We have to show that \dot{r}^{*} is a heremomphism. First we show that \dot{f}^{*} is
 that $!=$: and that
 $E \amalg E^{\prime \prime}$ nucin that

commuter. Suppore $x=f^{-1}\left(l^{\circ}\right)$. Then $r(x) E E$ and $r(x) \in E^{\prime}$. a contradistion. Therefore $f^{-1}\left(l^{-}\right)=$. But l^{+}is upen and nomempts and $f(J)$ is dente in Y. therefore $f^{-1}\left(l^{\prime}\right)$ in nonen aty, athother contradietion, Itherefore we comblate that it is not posible that $\hat{r}\left(\left[f^{-1}(I) \rightarrow E\right]_{n}\right)=r^{-}\left(\left[f^{-1}(I I) \longrightarrow E^{\prime}\right]\right)$.
 as before, so $y=z$ and we can find I upen in Y with y E I and $I G I$, IV and $r: f^{-1}\left(I^{+}\right) \longrightarrow E \amalg E^{t}$ such that

commutes. But this means that $\operatorname{lm}(r) \subset E$, and

therefore $\left[f^{-1}(I) \xrightarrow{\bullet} E\right]_{y}=\left[f^{-1}\left(I^{\circ}\right) \xrightarrow{\varphi} E\right]_{y}$, and ψ^{*} is mono.
Now, take $\left[f^{-1}\left(I^{\prime}\right) \xrightarrow{-} \in E E^{\prime}\right]_{y} E_{-} L f_{*}{ }^{\prime}\left(E \amalg E^{\prime},\left\langle p, p^{\prime}\right\rangle\right)$, then $f^{-1}(I)=s^{-1}(E) U$ $s^{-1}\left(E^{\prime \prime}\right)$ with $s^{-1}(E)$ and $s^{-1}\left(E^{\prime}\right)$ open and disjoint. Therefore there is a IV^{\prime} C V^{\prime} opera such that $!\in W^{\prime}$, and $f^{-1}\left(H^{\prime}\right) \subset s^{-1}(F)$ or $f^{-1}(W) \subset s^{-1}\left(E^{\prime}\right)$. If $f^{-1}\left(W^{\prime}\right) \subset s^{-1}(E)$.
 becane it is a local homeomorphism.

If we consider

 open in Y^{\prime} with $z \in V^{\prime}$ and any $s: f^{-1}\left(I^{\prime}\right) \longrightarrow I^{t}$ such that p^{\prime}, sequals the inchsion of $f^{-1}(I)$ in X. then there exist W° open in Y with $y \in \mathbb{I}$ and $t: f^{-1}(W) \rightarrow E$ such that

commutes, where the left vertical arrow is the inclusion.
Lemma 3.16. If $f: \mathrm{A} \rightarrow Y$ is u continuous function, then $f_{*}:$ sh $(\mathrm{X}) \rightarrow \mathrm{S}^{\mathrm{H}}(\mathrm{Y})$

Proof. Comsider a mommationdiagram

with p and p^{\prime} local homeomorphinms and h onto. 「ake \mid open in $)$ and $" 1$.

 E^{\prime}, and $\Delta: f^{1}(1) \longrightarrow$ of $f^{\prime} / 1 / 1$ is a homeomerphiom with imserae p^{\prime}. Since h iv continumes we have that $h^{-1}()^{-1} 11 / 11$ is open in 1 . So se haw the followine commmtative diagram
where the composition at the top in learly onte. It in chat that it is coment to find

$$
\begin{gathered}
f^{-1}(H)-\stackrel{t}{\longrightarrow} h^{-1}\left(+1 f^{-1}(1) H\right. \\
f^{-1}\left(I^{\prime}\right)
\end{gathered}
$$

commutes. So, we may suppore that we have a local homenorphismy: $l^{\prime \prime \prime} \longrightarrow$ $f^{-1}\left(V^{\prime}\right)$ that is onto and we want to find IV : Y with $y \in!$ and $t: f^{-1}\left(H^{\prime}\right) \longrightarrow f^{\prime \prime}$ such that

$$
\begin{gathered}
f^{-1}\left(I I^{\prime}\right)-\xrightarrow{t} F^{\prime \prime} \\
f^{\prime-1}\left(\dot{D}^{\prime}\right)
\end{gathered}
$$

commutes.

 $E^{\prime \prime}:$ h that $t_{w_{1}}=t_{s}$. thas the refuired properts. If

We put Lemmas 3.11, 3.15 and an. 13.16 together in the followine proponitum
 sutionfit., the following romditoms:
(1) $f(X)$ is d nas in Y .

 $f^{-1}\left(W^{\prime}\right) \subset A$ or $f^{-1}(W) \subset B$.

 $I \rightarrow \beta I$ into its. Stone-C'tch compactification is ultrafinith.
 preserves the initial object. Tahe a basic open J^{*} and at element $4 \subset$ \& I^{*} and asmme that $\xi I^{-1}\left(J^{*} i=J_{1} \cup J_{2}\right.$ with $J_{1} \cap I_{2}=\emptyset$. Since $\xi I^{-1}\left(J^{*}\right)=I \mathrm{we}$ hat. $J_{1} \|, J_{2}, \mathrm{IL}$. Since \mathcal{U} is an ultratilter that means that $J_{1} \in \mathcal{U}$ or $I_{2} \in \mathcal{U}$. That in $\mathcal{U} \in I_{1}^{*}$ of \mathcal{U} 上 I_{2} and $\xi I^{-1}\left(J_{1}^{*}\right) \subset J_{k}$ for $k=1$ or for $k=2$. By Lemmat 3.15 we have that ξI_{*} presermen finite coproducts. Using Zorn's lemma it can be shown that for any tamily $\{1$.$\} of$ subsets of I we can find a dinjoint family $\left\{J_{w}\right\}$ suth that $U_{2} J_{,}=U_{,} I_{\text {, and for }}$ eveny $\alpha, J_{\alpha} \subset I_{\alpha}$. So given a basic open J^{*}, a point $\mathbb{Z} \in I^{*}$ and all open rovering $\left\{I_{.,}\right\}$ of ξI^{-1} we simply replace the family $\left\{I_{q}\right\}$ with a disjoint family $\left\{I_{n}\right\}$ with the same
 1

She med now take all of . 5 . If we take a mon principal ult rafilter 46 on I and
 hase that the resulting cmbleding $I \rightarrow \xi /(I)+\{14\}$ is ultatinite. We nomatly.
 sunltine opare ley I_{14}.

Ameiner example of an ultratinite fumetion is the following. Let D be a directed (atrequy Comsider the topological space X_{D} whose elements are the objects of D and give X_{D} the Alexamberf topelogy, that is the sets of the form $\uparrow(d)=\left\{d^{\prime}\right\}$ there "xist all arrow $\left.d-d^{\prime}\right\}$ form a basi, for the topology. (onsider the topological space $X_{D}{ }^{\prime \prime}\{p\}$ wher $p \notin X_{D}$ and with basis $\{\uparrow(d) \cup\{p\}\}_{G \in D}$. Notice that we need D directed for the given family to form a hasis. We have an obvions continnoms fimetion $\lambda_{D}+\lambda_{D} \|^{\prime}\{p\}$. It is not hatd to see that this function is ult ratinite.

Chapter 4

Algebras

4.1 2-Monads

We will consider several monads. In this section we give the dedinition we sill be using later to tix the notation. Wie follow the notation of [i].

Given a 2 -ategory \boldsymbol{A}, a strict 2 -monat on \boldsymbol{A} is a ${ }^{2}$ endofunctor \boldsymbol{I}, $\boldsymbol{A}, \boldsymbol{A}$ fugether with 2 - matural transformations $\eta: I \rightarrow I$ and $\mu: T I T+I$ suhth then the nsial diagrams

commute on the nose. (iven a strict 2 -monad $\boldsymbol{T}=(T \cdot \eta, \mu)$ a strict algetna is a pain (A, Φ) where A is an ohjert of A and $\Phi: T A \rightarrow A$ is a ! eell of A sut that tha. nisusal liagrams

 twos.all

bat isfying the coherence axioms

alis 1

We consid r the 2 -category T - $A L$ (i whose objects are strict algebras (A, Φ), whose I-rells are morphisms of algebras $(H, \varphi):(A, \Phi) \rightarrow(B, \Psi)$ and whose 2 -cells $\tau:$
$(I I, y) \rightarrow(h, a)$ drew-edls $r: I l \rightarrow h$ in A huh that

 faithful.

4.2 Functorial Weak (Co)Limits

In this section we review some of the folklore of weak limits.
Let \boldsymbol{A} be a category. For every object 1 in \boldsymbol{A} we have the noshat forgetful functor $I_{A}: A / \boldsymbol{A} \rightarrow \boldsymbol{A}$.

Definition 4.1. A innctorial weak initial object in \boldsymbol{A} is a pair ($\%$. F) with $\%$ all ohject of \boldsymbol{A} and $F: \boldsymbol{A} \rightarrow Z / \boldsymbol{A}$ a functor suth that the diagian

commutes. We say that A has a functorial weak initial objet if , wh a petio (Z, l^{\prime}) exists.

Functorial weak terminal object is defined dually:
If $(Z . F)$ is a functorial weak initial objeet in A then clearly Z in a weak in itial object in \boldsymbol{A}. Furthermore, for every arrow $a: A \rightarrow A^{\prime}$ the diagram

 an wh mpeto $1 /$.

Proref. Fir $A=Z$ in 1.1 we ohtain $F Z=P Z=F Z$.

Proof. From Lemmat 1.1 FZ is an idempotent. ('omsider a splitting

Sint

commutes, we have m o $P S=F Z=m a c$. Since m is mone, $F \mathscr{F}=$ t. (iven A III A we have the arrow,$\stackrel{m}{m} Z \xrightarrow{F A}$ A. Suppose now that we have another arrow $g: s$ - . 1 . Consider the diagram

Both triangles on the left commute atd the exterior triangle also commutes, therefore

$$
a:\left\langle\left.\mathrm{I}^{\prime}\right|^{H^{\prime}}+1\right\rangle_{1} \rightarrow\left\langle\mathrm{I}^{\prime} I^{l^{\prime}}-\mathrm{I}^{\prime}\right\rangle_{1}
$$

is an arnow a: $1 \rightarrow I^{\prime}$ suth that fin core I in I the diagome

commentes. I'here is an aldions foneofinl fincton ('ocone(l) - A amd a weah whint cocone for l' in \boldsymbol{A} is clearly a weat initid ohjeet in the aterens ('ocome(l) and vice val a.

Definition 4.2. I functorial wak colimit for I^{\prime} in \boldsymbol{A} is a fimetomial wak mitial whect in the atepory Cocone(I^{\prime}).

Finctorial weak limits are defined dually.
A functorial weak colimit for Γ in A, leanly given a weak whimit come tom 1.
Lemma 4.3. If the category A has opht ide mpotents thin the catcyerit ('ocone(l) has split ide mpontents.

Proposition 4.4. If a category \boldsymbol{A} han mplit ade mpote nt. amd a funtortul we ah whint for a diagram $\Gamma^{\prime}: \boldsymbol{I} \rightarrow \boldsymbol{A}$ then I has a colimit in \boldsymbol{A}.

Proof. l3y Lemma 1.3. Cocone (I) has uplit idempotemt and we ale supmen ing that Cocone(I) has a functorial wah initial object. 'Then be Propenition 1.2. Cocone (Γ) has an initial object. This initial object is a colimit corome fin \mid in \boldsymbol{A}.

4.3 Pseudo-retractions

Proposition 4.5. In the aboer atiation. if B has a functorial werak imitial objert "itn \boldsymbol{A} has " functoral we the mithal object.
 in \boldsymbol{A} we have the commotative diagram

in B. Applyinh, R and using the naturality of θ we oltain the commutative diagram

Therefore (RZ,O(_) ○ $R\left(F^{\prime} H(-)\right)$ is a functorial weak initial object in A.
Rrmakk 4.1. Notice that for the dual, that is for functorial weak terminal object we need to reverse the natural transformation θ.

Assume now that 0 in 4.2 is a matural isomorphism and let $\Gamma: \boldsymbol{I} \rightarrow \boldsymbol{A}$ be a diagram. We can induce then : functor $h^{\prime}: \operatorname{Cocone}(H \Gamma) \rightarrow$ Cocone (Γ) such that $R^{\prime}\langle H \Gamma Y \xrightarrow{!\prime I} B\rangle_{I}=\left\langle\left[I \xrightarrow{\theta \Gamma^{\prime-1}} R H \Gamma I \xrightarrow{R f_{I}} R B\right\rangle_{I}\right.$ and $R^{\prime} b=R b$ for every b : $\langle\mathrm{I} I \xrightarrow{!!l} B\rangle_{l} \rightarrow\left\langle\mathrm{~V} I \xrightarrow{g_{l}^{\prime}} B^{\prime}\right\rangle_{l}$ in Cocone $(H \Gamma)$. We have that H induces a functor $I^{\prime}: \operatorname{Cocone}\left(\Gamma^{\prime}\right) \rightarrow \operatorname{Cocone}(H \Gamma)$ such that $H_{:}^{\prime}\left\langle\Gamma I \xrightarrow{f_{I}} A\right\rangle_{I}=\left\langle H \Gamma I \xrightarrow{H H_{I}^{\prime}} H A\right\rangle_{I}$
 induce a natural :xomorphinem

Cocone(l) $H^{\prime} \times$ (ocone $\left.(H)^{\prime}\right)$
cocone (l)

Theorem 4.6. If 0 in 1.2 is a nataral momorphemm. thrin an! diatram!' I , I surh that $I \xrightarrow{\mathrm{I}} \boldsymbol{A} \xrightarrow{I I} B$ has a functorval ureati colemat (functorat wr ak limet' It Is
 split idempotents thra I has a colimit (lmat) in \boldsymbol{A}.

Proof Since $\boldsymbol{I} \xrightarrow{\mathrm{I}^{-}} \boldsymbol{A} \xrightarrow{I I} B$ has a functorial weak colimit in \boldsymbol{B} we hase that the category Cocone ($/ I$) has a functorial weak initial ohject. Sinee θ is a matmat isomonphinn we can induce θ in 4.3. By Proposition 1.5 we hate that ('orone(l) has a furctorial weak initial object, that is I has a fumtorial weat colimit in A. It A has split idempotents then 'y Lemma 1.3. Cocone(!) ha split id rupetents. Is Proposition L.: Cocone(Г) lan an mitid ohject. This initiat ohject is a colimit to Γ in \boldsymbol{A}.

Remark 1.2. In the cases we are going to comsider the catceney H will hate polit idempotents. This implies that \boldsymbol{A} has split idempotents (pmended i is a mathat isomorphism). Indeed, if $a: A \rightarrow A$ is an idempotent in \boldsymbol{A} then $/$ /a is an idempotent in B. Splitting $H a$ and applying R we obtain a ypliting of R/Ia, nse now that " is iso. We will also have a colimit (limit) of the diagratn $I \xrightarrow{\mathrm{I}} \boldsymbol{A} \xrightarrow{I}+B$ in B. In this situation the colimit for Γ in \boldsymbol{A} is 0^{\prime} aned as follows; take the colimit conome $\left\langle H \Gamma I \xrightarrow{i_{I}} \lim H \Gamma\right\rangle_{I}$ in B. this gives a cocome

$$
\left\langle H \Gamma I \xrightarrow{H \theta \Gamma I^{-1}} H R H \Gamma I \xrightarrow{K H i_{I}} H R \xrightarrow{l n} I_{I} \mathrm{I}_{I}\right\rangle_{I} .
$$

 the colimit of I in \boldsymbol{A}.

Limmek 1.3. A a comequence of theocm 1.6 we obtain that if a category is a retract of a complete ategory (in the come that θ in 12 is the identity) the it is complete. This smult appeas in [7]

4.4 Pretoposes Revisited

 enerrated 2 monal. We nee the renults of the previons section to show that if a left evert ategory C has a \boldsymbol{T}-algebra stmetme then \boldsymbol{C} is necesarily a pretopos.

Recall that for any $I / C \rightarrow D$ in Lex, $F^{\prime}=\left(S^{\left(C^{+n}\right)}\right)_{\ldots}$ and $F(I I)=L a H_{I^{n}}$. let $T-(T \cdot \eta, \mu)$ be the 2 -monad gomerated by $F+C$.

If we satt with an T-algebra (C, Φ) we have the following commutative diagram

Remember that $\|^{\prime}$ ' is the factorization of the Yoneda embedding throngh $T C$ and sime. C 'us split idempotents, we have by Theorem 4.6 that C has colimits of all tho: diagrams $\Gamma^{\prime}: I \rightarrow C$ for which the diagram $I \xrightarrow{\mathrm{I}^{\prime}} C \xrightarrow{\eta C} T C$ has a colimit in I^{2}. It follows that C has initial object, finite coproducts and coequalizers of equivalence relations (equivalence relations are preserved by $\eta_{l} \mathrm{C}$ as it is left exact).

Proposition 4.7. if (C, Φ) is a T-algebra then the initial object in C is strict.

 the commmative diatem

 have that the squate

is a pullback. Applying Φ we ohtain the pullbath

Therefore the initial objeet of C is stathe moder pullank. Thin merme that the motal object is strict.
 and stablt.

Proof. We do it for himary roppoducts. Let (', I) be ohjerts of ('. ('mbinder the arrow

$$
\Phi\left(l\left(\mu_{1}\right),\left(\left\langle\Gamma C\left(-, 1_{1}\right) \cdot l C\left(.1_{2}\right)\right\rangle\right)\right)=\Phi\left(\left\langle\Phi\left(1_{1}\right), \Phi\left(1_{2}\right)\right\rangle\right)
$$

 I). In whem wods $\Phi\left(C\left(, C^{\prime}\right)+C(, I)\right)-(*+I)$ We hade that the squate

N a pullbath. Applines Φ we eet the pullbark

I'hat is, the coprodints in C are disjoint.
 I hern we hate the pullbath

where the squater

dre pullbath. Lppliane ϕ we ect the pullbath

[1
 ithhom.

$$
C(, k) \frac{C(-, 1)}{C(-, 12)} C(,)^{4} \cdot()
$$

in $I^{\prime} C$ and the grotient

 where γ is the miqu arrow that make the diagam

commute, Sime the coedualizer of $\left(r_{1}, r_{2}\right)$ in C in obe aned by aplitting $\Phi(\gamma)$, we have thet the onequalizer is $\Phi(q):(' \rightarrow \Phi(Q)$. Since the square

is a pulliark. applying Φ we get the pullbat

What is, Φ_{y} is a quoticut in C of the equivalence relation (r_{1}, r_{2}). We show that Φ_{φ} is stable. Suppore we have atl arrow $!: D \rightarrow \Phi()$ in C. ('onsider the pullbark

in C. and the pullback

III $I\left(\right.$ '. 'Ihere exists a micure arrow $q^{\prime}: C(, P) \rightarrow V$ such that the diagram

commutes. Since the diagrams above involving P 'and l^{\prime} are pullhaths it can be shown that be square on the right in the previons didgram is a pullhach. Consider the diagram

in which every square is a pullback. Since the imer square in the communtive diagram

is a pullback it is not hard to see that the onter square is also a pullback. Therefore the kernel pair of q^{\prime} is $C\left(-, S^{\prime}\right) \Longrightarrow C(-, P)$. Sincer quotients of equivalence relations are stable in $T C$ and q^{\prime} is the pullback of q along u_{2} we have that the diagram $C\left(\ldots, S^{\prime}\right) \Longrightarrow C(\ldots, P) \xrightarrow{q^{\prime}} I$ is a quotient diagram. Therefore $P \xrightarrow{\Phi q^{\prime}} \Phi \|$ is the quotient of the equivalence relation,$\dot{ } \longrightarrow P$ in C.

As a corollary we have
Proposition 4.10. If ($C . \Phi$) is a T-algrbra tha $n C$ is a protopos.

Similarly we con shew
Proposition 4.11. If $\left(\mathfrak{r}^{\prime}, \hat{r}\right):(C, \phi) \rightarrow(D, \Psi)$ in a T-ALG morphism then F^{\prime} in an th me intary funtor.

4.5 2-Algebras Over CAT

4.5.1 CAT over CAT

('onsider the 2-adjunction

whore mit $\eta \boldsymbol{A}: \boldsymbol{A} \rightarrow \boldsymbol{C A T}\left(\boldsymbol{S e t}^{\boldsymbol{A}}\right.$. Set) is evaluation, that is $\eta \boldsymbol{A}(A)=\boldsymbol{\prime}=\mathrm{A}$ and $\eta A(a)=\left(r_{a}\right.$ for every $a: A \rightarrow A^{\prime}$ in A, and whose comit $\varepsilon B: C A T\left(S e t^{B}\right.$, Set $) \rightarrow$ \boldsymbol{B} in $\boldsymbol{C}^{\prime} \boldsymbol{A} \boldsymbol{T}^{\prime \prime \prime}$ is also the evaluation $\boldsymbol{B} \rightarrow \boldsymbol{C} \boldsymbol{A T}\left(\boldsymbol{S e}^{\boldsymbol{B}}\right.$. Set $)$. We consider the ${ }^{2}$-monad $T=(T, \eta, \mu)$ generated by the 2 -adjunction above. We have that

$$
\mu A: C A T\left(S e t^{C A T\left(S e t^{A}, S e t\right)}, \text { Set }\right) \rightarrow C . A T\left(\text { Set }^{A} . \text { Set }\right)
$$

 ever $h: L^{\prime} \rightarrow L^{\prime}$ in $\boldsymbol{C A T}\left(\right.$ Set $^{\text {CAT(Set }}{ }^{A}$.Set $)$. Set $)$ and every $\sigma:\left(i^{\prime} \rightarrow\left(i^{\prime \prime}\right.\right.$ in Set ${ }^{A}$.
(iiven a dingram l': $\boldsymbol{I} \rightarrow \boldsymbol{A}$ we will denote the composition

$$
I \xrightarrow{\Gamma} A \xrightarrow{\eta A} C A T\left(\text { Set }^{A} . \text { Set }\right)
$$

ber m_{r}.
Proposition 4.12. If $(\boldsymbol{A} . \Phi)$ is a strict \boldsymbol{T}-algfbra then \boldsymbol{A} is a complete and cocomplete category and Φ preserves limits and colimits of daypams of the form ϵv_{r} with $\mathrm{I}^{\prime}: \boldsymbol{I} \rightarrow \boldsymbol{A}$.

Proof. We have the commutative diagram

Now, \boldsymbol{A} has split idempotents (see Remark 1.2) and he Theorem 1.6 we have thet \boldsymbol{A} is complete and cocomplete. Let $\mathrm{l}^{\prime}: \boldsymbol{I} \rightarrow \boldsymbol{A}$ he a diagram. To obtain the limit for Γ in \boldsymbol{A} we have to proceed a. follows according to Proposition l.ti: Fifst we
 Φ and we get a cone $\left(\dot{\Phi}\left(\frac{l i m}{I}\left(i_{1}\right) \xrightarrow{\Phi \pi_{I}} \Gamma I\right\rangle_{I}\right.$ in A. From this one we whatin the
 arrow $\gamma:$ req (lim (r) \rightarrow lim or such that for every I in I the didgram

 idempotent and the limit of Γ in A is oltaned by splitiong $\Phi \gamma$. It is emomeh then to show that $\Phi \gamma$ is an isomorphism. To do this comsider the minge atow

commute. We chase ζ arond the commutative diagram

Observe that if $G: A \rightarrow$ Set we have

$$
\begin{aligned}
& =r^{n}\left(\underline{l i m}+r_{1}\right)\left(\begin{array}{l}
\text { (a) }
\end{array}\right. \\
& =\left(i\left(\Phi\left(\underline{l i m}+r_{1}\right)\right)\right. \\
& =\left(f v_{\Phi}\left(\text { lim } r r_{\mathrm{I}}\right)\right)((i)
\end{aligned}
$$

Similarly we have that

$$
\text { CAT }\left(\text { Set }^{\Phi}, \text { Set }\right)\left(\lim c v_{e v_{\Gamma}}\right)=\lim t t_{\mathrm{r}}
$$

So applying $C A T\left(\operatorname{Set}^{\Phi}, S e t\right)$ to diagram 4.7 we obtain the commutative diagram

That is CAT(Set $\left.{ }^{\Phi}, \boldsymbol{S e t}\right)(\zeta)=\gamma$. Therefore $\boldsymbol{\Phi}\left(\boldsymbol{C A T} \boldsymbol{A}\left(\right.\right.$ Set $^{\Phi}$, Set $\left.^{\prime}(\zeta)\right)=\Phi(\gamma)$. (On the chlier hand it is not hard to see that $\mu \boldsymbol{A}(\zeta)=1$ (lim fir and therefore $\Phi(\mu \boldsymbol{A}(\zeta))=$

Proposition 4.13. If $(H, \varphi):(\boldsymbol{A}, \Phi) \rightarrow(B, \Psi)$ is a morphism of \boldsymbol{T}-alge bras then $H: \boldsymbol{A} \rightarrow \boldsymbol{B}$ prestrots limits and colimits.

Proof. Let I be a small category. ('onsider

t is casy fo see that the middle and left squares above commute. (iven $\Gamma: I \rightarrow \boldsymbol{A}$ we whtain with the help of the coherence diagrams the commutative diagram

('olimits are done the same way.
Notice that \boldsymbol{q} above gives the isomorphisms $\varphi \underline{\lim } \in v_{\Gamma}: H(\underline{\lim } \Gamma) \rightarrow \underline{\lim } H \Gamma$ and $\left(\underset{\varphi}{ }\left(\lim _{\mathrm{T}}\right)^{-1}: \lim _{\mathrm{l}} H \Gamma \rightarrow H(\xrightarrow{\lim } \Gamma)\right.$ induced by the universal property of \lim and $\underset{\longrightarrow}{\lim }$ on .

4.5.2 LEX over $C A T$

Similarly we can consider the 2-adjunction

and cariy over the same argment. We ohtain a 2 -m mad that we (also) demote ly $\boldsymbol{T}=(T, \eta, \mu)$. The corresponding proposition is

 and colimits of the form $\boldsymbol{J} \xrightarrow{\Theta} \boldsymbol{A} \xrightarrow{\eta \boldsymbol{A}} \boldsymbol{L E X}\left(\boldsymbol{S c t}^{\boldsymbol{A}}\right.$, Set) whitr \boldsymbol{J} is filterti. If $(H, \varphi):(\boldsymbol{A}, \Phi) \rightarrow(\boldsymbol{B}, \Psi)$ is a morphism of \boldsymbol{T}-alye bran the" II pronerits. limut. and filtered colimits.

4.5.3 PRETOP over CAT

Consider now the 2-adjunction

and the generated 2 -monad $\boldsymbol{T}=(T, \eta, \mu)$. We have
Proposition 4.15. If (\boldsymbol{A}, Φ) is a T-alyt bra then \boldsymbol{A} has filt red colturits and Φ phtserves colimits of the form $\boldsymbol{I} \xrightarrow{\Gamma} \boldsymbol{A} \xrightarrow{\eta \boldsymbol{A}} \operatorname{Mod}\left(\boldsymbol{S e t}^{\boldsymbol{A}}\right)$. If $(H, \varphi):(\boldsymbol{A}, \boldsymbol{\Phi}) \rightarrow(\boldsymbol{B}, \Psi)$ is a morphism of T-algebras then H presernes filtered colimits.

It is to be expected that in this setting we can give a pre-ultracategoty st rutiure to any T-algebra (A, Φ) in much the same way as we have constructed limits and colimits up to here. This is what we do now.

We define the 2 -functor $W: T-A L G \rightarrow P U C$ as follows. (iiven (A, Φ) in T-ALG; then the 'mderlying category of $W(\boldsymbol{A}, \Phi)$ is \boldsymbol{A} and given an ultrafilter (I, \mathcal{U}) define $[\mathcal{U}]_{W(A, \phi)}: A^{\prime} \rightarrow A$ as the composition

$$
A^{I} \xrightarrow{(\eta A)^{I}} \operatorname{Mod}\left(\operatorname{Set}^{A}\right)^{I} \xrightarrow{[U]} \operatorname{Mod}\left(\operatorname{Set}^{A}\right) \xrightarrow{\Phi} A
$$

where $[\mathcal{U}]$ denotes the usual ultraproduct functor of models. If $(H, \varphi):(\boldsymbol{A}, \Phi) \rightarrow$ (\boldsymbol{B}, Ψ) is a morphism of \boldsymbol{T}-algebras, then we define $\boldsymbol{W}^{\prime}(H, \varphi)=H$ together with the natural isomorphisms

The natural isomorphism $\varphi[\mathcal{U}](\eta \boldsymbol{A})^{I}$ has the domain and codomain shown above due to the fact that the diagram

commutes on the nose. If $\tau:(H, \varphi) \rightarrow(K, \psi):(\boldsymbol{A}, \Phi) \rightarrow(\boldsymbol{B}, \Psi)$ is in \boldsymbol{T}-AL(\bar{i} define $W^{\prime}(\tau)=r: H \rightarrow K$. We have to show that r is a pre-ultranatural transformation. It in casy to see that

and that

Since τ is a 2 -cell in T-AL(i we also have that

equals

It follows that

That is, τ is a 2 cell in PUC. This completes the definition of the 2 -functor W^{1}.
(iiven a pretopos P define $\Phi_{P}: \operatorname{Mod}\left(\operatorname{Set}^{\boldsymbol{M o d}(\boldsymbol{P})}\right) \rightarrow \operatorname{Mod}(\boldsymbol{P})$ such that

$$
\Phi_{P}(\mathcal{M})\left(l^{\prime}\right)=\mathcal{M}\left(e^{\prime} P_{P}\right)
$$

fer every \mathcal{M} in $\operatorname{Mod}\left(\boldsymbol{\operatorname { S e t }}{ }^{\boldsymbol{M o d}(\boldsymbol{P})}\right)$ and every P^{P} in \boldsymbol{P}. It is easy to see that $\Phi_{P}(\mathcal{M})$ is an elementary functor. If $h: \mathcal{M} \rightarrow \mathcal{N}$ is a morphism in $\operatorname{Mod}\left(\operatorname{Set} \boldsymbol{t}^{\operatorname{Mod}(P)}\right)$ define $\phi_{P}(h)\left(P^{\prime}\right)=h\left(c_{P}\right)$ for every $P^{\prime} \in P$. Notice that the 2 -adjunction

gives us the comparison 2 -functor $\boldsymbol{P R E T O P} \boldsymbol{P}^{o p} \rightarrow(\boldsymbol{T}-A L(i))_{s}$ and it is not hard to see that this functor is such that $\boldsymbol{P} \mapsto\left(\operatorname{Mod}(\boldsymbol{P}), \Phi_{P}\right)$ for every pretopos \boldsymbol{P}. The 2 functor in the following definition is simply the comparison 2 -functor P RETOF \rightarrow ($\boldsymbol{T}-A L(i)$, followed hy the inclusion $\left(T-A L\left({ }^{\prime}\right)_{s} \rightarrow T-A L(i\right.$.

Definition 4.3 Let $\left(\operatorname{Mod}(-), \Phi_{(-)}\right): P R E T O P^{\Delta r} \rightarrow \boldsymbol{T}$-ALG be the 2 -functur such that for every 2 -cell

in PRETOP we have that $\left(\operatorname{Mod}(-), \Phi_{(-)}\right)$applied to it gives

In particular when \boldsymbol{P} is the full subeategory of Set $^{\text {Set }_{0}}$ whose objects are the finitely gencrated functors, where $\boldsymbol{S e t}_{0}$ is the category of finite sets, we have that $\operatorname{Mod}(\boldsymbol{P})$ is equivaient to the category Set where the equivalence is given by $e v_{i n}$: $\boldsymbol{\operatorname { M o d }}(\boldsymbol{P}) \rightarrow$ Set where in $: \boldsymbol{S e t} \boldsymbol{t}_{0} \rightarrow \boldsymbol{S e t}$ is the inclusion. It is not hard to see that Φ_{P} defined above corresponds to the functor $\Psi_{\text {Set }}: \operatorname{Mod}\left(\boldsymbol{S e t}^{\text {Set }}\right) \rightarrow \boldsymbol{S e t}$ defined as $\dot{\Psi}_{\text {Set }} \mathcal{M}=\mathcal{M}\left(i d_{\text {Set }}\right)$. This gives us the \boldsymbol{T}-algebra $\left(\boldsymbol{S e t}, \Psi_{\text {Set }}\right)$.

Proposition 4.16. The functor II: \boldsymbol{T}-ALG \rightarrow PUC de fint above is such that

$$
W\left(\operatorname{Mod}(\boldsymbol{P}) . \Phi_{P}\right)=\underline{\operatorname{Mod}}(\boldsymbol{P})
$$

for any pretopos \boldsymbol{P}. In partic:slar $W^{\prime}\left(\right.$ Set,$\left.\Psi_{\text {Set }}\right)=\underline{\text { Set }}$.

If we start with a family $\left\langle M_{2}\right\rangle_{I}$ in $\operatorname{Mod}(P)^{I}$ we oltain the modd $\Phi_{P}\left(\Pi_{1}\right.$ e $M_{1} / /\langle 1)$ in $\operatorname{Mod}(\boldsymbol{P})$. For any P in \boldsymbol{P} we have

$$
\Phi_{P}\left(\prod_{1} \epsilon v_{M_{2}} / \mathcal{U}\right)(P)=\prod_{2} \epsilon v_{M_{1}} / \mathcal{U}\left(\epsilon v_{P}\right)=\prod_{2}\left(v_{M_{1}}\left({ }_{2} P_{P}\right) / \mathcal{U}=\prod_{2} M_{2} I^{\prime} / \mathcal{U}\right.
$$

Therefore $[\mathcal{U}]_{\boldsymbol{W}\left(\operatorname{Mod}(P), \Phi_{P}\right)}: \operatorname{Mod}(\boldsymbol{P})^{I} \rightarrow \operatorname{Mod}(\boldsymbol{P})$ is the usial ultraprodu thuctur.

In other words we have a commutative diagram of 2 -functor,

Proposition 4.17. Given a morphism $(A, \Phi) \xrightarrow{(H, \varphi)}(B, \Psi)$ in T-ALCi wh hart that the catcgory $\left(\text { Set }, \Psi_{S e t}\right)^{(A, \Phi)}$ is a pretopos and $\left(\text { Set }, \Psi_{S e t}\right)^{(H, \rho)}$ is an ctimentar!! functo, Furthe rmort, the corresponding limits and colimits, art reratrd by the foryer ful functor $\left(\text { Set }, \Psi_{\text {Set }}\right)^{(\mathbf{A}, \Phi)} \rightarrow$ Set $^{\boldsymbol{A}}$.

Proof. We only do the finite limits to illustrate the point, the rest of the comstru tions are done similarly. Suppose $\Gamma: J \rightarrow\left(\boldsymbol{S e t}, \Psi_{\text {set }}\right)^{(\boldsymbol{A}, \boldsymbol{\Phi})}$ is a diagram with \boldsymbol{J} fuite.

Denote the image of J muder I by the pair (I.J. $\gamma . J$). Then for any. \mathcal{M} in $\operatorname{Mod}\left(\operatorname{Set}^{\boldsymbol{A}}\right)$ we have $\gamma, J(, \mathcal{M}): \Gamma . J(\Phi, \mathcal{M}) \rightarrow \mathcal{M}(\Gamma . I)$. Consider the limit $\frac{l i m}{I} I \cdot I$ in $S e t^{A}$. We want " nathral isomorphism?

Let. \mathcal{M} be an object of $\operatorname{Mod}\left(\operatorname{Set}^{\boldsymbol{A}}\right)$ let $\boldsymbol{\gamma} \boldsymbol{M}$ be the mique arrow that makes the following diagram commute

for erey I in J. where the iso $\mathcal{M}\left(\frac{\lim }{T} \Gamma . J\right) \rightarrow \frac{\lim }{5} \mathcal{M}(\Gamma . J)$ comes from the fact that. \mathcal{M} is an elementary functor. It is not hard to see that γ is indeed natural. satistien the coherence conditions and that ($\frac{l i m}{3} \Gamma J . \%$) is the limit of the diagram $I^{\prime}: \boldsymbol{J} \rightarrow\left(\text { Set }, \Psi_{\text {Set }}\right)^{(\boldsymbol{A}, \Phi)}$.

Wi can then make the following definition
Definition 4.4. Let \mathcal{P} denote the 2 -functor

$$
F=T \cdot A L\left(i\left(\ldots .\left(\text { Set }, \Psi_{\text {Set }}\right)\right): T-A L\left(i \rightarrow \text { PRETOP } P^{o p}\right.\right.
$$

Wi define now a new 2-monad $S=(S, \xi, \nu)$, this time over \boldsymbol{T}-AL(.
In view of proposition 4.17 we can regard the category Set as a schizephrenic whert in the categories PRETOP and \boldsymbol{T}-ALG. This gives rise to the 2 -adjunction

PRETOP ${ }^{\circ}{ }^{\circ}$
$\left.\mathcal{P}\right|_{\boldsymbol{T}-A L(i}\left(\operatorname{Mod}(-), \Phi_{(-)}\right)$
 $\xi(\boldsymbol{A}, \Phi)(A)=\left(\mathrm{cc}_{\mathrm{t}}, \gamma(\boldsymbol{A}, \Phi)\right)$ where

is such that for every \mathcal{M} in $\operatorname{Mod}\left(\operatorname{Set}^{\boldsymbol{A}}\right)$ and $\left(I I, \varphi^{q}\right)$ in $\Gamma(\boldsymbol{A}, \Phi)$ we have

$$
\gamma(A, \Phi), \mathcal{M}(H, \varphi)=\varphi \cdot \mathcal{M}
$$

 every $p: P \rightarrow p^{\prime}$ in P.
 is the composition

$$
T-A L\left(i \xrightarrow{\mathcal{P}} \text { PRETOP }^{\prime \prime} \xrightarrow{\left(\operatorname{Mod}(-), \Phi_{(-)}\right)} T . L_{i}\right.
$$

ξ is the unit and $\nu(\boldsymbol{A}, \Phi)(\mathcal{L})(I, \varphi)=\mathcal{L}\left(r_{H}\right)$ for evert

$$
\mathcal{L} \text { in } \operatorname{Mod}\left(\mathcal{P}\left(\operatorname{Mod}(\mathcal{P}(\boldsymbol{A}, \Phi)), \Phi_{F(A, \Psi)}\right)\right)
$$

and $(H, \varphi):(\boldsymbol{A} . \Phi) \rightarrow\left(\right.$ Set,$\left.\Psi_{\text {Set }}\right)$ in $\boldsymbol{T}-A L(i$.
We consider the 2-category S - $1 L$ ($;$ of strict S-algebras and homomorphinmo of S-algebras. This category has the same description given in the previons sedion fon \boldsymbol{T} with \boldsymbol{S} in place of \boldsymbol{T} and \boldsymbol{T}-ALS in place of $\boldsymbol{C A T}$. For later reference we explicitly describe this category. An object of $\boldsymbol{S}-A L(;$ is of the form $((\boldsymbol{A} . \Phi),(\Theta, \theta))$ on simply $(A, \Phi,(\Theta, \theta))$ where (A, Φ) is an object of T-AL(iand

$$
(\Theta, \theta):\left(\operatorname{Mod}(\mathcal{P}(A . \Phi)), \Phi_{F(A, \phi)}\right) \rightarrow(A, \phi)
$$

makes the corresponding diagrams for an S-algehra commute. If we have another \boldsymbol{S}-algebra $(\boldsymbol{B}, \Psi,(X, \chi))$ a morphism is $((H, \varphi), s):(\boldsymbol{A}, \boldsymbol{\Phi},(\boldsymbol{\Theta}, \boldsymbol{\theta})) \rightarrow(\boldsymbol{B}, \Psi,(X, \gamma))$
where $(/ /, q):(A, \phi) \rightarrow(B, \Psi)$ is a morphism in T-ALC \boldsymbol{f} and s is a natural transformation

that satisfies the nisual coherence conditions. s being a 2 -ell in \boldsymbol{T}-ALG means that

equals

$r:(\boldsymbol{A}, \Phi) \rightarrow(\boldsymbol{B}, \Psi)$ in $\boldsymbol{T}-\mathrm{Al}, \boldsymbol{i}$ surto that

cquals

$$
\begin{align*}
& (-, \theta) \\
& \text { (} \boldsymbol{A} . \Phi \text {) } \\
& \frac{(h, \nu)}{\frac{(H, p)}{t}} \tag{4.12}\\
& (1,1) \\
& \text { (A. } \Phi \text {) } \\
& \text { B. } \Psi \text {) }
\end{align*}
$$

Next we define a functor $Z: S$ ALC \rightarrow UC. Finst consider the composition
 $(\boldsymbol{A}, \Phi,(\Theta, \theta))$ the underlying pre-ultracategory of $Z(\boldsymbol{A}, \Phi,(\Theta, \theta)$ is $\mathbb{W}(\boldsymbol{A}, \Phi)$. let (i be an ultragraph, k and l nodes of G and δ an ultramorphism

on Set. We want to define $\delta_{Z(A, \Phi,(\Theta, \theta))}$

$$
\hat{D}(H, \hat{r})=H \circ I): \boldsymbol{G} \rightarrow \boldsymbol{A}
$$

atil $\bar{D}(\tau)=\tau D$ for cuery $\tau:(H, \varphi) \rightarrow(K, \vartheta j):(\boldsymbol{A}, \Phi) \rightarrow\left(\right.$ Set,$\left.\Psi_{\text {Set }}\right)$. We have tu how that $I / \square()$ is an ultradiagiam. Let $\beta \in \boldsymbol{G}^{b}$. Since D is an ultradiagram
 i, omorphism

$$
H(I)(. j)) \xrightarrow{\simeq} H\left(\Pi_{1_{3}} I\right)\left(g_{H}(i)\right) /\left(u_{5}\right) \xrightarrow{\left.\left.\varphi\left[\mathcal{U}_{i}\right]\right] A^{I} \Pi_{I_{H}} H(I)\left(g_{1}(i)\right)\right) / d_{i s} .}
$$

Next we lave to show that τ l) is a morphism of ultradiagrams but it follows casily from the fact that $\mathcal{W}^{*}(\tau)$ is a pre-iitranatural transformation that the right hand side

commutes while the left hand side square commutes by the naturality of τ. We have now an eany lemma.
Lemma 4.18. The functor $\widehat{D}: \mathcal{P}(\boldsymbol{A}, \Phi) \rightarrow \boldsymbol{U}(\underline{G}, \underline{S e t})$ is elementary.
('omsider the diagram

Notice that the top composition is $c^{\prime} D(k)$ and the bottom one is c $C_{D(l)}$. Since the
diagram

commutes we have

$$
D(h)=\theta\left(c r_{k} \circ \tilde{I}\right) \stackrel{\Theta(\delta \bar{l})}{ }\left(\theta\left(+r_{l} \circ \bar{D}\right)=I\right)(l)
$$

Define $\left.\delta_{Z(A, \Phi,(\Theta, \theta))}(I)\right)=\Theta(\lambda \hat{D})$.
 natural transformation.

Proof. Let, $l: D \rightarrow D^{\prime}: \underline{G} \rightarrow W^{r}(A, \Phi)$ be a morphism of ultrarliagran". Wi ato
 that $\hat{d}(H, \varphi)=H d$. ('onsider

This gives us a commutative square

 $\theta(+i, \hat{d})=d l$. Applying θ to the square above we obtain

With this definition of $\delta_{Z}(\boldsymbol{A}, \Phi,(\Theta, \theta)$) we have that $Z(\boldsymbol{A}, \Phi,(\Theta, \theta))$ is an ultracatcgory

Proposition 4.20. For entry morphism $((H, \hat{\psi}), n):(A, \Phi,(\Theta, \theta)) \rightarrow(B, \Psi,(X, \backslash))$ t: S-Alli we hem that the pro-ultrafnactor $H: W(\boldsymbol{A}, \Phi) \rightarrow W(\boldsymbol{B}, \Psi)$ is an ultrafunctor II : $Z(\boldsymbol{A}, \Phi,(\Theta, \theta)) \rightarrow Z(B, \Psi,(X, \gamma))$

Proof. Lat $\delta: c_{k} \rightarrow\left(c_{t}: \underline{\boldsymbol{G}} \rightarrow \underline{\boldsymbol{S}} \boldsymbol{t}\right.$ be an ultramorphism. We have to show that

$$
H \lambda_{Z(A, \Phi,(\epsilon, \theta))}=\delta_{Z(B, \omega,(X, \gamma))} \boldsymbol{U} \boldsymbol{D}(\underline{\boldsymbol{G}}, W(H, \stackrel{\varphi}{r}))
$$

That is we want to show that $H(\Theta(\delta \bar{D}))=X(\delta / \bar{H})$ for every $I) \in \boldsymbol{U} \boldsymbol{D}\left(\underline{\boldsymbol{G}}, W^{\top}(\boldsymbol{A}, \Phi)\right)$. Olserwe first that the diagram

commules. Then $\partial \hat{I} I)=\delta \hat{D} P(H, \varphi)$. Ising the naturality of s we obtain the following commutative diagram

Using the fact that satisfies the coherence axiom involving the unit and that $c v_{k} \widehat{D}=$ $\left(c_{l}\right)(k)$ we have that $\left.s+c_{k} \hat{l}\right)=i d_{H D(k)}$

Detime $Z((H, \varphi), s)=H$.
It in clear that for a 2 -cell $\tau:((H . \varphi), s) \rightarrow((h, \psi), \ell)$ we have that $\tau: W(H, \varphi) \rightarrow$ II $(\boldsymbol{K}, \boldsymbol{\imath})$ is a pre-ultranatural transformation, therefore

$$
\tau: Z((H, \varphi), s) \rightarrow Z\left(\left(K, \psi^{\prime}\right), t\right)
$$

is an ultrafunctor. Define $Z(\tau)=\tau$.
 diagram of \because-functors

where the vertical arrows are forgetful 2 -functors.
We obtain a comparison functor PRETOP ${ }^{\prime \prime \prime} \rightarrow(S$ AL(i), whose compmition with the inclusion ($S-A L(r)_{s} \rightarrow S$-ALC (; we call

$$
\left(\operatorname{Mod}(), \Phi_{(-)},\left(\Theta_{(-)}=\right)\right): P R E T O P^{\prime \prime} \rightarrow S A L(i
$$

It is easy to see that for every pretopos \boldsymbol{P}, every model \mathcal{M} in $\operatorname{Mod}\left(\mathcal{F}\left(\operatorname{Mod}(\boldsymbol{P}), \boldsymbol{\phi}_{P}\right)\right)$ and every P in P we have that $\Theta_{P}(, \mathcal{M})(P)=\mathcal{M}\left(r_{r}\right)$
 P we have $Z\left(\operatorname{Mod}(\boldsymbol{P}), \Phi_{\boldsymbol{P}},\left(\Theta_{P},=\right)\right)=\underline{\underline{\operatorname{Mod}}}(\boldsymbol{P})$

Proof. By Proposition 4.16 we already know that the underlying matenory of $Z\left(\operatorname{Mod}(P), \Phi_{P},\left(\Theta_{P},=1\right)\right.$ is $\operatorname{Mod}(P)$. So all we have to check is the ultramorphinms. Let $\delta:\left(v_{k} \rightarrow c v_{i}: \boldsymbol{U D}(\underline{\boldsymbol{G}}, \underline{\boldsymbol{S e t}}) \rightarrow\right.$ Set be an ultamorphism and let 1$)$ be an

$$
\delta_{Z\left(\operatorname{Mod}(P), \phi_{P},\left(\Theta_{P},=\right)\right)} D\left(P^{\prime}\right)=\Theta_{P}(\delta \hat{D})\left(P^{\prime}\right)=\delta \hat{D}\left(\left(n_{P}\right)=\delta(\cdots, \cdots D)=\lambda l()\left(P^{\prime}\right) .\right.
$$

As before, when \boldsymbol{P} is the full subeategory of $\boldsymbol{S e t}^{\text {Seto }}$ consisting of the finitely generated functors we have that $\left(\operatorname{Mod}(\boldsymbol{P}), \Phi_{P} \cdot\left(\Theta_{P}=\right)\right)$ is essentially

$$
\left(\operatorname{Set}^{\prime}, \Psi_{\text {Set }},\left(X_{\text {Set }},=\right)\right)
$$

where $X_{\text {set }}=t v_{\text {adset }}$. As a consequence of the above proposition we have

$$
Z\left(\text { Set }, \Psi_{\text {set }},\left(X_{\text {Set }},=\right)\right)=\underline{\underline{\text { Set }}} .
$$

Proposition 4.22. For cut ry object $(A, \Phi,(\Theta, \theta))$ the category

$$
S-A L\left(i\left((A, \Phi,(\Theta, \theta)),\left(\text { Set }, \Psi_{\text {Set }},\left(X_{\text {Set }},=\right)\right)\right)\right.
$$

is a pretopos and for every morphism

$$
(A, \Phi,(\Theta, \theta)) \xrightarrow{((H, \varphi), s)}(B \cdot \Psi,(X, \chi))
$$

in $\boldsymbol{S}-\mathrm{ALC}$; the functor $\boldsymbol{S}-\mathrm{ALG}\left(((H, \varphi), s),\left(\operatorname{Set}, \Phi_{\text {Set }},\left(\mathrm{X}_{\text {Set }},=\right)\right)\right)$ is an clementary functor. Furthermore the corresponding limits and colimits are calculated pointuise.

Proof. We do binary coproducts to illustrate the point, all the other constructions are similar. Suppose we have

$$
(H, \varphi, s),(K, v, t):(A, \Phi,(\Theta, \theta)) \rightarrow\left(\text { Set }, \Psi_{\text {Set }},\left(X_{\text {Set }},=\right)\right)
$$

in $\boldsymbol{S}-\boldsymbol{A} L\left(i\left((\boldsymbol{A}, \Phi,(\Theta, \theta)),\left(\boldsymbol{\operatorname { S e t }}, \Psi_{\text {Set }},\left(X_{\text {Set }}=\right)\right)\right)\right.$. ('onsider first the coproduct

$$
(H, \varphi) \amalg\left(K^{\prime}, \psi^{\prime}\right)=\left(H \amalg h^{\prime}, \varphi^{\prime}\right)
$$

in $\boldsymbol{T}-\mathrm{ALC}\left((\boldsymbol{A}, \Psi),\left(\boldsymbol{S e t}, \Psi_{\text {Set }}\right)\right)$ where $\varphi^{\prime} M$ is the composition

$$
(H \amalg K)(\Phi M)=H \Phi M \amalg K \Phi M \xrightarrow{\varphi M \amalg \psi M} M H \amalg M K \xlongequal{\cong} M(H \amalg K)
$$

for every M in $\operatorname{Mod}\left(\operatorname{Set}^{\boldsymbol{A}}\right)$. We want to define s^{\prime} in

(iiven \mathcal{M} in $\operatorname{Mod}\left(\left(\operatorname{Set}, \Psi_{\text {Set }}\right)^{(A, \Phi)}\right)$ define $s^{\prime} \mathcal{M}$ as the composition

$$
\begin{array}{cc}
H \Theta, \mathcal{M} \amalg K \Theta \mathcal{M} \xrightarrow{\langle s \mathcal{M}, t \mathcal{M}\rangle} \mathcal{M}(H, \varphi) \amalg \mathcal{M}(\kappa, \psi) \stackrel{(}{\sim} \\
(H \amalg h) \Theta \mathcal{M} & \mathcal{M}\left((H, \varphi) \amalg\left(K^{\prime}, \psi\right)\right) \\
& \mathcal{M}\left(H \amalg K, \varphi^{\prime}\right)
\end{array}
$$

It is easy to see that s^{\prime} is natural. We show now that the compo ition corresponding to diagram 4.9 and the composition corresponding to diagram 4.10 are equal. leet L° in $\operatorname{Mod}\left(\operatorname{Set}^{\operatorname{Mod}(F(A, \Phi))}\right)$. then from 4.9 and 4.10 for s and t we have that

$$
\begin{gathered}
\mathcal{L}(s) \circ \varphi\left(\mathcal{L} \circ \operatorname{Set}^{H}\right) \circ H \theta(\mathcal{L})=s \Phi_{F_{(A, \Phi)}(\mathcal{L})} \\
\mathcal{L}(t) \circ \psi\left(\mathcal{L S e t}^{(\Theta)}\right) \circ \boldsymbol{K} \theta(\mathcal{L})=t \Phi_{F(\mathbf{A}, \Phi)}(\mathcal{L}) .
\end{gathered}
$$

With these two equations it is not hard to see that

$$
\mathcal{L}\left(s^{\prime}\right) \circ \varphi^{\prime}\left(\mathcal{L} \circ \boldsymbol{S e} \boldsymbol{t}^{(-1}\right) \circ H \amalg L \theta(\mathcal{L})=\therefore^{\prime} \Phi_{F_{(A, \phi)}}(\mathcal{L})
$$

Therefore s^{\prime} is a 2 -cell in \boldsymbol{T}-ALG. We have a coproduct diagram

$$
(H, \varphi) \xrightarrow{i_{H}}\left(H \amalg K, \varphi^{\prime}\right) \xrightarrow{i_{K}}(K, \psi)
$$

in \boldsymbol{T}-ALG. To show that $i_{H}:(I I, \varphi, s) \quad\left(I I \amalg h, \varphi^{\prime}, s^{\prime}\right)$ is a 2 -cell iti S-Al(íall we have to show (according to 4.11 and 4.12) is that

$$
H \Theta \mathcal{M} \xrightarrow{s \mathcal{M}} \mathcal{M}(H, \varphi) \xrightarrow{\mathcal{M}\left(i_{H}\right)} \mathcal{M}\left(H \amalg h, \varphi^{\prime}\right)
$$

equals

$$
H \Theta \mathcal{M} \xrightarrow{i_{H} \Theta}(H \amalg K) \Theta \mathcal{M}=H \Theta \mathcal{M} \amalg h^{\prime} \Theta \mathcal{M} \xrightarrow{\rightarrow \mathcal{M} \amalg t \mathcal{M}} \mathcal{M}(H, \varphi) \amalg \mathcal{M}(\kappa, \psi)
$$

for every \mathcal{M} in $\operatorname{Mod}(\mathcal{P}(\boldsymbol{A}, \Phi))$, hut this is readily seen to be the case. The miversal property also follows easily.

Chapter 5

Algebras Over Los Categories

In 4.5 .3 we saw how to ohtain pre-ultracategories from algebras over $\boldsymbol{C A T}$, that is, we constructed pre-ultrafunctors with the help of the structure map. We saw as well how to ohtain some of the ultramorphisms. We needed however a second monad to be ahle to introduce general ultramorphisms. In this chapter we aveid the first monad by working in the category $\mathfrak{E a s}$. Notice that we introduced this category with the express purpose of dealing with ultraproducts. With the category $\mathfrak{L o s}$ we also obtain some of the ultramorphisms, however we do not see how to get the general ultamorphisms. In this short chapter we define a monad over $\mathfrak{L a s}$ and show how we can obtain the general ultramorphisms for algebras over this monad. On the one hand this simplifits the notation since we are dealing only with one monad and the rest of the structure is given by the Top-indexing, t the other it provides a niee setting in which, we hope, the other side of Makkai's duality can be proven, namely characterize those categories that are of the form $\operatorname{Mod}(\boldsymbol{P})$ for a small pretopos \boldsymbol{P}.

Notation (iiven a Top-indexed functor $F: \mathcal{A} \rightarrow \mathcal{B}$ and a discrete topological spare I we denote ly $F^{I}: \mathcal{A}^{I} \rightarrow \mathcal{B}^{I}$ the corresponding F for the topological space I as opposed to the product functor $\Pi_{I} \mathcal{A}^{1} \xrightarrow{\Pi_{I} F^{1}} \Pi_{I} \mathcal{B}^{1}$ that we denote by $F^{I}: \boldsymbol{A}^{I} \rightarrow B^{I}$.

5.1 Los Categories and Pre-Ultracategories

We detine first a functor $\mathfrak{L a s} \rightarrow P U C$. (iiven a category \mathcal{A} in $\mathfrak{L O s}$ we construct a pre-ultracategory as follows. The underlying category is $\boldsymbol{A}=\mathcal{A}^{1}$. Given an ultrafilter
(I, \mathcal{U}) denote by $f: I \rightarrow I_{l d}$ the embedding and define $[l]_{A}$ as the composition

$$
A^{I} \xrightarrow{\simeq} \mathcal{A}^{I} \xrightarrow{f_{*}} \mathcal{A}^{l_{1}} \xrightarrow{l^{*}} A
$$

where the first arrow is given by the fact that \mathcal{A} is in Top-Ind (detinition 3.11). If $F: \mathcal{A} \rightarrow \mathcal{B}$ in $\mathfrak{L o s}$ consider $F^{\mathbf{1}}=F^{\prime}: \boldsymbol{A} \rightarrow \boldsymbol{B}$ and detine the natural isomorphism $[U, F]$ as the pasting

where the two natural isomorphisms on the left are given by the fact that F is in $\mathfrak{E o g}$ (definitions 3.11 and 3.11) and the one on the right is given hy F being Top indexed. It is easy to see that this construction does define a functor $\mathfrak{L o g} \rightarrow P \mathbf{P I} / C$.

If \boldsymbol{P} is a pretopos then it is clear that the pre-nltactegory we ohtain as the image of $\operatorname{MOD}(\boldsymbol{P})$ under this functor is $\underline{\operatorname{Mod}(P)}$, as a particular case we have that the image of $\mathcal{S E T}$ is Set.

5.2 Algebras Over Los Categories

From Proposition 3.13 and the remark after the proof we have a 2 -functor

$$
\mathfrak{L o s}(,, \mathcal{S E T}): \mathfrak{L o w} \rightarrow \text { PRETOP }{ }^{\circ p}
$$

On the other hand we have the 2 -functor

$$
\mathcal{M O D}(-): \boldsymbol{P R E T O P}^{\prime p} \rightarrow \mathfrak{L a}
$$

We obtain a 2 -adjunction

 I^{\prime} in P. The mit $\eta \mathcal{A}: \mathcal{A} \rightarrow \mathcal{M O D}(\mathfrak{L o s}(\mathcal{A}, S \mathcal{S} \mathcal{T}))$ is such that for any $\mathcal{A} \in \mathfrak{L} \mathfrak{o s}$ any topological space X, any A in \mathcal{A}^{X} and any $\tau: F \rightarrow(i \operatorname{in~} \mathfrak{L o s}(\mathcal{A}, \mathcal{S E} \mathcal{T})$ we have $(\eta \mathcal{A})^{X}(A)(F)=F^{X}(A)$ and $(\eta \mathcal{A})^{X}(A)(\tau)=\tau^{X}(A)$. It is easy to see that for every A in \mathcal{A}^{X} the functor $\eta \mathcal{A}^{X}(A): \mathfrak{L o s}(\mathcal{A}, \mathcal{S E} \mathcal{T}) \rightarrow S h(X)$ is elementary. We have to show that for every \mathcal{A} in $\mathfrak{E} \mathfrak{o s}$ the functor $\eta \mathcal{A}$ is indeed in $\mathfrak{L} \mathfrak{o s}$. We show first that it is Top-indexed. (iven a continuous function $f: Y \rightarrow X$ we need a transition isomorphism $\eta \mathcal{A}^{Y}$ of $f^{*} \rightarrow f^{*}$ o $\eta \mathcal{A}^{X}$. Let A in \mathcal{A}^{X} and F in $\mathfrak{L} \operatorname{og}(\mathcal{A}, \mathcal{S E T})$ then we want an isomorphism $f^{*} \eta \mathcal{A}^{X}(A)(F) \rightarrow \eta \mathcal{A}^{Y}\left(f^{*} A\right)(F)$. That is $f^{*} F^{X} A \rightarrow F^{Y} f^{*} A$. Since F^{\prime} is $\boldsymbol{T o p}$-indexed we have an isomorphism $f^{*} F^{X} A \rightarrow F^{Y} f^{*} A$ that we can use to define the isomorphism we are looking for.

It is easy to see that $\eta \mathcal{A}$ is Los. Assume $f: Y \rightarrow X$ is ultrafinite in Top, we need to show that

$$
\eta \mathcal{A}^{X} f_{*} \xrightarrow{\text { unit } \eta \mathcal{A}^{X} f_{*}} f_{*} f^{*} \eta \stackrel{\circ}{A} X f_{*} \xrightarrow{\simeq} f_{*} \eta \mathcal{A}^{Y} f^{*} f_{*} \xrightarrow{f_{*} \eta \mathcal{A}^{Y} \text { counit }} f_{*} \eta \mathcal{A}^{Y}
$$

is an isomorphism. Take A in \mathcal{A}^{Y} and F in $\mathfrak{L} \mathfrak{o}(\mathcal{A}, \mathcal{S E} T)$ and if we apply the above composition at A at F we obtain

$$
F^{X} f_{*} A \xrightarrow{\text { unit } F^{X} f_{*} A} f_{*} f^{*} F^{X} f_{*} A \xrightarrow{\cong} f_{*} F^{Y} f^{*} f_{*} A \xrightarrow{f_{*} F^{Y} \text { counit } A} f_{*} \eta F^{Y} A
$$

that is an isomorphism since F is Los.
We ohtain therefore a 2 -monad $\boldsymbol{T}=(T, \eta, \mu)$ over $\mathfrak{E} \boldsymbol{a s}$. ('onsider the category \boldsymbol{T}-ALG of \boldsymbol{T}-algebras. We define now a 2 -functor \boldsymbol{T} - $A L \mathcal{G} \rightarrow \boldsymbol{U C}$. Let (\mathcal{A}, Φ) be a \boldsymbol{T}-algebra, consider first the pre-ultracategory $\underline{\boldsymbol{A}}$ constructed from \mathcal{A} as in 5.1 . Notice that for any ultragraph G composing with $\eta \mathcal{A}^{1}: A \rightarrow \operatorname{Mod}(\mathcal{L} \mathfrak{O}(\mathcal{A}, \mathcal{S E} T))$ induces a functor $U D(G, A) \rightarrow \boldsymbol{U D}(\boldsymbol{G}, \operatorname{Mod}(\boldsymbol{\operatorname { L o g }}(\mathcal{A}, \mathcal{S E} T)))$. If we have an ultramorphism

over Set define $\delta_{A}=\Phi^{1} \circ \delta_{\operatorname{Mod}(\mathcal{L} \cdot(\mathcal{A}, S \varepsilon T))} \circ U D\left(G, \eta \mathcal{A}^{1}\right)$
Lemma 5.1. If $(F, \varphi):(\boldsymbol{A}, \Phi) \rightarrow(B, \Psi)$ is a l-cell in \boldsymbol{T}-ALG then $F: \boldsymbol{A} \rightarrow \boldsymbol{B}$ is an ultrafunctor.

Proof. Simply put the following diagrams together

 $\tau: F \rightarrow(\mathcal{B}: \mathcal{A} \rightarrow \mathcal{B}$ is an ultranatural tran.formation.

We obtain a functor $\boldsymbol{T}-A L(\boldsymbol{i} \rightarrow \boldsymbol{U C}$. Notice that we obtain the following com mutative diagram

where the vertical arrows are forgetful functors.

Chapter 6

Indexed Categories of Coalgebras

In this chapter we generalize a result from [11] namely that there is an equivalence bet ween Top-ind $(\mathcal{S E T}, \mathcal{S E T})$ and Filt (Set, Set) given by

$$
F \mapsto F^{1}
$$

where Filt(Set, Set) denotes the rategory of functors that preserve filtered colimits, and nse this generalization to show that if $F: \mathcal{M O D}(P) \rightarrow \mathcal{S E T}$ is a Top-indexed functor then $F^{1}: \operatorname{Mod}(\boldsymbol{P}) \rightarrow \boldsymbol{S e t}$ preserves filtered colimits.

We consider a special kind of Top-indexed categories, namely those that can be defined at every X as a category of coalgebras of a cotriple on the category $\boldsymbol{A}^{|X|}$ for some fixed category \boldsymbol{A} (see below). The Top-indexed category $\mathcal{S E T}$ defined in chapter 1 is an instance of these Top-indexed categories we will consider now. In particular, for every topological space $X, \sin (X)$ is equivalent to a category of coalgebras for a cotriple defined over $\boldsymbol{S e} \boldsymbol{t}^{[X]}$. To be able to define these categories we need products and filtered colimits in \boldsymbol{A}. We start with the definition of the cotriples we need.

6.1 The Cotriple G^{X}

Definition 6.1. Let X be a topological space, A be a category with products and filtered colimits. We define the cotriple $\boldsymbol{G}^{X}=\left(G_{i}^{X}, \varepsilon^{X}, \delta^{X}\right)$ over $\boldsymbol{A}^{|X|}$ as follows:

Define $\left(i^{x}: A^{|x|} \rightarrow A^{|X|}\right.$ such that $\left\langle A_{x}\right\rangle_{x \in X} \mapsto\left\langle\frac{\lim _{\| \overrightarrow{3} x}}{} \prod_{y \in U} A_{y}\right\rangle_{x \in X}$ and $\left\langle f_{x}\right\rangle \mapsto$ $\left\langle\lim _{\Gamma \exists=y} \prod_{y} f_{y}\right\rangle$.

Define $\epsilon^{X}:\left(r^{X} \rightarrow 1\right.$ such that $\left(\epsilon^{x}\left\langle A_{x}\right\rangle\right)_{x}$ is the unique map that makes

commute.
Define $\delta^{X}:\left(r^{X} \rightarrow\left(G^{X} \theta^{X}\right.\right.$ such that $\left(\delta^{X}\left\langle A_{i}\right)\right)_{x}$ is the micque map, that makes

commute, where the top arrow is the unique arrow that makes

commite.
It is easy to see G^{X} is indeed a cotriple.

6.2 Indexed Categories of Coalgebras

Now we are ready to define a Top-indexed category.
Definition 6.2. (iven a category \boldsymbol{A} with products and liltered colimits define the Top-indexed category \mathcal{A} as follows:

For every topologiral space X, \mathcal{A}^{X} is the category of coalgebras for the cotriple. G^{X}.

For every continnous function $f: X \rightarrow Z$ and every coalgebra

$$
\left\langle A_{z} \xrightarrow{\Gamma_{z}} \lim _{W \vec{\exists} x w \in W} \prod_{w} A_{w}\right\rangle
$$

in \mathcal{A}^{\prime} define
where the last arrow ahove makes the diagram

commute. We call \mathcal{A} the $\boldsymbol{T o p}$-indexed category of coalgehras over \boldsymbol{A}.
It is casy to see that we have defined a Top-indexed category. Furthermore, all the coherence axioms on the definition of an indexed category turn out to be equalities in this case. That is \mathcal{A} is a strict Top-indexed category.

We will be intrested in the case where $\boldsymbol{A}=\boldsymbol{S e t}^{P}$ for a pretopos \boldsymbol{P}, in this case we denote \mathcal{A} by $\mathcal{S E} T^{\boldsymbol{P}}$. Notice that when $\mathbf{P}=\mathbf{1}$. we obtain the $\boldsymbol{T o p}$-indexed category $\mathcal{S E T}$.

6.3 Filtered Colimits and Absolute Equalizers

It in shown in [11] that the category Top-ind $(\mathcal{S E T}, \mathcal{S E T})$ of $\boldsymbol{T o p}$-indexed functors from $\mathcal{S E T}$ to itself is equivalent to the category Filt(Set, Set) of filtered colimit preserving functors from Set to Set. It is our intention to generalize this result to the category Top-ind $(\mathcal{A}, \mathcal{B})$ where \mathcal{A} and \mathcal{B} are the Top-indexed categories of coalgebras over \boldsymbol{A} and \boldsymbol{B} respectively. However, to be able to do this we need more structure on the categories \boldsymbol{A} and \boldsymbol{B}. See proposition 6.9.

Take a category \boldsymbol{A} with products and filtered colimits. If \boldsymbol{D} is a small directed poset, and $H: D \rightarrow A^{\rightrightarrows}$ is a diagram, denote $H d$ by

$$
H_{0} d \xrightarrow[h_{1} d]{h_{0} d} H_{1} d
$$

for $d \in D$. Csing ideas from [12$]$ we have that one of the properties we need is the following:

Definition 6.3. Let \boldsymbol{A} be a category with products and filtered colmits, we sals that filtered colimits commute with pointwise absolnte equalizers if for every small directed poset D and, every diagram $H: D \rightarrow \boldsymbol{A}^{\overrightarrow{3}}$ such that tor cerery $d \in D, H d$ has an ahsolute equalizer $\epsilon_{d}: E_{d}^{\prime} \rightarrow H_{14}$ in A. and the pair

$$
\lim _{d} H_{11} d \xrightarrow[\underset{d}{l} h_{1} d]{\stackrel{\lim _{d} h_{11} d}{d}} \lim _{d} H_{1} d
$$

also has an absolute equalizer in \boldsymbol{A}, we have that the diagram

$$
\lim _{\rightarrow} E_{d} \xrightarrow{\stackrel{\lim _{d}}{d} d} \underset{d}{\lim _{d}} H_{0} d \xrightarrow[\underset{d}{l} h_{l} d]{\stackrel{\lim _{l} h_{0} d}{ } h_{1} d} H_{1} d
$$

is an equalizer diagran in \boldsymbol{A}.

6.4 Some Topological Spaces and Their Associated Coalgebras

Here are some definitions of topological spares and contimons functions that we are going to need later.

Recall from section 3.5 the construction of X_{D} for any small directed puse D. Consider the topological space X_{D}^{+}obtained form X_{D} by adding a point x not in X_{D} and whose opens are the empty set and sets of the form llll $\{x\}$ with I^{\prime} a nomempits open of X_{D}. The inclusion $h: X_{\boldsymbol{D}} \rightarrow X_{\boldsymbol{D}}^{+}$is clearly continuons.

Let (I, \mathcal{F}) be a filter. Define the topological space I_{F} whose set of peint in $I \cup\left\{a_{F}\right\}$, with $a_{F} \notin I$ and the topology given by $I \subset I \cup\left\{a_{F}\right\}$ open iff $a_{F} \cdot I$ implies that $V-\left\{a_{\mathcal{F}}\right\} \in \mathcal{F}$.

In the case when (I, \mathcal{F}) and (I, \mathcal{E}) are filters with $\mathcal{E} \subset \mathcal{F}$ we have a continum function $h_{F E}: I_{\mathcal{F}} \rightarrow I_{\mathcal{E}}$ such that h restricted to l is the identity and $h_{F \mathcal{F}}\left(u_{F}\right)=u_{F}$.

If $J \subset I$ we denote by $\mathcal{S}(J)$ the principal filter generated by J. That is, $\mathcal{S}(J)=$ $\left\{h^{\prime} \subset I \mid h^{\prime} \supset J\right\}$

We will denote Sierpimskis space by , that is, $t=\{0.1\}$ and the only nontrivial quan of s is $\{1\}$.

('umsiden the Top-indexed ategory \mathcal{A} defined as above. Let's take a look at the - ategens. $\mathcal{A}^{\mathbb{Y}}$ for X the spares we just defined, and at the transition functors indured bl the comtimums functions abo defined above.

Finst of all, if we take the topological space 1 , we have that \mathcal{A}^{1} is essemtially \boldsymbol{A}. When we have a Top-indexed functor $F: \mathcal{A} \rightarrow \mathcal{B}$ where \mathcal{B} is defined user a categong B ds above, we hate $r^{1}: A \rightarrow B$. Sometimen we write F insted of F^{3} when it dues mut lead tu confusion.

It is not hatud to see that $\mathcal{A}^{\mathbb{X}_{D}}$ is equivalent it $\boldsymbol{A}^{\boldsymbol{D}}$.
It is clear that \mathcal{A}^{4} is inemorphic to $\boldsymbol{A}^{\rightarrow}$.
 where A_{1} and the $A_{,}$are objects of \boldsymbol{A}. and whose morphisms
are famblies of morphioms $\left(f_{a_{2}}: A_{1,} \rightarrow B_{a_{t}} \cdot\left\{f_{j}: 1_{3} \rightarrow B_{j}\right\}_{J}\right)$ such that the diagram

tommules. Wie will use this description of $A^{1 /}$ systematically. In the case where
 $\mathcal{A}^{L_{H} t_{01}}$ with the description given above is a pair $\left(A_{\mathcal{E}\left(J_{0}\right)} \rightarrow \prod_{\in J_{1}} A_{j} .\left\langle A_{t}\right\rangle_{I}\right)$.

Now, consider the contimuns function $h_{F E}: I_{F} \rightarrow I_{E}$ defined above, we have

$\lim _{l \in s} \prod_{\in} 1_{y}$) where the last arrow moken the diagram

cormute for erers $J \in \mathcal{E}$.
 $\prod_{j \in M_{1}} A_{j} \xrightarrow{H} 1_{j}$

6.5 The Category $\mathcal{A}^{X_{D}^{+}}$

When we have the topological space X_{D}^{+}with D a small directed peret the sithation is a little bit less trivial. It is here that we use the property that tiltered colimin commute with point wise alsolute equalizers. Detine $L: A^{D}, A^{\left|V_{i}^{t}\right|}$ sul| that
 $\left.B_{l^{\prime}}\right\}_{d \rightarrow d^{\prime}}$ then $L\left(\left\{f_{d}\right\}\right)=\left(\underset{d}{\lim } f_{i},\left\langle f_{l}\right\rangle\right)$
Lemma 6.1. If \boldsymbol{A} is a category with products and filtered colimits such that filte red
 the functor $L: \boldsymbol{A}^{\boldsymbol{D}} \rightarrow \boldsymbol{A}^{\left|x_{D}^{+}\right|}$de fined abour is cotripleable.

Proof. We use Becks tripleability theorem (ser [1:3] fon example). Finst, we need a
 $\left.A_{i \times} \times \prod_{d^{\prime \prime}-d^{d^{\prime \prime}}}\right\}_{d \rightarrow d^{\prime}}$, where $p_{t d^{\prime}}=A, \times p^{2} j_{d d^{\prime}}$ and $p^{2} j_{d d^{\prime}}$ makes the diagram

commute. If $\left(f_{x},\left(f_{t}\right\rangle\right):\left(A_{x},\left\langle A_{t}\right\rangle\right) \rightarrow\left(H_{x},\left(B_{t}\right\rangle\right)$ then $R\left(f_{\ldots},\left\langle f_{t}\right\rangle\right)=\left\{f_{\ldots}\right.$, II $\left.f_{i t}\right\}$.

$\left\{B_{d} \rightarrow B_{d^{\prime}}\right\}_{d \rightarrow d^{\prime}}$ is a parallel pair in \boldsymbol{A}^{D} such that $L\left(\left\{f_{d}\right\}\right), L\left(\left\{g_{d}\right\}\right)$ has an absolute $^{\text {a }}$ equalizer

$$
\left(E_{x_{x}},\left\langle E_{d}\right\rangle\right) \xrightarrow{\left(l_{1},\langle\cdot d\rangle\right)}\left(\underset{d}{\lim _{d}} A_{d},\left\langle A_{d}\right\rangle\right) \xrightarrow[\left(\frac{\lim _{d}}{d} g_{d},\left\langle a_{d}\right)\right)]{\frac{\left(\lim _{d},\left\langle f_{d}\right\rangle\right)}{\rightarrow}}\left(\lim _{d} B_{d},\left\langle B_{d}\right\rangle\right)
$$

Projecting from $\boldsymbol{A}^{\left|X_{D}\right|}$, we obta: n, for every $d \in \boldsymbol{D}$, an absolute equalizer

$$
E_{i} \xrightarrow{\epsilon_{d}} A_{d} \xrightarrow{f_{d}} B_{t}
$$

and another absolute equalizer

Therefore, for every $d \rightarrow d^{\prime}$ in D we can induce an arrow $E_{d} \rightarrow E_{d}$ such that

commates. It is casily seen that we obtain an equalizei diagram

$$
\left\{E_{d}^{\prime} \rightarrow E_{d^{\prime}}^{\prime}\right\}_{d \rightarrow d^{\prime}} \xrightarrow{\left\{\epsilon_{d}\right\}}\left\{A_{d} \rightarrow A_{d^{\prime}}\right\}_{d \rightarrow d^{\prime}} \xrightarrow\left[\left\{g_{d^{\prime}}^{\prime}\right]{\stackrel{\left\{f_{d}\right\}}{\longrightarrow}}\left\{B_{d} \rightarrow B_{d^{\prime}}\right\}_{d \rightarrow d^{\prime}} .\right.
$$

Since filtered colimits commute with pointwis absolute equalizers we obtain that L preserves these equalizers. It is clear that L reflects these equalize-s. Therefore L is cotripleable.

If we look at the cotriple generated by the adjunction $L \nmid R$ of the lemma we ohtain $\boldsymbol{G}^{X_{D}^{+}}$, which means that the categories \boldsymbol{A}^{D} and $\mathcal{A}^{X_{D}^{+}}$are equivalent. Now, the comparison functor $\Phi_{D}: \boldsymbol{A}^{\boldsymbol{D}} \rightarrow \mathcal{A}^{X_{D}^{+}}$is such that $\Phi_{D}\left(\left\{A_{d} \xrightarrow{\sigma_{d d^{\prime}}} A_{d^{\prime}}\right\}_{d \rightarrow d^{\prime}}\right)=$
 $\Phi_{D}\left(\left\{f_{d}\right\}\right)=\left(\underset{d}{\lim } f_{d},\left\langle f_{d}\right\rangle\right)$. The quesi inverse $\Psi_{D}: \mathcal{A}^{X_{D}^{+}} \rightarrow \boldsymbol{A}^{D}$ is a lot simpler,

Corollary 6.2. With the same hypotheses and notation as in lama 6.1. the diagram

commutes. where Ψ_{D} is the functor just de fined.
It is easily seen that the functor $K: \boldsymbol{A}^{\boldsymbol{D}} \rightarrow \boldsymbol{A}^{\left|X_{D}\right|}$ such that $K\left(\mid A_{d}{ }^{\text {wh}}\right.$, $\left.\left.A_{d^{\prime}}\right\}_{d \rightarrow d^{\prime}}\right)=\left\langle A_{d}\right\rangle_{D}$ is also cotripleable and defines the cotriple $G^{Y_{D}}$. Thus, in view of the previous corollary we have that the categories $\mathcal{A}^{{ }^{Y}}$ and $\mathcal{A}^{X_{D}^{+}}$are equivalent. In the particular case when $D=2$ we have that in $X_{2} 1$ and 0 an not be distinguished from each other so and we will feed free to replace $\mathcal{A}_{2}^{x_{2}^{+}}$by \mathcal{A}^{4}.

6.6 The Functor ()$^{1}: \operatorname{Top-ind}(\mathcal{A}, \mathcal{B}) \rightarrow \operatorname{Filt}(A, B)$

From now on we are going to suppose that \boldsymbol{A} and \boldsymbol{B} are categories with products and filtered colimts such that filtered colimits commute with point wise absolute equalize ers and that \mathcal{A} and \mathcal{B} are the Top-indexed categories of coalgebras over \boldsymbol{A} and \boldsymbol{B} respectively.

Lemma 6.3. If $(i: \mathcal{A} \rightarrow \mathcal{B}$ is a Top-indext d functor then the it , fists a slice Topindexed functor $F: \mathcal{A} \rightarrow \mathcal{B}$ isomorphic to (\mathfrak{i} (in Top -ind($\mathcal{A}, \mathcal{B})$).

Proof. Let $\boldsymbol{G}^{\prime}: \mathcal{A} \rightarrow 3$ be a Top-indexed functor. For any X in Top and any $x \in X$, we have a continuous function $x: 1 \rightarrow X$, and a natural isomorphism $x^{*}\left(y^{X} \rightarrow\left(i, x^{*}\right.\right.$. Therefore, given $\left\langle A_{x} \xrightarrow{r_{x}} \lim _{\| \exists_{x}} \prod_{y} \in A_{y}\right\rangle$ in \mathcal{A}^{X}, we have a natural isomorphism $x^{*}\left(\mathcal{r}^{X}\left(\left\langle\tau_{r}\right\rangle\right) \stackrel{\cong}{\longrightarrow}\left(\underset{i}{ } A_{r}\right.\right.$. Define $F^{X}: \mathcal{A}^{X} \rightarrow \mathcal{B}^{X}$ such that $F^{X}\left(\left\langle\tau_{s}\right\rangle\right)$ is $\left\langle G A_{x} \xrightarrow{\cong} x^{*} G\left(\left\langle\tau_{x}\right\rangle\right) \rightarrow \lim _{V \rightarrow x y} \prod_{U V} y^{*} G\left(\left\langle\tau_{x}\right\rangle\right) \xrightarrow{\cong} \lim _{V^{\prime \prime} \neq \pm} \prod_{y \in U^{\prime}}\left(i A_{y}\right\rangle\right.$. It is not hard to show that we obtain a coalgebra in this way and that the functor F is strict and isomorphic to $(i$.

In view of this theorem we will assume that our Top-indexed functors are strict.

Lemma 6.4. If $f^{\prime}: \mathcal{A} \rightarrow \mathcal{B}$ an a Top-endexed functor, then the aquare

rommatts ap to inomorphism.
Proof. Wie are using \mathcal{A}^{5} instead of $\mathcal{A}^{X_{2}^{+}}$. Now, consider the continuons maps $\xrightarrow{\stackrel{1}{0}}$ (There map, induce the diagram

in which it in casy to see that the front an l back faces commute sequentially, and the siden commute as well. Then it is not hard to see that the top commutes as well.

Lemma 6.5. For amy directed poset \boldsymbol{D}, the following diagram commutes

Proof. Let $d \rightarrow d^{\prime}$ be an arrow in D, considen the functor ad $d^{\prime \prime}:+D$ such that $(0 \rightarrow 1) \mapsto\left(d \rightarrow d^{\prime}\right)$. Consider the continnoms function $S_{d d^{\prime}}: S^{\prime} \rightarrow \lambda_{D}$, suth that $B(0)=d$ and,$d(1)=d^{\prime}$. Then it is easy to see that we have a commutative didgram

The following proposition is an immediate corollaty of these lemmas.
Proposition 6.6. If $F: \mathcal{A} \rightarrow \mathcal{B}$ is a Top-indexd functor, then the functor l^{1} : $\boldsymbol{A} \rightarrow \boldsymbol{B}$ preserves filtered colimits.

Proof. It is enough, see [1], to show that F^{1} preserves directed colimits. Comside the diagram

The proposition allows us to define a functor ($)^{1}: \operatorname{Top}-\operatorname{ind}(\mathcal{A}, \mathcal{B}) \rightarrow \boldsymbol{F i l t}(\boldsymbol{A}, \boldsymbol{B})$ such that $F \mapsto F^{1}$ and $\tau \mapsto \tau^{1}$ for every

iil $\operatorname{Top}-\operatorname{ind}(\mathcal{A}, \mathcal{B})$.

6.7 The Functor ($): \operatorname{Filt}(\boldsymbol{A}, B) \rightarrow \operatorname{Top-ind}(\mathcal{A}, \mathcal{B})$

We define now a functor in the other direction. (iiven $H \in \operatorname{Filt}(A, B)$ and a topological space X, we define $\hat{H}^{X}: \mathcal{A}^{X} \rightarrow \mathcal{B}^{X}$ such that

$$
\begin{aligned}
& \widehat{H}^{x}\left(\left\langle A_{,} \xrightarrow{\alpha_{x}} \lim _{l \rightarrow \pm} \prod_{y \in V^{\prime}} A_{y}\right\rangle\right)=
\end{aligned}
$$

where the last arrow is the unique one that makes

commute, and $\hat{H}\left(\left\langle f_{r}\right\rangle_{x}\right)=\left\langle F f_{x}\right\rangle_{x}$. It is not hard to show that we obtain coalgebras and coalgelora morphisms with the above definitions. \widehat{H} turns out to be a strict Topindexed functor. We will show that, with the proper conditions on \boldsymbol{A} and \boldsymbol{B}, the functors defined above give an equivalence of categories. Before the proof we need some lemmas.

6.8 The Ultraproduct Transition Morphisms

Suppose $F: \mathcal{A} \rightarrow \mathcal{B}$ is a Top-indexed functor. Let X be topological space. For every $r \in X$ we have the continuous function $x: 1 \rightarrow X$ that sends the only element of 1 to x. This function induces the following commutative diagram

If we start with a coalgebra $\left\langle A_{x} \xrightarrow{r_{x}} \lim _{\dot{T} \prod_{y}} \prod_{y} A_{y}\right\rangle$ in \mathcal{A}^{Y} we have that

$$
r^{*}\left(F^{X}\left(\left(A_{x} \xrightarrow{r_{x}}{\underset{i>}{\mathcal{B} r y}}^{\lim _{y}} A_{y}\right)\right)\right)=F^{1}\left(A_{x}\right) .
$$

This tells us that $F^{x}\left(\left\langle A_{\alpha} \xrightarrow{\tau_{x}} \underset{U \neq \Psi_{x}}{\lim } \prod_{y} A_{y}\right\rangle\right)$ is of the form

$$
\left\langle F^{1} A_{x} \rightarrow \lim _{i \neq i x} \prod_{v \in v^{\prime}} F^{1} A_{y}\right\rangle .
$$

In particular, when we have an ultratiler (I, G) and and a fanily $\left\langle A_{1}\right\rangle_{I}$ in A^{\prime}, we obtain the coalgebra

$$
\lim _{1 \rightarrow \mathscr{G}} \prod_{j} A_{j} \xrightarrow{1} \underset{\vec{J} \in \mathbb{G}}{\lim } \prod_{\in} A_{J}
$$

in $\mathcal{A}^{I_{i}}$. Then

We call this morphism $\gamma_{F G}\left\langle A_{2}\right\rangle_{I}$. It is not hard to see that $\gamma_{F \mathcal{}}$ delines a natural transformation

Lemma 6.7. If $F: \mathcal{A} \rightarrow \mathcal{B}$ is a Top-indest dunctor the in for evr ry ult rafiltrr (I, \mathcal{G}) we have that

Proof. Given $A_{a_{G}} \xrightarrow{\sigma} \underset{J \in \mathbb{Q}}{ } \lim _{\in} \prod_{J} A_{3}$, consider the morphism

in $\mathcal{A}^{I_{\mathscr{\varphi}}}$ and apply $F^{I_{\mathcal{C}}}$.

6.9 Reduced Products and Ultraproducts

Finally, we need a condition on B. (Given a filter (I, \mathcal{F}), define $\mathcal{U}_{F}=\{\mathcal{G} \mid \mathcal{G}$ is an ultrafilter on I and $\mathcal{F} \subset \mathcal{G}$ \}.

Definition 6.4. We say that ultraproducts determine reduced products in \boldsymbol{B} if for
 $\left.\lim _{\substack{\in \in U}} \prod_{\in} B_{J}\right\}_{G \in U}$, is jointly monic, where $i_{F G}$ makes the diagram

rommute for every $J \in \mathcal{F}$.
Using the fact that for every filter (I, \mathcal{F}) we have that $\mathcal{F}=\bigcap_{\mathcal{G} \in U_{r}} \mathcal{G}$, it is not hard to prove that the condition above is true for the category Set.

Lemma 6.8. If in B reduct products art determined by ultraproducts and $F: \mathcal{A} \rightarrow$ \mathcal{B} is a Top-inde sed functor, then F is determined by the natural transformations $\gamma_{F g}$ for all ultrafilte $\mathrm{T}_{\mathrm{s}}(\mathrm{I}, \mathcal{G})$.

I'roof. Let (I, \mathcal{F}) be a filter, and $\mathcal{G} \in \mathcal{U}_{F}$. Now consider $F: \mathcal{A} \rightarrow \mathcal{B}$, and the continnous function $h_{\mathcal{G} F}: I_{\mathcal{G}} \rightarrow I_{\mathcal{F}}$ defined after definition 6.3. We have then that the following diagran

$\lim _{J \in, j} \prod_{J} F A_{J} \xrightarrow{\text { nex }_{J \in i}} \lim _{J \in J} \prod_{J} F A_{J}$. Or put another way, we have that

commutes. Since the family $\left\{i_{F \mathcal{G}}\right\}_{\mathcal{G} \in U_{F}}$ is jointly monic, we have that $P^{I /}(\sigma)$ is determined by the natural transformations $\gamma_{F \in}$ with $\mathcal{G} \in \mathcal{U}_{F}$. Now. given a topolugial spare X, and a point $r \in X, \operatorname{let} I=X-\{x\}$ and $\mathcal{F}_{x}=\{. I \subset I|I| 1 . x$ is a neighbourhood of $x\} . \mathcal{F}_{x}$ is a filter on I and there is a continnons function $h: I_{F_{B}} \rightarrow X$ such that h_{I} is the inclusion and $h\left(a_{F_{r}}\right)=x$. Then we have a commutative spuare

Following the image of an arbitrary coalgebra we see that F^{X} is determined by $\left\{F^{I_{x}}\right\}_{x \in X}$.

6.10 Top-ind $(\mathcal{A}, \mathcal{B})$ equivalent to $\operatorname{Filt}(A . B)$

Proposition 6.9. Let \boldsymbol{A} and \boldsymbol{B} be categorits with products and filt red rolimits surth that dirceted colimits commute with pointwise absolute equalizers, and surth that reduced products are determined by ultraproducts in \boldsymbol{B}, then the category Top in $\|(\mathcal{A}, \mathcal{B})$ is equivale : to the rategory $\operatorname{Filt}(\boldsymbol{A}, \boldsymbol{B})$ of functors from \boldsymbol{A} to \boldsymbol{B} that preserve filtr red colimits.

Proof. We have already defined the functors ($)^{1}: \operatorname{Top}$-ind $(\mathcal{A}, \mathcal{B}) \rightarrow \boldsymbol{F i l t}(\boldsymbol{A}, B)$ and $\widehat{(): F i l t}(\boldsymbol{A}, B) \rightarrow \boldsymbol{T o p}$-ind $(, \mathcal{A}, \mathcal{B})$. It is clear that ()$^{1} \circ(\hat{O})$ is the identity. Iat $F: \mathcal{A} \rightarrow \mathcal{B}$ be a Top-indexed functor, we will show that for every ultrafilter (I, \mathcal{G}) and every $\left\langle A_{i}\right\rangle_{I}, \gamma_{F \mathcal{G}}\left(\left\langle A_{i}\right\rangle_{I}\right)$ is

Thus, using lemma 6.8 we conclude that $F=\widehat{F}^{1}$.
Let (I, \mathcal{G}) be an ultrafilter, and $J_{0} \in \mathcal{G}$. Then $\mathcal{S}\left(J_{0}\right)$ denotes the principal filter on I generated by J_{0}. For every $j \in J_{0}$ we have the continuous function $h_{3} J_{0}: S \rightarrow I_{\mathcal{S}\left(J_{0}\right)}$ defined after definition 6.3, that induces the following commutative square

If we start with $\left(\left\langle A_{i}\right\rangle, A_{a_{S\left(J_{0}\right)}} \stackrel{\langle m,\rangle}{\left\langle m_{j} \in J_{a}\right.} A_{j^{\prime}}\right) \in \mathcal{A}^{I_{S\left(J_{0}\right)}}$, then we have that $F\left(m_{j}\right)=$ $\left(F^{\prime\left(s_{\left(J_{0}\right)}\right)}\left(\left\langle A_{i}\right\rangle, A_{a_{s\left(J_{0}\right)}} \xrightarrow{\langle(m,\rangle} \prod_{J^{\prime} \in J_{0}} A_{j^{\prime}}\right)\right)_{j}$. Therefore

$$
F^{I_{s\left(J_{0}\right)}}\left(\left\langle A_{2}\right\rangle, A_{a_{S\left(J_{0}\right)}} \xrightarrow{\left\langle m_{j}\right\rangle} \prod_{,^{\prime} \in J_{0}} A_{\prime^{\prime}}\right)=\left(\left\langle F A_{2}\right\rangle, F A_{a_{S\left(J_{0}\right)}} \xrightarrow{\left\langle F m_{2}\right\rangle} \prod_{j^{\prime} \in J_{0}} F A_{y^{\prime}}\right) .
$$

Now, the continuous function $h_{\mathfrak{G} \mathcal{S}\left(J_{0}\right)}: I_{\mathcal{G}} \rightarrow I_{\mathcal{S}\left(J_{0}\right)}$ induces another commutative square

from which we conclude that

In particular, taking $A_{a_{s\left(J_{0}\right)}}=\prod_{j \in J_{0}} A_{j}$ and $m_{j}=\pi_{j}$, consider the morphism

in $\mathcal{A}^{I_{i}}$, apply $F^{I_{\dot{G}}}$ to obtain that

$$
F^{I_{\varphi}}\left(\lim _{J \in \bullet}, \prod_{\epsilon} A_{3} \xrightarrow{1} \lim _{J \in \mathscr{\varphi}} \prod_{\in j} A_{j}\right)=
$$

This last arrow is then γ fgg. Since we already know that F is determined by these arrows we see that we have an equivalence as stated.

6.11 Subcategories Closed Under Ultraproducts

Suppose now that we have a full subeategory \boldsymbol{A}_{0} of \boldsymbol{A} such that \boldsymbol{A}_{0} has liltered colimits and they are preserved by the inchusion $\boldsymbol{A}_{\mathbf{0}} \rightarrow \boldsymbol{A}$. Then we call deline a sub Top-indexed eategory \mathcal{A}_{0} of \mathcal{A} as follows. \mathcal{A}_{11}^{X} is the full subrategory of \mathcal{A}^{1} whose objects are the coalgebras $\left\langle A_{s} \xrightarrow{r_{2}} \lim _{\| \neq r} \prod_{y} A_{y}\right\rangle$ such that for every $r+X$ we have that A_{x} is an object of \boldsymbol{A}_{0}. It is clear that for every continuons function $f: Z \rightarrow X$, the functor $f^{*}: \mathcal{A}^{X} \rightarrow \mathcal{A}^{Z}$ restricts to $\mathcal{A}_{i 0}^{X}$, that is, $f^{*}: \mathcal{A}_{0}^{X} \rightarrow \mathcal{A}_{i j}^{X}$. It also is clear that for every directed poset D, the functor $\Psi_{D}: \mathcal{A}^{X_{D}^{+}} \rightarrow A^{D}$ restricts to $\Psi_{D}: \mathcal{A}_{0}^{X_{D}^{+}} \rightarrow \mathcal{A}_{0}^{D}$.

We will be able to apply the results of this section to Top-indexed rategories of models due to the fact that models over a sheaf ategory are the same thing ats sheaves of models as the next proposition shows
Proposition 6.10. The category of models $\mathcal{M O D}(\boldsymbol{P})^{X}$ is cquivalt nt to the full sulh-
 fuery $x \in X, M_{x} \in \operatorname{Mod}(P)$.

Proof. First notice that this is clearly true for the topological space I. (iiven a topological spare X, a model $M \in \mathcal{M O D}(\boldsymbol{P})^{X}$ corresponds to the coalgelpra $\left\langle r^{*} M \rightarrow\right.$ $\left.\lim _{U \exists^{*}+y} \prod_{U} y^{*} M\right\rangle$ in $\left(S E T^{P}\right)^{X}$. (learly $x^{*} M \in \operatorname{Mod}(\boldsymbol{P})$. On the other hand, if we start with a coalgebra $\left\langle M_{x} \xrightarrow{T_{x}} \lim _{V \neq x \in} \prod_{y \in V} M_{y}\right\rangle$ in $\left(\mathcal{S E} \mathcal{T}^{\boldsymbol{P}}\right)^{X}$ such that for every $\boldsymbol{x} \in X$ we have that $M_{x} \in \operatorname{Mod}(\boldsymbol{P})$, this determines a functor $M: P \rightarrow$ Sh (X) wich that $M P=\left\langle M_{x} P \xrightarrow{T_{x} P} \lim _{V_{\exists} \times x} \prod_{y} \in V=M_{y} P\right\rangle$.
Definition 6.5. We say that the subrategory \boldsymbol{A}_{0} is closed under \boldsymbol{A}-ultraproducts if for every ultrafilter (I, \mathcal{G}) we have that the functor $\lim _{J \in \mathscr{Q}}, \prod_{\mathcal{J}}(-): \boldsymbol{A}^{l} \rightarrow \boldsymbol{A}$ restricts to a functor $\lim _{J \in G} \prod_{\in J}(-): \boldsymbol{A}_{0}^{I} \rightarrow \boldsymbol{A}_{0}$.

Fix full subategories \boldsymbol{A}_{0} of \boldsymbol{A}, and \boldsymbol{B}_{0} of \boldsymbol{B}, with filtered colimits preserved by both inclusions and such that \boldsymbol{A}_{0} is closed under \boldsymbol{A}-ultraproducts and \boldsymbol{B}_{0} is closed under \boldsymbol{B}-ultraproducts. Define \mathcal{A}_{10} and \mathcal{B}_{0} as above. We assume as well that in \boldsymbol{A} and in B filtered rolimits conmute with pointwise absolute equalizers.

Lemma 6.11. If $F^{\prime}: \mathcal{A}_{0} \rightarrow \mathcal{B}_{0}$ is a Top-indesed functor. then $F^{1}: \boldsymbol{A}_{0} \rightarrow \boldsymbol{B}_{0}$ prestrons fille red colimits.

Proof. We can repeat the same reasoning that leads to the proof of proposition 6.6.

We have then a functor ()$^{1}: \operatorname{Top}-\operatorname{ind}\left(\mathcal{A}_{0}, \mathcal{B}_{0}\right) \rightarrow \boldsymbol{F i l t}\left(\boldsymbol{A}_{0}, \boldsymbol{B}_{0}\right)$. Notice that we can not define a functor in the other direction as before because we do not have, in general. products in \boldsymbol{A}_{0} or \boldsymbol{B}_{0}.
(iiven $F: \mathcal{A}_{0} \rightarrow \mathcal{B}_{0}$. we can define the natural transformations $\gamma_{F G}$ for every ult ratilter (I, \mathcal{G}) as before, that is, $\gamma_{F G}\left(A_{2}\right\rangle_{I}$ is
or put in a diagram

With escutially the same proof we also have
Lemma 6.12. If in B reduced products art determined by ultraproducts and F : $\mathcal{A}_{11} \rightarrow \mathcal{B}_{0}$ is a Top-indexed functor, then F is determined by the natural transformations 7 Fs for all ultrafilters ($1, \mathcal{G}$).

Lemma 6.13. The functor ()$^{1}: \operatorname{Top}-i n d\left(\mathcal{A}_{0}, \mathcal{B}_{0}\right) \rightarrow \boldsymbol{F i l t}\left(\boldsymbol{A}_{0}, \boldsymbol{B}_{0}\right)$ is faithful.

Proof. If $\phi: F \rightarrow\left(i: \mathcal{A}_{0} \rightarrow \mathcal{B}_{0}\right.$ is a T-indexed matural tramsformation. X i. d topological space and $z \in \mathcal{X}$, consider the following diagram

Since ϕ is a \boldsymbol{T}-indexed natural transformation, we have that for any coalgebra (1 , 'A
 determined ly ϕ^{1}

It is easy to see that for every small motopos \boldsymbol{P} the category $\boldsymbol{M o d} \boldsymbol{P}$) satisiom all the recesary conditions as a full subcategory of Set P and therefore ds a orollans of lemi la 6.11 we have

Proposition 6.14. For any Top-indext functor F : $\operatorname{MOD}(P) \rightarrow, \mathcal{M O D}(Q)$ the functor $F^{1}: \operatorname{Mod}(\boldsymbol{P}) \rightarrow \operatorname{Mod}(Q)$ preserets filte ird columits.

Bibliography

[1] M. Artin, A. (irothendierk, and J.L. Verdier, Théorie des topos et cohomologit Ctale des schimus, vol. 269, Springer-Verlag, 1972.
[2] M. Barı and ('. Wells, Toposes, triples and theorits, Springer-Verlag, 1985.
[3] J. Benabon. Fibration: petites et localment petites, ('. R. Acad. S'r. Paris 281 (1975), 897 900.
[1] .-Théorve relatives à un corpus, (. R. Acad. Sc. Paris 281 (1975), 831$8: 3.1$.
[5] R. Blarkwell. (i. M. Kelly, and J. Power, Two dimensional monad theory, Journal of Pure and Applied Algebra 59 (1989), 1-41.
[6] J. Diomme. Des théorifs ćlémentaires aux catégories conceptuelles, Master's thesis. Université de Montréal, 1973.
[7] J. B. Isbell, Structure of categories, Bulletin of the AMS 72 (1965), 619-655.
[8] 1. T. Johntone, Topos theory, Academic Press, 1977.
[9] (i. M. Kelly and R. Street, Review of the elements of \mathscr{Q}-categories, Lecture Notes in Mathematies 420 (1974), 75-103.
[10] A. Kock and (i. E. Reyes, Doctrincs in categorical logtc, Handhook of Mathe matical Lugic, Studies in Logic and the Foundations of Mathematiss, vol. 90, North-Holland, 1977.
[11] D. Lever, (ontinous familifs, topological ratrgories, and toposes, Ph.I), thesis, Dalhousie University, 1981.
[12] F. E. J. Linton, ('oequalizers in categorics of alge bras, Seminar on Triples and Categorical Homology Theory, Lecture Notes in Mathematios, vol. 80 , Springer Verlag, 1969.
[13] S. Mar Lane, ('ategories for the working ma'hematician, (iraduatr 'Texts in Mathematics, vol. 5, Springer-Verlag, 1971.
[14] S. Mac Lane and I. Moerdijk, Sheaves in geometry and logic, Springer Verlag, 1992.
[15] M. Makkai, Stone duality for first order logic, Advances in Mathematics 65 (1987), no. 2, 97-170.
[16] M. Makkai and R. Paré, Accessible catcgories: Tht fomudations of cutegoricul model theory, ('ontemporary Mathematics, vol. 104, American Mathematical Society, 1989.
[17] M. Makkai and A. M. Pitts, Some results on locally finitely prest utable categorus, Transactions of the AMS 299 (1987), no. 2, 473495.
[18] M. Makkai and G. E. Reyes, First order categorical logir, Lecture Notes in Mathematics, vol. 611, Springer-Verlag, 1977.
[19] R. Yaré and D. Schumacher, Abstract families and the adjoint functor thror m, Indexed (ategories and Their Applications, Springer-Verlag, 1978.

