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Abstract

An Eulerian description of mean wave forcing, under the effects of the Earth’s rotation
and fluid friction, is derived. A general set of equations for the mean flow that includes
wave forces is established, and a linearized system is extracted for further study. The
study of the linearized system focuses on the response of an Eulerian water column (o
wave forces, including a step function forcing and arbitrary forcing. The response to
steady wave forcing yields a formula for wave-driven flow which unifies the early work
of Longuet-Higgins (1957), Hasselmann (1970), and Madsen (1978). Generalizalion of
the results obtained with monochromatic waves to random waves is briefly discussed,
Implication of the wave-driven flow to classical shelf dynamics is discussed with an
example. A pre-existing CASP data set was explored to test the theory of wave
driven flow. The results from this preliminary exploration emphasize the need for an
experiment specially designed for investigating flows driven by Coriolis-induced wave
stress.

The second part of the thesis introduces a new method for the numerical modelling
of the linearized three-dimensional equations for shelf circulation. The method makes
full use of the local water column response to Heaviside step force in modelling the
global response to arbitrary external forcing in a three-dimensional domain. It is
shown that the method can save substantial computational time. This can be valuable
in a problem involving repeated integration of the equations of motion, such as data
assimilation. An optimum velocity splitting form is also provided for accs lerating the
convergence of the calculation. Also discussed is the advantage of the 7 — Q grid,

which is introduced during the development of the method.

xii
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W, (z) a specified velocity which is confined near the bottom
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Chapter 1

Introduction

1.1 Preface

Two topics are covered by this thesis: the inclusion of a mean wave forcing in the
linearized shallow water equations and the pizsentation of a new numerical method
to solve the equations. The wave force is related to the concept of Stokes drift.
The numerical method results from implementing an outstanding idea proposed by
Welander in 1957. Each topic is self contained, but the two are linked: the former
studies the response of an Eulerian water column to the local external forces; the
latter provides a way of “assembling” the column-wise motion into a 3-D dynamic
picture. Detailed introductions to these topics are given below, followed by an outline
of the thesis.

1.2 Stokes drift

Stokes (1847) established a theory for wave-induced mean flow in a non-rotating
frame. It predicts that for a periodic surface wave field there is an associated meau
flow in the direction of wave propagation. Since this mean flow can be responsible
for a net material transport of sediments, oil slicks, etc., the concept, which came

to be known as Stokes drift, has been widely applied in the real ocean. Not until

1



Wave Direction

Figure 1.1: Diagram illustrating Ursell’s argument. Given a steady Lagrangian mean
flow, denoted by g.:, the area projection, A, of a circuit would increase without bound,
as would the number of the captured planetary-vorticity filaments, . This would
lead to an infinitely large relative circulation around the circuit ba’d’ch which initially
coincided with bade. The end result is then an infinitely large velocity along the side
d'a’ whose lensth is finite.

1950 did Ursell question the application of Stokes’ theory to the rotating ocean. e
argued, from the viewpoint of absolute circulation conservation, that it is impossikle
for a steady wave field to produce a steady Lagrangian mean flow (Fig. 1.1). Pollard
(1970) then examined the wave problem in Lagrangian coordinates including Coriolis
force showing that each water particle experiences an exwuctly circular orbit so that
there is no net material transport, confirming Ursell’s theory.

Hasselmann (1970) also retained the Coriolis force in calculating the wave-induced




Reynolds’ stress tensor and found that, when the earth’s rotation is taken into ac-
count, the horizontal component of the wave orbital velocity is no longer in Guadrature
with its vertical counterpart. As a result a mean shear component in the Raynolds’
stress tensor arises. The associated body force exerted by the waves is —f X q,¢, where
f is the Coriolis vector and q,; is the Stokes drift velocity. The steady response of
a Jaterally homogeneous ocean to this body force is an Eulerian current g, which is
equal and opposite to the Stokes drift, resulting in the zero Lagrangian mean required
by Utsell’s theory.

An interesting result is that a high frequency surface gravity wave field produces
shear stresses in the water column due to the earth’s rotation. As will be shown
later, for a simple wave train the Coriolis-induced wave stress at the surface can be
expressed as pa’cf/2 in deep water where p is the density of sea water, a is the
wave amplitude, o is the wave frequency, and f is the Coriolis parameter. Supposing

= v/2m, ¢ = 1s~! (corresponding to about a 6 second wave period), f = 107*s71,
and p = 103kgm;3, thén the stress is 0.1 Pa, which is of the order of a typical wind
stress. For large swells, the shear stress can be much larger. Unlike Longuet-Higgins’
wave radiation stress (1960, 1964) whose existence depends on a herizontal gradient
of the wave energy, this type of stress exists wherever surface waves arc present.
However, it has not to date been included in the usual equations describing shelf
dynamics.

For a non-rotating frame, Longuet-Higgins (1953, 1960) showed that the presence
of thin viscous wave boundary layers at the surface and at the bottom can strongly in-
fluence the mass transport in the interior region, regardless of how small the viscosity.
This influence can be expressed in terms of two boundary conditions: a steady bot-
tom streaming, and a surface virtual tangential stress. Predictions using the formula
for viscous wave mass transport obtained by Longuet-Higgins yield good agreement
with the wave tank data, while Stoke= drift theory does not.

Thus Stokes’ drift theory is markedly modified by rotation and viscosity effects.

In a realistic ocean, one should therefore consider both these effects in addressing the




wave-induced flow problem. Madsen (1978), followed by Weber (1983a,b) and Jenkins
(1986, 1987a,b), combined the Coriolis and viscous effects in calculating the wave
mass transport in deep water and successfully removed the so-called Longuet-Higgins
paradox in deep water. This paradox, which was noted first by Huang (1970), arises
simply because the virtual tangential stress remains unbalanced in a non-rotating
infinitely deep ocean.

In the models of Madsen (1978) and Weber (1983a,b), the eddy viscosity was
assumed to be constant and waves monochromatic. Jenkins (1987a,b, 1989) developed
models for vertically varying eddy viscosity and for the random wave case. Recently,
Weber and Melsom (1993a, b) considered the effects of growing/breaking waves on
the mass transport.

However, no one seems to have extended the work of Madsen, Weber and Jenkins
to shallower water where surface waves may influence the whole water column. For
example, swells of about 20s period can influence the whole water column to depths of
about 200m (Grant et al, 1984). During periods of large swell, it seems unlikely that
any dynamic model whose aim is to forecast or hindcast the real flow can confidently
neglect the wave stress. One of the purposes of this thesis is therefore to present a
simple Eulerian model for wind- and wave-driven flow in waler of finite depth. Such

a model should be of value in interpreting observed flow on a shelf.

1.3 Welander’s idea

Welander’s (1957) idea concerns the numerical solution of the following set of lin-

earized equations
8 — 80 B, 8
% - o= g5+ & (vE)
8 8
B+ fu=—g5t+%(v3) (1.1)
8 0
5+ ;—xffhudz + Ba—yf_hvdz =0
~ where z —y — z forms a :ight handed Cartesian coordinate system, ¢ is time, u and v

are the velocity components in the z— and y—directions respectively, h is the water
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depth, n is the sea surface elevation, f is the Coriolis parameter, v is the eddy viscosity,
and g is the acceleration due to the gravity, This system of equations has often been
used as a mathematical model for physical oceanography problems such as tidal flow,
storm surge prediction, and shelf circulation. However, even for very simple basins,
few complete analytical solutions are known. Although the set of Eqs. (1.1) has been
greatly simplified from the full Navier-Stokes equations, it still includes a mixture
of Ekman and iong wave dynamics. Therefore it is necessary to take a numerical
approach to obtain general solutions.

However, before integrating the equations numerically, we may be able to extract
the Ekman dynamics analytically. This is the idea proposed by Welander (1957).
Specifically, he suggested that the two momentum equations can be solved for a
complex velocity ¢ = u 4+ tv in terms of a known wind stress, 7, and an unknown sea

surface slope, 7,

q=q(t, 2, Yn,7). (1.2)

As will be seen later, Eq. (1.2) can be written in the form of a pair of time convo-
lutions, one with the wind force, and the other with the surface slope. In practice,
the wind stress is given. If the slope force were also given, then knowledge of the
velocity field would be complete. To determine 77(t), Welander suggested two ap-
proaches (Table 1.1). The first approach (the bottom stress approach) is to take the
derivative of ¢ with respect to z and evaluate it at the sea bed to get an analytical
expression for the bottom stress. The bottom stress can then be substituted into the
depth averaged equations to numerically solve for the sea surface elevation, 7, and the
depth averaged velocity components, % and ¥. The second approach (the transport
approach) integrates q over the water column to get a transport. The transport can
then be substituted into the continuity equation to numerically solve for 5. Both are
variations of the convolution method. The difference between the two approaches lies
in the way they supply the local force $/7(t) for the convolution.

Jelesnianski (1970) implemented Welander’s first suggestion, the bottom stress

approach, and developed a model for storm surge prediction. Forristall (1974, 1977,



Table 1.1: This table summarizes Welander's two suggestions for solving linearized
shallow water equations. g¢4(?,z;I;) and ¢,(t,z; Igy) are two complex velocities in-
duced by unit constant wind stress, I, and unit sea surface slope, Ig,. A unit vector
here is defined as a vector whose length is one unit and whose angle is arbitrary. The
dots on ¢, and ¢, indicate time derivatives.

u 3y . .
%;'—f”=—9§%+“§—,z‘ — (I:V')*Qs(tazufvn)h
S+ fu=—gR +vis +7 % dalt 2 17)

b
Jelesnianski, 1970 ‘ VZZ:‘"(:_“ s first
suggestion

Bottom stress approach
o | ha | ohe _ _
it ta =l ol 2 e = o
i"-'Z-—-‘f.‘l_)'_.‘——ga—”--+-'.ri":l’i. b b . ==l
ot 5z A (::’_T_") 4o B2
8y 5 - 2 r"”: 0z z=—h
st fi=—gzl+ 2>

This study
Transport approach
1 N o .
by ohe b _ ) — (hii, ko) = gn*[_, 4,dz
at z y (h‘a_i_h_v) 47 % fo :d
~p Qa@2
Welandei’s

second suggestion




1980) applied Jelesnianski’s method to model storm-generated currents and later
extended the method to the case of two layers of different (but constant within each
layer) eddy viscosity. Davies (1987, 1988) took this method one step further, using
the bottom stress derived from a linear depth-dependent model to provide closure for
a non-linear depth-averaged model. One difficulty with the bottom stress approach is
the extremely slow convergence of the bottom stress series. As a result, approximate
formulae have been used to replace this bottorn stress series (Hearn, 1988; Hunter,
1989). Such approximations, due to underestimation of the correct bottom stress,
tend to produce the undamped inertial oscillations reported by Davies (1987) and
Hunter and Hearn (1988) .

Welander was interested in implementing his second idea, the transport approach,
and planned to perform some numerical experiments for the North Sea. By 1961,
however, he acknowledged the difficulty of the implementation due to the complex-
ity of the integrodifferential equation. This difficulty was also recognized by others
(Platzman, 1963; Simons, 1980; Murty, 1984).

However, Welander’s second suggestion has certain advantages: only one equation
(the continuity equation) needs to be integrated numerically; the analytical part only
involves the transport, which implies that fewer modes will be needed (since higher
modes have little contribution to the transport). It is desirable to implemert the
method, as it can result in a substantial decrease in the computational workload.
This is valuable for problems involving many iterations of the solutions to the 3-D
linearized equations of motion, such as data assimilation. This study implements
Welander’s second approach, resulting in a new method for numerical modelling of

3-D circulations in shallow seas.

1.4 Thesis outline

This thesis is structured as follows.



o Chapter 2 derives both the Coriolis- and viscosity-induced wave stresses for

arbitrary water depth and arbitrary wave direction.

e Chapter 3 establishes a set of general equations which includes the mean wave
force, and extracts a set of linearized sub-systems for use in the following chap-

ters.

o Chapter 4 studies in detail how a water column responds to the local external

wave force.

e Chapter 5 uses a pre-existing data sct, the CASP (Canadian Atlantic Storm
Program, 1985-1986) data set to test the theory established in Chapter 4 against,
data.

o Chapter 6 moves on to the second aspect of the thesis: presenting the new

method for numerically modelling the linearized 3-D motion in shallow seas.

e Chapter 7 summarizes the thesis.



Chapter 2

Primary Wave Motion with
Coriolis Effects and Secondary

Wave Stress

2.1 Introduction

This chapter derives both the Coriolis-induced and viscosity-induced wave stresses
for arbitrary water depth and arbitrary wave direction. A succinct and rigorous
derivation of Longuet-Higgins’ virtual wave stress is presented here. It is shown that
the virtual stress is a projection on the surface slope of two viscous normal stresses
acting on the vertical and horizontal planes.

Hasselmann (1970) derived the Coriolis-induced wave stress without resorting to
any specific wave solution. His derivation is general, but also makes the generat-
ing mechanism of the stress less evident. In the following, a finite water depth wave
solution in a rotating system is provided, from which one can see the generating mech-
anism of the stress more clearly and can immediately determine the stress formula in
terms of the wave parameters.

In the wave mass transport problem, the Lagrangian description is often favored
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(ﬁnlﬁata and Mei, 1970; Madsen, 1978; Weber, 1983a,b; Jenkins, 1986, 1987). The
choice of the Lagrangian description brings in an evident convenience, i.e., turning
the fluctuating free surface into a fixed plane, which is desirable for those models
designed to yield the detailed structure of the surface boundary layer. However the
choice complicates the equations of motion and makes the algebra lengthy. in con-
ventional models for wind-driven shelf circulation, the Eulerian description is over-
w! elmingly used. One of the purposes of this thesis is to explore the consequence of
introducing wave forcing into the commonly used equatizns for wind-driven circula-
tion. Therefore it will be convenient to adopt the Eulerian description here. After
obtaining results from the Eulerian model, for the purpose of comparison with the
previous results in the Lagrangian description, one can employ a simple relationship
of g1 = g. + q», where ¢ is the Lagrangian mean, g, the Eulerian mean and ¢, the
Stokes drift (e.g. Longuet-Higgins, 1969a). For a general dynamic link between the
two descriptions, reference is made to Andrews and Mclntyre (1978). Weber (1990)
also gave a comparison of the two approaches for the specific case of wave mass

transport in a deep rotating ocean.

2.2 Inviscid primary wave motion in the interior

region and the Coriolis-induced wave stress

For the first order wave motion, a frictionless model is a reasonable approximation for
the interior region away from the viscous boundary layer. The linearized equations

of motion in a Cartesian frame rotating with angular frequency of f/2 are

0 . 19p )
—aT—' vV o= *;'a—m' (2.1)
v .

5 tfi =0 ; (2.2)
0w 10p

—tyg = - 2.
ot +9 pOz (23)
di  ow

3% T 92
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wave direction

z=-h (or z’=z+h=0)

Figure 2.1: Eulerian coordinates for the wave problem in a rotating ocean of constant
depth. In the solution for @, o, W, p and 7, the wave propagation direction § is
assumed to be zero for simplicity initially, and afterwards this simplification relaxed

subject to

&

= 0 at z =—h (2.5)
=0 at z=0 (2.6)

3

where the z-axis is taken to be the direction of wave propagation, the y-axis is parallel

with wave crests, z is taken to be vertically upwards measured from the mean sea

surface (Fig. 2.1), and the tilde sign signifies the variables related with wave motion.
Seeking a plane wave solution to the above model, one finds that

. Aac cosh(Ah + Az)
i = : =k cos(kz — ot) (2.7
f

Aao cosh(AR + Az)
(;) P Y sin(kz — ot) (2.8)

[wt]

]
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— sinh(Ah + Az) .
W o= a0 —— e sin(kz — at) (2.9)
. cosh(Ah + Az)
p = i AR cos(kz — at) — pgz (2.10)
i = acos(kz — ot) (2.11)

in which k is the wavenumber, A = k/\/1 — (f/7)? and 0% = gA tanh Ah. In Weber's
(1990) paper, which gives a comparisou of the Eulerian and the Lagrangian approaches
for the wave drift problem in a rotating ocean, an Eulerian deep water wave solution
is presented. The solution shown above is more general, in which the deep water
solution is obtained in the limit when b — oo. Substitution of realistic numbers for
o and f will inake 02/ f2, which appears in the expression of A, of order O(10-%).
Therefore, in the following discussion, A will be approximated with k.

The significance of the rotating frame to the wave solution is that it introduces a
crest parallel wave orbital velocity component, 9. This component is in phase with
its vertical counterpart, t. A net wave-induced Reynolds stress then arises from
averaging over a wave cycle,

sinh 2k(h + 2)

— 1D e 2 PP S ——
p< BB >= —pa fo )

(2.12)

where the angle bracket denotes time averaging over a wave period. For the hyperbolic
functions in Eqgs. (2.7) to (2.10), z is defined from z = 0 to z = —h instead of
from z = % to z = —h. This involves an assumption that the wave solutions can be
analytically extended to the mean sea surface when 7} < 0, which is a usual assumption
in linear wave theory (e.g., Phillips, 1977, Eqs. 3.1.10 — 11; Hasselmann, 1971, page
192; Weber, 1993a, Eq. 20). Consequently, the derived stress of Eq. (2.12) is also
defined from the mean sea level z = 0 to the sea bed z = —h.

The boundary condition (2.5) implies a flat sea bottom. However, the solutiony
remain valid for slowly varying topography where the depth changes only slightly
over a wavelength of the waves. Eq. (2.12) can therefore be applied to large scale
motions, where the topography varies in scales of kilometers, and the depth h can be

regarded as h(z,y).
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An estimate of the size of this stress may be made by considering the deep water

case. In deep water, the stress becomes
2
o o~ o
p < b >= pa—éf——ez"‘. (2.13)

With f =10"%s"%, p = 10%kg m~3, o = 1s~! (about 6 second period), and a = v/2m
(corresponding only to moderate waves) then the stress has a value of 0.1Pa at the
surface. This is comparable in size to a typical wind stress.

Since a surface wave decays vertically, as its name suggests, one can calculate an
associated body force by taking a derivative of Eq. (2.12) with respect to the vertical

coordinate z. The body force is then

o<dvw > _  a’focosh2k(h +2)
P~z = P54 4sinhi(kh)
= —fpgn (2-14)
where
6 = 1/(2K) (2.15)

and is known as the Stokes depth (Fig. 1.1). The Stokes velocity, gy, is given by
cosh 2k(h + %)

w = oa’k , 1
T = T AR (k) (2.16)
_ cosh 2k(h + z)
= 44(0) cosh 2kh (217)
where
h 2kh
L(0) = oath S .
w(0) = od ks (2.18)

represents the surface value of the Stokes drift.

In Eq. (2.17), the depth dependent Stokes drift has been expressed as its surface
value times a depth distribution function. It will be shown that the flow driven by
wave force can also be expressed in terms of ¢,:(0), where g,,(0) can be a time series.

In this case, the parenthetical zero might lead to a confusion with a constar:t value at
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the initial time. For this reason, another notation for the surface value of the Stokes

drift,
2 = gqu(t;z=0) (2.19)

is introduced. In the following discussion, both ¢,(0) and & will be used as appro-

priate.

2.3 Viscous wave boundary layers

In a non-rotating frame, Longuet-Higgins (1953, 1960) showed that the two thin
wave boundary layers have fundamental effects on the wave mass transport in the
interior region no matter how small the viscosity. The effects can be expressed as
two boundary conditions just beneath a thin free surface boundary layer and just
above a thin bottom boundary layer. (These wave boundary layers are of order of
millimeter thick in practice, e.g., Russell and Osorio, 1958.) Written in an Eulerian

sense, Longuet-Higgins’ boundary conditions are

V—g—g = 2uktanh2khg.(0) at z=0—6,=0 (2.20)
qg = gq,,(—h) at 2= —~h + 6, ~ —h (2.21)

where gy (—h) stands for the bottom Stokes drift. The boundary layer thickness
by, = \/M , where v is kinematic viscosity, and o is wave frequency. Equation (2.20)
- has been termed wave-induced virtual tangential stress (kinematic), and Eq. (2.21)
represents bottom streaming. In the following, the virtual stress will be rederived
before it is extended to the rotating frame. The bottom streaming condition will be
shown as a part of solutions to the wave driven flow in Chapter 4 (cf. Eqs. 4.13 and
4.21).

2.3.1 Virtual wave stress on the free surface

The free surface boundary condition has drawn considerable discussion (e.g., Phillips,
1977; Longuet-Higgins, 1969b; Huang, 1970; Unliiata and Mei, 1970; and Weber,
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1983a) because of its important role in the transfer of wave energy to the mean
flow. However, while it seems sensible there should be a stress, the details of the
mechanism are far from obvious. The complexity of the mathematical derivation
given by Longuet-Higgins obscures the physics of the generating mechanism. Phillips
(1977) offered an explanation from the point of view of wave energy dissipation into
the surrounding water. Th extension of this energy approach to the rotating system
is presented in Appendix B to this chapter. Presented in this section is a succinct
and rigorous derivation of Longuet-Higgins’ virtual wave stress. It reveals that the
virtual stress can be derived by considering the projections on the surface slope of
two viscous normal stresses acting on the two axial planes respectively.
Let
Il = z — acos(kz — ot) (2.22)

then the free surface is described by
n=0. (2.23)

The outward unit normal vector at a point O on the free surface (Fig. 2.2) is

\vai

=g m) = e

|v 1
~ [kasing, 1— %(lca)zsin2 4] (omit O((ka)?)) (2.24)

where ¢ denotes kz — ot. The tangential direction 3 at the point O is

§ = [nz, —7)
= - %(ka)zsinz é, —kasing). (2.25)
The tangential stress, P,,, at the point O on the free surface is calculated as
follows
P, = niPys; t=2,2 j=2,2

~ Py + kasin§{Pos — Py:] — Aka)sin’ $Ps;  ( O((ka)®)), (2.26)
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where P;; is a second order symmetric stress tensor (e.g., Batchelor, 1967). On the
free surface P,, vanishes, thus from Eq. (2.26)

P.; + kasin ¢[P;; — P..] — 2(ka)*sin? 6P, = 0. (2.27)

The relationship between a viscous stress tensor and the gradients of velocity are

Ju
P, = —-p+ 2u5; (2.28)

ou Jw
Pza: - I‘(é‘; + ‘b“a‘:‘) = Pz'z (2.29)

ow
P, = -p+ 2“_6_5' (2.30)

Assume that

u = ecur+etuz+.. (2.31)
w = ewy+Ewy + ... (2.32)

in which ¢ is a small parameter. The first order uy, wy correspond to high frequency
periodic surface wave motion, with the second and higher orders representing much
lower frequency motion. In the problem of wave driven flow, it is common to take

the wave slope as the small parameter (e.g., Phillips, 1967, page 24), i.e.,

£ = ka. (2.33)
Accordingly,
Pro = —p+ (k) 002 4 (kap 322 1 (2.34)
= oz oz '
- 8u1 0w1 2 3uz
P, = (ka)p (5; + —B_z—) + (ka) ng, e
- P, (2.35)
- 6w1 2 611)2

where ( w;/3z has been dropped from P,; because the horizontal scale over which

the secc 1d order motion varies is much larger than the water depth in the ocean.
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Substitution of Eqs. {2.34), (2.35) and (2.36) into Eq. (2.27) yields
Ouy  Ouy
(ka) (5‘; * 'a?)
c’)ul .a_wl) + 6112

+(ka)® [2;1 sin ¢ (_5; -5 ﬂ—a;—} +..=0. (237

For the above equation to hold, the coefficients of each power of (ka) must be equal

to zero, giving

Bul Owl _
7 (-5-; + ‘5;-) 0 (2.38)
[2/1 sin ¢ (%'il - %) + u%i:] = 0 (2.39)

Time averaging Eq. (2.39) yields
Buz _ . Bul Bw1
U <—5;> = —2u <sm ¢ ( o _6;—)> , (2.40)
while averaging Eq. (2.31) yields
<u> = (ka)® <uy >+0((ka)®). (2.41)

The combination of Egs. (2.40) and (2.41) then results in

< u> 3u1 8’(1)1

p—— = —(ka)? <2p sin ¢ (5; - E)> (2.42)

where terms of O((ka)?) have been dropped. This equation re reals the essence of

the virtual tangential stress. It is the projection on the surface slope of two viscous
normal stresses acting on the two axis planes respectively (Fig. 2.2).

The next question concerns how to calculate the virtual tangential stress if only
provided with the inviscid wave solution. This can be done as follows. First, note
that

et el ) bl (2.43)
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i} = acosd

(a) g
]
: 5
L7
! W
| ;
E 2#%’-kasin¢
1 X
]
' .
te
3
1
t
: sina = kasin ¢
(b) ‘ cosa = 1~ H(ka)?sin? ¢
d=kr—ot
- SR A iam
—2[[2%2;—11}6?0. sin¢ + 2u-61§:—‘)-ka sing + u "j’ =0
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Figure 2.2: (a) Normal and tangential directions on the free surface; (b) Projections
on the slope of two viscous normal stresses 2u%ﬁ;ka sind and Zu%—‘} acting on z—
and z-—planes respectively; (c) The projections are always opposite to the tangential
direction, when averaged over a wave cycle they contribute a second order tangential
stress, uﬂfg—:’l, as is required by zero total tangential stress on the surface. In the

figure, € = ka and they have been used interchangeably.
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because of the incompres. 'bility of the fluid. Second, define two components in u
near the free surface. One is the inviscid solution, say u);nyi,, and the other is viscid
solution, say uj.,. Although details about uy,, are not known, one thing about it is
certain, uyy, = O(k/B)t1invis, ( B = 65" = \/0—7(.2_u) is the thickness of the surface
viscous boundary layer). This follows since on the free surface the shear stress due
to the inviscid motion must be balanced by that due to the viscid motion. Because
of the high frequency of the first order motion, the thickness of the viscous boundary
layer is much smaller than the wave length, i.e.,

k
E <L (2.44)

Thus one can calculate the virtual stress using only the inviscid solution

6u1 0w1 Bu1

% " - e
_ aulinm’a [ k N
= 2L +O(E)} : (2.45)

Substitution of Eq. (2.45) into Eq. (2.42) yields

d<u>
Oz

= —dp(ka)? <sin¢a“(‘9:""> (omit O((ka)?£)).  (2.46)

The inviscid solution to the surface gravity wave motion in non-rotating shallow water
is (e.g., Phillips, 1977)

g cosh(kh + kz)

Uinvis = (ka) o  coshkh os ¢
= (ka)u1inyis- (247)
Furthermore substituting
- _ gcosh(kh +kz)
U invis = a_—co—shwcosqs (2-48)
into Eq. (2.46) results in
. 0<u>| 2
fo=v = 2v(ka)*c coth kh (2.49)
az iz:()



where the dynamic stress has been converted to a kinematic one (for convenience in
later use) and the dispersion relationship ¢ = gk tanh(kh) has been used. Upon
using Eq. (2.16), the above formula for the virtual wave stress is equivalent to Eq.
(2.20).

When the earth’s rotation is taken into account, there will be a velocity component
parallel to the wave crest as is shown in Section 2.2. Consequently the tensor P;; will
become three dimensional (i = z,y,z, j = =z,y,z). However if the wave profile
is unchanged along the direction of the crest as is assumed in Section 2.2, the unit

normal direction of the free surface is
i = [basing, 0, 1 — %(ka)z sin? g| (2.50)
and the unit tangential direction is
§ =11~ %(Im)2 sin? ¢, 0, —kasin ¢). (2.51)

Since both n, and s, are zero, neither Py, nor P,; can make contributions to the

tangential stress on the surface, whose formula is
Py = niPyjs; (t=2,y,2 J=1z,9,7) (2.52)

Thus Eq. (2.46) remains formally valid. Substituting Eq. (2.7) into Eq. (2.46) yields
the same value for the virtual stress as is given by Eq. (2.49).

It should be noted that the above derivation of the virtual stress does not demand
any particular type of viscosity or its depth structure. The “viscosity”, v, introduced
into the derivation in the relations between the stress and the velocity gradient, Eqgs.
(2.28), (2.29) and (2.30) holds regardless of whether flow is laminar or turbulent.
Thus the virtual stress should be applicable to both flows. The only difference will
be in the value of the virtual stress. As Longuet-Higgins (1969b) states, “.. if the
laminar motion breaks down, as it probably will, the damping of the short waves may

be greatly increased, leading to a corresponding increase in the virtual wave stress.”
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An estimate of the size of the virtual tangential stress can be made by using the

fact that the amplitudes of sea waves are given by

%az = S(o)do (2.53)

in which §(c) is a wave energy spectrum. For the deep water case, coth kh in Eq.
(2.49) tends to one, and substitution of Eq. (2.53) into Eq. (2.49), using the deep

water dispersion relationship, results in

. 4y oo
o= —
g% Jo

o°S(0)do. (2.54)

Therefore, the virtual stress is the fifth moment of the energy spectrum, and the
estimate of the virtual stress is entirely determined by the choices of v and the form
of the spectrum S(¢). The following two references give examples for the estimation
of virtual stress.

Longuet-Higgins (1969b) chose v as the molecular viscosity and the spectrum as
S(e)=12x107%g*¢" (Omin < 0 < Tpmaz) (2.55)

where the upper limit frequency o ., relates to the wind speed. He obtained
Fr = 4.8 X 107 vo,, (2.56)

when Omaz > Opin. Based on Cex’s (1958) wind tunnel data, he showed that the
ratio of the virtual wave stress to the wind stress decreases from 13% to 3% for wind
speed increases from 3.18ms~! to 12.02ms~!. As pointed out by Longuet-Higgins, this
result assumes laminar motion; when laminar motion breaks down, the proportion of
the virtual wave stress should be higher.

Madsen (1978) used the Pierson-Moskowitz (1964) spectrum and a wind velocity
related eddy viscosity to estimate the size of the surface velocity induced by the
virtual wave stress in deep water. The size of the surface flow driven by the virtual

stress he found, is on the same order as that driven purely by the wind.



2.3.2 Wave stress due to bottom friction

Generation of bottom streaming (Longuet-Higgins, 1953) in a non-rotating frame
was explained by Longuet-Higgins (1958). Due to the existence of bottom {riction,
the two wave orbital velocities, % and 1@, are slightly in phase, resulting in a net
Reynolds stress, < i >; this stress in turn drives the bottom streaming (also see
Phillips 1977). Longuet-Higgins (1958) also showed that the magnitude of the bottom
strearning is not dependent on the viscosity structure inside the wave bottom friction
layer provided that the viscosity is constant in time. A more general approach in
which the eddy viscosity varies both with time and distance from the bottom was
proposed by Trowbridge and Madsen (1984a, b).

The bottom streaming condition with rotation and viscous effects included has
not been addressed previously, mostly because atiention to the rotating case has been
focused on infinitely deep water. In a rotating frame, there will be another bottom
friction layer which is of order O(8.), 8. = \/2v/f. Since the wave bottom friction
layer is much thinner than the Ekman layer due to ¢ >> f, the Ekman veering effect
within this thin layer will be insignificant. In other words, it would be expected that
the introduction of the Coriolis force would have little effect on the wave stress within
the thin wave boundary. The following detailed analysis confirms this expectation.

To examine the bottom wave stress in a rotating coordinate frame, one needs a
solution for the primary wave motion of the real fluid near the bottom. To simplily vhe
problem, Longuet-Higgins’ (1953) approach will be followed and a constant viscosity
will be assumed. However, if both the Coriolis force and the vertical frictional force
are retained in the momentum equations, the problem is still formidable. From the
inviscid solution, it is known that the wave crest parallel velocity component, ¥, is
proportional to f/o. Hence the Coriolis term in the z-momentum ecuation can be

dropped since it is of negligible order O(f*/a?). These simplifications allow use of
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the following equations first

2a o 19 %%
at - 8:+”322
21 105 , 3%
St = —p5§+1’3;r (2.57)

94 4 oW _
5t =0
and then separately consider the solution for the ¢ component,
o 2%
D pi=v22, (2.58)
The solution of Eq. (2.57), under the non-slip bottom condition and the matching
condition with the inviscid solution in the interior region, is straightforward (Phillips
1977), yielding

. cosh k2’ e~P )
i = a0 —— cos(kz — ot) — a0~ cos(kz — ot + B2') (2.59)
. sinhkz’' .
= @0 sin(kz — ot)
ac [k 1 T ' '
habl B ~Bz _ / -pz' .: _ /
+5 (,3) LR [e cos(kz — ot + §2') + 7% sin(kz — ot + B2')
—cos(kz — ot) — sin(kz — at)]. (2.60)
The solution for ¥ in Eq. (2.58) is obtained as
- (] coshkz' .,
v o= (;) aa‘m sm(k:z: —- O‘t)
~ (£ ac e [sin(ka: ~ot+ B2) - lﬂz' cos(kz — ot + 32')
o sinh kh 2

1
+502/sin(ks = ot + ﬁz’)] (2.61)
where the notation

Z = z+h (2.62)

B = \s (2.63)
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has been used and the terms of order O(k%/8?) neglected. From Eqs. (2.59) to (2.61),

the wave Reynolds stresses (the kinematic ones) in the x— and y— directions are

. o~ — k (aa)z ' ~p2 ’ ~3z! o -2z 9
<iw> = (ﬁ) 1T [2,@2 e P sinfz + 277 cos ' —1—e ](....64)
.. (f (@o)® . .,
<D > = (a ot sinh 2kz
f (aa‘)2 =gz . ! ' L M ! r
(a e sinh k2’ [2cos B2’ + B2'sin f2' + B2’ cos g£)
f k (00)2 ~f6z ’ -2082
¥ (a 3) Tsinh®kh 27 con ' — 1

+87'e~P% sin ﬁz'] . (2.65)
The ratio of k to 8 can be expressed as

% = Y ik (2.66)
g

where the dispersion relationship % = gk tanh kh for the surface wave has been used.
Typically o is of order 1 s™! and the water depth A is not so shallow that coth kh is
much larger than 1. The ratio of k/f then depends mainly on the choice of viscosity
v. Typical values of v for water ranges from 10~®mZ2s~! for molecular viscosity, to
10~?m?s~! for turbulent viscosity. Accordingly, k/8 = 0(10~%) ~ 0(10~%). Thus the
ratio is a small number even for the turbulent conditions.

Equation (2.64) is the same as that given by Phillips (1977). What is added by
the earth’s rotation to the wave stress near the bottom is a stress perpendicular to
the wave propagating direction, < 9@ >, as is described by Eq. (2.65). However,

within the bottom wave boundary layer, since
sinhk»' ~ k2’ = %ﬁz', (2.67)

all three terms on RHS of Eq. (2.65) are of order

o(2%) (s

»
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This means that < 1 > can be entirely neglected compared with < % >. Therefore,
the earth's rotation does little to change the near-bottom stress distribution compared
to that in a non-rotating system (Longuet-Higgins 1953, 1958; Phillips 1977). Outside
the wave boundary layer, when the term of O (UI-%) is neglected, Eq. (2.65) becomes

2
cim>=L 9 nnoky (2.69)

o 4sinh? kh

which is the same as the interior stress given by Eq. (2.12), as should be the case.

2.4 Summary

From the above discussion, a picture of the vertical distribution of wav: forcing can
be gained. On the free surface, there is a wave-induced virtual tangential stress in
the direction of wave propagation. In the interior region, there is a Coriolis-induced
wave stress, whose distribution is concentrated mainly within a Stokes depth and
is directed 7 /2 to the right (left) of the wave propagation direction in the northern
(southern) hemisphere. At the bottom there is a wave stress in the same direction as
the wave propagation, arising from the phase shift of orbital velocities in the bottom
wave boundary layer.

In the course of validating Longuet-Higgins' virtual tangential stress in the rotat-
ing system, a succinct and rigorous rederivation of the stress was found. The virtual
tangential stress is composed of the projections on the surface slope of the two viscous
normal stresses acting on £~ and z— planes respectively.

A complex wave-induced body force can now be written as

cosh 2k(h + z)
cosh 2kh

6 Iy y 23379 —
~% (KA > +i<tw>] = —qu(0) [ b 2kh +1if ] (2.70)
where Eqgs. (2.64) and (2.69) have been used, i = v/=1, and function () is

(2ﬂz'e‘ﬁ" sin B2 + 2¢77% cos Bz’ — 1 — e“w") (2.71)

QDIQD

¥(z) = 55 5



which describes the vertical distribution of the part of wave stress introduced by
bottom friction, and is responsible for the bottom streaming of Eq. (2.21) as will be
shown in Chapter 4 (cf. Eqs. 4.13 and 4.21),

In the above, it has been assured for simplicity that the wave propagation direc-
tion coincides with positive r—direction, and gy has been described by Eq. (2.16),
If the wave direction is at an arbitrary angle § with respect to the r—axis (Pig. 2.1),
then a directional factor ¢ should be introduced to the Stokes drift expression (see

Appendix A to this chapter), i.c.,
cosh 2k(h +2) |

st = 21\.——_——‘_“ ! e
st od 2sinh?(kh) ( -
and
o, cosh2kh
5 0 o= 2/\'——-———.-——'~ 10» 2.73
qs:(0) ERRSWIITVAS o

in which & is now the wave number in the direction of #. The virtual wave stress

(kinematic) still keeps the same form as Eq. (2.20)
7 = 2wktanh(2kh)q,(0) (2.74)

since the direction factor ¢ is now absorbed by ¢s1(0).

2.5 Appendix A: Case of wave propagation at ar-

bitrary angles relative to the x-axis

For simplicity, all the derivations presented above assume that the plane wave prop-
agating direction is coincident with the x-axis. With a little more algebra, this re-
striction can be relaxed. Eqgs. (2.1) to (2.6) should first be generalized to allow for

the pressure gradient term in the y-direction,

Jo .. 0Op .
_'07 -— ‘/ v = 70“; (2'7'))
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% .. 0p
17 1) ow
B +g9 = 5 (2.17)
ou 0v O
9z + 5&' + 5 = 0 (2.78)

with the same boundary conditions as Eqs. (2.5) and (2.6). Ther, seeking the plane
wave solution of the form of ~ eik=*+k¥=7%) where k, and k, are the wave number

vector components ir the x- and the y-directions respectively, one finds that

N cosh(Ah + Az
i = QUW[COS 0 cos(kyx + kyy — ot)
——£ sinfsin(kyz + kyy — at)] (2.79)
. _cosh(Ah+Az) .
b = a’m—— [sin 8 cos(kzz + kyy — ot)
+£ cos Osin(kez + kyy — at)] (2.80)
. sinh(Ah+Az)
w = '——Sin——h(m——Sln(kz(E + kyy O't) (2.81)
. cosh(Ah + Az) 3
P = ga—c_osW cos(kzz + kyy — ot) — pgz (2.82)
7 = acos(k,z + kyy — at) (2.83)
where
k2 + k2
A= | —F
(1-5)
NGk kI =k (2.84)
o® = gAtanh(Ah) (2.85)
= cos™! i (2.86)

0 is the wave propagation direction with respect to x-axis and & is the wave number
in the direction of 4.
Now, the two horizontal orbital velocity components both have parts in phase

with the vertical orbital velocity component. If averaged over the wave period, then



the product of the in-phase components will have non-zero value:

sinh2k(h + 2)

—————sind 2.
dsinhi(kh) (2.87)

<ib> = azfasmh%(h + z)

<iah> = —a’fo

Tombi(on) Y (238)

Written on a complex plane, they can be merged as

<UD D>+ <IVD> = ifazai%i—i—i%l—gﬂﬂew (2.89)
The associated body force is
9, .. C e g 0c08h2k(h+2) 4
Bz(< W > +i < 0w >) = ifa’ok Tonh (o)
= ifq,t (2.90)

where ¢, is the Stokes drift
cosh2k(h + z) ,

— 2
W = wok= R

(2.91)

2.6 Appendix B: Wave energy dissipation and vir-
tual tangential stress in the rotating system

This appendix extends Phillips’ wave energy dissipation approach to examine Longuet-
Higgins virtual tangential stress in the rotating system. Since the viscous effects near
the boundary are of particularly concern here, vertical shear (kinematic) stresses,

07z2/0z and O7y;/02 are introduced into the x- and y-momentum equation as
ou _ on 01y

w7 T %t (292)
%g + fi = —ggg- + _3_37'_2_2_ (2.93)

Integrating the above equation from z = 0 to z = 7 and then averaging results in
6<aﬁtﬁ>_<aw>_f<5ﬁ> = =< Ty > at z =0 (2.94)
6<§tﬁ>~<6w>+f<ﬁﬁ> = <> abz=0 (295

where the following have been used:
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[ ]
< m{‘d > n ‘—af‘->
oot T ST 7|,
_ d<@i> .9 B
= Tam u-a—t-> z=0
a< oij > o
= <> z=0. (2.96)
Similarly,
0% o< o) > o
</ 5‘13) ~ 5 < 00>, z2=0. (2.97)
[ ]
</"fﬁdz> N~ f<®i>  atz=0 (2.98)
0
</ﬂfﬁdz> r f<uj> at z = 0. (2.99)
0

e There is no horizontal variation® in wave amplitude so that < }gd7*/8z > = 0

and < }g07/0y>= 0
e 7, = 0 at the real surface (z = 7).
From Egs. (2.79) to (2.83), one can verify that

fifp>—-<id> = 0 z=0 (2.100)
f<ti>4+<ti> = 0  z=0. (2.101)

Thus Eqgs. (2.94) and (2.95) are reduced to

6—<—;‘Z’7—->- = —<Tm>  z=0 (2.102)
a< o >
Bt

1'This assumption is made to simplify the discussion. The classical wave radiation stress (Longuet-
Higgins and Steward, 1964) will take care of the term < 1/2987%/8z > and < 1/2g87%/dy >, if
there is horizontal gradient in the wave amplitude.

= =< Ty > z=0. (2.103)
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From Eqs. (2.79) to (2.83), one can calculate the total wave energy per unit area

below the plane z = 0, denoted as E, to be
E = (2k)™* pa*o? coth kh (2.104)

where the high order terms of O(f*/0?) have been neglected. From Egs. (2.79) to
(2.83), one can also verify that

U > |0 = ;]%E cos § (2.105)
<37 > |0 = ;k;EsinO (2.106)
whereby
?—<—‘-;~itﬁ—-?—‘z=o = ;k;%-l-f— cos ¢ (2.107)
o< §f>|,=0 = ;%—%f—sinﬂ. (2.108)

For the plane wave in question the energy dissipation rate per unit area is given

by

oFE 0
= = - o (
Bt 2#/-11 eijejidz (2.109)
(e.g., Phillips, 1967, egs. (2.3.4) and (3.4.13)) where ¢;; is a symmetric tensor
1 (0u; 0
o= L[om 9y 2.11
¢ 2 <ij t c%;) (2.110)

where the correspondence of i; to @, § or @ and z; to z, y or z when i = 1,2,3 is
conventional. Substituting Eq. (2.79) to Eq. (2.81) into the above expression yields

%—If- = —2pua’c?k coth kh. (2.111)

Thus, combination of Eqs. (2.102), (2.103), (2.167), (2.108), and (2.111) results in

L Tpz > = “T=—;;—5?C030
= 2uok’a? cosfcoth kh = 7, z=0 (2.112)
< Ty > = _MZ:_LQ‘_E_SinB
v ot po Ot
= 2uok?a®sin § coth kh = 7, z=10 (2.113)
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where notations 7, and 7, signify that these mean stresses are related to waves. A

second order motion then is set up on z = 0 to balance these shear stresses, i.e.,

V6<a: 2 = vok?a? cos d coth kh z=0
ua<a: 2 = uok®a?sinf coth kh z2=0

or written in the complex plane as

~

F o= 1, +ir, = wok?a’e” coth kh

2k tanh(2kh)qq.(0) at z=0.

]

(2.114)

(2.115)

(2.116)
(2.117)



Chapter 3

Governing Equations With Mean

Wave Forcing

3.1 Introduction

The mean effects of short surface gravity waves on the flow have been accounted for
in the equations of motion either in a depth averaged 2D sense or in a 3D sense.
The depth averaged approach appears in textbooks (e.g., Phillips 1977; LeBlond and
Mysak 1978), and the depth dependent approach can be found in research papers
(e.g., Hasselmann 1971, Svendsen 1989). However, in these treatments the Coriolis
induced wave stresses are not included. This chapter therefore will first derive a
set of equations in three dimensions which includes wave forces. A linearized sel of
equations with assumed horizontal homogeneity in wave forcing is then introduced to
obtain a simple Eulerian model which includes Coriolis-induced wave forcing and the
virtual wave stress in addition to the traditional wind stress. Finally, a relationship
between the responses of an Eulerian water column to the step function (in time)

forcing and to arbitrary forcing is presented.

32
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3.2 General Eulerian governing equations account-

ing for forcing by short surface gravity waves

In an z-y-z Cartesian frame rotating with angular frequency /2, the general equations
governing geophysical flow are (c.g., Pedlosky 1979, Section 1.4 and 1.6; Csanady,
1982, Section 1.2)

g.: + a(uu) + 8(uu) a(uw) —fo=-
.ll‘l'). _.(ﬂ’.). + _L'M + fu = -
+ 3(uw) + a(vw) + 3(ww) tg=~—
Z4+%e=0

(3.1)

LY YT Ny
B 9 59

where . e molecular viscosity has been neglected. In a highly turbulent environment,
like the ocean, the Reynolds’ stresses will dominate over the molecular viscosity as
a dissipative mechanism. When short surface gravity waves are present, velocity can

be partitioned into three parts,
U =< U > +u; + us (3.2)

where the correspondence of u; to u, v or w when ¢ = 1,2, 3 is conventional. The diag-
onal bracket indicates a slowly varying component, the tilde sign a wave component,
and the prime a turbulent component. The diagonal bracket also represents time-
averaging over a duration much longer than both wave group and turbulent time
scales, but still significantly shorter than time scales associated with slow motions
such as tides and wind-driven circulations. Such an averaging period is assumed to

average out both the waves and the turbulent components, i.e.,
< >=<uy >=0. (3.3)

The three components are assumed to be uncorrelated (e.g. Longuet-Higgins and
Stewart 1960, 1961; DeVriend and Stive 1987; Svendsen 1989), so that

< ugy; S=< Ui >< uj > + <ty > + < ujuf > . (3.4)
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This concept of velocity decomposition and time averaging may be justified by the
presence of frequency gaps between the short surface gravity waves and long time
scale motions as shown in Fig. (3.1), cited from LeBlond and Mysak (1978).

For long time scale motions, surface waves and turbulence are merely fluctuations
and of major interest are their time averaged effects. Turbulence brings fluctuations
to the velocities, while surface waves bring fluctuations not only to velocities but
also to the free surface. Therefore if one simply applies time averaging to the Eqs,
(3.1) (in the way the Reynolds stresses are generally obtained) then no information
about the free surface will be picked up. If one integrates Eq. (3.1) from the sea
bottom to the free surface in order to pick up information from the surface, and then
applies time averaging on the depth-integrated equations (in the way the radiation
stresses are derived, Longuet-Higgins and Stewart,1960; Longuet-Higgins,1964), then
the vertical structure of the currents will be lost.

To resolve this dilemma, the water column needs to be divided into two layers: a
thin top wave boundary layer over a main interior layer. In the interior layer, time-
averaging can be directly applied to Eq. (3.1) since there are no surface fluctuations
to contend with. For the top wave layer, vertical integration of Egs. (3.1) from
the bottom of the layer (or the top of the interior layer) to the free surface will be
first carried out, followed by time averaging the integrated equations to derive the
boundary condition for the main layer by matching the fluxes of mass and momentum

across the interface between the two layers.
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Figure 3.1: This figure, (from LeBlond and Mysak 1978), indicates there may be
frequency gaps between the sea waves (swells and wind waves) and long time scale
motions (tides and wind-driven flows etc.).
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3.2.1 Governing eguations for water motion in the interior

region

In the fluid interior, beneath the surface boundary layer, direct application of the
time-averaging of Eq. (3.1) yields

D< >, _ a i) 8 <) 3 d )
e fcu> 482 = 22 +L(n2) 12 (v252)
3<an> L agary _Ogui>
oz ay 9z
— B, agu> a(,, d<u>\ a8 BSUZ)
+f<u'>+p By - Bz(w‘ Sz ) +ay(”" Ay ,’ +6: v Jz
_A<ii> — agpE> __agini> (3.5)
27 Jy Oz
18<p> A< wi> . 9<ini> 0y
p Oz - g X3 dy 9z
a<u> +3<u> +6<w> = 0
* /J

A turbulence closure scheme (e.g., Pedlosky, 1979) has been used whereby the hori-
zontal eddy viscosity vy, and the vertical eddy viscosity v link the turbulent stresses
< wfu; > to gradients in the mean flow.
Comparison with the usual shallow water equations (e.g, Pedlosky, eqs. 4.5.6)

shows that the waves bring in extra perturbation stresses,

<> <av> < ub >

<> <> <ow>

<we> <> <ww >
In previous work on shelf circulation, the wave stresses are not considered. In the
previous work on the surf zone dynamics, these wave stresses are partially included
with < b > and < % > being ignored because they are understood to be zecro
(e.g. Svendsen 1989). However, the proceeding chapter has shown that when the
earth’s rotation is taken into account the wave orbital velocity components ¥ and %
are no longer in quadrature. Nor are # and W in quadrature if the wave direction

is not coincident with the x-axis. As can be seen from Eqgs. (3.5), it is the spatial
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gradients of the wave stress that drive the flow. Therefore, stresses < 4t >, < 49 >
and < 99 > only play a role where there is a significant horizontal gradient in the
wave field. That is why most of the previnus research on wave driven flow has been
confined to the surf zone where the wave breaking process results in large horizontal
gradients in wave energy and momentum fluxes. In contrast, the spatial derivatives of
< @b > and < ¥ > are principally vertical. As their name suggests, surface waves
always have vertical variations, with wave activity being maximum on the surface
and decaying downwards. This implies that the stresses < @ > and < % > may

be significant wherever there are surface waves.

3.2.2 The surface wave boundary layer defined from mean

sea level to the free surface

Integrating the second equation of Egs. (3.1), from mean sea level, z =< 5 >, to the
free surface, z = n =< n > +4j (where < n > is the mean sea level and 7 is the sea

surface perturbation due to the short surface waves) and then time-averaging give

m [dv  Ouv dvv
</<n>{a+—a—;+5;+fu}dz>
1/ Op
= - </ —dz> -<ow> |l (3.6)

<n> Oy
where it is assumed (as in linear or weakly non-linear wave theory) that the field
can be extended analytically when 7 is less than < 5 > (e.g., Longuet-Higgins, 1964;
Hasselmann, 1971) .
Neglecting the third order terms for the LHS of Eq. (3.6) leads to

n [dv Ouv Ovv
<L">{'5?+—a?+"@+f“}dz>
< B
= S <50 > g+ S < > (3.7)

where, for the first integration, Eq. (2.97) has been used, and the last integration has
been approximated by f < @7 >. Using the third Eq. (3.1), one can write the first



term on the RHS of Eq. (3.6) as

AUSOREIUR YRV R SO

If the double integral term is neglected since it amounts only to a third order correc-

<n> 31/

tion, then the pressure gradient term in Eq. (3.6) becomes

1/ 0Op 90<7 n >
b hd 4 . K
P </<-;> dy z> 2 ay (39)
The second term on the RHS of Eq. (3.6) needs careful examination. First,
because of Eq. (3.4),

<v>l, = [Ru><w>+ <>+ <v'uw' > (3.10)

<>’

The difference between the value of < v >< w > at the top and the bottom of the
wave slab is almost zero because the slow motion components change little within the
wave slab. Recognizing that — < v'w’ > is the kinematic Reynolds stress ,,, which
should be equal to the wind stress at the free surface, 7,, one can express the above

relation as

<vw> L,y = <dh>|L + <vw
= <dh> Ly — Ty + Tyl oy - (3.11)

Substituting Eqs. (3.7), (3.9) and (3.11) into Eq. (3.6) gives the time averaged

momentum balance for the whole wave slab

_ <>\ ga<it>
Ty’»‘z=<'n> - Ty — ot - 5 oz
- K OD > |omcyy + f < Wj > (3.12)

With Egs. (2.100) and (2.112), the above expression can be reduced to

.. go<qt> ,
I O (3.13)

Similarly,
g o< 7 17 >
Oz

Tpz = ( z) at z =<« n >. (3-14‘)
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As the shear stress condition at the mean sea level has been derived, the pressure
condition needs to be derived as well. Integrating the third equation of Egs. (3.1)
from z =< 5 > to 7, lime averaging, and neglecting third order corrections, results

in
<p> = —p<ut> at z =<9 >, (3.15)

In obtaining the above equation, the atmospheric pressure has been sel to zero, and

the integration of the first term on LHS of the third equation of Eqgs. (3.1) has been
approximated as follows,

1 Jw /.0
(L) = i5)
0

_ <ﬁﬂ)>_ ~_8_17”_
BT <w8t>

= — <’ >, (3.16)

Q:' g

where the quadrature relation between 1 and % has been used.
Integrating the fourth equation of Egs. (3.1) from z =< 5 > to = = 5, one obtains

the mass flux condition at = =<5 >

o<y > d<n> o< n >
<w> = PN +<u>~—a;—+<v>——a—i‘—-—
o<un > 0< i >
+ 0 + [y (3.17)

or dy

The results of this section show that the presence of the surface wave boundary layer

modifies the shear stress, pressure, and mass flux al mean sea level.

3.3 The linearized system with horizontally homo-

geneous wave forcing

The derivation of Egs. (3.8), (3.13), (3.14), (3.15) and (3.17) is useful in its own right

because all the wave forces are completely included. Of course, the introduction of
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wave forces greatly complicates the dynamics of the mean flow. It not only adds new
source terms in the governing equations, but also changes the boundary conditions,
especially at the surface. The objective of this thesis is not to provide a general
solution to the whole set of equations. Instead, it aims to derive and study a simple
linear Eulerian model for shelf dynamics which includes the wave force whaose existence
does nct rely on horizontal gradients in wave energy.

Assumptions are needed to derive this simple model. The two main simplifica-
tions are the use of linearized equations of motion and horizontal homogeneity in
the wave forcing. The linearization assumption greatly reduces the complexity of the
equations, but still retains the first order dynamic features due to the the fact that
the Rossby number in large scale motion (~100 km or larger) is often < L. The
assumption of horizontal homogeneity of wave forcing is not essential, but helps to
isolate the influence of Coriolis-induced wave stress. Because of the linear superimpo-
sition principle, the effects due to wave horizontal inhomogeneity liks mean sea level
setup and set-down (Bowen and Inman, 1968) can be added to the results obtained in
this thesis if desired. Further simplifications are homogeneous density and constant
eddy viscosity (consistent with the way that the wave force is derived in the proceed-
ing chapter), and neglecting horizontal friction. The constant density assumption
will exclude baroclinic motions. While it would be interesting to address the effects
of surface waves on the motion of stratified water, as a first attempt to introduce
the mean wave forcing into shelf circulation dynamics, this thesis is focused on the
barotropic motions.

With the above assumptions, Egs. (3.5) can be simplified as

o< u> _ On, dP<u> d<um > .
o —f <v>=—gm v 5= (3.18)
o<v> am  O<v> d<d>
= —(— _ 19
g T <u>=—95 tv—5n 3z (3.19)
8<u>+6<v>+6<w>=0 (3.20)

Oz Oy 0z
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and the surface conditions of Egs. (3.14) and (3.13) are reduced to
u:<a: 2 = Tz + o z=0 (3.21)
<v> i
vy = mt z=0. (3.22)

The wave stress due to the bottom friction derived in the preceding chapter (cf., Eq.
2.64) resolves the very thin (O(mm) thick, Russell and Osorio 1958) wave boundary
layer. Thus a consistent choice of the bottom condition for the mean flow should be

of the non-slip type

<u> =0 at z = —h (3.23)
<v> =0 at z = —h. (3.24)

The combination of the non-slip bottom condition and the constant eddy viscosity
is rather crude assumption. Generally, the eddy viscosity decreases towards the real
sea bed. As a first order approximation, however, this crude assumption is used here,
the important point being Longuet Higgins’ (1958) argument that the magnitude of
the bottom streaming is not dependent on the viscosity structure inside the wave
bottom friction layer.

Introducing a complex velocity ¢ =< u > +i < v >, a complex transport @ =
1%, qdz, and the gradient operator 7 = 8/8z +10/8y, 7* = 8/0z —id /By, the above

linearized equations can be written in a more concise and convenient form

oq .. d%q U(z2) . .cosh 2k(h + z)

ot tifg = —gvn+ Yoz 2:(0) cosh 2kh +if cosh 2kh (3:25)
d . .
S TRVQ) = 0. (3:20)

Here the wave force expression of Eq. (2.70) has been used, the continuity equation
has been written in an integral form, and R means the real part of a complex variable.

On the complex plane, the surface and bottom conditions take the form

Ug—% = 747 z=0 (3.27)

q = 0 z=—-h (3.28)



where 7 = 7 4 i1y is the complex wind stress and 7 = 7; + 17, is the complex virtual
wave stress.

Compared with the usual linearized shelf dynamic equations, the above linearized
system (Egs. 3.18 to 3.24, or Egs. 3.25 to 3.28) differs due the addition of wave
forcing, which manifests itself both as a body force in the momentum equation and
as a surface force at the sea surface boundary. The momentum equations can then be
regarded as being driven by three forces: wind stress, wave forces, and the pressure
gradient. Unlike the wind stress and the wave forces which are imposed externally, the
pressure gradient is not a real external force, since the sea surface elevation is, in part,
the global response of the system to an external force. However when analyzing the
momentum equations, or looking at the water motion column-wise (vertical Fulerian
column), it is beneficial to treat it as a local external force. Chapter 4 will study the

response of a local water column to the wave forcing.

3.4 Relationship between the responses of the lin-

earized system to step and arbitrary forcing

In studying the response of a local water column (in an Eulerian sense) to arbitrary
local external forces, it is beneficial to analyze the response of the system to step
functions (in time) of the external forces. The system response to an arbitrary force
can then be ascertained by means of a time convolution. For example, the response of

the system to an arbitrary wind force can be determined by the following procedures.

o First, seek the fluid response to a Heaviside step function of unit wind force,

which is denoted as I, and defined as

1 t=0

L) = { " e (3.29)

A property of the Heaviside step function is

ol,
ot

= 6(t) (3.30)
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in which §(t) is the Dirac delta function. Denote g4 as the wind driven flow,
whose response to the step function is described by

N 2
B tifqu—v5H =0

dag
V32 I"'

z=0 =
qd‘z::-h = 0

qd|t=0 =0

(3.31)

Using notation Ly to denote the above linear system, the relationship between

input and output can be written as
L] = at 1), (3.32)

where qq(t, z; I) indicates explicitly that this flow is driven by a unit step wind
force. Using property of Eq. (3.30), it follows that

0q4(t, 2;Ir)

L) =

= gt 7 1) (3.33)

(the dot denotes the time derivative). Thus ¢4 is the so-called Green'’s function,
and could be obtained in a more direct way. The treatment of presenting the
Green'’s function as a second step after the solution of g4, which follows Welander
(1957), may be of more physical appeal since g4 has a more direct physical

interpretation than ¢
o Second, seek the response to the arbitrary forcing 7(¢). Since
0 = [ )6 - )t (3.34)
then

Ll = [ L ()L [6(t ~ )]
= 7(t) * qa(t, z; I). (3.35)

The same procedure can be applied to the wave-driven flow. Defining ¢, as the

response to the wave force, the response to unit step surface Stokes drift, denoted by



I, is governed by

Qgiu +ifqu — "Qﬂm = =1, [ ¥(z) + ifcoah2k(h+z)]

EX cosh 2kA cosh 2kh
dqu| A .
vFH oo = T2vk tanh(2kh) (1.36)
lez=_h = 0
q‘Wlt=O = O

Using L to denote the above linear system, then the input and output relations can

be expressed simply as
Lylu] = qult;La). (3.37)
When the Stokes drift is varying with time, then the response of Ly is
Ly[R(t)] = 3(t) * qult, z; L) (3.38)

where n tation $(t) stands for the time varying surface value of the Stokes drift (cf.
page 14 for this notation).
Similarly, denote ¢, as the response to the slope force. The response to the unit

step slope force, denoted I, , obeys

9gs N 25
%t ifg, -~ v3% = ~olo

8¢y =0
gz P , (3.39)
q"z:—h =0
qalt:ﬂ = 0
or can be expressed by
Ly[lgn) = a(ti 7o) (3.40)

where L3 is short for the pressure gradient driven linear system. Then the response

to the arbitrary slope force is

La[m(D)] = wn(2) * 4alt, 23 Iom)- (3.41)
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Equations (3.35), (3.38) and (3.41) all have the form of
F«R (3.42)

where F' signifies the force and R the step function response. An alternative form

will also be useful in later discussions. Using partial integration

. t -
Fek = | () 2B 1)

o
F(O)R() + [ R(t~ ) OLE) 4y (3.43)

i

ot’

where R(0) = 0 has been used, as demanded by the initial conditions (cf., the fourth
equations of Egs. 3.31, 3.36, and 3.39). The case of a suddenly imposed force has
been explicitly taken care of by the first term on the RHS. The above two terms may
be further merged as a single term by using the relationship between the §—function

and Heaviside function, as is shown below. Since

FOR() + | "Rt - t’)agif') at
OF(#)

/ “R(t - ) [F(t’)&(t') + 22

= /0 t R(t - t’)a—[g(té#{(—ﬂ)ldt’ (3.44)

where H(t) denotes the Heaviside step function, then Eq. (3.42) becomes

OR(t) _ O[F()H()
e = p * R(t) (3.45)

in which H(t) is there in case F(t) is suddenly setup at the start. Thus Eqs. (3.35),
(3.38) and (3.41) can be also written as

F(2)

i) = 2OFO, 06 1, (3.46)
L8] = 8[3(2tﬂ(t)]*qw(t,z;1,t), (3.47)
Lofon(t) = AOHOL g, (3.48)
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3.5 Summary

Equations (3.5), (3.13), (3.14), (3.15) and (3.17) form a general set of governing equa-
tions for shallow water motion which includes wave forces in a 3D sense. Equations
(3.25), (3.26), (3.27), (3.28) represent the linearized system, which includes, in ad-
dition to the wind stress, the Coriolis induced and frictional wave boundary layer
induced wave stress. The linear system is then decomposed into three linear subsys-
tems, L, Ly, L3, driven by winds, waves, and pressure gradients, respectively, The
response of each sub-system to the Heaviside step function is important in the senge
that the response to an arbitrary force can then be determined by means of a time
convolution, as is shown by Eq. (3.42) (to which Eq. (3.45) is a uselul aliernative

form).



Chapter 4

Wind- and Wave-driven Flow in
Water of Arbitrary Depth

4.1 Introduction

As has been noted in Chapter 3, when the pressure gradient is regarded as a local force,
the momentum equation can be dealt with separately from the continuity equation
and water motion can be viewed column-wise. The response of the water column
(in an Eulerian sense) to wind forcing and pressure gradients is familiar as Ekman
dyramics. This chapter explores the response to wave forcing in arbitrary water
depth. Specifically, Eqs. (3.25), (3.27) and (3.28) will be solved. Solutions for the
other two responses will also be presented. but discussions will focus on the response

to wave forcing.

4.2 Steady flows

By dropping the time derivative term in Eqs. (3.25), the steady response of a water

column to constant winds, waves and pressure gradients is described by

d%q Y(z) . .cosh 2k(h + z)

S ~ 1 .
v gv”+”az2 9:(0) cosh 2kh if cosh 2kh (1)

47
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dq _ . _ ‘
vgr = TP z=0 (4.2)

q = 0 z = —h, (4.3)

The solution to these equations can be expressed as the sum of a classical wind driven
curface Ekman flow, gq,, the wave driven flow, qy,, and the pressure gradient induced
bottom Ekman flow, g,,, (which includes the interior geostrophic flow, but varies with

the vertical coordinate mainly near the bottom)

g = Qs + Qs -+ Qs (4.4)

(where the letters d, w, and s in the first subscript positions stand for (wind) drift,
wave-driven, and slope-driven, and the letters of s’s in the second subscript positions

stand for the steady flow). The expressions for ¢4s and g,, are given by

T

Qds = 75 SE(z) (4.5)
G = z‘g—}l’lBE(z) (4.6)
where SE stands for the Surface Ekman layer
B —irj4sinh o(h + 2)
SE(:) = V2 cosh ah (+7)
and BE is the Bottom Ekman layer,
cosh az
BE(z) = 1~ ok (4.8)
in which
5, = 2TU (4.9)
« = 1;’. (4.10)

The solution for the wave driven steady flow g, is complicated, and it is useful

to decompose it as

o = ¢ +42 +48) (4.11)
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where
) = 75SE(:) (*12)
3 cosh az
D = g (=h) ]S !
B = oudh) [Fo 1 Bw(s) (1.13)
1(3) = q,t(O)FW(z) (4'14)
and
B e~ " cosh 2k(h +2) cosh(az)
FW(z) = 1+%(3€f{)2{ cosh(2kh) cosh(2kh) cosh(ah)
L8 ) Lann(okm)sE ) (4.15)
2 651

BW(3z') = e %% = 2(8z' +2)e™? cos Bz ~ 2(Bz' ~ 1)e™?" sin B2', (4.16)

where 2’ = z + h. In Eq. (4.11), the first part, ¢{}), is the surface Ekman flow driven
by the virtual tangential wave stress (similar to flow driven by the wind stress). The
second part, ¢{2), is driven by wave stress within the wave boundary layer. It includes
two terms: the first term is bottom streaming modified by the earth’s rotation (cf.
Eq. 2.21), and the seccad term BW(A2') is insignificant outside of the wave boundary
Jayer but this term makes the bottom streaming at the top of the wave boundary
layer sharply reduce to zero down at the real bottom. As Fig. (4.1.a) shows, the
introduction of the earth’s rotation tends to restrict the flow to the two Ekman
layers.

¢ is the flow that is driven by Coriolis-induced wave stress. It has three terms:
the first term describes the Eulerian return flow which would completely compensate
the Stokes drift in an inviscid fluid but is now modified by the ratio of 6./6,: (Fig.
4.1.b); the second term accounts for the effect of bottom friction; and the third term
results from a requirement of zero stress at the sea surface. The wind stress and the

virtual stress have been taken care of by gy, and ¢{}).
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There are two vertical scales associated with the wave-driven flow. One is the
Ekman depth, 6. = \/57/7- , imposed internally by friction and the Coriolis parameter.
The other is the Stokes depth, 8, = 1/(2k), which is imposed externally by the surface
wave field. The nature of the total wave driven steady flow, ¢y, critically depends
on the ratio of 8./6,. When the ratio is infinitely large (the non-rotating case), qu.,
approaches zero. When the ratio approaches zero (the inviscid case), q,, becomes a
return flow, which is an Eulerian flow of the same magnitude as the Stokes drift but
with the opposite sign. Figure (4.1.c) shows the vertical structure of flow driven by
both Coriolis- and viscosity-induced wave stresses, and Fig. (4.1.d) is a 3-D sketch.
Figure (4.2) shows the vertical profiles of gy, for various values of é./h and 8, /h.

The three part summation of Eq. (4.11) can be re-expressed as

V28, _;zsinha(h+z)
Qus = q“(O) |:—2—-5—“—8 thanh 2kh

+ 1 cosh az
2 cosh 2kh

where the virtual wave stress ¥ has been expressed in term of the surface value of
Stokes drift ¢, (0) (cf. Eq. 2.74). This formula explicitly shows that the size of the

Stokes drift is a good indication of the size of this wave-driven Eulerian flow. Letting

cosh ah

+ BW(ﬂz’)) + FW(z)} (4.17)

WA(z) denote the vertical distribution inside the square parenthesis, then the formula

can be stated concisely as

qus = qu(0)WA(2). (4.18)

4.3 Some limiting cases for the wave-driven steady
flow qus
A discussion of limiting cases for steady wave-driven flow, q,,, is given below,
e When f — 0 and A is finite, then 6. — oo, @ — 0, and

7 3
) +48) - [E(h +2)+ Eq"(‘h)] (4.19)
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Figure 4.1: The vertical structure of wave-driven steady flow, scaled by a%s/6y. (a)
Flow driven by viscous-induced wave stress, ¢{)) + ¢2). (b) Flow drivén by Coriolis-
induced wave stress, ¢{3). (c) Flow driven by both Coriolis- and viscous-induced wave
stress, q1) + ¢ 4 ¢{3). (d) the 3-D sketch of (c). The parameters are h = 50m,
8e/h = 0.23, b,:/h = 0.65, 6§ = n for a wave propagating in the minus z direction.
BW(B3z') is not plotted because it is too thin. (The value of Stokes drift velocity at
the bottom is —0.34, which, makes the value of the bottom streaming —3/2 x 0.34 =

—0.51.)
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FW(z) — o (4.20)
Thus
7 3
Qus = [£(h+2)+'2‘<bt(“‘h) (4.21)

which, if added to the Stokes drift, recovers Longuet-Higgins’ mass transport

theory for a non-sotational viscid fluid.

Longuet-Higgins first obtained the virtual tangential stress. The results were
then questioned by Huang (1970). He pointed out that Longuet-Higgins formula
of Eq. (4.21) gives un infinite wave mass transport when a deep water limit
is taken. This is the so-called Longuet-Higgins paradox. Unliiata and Mei
(1970) then re-examined the wave mass transport problem using a Lagrangian
approach. Their result showed that Longuet-Higgins’ result is indeed correct,
given its underlying assumption that a steady state for the mass transport
has been reached. The paradox aiises because in a non-rotating deep water
system, the virtual surface wave stress remains unbalanced. Madsen (1978)
then introduced the Coriolis force into the model to balance the virtuzl wave

stress and successfully resolved Longuet-Higgins’ paradox.

The limit f — 0 and 2 — oo is an unrealistic case. This is equivalent to de-
manding that a steady state is achieved in infinitely deep water as was originally
demanded by Huang (!970).

When f # 0 zod v — 0, then §, — 0, @ — o0, and

8 +d® = 0 (4.22)
cosh 2k(h + z)
Fw — )
() 4sinh?(kh) (423)

Thus

Gus = —qst (4.24)



which recovers Ursell’s (1950) and Hasselmann's (1970) theory. The theory
states that in a rotating inviscid ocean the Lagrangian mean flow must vanish.
By adding Stokes drift velocity to the above Eulerian velocity, the required zero
Lagrangian mean is obtained. Thus, Eq. (4.17) provides a unified formula for
the wave driven flow in arbitrary water depth, encompassing Longuet-Higgins’
viscid but non-rotational theory and Ursell and Hasselmann’s inviscid but ro-

tational theory.

Equation (4.24) suggests a mechanism for the generation of wave-induced return
flow. Traditionally the following explanation of the wave-induced return flow is
given. A surface wave field produces a steady Stokes drift, when the drift hits a
physical wall, water piles up and a pressure gradient is generated which drives
a return flow in the opposite direction to the wave propagation to compensate
for the Stokes drift (Fig. 4.3.a). This mechanism depends on the existence of a
physical wall and it is hard to picture in a region far from lateral boundaries.
The Coriolis-induced wave force offers an alternative mechanism for generating
the compensating return flow. As is indicated by Eq. (4.24), the Coriolis force
generated return flow is a depth dependent mirror image of the Stokes drift,

while a pressure force generated return flow would be depth independent (Fig.
4.3.b).

Equation (4.24) then predicts there will be a mean return flow component in
a velocity time series recorded by any mooring current meter where there are
surface waves. Any attempt to explain the observed current without considering
the surface wave effects may lead to wrong conclusions. A possible example of

this will be discussed later.

o When h — ¢

FW(z) - ——s e V2 (-i3) (B o (4.25)
. (5, \? 2 )
2+i (%) .

0 - Y T (4.26)

pfée
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Figure 4.3: (a) The traditional explanation for wave-induced return flow. (a) A
physical wall blocking the wave-induced Stokes drift is a necessity for generating
return flow; (b) An alternative explanation for wave-induced return flow. Return
flow can be generated without lateral boundary, and the vertical distribution is a
mirror image of the Stokes flow (for the case of no friction).



@ = 0 (4.27)

cete [ D () o)

Qus = € -
bt 241 (.gj)z Pfée

which, if added to the Stokes drift, recovers Madsen’s (1978) deep water solution

Ve iTe (4.28)

in Lagrangian form.

4.4 TUnsteady flows

Unsteady flows driven by winds, waves, and pressure gradients are now investigated.
The discussion will focus mainly on flows driven by waves. Considered first is the
transient solution to a suddenly imposed steady wave force, then, the : .sponse to
arbitrary time varying wave force. The solutions for the wind- and slope-induced

unsteady flows are also given.

4.4.1 Transient solution for a suddenly imposed steady wave

forcing

Denote ¢y as the transient response to a suddenly imposed steady wave forcing. The
total response is then the sum of ¢,; and the steady solution g,,, which has already

been obtained as in Eq. (4.17). The transient response is governed by

_32qwt aq'wt

14 622 - iqug - —a-t—“ = 0 (429)
qut = 0 z=—h (4.30)

6th . — i
v, = 0 z=0 (4.31)
Qut = —Gus t=0and -h<z<0. (4.32)

This is an eigenvalue problem with

cos(wpz) (n=0,1,2,3,...) (4.33)
=l (4.34)

2h
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as its eigenfunctions and eigenvalues respectively. (Note the eigen-mode counts from

n = 0 throughout the thesis.) The transient solution is found to be

qut = —¢st(0) E Sne"(7%+i)ft cos(wn2) (4.35)

n=0

Mo = wn\/? (4.36)

() ).

8, = -’2;/ ) cos(w, z)dz (4.38)

where the initial condition of Eq. (4. 32) has been used and WA(z) is given by Eq.
(4.18).

The total solution is the sum of the steady solution and the transient solution, i.e.

where 7, is given by

and

qw = ¢s(0) [WA(z) - i spe”(atifE cos(wuz)} . (4.39)

n=0
By replacing ¢y(0) in the above expression by its unit Heaviside step force, I, the

response

qu(t,z; l) = s [WA Zs e~ HM cos(w, z)] (4.40)

n=0

is obtained, which will be useful in discussing the flow driven by an arbitrary time
varying wave field.

Figure (4.4) shows different views of the temporal development of flow driven by
a steady wave field. Panels (a) and (b) of Fig. (4.4) show the development of vertical
profiles of u and v. The profiles start from zero in the interior region, gradually
accelerate, oscillate at the inertial frequency and finally settle down to the steady
responses (shown by the most dense lines) on a momentum diffusion time scale of

(h/6.)*. The final non-zero value of u at the bottom is the bottom streaming just



58

above the thin wave bottom boundary layer ( which is net plotted because it is too
thin). Panels (c) and (d) of Fig. (44) are time series of the surface values of u and
v. Panel (e) of Fig. (4.3) is hodograph of u against v at different depths.

When h — o0, Egs. (4.35) and (4.38) are replaced by

oo . o
Tt = -—q,t(O)/; s(w)e~ I+ cos(z)dw (4.41)
and
9 0
s(w) = ;_/ WA(z) cos(wz)dz. (4.42)
The deep water transient solution may be rewritten as
el
du = —qu(Oe [~ WA - #)d (h13)
—o0 Virvi )
since
/w s(w)cos(wz)dw = —~WA(2) (4.44)
0

j{)me"“’z”'cos(wz)dw = 2\/—6 i, (4.45)

The total solution for deep water is then

tl?
Gw = ¢s:(0) [WA(z) — g it /_O:o WA(z — z’)%dz'} . (4.46)

When v approaches zero,

=4 4
v \JAr ot (2), (4:47)
where 6(2) is the Dirac delta function, and ¢,;(0)WA(z) approaches —g,(z) as de-
scribed by Eq. (4.24). Therefore Eq. (4.46) becomes

qu(2) = [~qu(z) + e 'qu(2)] (4.48)

which recovers Hasselmann’s (1970) inertial oscillation solution in an inviscid deep
ocean. Hasselmann proposed the Coriolis-induced wave force as a new generation
mechanism, as an alternative to those of tidal generation and wind generation, for

the inertial oscillations often observed in the open ocean.
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4.4.2 Solution for general unsteady wave forcing

In the above, the surface value Stokes drift remains constant after it is introduced at
the initial time. Relaxing this assumption and assuming that R(t) = gu(t, 2)|s=0 can
vary as an arbitrary function of time (note that notation & is used, cf. the explanation
on page 14). Using the relation presented by Eq. (3.38), the response to the time
varying Stokes drift is

_ [t a0t — 1)

which can be written as
t t"H
= / 3[&( Bt’ qu(t — t'; L) dt! (4.50)

by using of Eq. (3.45), where g,(t, I;) has been given by Eq. (4.40).
For a suddenly imposed unidirectional wave afterwards subjected to decay due to

both internal friction and bottom friction,

S(t) — e-(4uk’+uak/sinhzkh)tacho (4.51)

(this energy dissipation rate can be worked out by substitution of Eqs. 2.59 and 2.60
into Eq. 2.109 and retaining the leading terms in the interior and bottom regions
respectively, also see Phillips, 1977, page 52-53). Thus

Ol H(t)]
at

vk
sinh 2kh

— a2ei9 6(t) - (4I/k2 + )H(t) e—(4uk2+uﬁk/sinh?kh)t' (4.52)

The time varying form of the wave energy given in Eq. (4.51) is valid for wave
decay due to a molecular viscosity or a constant eddy viscosity. When waves are
breaking, the form of 2(t) is uncertain, and the problem of defining a proper form is
beyond the scope of this chapter. Weber and Melson (1993a) have recently addressed
this problem. Their idea is that, although the form of R(t) for breaking waves is
difficult to obtain, the wave heights before and after breaking and the time duration

for the breaking may be known from experiments. Thus one can calculate A3(t)/At
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as an approximation for %(t)/dt. As we can see from Eq. (4.50), it is the time
derivative of Q(t) not 2(t) itself that determines the time varying wave-driven flow.

The above analysis is for a monochromatic and unidirectional wave field. However,
since the model is linear, responses for different wave frequencies can be summed when

the wave field is random. All that is required is to replace a® in Eq. (4.17) by
2(pg)'S(0,8)dodd,

where S(o, ) is the wave energy directional spectrum, and then integrate Eq. (4.17)
over a suitable range of frequencies and directions. The results described by Egs.

(4.39), (4.46) and (4.49) will formally remain the same.

4.4.3 Unsteady flows driven by the sum of three arbitrary
forces

In the same manner in which the wave step force response, g,(t, z; I¢), is determined,
the wind step force response, ¢4(t, z; I;), and the slope step force response, ¢,(t, z; Ioy),

can be obtained as

qltz I) = ;5 [SE(z) — 3" gnetatist cos(wnz)] (4.53)
¢ n=0
gs(t,z; Igy) = i-g—{j-cf'-"- [BE(z) - Z cae~ (I cos(wnz)] (4.54)
nz=0

where SE(z), BE(z), w, and ¥, are the same as those given by Egs. (4.7), (4.8),
(4.34), and (4.36). a, and ¢, are the coefficients of Fourier expansivns of SE(2) and
BE(z)

2 [ SE
= - Ry
an h./—h (2) cos(wnz)dz (4.55)
2 10
e = E[—h BE(z) cos(wnz)dz, (4.56)

and their detailed expressions will be provided in Chapter 6.

Flows driven by arbitrary winds, waves and slopes are then described by

q(tyz) = 1()*qa(t, 2z 1) + R(t) * qu(t, 2; Le) + M(2) % §u(2, 2; Igy). (4.57)
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4.5 Comments on the need to include wave stress

In many coastal wind-driven circulation experiments the Coriolis term in the along-
shore momentum equation is found to be dynamically large but uncorrelated with the
other first order terms (Allen and Smith, 1981; Pettigrew, 1981; Lentz and Winant,
1986; Masse, 1988; Lee, et al., 1989) . The data listed in Table (4.1) cited from Lentz
and Winant may illustrate this imbalance.

The cause of the force imbalance has been attributed to instrumental noise (Lentz
and Winant, 1986) and to small scale alongshore pressure gradients (Pettigrew, 1981),
but basically remains a puzzle. The Coriolis-induced wave stress may offer a partial
explanation for the imbalance. Generally, near the coast there is a shoreward prop-
agating wave component, According to Eq. (4.24), there will be an Eulerian return
flow in the water column induced by this wave component. The recorded current will
certainly include this return flow, while the external forcing (the surface wave field)
would not normally be considered in these experiments. Thus an apparent imbalance
arises. A wave of 10 second period and 1.26m amplitude is sufficient to account for
the uncorrelated term f{u} = 5 x 10-3m?s~? in Table (4.1).! This suggests a need
for studies of shelf dynamics to include wave forcing, which has to date usually been
neglected.

The wave forcing has an interesting dependence on bottom topography. This is
seer in two ways. One is that the function sinh kh (or the like) appears explicitly
in the wave forcing. Another is due to the wave shoaling and refraction processes
that a train of waves will experience, resulting from the wave group velocity and
phase velocity being functions of water depth. Both of these processes will result in

a change in wave heights. The wave heights directly affect the size of wave forcing

1Table (4.1) correspouds to the mooring line at water depth of 60 m in Lentz and Winant
experiment. There were 5 to 8 current meters, depending on the different times of deployment, about
evenly spaced along the line. The top few current meters were deployed at 5, 7, and 13m depth. For
the above chosen 10 second wave, the Stokes depth is 12m. Thus the top few current meters should
se.se the wave-induced Eulerian return flow. Note that listed in Table (4.1) are the depth integrated
va.aes. The depth integrated Stokes drift of the chosen wave is f x a?0/2 = 5 x 107%m?/s?, when
the above chosen values of the wave amplitude and wave frequency and f = 10* are subsiitut>d in,
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Table 4.1: Alongshore momentum imbalance in a coastal experiment (Lentz and
Winant 1986). The notation { } represents depth integration, and F represents the
divergence of the longshore component of the horizontal Reynolds’ stress.

Terms (10~°m?s~?%)

{v}e 5
{uv}m {UQ}SI 1

f{u} <5
yh’h ]
{Faga}) 1
T 5
b 5

{F} 0.2

as can be seen above. The refraction process also results in a tendency for the wave
front to become parallel with depth contours. In contrast, the wind forcing is totally
independent of the sea bottom topography. Further exploration of this unique feature

of wave forcing is not presented here, but would be interesting.

4.6 Summary and discussion

Wave forcing has been examined for the case of a rotating viscous fluid of finite depth.
A simple Eulerian model is presented to accommodate wave forcing in addition to
wind forcing. The model yields a general formula for the wind- and wave-driven flow
for both steady and unsteady forcing, for arbitrary but constant water depth and for
arbitrary wave direction. The solution for wave-driven steady flow recovers Longuet-
Higgins’ (1953) wave mass transport theory in the limit f — 0, and recovers Ursell’s
(1950) and Hasselmann’s (1970) zero mean theory when the limit v — 0 is taken. In
the deep water limit, it becomes the Eulerian counterpart of Madsen’s Lagrangian
solution in deep water.

The effect of surface waves on the mean flow is twofold. One is a wave-induced

body force distributed mainly within a Stokes depth from the surface. It arises from
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the earth’s rotation. The second one is the wave-induced virtual shear stress at the
sea surface and wave-induced streaming at the bottom. It is due to fluid viscosity.
By adopting an Eulerian viewpoint, these two wave effects can incorporated into a
classical geophysical fluid dynamic problem as demonstrated by this chapter.

The size of the wave-driven flow close to the sea surface is typically comparable to
that driven by winds. For large swells, the wave-driven flow can be very significant.
With inclusion of the wave stress, some problems confronting us such as alongshore
momentum imbalance found in many coastal experiments of wind driven circulation
may be resolved.

The solutiors obtained here are local solutions in the same sense that the Ekman
transport due to the wind is a local result. In deeper water, the inviscid solution in
which the Stokes drift is exactly balanced by an upwave Eulerian current (Fig. 4.3b),
provides a reasonable first approximation for the solution including viscosity. How-
ever, the inclusion of the viscous terms leads to a net transport in both downwave and
along-crest directions. In infinitely deep water, the fluxes (only in along-crest direc-
tion) are small compared to typical Ekman transports (Weber and Melson, 1993b).
However, in finite depth the transports associated with the bottom boundary layer
become increasingly important (Fig. 4.1), giving significant depth integrated flows in
the wave direction and to the right of the wave direction (in the Northern hemisphere).
A full regional solution then needs a mass balance condition imposed by appropriate
boundary conditions.- There is then the possibility of strong local flows associated, for
example, with large swell propagating over complex shallow topography, analogous

to the rip-currents in nearshore circulation patterns.
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Chapter 5

An Exploration of the CASP Data

5.1 Introduction

Since 1970, when Hasselmann proposed the concept of the Coriolis-induced wave
stress, research in this area has remained theoretical. There are few field observations
suitable for testing the theory. The CASP (Canadian Atlantic Storm Program) data
get includes both high frequency surface wave observations and low frequency current
observations on the Scotian Shelf for the winter of 1985-86. The main purpose of this
experiment was to understand how sea level and currents on the shelf respond to the
synoptic and mesoscale forcing by wind storms. Wave observations were included in
the experiment for the study of wave generation by winds, not to identify the current
generation by waves. However, some of the observational wave data may be suitable
for testing wave generated currents. This chapter, therefore, explores the CASP data

set for evidence of the effects suggested by the theory of Chapters 2 and 4.

5.2 The CASP experiment and mooring array

During the winter of 1985 and 1986, observations of sea surface elevation, currents,
bottom pressure, and water properties, as well as the wind were made on the Scotian
Shelf as part of CASP. Figs. (5.1), and (5.2), from Lively (1988} indicate 11 stations

65
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at which currents and bottom pressure gauges were deployed. There were also obser-
vations of surface waves by 9 wave buoys deployed in the vicinity of Stations 1, 2, 6
and 7. Three of the wave buoys were directional Datawell WAVEC buoys, recording
wave heights and directions, while the others were non-directional Datawell waverid-
ers, recording only wave heights. The buoys recorded the wave data at a sampling
frequency of 1.28 Hz for the first 30 minutes of each hour. During the last 30 min
of each hour, estimates of wave energy spectra and surface slope-heave cross-spectra
were automatically computed and telemetered to the Bedford Institute of Oceanog-
raphy. A detailed description of the CASP experiment can be found in Anderson and
Smith (1989). For the wave observations and the wave modelling, reference is made
to Dobson and Toulany (1989).

5.3 Methods for the exploration

According to the theory presented in Chapter 4, the currents cbserved al fixed moor-
ing lines are driven by winds, waves, and pressure gradients. As has been shown by

Eq. (4.57), the flow within a water column driven by these three forces is
q(t,z) = 7qut,z1a) + @+ Gulty 2,5 La) + M @sly 25 Lon). (5.1)

In the above, ¢4, 4y, and g, are the response kernels. The eddy viscosity is an unknown
parameter in these kernels. If the value of the eddy viscosity were known, then the
kernels would be determined. If the forces are supplied, then the velocity can be
calculated.

How does one get a proper value for the eddy viscosity? A usual practice in
numerical modelling is to simply guess a value for the eddy viscosity and run the
model. A comparison of the model output with observations is then used to adjust the
guessed value and the model is run again. This process continues until a satisfactory

value of the viscosity is found. This chapter, instead, uses a statistical model for

estimating a best fitting value of eddy viscosity. The statistical model is as follows

q(t, z) = Ci(2)7(t) + Ca(2) (1) + Ca(2) Tn(t) + (1) (5.2)
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Figure 5.1: CASP station locations (modlﬁed from vaely 1988). The alongshore
direction, which is 67.75° from north, is defined as the x-axis and the cross-shore as

the y-axis.
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where ¢(t) represents noise and other possible signals that a simple linear model may
not be able to resolve, and C, C, and Cj are complex valued coefficients to be
determined from the data. As will be shown, the angle of C; can yield an estimate
of the eddy viscosity. The regression model can also provide a hypothesis testing to
check if these coefficients are significantly different from zero.

The connection between the statistical model and the numerical model is made
as follows. Following Appendix A to this chapter, Eq. (5.1) can be rewritten as

{SE(Z) () + f5 a;(tt ; an cos(wnz) et 4 % ; ay, cos(w,lz)e"""'}

+ {WA( )2(t) * E 8 cos(wyz)e™nt 4 (0 Z Sn C08(wn 2 —b"t}
+ {igBI,Bf( ) () +i ?avant( L 2 cn cos(unze ™
g vf" 0) ch cos wnz)e_b"t} . (5.3)

The terms on the RHS are grouped in terms of forces. Each group is comprised of
three terms: the first term is the response to present time force, the second term is the
response to past time forces, and the third term accounts for the effects of the initial
force. Obviously, the third term will become trivial when ¢ becomes sufficiently large.
The second term describes the importance of the time rate of change of the forcing
in the present time response. The first term is the steady response, since this is the
response one would obtain if the time derivative terms from the governing equations
were initially dropped.

The regression model of Eq. (5.2) thus represents the steady response of the nu-
merical model. For this reason, the statistical model is also a steady model. According
to Eq. (5.3), the regression coefficients, C,, C; and Cj should represent SE(z)/ /4.,
WA(z) and igBE(z)/ f respectively. The appropriateness of a steady regression model
depends on size of the effect of the time rate of change of the forcing. Thus, a low-
pass filtered forcing can be expected to have a smaller effect of its past values on

the present response. For now, let it be assumed that the steady regression model is
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appropriate. (Later, the results of a numerical model will show the effect of neglecting
the second term in each of the curve brackets on RHS of Eq. 5.3, ¢f. page 93, and
Figs. 5.15, 5.16, 5.17.)

The approach is as follows. First, the regression model is applied to the observed
data to estimate the eddy viscosity, and significance tests are performed on the chosen
predictors. Then, the estimated eddy viscosity is input into the numerical model to
simulate the observed flow. Initially however, we need to prepare the time series of

both the forcing functions and the response from the observations.

5.4 Time series preparation

5.4.1 The wave force 3(t)

During CASP, hourly wave spectra were automatically computed and telemetered by
the wave buoys. From the hourly spectra, time series for various wave parameters
of interest can be calculated. The surface Stokes value 2(t) has been defined by Eq.
(2.18). Here let it be denoted by 3(t), i.e.,

o cosh2kh

= qlokeid SOSB2ER
Ht) = aloke SRR RA)

(5.4)

To calculate &, the wave parameters a, 0, and & are needed.

Define half of the significant wave height HS(t) as the wave amplitude, i.e.,

a(t) = HSZ(t) = \/%Am S(o)do (: \/%Va.riance of the waves) . (5.5)

(Earle and Bishop, 1979) where S(c) is the wave energy spectrum of the waves.

Further, define the peak wave direction (peak here refers to the peak of the curve of the
wave spectra versus wave direction), as the wave direction 8(t). Finally choose a single
wave frequency of 0.1 Hz. for . Choosing a fixed frequency simplifies the situation
since the formula for the wave-driven flow derived in the preceding chapter is for a

monochromatic wave, and observations show that 0.1Hz is representative of the swells
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in the region (Fig. 5.3). Thus, the observed wave field is approximated by a single
representative wave whose frequency o = 27/10, amplitude and direction change
through time. Dr. F. Dobson and B. Toulany of the Bedford Institute Oceanography
kindly supplied the wave parameters (Fig. 5.4).

Shown in Fig. (5.5) is the time series of @(t) at Station 2 calculated from the
wave parameters. In the conversion from the wave parameters to the Stokes drift, the

following procedures have been used:

e Conversion of the “from”-direction of waves with respect to the North clockwise
to the “to”-direction with respect to the x-axis (which is alongshore direction,

~ 67.75 deg True North) anticlockwise;

o Low pass filtering with zero phase distortion. The filter, as is shown in Fig.
(5.6), is designed to remove residual tidal signals in the current time series. For
consistency in processing the data, the other time series are also filtered using

this low pass filter.

e Removal of the mean value of the drift.

5.4.2 Wind stress 7(¢)

Wind data from two sites are used: Minimet wind buoy near Station 2 (Fig. 5.1) and
Shearwater, a permanent land weather station located about 30 kilometers inshore of
Station 2. The wind record obtained by the Minimet at sea is short and segmented
due to ice clogging problems. A linear relationship between the Minimet data and
the Shearwater data allows the data to be extrapolated and interpolated to cover the
time span desired.

The wind velocity data were converted to wind stress by
o= ﬂpiodww,. (5.6)

where 7; is the kinematic wind stress, W is the wind speed and W, is the wind velocity

component, p, is the air density, and p is the sea water density, (in this study, the
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Figure 5.3: An example of the observed 3-D wave energy spectrum. The well defined
peak around the frequency 0.1 Hz corresponds to the swell (courtesy of F. Dobson

and B. Toulany).
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Figure 5.4: Significant wave height and wave direction history at Station 2. The
missing data are due to ice clogging the wave buoy and telemetry failure. (The hours
are counted from 00:00 Jan.l, 1986, which is regarded as the zero hour throughout
this chapter.)
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u-component (alongshore) surface value Stokes drift
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Figure 5.5: u and v components of the Stokes drift time series. The dotted lines are
unfiltered series, and the solid lines low pass filtered.
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ratio of the twn densities is taken to be 1.25 x 1072/1.025). Cy is the drag coefficient,

which is a step function of the wind speed

{ 1.6 x 1073 (W < Tm/s)

Ci = _
2.5 x 10™* (W > 10m/s)

(5.7)

with a smootk transition for interniediate wind speed (eg., Csanady, 1982). In the
calculation, the wind direction has been converted from the “from”-direction with
respect to true North to the “to”-direction with respect to the alongshore direction.
The wind stress time series is shown in Fig. (5.7) (after the low pass filter has been

applied, <f. Fig. 3.6).

5.4.3 The sea surface gradient time series ()

For a barotropic linear flow, the information required to complete the dynamic field
is the surface slope (. Its value at a fixed mooring line may be calculated from
bottom pressure gauge data if, ideally, there are four bottom gauges deployed around
it in & “4+” configuration. For reasons that will become clear in the next subsection,
the current data from the mooring at z = —4m of Station 8 will be chosen as the
response time series. At this station, however the calculation of the pressure gradient
from the observations is difficult because there were not four bottom pressure gauges
deployed nearby. (In the cross-shore direction, no adjacent bottom pressure gauges
were deployed. In the alongshore direction, the twe most adjacent Stations, 7 and 10,
were too far apart from Station 8). While the alongshore component of the pressure
gradient may be assumed ‘o be negligibly small, the cross-shore component must be
censidered in a near shore region. Fortunately, Station 8 lies between the two cross-
shore lines, the Halifax line and the Liscomb line, where there are enough bottom
pressure gauges for calculating the cross-shore pressure gradients at Station 2 and
Station 10. With the information obtained at these two stations, the cross-shore’

pressure gradient for Station 8 can then be inferred by linear interpolation,

] 57.08 9y 41.52 @‘
dy 98.60 Ay 98.60 dy|.,.’

s10

(5.8)

84 s2
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Figure 5.7: Time series of the along and cross-shore wind stress
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in which the distance between the three stations have been used as weights (Fig. 5.1)

and
% = 0.9945 (---—-B P ””A_yB P 7‘*’“) (5.9)
42 32
\
QQ = 0.9945 (M) : (5.10)
0y 310 A'y 210

where the factor 0.9945 1s used to convert the decibar of BP data to the hydrostatic
head in meters (assuming g = 9.81m/s? and p = 1025kg/m®). In the calculations,
the mean values of BPs are all removed. Thus the hydrostatic head 5 converted from
BPs can be regarded as the sea surface elevation in the usual sense, measured from
mean sea level with posiiive upwards.

Shown in the top and middle panels of Fig. (5.8) are time series of dn/dyl,,
and 99/0y|,;o- The third panel is the interpolated cross-shore pressure gradient for
Station 8. Also shown in the top panel is the alongshore component of the pressure
gradient at Station 2 calculated from the bottom pressure data at Stations 7, 2 and
6. The maximum absolute value of this component is 13 times smaller than its cross-

shore counterpart, confirming the assumption about it being negligibly small.

5.4.4 The response time series

The time series of current meter data provides the response time series. Since the
effect of surface waves on the rurrent is of concern here, data from a shallow current
meter are chosen for analysis. For 10 second waves in water depth of 100 m, the
Stokes depth is 12m; below this depth the mean wave effects are expected to be
weak. For example, Fig. (5.9) shows the current profile driven by 10 second waves
for an Ekman depth of 7m and Stokes depth of 12m in water of total depth 100m.
(The choice for this value of the Ekman depth is based on a regression analysis which
appears later.) The figure indicates that the magnitude of the wave-driven flow 20m
below the surface is about 1/5 the surface value of the Stokes drift, and Fig. (5.5)

shows that the surface Stokes drift is less than 10cms™!. Therefore, if the data around
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Figure 5.8: The time series of the pressure gradients at three stations. The gradient
at Station 2 and that at Station 10 are directly calculated from the records of the
bottom pressure gauges. The gradient at Station 8 is a linear interpolation of those
at Station 2 and Station 10.
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the depth of 20m is anz. zed, the signal will be 2cms™! at the maximum, difficult to
separate from noise.

At Station 2. two shallow current meters were deployed at depths 2.6m and 5m,
which would te ideal for our purpose. However, they failed to function. The next
shallowest one available at Station 2 is at 18 m, which is too deep for the rzasuns
stated above. Along the 100 m depth contour, the current meter which was both
within the Stokes depth and produced a compiete data set is the one at a depth 4m
at Station 8. For the following analy«is, therefore, data from this meter will be used
as the regponse time series.

A necessary assumption is then that the winds and waves observed around Statior:
2 were uniform over to Station 8, which is about 40km away. For the winds, this
assumption is reasonable because typical spatial scales are larger than 40km. The
waves of 10 second period in water depth or 100m can be regarded as deep water
waves and their scales of spatial uniformity should be of the same order as that of
the wind (which generates the waves). For the cross-shore pressure gradient, values
interpolated between Station 2 and Station 10 have already been calculated.

In processing the current data, a tidal model is employed to separate the tidal and
non-tidal signals. After detiding, the low pass filter (Fig. 5.6) is used to remove high
frequency noise and any residual tidal signals left over from the detiding. Note, to
extract the non-tidal signal, one could simply vse a low pass filter lirectly. However,
the tidal analysis reveals that the tidal current of the lunar fortnightly constituent,
M, is not negligible. Hence, if a low pass filter is employed for detiding, then its cutoff
frequency should be set low enough so that the Mf constituent is removed. If this is
done, the interesting signals with frequencies higher than Mf (~ 1/13.66 cycle/day)
will also be removed. Obviously, this is not desirable.

Presented in Fig. (5.10) is the detided and low pass filtered current time series at
4m depth of Station 8. This time series will be taken as the response function for the

regression analysis in the next section.

L
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Wave-driven flow profile
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Figure 5.9: The wave-driven flow profile with the parameter values of 6./h = 0.07 and
8s¢/h = 0.12. The dotted line is the wave-driven Eulerian inviscid flow, the solid line
the upwave direction (opposite to the direction of wave propagation) the component
of the wave-driven Eulerian flow, the dashed line is the along wave-crest component.
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Detided and low pass filtered velocity of u-component (alongshore)
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Figure 5.10: The time series of the velocity components at z = —4m of Station 8.
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5.5 Regression analysis

In Section 5.4, all the time series needed for the regression model of Eq. (5.2) are

prepared. The least squares estimates of the regression coefficients are given by {e.g.,
Seber, 1977)
(G G CsT = (HTH)'HTyq (5.11)

where ¢ is the vector of observed complex velocity, hats denote estimates and H is

an n X 3 matrix
H o= [r(t:) 8) valt)]  i=12--n (5.12)

where n is the number of observations. Before substituting in the ti1. »series to obtain
the values of the estimates, it is useful to recall some of t1e properties of the estimates

for later discussion.

e When the noise term ¢ in the model Eq. (5.2) has zero mean, i.e., E[g(t)] = 0,

the estimates are unbiased,
E[C; C; C3) = [Cy C; Ca], (5.13)
where {he notation E denotes the expectation operator.

e Furthermore assuming that the noise is uncorrelated, normal disiribution with
constant viriance, i.e., Covie,c,] = &,0%, the following three statistics have an
F-distribution with degrees of freedom of 1 and n — 4,

. — C.*/d.,

RSS/(n —4)

where d,; stands for the ith diagonal component of matrix (H7H)~!. RSS stands

F, = i=1,2,3 (5.14)

for the residual sum of squares

RSS = (¢-4)T(¢—4) (5.15)
in which
j = H[dl G OalT- (5.16)

R .
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The statistic F; can be used for testing significance of the estimated coefficients against
the null hypothesis C; = 0 in Eq. (5.14). (The properties can be found in most
statistics books, e.g., Seber, 1977.)

The condition that the errors have zero mean is relatively easy to satisfy, since tae
mean values of all the time series have been removed (the time series are understood to
be ergodic). Although the further condition that errors are uncorrelated is assumed by
the second property, whether this condition can be satisfied or not is unclear. Besides
tke usual white noise, the errors may contain some slowly varying process which may
be autn-correlated on lag times of a few hours. Any such auto-correlation will result
in overestimation of the degrees of freedom of the data set, and the confiderce level
for the estimated coefficients will thus be in doubt. One way to address the confidence
level problem when little is known about the underlying error processes is to resort
to Monte Carlo simulations of synthetic data sets. Press et al (1992, section 15.6)
have described the philosophy behind this method. Based on their idea, a technique
involving Monte Carlo simulation will be used to estimate confidence levels. For
future reference we will refer to this technique as the “clone” technique. In what
follows, the error processes will initially be assumed to be uncorrelated. Based on
this assumption, the usual linear regression analysis and the nuil hypothesis test will
be carried out. The “clone” technique will then be used as an independent means
(independent of our assumptions about the error statistics) to check the confidence

level.

5.5.1 Regression results and an estimate of the Ekman depth

The time series prepared above are 601 points long with a one hour sample interval.
Shown in Table (5.1) and Fig. (5.il) are the regression results. The values of F; in
Table (5.1) indicate that the three estimated coefficients pass the null hypothesis test
at the 5% significance level. (The critical F-value is shown in the caption of the table.)
While this seems encouraging, the question whether the condition Covle;e;] = 6;;0°

is satisfied cannot be answered. For this reason, the “clone” technique will be used.
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Table 5.1: The regression analysis results for ¢oq al Station 8 (fotal 601 hourly sam
ples). The critical value of I 5(1,597) = 3.81.

T A \VJ)
|Cy| = 257.68 1] = 0.61 €] == 5.99 % 101
ot | F =22.73 F = 17.91 I = 300.12
tan~t () = —T77.47° tan~t Yy = —176.31° fan~ Yy = 91.58°

However, first the discussion is focused on the angies of the complex ¢, listed in the
table.

According to barctropic lincar theory, the pressure gradient driven flow near the
surface in relatively deep waler should be nearly geostrophic, i.c., the flow should
lcad the force by about 90° (notic ~ the pressure gradient direction is defined from low
pressure to high pressure). The corresponding angle of (4 listed in the table is very
close to the theorctical value. According to the wave-driven flow theory presented in
Chapter 2, the wave driven inviscid flow should be 180° opposed to the wave direction;
when the viscid effect is t-ken into account, this angle will be somewhat less than
180°. The angle of C, listed in the table meets Lhis expectation. Knowing the value
of 6./h will help to determine the theoretical angle for %y at the mooring depth of
4m.

From the angle of (' (with respect to the dircction of wind stress), the thickness of
the Ekman layer may be inferred as follows. The direction factor {or the wind-induced
flow is

5 (5.17)

3

(where for simplicity, sinha(h + z)/ cosh ah has been approximated by e** for the

depth of h = 100m, where @ = (1 +1)/6.) therefore.

%Jr__ = 2 M ok (k=0,1,2,..) (5.18)

(where one should chose the smallest k still keeping |z| positive). Substitution of the
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Figure 5.11: The regression analysis results for currents at z = —4m at Station 8.

The upper panel is alongshore direction, and the lower panel is cross-shore directior..



5. = Tm (5.19)

which corresponds to v = 2.5 X 107*m?/s at latitude 44.5°N. For a wind stress of
the order of 10~*m?%s~%, which is the size for CASP wind data, Csanady (1982, page
12) gave an estimate of 10m for the Ekman depth, showing the Ekman depth of Tm
inferred here is reasonable. With the above estimated Ekman depth, Section 5.6 will
establish a local numerical model for the flow driven by the three forces. However, as
will be shown in that section, substitution of this value of Ekman depth in |SE(2)/ fé.]

does not give a value close to |é1 listed in Table 5.1.

5.5.2 Clone technique to check the confidence Jc el

The problem of “significance” of C's is now addressed using the “clone” technique.
The “clone” technique involves using Monte Carlo methods to simulate synthetic
data. The idea, when it is applied to the case here, can be explained as follows.

The residual sum of squares, RSS, (i.e., the unexplained variance), has been de-
fined by Eq. (5.15). Generally, RSS will decrease (or inore precisely, will not increase)
when the number of predictors increases. Tne matrix H shown by Eq. (5.12) contains
three predictors, each of which corresponds to one cf its columns. Now consider the
drop in RSS when the second column of H is excluded (the second column corre-

sponds to the wave predictor, which is of interest here). Define this decrease in RSS

by
DRSS = RSS13 —RSS123 (5.20)

where RSS123 represents the residual sum of squares when H contains its full three
predictors, and RSS123 signifies the residual sum of squares when H contains only

its first and third columns. Substitution of the data in Eq. (5.20) results in

DRSS = 0.16 (5.21)
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(where the units of m?/s® are understood). The idea of the “clone” is to investigate
the chance that a random series, when it takes the place of the column of the wave
predictor in H, can bring about this value of DRSS. This can be achieved by re-
peatedly generating a random series, denoted by 2,(t) say, and replacing the second
column of H by the random series. A sequence of DRSS follows according to Eq.
(5.20). A histogram of DRSS can then be constructed, which should tell how large
the random chance is.

The random series is created as follows. The given 2(t) function can be repre-

sented by it Fourier series,

() = =3 F(Qp)e™ (5.22)
wheze F(§,) is the Fourier transform of (1),

F(Qn) = |F(Qn)e?). (5.23)
The random series, 3,(t), is generated by replacing F({,) in Eq. (5.22) by

F'(Q) = [F(Qn)]e @), (5.24)

where the modulus of F'(£,) is the same as F(€2,,) but the phase of F'({!,,) is random.
The phase of F'({2,) is the phase of the discrete Fot. ier transform of a purely random
time series.

This “clone” technique can be also used to check the wind and the pressure gra-
dient predictors respectively. Presented in Fig. (5.12) is the histogram of DRSS,
resulting from 500 simulc ns. Panel (a) checks the wind predictor, panel (b) the
VL:";Ve oredictor, and panel (c), the pressure gradient predictor. The dashed line on
each panel divides the area under the solid curve into two parts. Take panel (b) as an
example, the vertical dashed line at the abscissa of 0.16 (cf. Eq. 5.21) divides the area
under the solid curve by 57.5% to its left and 42.5% to its right. An interpretation of
this areal division is that there is a 42.5% chance that a randomized series can account

for more of the observed DRSS. So the “clone” technique yields a 57.5% confidence
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level for the wave predictor, 81% for the pressure gradient predictor, and a 52.6% for
wind predictor. Compared with the usual regression analysis, the “clone” technique
gives lower confidence levels. This perhaps indicates that the degree of freedom in
the regression analysis is overestimated.

The correlation of waves and winds may explair. the low confidence levels for winds
and waves. Presented in Fig. (5.13) is the absolute value of the cross-correlation
function of the winds and the waves. The figure shows that the correlation is aboul,
0.61 near lag s=0. As a result of this fairly high correlation between waves and winds,
there will not be a significant drop in the RSS when one is added to the other. For
comparison, Fig. (5.14) investigates the significance of adding winds or waves alone
in addition to the pressure gradient. The figure shows that the drop in RSS due
to the addition of winds or waves is almost the same, and their significance level is
also nearly the same. Thus, perhaps the high correlation between waves and winds
prevents us from distinguishing the separate contributions of waves and winds. For
the purpose of testing the theory of wave-driven flow, an experiment conducted in

conditions where swells are high but local winds are low would be more suitable.

5.6 Simulation by a local numerical model

The response kernels of ¢y, ¢,, and ¢, in Eq. (5.3) are determined when a value for
Ekman depth is specified. A Tm Ekman depth has been estimated above. Although
the “clone” technique has revealed a confidence level problem in the estimation, the
estimated Ekman depth should not be worse than a subjectively chosen one as is the
case in usual numerical modelling practice. The three time convolutions then can be
evaluated by using the recursion scheme developed in Chapter 6 (cf., Eqs. 6.42 and
6.78). Presented in Figs. (5.15), (5.16), (5.17) and (5.18) and Table (5.2) are the
results of the evaluation.

It has been shown in Section (5.3) that using a steady regression model is reason-

able if the size of the second term in each of the braces on the RHS of Eq, (5.3) is
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Figure 5.12: Clone technrique is used to check the significance of the wind predictor
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¢). In this experiment, the normal matrix H originally contains three columns (three
predictors). When a predictor being examined, the corresponding column of H is
replaced by a column of random data. 500 random time series are simulated.
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Figure 5.13: The absolute value of the cross-correlation function |A| between waves
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(a}

Nusmber of coctrsnce out of 500 smuiations

Figure 5.14. Clone technique is used to check the significance of adding wave alone
on the top of the pressure gradient (Panel a) and the significance of adding the wave
alone on the top of the pressure gradient (Panel b). Note, for this figure the normal
matrix H is a two column matrix {(containing two predictors) while for Figure 5.13,
H is three column matrix (containing three predictors).
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small. Figures (5.15), (5.16), (5.17) and (5.18) show the effects of the second terms.
The dotted lines are the total response, the dashed lines are the steady response. The
solid lines represent the low-pass filtered version of the total response. The difference
between the dotied lines and the dashed lines consists mainly of damped inertial os-
cillations, as can be seen from the figures. The good agreement of the solid and the
dashed lines suggests that it is appropriate to use a steady regression model (as {ar
as the low-pass filtered motion is concerned, cf. page 69. ).

It can be seen from Fig. (5.17) that the alongshore flow is mainly a geostrophic
flow. In contrast, the cross-shore flow is induced mainly by local forces. Figures
(5.15) and (5.16) show that Loth wind-induced and wave-induced model responses
give a fairly good simulation of observed flows in terms of their fluctuation with time.
However, in terms of flow magnitude, the wind-induced flow alone already exceeds
the observed flow. The wave-induced flow seems to give a right size of the amplitudes.
(But the magnitudes can be adjusted by choosing a different value for the wind drag
coefficient and a different representative wave height.)

As mentioned in Section 5.3, the regression coeflicients (:'1, C’g, 673 correspond 1o
SE/ fé., WA and igBE/ f respectively. Listed in Table (5.2) are the moduli and angles
of SE/f6., WA and ¢gBE/f. Comparison of this table with Table (5.1) shows that the
moduli of WA and igBE/f are on the same order with C, and C’a, but the modulus
of SE/f$§. is about four times as large as that of C,. The agreement ir, the angles,
however, is fairly good. This good agreement between tan™! (—Sl) and tan=! &, iy

fbe
not surprising because the former is merely an echo of the input 6./h = Tm. The

good agreement between tan~! (39-?—3) and tan~! C; is not surprising either because

igBE/f is not sensitive to the value of §./h away from the sea bottom. The fairly
good agreement between tan~! WA and tan~! C,, however, is somewhat encouraging,
The angle of WA is a complicated function of é./h (cf. Eqs. 4.17 and 4.18), and this

information is not contained in the regression model.
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Figure 5.15: The modeled wind induced velocity and the observed velocity (shaded
line). The dotted line is the model output which includes the response to the present
time force and the past time force. The solid line is the low pass filtered version of
dotted line. The dashed line is the model response to the present force.
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Figure 5.16: The modeled Stokes drift induced velocity and the observed velocity
(shaded line). The dotted line is the model output which includes the response to
the present time force and the past time force. The solid line is the low pass filtered
version of dotted line. The dashed line is the model response to the present force.
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Figure 5.17: The modeled cross-shore pressure gradient induced velocity and the
observed velocity (shaded line). The dotted line is the model output which includes
the response to the present time force and the past time force. The solid line is the
low pass filtered version of dotted line. The dashed line is the model response to the
present force.
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Figure 5.18: The modeled velocity driven by the three forces and the observed velocity.
The solid line is the observed data and the dashed line is the model response fo the
present time force.
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Table 5.2: The gain and the phase yielded by the numerical model

T g )
32| = 1119 W A| = 036 |i22] = 9.62 x 104
" tan™"! fs—?' =—T1.72° tan~! |WA| = —152.96° tan~! ';“y?E- = 90.00°

5.7 Summary and discussion

Data of currents, wave parameters, wind velocity and bottom pressure have been
gathered and pre-processed from the CASP data set. The wave parameters are com-
bined as a single representative force time series, i.e., the surface Stokes drift &. The
wind velocity is converted to a wind stress, 7(t), according to the standard conversion
formula. The cross-shore pressure gradient data are calculated from four bottom pres-
sure gauges. In the pre-processing of the current data, it is noticed that the Mf (Lunar
fortnightly) tidal current is strong. Therefore a detiding procedure is introduced to
the data before applying a low pass filter.

The time series of wind stress, surface Stokes drift, and cross-shere pressure gra-
dient are used as inputs to the linear regression model, while the observed currents
constitute the output. Since the mean effects of the surface waves decay exponen-
tially with the depth, data from a shallow current meter (the mooring at z = —4m
of Station 8) was chosen as the time series for the regression analysis. The regression
coefficients represent the gains and angles of the flow driven by the three forces. Fur-
ther discussion focused on the angles of the flows with respect to their driving forces.
The angle of wind-induced flow yields an estimate of 7m for the Ekman depth. The
angle of wave-induced flow is near the theoretical value.

For testing the significance of the chosen predictors, two approaches are taken:
usual regression analysis and “clone” random simulations. The former approach
shows confidence levels of > 0.90 for the three predictors. The latter approach gives,

however, much lower levels. The confidence level for the predictor of the pressure
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gradient drops down to 81%, and those for winds and waves drop down to 52% and
57% respectively. The disagreement between the two approaches may indicate that
the degrees of freedom are overestimated in the regression analysis. The low confi-
dence leveis for the wind and wave predictors may be explained by the fairly high
correlation (|A| = 0.61) between them.

Based on the Ekman depth information obtained through the regression analysis,
a numerical model is used to calculate the respcuse of a local water column to the
same three forces used in the regression model. The numerical model results show
that the steady response accounts for most of the total response, which lends support
to the use of a steady linear regression model. The numerical model also shows
that while the alongshore flow is mainly a geostrophic flow, the cross-shore flow is
mainly driven by local forces. Both the wind and the wave driven simulations give
fairly good agreement with the observed cross-shore flow in terms time fluctuation.
However, whether the waves really played a role in driving the flow is uncertain due
to the the fact that the waves and winds are highly correlated. In future experiments,
carefully chosen conditions where waves are strong but winds are weak would be vital

for investigating the wave-driven flow.

5.8 Appendix A: Responses of a local water col-
umn to the present time forces and to the past
time forces

Using the relation provided by Eq. (3.45), Eq. (5.1) can be written as

ORI, ORI AL

Take the first time convolution as an example.

T va = [rtorsr+ B2« [s56) - Tomcostunsie i)
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= 7(0) |SE(2) = 3_ a. cos(wnz)e*"t| + [r(t) — 7(0)] SE(2)
or
- a(zt) * 2; apn co8(wyz)e™"""
= 7(t)SE(z) - (0 Eancoswz ~bnt
__._5{_ * ; @y, CO8(t7)e ", (5.26)

The second and the third convolutions can be derived similarly, and Eq. (5.3) then

follows.
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Chapter 6

A New Method for Numerical
Modelling of the 3-D Circulation in
Shallow Seas

6.1 Introduction

Thus far this thesis has been essentially concerned with motions in a single waler
column. Of course, water columns are connected to each other through the continuity
of the water mass (for linearized motion). A means to combine the 1-D motion of
separate columns is needed to obtain a solution for full 3-D motions. A common
method is the Jelesnianski bottom stress approach where the 1-D analytical solution
is used to supply a bottom stress to a set of depth averaged equations to provide
closure for the numerical solution. Jelesnianski’s (1970) method originated from one of
Welander’s (1957) ideas, which was reviewed in Chapter 1 (cf. Table 1.1). Welander’s
other idea for the “assembling” of the motion of separate fluid columns, i.e, the
transport approach, has not yet been implemented (cf. page 7 and Table 1.1).

This chapter implements Welander’s second suggestion. First the details of the

implementation are described. Then the new method is tested in Heaps’ (1971) basin

101
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in order to make a comparison with some standard results. The advantage of the new
method over other existing methods will be illustrated with examples and analyzed
theoretically. Appendix B to this chapter extends the method to the case where the
eddy viscosity profile becomes arbitrary so that the analytical solution in the vertical
is no longer possible. The extension of the method to the diagnostic case is also
presented in the appendix.

In developing and testing the method, the response to wave forcing is not included.
This is both for simplicity and for comparison with previous model results in which
the wave forcing was not present. The method itself does allow for the addition of

wave forcing.

6.2 The transport approach

6.2.1 Step force response in velocity and transport under slip

bottom conditions

The step force responses in velocity to wind and to sea surface slope under the non-
slip bottom condition have been presented in Chapter 4 (cf., Eqs. 4.53, 4.54). The
slip bottom condition is perhaps a more appropriate form if the “sea bottom” is
actually placed on top of the bottom logarithmic layer. It is also more general since
the non-slip condition is a limit case of the slip condition. For this reason, and for a
comparison with Heaps’ results later on, the step force response under the slip bottom
condition is considered here.
The step force responses are governed by

2

B tifq—v5H =0
p2 =1, (V%gf - K,qd)

Oz
qdlt:o = 0

=0 (6.1)

z=0 z=—h
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and

6a, + zqu y%l—%’— = —-_qu,n

u%ﬂj i =0, (v3 - xq,) =0 (6.2)
qa|t=0 =

The parameter « in the bottom condition may be called the slip parameter.! The

non-slip condition is recovered under the limit of K — oc. Their solutions are found

to be as
glt,z; I) = ]{6 [SE(Z Zanc t cos(wnz )] (6.4)
n=0
. = gIV" ‘B
gt z; Iy) = 5 BE(z ch tcos(wnz)|, (6.5)
n=0
where
. _ —irpgSinha(h + 2) + & cosha(h + z)
SE(2) Ve cosh ah 4 % sinh ah (6.6)
cosh az .
BE(z) = 1- cosh ah + 22 sinh arh (6.7)
2v
b = J— 6.8
7 (6.8)
if or 141 .
a = —V'i= z (6.9)
wnh (&,
Tn = ‘/-2- (‘}7) (610)
d.
an = (.h_) k- (6.1)
{(w,,h)z (%) +2i] (1+6)
[ (wh)? (8N ‘
b, = { (=) +ilf (6.12)

'When the wave force needs to be considered, the following modification for the slip bottom
condition may be suitable,

g% = n[q~—q.z( h)] (6.3)

and 1(2) in the expression for wave body force (cf. Eq. 2.70) should set to be zero accordingly.
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G = dsin wnh : (6.13)
wnh [(wnh)ﬂ (%) + 22'] (1+ )
The wy, are the roots of
K
wytanwph = o (6.14)
which must fall in the range
nt <wyh < (n+1/2)r. (6.15)
In addition, a parameter
‘ sin 2wy h
& = 2—%h—— when £ — oo, &, — 0, (6.16)

has been introduced to reflect the slipping of each modal motion at the bottom.
The response to the arbitrary forces is obtained by use of Egs. (3.35) and (3.41)

a(t,z) = Unt)*dlt,z Ion) +7(t) * dalt, 25 Ir). (6.17)

All the features of the Ekman dynamics, such as top and bottom Ekman layers,
damped inertial oscillations with higher modes dying away faster, and the momen-
tum diffusion e-folding time scale (62/h%f)~! (¢f. Eq. 6.12), have been preserved
analytically. The unknown 77(t) only affects the amplitude of the velocity profile
(in a time convolution fashion).

From the initial conditions in Egs. (6.1) and (6.2), we have

ioa,,cos(wnz) = SE(z) (6.18)
S cocos(wns) = BE(:) (6.19)

which is obtained by setting ¢t = 0 in Eqs. (6.4) and (6.5). In fact, a, and ¢, given
by Egs. (6.11) and (6.13) were calculated from these two relations. Appendix A will

use these two relations to accelerate the convergence of the velocity series.
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Defining

(Qult 1), Qs Tl = [ [t b), altss Tollds (620)

as the two step force transport responses induced by wind and sea surface slope,

respectively. Substitution of Eqgs. (6.4) and (6.5) into the above yields,

Qult; I) = —i— (Dd ZE e‘b") (6.21)

n=0
Qult; Ioy) = i@?]ﬁ (D, —ZGne"’"‘) (6.22)
n=0
where
Di = 1- ! (6.23)
d = cosh ah+ Y sinh ah -
1 ta,nhah
= ] —— 2
D, L ah 1+ % tanh ah (6.24)
E, = 4zsmt;u,,h (6.25)
s [(wuh)? (3)" + 2] (14 £1)
. « 2
G. = 4rsin® wph . (6.26)

(k)2 (o (%) +21] (1462

The coefficients, —¢I,/ f and ighl,/ f, on the RHS of Eqs. (6.21) and (6.22) are the
transport amplitudes, whose physical interpretations are the familiar steady Ekman
transport and geostrophic transport in deep water, respectively. The quantities in
parentheses are the corrections for the effects of bottom friction and inertial acceler-

ations.

Again, as a resuit of the initial conditions of Egs. (6.1) and (6.2), there are two

relations:
n=0
ZGn = D,. (6.28)

n=0
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These two relations will be used later to determine a proper mode number when a

tolerance for truncation errors is given,
When the step force responses are known, the responses to arbitrary forcing can

be calculated by

Q = Vn(t)* Qult; Igy) + () * Qult; Ir). (6.29)

6.2.2 The difference form of the continuity equation and an
—@ lattice

The continuity equation can be written in the form

o wivq) = o (6.30)
where
. 0 .0

and R denotes the real part. () and n are coupled through the sea surface slope. We
need to integrate the continuity Eq. (6.30) and evaluate the transport of Eq. (6.29)
numerically through time. Let us first discretize the continuity equation. The next
section discusses how to evaluate the transport given the updated value of 7.

In differencing the above form of the continuity equation, an n — @ grid comes
naturally (Fig. 6.1), which is the counterpart of the Arakawa E-grid in the complex
plane. Adopting the  — @ grid not only facilitates calculation of sy for each Q
point, but also automatically eliminates the spuricus residual flow that occurs when
one uses the Arakawa C-grid (Jamart and Ozer, 1986) (cf. Figs. 6.6 and 6.7). This
is because, in contrast with the Arakawa C-grid, with the n — @ grid there is no need
to average the Coriolis force over four neighboring grid points. .

Using a FTCS (forward in time and centered in space) scheme to discretize Eq.
(6.30) yields

o = = R{[Qhy - Q] s =i [Q - QD] s} (632)
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—i—Q—n—=Q
WP —H—8—)
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d
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m G0 U=Real (Q)
Velmag(Q)

Figure 6.1: n — @Q-grid, a counterpart of the Arakawa E-grid in the complex plane.
Using such grid not only facilities calculation of 7 for each @) point, but also auto-
matically eliminates spurious residual flow problem inherent in the Arakawa C-grid
when the Coriolis force is included.



108

where s, = At/(2Az) and s, = At/(2Ay), and the subscripts [,m d aotes the grid

point indices and the superscript j denotes the jth time step.

6.2.3 A recursion scheme for the time convolution

For convenience, the following notation is introduced: R(t;1) represents the response
of a linear system to a Heaviside unit step force, and R(; F') represents the response
to an arbitrary time varying force F. Thus R can signify the velocity response,
transport response, or bottom stress response, and F' can represent the wind stress
or sea surface slope. The recursion scheme derived below will be suitable for any of

these cases. The relationship between R(%; ') and R(t;1) is given by

R F) = /0 t F(t')-aﬁ%t—';-l-)-dt'. (6.33)
Numerical evaluation of this integral is necessary since F(t) is an arbitrary time
function. Because t appears in both the integral limit and in the integrand, the usual
discrete summation for the integral would require recalculation of the summation
from ¢ = 0 for each time step. An economic evaluation scheme is thus needed, and
Jelesnianski (1970) has provided one. However, both his derivation and his recursion
scheme are complicated. This section gives a derivation for a s'mpler and more
physically appealing recursion scheme.
The structure of the solutions presented in Eqs. (6.4), (6.5), (6.21) and (6.22)
suggests that it is proper to write R(¢; 1) in the following form

RE1) = O(z) -3 dulz)e™, (6.34)

n=0
(where C(z) can be T’g;SE(z), i%’lBE(z), —ilfth or 52&){111)“ and ¢n(z) can be
T’ian COS Wy 2, z'gl—fmc,, COS Wy 2, —ilfﬂEn, or z'g-h%‘mGn). Since the initial response is set
to be zero (cf. Eqgs. 6.18, 6.19, 6.27 and 6.28), we have
Z on(z) = C(2) (6.35)

n=0
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(except at z = 0 when R(%;1) represents the stress). Substitution of Eq. (6.34) into
Eq. (6.33) gives

Rt F) = /;F(t’)iqsn(z)bne-bn(e—t')dt,

n=0
= Y ra(F) (6.36)
n=0
where
t !
ra(t; F) = fo F()$a(2)bne=tnt=1)dy (6.37)

which denotes the response to an external force by the nth mode. For the next time
step, t + At,

Rt + AL F) = {/:-i-./;ﬁ-m} F(t,)i ¢n(z)bne'b"(t+m"")dt'
= i {ralti F)e b2 + F(t)ga(z) L —e ]} (6.38)

where in the first integral the result calculated at the previous time step has been used,
and in the second integral F(#') has been approximated by F(t) for t' € [t,t + Al],
(It is allowed here to use a combination of F(t) and F(t+ At) to approximate F(t').
However this will lead to an implicit scheme to sclve the continuity equation, since

1 is one of the forces that F signifies.) Let us denote
ra(t + AL F) = ro(t; Fle ™8 4 F(t)r,(At; 1) (6.39)
where
(A1) = ¢én(2) [1 - c'b’"""] , (6.40)

which gives the response by the nth mode to a unit force in one time step. Then Eq.
6.38 can be written as

R(t+ At F) = Y ro(t+ AL F). (6.41)

“ n=0
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A recursion scheme for evaluating the response convolution is thus obtained. Start-
ing from 7(0; F) = 0 (by definition of Eq. 6.37), one can use Eq. (6.39) to evaluate
the response to an external force by each mode for successive time steps, and then use

Eq. (6.41) to obtain the total response. The scheme is summarized in the following

box:
A = e-tndt
rd =0
r = a1 =)
(6.42)
P = Pl FORY
Rgﬂ) = ZN—OT(J;'H)
(j=0,1,2,..)

where the notation rfl’ﬁ)v is short for rn(jAt; F'), and %) for ra(At; 1), etc., N is a
positive integer whose proper value will be discussed later.

A physical interpretation of the recursion scheme is as follows: the first term on
the RHS of Eq. (6.39) (or the fourth equation of Eqs. 6.42) is due to the “initial”
condition at the previous time step and the second term is due to the latest “kizk”
by the external force. rflll) acts as a weight to partition the external force F int., the n
modes. Since the frictional force has been taken care of in r,(lll), one may r<ad F(j)rflll)
as a net force to drive the nth modal motion during the time interval [jA¢, (j+1)At].
The factor e~*»4¢ describes how each mode evolves once set into motion. Different
modes evolve differently because of the different values of b, (n =0, 1, 2, ...).

The above recursion scheme can be applied to the response in velocity, stress
and transport when one substitutes the corresponding C(z), ¢,(2) and b,. In terms
of velocity, the recursion scheme is expressed in Appendix A, where a discussion is

also given on accelerating the velocity convergence using relations of Egs. (6.18) and
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(6.19). In terms of the transport, the recursion scheme is expressed as
An = e~tnat
7'53;)' = 0
e = =iFE (1= )
| = ee,a-1 -

R P )

n.

QU = I, ri;;l)
(7=0,1,2,...)

where @ takes the place of Rr, and E, and G, are given by Egs. (6.25) and (6.26).
In programming Eqgs. (6.43), one should evaluate those j— independent quantities
once before the updating “de-loop”. Also, one can replace the symbols of unit wind
stress I, and unit slope Iy, in the program by the number 1 so that the inputs 7 and
7 can automatically take care of the units and directions.

The formula for updating @ has now been obtained. Equations (6.32) and (6.43)
form an explicit scheme for updating @ and n alternately. In various cases (different
values of 6./h, flat or varying bottom topography, steady or unsteady wind, etc.) the
numerical experimentation shows that the scheme is stable under the CFL condition
At £ AzAy/ m (the scheme is still stable even when the equal sign
in the condition is taken). However, a theoretical stability analysis for the scheme is

not available yet.

6.2.4 Transfer of the zero flux boundary condition to that

for the surface elevation

For an open lateral boundary condition, one may use the Sommerfeld radiation con-
dition to update n and @) based on information at neighboring interior points at the
previous time step (e.g., Chapman, 1985). For a solid lateral boundary, the ) —17 lat-

tice introduced above requires that one calculates the surface gradient for ¢} boundary
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points based on the fact that the flux normal to the wall is zero. Here let us focus on
the transfer of the zero flux condition to that for the surface gradient.
According to Eq. (6.43), QU+ also can be written as

N i N -
QUHD = Erffﬁ)’ e—bnAt_l_T(J)Rg_)+VU(J)R8-I) (6.44)
n=0
where
M)t
R = Yol (6.45)
n=0
N _ =)
Rln = Zrnlﬂ. (6.46)
n=0
Let
RY = A+iB (6.47)

where A and B are real, then

(6] (9)
WRW = (491 _ g2\ Li( 4% 5%
1" Ry, (A E B 9 +1 3 +B 5] (6.48)
Thus, from Eq. (6.44), on a lateral boundary where U = R{Q} should be zero,
an') BonW 1 u (3) ~badt | _(4)
0.’1} = :;i-—a—y— - 74- gl‘.{nZ:%’l‘nF € +7 er y (649)

and on a lateral boundary where V = ${Q} should vanish,

Al BonW 1 (& 6) ewae )
-—8-3—/—- = —-z-—a?"z\f érnpe +T er (6'50)

where & denotes the imaginary part of a complex quantity. In a corner where both

U and V vanish,
20 19 A =817 [2i1?
R P B e R

where {...} is the same as those of Eqs. (6.49) and (6.50).



113

6.2.5 How large must N be?

In the transport method, the solution for the sea surface elevation is a major calcu-
lation. Once this 1s known, velocities can be evaluated with the analytical formula
of Eq. (6.17), which converges exponentially since both SE(z) and BE(z) have been
extracted from the series (cf. Eq. 6.82). In numerically solving for the elevation,
the transport method only involves the transport series, as the name of the method
suggests. Thus, given a truncation error tolerance, the number of modes necessary
to specify the transport series must be addressed.

Returning to the expressions for the transports given in Eqs. (6.21) and (6.22)
allows the determination for a value of N given a truncated error tolerance, Rewrite
Egs. (6.21) and (6.22), with a reference to Eqs. (6.27) and (6.28), in the form
Qlitl (f + Y ) (1- e, (6.52)

qu

n=0 n=N41
t; 1, Noo&
Qig;’__) - (ZO+ > )(l—e"b’“)(}'n (6.53)
8 nasl n=N+1

where, for brevity, the notation Iy, and I, has been introduced to represent the

transport amplitudes —iifz and i-g—}%‘m, respectively. Truncation errors per Ip, and

per Ig, may then be defined as

0 o0

ery = Y. (l—e™)E,~ ). E, (6.54)
n=N+1 n=N+41

er; = Y (1—€e™)Gm Y G (6.55)
n=N+1 n=N+1

In the above definition, the terms e~***E, and e**G, have been dropped, because
T2 N1 e E, and T2 vy, e7*tG, approach zero much faster than 532 v, ; £, and
Yonen+1 Gn respectively. so we need only consider the slowly convergent component
to evaluate the truncation errors. Substitution of Eqs. (6.25) and (6.26) into Eqgs.
(6.54) and (6.55) yields

er, = Z 4isinw,h (6.56)

N1 (wyh) [(wnh)2 ("57,‘)2 + 2i] (1+£a)
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o) 4isin® wyh

_ . , (6.57)
& (wnh)? [(wah)? (5)" +2i| (1 +62)

ETg

where nr < wybh < (n + 1/2)7 (from Eq. 6.15). The first error corresponds to the
wind induced flow and the second to the sea surface slope induced flow.

From the above Egs. (6.56) and (6.57), we see that the coefficients of the two
error series decrease towards zero as 1/n3 and 1/n* (n > N + 1) respectively. For
problems concerning purely slope-induced flow (like tidal currents), N will be smaller
for a given truncation error than for problems which include wind forcing. We also see
that both truncation errors are inversely proportional to (6./#)%. Thus we expect that
N will be smaller in relatively shallow water (larger é./h ) than in deep water (smaller
8e/h). This is because in shallower water, the momentum versus depth distribution
is more uniform due to the stronger frictional effects, so fewer modes are needed to
specify the distribution.

The absolute values of the errors can also be calculated. Using Eqs. (6.27) and
(6.28), we have from Eqs. (6.54) and (6.55)

N
Dd—ZE,.

lers] = (6.58)
n=0
N

lera] = |D, =Y Ghl, (6.59)
n=0

with which one can quickly decide on a proper value of NV for a given truncation error
tolerance. For the case of non-slip bottom condition (k = o), the absolute errors are
tabulated in Tables (6.1) and (6.2) as a function of N, for differeny values of &,/k.
These tables help to determine a proper mode number for a given error tolerance.

A complete description of the transport method for the case of constant eddy
viscosity and constant density has been given. Table (6.3) concludes this section. The
table shows that the main task in the transport method is calculation of the sea surface
elevation, which requires fewer number of modes than calculation of the velocity and
the bottom stress. After the main do-loop, the velocity profile at locations of interest

can be recovered. A discussion on extension of the method to the case of arbitrary
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Table 6.1: Truncation error per Igs (=I./f where I, is one unit kinematic wind
stress) when ¢ = 0 for different values of §./h and N. The truncated error is defined
to be er; = 3%,

STh=T1[8.Jh = 1/2 8.7k = 1710
N |er] £ ler,| < ler| <
0 0.0319 0.1200 0.2734
11 0.0062 0.0245 0.1495
2 | 0.0021 0.0083 0.0955
3 | 0.0009 0.0037 0.0614
4 1 0.0005 0.0020 0.0392
5 1 0.0003 0.0011 0.0254
6 | 0.0002 0.0007 0.0170
71 0.0001 0.0005 0.0118
8 | 0.0001 0.0003 0.0084
9 | 0.0001 0.0003 0.0062
101 0.0000 0.0002 0.0047
11} 0.0000 0.0001 0.0037
12| 0.0000 (.0001 0.0029
13| 0.0000 0.0001 0.0023
141 0.0000 0.0001 0.0019
15| 0.0000 0.0001 0.0016

depth-dependent eddy viscosity, v = v(z), and arbitrary density profile p = p(z,y, 2),
is presented in Appendix B to this chapter.

6.3 Test of the transport method in Heaps’ basin

6.3.1 Heaps’ basin and Heaps’ problem

In this section, the method described in the last section is tested against some stan-
dard results. Heaps’ (1971) problem and Heaps’ (1971) spectral method are chosen
for comparison. The Heaps’ problem is to numerically model the linear response of
water in a rectangular basin to a constant wind. It is due to Heaps’ (1971) pioneering

woa:k that the spectral method was introduced into oceanography for simulating 3-D
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Table 6.2: Truncation error per I, (=tghlo,/f where I, is one unit sea surface
slope) when ¢ = 0 fo: different values of 8./h and N. The truncated ...or is defined

to be er; = 3N .-

[ T6./h=1[6./h = 1/2[8./h = 1/10
N lerd] < | [ers] £ lers| <
0 | 0.0096 0.0365 0.1452
1| 0.0015 0.0061 0.0589
2 | 0.0005 0.0019 0.0297
3 | 0.0002 0.0008 0.0163
4 | 0.0001 0.0004 0.0095
5 { 0.0001 0.0003 0.0058
6 | 0.0000 0.0002 0.0038
7 1 0.0000 0.0001 0.0026
8 | 0.0000 0.0001 0.0018
9 | 0.0000 0.0001 0.0013
10| 0.0000 0.0000 0.0010
11| 0.0000 0.0000 0.0008
121 0.0000 0.0000 0.0006
131 0.0000 0.0000 0.0005
141 0.0000 0.0000 0.0004
151 0.0000 0.0000 0.0003




Table 6.3: A summary of the transport approach.
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flows. The results from Heaps’ work have been taken as a standard for comparison
by most of the later spectral models (e.g, Davies, 1979; Davies, 1983; Davies, 1988;
Lrdner and Cekirge, 1988; Lardner, 1990; Sheng and Thompson, 1993).

Heaps’ rectangular basin is 800 km long (North-South) and 400 km wide (East-
West). This basin has been called Heaps’ basin, whose geometry mimics the North
Sea. Heaps used the C-grid scheme to locate 7, u and v points in a horizontal plane
grid of 35 x 19 lines (Fig. 6.2.b, solid line), using

Az = 400/9%km, Ay = 800/1Tkm. (6.60)

Four 7 points (A, B, C, and D) were marked. At these points time series of the surface
elevation, velocities (averaged over the four neighboring points) were recorded. Since
the  — @ grid scheme is used in the transport method, in'order to locate the points
A, B, C and D four n points in the grid plane with the same geometry as those of
Heaps, a grid of 69 x 19 lines (Fig. 6.2.b) is placed on the horizontal plane for the

traasport method.

6.3.2 Comparison with Heaps’ numerical solutions for the

transient state

Shown in Fig. (6.3) are the three surface elevation time series at point B generated
by the transport method, using 2 modes. They are compared with those generated
by Heaps’ spectral method with 10 modes. (For Heaps’ spectral model, the “wet
point only” technique, proposed by Jamart and Ozer, 1986, has been used to avoid
a spurious residual flow). The difference between the two methods is represented by
éni (i =1,2,3 for three values of v, §n; = |y — nuli, where 71 represents 3 generated
by the transport method and 7, generated by Heaps’ spectral method). The figure
demonstrates that the transport method works well and gives results that are very
close to Heaps’ results.

When the surface elevation field is obtained, a major part of the computation is

completed. The velocity profiles at grid points of interest can then be recovered using
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Figure 6.2: Panel (a) is the C-grid used by Heaps (1971) and panel (b) is the  — @
grid used in this model. Heaps divided the basin horizontal plane into 35 x 19 lines,
and we divide into 69 x 19 lines. The double dense grid lines in y-direction is merely
to locate the four marked 7 points, A, B, C, and D, in the lower panel with the same
geometrical coordinates as those in the upper panel.
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n at point B and the difference between the methods

80[--

n and én (cm)
>
=]

40

Figure 6.3: Time series of the surface elevation at point B for the first group of
tests. Three elevation curves for different values of v are generated by the transport
method (using 2 modes), and compared with the same type of curves generated by
Heaps’ spectral method (using 10 modes). The difference between the two methods
are shown by émy, 6y and éns ( 6m = |pr — nu|, where g7 is generated by the
transport method and 7y is generated by Heaps’ method, for v = 650em?/s, and so
on. For clarity, they are offset by -10 in the figure.) The figure demonstrates that the
transport method yields results in a good agreerient with Heaps’ results. (Parameters:
f =122 x10"%s?, g = 9.81lms™%, 1 = —1.5Pa, p = 1.025kgm™23, At = 6min,
h = 65m, k = 0.002ms™', v = [0.065,0.13,0.26]m?s~! 6./~ = [0.50,0.71,1.00]).
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u and v at point C generated by the two methods
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Figure 6.4: Velocity time series at four depths generated by the transport method
(using 2 modes) and their difference from those generated by Heaps' method (using
10 modes). The differences are represented by §u; and év; (i = 1,2,3,4 for z/h =
0,-0.25,-0.5 — 1), offset at the different horizontal lines for clearity. (Parameters
are the same as those for figure 2 except for v = 0.065m?s~! only.)
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the record of  at those points (Table 6.3). Figure (6.4) shows velocity (using 2
modes) recovered at grid point C. The difference between the results of this method
and Heaps’ spectral method (using 10 modes) are represented by éu; (¢ = 1,2,3,4
for z/h = 0,—0.25,—0.50, -1 and éu = uy — ur, up, where denotes u generated by
Heaps’ method and ur by transport method), and by év; (for clarity, they are offset
at different horizontal lines in the figure). The figure shows that the results yielded
by the transport method are in satisfactory agreement with those by Heaps’ method.

Figure (6.5) shows the effects of using 2, 10 and 20 modes (dashed, dotted, and
solid) by Heaps’s method (1st and 3rd panels) and the transport method (2nd and 4th
panels). From the figure, we can see that for calculating sea surface elevation, 2 modes
are enough in both methods. But for calculating velocity, 2 modes are sufficient in
the transport method but not in Heaps’ method. It should be pointed out that the
comparison is under the parameter value of §,/h = 1/2. When this ratio gets smaller,
the difference in the number of modes used by the two methods will become bigger.

This example illustrates two important features of the transport method. First is
the fact that calculation of sea surface elevation requires less modes than calculation
of velocity. The transport method takes advantage of this fact by separating the two
calculations. There are many practical cases which only require that the velocity
profile be calculated at a few grid points, rather than at every grid point. The
transport approach allows one to calculate the velocity profiles at only the points
of interest. In contrast, Heaps’ spectral method requires calculation of the velocity
profiles at every grid point, whether they are needed or not. Second, in calculating
velocity profiles, the transport method extracts both the surface wind induced Ekman
spiral, SE(z), and the slope-induced Ekman spiral, BE(z), from the series, and so the
remainder series converges exponentially (see the discussion in Appendix A and Eq.
6.82). Heaps’ method does not extract the Ekman spirals, which explains its slow
convergence near the surface and bottom. In a word, separation of the two calculations
and extraction of the two Ekman spirals is the feature of the transport method.

Sheng and Thompson (1993) proposed a modification to Heaps’s method, which
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Figure 6.5: Comparison of convergence rates of the transport method (2nd and 4th
panels) and Heaps’ spectral method (1st and 3rd panels) (dashed lines: 2 modes,
dotted lines: 10 modes, solid lines: 20 modes.)
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involves extracting the wind induced surface Ekman spiral from the series. As a result,
their method also improves the convergence near the surface effectively. In fact, they
found that 4 modes are sufficient for the same Heaps’ problem outlined here. However,
the slope-induced bottom Ekman spiral is left in the series in their method. Also,
their method requires calculation of velocities over the entire model grid. A more
theoretical comparison of the transport method with the existing methods will be

presented in Section 6.4.

6.3.3 Comparison with analytical solutions at the steady state

For Heaps' rectangular basin problem, an analytical solution for # and ¢(z) for the
steady state can be found. The transport should be zero everywhere in the steady
state because of the flat bottom and the uniform wind field. Thus fror Egs. (6.21)
and (6.22) one can deduce a relationship between the ultimate sea surface slope,
denoted as 7™, and the wind stress,

P_d'r

D, 75’ (6.61)

W(‘x’)

which is a constant over the entire basin. Thus the sea surface is a plane and can be
described by

) = m{g—jgih}m n s{g—jgih}y +e (6.62)
in which the constant ¢ can be determined by the fact that the surface at the middle
point of the basin should be zero due to the conservation of water mass and the
symmetry in basin geometry. For example, if the origin of the coordinate is on the
center of the basin, then ¢ = 0. The ultimate velocity profile can be calculated by

-6e Dd

(o) = T %24
q SE(z) +¢ % D.

fé.

Jamart and Ozer (1986) gave the steady solutions only for the sea surface slope and

BE(z)]| . (6.63)

the velocity, not for the sea surface itself. However, the fact thet the sea surface plane

should go through the zero point at the center of the basin completely determines the



whole steady solution. Equations of (6.61), (6.62) and (6.63) are useful in the sense
that every new algorithm proposed for spectral methods is first tested in the Heaps’
basin.

Figure (6.6) shows a comparison between the theoretical steady state (represented
by dashed lines) and the model output at 300 hours after the constant wind is set up
(represented by solid lines), As one can see the agreement between the theoretical
prediction and model calculations is satisfactory. The top panel of the figure is the
time series of the depth averaged velocity, showing that there are no undamped inertial
oscillations (Davies, 1987; Hunter and Hearn, 1988) with the transport approach.
The bottom panel also shows that adopting the n — Q grid automatically eliminates
the spurious residual flow problem, (Jamart and Ozer, 1986) which occurs when
using an Arakawa C-grid. To appreciate the problem, two of Heaps’ (1971) plots are
copied in Fig. (6.7). At the steady state the plots show the curved surface elevation
contours near the wall and non-vanishing residual flow over the entire domain, which
are erroneous results for Heaps’ rectangular basin problem. The spurious residual flow
problem was noticed by Jamart and Ozer, who proposed a “wet point only” technique
to amend the problem. In the n — @ grid adopted here, u and v are combined by
a complex velocity, ¢ = u + 1v (remember @ is the depth integral of ¢) and are
co-located. Therefore there is no need to average the Coriolis forcing, and thus no

spurious residual problem arises.

6.4 A comparison of the transport method, the

bottom stress method, and the spectral method

To solve the linearized equations of motion, we have three closely related methods
at our disposal: the spectral method, the bottom stress method and the transport

method. These focus on three related, but different, expansions. The spectral method
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Figure 6.6: The top panel shows the vanishing depth averaged velocity. The middle
and the bottom panel are a comparison between the theoretical steady state and the
model output at 300 hours. Two modes are used in updating 7 and @ in the main
do-loop and in recovering the velocity profile afterwards. This figure also shows that,
in transport method, there is no undamped inertial oscillation or spurious residual
flow.
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Figure 6.7: A copy of two of Heaps’ (1971) plots demonstrates the spurious residual
flow problem. For Heaps’ rectangular basin problem, the sea surface contours should
be straight lines and the depth averaged velocity should vanish over the entire domain
at the steady stage. The problem, noticed by Jamart and Ozer (1986), was attributed
to the adoption of C-grid. In contrast, the n — @ grid does not have such problem

(cf. Fig. 3.4).
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employs a velocity expansion of form
g ~ YA,coswnz, (6.64)

in which the Als are updated at each time step by solving a set of modal equations.
In this sense, the spectral method may also be classified as a velocity approach.
The bottom stress approach employs a bottom stress expansion, which is a vertical
derivative of Eq. (6.64). The transport approach employs a transport series, a vertical
integral of Eq. (6.64). Thus three approaches are related in the sense they all deal
with the same family of series, but different in the sense that they pick different family
members, as is summarized in Table (6.4).

When comparing the convergence rates of two trigonometric series, it is a usual
practice to compare the rates at which their coeflicients approach zero (e.g., Tolstov,

n o«

1962, pages 144-145). In the following discussion, terms like “ rate”, “speed”, “fast”

or “slow” are to be understood in this sense.) Now suppose that

il_"; = constant as n — 00, (6.65)

for the velocity series, where p is a positive number. (From Eqs. 6.11, 6.13 and 6.15
one can deduce immediately that p = 2 when wind is present and p = 3 when only
the sea surface slope forcing is present.) Then, because wn,h ~ n, we have

An/(wnh)

ey = constant as n — 0o, (6.66)

for the transport series, and we have

Ap(wnph)
—Gon) = constant as n — 0o, (6.67)
for the bottom stress series. Thus, the coefficients of the transport series decreases
faster than those of the velocity series and the stress series. Figure (6.8) illustrates
this graphically.

From Table (6.4), we can see that the transport approach decouples the rapidly

convergent series from the slower series, while the other approaches mix the rapidly



Table 6.4: The relevance and difference of three approaches.

Transport
Approach
(This study)

Velocity
Apprcach
(Heaps 1971)

Bottom Siress
Approach
(Jelesnianski 1971)

Series Involved — Y A.cosw,z — (velocity)
in the Main v ;‘:—: sinw,h > -3: sinw, h Y ‘-’:—: sinw,h (transport)
Do-loop — — Y Anwn sinwgph (stress)

Series Involved
in the Velocity
Recovery

Y(@n, ) e8! cosw,z

T(an, ) €72 coswyz

61
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Figure 6.8: This diagram illustrates why the transport series converges the quickest.
The net transport due to each mode is represented by the shaded area, and the
bottom stresses by the dashed line. The transport in this example is mainly due to
the first and the second modes; higher modes contribute little to the transport but
may significantly contribute to the velocity and even more to the bottom stress. (The
curves shown here are for the velocities of each mode based on the second part of g4
when ¢ = 0 and 6./h = 1/2 and & = 00.)
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convergent series with the slow one. When the calculation process involves summa-
tion of two series simultaneously, the convergence rate is controlled by the slowly
—-avergent series. In the velocity approach and in the stress approach the calculation
of the elevation is slowed by the calculation of the velocity and the bottom stress
respectively. The transport method has no such problem, and the calculation for the
elevation proceeds at its own speed. After the elevation calculation is completed ,
the transport approach employs the analytical formula of Eq. (6.17) to recover the
velocity. The main advantage in using the analytical formula is that the formula
extracts both the wind-induced surface Ekman spiral and the slope-induced bottom
Ekman spiral so that the remainder converges exponentially (cf. Eqgs. 6.4, 6.5, 6.82,
and Table 6.3).

There are two additional advantages in using the analytical formula. First, one can
use a different time step than that used in the main do-loop. For an explicit scheme,
the time step in the main do-loop, say Atyy, is restricted by the CFL condition and
can be very small when water is very deep. In this case, one might consider using
a multiple of Atys as the time step for the velocity calculation. Figure (6.9) shows
the effects on the velocity recovery of using a different time step as well as a different
number of modes. Second, as has been stated in the preceding section, the transport
approach allows one to calculate the velocity profiles at only the points of interest.
Any of these advantages results in a great saving of computational workload, and
their combination saves even more. The bottom stress shares the same advantages in
the velocity recovery, but it needs the greatest numbers of modes in the main do-loop,
since it employs the most slowly convergent series.

Another feature of the transport approach is that it solves only one equation (the
continuity equation) numerically, rather than three, thus the numerical task is made
easier. Lynch et al. (1987, 1992) proposed a method for solving the 3-D linearized
equations of motion, which essentially also solves a single Helmholtz-like equation
for . However, arbitrary time dependent motion is replaced by a single harmonic

motion in their work. In this work, there is no restriction on the time dependence of
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Figure 6.9: Since the transport method separates the calculation of the transport
and elevation from that for the velocity, it is permissible to use a different number of
modes and a different time step in the velocity recovery. This can be an advantage
in reducing the computational workload in most cases. This figure shows the effects
in using a different number of modes and a different time step. (Note, because of the
factor e7®4t, (b, ~ n?), the value of N is also affected by the choice of At. In a
slowly varying problem, a large value of At can be chosen and the value of N can be
reduced accordingly given a fixed truncation error. In a rapidly changing problem,
a small value should be chosen for At, and thus the value of N should be increased.
The transport method flexibly accommeodates these needs.)
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the motion, the forcing function can be arbitrary.

6.5 Comments on the velocity split form in the

spectral method

The purpose of this chapter is to implement Welander’s transport approach. However,
one point, which is closely related to the recent efforts to improve the convergence of
velocity in the spectral method, warrants further discussion. It was found that Heaps’
classical spectral method converges very slowly (e.g., Davies, 1983; Lardner, 1990)
near the surface when there is non-zero wind stress on the surface. This is because
Heaps’ spectral method uses cosine functions. The contradiction of zero derivative
of the cosine functions and non-zero wind stress on the sea surface (z = 0) causes
the slow convergence. Early efforts to accelerate the convergence used some other
base functions whose derivatives on the surface are not zero, like Chebyshev and
Legendre polynomials (Davies and Owen, 1979). However, these functions cost more
computational workload in their evaluations than the simple cosine functions,
Recent efforts have split the velocity into two parts, a prescribed part, and a

remainder series,

q = ¥(z)+ ) Ancoswnz, (6.68)

in which ¥(z) is a prescribed function, and the coefficients of the remainder series, A,,
need to be updated by numerically solving a set of modal equations. The prescribed
part, ¥(z), accommodates the non-zero wind stress. The convergence rate of the
remainder series depends strongly on the choice of form for ¥(z). Different authors
(Lardner, 1990; Zitman, 1992; Davies, 1991; Davies, 1992; Sheng and Thompson,
1993) have proposed different forms of ¥(z), as summarized in Table (6.5). A general

formula for all the previously proposed forms can be written as

U(z) = F,0,(2)+ F0y(2) (6.69)
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where ¥, and ¥, are two prescribed profiles and F, and F;, are two depth independent
quantities, usually related to the surface stress and the bottom stress respectively.

An alternative expression for Eq. (6.17) is

¢ = Wgp(s)+ 29 1pp )

foe f
=l 0r " igdm®],
’g a T o COS Wn 2. (6.70)

This form suggests that perhaps a more suitable form for ¥(z) is

w(e) = "Ysn(e) +1 22 0pg(s), (6.71)

fée f

where SE(z) and BE(z) are given by Eqs. (6.6) and (6.7) or can be obtained nu-
merically for arbitrary eddy viscosity »(z). In a system (such as Heaps’ basin) which
permits an eventual steady state, this form is clearly optimal. When ¢ is sufficiently
large, any other form of ¥(z) will cause the remainder series to contain a non-vanishing
part, i.e.,

Y Ancoswz = }-S—SE() F,0y(z )+zg——}Z—QBE(z)—Fb\Pb(z) . (6.72)

The difference between Eqs. (6.69) and (6.71) is then buried in the remainder series.
Given a truncation error tolerance, one needs to sum a certain number of modes to
compute this buried part no matter how much time passes. If one chooses Eq. (6.71)
for ¥(z), then one will not need to sum over any modes when ¢ is sufficiently large.
For time dependent cases, since the external forces, 7(t), and (t), can be ar-
bitrary functions of time, let us turn to considering single frequency forcing. Con-
clusions from the single frequency study should be illuminating for arhitrary forcing
since the latter can be decomposed into different frequencies. So assume harmonic

time-dependence with the frequency 2,

(t) = re'® (6.73)
w(t) = e (6.74;



Table 6.5: Various forms suggested by different authors for F,¥,(z)+ FyW,(z) in order
to accelerate the convergence of the remainder series.

Authors F, ¥,(z) F ¥ (2) Note
Do || Mtits |0 :
2) Ztman zh sins 0 0 note 1
: +z0)? —
o) poncrons |29 { T S50 (0] e S50 | )
3b) ?sgfﬁggz e Ge+i+1) nhg Gz-1)
-% YN %5 cos 222z -2 vl L:,;',E cos 2%z
4) '?‘l}lnix;ﬁp&:on Y SE(z) 0 0
1993
5) M o |5 SE(z) i BE(2)

Note 1: 7; is the first positive root of yh cos yh + -’:—}sin ~h = 0;
Note 2: 0 < # < 1, introduction of this free parameter is for numerical stability (see

Davies, 1992);

gel
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after which combination of Eqs. (6.70), (6.68), and (6.69) gives

o0 int it
Y Ancosw,z = [zf%—- SE(z) — F,W,(2) + ig-—v-ﬂ-ftt—)g—BE(z) - Fb\Ilb(z)]

n=0

2 i et ig 0
_.Z% FOpY [an 7o +c,,—f- 7ret| coswnz
o0 ! Qe : .
tL At b, [""T;ae Ty V”e‘m] o sz
--nz:% a,,—f-%: + c,.ffg Vn] e~ cos w, z. (6.75)

This equation provides a means for a theoretical assessment of all the previously
proposed forms of the basis functions of {coswnz} which are the eigenfunctions of
Egs. (6.1) and (6.2). If one chooses Eq. (6.71) for ¥(z), one will find (with reference
to Egs. 6.11 to 6.15) that the coefficient of the remainder series is described by,
—n?t L -n?t
AnNmax(Q/f Yf e e ) (6.76)

nt’ nd’ n? ' pd

(in which the first and the third terms are related to the wind forcing and the second
and fourth terms are related to the pressure forcing). When ¢t > 0, the last two
terms in the parentheses approach zero exponentially as n — oo, leaving the first
term (or the second term when 7(¢) = 0) as the controlling term. Substituting all the
previously proposed forms (Lardner, 1990; Zitman, 1992; Davies, 1991; Davies, 1992;
Sheng and Thompson, 1993) in Eq. (6.75) reveals that

Aur = (6.77)
Thus, the form of Eq. (6.71) is preferable to the others as a prescribed part of the
velocity under the basis of the eigenfunctions to the problem of Eqs. {6.1) and (6.2).
(For other basis functions, like {cos 22z}, which are not the eigenfunctions of the
problems of Eqs. (6.1) and (6.2) when x # 0, whether this preference still holds

needs further investigation.)
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6.6 Conclusion

Regarding the pressure gradient force in the two linearized momentum equations as a
local external force, on+ +  tains two step force responses of the local Eulerian velocity.
These responses can be expressed analytically in terms of unit constant wind stress
and unit constant pressure gradient. The coefficients in the expression, however, may
either have an analytical dependence on the mode number, n, and the system param-
eters (8. /h, &), or have numerical values, depending on the form of the eddy viscosity
profile v(z), and the density profile p(z). The response to arbitrary wind and pressure
forcing can be obtained by convolving these two forces with the time derivatives of
the two step force responses. Thus, a full velocity profile, q(t,z; <, 7), is analyti-
cally extracted. Our knowledge of the system would be complete if (¢, z,y) (hence
1(t,z,y)) were known. Thus, the key point is finding the solution for #(t,z,y). To
get n(t, z,y), the transport method solves the continuity equation numerically (where
the transport is supplied by the depth integration of the velocity profile) instead of
solving a set of depth averaged equations of motion. By doing so, the numerical
task is reduced since only one equation needs to be finite differenced and integrated
and, more importantly, the convergence rate is enhanced, since high modes do not

contribute to the transport as much as they do to the velocity or the bottom stress.

6.7 Appendix A: Velocity recursion scheme and
acceleration of velocity convergence using Equa-

tions (19) and (20)

The recursion scheme of Eq. (6.42) can apply to the response in velocity, stress and

transport when one substitutes the corresponding C(z), ¢.(z) and b,. In terms of
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velocity, the recursion scheme is expressed as

/\n = e-bnad
rep = 0
Tuir = -flg:an cos(wnz)(1 — An)
Taly = i"—[]ﬂc,, cos(wyz)(1 = Ay) (6.78)
P8 = P+ O, + O,
= S
(7=0,1,2,..)

where ¢ takes the place of Rp in Eq. (6.42) and a, and b, are given by Egs. (6.11)

and (6.12).
As we can see from the above, in the summation of the series
w .
Y i, (6.79)
n=0

the convergence rate is controlled by the series

oo o]
Y ancos(waz), Y cncos(wnz) (6.80)
n=0 n=0
rather than
[} o0
Y ancos(wnz)An, Y cncos(wnz)y. (6.81)
n=0 n=0

The latter converges much faster than the former, since the factor of ), decreases
exponentially as n increases. We obviously want to take advantage of this fact. This
can be achieved by using Eqs. (6.18) and (6.19) to extract the slowly converging parts

from the summations. Thus we can derive the following more rapidly convergent
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scheme for the velocity recovery,

/\n = e~bndt
TnF =0
Pair = fE0ncos(wnz)(1 = An)
Paln = iglfﬂc,, cos(wyz)(1 — Ay)
_ I _wN .,
er - 7}5: [SE(Z) En-;o @n cos(u’)ﬂ")'\ﬂ] (6¢82)
Ry, = tm [BE(z) = Ln=0Cn cos(wnz))\n]

@ = T+ TR + OR,
7‘531;1) = rgtJF)')‘n + T(j)rnl-r + V"(j)r'ﬂln

(j=0,1,2,..)

6.8 Appendix B: Extension of the approach

The two step force velocity responses are obtained under the assumption of constant
eddy viscosity and constant density. Discussed in this appendix is the extension of
the transport approach to the cases of arbitrary but time invariant eddy viscosity v(z)

and density anomaly p = po[l + €(z,y, z)], where €(z,y, z) stands for the anomaly.

6.8.1 The case of arbitrary depth-dependent v(z)

When v = v(z), the formal solution (like Eq. 6.4 or 6.5) to the step force velocity
response still holds
qt,z; I) = C(z)= Y Ane™ 7, (2) (6.83)
n=0
where C(z) is a steady current ( wind induced or slope induced), and Z,, and 7, are

eigenfunctions and eigenvalues values defined by

o( .02 )

— —_—] = = 6.84

2 (%) = -ruz (6.84
0z
— = = 6.85
az o 01 ZI::-h 0 ( ‘))
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and A, are Fourier coefficients with the respect to the eigenfunctions. The steady
velocity C(z) should be easy to obtain by numerical integration. If the eigenfunc-
tions and eigenvalues are known, then the Fourier coefficients A, can be abtained by

numerical evaluation of

Ay = WI_IT / 1 C(2)2(2)dz (6.86)
where || - || denotes the norm of Z,, and Eq. (6.83) can be evaluated, and the step
force responses in velocity determined. Therefore the main issue here is how to solve
the Sturm-Liouville eigenvalue problem given by Eqs. (6.84) and (6.85). When v(z)
is of some specified form, such as a linear function, exponential, power, etc., there
e«ist various analytical solutions to Eqs. (6.84) and (6.85), (Jordan, 1980) . What
is needed here is a numerical solution of the eigenvalue problem when »(z) does not
admit an analytical solution.

Davies solved the eigenvalue problem using a Galerkin method by expanding each
of the eigenfunction in terms of a set B-spline functions (Davies, 1983) or alternatively
by using the Runge-Kutta-Merson iteration method (Davies, 1986). In the following
a direct way for solving the problem is presented. Without loss of generality, let us

consider the following form of the eigenfunction problem:
w2y = —-€Z (6.87)

2'0)=0,  Z(-1)=0, (6.88)

which can be regarded as non-dimensional forms of Eqs. (6.84) and (6.85). Dividing
[—1,0] into (n— 1) equal parts and applying centered differences on Eq. (6.87) results

m

AZ = -iZ (6.89)
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where
~vsa sy O 0 0 ]
Va2 @z vs;2 O 0
1 0  wvs2 as v 0
A = ) (
(Aa) 5 - : (6.90)
0 - Va2 Gner Vo

| 0 0 - 0 tpypp g
ai = —(vicij2 + Viqry2) (fori=2..n) (6.91)
Z = [22y.. 2,7 (6.92)

where (2, Z, ...Z,] is a set of values of the eigenfunction evaluated at {2, 2; 23 ...z,).
Thus the Sturm-Liouville problem has been turned into a matrix eigenvalue problem.
An introduction to this numerical method of solving Sturm-Liouville problems can
be found in Zwillinger (1989).

For illustration, a computational example is supplied in which the eddy viscosity
profile is specified in two layers and the analytical solutions for the eigenvalues and
eigenfunctions were obtained by Heaps (1981a, 1981b) . Figure (6.10) shows the
eddy viscosity profile and a comparison of the first five eigenfunctions calculated
analytically and numerically. The numerical solution of the eigenvalue problem gives
a satisfactory approximation to the analytical one. Also, we can see that the bottom

logarithmic layer is well resolved.

6.8.2 The case of non-uniform density field, p = py[l1+¢(z,y, 2)]

In this case, there will be an extra component, say ¢’, compared with the case of
barotropic pressure and constant eddy viscosity, in the step force velocity response
contributed by the baroclinic pressure force described by

dq' 8%q'

5?+qu = _gvnd(may»z)""”'é’;{ (6.93)
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Figure 6.10: The top panel is the eddy viscosity used by Heaps (1981a, b), and the
middle panel is the first 5 eigenfunction obtained analytically by Heaps (scanned from
Heaps’ paper). The bottom panel is the first 5 eigenfunctions calculated numerically
by using the method described in the text.
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where
0
N = / edz, (6.94)
subject to the same boundary condition as those in Egs. (6.2). The solution can be
found
¢ = C'()-) Ape” Rt o5 4z, (6.95)
n=0
where
9 (0
A, = -}-l-/hC'(z) CoS wyzdz (6.96)

and C'(z) is a steady solution of Eq. (6.93), which may be found by using Green's

function method. The transport approach introduced above then can be followed.



Chapter 7
Summary and Discussion

Two topics related to shelf dynamics are covered by this thesis: the introduction
of the wave forcing into the shallow water dynamics, and the presentation of a new
numerical method, the transport approach, for solving the 3D linearized equations of
motion which zovern the dynamics.

The wave force originates from a combination of the effect of the earth’s rotation
on the Stoke’s drift and the frictional effects of the surface and bottom wave bound-
ary layers. Unlike classical wave radiation stresses whose existence depends on the
horizontal gradient of wave energy, these two types of wave stresses exist wherever
there are surface waves. The size of these wave induced stresses may not be negligi-
ble compared with typical wind stresses. Chapter 2 derives an Eulerian description
of the wave stress. Dealing with the mean wave force can involve complicated and
lengthy algebra because of the nature of non-linearity, and as a result the Lagrangian
form of the equations of motion is often used. On the other hand, it is desirable to
incorporate this wave force into shelf ciiculation models without altering the usual
formulation of equations (i.e., the Eulerian description). Therefore, this thesis makes
a special effort to simplify the derivation of the wave force while retaining the usual
Eulerian equations.

Chapter 3 establishes a set of general 3D equations which includes both the classi-

cal wave radiation stresses and the stress derived in Chapter 2. Using the assumptions

144
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of small Rossby number and horizontal homogeneity of the wave force, the general
equations are simplified to a linearized system which allows the study to focus on the
mean flow driven by the waves.

A methodology is introduced and used throughout the thesis whereby the re-
sponse of a local Eulerian water column to a step [unction force is first determined,
then a time convolution technique is used to establish the response to an arbitrary
force. Chapter 4 studies the response to a step function of wave force in detail.
The early work of Longuet-Higgins, Ursell, Hasselmann and Madsen were shown to
be limiting cases of the solutions found here. The addition of wave-induced flow to
wind-induced flow enriches the vertical structure of the total flow, as it introduces
another vertical scale ratio, namely the ratio of Stokes depth over the water depth, &8,,
in addition to the existing ratio of Ekman depth over the water, §,/h. Implications
of the wave-driven flow are further discussed. Besides the generation mechanism for
inertial oscillations proposed by Hasselmann (1970), they include the mirror image
wave-induced Eulerian return flow compensating the Stokes drift, a possible expla-
nation for the alorgshore momentum imbalance in the coastal experiments, and the
dependence of wave forcing on large scale topography,

Experimental work testing the existence of the wave forces has lagged theoretical
work. For the virtual wave stress, Longuet-Higgins designed a laboratory experiment
and demonstrated its existence (Longuet-Higgins, 1959). Applied to the real ocean,
this virtual wave stress should induce a surface Ekman flow as if the same magnitude
of wind stress were applied. However there appears to be no studies verifying the
existence of this type of flow in the field. As to the Coriolis induced wave stress, even
its laboratory confirmation has not yet been reported, let alone field observations.
Nevertheless, Chapter 5 of this thesis uses a pre-existing data set, the CASP data,
and investigates whether there is any flow that might be driven by the wave stresses
(the Coriolis induced stress and the virtual stress). Although similar patterns are
found in both the observed cross-shore flow and the simulated wave-driven flow, this

analysis cannot determine whether waves played a role in the observed flow, or if the



146

patterns are due to aliasing effects of wind (winds and waves are correlated in the
CASP data). The results from this preliminary exploration emphasises the need for
an experiment specially designed for investigating flows driven by Coriolis-induced
wave stress.

Chapter 6 provides a new method for numerically solving the 3D linearized equa-
tions for the shelf circulation. The method first treats all the local forces, including
the pressure gradient, as constant forces of unit magnitude and zero angle with re-
spect to the chosen x-axis. Under this treatment, the local water response to these
special forces is easy to obtain. The responses to arbitrary forces are obtained by
using a time convolution technique. The method then combines these step function
responses in a global model to complete the description of the sea surface elevation
field. The philosophy of this method originates from Welander (1957) but has not
previously been implemented. As is demonstrated in Chapter 6, the method brings
a substantial decrease in the computational workload. This can be valuable for a
problem involving many iterations of the solutions, such as data assimilation. In de-
veloping and testing the method, the wave forcing is not included. This simplifies the
computation and makes possible the direct comparison with previous model results
(in which the wave force was not present). The method itself easily allows the ad-
dition of the wave forcing. It also allows the addition of a baroclinic force (specified
diagnostically) due to a non-homogeneous density field.

The development of the method also produced two by-products, which may have
value for any non-time convolution method. These are the n— () grid scheme, and the
extraction of both the wind induced surface Ekman profile and the pressure induced
bottom Ekman profile as a prescribed part of the velocity profile. The former auto-
matically eliminates the spurious residual flow problem (Fig. 6.6), and the latter is an
optimal form for the specified velocity profile in order to accelerate the convergence
of the solution (Table 6.5).

The method is limited to a linearized system. However, since the Rossby number

for oceanic motion is often small, the linearized system is a powerful tool for modelling
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many physical oceanography problems, including tidal flows, storm surges, and shelf
circulation. Using a perturbation technique, the method can, in principle, be extended

to a weakly non-linear dynamic system.
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