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Abstract

Let P be a small pretopos. Makkai showed that the pretopos (i.e. the langnage) can
he recovered from the category of models of the pretopos (i.e. Set-valued functors
preserving the pretopos structure). The realization that ultraprodnet functors can he
expressed as composition of fuictors on categories of sheaves over topulogical spaces
opens the door for nsing continuonus families of models, that is. categories indeged
over topological spaces,

We introduce a special kind of category iudexed over topological spaces in which it
is posaible to deiine ultraproduet funetors. This involves continnous funetions f 0} —
X for which the functors fo 1 Si(}Y ) — Si(X) preserve the pretopos structure We
give a characterization of such functions. Each of these indexed categories produces

a pre-ultracetegory in the sense of Makkai.
Sott-!

)

"C' AT and the 2-monad

We also consider the 2-adjunction PRETO P
Modj-)
it generates. We show that each algebra for this 2-monad carries a pre-ultracategory
structure as well. We induce another 2-monad over the category of algebras and show
that these new algebras carry the structure of ultracategories,

We combine bBoth approaches by defining a 2-adjnnction over the 2-category of
special indo sed categories mentioned above and show that the corresponding algebras
also carry ultracategory structures.

Finally, aiming at giving filtered colimits a bigger role in the picture we generalize
a theorem of Lever, namely, that indexed functors from the indexed category that has
the category f sheaves SE(X) over the topological space X, to itsell is equivalent to

the category of filtered colimit preserving functors from Set to itself.
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Introduction

The concept of pretopos was introdiced by Grothendiecs in {1 in relation with eo
herent toposes, A pretopos is a catesory vith Hnite limits, stoict initial object, stable
disjoint tinite coproduets and stable quotients of vquivalence relations. Funetois he-
tween pretoposes that preserve the pretopos structure arve called elementary. Small
ness s also requived [T but we allow onr pretopos to be hig”, so for example
the cateeory Set of sets is a precopos. Makkanr and Reves o [I18] stady the rela
tion between coherent theories and pretoposes. They show there how to constriet
a small pretopos for any cohietent theory that essentic iy codifies the information - 1
the theory in the sense that the category of models tor the coherent theory and the
category of clemeniary fun: tors from the pretopos are equivalent. That is we can
replace the theory by the pretopos. The coustruetion of the pretonos mvolves as a
firt step the construction of a logical category. A category is logical if it has finite
limits, stable finite sups of subobjects and stable fmages. This logical category can
also replace the theorv, however there are two good reasons to 1se pretoposes instead
of Ingical categories. The first one is that there s a criteria to determine whetlier au
elementary fitneter hetween pretoposes is an equivalence (see 7.1.8 1n [IN] or Lemma
[.I3 below), The second reason is the so called conceptual completeness: If an el
emertary /0 P — @Q betweea pretoposes induces by composition an equivalence
Mod(G) — Mod(P) then F is an equivalence (see 7.1.5 in 18] or Theorem 116
below). Here Mad(P) denotes the category of elementary funetors from P to Set.
There are some questions to be asked in this context. One is whether it is possible
to recover the langnage from the category of models. Another one is under what

conditions a categov i+ a category of models. On the one hand we wani to recover
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the pretopos P from the catesory Mod( Py and on che other we want to find con
ditions on a category A for it to he of the form Mod (P {or - ome sniadl pretopes
P. This resembles for example the well hknown Gabriel Uliver duadiny (see [17]1 i
which we have equivalenees C > LECULEX{(C, Se t1.Set) tor o0 miall Jeft enact
cateeory Cand A — LEX(LFC(A. Sety, Set) for any locally finitely presentable
category A where LEX denote the cateeoy of it exaet cateearies in the second
miverse and LEF(" i~ the catesoly of catean tes with small inits aned ~talt iilterea
colimits in the second nniverse. Makkai in (13 proves one half of the above daality
for pretoposes. Notiee titst thae in the equinalence ¢ - - LECTLEX (O Seti Set
what is done is to consider functors LEX{C . Sety  » Set aud add conditions on
them {(the LFC parti to ent down 1o the anes that are of the form e for some
in C. Tor pretoposes we have toreplace LEX (', Sct by Mod Py, Mod Py has
filtered colimits and they are calenlated as in Sed?. Howeror we s an not in eeneral
onarantee the existence of any other kind of Jimits o1 colimits, What can beoneed
is another construe'ion that s also pointwise, namely the dtraprodoact constpnetion.
Ultraproducts are mixed limits (hltered colimits of products amd therdore Lave very
few canonical arrows, as nppns(':i 1o honest Enits or colimits, Tu f‘-‘:} oo part corte
sponding to LEC is taken by ltracategories, An ultracateeory is obtained in two
steps. First a pre nltracategory is a eatecory A tovether wiih o functor (1] A7 — A
for every ultratilter (7.{). Functors between them have trausition isomorphisim re-
lating the corresponding funetors of th - fonn [(f . The concept of nltramorphism i
introduced to supply enaneh arrows to and from ultraproducts, An ultracateeorsy s

a pre ultracategory together with ulttamorphisms. This suthees 1o prov an equi -

alenee of the foom P - l/rC'ul@l(P).ig) whete U7 denotes the cateoore of

ultracategories in [15]. Phe other side of the gquestion i <till open.
The idea that started 1his paper is that we can recovor the ultraproduect functor
f] : Set! — Set for every uliralilter (1.4} nsine catesories of sheaves, Specitically
. . , . .y ;= ftx
the functor [/{] is naturaliy equivalent to the composition Set! —== Shi =% SL(1])

*®

— Set where J1 is the Stone-Ceclr compactification of I,y 2 [ — I is the usua

embedding and {7 1s the fmetor assoriated to the continnons fnetion i @ 1 = ST

N

-\



that picks the ultrafilter ¢ € J1. So we consider categories indexed over the cat-
egory Top of topological spaces and continuons functions.  We follow Paré and
Schumacher [19]. the approach in Benabou [3] is via fibrations. A Top-indexed
category A consists of a category AY for every topological space X and a functor
f*: AY — A} for every continuons function f : ¥ — X subject to some coher-
ence conditions. In particular if we take the category SHh(X) for every topological
space X and the wsual f* : SE(XN) — Sh(Y) we obtain a Top-indexed category
that we denote by SE7. This category plavs the role of sets in Top-indexed cat-
egoties.  f* @ SH(Y) — SA(Y) is left exact and has a right adjoint. Thus f* is
elementary. We can define then, for every pretopos P the Top-indexed category
of models of P. We take the category Mod g, (x)(P) for every space X and define
[* 1 Modsx\(P) — Modg;,vy(P) by composition with f* 1 Sh(X) - Sh(}) for
every continaous [0 Y — X, where Modg,(v)(P) denotes the category of elemen-
tary functors from P to Sh(X). We denote this Top-indexed caiegory by MOD(P).
To he able to recover the ultraproduct funectors we have to take into account the
functors of the form g, as above. For this piurpose we introduce the concept of
ultrafinite function: A continnous function f : ¥ — X is called ultrafinite if the
functor f. : SE(Y) — Sh(X} is clementary. Notice that for an ultrafinite f the
functor f* : Modsy x)(P) — Mods,y)(P) has a right adjoint. Furthermore we
recover the ultraproduct functors [i] : Mod(P) = Mod(P) as the composition

Mod( P\ =+ Mod s, 1,(P) £ Mod51,(P) . Mod(P). Accordingly wo char-

acterize those contivuous functions that arve ultrafinite and restrict to Top-indexed
categories for which f~ has a right adjoint f, for everv ultrafinite f. Functors between
these are those thar behave nicely with these adjoints, We denote this category by
€os. With the category £o  we can recover the pre-uliracategory structure bHut
v fortunately it is not encugh to recover the general ultramorphisms.

There is another way to recover the pre-ultracategory structure via algebras over
(" AT and with a monad over the<e algebras we can also recover the ultramorphisms.

Set!-)
(‘ousider the 2-moaad T generated by the 2-adjunction PRETOP*? *————; C AT.
Mod(.)

We can define a functor T-ALG — PUC where T-ALG denotes the 2-category of

T-algebras and PUC denstes the 2-category of pre-ultracategories. We obtaiu an-




T-ALG(., (Set, ¥))
other 2-adjunction PRETOP™” = T-ALG where & p and W are
(Mod(.), ®_))
T-algebra structures we define below. Let S denote the 2-monad generated by this

adjunction. We can define then a 2-functor S-ALG — UC where UC denotes the

2-category of nltracategories.

Our proofs about algebras are based on the following observation. Suppose we
have functors H: A — B. B : B - A and a natural transformation 8 : RII — 1 4.
If B has a functorial weak initial object then A has a functorial weak initial object
as well. A functorial weak initial object is a weak initial object with a functorial
choice of arrows from it to any other object. When the natural transformation 6 is
an isomorphism, the existence of functorial weak colimits in B implies the existence
of functorial weak colimits in A. It is well known that colimits exist if the eategory
has functoiial weak colimits and split idempotents. In this context it is easy to see
that A has split idempotents if B does.

The above setting is specially well suited for aleebras over a 2-monad. If we have
a 2-monad T = (T.y. 1) over C AT for example and a strict algebra (A @) then one

of the diagrams for @ is

nA
A\-~—~—*1A
la, , @
A

IfT A is agood” category then A will necessarily inherit some of the good properties
of TA. In particular the existence of certain kinds of limits or colimits, Furthermore,
the other commutative diagram for algebras will tell us how to calenlate these limits
and colimits on A: Simply take the diagram over A, compose with nA. calenlate
the limit or colimit in T'A and apply €. For example consider the 2-monad given by
the 2-adjunction Set'-) 4 Set'™) : CAT" — CAT. In this case having an algebra
structure on a category A unplies that A is complete md cocomplete. We note here
that there are some size problems to be resolved.

One way of tryving to settle these size problems and at the same time give a good
framework in which to attempt a solution to the second problem (namely charae-
terizing those categories that are of the form Mod(P)) is to combine the last two

e . C Lo, 58T)
approaches, That is, we define a 2-adjunction PRETOP *= :

L£os. gen-
MOD()
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erate the corresponding 2-monad T and define a functor T-ALGC - UC.

Pinally, ir a closely related development we generalize a theorem of Lever [11].
Lever showed that there was an equivalence between the categories Filt(Set, Set)
of filtered colimit preserving functors from Set to Set and Top-nd(SET,SET ) of
Top-indesed functors from SET to SET. We define a Top-indeged category A
for every category A with filtered colimits and products by taking coalgebras over
AlY for every topological space X aud show that we get an equivalence between
Filt( A, Set) and Top-ind(A,SET). The detinition of the cotriple is very similar to
the one induced by the adjunction Sh(.X) =5 Set!*!, This will allow ns to prove that
whenever we have a Top-in-exed functor F' @ MOD(P) — SET we have that the
functor I'': Mod(P) — Set preserves filtered colimits.

The account chapter by chapter is as follows.

In chapter | we review the definition of pretopos and its relation to eoherent
toposes: we consider some properties of pretoposes we will need later, especially the
ones concerning equivalence relations. We show that for any pretopos P and any
object P> in P the category P/P is a pretopos and that for any other pretopo.
Q. the category Modg(P/P) is equivalent to the category whose objeets are pairs
(M.«) with M in Mod(P) and a a global element of M/ P. We use this deseription
to give a categorical proof of the existence of an airow into an ultrapower of another
model nnder certain conditions. Finallv we give a combinatorial deseription of the
left adjoint to the forgetful functor Pretop — Lex.

Chapter 2 is devoted to the concepts of nliracategory and ultramorphism. There
we give a proof of Makkai's theorem (the equivalence of a small pretopos P and the
category UC (Mod(P). Set). We follow Makkai's [15] in this chapter fairly closelv.

In cnapter 3 we consider categories indexed by topological spaces. We first review
the concepts of indexed category theory drawing mainly from Paré and Schumacher
[19] and also from Lever [11]. We then introduce the concepts of nltraivite continuous
function. The Top-indexed categories that have right adjoints for the functors indneed
by ultrafinite functions are introduced next and are called Los categories. We close
the chapter with a characterization of ultrafinite continuous functions.

In chapter 4 we start with a brief review of the folklore of functorial weak (co)limits.

We then explore the relation between functorial weak (co)limits and retractions of



categories We apply these results to show that if a lett exact catcgory € has an alge
bra stincture for tie 2-monad gencrated by the adjundtion Pretop>—; I ex., then C
is a pretopos. This points the way to show thet the forgetful functor Pretop — Ler
is monadic. Further analvsis of this will have to await another paper. We again ap
ply these 1esults to show that algebias tor ditferent 2 monads over CAT have certamn
limits and colimits, We consider then in detail the two succcssive monads of preto

poses over T

AT we are interested i and their relation with pre ultracategories and
nltracategories.
In chapter 5 we combine the approaches from chapters 3 and by detinine a monad
¢ e1 the category £0s. We again relate this catesory of algebras with nltrac tegories,
In chapter 6 we detine Top indexed categories of coalgebras over categories with
hltered colimits and products. We genetalize the result in Lever [11] and use this
tesult to show that any Top mdexed functor I7. MOD(P) — SET satishies that

Fl: Mod(P) — Set preserses il red colinnts,
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A Word About Size

We work in the seiting of Grothendieck universes, That is we fix Grothendieck
universes 7y € U, € Uy Sets, pretoposes, categories in Uy are called small.
The categories of small sets, small pretoposes, small categories are denoted by Set,
Pretop, Cat respectively. We denote the category of sets in U, by SET, similarly
PRETOP and CAT denote the categories (2-categories rather) of pretoposes and
categaries in the second universe U, respectively. Then Set is an object in SET.
SET is not a category in U, but it is a category in Us.

In this paper it is always assumed that limits and colimits are taken over diagrams

with small domain.



Chapter 1

Pretoposes

1.1 Definition and Background

As we pointed ont in the introduction the concept of pretopos comes from {1}, In this
paper however we adopt the detinition eiven in [15] that is equivalent except that the

former definition asks for smallness.

Definition 1.1. The category P is a pretopos if and only if

1. P has finite limits.

2. P has a strict initial object.

3. P has stable disjoint tinite coproducts.

L. P has ~table quotients of equivalence relations.

A functor F: P — Q between pretoposes is called elementary if and only if it
preserves linite limits, initial object, finite coprodiets and quotients of equivalence

relations.

If we denote the initial objeet by 0, it being strict means that for every P in P,
an arrow I — (0 is necessarily an i~onorphism.
Given objects (0, ... in P, the coproduct is disjoint it Hor every j k€ {100}

J # k implies that the square

0,

Y

(b)k T HZ:] ((,)’\

S
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|/

1

is a pullback. Given B — [[}_, @« in P we can form the pullback
I Tk R

o]

Qr — 1= Ox
Ik
for every k. We say the coproduct is stable if the induced map
n
)k
H 1)’\ < U)’x K
k=1

ir an *somorphism. It is not hard to see that, if the coproduets are disjoint and stable,
then the injeetions into the coproduct are monomorphisms.
Given an equivalence relation £ == @ in P. a quotient for the equivalence relation

g
. . r )
is a coequalizer Q— R of [ and ¢ such that the square

Y

p— g

b

Q —— R

is a pullback. [ is stable if the pullback of r along any arrow A — R iy the quotient
of some equivalence relation.

Given pretoposes P and @ we denote by Modg(P) the category whose objerts
are elementary functors from P to @ and whose arrows are natural transformations
between these, We call Modg(P) the category of models of P in Q. ('learly, the
category Set is a pretopos and for any pretopos P we denote Modge (P) simply hy
Mod(P).

Following the notation from [8] (that refers in its turn to [1]). a topos E is called
colierent if it is equivalent to a category of the form: Si(C, J) for some site (C. J) with
C a small left exact category and J generated by a pretopology in which every covering
family is finite. An object X in a topos E is called compact if every epimorphic
family {Y; — X}; with codomain X contains a finite epimorphic subfamily, X is
called stable if, for any pair of arrows & — X « T with S and T compact we have
that the pullback S xx T is compact, X is called coherent if it is both, compact and
stable. We have (see 7.37 in [8])
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Theorem 1.1. If E is a coherent topos and E.;, s the full subeategory of E of
coherent objects, then Eoy 15 an essentially small pretopos and the iclusior E.. ;. —
E is elementary. O

Given a small pretopos P we can consider the precanonical topology J (. is gen-
erated by the pretopology whose covering families are all finite epimorphic families).
We have (sce T.10 i1 [8])

Theorem 1.2. A iopos E is cohervent if and only of there crists a snall pretopos
P such that E is equivalont to the category Sh(P.JY aehere J s the precanonieal
topulogy on P. Furthermar. | the pretopos Pois doteriaine  up to equivalence by B,
J

The pretopos B determined by a col erent topos £ 1s of conrse E 0 From 715

aned 7T in [8] we have

Theorem 1.3. If P is a small pretopo. I the precanoni al topology o P end M,
the cementary funetor My = (P — (SEPJY . — Sh(PIY). then for crery
Set-topos E he functor Topos/Set(E.ShP..]1)) - Modg(P thot assigns to

- My : . .
cvery f o E — Sh(P.,J) the conposition P == h(P..I" u =FE isan couivalence.

O

From [{8] we krow that finitary coherent theories correspond to smal pretoposes,
so what the theorem above savs is that Sh(P..J) is the eclassifving topos for the
conerent theory P over Set, that is Sh(P..J) = Set P].

We will have the opportunit - to wse Deligue’s thecien {see .41 i [8])

Theorem 1.4, .1 echerent topes has encvgh points. O

As it is pointed out in [3] the proof (f Deligne’s theore n resembles tha of Godel:
Henxin completencss theorem for finitary first-order theoties This s done in [18].

We will use the following resut as well (see 7.07 in [8]). Recall "h.- (in [8]

notation) a surjection F' — E is a geom -t ic morphism F 272 E such that = reflects,
isonorphisms (equivalently f* is faithtul, equivaleatly t e unit for the adjunction
fr A fais ono (see L1111 [N])).
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Lemma 1.5. If a Grothendieck topos E has «nough points then there erists a sur-
Jjeetion Set/l — E for some I in Set. .

1.2 Some properties of pretoposes

In this section we include some propeities of pretopses we will use later on. Many
mare properties can be found in [18]. Following the notation in [18] we call a morphism

f 4= Bina category C surjective if for every commutative dizgram
A

Ju o
e

with m a monomorphism. m is necessarily an isomorphisin. Then an image of an
arrow f A4 — B, if it exists, is a subobject m ¢ By B such that there exists a
surjective ¢ ¢ A — By with

1 1

B
q\\ // ‘m
By

commutative. In a category with pullbacks images are unique up to isomorphism.

L
oty

Images are called stable if the pullback of a surjective is a surjective,

Lemma 1.6. Let ('y..., (", be objects in a category C with finite Timits and finite

coproducts. The following condition is cquivalent to 1[i_; (v being stable.

For coery diagram 13-, C -(—m—— D~L- A the square

R
(a1 {(f)
A s D)



is @ pullback, if for every b ihe square

]);: '——ﬂ‘—l\;—’ ( v;‘
T L lfk
y =g I

is a pullback. a
Now, fix a pretopos P for the rest of this section. We have (see 3 3.9 in [IN])
Lemma 1.7. P has stuble anayes, »
(see 3.3.10 in [I8])
Lemma 1.8. P has stable finite sups. O
(see 3.3.0 1 [lh‘])
Lemma 1.9. Goen objects Proo Pyoon Powe have that for every b the E-th tejection
et Py —= 12 Pows a monomorphesm. I
As a matter of fact it can be shown that a category with finite lindts, stable finite
sups. stable images, stable quotients of eqitivalence relations and stable finite disjoint
siums s a pretopos, This is the definition of pretopos given in [I8]. From there it
follows that the definition adopted here and the one given in [1] are equivalent except
for the smallness condition (see the discusion after definition 3. 1.3 i [18]1.
g . l A‘ . .
Suppose now we have o finite family {Q = B}y, in P. Consider the pullback
. Uk
diagrams
qh
[)11: —L“" QL
I { l i
v

4 J——

i
Lemma 1.10. With the abore notations the square
o h
H(JJ\') P'k ”’L’!—_‘L H/ (2.1

(i) | (@)
Q, R
L, 77




is a pullback.

Proof. We do it for n=2. Since finite coproducts are stable, it follows from Lemma

1.6 that for any « : 4 — P the following square is a pullback

(1'17Tz~lzﬂ'z)
D e T

(A xp @)U Q) G Q.
<ﬂ'1,ﬂ'1) <!I]~.‘/2>
- 1}

>,
—

a

where A xp Qg is the pullback of ¢; along « and A xp @3 is the pullback of ¢, along
a. Fora = (fi.[2) : Q2 — P we can substitute A xp @ with Py [ Py and
A xp (,)g with )1-3 I_I 1’22. O

Suppose now that for every & = I...,n we have a pullback diagram

[)k -_____r_k_——> h)k
ol
() ————— Sy,
Qi 7. !

Lemma 1.11. With the aboec notation the square

LIA ])L' Hk re I_I;; [{l\
H ax L ax
Lk Qx L Sk

i fe
is o pullback (i.e. [T preserves pullback).

Proof. In view of Lemma 1.10 it is enough to show that for all & we bave P, ~
Qi X1, 5 Ry and that for j # & we have ), XL % Ry =~ 0. For the second one notice
first that S, <11, % St~ 0 since finite coproducts are disjoint, second that we can

* A

induce a map from (Q, X1, Ry to S X1, % Sy and finally that the initial objeet is
[ I *
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strict. For the first consider the diagram

lr,

P —*% g

Yk l L Yk

N S
QA fk ¢ 1“&. :
lQL l l 1.‘1 ; "

Qr

{
LUk
¥

- S [ 5%

fi g

Since by Lemma 1.9 the injections are mono we have that the bhottom right square
above is a pullback, the other thiee squates are also pullbacks so the exterior one is

a pullback. |

Suppose we have a pair of arrows Q =2 P in P. Consider the imave of | f.¢)

4
(.f"!’> [; ; 1)
'

N

by «

I

)

We say that (ry.r,) is the relation generated by (f.g).

f X

Lemma 1.12. Guen Q=2 i P, of there exisls an arrow p 2 P — () such that
J r

fp=1p and gp = 1p then the relation B 2P genevated by (fog) s refleriee.

s

Proof. Consider the commutative diagram

g~ |lp
k\: [L)
O

Lemma 1.13. Given Q=P in P. {f there cxists an arrow o : () — ) suck that
Y



the diagram

N\
j‘ e [¢2 N !/
J/
P~ Q— P

f

r
commultes, then the relation R=—= P generated by {(f.q) is symmetric,

7y
Proof. By hypotheses the diagram
»
0 (fru) PP

| | (mm)

— 1] . [)
¢ ([ y)

commutes. Taking the image of ([, g} twice we get

)
Q -, L
\\ B Pl
\ y/// '
R
T a (ma.71)
///H\‘\
7 Iy
QJ——— ———m—— P P

So there exists a unique o as shown above such that the resulting diagram commutes,

O

Now we have a condition that is enongh for transitivity. Given Q == P as before,
. g
and the generated relation R:,:l: P consider the following diagram
I
T A Q
0 IR O iy

s |

Q— R—— P



1o

where both squares are pullbacks, By the pullback property we can induee I above
<uch that the resulting diaeran is also conmmmtative, Sinee surjections ave stable and

¢ 1s a surjection it 1s casy fo see that I s also a surjection.

. , " X
Lemuna 1.14. With the abore wotation B0 P s transdiee of theve caists an atvow
l')
o' — Q such that the diggram -
) . }
QL2 _p Q

|

T f ~ I

P~

commutes,

0 LRI CLFRICRERNE .
P'roofl. Iirst we chow that the arrow S ————=>—— — " P P s a monomor-
d

phism. Suppose ,\,f,’ S are such that
)

a s , . \
\11-‘*1.13-"1.!3.\_!’
A=y . P ]
h
commutes, Then eleatly (riorp)spa = (rordeh and (e spe = drory)s2he Since

{(ri.r2) is mono we have sje = syb and s;a = s,b Sinee S is the pullback of rp and

rowe have ¢ — b Since b is surjective we have a snrjection-mono factorization

i

. ]‘ .. )_;\ +

] *AM‘I_“_JT l’ N A 1)
4 \\\\ R4 - <I’1.~1.1';,~1.7’:~‘J\

and 1sing the properties we are assiuminge for £ the diagram

It ‘:.7'1’1-311’1-111'.’?‘

> ]) . ‘I) . [)
{i \\7\'1.7?0
g—r————— — P . P
(1.1) ’ {f.q)

clearly commutes. Consider the {ollowing surjective-mono factorizations

[

S (risprasiaran) PP P*—~—~—»<m'm) PP

.,
\\ - ead

//,'/
”\ . y,/ Y
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and

T h . 5 {7
‘— o P’ T R ] <]-1 . '.2>[) w [)

alse commutes, Notice that both compositions are sutjective-mono, so we can induee

{ as shown such that both resulting traingles commute. Define # 1 5 — I as the

TP I S -
composition S =" —1"— F. Now it is casy to see that

t \\\(7'1-"1- "2-“2)

AN

'y
R———sPxP
(rioma)

"
commutes. This is enough for R== P tu be transitive (see exercise (TRAN) in [2]).

r
0

1.3 Conceptual completeness

In {18] from any given finitary coherent theory they construet a pretopos that has
the “same” category of models. This is done in two steps, first a logical category is
constructed, a very detailed construction of it is given in {6]. The construction of a
pretopos from a logical category is the second step.

The advantage of using pretoposes instead of logical categories is the following,

two theorems from [i8], but first we need a definition (also from [13])

Definition 1.2. Given an elementary functor ' : P — @ between pretoposes we

say that

Fom
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1. The functor I < subohject fll il for every P in PP indnees an epimorphism
Sub(P) — Sub(F'P)

2. The functor F is conservative iff for P in P, F induces a monomorphism
Sub(P) — Sub(F'P)

3. An object € in @ has a finite cover via F if there exists a tinite family

(@1, — 1Py

=1

sich that the family {Q,J—‘»Q}:‘:l i epimorphic,

Observe that F being conservative is equivalent in this context to F'reflecting
isomorphisins.

We have {see 7.1.7 in [I8])

Lemma 1.15. If P is « pretopos thew an clementary functor F @ P — Q bhetween
pretoposes is an equivalenet if and only if it satisfies the following three conditions
1. I s subobjeet full.
2 F s consereative,

S Fry object of Q has u finite caver vie F. .
And {see 718 1in IIH])

Theorem 1.16. [f I/ : P — Q is an clementary functor between small pretopose s
such that _c I : Mod(Q) — Mod(P) is an equivalence then Fois an equi lenee.
O

Theorem 116 is called conceptual completeness. The proof in [I8]. besides in-
volving lemma 113, involves soundness and completeness theoreins and Los-Tarski's

theorem on sentences preserved by struetures.

1.4 Los’ Theorem

A very important example for us of an elementary functor is given hy Los™ theorem.
Let (1,G) be an ultrafilter, then we have the ultraproduct functor lim  T](.) : Set! —

——
jevyre )
Set. We also denote this functor by TT;(-)/G or simply by [];. This version ot Los’

Thecrem comes from [175)]
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Theorem 1.17. (Los" Theorem) The functor lim T(0) : Set' — Set is tlemen-
Jevied
tary.
Proof. (sketch) The proof is not hard but deserves some lines. [[g preserves finite
limits since for every J < I the functor [],¢; : Set’ — Set preserves limits and

(S

the colimit over elements of G is filtered. ‘ce epimorphisms in Set! are split,

we have that [Ig preserves epimorphisms  Clearly []g preserves 0. Finally, given
(4,),(B,) in Set!, we use the fact that G is an ultrafilter 1o show that the induced
map [1; 4./G +11; B./G— [1;( 4. + B,)/g is onto. |

1.5 Slice pretoposes
Let P be a pretopos and P an object of P. We have
Lemma 1.18. The slice category P[P is a pretopos
Proof. Since P is left exact then P/P is left «xact. If 0 is the initial object in
P then 0 — P is a strict initial object in P/P. The coproduct of (J——g—»P and

R P s QII [t’w[!-]ii* P and is easily shown to be disjoint and stable. If a pair of

h .

. . o, . .
arrows 1=+ rin P/1 with (J*‘L* # and H— P is an equivalence relation then the
' b (
corresponding QT > R is an equivalence relation in P. ('onsider its quotient B — 8

in P. Using the universal property of the quotient we induce a map S— P such

that I'l-“s is a morphism in P/P. This last arrow is the quotient in P/P. O

Then we have the forgetfnl functor U : P/P — P that has a right adjoint
Ap: P — P/P. Given f: () = Rin P we have that Ap(Q)=nmp: Q x P = I
and Ap(f) = f x P. We are ready for

Proposition 1.19. The functor Ap : P — P[P is clementary.

Proof. Ap clearly preserves finite limits since it has a left adjoint. Ap(0) = 7p :

0x P — P but 0x P ~ 0 due to the fact that 9 is strict in P. Since binary coproducts
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arc stable and for every @, R in P we have that hoth squares in the diagram

P . ,
Ox P2 om x P2 pp
TQ T Th
Q ~———-—G—————v QUR . - R
are pullbacks, we have that (QII ) x P ~ (Q « P)H(# ~ P). Then Ap preserves

binary coproducts. The proof for preserving quotients of equivalence relations is left
to the reader. ]

For any pretopos A we can induce the functor
-0 A]- : MOdA(P/P) s MOdA(P)

What we want to do now is to give an equivalent deseription of the category
Mod 4(P/P) in terms of the category Mod 4( P).

Define the category Ela(cvp) as follows. The objeets of Elg(erp) are pairs (M, a).
where M € Moda(P) aud « is a global clement of M P, that is, v : 1 — M P in A.
An arrow h : (M,d) — (N,b) in El{evp) is an arrow h : M — NV in Moda(P) su-h
that the diagram

| ——up
b\ L P
NP
commutes. As usual, when A = Set we drop the subseript.

Theorem 1.20. If A &5 « pretopos then the categorics Ela(evp) and Mod a(P/P)

are rquivalent,

Proof.- We define a tunctor © : Ela(evp) — Moda(2/P) as follows. Given
(M.@) in Ela{erp) define ©(M,a) : P/ — A such that O(M,a)(Q - P) is the
pullback

(M, NQ - P)— MQ
My
1 MP,

a
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and if

kK

Q f :
N ST
1)
is a morphism in P/ P, we define O(M, a)(f) : O(M, a)(() -5 P) = O(M,a)(Q =
P’} as the unigue morphirmn that makes the diagram
O(M, u)(y) — /ﬂ[(}
(AL O)(f) s
¥
(M. a)(r) —— MR

"

|~ MP

commute. QM. ) turns out to be an elemeutary functor from P/P to A. Now, if
ho:(M,a) = (M D) isin Elg(crp), then define Q(h) : ©(M.a) — (A, b) such that

for every @ —Ls P in P/P, ©(h)(y) is the unique morphism that makes the diagram

QM. D) (¢) — M'Q)
N e
Q(")(q) hQ

O(M, a)(q) —— MQ
l I My My
//1 ——— 1\[[’\\
/ hP \
1 7 Mp

commute. We define now a functor in the other direction. Define Z: Mod 4(P/P) —
Ela(evp) as follows. Given a model N in Mod4(P/F), when we apply N to

p—2b L pyp

N,

P



where & is the diagonal map, we obtain a morphism Né 0 1 — N(Ap(F)). We detine
ZE(N)=(NoAp N&). Ifb: N — V' is a morphism in Moda(P/’) then it is clear
that the diagram
L0 X))
N’é\\\‘ i “kAp(P)
N(Ap(P))

commutes, Define Z(k) = kAp 1 (Vo Xp. Vo) = (N o Ap, V). It is not hard to
prove that Z is a gquasi-inverse for . O

It is casy to sce that the forgetful functor Ela(cvp) — Moda(P). (M.a) — M
is isomornkic to the composition Kl g(erp) 2, Mods(P/1") oy Mod s (P).

We use this description to give a categorical proof, instead of the usual model
theoretic argument, of the following theorem from [15] we will need later. First a

little notation. Given an nltrafilter (7. G). we have the ultraproduct functor

If we have a family of models (ML) we denote Lm TT((M) ) by [T, M/G. When

TeN e
we apply this finctor to the constant I-family (M) we denote the result by WY, We
denote by &+ M — MY the usual diagonal morphism. If we have a monomorphismn
QP in P and a model M in Mod(P). we have that M) — M P. We may assiume
that this mono is actual containment of sets, If we have a homomorphism fr 0 N —= MY
and elements « € P 0 & NP for some P in P such that hP(b) = éP{«). then it is
not hard to see that for every Q=P in P, b € NQ implies ¢ & M(). The converse

alzo holds.

Theorem 1.21. Assume P is small. Let (M, a). (N.b) € El(cvp). suppose that for
every monomorphism (Q~— P we have that be NQ implies ¢« € MQ, then there erist

an ultrafilter (1.G) and a homomorphism h : N — MY such that hP(h) = ¢ P(«).
We will prove the case P = 1 first
Lemma 1.22. Let M, N in Mod(P), suppost that for ¢very monomorphism Q — 1.

NQ =1 implies M) =1, then there exist an wltrafilter (S,G) and a homomorphism
N — l‘[g.
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Proof. Notice first that the condition of the lemma is eynivalent to saying that
for every P € P such that NP # @ we have that M P # (. To see this, consider the
image of PP — 1. Since N preserves images, if NP # @, then N of the image must
be L. Then M of the image must also be 1, therefore M P # @, The converse s clear.
Detine S to be the set of finitely generated subcategories of FIN). If I € S, there

exists a diagram I'y : I — FI(M) such that the diagram

I—e BI(N)

(
)|

M) — P

commutes, where the functors to P are forgetful functors. To show this, consider
the diagram I > EFI(N) — P. Since P has finite limits and I is finitely gen-

erated we have that the imit [ 7 m P of the diagram exists in P, It is clear
the NIYel

that N({ 72 m Py =7 m NP Wehave ()gevpyp € L2 m NP Then

-— -— e
(he Niter {teNM el (he NPy el
L i m NP#P Itfollowsthat L i MP #¢. Butanelementinl ¢ m MP de-
B i T v i e
(e NI el tbe NPyET (bg MPMyel

termines a I'y : T —= FI1{(M) such that the square above commutes, For every I € 8
choose a I'y. Given I € S, let T(I) = {K € S|I < K}, It is clear that T(I) # 0.
Given T and I' in S, Let J be the subcategory of EI(N) generated by TUT'. Clearly
J € S, and {(IDNTI') = 1(J). Let G be an ultratilter on S such that for every I € &
we have that T(I) € G. Consider the ultrapower MY, and defne & @ NV — MY as
follows. Given b € N P consider the subrategory of FI(NV) that consists of one ohject,
(b€ NP), and its identity arrow. Let hP() = (I'tr(b € NP)) e (renp)- So, we have
a function P : NP — MYP. We have to show that A is natural. Let f: P — P

in P, consider the diagram

vp 2L gpep

Nf [ [ MYf

NP —5m M¢

hP’

Let b € NP, and let I be the subcategory of EI(N) generated by (b € NP) L,



(Nf(b) € NP). For every J € Sp we have that MAUp(h < NP)) = (VW €
N P4, Therefore the previous square comnmutes. [

The proof of the next lcmma is easy

Lemma 1.23. Let (M, a), (N, b) € El(erp). the following two statements are equiv-
alent;

For cvery monomorphism Q— P, b€ NQ implies a € M@

For every monomorphism r—1 m P/P, O(N.0OW(r) =1 inplics O(M, byir) = 1
d

Proof of theorem 1,21, Suppose that for every monomorphism ()~ P we have
that b € NQ implies ¢ & M P, then, by lemma 1.22 there exist a filter (S.¢) and
a homomorphism & : O(N,b) — (M, «)". This corresponds to a homomorphisim

h: N — MY such that hP(h) = éPla). [

1.6 Left exact categories and pretoposes

It is shown in [18] that given a small site (C'.J) with C" a left exact category and J
generated by a pretopology (in the sense of [8]) all of whose covering families are finite,
a small pretopos F(C.J) can be constructed such that the category Mod(F(C..1))
is equivalent to Sh(C,J). This is done by producing fivst a theory Te.py such that
for any logical category R, R-models of (C',.J) are “the same thing” as R models
of Te.ny (see 6.1.1 in [18]). From Tcy a logical category B(C..J) is constructed
together with a canonical model My : T'gy — R(C,J) with the universal property
that for every logical category R, R models of T p are “the same thing™ as logical
functors from R(C..J) to R. the passage given by M. Finally R(C..T) is completed
to a pretopos FI(C,J) and a logical functor Ny @ R(C.J) — F(C..J) with the
universal property that for every pretopos P, logical functors from R(C'..]) to P are
in correspondence with elementary functors from F(C..J) to P. In pardcular, when
J is generated by the pretopology whose covering families are singletons containing
isomorphisms a P model of (C,J) is simply a left exact functor from C to P.
Then the construction described above gives a left exact functor Fy : € — F(C,.J)
with the universal property that composition with Fy induces an equivalence from

Modp(F(C,J)) to Lex(C, P) for any pretopos P. We have a forgetful functor



[" : Pretop — Lewx. The discussion above gives a small pretopos F(C) for every
left exact category C together with a universal functor Fy : € — F(C). This clearly
produces a left adjoint for {7. F(C) turns out to be the catogory (Set®™" )., (see
9.2.5 in [18]). What we do iu this section is to give a combinatorial deseription of
F(C) using only C.

N (’p
1.6.1 Coherent objects of Set®
Start then with a small left exact category C.

. . . . Yop .

Lemma 1.24. A functor F': C 7 — Set is a compact object in Set®” if and only if

it is finitcly generated (that is, there exist objects (', ... Oy in C and an ¢pamorphism
he1 C ) — )

Proof. Suppose F' is compact. For every »r € F(" consider 7(,¢pry 1 C(L,C) — F

MEPA T : ry_TireF0) .
such that r.epyC(1e) = 2. Then the family {C(..(") F}eepe is an
epimorphic family. Since F' is compact there exist oy € F(', .. r, € F(O, such

(€ R0 . . . . "
that {C’(,.(';'.)——(ﬂ*(':———“LF}’Af=1 is an epimorphic family. This clearly means that
(T(erercn)y * L C(, (k) == F is an cpimorphism.

Assume now that we have an epimorphism () : [, C(-, i) —>F and an
epimorphic family {(r'l,——',:'—*F}‘y. Then for every £ = 1,..n there exists some
ap and rp € G, Ck such that f,, Ck(@x) = nCi(le, ). It follows that the family
{(4,, S, F'}i_, is an epimorphic family. ]

Proposition 1.25. A functor F: C" — Set is a cohcrent object if and only if there
is a coequalizer of the form

m

[Heen)=TlCL)r—F
=1 k=1

. op . .
in Set®” such that o1 C(L D)) == iy C(L.C) generates an equivalence relation
. op . . . .
Proof. Let F in (Set®”)... By Proposition 1.24 we can find an epimorphism
n A (TL) t b M : -—l‘—l-b n ! 33 M
=1 C(-, Cx)——=F. (onsider its kernel pair R_F, ro1 Ci-,Cr). Since R is
2
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compact (it is eoherent by Theorem 1.1) there exists an epimorphism

[Hcen) (%) - R
=1

This produces a coeqnalizer diagram

ke M

[Hewp)=== Il c(.c)—F.
=1 k=1
with (ri.73) the equivalence relation gencrated by the pair of arrows on the left in
the diagram above.
Conversely, assume [7, C(L D)) 22 1L, O C) = Flis a coequalizer such that
., . . 'y
the pair of arrows on the left generates an equivalence relation B 73 [[i, C(. (%)
r
. , ) . . o
Since [P, O D) and [T Co C) are coberent and images o (Set”) ), are cal-
. yop . v . .
culated as in Set®” we conclude that B is coherent. Sinee (r1.r,) is an equivalence

relation with coequalizer I it follows that /' is coherent. |

Remark 1.1, Withont the equivalence relation condition in Proposition 1.23 we wonld
simpiy have that P is finitely presentable. So being coherent is @ stronger condition

on a functor F' that being tinitely presentable.

1.6.2 Free Pretopos Generated By a Left Exact Category
C'onsidering the previous section, the idea to construet the pretopos from C is to
characterize the pairs of arrows of the form

[cen)= e
= h=1

that generate equivalence relations (that is, that the image of
[Hcwn)— (I ci. e < (Il Cren
=1

k=1 r=1

is an equivalence relation).



o
-1

Notiee that an arrow [, C(_13,) 2. i, €L O ds a j-famdly of arvows

(ern) 2 uc

and that this i turn corresponds ta a family of arrows {1), -‘~fj* b H Thatis 4 =
{C ), Or put another way, there exists a fnetion [ @ {12 om} — L. 0}
and a family of arrows {f, 1 D, — Cydiey sueh that for every  the dingram

Clf) CL O

CLDb)
iil 110)
H}?;I C'(,. 1)1) “"7}”* UZ.:, (y(u(‘k)

commutes, Let's start with two fmetions {1, .} =341 e} and two families of
o
arrows {f, 0 7, - Cpabisyand {g, 0 1), = Cyg Py in C and assnme that

m

H oL mn ﬁ

( Iy © C(“ ‘1.1 =t

generates a reflexive relation. Consider then the epianono factusization

(C(»« f).CLa )

" (‘( . 1 S " ;\ 1 . Il 1
\.\k ’/’/1/’
P R = ()

We are suppusing then that {rq. 7} s a reflexive refation, Then there exists an arrow

r HOL L) ~ R osuch that the diagram

v A ¥ ' n 1
U}E‘;] C("‘( k) A:r.l C(“( k\’ x U&:l C(*'( ‘\‘)

\ //
T Rr/ <"1”"‘2>

vomnites. Sinee 3 is epi we ean find a funetion 2 {Lo..n} ~ {L...;m} and a faily

L . e
of arrows {(”,L.w-;—‘vl),m}z:‘ such that for every &, 3C(ry) = rC(1r). This implies



that for every k. fiuyn = L = gyyre. 1t follows that fr =1y 0 - gr and that
the diagram
iy CLon <L s Ol e s cn)
A3 L 4
N

\(‘MU(‘(*‘I &)

(Cleca )™ (Cleeuy))

Y

iz € )

communtes, Lhe existence of « commutative diaeram as above tmplies that the een
erated relation is reflexive, We will have to take care of symmetry and transitivity in
the same way, and show that they work in any pretopos,

For the formal construction that follows we are going to nse the concept of limit
sketeh, for which we refer the reader to [16].

Let 8 be the limit sketel § = (G DT, where G is the eraph

P12 ( ll_“jg_,
S

.

1)()1 - {

1o

D consists of the followine diasrams

() — | )" 1~f—+n | —>>0
] . | R
1..1 g 1(,1 / . [ y S
* » Y
] () l |
2 —f—* | D] ._I_).l.‘:_.. 1
P 1 l f ¢ i l!l
I —. =0 —
| l 7 0]
and L only has the cone
P12

Potl

—_— e P
e ot
—,

[

\.1
—
-
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We are going to consider models of the sketeh S in Set,. Given a model @ :
8 — Set, we are thinking of ®(0) as the set {l...,n} and ®(1) as the set {1,...m}
in the discussion above. and f.¢ and r as the functions with the same names as
above. The introduction of the pullback ®(2) is necessary for transitivity, The names
in the graph G are not aceidental, r relates to reflexivity, s to symmetry and ¢ to
transitivity. Notice that the diagrams in [7 that have » in them represent the condition
on the indexing sets that we found necessary on the discussion above for the generated
relation 1o be reflexive.

For every model ¢ : § — Set;, we can construct a new limit sketech S =
(Go. Dy, L) as follows. The graph Gg has as set of nodes the set @(0)[J (1) 11 P(2).
To make the notation easier we are going to denote the elements of ®(0) by the vari-
able r, possibly with subindexes, the elements of ®(1) by the variable y again with
possible subindexes and the elements of $(2) as pairs (y1.42). We have the following
arrows in Ge

y=Le B 1(y) for overy y € (1),

;/JL«I)g/(g/) for every y € ®(1).
r .
r—®p(r) for every r € ¢(0).
yj—* Gs(y) tor every y € O(1).
t .

(12 42) — (a1, y2) for every (y1, y2) € B(2).

Pt . - R

(y1242) = Oy, y2) = 1 for every (y1,12) € O(2).

P12 — g

(1, 42) == Ppr2(y1. y2) = y2 for every (y1.y2) € P(2).

Notice that we have given the same name to many different arrows. it y; # y,
then ((y; —j—- Of(y1)) # (v i» & f(y;)) so it will be necessary to specily domain and
codomain when confusion may arise.

Dy mirrors D in the following way. For every v € ®&(0),y € ®(1) and (y;.y,) €
®(2)) the following diagrams are in Dg.

: . f y
& L or(r) &= o) y— ‘I:f (y) y— ‘fg(y)
s 4
ye / 5 [t 8 yd
1, S 14 a f l //J l y f
x r ®s(y) Ps(y)
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I
(1 12) —L— D1 12) (1)~
1
Pt lf ¢ i 7
¥
T ® [ () iy y2) ——5— Pyii.)

and for every (41, 42) € ®(2), Ly has the cone
P12

(nyr) ————— .

fun L if

h— ¢ G fiy)

Given a left exact category C we are going to consider models 12 S¢ — €0 We
will denote () by I, willanly ey by Ty and Figcapy by I,
When we have a pretopos P oinstead of jist o left enadt category aud o model
[ S — P we caninduee artons oo s g Uy — I cggop I osuch that the
dlagrams
NV ‘
y —— Ly l,/

|
ty l Iq.f(,() i,

111

— 1 Paty)

, L)
' v

(1.2) HuE'i’(l) ] d “‘";T"’ H’E‘I’IU) I Uuwbm F., *—;““’ IJ:E'I’(H) I,

commute, Then we can consider the relation generated by {2003 that 1s. the imaee

R <‘T~' ! '5 \ N
H,,e«bm l Yy U E'bm\{ [ U ebiin 1

- »
~ -
~
¢ Tha

-
R (Tgary)
Proposition 1.26. (iven a prctopos Pooa model & 1 & — Sety and v wmodel |
S - P.induee pov ey U = Hocay s as wbove. The relation yeneiated by

(p. ') &> an cquivalence relation.

Proof. Induce p o [T, ey Ve = U epy Uy such that for every o = &) the diaeran

F‘I'I(l)
I-J I']»,( }

IL eb(0) F.l' -*T’ Huelb(x) ru
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comnnites. Since the diagrams
1‘7' A 2 r 1
Fr I $r(s) I r I — 1 Pr(r)

:r,\\ // I'f lr,\\ Ty

x

r.z' F.r

r. = p. it follows from Lemma 1.12 that the

commute we have that pp = lu T
TE€P{0

generated relation is reflexive.
Similarly induce o : [Teoy 'y = Iyeoq) Iy such that for every y € ®(1) the
diagram

I, Ly Fgs(r)

iy l { Is(y)

Wyeay 'y —5— yean Iy

commutes. [t is easy to show that the diagram

Hyeay Uy

// \
Ve

v/ a \\u\’*
~N

/

’ N
s AN

I's kY
Hrea T < Wyeay Uy — Hreaqn T
t

commutes. Then by Lemma 1.13 the generated relation is symmetrie.
For & € ®(0) denote by ®(2), the set {(y1.y2) € Y21 f(y2) = «}. By Lemma

1.10 we have that

. 1, U'pr:

H(ylvy2)€¢(2)r Pyiu, ( Jz——['y*)' UyE(p!*—!(l‘) F,

(i por) (I'f)
HuEd’g“’(r) Fy (Fy) R

is a pullback. It follows by Lemma 1.11 that

15, I'p1;

Up et Vo Uy pr2) Huea) Ty
(i) | | )
r

Hyefb(]) y (Fg)

Hrea s
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is a pullback. So induce 7: iy, oea2) Vnwe = Hyeaq) Uy such that the diagram
S o I't .
l y <P I v " l‘l’t(mmz)
Hyrouz) {9t(u,u2)
H(m-u Jed(2) 1 iy T T TFE TN HuE'D(l) I y
commutes for every (yy, 4} € ®(2). It is ecasy to see that the diagram
I (I',u "'1’12> I (im I‘IJ“1> I
Hyé‘b(l) g I-I(ln wyery iy T > Ledqy oy
I
l,/‘ l T Y"
ooy s 5 Hyewoy Uy = = [eeom .
committes, Then by Lemma 1.11 the generated relation is transitive. 0

Now, for a left exact catepory C' the objects of F(C') are pairs of models

(8 '_i}i Set”. S-]) *"[:'C).

We are thinking that the pair (®.T) represents the quotient of the equivalence relation
{iasplf)

penerated by [, eeqy 1y =5 - L vy
\I‘!‘.‘l(.’/)l !I}

asking for finite limits in C.

I',. but this is not in €7 since we are only

Now, for the arrows in F(C) we need to retain only the information given by

[ and g. To do this we consider the graph H = 1 =20 and regard it as a limit
4
sketeh where the set of commutative disgrams and the et of limit diagrams are

both empty. That is, we cousider the sketch 7 = (H,§0.0). We have an obvions

sketch arrow 7 ¢ T — & We are also going to use the sketech 7 = (1,0.9) and
1]
the sketel, morphisins I__l_.' T. Given a model & : & — Set, we can define the

graph Hp whose set of nodes is @(D T 9(0) and with arrows [ : 5 — @ f{y) and
gy — Gy(y) tor every y € O(1). Then let Ty = (Hp.0.9). In the same fashion let
oo = (Hao, 0. 9) and Ty = (Hp1.0.9) where Hygy is the discrete graph with nodes
®(0) and Hy; is the discrete graph with nodes ®(1). We have the obvious sketch

arrows Tg — Sg,Too — T and Ly, — Top.



Giver gwodels ¢, 0 0 & — Seb,. an arrow b &7 — U, of models indnees an

1

. : . .0 -
obvions h @ Ty — Ty. Suppose we have two pairs of models (8 — Sei, Sy ——= ()

L v LA . .
and (& — Set,. Sy — (') and a pair of arrows of models

l.s Ty

T 81 .
L e
i (I’ h n_l (v
SRR ST
( ].3) S \IF—" SPtu T — b\p

Let's take a eloser look at what these arrows ate. i is a pair of functions masing the

diagram (f)
ot
RN
Vi)

sequentially commutative, Then o gives an arrow ar @ Iy — Ny in C for every
€ ¢(0) and an arrow oy : Iy = Ny in C for every y € O(1) in such a way that

the diagram

11!/ r IW,
¥

Vgt + (o p()
i
ocdy(y) Loy ad, )
4

Nyihi() v Ny Y A s1(a)

[y

commutes for all y € ®(1). What this represents in our informal disvnssion is a

sequentially commutative diagram

ey Ty ——= Usw!'x
(oY) (trog)mr)
H\lf(l) Ay’ — Hwn) Ay

that would induce an arrow between the coequelizers. There is. of course, no unique
way to induce arrows between coequalizers su w= will need equivalence classes. The

definition is as follows.
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Given a left exact category C let F(C' be the category whose objects are pairs
¢ I .
of models (8 — Set,. Sy — 7). A morphism

(b ‘(I—t‘SEt“* bAL( ) - ‘-\-‘\_II’ASEt“ s\l) _—é (v)

is an equivalence ciass [(h, 7)) such that (b, ) are as in 1.3, The equivalence relation

is detined as follows. (b, 7} ~ (k. 7) if there exist morphisms of models d and o

7S Ipy—— Sy
| I
I i d &l O
d ’_\
(l 1) S '—l‘y—“' St‘t” I\]:l —— Sny

such that the following diagrams

‘I/’U) il ¢()) ——— ho U((H ,.\m( ) «L I'. ar, ..l;l.,(l,.)
N ' N
Yy - d W f Ay s AS
(l.-‘)} \I}(l\ Al(xi

commute,  We show that ~ is av equivalence relation. Given (h, o) define d =

ho Ur

(D(0) —— W) ——P(1}) and for everv = ¢(0) detine da as the compuosition

. ox Ar
Fe i A/’u( T —M,(/(n(m
With these detinitions it is clear that (h.e) ~ (h,a). Suppose now that (h.a) ~

(k. 7). shen there exist d and & with the corresponding properties above.  Define

1 5
d' = (®(0) ( w(l) v U(1)), and ¢'(r € D)) as the composition

.o As
Fo—— A 4y Qusgiuga))-

It is not hard to see that ' and ¢ satisty the conditions for (k.7) ~ (h.m). Suppose

now that (h,o) ~ ( r) and (k.7) ~ ([.#), with d and & gnaranteeing the first



equivalence and d’, ¢’ the second. Then there exists a unigne arrow ®(0) — W(2) that
makes the diagram

1[
®(0) : -

W(2) REDE
WIML I‘I’f
e (1) e V()

commute. For every @ € ®(0) there exists a unique arrow Iy — Ay, that makes

the diagram o
l‘.r : ™ ~\
’ s Appe '
s Aei(w)d'(x) '-\'1'(»1‘)
xr |
A])m Af
]
N Ad( 1.) Aq —>- _\q;fd:(f)
U

commute, Define d” = (®(0) — W(2)——U(1)), and {for every » € 9(0), define 6"
as the composition

. At
Iy = Ageaana) = Awed(e) di(a))-

It is easy then to show that (h.o) ~ (1.#).

Composition in F(C) is defined as follows. Given
((p’F),_[Q‘_*fﬂ.(\p._\)_[(ﬁfﬂ»('r.g)

its composition is simply [(kh.7o)]. Tt is not hard to prove that the composition is

well defined. It is clearly associative and the identity morphism of (®,1) is [(1,1)].

. . , . .0
If P is a pretopos we know from Proposition 1.26 that for any ohject (S — Set,.
p 1 1 J

I . . C . .
Sp—> P) in F'P we obtain a pair of arrows (see 1.2) [T, | v Hooy I's whose
l‘

generated relation is an equivalence relation. This in particular means that the pair
o)

. L, ¥ u o, .
of arrows has a coequalizer [Tgy Iy = Heoy I'e = U (the quotient of the generated
)
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equivalence relation). Given a pair (h,o) as in 1.3 we obtain a commutative diagram

-

R S L .
Haey 'y — Hpn ' —1

(Thien i) (tro(yor) Ay
o ’ v

r 14 .
H'l’(l)"‘k!l’—‘—‘*{j—» H‘I’(‘l)‘—\l' ’I !

therefore we can induce t, -y above making the diagram commutative,
Proposition 1.27. With the ahovc notation, if (hooy~ (kory then ty o = 1,

Proof. Let o and ¢ be as in L1 such that the corresponding diagrams commute

. . . TS ..
making (b, @) >~ (k. r). Consider the arrow [1p, 1, SNy [Ty Ay Using the
commutativity of 1.5 we have that the diasram

rrz\

.
aon 70) (g
H\b(m —\x' - L Ud'(m I f—— H-P ) A 4
*

N

l‘l \1.1{,)(“.?"\, ~!

N

ey

commutes. Since 1 coequalizes (L0} it follows that

v _“,"”‘ L T A

P(o) {any I'/' B

t
- . oy A . . .
commutes, Th vefore [gy Uy — "3’ also commutes. Sinee u is epi we are

Hkr
done. 0 e
Proposition 1.28. For any smallleft vract category C' the category F'C is equivale nt
to the category (SetS ") ...

Proof. Detine (7 FC — (Seto{p)w;‘ such that any object (&.1') in F'C the

diagram

- l‘x‘f(*/)C (T f 3
1 N > ] ClT)) — G T)
$r1) ( Lby(y) C(—~I ‘1)) 3(v)
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s a cocqualizer. The coequalizer exisis as a consequence of Proposition 1,26, Given

[ )] (2.1) — (V. A) detine G([(h,)]) as the induced arrow snch that
o C-F) —— G,

(i) (Set ") (- Ol or))) G([(ho o))
o C Au) G(U.A)

commutes. It follows from Proposition 1.5 that G[(h,m)] is well defined.
In the other direction define H : (Sf’tcnp)m»/, - ['C as tollows. For cvery K
in (SetCﬁ")“,h choose a finite set &), an object ') for every & ¢ @d(0) ind an

: . ! . .
epimorphism I_Iq;(“) C(. )= K. Consider R Hd’(“) C(. 1), kernel pair of
2

this epimorphism. Since B is compaet we can choose a finite set (1), an object 17,
in C for every y € ®(1) and an epimorphism [Jpqy C(., Ty} ——== B. We obtain then
a pair of arrows
@

[Hcery=—=T]Icwr1.)

o(1) LA YT
whose gencrated relation is the equuivalence relation (rp,rp). We can then tind fune-
: : I'f.
tions Of. @y : d(1) — O(0) and arrows g,y +—1

such that the diagrams

Iy .. .
_,,——Lll.p_,,(y) for every y < ®(1)

N ¢, - “ N I‘) Bl
C(.1y) —=— py C( 1)) C. 1) ——1py C(- 1Y)
cern th (. Ty) th
C(_, F'I‘f(y)) T U(b(()) (7(*. l‘f) C(—~ F‘[’_q(u)) - H‘l‘(U) C(~~ [‘4-)
1o f(u) 1hly)

commute, Since (rq,rz) is reflexive and [[gq) C(.T,)) == R epimorphic we can
choose a function @r @ @(U) — (') and arrows I'r : (", — Dgy such that the

diagrams

d(0) ~L— d(0) —L &(0) r,




a8

commite

Similarly, nsing svinmetry and transitivity we can define the rest of the elements
necessary to obtain an ohjeet (¢, 1 of F'C. Detine then [I{R) = (¢, 1), Given an ar-
row g0 K — K'in (Set(w), weassume HK') = (W, A) Sinee [Ty, CC A~ A'

i~ epimorphic there exists a map K - [y C1- A0} such that

H

h—— K’
LN » ’
[Ty,0) C(- N0)

A%
commnuites, ]ll]\ lIl(]Hl'(“\ dll arrow

[Howr)y—-J[ A

B0 Y1)
Therefore we can find a function 20 0 &y — W0} and arvows or 0 T, = Ny for
every r « ®(0) such that the diagram

/e ;
Vo

LI‘P(U] ('(~~ 111 ) — % U\p(m ('{ . .A“)

| |

I /i — K’

commites, There exists then an arrow B — I such that the diagram

[ i — I_I«Iv(u) c.r)

| G—— U‘IJ(U) C‘(~~ At')

is sequentially commutative, Sinee [1yq, C(o A,) == K i~ an epimorphism we can

find an wrow [Ipa) C(- 1) = gy € Ayr) such that the diagram

M) € Ty) — gy Cl- Ay)

R - K
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commutes, This gives a funetion 21 @(1) — W(1) and arrows oy : 'y — Ay for
every y € ®(1) such that

Clay)

CTy) Cl dnm)

ty Thi(y)

Hoy C-Ty) — o) €Ay

commutes, It is easy to show that h and o as defined above are arrows of sketches
as in L3, Deline H(u) = [(h,a)]. It is not hard to sce that if we change the choices
made above to produce (h, ) we obtain an equivalent pair. (7 is the pseudo-inverse

of i O



Chapter 2

Ultracategories

The concepts of pre-ultracategorv, ultramorphism. ultracategory and Makkai's theo-
rem (Theorem 2.3) all are taken from {15].

Given a pretopos P we want to consider the category Mod( P of models of P.
Mod( P) has filtered colimits (and they are calculated pointwise) but in general we
can not guarantee the existence of any other kind of colimits. The situation for
limits in Mod(P) is even worse. However, Mod({ P) has ultraproducts and they are
pointwise. That 1s. given an ultrafilter (1.{) (a set [ with an ultratilter { on ) we

have that for every family (M.}, of models of P the ultraprodiuet im [T M, is a

feldired
model of P. where the products and the filtered colimit are taken in Set?. So we
have a functor [I{] : (Mod(P))! — Mod{P) that assigns to any [-family of models

its ultraproduct. Pre-ultracategories are an att npt to capture this situation.

2.1 Pre-Ultracategories

Definition 2.1. A pre-ultracategory A consists of a category A together with a
functor (] : A — A for every ultrafilter (1.2f). We refer to the functor [1{]4 as
the ultraproduct functor associated to i in A.

Given pre-ultracategories A and B, a pre-ultrafunctor i : A — B is a functor

40
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F: A — B together with a natural isomorphism [i{, F]

Al []a
jal [, L} yawi
' ¥

B! —s+—B
Ul
for every nltrafilter (1,4). Pre-ultrafunctors compose in the obvions way.
Given pre-ultrafunctors F.G : A — B, a pre-ultranatural transformation r :

F — (i is a natural transformation 7 : /' — (/1 A — B such that

Fo [U]_é_._lgﬂé—_» (Foltd]a
4. F) l 0. 0)
[ZI]Q o FI W [l’l]_Bi_O (1'1

commutes, Pre-ultranatural transformations also compose in the obvions way.
Let PUC denote the 2-category of pre-ultracategories, pre-ultrafunctors and pre-
ultranatural transformations whose underlying categories are categories in the second

universe.

Whenever we have a pre-ultracategory A, an ultraalter (7,44) and a family (A;),
in A" we denote U] 4 (A.) by [Ty A./U or sometimes by 1TA,/U. Similarly. if (f,) is
a morphism in A7 we have [U]4 (f:) = [I; f,/U.

If Pis a pretopos then Mod(P) is clearly a pre-ultracategory Mod(P) with the

usual ultraproduet functors. In particular we can consider the pre-ultracategory Set

of sets together with the usual ultraproduct functors.

2.2 TUltragraphs and Ultramorphisms

The ultraproduct defined above for models is a combination of limits and colimits,
therefore we are in very short supply of canonical maps in or out of an ultraproduct

(as oppose to an honest limit or colimit). Here is where ultramorphisms try to fix this



lack. But before considering the concept of ultramorphism we need the concept of
ultragraphs. Ultragraphs are to ultraproducts whai limit sketches are to limits. That
is, in an nltragraph we want to specify nodes that will represent the ultraproduct of
other nodes (the same way as we want some nodes in a limit sketeh to represent the

limit of some other nodes).

Definition 2.2. An ultragraph G is a graph G together with a partition GY UG? of
the nodes of G and such that for every 3 & G" we have assigned a triple (Lo dfs, 41
where (1;.043) is an ultratilter and g, : L; » GY is a function. The nodes in G7 are

called free nodes and the nodes in G are called hoimd nodes.

Then an nltradiagram is the equivalent of a model of a limit sketch. That is, an
ultradiagram is a diagram that assigns to a hbound node an nltraproduct of the images

of the nodes associated with the bonnd node.

Definition 2.3. Given a pre-ultracategory A and an ultragraph G. an ultradiasram
D:G — Ais a diagram D : G — A together with an isomorphism
d: .
[)(‘f}——"n],[’{yf(lj)/Z(,f
for every 3 € G,
Given ultradiagrams D, D' : G — A a morphism o : 1) — D' is a natural

transformation a : 2 — D' between diagrams sieh that the square

[)(j)____ilj_.__., H,ﬂl)(y,;(i))/ll‘«
mi [ [, (gt
D'(3) B [Ty, D'{ys()/U

dy

. § . . .
commutes for every 4 € G'. Morphisms between ultradiagrams compose in the
obvious way. sc¢ we have a category UD(G, A).

It we have a pre-ultrafunctor @ A — B and an ultragraph G then it is not
hard to see that F indures a functor UD(G, F) : UD(G.A) — UD(G.B) by

composition.
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Given a node & in G we define the functor cop : UD(G.A) — A as evaluation
at &, that is crg (D) = D(F) and cvi(g) = ok forevery a: D — D'in UD(G, A).

We have the following corollary of Los' theorem 1.1

Corollary 2.1. For any ultragraph G the catcgory U D(G, Set) is a pretopos and
the forgetful functor UD(G, Set) — SetS is i mentary. N

We are ready now for the definition of ultramorphism.

Definition 2.4. Given a pre-ultracategory A, an ultragraph G and nodes & and {in
G an ultramorphism § of type (G, F 1) on A is a natural transformation & @ crp —
o UD(G.A) — A,

An example of an ultramorphism on Set is the following. Let (7.{) be an ultra-
filter and f : I — J be a function. Consider the ultratilter V = {J, < J|f~V, € U}
on J. Detine the ultragraph G as follows. G = {4.7} and Gf = .J. There are no
arrows in G. Detine (13,44 93) = (LU, [ : [ — J) and (1,.04,,4,) = (J,V.idy). We
want to induce a natural transformation é : e o, — cvs Given a family (1) of sets

let 8(A,); : T14,/V — [] A;(¢) /U be the unique map that makes the diagram

Uy
H.:EJo 1) T H “1.1//]}
ﬂ-f(l)//
Af(z) b(‘{l)"
%

N
N

[Les-1a, -“f(z)l-?:;; [TAp)

commute for every Jy € V. It is not hard to show that & defined this way is a natural

transformation 6 : cv, — vy, That is, 6 is an ultramorphism. As a particular case

observe that when J = | we obtain the diagonal function A — AY for every set, A.
Denote by ASet the set of all the ultramorphisms on Set. This makes ASet a

set 1in our second universe.



2.3 Ultracategories

Definition 2.5. An ultracategory A consists of a pre-ultrecategory A together with
an ultramorphism éaq @ vy — ey UD(G,A) — A for every & @ ey = oy e
UD(G. Set) — Set in \Set.

Given ultracategories 4 aud B an nltratunctor I£: A — B is a pre-ultrafunctor
F: A — Bsuchthat Foa = ogUD(G.L).

Given ultrafunctors £, 7 0 A — B an ultranatural transformation o0} — (7 1s

simply a pre-ultranatural transtormation o @ F— (4,

Ultrafunctors and ultranatural transformations compuose in the obvions way and
we have a 2-catesory UC whose objects are nltracategories whose undetlyvine pre-
nltracategories belong to PUC', ultrafunctors as [-eells and wltranatural transforma
tions as 2-cells. We have a locally full forgettul functor I7¢ — PUC. When there is
no risk of confusion we will omit the corresponding nuderlinine for pre-ultracategories
and ttracategories, the context shonld make elear which one we mean.

It P is a pretopos we can give the pre-ultracategory Mod( Py an ultraca —eory
structure as follows, First notice that for every nltragraph G and everv PP & P we
can define the functor UD(G. Mod(P)) — UD\{G. Set) such that [+ Di_i P
aud o — a()(P) for anv o2 D) — D'in UD{G. Mod( P)) where of course we have
that D) (PYE) = DIMP) for any node £ < G Given an altramorphism o 1 e, —
cop s UD(G, Set) + Set deline Opod(P) S CUR 7 (UL UD G Mod Py - Alodi P
siich that for every PP « P (Oppapy VP = ¢Di0P. In this way we obtain the
ultracategory _@__I(J:(_I(Pl of models of P.

Proposition 2.2. For cocry ultracategory A the category UCTAL Set) i~ a pretopos,

Furthermore. the corresponding finite lineits and colints are  aleulated poiutwise.

|

We finally arrive at the main theorem cf [13]. Makkai’s theorem. Let P he o
small pretopos. For every P € P we have that the functor crp @ Modi Py — Set
is an ultrafunctor cep @ Mod(P) — Set. This fact allows us to detine the funetor
cv: P —UC(Mod(P), Set) such that P — crp.



Theorem 2.3, (iroen a small pretopos P the functor v : P — UC(Mod(P), Set)

is an cquiralence.

Notice first that according to Lemma 115 it suflices to show that ¢0 @ P —
UC(Mod(P), Set) is subobject full, conservative and that every object in the cate-
gory UC(Mod(P), Set) has a finite cover via er. We start with subobject full,

Assume first that we have an object £ of P and a monomorphism 7 : £ — cvp
in UC(Mod(P), Set) in which for every model M in Mod(P), 7M : FM — MP
15 actual inclusion. Notice that in this case for every ultrafilter (1.4{) and any family
(M,); in Mod( P)I the commutativity of the diagram

F(IT M./t I FI(M)

AN

(1 AI,/H)\ P [ 7 J
y

1M P

1 FM, i

implies that [[4. F](M,) : F\(ITM,/U) — T1FM, /U n identity. Let § = {QQ—P
in PI|FN C NQ lor every N in Mod(P)}

Lemma 2.4. For cvery M in Mod(P). I'M = (Y s pjes M

Proof. Let M ¢ Mod(P). Clearly FM C g rspjes MQ. So suppose « €
N~ >res MQ. Detine T = {(Q>—=P) in Pla ¢ MQ}. Clearly SNT = i), thus
fur every (Q>—-P) € T we can choose a model Ny in Mod(P) and an element
by € F'Ng — Ny@Q. Observe that (0+—F) € T and if ()1 ~—FP.Q2—PFP € T then
th VQ—P eT. Given Q=P & T deline (Q—P) ={Q'—P e T|Q)—P <
'~ P as subobjects of P}. For any family {Q, = P}, of elements of 7 we have
Moy T Qo= P) = T(Vigy Q. »— P). Therefore there exists an ultrafilter ¢/ on 7 such
that for every (Q»—F € T we have that (Q—P) € U.

Consider (bg)r € [Ir Ny P/U.

Let I2>— P in P and assume that (by) € [ NpR/U. We want to show that « €
MR. Suppose not, then B— P € T and {(R~P) € U. Since (bg)7 € [+ No P/l
there exists J € U such that for every Q—P € J, by € NyR. Since JNT(R—P) €
U we have that there exists (R ~—P) > (R~ P) such that by € Ng/R. Since
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NpR C Np'R' we have by € Ny, This is a contradiction, so we can conclude that
a € MR.
We have showed that for every R— P, (by)r € [17 Ny R/U implies « € M.

Therefore by Theorem 1.21 there exist an ultratilter (1, V) and an arrow

h: H.«VQ/ZI — MY
I
in Mod(P) such that hP(by) = 6 P(«) where & : M — MV is the diagonal. Since
(by) € F(IT; No/U) we have that («) = 0P(1) = hP{by) € F(MY) = (FMVY.
Therefore there exists Iy € ¥V such that for every 7 € {y, a & M P, That 1s, « & W P.
l

Lemma 2.5. With the same notation as the previous lema, there exests B~ -P € 8

such that F = cvpg.

Proof. Suppose not. That is, assume that for every Q — P < 8§ there exist a
model My in Mod({P) and an element ay € M@ — F{My). Now, (lp: P—P)e S
and if Qyr—P. Q2. —P &€ §then Qi AQ—P € S. For every Q— P € 8 detine
HQ—P)y={Q'—P e S|(Q'—P) < (()—P) as subobjects of P}. We have that
Ne(U(Q, —P)) = [ N2y Qo= P). There exists then an nitratilter W oon § such
that for every Q— P € 8§ we have [(Q—P) c W.

Consider (ug)s € [Is Mo P/W.

Let R=—P € &, We have that for every B —P < [(R—P), ap € Ml
MpR. That is (uy) € [Ts MyR/W. Therefore {1y} € Niprpres [Is Mo R/W. Su
according tu the previous lemia we have that {«g) & Fi[ls Mo/W) =TI I Uy /W.
This means that we can find (¢ —F) € § such that «y € FMy. This is a contra-
diction, O

(fonsider now an arbitrary arrow o : (¢ — crp in UC(Mod(P). Set). ('onsider

its image

o
€ cop

h o
f\ m
«

H

Since images in UC(Mod(P). Set) are pointwise we may assume that for every M
in Mod(P), mM : [IM — MPF is really an inclusion . Then there exists R P
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such that /f = cop, a7 = copis a monomorphism we obtain that ¢ @ ¢/ — I as
above is an isomorphism in UC{Maod( P). Set). We have proved

Proposition 2.6, If P is a small pretopos then the functor
cv: P —UC(Mod(P).Set)

is subobjeet full, O

We turn our attention now to <o heing conservative. Given a small pretopos P
we can consider the precanonical category JJ on P oand form the category Sh(P.T).
Using Theorem 1,1 and Proposition 1.5 we ecan find I in Set and a surjection

*

f
Set/]:f:‘\'b(P, J).

Notice that we need P to be small to apply 1.1, We have then that the composi-

. Yy . . .
tion P—— SI(P..J)—=—= Set/I is elementary and conservative, where gy is the usual

funetor.

Proposition 2.7. If P is a small pretopos then co 2 P — UC(Mod(P). Set) i»

consereative.

Proof. Suppose we have two suhobjects @ — P and R—P of an object P iu
P such that <oy = <y in UC(Mod(P). Set). Take the functor P il*.‘-'h(P../)Jv

Set/ I detined above and define M, = (p_i’_+ ShP,J) ﬁf—' Set/1 LA Set) for every

i & 1. Then for every / in I we have that M, is in Mod(P) and ¢vg M, = crpl,.
Therefore 7* f~yQQ = *f*y R for every i € I. Then clearly f*y() = f*yR. since fry is
conservative we conclude that ()= P) = (K~ P) as subobjects of . O

Now we turn our attention to the other part of the proof namely, that every object
F'in UC(Mod(P), Set) has a finite cover via cr. Let M be a model in Mod(P)
and r € FM. If we are hoping to find a finite cover for F via ev we should be
able to find an ultranatural transformation @ : cop — F for some P in P such that
r € Im(®M). That is to say, there exists @ € M P such that @M (v¢) = »r. Notice
that if this happens then for any two arrows h, &k : M — N in Mod(P) we have that
it hP(a) = kP(a) then Fh(r) = Fk(x).



Definition 2.6. Given I': Mod(P) — Set, M in Mod(P) aud P’ in P we sav that
an clement ¢ « MP is a support for an clement & < FAAf for every pair of arnows
hoh M — Nin Mod(P) we have that £P(a) = FP(a) implies that Fh{a) = Fei( ).
We say that .« € FM has a support if there exist an objeet P in P and an element

a € MP that is a support for & € F .

We will show that if « € M P s a support for v = F M where F'is an ultrafunctor
then there exist a subobject Q=P in P with o ¢ W@ and an nltranatural trans
formation ¢ : cry — [ sucl that ¢M(u) = »r. Since we already know that every
subobject of cop in UC{Mod(P). Set) i~ of the form ceg for some sithobject () of
P in P all we need is a monomorphism ¢/ — ¢ rpoand a transtformation W @ ¢ — [

with € ImW. Sucha Wi (7 — Fis called a partial P-cover of F'that contains v,

Lemma 2.8, Auw tlement o & M hae o support if and only if thoee crists a finite
family {(a, € PAY_, such that for every par of avvows bk o M — N we hare that

=1

WP (a)) = kP(a) for eoery i = 1o n anplies that Fhiry = FE(r).

Proof. The only if part is clear. For the it part simply consider (aq. .. u, ) &
[y MP ~ AT, 1) 0
Proposition 2.9. Given F'oin UC | Mod(P). Set), M i Modi{P) we have that

coery & FM has a support.

Proof. Suppose not. That is suppose that for every tinite tamily d = {ta, « P)}
there exists a pair of arrows hypoky @ M — N, in Mod{P) such that hPu,) =
kPa,) for every e = Looon but Fhia) £ Fh(). Let D he the set of tinite families
of the form d = {(«, € P}, ordered by contaimuent. For every d in D chose
a pair of arrows hy by 0 M — Ny satisfving the property written above, Denote
Hd) = {d' € D|d Cd'}. Now, M1 =1 and therefore D is nonempty. and for every
d,d" € D we have that [(d) N [(d") = T(d U d'). Therefore there exists an ultrafilter
{{ on D such that for every d € D we have (d) < . Consider the diaram

oM

‘1 ‘I“ HD”!!’/ZI

N
Mo WV
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where & is the diagonal ultramorphism. Given « € M P consider d = {(a € MP)} €
D. Then for every d € 1(d) we have that by P(a) = kg P(a). therefore we have that
(/Id!P(ll)),pE],[ _ (1"11'1)(”))(1'6]![ ill HD 1V,1P/11. Tll(‘l‘(‘ful’(‘

Hbd/ll ool = Hl.'d/ll odM.
D D

C'onsider the following diagram

F(AMY Hllp hy/¥) F(Ip Naftt)
pean | PUlphgay -0
FAM [id, F}(M)p [t FIN)p

{7[’14‘[\* HD l‘wll({/zl

FAN
( ) HD Fkg;H H

The left triangle commutes because F is an ultrafunctor and the right square elearly

b PN U

commutes sequentially. Therefore both compositions in
VLRV p Tl TT# N/t
Mo FRJU
are equal. We then have that (Fhy(e)) = (Fka(2)) in [Tp FNg/U. Since we assumed
that Fh(x) # Fhgr) for every d € D we have a contradiction. O
For the next couple of propositions we use the notation from Proposition 1.20).
Lemma 2.10. Given F': Mod(P) — Set, P in P, v € M and « € MP, we hoee
that a € MP is a support for v if and only if the only element of O(M u)(l) is a
support for & € Fo(— o0 Ap)(O(M.«)) ]
Proposition 2.11. Let F : Mod{P) — Set be an ultrafunctor, P be an object of
P, M in Mod(P), a € MP and x € FM. [f there crist a subobject re—1 in P/ P
and an ultranatucal transformation ¢ : ev, — Fo(—o0Ap) such that O(M,a)(r) =1
and v € Im®PO(M,a) then there erists a subodject Q—P wi a € MQ and an
ultranatural transformation WV : evy — F such that WM{a) = ¢

Proof. C'onsider a diagram

Q 7’1__» ]')

’\ ,//i P
[)



)

in P/P and assume we have an nltranatural transformation @ 1 ev, — 1o (=0 \p)
satisfving the requirement of the proposition. By the definition of @ it is elear that
a € M@Q. Define ¥ g — F as follows. Given .V in Mod{(P) and b« NQ we have
dO(N. D) : O(Nb)(r) -+ FNV. Since b € N@ we have that @(N.b)(r) = 1. Deline
YV (h) = PO(N. b)) {where o is the only element of @(N, b)), It is not hard 10
see that W is an ultranatural transformadon and that VQ(a) = . 0

The proposition above and the lemma preceding it tell us that when we have a
support @ € MP for » € FM it is enongh to assume that P = 1 and that o i the
only element of M1. Now, ¢ € M| is a support for & < F M if for every pair of
morphisms A —;_1:__: N in Mod(P) we have that Fh(e) = Fhir)

It F: Mod(P) — Set is a pre-ultrafunctor consider the category Mod™(P) -
Mod( P)]1 EU(}F). where EI{ ') is the category of elemnts of F with forgetiud functor
El(F) — Mod(P). If M s an object of Mod(P) we denote it hy (M. ) when we
see it as an object in Mod™( P), whereas an object (Vo) in FU(F) is also denoted
by (.V.2) when seen as an object of Mod™(PY. We say that (V) is a proper object
if ¢ # *, otherwise we say it is improper. We give Mod*(P) a pre-ultracategory
structure as follows, If (1,¢f) is an ultrafilter and (( V,..2,)}; is an [-family of objeets
of Mod™(P). vonsider the set JJ = {i € Ile, # +}. Deline

[RURICAY it g U

IR
(T M 24, [ FIOY (e Yoy i U

and if {(f;) : {(( M. 2,)) — {(N.. @) is a morphism in ]\Iod*(P)I then (f,} — [1 f./U.
We have a forgetful preultrabinetor Mod™(P) — Mod(P) such that (M, r) v M.

If we carry out the construction above with «d ; Set — Set instead of Fwe get
a pre-ultracategory that we denote by Set™,

The prenltrafunctor ' : Mod(P) — Set induces a functor £~ : Mod*(P) —
Set” such that F*(M.x) = (F'M, ) and IF"h = Fh for every b : (M.0) — (N, y) in
Mod™(P). F* turns into a pre-ultrafunctor if we detine [¢4, F*}{(M,,x,)) = [{{, F}(M,)
for every ((M,.r,)) in Mod*(P)".

Lemma 2.12. (liven a pre-ultrafunctor (ultrafunctor) F : Mod(P) — Set we have
that subobjects of I' in PUC{Mod(P), Set) (UC(Mod(P).Set)) are in or¢ to one



correspondence with classes C of objects of Mod™(P) that satisfy the condations 0)-5)
btlow

0) For coery M in Mod(P) we have (M, +) € C.

DIf (M,r) € Cand f: (M.r) = (Ny) s a morphism it Mod™(P) then
(Noy) el

2) For any wtvafilter (1.U) and any object (M, 2,)) in Mod™(P) with (M,,r,) «
C foreveryi €1 we hare that TI(M,,x)/H € C.

S (LU is an ultvaftlter and ((M,,x,)) is an object of Mod*(P)" such thut
[U M)/ € C then there erests a sct J € U such that for cocry j & J, (M r,) €C.

Proof. Start with a subobject (e 1 Detine the class
Ci; = Mod(P)[J{(M, ) € KFI{) e € T p M Y.

Clearly Cg; satisties 0). I (M. &) € C; is proper and f: (M, 0) = (V. y) in Mod*(P)

then, since @ € Im pM and the diagram

Gf X

GM —— (/N
/:M[ [/UV

M '7;‘,;* FN

commutes, we have that y € T'm g N, If (M, ) is improper then (Vop) = (N, *) € Co.
Therefore Ce; satisfies 1), Let (1,d) be an nltrafilter and {(A,,.r,)) be an ohject in
Mod (P). Let J = {i € Ile, # %}. If.J ¢ U then clearly [[(M... VU € Cu.
Avsume then that JJ < {. Then for every j € J we have that o, € I g M,. Since p

is a pre-ultranatural transformation we have that the diagram

ey Mgty =LA o g
wW(TT M, JH) [1pM, U
FIMIM/U) ——————— T[] FM,
(2.1) (LLALft) 4, F(AL) [raL

commutes. Then it is clear that [if, FY(AMY'((¢,)s) € Tmu[] M, /U, that is Cq
satisfies 2). For 3) Assume that JI(M,, »,)/U € Cq. if J = {i € I|ar, # *} ¢ U then



]
e

for every 7 € [ —.J we have that (M, ) € C;. Suppose then that 7 € . We have
that [(f, FI(M)Y Yo o) € D [T M /H). We then can dind an element ()i =
[TGM U sueh that p( T M /OO GUM) " ()R )Y = [ FIOMY N da). This
means that [T pdL/U((n)k) = {x,)s. Therefore there exists a set L v K with
I € U such that for every ¢ € L we have pMi(ys) = 0,0 That is for everv £« L we
have that (Mg, re) € Coeso we have 3). 1t is easy to show that if the elasses determined
by two subohjects of F' coineide then they are the same subobject,

Assume now that we have a class € of ohjeets of Mod™(P) that satisties 0)-3)
above. Detine (70 : Mod(P) — Set such that (Go(M) = {r e FM{(M.r) e Ch

It h: M — N is a morphism of models then condition 1) gnarantees that Ih .

M — PV restricis

I'h

I'M - ['N

GeM g e
With these definitions we have that (/- 1s a subfunctor of F.

We want to define [{{, G 2 Ge(JT ML /UH) — T]Ge M /U sucl that the dia-
eram 2.1 commutes. Let o & Ge([T.M, /H). We have then that ([T M, /H.r) € C.
Let (@ )y = U, FIMY(0). Then by 3) there exists & & A < ¢ such that for
every b € K. (Mp.xq) & C. Therefore (w3 € [TGeM /UL Detfine UL GRM Y e) =
(edic. Since [0 FI(M)Y is aun isomorphism it is easy to see that 74 G is mono.
Use 2) to show that [{{,)(M,) is onto. This gives ns a subobject (e of F in
PUC(Mod(P). Set). 1t is ecasy to see that the association ¢ = Ge, (¢ — Oy
hetween classes satisfving 0)-3) and sihobjects of F'in PUC(Mod(P), Set) are in-
verses. [t is not hard to see that if Fis an ultrafunctor then Ge is also an ultrafunctor.
O

Assume now that the only element of Myl is a support for v, & F M, A diagram
of the form

({v—s>cpy 2~ |

¢

F



is the same thing as a subobject (F>—er) x F' ~ F' that satisties », 0" € (M implies
x == 2. That is, we need a class C satisfying 0)-3) above plus

1) (M, xr). (M,r") € C with r, 2" € FM implies that »r = o',

We also want the class C to satisfy

5) (My,arg) € C.

For the proof we will heve to consider bigger and bigger small subeategories of the

category Mod”(P). Here is the definition of the small subcategories we will need.

Definition 2.7. Let P be a small pretopos and F' @ Mod(P) — Set be an ultra-
functor. A pair (C,8) is called a small approximation of Mod™(P) provided that
i. Cis a small subcategory of Mod™(P)

ii. § is a set of triples of the form (1,4, ] A, OWC)) where (1.4{) is an ultrafilter.

iil. For every (1.4, ¢) € 8 the ultraproduet [J¢(¢)/i is in C.

iv. For every g : {0} — OWC) we have that ({0},4,.¢) € S where ({0}.04) is
the only possible ultratilter over {0}.

v. f(1.U.¢) € S and ¢’ : 1 — O C) is such thai

1%;01,(0) L+ Mod"(P) ="~ Mod(P)

commutes then (1.0, 4"} € S.

Let & be the cardinality of P (that is £ = #(Ar(P))). We say that a small
approximation (C,8) of Mod™(P) is closed if it satisfies

vi. For every M in Mod(P) such that #M = #(]Ipep MP) < & there exists
(V.¥) € C such that #N < & and N ~ M.

vii, For every (A, *). (N, +) in C such than M = N (elementary equivalent) there
is an ultrafilter (1,04) such that (J.U, ). (I, U.g2) € S, with ¢; : I — OWC) is the
constant map with value (M.%), g, : [ — OUC) is the constant map with value
(N,*) and MY ~ N,

Given a small approximation (C,8) of Mod™(P) a (C,S)-subobject of F is a
family C € Ob(C) satisfying 0)-3) above when 2) and 3) are restricted to elements of
S.

A partial cover of £ relative to (C.8) is a (C.8)-subobject of F that satisfies 1).



Remark 2.1, Given a pair (C.8) satisfving i-iil we can always tind a pair (€, 8)

St

satisfving i-v and such that € is a subcategory of €7 and & < 8.

Remark 2.2, Given a small approximation (C.8) we can always find a small elose
approximation (C7,8") such that C is a subcategory of ¢ aud & 7 8. This is
a conseqience of the Keisler-Shelah isomorphism theorem that says that given two
models M, .V such that M = N there exists an ultratilter (1,{{) such that M~ N

We now show that for every small approximation (€', 8) and any & F'M, with
support the unique element of Myl we can find a partial cover C of Frelative to (C. 8)
such that € satisties 5). We start by putting (\Mo.ry) in C. Notice that conditions
0)-2) can always be fultilled by adding more and more objects to C. however condition
3) involves the choice of a set in an ultrafilter. We will mmake all the necessary choices
and repeat the process. In this way we can obtain a € that satisties 0)-3) and 5) bnt
not. necessarily 1), We will assnme that for all possible choices we obtain a family
C that fails to fltill 1) and we will get a contradiction.  This process involves the
recursive constriction of an ultragraph.

So let (€', 8) be a small approximation of Mod™(P) and assume that e € 14,1 i<
a support for ro £ FA,. Let £ = #C and o = &7,

We construet the ultragraph &G and the ultradiaeram I : G — Mod™(P) a-
follows.

For every (M.+) in €' we put a node -~y We also put a node 2. Detine

Gl = {0} U {pul(M.+) is in €}

Gh =)

No edees in G,

Oy =

Dy 1 Gy — C is such that oy = (M, rg) and oy e (M4,

-

Let 0 < o < oy and suppose we have made the corresponding definitions for all
o' < a. Define

Giu = Ua'(u G.L{’

Gr’<a = Ua’(u G(hx’

G(Lt = Uu'<a Gtt’

O = Uy Ou

Do =Uprca Da



Let @, be the set whose elements are of the form (o, 1., y; f5.L V. y') such that
L{(JV.dNeS
Mog:1—GL,

)
N (1,415 G LS —=te (M) e S,

IV. Io={i € [[l),\,, (4(7)) is proper} € U

Vo P TID (DU = TT4(J)/V is a morphism in C.

Notice that condition IV implies that [T Do ,g(7)/H is a proper object.

For every = (o, LUy, s fri i Vigr) € 0, take two nodes 3,09 and for every
J € Ji take a node (£, ). Deline then

Gh = {4t o u{utco,).

GL = {(t. )€ O, and j < L}

For everv t € O, put an edge r; 1 3, — 3¢ in G,

1)‘,(5 ) =TI D a0y,

x('}r '1, /Vf
D.(i.)) = "i( ).

D,(r)) =

Finally dvimv G =G, and D = D_,,. We have that G is an ultragraph and
D is an ultradiagram. Notice as well that ) factors throush

Next we make formal the coneept of possible choices of elements of ultrafilters for
the family to satisfv 3).

Let © be a subset of @, and 1= (1 )teo be a O-indexed family of sets such
that A, € V for every 1 € 0. We define recursively what it means for # € 0, and 5
node of G to be A-accessible.

First, @ is A-accessible.

For every M. ¢ag is not A-accessible,

Suppose we know what it means to be J-accessible for t & € 0., and 1 € G, for
0 << oo < ayg. Then

tE0,Is A-accessible if and only if {7 € Ljg:(7) 1s ;T—a(‘('(‘ssib‘v} & .

3 is A-accessible if and only if ¢ is A-accessible.

2¢ is A-accessible if and only if ¢ is A-accessible,

(t.J)1s A-accessible if and only if # is A-accessible, f € © and J € A,



We sav that { = (e s regular if and only if for every £ = O, we have # 0
it and ouly i ¢ is Jaccessible. Detine G 1) - {4y € Gl is { ace essibled, anc et
A= {Ylf is regular}.

Notice that A is a meet semilattice, Given .1 = (1)e and A= {13 }er constrict
(= {C'Yor recursively as follows. Suppose we know already what 0”710, | is and
that we have already defined (% for every + € " 1160, .. Then t = " 110, if and
ouly if £ is (1 f & 07110, )-accessible and detine €5 = 1,00 8 = V., (L e
is reenlar and €. 1A J in A.

Lemma 2.13. Geeen an ultradiagram 17 : G+ Set aud « + 't 0 there s an

wltradiagram = G — Set™ suel that F*(pn) = (E(ya) a) and the diagram

G L\ Ger
5 U
PO
Set

commutes, where U s the forgetful functor.

Proof. Do e F{p0) = (E g0y and EXteyy) = (E{ay ) o) Asseane that B
has been deed for 3 = G, Let t < O, detine E-( 40 =[], (g .. Define
Py = (E ()00 aE b makes Eirs) a morphism 177 4 - (E{3:1.8) in Set” (notice
that there is a unique b with this property). Define F*(r) = E(ry). Choose J =V
and a; = E(4, )Y for every j </ wnch that b = (a.)y. Dehne Extéogy = (F (e Y if
JeJand Ex(t )y = (Lt gerif g & C

—

Lemma 2.14. Given 3 vequlur the fundy ¢ = WMo = Oy & G Wy
satisfics conditions (0)-3) and 51, where DD 0 G~ Mod™t P) s the wltradiag um

defined above.

Proof. Clearly 0) is satisfied. Since o & G(.T) and Digy) — (My.rn). C satisfies

-l
—

Assume (M.a) € C is proper. We <how that there exists v € G711 G(.Y) such
that D(7) = (M.,x). If (M.2) = D{,3) with ¢ A-accessible, 1 € O,. a oy then
{i € Llg(i)is ,I‘a('(‘(’ssib](‘} Uy Let ' = {a. I U gedys {0} oL 'Y where ¢'(0) =



1
=1

(M.r). Then ¥ € 0., V is A-accessible and we have D) = (M,r) Clearly
(.0 € G/ N GA). The vase D(3) = (M. r1 is similar.

C satisties 1): Let (M,2) = D(y) with 1 € G N G(/ 1) and & : (M.r) = (N.y)
in (. Suppose 3 € GL | with a < oy Let ¢ = (01 {0} o, g: h; {0} Hoeg’) where
g(0) =5 and ¢'(0) = (N.y). Then t € Q.. Swnce 4 is A-accessible we have that 1 is

(27

A-accessible, this means that 3¢ and 4, are also . accessible, Clearly D(5) = (V. ).
That is (N, y) € C.

C satisties 2): Let (1.UH.¢) € § and with g(7) = (M,,0,) e C. £ = {i € (1) is
proper} & U then clearly [T¢(¢)/U € C. Assume then that J €. For every j € .7 let
3, € Gi} O G(A) such than ( M, ) = D(y,). Assume furthermore that (M, 0)) =
(M a,) implies 4, = 5, for j.j' ¢ J. Since the cardinality of {a,} < & there exists
a < ag = #T such that a, < a for every Jj € J. Let = (a: LU g3 id; {0} oo ')
where g(2) = () if ¢« € J, g(3) = par, and ¢'(0) = [1D(g())/H. Notice that
MDY/ U = TIUAM, )i, Now, t € 0, and for every j € J v, is A-accessible,

therefore ¢ and 3 are Taccessible. We have [T(M,. 0} = D(,3).

C satisfies 3): Let (M, 2,) in " fo. 7 € I and assume [[(M,.0,) /U € C with
(LU (M) € 80 UM, &) /U € C is improper then the conclusion is clear,
so assume it is proper. Assume [[(M,,2,)/H € C = D(3) with 7 € G/ n G(A) and
a < . Let t = (o {0}, Uy, g, 0d LU (M, 0))) € O, with g(0) = 4. Since 4 is
A-aceessible we have that 1 is d-accessible. Since A = {(Ap)rge s regular we have
that ¢t € O. Then (¢,)) is A-aceessible for every J € Ay and D{t.j) = (M,.x,) for
J € e 1

Lemma 2.15. (fiven an ultrafunctor I : Mod(P) -~ Set, (C,8) a small appror-
imation of Mod™(P) and xy & FM, with support the only element of Myl. Ther

vrists ¢ partial cover C of F relative to (C,8) sueh that (My, x4} € C.

Proof. Consider the nltradiagram D : G — Mod™(P) defined above. We have
seen that for A regular the family Ci = {(M,$)|(M,+) in C} U {D()]5 ()}

satisties 0)-3) and 5). If for some regular A the family C; also satisfies 1) we are done.

So let’s assume that for every A € A = {é]f*o’ is regular } the family C; does not
satisfy 4). Then for every A € A we can find nodes ’)1(5),') z(xf) eGin G(I—{) such
that D(y(A)) = (Mg rg) and D(32(A)) = (Mz.r g,) are proper and xr g # & g,



‘)1(‘1‘). 1.0 1) can be chosen in GIN G T) as a4 consequence of the proof of the previons
lemma), We know that A I~ o meet semilattice, <o there exists an ultradilienr YW oon
A such that for every U A LD €W, We constined o new ulttagraph Gy as
follows. G is obtained ftom G by adding ¢ new bonnd node ¢ and assiening to i
the triple {4 W, ¢) where ¢ T) = { 1. We detine an wltramorphism & @ e | —
v UD(G, Set) — Set as follows. Given an ultiadiagiam [ - Gy —» Set considen
the nltradiagram L = Flg : G — Set and uctice that 7 essentially determines
F. We can assume F) = [T F'(71( T))/)V. Let @ » Fipo), constinet B G —
Set” as in lemma 2,13, If F77 (41 1')) - {l'(w,).u,(.—l’)) detme & F{a)  vayl f)\_4 in
I1 l"('yﬂ.f))/ﬂ/’. It is not hard to see that 88 ay £+ that it does not depend on the
choice ot £ and that ¢; detines an ulttamorphosm.

Similarlv, using, = 1) instead of il 1) we obtain an ultragraph G, and an nltra
morphism é r e, — oo, t UD{G . Set) — Set.

. ; D {
Consnl v the ultiadiagram G —+ (' —-= MMod{ P) where D was detmed above aned

[ 15 the foreettul tunctor, We can extend DI to aliradiagiams
1)1:("1%11[0(“[)) [)JZ(I'_;—*I‘IOd{P)

such that Dy(6) = Do(ey — [T U g/W and 1)y

motphisms over Set we have the cortesponding ulttamorphisms ¢y, ¢85 over Mod{ P).

= Dig = DU, Sivce o8 are ultra-

We obtain a pait of bomomorphisns

(\1[)

nl(r"n) = [):(Qn) = \[‘lﬁ_jl_v.' H \[f/l/v — Dy = [);(i I
0.0,
\pplying # we have
{0 )
P'\y————= F(H Ve W
F(o:Ds)

Since vy € F My has support ¢ = 1,1 we have
(22) F(orD) o) = F(o, D) vo).

We show that DA FI(M ) (F(00D1)(00)) = {(& ;)] Since I is an nltiatur~tor we
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have that the diagram

4! )
pagy L&) FITMz/W)

» /
b F D [W. FI{AM )
N .
(I1# A‘I‘;/W)
commutes, So what we want to show is that 6/ Dj(ay) = [W',ﬁ)]' According to
the definition of & we need a lifting of F'Dy. Define D* : Gy — Mod™(P) such
that D*|g = D and D*({) = ([TMz/W. V. FI(M )~ ({0 ¢)])- Tt is clear that the

diagram

[)* 1"*
Gy —— Mod™(P)— Set"
]7[)1\\\ T
AN
X »
Set

commutes, where [*(M.0) = (FM.r). We conclude that é; F Dy(ag) = [{x )]
Similarly we can show that 6, FD,(xe) = [« g,)]. By the way we chose w5 and
rg, that [(@ )] # [(r ;)] This is in contradiet®n with 2.2, 0

Lemma 2.16. Lt F': Mod(P) — Set be an wltrafunctor, (C.8) be a small closed
approrimation of Mol (P) and C, D be two (C.S)-subobjects of F. If for all (M. +)
in C with #M <k and ever o € FM we have (M, 2y € C if and only if (M, 2) €D,
then C = D.

Proof. Let (N.+) be an object of C. Since (C,8) is a closed approximation
we can find (M,#) in C with #M < rk and M = N together with an ultrafilter
(1.1} with the following properties. There is an isomorphism & : A% — N and
(L.U.q1), (I.U.4) ¢ S where gy.g; : [ — ONC) are constant funetions with values

(M.+) and (N.#) respectively. Consider the following diagram

(FAY (FNY!
oFM," N RN
FAL KA U FYNY| PN
F(SM)™ FON
(o3) L Fh i (@A)
F(AM' — (N
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where & denotes the diagonal.  Notice that since Fis an ulirafunctor the above
diagram committes.

Let y € FIN. We show that (V.y) < C if and only if there exist JJ & and an
(M.a,) € C for every J € J such that F(6. ) y) = PR FYADY e ).

Assume first that (V. y) € C. Since C is a (C,8)-subobject we have [TeN ) /U «
C. Let z € F(MY) such that Fh(z) = F(&N) ). Then 270 0 (NN -
(MY, 2} is in C. Therefore (MY, z) € C'. Since C is a (C.8)-suboliject we can find
a.J €U and objects (M, 2,) € C for every j ¢ J such that WP )] = 2.
Now apply F'h. Conversely, assume that FON(y) = FROU P e ) ahy for
some J € and (Mor,) € C for every j & J. Then (MM 7l ) =
C. Sinee b - ((M“.[H. f“](.\”"l([(.1‘,),1]))3 — (N FENW ) s in O we have that
(NF(SM)y)) € €. This means that (Noy) < C.

We celearly have the same result for D. Therefore ¢ = D. [

Lemma 2.17. Lef "2 Mod{P) — Set be an ultrafunctor, My a modil in Modi P)
und vy € FLly. Assume that e = Myl is a support for vy = FMy. Then there s a

diagram of the form

(i— 'y > |
i
(2.3) F
in UC{Mod( P)., Set) ~uch that vy & T d M,

Proof. For every ordinal o give a small closed approximation (', 8,1 such that

o< dthen O, CC.oand 8§, T S8.,.

- U.C., = Mod™(P).

- U. 8. is the set (in the second universe) of all the triples (7.4, ¢) with (1.4{) an
ultrafilter and g : 1 — Ob{ Mod™( P)).

It is not bard to see that such a sequenee of small closed approximations exists.
since (Cy.Sp) 1s a small cluse approximation we can find a small set A and a family
of models {M, }iea such that

- #My < K for every ¢ =\

- (My, %) is an object in Cy for every { € A,



6!

- For every model M in Mod(P) with #M < & there is an ¢ € A such that
M ~ M,

For every ordinal o let C, be a partial cover of F relative to (C,,S8,) with
(Mo, 20) € Ca. For every ordinal v and every £ € A define X,» = {o € FM;|(M,,r) €
C.}. Every a determines the family (X,). Notice that since A is small and F is
fixed there is a small set of such families. It follows that there is a family (X} such
that the set (in the second universe) = = {a]a is an ordinal and (X,0) = (X))} is
unbonnded. If a, 4 € = with o < 4 then by lemma 2.16 we have that C, = C, N Cy,
that is, Cy C Cys. Define € = U,z Co. By the remarks after the proof of lemma 2.12
C corresponds to a diagram of the form 2.3 above. O

By proposition 2.11 we have

Corollary 2.18. Let F': Mod(P) — Set be an ulirafunctor, M, in Mod(P), xy €
FMy, P in P and a« € MyP sueh that a s a support for ry. There is a diagram of
the form

({——¢ 'y

9

F‘

in UC(Mod(P), Set) such that « € GM and ®My(a) = vy. O

In a result similar to 2.16 we show that an ultranatural transformation is deter-

mined by its values at models of size at most &k = #P

Lemma 2.19. I[f O,V : F — (7 : Mod(P) — Set are ultra-natural transformations
between ultrafunctors such that for every model M in Mod(P) of cardinality #M < x
we have QA = WA then @ =¥

Proof. Let N be a model. C‘hoose a model M of cardinality at most «, an ul-
trafilter (1,4) and an isomorphism # : MY — NY. Let y € FN. Since & is an
isomorpnism there exists = € F(MY) such that Fa(z) = FéN(y). Let J € U and
x, € FM for every j € J such that [, FI{M)(z) = [(x,)s]. Since @ is an ultranatural



G2

transformation the diagram

NI

FOMY) ALy
B(MH) (DM
'v‘ i{ ( ’{

GO o

comnutes. It follows that (M) (z) = M, GUADTT(@M (., )], Using the naturality
of @ applied to b we conelude that @(NOY(FON () = GRUH. GHID (@M ()],

Using the conunutativity of

1¢TA\" __M__;. 14'( _\"’( )
|
¢'\'i ld)(.\'“)
AT 'V {i
GN e GOV

we have GAN(ON(y) = GRU GHAMY T{OM(e,)]). The same reasoning shows
that GON(W.V(y)) = GRH.GRIMTH (WM (e )], Sinee #M ~ & we have that
OM{r,) = WM ) for every j € J. The resnlt follow. rom this, O

Proposition 2.20. If P s a small pretopos, then cvery £ UC{Mod(P). Set)
hras a finite cover via e : P — UC{Mod{ P). Set).

Proof. Since P is small there s a small set of ultrafunctors of the form «ep
with £ 10 P. Aceording to Lemma 219 an ultrafunctar crp — 1 is determined
by its values on models of size at most &, From lemma 2.6 we know that ¢
P — UC(Mod(P), Set) i~ subobject full. It follow that there is a small st T

- . . .0 . ) ¢
of diagrams of the form F<—(/—~scrp such that for any diagram F'+— " —cvp

. . ¢ . .
there is a diagram (F<+—(/ —ervp) € T and an isomorphism (' — (" such that the
diagram

¢

F 2 (; s cvp

N

"
T

comimautes,
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For every model M in Mod(P) and » € FM we know that there is a diagram of
. , b ) .
the form (F +—(/r—cvp) with r € Ln @M. By what we said above we may assime
.0
that (F+—(/»>crp)e T.
Let P (T) denote the set of tinite subsets of 7 ordered by inclusion.  Assume
. , . ¢
that for every 7€ T. T = {F ==, »>ecvp b there are a model My and ey €
F'My osuch that wp ¢ UL, @, My, Let U be an ultrafilter on P(7) such that for
every 1€ T we have that [(7') € ¢, Consider [t F(Mp) " {er)] € F(IT My /U).
. . , ¢ \
We can find (F<~—G—scop) € T such that [(, FY(Me) " [(rr) € Ine®TI M, /U.
This means that there is J € U such that for every 7" € J. op € Im®Mp. If
- . @,
' €l {F<+—Grscvp)} 0 € U then we have that gy € Ine @My, On the other
. ¢ . e
haud, since (F'+———(/»—cvp) € T we have xp ¢ Im ®Mp. A contradiction. There
exists then 7' € P,(T) such that for every model M and every & € F'M there is an
.0 . e . ..
clement (F+~— G —cvp) € T with o € I ®M. T is then a finite cover of F via
er: P~ UC(Mod(P). Set). O

We have shown that for a small pretopos P the functor
cv: P - UC(Mod(P). Set)

Is conservative (Proposition 2.7), subobject full (Proposition 2.6) and that every F
in UC(Mod(P), Set) has a finite cover via e v (Proposition 2.20). This is enough to

prove Makkai's Theorem (Theorem 2.3).




Chapter 3

Continuous Families of Moaels

In this chapter we are going 1o consider categories of models of pretoposes as categuries
indexed over Top, the category of topological spaces and continnous functions. Before
we go into the definitions we want to give some motivation for taking this approach.

Given a continwous function f:}Y — X in Top we obtain a geometric morphism

-

SHX)TZSh(Y). Now, f7 preserves finite limits and all colimits. this in particular
*

means that f* @ Sh{Y) — Sh(}) is an elementary functor. For aay pretopos P
composition with f* induces a functor Modg(y)(P) — Mod,y y(P) which we
also call f*. We want to relate this with the altraproduct functors (see 1.1). Let
[ be a set and consider it as a topological space  ith diserete topology, let 31 be
its Stone-Cec’ compactitication and &I 1 I — 31 be the wsual embbeding, 31 =
{{{{{1 is aa ultratilter ¢n [}, and a basis for the topology on 31 1s given by sets
of the form J* = {{{ € 3I|J € U} tor subsets J < I. We will show later that
EL 2 Sh{I) — Sh(A1) is an elementary functor (see Proposition 3.18). We have an
equivalence of categories given by P : Set! — Sh(I) where P{AYT) =TT,eq A, and
P =Tea fy : TLer Ny = I,es B, for every JJ C T and () @ (1) — (B) in

o . S i
Set!. 1f i{ is an ultrafilter on I then we have a funetion | —= 37 that sends the only
element of 1 to {{.

. r 1, I
Lemma 3.1. The composition Set’ —— Sh([) ~i——~.‘4h(d[)——l> Set is naturally iso-
morphic to the ultraproduct functor defined by U.

Proof. Denote by L : Sk(,31) -» LH/31 the usual equivalence where LH/ 31 is

64
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the category of local homeomorphisms over 31, I we start with a family (A,),e; in
Set! we have that
LEL(P(A)e = T1 lim EL(P(AYen)(W)
Fedl B 25"

using the fact that the sets of the form J* form a basis for the tupology of 31 we have

11(51*(]1(“1'%61)) UFG/II Jlé_’? 51*(1)<"1z>n51)('l*)
[

1

[l

[Lrens ’lglrlu)(‘h)zel)(flﬁl(-"n

JE

= Mrem tim PCA) ()

= Hrest ]Li_”; [Lesd

Therefore, the fiber cver i is lim [[eq -1 - We procced similarly with families of
morphisms. O e

Assuming we know that &1, @ SE{I) — Sh(,71) is elementary (see 3.18 below)
we have that composition with £7, induces a functor Mody,ny(P) — Modg,s1)(P)
(calied &1, as well) for any pretopos P. We b ve an equivalence 1 : Mod(P)' —
Modi ) (P) given by F(M)(P) = (ML) and F(r,)(P) = (r,I’) for every P in P
and every (1) : (M,) — (N,) in Mod(P)".

Corollary 3.2. The composition

g F {. U
MOd(P]I — Mf)ds;;,(])(P) "—E""' ]"[Odsh(;ﬂ)(P} "l’ MOd(P]

is naturally isomorphic to the ultraproduct functor defined by if. 1

We obtain then the ultraproduct functors from continuons functions in Top.

3.1 Indexed Category Theory

Basic Definitions

We review indexed category theory, as in [19]; in [3] the approach is via fibrations.

To start with, we need a category T' with finite limits, that we call the base category.
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We further assume that T is locally small.

Definition 3.1. A T indexed category A consists of the following data
1. A category AY for every object X in T
2. A functor f*: AY - A for every arrow Y LN,
3. A natural isomorphism
(1v)”
A\' /E\*A\
1 4n
for every X in T

.\ natural isomorphism

A\' _;[*___. A)
(f“.'/);‘_ g

E—
A7
. . f -
for every Z — Y — X in T
Subject to the following coherence axioms

Al The diagrams

(foly) —==(L)yof  and  (Iy 1" ="~ f o (lyg)
1 l:: | =
*_‘_TA’IA} 1_)‘" f* e ’*L IA\

commute for every Y LiNinT
A2, The diagram
(ogah)y == (fog)y

~ ~

(g of —h"og o f~
g r A r I - f ()
commutes for every W — 7 — Y — X in T

Definition 3.2. Given T-indexed categories 4 and R, a T-indexed functor F: A —
B consists of the following data:

1. A functor F¥ : AY — BY for every X in T



o

2. A natural isomorphism

Y ~ i
B\' ##7;_‘_/%, B]

for every Y’ X
Subject to the following coherence axioms:

Bl. The diagram

1’1\' O(l\')* > ]’1\Y 2] I_Ax
N
I
: e
(I\')* 8] 1'1\ T 13\ ! .F\
commutes for every X in T

B2. The diagram

Floifog) —— Floy o fr—=sg ol o f

(foy)yol¥ - gro oY

. o . f P
commutes for every 7 — Y — X in T..
Composition of T-indexed functors is defined in the obvious way.

Definition 3.3. Given T-indexed functors F, (7 : A — B, a T-indexed natural trans-
formation 7 : F' — (¢ consists of a natural transformation 7% 1 F'¥ — ¥ for every

X in 7T, such that the diagram

Y rx
- T .
prop Lo
~ ~
frolY ——— fro¥
T

commutes for every } LiXiT

T-indexed natvral transformations also compose in the vbvious way.
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Examples

We will be interested in the case where T is the category Top of topological spaces,
As an cxample we have the Top-indexed category SET. Given a topological space
we detine SETY to he the category SE(X) of sheaves over XL IF f o} — N s a
continuous function then f*: SETY 5 SETY isthe wsual f=: Sh(Y) = Sh(Y).

Here is another example, 1 A4 s a T-imiNed category and. € is a small (ordinary)
category then we detine the T-indexed category [CLA] as follow [C'.A]Y =AY
for X inT. Y —25 X is an arrow of T then [~ : [ AN 5 O AT s such that
(S A S PTGy | ARy |

If Ais a T-indexed catecory, we define the T-indexed categary A 2, <such that
(AMY = (AY)" and for } Lo N 1w T, the transition functor is (fxyr. I B s
another T-indexed category, we can define the T-indexed category A+ B sich that
(A~ BY = AY - BY and the functor corresponding to f s f* - AY - BY =
Al B,

T itself can be regarded as a T-indexed cateeors 7 in the following way: Detine
TY =T/X for X in T and, for ) L4 X define £ to be the pullback funetor along
I

Small Hoins

Questions of size concerning, a T-indexed category shonld be considered with respect
to the base category. Given .1 and .1 in AY, we have the functor

Hy v (T/X)" - SET,
sich that for every

A

v
g~
X
in 7/X, we have Hy v f) = AV (f~ 1 f~1), and
Hiy g (h): A ) = A% (g A g 4D

is such that

~

(J*a =S f A e (g A = (PR A S oA K% gt 25 (R A = oA,
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Definition 3.4. A T indexed category A is said to have small homs if for every X
in T, A, A" in AY there exists an objeet o V(AL A : Hom Y (A, ) = X in T/X

and a natural isomorphism
T/X(- . hom¥( 1, A)) — Hy v

We sav that A has small homs at 1 if the above condition is satistied for X' = 1

Whenever we have such an isomorphism we represent it by a horizontal line as
follows

1= v in A}

J = hom¥(A. 1) inT/\.

Suppose that 4 has small homs. A morphism (b,0) ¢ (4.4) — (B.B) in

AN

(AY)r o AY induees a natural transformation Hypw : 1y 4 — Hpy g in the obvi-

ons way. This corresponds to a natural transformation
T/X (- hom X (A, A)) = T/X(C . how Y (B B)).

By Yoneda, this last transformation is tepresented by a unique morphism in T/X
that we denote by homn™~(0.8) « hom YA, ") — hom Y(B. B'). 1If we have 7 -4 Y
and ¥ L5 X i T then
¢ — frhom ¥ (4. A) inT]Y
fo — hom¥(A..1) inT/X
(fg) A= (Jg)A in A7
A= g in A4

g —hom (fA A in T/Y.

This means that hom® (f*A, f*A") >~ f*hom™ (A..{') in T/Y. Therefore, if we define
hom(-,.) * A7 x A — T such that for every X in T, hom(.. ) ¥ (1. A") = hom Y (A, A)

and hum(_._)\'(b, W) = /wm"'(b, ') we obtain

Lemma 3.3. [fthe T-indexed category A ha~ small homs then hom(_..) : AT x A —
T is a T-indexed functor. ]
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3.1.1 Stability

Definition 3.0, We say that a T-indexed category A has T-stable colimits if lor
every X in T, AY has colimits and for every f:} -+ X the funetor f7: AY 5

preserves colimits,

Similarly we detine the concepts of T-stable coprodnets. T stable finte limits
ete. This concept of T-stability should not he confitsed with the somewhat related
concept of stability nnder pullbacks. To avoid confusion we will nse the word universal
to mean stable under pnhiback 1w this seetion,

A related coneept is
Definition 3.6. Given a T-indexed catecory A an object X in T amd a monomor
plismom : 4y - Uin AN we say that mis T-stable if for every Y TN I T owe
have that f*m is a mummmrf»hism in A'. We sav that A has T-stable monomor
phisms it every monomorphism in A is T-stable for every X in T We sav that a

sitbobject m oz Ay == Uin AY is Testable if m is a T-stable monomorphism.

3.1.2 Well Powered Categories

Given a T-indexed category o and 1 in AV, define the functor
Ssub ()Y (T/X)" - SET

such that for every

in T/X, Ssub(()0)(f) = Ssub{ f= 1) is the set of T-<table subobjects of f*1, and
Saub(( AV H) 2 Seub(gm ) — Seub( f* ) is 1 B— 1) = ("B —k 1 = ¢ 1),

for every T-stable subobject B-— [~ 1,

Definition 3.7. A T indexed category A is said to be well powered if for every X in
T. Ain AY, there exists an object sub¥(1) : Sub¥(A) — A in T/.X. and a natural
isomorphism T /X (., sub¥ (1)) — Ssub((1)A). We say that A is well powered at 1 if

the above condition is satistied for X = 1.



If the T-indexed category A has T-stable pullbacks and is well powered, then for
every a 1 A — A in AY we can define the natural transformation Saub((_)*a) :
Ssub{()*A) - Ssub(()*A) such that for any Y A x T/X we have that
Ssub( fra) (B f*A’) is the pullback

Ssub( f*a)( B o f* ') —— B

d

[A——g I

This induces a natural transformation T/ X (Lo ~ub¥(A')) — T/ X (L ~ub (1)), By
Yoneda this last natural transformation is represented by a morphism in 7'/ X" that
we denote by sub™ (a) @ sub™ () = sub¥(A4).

Detine sub(Z) : A" — T such that sub(L)Y (1) = sub¥(4). and sub(_)¥(a) =
subX(a), for every X € T and .1 -“5 V' in AY. As for hom we have
Lemma 3.4, [f the T-indercd calegory A has T-stable pullbacks and s well powcred
then sub(l) : A — T is a T-indexed functor. [

Notice that if A has T-stable pullbacks then every monomorphism is T-stable.

3.1.3 Adjoint Functors

Definition 3.8, If F': A — B is a T-indexed functor, we say that I has a right
adjoint if there exists a T-indexed tunctor B : B — A and T-indexed natural trans-

formations 5 : 1 — RF and  : FR — lg such that the diagrams

F’
P prp and pER-EGp

1\\j F nk
F ol !

" R

/IR
e
.

commute,
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3.1.4 Imternal Fanctors

Let D he the T-category

n”' l?,;

Dy b,
——— ——
i ("l

that 1s, D is a category object in T

Definition 3.9. Let A he a T-indexed category, and I a T-category as above, An
. . . . . . 3 . . . ‘
internal functor from I to A4 is a pair (Lot == &0 with Uin AP and € a

. . , -
morphism in A7 such that the diasranis

T
~ . (A R > -
1 - NI,(\(‘;Al illlll “Tl)‘;("ll‘1 - “th‘l*«_ —* “ll\“‘i
~ P & ~ 71
o
N *\* - - - '3 - *
/ll (1.1 2 ,\”Al c-~’- 3 ("]‘1 g 'Tl‘ 141
1S -
i

. . . x A} - 9 -
commute. Given another iuternal fanetor (B3B8 == &) B from I to AL an internal
8 . ; . . \ « . .
natural transformation o @ (CLast —=- o0 1) (B.o5B —— 7B} i~ « morphism

a. A= Bin A <uch that the diagram

ot —2—s i

A3 SX
onu L i Ol

S E—

\

comimites.

Internal nataral trar: forinations compose in the obvions way, and we obtain the
category A° whose obj o+ ts are internal functors from D to A and whose morphisms
are internal natural transformations. Furthermore, we can T-index 47 as follows.
Given an object X in T, form the T-category D « X and define (A} = 45X, If
£+ X = Yis a morphism in T then f*: A7V — A5 45 sueh that (CLenc -

O5CY = (D~ )" Co(Dy > Y ),



It H:.D — Cix the T-functor

T, %
Dyt o Dy Dy
Ty 'Si*’
H, H, i,
To _@n N
(1 (7 d "
T &

hetween T-categories, we define [1* ¢ AY — A such that (4874 LN o7 ) =
(i AostnA 2o e A 8 ppeer ) 25 6000 ).

14— Bisa T-indexed functor between T-indesed categories, we can induce
the functor F* 1 A7 — B such that (1.654 £, Oy e (D o T A ~Z
ey n FPrex g 55 60 F P 4), Iis not hard to see that when £ 0D — € as

above we have the following commutative diagram

eI

2 l [ AN

BY e R

mn

Small Limits
We can define a T-indexed functor Ap @ A — A" sneh that for every X in T
amd @ A o A in AV, A \’ 1) = (7o < XV rvd — (&~ X)) ay ). and
AN (a) = mha. where wy s l)l. « X = X is he projectiop
Definition 3.10. We say that the T-indexed category A has Drlimits it the T'-
indexed functor Ar has right adjoint ims.
am
Drcolimits are defined in the same fashicu, requiring a left adjoint instead of a

right adjoeint.



3.2 Functor Categories

We consider now categories of the form T-ind(A.B) of T indeed funetors torm A to

B. As in ordinary category theory T-ind(A, B) inherits it . properties from B.

Proposition 3.5, Lt A and B be T-indered categories. If B has T-stable lonits
then the category T-ind(A.B) has limits and if F': A — C is a T-indered functor
then the functe, T-ind(F.B) : T-ind(C.18) — T-ind( A, B) preserees limits,

Proof. Let 1 0 I — T-ind{ A, B) be a diagram. For every X in T we obtain a
diagram I'Y : I — CAT(AY . BY) cuch that TV = (DY and FY7 = (10 Y for every
i+l — I"in I. Define @Y = {im 1Y [, Sinee BY has limits we have that for every 1

g ¢ . \ - ! N . - . - . .
in AY. YD) =LUm1'1YD). Given f:Y — X we obtain a natural isomorphism
I

° : r\{ N &2 N Y ~ X3 e A ;- v Y
o} f":lzml'll f—lim|{ VA "l /Y = R
) D i T
: . . Ve ety
where the first arrow is iudnced by the somorphisis ' f*—— £*I'I'Y and the
second isomorphism by the fact that f° preserves hmits, It is not hard to see that
these isomorphisms satisfv coherence, making © : A — B a T-indexed functor. For

overy [ in T owe define 75+ ©Y — IV as the projection. It is casy 1o see that

. Ve . e . . T .- .
this definition makes x; a T-indexed functor and the family (@ —=T1) a cone. The

universal property is clear. |

Remark 3.1, Notice that the above proposition remains trie if we replace limits by
finite limits or coproducis ete, provided they are T-stable in B. Notice furthermore
that the limits (or colimits, ete) are caleulated donbly pointwise, that is they are cal-
enlated as the limit in T-ind( AV, BY ) and they are pointwise at every T-ind( AY . BY).
Lemma 3.6. If B has T-stable striet initial object then T-ind( A, B) has strict initial
abjeet. 1

Proposition 3.7. If B has T-stable finite liniits, a T-stabte nitial object, T-stable
coproducts and for cach X in T the coproducts are disjoint and universal, then

T ind(A. 5 has coproducts and they are disjoint and universal.



g
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Proof. By remark 3.1, T-ind(A, B) has coproducts and they are calenlated point-
wise at cach X in 7. Since finite limits are pointwise too at every X and so is the
initial ohject the result follows. ]

Proposition 3.8. [fB has T-stable finite limits and T-stable quotients of e quivale nee
relations and for every X in T these quotients are universal then T-ind(A.B) has

quotients of cquivale nee relations and they are universal.

-
Proof. It is casy to see that an equivalence relation F' == (7' in T-ind( A, B) pro-

-
ot
duces an equivalence relation #'¥ .__~\’_,' (Y. Then proceed as before, 0

-
Proposition 3.9. If B has T-stable finite limits. T-stable sups of subobjects and for
coery X in T they are universal then T-ind(AB) has sups of subobjecls and the y are

universal. |
Assume now that T has coproducts. Let A he a T-indexed category and {X,, }.,

a family of objects in T Consider its coproduct (X, — I, X.).. We obtain the
functor (i*) : ALY+ — T, A¥«, We say that A distributes coproducts if for every
family {X., }., of objects in T the functor (i) : AL X 5 1T, A s an equivalence
of categories with pseudo-inverse {(i*)7. Notice that if we have a T-indexed functor
> ~ \r
1 3 - - ¢ . al R i A
F:A— Bandan arrow f: Y — X then the isomorphisms FYein — i 1L, ¥»

induces an isomorphism
. o .
AH" Yo < u) H" A'\“
pIL SRR

>

BU“\." ,.__(_ﬁ_)_, I-L! BX,.

and if both A and B distribute coproduets we obtain then a natural isomorphism

AI—I(! Yo « <Iﬂ> HQ A‘\’,,
FLL‘ Xa b~ ~ I—LY Fer

BHG Xa W Hu BX”‘



Definition 3.11. Let T IND he the fulle 2 full subeategory of T ind whose ahjects
are T-indexed categories that distribute coproducts,

Remark 3.2, Since for any A and B in T-IND we have T-INDLAB) - T indt A B) it
is clear that the propositions above remain true when we are dealing with T-1ND.,

The category SET is clearly an object of Top-1ND.

3.3 Continuous Families of Models

Let P he a pretopos, we detine the Top-indexed catesory MOD(P) of medels over
P as follows: Given a topologival space X, Tet MOD(PYY = Mod.; Py and i
F oY = XNodetine f* 1 Mod s v)(P) — Modg,y (P} as composition with f
ShXN) — SE(Y)
Mo Moo T L
P sy e p s Besnonn,

Sinee f* i SAX) —- Sh(Y ) has a richt adjoint and it is left exact it is elementary,
we have then that the composition with MW ois indeed @ madel. It 1s not hard to see
that MOD(P) is in Top-IND,

The Top-indexed category SET is equivalent to MODUP for P = {Set™") .

Indeed, we know from Pheorem 1.3 that we have an equivalenee
Topos/Seti SL{N). SHP..1) ~ MOD(P)Y
where ./ is the precanonical topology on P, oand (see [8] 6.33)
Topos/Set(Sh(\). Set ™) ~ Sh(\).

We have (see [11] 1.8)

Proposition 3.10. The Top-indered category SET hus Top--adle finite limits, Top-
stable colimits, Top-stable quotients of equivalence relations and they ave wnive rsal at
cvery X in Top, Top-stable sups of subobjects and they ar wriversal at vvery \in
Top. {1
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Corollary 3.11. For covory Top-indered cateqory A the category Top ind(ASET )
s oan oc-pretapos (in the sonse of [I8] that e it is left cract, has unerersal sups f
small sets of subobjeets, universal unages, winiversal quoticnts of cquivalenec relations

and universal disjoint coproducts).

Proof. The result follows from Propositions 3.5, 3.7, 3.8 and Lemma 3.6, O
It ix <hown in [L1] that the Top indexed carcgory SET s well powered, cowell

powered and has small homs., We have
Proposition 3.12. The Top-indered eatrgory MOD(PY has small homs at 1.

Proof. Let M € Mod(P), and N € Modg;, ),(P). Consider the diagram 1" :
EltMy — Top/X such that I'(« € MP) = NP where we consider NP as a local
hotrcomorphism over X, and I'((¢ € MP) —» (b € M) = (NP A NP,
Consider i Fla € MPY =1lim NP in Top/X. Then for every f: X — Y we have

A S a1y
bef —lim NP in Top/ X
'Y A

< f NV ) . .
<</I(a€ﬂ!l') o f NI >((16A”,)>1. in Top/\
where for every pi P — P and any « € M P the diagram

h( 1 IP)

f NP

AN
banesen” ., Np
Y »
\T [)I
commnies. Now,

<<h(‘,€m., - .\'1))((16‘”,)%, in Top/ X

<<]\'(,,€\[p) [ — f*‘\rp>(t164\l]’)>p n TOp/)

whete for every p. P —= P" and any « € M P the diagram

Faestry .
| 2B penp
k y /
(Mp{a)eMPY < Np
N/
frNp!
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comimutes. Then

/ . A . .
<\"'(vu—ﬁ.”') il TN 1)>(a(:‘\11‘)>]) om TOP/)

VM TN m MOD(PY
XM — [N in MODP)
In particular, for M, .V in Mod(P) define hon (M. V) = L NP in Top. ]
Pl

Notice that this cives a topology to the sets Mod(PY M. N ) for M. N iu Modi P).

Indeed. for the topological space 1 we have the corresponding i~omorphism
Top(1. nom i M, NV — Aod(P){( M. V).

Notice that hom'( M, N) is a subspace of Hievupyy MNP Tt not hard to see
that the topoloey for Mod(P)(M.N) has as <ubbasis sets of the form Uy adh
M—= N{hPla) = b} with P in Poa o MP and b e NP,

Further analysis of smallness conditions for Top-indexed categories of models wiil

be done elsewhere.

3.4 Los Categories

So far we have not dealt with arrows of the form f, that allowed ns 10 obtain the

ulivaproduet fanctors at the heginuing of this chapter. We now take care of this,

Definition 3.12. Let f: Y — X hea morphism in Top. We say that [ i nltratinite

it fo o ShY) — SH(X) preserves finite coproducts and epimorphisms,

Notice that f: Y — X ultrafinite means in particular that £ is an dementary
functor. Theretore, for every pretopos Poocomposttion with £, 0 SH(Y) — SEX)
induees a functor .WO‘D(P)‘ — MODIPYY . alo denoted by £ that s ticht adjoint
to f*: MOD(P)Y — MOD(P)Y .

As we mentioned hefore, given a discrete topological space T the usnal embheding
I — 31 into its Stone-Cech compactification is nltrafinite. We show this fact and

give some more exatples of ultrafinite funetions below (see 3.3).
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Defin:tion 3.13. Given A in Top-1ND we say that A is a Los category if for every
nltratinite morphism f : Y — X the functor /= : A% — A} bas a right adjuint
for A - AN,

Given A and B in Top-IND we say that a Top-indexed functor £ : A — Bis a

Los functor if for every ultratinite f : ¥ — X in Top we have that the composition

'Y 11"" * = 1Y = 1Y px f;]«’y ! Al
A A Ly

!

is an isomorphism where y is the mnit of f* 4 f, : BY — B Y. ¢ is the counit of

. . . o R
f 4 fo: A — AY and the nuddle isomorphism is indueed by f*#5 —=+ 11 f,,

Given a pretopos P oand aun objeci £ in P is is easy to see that the evaluation

Top-indexed functor cop : MOD(P) - SET is a Los functor.

Definition 3.14. Let £os be the 2-category whose obiects are Los categories, its

I-cells Los functors and its 2-cells Top-indexed natural transformations.
Thus Losis « locally full subcategory of Top-IND.

Proposition 3.13. If B is a { os ecaiegory that has
-Top-stable finite Limits,
~Top-stable i(nitiwal object striet at cvery X i Top.
-Top-stable finite coproducts that are disjoint and wneeersal at coery X.
-Top-stable quoticots of equivalence relations universal at cecry X in Top.
Then for every Lo caiegory A the eategory Los( A, B) is a pretopos, Furthermore,
the corresponding limits and colimits are caleuleted as in Top-IND(A.B).

Proof. By Propositions 3.5, 3.7, 3.8 and Lemma 3.6 we have that Top-IND(A. B) is
a pretopos All we have to show is that finite Hmits (coproditets, ete) of Los functors
in Top-IND(A. B) produce Los functors. Clearly the terminal functor 1: A4 — B is
Los. Let I/ be functors in £6s( A B) and f: YV — X ultrafinite. Consider the
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following diagram

(1 N o= Fe e Y
]I( 1*‘ ~ (1')‘\:,; i l]l’t\'f; N ’}(l'\f:«

Fof (b Y o L FN e UYL

FlF Y o= Y [ ft L

where the top square commutes becanse fof™ preserves finite products and 5 is nat-
ural. the one in the middle commutes by coherenee and the hottom oge commutes
because (F - )Y is pointwise. Since F7and ¢ are Los the vertical composition on
the right is an isomorphisie Fherefore the vertical composition on the left is an iso-
morphism. A very similar argnment shows that *he pullback of Los fimetors is also
Los. Therefore £os(A. B) has finite limits.,

The initial funetor 0 : A — B s clearly Los. Showing that Los(A.B) has finite
siras I @ similar argument as before using the faet that fo preserves finite sums.
Finally we show that £os(.d. 8) has quotients of equivalence relations. Suppose that
7%(;’ i an equivalenee relation in Los( A B). It is easy to see that {7, 7} is then

an equivalence relation in Top-IND. Consider ¢/ -~ [ its quotient. We have to show

-
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that H is Los, Censider the following diagram

Rl ST SR
. Y7 I .
yFS L. WL A
ﬂﬂl“figégg;gifja“vf e oS
R A Ay A
LIV pe ““““'**"J—iif—* LG f, g LI
T L, “s-'fﬁwrﬂ"z‘“
fbV e | fGV AN
e s
LI R o

It is not hard to prove that the dicpram commutes. Since f, preserves epimorphisins

we have that f,r} s an epi, Since

v
fxlﬂ) pd fx(")
g I

' -
Jal" e LI

is a pullback we have that the last rew in the diagram is a coequalizer. Since the first
row 1s also a coequalizer and the tirst two vertical rompositions are isomorphisms we
conclinde that the third vertical composition i alse an iscimorphism. So we have that
Hisin Los(A,B). [0

It is easy to see that if B satishies the conditions of Proposition 3. 13 and /1 A — C
is a Los functor between Los categories then Los(F,B) : £os(C,B) — Les( A, B)is
an elementary functor. We therefore obtain a functor £a8” - PRETOP.

3.5 Characterization of Ultrafinite Functions

We now turn our attention to ultrafinite functions in Top.



In what follows we will nse the well known equivalent deseriptions of SETY as
the ustal SE(X) and as the category LH/ X of local homeomorphisis over X, for
o topological space X, We nse the wsnal equivalences U s LH/X —— SETY and
L:Sh(Y)— LH}Y (see [2] for example).

Lemmma 3.14. Lt f: X — Y be « conturnans function then f,o0 SHXY - Sh(Y)
preserves the inited object of and only f fON) s dense i Y

Proof. Suppose first that f, preserves iuitial object. Let 17 he a nonempty open set
of 17, and let 0 represent the initial sheal, then f(0)(V) = w That s, 0¢f "V = 0
Therefore, f='1 can not be the empty set, aud then Vi f(N) # 9

In the other direction, suppose fis dense. Let 17 be open in Y since f(Y 1 s
dense in Y. we have that f=50) # 0. Theretore O(f~H) = B So f00 — Q.
O

For the rest of the \((TIUH rather thdt \\Ull\lll" with f. 2 SI{X) — ShiY), we will

be workine with LH/X A, Sh{X) LN Shiy) LR LI/Y. If we have

in LH/X, then we have that the map

lein D(E,pyf1vy) LIT(h) H lmll FLoph N

1V 3y Vl‘} \«uu

is such that {s &€ PO pW( 7 (VD] 0o hos € TR O TN,

Lemma 3.15. Let f 1 X — Y bt a continwous function with dense image. Then
fet SEX) = Sh(Y') preserves finidc coproducts if and only of for coory open VO Y
and cvery y € Voowhenever f7HV) is the union of tiwo disjoint oper scts of X then

erists W CY open with y € W osueh that =YW s contained i one of them.
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Proof. Suppose f. preserves linite coproducts. therefore Lf, 1" preserves linite co-

products, Consider the following coproduct in LI/ X

NIy e Sy
AN (ul\-.i«l'\')’ ’
idy “idy

L
AY
Since L £ 17 preserves finite coproducts, we have that the induced continons funetion

LET(NGd)LILAE(N idy ) = LAD(NTIY, (idyid )

2 Y an open set, g € 1V, and suppose that f71(V) =

AU B with _tand B open and disjoint. Detine s @ f741) — YI[.X such that

s[4 is the inclusion of A into the first factor, and s|g is the inclusion of B into the

is a homeomorphism. Take 17

sccond factor. Then s ix continuons and [s], € LAT(XN LY, (¢/dyv.idy)). Theretfore
there exists an open set 7 of Y. and a continuons function ¢ : f~4W) — X such

that one of the following diagrams commute

In any case, we have f~H W) < Aor f71{)  B.
In the other direction, consider the coproduct
nl IE h 17 ,.E' a4
E—— L~k

)
p \\\ ’1,’
I e
X

in the category LH/X. Then we induce the unique morphism » that makes the




h¥

diagram

LETV(E p) — LET(E ) ITLFVO phY - TR ph
® !

N
N

N
AN

AN

LETCETTF Apop')

commmute, We have to show that ;2 is a hemeomorphisin, First we show that s
monomorphic. Suppose o([f 1V - FLY = o[ 0 == £/] 1 Then it is elear

that 4 = - and that
AR R AT | L P U L I A S A 1 e

I'herefore, there exists [0 Y open suech that p o 072V 00 W and r: SNy —
ETT £ sneh that
JTUV e ) = T

l L,, 1

P P e
iy )

commiutes. Suppose @ = fTHIY, Then ried = F and vy < E'. a contradiction.
Therefore f~'7Y = @ But 7 is open and nonempty and f{ V) is dense in Y,
therefore f~1({") is nonen iy, another contradiction. T herefore we conelude that it
is not possible that o([f7Y(V) = E]) = o700 ) — £,

Suppose now that o([f~1VY — F],) = A0/ (W) = E£].). Then we proceed
as before, so y = 7 and we can find U open in Y with y S U and U7 2V 1 W and
r fHEY — EE such that

FAOY e ) —— )

‘| [r t

E——r E][E ~—— [
r g

L %




conmuutes. But this means that Im(r) ¢ IF, and

=) —— 1)

JTHW) = I

therefore [f~H1) == L], = [{~10FV) —> E],. and ¢ is mono.
Now, take [[7N(1) =5 ELLEY, © LEDELLE (pop')). then £ 1(1) = &Y £) U
STHEY) with 7Y E) and s~ 1H(F) epen and disjoint. Therefore there is a 1 C Y oopen

such that y € W, and f~YW) C «~YE) or f7HI) C 1B I 71 () < s7HE).

, . sly=10) - .. - .
Chen ([f~1 W) —" L],) = [s],. The other case is similar. Finally, ¢ is open

hecause 1t is a local homeomorphism. ]
If we consider
1'7 }1 ["V’
P 1,'
N »
A

in LH}X as before, then Lf.T(h) is «n epimorphism il for every y € Y. every V7
open in Y with y € Vand any s : f71{1) — I/ such that p’ v s equals the inchision
of f7Y V) in X. then there exist Woopen in ¥ with y € Wand £ fYW) — = F
such that

F ) =Lk
|

| h
'

SV

commutes, where the left vertical arrow is the inclusion.

Lemma 3.16. If j : X\ — Y s u continuous function, then f, 2 SHN) — Sh(Y)
preserees epimorphisms of and only if for cocry V' C Y open, y €V oand cocry open
cover {U Yae s of F7YV) there caist an open W of Y with y ¢ W V', and « disjoint

open cover {0, ey of F7HY) such that for coery o we have that W, C U,



Proof. Consider a cosnmntative diagram

oot

p p

with p and p' local homeomorphisms and & onto. Take 17 open in Y and - 1,
Suppose that ~ . f V) = F7 i such that g/ os equals the indasion s f by
X. Swee s is a local hameomerphism, it is open. Therefore <0 f 1V is open i
F'Coand s o0 F R — S0F WUV is o homeomorphism with inverse p/o Since &
i continnons we have that 27Hsof 7H 0 i open in £ So we have the followine

commutative diagram
#

Botsol Hy W ey

P Y !

where the cotmposition at the top is dlearly onto, It is elear that it is caoush 1o tind

WV with g e Woand £0 700 Y — A7 s 710 snch that

SO L e

[)’ | !l

comnittes. So, we may snppose that we have a local homeomorphism ¢ @ I —

F7HV) that is onto and we want to tind B C Y with y ¢ W oand £ 2 f71 37y — 17
siuch that

F Wy - e
\ q

commiutes.




For every € 1) choose O 0 f YW Y opena U0 1 open sach that oo
and ¢+ U — U 15 a homeomorphisme Then {8} ¢ qny i anopen cover of
F7HV). Therefore there exist ooV oopen with ¢ ¢ Woand a disjomt open cover
(W, ey of AU sueh that W, O L, for every v oo f YV Define 1,
(gl YV Hw, o W, — B, Since { Wt sy are disjoint and dopercin £ (W ) at s
clear that we can put them together to obtain the continnons function £ f Y1)
E"«  hothat Hy, = t,.. ¢ has the reqguired properts. []

We put Lemunas 3.1 13005 and and 3,16 together in the followine proposition

Proposition 3.17. A contimuons function XN =Y s ullvafindde of and only «f |

sutisfies the following conditions:
) fIN) s d nse in Y.

(2) For coery opin Voof Y oand any y ¢ V. of f7HV) Vir s aeth A and I8
open and disjoint. then there crists an open WV mth y « W such that

AWy c Aor f7YW)Y C B,

(3) For coery open Voof Y any y €V oand any open covar {04, ol (V).
there exists an open W CV o with y « Woand a dsjont opon covcr {W, 1., 1 of
72O such that for every o € A we have that W, U,

1

Proposition 3.18. (fiven a disercte topological space 1, the wsual comheddimg €1 -

[ = 31 into its Stone-Cech compactificetion is ultrafinile.

Proof. Since €1 is dense we have by Lemma 3.01 that €1 2 Sh(ly » Shigl)
preserves the initial objeet, Take a basic open J* and an clement ¢ ¢ and assume
that ET71(J*Y = 0y U J,y with Jy v 1y = B, Sinee EF7YI"Y = we have Jy U0, o Y,
Since U is an nltratilter that means that Jy e Yor J, e U That il « d7 ot U - 1}
and E171(J7) C Sy for k= Vor for k = 2. By Lenuna 3.15 we have that £, preserves
finite coproducts. Using Zorn's lemina it can be shown that for auy family {1} of
stthsets of [ we can find a disjoint famiiy {J.,} such that U, .1, = U, L, and for every
o, Jo C I,. So given a basic open J*, a point ¢ € .J* and an open covering {1, }

of 171 we simply replace the family {1,} with a disjoint family {/,} with the same



nnton such thae Lo T o all oo By Letnna 3,160 we have that 1, preserves epis.
[

We need not take all of 310 I we take o non principal altrafilter ¢ on I and
consider the topological space SL(T) U {{} with the topology it inherits from 31 we
have that the resulting embbeding T 5 EI(1Ty U {4} is ultrafinite. We normally
plentity SH0T with 1L denote the element corresponding to I by« and denote the
tesultine space by Iy,

Anoiher example of an ultratinite function is the following, Let D be a directed
category. Consider the topological space Xp whose elements are the obhjects of D
aned give Xp the Alexandroff topology, that is the sets of the form T(d) = {d'| there
exists an arvow J -+ d"} form a basis for the topology. Consider the topological space
Np U {pt where p ¢ Xp and with basis {T(d) U {p}}ep. Notive that we need D
direeted for the given family to form a basis, We have an obvious continnous huiction

Np > A\p U ph It is not hard to see that this funetion is ultratinite.



Chapter 4
Algebras

4.1 2-Monads

We will consider several monads. In this section we give the delinitions we vill be
using later to hix the notation. We follow tie notation of |5).

Given a 2-category A, a strict 2-monad on 4 15 o 2 endolunctor 170 A+ A
together with 2-natural transformations g @ 1 — L and g0 1T 5 [ such thoet the

nsnal diagrams

A 7 I'n A
A1 ppa 2TA rrra YT A
1'1*/\;\\\ N /IA l ra /"I'A /! A
N "
A I'TA 4 1A

commute on the nose. Given a striet 2-monad T = (1.5, 1) a striet alpebra is o pan
(A @) where 1 s an object of A and @ - T4 — Ais a L eell of A such that the

usnsal diagrams

A .,
R rra-tteg
14 N ® To @
Nt |
A ’1‘.’1 ——d)“’ ,4

89
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conunute on the nose, Given algebras (A, 9) and (B.W) a morohism of algebras is a

pair (1L oy (AL

fwo e ol

s (W) where Il 2 A = Bisaleellin A and ¢ is aninvertible

1Aa—2— 4
T ¥ ' i

) »

'3 v B

satisfying the coherenee axioms

I'I'H

I''4A——1TTB
A l luB
TA DTN B
9| ; |
AT B
amnd
A—1 . g
nA i luB

7'14”"],—11“' TB
A——5— B.

H

TT A T I'TB

re| Ty r 1 T
1A~~~ 1B
‘bl P /} v
A= B

It

idy

When ¢ is an identity we say that the morphism (H. @) is striet,

We conside r the 2-category T-AL(G whose objects are strict algebras (A, ©). whose

I-cells are morphisms of algebras (H,p) @ (A.®) — (B, ¥) and whose 2-cells 7 :



0y

(HopYy = (ALY we2cells 7o 1 -v hoin A such that

I'h

v AT T ’

FA_NorB ~ paq-Ihoypp
rn o, »

SRR U

AT R b
I{ ‘4 \TTIL'I;

We have che 2-subcategory T-ALG, of T-ALG where we restrict the morphisms
to strict morphisms. Thus the inelusion 2 functor is not full but it is locally tnll and
faithful.

4.2 Functorial Weak (Co)Limits

In this section we review some of the folklore of weak Hmits,
Let A be a categorv. For every object (Lin A we Lave the nsual forgetful functor
Uy: AJA - A

Definition 4.1. A [unctorial weak initial object in A is a pair (Z.F) with Z an
object of A and F': A — Z/A a functor such that the diagram
A—t . 7/a

IA\\\ » /(T[
A

commutes, We say that A has a functorial weak initial object i cuch a pair (7, 1)

eXists.
Functorial weak terminal object is defined dually.

If (Z.F) is a functorial weak initial object in A then clearly Z s a4 weak initial

object in A. Furthermore, for every arrow a : A — A’ the diagram

, kA
AN
" A,



conmtes. In partiondar, considering .40 7 -+ Vas an arrow in 4 we have that

(1 A

catnttes,

Lennma 4.1, If (7. 1) s a functovial weak mitial object i A then FZ 22— 7 s

an il mpotent,
- Proof. For A= 7 Ll weobtain 2o ' = FZ. ]

Proposition 4.2, If A has v funetorial weak iwitial object (Z, 1) and split it mipo-

A— . .
teplds then A has an anitial objeet,
Proof. From Lemma 11 FZ is an idempotent, Consider a splitting
. 14 ,
z - Z
t 4
( S
LY
b
Sim ©
. Iz .
zZ - Z
_— 1t » ol
N N m
LN
g

commutes, we have mo 8 = F7Z = moe. Stuce m is mono, F'S = ¢. Given A

m A

m A we have the arrow S —— 7 —— A, Suppose now that we have another arrow

g5+ 4 Consider the diagram

- 1 d Z
I 1{// P4
/ m
oy € U ’ 1
/4’ ‘\{ 'S [11
N

o FAS0

Pt

Botlt triangles on the left commute aud the exterior triangle also commutes, therefore

FAomoc=ygoe. Suee ¢ is epi we have FAom = ¢, This shows S is initial. !



Let ': T » A4 he a diagtam. Detine the catesorny C'ocone(]’t ol cocoties over 1

i

I'hat s, the objects of Cocaone(l’) are cocones (1'/ = Dy and o morphism

A 1\] - ’\ll "I’ \'\,

li

a1l /i

v an artow a : b -3 Y such that for evers [ in I othe diagran

1 __u . ‘,
e 1
'l

cotmmtes, Phere is an obvious foregetful functor Cocone(l’) » A and a wealk colinnt
cocone for I'in A is dlearlv a weak nitial object in the catesory Clocone(’y oad

\'i(‘(‘ Vil a4,

Definition 4.2. A functorial weak colimit for 1'in A i~ a functorial weak mitial

object in the catevory C'ocone(l).

Fuunctorial weak limits are defined dually,

A functorial weak colimit tor I' in 4 cleatly gives a weak colimit cocone tor 1,

Lemma 4.3. If the caleqory A has sphit idempotents then the category Clocone(l’)
has split idempotents. O

Proposition 4.4. If a category A has split idempole nts and o functorial weak colon:d
for a diagram U : I — A then U has a colimit in A,

Proof. By Lemma L3, Cocone(l') has split idempotents and we wie suppos
ing that Cocone(l’) has a functorial weak initial object. Then by Proposition 1.2,

Cocone(l') has an initial objeet. This initial object is a colimit cocone fur | in A,

Ei
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4.3 Pseudo-retractions

H . .
Suppose now we have tunectors A+ B oand B =~ A and a natural trapsformation

a—1 g
(
<
(1.2) A

Proposition 4.5. In the aborc sduation. if B has a functorial weak initial object

then A has a functoria weak mital objeed.

'roof. Assume (7, 1) is o fuactorial weak initial objeet for B, Givena: 1 — 4/

i A we have the comnmmtative diasram

AN

7z 1A
FUA N Ha
R Y »
.y

in B. Applyving I? and using the naturality of # we oltain the commutative diagram

010 K(FHA)
RZ A

0A o ROPH AN N Cd
A

Therclore (RZ, 00 o R(FH{_))) is a fanctorial weak initial object in A. O
Bemark 1.1, Notice that for the dual, that is for functorial weak terminal object we
need to reverse the natural transformation d.

Assiume now that # in 4.2 1s a natural isomorphism and let T : T — A be a
diagram. We can induce then ¢ functor B : Cocone(HI') — Cocone(l') such

ori-! R \
that H'(HI'] —‘(L’*b’)] = (l']-——————*HHl‘[—-—*f-I—*HB)I and KH'b = Rb for every b :
’
. ¢ ] . Al 7 .

(1 [ By — (1 N B'Y; in Cocane( HT'). We have that H induces » functor

I" . Cocone(l') - Cocone(HI') such that H’(I‘I~—f—l—*A)1 = (HTI *Ii—J*IHA)I



and H'a = Ha for every v (1] e, B, (U fr . 1Y in Cocone (1" We can

indnce a natural isomorphism

1]
C'acone(l) AN Coconellll)
{
l(‘ucane(ll RN N i
AN
'y »
(1) Cocone(l’)
R ‘ IR ki
sueh that 0(1'7 —j—]ﬂ Ay=01: (]‘]“*l'* RHT'T ”'II' iy, (U L 1y,
Theorem 4.6. If 0 in 1.2 s a vatural tsomorphism, thew any deagram I 1 A

I "
such that I — -+ A—— B has a functorad weak colinat (funclovial weak loned ' on 15

has a functoral weak colun ™ (functorwl weak linet) in A, Do particddar, of A hus
split idempotents then 1 has a colimit (lonmit) in A,

Proof Sinee Il >A—H—>B has a functorial weak colimit in B we have that
the category Cocone(HT') has a functorial weak initial object. Sinee ¢ s a natural
isomotphisin we can induce ¢ in 1.3, By Proposition 15 we hase th ot Cocone(l’)
has a furctorial weak initial object, that s I' has a functorial weak colinit i A, I
A has split idetapotents then by Lemma 1.3 Clocone(l ) has split ide apotents, 15y
Proposition 1.2 Cocone(l’) has an initial ohject, This initiat ohject is a coliit o

I'in A. tl

Remark L2, In the cases we are going to consider the category Bowill have <plit
idempotents. This implies that A has split idempotents (provided 8 15 o0 natunal
isomorphism). Indeed, ifa: A — Ais an idempotent in A then He is an idempotent

in B. Splitting Ha and applying B we obtain a splitting of RHa, use now that 0

1

. . e e e . . I .
is iso. We will also have a colimit (limit) of the diagram I—— A -+ B i B. I

this situation the colimit for I' in A is ¢ atned as follows; take the colimit < orone

(HTT =L limg HT); in B. this gives a cocone

+r—1 N
e gy gy 2L HE Ly HYY ;.




P mdneesananow s cdog Y HR L HE suche that for every I the diseram

-y 111

Hity o Hov ! 7
! NS
(1 HE iy HT

commtos. Then 6R{Lon HTY By i ancidempotent and a splitting of it produces
the colimit of T in A.

Bemark 1.3 A~ a consequence of Theorern L6 we obtain that if a category is a refract
of o complete category (in the sense that @ in 12 s the identity) thon it is complete,

This 1esult appears in [7]
4.4 Pretoposes Revisited

T
We know from L6 that we have a Z-adjunction Pretop>— Lex. Denote by T the
=

senerated 2 monad, We nse the results of the previous section to show that if a left
exact category € has a T-algebra structure then C is necesarily a pretopos.

Recall that for any [1 - O — D in Lew, I'C' = (Set” "y . and F(II) = Langn.
Let T - (T y. 1) be the 2-monad generated by F 40,

we start with an T-algebra (C. ‘o have the following commutative diagram
If tart witl T-algel C.d) wel the foll tat liag,

nC

C [C = (Set® ™).,
e @
W
&
Rementber that yC* is the factorization of the Yoneda embedding throngh T'C and
sinee C s split idempotents, we have by Theorem 4.6 that € has colimits of all
. . . . . I e .
thos » diagrams I' : I — C for which the diagram I—C -T2 TC has a colimit
in I'C. It follows that € has initial objeet, finite coproducts and coequalizers of

equivalence relations (equivalence relations are preserved by yC as it is left exact).

Proposition 4.7. {f (C'.®) is a T-algebra then the initial object in C is strict.



Proof. Denote by 0 the initial obgedt of 'O and v O the mitat obyeat of 11 ¢
Tl N . N N
(S'Pt”bet bt i Folloming the image ot vhe anigque avron O 1O 0) aronndd

the commutative diaetam

T ) (! o
(GepttSet Ty / s (Sett )
]AIII.;. iz ¢
~ (1} o .
(13) (Set” ) o (

we have on the one hand that d(pC(O > 100 D) g and on the other
S(Lung (O — 1'CCLL00 = @) where 5 00 > Cob0) s vhe mngue morphosm
from 0 to C{_.$0). Since the iuitial object in €7 s obtained as o splittme of @)
we conclude that the initial object in €735 PO, Given any attow f o1+ (i € we

have that the square
0 - — —+0

is a pullback. Applving @ we obtain the pullback

D0 -— -+ ¢0

|

D) — ('
/
Therefore the mitial objeet of C' 15 stable nnder pullback. This means that the ot ]
ohject is strict. O

Proposition 4.8. If (C.®) « « T-algchra thew fivide coproducis i € are disjoint

and stable.

Proof. We do it for biuary coproducts. Let (/1) be objects of €', Consider the

arrow

716'(_,C(~,(v))+Y'C(_,C(_, 1))) (IC\_.H).I(‘(_!;L:'[(’( .(,'f .(1} n ("‘ .I)))




N

m S wheoo oy O ) =CC 01 C0 DY and s, O DY -CC Y+ CE D)
are the correspondig mjections . We chase the attow (I'C( ) L CU2y)) around
the dagram 15 We obtain @(pC{TC 1) I'CC L)) S~ _yre ny) —

|q.(r‘( (40 Dy on the one hxl]l(l. and
PLang , (IO ) LCC ) = SU{P(e1). D(22)))

on the other, Smee the coproduct in € is obtained as o spliting of the idempotent
Gebir ), D1 ) we have that S(CC Y+ C (L D)) s the coproduct in C of ¢ and
D. Inother words ®(C( ) + C(.. D)) —C + D We have that the squiate

0-———— (1)

is a pullback. Applving @ we get the pullback

¢0 — 1)
1‘1’12
(' "+ D

(bll

I'hat is, the coprodincts m C are disjoint.

et stability we nse Lemima 1.6, Suppose we have ("4 ) Ui 2} B~ 1 C.

Lhen we have the pullback

Clm)+C( 1)

VP RO ) C..()+CL.D)

(('(-. 7711).('( ‘7“21)>1 [ <C(—w.f1)~C(-~fl)>
(.. A c(..B
(-1 C(.,9) ki

whete the squates



gy

ate pullthacks. Appliine & we ect the pullback

Tip b T

Py eop
(Tlh’:l\)l YA
v
{ - J -1
| herefore fimite copeoducs are stable in €7, [l

Proposition 4.9, [i (", D) o a T-algchia tnen O has stable quotionts of cquecaenee

1clations,

'y
Proof. Let R——2 (" be an equiv dence telation in €7, consider the guotent
r,

in ['C" and the gnotient

re(.Cin) \
IO R)— s P () 0
rec.cour))

in ['1 C'. There exists then a nnique avtow £:Q = ['CC () such that the diaeram
[CCLOL N === = Q
['Clq) /
s

rei.q)

commutes, It is easy te see that pC(4) is an isomorplitsm and therefore d(pCity) o,

an isotmorphism. Ou the othet hand we have that &g Lang (1)) i) e (' 00

where 4 is the nnigu arrow that makes the diagram

Cl.o)y—"1L ¢

Cl.dy) | //

O dQ)
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cotnmitte. Since the coequalizer of (ry,ry) in C is obtained by splitting @(4 ), we have

thet the coequalizer is ©(q) : (" — $(Q). Since the square

o L o
C’(_.I'g) q
Clo ) ———

is a pullback. applyving @ we get the pullback

B—t ¢

e

(g 0

Y

That is, &g iv a quotient in C of the equivalence relation (r77.r;). We show that ®¢

i~ stable. Suppose we have an arrow ¢ : D — Q) in C. Consider the pullback

p—"ts
T 1 i@q
D 7 o)
in C', and the pullback
& 15 (J
i
“| )
C(..1 C(., 9C
(1.6) e €t

i I'C. There exists a unicue arrow ¢' : C(., P) — U such that the diagram

Ly Llem)

C( C(,0)
C(~-7f1)//¢' l‘[
C(‘. 1)) ‘ITI_ IT uy Q



[0l

committes,  Sinee the diagrams above involving P2 and U7 are pullbacks it can be
shown that he square on the right in the previous diagram is a pullback. Consider

the diagram

SNy P

T

H]— —»1))—'?—’('

T

P -

2

in which every square is a pullback. Since the inner square in the commutative

diagram

C.N) . C( 1)
I K
('(-» 7‘-2)
‘(_. 7'1) ’/y
C(..R) C(..(")
C(_‘ 7.1) l[ ‘,Il
C(o () —5—(
//('7(‘. Ty) 1
y
C(.P) , .l
q

is & pullback it is not hard to see that tLe outer square is also a pullback. Therefore
the kernel pair of ¢' is C(.,5)ZC(., ). Sinee quotients of equivalence relations
are stable in TC and ¢ is the pullback of ¢ along uy we have that the diagram

. q .. . . . oy . .
C(..S)=C(..P) Aiirisa quotient diagram. Therefore I 175 the quoticnt
of the equivalence relation S—2 P in C. 0

As a corollary we have

Proposition 4.10. If (C.®) is a T-algchra then C is a pretopos. 1
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Similarly we can show

Proposition 4.11. {f (+. ) : (C, ) — (D V) > « T-ALG morphism then U is an
clowmentary functor. M

4.5 2-Algebras Over CAT
4.5.1 CAT over CAT

Consider the 2-adjunction

CAT”
Set'-) [ t Set!)
CAT
whose unit A :© A — CAT(Set?, Set) is evalnation, that is A(A4) = ¢v4 and
NA(a) = (v, for every a1 A = A" in A, and whose counit ¢ B : CAT(Set?, Set) —
B in CAT" is also the evaluation B — C AT(Set®. Set). We consider the 2-monad
T = (1,5, ) generated by the 2-adjunction above. We have that

(A C AT (SetCATSe" Set) Got) _, O AT (Set. Set)

i such that pA(L)NG) = Llevg). pA(LY ) = Lievs) and pAWNG) = hevg for
every i L — £'in C AT(SetC AT(Set" Set), Set) and every 7 : (+ — (' in Set?.

Given a diagram 1': I — A we will denote the composition

[N

CAT(Set*. Set)
by .

Proposition 4.12. If (A.®) is a striet T-algebra then A is a complete and cocom-
plete category and O prescrees Iimits and colimits of dicyrams of the form cvy with

I': I — A.
Proof, We have the commutative diagram

AT CAT(SetA, Set)

D
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Now, A has split idempotents (see Remark 1.2) and by Theorem 1.6 we have that
A is complete and cocomplete, Let ' I — A he a diagram. To obtain the limit
for I' in A we have to proceed a follows according to Proposition L6 First we
- 3 - N 7rl . aj A AN M
consider the limit cone (Lim cop—=+cvpr); in CAT(Set?, Set). 1o this we apply
i

e CDn'; N . . .
& and we get a cone (@{lim cop)——=T1); in A. From this one we ohtain the
e
H

€1

' . 4 n . .
cone {(dim e op)(G) The copp) g in CAT(Set?, Set). There exisis then a unigque
am
arrow 7y e oglim copy — L cop such that for every Tin I the diagram
—— i ianany )

. [T
rplim ) — 4% Ly = €7
amn

7\\ 4

i cop
gm

committes (compare with -L1). We have that @y @ @l eop > ®hr cop s an
1] {

idempotent and the limit of T' in A is obtained by splitting ¢4, It is enoueh

then to show that &+ is an isomorphism. To do this consider the unigrue anow

{CAT(Set,Set) Goyy ],

Crevgdim erpy — m evg, in CAT(Se at makes the diagram
i LU

. L
cdim e rp ! Uy,

\ s

Q\ //”Il
N
(1’?) L{_’_’Z (l‘fl’l

commute, We chase ¢ aronnd the commutative diagram

CAT(Set®, Srt
C AT (SetCAT(St .5et) gop) CAT(Set”, 5] )C AT(Set? Set)

nA l ¢
CAT(Set?, Set) A.

(4.8)
Observe that if (¢ : A — Set we have
C AT (Set®, Set)(« olim ¢ o))

il

”'(Li_?ﬂ ()0 Set‘b((,')
= ('I’djlﬁ,p”((; ()(b)
= (;(‘I)(ljlﬂ € ))

= ((1».3,@'12 cop)7)
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Similarly we have that
C AT (Set® Set)(lim ev,,.) = Lim ey

So applying C AT(Set®, Set) 1o diagram 1.7 we obtain the commutative diagram

ey
CUa(lrm fl‘] L S H’(bnp

CAT(Set?, Set)( ) /

Lim e o

That is CAT(Set®. Set)(() = . Therefore ®(CAT(Set®, Set}(¢)) = ®(7). On
the other hand it is not hard to see that pA(¢) = I(E—'Q evpy and therefore ®(pA(Q)) =
l.p(‘l'[l[_). cop). 'I‘hat iS q)(’)r) = l(b(_ljlﬂ € p)- D

Proposition 4.13. If (H,p2) : (A.®) — (B. V) is a morphism of T-algebras then

I1: A — B preseroes limits and colimits,

Proof. Let I be a small category. Consider

pAl Lim ¢
AT T2 CAT(Set?, Set)! C AT (Set”, Set) A
11'1 lCAT(Set”.set)' CAT(Set Set) | H
v/
B

B! —— CAT(Set®, Set)! ——— C AT(Set®, Set)

yB g
it is casy to see that the middle and left squares above commute. Given I' : I — A

we obtain with the help of the coherence diagrams the commutative diagram

H(®(lim o)) 2271 yry

wlim H\ Vg

Y(lim evpr)

C‘'olimits are done the same way. a
Notice that  above gives the isomorphisms plim evr @ H(lim ') — Lm HI' and
limerp)™ 2 Lim HT' — H(lim T) induced by the universal property of lim and

(wlim

lim on B.
——



LH

4.5.2 LEX over CAT
Similarly we can consider the 2-adjunction
LEX'"
Set!-) I { LEX ., Set)
CAT

and carty over the same argument. We obtain a 2-monad that we (also) denote by
T = (T, 9, ). The corresponding proposition is
Proposition 4.14. If (A, ®) is a T-algebra then A has all mats and flt- yod col-

: o I’ nA
imits. Furthermore @ preserves limits of the form I“*’A”‘!‘—’LEX(SPIA.S(’”

and colimits of the form J—ELA—B—{LLEX(SctA.Set) where J s filtered. If

(H,o) : (A, @) = (B. ) is @ morphism of T-alyehras thew H preserees lints and
filtcred colimits. O

4,5.3 PRETOP over CAT

Consider now the 2-adjunction

PRETOP”
Set!~ 1 l Mod(_)
CAT

and the generated 2-monad T = (T, 3, jt). We have
Proposition 4.15. If (A, ®) is a T-algehra then A has fillcred colanits and & pie-

- r A
serves colimits of the form I—»A—U——*Mod(SetA). If (H.p): (A, &) — (B, V)
is @ morphism of T-algebras then H preserves filtered colimits. [}
[t is to be expected that in this setting we can give a pre-ultracategory struciure
to any T-algebra (A.®) in much the same way as we have coustructed limits and

colimits up to here. This is what we do now.
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We define the 2-functor W : T-ALG — PUC as follows. Given (A, @) in T-ALG
then the underlying category of W(A, @) is A and given an ultrafilter (1,U) detine

U wiae : A" =5 A as the composition

(na)!

A U4 A dsetdy L pod(sett) -2 4.

where [(] denotes the usual ultraproduct functor of models. If (H,p) : (A,9) —
(B,W¥) is & morphism of T-algebras, then we define W(H, ») = H together with the

natural isomorphisms
, Ulwae

LU 7,}}\/

[U]u(aw

A

!

The natural isomorphism @[U](nA) has the domain and codomain shown above due

to the fact that the diagram

nA)! 4]

—=+ Mod(Set*)

A1 AL pod(seray ML,

|
i l (Mod(Set?))! Mod(Set")
1
g/ B, Mod(SetB)! i, Mod(Set?)

commutes on the nose, If 7: (H.p) — (K.,9): (4,¢) - (B,¥) is in T-ALG defire

W(r) =r:H — K. We have to show that r is a pre-ultranatural transformation.

It is casy to see that

Mod(Set")!
("A)I AT . B\1]
A —— Mod(Set”) 1Mod Set™)! , Mod(Set”)
equals Morl(Set")!

HI
Al /’I\BI (UB)
\__/'

K

Mod(Set?)!



7

and that

Mod(Set!")
Mod(Set?)! _Mod(Set")! Mod(Set?) mh‘ Mod(SetB)
equals Mod(Set")
Mod(Set")!
Mod(Set?)! | Mod(Set')! , Mod(Set®)! 1] Mod(Set?)

Mod(Set*)!

Since T is a 2-cell in T-ALG we also have that

Mod(Set'!)

Mod|(Set?) I Mod(S}‘ Mod|(Set?)

|
Mod(Set")
/

f

¢ 1\

A

- B
equals

Mod(Seth)

Mod(Set?) Mod(Set?)

It follows that
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That is, 7 is a 2 cell in PUC. This completes the definition of the 2-fimctor W
Giiven a pretopos P detine @p - Mod(Set™4P)y _ Mod(P) such that

Pp(M)(P) = M(evp)
for every M in Mod(Set™ )y and every P in P. It is easy to see that & p( M)
is an elementary functor. If b : M — A is & morphism in Mod(Set™4P)) detine
Gp(h)(P) = h(cvp) for every PP € P. Notice that the 2-adjunction

FRETOPY”
i
Set!-) [ l Mod,.)
CAT

gives us the comparison 2-functor PRETOP? — (T-ALG), and 1t is not hard to
sce that this functor is such that P +— (Mod(P),®p) for every pretopos P. The 2-
functor in the following definition is simply the comparison 2-functor PRETOFP —
(T-ALG), followed by the inclusion (T-ALG), — T-ALG.

Definition 4.3 Let (Mod(.),®()) : PRETOP® — T-ALG be the 2-functor such

that for every 2-cell
El

in PRETOP we have that (Mod(_), ®()) applied to it gives
(Mod(E),=)

(Mod(Q),%) | Mod(r) (Mod(P), ®p)

/—\
~_
(Mod(E"), =)

In particular when P is the full subcategory of Set™® whose objects are the

tinitely generated functors, where Set is the category of finite sets, we have that

Mod(P) is equivaient to the category Set where the equivalence is given by ev;, :

Mod(P) — Set where in : Sety — Set is the inclusion. It is not hard to see that

®p defined above corresponds to the functor ¥s.y : Mod(Set>*) — Set defined as
VsetM = M(idse). This gives us the T-algebra (Set, Vse).
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Proposition 4.16. The functor W : T-ALG — PUC dtfined above 1s such that
W(Mod(P).®p) = Mod(P)

for any pretopos P. In particalar W (Set, V) = Set.

Proof. Let (1.14) be an ultratilter then [({]w(Modpy.ep) 19 the compositon

___I]Mod(P)l

Mod(P)' Mcé(SetMedPhy!

le4]

Mod(P) Y Mod(SetM4P))

If we start with a family (M,); in Mod(P)" we oltain the model @ p(]], « g, ) in
Mod(P). For any P in P we have

‘I’p(H GUM'/U)(P) = H ¢ Ugm/“((’l‘p) = H 4 "M.(f l‘p)/u = H A[,['/H.

Therefore [U)w (Moa(p)op) Mod(P)I — Mod( P) is the usnal ultraprodu 't functor.
O

In other words we have a commutative diagram of 2-functors

up (MOd(—)‘ (p(")) 1
PRETOP" — T-ALG

pPUC

- . . H, e :
Proposition 4.17. (fiven a morphism (A,¢)-—(-I—Q*(B.W) in T-ALG we hare
that the category (Set, Use)4® is a pretopos and (Set, Weey)H#) is an lomentary
Junctor  Furthermore, the corresponding limits and colimits are evcated by the forgeiful
functor (Set, VUse )4 — Set”,

Proof. We only do the finite limits to illustrate the point, the rest of the constri

tions are done similarly. Suppose I' 1 J — (Set, W g )4 is a diagram with J finite.
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Denote the image of J under T by the pair (I 4). Then for any M in Mod(SetA)
we have 4 J(M) T (@M) - M(TT). Counsider the limit {im I in Set?. We want
I

a natural isomorphism 4

Mod(Set?) ¢ A
Mod(Set! s 1) o | lim T
J

Mod(Set>!) j— Set
Set
Let M he an object of Mod(Set?) let 1. M be the unique arrow that makes the

following diagram connmmnte

L

lan TJ(OM) — . M)
1M 14 M

Milim DTy — Lim M(TJ) —2 M(T])
J J

for every J in J. where the iso M(lmz I — llm M(V') comes from the fact
that M is an elementary functor, It i not hard 1o see that v is indeed natural,
satisfies the coherence conditions and that (11111 I'J.~) is the limit of the diagram
I': J — (Set, ¥gey ) AP, ]

We can then make the following definition

Definition 4.4. Let P denote the 2-funetor
P=T-ALG(__.(Set.Vge1)): T-ALG - PRETOP®

We define now a new 2-monad S = (5, £, v), this time over T-ALG.
[u view of proposition 41T we can regard the category Set as a schizophrenic
object in the categories PRETOP and T-ALG. This gives rise to the 2-adjunction
PRETOP”
l
”P{ i (Mod(.). %)
T-ALG
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with unit € 1 idp 41 — (Mod(.).® ) o P such that for every a2 .1 » in A,
EA.P)(A) = (cry (A, D)) where

Mod(SetA) e \
Mod(Set4*)) A AL ®) ll (AP
Mod(Set"Ad) —(D—————‘# Mod(P{ A, b))
P{AP)

is sich that for every M in Mod(Set®) and (H.,7) in P(A, ®) we have
WA PV M, ) = oM

and £(A, @) (a) = €v,, and commit ¢ Po(Mod(_). ¢} -+ idpreror » such that fon
every pretopos P. (P P — P(Mod(P),®p) is (P(P) = cop and ¢P(p) o, ben
every p: P — P in P.

This 2-adjunction induces the 2-monad § = (S, €, 7) where ST ALG T ALG
is the composition

T-ALG-F— pRETOP" (Mod(). ()

~T LG
£ is the unit and v(A, O L)({, ) = Llcrvy) for every
L in MOd(p(MOd(P(A, q))), ‘DP(A.‘D)))

and (H,¢) : (A.®) — (Set. Vger) in T-ALCG.

We consider the 2-category S- AL of strict S-algebras and homomorphisins of
S-algebras. This category has the same deseription given in the previous sechion for
T with S in place of T and T-ALG in place of CAT. For later reference we explicitly
describe this category. An object of 8-AL(! is of the forn ((A.$),(0,0)) o1 simply
(A, 9,(0,0)) where (A, @) is an object of T-ALG and

(0,0) : (Mod(P(A.9)). ®p(as) — (A.P)

makes the corresponding diagrams for an S-algebra commute. I we have another

S-algebra (B, ¥,(X.x)) a morphism is ((H,p),s) : (A,9,(0.0)) - (B, ¥, (X, )
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4

where () (A ) - (B.W) is a morphism in T-ALG and s is a natural trans-

formation
0.0
(Mod(P(A, D)), ®ras)) ( )

(A, @)

(Mod(P(H, ). =) s | L)

/s

/
(Mod(P(B. V), bp(py)) ——= (B, V)
(X))

that satisfics the nsnal colierence conditions. s being a 2-cell in T-ALG means that

_» Mod|( SetMdF(B¥)))

Mod(P(H.,)) .
}L’od(Set ) \\J\\/I?d(Set\)

Mod(Set™ed P4 Mod|Set*) Mod(Set?)

> ad
. P *

e —

Mod| Set®) ™ _~Mod(Set")

briaw Mod|(Set?)

Rl o

'+

’ ¥
Mod(P(A.®)) G A i "B

!
i

{1.9)
equials

(1.10)

Mod(Set"H:#)
Mod(Set™4 7 (B.¥)) Mod(Set?)
rnw) l l

Mod({P(B,V¥))
Priam Mod(P(H.¢)) T~ 7~

\
— T
\ /
0 e A H

A Zeeli 7 s ((Hp)os) = ((Roo)at) @ (A.9.(0,0)) — (B, (X,1)) is a 2-cell

Mod(Set*)

Mod(SetMedF(A®))

v

Mod(P(A. ) B.



T (AP} — (B Y¥) in T-ALG such that

Mod(P(h. o))
T
(Mod(P(A.®)). ®ria0) _ | Mod(r) . (Mod(P(B. W)\ g
<<->.ml Mod(P(K. ) 2 1 (Xl
(4.11) (4.9 iy o Y
equals
(Mod(P(A,®)). ®rae !gﬂ:u\;i’)twod( P(B, W) Dy g )
((—).())1 (K1) te l (Ay)
e
4.9 1, \/\, (B.W)
(1.12) \(NT/

Next we detine a functor £ @ S- AL — U C. First consider the composition

S AL pUc

where 7 denotes the forgetful functor and W was defined above, Given an 8 aleebhia
(A, ®,(0.0)) the inderlying pre-ultracategory of Z(A, &, (0,0)) is WA, d). Let 4

be an ultragrapl, & and I nodes of G and & an ultramorphism

€ 0%

on Set. We want to define dz¢4.0 (0.0

e

T
UD(G,W(4,9) | P

‘SZ(A,G),((-) ))

€0

A
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Let 1) UD(G,W(A.®)). Define 1) : P(A, &) — UD(G. Set) such that

DH.p)=HoD:G— A
and /»)(r) = 7D for every 7 (H.p) — (K,v) : (A, D) — (Set.Usey). We have
ta show that 1 o D is an nltradiagram. Let 3 € G, Since D is an ultradiagram
we have an isomorphism D(3) — {L(,;]W(A‘q,)((D(g,;(z))}h) and therefore we have an

1omorphisin

Fliln Al

H(D(A)) = H([Ty, DU () /1) Ti, H (D(gs(i))/Us.

Next we have to show that 701 is a morphism of ultradiagrams but it follows easily
from the fact that W(r) is a pre-nitranatural transformation that the right hand side
sqitare in the aiagram

Pl A’

H(D(S)) ——— U1, PUga(9)) /U Ty, H(D(gs(i)) /U

rD(.9) #(TLs, D(gs (1)) /U4)) [n,, r(D(ga(i)))/Us

K (D(3)) —— K11, D(4s()/U3) 1, K(D{ys())) /U

s e
I
l‘/’[zlﬁ]T’A
commutes while the left hand side square commutes by the naturality of 7. We have

now an easy lemma,

Lemma 4.18. The functor D : P(A.®) — UD{G. Set) is elomentary.

[l
Consider the diagram
e
) —
PA.®) -2 UD(G. Set) o T Set
\\-/
U

Notice that the top compuosition is erpgy and the bottom oue is cvp@y. Since the

’ A nm



diagram
fAD
(A, d) .f_(__), (Mod(FP(A.®)).®pa.0))
,‘,I(A\ .0
(A.9)

commites we have

O(sD)

D(k) = O(evgo D) ~O(cryo DY = D).

Define bZ(A,‘b,((-),O))(D) = (‘)(b[))

Lemma 4.19. 6 4600 : (ke — v : UD(G.W(A,®)) — A difined ahore 15 u

natural transformation.

Proof. Let d: D) — D' : G — W(A,d) be a morphism of ultradiagramnr<. We can
induce then the natural transformation d @ 1) — 1) : P(A. &) — 17 ING, Set) such

.

that d(#, ) = Hd. Consider

f) (SN
P(A4,0) [ SUD(G.Set_p - Set.
[)’ I'4 (vl

This gives us a commutative square

¢ I'k[) 1), ‘ l';i)
- l
¢ vpd l 1 e opd

v .]3’ —=* D’
Y

in MOd(SetP(A"p)). Notice that fl’k(i = ¢ rg and therefore Qe mpd) = dk. Shmilarly

O(e vyd) = dl. Applying O to the square above we obtain

RN

D(k) D)
dkl dl
D'(k) D'l

dziam 001 3
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With this definition of (A, ®,(0,0)) we have that Z(A. P, (O.0)) is an nltra-
category
Proposition 4.20. For ceery morphism ((H,¢),s) 1 (A.9.(0,0)) - (B.V,(X.\))
0 §-ALG we have that the pro-ultrafeonctor H : W(A.®) —» W(B, V) is an ultra-
functor H : Z(A,9,(0.0)) - Z(B,V.(X.\))

Proof. Let & evp — cvp: G — Set be an ultramorphism. We have to show that

Hézaa0.0) = oz x U DG W (H. 2))
That is we want to show that ]]((‘)M]))) = ‘\'(("HAI)) forevery D e UD(G.W(A, d)).
Observe first that the diagram

P(B.v) 1D, UD(G, Set)

P, v)\\ D
1%
P(A.0)

commutes. Then 81D = $DP(H, ). Tsing the naturality of s we obtain the
following commmutative diagram

S¢ l’;_.D

H(O(cox D)) —— X(cry DP(H, ¢))
I[((-)(bIA)))l l.\’(b}f[))
H(O(c v D)) — X(et; DP(H.£))
seml)

Using the fact that s satisties the coherence axiom involving the unit and that copl) =
cop(k) we have that s D) = tdy ) |

Deline Z((H. ), s) = H.

It is clear that for a 2-cell 7 : ((H. ), s) = ((A, ), 1) we have that 7 : W(H,p) —

H (A ) is a pre-ultranatural transformation. therefore
T Z((H.p).8) = Z((K,v), 1)

is an nltrafunetor. Define Z(7) = 7.



This completes the definition of Z 1 §-ALGS -+ UC. So we have a commutative

diagram of 2-functors

S ALG—* U
T-ALG —— PUC

where the vertical arrows are forgetful 2-functors.
We obtain a comparison functor PRETOP" — (S-AL({), whose compaosition
with the inclusion (S-AL({), = S-ALG) we call

(Mod( ).®,.(0,.=)) : PRETOP" — $ AL,
[t is easy to see that for every pretopos P, every model M in Mod(P(Mod( P), $p))
and every P’ in P we have that @ p(M)(P) = M(cop)

Proposition 4.21. The functor Z : S-ALG — UC is such that for cocry pretopos
P we have Z(Mod(P),®p,(Op,=)) = Mod; P)

Proof. By Proposition 4.16 we already know that the nnderlying category of
Z(Mod(P),®p.(Op.=)}) is Mod(P). 5o all we have to check is the nltramorphisms.,
Let 6 ¢ o — crp : UD(G, Set) — Set be an ultamorphism and let 1) bhe an
ultradiagram in UD{(G, Mod(P)). Then for every P in P we have

0 Z(Mod(P),bp,(0p,=) () = @p(6DY(P) = dD(cnp) = dlevzo D)y = a0 ) ),

O
As before, when P is the full subcategory of Set™' consisting of the finitely
generated functors we have that (Mod(P),®p.(Qp =)) is essentially
(Set7 \l’Set» (X’Set» :))
As a consequence of the above proposition we have

where Xger = €tyg,,-

Z(Set Vset, (Xser,=)) = Set.
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Proposition 4.22. For cvery object (A, 9,(6,8)) the category

S-ALG((A,D,(0,0)), (Set, Vset, (Xset. =)))

is a prefopos and for every morphism

(A.¢.(0.0) U3 | By (x.\))

in S-AL( the functor S-ALG(((H, ). s), (Set, Oser, (Xset.=))) is an elementary

functor. Furthermore the corvesponding limits and colimits are calculated pointwise.

Proof. We do binary coproducts to illustrate the point, all the other constructions

are similar. Suppose we have
(H,p,8) (K., 1) : (A, 9,(0.9)) — (Set, Vser, (Xset, =))
in S-ALG((A, 9,(0,8)),(Set, Vs, (Xser, =))). Consider first the coproduct
(H,o)(K, ) = (HIIK, )
in T-ALG((A, ®),(Set, Vg.)) where ¢’ M is the composition
(HIUK)(®M)= HOM][IKOM My M, MH[IMK = M(HIIK)

for every M in Mod(Set?). We want to define & in

0.0

(Mod((Set. Wse ) A%). dp(a0) —— 200+ (4, ®)

Mod|((Set, U g ) HLIF ) s Xset
(Mod(( Set, \Ilsa)(set’ws“)L (I’r(sec,ws.,)) m (Set, Usey)

Given M in Mod((Set, ¥ se)(4®)) define s'M as the composition

HOMIKOM MM g TR, ) = MUH, QLIK, )
! I
(HIIK)OM M(HIIK, ¢




e

It is easy to see that s’ is natural. We show now that the composition corresponding
to diagram 4.9 and the composition corresponding to diagram 4,10 are equal, Let £
in Mod(Set™F (A then from 1.9 and 4.10 for s and f we have that

L(s) 0 p(L 0 Set®) o HH(L) = s®paa)(L)

E(f) o] d’(LfSetH) 0o 1\0(5) = fd)p(A‘Q)([).

With these two equations it is not hard to see that
L(s") 0" (L o Set)o HIIKO(L) = '®pas)(L)

Therefore s’ is a 2-cell in T-ALG. We have a coproduct diagram
(H,0)—2e (HIIR. ') <2 (K. )

in T-ALG. To show that iy : (H,p,s)  (HLK.¢',s") 1s a 2-cell in S- AL all we

have to show (according to 4.11 and 4.12) is that

HoM=M pi, o) Ak o)

equals

HoM -1 (koM = HomiTkoM MM | v onmn. )
MK, ¢")

for every M in Mod(P(A. ®)), but this is readily seen to be the case. The universal

property also follows easily. O



Chapter 5

Algebras Over Los Categories

In 4.0.3 we raw how to obtain pre-ultracategories from algebras over C AT, that is,
we constriucted pre-ultrafunctors with the help of the structure map. We saw as well
how to ohtain some of the ultramorphisms. We needed however a second monad
to he ahle to introduce general ultramorphisms. Iu this chapter we avoid the first
monad hy working in the category £06. Notice that we introduced this category
with the express purpose of dealing with ultraproducts. With the category £os we
also obtain some of the ultramorphisms, however we do not see how to get the general
nltramorphisms. In this short chapter we define a monad over £0s and show how
we can obtain the general ultramorphisms for algebras over this monad. On the one
hand this simplifies the notation since we are dealing ouly with one monad and the
rest of the structure is given by the Top-indexing, . the other it provides a nice
setting in which, we hope, the other side of Makkai’s duality can be proven. namely
characterize those categories that are of the form Mod(P) for a small pretopos P.
Notation Given a Top-indexed functor F : A — B and a discrete topological

space [ we denote Ly FT: AT — B! the corresponding F for the topological space I as

all
opposed to the product funetor ], A AL F, [1; B! that we denote by F7: AT — BL.

5.1 Los Categories and Pre-Ultracategories

We define first a functor £os — PUC. Given a category A in £0$ we construct a

pre-ultracategory as follows. The underlying category is A = A!. Given an ultrafilter

120
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(1.U) denote by f i I — Iy the embedding and detine [(4]4 as the composition

Al gLl g 20 4

where the tirst arrow is given by the fact that A is in Top-IND (delinttion 3.11). If
F:A - Bin Losconsider I'' = F: A — B and define the natural isomorphism
[t4, F] as the pasting

AT S Ly
FI ~ 14’1 ~ Ii‘IN ~ I¢'
l :/_/ 57/l K
B! B Bv—2" B
o~ f- i

where the two natural isomorphisms on the left are given by the fact that Fisin Los
(definitions 3.11 and 3.11) and the one on the right is given by F being Top indexed.
It is easy to see that this construction does define a functor Los — PUC,

If P is a pretopos then it is clear that the pre-ultractegory we obtain as the image
of MOD(P) under this functor is Mod(P), as a particular case we have that the
image of SET is Set.

5.2 Algebras Over Los Categories
From Proposition 3.13 and the remark after the proof we have a 2-functor
L£0s(.,SET): Los— PRETOP.
On the other hand we have the 2-functor
MOD()): PRETOP — Los.

We obtain a 2-adjunction

PRETOP”
Los(_,SET) I l MOD(.)
Los
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whose counit e P : P — £os(MOD(P),SET) is P+ evp for any pretopos P and
P’in P. The mnit g4 : A - MOD{Los(A.SET)) is such that for any A € Los
any topological space X, any A in AX and any 7: F — (7 in £08(A,SET) we have
(pA)X(ANF) = FX(A) and (n4)*(A)(r) = 7%(A). It is easy to see that for every
A in AX the functor nA¥(A) : Los(A,SET) — Sh(X) is elementary. We have to
show that for every A in €08 the functor A4 is indeed in Los. We show first that
it is Top-indexed. Given a continuous function f : Y — X we need a transition
isomorphism 7A4Y o f* — f* o AX. Let Ain AY and F in L0s(A,SET) then we
want an isomorphism f*pA¥(A)F) = nAY(f*A)F). That is f*FXA — FY f*A.
Since F is Top-indexed we have an isomorphism f*FXA — FY f*A4 that we can use
to define the isomorphism we are looking for.

It is easy to see that nAd is Los. Assume f : Y — X is ultrafinite in Top, we need
to show that

unit fen AY counit

X AXfo o ax e AY AV
A fo ————— LA fo— f A [ S

is an isomorphism. Take A in AY and F in £0s( A4, SET) and if we apply the above

compuosition at A at F' we obtain

unit FXf, A [ FY counit A

- fFY A

FXf,A ff FXf A fFY A

that is an isomorphism since F is Los.

We obtain therefore a 2-monad T = (7,7, 1) over £0s. (onsider the category
T-ALG of T-algebras. We define now a 2-functor T-ALG — UC. Let (A, ®) be a
T-algebra, consider first the pre-ultracategory A constructed from A as in 5.1. Notice
that for any ultragraph G composing with 54! : A — Mod(£0s(A,SET)) induces a
functor UD(G. A) — UD(G, Mod(Lo0s(A.SET})). If we have an ultramorphism

ek
UD(G, Set) @ Set

ey

over Set define ba = dlo 6@4(2‘,‘_,(‘3[‘]‘)) 0 UD(G, 7].41)
Lemma 5.1. If (F,¢): (A.®) = (B, V) is a I-cell in T-ALG then F: A — B is

an ultrafunctor.
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Proof. Simply put the fullowing diagrams together
UDG. A
UD(G. A) 22 1 DG Mod( £ os(A.SETY))
UD(G,F) UD(G, Mod(Las({,85T)))
UDG.B) ——— = UD(QG, 3.8
( ) UD(G B (G, Mod(Los(l VAN
[N}
UD(G, Msd(COB(A,SFT)))W Mod(Lo8(A,85T))
[
UD(G,Mod(Loas(l,56T))) Mod(Los(l'\SET))
| e

UD(G, Mod(ﬁaa(B.SST)))w Mod(Los(B.5¢T))

and vy
e o'
Mod(Los( A SET)) — A
Mod(Los(F,SET)) @ H!
| v
Mod(Los(B.SET)) —— B
v O

Lemma 5.2. If 7 : (F,p) — (G,¢) : (A,®) — (B,¥) is a 2-¢ell in T-ALG then
7: F— G : A— B is an ultranatural transformation. O

We obtain a functor T-ALG — UC. Notice that we obtain the following com

mutative diagram

T-ALG uc
Log— PUC

where the vertical arrows are forgetful functors.



Chapter 6

Indexed Categories of Coalgebras

In this chapter we generalize a result from [[1] namely that there is an equivalence

between Top-ind(SET.SET) and Filt(Set, Set) given by
F I

where Filt(Set, Set) denotes the category of functors that preserve filtered colimits,
and use this generalization to show that if F : MOD(P) — SET is a Top-indexed
functor then ' : Mod(P) — Set preserves filtered colimits.

We consider a special kind of Top-indexed categories, namely those that can be
defined at every X as a category of cozlgebras of a cotriple on the category AX! for
some tixed category A (see below). The Top-indexed category SET defined in chapter
I is an instance of these Top-indexed categories we will consider now. In particular,
for every topological space X, Sh(X) is equivalent to a category of coalgebras for a
cotriple defined over Set!™!. To be able to define these categories we need products

and filtered colimits in A, We start with the definition of the cotriples we need.

6.1 The Cotriple G*

Definition 6.1. Let X be a topological space, A be a category with products and
filtered colimits. We define the cotriple G¥ = (GX.eX,6%) over AX! as follows:
Detine (¥ AFT o A gyeh that (A),ex — (i TTAy)eex and (f.) =
. UVazyel
(lim 11 £u)-

Ulsy €U

124



Define ¥ : Y — 1 such that (¢¥(A,)), is the unique map that makes

lim H:ly("‘;("rﬂr 4,

—
Uarvel

commute,

Define 6% : (Y — GYGX such that (8%(A,)), is the unigue map that makes
I A, IT Lm ITA

ye({ ytl'ﬁ’v:h\
lim MMA, ———— U 1 L 1 A.
Taraet | (0%(A,)), T rwel Tav cev

commute, where the top arrow is the unique arrow that makes

I L 1A

VE!’ vel vav €V
\ /ﬁrl
m JTA.
CEXTEES

commute,

It is easy to see G is indeed a cotriple.

6.2 Indexed Categories of Coalgebras

Now we are ready to define a Top-indexed category.

Definition 6.2. Given a category A with produets and filtered colimits define the
Top-indexed category A as follows:

For every topological space X, AX is the category of coalgebras for the cotriple
GX

For every contimous function f: X — Z and every coalgebra

(A, 22, lim ITA.)

W‘::Tmew



in A7 define

FUA Ll TIA) = (g DS lim 1T A= Loy 1Ay,

W o3:zu €W W a3arfr uelt raa.yel’

where the last arrow above makes the diagram

n .*1,,, ______..IH' l_ll.).l. H ‘4w

we W V‘a,’IWE“

Ty
¥

[T Apy ——— Lan [] Ay,

yef-tit -1 T3ryel

commmte, We call A the Top-indexed category of coalgebras over A.

It is casy to see that we have defined a Top-indexed category. Furthermore, all the
coherence axioms on the definition of an indexed category turn out to be equalities
in this case. That is A is a strict Top-indexed category.

We will be intrested in the case where A = Set® for a pretopos P, in this case
we denote A by SETF. Notice that when P=1, we obtain the Top-indexed category
SET.

6.3 Filtered Colimits and Absolute Equalizers

It is shown in [11] that the category Top-ind(SET,SET ) of Top-indexed functors
from SET to itsell s equivalent to the category Felt(Set, Set) of filtered colimit
preserving functors from Set to Set. It is our intention to generalize this result
to the category Top-ind(A.B) where 4 and B are the Top-indexed categories of
coalgebras over A and B respectively. However, to be able to do this we need more
striictiree on the categories 4 and B. See proposition 6.9,

Take a category A with products and filtered colimits. If D is a small directed

poset, and H 1 D — A:; is a diagram, denote Hd by

Hod =2
0 ——}71—(—1——> 1¢
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for d € D. Using ideas from [12] we have that one of the properties we need is the

following:

Definition 6.3. Let A be a category with products and filtered colimits, we say

that filtered colimits commute with pointwise absolite equalizers if for every small
) X =

directed poset D and, every diagram H : D — A such that tor every d ¢ D, Hd

has an absolute equalizer ¢4 : £y — Huod in A, and the pair

li',? ]I“ll

lnn 11.,«1:*:.1;:,» Hd
Lim hyd e
l

also has an absolute equalizer in A, we have that the diagram

l'im €y L hyd
lzm by llm H(,(l_ﬁw*._, Hyd
lim Ind

l
Is an equalizer diagramn in A.

6.4 Some Topological Spaces and Their Associated
Coalgebras

Here are some definitions of topological spaces and contimons funetions that we are
going to need later. ‘

Recall from section 3.5 the construction of Xp for any small diveeted poser D,
('onsider the topological space XF obtained form Xp by adding a point x. not in Xp
and whose opens are the empty set and sets of the form U1 {~e} with £ nonempty
open of Xp. The inclusion b : Xp — X}, is clearly coutinuons.

Let (I,F) be a filter. Define the topological space Ir whose set of points is
U {ar}, with ar & I and the topology given by 17 C I {ag} open itf ap ¢ 1/
implies that {7 — {ar} € F.

In the case when (I, F) and (I, &) are filters with £ € F we have a continnons
function hre : Ir — e such that b restricted to [ is the identity and hipe(ar) = ap.

If J ¢ I we denote by S(.J) the principal filter generated by J. That is, S(.J) -
{K CI|K D J}
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We will denote Sierpinski's space by S, that is, S = {0, 1} aud the only nontrivial
open of Sis {1},

Iy S Ddefine by 0! — Lsry sneh that (1) = j and £y (0) = agsq

Consiler the Top-indexed category A defined as above. Let’s take a look at the
category AY fur X the spaces we just defined, and at the transition fuuctors induced
by the continnons funcetions also defined above,

First of all, if we take the topological space I, we have that A is essentially A,
When we have a Top-indexed functor F': A = B where B is defined over a category
B as above, we have 170 A -5 B. Sometimes we write F instead of £ when it does
nat lead to confusion.

It is not hard to see that A¥P is equivalent to AP,

It is clear that AY is fsomorphic to 4 7.

Al is equivalent to the category whose objects are maps A, - L T4,

. . Je g i
whete 1, and the A, are objects of AL and whose morphisms

Sty = lim T1A) = (B, = lim T1B)

JETYE § JeEF, e/

are famulies of morphisms (f,, 4y, - B, S, 1.1, —= B, }) such that the diagram

4 ot Jlim 1A,
i“ TEF €
fu,l L T1S,
Tefred
By, ————lim [IB,
n J€EF e S

comunites. We will use this deseription of 47 systematically. In the case where
F = Sidat for some Jy C I we have that lim IT A, =11 A,. Then an ohject of
e
JEMJIY yed 1 EJu

Abcer with the deseription given above is a pair (Asy) — I A (A
1€ Jo

Now, consider the continuous function hre @ Ir — Ie defined above, we have

that Iy Al — AT Gssuch that (A, -5 dm T1A4) = (A, = lim 14, -
TEY¥ seq TEF e
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limn T1.1,) where the last arrow niakes the diagram
je Fye

nll‘l L l!_lL) H‘,

J Tet ye !
AN
AN
’J\ /
Llim 14,
AT

corumtte for every J € &
+\ i s . , -
For Ay, + S -+ Lsga,) we have that &, (A, e o 11 AL -y o
vr’ e Iy
mAa —.1q

JE Ty

6.5 The Category AP

w!

When we have the topological space X} with D a small direeted poset the sitiation
is a little bit less trivial. It is here that we use the property that Lltered colimits
. o . . %
commute with pointwise absolute equalizers. Define L @ AP - AV suchy that

Li{Ad ™5 Apdime) = (l_'l’l‘l«h( ) and i {fe} o (A0 ™ Apbeae o (B0
l;rl’} FRY then L {f{} l”” fiw (fl)

Lemma6.1. If A is « catcgm'y with products and filteved colimits such that filterod

colimits commute with pointwis. absolute cqualizcrs, D o ~inall divected poset ther
o+ . . :
the functor L : AP — AXDl difined above is cotripliable.

Proof. We use Beck's tripleahility theorem (see [I3] for example). Fiist, we necd o
right adjoint. Define B : AND! — A sueh that R((A. . (A)) = {A AL e

A xTT A bamars where pyg = AL X projge and projgp makes the (II«L}_,! dlll

& e d

n :1,111 I"'UJ'M' H 11,111

df - A -

Tqm J l' i

1[" T 1111

Lag

commute. If (f.,(f)) 1 (A {(AD) — (B (By) then B(f. (f) = {f. ~ “ j,}
It is easy to show that K is right adjoint to L. Suppose {fi}. {gs} 1 {Ar — Ap }, ,, -
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{13y = By }iyew 15 a parallel pair in AP such that L({fi}). £({ga}) has an absolute

wualizer .
e e (ling . ()
Uinin \4 d i
(B () — (i Ag, (A0)
o

————= (ltm By, (Ba))-
(i gg, (a)) < (Ba)
d

Projecting from A*P we obta'n, for every d € D, an absolute equalizer

€4
d
Ed —_ 4441 B Brl
qa

and another absolute equalizer .
lim fq
€ v i

) )
Foo—— lim Ag —————lim B,.
4 limgqg 4
d

Therefore, for every d — d in D we can induce an arrow Ey — FEg such that

- td
Ej———— A,
]i,(l € — Adr

comnbutes, It is casily seen that we obtain an equalizer diagrain
o {ea} {fa}
{Ei = Eppma——{Ag — Azi'}d—«d’—{ ={Ba — Ba}i—a.
g}

Sinee filtered colimits commute with pointwis ~ absolute equalizers we chtain that L

preserves these equalizers. It is clear that L reflects these equalize=s. Therefore L is
cotripleable. [

If we look at the cotriple generated by the adjunction L - R of the lemma we
obtain G¥B, which means that the categories AP and AX% are equivalent. Now,
the comparison functor ®p : A? — AXE is such that dp({Ad 25 Aplia) =

L x dim (i X {o4a))

- —~lim Aq x lim (lim A x T] A%),(A¢ =5 [ Ag)), and
d d d a o~ d 4" —d

¢p({fu}) = (Lim fa. (fa)). The quesi inverse ¥p : AX5 — AP is a lot simpler,
d

\pp(.“‘\, - li_”.? H f‘,{‘ (1‘1,{ - A(,:. X n Adl) = {Ad s A()o X n Adl Ld,-* Ad'}d’o—d'
d - d

3o dgl’ d e d

(lim Ay
d
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Corollary 6.2. With the same hypoiheses and notation as i lemma 6.1, the diagram

AvE—2 s 4p

D
oo\ e lim
»
A

commutes, where Wp is the functor just defined.

It is easily seen that the functor K : AP — AP sueh that K({A, 2%
Ag i) = (Ag) p 1s also cotripleable and aefines the cotriple G P, Thus, in view of
the previons corollary we have that the categories AY2 and AXD are equivalent. In
the particular case when D =2 we have that in X, 1 and ~o can not be distinguished

. ;4 ;
from each other so and we will feel free to replace 4Y2 hy A,

6.6 The Functor (_):Top-ind(A. B) — Filt(A, B)

From now on we are going to suppose that A and B are categories with produets and
filtered colimts such that filtered colimits commute with pointwise absolute equaliz
ers and that A and B are the Top-indexed categories of coalgebras over A and B

respectively.

Lemma 6.3. [f(G: A — B is a Top-indered functor then there erists a siviet Top-
indexed functor F : A — B isomorphic to (¢ (in Top-ind(A.B)).

Proof. Let (¢ ¢ A — B be a Top-indexed functor. For any X in Top and any
r € X, we have a continuous function « : [ — X, and a natural isomorphism

r*GX — Gr*. Therefore, given (A, 2 lim [TAy) in AX . we have a natural
Usryell

isomorphism «*GX((r,)) — (JA,. Define F¥ : AX — BY such that F¥((7,)) is

(GA, =5 rG{r,) — lim [Ty G({7e)) =, lig TTGA). It is not hard to show

UszyelU Uasyel!

that we obtain a coalgebra in this way and that the functor F' is strict and isomorphic
to (. [

In view of this theorem we will assume that our Top-indexed functors are striet.
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Lemma6.4. If I': A — B s a Top-indered functor, then the square

Ah‘ \I’g AZ
S
B —g— B

caommutes up to l.‘»()l"()?'])hl'hll?.

. - o+ . .
Proof. We are using AY instead of 4Y7. Now. consider the continuous maps

—
| et 8. These maps induce the diagram

0
Bh‘ \D)' - B).
3
]‘19‘ 1’12 /’
v ///
A7 - 2 A?

0 1=y |1* o | id] 10
NP &g Lid) 1é
A i A

/! A AN
///1'1 F\
] r’/ Y

B

in whicli it is casy to see that the front and back faces commute sequentially, and the

sides commute as well. Then it is not hard to see that the top commutes as well. [

Lemma 6.5. For any directed poset D, the following diagram commutes

Vp

AX?, AD
FXBI lFD
BXB _.TIJT BD
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Proof. Let d — d' be anarrow in D, consider the functor age 12 -+ D such that
(0 = 1) = (d — d'). Consider the continuous function Jyp 0 8 = \p, such that

3(0) = d and 3(1) = d'. Then it is easy to see that we have a commutative diagram

B ‘IJZ B
A® L A*
l;(l, And""’
¥p
s+
['\s' [, 4\'3 l

Xt — D
B D‘DDB

Iv‘D I"z

,

/!/* Kl":

ro» r‘{d(i‘ R “\,\ Y

BS Bz
v,

U
The following proposition is an immediate corollaiy of these lemmas.,
Proposition 6.6. If I' : A — B is a Top-indered functor, then the functor I
A — B preserves filtered colimits,
Proof. It is enough, see [1], to show that F'! preserves directed colimits, Conside

the diagrain

) Vp
B¥5 - BP
\\\ F¥b PP
\ \.AXE\ Vp R AD - ///

The proposition allows us to define a functor ( )! : Top-ind( A, B) - Filt(A, B)

such that F = F' and 7+ 11 for every
[‘|
PS
A B
«
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in Top-ind( A, B).

6.7 The Functor (_): Filt(A. B) — Top-ind(A, B)

We define now a functor in the other direction. Given H € Filt(A, B) and a
topological space X, we define HX : AX - B¥ such that

HY((A, 25 lan TTA) =

T3ryel
H . T .
(HA, =5 H{lim 11Ay) — L H(IT A,) — lim [THA,),
Vsryel’ I"sr vel Uaxyedd
where the last arrow is the unique one that makes

H(II

Hr, /
i
1A,

ﬂ"y\\

Ay) U b H(TT 4,)

1 rs: wev

1 HA,— Lim [HA,

v el N UT3ryerv
commute, and IAI((f,.),) = (F f:):. It is not hard to show that we obtain coalgebras
and coalgebra morphisms with the above definitions. H turns out to be a strict Top-
indexed functor. We will show that, with the proper conditions on A and B, the
functors defined above give an equivalence of categories. Before the proof we need

some lemmas.

6.8 The Ultraprodnct Transition Morphisms

Suppose F': A4 — B is a Top-indexed functor. Let X be topological space. For every
r € X we have the continuous function & : I — X that sends the only element of |
to . This funection induces the {ollowing commutative diagram

*

AX —F— 4
b e
BX ———B.



If we start with a coalgebra (A, 5 lim [TA,) in AY we have that

T3cyel
Y (A 5 L TTA)) = FU(AL.
t 3ryel
This tells us that F¥((A, = lim [] 4,)) is of the form
U3esyel’
(1‘1114.1' — _1_11.].) H [4‘1‘4‘1).
T3hver

In particular, when we have an ultrafilter (7,G) and and a family {,); in Al we
obtain the coalgebra

T
m 14, — lim 1A,
€evye !

-~
m
L4
[
m
-

in A%, Thon

Fl(lim TIA > lm TTA): F\(lim T[A) - lim 1M AL

Tevre Jedvyed Jedyel Tedie?

We call this morphism ypg(A,)7. 1t is not hard to see that ypg defines a natural

transformation Lim T ()
AI TEZ )€ J A
(K17 |
I -

: B
lim 11 ()

Jev€eJ

Lemma 6.7, If F': A — B is a Top-indered functor then for cocry ultrafilier (1,G)
we have that

> « .
F’*‘(Aag — limn

Ay) = FlAg) S Kl TIA) 2% iy [TFA,.

€Evied JeEVied ley €7

o

Proof. Given A,, ~= lim T[] A,, consider the morphism

—
TEG €
A, a_lun [1A,
i TeC, e
a Lan 114,

Jec,ed

limy [ A, —— o LA,

JE€G e Jeyed

in A% and apply F. O
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6.9 Reduced Products and Ultraproducts

Finally, we need a condition on B. Given a filter (I, F), define Ur = {G|G is an
ultrafilter on I and F C G}

Definition 6.4. We say that ultraproducts determine reduced products in B if for

every filter (I, F) and every (B,); € B! we have that the family {lim TIB, adA
. . . Jersed

i 1B, }gen, is jointly monic, where i rg makes the diagramn ’

Jed e

[, B, —— i T8,

JEFIEJ
IJ\ 1FG
N
hm 1B,

commite for every .J € F.

Using the fact that for every filter (1. F) we have that F = gy, G, it s not hard

to prove that the condition above is true for the category Set.
Lemma 6.8. If in B reduced products are determined by ultraproducts and F : A —

B s a Top-indered functor, then F is determined by the natural transformations ypg
for all ultrafilters (1,G).

Proof. Let (I.F) be a filter, and G € Ur. Now consider F' : A — B, and the
continnous function hgr : Ig — [r defined after definition 6.3. We have then that

the following diagram

Al hor Al
Flr [ l Fs
Blr ——— B
hg

commytes. Following the image of an arbitrary A,, — lim J] A, we have that
JEF1ET
i a . SART . . F1r(s)
Fiv(A,, — lLm 1A, — lim IIA)) is equal to the composition FA,
PRy i\ F
TeF € T€C eV



lim [IFA, AN lim [T FA,. Or put another way, we have that

JEFrEJ Jevir€eJ

FA, Mﬂ F(lay T14)
ar Tev e !
F"(rr) It

lm TIFA ~—— lim [[FA

TeFre T kg TET e !
commutes, Sinece the family {irg}gen, i jointly monic, we have that F7* (o) is
determined by the natural transformations yp¢ with G € Ur. Now, given a topological
space X, and a point ¢+ € X, let [ = X —{o}and F, = {J C IlJ U ixa
neighbourhood of #}. F, is afilter on I and there is a continnous function I Ir, + X

such that k| is the inclusion and h(ar,) = r. Then we have a commutative square

:’l *

AX Al
1,1‘( l l 1,’]1r
BX }I* Bl"

Following the image of an arbitrary coalgebra we see that F'X is determined by
{F'"sheex, O

6.10 Top-ind(A, B) equivalent to F:lt(A.B)

Proposition 6.9. Lei A and B be categories with products and filte red colimits such
that dirccted colimits commute with pointwise absolutc cqualizers, and such that re-
duced products are determined by ultraproducts in B, then the category Top in‘l( A, B)
is equivale ! to the rategory Filt( A, B) of functors from A to B that preseroe fillered
colimits.

Proof. We have already defined the functors (1)} : Top-ind(A,B) — Filt(A, B)
and (A) : Filt(A, B) — Top-ind(A4, B). 1t is clear that ( )! o (A) is the identity. Let
F : A — B be a Top-indexed functor, we will show that for every ultrafilier (1,G)
and every (A,)1,vrg({Ai)1) is

Fl(lip TTA;) = lim F'(I] A,) - lim [1F'A,.
JEYIE) JEQ 1€J JEYrIEJ
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Thus, using lemma 6.8 we conclude that F = .
Let (1,G) be an ultrafilter, and Jo € G. Then §(Jo) denotes the principal filter on
I generated by Jo. For every j € Jy we have the continuous function h,y, : 5 — Is(s)

defined after definition 6.3, that induces the following commutative square

R,
AI\(JU) AS
Flsue J IF-”‘
Blstn —— B,
1Jo

If we start with ((A,). dag,, — ) H A ) € Alsvo | then we have that F(m,) =
(F1=01{(A,), Aaciny ) [‘[ A Therefore

FI"UO)(< ) a\“o) (7”1 A]') — ((["’Ag)s FAas(Jo) —3 FA‘,l).

) €Jo 1y €Jo

Now, the continuous function hgs : Iy — lgyy induces another commutative
G8(Jo) g S(Jo)

square
*

Alstsg) o, Als

Flscn l l Fl
Blstio) S Bl
27

from which we conclude that

. {m,) \ {(Fm,) y
FI(Ayg, “S T A, 2 lim [1A,) = PAMWO) W FA, D im TTFA,
1€ Jo JE‘AJEJ JEJy JE9J€J
In particular, taking Aa,,, =II A, and m, = ,, consider the morphism
JE€EJy
A, | Lim 14,
1€ J T€% €
(A l 1 1
i [TA;—— bLim [1A,
7€C e, 1 T€Cs e,

in AL, apply F¥ to obtain that
Flo(lim [1A, — lim [14,) =

Jev;EJ JEGJEJ
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F(lim T1A4,) = lim F(IT A,) - lim [[FA,

Jevres Jeg 1€} rec €,
This last arrow is then gpg. Since we already know that F is determined by these

arrows we see that we have an equivalence as stated. [

6.11 Subcategories Closed Under Ultraproducts

Suppouse now that we have a full subecategory Ay of A such that Ay has tiltered
colimits and they are preserved by the inclusion Ay — A. Then we can deline a

sub Top-indexed category Ay of A as follows. AF is the full subeategory of AY

. T . ’
whose objects are the coalgebras (A, — lm [1A,) such that for every e X
3ryel

we have that A4, is an object of Ay, It is clear that for every continnous function
f:Z = X, the functor f* : AY — AZ restricts to AY, that is, f*: AY - A7 It
also is clear that for every directed poset D, the functor ¥p : A5 5 AP restricts
to ‘-IA’D:.AE;(B —*AUD

We will be able to apply the results of this section to Top-indexed categories of
models due to the fact that models over a sheaf category are the same thing as sheaves

of models as the next proposition shows

Proposition 6.10. The category of models MOD(P)* is cquivalent to the full sub-
category of (SETPYX whose objects are coalgebras (M, = ling TIM,) such that for
cvery € X, M, ¢ Mod(P). et

Proof. First notice that this is clearly true for the topological space 1. Given a
topological space X, a model M € MOD(P)¥ corresponds to the coalgebra (M -
Lm Tly*M) in (SETPYX, (llearly #*M € Mod(P). On the vther hand, if we start

T3ryel

with a coalgebra (M, 5 lim [T M,) in (SETF)Y such that for every r € X we

Usxyell
have that M, € Mod(P), this determines a functot M : P — SH(X) such that
MP = (M.P =5 lim [IM,P) . 0
Usayel

Definition 6.5. We say that the subcategory Ag is closed under A-ultraproducts if
for every ultrafilter (1,G) we have that the functor lim [1(_) : AT — A restricts to

) Te€Cre
a functor im T (.): A(I, — Ag.
pulindio ey
JEC EJ
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Fix full subcategories Ay of A, and By of B, with filtered colimits preserved by
both inclusions and such that Ay is closed under A-ultraproducts and By is closed
under B-ultraproducets. Define 4y and By as above. We assume as well that in A

and in B filtered colimits commute with pointwise absolute equalizers.

Lemma 6.11. [f I' : Ay — By is a Top-indered functor. them F' 0 Ay — By

preseroes filtered colimits.

Proof. We can repeat the same reasoning that leads to the proof of proposition
6.6. [

We have then a functor () : Top-ind( Ay, By) — Filt(Ag, By). Notice that we
can not define a functor in the other direction as before because we do not have, in
general. products in Ay or Bo.

Given F' 1 Ay — Ba. we can define the natural transformations vpg for every

altrafilter (1.G) as before, that is, ypg(A,); 1s

Fl(lim 1A, —>lim [TA): Fi(lim [TA) - lim [[F'A,.

P o1
JeviyeJ JevireJ Jeyvared JevreJ
or put in a diagram lim TT ()
Jed
Al —282280 4,
1 ~
BU i B[).
Lm T (2)
JecCireJ

With essentially the same proof we also have

Lemma 6.12. If in B reduced products are determined by ultraproducts and F :
Ay — By is a Top-indered functor, then V' is determined by the natural transforma-
tions ygg for all ultrafilters (1.G).

O

Lemma 6.13. The funcior (1) : Top-ind( Ay, Bo) — Filt(Ag, By) is faithful.


http://li.fi

1l

Proof. f o : F — (' : Ay = By is a T-indexed natural transformation., N is «
topological space and = € X, consider the following diagram
Y
XY
‘Al) \1_(2’\/115()
Y
*x L ~
pro|
T ——
Ao _lp! ZBu.

1
T

E

T

Since ¢ is a T-indexed natural transformation, we have that for any coalgebra (1, s
lim 1A in A, (6¥(r)). = ¢' At FA. — (AL Tt s clear then that ¢ is totally

T3tuer
determined by P! O

It is casy to see that for every small pretopos P the category Mod( P) satisiies
all the 1ecesary conditions as a full subecategory of Set® and therefore as a arollary

of lem1ia 6.11 we have

Proposition 6.14. For any Top-indered functor I MOD(P) - MOD(Q) th
functor F1: Mod(P) — Mod(Q) preserves filtered columits. L]
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