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ABSTRACT

The processes involved when continents collide can often only be inferred from
studies of rocks exposed at the surface of the Earth. To determine the forces which cause
the deformation seen at the surface, we can use analytical and numerical models, where
the behaviour of the lithosphere is simplified into a set of end-member styles.

In this thesis, two possible end-member styles for convergent plate boundaries are
investigated using simple analytical and numerical models, which represent the crust
and/or lithosphere as a non-linear viscous thin-sheet. The thin-sheet approximation
reduces the complexity of three-dimensional lithospheric behaviour to two (planform)
dimensions. Use of the thin-sheet approximation restricts the study to large-scale plate
boundary interactions.

Using the models, differences for the length-scale of deformation seen at the surface
are predicted for the two contrasting styles of forcing: (a) where the lithosphere deforms
as one layer, and is indented from the side by a convergent plate of finite extent; and (b)
where the crust detaches from the underlying mantle lithosphere, which subducts at the
plate boundary. Style (a) is referred to as the side-driven model, and has already been
used to explain large-scale continental convergent settings, such as the India-Eurasia
collision. Style (b) is referred to as the basally-driven model, and has not previously been
investigated using a thin-sheet tectonic model.

The first part of this thesis develops analytical and numerical models for the basaily-
driven model, and shows that when crustal deformation is controlled by detachment and
subduction of mantle lithosphere, the scale of the deformation can be parameterized in
terms of a new scaling number, the Ampferer number. In contrast, length-scale
predictions for the side-driven model depend on the lateral scale of the indenter. Predicted
length-scale ratios for convergent vs. strike-slip settings are different for the two cases. A
case with a combination of basal forcing and indenter mechanics is also investigated, and
deforms over length-scales which depend on the strongest forcing parameter.

The predictions of the two end-member styles are tested in a comparison with
natural examples in the latter half of the thesis. On the basis of this comparison, neither
end-member can be rejected as a candidate for deformation style. A further investi_ation
for large amounts of convergence, indicates that a combination of indentation and basal
forcing may best represent large-scale continental convergence. However, the large
uncertainties in the model-data comparisons suggest that length-scale analyses by
themselves cannot be used to distinguish first-order controls on mountain building, and
that further direct measurements of deep lithospheric processes are required.
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Chapter One

INTRCDUCTION

§1.1 Preamble

“.... les structures qui composent un édifice tectonique ne sont pas tout : il y a le
mouvement qui anima, qui anime encore ces choses, car l'histoire continue et nous

vivons, sans privilége d'aucune sorte, a un instant quelconque de cette grande affaire.”

".... the structures that compose a tectonic edifice are not all there is to it; there is a
movement that has vitalised them and that still does so, because history continues and we
live, without any privilege of any sort, at an arbitrary moment of this grand affair."

(Argand, La Tectonique de I'Asie, 1924, p.172)

When Emile Argand presented his classic synthesis of the tectonic evolution of
Eurasia in 1922, the exposed rocks and structures of mountain belts clearly provided the
evidence that the outer layers of the Earth were the product of a long history of movement
and deformation. Plate tectonics theory has since helped to explain orogenesis (mountain
building) in terms of the processes occurring at convergent lithospheric plate boundaries
(Wilson, 1965). Faulting, folding and thrusting are thought to occur whenever
converging lithospheric plates experience net shortening and compression. This is
typically the case for convergence of buoyant continental lithospheric plates, but may also
occur at oceanic-continental active margins (e.g. the Andes).

Despite the advances in our understanding of orogenesis since 1922, plate

tectonics theory by itself cannot provide a complete explanation for the dynamic



interactions which lead to such impressive, large-scale movements of the lithosphere.
Processes for which we have only an incomplete understanding include: the mechanisms
by which compressive stress at plate boundaries is transmitted (i.e. what are the boundary
conditions of the system); the role of rheology (the deformation of material in response to
applied stresses); the interaction between temperature, pressure and deformation in the
lithosphere; and how an orogenic system evolves for a given set of initial and boundary
conditions.

Deformation of the lithosphere progresses over timescales much longer than the
duration of a human life. For this reason, many of the processes of orogenesis cannot be
directly measured as they occur, but must be inferred from the past record contained in
the structure of rocks exhumed at the surface, and imaged using geophysical techniques.
In addition, hypotheses can be tested by utilizing models of the crust or lithosphere. The
results from forward modelling sre compared with observations in order to refine our
ideas about the deformation of the Earth's crust and mantle.

This study makes use of a simple geodynamic model (containing the 'thin-sheet'
approximations) in order to investigate the processes causing deformation at convergent
plate boundaries. (Similar processes which occur as intra-plate convergence are also
investigated). Before describing the model in detail, I summarize in the following sections

the motivation for my approach.

§1.2 Deformation at Convergent Margins: Background Setting,

Theories and Observations

The assumption that lithospheric plates act as essentially rigid bodies is
successful in explaining the geometry and kinematics of the plates at the largest scale, but
fails to adequately account for the deformation at convergent plate boundaries. A map

showing the extent of tertiary and recent deformation at convergent plate boundaries



(figure 1) illustrates that in many cases, especially those involving buoyant continental
crust, deformation extends for hundreds of kilometres into the plates, and certainly cannot
be approximated by the collision of rigid bodies (England and Jackson, 1989). A
particular example is the India-Asia collision zone, which has a width of 2000 km about

the suture zone marking the contact between India and Asia.

Jites of Orogenesis

The type of processes operating at a convergent plate boundary depend on the
relative buoyancy of the respective lithospheres compared to the underlying
asthenosphere, i.e. the gravitational stability of the lithospheric plates. Convergence
involving oceanic lithosphere, with typically thin (~6km) crust, leads to subduction, and
generally the coldest (i.e. most dense) lithospheric plate is consumed at the trench.
Deformation in the overlying plate may be compressional or extensional, depending on
whether the net convergence rate is exceeded by the rate of slab subduction (retreating
plate boundaries) or vice-versa (advancing subduction boundaries), as defined by Royden
(1993a).

Typically, convergence of two oceanic plates creates a small-scale (< 100 km
wide) topographic expression, due to the off-scraping of oceanic sediments at the trench
to form an accretionary wedge, and the development of a volcanic arc above the down-
going slab. If extension is present in the upper plate, marginal basins (e.g. the Aleutian
basin) may form behind the arc. Similar types of basin may also be present for cases of
subduction along continental margins (e.g. the western edge of the Pacific), where the

plate boundary may also be classified as retreating (Doglioni, 1992).

Figure 1:  Map showing the Tertiary and Recent sub-aerial extent of mountain ranges

and island arcs (shaded). Figure modified from Bott, 1982.
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Significant orogenesis is only likely at (a) advancing subduction boundaries
where the upper lithospheric plate is continental; and (b) continent-continent convergent
boundaries. Both (a) and (b) are the subject of this study. For sigificant durations of
convergence, the continental lithospheric plates in these cases may exhibit considerable
thickening and deformation. This may occur by processes such as (a) thin-skinned folds
and thrusts along a shallow detachment surfacc, anc (b) thick-skinned deformation of the

crust and/or mantle lithosphere.

Models of Orogenesis

The mechanics and topographic expression of accretionary wedges and thin-
skinned fold and thrust belts have been successfully modetled using the static analysis of
a self-similar critical wedge (Chapple, 1978; Stockmal, 1983; Davis ¢t al., 1983; Dahlen,
1984; Dahlen and Suppe, 1988, Platt gt al., 1986, and others). Most of these models
assume a Coulomb (frictional) rheology with a basal shear stress everywhere on the verge
of frictional yield. The self-similar topographic expression predicted by critical wedge
theory is analogous to the shape created when sand is pushed along a slope by a
bulldozer. Most critical wedge studies assume an indenter of infinite vertical extent above
the basal decollement. However, when the indenter has a finite height, or is replaced by a
corresponding boundary condition at the base of the model, two oppositely verging
wedges are produced (Malavieille, 1984; Koons, 1990; Willett gt al., 1993).

Static wedge analysis is only useful for predicting the geometry of systems which
have attained, or are close to, steady state (i.e. for which there is no net change in the
geometry of the orogen) (Barr and Dahlen, 1989; Dahlen and Barr, 1989). The necessary
assumptions of self-similarity, and static critical topography, precludes a mechanical
analysis of the development from small to large-scale crustal thickening, and subsequent
variations in the state of the orogen (whether it is in a constructive, steady-state or

destructive phase) (Jamieson and Beaumont, 1988). These limitations have motivated the



development of dynamic cross-sectional models of the crust, such as numerical models
which employ the plane-strain approximation. Willett (1992) and Willett gt al. (1993) use
the assumption of an incompressible plastic-viscous crust, with prescribed velocity
boundary conditions, to explore the behaviour of compressional orogens. Their basic
assumption is that deformation is driven by the detachment and subduction of underlying
mantle lithosphere at the site of convergence. Although simple, the velocity boundary
conditions can be shown to produce several features that are strikingly similar to
observations from structural geology, exhumation patterns, and deep seismic reflector

patterns (Beaumont and Quinlan, 1994).

Cross-sectional models of the crust, such as that discussed above, preclude the
investigation of oblique convergence and variations in the shape of plate boundary zones.
An alternative set of two-dimensional models have been developed to investigate these
cases, using the thin-sheet approximations (England and McKenzie, 1982; Vilotte gt al.,
1982; Bird and Piper, 1980), which neglect cross-sectional shear stress. The lithosphere
may generally be treated as a thin-sheet provided the deformation being investigated takes
place on a large planform scale, in comparison to the thickness of the lithosphere. Thin-
sheet models have primarily been used to investigate the effects of indenters of finite
lateral extent (e.g. whether India is indenting Asia (England and Houseman, 1986)}, and
also to determine approximate length-scale relationships between indenter shape,
obliquity of the convergence, and the rheology of the lithosphere (England gt al., 1985).
These investigations generally prescribe velocity boundary conditions along the sides of
the model domain, and assume that the crust and mantle do not deform independently.

More recently, fully three-dimensional numerical models of the crust have been
developed (Braun, 1993). These models promise to unite the concepts investigated in
cross-sectional and planform models of the crust and lithosphere. However, one- and
two-dimensional approximations are still be useful in providing a first-order intuitive

grasp of the processes of orogenesis.



Forces Driving Deformation

In order to develop a set of valid boundary conditions for models of orogenesis,
the forces that drive deformation at convergent plate boundaries must be specified. They
will be a combination of: (a) forcing at the sides of the deforming region, caused by
exterior body forces (crudely, 'ridge push' and 'slab pull' forces, which are caused by
gravity acting on variations in density (Forsyth and Uyeda, 1975)); (b) forces at the
bottom of the deforming region, due to the movement of lower layers; and (c) body
forces such as the effect of topographic loads (excess crustal thickness).

The mechanical models of convergence discussed above have expressed a
dichotomy in postulated driving mechanisms. Thin-sheet models have mostly been used
to investigate large-scale deformation using velocity or stress boundary conditions applied
to the sides of the modelled region, as illustrated in Table 1, which summarizes some of
the thin-sheet studies to date. The implicit assumption is that horizontally transmitted
stress (e.g. ridge push or slab pull) drives deformation, and that tractions on the base of
the lithosphere are negligible. In contrast, some plane-strain models of the crust assume
that continental collision is driven by the detachment and subduction of the underlying
mantle lithosphere (Willett et al., 1993). In this instance, the driving mechanism is
forcing along the base of the crust or deforming layer. The contrasting assumptions

produce different predictions of first-order deformation styles.



Table 1: Summary of Thin-Sheet Tectonic Studies

Authors Description of model | Boundary conditions | areas investigated
Molnar and Planform plane India-Asia collision
Tapponnier (1975); | strain model of %?L /4
Tapponnier and lithosphere; used y M
Molnar (1976) rigid dies to indent a L X
rigid-plastic medium
Bird and Piper Thin sheet model of California
(1980) crust; rigid-plastic
upper crust; viscous
lower crust ] L \ [
X
England and Thin sheet model of India-Asia collision
McKenzie (1982), | lithosphere; viscous
(1983); England and | power-law rheology; y
Houseman (1985), | side indentation by f-»x
(1986) (kinematic) indenter
England ¢t al. (1985) | Analytical solutions General
for thin sheet, plane y investigation of
strain cases with L < strike-slip and
sinusoidal boundary convergent
conditions T\.c:...;_.‘b deformation
N~
Sonder et al. (1986) | Thin sheet model of California
lithosphere; strike-
slip velocity/ stress

boundary conditions




Vilotte et al. (1982) | Thin sheet model of India-Asia collision
lithosphere with
(kinematic) indenter y
L.
T
Bird and Thin sheet model of Western US
Baumgardner (1984) | crust with basal
boundary \ AN
conditions, non- L
deforming mantle ¥
Bird (1989) Thin sheet; full 2- Western US
sheet solution (crust 3
and mantle) x
y
Wdowinski et al. 1D thin sheet model Andes, Aegean
(1989) of lithosphere with
fluid mantle L\Q‘—'
asthenosphere, basal ®
coupling
This study 2D thin sheet model Oblique
of crust with basal | - convergence
coupling to mantle | z - S Y
through weak layer; z 4 /\
mantle kinematically

specified
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§1.3 Motivation for this Study

This study attempts to distinguish which of the two different end-member
hypotheses discussed above (that convergent deformation is driven by side or basal
forcing) better represents the driving forces causing deformation at convergent plate
boundaries. The crustal sheet is isostatically compensated by assuming that the mantle
lithosphere acts as an elastic plate. I use a planform thin-sheet model of the crust which is
driven by basal forcing. I also investigate cases where side forcing, or a combination of
side and basal forcing, is present.

Part of the thesis focusses on finding the range of parameters for which the model is
valid, because the use of a traction at the base of the crust is not strictly compatible with
the thin-sheet assumptions. I also investigate how the assumptions concerning the
behaviour of the mantle lithosphere modify the isostatic balance of the crustal thin-sheet,
by comparison with a local compencation mechanism.

I compare the length-scale relationships predicted by the models to various
geological examples of previously and currently active orogens. Although the
comparisons are primarily conducted using scale analysis, I also use numerical models to
investigate some of the features of large-scale orogenesis, such as the effect of crustal

thickening on buoyancy-driven forces and crust-mantle coupling.
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§1.4 Summary of Thesis Chapters

Following from the general background described in chapter one, I start the second
chapter with a brief discussion of possible choices for boundary conditions in
geodynamic models of lithospheric convergence. I also discuss the basal boundary
conditions used in this study, which use the assumption that crustal deformation is driven
by basal forcing from the underlying mantle lithosphere, and then outline the formulation
and implementation of the basic model. In chapter three the model is tested by comparing
one-dimensional model results with the equivalent problem solved using the plane-strain
method. After finding the valid parameter range for the thin-sheet approximation, I
discuss the rheological basis for my choice of model parameters, and investigate the effect
of these parameters on basic, one-dimensional model behaviour.

The basally-driven thin-sheet model is used to investigate a simple problem of
oblique lithospheric convergence in chapter four, and by considering the resulting strain
partitioning between normal and transcurrent deformation, demonstrates both analytically
and numerically that the side-driven and basally-driven models predict different results.
The case with both side and basally-driven deformation is also investigated. The
implications of these results are discussed in the subsequent chapter, in which I conduct
some simple scale analyses of active convergent margins.

In chapter six, some predictions are made concerning the evolution of length-scales
with increased normalized convergence, and compared to the length-scale data from
natural examples. The chapter also includes some suggestions for physical plate boundary
settings which may correspond to the end-member ideas investigated in the thesis.
Chapter seven concludes the thesis, by reviewing some of the length-scale results, and
the predicted differences between crustal deformation driven by indentation from the side,

vs. detachment and subduction of mantle lithosphere.



Chapter Two

METHOD

§ 2.1 Crust-Mantle Interactions in Continental Convergence

The behaviour of the lithosphere under compression is a consequence of complex
interactions between boundary forces, body forces, and the distribution of mechanical
strength in the crust and mantle. Geodynamic models reduce this complexity by
investigating simple end-member types of lithospheric behaviour. One of the simplest
end-member assumptions that may be made when using numerical models of continental
convergence, is that the crust and upper mantle deform together in a vertically averaged
way, without detachment, and with no shear between them (figure 2(a)). Under this
assumption, the crust and mantle deformation length-scales (Ay, where the subscript N
indicates that the length-scale is for deformation normal to the plate boundary, and Am,
with the subscript denoting ‘mantle') are necessarily the same.

In thin-sheet models of the case where crust and mantle lithosphere deform together
(figure 2(a)), local compensation is commonly assumed, and the density contrast at the
bottom of the lithosphere is neglected so that the effect of mantle thickening is not
incorporated in the deformation (England and McKenzie, 1982). When shear stress at the
base of the lithosphere is also neglected, the lithosphere is considered to be driven by
horizontally transmitted stresses, so that the length-scales are determined by the
dimensions of the indenter along-strike (England et al., 1985). If shear stresses from the
asthenosphere are assumed to be significant, the length-scales also depend on the strength
and style of forcing from the base of the lithosphere (Wdowinski et al., 1989).

Reviews of the rheological stratification of the continental crust and mantle

12
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(Ranalli and Murphy, 1987; Ord and Hobbs, 1989; Carter and Tsenn, 1987) suggest that,
for a typical range of geotherms, one or more local strength minima may be present at
intermediate depths in the lithosphere. In particular, for a limited range of crustal
geotherms and rheologies (Ord and Hobbs, 1989) a local strength minimum will coincide
with the base of the crust. The existence of such a 'crustal asthenosphere’, or
‘asthenolayer’ (Lobkovsky and Kerchman, 1991), as a region of low strength or effective
viscosity, permits the crust and mantle lithosphere to decouple along this weak
detachment layer.

Figure 2(b) illustrates how the crust and mantle may decouple along the weak layer,
and deform with different characteristic length-scales, so that AN # A, (figure 2(b)). In
the thin-sheet approximation of this problem either two coupled thin-sheets are used to
represent the crust and mantle lithosphere (Bird, 1989), or the velocity field of the lower

region is specified (Bird and Baumgardner, 1984).

Figure 2: A diagram depicting possible end-member styles of lithospheric
deformation. Ay is the length-scale of deformation in the crust normal to
the direction of convergence, and Ay, is the length-scale of deformation or
detachment in the mantle lithosphere. (a) case where the whole lithosphere
deforms with no shear between crust and mantle lithosphere, so that Ay =
Am; (b) partial detachment between crust and mantle lithosphere such that
the mantle contracts with a different length-scale to the crust, AN # Ap; (C)
subduction of mantle lithosphere, Ay, -> 0. The lightly shaded regions
indicate areas of contraction and deformation. The dark shading in (b) and
(c) shows the position of a weak layer between the crust and mantle
lithosphere. The style of deformation will depend upon the rheological
layering in the lithosphere and the type of mantle deformation. This study

explores cases (c) and compares results to previous studies of case (a).
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If the negatively-buoyant mantle lithosphere is much stronger than the crust, it may
detach along the weak layer, and subduct without significant internal deformation (figure
2(c)). The subducting layer will pass down below the neighbouring region of mantle
lithosphere along another weak, sheared layer, represented by the symbol 'SZ' (for
‘Shear Zone") in figure 2(c)). In the limit that the mantle length-scale Ay, — 0, the crust
experiences a velocity discontinuity at point S, where the mantle lithosphere detaches.
More generally, A, # 0, and in numerical models its value may either be specified
kinematically, or determined dynamically.

The 'mantle subduction’ assumption of figure 2(c) was used by Willett gt al. (1993)
to interpret the large-scale structure and mechanical behaviour of convergent orogens.
Use of these boundary conditions with a non-cohesive Coulomb rheology produces a
doubly-vergent wedge, which at the largest scale reproduces many of the features of
convergent orogens.

In order to investigate the effect of basal forcing on crustal deformation, this
study also investigates the boundary conditions of figure 2(c). Predictions concerning
length-scales of deformation for this case, are compared with the results of previous
studies which use the boundary conditions of figure 2(a). For convenience, I refer to the
model style illustrated in figure 2(a) as the 'side-driven' model, and the model style in
figure 2(c) as the 'basally-driven’ model. I caution that, as is evident from the discussion
in this section, there are many alternative views of crust-mantle interactions during
continental convergence (e.g. England and McKenzie, 1983; Bird, 1989). Differences
between the predictions of the cases investigated here, and the deformation length-scales
of natural orogens (e.g. see chapter five), give an indication of the excessive
simplification of the models compared to the real processes involved in collisional

orogenesis.
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§ 2.2 Applying the Basally-Driven Model to Other Convergent Settings

The similarity between the mantle subduction boundary conditions illustrated in
figure 2(c) and lithospheric subduction has led to the idea that there may be a continuous
range of convergent behaviour from continental collision, where the mantle lithosphere
detaches and subducts, to oceanic subduction, where both crust and mantle detach at a
lithospheric shear zone and subduct. This idea was used by Willett gt al. (1993) and
Beaumont gt al. (1994b), and is shown in figure 3.

Figure 3(a) corresponds to the continental collision, basally-driven medel of figure
2(c), with the weak detachment layer (not shown) at the Mcho, so that only mantle
lithosphere subducts. Partial crustal subduction is illustrated in figure 3(b), where the
weak layer does not correspond to the Moho, but to a shallower depth in the crust.
Finally, total subduction of the lithosphere is illustrated in figure 3(c), and corresponds to

ocean-continent, or ocean-ocean, subduction.

Figure 3:  Proposed boundary conditions for the basally-driven model, with
progressively more crust subducted along with the mantle lithosphere. ¢p
is the crustal mass flux entering the pro side of the orogen, and S
represents the singularity. (a) Continental convergence, where detachment
occurs at the Moho, and the subducted crustal flux ¢g=0. (b) Partial
crustal subduction, where detachment occurs along a crustal asthenolayer
above the Moho (dashed line), and 0< ¢s< ¢p. (c) Lithospheric
subduction shown for oceanic-continental convergence, with ¢g = ¢p,
and the thinner, denser oceanic crust subducting along with the mantle.
Nails on left-hand side of figure represent fixed crust and mantle

lithosphere.
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Figure 3 also shows the mass fluxes ¢p (Beaumont et al., 1994b), where the 'P'
indicates flux of mass entering from the 'pro’ (upstream) side of the singularity, and ¢g,
the amount of crustal flux which is subducted along with the mantle lithosphere (the
terminology 'pro’ and 'retro’, indicating the upstream and downstream sides of the
singularity, comes from Willett et al., 1993).

Willett et al. (1993) also suggested another range of possible detachment
behaviours, where the initial point of detachment (S) moves with respect to the retro side
of the lithosphere. Figure 4 shows the two possible behaviours for continental
convergence. Motion of th= singularity in the pro-direction will cause advance, and the
opposite motion will cause retreat, of the subducting layer (figure 4). Retreat and advance

may cause mass to be added or removed from the retro-side of the lithosphere (Beaumont

et al., 1994b).
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§ 2.3 Boundary Conditions usea in this Study

Continent-Continent Convergence

In this study it is assumed that some aspects of continental convergence involve the
detachment and subduction of mantle lithosphere beneath the crust, as discussed above
and illustrated in figure 2(c). The crust and mantle are separated by a weak asthenolayer.
Because the mantle lithosphere is assumed to be much stronger than the overlying crust, it
is assumed to be below yield stress, and remains elastic. The mantle lithosphere is
therefore assumed to subduct with little internal deformation. If the subduction occurs by
elastic flexure, without exceeding the yield stress in the mantle except along the shear
zone SZ (figure 2(c)), an appropriate model for the crust is a thin viscous sheet, deformed
by the application of a specified mantle velocity field through a weak layer, which causes
a traction on the base of the model crust. The weak basal layer is assumed to be thin in
comparison to the thickness of the sheet. The model is isostatically compensated by
elastic flexure in the strong part of the mantle lithosphere. (Elastic flexure is defined as the
elastic bending of a layer in response to an applied load. The layer will return to its

original shape if the load is removed).

Figure 5: A schematic illustration of the basally-driven thin-sheet model. (a) the
velocity boundary conditions applied at the crust-mantle interface. The
darkly shaded region is the thin weak layer at the base of the crust throvgh
which the specified mantle velocity field acts on the crust. (b) the material
properties of the model crust and weak basal layer; (c) the compensation
mechanism for the model. The crust is supported by elastic flexure of the

strong part of the mantle lithosphere.
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The formulation follows the approach of Bird (1989) and Bird and Baumgardner
(1984) by modelling the continental lithosphere as two separate layers (crust and mantle
lithosphere). Like Bird and Baumgardner (1984), the mantle is not modelled as a viscous
thin-sheet, but has specified velocity and flexural properties. Although I continue to use
the term lithosphere, in reality the crustal thin-sheet is planar and does not follow the
curvature of the earth. The crust and mantle are linked by the vertical force balance, and
by the simple shear boundary layer, which transmits the specified mantle lithosphere
velocity as a traction to the base of the crust (figure 5).

The parameters used in the model are shown in figure 5, and the standard
parameter values are listed in Table 2. For a linear viscous crustal rheology, the thin-sheet
has viscosity i, and initial thickness Sg, and is subject to the specified basal velocity field
um(x,y), which acts through the low viscosity simple shear boundary layer, with
viscosity My and thickness h (<< Sg), to apply a traction to the base of the sheet (figure
5(a)). The corresponding non-linear creep parameters, B¢ and By, are also shown on
figure 5, and are discussed in Appendix C. In the far-field away from the plate boundary,
unm(x,y) = ug. The initial horizontal detachment length-scale for detachment between the

crust and subducting mantle lithosphere (figures 2(c), 5(a)) is Ay. The crustal sheet is
isostatically compensated as it thickens (figure 5(b)).

Maoadifications for Other Types of Convergence

Although the model boundary conditions discussed above are formulated for the
case of continent-continent collision, other types of convergence, as discussed in section
2.2 and iuustrated in figures 3 and 4, may also be modelled by changing the position of
the weak detachment layer and singularity, and by modifying the thickness and material
properties of the crust. The corresponding model boundary conditions for these cases are

discussed in chapter six.



Table 2: Parameters used in the model
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Pc density of crust h thickness of basal layer
Pm density of mantle L | Depth of compensation
He crustal viscosity u | crustal velocity
Hb basal viscosity up | imposed boundary velocity
B vertically averaged material uy | imposed velocity at the top of the
constant for a power law viscous mantle lithosphere
crust
By vertically averaged material Am | basal detachment length-scale
constant for a power law viscous
simple shear layer
n power law exponent AN | crustal response length-scale for
normal convergence
S crustal thickness At | crustal response length-scale for
transcurrent motion
So initial crustal thickness
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§ 2.4 A Crustal Thin-Sheet Model Driven by Basal Velocity Conditions

Formulation

Neglecting inertial acceleration in the Earth's frame of reference, the force balance in

the crust and mantle lithosphere is:

96
-5;?+ pga; =0 @=00-0) . (1)

3

where oj; is a component of the stress tensor, p is the density, and g the acceleration due

to gravity. The force balance equation is combined with the equation for deviatoric stress:
Tij = Gij + psu ..... (2)

where p is the pressure, and p = -(1/3)0. Firstly, consider deformation in the x-z

(i=x, z) plane only, where z is measured vertically upward. Combining (1) and (2), the

horizontal force balance is;
do,, , d6,, _0Ot,, . O%T,, Op
+ — + s — O ..... 3
ox 0z ox 0z 0Ox ()

The horizontal force balance can be vertically integrated over the lithosphere,
provided we can estimate the pressure gradient, dp/ox. The vertical force balance in the
lithosphere is:

dG,, . 90,

2z ok oz @ ox 2

Although the shear 7x; from the boundary layer propagates into the mantle
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lithosphere, it does not cause significant horizontal shear, because the mantle lithosphere
is assumed to be elastic. Within the crust, the contribution of the horizontal derivative of

shear stress (0t,x/0x) to the vertically integrated force balance is negligible, provided, as
shown in Appendix A, that the effective strength of the basal layer is much less than that

of the crust. The contribution of dt,,/0x to the integrated vertical force balance in the
basal simple shear layer will also be very small, provided the simple shear layer thickness
is much less than the crustal thickness S. Therefore the term 97,4/dx can be neglected
when integrating (4) with respect to depth to get an expression for the pressure p(z):

xot

Z
p(z) =Py~ jpgdz' + | d7
0 0 az

The lithosphere is assumed to be isostatically compensated, with pressure P, at
z=(), below the elastic mantle lithosphere (figure 5(c)). For a crustal load S(x), the elastic
portion of the mantle will be deflected by an amount w(x). Because the strong part of the
mantle lithosphere is elastic, it does not contribute a dynamical term to the pressure, and
so the deflection w(x) can be calculated from the equation for an elastic beam (Turcotte
and Schubert, 1982).

The vertically integrated pressure to the bottom of a general lithospheric column, as

shown in figure 5(c), is:

L-w L+S-w L+S-w
Pp = (L+S-w)Py - [pngzdz~ [pgzdz+ [t,dz
0 L-w 0

where L is the thickness of the lithosphere for a reference vertical column with no crustal
thickening, S(x) is the thickness of the crust, p is the crustal density, ppy the maniie
density, and w(x) is the deflection of the elastic beam. The deflection w(x) may be written

in terms of a flexural perturbation wg(x) on the locally compensated deflection Spe/pm:
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w(x) = £ §(x) - w;(x)

m

Substituting this into the vertically integrated pressure gives:

L-sPe
P L+S¢
PL=|(L+S0)pngl — [pngzdz— [pcgzdz |+
0 L-sbe
_oPe _oPe
LS o W L SB_:'W‘ L-So+w, L+S¢+w,
Pm8Lwy - j Pmgzdz + j p.gz dz - _’. pgzdz |+ ,I Tz 42
L-sbe L-sf L-5¢ 0
P Po
where ¢ is the isostatic amplification factor:
Pe
¢=1-L=
Pm
This expression simplifies to:
2 2 2  L+So+w
PL = chd)S + ngL __ngwf + j‘ Tz‘z dz . (5)
2 2 2 0

The effect of flexure on the pressure is to add the extra terms in wr to the vertically
integrated pressure for the locally compensated case (cf. England and McKenzie, 1983).
The vertically integrated pressure gradient is:

L+8¢+
Pog03S” _ pngdwe T Oy, o)

2 ox 2 ox 0 ox
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Integrating the horizontal force balance (3) over the lithosphere and combining with

(6) gives:
L+So+wg 3 L+s¢+51f
Txx TXZ
X4z + dz
j ox dz 0z
0 0
02098 pogdwl (ot
= (o a:f e e (7

0

The perturbation in mantle deflection, wf, will compensate crustal thickness
variations over a length-scale determined by the flexural parameters. However, it is
shown in Appendix B that wr is not significant, provided the crust thickens over a length-
scale greater than approximately twice the flexural wavelength. This length-scale
restriction on locally compensated crustal deformation approximately concurs with the
length-scale restrictions placed on the model due to the thin-sheet approximation (see
chapter 3). Terms in wg(x) are therefore neglected for subsequent derivations, although an
incorporation of this term into the force balance may be necessary for cases where
significant amounts of thickening of the crust are expected.

The elastic mantle lithosphere is below yield, and it is assumed that one limb
subducts passively beneath the other by elastic flexure, under the weight of the subducted
limb. Consistent with this assumption and the kinematic treatment of the horizontal
boundary conditions at the base of the simple shear layer, the contributions from shear
stress gradients in the mantle to the horizontal force balance are not included when
integrating eq. (7).

Within the crustal layer, following the thin-sheet assurnption, the vertical derivative
of shear stress Txz is taken to be zero, so that the second term in eq. (7) reduces to Tby,,
the shear traction applied at the base of the crust. The validity of this approximation is

established by comparing the thin-sheet solution to the complete plane-strain solution of
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crustal deformation in chapter 3.

With these simplifications, eq. (7) becomes:

AST) v _ PeEDIS
255l 4, = BB (8)

where the overbar denotes a quantity vertically averaged over crustal thickness S, so that:

_ 1 L+S%
Txx =3 I Tyx 2
L-sfe

and the incompressibility condition T, = -Txx has been used to eliminate Tz;.

Stresses are averaged over S(x), so the horizontal derivative on the left-hand side of
eq. (8) must include both the crustal thickness and average deviatoric stress terms. This
differs from thin-sheet models where siresses are averaged over L, the lithospheric
thickness (e.g. England and McKenzie, 1982). For these 'whole lithosphere' thin-sheet
models, sheet thickness variations due to excess crustal thickness AS are of order AS¢
which is much less than L, so the horizontal derivative dL/ox may be neglected. For a
crustal thin-sheet, variations in crustal thickness are of order AS which may be a
significant fraction of S, so the horizontal derivative dS/dx may be significant.

The mantle lithosphere, which has horizontal velocity upy(x), interacts with the
model crust, with vertically averaged velocity T(x), via the thin basal boundary layer of
thickness h. If the boundary layer has a linear viscosity, [y, the horizontally-applied

traction at the base of the crust can be found from Couette flow! (Turcotte and Schubert,

1 The assumption of Couette flow in the basal layer is justified for cases where the
thickness of the weak basal layer is much less than total crustal thickness (h<<8), and for
reasonable viscosity contrasts between the basal layer and average crustal values (Uy/pc >
10°6). For extreme cases, where h is a much larger fraction of S, and/or viscosity
contrasts are large, channel flow may dominate in the basal layer beneath areas with
significant crustal thickness contrasts (Royden, submitted). The likelihood of a change to
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1982) to be:

by, = —%f’-(’ﬁ— o) (9)

For a crust with linear viscosity i, the constitutive relation is:

du

AT =2p.c$ ....(10)

where, as before, the overbar denotes a quantity vertically averaged over crustal thickness

S. Eq. (8) becomes, in terms of the vertically averaged horizontal velocity:

0%u 9Sou _ p.gd oSt | uy
g2 U gy DO _PBEYO L Fb
WSS Tt M5 52" 2 ax T h

U-uy) «(11)

Eq. (11) is similar to the expression found by Wdowinski ¢t al.(1989), except that
it solves for average crustal, instead of lithospheric, velocity. Normalizing the equation
using the horizontal mantle detachment length-scale Ay, the velocity in the far-field where
the crust and mantle lithosphere are moving with no shear between them, ug, and a

vertical length-scale, the initial crustal thickness S, :

gives:
20y 7 Y=/ 2 2
J°t’ 098’ du _ ch¢so7"ﬂ g + Hp )‘m_-(ii’-—u;n)

S + =
ox?  ox’ox’  8u.uy ox’ 4y hS,

channel flow behaviour during contractional thickening is discussed in chapter three, with
reference to the results of Royden (submitted).
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which can also be written as:

%W 9S'dw _ AroS? . Am .,

’ = + - (12
M i i o R (12
where:
Ar = M% and Am= _‘ﬂa_x_'_nlz_
2l ug uchs()

The form of eq. (12) shows that for the linear viscous case, variations in all
important parameters can be represented by the three dimensionless numbers Ar, Am and
t’ (Table 3, figure 6). The two dimensional form of eq. (12) in normalized tensor notation

can be shown to be:

d .00 9 .ou .00 9§52 -
Zax{(s ax;)+ax;(s axg+S ax{)—Ar o, + Am(T; — upy;) «.(13)

where repeated indices imply summation, and if the strike of the applied boundary
conditions is in the y-direction, i=x gives the equation for th. normal component of
velocity, and i=y the equation for the transverse component. U and ug,; are the ith
component of the average crustal and mantle velocities, respectively. In the absence of a
basal shear, the last term of eq. (13) may be dropped, and the equation reduces to a form
similar to that found by England and McKenzie (1983), but with velocity terms now
averaged over model crustal thickness S rather than constant lithospheric thickness L. The
equivalent equation for a non-linear viscous rheology is derived in Appendix C.

The equation (13) can be solved using the finite element technique on a deforming
(Lagrangian) grid. Crustal thickness S'(x,y) is updated at each timestep using

conservation of mass:
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a8’ 9(S'T))

o ox]

w..(14)

Table 3: Table of dimensionless parameters

Ar Argand number

(ratio of gravitational buoyancy force: compressive force in crust)

Am Ampferer number

(ratio of basal traction force: compressive force in crust)

t’ dimensionless time

n power-law exponent

Figure 6: A diagram summarizing the controlling parameters of the thin-sheet
problem into the ratio between three forces influencing crustal
deformation: (a) the compressive force in the crust, Fy; (b) the
gravitational buovancy force due to excess crustal thickness, Fa; and (c)
the basal traction force, F3. The ratio between F3 and F gives the Argand
number, Ar, which can also be written as ihe ratio of two stresses, since
both Fj and F3 scale with Sg. The ratio between forces F3 and F) gives
the Ampferer number Am, which can also be written as the ratio between
two stresses, scaled by the length scale ratio (Am/So).
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The Argand and Ampferer Numbers

Gravity acts to diffuse the crustal thickness contrasts created by crust-mantle
interactions. The Argand number, Ar, represents the relative importance of gravitational
forces generated by crustal thickness gradients compared to the compressive forces
present in the model crust (figure 6). The consequence of a non-zero Argand number
increases with dimensionless time as the orogen grows. England and McKenzie (1982)
proposed the name 'Argand' to describe a derived non-dimensional scaling quantity,

representing the ratio of excess pressure caused by crustal thickness contrasts vs. the

stress required to deform the lithosphere at a characteristic strain-rate, €:

England & 2
Arl\/;::gl(?nzie = PPl (n=1)

Zucuﬂ

(England and McKenzie, 1982), where L is the thickness of the lithosphere.

Emile Argand was a Swiss geologist who was instrumental in applying Wegener's
ideas of continental drift to explain the large horizontal movement of the Alpine nappes,
and later to other orogens in Eurasia, including the Himalayas and Tibet. The Argand
number is thus, appropriately, a measure of the ratio between two horizontal stresses or
forces. The definition for Ar used in this study is similar to the Argand numbers of
England and McKenzie (1982), and also Wdowinski gt al. (1989), but now includes both
horizontal and vertical reference length-scales, and therefore must be interpreted as a force
ratio, rather than a stress ratio.

In a similar manner to the introduction of the Argand number by England and
McKenzie (1982), Ellis et al. (1995) proposed the name Ampferer number (Am), to
represent the amount of coupling between the crust and underlying mantle (figure 6). Otto
Ampferer postulated that crustal compression was related to the apparent underthrusting
of forelands beneath orogenic belts (Ampferer, 1906). Ampferer and Hammer (1911)

€
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termed the process 'Verschlukung', in which a series of sub-crustal currents dragged the
overlying crustal rocks beneath the growing orogen. Ampferer in many ways anticipated
the more modern idea of A-type subduction (Bally and Oldow, 1984), in which part of
the continental crust is subducted, creating large-scale decollement folding and thrusting
in the overlying crust.

The Ampferer number as defined is similar to the dimensionless parameter used by
Wdowinski gt al. (1989):

HaD
4“. lL

for a lithospheric sheet, where p, and p are the asthenospheric and lithospheric
viscosities, respectively, L is the thickness of the lithosphere, and D is the horizontal
extent of deformation. However, the dimensionless parameter Am used in this study
differs from Wdowinski et al. because of the use of two length-scales to normalize the
equation (13): crustal thickness Sp, and the horizontal mantle detachment length-scale Ap,.
The Ampferer number thus contrasts the basal traction force with the level of compressive
force present in the crust, as characterized by the relative strengths of the crust and basal
layer, and the length-scale ratio (Ayy/Sg). Appendix E and chapter 4 show that Am may be
used to derive the natural response length-scale of the crust (AN for normal convergence)
to basal forcing at length-scale Ap,. In the limit as pp becomes much less than pg,

Am/AN — 0 and coupling becomes weak.

Although the definition for Am is related to the applied boundary conditions used in
the model, a general Ampferer number will exist for any situation where crustal or
lithospheric deformation is influenced by basal forcing, and will be the ratio of the basal
traction force to compressive force in the deforming layer. For example, Platt (1993)
developed descriptions of the velocity distributions for critical topography in obliquely

convergent wedges, with three different assumed rheologies (linear viscous, perfectly



35

plastic, and non-cohesive Covlomb). For each case, the velocity distributions were
shown to depend on the relative strengths of the wedge and the coupling with the base
and backstop. For a wedge with velocity dependent shear stress boundary conditions,
where coupling to the base and backstop is proportional to constants p and ¢, the resultant
velocities within the wedge are scaled by an equival” i . ipferer number, containing the
ratio of a function of the coupling constants p and q to the material strength of the wedge
(Platt, 1993).

If the mantle detaches at a singularity (i.e. A is zero), the equation (13) may be

normalized using only the vertical length-scale Sp, so that Am may be written as:

Am:ubso
Hoh

The form of the normalized equation (13), and the dimensionless parameters Ar and
Am, demonstrate that the thickening in the crustal sheet is a result of a competition
between the viscous resistance to deformation, basal traction forces, and the gravitational

forces due crustal thickness gradients.

§ 2.5 Numerical Implementation of the Basally-Driven Thin-Sheet Model

Introduction

The governing equation (13) may be solved analytically for certain cases (see
section 4.2). More generally, a two-dimensional finite element numerical method is used
to solve (13) at a finite number of nodal points, with velocity boundary conditions applied
to the base and sides of the domain, Q (figure D1). I use a finite element code adapted
from a program written by Philippe Fullsack (Fullsack, 1995; Willett, 1992; Beaumont ¢t
al., 1992). This section and Appendix D summarize the particular modifications of the

code to solve the governing thin-sheet equation (13), and the interaction of basal and



36

crustal layers. For a general overview of the finite element numerical method, the reader
is referred to the wide assortment of books written on the topic (e.g. Zienkiewicz, 1977,

Norrie and deVries, 1978).

Prescribing the Grid and Velocity Boundary Conditions

A simple mesher routine is used to linearly interpolate grid coordinates between
prescribed points from the input files. The grid covering the crustal domain may be
regularly spaced on input (e.g. figure 7), or may have increased resolution near the basal
detachment point. To minimize numerical errors, care must be taken when designing the
grid to avoid juxtaposing elements of extremely different size (Akin, 1986). Because the
representation of the crust is two-dimensional (planform), the vertical description of the
model crust is restricted to a value of the crustal thickness S(x,y) for each element, from
which the corresponding height field can be computed, assuming local isostatic
compensation and an initiai crustal thickness, So.

The crustal grid has dimensions big enough so that throughout the model run, at the
edges of the grid, the velocity can be assumed to represent the 'far-field' velocity, where
the crust is not detached from its base, and so the net basal traction is zero. The velocities
at the sides of the model domain may be specified directly (Dirichlet boundary
conditions), or a symmetry condition (no shear on the boundaries = Neumann boundary
conditions)) may be assumed, where the derivatives of velocity normal to the boundary

are taken to be zero.

Figure 7:  Anillustration of a typical model crustal grid and boundary conditions at
(a) t'=0, and (b) deformation after significant convergence time, t’. A

constant velocity ug is applied at the side of the domain, and a sinusoidal
basal detachment zone of dimension 2S¢ causes the grid to deform as

shown in the lower figure. Grid spacing is (1/3)So.
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Basal velocity boundary conditions are applied as discussed in section 2.3, by
application of a basal traction as a force on the right hand side of eq. (13). As discussed

in section 2.3, a simple shear layer of constant thickness, h, and viscosity Ly, is assumed

at the base of the model crust, so that the basal traction is given by:

TP = -“—:‘l’-(u(x,y)—um(x,y))

The velocity at the top of the mantle lithosphere, uy,, must be evaluated at the nodal
coordinates of the model crustal grid (x,y). The basal velocity field is specified for a grid
which will not correspond, in general, to the crustal grid, which is deforming with time.
For a given timestep and nodal coordinate, the basal velocity is found by determining the
surrounding basal node numbers using a search algorithm, and then interpolating linearly
between them. If the node has been advected outside of the basal grid, the velocity
um(x,y) is prescribed to be the basal velocity at the closest basal boundary point.

The model mantle detaches and subducts over width A, where (as discussed in
section 2.1) A, may be on the order of the crustal thickness, or vanishingly small for the
case of detachment at a singularity (figure 2(c)). For the case where Ay — 0, the
smallest representation of the singularity on a numerical grid is the minimum cell size for
the grid. For most of this thesis, I investigate the case where Am = So. For smaller values
of Am, I refine the mesh near the singularity so that in all cases the bottom velocity
condition decreases to zero across more than one gridpoint, in a smooth (sinusoidal)
manner, ensuring that velocity components and their derivatives vary smoothly across the

mantle detachment zone.

Computing the Velocity Solution
Once the initial crustal grid and velocity boundary conditions have been defined, a

numerical solution for the crustal velocity is found at each timestep using the finite
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element calculations. The computation alternates between calculations performed at the
global level (over the whole domain), and the local (element) level (see Appendix D). The

step-by-step numerical procedure for a linear viscous crustal rheology is as follows:

* Assuming a rectangular global connectivity, compute an array linking global and
local nodal numberings

» Loop over each element:
- Transform the element coordinates to a square (bilinear transformation)
- Compute the Jacobian
- Evaluate the local element stiffness matrix using Gaussian quadrature

and the shape functions for the transformed element

» Assemble the global stiffness matrix by nodes (x degrees of freedom)

« Assemble the right hand side

» Substitute in for the Dirichlet boundary conditions

* Solve the matrix equation (Z Kqup = Fy) using the Linpack SPBFA matrix

solver routine (Dongarra et al., 1979).

Solving for a Non-Linear Rheology
The non-linear equivalent to equation (13) is described in Appendix C. The
dimensioned form of eq. (C2) may be written as:

1
2 ag) 2 o 9% ||_ peg0dS®  wp oo . v
2 o, (Sueﬁ axj)+ ax.[Sueff[aXl + o, = 9%, + h (U; = uy)

3 J

where the effective viscosity, Leff, is given by:



The effective viscosity depends on the velocity field, via E , and a reference strain-rate,

&g, which is determined by the scaling parameters used to normalize the equation, so that

&y = ug/Am. The parameterization of the creep rheology by g and € is equivalentto a
special choice of B:

1

1=

B =uefIE .

where B averages the temperature dependence of the creep throughout the crust.
As for the linear solution described in Appendix D, the non-linear equation is split
into a left hand side, which is a partial differential equation in w(x,y), and a right hand

side containing the remaining terms. The basal coupling term is split between the left and

right-hand sides in the following manner:

(o ). (. f(om  9W)) m .
2 aXi ksueff P J)"' an kSU-eff an + axi L (ux uml) L
P 2 l—1
- pc2g¢ % - Eil_b_(ﬁi —ug) ug «..(15)

where up,; is the ith component of basal velocity. The program uses an iterative technique

to solve for [efrand u, as follows:

First pass: solve the linear equation (13), using peff = Ho

= /=1 -
Subsequent passes: solve equation (15), using peff = uo(%))n where Eand the

1
=-1
termin (0; — u,;)" are calculated from the previous iteration.
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In general, solving the equation for a non-linear rheology in the crust and basal

layer (n between 2 and 10) requires between 1-20 iterations to converge.

Updating the Crustal Grid
The crust is represented by a Lagrangian grid, so that after solving for u(x,y) at the

nodes, the grid positions are updated as follows:

Xp =Xp + U At
Ya =Yn + Valt

where (up, vp) are the components of velocity u(x,y) at the nth node, and At is the time

step interval, chosen so that:

lunAt] << Ax
[vaAt| << Ay

for cell dimensions Ax and Ay in the x and y directions, respectively.

The advantage to using a Lagrangian grid is that the nodes follows the deformation
of the viscous material. However, the grid may also become distorted, and this can be a
problem numerically, if the aspect ratios of the elements become to large. (The aspect
ratio of an element is defined to be the ratio of the element size in the x and y directions).
Fortunately, for the large-scale problems investigated in this thesis, the grid does not

become distorted enough for numerical problems of this type to occur.

Updating Crustal Thickness
After each timestep, with time interval At, the change in crustal thickness for each

element is computed using the (Lagrangian) incompressibility condition:
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25 g,

at

The total volume is calculated at each timestep, to make sure that the program is

conserving mass.

Calculation of the Height Field
The model assumes local isostatic compensation (see section 2.3), so the height

H(x,y) is related to the crustal thickness, S, by:

H=<S—so)( —"—°)

m

Preliminary Testing of the Code

The code was tested against simple analytical solutions (Table 4(a)-(c)), giving
agreement to within 1%. The code was also compared to the thin-sheet results of England
and McKenzie (1983) and Houseman and England, 1986 (Table 4(d,e)), and showed
qualitative agreement with velocities, strain-rates, and crustal thickness. Further one-
dimensional tests of the type of boundary conditions discussed in section 2.3 (Table 4(f))
were performed by comparison with a fully cross-sectional plane-strain code results (see

chapter 3).
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Numerical Results
Boundary Conditions? Predicted Quantities
< D >
O -
C ¢SO <'u0 95 = 16Sy (t'=0)
O O O ot D
(a) Pure Shear
0 $=S,(1+coskx 0 as
c SO 0( ) O _é?‘x=0 =—-A1'u0
© © © (t'=0; n=1)
(b) Decay of Sinusoidal Topography
x=0
I
> $SO < %, =(___1£.__)u
> <+ o= \1+4Kk2)°
. t'=0; n=1
- =21 sin(kx) - - ( )
(c) Sinusoidal Basal Traction




f(x)=vy [0<x<D/4] (d) (for t'=0;
f(x)=vycos2(n/2(4x/D-1)) [D/4<x<D/2} Ar=0,1,3,10,30;
y= (o) (0] Q n=1,3,5)
o $S=S, O - velocity fields
- strain rates
(o o) (e) (for Ar=0,1,3,10;
n=1,3,10)
lo b - velocity fields (t'=0)
| I ;F 5 - strain rates (t'=0)
y=0 i
x=0 | x=D - crustal thickness
u=0 I u=0 (t'=0 to 20)
v=f(x) i v=0
(d) England and McKenzie, 1983
(e) Houseman and England, 1986
x;ﬂ) - crustal thickness
go I - Strain rates
- velocity fields
* * - - - (See Chapter 3)
u,=0 Uy=lg
(f) Basal Detachment

2 Unfilled circles on diagram represent 'roller’ boundary conditions (i.e. no shear).

Arrows represent velocities, and filled dots under figures indicate zero velocity. Initial
crustal thickness is Sg.
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§ 2.6 Modelling Syn-tectonic Surface Processes

Model Rationale

Tectonic processes such as those discussed in sections 2.1 and 2.2 do not provide
the only mass fluxes in an orogenic system. Mass may also be transported and
redistributed through surface processes, the erosion and deposition of material due to the
interaction of topography and climate. Syn-tectonic surface processes can affect the
deformation state of an orogen (Jamieson and Beaumont, 1988, 1989). Erosion may
focus exhumation (the progressive exposure of rocks at the surface), creating or
strengthening crustal shear zones, and thus considerably influencing the development of
topography (Koons, 1990; Beaumont gt al., 1992). Deposition of sediments can
redistribute the topographic load into the flanking foreland basins, which form by flexural
isostatic compensation in response to the tectonic loading of the convergent orogen
(Flemings and Jordan, 1989; Johnson and Beaumont, 1995).

Surface mass redistribution is the result of a complicated set of processes such as
soil creep, landslides, rainsplash, surface and subsurface wash on hill slopes (loosely
grouped together as 'diffusive’ processes), and long-range transport and deposition as
bedload and suspended load in fluvial systems (‘advective' processes) (Beaumont gt al.,
1992). Physical laws may be used to represent surface mass redistribution at the smallest
spatial and temporal scales (i.e. length-scales on the order of meters, and timescales of
days or months), but extension of this technique to larger scales is numerically difficult
(Dietrich et al., 1992). A simpler approach to modelling larger spatial and temporal scale
processes is to explore relationships between diffusion and advection on a topographic
grid (Chase, 1988; Willgoose et al., 1991a,b; Beaumont gt al., 1992). This approach
implicitly assumes that the non-linearity of smaller scale processes, when integrated over
larger resolution topographic cells, can be represented by linear or simple non-linear

relationships, in a similar manner to using the laws of thermodynamics as an
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equili.brium fluvial river
carrymg transport discharge
capacity coefficient

A schematic illustration of (a) short range, hillslope diffusive transport,
and (b) long range, advective (fluvial) transport on a topographic grid
(modified after Johnson and Beaumont, 1995, and Beaumont et al.,
1992), The arrows represent material flux between neighbouring
topographic cells. Symbols not explained on the figure are H, the height
of a cell; Ky, the diffusion coefficient; and I, the length-scale for a river

segment,
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approximation of the individual interactions between many molecules (Kooi and
Beaumont, 1994),

Figure 8 illustrates the method behind the surface process model used by Beaumont
et al. (1992). Mass transport is the sum of short range (diffusive) and long range
(av =ctive) transport down a topographic grid. The model tracks the cumulative fluvial
discharge down a drainage network, and calculates river power (as a function of slope
and discharge) in order to determine the carrying capacity of each river segment. The
effect of spatial scale on the division between diffusive and advective surface processes is
discussed by Kooi and Beaumont (1994). The model cannot represent sub-grid fluvial
processes, as only one river is modelled per cell. A model drainage density greater than
the grid resolution is therefore represented by diffusive processes. Diffusion in surface
process models based on a topographic grid thus includes not only the true diffusive
processes, but also fluvial transport at the sub-grid level (Kooi and Beaumont, 1994).
This simplifiying assumption follows from measurement of diffusivity values from
escarpment studies (figure 9). The measurements indicate that, as the scale of the
escarpment increases, so does the effective diffusivity.

The models in this thesis do not include the syn-tectonic surface processes
discussed above. Results from the next chapter will show that the thin-sheet model is
only valid for large scale orogens, where deformation extends for horizontal distances
several times larger than the crustal thickness. The spatial scale of the topographic grid is
large in comparison to mcat of the studies illustrated in figure 9, so that if surface
processes were included in the models, only diffusive effects need be considered. This
simplification could be made because of the increasing use of diffusion to represent both
true diffusive and sub-scale advective processes as the spatial scale of the model

increases.
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Hillslope Diffusion Coefficient vs. Scarp Height
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Figure 9: A plot of the empirically-derived diffusion coefficient, Ky, vs. scarp
height. Values are derived from Hanks et al. (1984), Colman and Watson
(1983), Nash (1980), and Moretti and Turcotte (1985).

An interesting study would be to use a planform coupled tectonic/surface process
model to determine whether the redistribution of mass at the surface is as important a
control on the development of a convergent orogen as the effects of gravity acting on
crustal thickness contrasts (represented by Ar), and basal forcing (Am). Studies have
already been conducted for the cross-sectional case (e.g. Beaumont et al., 1992), but
results for a planform tectonic model, especially if it involved a simple scale analysis,
may be useful in determining first-order controls for cases of oblique collision, or where

convergence varies along-strike. Note that the asymmetrical erosion caused by orographic



49

precipitation acting on the fluvial system, which was found to be important for the cross-
sectional case (Beaumont gt al., 1992), could not be represented by a simple diffusional
model, unless a discharge term was incorporated into the diffusion coefficient (e.g. Paola
et al., 1992).

Below, I outline the method that could be used to add a simple (uniform) surface

process diffusion coefficient to the model.

Surface Process Formulation

Mass transport by diffusion obeys an equation of the form:

oH *H
— o K g e
ot H 9x,2

where H is the height of excess topography, Ky is a diffusion coefficient (m?s-1), and
summation over index i is implied. When local isostatic compensation is assumed, the

excess height H=(S-S¢)¢, and the diffusion equation can be rewritten in terms of crustal

thickness, S:
oS %S
2 Ky—
at H axi2

Adding this term to the equation for conservation of mass:

and normalizing for the case where Ay, -> So ('=tug/Sg, $’=S/S0, u’=u/ug, x'=x/Sp)

gives:
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8 __ ST Ky P __AST) ( 1 )azs'

N7 ; 2 ’ 2
ot ox] ugSp 0x] 0X; Pe Jox]

«.(16)

where Pe (= Kn/ugSp), a dimensionless Peclet number, represents the relative importance

of tectonic advection and horizontal (surface process) diffusion.

Incorporating the Diffusive Surface Process Model in the Numerical Code

When the tectonic thickening has been computed, mass can be redistributed
(according to diffusive surface processes) by a geometric update of the topography, using
a diffusive surface process algorithm developed by Beaumont gt al., 1992. The diffusive
transport is directly related to the height field H, by the diffusion equation:

oH 0°H
ot K“—éx_f

The diffusion coefficient Ky can also be thought of as the product of a transport
speed, ug, and a vertical height scale of the erodable surface boundary layer, hg
(Beaumont gt al., 1992).

The diffusive algorithm loops from the highest to the lowest cell. Mass is
redistributed to adjacent cells by an amount proportional to the slope between cell
midpoints (figure 8(a)). Transport to each topographic cell is the linear sum of mass
transport from each of the eight neighbours. The total change in height of cell j due to

possible mass fluxes from the eight adjacent cells is given by:

8
(Ds)j =X::TZ(Qs)ij

i=1

The incremental diffusion amounts, (Ds), can be added to the height field at the end of
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each erosion timestep. The boundaries of the grid are assumed to be in the far-field zone
where there is no crustal thickening, so that the diffusive ercsion flux at the boundaries is
set to zero.

An aiternative method for incorporating diffusive surface processes into the
tectonic model would be by an implicit numerical solution of the diffusion equation over

the planform height field.



Chapter Three

TESTING THE MODEL

Before exploring the two dimensional3 behaviour of the model, it is necessary to
find the range of parameters for which it can be considered to be a good approximation of
the behaviour of the crust. This chapter is divided into three sections, each of which
investigates a different aspect of the model parameterization. The first section determines
the rheological basis for using the Ampferer number to describe crust-mantle interactions.
This is achieved using a series of cross-sectional, frictional3-viscous models of the crust.

The thin-sheet approximation limits the application of the model to large-scale
(weakly coupled) cases. These model limitations are quantitatively described in section
3.2, using a comparison between the one-dimensional thin-sheet model and the
equivalent, cross-sectional model which uses the plane-strain approximation. In the last
section, the effect of the model parameters Am, n, and Ar on the style of deformation is

investigated.

§ 3.1 ’hoice of Parameters for Basal Coupling

Review ¢~ wneological Models of the Lithosphere
Depth distributions of continental earthquake foci, laboratory studies of rock
specimens subjected to strain-rates at various pressures and temperatures, and styles of

deformation evident from exhumed crustal rocks, all indicate that shallow crustal rocks

3 Throughout this discussion, I avoid the use of the term ‘plastic', because the definition
for plastic used by rock mechanicists and rock materialists is different (Mandl,
1988). The preferred definition is that a plastic material has a finite yield strength,
which (if exceeded) leads to continuous irrecoverable deformation. The term
frictional’ refers to a specific type of plastic behaviour, where deformation is
pressure sensitive, and thus includes ggittle deformation.
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fail by brittle fracture?, generating earthquakes, whereas deep crustal rocks deform
anelastically by ductile flow5 . These observations suggest a rheological stratification of
the crust, with transitions between different rheological layers occurring at depths
dependent on the thermal thickness of the lithosphere. The rheological stratification
depends strongly on the compositional layering of the lithosphere.

In an effort to quantify the presumed rheological stratification of the lithosphere,
Ranalli and Murphy (1987), Strehlau and Meissner (1987), and others have constructed
strength profiles based on empirically derived laws for given material layers, and an
assumed geotherm for the lithosphere. A strength profile 6(z) represents the maximum
deviatoric stress difference able to be sustained in the brittle regime, and the flow stress
for a given strain-rate in the ductile regime. The maximum stress difference o(z) is

defined as:

6=0; ~ 03

= 2T max

where 61 and 073 are the maximum and minimum principal stresses, respectively, and
Tmax is the maximum shear stress. The choice of whether crustal material deforms in the
brittle or ductile regime is determined by which style of deformation that requires the
smaller stress difference, Gprigle VS. Odyctile (i-€. if Obrige < Oductile, the material will
deform by brittle processes, and vice-versa).

Strength profiles are constructed using geophysical data and the results from
laboratory measurements, extrapolated via theoretical creep mechanisms. A representative

rheology must be assumed for the lithosphere, most commonly a simplified rheology

4 Brittle fracture is discontinous deformation by a combination of elastic and anelastic
(strain-rate dependent) processes.

5 Ductile flow is defined as viscous behaviour where there is a direct relationship between
shear stress and strain rate (Mandl, 1988),
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with a quartz-rich crust and olivine-rich mantle, although the rheology may be determined
from the particular geological history of the study area (eg: Ranalli and Murphy, 1987).
The mechanical layering that results from simplified rheological models is not necessarily
considered to be a layering of rock types, but a layering in which various minerals (Qz,
Fsp, Ol) are the dominant contributors to the observed strength of the crust (Ord and
Hobbs, 1989).

The variation of temperature with depth is chosen using representative geotherms for
particular geological situations, constrained at the surface by T = 300K, and at the bottom
of the lithosphere by Tm = 1500K. Knowledge of the variation of temperature and
radiogenic heat production with increasing depth is essential in order to construct
appropriate strength profiles. A geotherm may be perturbed from steady-state by
magmatic activity, or tectonic displacement of crustal material. It is claimed that data from
surface heat flow measurements, and an accurate petrological model for the crust and
mantle, can constrain lithospheric temperatures to within 100 K (Ranalli, 1987).

Following Goetze and Evans (1979), it is generally assumed that the shear strength
of the upper crust is controlled by frictional sliding within a well-fractured material. For

this case, the frictional relationship is given by:

T=1M0,

(Brace and Byerlee, 1966; Byerlee, 1968) where T and Gy, are the shear and normal stress
on a plane, and 1 is the coefficient of friction along surfaces within the material. The
coefficient of friction may also be written as tan ¢, where ¢ is the angle of internal
friction.

The frictional relationship may also be modified by the presence of rock cohesion, C,
giving the Coulomb yield stress:
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T=tang o, +C -(17)

If it is assumed that the maximum normal stress is due to the weight of the overburden,

€q. (17) may also be written as:
T=tandpgz(l1-8)+C

where 8 is the pore fluid factor:

5= Ps

Pz

defined as the ratio of pore fluid pressure, p, to the lithostatic (overburden) pressure.
The yield stress T defines the necessary shear stress for frictional sliding to occur.

Neglecting the cohesion term, and assuming that the pore fluid factor is incorporated into

the frictional coefficient, the stress difference in the brittle regime may therefore be written

as:
6=21~=(2tan¢)pgz

The maximum ductile stress difference is calculated by assuming a strain-rate €, to be:

1

o=Bexp Y )(En .(18)

where B is a material parameter, Q is the creep activation enthalpy and n is the power law
exponent (Ranalli and Murphy, 1987). This equation was derived empirically from

laboratory studies of rock deformation. The experiments are mostly performed by
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keeping the strain-rate constant, under triaxial stress conditions (where 61>02=03),

yielding an equation of the form:
u - A J&lﬁn)/ 2 exp(‘%T)

where Jop is the second invariant of the stress tensor. The relationship between A and B
is not straightforward, because a geometrical factor must be included in order to translate
the triaxial confining pressure into the stresses found in the earth (Braun, 1988).

Most materials under laboratory conditions in the ductile field exhibit a power-law
rheology (i.e. n>1), and the exponent n generally increases with stress if experiments are
conducted over more than two orders of stress magnitude, due to the dominance of

different creep mechanisms at different stresses or pressure/temperature conditions.
Sources of Uncertainty in the Construction of Strength Profiles

(1) Depth to the Brittle-Ductile Transition

The strength profiles discussed above assume that shear stress increases linearly
with depth until the frictional relation intersects the ductile yield stress for a given rock
type and strain-rate . Sibson (1982) suggested that the cutoff depth for earthquakes (the
base of the seismogenic zone) is equivalent to the depth of transition from brittle to ductile
behaviour, with the presence of large earthquakes at depth attributed to the increasing
shear strength with depth. However, for low geothermal gradients (i.e. where ductile
yield stress remains large to quite considerable depths), the Byerlee relation predicts that
seismogenic activity should be present throughout the crust and lower mantle, but this is
not observed. If the frictional relation does not give a good representation of rock

deformation beyond moderate temperatures and pressures, then the maximum stress
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levels sustainable will be much lower (Ord and Hobbs, 1989). Empirical estimates of the
maximum stresses sustainable by the lithosphere using seismic data indicate that stresses
beyond 300 MPa cannot be sustained, bringing the upper stress estimates for the crust
from 700 MPa (in thrust regimes) down to about 300 MPa.

Evidence for a Byerlee law breakdown can also be found in laboratory studies.
The transition from brittle to ductile behaviour observed in quartz indicates that several
different deformation mechanisms are involved (Hirth and Tullis, 1994), suggesting that

the brittle-ductile transition occurs over a wide range of depths in the crust.

(2) Extrapolation of Microphysical Creep Models

Because of the impossibility of conducting laboratory measurements at the strain-
rates of the lower lithosphere, a means must be found of observing the relevant process in
the laboratory in order to establish its dynamic characteristics. Extrapolation must then be
made to geological conditions by assuming that the mechanism of the geological process
is the same as that in the laboratory (Paterson, 1990). This is a major source of
uncertainty in the characterization of flow laws for the lower crust. An excellent summary
of the sources of error in laboratory measurements may be found in Strehlau and
Meissner (1987).

Flow stress decreases with increasing temperature and increases with increasing
strain-rate, because both temperature and strain-rate affect the creep activation energy.
Consequently, the deformation produced by an increase in temperature is equivalent to
that caused by a decrease in strain-rate. This equivalence is often used to justify the
extrapolation of laboratory results (where strain-rates cannot be measured below 108 s°1)
to geodynamical conditions (where 10-15 < € < 1010 5-1), The extrapolation of empirical
steady-state flow equations derived from laboratory experiments to the much lower strain-
rates of the lithosphere, is partly justified by the observation that rocks deformed under
natural high temperature creep conditions appear almost identical to minerals deformed in
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the laboratory (Carter and Tsenn, 1987). There is also considerable support in
microphysical creep theory for a Dorn-type power law equation operating at high
temperatures. Extrapolation to the lithosphere is achieved for each constituent mineral by
using empirically derived values for A, n, E, and V, constrained by deformation maps.
However, only processes that can be studied readily in the laboratory, such as dislocation
creep, are well understood. Natural processes that operate too slowly for convenient
laboratory study, such as pressure solution, are much less well understood. The
extrapolation of laboratory data may therefore produce a biased representation of the true

deformation processes of the lithosphere.

(3) Hydrolytic Weakening

A quantitative constitutive relation describing the effect of hydrolytic weakening
on rocks is still lacking. Purely mechanical effects of fluids on rock deformation are
reasonably well understood, but equally important chemical effects are yet to be
quantitatively explained (Carter gt al., 1990). Within the field of brittle deformation,
research suggests that rock strengths are much lower than those predicted by Byerlee's
relation, because even trace quantities of water present on frictional surfaces will result in
a marked lowering of the frictional coefficient, due to formation of gouge surfaces (Carter
et al., 1990).

Within the ductile field, shear localization is enhanced by fluid penetration and
weakening. Water related defects may gain access to grain interiors via fluid infiltration
along open microcracks, where present. Laboratory experiments show that wet rock
strengths, where 'wet' indicates significant water within the mineral structure, are often
an order of magnitude lower than strengths of dry rocks (Ranalli, 1987). The weakening
effect is only present above a threshold temperature and confining pressure, and seems to
increase with grain boundary area, suggesting that hydrolytic weakening concentrates at

grain boundaries. As yet there is no unambiguous model for hydrolytic weakening in
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creep processes. It is an important factor in the lower crust wherever hydrous minerals

(e.g. amphiboles) become unstable.

(4) Localization of shear zones

Localized shear zones within ductile regions are thought to be widespread in the
crust (Rutter and Brodie, 1988), and possibly the upper mantle. Their presence may
substantially alter the distribution of stress in the continental crust (Kirby, 1985).

Rock strength in the ductile regime may be locally reduced by strain softening
processes such as dynamic recrystallization, which takes place during high temperature
deformation of minerals undergoing power law creep. Dynamic recrystallization is related
to the rearrangement of dislocations within grains into new, lower energy configurations.
It is an important process over approximately the same rang: of temperature and stress
fields as power law creep, and leads to transient episodes of accelerated fiow on the creep
curve. Changes in grain size with increasing strain may also localize deformation, by
causing a change in the deformation mechanism.

The temperature dependance of a strain softening process such as dynamic
recrystallization leads to the interesting result that for a given rock type, low temperature
shear zones are narrower and have higher strain gradients than high temperature shear
zones (Handy, 1989). Construction of strain-dependent yield profiles over the
temperature range of the subcontinental mantle (Rutter and Brodie, 1988) shows that the
effect of dynamic recrystallization is to reduce the strength contrast otherwise found at the

Moho, and may actually cause a strength minimum within the upper mantle.

(5) Poly-mineralic Assemblages
The extrapolation of flow laws from the laboratory to the lithosphere is generally
made under the assumption that lithosphere rheology can be adequately represented by the

weakest or most abundant mineral present at each 'layer’ of the sandwich. However,



studies of polymineralic rocks usually show that several minerals, rather than just the
weakest, are deformed and collectively determine the rheology of the aggregate (Handy,
1990; Hirth and Tullis, 1994).

Deformation of rocks containing two or more minerals undergoing different
deformation styles (eg: an aggregate of semibrittle calcite and ductile halite) is complex
and not yet thoroughly understood (Evans and Dresen, 1991). Elementary microphysics
can be used to show that stress becomes magnified around an isolated rigid inclusion in
an isotropic elastic medium (Jaeger and Cook, 1979). Rigid inclusions in ductile materials
can increase the plastic flow strength, as the rigid minerals form obstacles for dislocation
glide.

In summary, fundamental criticisms of the use of strength profiles include the
necessity for extrapolation of rate laws from the scale of the laboratory to that of the
lithosphere. The region of transition from shallow crustal, brittle faulting to deeper crustal
ductile flow is a complex and wide zone that has been mostly ignored in the construction
of strength envelopes. It is unclear whether Byerlee's law is valid at the deeper crustal
range of the brittle field, and this may lead to significant overestimates of lithospheric
strength. In extrapolations to the ductile regime most rock experiments are carried out on
monomineralic rocks, whereas the lithosphere contains complex polyphase aggregates of
minerals. The role of hydrolytic weakening, shear localization and recrystallization in
deformation styles of the lower crust have not been fully explored, and relatively little
effort has been made to understand the transient rheology of rocks (Rutter and Brodie,

1991).

Generic and Dynamic Strength Profiles for Continental Crust of Uniform Composition

(a) Introduction

Strength profiles constructed using the assumption of overburden pressure in eq.
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17, and an assumed strain-rate in eq. 18, are 'generic’ in the sense that they are not
specific to a particular deformation history. The main weakness of generic strength
profiles is that they assume a uniform strain-rate €, throughout the ductile region. In
reality, strain-rates will vary in space and time, depending on the configuration of
boundary stresses and the material properties of the lithosphere.

A more dynamic determination of strength profiles can be obtained by using the
equations (17) and (18) directly in a geodynamic model, which computes strain-rates and
stresses implicitly. Strength profiles produced in this manner are specific to the problem
being solved. I construct both generic and dynamic strength profiles below, in order to
determine the range of geotherms for which a weak layer is present at the Moho.
Although dynamically determined strength profiles create a more internally consistent
model of the rheological stratification of the lithosphere than ger.zric profiles, they still
suffer from the uncertainties inherent in defining a rheology and mechanical behaviour of

the crust.

(b) Choice of boundary conditions and material properties

Generic and dynamic strength profiles are determined for the boundary conditions
of figure 5(a). The generic strength profiles are calculated for the three representative
crustal types described in Table 5, and dynamic strength profiles are found for the two
continental crust cases described in Table 5. A linear crustal geotherm is assumed, from
0 °C at the surface to a specified temperature at the Moho. The continental crust is
represented by a uniform layer with the properties of wet feldspar, where 'wet' indicates
that the properties were determined for a sample which was dried in air at a low
temperature (160 °C), thus removing surficial water, but retaining the water within the
crystal structure. The oceanic crust is represented by a uniform layer with the material
properties of diabase (a polyphase basic igneous rock). Material properties are taken from

Braun (1988) who calculated the parameter B for wet feldspar and diabase from the



laboratory measurements of Shelton and Tullis (1981).

Table 5: Representative cases used in determining strength profiles

type of crust surface temperature | Moho temperature Material properties
(C) (C)

30km thick, 0 450 wet feldspar®

cold continental

30km thick, 0 600 wet feldspar®

hot continental

10km thick, 0 200 diabase’

oceanic

6wet feldspar; B=3e6 Pa s1/7; Q=2.4e5 mol J-1; n=3.2
Tdiabase; B=1.22¢7 Pa s1/8; Q=2.6e5 mol J-1; n=3.4

The strain-rates used in the generic profiles are estimated from the average strain-
rates over the singularity derived from the geodynamic model results. Dynamic strength
profiles are computed with a geodynamic model which uses the plane-strain
approximation, and the boundary conditions of figure 5(a). The edges of the model
domain are taken to be sufficiently far away so that no thickening occurs along them. At
the right hand boundary, the mantle velocity up, is equal to the far-field velocity of the
lithospheric plate, ug. The formulation of the finite element plane-strain model is similar

to the thin-sheet model, except that it is cross-sectional rather than planform, and so does
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not need to assume constant velocity with depth. I use a model based on the method of

Fullsack (1995). Deformation in the brittle layer follows a Coulomb rheology (eq. 17):

Tmax = (tan$)c

where Tmax (=1/2(61-03)) is the maximum shear stress that may be obtained in the
material before deformation, ¢ is the angle of internal friction in the material, taken to be
15°, and 6 is the normal stress on the plane of failure. Deformation in the ductile regime
follows equation (18). To highlight the comparisons between figures, the crust is not

isostatically compensated.

(c) Comparison between generic and dynamic strength profiles

The computed generic strength profiles and equivalent effective viscosities for hot
and cold continental crust, and oceanic crust, are shown in figure 10. The effective
viscosity is estimated by straightforward division of components of the stress tensor by
the corresponding strain-rate components. Within the layer dominated by Coulomb
behaviour, the effective viscosity therefore gives an estimate of the equivalent 'viscous'
behaviour for each increment of deformation. Note that the continental profiles are
calculated for a crustal thickness of 30km. This thickness may be an underestimate for

geologically old continental crust.

Figure 10: (a) Generic strength profiles, and (b) effective viscosities, for cold and hot
continental crust, and oceanic crust. The reference strain-rates for ductile
deformation are taken from the dynamic profiles of the next sub-section
(see figures 12 and 13). The crust is assumed to be 30km thick, and

O = 0] - 03 as described in section 3.1.
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In the generic strength profiles, the two continental cases have a strength minimum
near the Moho; this minimum is most marked for the hot continental crust case. The
presence of a weak detachment layer at the Moho is consistent with the interpretation of
many seismic reflection profiles of convergent orogens (e.g. Cook and Varsek, 1994).
The oceanic crust has increasing strength down to the Moho.

The dynamic strength profiles for hot and cold continental crust (figure 11} also
exhibit strength minima at the Moho similar to the generic strength profiles; however, the
maximum stresses sustained in the brittle regions are slightly higher than for the generic
profiles, and vary spatially. The maximum stress difference is largest near the singularity,
where strain-rates are highest. The stress difference peak near the singularity is especially

marked for the cold continental case.

Figure 11: Dynamic strength profiles and contour plots for (a) cold continental, and
(b) hot continental crust. Contours are of maximum deviatoric stress
difference, 6. Stresses are computed using the boundary conditions of
figure 5(a), with crustal thickness Sg=30km, far-field velocity ug=2cm/yr,
and mantle detachment length A;,=20km. The zone of basal detachment is

indicated by the box drawn underneath the contour plots.
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Despite the appearance of close agreement between the generic and dynamic
strength profiles, there are major differences, as can be demonstrated by comparing the
estimated effective viscosity for the generic cases (figure 10(b)) with those for the
geodynamic model (figures 12(¢,) and 13(c)). In particular, there is no spatial variation in
effective viscosity for the generic model, because the strain-rate is assumed to be

uniform.

Determining an Equivalent Two-Layer Viscous Rheology

The thin-sheet model formula 0.1 with a weak detachment layer, described in
chapter two, parameterizes the behaviour of the crust using the scaling parameter Am.
The Ampferer number represents the degree of coupling between the crust and mantle
lithosphere, using the ratio of viscosities for the weak detachment layer and the crust (e.g.
H/hic for a linear viscous case). To determine a rheologically valid range for Am, it is
necessary to consider the dependence of (effective) crustal and basal viscosities on the
compositional layering, temperature, and pressure conditions in the crust. This is
achieved using the strength profiles discussed in the previous sub-section, by finding an

equivalent two-layer viscous rheology, in order to determine Wy, and .

Figure 12: Contour plots and vertical profiles of (a) horizontal strain-rate; (b) vertical
shear strain-rate, and (c) effective viscosity, for the cold continental

geotherm case. Boundary conditions are the same as for figure 11.
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Figure 13: Contour plots and vertical profiles of (a) horizontal strain-rate; (b) vertical
shear strain-rate, and (c) effective viscosity, for the hot continental

geotherm case. Boundary conditions are the same as for figure 11.
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The strain-rate contours £,, for the cold and hot continental geotherm cases (figures
12(b) and 13(b)), taken from a model run at t"~0, indicate that most of the simple shear
takes place near the Moho. This result suggests that it is possible to represent the
frictional-viscous case by a two-layer viscous rheology, where the lower layer is
relatively weak and incorporates most of the simple shear. The top of the weak layer is

chosen to be the depth at which the normalized cumulative shear strain-rate ratio:
Z . so v
Z EXZ / Z e)(Z
0 0

reaches a value of 1/e. The bottom of the weak layer is at the Moho. Over most of the
model domain, for both cold and hot continental geotherms, the thickness of the lower
layer (h) is less than 2km (figure 14), which is at the limit of the grid resolution. Near the
singularity, h may be larger. I take the minimum estimated value for h, but the effect of
the discrepancy between the maximum and minimum values for h will be demonstrated

below.

Figure 14: Contours and vertical profiles of cumulative vertical shear strain-rate for
(a) cold, and (b) hot continental geotherms, and the boundary conditions

as described for figure 11.
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To find the equivalent material parameters for the two-layer viscous approximation
of the frictional-viscous case, the effective two-layer viscosities must also be found. For

each layer, the viscosity is assumed to be constant with depth, so that:

Ty = Bei}j{l = Mef Ejj

where st is the effective viscosity. The material parameter B may therefore be estimated

from a shear stress, 7, and an effective viscosity, using the following relationship:

Figure 15: Estimating equivalent viscous parameter values for cold and hot
continental geotherm models. The weak basal layer is indicated by the
shaded region on the: (a) strength, (b) effective viscosity, and (c) strain-
rate (second invariant) profiles. The thickness of the weak layer is
arbitrarily assigned to be 2 km, which is the minimum value established
from estimates of normalized shear strain-rate in section 3.1. Estimates for
maximum stress difference and effective viscosity may be made either by
assuming a layer is represented by its peak values (solid circles), or by
average values (dashed lines). The material parameter B for each layer is
computed from the estimates for shear stress (=0.56), and effective

* viscosity.
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There are several possible choices for the viscous parameters T, B, and pegf, because of
their spatial dependence. Firstly, there is the dependence of parameter values on
horizontal distance from the singularity. I assume that the parameter values estimared
directly above the singularity are most important in controlling deformation style.
Secondly, there is the change in parameter values with depth. If the strength of a layer is
controlled by the peak maximum stress difference, the parameter valves should be chosen
to represent this maximum. Alternatively, the average values may give the best two-layer
representation. I explore these alternatives in figure 15 for the cold and hot continental
crust cases. The maximum values (represented by the solid circles) give lower (minimum)
estimates of the coupling (as represented by the non-linear Ampferer number (Appendix
C)) between the two layers than the averages. I also estimate the average strain-rates in
figure 15(c), which were used to construct the generic strength profiles in the last sub-
section.

Figure 16(a) compares the deformation and crustal thickening for the cold
continental geotherm case at normalized convergence time t'=2, for (i) the Coulomb-
viscous model; (ii) a non-linear two-layer viscous representation where it is assumed that
the strength of the crust and basal layer are controlled by the average parameter values
(Tables 6, 7); and (iii) the same as case (ii), but assuming the strength of the layers are
controlled by their strongest regions. The figure demonstrates that even for the strongly-
coupled case, the deformation produced using the two-layer viscous approximation gives
a fair agreement with the fully Coulomb-viscous case. The slight discrepancies in
thickening occur because, as already shown in figure 14(a), the cross-sectional shear is
not confined to a thin basal layer, but extends in 2 shear zones on either side of the mantle
detachment zone. Agreement is even better for the hot continental geotherm case shown in
figure 16(b), where the cross-sectional shear is primarily within the basal layer (cf. figure

14(b)). Linear viscous approximations to the Coulomb-viscous model can also be made,
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by using the estimates for effective viscosity from figure 15. As for the non-linear

viscous approximations, agreement is best for the weak-based (hot) continental crust

(figure 17).

Figure 16: Comparisons in the deformation and thickening after normalized
convergence time t'=2, for (a) cold continental geotherm; (b) hot
continental geotherm, and the boundary conditions of figure 11. (i) Fully
plastic-viscous crust; (ii) two-layer viscous (plane-strain model)
representation, assuming average parameter values; (iii) same as (ii),

assuming layer strength is controlled by maximum parameter values.
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Table 6: Two-layer non-linear viscous fit to representative cases

86

Best-fit Parameters; two- Cold Continental Crust Hot Continental Crust
layer viscous model, n=3.2 | Tmoho =450 °C Tmoho = 600 °C
Average differential stress | 2.6x108 Pa 1.6x108 Pa

G

Maximum differential stress | 4.8x108 Pa 4.0x108 Pa

Go ™

Basal differential stress 2.4x108 Pa 2.6x107 Pa

Op

Average effective viscosity | 1x1022 Pas-1 2x1022 pa s-1

He

Maximum crustal viscosity 1.6x1022 pa s-1 8x1022 pa 51
Mo

Basal viscosity 2x1021 pa 5-1 2.5x1020 pa -1
Hb

Average crustal material 1.8x1012 pa s-1/n 1.6x1012 pa s-1/n
parameter B,
Maximum crustal material | 3.1x1012 pa s-1/n 4.5x1012 pa s-1/n

parameter BJ'*™

Basal material parameter
B,

Average strain-rate

€

1.0x1012 pa s-1/n

1x10-14 -1

1.1x1011 pas-1/n

7x10-15 §-1




Table 7: Best-fit two-layer viscous model parameters

geotherm stress thickness of | B; (Pa s'!/») |Bp(Pas1'n) |Am
exponent | lower layer

cold 3.2 2km 1.8x1012  |1.0x1012 |0.8+0.2

(Ty=450 °C)

hot 3.2 2km 1.6x1012 | 1.1x1011  |0.09+0.06

(Tp=600 °C)

The qualitative comparisons of figure 16 suggest that the choice between average or

peak layer parameters is not significant. For the boundary conditions of figure 5(a) and a

crust composed of unilayered feldspar, the choice when modelling of whether to

approximate layers by their strongest part (e.g. England and McKenzie, 1982), or to use

average values within the layer, may therefore not be important (with regard to the style

of deformation). I use the difference in the estimates of coupling (Am) predicted by using

the average or peak parameter values, to give some measure of the uncertainty in

determining the appropriate two-layer viscous representation (below).

Figure 17:

Same as figure 16, except two-layer viscous approximation is linear

viscous. (i) Fully plastic-viscous deformation for cold continental

geotherm (n=3.2, and Ar=3.6); (ii) average two-layer (linear viscous)

representation of (i) (n=1, and Ar=3.6); (iii) fully plastic-viscous

deformaticn for hot continental geotherm (n=3.2, and Ar=4.1); (iv)

average two-layer (linear viscous) representation of (iii) (n=1, and

Ar=4.1).
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The frictional-viscous models may also be compared to equivalent thin-sheet
viscous models (figure 18), where the thin simple shear layer is represented by a traction
applied to the base of the remaining crust. As for the plane-strain two-layer
approximation, the comparison is quite good for the hot continental case, but deteriorates
for the cold geotherm case, where the simple shear component in the upper layer is
significant.

The Ampferer number may be calculated for the cases discussed above using the
estimates of n and B for the two layers, giving Am=(.810.2 for the cold continental
geotherm, and Am=0.0910.06 for the hot continental geotherm. Average parameter
values have been used, and the uncertainty estimates come from the discrepancy between
average and peak layer parameter predictions for Am. For oceanic crust, there is no
strength minimum (figure 10), so that shear strain is an important factor throughout the
crust, and Am is much greater than 1. For a range of crustal geotherms, the equivalent
Ampferer numbers may be estimated in the same manner, to give the relationship between
Am and the temperature at the base of the Moho. As expected, Am decreases

approximately exponentially with an increasingly hot crustal geotherm (figure 19(a)).

Figure 18: Same as figure 16, except the two-layer viscous approximation is
computed using a thin-sheet (one-dimensional) model. (i) Fully plastic-
viscous deformation for cold continental geotherm (n=3.2, and Ar=3.6);
(ii) average two-layer viscous representation of (i) (n=3.2, and Ar=3.6),
(iii) fully plastic-viscous deformation for hot continental geotherm (n=3.2,
and Ar=4.1); (iv) average two-layer viscous representation of (iii) (n=3.2,

and Ar=4.1).
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For the normal range of continental crustal geotherms and 30km thick crust, the
models from this section indicate that Am is between 0.01 and 1 (figure 19(a)). In regions
of thickened continental crust, Am may be <0.01. The results shown in figures 16, 17
and 18, demonstrate that a (compositionally) single-layered crustal rheology can be
approximated by a two-layer viscous crust, provided the base of the crust is relatively
weak (i.e. Am < 1). This limit is illustrated in figure 19(b), in which the normalized
maximum estimate for the thickness of the basal (simple shear) layer (hmax) is plotted vs.
Am, The smaller the value of hyay, the more closely a two-layer viscous rheology
approximates the fully plastic-viscous model.

In summary, comparison of two-layer viscous models with strength-profiles
derived from frictional-viscous models suggests that a rheologically valid range of values
for the Ampferer number is between 0.01 and 1. For cases where Am >1, the two-layer
viscous model is not a good representation of crustal behaviour. Am may be less than
0.01, if the crust is thicker and has a relatively steep geotherm. The results indicate that
the thin-sheet model can be used to represent the geologically valid range of crustal
geotherms, provided the assumptions used in this section (which represents the crustal
rheology using a frictional-viscous, single compositional layer of wet feldspar) is also

geologically valid.

Figure 19: (a) Dependence of basal coupling, as represented by the Ampferer
number, on crustal geotherm ( shown as basal temperature, in °C). Basal
coupling (Am) increases as the crust cools. (b) Hllustration of the
increasing importance of cross-sectional shear in the crustal layer, as a
function of basal coupling (Am). The error bars on Am are discrepancies
between using average and peak parameter values to represent each layer.
The two-layer viscous representation of the crust is best for hot (less

coupled) continental crust.
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§ 3.2 Accuracy of the Model: Comparison of Thin-Sheet with Basal

Traction to Plane-Strain Models in One Dimension

Introduction

Section 3.1 has established the expected range for the Ampferer number (Am
between ~0.01 and 1) for continental crust, based on rheological considerations. Results
also suggest that a two-layer viscous representation of the crust is possible, provided
most of the cross-sectional shear takes place within a weak layer near the Moho.
Agreement between the frictional-plastic and two-layer viscous model representations of
crustal deformation is fairly good for the moderate range of crustal geotherms that have
been investigated.

The thin-sheet approximation places further restrictions on the range of parameter
values that may be used. The effect of neglecting the vertical simple skear strain
component in the crustal layer, and the application of a basal velocity boundary condition
via a thin boundary layer, limit the range of parameter values for which the physical
model is compatible with the thin-sheet approximation. In this section, the behaviour of
the one dimensional version of the thin-sheet model (in cross-section) is compared with
the equivalent vertical section two dimensional plane-strain numerical model (as described
in section 3.1).

Although the model comparison is one dimensional, I argue that because the basally
driven thin-sheet model is likely to be least accurate in representing cross-sectional
behaviour in the direction that deformation is forced, the comparison should give a
reasonable indication of general two dimensional model validity. A complete analysis will
require a comparison between thin-sheet and fully three dimensional finite element
calculations, which may soon be available (Braun, 1993; Braun and Beaumont,

submitted).
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Previous studies (Bird, 1989; Wdowinski gt al., 1989) have proposed that basal
traction can be included in the thin-sheet calculations with only a small loss of accuracy
provided certain assumptions and conditions are met. Bird (1989) and Bird and
Baumgardner (1984) applied a basal traction through a weak boundary layer (similar to
this study). They argued that the traction is allowable provided that the strength of the
boundary layer is relatively lo v, so that the coupling between crust and mantle is weak.
However, no attempt was made to estimate the threshold coupling strength: above which
the model approximations become invalid.

Wdowinski et al. (1989) estimated thin-sheet accuracy by comparing a one
dimensional lithospheric thin-sheet analytic solution with the solution for fully two
dimensional flow. The basal traction was applied directly to the bottom of the model
lithosphere in the form of a constant normalized periodic shear stress. For these boundary
conditions the thin-sheet error can be shown to depend only on L/Ap, where L is the
thickness of the sheet, and Ap is the periodic wavelength of the basal shear. For minimal
error, the wavelength over whict basal shear is applied must be several times the
thickness of the sheet.

When the basal shear is applied as a velocity boundary condition which acts through
a weak layer coupling the model crust to a subducting mantle, it is necessary to consider
not only the effect of the basal traction length-scale, but aiso the relative strength of the
crust and weak basal layer, and the effect of differences in crustal and mantle velocity on
the region over which the crust detaches. This is accomplished by the comparison of the
two numerical models (the one-dimensional thin-sheet model and the cross-sectional
plane-strain model).

The comparison is made using a linear viscous rheology, and the boundary
conditions described in figure 5(a) and section 3.1. A variety of basal length-scales and
values for the Ampferer number are used to determine the parameter values for which the

thin-sheet results are a good approximation to the full two dimensional model results. To
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ensure that the boundary conditions of the plane-strain and thin-sheet models are the
same, the vertical velocity at the base of the model is set to zero, by considering the
simple case where there is no isostatic compensation ($=1). The plane-strain model
includes the simple shear boundary layer at the base, whereas the thin-sheet model treats

this layer implicitly via the Ampferer number.

Qualitative comparison

Figure 20 contrasts the crustal deformation predicted by the plane-strain and thin-
sheet numerical models. The meshes in figure 20 show the plane-strain model solutions
for a small basal detachment length-scale (A;<Sg) at various convergence times, and for
two different values of the Ampferer number (figure 20 (a), (b)). The model crust
thickens in a doubly-vergent wedge shape. The shape is initially asymmetric with a
steeper 'retro’ side (Willett gt al., 1993) due to the differential movement of material
toward the implied detachment point, but after an amount of convergence, which depends
on the relative strength of the buoyancy forces, the asymmetry reverses and the 'pro'
side becomes steeper. The reversal in asymmetry is caused by the competition between
buoyancy forces and the basal traction. Because these forces operate on differing length-

scales, with the traction length-scale approximately fixed and the response to crustal

Figure 20: Some qualitative comparisons of thin-sheet and plane-strain solutions for
normalized convergence times t'=1, 2, 4, 8. The plane-strain crust is
shown as a deformed mesh, and the thin-sheet crust is indicated by the
bold line at the top of the model crustal layer. (a) Am = 0.1, model mantle
detachment length-scale Ay, =0.25Sg. Position of the mantle detachment
is indicated by the symbol (i, and the sense of convergence is shown by
the velocity vectors (not to scale) or the uppermost figure.(b) Am =1,
model mantle detachment length-scale Ay, = 0.25S.
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thickness gradients increasing in length-scale, the interaction with the asymmetric
transport of material leads to a reversal in slope steepness.

The equivalent set of solutions for the thin-sheet model are shown as a bold line in
figure 20. At relatively low Ampferer numbers (figure 20(a)), the plane-strain and thin-
sheet solutions agree quite well, but for strongly coupled problems (figure 20(b)) the
thin-sheet solution overestimates the amount of thickening over the singularity. This is to
be expected, for when the crust and upper mantle are strongly coupled, a significant
component of simple shear exists in the crust, so that the thin-sheet model is no longer a
good approximation.

The results shown in figure 20 were obtained for a small basal detachment length-
scale. For equivalent cases where the imposed basal detachment length-scale A, is much
greater than Sg, the component of simple shear strain is reduced, giving closer agreement
between the plane-strain and thin-sheet model results. An interesting additional feature
shown in figure 20 is the apparent surface extension of elements, with simultaneous
convergence at depth, for the plane-strain viscous model. (Equivalent, vertically-averaged
extension, is also present for the thin-sheet model results). Thse features are in agreement
with results by Buck and Sokoutis (1994), suggesting that under certain circumstances

surface extension may occur during continental convergence.

Quantitative comparison
A quantitative estimate of the difference between the thin-sheet and plane-strain

models may be found by evaluating the following expressions over the deforming region,
Q:

JaM
AM=8——
2Mc
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jaMm

AM =£.,
2Mc

where dM = (Sps — Sts)p. dx, and Sps(x), STs(x) are the crustal thicknesses for the

plane-strain and thin-sheet models, respectively. Mc is the amount of mass that has

entered the collision zone since the onset of convergence. dM = (Sps — St5)p. dx is the

difference in the rate of crustal thickening between the plane-strain and thin-sheet models,

and Mg is the rate at which mass enters the collision zone. When the areas of thickening
in the two solutions agree exactly, AM and AM reduce to zero. The normalization factor
of 2 ensures that, when the areas of thickening do not overlap at all, AM and AM = 1.

Contours of the relative discrepancy in thickening rate, AM, between the thin-sheet
and plane-strain model results, are shown in figure 21 for t’=0. The relative error
contours are plotted with axes (AN/Sp)?, the ratio of horizontal crustal response length-
scale to vertical scale Sg, and (Ay/Sg)2, the ratio of the mantle detachment length-scale to
vertical scale So. A straight line on the plot is, therefore, Am = constant (eq. 12).

The contours show that there are two fields of behaviour, in which the error is
either independent of mantle detachment length-scale A, (field A), or independent of
crustal response length-scale AN (field B). A relative error of less than 5% is possible
either by choosing a low basal strength so that the crustal response length-scale is
sufficiently large, or by choosing mantle detachment length Ay, to be much greater than
crustal thickness. To be modelled successfully using the thin-sheet approximation, a
model crust must either be weakly coupled to its base, or possess a mantle detachment
length-scale greater than 10 times the thickness of the model crust. The restrictive basal
length-scale ratio requirement is the result of the abrupt spatial change in velocity at the
bottom boundary of the model. For a more qualitative assessment of model behaviour

these restrictive conditions can be reduced somewhat.
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The discrepancy between the thin-sheet and plane-strain model solutions increases
with normalized time. However, the increase is reduced if the effect of gravity on crustal
thickness gradients, represented by the Argand number, is significant (figure 22). An
additional accuracy restriction with increasing normalized time, not investigated in the
model comparisons above, is due to the approximation of local isostasy. The severity of

this restriction depends on the assumed elastic thickness of the mantle lithosphere. In

general, for model runs with t">0, Am must be sufficiently small that the length-scale of

crustal deformation is at least twice the flexural wavelength (Appendix B).

The Assumption of Couette Flow in the Weak Basal Layer: is it Valid for the Thin-Sheet
Model?

The thin-sheet model formulation described in chapter two uses the assumption of
Couette flow within the weak basal layer, to determine the traction applied at the base of
the thin-sheet. The velocity dependence for one-dimensional Couette flow can be

described by the following equation:

up(z) = (ﬁ—um)-:; +ug

where up(z) is the horizontal velocity in the thin basal layer, and z is measured vertically
downwards from the bottom of the crust. Couette flow will occur, provided vertically
integrated horizontal pressure gradients are negligible in comparison to the applied shear

stress in the basal layer:
ap

ax

Ky

=2 > d
h Z

ie. Ty = (T-uy)

© ey

(Turcotte and Schubert, 1982) where Wy, is the effective linear viscosity of the layer.
If horizontal pressure gradients become significant, there may be a transition from

Couette to channel flow in the low viscosity layer. This possibility has been investigated
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by Royden (submitted), for flow within a weak lower crustal layer. She uses an analytical
model of the crust, with basal velocity boundary conditions similar to those investigated
in this study. For the cases described in Royden (submitted), channel flow becomes
important when there is a large viscosity contrast between the upper and lower crust (>
106) and where the thickness of the lower ductile layer has increased by at least 100%
(Royden, submitted, table 3: case 2 after 16 My convergence, and case 3 after 4 My
convergence).

In her models, the upper crustal layer is taken to have a constant viscosity, and
does not thicken with convergence. All crustal thickening occurs in the lower crustal
layer, which therefore increases rapidly in thickness above the singularity point. Material
strength in the lower crustal layer is not advected with the deformation, but instead decays
exponentially with increasing depth during compensation of thickened crust.

The rapid decrease in basal viscosity for these cases (Royden, submitted, table 3) is
a consequence of the exponential decay in viscosity with depth which is specified for the
lower crustal layer. The models described by Royden will be valid if crustal deformation
is occuring at the thermally diffusive limit, so that the base of the crust weakens rapidly as
it thickens. Correspondingly, the effective Ampferer number will decrease rapidly with
convergence. For instance, Royden (submitted) case 3 starts with Am ~ 1, but after 4 My
convergence (t'~5), when channel flow begins to dominate in the lower crust, the
effective Am has been reduced to ~ 105,

I believe that the transition to channel flow seen by Royden (submitted) is a direct
consequence of the viscosity assumptions (i.e. the exponential decreise in 4 with depth in
the thickened lower layer), which effectively assume that crustal thickening takes place at

a low thermal Péclet number:;
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where u is a characteristic velocity of the system, S is a characteristic length-scale (e.g.
crustal thickness), and x is the thermal diffusivity. I show in chapter six that for the cases
investigated in this thesis, Pe is between 10 and 100. The cesults of Royden (submitted)
are therefore not applicable to crustal models which operate at the thermally advective
limit (model results from chapters 3-5), or those which include the thermal relaxation of
the base of the crust with thickening, ‘or Pe oetween 10 and 100 (chapter 6).
Throughout the rest of this thesis, I continue to assume that Couette flow is
occurring in a weak basal layer, which acts as a zone of decoupling between the strong
upper crust and the mantle lithosphere. The comparisons between full cross-sectional
models with an assumed wet feldspar rheology, and 2-layer viscous cross-sectional and
thin-sheet models, verify that for models in which advection of heat dominates the
thermal behaviour, channel flow does not occur in the lower crustal layer. Other
mechanisms may exist which reduce the viscosity of the lower crust in the manner

assumed by Royden (submitted), but this class of models is not investigated here.
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Comparison of Thin Sheet
and Plane Strain Model Results
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Figure 21: Contour plot of the discrepancy in thickening rates AM between the thin
sheet and plane-strain solutions as a function of length-scale ratios
(Am/S0)? and (AN/Sp)2. The solutions were obtained using the boundary
conditions shown in figure 5(a), at an early timestep (t'~0). The symbols
are numerically derived values which represent the percentage discrepancy
between the plane-strain and thin-sheet solutions (@ = 1%, M = 5%, ® =
10%, ¥ = 50%), and the solid lines are curve fits. A straight line on the
plot with a slope of 1 represents a contour of constant Ampferer number
(Am = constant). The dashed line on the plot is the contour Am = 1. In
region A, AM depends only upon the natural response wavelength of the
crust. The terms 'strong base' and 'weak base' indicate the relative
strength of the crust and base. In region B, AM depends only on the
mantle detachment length-scale. The hollow square indicates the initial
(t'=0) location of the model results shown in figure 22.
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Comparison of Thin Sheet and Plane Strain Model
Results with Increasing Normalized Convergence

20":

AM(%)

Figure 22: A plot of the discrepancy in thickening between the thin-sheet and plane
strain model solutions as a function of normalized convergence time t’ =
S/ug, and the Argand number. Am = 1, A, = Sg; symbols represent the
numerically derived errors for Ar (@ =0, = 1). Solid lines are curve

fits.
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§ 3.3 Effect of Ar and n on Model Behaviour

Estimating the Length-Scale of Crustal Deformation

The amount of coupling between the model crust and mantle at t’=0 may be
estimated by contrasting the maximum decrease in horizontal velocity, dti/dx, which
scales with ug/An;, vs. the maximum slope in the basal velocity, du,, /dx, which scales

with ug/Am. The ratio of these two quantities:
5./
X Jmax/ \OX Jinax

defines the normalized crustal deformation length-scale, A'N = AN/Am.

For t">0, an equivalent measure of the crustal deformation length-scale is given by:

, . M
A’N =_Jd§d
A

where the integral is taken over the mantle detachment length-scale, and Mc has already
been defined as the amount of convergent mass that has entered the system. When the
crust passively follows the mantle, A’N=1 and all the convergent mass is located above

the mantle detachment zone. As the crust detaches from the mantle, A'N increases.

The Effect of Basal Coupling and Gravity on the Crustal Deformation Length-scale

The increasing detachment of the model crust from the mantle lithosphere as a
function of the Argand number is illustrated in figure 23. The figure shows contours of
normalized crustal deformation length-scale, A'N, with non-dimensional axes representing

values of Am and Ar, at t'=1. For the case where the Argand number is << 1, the crustal

deformation length-scale will increase as coupling to the mantle (measured by Am)


http://uoM.ni'
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diminishes.

For large Ar (>1), the effect of the increased potential energy of the thickened crust
causes the model crust deformation length-scale to increase (figure 23). The initial ratio
between Ar and Am will determine how rapidly the defoxmation spreads laterally away
from the initial zone of mantle deformation, Ay, . For small Argand number, Am
determines the normalized crstal length-scale, A'N. As the Argand number is increased,
A'N grows at an increasing rate and in a manner that is only weakly dependent on Am.

For Ar >> Am, A'\ increases and is no longer limited by the basal coupling.

A Non-Linear Viscous Crustal Rheology

A power-law viscous rheology, as formulated in Appendix C, will have two effects
on model crustal deformation: (a) the model crust will become weaker in areas of high
strain-rate, thereby focusing the deformation; and (b) the coupling between the crust and
base will depend locally on the relative levels of strain-rate in the two materials. Because
of the interaction between these effects, the behaviour of the model is not straightforward,
as shown by a contour plot (figure 24) of normalized crustal deformation length-scale,
A'N, with axes representing the parameters n and Am, for t'=0. The plot shows that for
small Am, the crustal detormation length-scale will initially grow, then decay, as n
increases. For high values of Am, however, the deformation length-scale is comparable
to the forcing length-scale, Ap. This result will be discussed further in Chapter Four. At
large n, the localization of strain by strain-rate weakening of the power-law viscous

rheology dominates the behaviour.
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Effect of the Ampferer and Argand Numbers
on the Crustal Deformation Length Scale
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Figure 23: Effect of Am and Ar on the crustal deformation length-scale, at normalized
convergence time t'=1. The symbols represent the numerically derived
values of crustal deformation length-scale A\ (@ = 5, 0 = 10, @ = 20).

Solid lines are curve fits showing contours of A'N. Mantle detachment

length-scale Ap=Sy.
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Effect of the Power-Law Exponent on the
Crustal Deformation Length Scale

power-law exponent n

tL

0.01 0.1 1 10
Am

Figure 24: Effect of a non-linear viscous rheology for the crust and simple shear
layer. The symbols represent the numerically derived values of crustal
deformation length-scale A\ (@ = 5, @ = 10, @ = 20, ¥ = 50). Solid lines

are curve fits to contours of A'N. Results are shown for Ay=Sg, t'’=0.



Chapter Four

SCALE ANALYSIS OF
LITHOSPHERIC CONVERGENCE:
MODEL RESULTS

§ 4.1 Introduction

The previous chapter described the one-dimensional behaviour of the tectonic model
in terms of the dimensionless numbers: n, the power-law exponent; Ar, the Argand
number (representing the relative importance of tectonic and gravitationally induced
stresses); and the Ampferer number, Am (representing the initial coupling between the
model crust and mantle lithosphere).

This chapter explores the more general problem of thin-sheet deformation under
normal and obliquely convergent boundary conditions, for small and large normalized
convergence time t’ ( = (uy/Sg)t). The main objective is to determine whether the different
model styles discussed in section 2.1, and illustrated in figure 25, predict different length-
scales of deformation at convergent plate boundaries. For the side-driven case shown in
figure 25(a), deformation is produced in response to indentation from the side of the
model domain, over a horizontal length-scale, D. For convenience, I distinguish
quantities predicted by the side-driven model style by the subscript 'S' as shown on the
length-scale for normal convergence, ANs, in the figure. In contrast, the case shown in
figure 25(b) deforms in response to basal shearing along the crust-mantle interface, with
forcing length-scale Ay, I denote the predicted normally convergent length-scale for the

basally-driven model style as Anp, where the subscript ‘B’ indicates basal forcing. For

109
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more general cases, where deformation may be either basally or side-driven, the length-
scale for the normally convergent case is written as ANo, Where the subscript 'O implies
an 'observed' quantity.

Length-scale relationships for the side-driven model at small normalized
convergence have already been investigated by England ¢f al. (1985). This chapter
investigates the equivalent relationships for the basally-driven model in sections 4.2 (for
t’=0) and 4.3 (for t">0), which are then compared to the side-driven results (extended to
include large normalized convergence) in section 4.4, For the side-driven model, the
finite length-scale of the indenter, D, enables mass to move along-strike, away from the
areas of greatest thickening and deformation. Section 4.4 explores the implications of this

mass transport for the growth in length-scales of deformation with time.

Figure 25: A schematic representation of two possible models for lithospheric
convergence style, as previously discussed in section 2.1. (a) Whole
lithosphere (side-driven) deformation, where the horizontal length-scale D
(the length-scale of the boundary velocity) controls the style of
deformation. The lithosphere thickens over side-driven length-scale Ans;
(b) Detachment and subduction of mantle lithosphere with horizontal
length-scale A controlling the style of deformation; no along-strike
variation in boundary velocity is shown, although such a variation may

also be present. The crust thickens over basally-driven length-scale ANg.
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The partitioning of oblique convergence into normal and transcurrent movement
along separate fault surfaces has been observed in numerous geological settings (¢.g.
England and Jackson, 1989). Although a continuum model of deformation cannot resolve
individual fault structures, it can indicate whether partitioning is also likely to be present
on a broad deformational scale, in terms of length-scales of normal and transcurrent
deformation. The side-driven length-scale results of England et al. (1985) have been used
to explai. the partitioning of deformation length-scales observed during oblique
convergence. I use the results from scction 4.2 to determine whether these observations
could also be explained by basally-driven deformation.

Aspects of the two cases illustrated in figure 25 are combined into a model with
both side and basal horizontal forcing length-scales in section 4.5, in order to investigate
the transition between length-scales controlled by basal forcing, to those controlled by the

side-driven boundary conditions.

Measurement of the Length-Scales of Deformation for Normal Convergence

When there is no along-strike variation in the boundary condition (i.e. D —e0), the
normal component of the strain-rate field, €,,, provides a good measure of the across-
strike length-scale of deformation and crustal thickening for small normalized

convergence, because:

s_, _

xmT Ty

where convergence is occurring in the x-directon, and the expression is written for S ~
So. However, when D is finite, neither the normal strain-rate component (&,, ), nor the

tangential strain-rate component (éyy) provide an independent measure of the length-scale

for crustal thickening, because:
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(for S ~ Sp), so that the thickening rate depends on both strain-rate components. The
length-scales of the normal strain-rate component and crustal thickening rate now differ
even for small convergence, because some material is transported in a direction
orthogonal to the velocity of the boundary. This along-strike movement is a measure of
the material 'lost’ laterally by tectonic escape, which does not contribute locally to
thickening of the crust.

It is important, when estimating the extent of deformation at a plate boundary, to

distinguish whether length-scales of velocity components (1, V), horizontal strain-rates
(Exx» Eyy), or crustal thickening rates (€,,), are being measured. Each of these quantities

is a valid measure of some aspect of the crustal deformation. Length-scales of the
integrated crustal thickening rate are often the only information we have from ancient
orogens (see chapter five). The length-scales of horizontal strain-rate components may be
derived using geodetic measurements of horizontal displacements for more recent cases of
convergence, but these components must be combined in order to correctly predict net
crustal thickening and vertical uplift rates (e.g. Walcott, 1984).

Estimates for the extent of crustal deformation in thin sheet studies have often used
velocity component length-scales (e.g. England et al. (1985)). For velocity components
that decrease exponentially with distance from the plate boundary, velocity length-scales
and their derivatives (i.e. strain-rate component length-scales) are equivalent. Velocity
length-scales may also agree with the length-scale of crustal thickening, if there are no
significant variations in the kinematics along-strike. In this case, all measures of
deformation length-scales are similar, and are referred to generally as ‘crustal deformation
length-scales'. Some of the examples investigated in this chapter can be represented in

this manner, in which case a knowledge of the variation in normal and transverse velocity
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components with distance from the plate boundary is sufficient to estimate the extent of

deformation.

For cases where the three measures of length-scale discussed above do not agree,
an attempt is made in this chapter to distinguish between them. An added complexity in
length-scale terminology is therefore required. The superscripts 't' for thickening, 'v' for
velocity components, and 's' for horizontal strain-rate components are used. For
example, the deformation length-scale for a side-driven thin sheet as measured by the
normal velocity component is VANs, the horizontal strain-rate component is S\ng, and
crustal thickening rate is tANs. When length-scale differences are small, the superscript
notation is dropped. As is shown later in the chapter, velocity and horizontal strain-rate
length-scales are similar for the basally-driven model, and also for the side-driven model
except for cases with a linear viscous rheology. Maximum length-scale differences
between horizontal strain-rates and the crustal thickening rate are also attained for
domains which have a linear viscous rheology (n=1), and are being indented from the
side. In general, it is shown that for power-law viscous rheologies with n>1, all

measures of length-scale are within 30% of the predicted length-scale from equation 22.

§ 4.2 Scale Analysis for Basally-Driven Small Normalized Convergence

When t” is close to zero (i.e. the amount of convergence is small relative to the
length-scales Sg and A), crustal thickness gradients dS/dx and dS/dy may be neglected
in the governing equation (13). This simplification allows us to explore analytical
solutions to (13) for the specific cases of normal convergence (hereafter referred to as

'N') and strike-slip motior: ('T") along the plate boundary.

Model Boundary Conditions

Parameter values have been chosen, on the basis of the error analysis of the
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previous chapter, to predict deformation with less than 5% error due to the vertical
averaging of velocities. The planform geometry (figure 26) has a mantle detachment
length-scale Ay, =S¢, and values of Am were chosen so that the sheet is weakly coupled
to the base. The basal velocity fields are shown by arrows (figure 26). Because the
incident velocity does not vary along-strike, and decreases approximately exponentially
with distance from the mantle detachment zone (see below), the crustal deformation
length-scale may be estimated directly from measurements of the appropriate velocity
component, as discussed in section 4.1.

To determine the interaction between the normal and transverse components of the
velocity field and how deformation is partitioned, numerical experiment results are shown
for three boundary conditions: (1) (N) basal velocities normal to the mantle detachment
zone (up (e°) = (ug, 0), where up, (e0) is the far-field velocity vector for the converging
side of the domain); (2) (T) transverse basal velocities (i (o0) = (0, vg)); and (3) (N+T)
obliquely convergent basal velocities (um (e2) = (ug, vg)). Case (3) is initially explored
for normal and transverse velocity boundary components (ug, vg) equal in magnitude, but
later (figure 31) the effect of varying the relative magnitudes of velocity boundary
components is demonstrated. The velocity boundary condition does not change along-

strike, and extends to infinity in both directions along the plate boundary.

Figure 26: Description of the boundary conditions (a-c) applied to the thin-sheet
model in sections 4.2 and 4.3. The oblique case (c) is broken down into
components (a) normal to and (b) parallel to the detachment zone. Mantle
velocity varies sinusoidally from (ug, vg) to (0, 0) across the detachment
zone, which has length-scale Ay, Lateral boundary conditions are either
rollers (fig. 26(a)) or dynamically determined, as represented by the
symbol oo in fig. 26(b, c). The nails indicate regions where the crust is

stationary with respect to the underlying mantle lithosphere.
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The boundary conditions un the sides of the thin-sheet domain for normal
convergence are free slip/ zero normal velocity (i.e. roller boundaries) on the lateral
boundaries, and specified velocities along-strike. In the numerical experiments with a
transverse basal velocity component , the roller condition on the lateral boundaries must
be replaced by a dynamically determined boundary condition, in order to prevent the
effect from these boundaries dominating the solution, and therefore failing to mimic an
infinitely-extending boundary condition along the y-direction. The dynamical boundary
velocities are determined iteratively in the following manner. Initially, the lateral boundary
velocities are the same as the basal velocities, but in subsequent iterations the boundary
velocities are specified to be equal to the solution velocities along the least-affected centre
line (y=0) of the sheet. Velocities specified in this way converge after approximately 5-
50 iterations, the exact number depending on the magnitude of basal coupling. This
procedure eliminates the initial constraints of the specified velocities along these
boundaries. The dynamically determined velocity condition on the lateral (x) boundaries
is denoted by the symbol '=' in figure 26 (b), (c).

Analytical Results for Linear and Non-Linear N, T Cases

The governing thin-sheet equation may be solved analytically at t'=0 for the

bounr- ry conditions as shown in figure 26(a) and (b), provided that the crustal response
lengthi-scale is greater than the forcing length-scale A, For a linear rheology, the crustal

deformation length-scales normal to the boundary can be shown (Appendix E) to ‘se:

4 2
x' 52— ’ [ —
NB m— and )\,TB e ...(19a)

where A'Ng and A'Tp are the full width length-scales, normalized by forcing length-scale
Am, for separate normal (N) and transverse (T) boundary conditions. Unlike the results

for the side-driven thin-sheet model, a velocity boundary condition applied along the base
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of the sheet with no length-scale along strike produces a finite length-scale of
deformation, which depends on the relative strengths of the model crust and the weak
basal layer. The ratio of length-scales for normal to transverse velocity boundary
conditions is 2.

Because the Ampferer number depends on forcing length-scale Ay, the

dimensioned length-scales:
4\ 1 2A 1
Ang=——2==4|-%hS; and Apg = —====2,|=%hS .(19b
= Ty = o and = =2, e (420)

are independent of Ap. Eq. (19b) describes the natural, inherent crustal response length-
scales, which will be a good measure of the extent of deformation at small convergence
times, provided the length-scales decribed in eq. (19b) are much larger than the forcing
length-scale ( Amp).

For a non-linear viscous rheology, the normalized natural crustal response length-

scales (Appendix E) are:

n n

o4 Y , (4 Y
}"NB _Z(nAm) and ?“TB _(nAm) (203)

where A’Ng and AT have been defined previously. The length-scale ratio for normal:
transcurrent deformation remains at 2 for all n, provided deformation is produced by
purely convergent or transcurrent boundary conditions. As for the linear case, the

dimensioned length-scales:
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Analytical Solution:
Effect of the Power-Law Exponent on the
Crustal Deformation Length Scale
100
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Figure 27: A contour plot of the analytical solution for basally-driven crustal
deformation length-scale A'Np as a function of power-law exponent, n,
and the Ampferer number, Am, for normal convergence. The analytical

solution compares well with the numerical result shown in figure 24.
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are independent of mantle detachment length-scale Aq.

The analytical solution for n>1 agrees well with the contour plot (figure 24, cf.
figure 27) derived from numerical one-dimensional experiments in chapter 3. The
normalized length-scale A’Ng behaves in an interesting way with increasing power-law
exponent n (figure 27). For n between 1 and 3, A'NB increases with n, but for power law
exponents greater than 5, A'Ng diminishes with increasing n. This behaviour is a result of
the interaction between two strain-rate weakening effects: the focusing of deformation
over the basal detachment zone (where strain-rates are high) as the effective viscosity of
the crust decreases, in combination with decreased coupling between the base and crust
away from the basal detachment zone where the effective viscosity of the model crust is

higher .

Numerical Results for Linear and Non-Linear N, T Cases
Figure 28 illustrates some numerical results for the behaviour of A'Ng with
decreasing Ampferer number, for a linear viscous rheology. The dashed line and shaded

zone represent the forcing velocity profile um(x), and the solid curves are the resultant
velocity U(x) in the crust. The half-width length-scale is measured by the e-folding width
for the velocity profile, as indicated on figure 28.
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Effect of the Ampferer Number on the
Crustal Deformation Length Scale
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Am='1.0,01 0.0

Figure 28: An illustration of the behaviour of the component of crustal velocity
normal to the detachment zone (1), as a function the Ampferer number
Am, and normalized distance along the x-axis. The result is shown for
linear rheology, n=1, and t'=0. The boundary of the shaded region
(dashed line) shows the basal velocity profile. The numbers indicate the

magnitude of Am. The arrowed quantity refers to the e-folding (half-
width) length-scale of deformation (A'np/2) for normal convergence.
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A comparison between analytical and numerical deformation length-scales vs. Am
for n=1, 3, 10 is shown in figures 29(a, b). For both normal and transverse boundary
conditions, the agreement between the predicted analytical dependence of A'Ng on the
Ampferer number (lines), and the numerical result (symbols) is good. The lower limits on
Anp and Arp are constrained by the forcing length-scale Ay, so that as Am increases,
A'NB and A'tg —1.

The ratio between normal and transcurrent deformation length-scales, o, also
changes as ANp and Ag reach the Ay, limit (figure 29(c)). For low Ampferer numbers,
0. =2, as predicted by the analytical solution. When Anp and Ap are comparable in size
t0 A, o decreases to 1, and the solution becomes totally dominated by the basal forcing
length-scale. This lower limit is reached at smaller Ampferer numbers as the power-law
exponent increases, due to the stronger coupling of the crust to the base. The limit
indicates that for a sufficiently strong crust-mantle coupling, crustal length-scales are

likely to be determined directly from the forcing length-scale of the underlying mantle.

Figure 29: Numerical (symbols) and analytical (solid lines) crustal deformation
length-scale, scaled by forcing length A, as a functionof n(@ =1, =
3, ® = 10), and Am. (a) A’Np for normally convergent boundary
conditions (N); (b) A'Tg for transverse boundary conditions (T); (c) ratio,
o, of normal:transcurrent length-scales of deformation for purely
convergent (N) vs. purely transverse (T) boundary conditions. The results
predict a constant normal: transcurrent ratio of 2, except when ANp and

ATB approach Ap, in which case the ratio decreases to 1.



A e

N

123

(a) Analytical and Numerical Solutions for
Normal Deformation Length-Scales:
100 Normal (N) Boundary Conditions

80 |

60 L

40

0.01 0.1 1 10

(b) Amalytical and Numerical Solutions for
Transcurrent Deformation Length-Scales:
50 Transverse (T) Boundary Conditions

40
30

20 &

0.01 0.1 1 10
Figure 29(a,b)



o= (}‘"NBM’TB)

124

(c) Ratio of Normal: Transcurrent Length-
Scales, o, for N, T Boundary Conditions
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Figure 29(c)
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Numerical Results for Non-Linear N+T Case

The non-linear obliquely convergent case (figure 26(c)) cannot be solved easily by
analytical methods. The numerical results (figure 30(a), (b)) show the change in
normalized deformation length-scales A’Ng and A"rg with Am for the case when ug=v
(note that the lines no longer represent an analytic solution). Both normal and transcurrent
length-scales are reduced in comparison to the equivalent (N) and (T) results (figure
29(a),(b)), especially the normal length-scale. The reduction in length-scales is a result of
the increased magnitude of strain-rate weakening caused by cross-coupling of terms in
equation 13. The ratio of length-scales for normal and transcurrent components of
deformation also changes with increasing power-law exponent n (figure 30(c)). For a
linear viscous rheology, the ratio is the same as for the independent N and T cases.
However, for n greater than 1, the effective viscosity of the crust will depend on both
components of the strain-rate tensor. This cross-coupling between the components results
in the length-scales taking intermediate values between those for the independent normal

and transverse boundary conditions, so that o is less than 2.

Figure 30: Numerical (symbols) and analytical (solid lines) crustal deformation
length-scale as a function of n (@ = 1, B = 3, @ = 10), and Am. The
velocity components ug and vq are equal in magnitude. (a) A’Np for
oblique boundary conditions (N+T); (b) A"t for oblique boundary
conditions (N+T); (c) Ratio, ¢, of normal: transcurrent length-scales of
deformation for the N+T case. The velocity components are equal in
magnitude. As the power-law exponent increases, the normal:transcurrent

length-scale ratio decreases to 1.
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(a) Numerical Solutions for Normal
Deformation Length-Scales:
Oblique (N+T) Convergence
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The ratio o also depends on the relative magnitude of the normal and transverse
velocity components (figure 31). For n greater than 1 but finite, o is between 2 and 1,
except for cases where vg<< ug or ug<< vg. The asymptotic behaviour of o in these cases
is caused by the interaction of the non-linear rheology of the basal and crustal layers. The
basal length-scale for both normal and transverse velocity components is prescribed to be
Am. Where vg<< ug, the strain-rate weakening of the crust is controlled by du/ox, so that
weakening occurs over length-scale ANg. The resulting effective viscosity ratio creates a
focusing effect which confines transcurrent deformation to a length-scale close to Ap,.
The ratio of length-scales will therefore become unbounded for very small mantle
detachment length-scales. Similarly, where ug<< vo, the crust weakens over length-scale
AtB and normal deformation is confined to a length-scale close to Ay, so that the value of
the ratio o approaches zero. As n becomes very large (>100), both Ang and A1p

approach the limit Ay, and o is ~ 1 for all values of ug and vg.
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The Dependence of the Length-Scale
Ratio on the Power-Law Exponent, n,
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Figure 31: The dependence of the length-scale ratio, o, on the relative size of the

normal and transverse velocity components. For n=1, a = 2 for all

values of (ug, vp). As n increases, the ratio o decreases except for the

extreme cases ug >> vo (and vg >>ug ). For very large power-law

exponents, the length-scales approach the forcing length-scale A, so

that o tends to 1.
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§ 4.3 Scalc Analysis for Basally-Driven Large Normalized Convergence

As normalized convergence time t’ increases, the terms in dS/0x in equation (13)
may no longer be neglected for the normally incident deformation case (N). The
additional dependence on crustal gradient terms represents the effect of gravity acting on
crustal thickness contrasts, as well as the reduction in net basal traction (i.e. traction per
unit crustal thickness) operating on each column of thickened crust. No exact analytic

solution can be found for the length-scale of deformation in this case. However, for t’ >0
but S’ still relatively close to 1, an approximate expression for the length-scale, and its
dependence on the Argand number and normalized time for a linear viscous thin-sheet,

may be found (Appendix E) to be:

, , Art/
M = (xNBll,=0)w,1+—2- n(21)

where M;BL,___O is the scaled normal deformation length-scale at t'=0.

This approximate analytical solution is compared to the numerical results for the
increase in model length-scale in figures 32 and 33(a). Figure 32 shows contours of A'NB
at normalized convergence time t'=1, where the symbols represent the numerical solution,
and the lines are the analytical approximation. The fit is quite good, even for the cases
where Ar >> 1. In figure 33 (a), the change in A’y with increasing convergence is
shown for numerical (symbols) and analytical (lines) solutions, for a linear viscous thin-
sheet. (The slight scatter in the initial trend of the numerical results is an artifact of the
grid resolution). Results from the crustal thickness profiles (not shown) indicate that the
analytical and numerical solutions diverge for crustal thickness gradients in excess of

approximately 1 in 20.
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Analytical vs. Numerical Length-Scales
for Large Growth
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Figure 32: A comparison between numerical model results (@) and the approximate
analytical solution (solid lines) for contours of scaled normal crustal
deformation length, A’Np, as a function of the dimensionless Ampferer

and Argand numbers, at normalized convergence time t'=1.
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The equivalent numerical results to figure 33(a) for a non-linear sheet (n=3) are
shown in figure 33(b). No analytical result has been found for this case, but the
numerical result shows that the length-scale still increases approximately linearly with
\/E The increase is initially faster than for n=1, because of the interaction between
crustal thickness gradients and strain-rate wea'. ., effects in the crust and basal layers.

For purely transcurrent deformation, the crustal thickness does not change, so

A1B = 7""I'B|z'=o for all t". Therefore, for the linear viscous case, the length-scale ratio

o(=ANB/ATB) increases proportionately with time by:

This relationship holds to a first approximation, and is investigated in more detail in
chapter six. Crustal thickness gradients produced by oblique convergence will atfect the
normal length-scale much more than the transcurrent length-scale, because the buoyancy
forces increase the motion away from areas of thickening. Therefore, even for oblique
convergence, the length-scale ratio o will increase with t’. Figure 34 demonstrates the
increase in o with t” by plotting numerical results for the length-scale ratio vs. power-law
exponent n. The increase is fastest for n=10, because of the strain-rate weakening

phenomenon.

Figure 33: Normal crustal deformation length-scale A'Ng, vs. normalized
convergence time t'. (a) n=1, Am=0.1, Ar=0.1. The approximate
analytical solution is represented by the solid line; symbols (@) are the
numerical solution. Agreement is good for t’ less than 10, which
corresponds to crustal gradients less than about 1 in 20.(b) n=3, Am=0.1,
Ar=0.1. Only the numerical solution (®) is shown.
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Change in Length-Scale Ratio with n
and Normalized Convergence
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Figure 34: Length-scale ratio, o, vs. n, for convergence times t'=0, 5 and 10, and
boundary conditions from figure 26(a) (=N) and 26(b) (=T). The lines
represent curve fits to the numerical solutions (®). As the crustal

deformation length-scales approach the forcing length-scale limit (for

t'=0), the predicted ratio of 2 and the numerical solution diverge.
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§ 44 Comparison of Basally-Driven and Side-Driven Length-scale

Predictions

Predicted Side-Driven Length-scales for Small Normalized Convergence

England et al. (1985) investigated length-scales of deformation driven by
sinusoidally- varying velocity boundary conditions along the sides of the model domain
(figure 35(a), (b)). By using such simple functicis to describe the variation in velocity,
they were able to solve analytically the behaviour of a linear viscous thin-sheet at small
normalized convergence. The length-scales for side-driven normal and transcurrent
velocity components are approximately related to the indenter length-scale, D (defined
below), by:

2D D
YAng = —= d “Apg=—r
NS = nvn an 5= onvn

«..(22)
where n is the power law exponent, and the symbols VANs and VATs are used to indicate
velocity component length-scales for a one-sided (indenter-controlled) orogen or strike-
slip plate boundary. The length-scales are measured from the indenter boundary, at the
along-strike position where the incident velocity attains its maximum value, horizontally
out to the position where the velocity component reaches 1/e of its incident value at the
side boundary. Sample results for the simple sinusoidal boundary conditions are shown
in figure 36(a), (b). The plots are shown in dimensionless units, with indenter length
D’=50, scaled by the initial crustal thickness Sg. The filled circles indicate the extent and

along-strike location of the measured velocity length-scales.

Figure 35: The boundary conditions investigated by England gt al. (1985) (a) normal
convergence; (b) transcurrent deformation. As defined previously, D

represents the length-scale of the indenter.
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Side Forcing

Figure 35



137

The parameter D (as shown in figure 25) represents the horizontal extent of the
convergent (or transverse) velocity along strike, where it is assumed that convergence (or
transverse motion) is between a kinematically defined indenter moving at velocity u(x)
and a much weaker lithospheric plate. The side boundary therefore changes position with
time by the amount u(x)t. The indenter is assumed to deform according to the specified
kinematics, and is therefore not modelled physically, but is outside of the model domain.
The indenter boundary does not keep the same shape with increasing convergence,
because it is defined by a velocity boundary condition. Throughout this thesis, I use the
term ‘indenter’ to indicate this kinematic form of boundary condition. The kinematic
indenter is distinct from a body which indents the crust with no internal deformation,
which is referred to (when used in the thesis) as a 'rigid indenter'.

The equations (22) were derived using the simple sinusoidal boundary conditions
shown in figure 36(a),(b). When the shape of the indenter is changed (e.g. figure
36(c),(d)), the length-scales of velocity components will change. For example, the
velocity length-scale YA'Ng is larger by 25% for the half-sinusoid indenter shown in
figure 36(c), compared to the full sinusoid (figure 36(a)). The change is related to the

reduction in tectonic escape along-strike.

Figure 36: Shaded contours of vertical strain-rate, with velocity vectors
superimposed, for various shaped (kinematic) indenters at small normalized
convergence (1'=0). The bullets indicate the location and across-strike extent
of the measured deformation length-scales for each case. (a) Boundary
velocity u’(x")=cos(ry’/D"), v'(x)=0; (b) boundary velocity
v(x")=sin(mty’/D’), u’(x")=0; (c) boundary velocity u’(x")=cos(ny’/D’),
y'<D’/2; v'(x")=0, y’>D’/2, v'(x)=0; (d) boundary velocity u’(x")=1,
y'<D’/4; u'(x’)=cos(ny’/D’), D’/A<y’<D’[2; v'(x")=0, y’>D’/2, v'(x")=0.
The length-scale relations are indicated at the side of each figure.
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A+ explained at the beginning of this chapter, the length-scale of crustal thickening
for the side-driven case will not necessarily agree with the length-scale derived from the
velocity components, because of the variation in the velocity boundary condition applied
along-strike. This difference is illustrated in figure 37(a), which plots length-scales of
velocity, horizontal strain-rate components, and crustal thickening rate, vs. along-strike
length-scale D, for n=1 and Ar=0. The length-scales are measured at the position of
maximum incident indenter velocity, as for figure 36. The length-scale relation predicted
from equation (22) is also shown on figure 37. The crustal thickening rate length-scale
tA’Ng is approximately half as big as the length-scales of the velocity and horizontal
strain-rate components, which bracket the predicted relationship from eq. (22). If a linear
viscous rheology can be used to represent behaviour of the lithosphere, this result
suggests that measurement of the velocity or horizontal strain-rate length-scales using
geodetic surveys or focal mechanisms will not provide a good estimate of the length-scale
of crustal thickening. Conversely, if the only information available is the extent of
thickened crust, this length-scale will not necessarily provide a good measure of the

decrease in indenter velocity with distance from the plate boundary.

Figure 37: (a) A comparison of the velocity, horizontal strain-rate, crustal thickening
rate, and predicted length-scales for the side-driven boundary conditions
of figure 35(a), vs. normalized indenter length-scale D’. Other parameter
values are t'=0, n=1, and Ar=0; (b) A comparison of the velocity,
horizontal strain-rate, crustal thickening rate, and predicied length-scales
for the side-driven boundary conditions of figure 35(a), vs. power-law

exponent n, Other parameter values are t'=0, D’=50, and Ar=0.
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The difference between YA'Ng, SA'Ns , and tA'Ng can be shown to depend on n,
the power-law exponent for the deforming layer. Figure 37(b) illustrates this dependence
for the side-driven case, with D’=50 and Ar=0. The solid line is the predicted relationship
based on equatior: -22). The difference between thickening rate and velocity component
length-scales decreases substantially for n>1, and all the length-scale measures are within
30% of each other for power-law viscous rheologies. This result indicates that tectonic
escape of mass along-strike becomes much less important for n>1, a result of the

increased coupling of the model lithosphere to the indenter boundary conditions.

Comparison with Basally-Driven Results for Small Normalized Convergence
(i) Length-Scales

The results from section 4.2 demonstrate that length-scale relationships for small
amounts of crustal convergence driven by the detachment of underlying mantle
lithosphere (A'NB, A'TB, €q. 20b), differ from those derived from the side-driven indenter
model (A'Ns, A'TS, €q. 22). In particular, the side-driven model predicts that deformation
length-scales will extend further and further from the plate boundary as D—oo, whereas
the basally-driven model predicts length-scales for this case which are independent of the
side boundary conditions.

(ii) Ratio of Length-Scales for Separate Normal and Transverse Boundary Conditions

The side-driven results summarized in eq. (22) show that for linear and power-law
viscous rheologies, the length-scale of the normal velocity component across-strike
extends approximately 4 times further away from the boundary than the corresponding
transcurrent velocity component, provided the normal and transverse boundary conditions
are applied separately. The discrepancy between the length-scale ratio of 4 for the side-
driven model, and 2 for the basally-driven model, suggests that a potential test to

distinguish between the two styles of deformation is to estimate velocity length-scale
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ratios for convergent, vs. strike-slip, active plate boundaries.

(iii) Length-Scale Ratios for Oblique Convergence

England ¢t al. (1985) and Sonder gt al. (1986) did not investigate the equivalent
side-driven results for oblique convergence (N+T), but only for the separate normal (N)
and transcurrent (T) responses. There are no published results that show how the side-
driven velocity length-scale ratio of 4 will be modified for the obliquely convergent case.
Using the boundary conditions of figure 38(a), I conducted a simple test, for increasing
values of power-law exponent and an incident velocity vector with equal normal and
tranverse components (ug=vg). The results, summarized in a plot of the length-scale ratio
(o) vs. power-law exponent (n) (figure 38(b)), show that the velocity length-scale ratio
for a side-driven thin-sheet model decreases with n in a similar manner to the basally-
driven thin-sheet. As for the basally-driven case, the cross-coupling between normal and
transverse velocity components through strain-rate weakening tends to reduce differences
between the length-scales. Therefore, although results imply that for separate normal and
transcurrent boundary conditions, measurement of velocity length-scale ratios may be
useful in distinguishing different deformation styles, length-scale ratio tests for oblique
convergence may not be so useful, since for both the side-driven and basally-driven
models, the ratio tends to 1. This conclusion is based on the assumption that an average

power-law rheology with n>1 can be used to represent the deforming layer.

Figure 38: (a) Shaded contours of vertical strain-rate, with velocity vectors
superimposed, for oblique side-driven convergence. Velocity boundary
conditions are: u’(x")=sin(ny’/D"), v'(x")=sin(nty’/D’), and results are
shown for n=1 and n=3; (b) A plot of the length-scale ratio, o, vs. n, for

the cases shown in (a).
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Predicted Side-Driven Length-scales for Large Normalized Convergence

The increase in the normal deformation length-scale with t’ for basally-driven
deformation was discussed in section 4.3. No similar length-scale analysis exists for the
side-driven thin-sheet model, although many numerical studies have been done (England
and McKenzie, 1983; Houseman and England, 1986).

When there is no basal traction exerted on the thin-sheet, the length-scales of
deformation are determined by the competition between crustal thickening due to
indentation at the boundary, the effect of buoyancy forces on crustal thickness gradients,
and the tectonic escape of mass along-strike, which is a function of the applied length-
scale, D. Figure 39 shows an example of the change in crustal thickness, thickening
rates, and length-scales with normalized convergence, for the boundary conditions of
figure 35(a). Normalized distance x” is measured from the indenter position at the bottom
right-hand corner of the domain (y’=0). The right hand boundary (x"=0) moves with the

indenter velocity into the domain, and the length-scales of u(x,y) and S’ are measured

from this indenting boundary. Figure 39(a) demonstrates that crustal thickness grows

Figure 39: (a) Excess crustal thickness (S’-1), and (b) vertical strain-rates (S’/at"),
for the indenter case with an along-strike variation in velocity. Results
(lines) are shown for normalized convergence times t'=2, 8, and 10; (c)
The integrated vertical strain-rate along section A-A’, Z, vs t/, for the side-
driven indenter case with no basal traction (Am=0, D’=50, Ar=1, n=1);
(d) Length-scales of deformation, as measured by the normal velocity
component (YA'Ns), horizontal strain-rate component (SA'Ng), and crustal
thickening (*A’Ns), for the side-driven case. The decrease in integrated
strain-rate along the section, and the levelling off of the growth in length-

scales with time, indicates that steady state will eventually be attained.
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(c) Change in Crustal Thickening Integrated
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exponentially from the boundary, The unrealistic topography created by an indenter has
already been discussed by Koons (1990), and illustrates a major problem with the

concept of a one-sided orogen.
As the crust thickens, the effect of the buoyancy term adds to the lateral tectonic
escape component, and the vertical strain-rate diminishes all along section A-A” (figure

39(b), curve for t*—10). An estimate of the change in the integrated sectional thickening

rate can be found by computing the quantity:
fos’
2= [Sax
atl
=0

at each normalized convergence time along section A-A’ (i.e. at y’=0). If Z=1, all of the
mass displaced by the indenter for a small convergence increment stays within the cross-
section. If <1, as in figure 39(c), some of the displaced mass moves out of the cross-
section along-strike. Figure 39(c) shows a decrease in X with increasing t’, which
indicates that tectonic escape along-strike increases with normalized convergence. This
relationship is caused by the growing importance of the Argand number as crustal
gradients increase with time. As the effect of gravity on crustal thickness contrasts
increases, the thickened crust spreads out along-strike, increasing the deformation length-
scale, and laterally by tectonic escape. Eventually, the quantity X tends to a con. tant limit.
Once the limit is reached, the section A-A’ may be considered to have reached a local
steady state, where the thickening of the layer in the cross-section (from movement of the
indenting boundary) is balanced by the movement of mass out of the cross-section along-
strike. Note that this does not imply that the domain as a whole has reached a steady state,
but it does mean that the deformation length-scale will reach a limiting value, beyond
which the orogen ceases to grow outwards along section A-A’, but instead grows

laterally by tectonic escape.
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The change in the normal strain-rate component, velocity component and crustal
thickening length-scales with increasing t’ is shown in figure 39(d). For n=1, the
thickening length-scale is approximately one-half of the velocity length-scale, because of
the tectonic escape terin. The velocity and horizontal strain-rate length-scales agree for
t">2. The 'bump' in the velocity length-scale plot for small t’ appears to be an effect of
material moving down-slope, caused by gravity acting on crustal gradients. For t'~0,
extra mass moving down-slope due to gravity initially acts next to the boundary, and so is
constrained to move in a direction normal to the plate boundary, increasing the velocity
length-scale. After more convergence, slopes steepen further away from the boundary,
and excess mass escapes along-strike, causing the velocity profile to steepen again, so
that the velocity length-scale slowly decreases. This effect is more noticable for the

velocity length-scale than its spatial derivative, SA"\s, because over most of the cross-

section the slope of the velocity field is unchanged by this process.

Figure 40: (a) The integrated vertical strain-rate along section A-A’, Z, vs t’, for the
side-driven indenter case with a high Argand number and no basal traction
(Am=0, D’=50, Ar=5, n=1). The decrease in the integrated thickening rate is
faster than for figure 39(c), because of the increased importance of buoyancy
forces to the tectonic escape term; (b) Length-scales of deformation, as
measured by the normal velocity component (YA'Ns), horizontal strain-rate
component (SA'Ns), and crustal thickening (*A'Ng), for the side-driven case
with Ar=5; (c) same as (a) but for a non-linear rheology and Am=0, D’=50,
Ar=1, n=3. Buoyancy forces are insufficient to cause the movement of mass
away from the boundary, so that the integrated thickening rate does not
decrease with time; (d) same as (b) but for a non-linear rheology and Am=0,
D’=50, Ar=1, n=3. Length-scales decrease with increasing convergence, as

all mass becomes concentrated at the side boundary.
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(c) Change in Crustal Thickening Integrated
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The time taken to reach steady state depends on the relative magnitudes of Ar and
D’. When Ar is increased (figure 40(a,b)), steady state is achieved sooner in the
development of topography. Figure 40(a) shows the integrated cross-sectional thickening
decreasing to zero, which indicates that when steady-state is attained, all of the mass
entering the cross-section is transported laterally by tectonic escape, so that the thickened
section propagates forward at the indenter velocity, with a constant shape. The bump in
the velocity length-scale with increasing t” is even more noticable than for Ar=1 (figure
40(b)), as the effect of gravity on crustal thickness gradients is more important.

The differences between length-scales are much less for n=3 (figure 40(d)),
suggesting that tectonic escape is less important in this case. In fact, the amount of mass
moving out of the cross-section decreases slightly with increasing normalized
convergence (figure 40(c)). This effect is due to the focusing of compression next to the
indenting boundary with increasing t’, causing the deformation length-scales to decrease.
The strain-rate weakening of a non-linear rheology changes the balance between
compression, buoyancy forces, and lateral tectonic escape, so that the indentation of the
side boundary dominates the model behaviour. Excess material cannot move away fast
enough either along or across-strike, and becomes concentrated just in front of the
indenter boundary.

The results shown in figures 39 and 40 may be understood more easily by
considering some limiting cases. If Ar—eo, crustal thickness gradients cannot develop,
and model behaviour corresponds to a two-dimensional (planform) plane-strain solution
(as noted by England and Jackson, 1989). Because crustal thickening is not possible, all
mass advected into the model domain with the indenter must escape laterally. The
example shown in figure 40(a,b) is approaching this limit. Although crustal thickening
does occur in section A-A’, a critical state is reached beyond which all the mass advected
in front of the indenter escapes laterally, and the thickened crust propagates forward as a

viscous wedge with a constant concave shape.



152

For the limiting case where Ar = 0, no buoyancy forces operate, and the amount of
mass escaping laterally is constant or decreasing (because the shape of the boundary
changes with convergence). As the boundary indents the domain, the length-scale of
crustal thickening will become very small, so that all the excess (indented) mass is
concentrated at the boundary. The example shown in figure 40(c,d) is approaching this
limit. The non-linear theology tends to accentuate the concentration of thickening at the
boundary, by strain-rate weakening. Because Ar > 0 for the case shown in figure
40(c,d), the length-scale decreas: will eventually level off when slopes become very

steep.

Comparison Between the Basally-Driven and Side-Driven Length-Scales for Large
Normalized Convergence- A Summary
(i) Length-Scales

The results from this section indicate some fundamental differences between styles
of thickening for the basally and side-driven models. When normal convergence is
controlled by the detachment and subduction of mantle lithosphere, crustal deformation
length-scales increase with normalized convergence. The increase is similar for all
measures of deformation (velocity and strain-rate components), and is initially
proportional to \/t_’ For whole-lithosphere side-driven convergence, length-scales of the
normal velocity and strain-rate components do not necessarily agree. Length-scales may
increase, decrease, or stay constant with t’, depending on the relative effects of gravity
acting on crustal thickness gradients, compression from the indenting boundary, strain-

rate weakening for a power-law rheology, and tectonic escape of mass along-strike.

(ii) Length-Scale Ratios
Velocity length-scale ratios for basally-driven convergence (VAnp/VATg) will

increase with t', whereas the length-scale ratios for side-driven convergence (VAnNs/YATS)
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may grow or diminish, depending on the relative importance of the effects noted in (i).

(ili) The Development of Plateaus

A plateau is a finite zone of thickened crust for which topographic slopes are much
smaller than the slopes at the boundary between deformed and undeformed crust. At large
normal convergence times, the topography for the basally-driven case discussed in
section 4.3 continues to grow outwards from the detachment zone with time, with the
maximum topography located over the detachment zone. A plateau does not develop,
although topographic slopes may be quite small (e.g. figure 20). Additional factors, such
as a change in the strength of the shear zone between the crust and mantle as a
consequence of thickening, must be invoked in order to produce a plateau (e.g. Willett gt
al., 1993).

In contrast to the basally-driven model, the side-driven thin-sheet may in certain
cases develop a plateau over part of the thickened region. The formation of a plateau
seems to depend on the shape of the velocity boundary condition at the side of the model
domain, and the value of the Argand number. For instance, no plateau has developed at
y’=0 for the sinusoidal indenting boundary conditions of figure 36, with t'’=1 and Ar=1.
The maximum thickening for this case occurs adjacent to the side boundary (figure
39(a)). However, Houseman and England (1986) demonstrate that a plateau may be
formed by a more complicated indenter shape, where indenter velocity decreases to zero
over a relatively small distance (causing a 'syntaxis' to develop). Figure 4(c,f,i) of
Houseman and England (1686) shows crustal thicknesses for such a case, where
maximum crustal thickness along a direction normal to the plate boundary is not always at
the boundary, and a broad region of approximately constant thickness has developed in
front of the indenter. Formation of a plateau is also facilitated by a large Argand number

(Houseman and England 1986, figure 5).
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§ 4.5 Length-Scales of Deformation for Mixed Side-Driven and Basally-

Driven Boundary Conditions: Small Normalized Convergence

This section investigates crustal deformation styles for a mixed case, which
combines indenter mechanics with subduction of the mantle lithosphere. The boundary
conditions thus include variations in the along-strike incident velocity at the model plate
boundary, as well as detachment of the model martle lithosphere.

The side-driven model discussed in the previous section makes two major
assumptions about the behaviour of continental lithosphere under convergence. The first
assumption, which has already been discussed in chapter two, is that crust and mantle
lithosphere deform together (‘whole lithosphere deformation') with no shear between
them. The second assumption is that the plate boundary separates two regions of
lithosphere with very different average strengths, so that one side of the plate boundary
acts as a rigid (or kinematically prescribed) indenter into the weaker, deforming side. The
strong lithospheric region is not modelled in the side-driven thin sheet model, but is
specified kinematically.

An example where the assumption about different strengths on either side of the
plate boundary may be valid is at an advancing subduction zone, where the oceanic
lithosphere is much stronger, and is moving towards the continental interior at trench
velocity, Vs. Contrasts in strength are also possible during continent-continent collision,
if convergence occurs along a zone that was previously the site of active oceanic
subduction. Continental lithosphere adjacent to a zone of oceanic subduction is likely to
be hotter and weaker than continental lithosphere adjacent to a passive margin, because of
the additional volcanic heat flux from the subducting oceanic lithosphere, and accretion of
micro-terranes to the active margin. If two continental lithospheric plates of differing
origins (active and passive margins) collide, a difference in average lithospheric strength

across the plate boundary is expected, and may cause the stronger side to act as an
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indenter into the weaker, hotter lithospheric plate.

In contrast to the indenter assumption, the basally-driven model has been

investigated for the case where there is no significant change in lithospheric strength

across the plate boundary (e.g. section 4.2). As discussed above, this will not always be

a good representation of convergent plate interactions. A third deformation style is

therefore required (figure 41(a)), to model cases where mantle lithosphere detaches and

subducts, as in the basally-driven model, but where there are significant changes in

Figure 41:

Schematic diagram of the physical problem which the ‘mixed' boundary
conditions represent. (a) Normally convergent case. An indenter, which
may be regarded as strong crust with a cold geotherm, well coupled to the
underlying mantle, is indenting less coupled, weaker crust. At the plate
boundary, the mantle lithosphere of the weaker side detaches and
subducts, so that the velocity boundary condition at the base of the crust is
reduced from the indenter velocity to zero over forcing length-scale, A,
The problem thus has two horizontal forcing length-scales: the indenter
velocity length-scale, D, and the basal detachment length-scale. (b)
Transverse motion at the plate boundary. The stronger (indenter)
lithospheric plate moves away from the observer, with a velocity varying
over length-scale D. The mantle lithosphere is separated by a weak shear
zone at the plate boundary. The sense of dip of this shear zone is arbitrary,
and will depend on the along-strike setting and previous history of the
boundary zone. The velocity boundary condition at the base of the crust is

reduced from the indenter velocity to zero over forcing length-scale, Ap,.
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strength at the plate boundary. This model combines some of the aspects of the side-
driven and basally-driven models, and is therefore referred to as the 'mixed' model.
Deforming crust on the weak side of the plate boundary is simultaneously indented by the
much stronger lithospheric plate, and forced at its base by a detaching and subducting
mantle lithosphere.

The mixed case may also provide a possible model for some strike-slip settings
(figure 41(b)). The mantle lithosphere in this case is assumed to decouple strike-slip
motion along a fixed, small length-scale An, representing the plate boundary within the
lower lithosphere. For continental transform boundaries which developed from a
previously convergent setting (e.g. the San Andreas and Western U.S.), it is likely that
average lithospheric strength will change across the plate boundary zone, so that in the
limiting case the stronger plate may be specified as a rigid (or kinematically prescribed)
strike-slip boundary condition at the side of the domain.

The mixed model is used to determine when length-scales of deformation in the
weaker plate are controlled by crust-mantle interactions (basal forcing), vs. indentation of
the crust from the plate boundary (side forcing). In particular, when Am—0, deformation
on the weak side of the plate boundary zone does not depend on the basal forcing. For
this case it is likely that deformation length-scales will be controlled by the side
indentation length-scale, in a manner similar to the results from section 4.4, although for
the crustal layer only, since the mantle lithosphere is still assumed to detach and subduct.
Conversely, when the indenter length-scale, D, becomes very large, it is expected that
deformation length-scales in the crust will be controlled by basal forcing rather than

indenter mechanics.

Figure 42: The 'mixed' boundary conditions used in sections 4.5 and 4.6. (a)

normal incidence; (b) transverse incidence.
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The mantle lithosphere is assumed to detach on the weak side of the plate boundary,
and the detachment zone moves with the velocity of the indenter into the deforming
domain. The mantle detachment length-scale, Ap,, remains constant with normalized
convergence time, and represents the zone over which basal velocities decrease from
those of the indenter mantle lithosphere to zero. The sense of subduction of mantle
lithosphere is shown on figure 41 as dipping towards the strong side of the plate
boundary. The physical rationale for this orientation is discussed in chapter six. For the
simple velocity boundary conditions used in this thesis, the choice of subduction direction
for the mantle lithosphere does not affect the velocity boundary condition imposed at the

base of the crust.

Model Boundary Corditions

The side-driven boundary conditions of England gt al. (1985) are combined with the
basal drag boundary conditions of section 4.2, by taking the detachment zone at the side
rather than the middle of the modelled zone (figure 42(a), (b)). In accordance with the
assumption of detachment and subduction of the mantle lithosphere, the model domain is
taken to be over the crust only. The side boundary conditions are sinusoidal functions of
normal (N) anc transverse (T) velocity. The boundary velocities ug(y) and vo(y) are
aprlied at the side and base of the model, and are reduced along the base to zero, over

detachment length-scale Ap,. The length-scales of deformation are measured from the

boundary, as for the previous section.

Figure 43: Velocity vectors and vertical strain-rates for (a) n=1, t’=0, Am=0.001 and
D’=50; (b) n=1, t"=0, Am=0.1 and D’=50. VA'No= normal velocity length-
scale for the boundary conditions of figure 42(a); VA'ro= transcurrent velocity
length-scale for the boundary conditicns shown in figure 42(b); length-scales
are measured at the along-strike positions indicated on the figures.
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Results for Linear and Non-Linear Viscous Rheologies at t’=0

Examples of the velocity fields and crustal thickening rates for a linear thin-sheet are
displayed in figure 43, for the sinusoidal side boundary conditions N (figure 43(a)) and T
(figure 43(b)). The r .ule detachment length-scale, A, is equal to the initial crustal
thickness. The maximum observed deformation length-scales, A’No and A't, are
measured as shown on the figure, at the along-strike position where the incident velocity
is a maximum. The plots are shown in dimensionless units, with scaled indenter length-
scale D’=50, for two values of the Ampferer number: (a) Am=0.001 (figure 43(a)); (b)
Am=0.1 (figure 43(b)). The velocity fields show that for Am=0.001, the deformation (as
measured by A'No and A’'ro) spreads out far from the side boundary. As Am increases to
0.1, the length-scale dependence on basal drag becomes stronger, and deformation is
restricted to an area close to the side boundary. Crustal thickening rate contours for the N
case are also shown.

To determine under what conditions the indenter length-scale (D’) controls the
crustal deformation length-scales (A'No and A’1g), I compare the numerical results,
measured for the mixed case with the boundary conditions of figures 42(a) and (b), with
the predicted velocity length-scales for basal and side-driven forcing (equations 19 and
22). The predicted length-scales if deformation were caused only by the traction at the
base of the crust, are A'Np/2 and A'1B/2 (where A'NB, A'1B are defined in equation 19,
and are valid for length-scale measures of velocity, horizontal strain-rate, or thickening
components). The division by two is necessary because model mantle subduction takes
place at the boundary of the domain, so thart these are half-width measures of deformation
compared to the analysis in section 4.2. The predicted side-driven velocity length-scales
are VA'Ns and VA'ts (where YA'Ns, VA'Ts are defined in equation 22). Although these
length-scale predictions were derived for a whole lithosphere indenter, the following
results will show that they are equally applicable for crustal deformation, in the limit

where the horizontal shear traction between the crust and mantle lithosphere becomes
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negligible.

Figure 44 plots the numerical results (solid lines) for the variation in velocity length-
scales vs. Am under the mixed boundary conditions, with: (a) normally incident velocity
(N); and (b) transverse incident velocity (T). Predicted basal and side-driven velocity
length-scale solutions are indicated by the dashed lines. (A'Np/2) and (A'Tp/2) are the
analytical solutions for basally-driven deformation (eq. 19), and YA'Ns and VA'yg are the
analytical solutions for side-driven deformation (eq. 22), and are shown for two different
values of D', the side-boundary length-scale.

The numerical results (figure 44) show that, for weak basal coupling (Am->0), the
deformation style will be determined by the side (indenting) boundary condition (i.e.
VA'NO—VA'Ns and YA'To—VA'Ts), as expected . Correspondingly, as Am increases
(stronger basal coupling), the deformation style will be determined by the basal boundary
condition (VA'No—(A'NB/2) and YA'To—>(A"1B/2)). The length-scale at which the

transition from side-driven to basally-driven deformation occurs depends on the relative

Figure 44: (a) Numerical resuits (symbols, with solid lines as curve fits) for mixed
boundary conditions, and the normal velocity length-scale YA'NQ, vs. Am.
Results are shown for two values of indenter length-scale, D’=16, and
’=50. Also shown are the predicted deformation length-scales of purely
side-driven (VA'Ns) vs. basally-driven (A'Npg/2) models (dashed lines).

Figure 44(b) is the same as 44(a) but for transcurrent velocity, VA'to.
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size of the two predicted length-scales. For instance, when D=50" and Am=0.1, the side-
driven normal convergence velocity length-scale (from eq. 22) is:

2D’
VAl = ——=132
Ns =

The equivalent length-scale predicted by the basal boundary conditions (from eq. 19) is:

Because YA'Ns >> (A'NB/2) for these values of Am and D', the velocity length-scale will
be mostly determined by the basal boundary condition. In fact, the measured velocity
length-scale in this case closely corresponds to the basally-driven prediction . When
D’=50 and Am=105, the predicted analytical length-scales are VA’Ns = 32 and (A'NB/2) =
632, and the measured length-scale is 28, so the length-scale depends primarily on the
side boundary forcing. The slight discrepancy between the predicted and measured
length-scales in the side-driven limit (Am—0) is caused by the approximate nature of
equation 22. For examples with a linear rheology, such as the case illustrated in figure
44, an exact expression for the length-scale exists (England et al., 1985), and predicts

that VA’Ns=28, in agreement with the measured result.

Figure 45: Velocity profiles u/ug and v/vg vs. normalized distance along the x-axis,
for the boundary conditions of figure 42(a) and (b), and: (a) Am=0.001;
(b) Am=0.1. The profiles are taken at the same along-strike positions as
shown on figure 43. The dashed line indicates the e-folding velocities
u=ug/e, v=vg/e; the intersection of the profiles with this line therefore

provides a measure of half-width velocity length-scales.
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These results have interesting implications for the effects of strain partitioning on
deformation length-scales. For a linear rheology, the ratio between normal and
transcurrent velocity length-scales will change from 4 to 2 as deformation becomes
controlled by the underlying mantle detachment, rather than the length-scale of the
indenter. This change is demonstrated in figure 45, which shows the normalized velocity
profiles for normal convergence (N) and transverse motion (T) for relatively strong and
weak values of Am, For Am=0.001, the ratio of length-scales N:T at the e-folding width
is approximately 4. For the stronger basally coupled case Am=0.1, the ratio reduces to 2.

The equivalent results to figure 44 for D’=50, and a non-linear rheology, are shown
in figure 46. Although the length-scales predicted by the side and basal boundary
conditions are different in magnitude compared to the linear cases, the same transition
criterion between them applies. As for the linear case, the length-scale follows the

minimum of the predicted basal and side-driven solutions.

Figure 46: The dependence of velocity length-scales on side and basal forcing for a

non-linear viscous crust. Normal length-scale (YA'Ng) vs. Am for (a) n=3;

(b) n=10; transcurrent length-scale (YA'to) vs. Am for (c) n=3; (d) n=10.
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In the previous section, the importance of the difference between deformation

length-scales measured by the velocity components, and by the crustal thickening rate

was noted, for n=1. Figure 47 demonstrates that the length-scale criteria for mixed

boundary conditions is true for either measure of length-scale, even when they are

different. Figure 47(a) shows numerical results for velocity and thickening length-scales

(symbols and solid/ light, dashed lines) compared to the predictions for side-driven and

basally-driven deformation, respectively. The same result for a non-linear rheology (n=3)

is shown in figure 47(b), where there is little discrepancy between the length-scale

measures.

Figure 47:

Observed normal deformation length-scale, A’NQ, vs. Am, showing the
difference between measuring the length-scale using the normal velocity
component (YA'NO, shown using a thin dashed line), and the crustal
thickening (YA’No, shown using a solid line). For the parameter values in
(a) (n=1, Ar=0, D’=50 and t'=0), the :'~o length-scale measures are the
same for limiting basally-driven deformation case (A’Np/2), but the
velocity deformation length-scale for side-driven deformation limit VA'Ng
is approximately twice the length-scale measured by crustal thickness,
indicating substantial movement of mass along-strike. For the parameter
values in (b) (n=3, Ar=0, D’=50 and t'=0), the two length-scale measures

closely agree, indicating very little along-strike mass movement.
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§ 4.6 Length-scales of Deformation for Mixed Side-Driven and Basally-

Driven Boundary Conditions: Large Normalized Convergence

This section investigates the behaviour of the mixed case at large normalized
convergence times. Only the normally incident case (figure 42(a)) is discussed, because it
is assumed that the transcurrent length-scale does not change significantly with increasing
normalized convergence. The investigation of thin-sheet behaviour under mixed boundary
conditions is conducted initially for the case when the length-scale of the indenter at the
side of the domain, D, is infinitely large. Behaviour may be compared with equivalent
results from section 4.3, in order to determine the effect that advecting the detachment
zone into the domain (with the indenter) has on the basally-controlled length-scale of
deformation. Subsequently, the length-scale dependences of the mixed case are

investigated for a finite variation in the indenter length-scale, D.

Large Normalized Convergence With no Along-Strike Variation in Velocity

When D’—0 and Am>0, the problem is similar to the case investigated in section
4.3. The deformation is determined by the competition between crustal thickening (on a
length-scale determined by Am), and buoyancy forces due to crustal thickness gradients
(on a length-scale determined by Ar). An important difference between this analysis and
section 4.3, is that movement of crustal material through the zone of mantle detachment is
no longer a free parameter, as it was for the two-sided case, but is constrained by the
incident velocity ug(x).

The absence of tectonic escape along-strike produces greater amounts of crustal
thickening with time (figure 48(a)) compared to the side-driven case investigated in
section 4.4. The rate of crustal thickening integrated across-strike is approximately
constant (figure 48(c)) (the slight increase is a numerical effect), although the spatial

distribution of thickening changes with time as the effect of buoyancy forces on crustal



thickness gradients increases (figure 48(b)). The length-scales, as measured by the
normal velocity componeni and the thickening distribution, both increase with t” (figure
48(d)), but diverge because of the indentation of the side boundary. Note that these
length-scales would agree for the two-sided case investigated in section 4.3.

Figure 48(d) also demonstrates that when D—eo, the mixed case does not reach a
steady state with increasing convergence time; therefore, deformation will propagate
forward indefinitely, provided Ar is sufficient to ensure that the mass involved in

thickening does not become concentrated along the side boundary.

Figure 48: (a) Excess crustal thickness (S’-1), and (b) vertical strain-rate (9S’/ot”), for
the mixed case, where mantle detachment occurs at the side of the model
domain, and Am=0.01, D—co, Ar=1, n=1. Results (lines) are shown for
normalized convergence times t'=2, 8, and 10; (c) The integrated vertical
strain-rate along section A-A’, Z, vs t’, for basal forcing where mantle
detachment occurs at the side of the model domain, and Am=0.01, Do,
Ar=1, n=1; (d) Length-scales of deformation, as measured by the normal
velocity component (VA’No) and crustal thickening (tA’NQ), for the mixed
boundary conditions. Note that there is no decrease in integrated strain-
rate along the section with time, and that the length-scales continue to

grow.
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(¢) Change in Crustal Thickening Integrated
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Large Normalized Convergence With an Along-Strike Variation in Velocity

Figure 49.a,b) shows the change in crustal thickness and vertical strain-rate with
normalized convergence for the mixed case, with the boundary conditions as shown in
figure 42(a), and with parameter values Am=0.01, Ar=1, and D’=50. The size of the
deformation length-scale depends upon the competition between basal coupling,
indentation of the boundary, buoyancy forces, and tectonic escape. Crustal thickening is
maximum at the side boundary, and is intermediate in magnitude compared to the whole-
lithosphere side-driven case (figure 39(a)), and to the mixed case results which had no
along-strike variation in D (figure 48(a)). As for the side-driven case, it is now possible
for the loss of mass from tectonic escape along-strike to balance mass entering the cross-
section, so that a steady state may be achieved. The trend towards this steady state is

shown in figure 49(c).

Figure 49: (a) Excess crustal thickness (S’-1), and (b) vertical strain-rate (3S’/dt"), for
the mixed case, where mantle detachment occurs along a boundary which
is indenting the model domain, and Am=0.01, D’=50, Ar=1, n=1.
Results (lines) are shown for normalized convergence times t’=2, 8, and
10; (c) The integrated vertical strain-rate along section A-A’, Z, vs t/, for
basal forcing where mantle detachment occurs at the side of the model !
domain, and Am=0.01, D=50, Ar=1, n=1; (d) Length-scales of
deformation, as measured by the normal velocity component (VA'No) and
crustal thickering (YA'No), for the mixed boundary conditions. The
decrease in integrated strain-rate along the section, and the levelling off of
the growth in length-scales with time, indicates that steady state will

eventually be attained.
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The t'=0 results from section 4.5 showed that the velocity length-scale for mixed
boundary conditions is determined by the minimum of the predicted side and basally-
driven length-scales (figure 50(a)). This is also true for large normalized convergence (t’
>0) (e.g. figure 50(b)). However, the predicted side and basally-driven length-scales
change with time. For example, the basally-con‘rolled length-scale increases with t,
whereas the side-driven length-scale may reach a steady state where the forward
movement of mass normal to the boundary is balanced by tectonic escape. The shift in
limiting length-scales (indicated by the arrows in figure 50(b)) will change the location of
the transition region between basally and side-controlled deformation as t’ increases. The

magnitude and direction of the shift depends on n, Ar and D',

Figure 50: Normal velocity length-scale YA'No for crustal thickness, vs. Am, for
mixed boundary conditions (Am=0.01, D’=50, Ar=1, n=1), at: {a) t'=0;
(b) t"=10. The limiting basally- and side-driven cases are indicated by the
dashed lines. Note the change in the limiting length-scales with increasing

normalized convergence, shown by the open arrows.
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§ 4.7 Summary

The results from this chapter indicate that there are some predictable differences
between the deformation resulting from basally-driven and side-driven convergence.

Length-scales of basally-driven deformation are determined by the values of n, Ar, t’, and

the Ampferer number, A, Length-scales of side-driven deformation are determined by

n, Ar, t', and the horizontal extent of the indenting boundary condition, D’. For a
combination of indenter mechanics and basal forcing, deformation length-scales are
determined by the minimum of the predicted length-scales from the side-driven and
basally-driven cases.

For both side and basal forcing, the model results suggest that normally convergent
velocities will extend further from the plate boundary than will velocities for
predorninantly strike-slip boundary conditions, if all other parameters controlling
deformation are the same. The basally-driven model predicts that the length-scales for
these cases will have a ratio of 2, for all values of n, at small normalized convergence
times. In contrast, the side-driven model predicts that this ratio will be 4, for all values of
n, at small normalized ..onvergence times. In the case of oblique convergence, assuming a
non-linear viscous rheology for the crust, both models predict that the length-scale ratio
will tend to 1, so that no appreciable partitioning of normal and transcurrent velocity
fields will be observed.

When determining deformation length-scales for the (kinematic) indenter model, it
is important to specify what is being measured. The length-scale over which the normal
velocity component dies away from the boundary is, in general, greater than the length-
scale over which crustal thickening occurs, because of the likelihood of movement of
mass along-strike, and the forced deformation of the indenting boundary.

As the crust thickens with increasing normalized convergence times, some changes

in the length-scale of deformation normal to the plate boundary , as measured by the
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crustal thickness, are likely to occur. If the thickening is controlled by basal forcing, the
length-scale for normal deformation, A’Ng, will increase, the magnitude of he increase
depending on thc values of Ar, n, Am, and t’ . However, if thickening is controlled by
side forcing, the deformation length-scale will not necessarily increase with t’. For cases
where buoyancy forces are insufficient to redistribute mass away from the indenting
houndary, the normal deformation length-scale will decrease with t”. Even if buoyancy
forces are significant, the movement of mass along-strike (tectonuc escape) may prevent
the deformation length-scale from growing indefinitely with time. Eventually a local
steady state may be reached, where the thickening from indentation of the boundary is
balanced by tectonic escape of mass along-strike.

A plateau may develop for the side-driven case, given a suitably shaped (kinematic)
indenter, as discussed in section 4.4. However, when there is no along-strike variation in
velocity, the basally-driven thin-sheet will not form a plateau, even after considerable
amounts of convergence, unless the value of the controlling parameters Am, Ar and n are
locally changed. Such a change may occur as a consequence of crustal thickening. For
example, the value of Am may locally decrease if thickening of the crust leads to an
increase in Moho temperature (see Chapter Six). Similarly, an increased crustal thickness
will change the thermal and pressure regimes, and perhaps alter the predominant creep
mechanism, therefore changing n. A decrease in the strength of the crust may also affect
the local value of the Argand number (England and Houseman, 1989).

When both side and basal forcing are present (e.g. indentation and simultaneous
mantle detachment), the length-scales of deformation at all normalized convergence times
will be dictated by the minimum of the predicted length-scales for the basally- and side-

driven cases.



Chapter Five

SCALE ANALYSIS OF LITHOSPHERIC CONVERGENCE:
GEOLOGICAL APPLICATIONS

§ 5.1 Introduction

The previous chapter made a number of predictions concerning the different
behaviour of crust subjected to convergence by a 'side-driven' indenter, vs. crust which
is controlled by 'basally-driven' tractions due to the detachment and subduction of
underlying mantle lithosphere. Can these predictions be used to determine whether the
basally-driven (mantle detachment) model, or the side-driven (indenter) model, better
represent deformation of the earth's crust in convergent settings? In this chapter, I
develop a series of tests, based on the deformation styles investigated in the previous
chapter, to try to distinguish between primarily basal and side-driven forcing (Table 8).
The first two tests compare length-scale measures from natural orogenic settings to the
predictions of crustal deformation length-scales for side and basal forcing. The third test
compares the ratios between observed normal and transcurrent crustal deformation length-
scales, ANO and A0, to the side and basal predictions, for purely convergent vs. strike-
slip settings. Lastly, test four compares observed and predicted length-scale ratios for
cases with oblique convergence.

The model predictions on which Table 8 is based are summarized in figures 51
and 52. Figure 51 illustrates the basic behaviour of the side-driven model, in which the
whole lithosphere deforms over a length-scale which depends on the wavelength of

forcing at the indenting side boundary (D), vs. the basally-driven model, where
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Table 8: Testing Length-Scale Relations from Chapter Four

Model Prediction

Test Method

Aspect Ratio Test One
Length-scales for normal deformation at
small normalized convergence times will

be the minimum of:

Plot D vs. ANo for orogens which have not
experienced significant normalized

corvergence

All points should fali on, or below, the line
which has slope 2/mV3

If points are significantly below this line, it
indicates the orogen may be basally-driven.

Aspect Ratio Test Two

Length-scales for transcurrent deformation

wili be the minimum of:
D
y W
S onvn

Plot D vs. ATO

All points should fall on, or below, the line
which has slope 1/2V3

If points are significantly below this line, it

indicates the orogen may be basally-driven.
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Aspect Razio Test Three Find cases where the direction of plate
The ratio of purely normal: purely motion changes along-strike from
transcurrent length-scales of deformation | predominantly normal to strike-slip.

will be between 2:1 (basally controlled) | Estimate ANo:ATO ratio.

and 4:1 (side-driven)
Aspect Ratio Test Four Estimate the ratio ANO:AToO for obliquely
Oblique Convergence: convergeat systems.

Assuming n>1, for both side and basally-
driven cases, normal and transcurrent

deformation length-scales will tend to 1.

Figure 51:

Summary of the deformation styles investigated in chapter four. (a) The
side-driven model. where crust and mantle lithosphere deform as one
layer, with no shear between them. Deformation length-scales in the crust
are a function of the wavelength of the applied velocity boundary
condition, D, at the plate boundary. Purely compressive deformation
extends four times as far from the boundary as purely transcurrent
deformation. This ratio is reduced somewhat for obliquely convergent
settings. (b) The basally-driven case, where subduction of the mantle
lithosphere at the plate boundary produces deformation in the overlying
crust, on a length-scale determined by the crust-mantle coupling (Am),
Purely compressive deformation extends twice as far from the initial
detachment zone as does purely transcurrent deformation. This ratio is

also reduced for nbliquely convergent settings.
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deformation in the crust is a result of the detachment and subduction of underlying mantle
lithosphere, and the length-scale of deformation depends on the strength of the coupling
at the detachment interface. The predicted ratios for normal and transverse incidence are
summarized underneath each schematic illustration, as well as the ratio for the oblique
case, where both normal and transverse components act simultaneously at the plate
boundary.

The real behaviour of the lithosphere at convergent plate boundaries may be a
combination of the cases shown in figure 51. Results from chapter four showed that for a
possible intermediate case, as illustrated in figure 52, the crust will deform over a length-
scale which is the minimum of the side-driven and basally-driven predicted length-scales.
For instance, if the crust is only weakly coupled to the mantle lithosphere, its behaviour
will depend on the applied indenter length-scale at the plate boundary, and will be
independent of the basal boundary condition. If the crust is strongly coupled to the mantle
lithosphere, or the side length-scale D is very large, the crust will deform in response to
the basal boundary condition. Although the tests in Table 8 are formulated for the separate
basal and side-driven cases, they are also applicable to the m1xed case, if it is assumed
that the final deformation 'state’ of an orogen is either determined by the side or basal
forcing, depending on the transition criterion discussed above. (Recall that in chapter

four, the mixed case was demonstrated to have a deformation length-scale which

Figure 52: Application of the model styles illustrated in figure 51 to intermediate
cases, where there is a combination of basal forcing or drag, and indenter
mechanics. The deformation length-scales for the intermediate case
(indicated by Anm and ATy on the figure) will be the minimum of the
predicted side-driven and basally-driven length-scales, as shown in the

previous chapter.
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depended on the minimum of the length-scales due to the indenter (side) boundary
condition, and basal traction from detachment and subduction of underlying mantle
lithosphere.)

The aspect ratio tests require estimates for the length-scales of deformation for
natural convergent and strike-slip settings, ANo and Ao, where the ' indicates
'observed’, as well as the along-strike length-scale of variations in the relative velocity at
the plate boundary, D. The natural examples to be used in the tests must meet a number of
requirements, which are discussed in section 5.2. The geographical locations of the
selected examples are illustrated in figures 53 and 54, for recent (fig. 53) and more

ancient (fig. 54) convergent settings.

Figure 53: Summary of the plate boundary settings for modern examples described in
Appendix F. Map figure modified from Bott (1982). Small figures modified from authors
indicated in brackets: (a) European Alps (Royden, 1993a); (b) Northern and Eastern
Anatolian faults, and the Levant fault with associated convergent deformation at the
Lebanon (LEB) Mts (Hempton, 1987); (c) Andes (Dewey and Lamb, 1992); (d) Banda
Arc (Johnston and Bowin, 1981; Karig et al., 1987); (e) Chaman Fault, with the
associated Zhob and Makran foldbelts (Lawrence gt al., 1981); (f) Tibetan Plateau
(Peltzer and Tapponnier, 1988); (g) New Zealand Southern Alps and Alpine Fault
(Beaumont et al., submitted); (h) New Guinea (Smith, 1990); (i) Pyrenees (Mufioz,
1992; Alonso and Teixell, 1992); (j) Taiwan ( Lu and Malavieills, 1994); (k) San Andreas
fault (Irwin, 1990); (1) Zagros (Hempton, 1987; Jackson, 1992). Symbols on figures:
filled sawtooth indicates continental thrust; unfilled sawtooth indicates oceanic
subduction,; strike-slip faults denoted by shear arrows. Areas above sea-level shown by
dotted pattern; approximate extent of deformed area indicated by shaded pattern. Arrows
with unfilled heads represent directions of plate motion. The aspect ratio measurement for

each orogen is indicated by the dashed polygon.
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(a) Eastern, Western, and Southern Alps
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Figure 53(a)
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(b) Eastern and Northern Anatolian Faults, Levant Fault,
and Lebanon Mts
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Figure 53(b)
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(d) Banda Arc

Figure 53(d)
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(e) Chaman Fault, Zhob
Convergent Zone,
Makran Foldbelt
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2
Figure 53(e)



(f) Tibetan Platean
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(g) New Zealand Southern Alps and the Alpine Fault
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Figure 53(g)
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(h) New Guinea
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(i) Pyrenees
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(j) Taiwan
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Figure 53(j)



(k) San Andreas Fault
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Figure 54:

Summary of the plate boundary settings for (a) Early Proterozoic
amalgamation of Laurentia, showing New Quebec, Thelon, Torngat, and
Trans-Hudson orogens, and the Great Slave Lake shear zone (GSLsz)
(simplified from Hoffman, 1989); (b) Mid-Proterozoic proto-Gondwana,
showing Albany-Fraser, Kibaran, and Capricorn orogens (simplified from
Unrug, 1992); (c) Late Proterozoic Gondwana, showing Damaran,
Paterson, and Brasilian orogens, and Najd shear zone (simplified from
Unrug, 1992); and (d) Pangea, showing Alleghanian, Uralian, and
Variscan orogens (redrawn from Ziegler, 1993). Solid sawteeth indicate
continental thrusts. Present-day land positions indicated by dotted pattern;
other contemporaneous orogens (not used in this study) shaded light grey,
studied orogens shaded dark grey. Aspect ratio measurements are shown
by the dashed boxes. Names of cratons mentioned in Appendix F shown
by outlined boxes. Question marks are placed wherever reconstructions
are very uncertain. In figure 54(a), the overprinting of Early Proterozoic
orogens by later events is shown by including names of later orogenic

events in brackets,
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(a) PROTEROZOIC OROGENS OF NORTH AMERICA

Figure 54(a)
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(b) GONDWANA - MID-PROTEROZOIC (1700-900 MA)

Najd

......

Paterson

I e ST Sme o o f PP s e s
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(c) GONDWANA - LATE-PROTEROZOIC (900-600 MA)
Figure 54(b,c)



205

vral Mts
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Figure 54(d)
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In order to conduct the tests specified in Table 8, it is necessary to assume an
average power-law exponent for the stress-strain rate relationship in the crust or
lithosphere. 1 make the assumption that the average power-law exponent is 3 for the
deforming layer (i.e. n=3 for the crust, if deformation is driven by detachment of
underlying mantle lithosphere, or for the lithosphere, if deformation is driven by
indentation from the side). This is in rough agreement with the ductile behaviour of wet
feldspar (see chapter 3). A more general analysis could be undertaken for a complete
range of possible values for the power-law exponent, but would prevent the tests from
being useful, as any data point could then be fitted by an appropriate choice for n. Note
that the use of n=3 is in agreement with previous comparisons between aspect ratios and
the side-driven thin sheet predictions (e.g. England and Molnar, 1991, and England and
Jackson, 1989). In these cases, a best-fit value of ~3 was interpreted to represent the
average power-law exponent for the entire lithosphere, implying that olivine or wet
feldspar (with viscous creep power-law exponents of ~3) would be appropriate
controlling mineral phases for the lithosphere.

The assumption that n=3 for the crust or lithosphere also allows the use of velocity,
horizontal strain-rate, and thickening rate length-scales interchangably when estimating
the across-strike extent of crustal deformation. (The equivalence between velocity and
thickening rate length-scales for n>1 was demonstrated in chapter four). These length-
scale measures are therefore not distinguished in chapter five. Most of the length-scale
estimates of normal deformation for orogens are based on thickening length-scales,
whereas transcurrent length-scale estimates are made using geodetic results, focal

mechanisms, and the extent of strike-slip faults.

Previous Geological Applications of Length-scale Analyses
Scale analysis results from the side-driven thin sheet models have already been

compared to several geological examples of normal, strike-slip and extensional settings



207

(for a summary, see England and Jackson 1989). For small normalized convergence and
selected examples, a good fit is observed between model length-scales of strain and
rotation rates, and observed deformation. Examples from Southern California, the
Aegean, and Tibet, have been fitted by using a viscous rheology with a power-law
exponent of 3 (England and Houseman, 1986; Sonder ¢t al., 1986; England gt al., 1985).
England and Jackson (1989) also argue that the ratio between length-scales of purely
normal vs. strike-slip deformaiion qualitatively agree with the predicted side-driven ratio
of 4. However, there are no comprehensive quantitative demonstrations of the 4:1 ratio,
so that it is unclear whether these results could be equally well fitted by assumptions of
basally-driven deformation.

Strain partitioning phenomena, during oblique convergence, and the associated
difference in normal vs. transverse deformation length-scales, were first noted by Fitch
(1972), who gave a simple force analysis to explain why strike-slip movement will likely
partition itself from thrust movement at oblique subduction zones. Other cases of
partitioning and length-scale differences at oblique subduction zones have been
documented by Walcott (1978) and Beck (1983), who argued that partitioning followed
the principle of minimum energy dissipation. McKenzie and Jackson (1983) used a
kinematic argument to explain strain partitioning in terms of finite deformation, and
McCaffrey (1992) showed that the minimum energy argument of Beck (1983) could be
generalized to a force balance analysis. Using a strain mode! of transpression, Tikoff and
Teyssier (1994) investigated displacement-field partitioning. Braun and Beaumont
(submitted) used a three-dimensional numerical model to predict strain partitioning and
length-scale differences for cases where the incident plate boundary velocity is
significantly oblique. In all these analyses, differences between normal and transverse
deformation length-scales were predicted for cases where the incident transverse velocity
component is significantly greater than the normal velocity component. In contrast, the
results from the basally-driven thin sheet study (chapter four) predict differences in



normal and transverse length-scales to be more likely when the strike-slip velocity is
much less than the normally incident velocity (figure 31). Test four will attempt to
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discriminate which of the model predictions best fits observed length-scales of

deformation at obliquely convergent plate boundaries.

§ 5.2 Selection Criteria for Scale Analyses

Aspect ratios from a wide selection of currently active, as well as ancient, orogens,

are used to test the side and basally-driven predictions. Selection criteria for these

examples are either based on knowledge of the orogen dimensions and thickening style,

or on the limitations of the models. In this section I outline in a point-wise fashion, and

then review in detail, a number of the primary restrictions which determine the selection

criteria that are used.

Selection Criteria

The following is a summary of the criteria that must be met for an orogen to be

included in the aspect ratio list:

()

(i1)
(i)

(iv)

V)

Across-strike length-scales of deformation which are comparable in scale to the
crustal thickness (i.e. A <3 Sp) are included, but cannot be directly compared to
model predictions;

Deformation and thickening cannot be primarily due to magmatic intrusions;
Deformation and thickening cannot be a result of accretion by numerous micro-
terranes which cannot be distinguished individually, although subsequent
deformation of the accreted mass by a coherent collision event is testable;
Deformation due to convergence cannot be dominated by extensional features (e.g.
retreating subduction boundaries);

Plate reconstructions must be well-constrained; if orogen components have become
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widely scattered by subsequent dispersion of terranes, they must be traceable by: (a)
inversion of sea-floor spreading (last 180 Ma), or (b) significant
paleobiogeographic and paleoclimatic proof of correlations (Proterozoic and
Archean examples). If fragmentation has affected only a part of the along-strike
extent of the orogen, a minimum estimate for D may be used as a lower bound;
(vi) Post-collisional along-strike displacements must be well-constrained and allow
p: -inspastic restoration of orogen dimensions;
(vii) The deformation must not be significantly overprinted by subsequent deformation
events;
(viii) Orogens which have experienced significant normalized convergence may be
included in the list, but their deformation length-scales should be regarded as
maximum length-scales only, because of the effect of gravity acting on crustal

thickness contrasts.

Discussion of Selection Criteria

Because the predictions are based on models which use the thin-sheet
approximation with local isostatic compensation, orogens with observed deformation
length-scales ANo and Ao of less than approximately 3 times the crustal thickness (for
5% error) cannot be directly compared to the models (restriction (i)). This precludes direct
comparisons with data from the New Zealand oblique continental collision, for instance,
because deformation in this case is concentrated along the Alpine Fault (Norris gt al.,
1990). Similarly, the arc-continent collision in Taiwan is too narrow to be compared to
model predictions. Despite this restriction, I have included narrow orogens in the
selection in order to indicate the trends in the data.

The type of convergent boundary may restrict the choice of orogens for the aspect
ratio test. The examples are drawn primarily from cases of continent-continent collision,

but some island-arc/ continent collision cases are also used, provided it can be shown that
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deformation is mostly a result of thickening due to the collision, rather than originating
from island-arc magmatism (restriction (ii)), or the accretion of numerous small, thin
terranes (restriction (iii)). This last restriction does not exclude cases where minor
deformation due to accretion of small terranes has preceded the main, discrete collisional
event. Examples with oceanic-continental convergence, such as the Neogene Andes, may
also be included in the aspect ratio list, provided continental deformation in these cases
can be related to the advancing subduction of oceanic lithosphere (restriction (iv)).

The aspect ratios for Mesozoic and Cenozoic orogens can often be determined by
plate reconstructions based on sea-floor magnetic anomaly patterns, even when the
orogen has become fragmented subsequent to the deformation event. However, plate
reconstructions for orogens older than ~200 Ma, where no constraints are available from
magnetic anomaly patterns, are often poorly determined in comparison to the more recent
examples (restriction (v)). For example, suggested plate configurations which locate the
Grenvillian orogen as a suture between the continents of Laurentia and Baltica are still
conjectural ( Hoffman, 1991, Condie and Rosen, 1994), Parts of the Grenvillian
lithosphere have become widely distributed on different continents due to the subsequent
break-up of the supercontinent in the Palaeozoic, and so the extent and sequence of
orogenic events is poorly known.

Large, unquantifiable strike-slip movement of terranes along an orogenic belt may
also present difficulties, especially if such movements make the estimation of across-
strike deformation length-scales dubious (restriction (vi)). An example is the Cordillera of
western North America, for which paleomagnetic data indicate relative along-strike
movements of many hundreds of kilometres for principal terranes (Oldow gt al., 1989),
whereas geological evidence suggests little relative strike-slip movement (see Cowan,
1994 for a summary of this debate) . The Cordillera also illustrate another problem, the
overprinting of an orogen by subsequent deformation events (restriction (vii)). A cratonic

suture is quite likely to be the site of more than one episode of deformation, due to
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inherited weaknesses. Many ancient orogenic events are therefore overprinted by more

recent deformation cycles.

Preservation potential may introduce a bias into the dimensions of selected
examples. Orogens which have undergone large amounts of convergence (i.e. t' > >10)
are well-represented in the aspect ratio list, due to their greater chance of preservation than
smaller-scale examples with time. The tests in this section ignore the growth in
deformation length-scales with increased convergence. Therefore, the observed length-
scales for these cases should be regarded as maximum length-scales (restriction viii).

Using the criteria discussed above, a list of plate boundary examples has been
assembled in Appendix F, with their relevant dimensions summarized in Tables 9 to 12.
The list is by no means an exhaustive survey of orogenic belts and strike-slip faults, but
includes cases from the three recognised super-continent cycles, as well as a large
assortment of modern-day examples. The geographic locations, as mentioned previously,

are illustrated in figures 53 and 54.



Table 9: Length-Scales for Normal Deformation
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Orogen Primary References |D ANo Total
Convergence8;
Maximum
Crustal
Thickness®

Albany-Fraser | Myers, 1990 >1500 km | 250450 km | significant;

Orogen significant

(Australia)

Alleghanian | Z.egler, 1988 1600300 |950+350 |~ 400200 km;

Orogen LeFort, 1989 km km significant

(eastern N.

America)

E., W, and |Royden, 1993a 600100 km | 150150 km | 300+200 km;

S. Alps 50+20 km

(Europe)

Andes Dewey & Lamb, 1992 | 4500+500 |600+200 |250+100 km;

(western S. | Isacks, 1988 km km 60£10 km

America) Jordan gt al., 1983

Wdowinski et al., 1989

Banda Arc Johnston and Bowin, 15004200 150£50 km | 150450 km;

(Indonesia) 1981 km 35+5 km

Capricorn Myers, 1990 >1100km | 280450 km | significant;

Orogen Tyler and Thorne, 1990 significant

(Australia)
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Damaran Kukla and Stanistreet, | 800200 km | 120£50 km | 100430 km;

Orogen 1991 50120 km

(Africa)

Kibaran Pohl, 1987 15004300 300+50 km | unknown;

Orogen km unknown

(Africa)

Lebanon Mts | Walley, 1988 150+30 km | 80+30 km | small;

(Middle East) | Salel and Séguret, 1994 3045 km

Makran Fold |Lawrence et al., 1981 900100 km | 300+100 | 100-200 km;

Belt km small

(Iran,

Pakistan)

New Guinea | Smith, 1990 1500200 | 200+50 km | 60120 km;
McCaffrey and Abers, |km 55410 km
1991

New Quebec | Van Kranendonk ¢t al., | > 800 km 100+30 km | small,

(N. America) | 1993 small

New Zealand | Walcott, 1984 500£100 km | 50+20 km | 50+10 km;
Kamp, 1986 35+5 km

Paterson Myers, 1990 13004300 {250+100 | significant;

Orogen km km significant

(Australia)

Pyrenees Muiioz, 1992 400£100 km | 12020 km | 125425 km;

(Europe) 5010 km
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Taiwan Suppe, 1987 200+50 km | 100+50 km | 150+50 km;
(Asia) Lu and Malavieille, 1994 4015 km
Thelon Hoffman, 1988, 1989 |>1500 km 300+£100 | significant;
Orogen km significant
(NWT, N.
America)
Tibetan England & Houseman, |3000+£500 |2200+500 |2000+500 km;
Plateau 1986 km km 70+10 km
(Eurasia) Many others
Torngat Van Kranendonk et al., |>600 km 100430 km | small;
Orogen 1993; small
(Labrador, N. | Mengel and Rivers
America) 1991;
Hoffman, 1988
Trans- Hoffman, 1988, 1989 |>1500km |400+100 |significant;
Hudson km significant
Orogen
(N. America)
Ura's Dymkin & Puchkov, 2500500 |} 300£100 | significant;
(Eurasia) 1984 km km >55 km
Variscan Ziegler, 1988 2000+500 1000500 |~ 40072200 km;
Orogen km km significant
(Eurasia)
Zagros Hempton, 1987 1900200 1000200 | 500100 km;
(Iran) England & Jackson, km km 50+5 km
1989
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Zhob Lawrence ¢t al., 1981 220450 km | 220450 km| 10-50 km;
Convergent small
Zone
(Sulaiman
Fold Belt)
(Pakistan)
8"small" = less than 100 km; "significant" =~ 300 km
9"small" = less than 1.5 Sg; "significant” > 1.5 S
Table 10: Length-Scales for Transcurrent Deformation
Strike-slip |Primary References |D Aro Amount of
area displacement;
approximate r
valuel0

E. Anatolian | Kiratzi, 1993 500+50 km | 30+20 km | 30-100 km;
Fault Jackson & McKenzie, r~0.13
(Turkey) 1984

Westaway, 1994
N. Anatolian | Kiratzi, 1993 1000100 | 30+20 km | 30-100 km;
Fault Jackson & McKenzie, |km r~0
(Turkey) 1984

Westaway, 1994
Chaman Fault { Lawrence gt al., 1981 | 800+£100 km | 120+£80 km|{ > 200 km;
Zone Kazmi, 1979 r~0
(Pakistan)
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Great Slave | Hoffman, 1987 1300+200 80440 km | 300-700 km;
Lake Shear km r~0-03
Zone
(N. Canada)
Levant Fault | Garfunkel, 1981 1000100 |20+£10km }>105 km;
(Dead Sea Garfunkel ¢t al., 1981 |km r~0
Transform) Westaway, 1994
(Middle East)
Najd Shear | Sultan et al., 1988 20001500 300+100 | 240-300 km;
Zone Stern, 1985 km km r>0.5?
(Arabia) Extensional
New Zealand | Walcott, 1984 500100 km | 50+20 km | > 480 km;
Alpine Fault | Kamp, 1986 r~0.10

Braun and Bezaumont,

submitted
San Andreas | Sonder et al., 1986 1200100 10050 km | 850 km;
(western N. | Furlong and Hugo, km r~0.18
Amgerica) 1989

Walcott, 1993

Wallace, 1990
Taiwan Suppe, 1987 200+50 km | 5020 km | 360450 km;
(Asia) Lu and Malavieille, 1994 r~05

10r.yalye indicates obliquity of convergence, r = ug/(ug+vg)
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Convergent | Primary References |DN ANO N
/ Strike-slip Dr Ato rT
area
Lebanon Mts/ | Walley, 1988 Dn= ANO = N ~0.3
Levant Fault | Salel and Séguret, 1994 | 150+30 km; | 80+30 km; | rr~0
(Middle East) Dr= Ato =

1000100 2010 km

km
Makran Lawrenceet al., 1981 |Dn= ANo = N ~ 0.8-0.9
Convergent | Kazmi, 1979 900+100 km; | 300100 |rr~0
Zone / = km;
Chaman Fault 800+100 km | Ato =
Zone 120480 km
(Iran,
Pakistan)
Patos-Seridé | Corsini gt al., 1991 DN>300 |ANno= wN~08
System km; 100£50 rr~0
(S. America) = km;

400£100 km | Ato =

30+10 km

Zhob Lawrenceetal., 1981 |Dy = ANO = w~09
Convergent | Kazmi, 1979 22050 km; | 220450 rr~0
Zone / Dr= km;
Chaman Fault 800£100 km | Ao =
Zone 120180 km
(Sulaiman
Fold Belt)

(Pakistan)
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Transpress- | Primary References |D ANO Obliquity, r
ive Area Ato
E. Anatolian | Kiratzi, 1993 500+£50km |ANO = r~0.13
Fault Jacksoa & McKenzie, 50420 km;
(Turkey) 1984 Ato =

Westaway, 1994 30420 km
Levant: Walley, 1988 150£30km |ANo = r~0.3
Lebanon Salel and Séguret, 1994 80430 km;
Bend Ato =
(Middle East) 50+30 km
New Zealand | Walcott, 1984 500+100 km | ANO = r~0.10
Alpine Fault | Kamp, 1986 50120 km;

Braun and Beaumont, Ato =

submitted 50420 km
San Andreas | Sonder et al., 1986 1200+100 |AnO = r~0.18
(N. America) | Furlong and Hugo, km 20050

1989 km;

Walcott, 1993 Ato =

Wallace, 1990 10050 km
Taiwan Suppe, 1987 200+50km |Ano = r~0.5
(Asia) Lu and Malavielle, 1994 10050

km;
Ato =

50120 km




219

Measurement of Length-Scales and Convergence
Throughout the selection process and accompanying tests, it is assumed that on a

large enough scale the lithosphere can be treated as a continuum. Therefore, the observed

normal and transcurrent deformation length-scales (ANo and Amo) are determined from
regional deformation patterns rather than individual faults and structures. The extent of
deformation is estimated from the presence of structural features such as shear zones and
faults, combined with the history of uplift and displacement of a region, when available.
An effort is made to distinguish crustal-scale deformation features from thin-skinned
tectonics (e.g. detachment and folding of a thin surface layer along a weak decollement).
Geodetic measurements are used to check estimates, but in general there are not enough
data, over a sufficient time period, to base length-scale estimates on these techniques.
Uncertainty estimates for deformation length-scales are based on the individual
circumstances of each case; in general, the magnitude of uncertainty increases with age of
the deformation event.

The along-strike extent of each plate boundary regime, D, must also be measured.
In present-day examples, it is relatively easy to determine D by examining the variation of
relative plate motion vectors along a plate boundary (e.g. DeMets ¢t al., 1990). For cases
from previous super-continent cycles, estimates for D are less certain, and may be a
minimum if a part of the along-strike boundary has been removed by subsequent
deformational events. Where this is suspected, the error bound on D is taken as a positive
interval of 300 km.

Many orogens are deformed on plate boundaries which have some curvature (e.g.
the Andes, the European Alps, etc.). In these cases, across-strike length-scales are
estimated from the plate boundary at various positions along-strike, and the average value
is used. Along-strike length-scale D is measured taking the curvature into account, but
uncertainty estimates for D are increased correspondingly.

The total thickening and convergence may have an important influence on the
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interpretation of test results. Chapter four results indicated that deformation length-scales
for convergent orogens may increase with normalized time, due to the effect of gravity on
crustal thickness contrasts, represented in the models by the Argand number. Although
mass may be lost from the system due to erosion and along-strike transport, estimates of
convergence are quoted as a first-order indication of how important Ar is in determining
the resultant deformation length-scale. A more accurate measure would be the total added
mass to the deformed region; however, this quantity is not well constrained, especially
for ancient orogens, and relies on conjectured modes of thickening, whereas convergence
estimates may often be estimated independently using plate reconstructions. Where
amounts of convergence and crustal thickening are not known, estimates are made (‘small
convergence' 0-100 km; 'significant convergence' 100-500 km, 'large convergence'
>500 km; 'small thickening' S <~ 1.5S¢), based on plate reconstructions.

An important factor in determining deformation length-scales is the degree of
obliquity of convergence, measured by r, where r = (ug/ug+vg), and ug, vo are the
components of normal and transverse velocity at the plate boundary. Table 9 summarizes
length-scales for orogens from Appendix F which have undergone primarily normally
convergent thickening (i.e. r 20.5), which are used in test one. Aspect ratios for
transcurrent shear zones (Table 10), which have undergone predominantly strike-slip
motion (i.e. r £0.5), are used in test two.

The third test requires estimates of the length-scales of predominantly strike-slip and
predominantly convergent boundaries, which must be closely related so that the degree of
basal coupling for the two cases can be assumed to be similar (i.e. it can be assumed that
Am does not vary significantly). This requirement may be attained by cases which have
regions with mainly normal convergence, and adjoining regions which are predominantly
strike-slip. For example, the Chaman Fault has strike-slip boundary conditions for most
of its length, but has a ~ 90° jog at the Zhob convergent zone (also known as the

Sulaiman fold belt) in Pakistan. The strike-slip boundary length D is measured for the



221

whole length of the Chaman fault, because the scale of the jog is small. It is assumed that
the coupling between crust and mantle lithosphere is similar in the convergent and
adjoining strike-slip regions. Table 11 summarizes the dimensions for this case, and
some similar examples from other settings where a change in the relative velocity of
convergence occurs without a significant change in lithosphere rheology.

Table 12 describes the dimensions for transpressive examples which have
significant obliquity (i.e. r is between 0.1 and 0.9) and may be used for test four.
Uncertainty in determining the obliquity of convergence, r, is a result of poorly
determined relative velocity components at a plate boundary, or due to a change inr

along-strike for long plate boundaries (e.g. the South Island of New Zealand).

§ 5.3 Scale Analysis of Convergent Margins

Test One: Aspect Ratios for Normal Convergence

The length-scale estimates from Table 9 can be viewed in a plot of across-strike
length-scale, ANO, Vs. along-strike dimension, D (figure 55(a)-(d)). The shaded region of
figure 55(a) indicates points which fall in the length-scale range for which the thin sheet is
not valid. The solid line represents the predicted relationship for the side-driven case,
using n=3, as predicted by Sonder gt al. (1986). Uncertainty estimates Ano and D are
shown as error bars in 55(a). For cases where the along-strike extent of D is believed to
be a minimum (i.e. where overprinting or fragmentation are thought to have reduced D),
error bars are only drawn on the positive side of the estimate for D, with an arbitrarily
large uncertainty increment of 300 km. For clarity, error bars are not shown for the
subsequent plots (55(b)-(d)).

Several features are evident from figure 55. Firstly, most of the data points plot
below the line for the side-driven relation. The three points that do not are the Tibetan
Plateau (HT), the Zhob convergent zone (ZH), and the Zagros/Iranian Plateau (ZA)
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Figure 55:

Width of deformation, Ano, Where the 'O' represents ‘observed', vs.
along-strike length-scale, D, for normally incident velocities at a plate
boundary. Data points are taken from Table 9. (a) Points shown with
estimated error bars, and compared to the side-driven prediction (solid
line) which is labelled Ans. The length-scale limit below which the thin
sheet models cannot be compared to the data is shown by dotted pattern.
(b) The same quantities, with circles representing the relative amount of
convergence since thickening began. Note the general trend towards
higher observed length-scale Ano with increasing normalized
convergence. (¢) and (d) key to the figure, showing names of the orogen
represented by each data point. Shaded region indicates area of
correspondence between plots. AF=Albany-Fraser Orogen,
AL=Alleghanian Orogen, AN=Andes, AP=Alps, BA=Banda Arc,
CA=Capricorn Orogen, DA=Damaran Orogen, HT=Himalayas-Tibetan
Plateau, KI=Kibaran Orogen, LB=Lebanon Mts, MA=Makran Fold Belt,
NG=New Guinea, NQ=New Quebec Orogen, NZ=New Zealand
Southem Alps, PA=Paterson Orogen, PY=Pyrenees, TA=Taiwan,
TH=Trans-Hudson Orogen, TL=Thelon Orogen, TO=Torngat Orogen,
UR=Urals, VA=Variscan Orogen, ZA=Zagros, ZH=Zhob Convergent

Zone.
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(figure 55(c)). Apart from these points, the data seem to agree with the test one prediction
made in Table 8; that is, orogen length-scales are less than or equal to the predicted
indenter length-scale ANs = 2D/rv3. In agreement with the result illustrated in figure 52,
length-scales may be considerably less than the side-driven prediction if coupling between
the crust and underlying detached layer (as measured by Am) is significant, indicating that
the orogen is wholly or partially basally-controlled. The aspect ratios for many of the
points illustrated in figure 55 are well below the predicted side-driven aspect ratio (e.g.
the Ural mountains and the Andes). I suggest that these orogens developed in a
mechanical setting primarily controlled by basal fcrcing.

The solid line representing the side-driven length-scale prediction is for small
convergence times, before significant thickening. The results from chapter four showed
that for large normalized convergence times (t'), provided the effect of gravity acting on
thickened regions is relatively large (as measured by the Argand number) and n>1, the
across-strike length-scale will increase significantly. Some of the anomalous aspect ratios
may result from this effect. In figure 55(b), the circles around the data points are
proportional in size to the total amount of convergence in each case. For the
Zagros/Iranian Plateau (convergence of 500+100 km), and especially for the Tibetan
Plateau (convergence of 2000£500 km), the side-driven aspect ratio prediction is likely to
be an underestimate, as the effects of gravity on the crustal thickening will increase the
across-strike length-scale.

Figure 55(b) suggests a general trend for increasing across-strike length-scale with
increased convergence. I inivestigate this further by plotting across-strike length-scale
Ano vs. estimated convergence since the start of thickening (figure 56(a)-(c)). Figure
56(a) shows the orogen estimates with their associated uncertainties. The lower limit with
which data may be compared to the thin-sheet model results is shaded. Figure 56(a)
appears to show a relationship between increasing deformation length-scale and

convergence, the implications of which are discussed in more detail in chapter six.



226

Ayo VS. convergence:

3000 (a) error bars

1

2500 [

2000 |

A'N() (hn)

1500 [

1000 |

500 |

0 500 1000 1500 2000 2500

convergence (km)

Figure 56(a)

Figure 56: Width of deformation, ANQ, vs. amount of convergence in km. (a) Data
points shown with error bars. Dotted pattern on portion of plot represents the
lower limit which cannot be compared to model predictions. The inset
schematic of basally-driven model is shown with a question-mark, indicating
that this may be a possible explanation for the trend in the figure. (b) and (c)
key to the figure. Letter symbols are the same as for figure 55.
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Test Two: Aspect Ratios for Transcurrent Deformation

Where plate boundary kinematics are predominantly along-strike, the length-scale
of transcurrent deformation, Ao, may be estimated on a regional scale by finding the
width over which most of the shearing takes place (Table 10). A plot of aspect ratios for
these examples (figure 57(a)-(c)) may be compared to the predicted side-driven relation of
Sonder gt al. (1986). Unfortunately, most of the length-scales are below the limit at
which the thin sheet model approximations become valid (lack of validity is indicated by
the shaded region, figure 57(a)), and so a direct comparison cannot be made. However,
two elements should be noted from figure 57: (i) Apart from the uppermost point, the
Najd Shear Zone, there does not appear to be a very systematic trend to the aspect ratios;
and (ii) There is no obvious relationship between obliquity of convergence, as indicated
by the circles around points in figure 57(b), and aspect ratios. In general, I conclude that
the transcurrent shear zones do not show any systematic trends in length-scale Ao which
may be used to infer a driving mechanism, and that many more examples will be needed

to test these ideas further.

Figure 57: Width of deformation, Ao, where the 'O’ represents 'observed', vs. along-
strike length-scale, D, for transverse velocities at a plate boundary. Data points are
taken from Table 10. (a) Points shown with estimated error bars, and compared to
the side-driven prediction (solid line) which is labelled Ats. The length-scale limit
below which the thin sheet models cannot be compared to the data is shaded. (b)
The same quantities, with circles representing the obliqueness of collision, as
measured by the ratio r=ug/(ug+vg). No general trend with r is evident from the data
points. (c) key to the figure, showing names of the orogen represented by each data
point. CH=Chaman Fault Zone, EA=East Anatolian Fault, GS=Great Slave Lake
shear zone, LE=Levant Fault Zc:ne, NA=North Anatolian Fault, NJ=Najd Shear
Zone, NZ=New Zealand Alpine Fault, SA=San Andreas Fault, TA=Taiwan.
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Test Three: Ratio of Purely Normal to Purely Transcurrent Deformation

In some instances the incident velocity acting at a plate boundary may change
along-strike from purely normal to purely strike-slip incidence, due to a change in the
orientation of the plate boundary, or in relative plate configurations. There are a few field
settings where this change from normal to strike-slip motion can be used to estimate the
length-scale ratio ANO:ATQ, provided some assumptions are made. Firstly, it must be
assumed that the mechanics of stress transfer do not change significantly between the two
cases. Secondly, if the change in strike is not fully 90°, it must be assumed that, provided
the orientation change is from predominantly strike-slip to predominantly normal
convergence, the length-scales can be taken to represent 'pure’ normal and transcurrent
length-scales. These criteria reduce the subset of examples that may be used to 4 points,
so it must be cautioned that any trends in the data are suggestive only, and cannot be used
as a rigorous test.

Figure 58 shows the resultant ratios of normal:transcurrent deformation. In figure
58(a), the normal and transcurrent length-scales are shown, normalized by their
respective along-strike boundary condition length-scales, Dy and Dr. The predicted side-

driven values for these quantities, assuming n=3, are:

Ans_ 2
N W3
and
As _ 1
DT 27!:'\/§

Therefore, if the data points obey the side-driven thin sheet predictions, they should plot
on or near the point 1/2mV3, 2/1r\/3), which is shown as a shaded square in figure 58(a).
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Alternatively, if the plate interaction is basally controlled, there should be no dependence
on the along-strike length-scales DN and Dr, and the normal and transcurrent deformation
length-scales should plot along a line representing the length-scale ratio. Figure 58(b)
compares the data to the predicted basally-driven relationship Atp/ANp=1/2, shown by
the solid line on the plot. The shaded region represents the thin sheet accuracy limit.
Figure 58 demonstrates that even for these few points, the real ratios (and
accompanying uncertainties) are roughly in agre-ment with either the side-driven or
basally-driven predictions; one exception is the Zhob-Chaman fold-belt, which does not
seem to agree with the side-driven prediction of figure 58(a). In general, however, the
measurements cannot be used to distinguish between the two driving mechanisms, given

the limited data set available.

Figure 58: (a) Transcurrent deformation length-scale for purely transverse incident
velocity, vs. normal deformation length-scale for purely convergent incident
velocity. Each length-scale is normalized by the relevant side boundary condition,
Dr for transcurrent parts of the plate boundary, and Dy for the normally incident
section, as shown in Table 11. The predicted value if deformation is controlled by
indenter mechanics is represented by the shaded square on the figure, which lies at
the intersection of the predicted normal and transcurrent length-scale relations
(dashed lines). The distance of each data point from the shaded square therefore
represents the discrepancy between the data and the side-driven prediction. (b)
Transcurrent deformation length-scale vs. normal deformation length-scale, for the
same data set as shown in (a). The solid line is the predicted ratio from the basally-
driven model. The shaded region is the length-scale limit, below which the model
approximations are not valid. LB=Lebanon bend vs. Levant Fault; MA= Makran
Convergent Zone vs. Chaman Fault; PS=Patos-Serid6 Shear System; ZH=Zhob
Convergent Zone vs. Chaman Fault.
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Test four: Oblique Convergence

Transpressive examples are used to test whether significant obliquity in
convergence reduces the ratio of sirain partitioning. Figure 59 plots the estimated
obliquity, r, vs. the length-scale ratio, a,, for these cases. As for the previous plot, the
uncertainties in determining length-scale ratios precludes interpretation of any trends in
the data; the most that can be gleaned from the plot is that all of the data points have a ratio

somewhere between 4 and 1.

Discussion of Test Results: a Cautionary Note

The lack of clear trends and relationships in measured aspect ratios and length-
scales for the natural examples may be due to: (a) lack of suitable examples; (b)
difficulties in measurement of length-scales; (c) transient effects on length-scales, which
destroy the validity of comparison with the simple models investigated here; and/or (d)
additional effects on length-scales not predicted by the models. This sub-section dicusses
some of the problems with estimating length-scales for the examples in Appendix F, as
well as additional factors which may render the comparison with simple, steady-state

models invalid.

(a) Problems with finding suitable natural examples

One of the major difficulties with data-model comparisons is that almost half of
the examples used have small length-scales (< 200 km), and so are at the limit of validity
for comparison with thin-sheet models. This is the case for ~ 11 out of 24 of the normally
convergent examples in Appendix F. The problem is even more apparent for examples of
transcurrent deformation, such as the East Anatolian fault, for which deformation seems
to be restricted to within a few kilometres of the plate boundary. The aspect ratio tests
require a large range of length-scales and aspect ratios in order to be rigorous, and the

clustering of data points at small-scales inhibits the interpretation of any trends in the data.
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(b) ro%lcms in estimating length-scales

Measurement of the along-strike length of the convergent (or strike-slip) plate
boundary (D) is often uncertain, especially for the more ancient examples. Overprinting
at either end of the orogen may cause D to be under-estimated (e.g. the Albany-Fraser and
Capricorn orogens in Australia (Myers, 1990)). For pre-Mesozoic examples, the best
method for estimating D is to take the along-strike length of the two cratons involved in
the collision, where known (e.g. the Alleghanian Orogen is limited by the length of
African craton which was in contact with North America). But this method is strongly
influenced by potential errors in plate reconstructions.

Some of the natural examples exhibit large variations in orientation along-strike.
For example, the European Alpine system (the Eastern, Western and Southern Alps) has
a marked concavity towards the south. Although the results from the previous chapter
indicate that it is the length-scale of the convergent velocity that determines D (rather than
the initial shape of the plate boundary), if curvature is large, the components of normal
and transverse incident velocity will change along-strike, and this could affect length-
scales of deformation. The curvature problem has not been addressed in this analysis. An
associated problem is the effect of rotation (during deformation) of the plate boundary,
which may change the velocity boundary condition with time.

The models assume that collision occurs synchroneously along-strike, but this
will not often be the case. Although for large-scale examples (e.g. the India-Eurasia
collision) this is not likely to affect resultant length-scales, for many of the smaller-scale
cases with less convergence, asynchroneity may dominate the deformation style of the
orogen. For example, the Chaman fault zone at the western side of the India-Eurasia
collision has an along-strike length which must have grown with time, as India ploughed
northwards into Eurasia. The growth in D with time for this case would be roughly 2000
km in 40 My. If the side-driven indenter model is valid, the deformation would thus have

spread outwards across-strike with time, an effect not explored in the models. Another
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example where a growth in D with time is probable is Taiwan. (Contirental collision in
Taiwan is just beginning at the southernmost end, but has been occurring for ~ 4 Ma in
northern Taiwan (Suppe, 1987)). The San Andreas fault has also grown in along-strike
extent over the past 25 Ma (Furlong, 1993).

Plate reconstructions for many of the ancient examples are still dubious, and
various alternatives are debated by the geological community. Dimensions and timing for
the three Proterozoic orogens from western Australia used in the scale analysis (the
Albany-Fraser, Capricorn, and Paterson orogens) are taken from a recent interpretation
by Myers (1990). However, many alternative interpretations, including some which
dispute plate tectonics as a cause of west Australian Proterozoic deformation, exist (e.g.
Etheridge ¢t al., 1987). Uncertainties in plate reconstructions may influence estimates for
along-strike length D, and in addition, if two sides of an orogen have been subsequently
separated by sea-floor spreading, estimates for deformation length-scales based on one
side of the orogen only will probably be an under-estimate.

Estimating the total amounts of convergence for an orogen (e.g. figure 56)
requires a good knowledge of shortening history. This is often a poorly known quantity,
especially for ancient orogens. In many instances palinspastic reconstructions are not
valid, because of along-strike mass movement subsequent to orogenesis, or lack of

sufficient constraining data.

(c) The effect of transient episodes and inherited weaknesses on length-scales

Many of the larger-scale orogens will have undergone several transient episodes
of convergence and/or strike-slip motion, completely precluding comparison with simple,
steady-state models. For some of the ancient cases, we do not have a good enough dating
resolution to identify structures associated with a particular transient deformation episode.
For instance, there is some evidence that the Damaran orogen in Africa was multiply

deformed (Kukla and Stanistreet, 1991), but knowledge about this Late Proterozoic
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orogen is so sparse that individual episodes cannot be resolved. The Variscan orogeny
almost certainly involved many different episodes of deformation, which may have
occurred in different locations at different times. The aspect ratio tests are conducted
assuming that most deformation occurred during one major phase of orogenic activity.
Some of the scatter in the length-scale analyses may result from natural examples for

which this assumption is not correct.

(d) The effect of additional parameters

Some of the misfit between data and model predictions may be caused by
additional parameters which infiuence deformation length-scales, but which have not been
included in the models. For example, the scale analysis has assumed an average power-
law exponent n=3 for all cases; the average value of n may, however, change with
amount of thickening, and the thermal condition of the continental lithosphere before
deformation begins. The effect of a changing power-law exponent is discussed in section
5.4. Figure 56 suggests that the amount of converger.ce experienced by an orogen also
influences length-scales, and this effect is investigated further in chapter six.

Erosion of mass from an orogen may reduce deformation length-scales, an effect
which may be important for the New Zealand Southern Alps (Beaumont gt al., 1992).
Inherited weaknesses may also control the style of deformation, by changing the location
of detachment layers in the crust. In some cases, detachment may occur preferentially at
mid-crustal levels, rather than at the Moho, as assumed in the basally-driven model. This
is the conjectured style for the Pyrenees according to Mufioz (1992), and may lead to
different coupling characteristics (and hence deformation style) than those investigated in
the simple basally-driven model presented here.

Some of the natural examples used in the analyses are cases of active oceanic
subduction. The assumption has been made that styles of continental deformation for

advancing subduction cases are similar to the continental collision examples (see chapter
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two). For instance, this assumption is used for the Neogene Andes, which are situated
next to an active subduction margin. However, there are some problems with the
advancing subduction/collision equivalence assumed for the Andes. The relative
importance of the addition of magma to the crust, vs. crustal shortening, in controlling
deformation style is not clear. Also, the effect of the downgoing oceanic lithosphere on
mantle dynamics may be significant. In particular, it has been suggested that the extent of
deformation at the plate boundary is related to the dip of the oceanic slab (Isacks, 1988).

In conclusion, there are many difficulties inherent in the scale analysis attempted
in this section. The difficulties may completely obscure some aspects of a comparison
with the simple model styles, and indicate that length-scale analyses should be interpreted
with great caution. Any tentative conclusions drawn from such analyses should be

augmented by geophysical studies of the deep structure of the crust.

§ 54 Summary of Scale Analysis

The analysis of the preceding section indicates that it is very difficult to estimate
length-scale measurements sufficiently accurately to be useful in the aspect ratio tests.
Despite this difficulty, test one suggests that aspect ratios for convergent orogens are in
rough agreement with a model in which there is both side and basal forcing, with the
indenter length-scale providing a limit to the width of deformation that nuay be attained at
small convergence times.

Many of the normally convergent examples have an across-strike width much
below that predicted from a side-driven thin sheet model, assuming n=3, It is tempting to
claim that this is attributable to detachment and drag between the crust and mantle
lithosphere, as shown in chapter four. However, figure 60(a) suggests an alternative

explanation that is equally plausible. Most of the examples which have experienced only
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minor amounts of convergence plot roughly near a side-driven relation with a power-law
exponent n=10. An average value of n~10, for unthickened lithosphere subjected to
typical values of compressional stress in convergent zones, was suggested by Sonder and
England (1986). It is possible that the average rheology of the lithosphere changes with
increasing convergence, due to the increased thickness and corresponding increase in
average lithospheric temperature. This may reduce the power-law exponent from a high
value (n210), which corresponds to a fairly cool, brittie crust overlying a strong mantle,
to a lower value (n=3 to n=1) where the crust and mantle deform predominantly by
ductile viscous creep (England and Jackson, 1989). Results from chapter four (figure 37)
showed that the predicted side-driven length-scale for crustal thickening at n=1 is roughly

the same as for n=3, because of the tectonic escape term, but length-scales for n=10 are

Figure 60: Two possible explanations for the trends in the data shown in figures 55
and 56. Explanation (a): Deformation is controlled by indenter length-scale,
D, but the average power-law exponent for the lithosphere decreases as total
convergence increases (and the lithosphere thickens and heats up), increasing
the slope of the length-scale relationship. If this interpretation is correct, most
small-scale orogens can be modelled as a thin viscous sheet having an average
crustal power-law exponent of 10; this exponent decreases to 1-3 for extreme
cases of convergence (e.g. the India-Asia collision, with over 2000 km
convergence). Explanation (b): Deformation is controlled by detachment of
mantle lithosphere. With increasing convergence, the width of deformation
increases in the manner shown in chapter four. It is likely that as the crust
thickens and heats up, crust-mantle coupling (and the Ampferer number) will
reduce. The plot shows the increase in across-strike length-scale as a function
of convergence, for two values of Am, and Ar=1, and for small normalized

convergence.
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higher. In combination with an increase in length-scales due to the effect of gravity on
crustal thickness contrasts, the scatter in the trend of the data may therefore be explained
by lithosphere which is responding io indentation from the side (figure 60(a)).

The opposite explanation, where crustal deformation is controlled primarily by
basal detachment and drag, is equally possible. Figure 60(b) is similar to figure 60(a), but
compares the data to theoretical predictions from the basally-driven model. Most of the
data have an across-width length-scale of 3002100km, which corresponds to an
Ampferer number of about 0.1510.1 (for n=3). The arrows on the figure show the trend
in the normal deformation length-scale with increasing convergence. This trend is likely
not only because of the relationship between length-scale and normalized convergence,
due to effects of gravity on crustal thickness contrasts, investigated in figure 33, but also
because thickening of the crust is likely to reduce crust-mantle coupling, and lower Am in
the deforming region. A decrease in crust-mantle coupling, combined with the diffusional
effects of gravity acting on crustal thickness contrasts, may therefore be an equally valid
explanation of the change in across-strike deformation with increasing convergence. This
possibility is investigated further in chapter six.

Do Length-Scales Provide Useful Constraints on Deformation Style?

The ambiguity of the results for test one, and the lack of significant controls on
length-scale estimates for the remaining tests, indicate that it may not be possible to
distinguish between the likely driving mechanisms for convergent and strike-slip
deformation using measurements of aspect ratios. This result may seem disappointing, but I
believe it is important, because it indicates that many of the claims made by various authors
about the relationship between surface deforraation and underlying processes, may not be
quantitatively provable. The results indicate that length-scale tests by themselves are
unlikely to conclusively determine deformation styles in convergent orogens, and must be
augmented by empirical measurements of the deep crustal and lithospheric structure, in

order to determine predominant driving mechanisms for crustal deformation.



Chapter Six

DEVELOPMENT AND RECAPITULATION

§ 6.1 Introduction

In chapter four it was predicted, on the basis of the two conjectured styles of
forcing at plate boundaries, that side-driven and basally-driven deformation will possess
different length-scale dependences. Examples from convergent and strike-slip plate
boundaries were used in chapter five to try to determine which deformation style has the
closest agreement with real lithospheric behaviour, for small amounts of convergence.
The results were inconclusive, in that the quantitative tests could not be used to
distinguish unequivocally between the different possibilities. Neither the basally-driven,
nor the side-driven model styles (or a combination of them), could be disproved as the
most likely candidate for forcing at convergent boundaries.

The purpose of this chapter is to broaden the discussion of controls on deformation
length-scales. Firstly, the length-scale analysis of the previous chapters, which was based
on mathematical analysis of the force balance equation for constant controlling parameters
Am, Ar, n, and D, is expanded and developed in section 6.2 in order to compare the
predicted increase in model deformation length-scales with convergence, to the trend in
the data for natural (convergent orogen) examples. In addition to the effect of gravity
acting on crustal gradients, the thermal weakening of crust-mantle coupling as the crust
thickens, causes the basally-driven deformation length-scale to increase. The thermal
analysis is performed with the use of a partially coupled thermo-mechanical model of the
lithosphere. The simple analysis demonstrates that the combined effects of gravity acting

on crustal thickness contrasts, and the weakening of the detachment layer on the retro-
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side of an orogen, may explain the length-scale trend with convergence.

In section 6.3, the model predictions concerning an increase in length-scales with
convergence are compared to the development of the India-Eurasia collision, the largest
scale orogenic system that is currently active. The comparison suggests that the mixed
model, with aspects of both the side-driven (indenter) and basally-driven models, may
provide the best representation for the large-scale orogen.

In the recapitulation (section 6.4), the conceptual physical models behind the model
assumptions are summarized in terms of two major controls: the presence, or lack, of a
weak layer between the crust and mantle lithosphere, and the relative strengths of the
lithosphere on either side of the plate boundary. The discussion moves beyond the simple
cases investigated in this thesis to speculate on the controls of deformation style and
symmetry. It is suggested that if two continental lithospheric plates converge and one
continent is much stronger than the other, basal detachment may occur preferentially on
the weak side. The polarity of mantle lithosphere subduction for the mixed model may
therefore be controlled by the strength difference across the plate boundary.

§ 6.2 A General Model for the Growth of Basally Controlled Orogens

The Role of Convergence

This section investigates whether the basally-driven model may be used to explain
the length-scale trend found in chapter five for the growth in deformation length-scales
with convergence, which is re-illustrated in figure 61. Basally-driven length-scales have
already been shown to increase initially by an amount proportional to m where t’ is
normalized convergence. The behaviour for large amounts of convergence may be
investigated using the numerical model. The effect on length-scales is compared to the

data from figure 61 in the first part of this section.
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Figure 61: The increase in deformation length-scale with convergence for the natural

examples from chapter 5 (redrawn from figure 56).
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In addition to the effect of the Ar parameter on basally-driven length-scales
discussed above, for large amounts of convergence the parameter Am may also change,
because of the effect of crustal thickening on the average strength of the crust and weak
detachment layer. By substituting simple approximations for the relationship between the
temperature at the Moho and the parameter Am into the numerical model, I can investigate
what the effect of changes in this parameter will be on the increase of length-scales with
convergence for the basally-driven case.

Throughout this section, the model crust with which the natural length-scale
measurements are compared is assumed to start out with a uniform thickness of 30 km.
The initial crustal geotherm is taken to be 15 “C/km, giving a temperature at the Moho of
450 °C. This temperature is used to estimate an initial Ampferer number of 0.75, from
the calibration plot (chapter three, figure 19(a)) for Tmono vs. Am. All of the length-scale
analyses for which results are shown assume this initial, uniform value for Am. Other
choices for an initial (pre-deformation) Am would give a slightly different set of results.
The following results should therefore be viewed as indicators of the trends in length-
scales only. A more rigorous comparison between model results and natural examples

would require better knowledge of the initial conditions in each convergent zone.

“#ect of Gravity on the Basally-Driven Deformation Length-Scale

For a given value of Am, the normal length-scale for the basally-driven model has

been shown to increase with normalized convergence (Anp vs. t) at small t’ according to
the approximate relation (equation 21):
, Art’
M = Mgly-oy 1+~
For large amounts of convergence (1">>1), the length-scale relation diverges from this

simple approximation. In this analysis, the length-scale increase is computed numerically.



247

As discussed above, the value for Am for initial stages of collision is estimated to b
0.75. In this sub-section, Am is taken to be constant throughout the convergence.
Length-scale increases are computed for three values of Ar (Ar=1, 5, and 25). In chapter
three of this thesis, the best estimates for Ar for a cross-sectional model of the crust
composed of wet feldspar were between 1 and 5. This agrees with the study by England
and Houseman (1986), which found that a value for Ar between 1 and 3 best fitted a
comparison between the side-driven thin sheet model and the development of the Tibetan
Plateau.

The predicted length-scale increase, using results from the numerical model, is
shown in figure 62(a), and compared to the natural length-scale data in figure 62(b). As
well as the numerical results (solid curves), the predicted length-scale changes using the
approximate analytical relation (eq. 21) are shown by the dotted lines. The deformation
length-scale, measured using the numerical model, changes its dependence on Ar from
(1+Ar t'/2)1/2 to (Ar t)12 with increasing convergence. The analytical solution for small
t’ described above therefore predicts an increasingly different length-scale solution

compared to the numerical results with increasing t'.

Figure 62: (a) Predicted deformation length-scales for the basally-driven case, for
Ar=1, 5, and 25. Dotted lines are the analytical prediction; solid lines are
the numerical results for the basally-driven model. (b) Observed
deformation length-scales, Ano, vs. convergence, for the natural
examples from chapter five, contrasted with the predicted numerical (solid
lines) length-scale relations for the basally-driven model, for Ar=1, 5, and
25. All calculations assume a constant crustal geotherm, with a Moho

temperature of 450°C (Am=0.75), and n=3.
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Comparison between the numerical results and the data indicates that, given the
error in estimates for convergence and length-scales of deformation for the natural
examples, a basally-driven model with Ar = 5 could provide a possible explanation for
the length-scale trend in the data. Given that the best-fitting values for Am and Ar seem
geologically reasonable (as discussed above), this provides encouraging evidence for
some amount of basal detachment between crust and mantle lithosphere during

convergent deformation.

The Effect of Thickening on Crustal Geotherms and the Deformation Length-Scale

In addition to the Ar effect, the crustal and Moho temperatures are expected to rise
for cases which have experienced considerable convergence, which will locally (i.e.
depending on spatial coordinates) change the Ampferer aumber. The change in Am with t’
may alter the length-scale relationships shown in figure 62, in the manner demonstrated
below. The effects are first described in terms of scaling relationships, and then more

accurate numerical results are presented.

(i) Scaling Relationships for the Effect of Thickening on Am and Ar

Thickening of the crust by convergent processes will cause a perturbation in the
initial, steady-state crustal geotherm, which will relax with time due to the diffusion of
heat (Carslaw and Jaeger, 1959). The relative rates of the advective process which causes
the perturbation, and the diffusive relaxation towards a steady-state crustal geotherm, can

be estimated by the non-dimensional Péclet number:

where S is the length-scale of the perturbation (the crustal thickness for this case), u is the

advective velocity, and x is the diffusivity, for which an average crustal value is
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10-6 m2s-1. The Péclet number for an orogenic setting, with typical convergent velocities
of between 1 and 5 cm/yr, and a crustal thickness between 30 and 60 km, is ~10-100,
indicating that the initial thickening of the crust in a convergent system generally occurs at
the advective limit.

Maximum crustal thicknesses in convergent settings seldom exceed twice the initial
crustal thickness. Convergence at 1 cm/yr at a deformation length-scale of 90 km will
double the crustal thickness in ~ 10 My, assuming negligible removal of mass by
erosion; faster convergence rates will require less time. Assuming the pure-shear
thickening takes place at the advective limit, for the reasons discussed above, the
geotherm after doubling the crustal thickness will be:

T(zt) = -;-(%Tz-)oz

where (dT/dz)g is the crustal geotherm at t=0, before any thickening has taken place, as
illustrated in figure 63(a). The crust and mantle lithosphere are heated from below by the

Figure 63: The effect of doubling the crustal thickness on the geotherm. Initially (a),
the crust (shaded area) has a geotherm of 15 *C/km, so that the Moho is at a
temperature of 450 °C when the crust has initial thickness S¢=30 km. After
doubling the crustal thickness at the advective limit (b), the geotherm will
initially be stretched to an average value of 7.5 *C/km, so that the Moho
temperature remains at 450 °C. Diffusive heating in the crust will eventually
cause the geotherm to increase to its pre-thickening value, heating the Moho to a
temperature of >800 °C. The geotherm at various times after instantaneous
thickening are shown by the boxed figures on the lower plot of figure 63(b), in
millions of years. A thermal diffusivity of 106 m2s-1 is assumed for the crust.

The simple model ignores the effects of crustal radiogenic heat production.
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mantle asthenosphere. Doubling the crustal thickness will double the amount of
radiogenic heat production in a crustal column, but in the following (approximate)
analysis I neglect heat production in the crust, and assume a linear geotherm throughout
the crust and mantle. If radiogenic heat production in the crust occurs over a significant
crustal thickness, the analysis will underestimate the heating (and weakening) of the crust
as it thickens, so that Am will be too high and Ar too low. The effects of radiogenic heat
production on length-scales of deformation are discussed further in Appendix G.

Diffusion of the temperature perturbation due to the thickening will increase the
crustal geotherm back to its steady-state, pre-thickening value. Diffusion processes in the
crust can be shown to operate over timescales on the order of:

52
1~—~30M
" y

(Carslaw and Jaeger, 1959), where 1 is the time for the initial perturbation to decay to 1/e
of its initial value, towards the steady state (t—o0) value; K is the diffusivity; and S is the
length-scale of the perturbation, which is is taken to be the initial crustal thickness. The
increase in the crustal geotherm with time for a crust thickened homogeneously and
instantaneously by factor f can be found using an approximate expression derived by
England and Thompson (1984) (England and Thompson, 1984, Appendix B, equation
(B18b)). The resultant change in geotherm with time since thickening, for f=2, is shown
in figure 63(b).

For the basally-driven model, the simple case shown in figure 63 must be modified
to include the effect of the continued movement and detachment of crust and mantle
lithosphere (i.e. the thickening process cannot be assumed to occur instantaneously, cf.
England and Thompson (1984)). This effect is particularly important on the pro-side of
the plate boundary, where mantle lithosphere is converging and subducting with

convergence velocity Vp. (Note that this discussion and the following analysis assume
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that Vp is constant throughout the episode of convergence). Mantle lithosphe::= which

underthrusts the thickened crust before subducting will tend to maintain the temperature at

the base of the crust at its pre-diffusional value (figure 64(a)), which in this case is

450 °C. As the pro-mantle lithosphere moves underneath the thickened crustal region,

heat flow from the mantle asthenosphere (indicated by squiggly arrows on the figure) will

cause the gradual heating up of both the crust and mantle lithosphere. The increase in

basal temperature will cause a decrease in Am locally, as indicated by the change in

pattern underneath the thickened region of figure 64(a).

Figure 64: Illustration of the effect of the continued motion and subduction of mantle

lithosphere on diffusion of the crustal gentherm for crust which has
doubled in thickness. (a) At small normalized convergence, t', showing
how (for a high Péclet number) the movement of cool mantle lithosphere
into the pro-side of the plate boundary keeps the Moho cool compared to
the retro-side. Squiggly lines indicate heating from the mantle lithosphere,
and the various patterns in the weak basal detachment layer represent local
values for Am. (b) A later convergence time, where the extent of thickened
crust has grown, and is assumed to have developed symmetrically about
the singularity. The top part of (b) shows the thickened crust, with
corresponding crustal and mantle lithosphere residence times as noted.
The lower part of (b) is a graphical representation of the variation in
residence times with across-strike position. The mantle lithosphere
residence time is shown by the dashed line with fill, and the crustal
residence time by the solid line. (c) same as (b) but assuming most crustal
thickening takes place on the pro-side of the plate boundary; (d) same as
(b) assuming most thickening occurs on the retro-side. Case (d)

corresponds most closely with numerical results later in the section.
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Figure 64(a,b)
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The effective time for which diffusion acts on the crust and mantle lithosphere can
be illustrated using the concept of residence time (figure 64(b-d)). The mantle residence
time, MREs, is defined as the amount of time for which a particular part of the mantle
lithosphere has been in residence under a region with approximately doubled crustal
thickness. In figure 64(b), where crustal thickening has developed symmetrically about
the plate boundary, ™tggs is zero beyond the thickened region. On the pro-side of the
plate boundary, MgEg increases to a value of (ANo/2Vp) before the pro-mantle
lithosphere subducts at the singularity. In contrast, on the retro-side of the plate
boundary, mantle lithosphere near the singularity is effectively stationary, and has been in
residence under thickened crust since the start of convergence (assuming that the initial
thickening, over length-scale ?&fqol o> Occurs rapidly in comparison to thermal
diffusion). The mantle residence time for this region is therefre equal to the time since
convergence began, Ax/Vp, where Ax is the amount of convergence.

Residence time for the crust, “tRES, is in general different to mantle residence time,
because of the detachment between the crust and mantle lithosphere layers (figure 64(b)).
Crustal residence time is defined as the amount of time since a particular column of crust
was thickened to approximately twice its initial value. The residence time “trgs is a
maximum for the region which was initially within a crustal deformation length-scale
M‘Iolteo of the plate boundary, and decruases to either side of this region.

The two residence times are illustrated in the bottom part of figure 64(b) for the
symmetrically-thickening case. This past of the figure plots crustal and mantle residence
times vs. distance across-strike. ¢trgs reaches a maximum of Ax/Vp over a distance equal
to the initial deformation length-scale, )\,Nol =g and decreases to zero on either side of
this region. In contrast, MRgg decreases abruptly at the singularity from the retro- to the
pro-side of the plate boundary, because of the movement of cool mantle lithosphere into
the pro-side at convergence velocity, Vp. The rest of figure 64 shows equivalent cases

assuming that most thickening occurs on the pro-side (figure 64(c)), and the retro-side
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(figure 64(d)) of the plate boundary. The magnitude and location of the differences
between crustal and mantle lithosphere residence times depends on the distribution of
thickening about the plate boundary.

Table 13 summarizes the predicted increase in Tyoho and corresponding decrease in
Am ith maximum crustal residence time, Ax/Vp, caused by diffusion of the thermal
perturbation after doubling the thickness of the crust (the temperature calculation is
performed using a one-dimensional finite element model, which is described below and in
Appendix G). As residence time increases, the local value for Am diminishes (by an order
of magnitude for M&tprg =90 My). The exponential decrease in Am with increasing
temperature means that for Tpoho > 600 °C, Am will be approximately constant for
further increases in temperature (figure 19(a)), so that the initial temperature increase at
the Moho will be most important in changing crust-mantle coupling characteristics. The
decrease in Am is expected to cause an increase in the thickening rate away from the plate
boundary. In the last two columns of Table 13, the maximum residence time is converted

into convergence amounts for incident velocites of 1 and 5 cm/yr, using the assumption

that maximum residence time MaXtppg = Ax/Vp.



258

Table 13: A simple scale analysis showing the decrease in Am with convergence

maximum | maximum |minimum |equivalent equivalent
crustal Tmoho (‘C) { Am convergence (km): | convergence (km):
residence up=1 cm/yr up=5 cm/yr
time (My)

0 450 0.75 0 0

10 521 0.29 100 500

20 551 0.19 200 1000

35 583 0.13 350 1750

45 600 0.10 450 2250

50 608 0.09 500 2500

90 655 0.05 900 4500

Table 13 shows the maximnm possible decrease in Am with convergence assuming

the Moho temperature is best represented by the crustal residence time. The true change in

Am with convergence will be a function of position, and also depends on the residence rw\‘%)
time for the mantle lithosphere. g%@
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(ii) Numerical Calculations of the Effect of Thickening
The calculations illustrated in Table 13 are approximate, and if length-scale
estimates were computed directly from Table 13, they would give an over-estimate of the
diffusional effect ecause the computations neglect regions with strong crust-mantle
coupling outside of the thickened zone. A better method to find the effect of thermal
relaxation is to use a numerical finite element code (Braun, 1988), which solves the one-
dimensional time-dependent heat flow equation (Appendix G), and couples the thermal
and mechanical effects directly in the thin-sheet code. The advantage of the numerical
method is that it can incorporate the effects discussed above (the continued motion and
thickening of the crust and mantle lithosphere) directly, by solving for a temperature array
throughout the crust and mantle lithosphere. A numerical implementation also allows a
local Ampferer number to be found for every horizontal location, so that regions outside
of the thickened orogen can retain strong crust-mantle coupling.
The details of the numerical thermal method are given in Appendix G, and involve
the following simplifying assumptions:
1]  The heat conduction equation is solved in the vertical dimension only (lateral heat
conduction is neglected because of the large horizontal spatial scale of the problem);
2] Radiogenic heat production in the crust is neglected; if included, results for the
decrease in Tyono With convergence would not change significantly (Appendix G).
3]  The relationship between Tono and Am from figure 19(a) is used to find the
equivalent change in the local Ampferer number with time for each timestep. The
use of figure 19(a) involves the assumption that the plot is valid for crust which has
thickened to twice its initial value. In addition, note that the plot (figure 19(a)) was
derived for a uniform layer of wet feldspar. Other assumed crustal compositions
would change the relationship between Am and Tpohe, but are not investigated in
this thesis.
4] The change in crustal strength due to stretching of the crustal geotherm (before
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diffusion) is neglected in the calculations, except where it affects the strength of the
basal detachment layer. Before diffusion, a crust of thickness 2S¢ will have a
maximum strength twice that of the equivalent undeformed crust, because the depth
of the brittle-ductile transition will have increased. The doubling in crustal strength
will initially reduce Am and Ar by a factor of 2. As the geotherm diffuses back to a
steady-state value, the maximum crustal strength will return to its pre-thickened
value, and Ar will return to its pre-thickened value, with the decrease in Am caused
only by the weakening of the basal detachment layer. The effect of the initial
decrease in Am and Ar with crustal thickening is neglected in the crust, because the
simultaneous decrease in Am and Ar are assumed to counteract each other. If
included, the change in parameter values would slightly change the increase in

length-scales for small amounts of convergence.

The combined thermal/mechanical thin-sheet code is used in part (iii) of this sub-section,

to determine the increase in basally-driven length-scales with convergence.

(iii) The Increase in Basally-Driven Deformation Length-Scale with Convergence

The calculations outlined above and in Appendix G are used in this sub-section to
estimate how the change in crust-mantle coupling with convergence influences the
deformation length-scale. To recapitulate briefly, the assumptions made for this analysis
are: (i) Lateral heat conduction is neglected in the (1D) thermal calculations; (ii) The initial
geotherm is assumed to give a temperature at the Moho of 450 °C, and crustal radiogenic
heat production is not included in geotherm calculations; (iii) The effect of changes in
crustal strength with thickening on parameters Ar and Am is neglected (except in the weak
basal layer).

The effect of the diffusion of the geotherm is demonstrated ir: figure 65, for initial
parameter values Am=0.75, Ar=5, n=3, and a convergence velocity Vp=1 cm/yr. Figure
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Figure 65: Comparison of crustal thickness, S, after 1500 km of convergence, for a
case where there is no thermal relaxation (top), and the same case but with
thermal relaxation, and a convergent velocity of 1 cm/yr (lower part of
figure). The arrows and dots under the figures represent velocities of 1
cm/yr and zero, respectively. The singularity point is indicated by the
filled circle. Vertical exaggeration on the figure is 4, and other parameter
values are n=3 and Ar=5, with an initial Ampferer number of 0.75. The
effect of isostasy has not been included on the figure for ease of qualitative
comparison; however, locally compensaied cases would attain the same

crustal thickening, provided the scaling number Ar remained the same.
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65(a) shows the distribution of crustal thickening for a case with no thermal relaxation,
for 1500 km of convergence. The case with no change in the geotherm with thickening
may be contrasted with a model which uses the numerical approximations outlined in
Appendix G to incorporate diffusional effects, shown in figure 65(b). Both cases are
shown with isostatic compensation effects removed, for ease of comparison.

The differences between figure 65{a) and (b) indicate the effect of thermal relaxation
on crust-mantle coupling. Fisstly, in the case with diffusion (figure 65(b)), crustal
deformation extends over a wider region. Secondly, the case with the diffusion shov's a
pronounced asymmetry, wit" 710st thickening occurring on the retro-side of the plate
boundary. The movement of cool mantle lithosphere into the pro-side of the boundary
keeps the Moho temperature close to 450 °C, so that crust-mantle coupling remains high
on the pro-side, whereas detachment increases preferentially on the retro-side, where
mantle lithosphere is stationary and can heat up on timescales comparable to the those for
crustal thickening. Finally, the case with diffusion (figure 65(b)) develops a plateau over
the detached retro-side of the plate boundary, that is not present in the case without
thermal relaxation (figure 65(a)).

A systematic analysis of numerical results such as that shown in figure 65(b), for
deformation length-scales vs. convergence, is shown in figure 66(a). Results are shown
for a range of possible values of Ar (Ar=1, 5) and convergent velocities (Vp=1, 5 cm/yr).
The diffusional effect is significant for large amounts of convergence, and has a similar
effect on length-scales to the Ar effect (figure 62, cf. figure 66), which was examined in
the previous sub-section and is also incorporated into these results. Figure 66(b)
compares the predicted length-scale increase to data from the natural examples of chapter
five (figure 56). Since Ar values between 1 and 5 are considered acceptable, and most
geological rates of convergence are between 1 and 5 cm/yr, data points that plot in the
shaded area between the length-scale curves for these limits indicate agreement between

the model and data.
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The effect of thermal relaxation on crustal deformation style is important in terms of
the shape and asymmetry of the deformation (e.g. figure 65), as well as for the trend of
increasing length-scales (figure 66). An interesting effect observed during weakening of
the crust-mantle detachment (not shown on the figures) is the change to uniform pure-
shear thickening in the plateau region, where Am is close to zero. The more strongly
coupled regions on either side of the plateau act as 'bookends' which squeeze the crust in
between like an accordion. Therefore, even after crust in the plateau region becomes
totally detached from the mantle lithosphere, it still undergoes some contraction. The
continued compressive environment suggests that a steady-state decrease in crust-mantle
coupling, such as that investigated here, cannot provide a general mechanism for the
extensional collapse of orogens (Dewey, 1988). However, the model results do not rule
out the possibility that contraction and extension may occur together over different parts
of the model domain (e.g. results from chapter three, figure 20(a), which shows
simultaneous extension (near the surface) and contraction (deeper in the model crust) over
part of the model domain, for the cross-sectional, plane-strain viscous model).

The agreement shown in this and the preceding sub-section between data and the
basally-driven model (figure 66), demonstrates that a combination of gravity acting on
thickened crust, and diffusive heating of thickened crust, may provide a possible

explanation for the trend in the data.

Figure 66: (a) The predicted basal’y-driven length-scale curves for 1 and 5 cm/yr
convergent velocities, and Ar=1 and 5, with diffusion of the crustal
geotherm. (b) Comparison of basally-driven predictions with the natural
data. Range of predicted curves (from Ar=1, 5 cm/yr to Ar=5, 1 cm/yr) is
shaded.
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§ 6.3 Comparison of Model Predictions with the Evolution of the

Tibetan Plateau

The remoteness of the locality, and lack of constraining seismic and geologic data,
have so far prevented the construction of a detailed history for the tectonic evolution of
the Tibetan Plateau (Dewey gt al., 1988). However, the combination of a large along-
strike extent of collision (D~3000 km), a rapid rate of collision (~ 5 cm/yr), and large
amounts of convergence since the initial collision of India and Eurasia (~2000 km), make
the Himalayan-Tibetan system the best example of a large-scale orogenic system currently
on Earth (Molnar and Tapponnier, 1975; England and Houseman, 1986) (figure 67).

In this section, the predicted evoluticn of model length-scales with convergence is
tested against evidence for the spatial development (with time) of the Tibetan Plateau. The
model length-scale predictions are based on the qualitative results from chapter four and
section 6.2, for the development and change in length-scale dependences with increased
convergence. The comparison is performed for each of the possible deformation styles,
and include (for the basally-driven case) the modifications for changing Am with
convergence investigated in section 6.2. The predictions for each case are summarized
below, and then compared to the evolution of the India-Eurasia collision. The general
purpose of this section is to determine whether more accurate estimates of length-scale

evolution would provide constraints on the mechanics of collision for such a large-scale

system.

Figure 67: The India-Eurasia collision, simplified from a figure by Peltzer and
Tapponnier (1988). The position of major thrust and strike-slip faults is
indicated. The stippled region indicates extensively thickened topography
(~over 1500m elevation). MCT refers to the Main Central Thrust in the
Himalayas.
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Figure 67
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Model Predictions
(i) Side-Driven Model Predictions

The change in deformation length-scales with t’ for the side-driven case was found
to depend on the relative effects of n, the power-law exponent for the lithosphere (the
higher n, the more likely mass will become concentrated just in front of the indenter), and
Ar, the Argand number, which controls the amount of lateral tectonic escape of mass
away from the indenter. The cases investigated in chapter four (figures 39, 40) did not
show an increase in the deformation length-scale, as measured by thickening, with
convergence. If the system is dominated by strain-rate weakening effects in front of the
indenter, the length-scale actually decreases with t', and if Ar is large so that gravity
effects dominate the system, the length-scale stays constant or also decreases with t’,
because of the tectonic escape along-strike. The reslts shown in figures 39 and 40 would
be modified somewhat for different-shaped (kinematic) indenters (cf. section 4.4 and the
results of England and Houseman (1986)), as I show later in this section, and the length-
scale may actually increase with t’ for a sufficiently large Ar (Ar >>1). However, the
increase is small compared to the equivalent basally-driven increase.

Thermal relaxation is unlikely to be important for the side-driven whole-lithosphere
case, because if the lithosphere thickens uniformly in response to stress applied by an
indenter, lithospheric temperatures will heat up on a diffusive timescale of T ~L2/k =
320 Ma (where L is the thickness of the lithosphere, ~ 100 km), which is much larger
than orogenic timescales. The average values of Ar and n are therefore unlikely to change
significantly for the side-driven case, unless there is an additional heating mechanism
(e.g. convective removal of thickened mantle lithosphere (England and Houseman,
1988). The predictions for evolution of a large-scale orogenic system, if controlled by
whole-lithosphere, inde *er mechanics, are therefore:

1. Small changes in deformation length-scale with t’ (depending on Ar, and the shape
of the indenter).
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2. No significant change in Ar, n during syn-orogenic thickening, although a plateau
may form in regions which have thickened significantly.

(ii) Basally-Driven Model Predictions

Unlike the side-driven case, an orogen whose deformation is controlled by
detachment and subduction of underlying mantle lithosphere is expected to grow away
from the plate boundary with normalized convergence, t’ for all values of the Argand
number. The increase in length-scale is initially caused by the effects of gravity on crustal
thickness gradients (Ar), but as discussed in the last part of section 6.2, the increase may
also depend on the heating of the weak layer (at the Moho) with time, from the diffusion
of the thickened crustal geotherm, as illustrated in figures 65-66.

Because there are no variations in the velocity boundary condition along- strike for
the basally-driven case investigated in this thesis, there is no lateral tectonic escape, so
that for a normally convergent system, there will be no sirike-slip component of
deformation. The predictions for evolution of a large-scale orogenic system, if controlled
by subduction of underlying mantle lithosphere with no along-strike variations, are
therefore:

1. The length-scale of deformation will increase with t’, according to the type of

relationship illustrated in figure 66.

2. Orogens which have a relatively high rate of convergence (2 5 cm/yr) will grow
outwards more slowly with normalized convergence, than those with slower rates
of convergence (due to the effect of thermal relaxation).

3.  There will be no lateral movement of mass along the plate boundary.

More generally, a basally-controlled system may also have along-strike variatic:ns 1n
the plate boundary; these variations will allow tectonic escape of mass away from the

converging zone, and the system will then become similar in behaviour to the mixed



model predictions discussed below.

(iii) Mixed Model Predictions
The mixed model has a deformation length-scale which, as shown in chapter four,

is controlled by either indenter mechanics or mantle lithosphere kinematics, depending on

the relative sizes of the predicted length-scale for each case. For typical (D >> S) along-
strike dimensions of the velocity boundary condition, the deformation length-scale will
therefore be controlled by the basal boundary condition, and will grow with t’ according
to the predictions discussed for (ii) above. Eventually, when the indenter length-scale
limit (D) is approached, the extent of deformation increases more slowly with t’, and
further growth of the orogen will be mainly by lateral escape of mass along-strike. The
predictions for evolution of a large-scale orogenic system, if controlled by mixed
boundary conditions, are therefore:

1. Initially, Am will be relatively large (~0.75 if the geotherm is assumed to be ~
15 °C/km, giving a starting deformation length-scale of ~ 90 km for n=3). For all
but the smallest along-sirike velocity boundary conditions, DD, orogens are basally
controlied.

2.  As the orogen grows, the length-scale increases because of (i) the effect of gravity
on crustal thickness contrasts (Ar), and (ii) decreasing Am (as discussed in section
6.2) with thickening.

3.  Eventually, the deformation length-scale will approach the side-driven limit, and
orogen growth will become controlled by indenter mechanics. The tectonic escape
component will increase as this limit is reached.

4.  Therefore, it is expected that the convergent zone will start as a long, narrow
orogen; it will grow outwards with convergence; as Am decreases, there will be
increased tectonic escape, with a transition to a length-scale controlled by indenter

mechanics. The transition to side-driven behaviour implies that strike-slip faulting



271

may become dominant over some part of the thickened crust, and large growth

across-strike will cease (i.e. the orogen will seek to grow laterally instead).
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Comparison of Predictions to the Tibetan Plateau

Numerous studies of the development of the Tibetan Plateau (figure 67) exist in the
literature, many of which allow different interpretations (see for example the ongoing
debate over the amount of mass lost by lateral extrusion (tectonic escape), vs. crustal
thickening (Tapponnier gt al., 1982, cf. Dewey gt al., 1988)). Despite these differences,
and the lack of a proven mechanism for the development of the Tibetan Plateau, there is
general agreement that the onset of significant continental thickening occurred at about 45
Ma, and that deformation has propagated northwards across Tibet since that time (Molnar
and Tapponnier, 1977; Dewey ¢t al., 1989b). (Note that the actual start of collision is not
well constrained, and may have begun as early as 60 Ma in some areas (e.g. Beck gt al.,
1995)). 1 follow the tentative reconstructions of Dewey et al. (1988) and Mercier gt al.
(1987) for the timing of various events which can be gleaned from the geological record.
Although some of the details of these reconstructions may prove to be incorrect, I believe
that the general sequence of events is well enough constrained to facilitate a qualitative
comparison with the predictions made above.

According to Dewey gt al. (1988), the uplift of the Tibetan Platcau was
accomplished in three main stages. The first stage involved convergence of about
1000 km between 45 and 30 Ma, conjectured to have occurred by northward-
propagating crustal shortening and deformation. The evidence that thickening propagated
northwards with time, rather than occurring synchroneously across the Tibetan Plateau, is
sparse, and based on evidence from the northern edge of the Plateau (Molnar gt al.,
1987). During stage one, Tibetan crust doubled its thickness to ~ 65 km, over a total
across-strike distance of about 1000 km.

Stage two began when further thickening to the north was blocked at ~ 30 Ma by
the strong lithosphere of the anomalous Tarim Basin, which acted as a 'spacet’ to transfer
thickening out to the Tien Shan mountain belt. In Tibet, north-south shortening by

thrusting changed to shortening by conjugate strike-slip faulting, with small amounts of
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east-west extrusion. The evidence for a change from north-south shortening to strike-slip
faulting after 30 Ma is based on dating of fault structures, paleomagnetic data, and
geometrical mass-balancing arguments (Dewey gt al., 1989b). Mercier gt al. (1987)
estimate that the change occurred somewhat later, at ~20 Ma. Thrusting along the MCT
(Main Central Thrust) in the Himalayas also began at ~ 25-20 Ma (Mercier gt al., 1987),
and thickening may have propagated southwards into the Himalayas at this time (Dewey
et al., 1988). Note that there is evidence that convergence and extension occurred
contemporaneously in the northern Himlayas during the Miocene (Burg and Chen, 1984;
Burchfiel and Royden, 1985), indicating possible decoupling between different levels of
the crust (Burchfiel and Royden, 1991).

For the last 5 Ma (stage three), north-south shortening has continued north of Tien
Shan; east-west extension has occurred on the Plateau, with conjugate strike-slip faulting,
for at least the last 2 Ma (Armijo gt al., 1982, 1J86), and uplift of up to 2 km may have
occurred. The rapid uplift episode has been inferred (i) from paleobotanical and
paleoclimatological evidence (Li gt al., 1981; Xu, 1981), (ii) from cooling (exhumation)
ages of fission track data in the Himalayas (Zeitler, 1985), and (iii) from timing of
extensional features and recent volcanics on the Plateau (Molnar and Tapponnier, 1975;
Chen and Molnar, 1977) . The debate over the extent of Pliocene to Recent uplift of the
Tibetan Plateau, and its implications for mantle dynamics and crustal extension, has not
been resolved (e.g. England and Houseman, 1988; Burchfiel and Royden, 1991; Molnar
et al., 1993; Willett and Beaumont, 1994), and will not be addressed in this discussion.

The crucial points which can be compared to the predictions made at the start of this
sub-section, are the increase in deformation length-scale with convergence across-strike,
and the timing and amount of tectonic escape on the Plateau. The rough estimates from
Dewey ¢t al. (1988) are summarized in a figure which plots length-scale vs. convergence
(figure 68), and compares the Jata to model predictions. The length-scale data from
before the Pliocene are sparse, and a best-fit linear relationship has been fitted to the data
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points, based on the conjectures of Dewey gt al. (1988). This assumption (of a linear
increase in length-scale before the Pliocene) remains a major weak point of any
comparison between data and models for evolution of the Tibetan Plateau, as will be

shown below.

Figure 68: (a) A comparison of the evolution of length-scales for the Tibetan Plateau
(solid circles, and best-fit line, based on Dewey ¢t al., 1988), with
predictions from the side-driven model. Side-driven length-scale
predictions are shown for Ar=1 and 5, (dashed lines), with the region in
between shaded. (b) Comparison with the basally-driven model, for Ar=1
and 5 (dashed lines). Basally-driven length-scale predictions are from
section 6.2 for a velocity of 5 cm/yr. Am decreases from 0.75 to 0.3 as
convergence increases. (c) Figure illustrating the construction of the mixed
model length-scale predictions (dashed line) for Ar=5. The limiting length-
scale predictions for the side-driven and basally-driven models (solid
lines) are also shown. The transition region between basal and indenter
control for the mixed model is estimated by eye, and so is approximate.
The unfilled circles represent the beginning of the transition zone for each
case. (d} Comparison between the mixed model predictions for Ar=1, 5
(constructed as in (c)) and the evolution of length-scales for the Tibetan
Plateau. The unfilled circles indicate that significant strike-slip faulting is
expected to initiate at these convergence times, and will be ongoing (as
indicated by the arrows). Significant strike-slip faulting is predicted as the
deformation length-scale becomes controlled by the side-driven length-
scale limit.
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In figure 68(a), the estimated increase in length-scale with convergence for the
Tibetan Plateau (solid circles and best-fit, thick line) is compared to numerically derived
results for the side-driven model. Model predictions for two values of Ar (Ar=l, 5),
using the indenter shape of figur. 36(d) in chapter four, and n=3, are shown by the
dashed lines on the figure. Ar=1 and 5 are taken to bracket the geologically realistic
values for the Argand number, based on the experiments of chapter three using a wet
feldspar crust, and previous numerical studies of the Tibetan Plateau (England and
Houseman, 1986). The region between the two bracketing values for Ar is shown
shaded, and suggests the probable range for side-driven length-scale predictions. As
discussed previously, even for high values of Ar, side-driven length-scales do not
increase very fast with convergence, because of the tectonic escape term. The side-driven
predictions in figure 68(a) are in agreement with current length-scale estimates for the
Tibetan Plateau for Ar~5; however, if the conjecture that Tibetan length-scales of
deformation increased approximately linearly with convergence in stage 1 is cotrect, the
side-driven predictions do not fit the early evolution of the Tibetan Plateau.

The length-scale estimates of Dewey gt al. (1988) are compared to the basally-
driven model results in figure 68(b). The basally-driven length-scale predictions are taken
from the results outlined in section 6.2 (figure 66), with Vp=5 cm/yr; Am therefore
decreases from ~ (.75 to 0.3 over the convergence interval of ~ 2000 km. As for the
side-driven case, length-scale predictions are shown for Ar=1 and Ar=5, with the region
between the two curves shaded. The filled circles and best-fit thick line represent the
estimates of Dewey ¢t al. (1988). The agreement between the shaded region and the
length-scale estimates for the Tibetan Plateau indicates that the basally-driven model, with
no along-strike mass movement, is a valid alternative to the side-driven mode! of England
and Houseman (1986).

The construction of equivalent length-scale estimates for the mixed model is
illustrated in figure 68(c), for Ar=5, and with an indenter length-scale of 3000 km and an
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Ampferer number which decreases from ~0.75 to (.3 as the temperature at the Moho
increases. Although for small convergence times (chapter four) mixed model length-
scales are ~1/2 the equivalent basally-driven length-scales when deformation is controlled
by subduction of underlying mantle lithosphere, in this analysis I assume the length-
scales are roughly equal. This assumption is based on the growing asymmetry of a
basally-driven orogen with time, so that for both basally-driven and mixed models,
thickening occurs mostly on the retro-side of the plate boundary. The mixed model
therefore has length-scale limits: (i) the basally-driven length-scale for an equivalent Ar,
and Am which decreases with convergence; and (ii) the side-driven length-scale for an
equivalent Ar. The construction of the estimated length-scale increase for the mixed model
is based on these limits, as illustrated in figure 68(c), using the transition criteria
established in chapter four. The mixed model curve in the figure has not been derived
numerically, but by best-fit to the limiting basally-driven and side-driven cases.
Therefore, the construction is approximate, and is meant to indicate the trend in the
length-scale increase with convergence. The solid lines are the side-driven and basally-
driven limits for Ar=5. The unfilled circle represents the approximate convergence
amount at which the mixed curve (for a given Ar) diverges from the basally-driven
prediction.

Mixed model curves estimated in the manner shown in figure 68(c) are compared to
the estimates of Dewey et al. (1988) in figure 68(d), for Ar=1 and 5. The region beiween
the two mixed curves for Ar=1, 5 is shaded. The correspondence between the mixed
curve with Ar=5 and the data indicates that this model is also a possible explanation for
the evolution of the Tibetan Plateau with convergence. An interesting feature of the plot is
the location of transition from basal control towards the side-driven limit (unfilled
circles). The unfilled circles represent the approximate convergence amount at which
strike-slip faulting is expected to become important, as the mixed model adjusts to the
limit imposed by the finite along-strike length-scale, D. The poini at which the length-
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scale diverges from basal control is therefore taken to r.cedict the onset of strike-slip
faulting on the Tibetan Plateau. The strike-slip faulting is expected to continue for
convergence amounts greater than the start of the transition region, as indicated by the
arrows. For the best-fit curve with Ar=5, the onsgt of significant strike-slip faulting is
expected to occur after ~1000 km of convergence, which may be compared with the
estimates of Dewey et 4. (1988) and Mercier gt al. (1987), for strike-slip faulting
initiation at ~ 30 Ma (Dewey ¢t al., 1988) and ~ 20 Ma (Mercier gt al., 1987),
respectively, corresponding to amounts of convergence of 750 km and 1250 km.

This result suggests that a combination of indenter mechanics and basal forcing may
be able to explain first-order style of thickening on the Tibetan Plateau. However, given
the tentative nature of the geological evidence, these comparisons are not conclusive. In
particular, the conjectured northward progression of shortening and thickening across the
Tibetan Plateau is not well constrained (Molnar gt al., 1987; England and Searle, 1986;
Shackleton and Chengfa, 1988). The comparison could be improved if we had a better
knowledge of the uplift history of the Tibetan Plateau, especially the timing and spatial
extent of various stress regimes, and the length-scale of deformation at various points in
the evolution of the thickened region. For instance, conclusive evidence for an increase in
deformation length-scales for the Plateau similar to the suggested increase shown in
figure 68, for small convergence (<1000 km), could be used to distinguish more easily
between an orogen which is controlled by indenter mechanics from the outset, compared
to an orogen which is initially controlled by subduction of mantle lithosphere, and grows
out to the limit imposed by the finite extent of the indenter.

In addition to the cautions expressed above, it should be noted that none of the
models by themselves are able to explain the inferred sudden uplift, increased volcanism,
and extensional features which have developed on the Plateau over the past ~2-5 Ma. This
requires an appeal to either convective removal of thickened mantle lithosphere for the

side-driven case (England and Houseman, 1988), or retreat of the subducting mantle
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lithosphere towards Asia (Willett and Beaumont, 1994), to initiate a rapid heating event

under the Plateau.
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§ 6.4 Recapitulation: Physical Styles of Behaviour of Convergent

Lithosphere

The styles of behaviour of the crust or lithosphere in convergent and strike-slip
settings investigated in this thesis are based on two main styles of forcing, the whole-
lithosphere side-driven (indenter) and basally-driven (mantle lithosphere subduction)
models. as well as a mixed model, which has indentation from the side #nd detachment of
mantle lithosphere. Although the physical settings leading to each of the model
assumptions have been discussed individually earlier in the thesis, section 6.4 attempts to
bring the models together in a physically consistent manner, in order to summarize the
conditions under which a particular model style will best represent the behaviour of the

lithosphere at a plate boundary.

Convergent Plate Boundaries

The different assuiaptions which produce model styles for a convergent zone are
illustrated in figure 69 as a flow diagram. The first-order difference which controls
behaviour is whether the mantle lithosphere is assumed to thicken and deform, as shown
in the left-hand side of the figure, or to subduct, as shown on the right-hand side. Within
each of these subsets of behaviour, another important control on deformation style is the
relative strength of the crust and/or mantle lithosphere on either side of the plate boundary
zone. The indenter model assumes that the strengths are very different, so that one side
of the plate boundary indents the other side without significant deformation (case LI =
'lithospheric indenter’, the side-driven case). Whole-lithosphere deformation with no
significant differences in strength across the plate boundary (case LX) is not physically
possible, because there would be no reason for defurmation to localize near the plate
boundary.

For the alternative end-member style (right-hand side of figure 69), mantle
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lithosphere subducts. The polarity of the subduction may depend on the relative crust-
mantle coupling on either side of the plate boundary. A difference in strength between the
crust and weak detachment layers on either side of the plate boundary is likely tolead to a
combination of indenter and basally-driven mechanics, giving the mixed model that was
investigated in chapter four (figure 69, case CI = 'Crustal Indenter'). If there is no
significant contrast in strength and crust-mantle coupling across the plate boundary, crust

on both sides of the plate boundary will deform, in a m:1nner dictat.d by the basal

Figure 69: A flow diagram indicating the different assumptions that lead to the
various model styles for convergent plate boundaries investigated in this
thesis. The first choice for a convergent system is whether mantle
lithosphere thickens along with the crust (left-hand choice), or detaches
and subducs (right-hand choice). If the mantle lithosphere thickens, and
the average lithospheric strength on one side of the plate boundary is much
stronger than the other, case LI is the result: the whole-lithosphere,
indenter, side-driven case. If mantle lithosphere thickens but there is little
difference in strength across the plate boundary (case LX), deformation
will not necessarily localize at the plate boundary; this case is not
investigated. Taking the right-hand assumption, that mantle lithosphere
detaches and subducts, leads to two alternative choices for deformation
style. CI is the mixed case, where significant differences in strength and
coupling on either side of the plate boundary lead to a combination of
indenter and basally-driven mechanics. If there are no significant strength
differences (case CB), crustal deformation: will be basally driven and will
not denend on the along-strike length-scale.
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boundary conditions (case CB = 'Crust driven by Base', the basally-driven case). Note
that for the cases CI and CB, there are two possibilities for the polarity of mantle
subduction. The subduction: polarity shown for Cl is considered most likely for the mixed
model (see discussion at the end of this section), whereas either choice of polarity for
mantle lithosphere subduction in the basally-driven case (CB) is possible. The two
choices for subduction polarity impose different kinematical constraints on the defonning

crust, as will be discussed later in this section.

Strike-Slip Plate Boundaries

Figure 70 illustrates an equivalent flow-diagram of possible mechanical behaviours
in strike-slip settings. As for the convergent case, if the whole lithosphere deforms and is
much stronger on one side of the plate boundary than the other, the system will be driven
by indenter mechanics, and length-scales will depend on the lateral extent of the strike-
slip boundary conditions (figure 70, case LI). Case LX, for whole-lithosphere
deformation with no contrasts in strength across the plate boundary, may be possible if
there is a strain-weakened vertical contact at the boundary (e.g. Molnar, 1992), but is not
considered in this thesis.

If the mantle lithosphere detaches from the crust (right-hand panel of figure 70), and
the crustal strength and crust-mantle coupling on either side of the plate boundary are
different, the system will behave according to the mixed boundary conditions, where the
deformation length-scale will be controlled by the minimum predicted length-scale from
the indenter and basal rﬁechanics (case CI). If there is no strong difference in strength
across the plate boundary, the crust will be basally-driven (case CB). The geomerry of the
contact between the two plates in the mantle lithosphere is unknown, but it is conjectured
that, since most strike-slip boundaries considered in this thesis have a small compressive
component of motion, the contact in the mantle will be angled in a similar manner to the

convergent cases illustrated in figure 69.
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Figure 70:

The equivalent flow diagram (to figure 69) for strike-slip plate boundaries.
If the whole lithosphere is assumed to deform on the same horizontal
length-scale (left-hand choice), and there are different strengths on either
side of the plate boundary, the deformation will best be modelled by the
whole-lithosphere side-driven indenter model (case LI). As for figure 69,
the whole lithosphere case where there are no significant strength
differences across the plate boundary (case LX) is not modelled in this
study. The right-hand column, which assumes that the mantle lithosphere
is detached from the crust along a weak simple-shear layer, leads to two
alternative styles: case CI, where significant strength differences across
the plate boundary lead to a combination of indenter and basally-driven

mechanics, and case CB, which is solely basally-driven.
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Strike-Slip Plate Boundaries
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Intra-continental vs. Active Margin Plate Boundary Development

A continental plate boundary may develop within an initially homogeneous plate due
to in-plate stresses, or may occur at an already existing, active (subduction) plate
boundary when relative plate motions cause two continental plates, (or a continent and
island arc/ oceanic plateau) to collide. Examples of the former, intra-continental type
include the Kapuskasing structural zone (convergent setting) and the northern Anatolian
Fault (strike-slip setting). The crust on either side of the plate boundaries in these
examples appears to have a similar geological and thermal history. Examples that have
evolved from active margins include the India-Asia collision (convergent setting) and the
San Andreas Fault Zone (strike-slip setting).

The site of plate boundary development may determine the style of deformation, and
whether it is controlled by indentation or mantle subduction, as illustrated in figures 69
and 70. Intra-continental development of a plate boundary is Iess likely to produce
different crustal and detachment strengths across the boundary, although it is possible that
intra-plate stresses may reactivate deformation on an old plate boundary within the craton.
For most intra-continental settings, however, there will be no significant strength
contrasts across the newly formed plate boundary, so that the initial deformation may be
controlled by basally-driven mechanics. If this conjecture is correct, length-scales of
intra-continental deformation for small amounts of convergence should show little
dependence on along-strike length-scales (D).

Conversely, continental collision or strike-slip plate boundaries developing on
active subduction margins are very likely to inherit significant differences in crustal
strength and crust-mantle coupling across the boundary zone. Strength differences will
arise not only because of the abutment of continental lithospheric plates which may have
originated in very different settings, and experienced different thermal and tectonic
evolutions, but also because of the transient thermal effects at active subduction

boundaries. For instance, when India collided with Eurasia, the (Lhasa) Eurasian margin
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had been the site of active oceanic subduction for over 80 My (Ricou, 1994), and is likely
to have developed a fairly high heat flow due to effects of the subducting slab, whereas
the passive northern margin of India was probably much stronger and cooler, with strong
coupling between the crust and mantle lithosphere. Differences in strength across such a
collisional plate boundary may produce deformation which initially follows the whole
lithosphere indenter, or mixed indenter/mantle detachment model, as illustrated in figure
69.

The speculations discussed above lead to the testable prediction that intra-
continental plate boundaries will have a deformation length-scale which does not depend
on, and in general is much less than, the predicted side-driven length-scale. This seems to
be in agreement with convergent and strike-slip boundaries which have developed in situ,
such as the Kapuskasing convergent zone, and the Levant and Anatolian fault zones;
length-scales for these cases are all significantly under the length-scale predicted by the
side-driven thin sheet model. Examples of collisional plate boundaries which developed at
active margins have length-scales on or below the side- iriven prediction (e.g. the Zagros
length-scale is just above, and the Urals length-scale is below, the predicted length-scale;
the San Andreas and Chaman fault zones lie on the side-driven prediction), which is in
agreement with length-scales for deformation controlled by a combination of indenter and
basal detachment mechanics. Alternatively, the trend in the data can also be explained
solely in terms of the basally-driven model, with larger deformation lengd-scales
predicted at evolved active margins because of higher thermal gradients (and therefore

lower values of the Ampferer number) at disturbed, vs. undisturbed, plate boundaries.

The Transition from Oceanic Subduction to Continental Convergence, and the Polarity of
Mantle Lithosphere Subduction for the Mixed and Basally-Driven Cases
The transition from an active subduction margin to a continental collisional plate

boundary is a common evolutionary sequence for orogenic belts. An active subduction
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margin has a number of first-order controls which determine crustal behaviour on the
continental side. The most important, as discussed in chapters 1 and 2, is the movement
of the trench relative to the stable cratonic interior (Doglioni, 1992; Royden, 1993a,
1993b). Retreating subduction zones may be characterized by extensional features, and
do not involve significant thickening of the crust. In contrast, if the trench moves towards
the continental landmass, the margin is an advancing subduction zone, and conservation
of mass requires that the continental crust and mantle lithosphere must either be
thickened, or lost from the system by subduction and/or lateral tectonic escape.

Advancing subduction and continental collision therefore may produce similar styles of

thickening for continental crust.

(i) Advancing Oceanic Subduction

Some conceptual possibilities for the advancing subduction case which conserve
mass in the mantle lithosphere are illustrated in figure 71. In the top figure, both the crust
and mantle lithosphere of the continental plate (continent #1) thicken together. The trench
moves with velocity Vg, and if the oceanic lithosphere is much stronger than continent
#1, it will act as a rigid indenter. This case is therefore directly analogous to the side-
driven models of England and McKenzie (1982). The bottom panel of figure 71 shows an
alternative conceptual model, which also conserves mass, and in which the continental
lithospheric mantle is entrained by, and subducts with, the oceanic lithosphere. The idea
that some of the mantle lithosphere of continent #1 subducts follows from the 'ablative
subduction' concept of Tao and O'Connell (1992), and should be possible provided the
crust and mantle of continent #1 are separated by a weak detachment layer. Figure 71(b)
is directly analogous to the mixed model introduced in chapter four, where the mantle
lithosphere (of continent #1) is assumed to detach from the crust over a region adjacent to
arigid indenter (oceanic lithosphere). Although the sense of subduction in the two cases

(figure 41, chapter four, cf. figure 71(b)) appears to differ, the subduction: of oceanic
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lithosphere does not enter into the equivalent model for figure 71(b) directly, and by
adding an opposite velocity -V§ to the advancing subduction case, it can be seen that the
ablative subduction of continental mantle lithosphere (figure 71(b)) applies the same
horizontal kinematic boundary condition to the base of the continental crust as for the case
where mantle subduction polarity is towards the indenter (figure 41). Note that in figure
71(b) the detachment zone moves towards the stable continental interior with velocity Vs,

along with the indenting oceanic lithosphere.

Figure 71: Two alternatives for advancing subduction; (a) continental mantle
lithosphere thickens and deforms with the crust, according to the whole-
lithosphere side-driven model; (b) continental mantle lithosphere follows
the oceanic lithosphere downwards according to the ablative subduction
ideas of Tao and O'Connell (1992). In both (a) and (b), mass is conserved
in the mantle lithosphere. Vp is the incident velocity of the oceanic
lithosphere, and Vg is the velocity of the trench relative to the stable
continental interior (represented by the nail). The dark shaded region in (b)

represents a detachment layer between crust and mantle lithosphere.
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(ii) Continent-continent collision

The initial stages of collision bctween two continental landmasses generally occur as
the result of a continent being 'rafted in' towards an active subduction margin. As
discussed in the previous sub-section, strength differences (and therefore, in the limit,
some form of indenter mechanics) are likely across the plate boundary. The early stages
of collision will be controlled by the kinematics of the preceding oceanic subduction zone,
and there may be an attempt to subduct continental crust ('A'-type subduction), which
will be resisted by buoyancy forces. Eventually the kinematics of the system will change
to the thickening of some part of the converging crust, with three possible modes of
deformation for the underlying mantle lithosphere (figure 72), assuming that significant

strength differences still exist across the plate boundary.

Figure 72: Three possibilities for the deformation of lithosphere (continent #1) which
is being indented by a much stronger continental lithosphere (continent #2,
represented by white layers). (a) whole lithosphere deformation according
to the side-driven model. The strong continental lithosphere deforms
primarily by elastic flexure, and is not modelled. (b) Case where the
mantle lithosphere on the strong (indenting) continent #2 side detaches and
subducts. (c) Case where the mantle lithosphere on the weaker (continent
#1) side detaches and subducts. Mass is conserved in the mantle
lithosphere in all cases. The original position of the singularity at the start
of deformation is shown by the unfilled circle for (a-c), and linked
between plots by the dashed straight line. The dashed profiles on figure 72
(a) and (c) show the original position of continent #2. The dark shaded
region in (b) and (c) represents a detachment layer between crust and

mantle lithosphere.
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Figure 72(a) illustrates the deformation style in which the mantle lithosphere of
continent #1 (which was previously adjacent 1o an active margin) thickens and deforms
along with the crust, over a length-scale determined by the along-strike variation in
indenter velocity, D, of the rigid, strongly-coupled (continent #2) lithospheric plate (LI
model, cf. figure 71(a)). In figure 72(b), the mantle lithosphere detaches from the crust
and subducts towards continent #1, following the remaining oceanic lithosphere
downwards. Conservation of mantle lithospheric mass dictates that, as the stronger
(continent #2) crust indents into the weaker side, the point of detachment for the
subducting mantle lithosphere will separate from the crustal position of the plate
boundary, so that indenter and subduction-driven mechanics will become separated. This
mechanism therefore injects the strong, indenting crust of continent #2 into continent #1.
Although possible, no geophysical data strongly suggest this configuration at any recently
converging plate boundaries.

Figure 72(c) suggests an alternative detachment symmetry, in which mantle
lithosphere subduction polarity is flipped, and detachment and subduction occurs in the
direction of continent #2, the stronger, indenting side. I consider the asymmetry
represented by figure 72(c) to be probable, because the effective Ampferer number for the
side of the plate boundary which was initially an active margin (continent #1), with
associated volcanics and high heat-flow, is likely to be lower than for the passive margin
side (continent #2). The weaker coupling between crust and mantle lithosphere for
continent #1 will make it easier for the mantle lithosphere on this side to detach and
subduct. Conservation of mantle lithospheric mass predicts that the point of detachment
will move along with the indenting crust, so that the stronger mantle lithosphere acts as a
'ram' to split the weaker lithospheric plate along the detachment layer. (However, once
subduction of continent #1 mantle lithosphere is initiated, the subduction pull from the
negatively buoyant mantle lithosphere may keep the process going). From the reference

frame of the stable continental interior of continent #1, the singularity or detachment point

'ﬁ
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of the subducting mantle lithosphere appears to retreat as the stronger indenter (continent
#2) advances, so that Vg=Vp.

Note that in both figure 72(a) and 72(c), the detachment point retreats with velocity
Vs=Vp, but that in figure 72(b) Vs=0, and the injecting crustal tip has velocity Vp. The
configurations shown in figure 72 are similar to the set of alternative models for the
deformation of the Tibetan Plateau, summarized in figure 2 of Willett and Beaumont
(1994). The above analysis, which considers model cases based on the relative velocities
and deformation style of the mantle lithosphere, ties these models together into a
consistent series of mechanical styles.

The proposed flip in subduction polarity during the change from oceanic subduction
to continental collision for the mixed model, as shown in figure 72(c), is in agreement
with the suggestion made by Willett and Beaumont (1994) for the evolution of the Tibetan
Plateau (figure 67). They suggest that during the India-Eurasia collision, the sense of
subduction changed from subduction of oceanic lithosphere towards Eurasia, to
subduction of Eurasian mantle lithosphere towards India. Evidence in favour of this
polarity flip comes from the position of the continental suture, which is much closer to the
Indian side of the plate boundary, indicating that most of the continental mass on the
Plateau is derived from Eurasia. From the reference frame of Siberia, subduction of
Eurasian mantle lithosphere will move continental crust towards India, keeping the
continental suture close to the initial site of collision. Note that, as Willett and Beaumont
(1994) also cautioned, the side-driven indenter model (LI on figure 69, also shown as
figure 72(a)) provides an equally valid explanation for the position of the suture, if India
is indenting Eurasia.

If strength differences across a continental convergence zone are small, the
deformation of the lithosphere may follow the basally-driven deformation style (figure
69, case CB). As discussed above, this is most likely for plate boundaries which develop

in intra-continental settings. Either polarity choice for mantle lithosphere subduction is
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possible, if the crust-mantle coupiiiig is (initially) similar everywhere. The two choices
are illustrated in figure 73(a) and (b). In figure 73(a), mantle lithosphere from continent
#2 subducts towards continent #1. In the reference frame of the stable interior of
continent #1, the velocity of the singularity is zero, and continent #2 is the 'pro'-
lithosphere. Figure 73(b) illustrates the alternative case where the mantle lithosphere of
continent #1 detaches and subducts towards continent #2. In the »¢ “erence frame of the
stable interior of continent #1, the velocity of the singularity i. Vp, with retreat of the
subduction towards continent #1. H~wever, in the reference frame of the stable interior of
continent #2 (obtained by adding -Vp to all velocity vectors), the velocity of the
singularity is zero (figure 73(c)). The two cases (figure 73(a) and 73(b,c)) are therefore
equivalent, except for the direction of convergence, and they will have opposite
asymmetries in crustal deformation style when viewed from the same reference frame

(Beaumont ¢t al., 1994a, 1994b).

Figure 73: Three possibilities for the deformation of crust which is driven by
detachment and subduct.on of underlying mantle lithosphere. (a) continent
#1 stationary; subduction of pro-mantle lithosphere from continent #2, at
velocity Vp. The singularity is stationary (Vs=0). (b) Continent #1 is
stationary, but the mantle lithosphere of continent #1 subducts; Vs=Vp.
(c) The equivalent case to (b), from the reference frame of the singularity;
Vs=0 and the pro-mantle lithosphere of continent #1 subducts. The
symmetry of case (a) is opposite to cases (b) and (c). The dark shaded

region represents a detachment layer between crust and mantle lithosphere.
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Summary of Conceptual Basis for Models

The conceptual models illustrated in figures 69 and 70 provide a template of
behavioural styles which give a framework for the real behaviour of continental
lithosphere at convergent zones. They cannot represent the true complexity of the
lithosphere, but may provide some insight into processes which exert a first-order control
on deformation. Evidence from studies of mantle dynarnics is not conclusive enough to
determine which of the model styles is physically more likely, and whether convergent
deformation will cause the mantle lithosphere to recycle into the asthenosphere by a
steady-state process, as suggested for the mixed and basally-driven models, or cycle
through a different series of behaviours with time, depending on transient thermal and
physical parameters (e.g. the convective instability behaviour explored by Houseman gt

al. (1981)).
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§ 6.5 Summary

The purpose of chapter six is to tie together a number of the threads investigated
throughout the thesis. The chapter started by extending the length-scale studies from
chapters four and five to large convergence times. By incorporating a one-dimensional
thermal routine into the thin-sheet code, it was shown that the Ampferer number (i.e.
crust-mantle coupling) is likely to change for the basally-driven model at large
convergence times. An approxirnate study of the increase in length-scale with
convergence was in agreement with the trend found in the natural data in chapter five.

The predicted increase in length-scales with convergence were used in a
comparison between the evolution of the largest-scale orogen on earth, the Tibetan
Plateau, and the side-driven, basally-driven, and mixed models. Although all three
models styles were admissible given the lack of knowledge of deformation history on the
Tibetan Plateau, the mixed model gave the best agreement with the data. It is suggested
that the change from a basally-driven limit to indenter mechanics with convergence may
explain the onset of strike-slip faulting on the Tibetan Plateau.

The recapitulation summarized the different physical settings likely for each of the
model styles investigated in chapters four and five. In particular, an effort was made to
predict possible mechanical styles based on the inherited properties of continental
lithosphere. Given that most collisional plate boundaries develop on previously active
oceanic subduction zones, it was concluded that the indenter or mixed styles of

Ceformation are most likely to be representative of collisional processes on Earth,



Chapter Seven

CONCLUSIONS

This thesis has investigated styles of crustal deformation using the premise that
interactions at convergent plate boundaries will fall tetween two main end-member styles
of behaviour. The fundamental assumption behind this approach is that the lithosphere
behaves as a partially coupled system. A simple viscous thin-sheet representation of the
crust has been developed to investigate these two end-members, using velocity boundary
conditions applied at the side and base of the model domain.

The side-driven (whole-lithosphere) end-member follows from the work of
previous modellers (e.g. England and McKenzie, 1982), and assumes that the crust and
mantle lithosphere deform together with no shear between them (figure 69, LI). The
basally-driven end-member (figure 69, CB) is equivalent to the models of Willett gt al.
(1993), but investigates deformation in the planform for cases which have relatively little
cross-sectional shear. One of the benefits of simplifying the basally-driven case to study
planform effects has been the development of a scaling number, the Ampferer number, to
describe the relative coupling between the crust and mantle lithosphere. Using a simple
scaling technique, a straightforward, and often analytical, analysis is possible, and can be
used to determine the controls on deformation length-scales for a basally-driven orogen.

The results of the scaling analysis, and the comparison between model predictions

and length-scale measurements from natural examples, are summarized overleaf.

300
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§ 7.1 Summary

1. Two contrasting end-member styles of deformation at a convergent/strike-slip
plate boundary are investigated using the simple thin-sheet model. The behaviour
of the lithosphere for the side-driven model can be characterized in terms of the
parameters Ar (the dimensionless Argand number), n (the average power-law
exponent for viscous creep in the lithosphere), and D (the along-strike length-
scale of the indenter). In contrast, the basally-driven model uses a new
dimensionless number (the Ampferer number, Am) to parameterize the effect of
the detaching mantle lithosphere on overlying crust. The deformation of the crust
for this case is characterized in terms of Am, Ar, and n.

2. Model crust which deforms according to the side-driven model assumptions has
deformation length-scales (at small convergence times) which depend on D, Ar,
and n. Deformation length-scales become unbounded as D—oo, The length-scale
for normally convergent plate boundaries is approximately four times as large as
the length-scale for strike-slip plate boundaries, given the same set of parameter
values. For oblique convergence, the ratio of normal and transcurrent deformation
length-scales is in general between 4 and 1, depending on the value for n, and the
obliquity of convergence.

3. Model crust which deforms according to the basally-driven model assumptions
has deformation length-scales (at small convergence times) which depend on Am,
Ar, and n. Deformation length-scales become unbounded as Am—0. The length-
scale for normally convergent plate boundaries is approximately twice the length-
scale for strike-slip plate boundaries, given the same set of parameter values. For
oblique convergence, the ratio of normal and transcurrent deformation length-
scales is in general between 2 and 1, depending on the value for the power-law

exponent, n, and the obliquity of convergence.
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A combination of the basally and side-driven cases (the 'mixed’ case) is used to
represent a case where mantle lithosphere detaches, and crust on one side of the
plate boundary is much stronger, so that there is a combination of basal forcing
and indenter mechanics. Length-scale dependences for this case are a combination
of the side-driven and basally-driven cases, which act as limiting bounds.
Growth of normal deformation length-scales with increasing convergence for the
basally-driven model is much more likely than for the side-driven model. For the
basally-driven model, the magnitude of the length-scale increase depends on the
value of Ar. For the side-driven model, lateral tectonic escape away from the
indenter prevents large increases in length-scales normal to the plate boundary.

A comparison at small convergence times of the length-scale predictions for the
side- and basally-driven models, with length-scales and aspect ratios for natural
plate boundary examples, is inconclusive in determining the more likely driving
mechanism for crustal deformation.

The increase in deformation length-scales of natural examples with convergence is
best explained in terms of the basally-driven model, with a decrease in the crust-
mantle coupling with convergence, as the crust thickens and the base of the crust
heats up.

Qualitative comparisons between the growth in deformation length-scales with
time predicted for the side-, basally-driven, and mixed models, with the
conjectured evolution of the Tibetan Plateau, suggests that a combination of basal
forcing and indenter mechanics may best explain the observed deformation.
Given the large uncertainties in determining length-scales, and the evolution of
length-scale in time for natural examples, it is concluded that the length-scale
analysis cannot emphatically determine whether mantle lithosphere thickens or
detaches and subducts during plate boundary interactions.
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§ 7.2 A Cautionary Note

Results from the thesis are dependent on the simplifying assumptions and
approximations that have been made. For instance, the simplifications concerning the
rheology of the lithosphere for both the side-driven and basally-driven models are
dubious. The end-member models assume that the rheology of the crust or lithosphere
can be represented, in an average sense, by a powez-law viscous sheet. This prevents the
representation of cross-sectional shear zones in the crust. The rheological properties of
the lithosphere make likely the existence of internal detachment zones along weak layers,
so that the whole-lithosphere models of England and McKenzie (1982) may be
unrealistic; however, the assumption of the basally-driven model, that the mantle
lithosphere subducts without significant ductile deformation, is also unlikely. The
consequences of detachment occurring at a different site to the Moho (e.g. Ord and
Hobbs, 1989; England and Houseman, 1988; Beaumont ¢t al., 1994a), or between
multiple layers, have not been investigated for the basally-driven model. The true
behaviour of the lithosphere will be a combination of some of the properties inherent in
the side-driven and basally-driven cases. Until observations can determine the true
behaviour of the lithosphere, firm conclusions should not be drawn from model results.

All of the models assume that plate boundary processes occur in a continuous
manner in time and space, with local isostatic compensation and continued convergence
or strike-slip motion. This is certainly an over-simplification of real plate boundary
interactions. Tectonic forcing may be episodic, and the type of compensation may change
as crust thickens. No attempt is made in this thesis to examine how the removal of
thickened mantle lithosphere by convective instability, as proposed by Houseman ¢t al.
(1981), will affect length-scales of deformation. Similarly, the change in symmetry of an
orogen during convergence, due to a change in the direction of mantle lithosphere

subduction (Willett and Beaumont, 1994), has not been investigated.- Post-convergent
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extension and its effect on the length-scale of convergent orogens has been neglected in
the analyses of chapters five and six.

The effect of erosion and deposition at the earth's surface has not been investigated
in the thesis. Such an investigation would be limited to large planform scales (>3x the
crustal thickness) by the thin-sheet model requirements, and so would only be able to
incorporate surface processes using diffusive mass transport. Diffusive surface processes
could be incorporated into the model fairly easily, however, as described in chapter two.

Results from the scale analysis suggest that there are some predictable differences
between deformation controlled by indenter (side-driven) mechanics, and by detachment
and subduction of mantle lithosphere. These differences were explored in some detail in
chapter four, and were extended to large convergence times in chapter six. In principle,
the different predictions could be used to distinguish between different styles of driving
mechanism for crustal deformation at convergent and strike-slip settings. The results from
the latter half of this thesis, however, indicate that the search for proxy indicators of
mantle lithosphere dynamics at plate boundaries must continue. These results suggest that
the continuation of simple length-scale analyses such as those conducted in this thesis
may have reached their useful limit. In particular, a major difficulty in interpreting scale
analysis results is the large choice of parameter values (for example, choices for n, the
power-law exponent, which is generally assumed to be between 3 and 10, but may
decrease for thickened crust). Most of the trends found in the length-scales for natural
examples can be satisfactorily explained by any of the models, given an appropriate
choice for the parameters Ar, Am, and n.

Problems also occurred in finding sufficient natural examples to test the model
predictions. This is particularly the case for large-scale normally convergent examples,
and strike-slip settings. Many candidate examples could not be used in the scale analysis,
because their evolution was too complex, or unknown. However, even if a larger number

of natural examples of convergent and strike-slip settings could be found, it is unlikely
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that the comparison to the simple model predictions would be any more conclusive.

8§ 7.3 Future Directions

Despite the limitations discussed above, the simple approach taken in this thesis has
allowed the investigation of some possible first-order controls on deformation style in
convergent settings. In order to advance ouar knowledge of crustal and mantle processes at
plate boundaries, I believe that more detailed studies of deep crustal and mantle
lithosphere structure are required. Imaging of the mantle lithosphere by seismic
tomography and other methods may provide some direct information on what happens to
the mantle in convergent zones. Better constraints on times of uplift and exhumation of
rocks, as well as timing of movement along fault and thrust structures; detailed gravity,
magnetic and heat-flow surveys; and many other useful field techniques for crustal
deformation may help to determine good proxy measures of mantle processes. Recent
advances in computational techniques have made possible much more detailed numerical
models, which can compute displacements and deformation for complex, layered
rheologies and coupled thermo-mechanical systems. Comparison of these models with
deep geophysical data and the metamorphic history of exhumed rocks may also provide
better constraints than simple length-scale analyses, to refine our concepts of how the

lithosphere deforms.
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Appendix A
The Effect of the Shear Traction on the Integrated Vertical Force Balance

The vertical force balance equation (4) contains a term in 9T;x/0x (= 9Txz/0x), and

this appendix investigates whetuer this term will have a significant effect on the integrated
vertical force balance. Integrating with respect to z gives:

z 2 2ot

p(z)=Po—ngdz’+f—-Zldz’+ —2dz

0 0 ox a
As stated in chapter 2, the model assumption is that where the elastic mantle lithosphere is
below yield, it acts as a thin elastic beam in compensating the load of the thickened crust
(Appendix B). At greater depths, below the elastic region, it is assumed that the mantle is
isolated from the shear traction by the elastic beam, and that this region is hydrostatic.

Therefore only the deviatoric stress gradients in the crust need to considered. The

integrated pressure over the lithosphere is:

PL= | (Po jpgdz’)dz+ I(Ia;"dz'+j "dz’)dz
lithosphere crust\0 9%

The shear stress T,x is zero at the top of the crust, and equal to the applied shear traction,
Tby,, at the base of the crust. Using the simplifying approximation that within the crust

the shear stress varies linearly between these two values, and that z* = z+L-w , gives:

Sz* 9t S z* aTB z* aTb S2
Lxz 477 dz* = 2f 12" |gzrdz* =T 2
{){) ox I’[ ( S)dZdz ax 3
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The vertically integrated term in 07x,/0x (neglecting gradients in crustal thickness, and
using eq. (9)) is therefore:

By 8% A(T-up)
h 3 ox

To determine whether this term is important, it is compared with the vertically
integrated term in d%t;,/dz. This term may be found from incompressibility and assuming a
linear viscous relationship in the crust, to be:

du

STus = 2S5

Normalizing the vertically integrated deviatoric stress terms as in section 3 gives:

z%=§ z*

Oyz o v KySo ug A(T —up)
dz’ dz* = mZ ...(Al
I j x T @A)
z*=0 0
z%=8 z*aT -
, 2u.Squq ou’
—2.dz’ dz¥ = 22— ..(A2
J' 0.!‘ oz’ h ox’ (A2)
A

The ratio of (A1)/(A2), assuming that the horizontal derivatives of @’ and ("~ ap,) are
of the same magnitude, is approximately:

KpSo
6uch

Provided the effective basal strength pp/h is much less than the effective crustal strength
Mc/So, the contribution of the basal traction term (A1) to the vertical force balance may be

negle -d.



308

Appendix B

The Isostatic Balance for a Thin-Sheet Crust Compensated by an Elastic

Mantle Lithosphere

The deflection w of an elastic beam due to loading with excess crustal thickness S is

given by:

o*w
D‘a';[+(pm —Pc)EW =P E(S— W) ..(B1)

(Turcotte and Schubert, 1982), where D is the flexural rigidity of the beam:

Et3

e

D=——=-
12(1-v*)

and E is Young's modulus (~ 70 GPa for the upper mantle), t, is the elastic thickness of

the beam (between 0 and 25km for the lithosphere in zones of collision), and v is

Poisson's ratio (~0.25). For the locally compensated case, (B1) reduces to:

ws= o5
m

Assuming a harmonic loading function S=S¢ cos(2nx/AN), where Ay is the

wavelength of the crustal thickness variations, the deflection w is given by:

_ (PsS)

4
= = Pe 1____?_\'_f___ =
v D (2% )4 ( Pm S)( A‘N4 + }.f4) WIS Wt

14—
PmE

An
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(Turcotte and Schubert, 1982), where Agis the flexural wavelength:

1

M = 2R[L)4
PmE

The perturbation, wg, with respect to the locally compensated deflection of the Moho,

wis, due to excess crustal thickness § is therefore:

W, = pcs( }"f4 )
£ pm \ Ay

The requirement for less than 5% error in the pressure gradient term in eq. (6) caused by

neglecting wr, is:

PmE anz

e =P M co0s
&,g_(b_a}i Pmd (xf4+ 7LN4)2
2 0ox

ie..

1

20p, 4
Ay 2 ‘,———"--1 A =187
N [ P ) f f

In general, for crustal density pc = 2800 kg m-3 and mantle density
Pm = 3300 kgm-?, the wavelength of thickening must therefore be greater than ~230te3/4
for less than 5% error in the pressure gradient term. For an elastic thickness te=10km
(D=6x102! Nm), this condition requires the wavelength of crustal thickening to be at least
230km (approx. 8 times the crustal thickness). For te=25 km (D=1x1023 Nm), AN must
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be at least 460 km. The results in chapter 3 show that when the mantle detachment length-
scale A is of order S (the initial crustal thickness), the basally-driven thin-sheet model
is a good approximation provided the deformation length-scale AN 2 4Sg (5% error) to
12S¢ (1% error), due to the requirement that shear stresses in the crust must be small.
Consequently, the assumption of local isostatic compensation imposes about the same
restriction as that of chapter 3 on the range of length-scales which may be investigated

using the model.
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Appendix C

Derivation of the Governing Equation for a Non-Linear Crustal Rheology

A non-linear viscous rheology is described by the constitutive relation:

T =pEVa™ &; .{(C1)

where, for a crustal thin-sheet, B=B, is the averaged temperature dependent parameter for
the crust (England and McKenzie, 1982), and the vertically averaged second invariant of

the strain-rate tensor E is:

1

= 1= - - - 2
E= (5(8“2 +&,2+ euz) + exyz)
Substituting the expression (C1) into the modified version of the force balance (eq.
(7)), and assuming that the thin basal layer through which traction is transmitted also
obeys a non-linear viscous rheology with B=By, and the same power-law exponent, the

two dimensional normalized form for the ith velocity component (i, j)= (x, 2)) is:

1

1~ 1
o | =--10u| 9 .=-Youw O 08’2 -~
2____ SIEIn 3 i IEIn e WSS = hdadion =/’ .\n
ax;[ ax3J+ o ts ( o + pw, D Ar e + Am (T} — upy;)

..(C2)

where repeated indices imply summation, the normalized strain-rate invariant is:
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and:

1

1, 1
Ar = pcg¢SO7"m ?_"_x_n_ n Am= Bbz'm2 (h‘l_)n !
2Bcu0 Ug BchSO h

The non-linear case can therefore be described in terms of four dimensionless

numbers: Ar, Am, t" and power-law exponent n. The effect of using a power-law viscous

rheology in the model is described in chapters 2 and 3.
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Appendix D
The Finite Element Method

The linear equation (13) may be separated into a partial differential equation in u on

the right hand side, and the remainder, as follows:

o .08, 9 ou 00 - 0s"2
9oy, @ ey AmT = Ar e — Amu (D1
Zax;(S 8x3)+ 3(S o, +S aXi,) miu; = Ar v Upi (D1)

The solution to this equation P(u)=R over a domain Q, may be approximated by
discretizing all quantities within the domain into a finite number of nodes and elements
(figure D1(a)). The governing equation is solved for the crustal velocities at the nodes,
subject to the specified velocity conditions along the boundaries of the domain.

The equation to be solved (eq. D1) is reduced to a series of finite equations at the
nodes, using the method of weighted residuals:

Pw=R ——  [P@).N,dQ=JRN,dQ ..(D2)
Q Q

where Np are the weighting functions, and the crustal velocity field, u(x,y), is replaced
by the trial solution, @, at the nodes. For the Galerkin finite element method, the
weighting functions, Np, are the same as the domain interpolation functions (also called

basis functions) for the trial solution, so that:

i= inup ..(D3)
p=l

where n is the maximum number of nodal parameters (number of nodes in the domain

multiplied by the number of degrees of freedom of the solution), and up are the system
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nodal parameters. A velocity at a given point is thus described by interpolation between
the nodal parameters at neighbouring nodes. The choice of interpolation function for a
second order partial differential equation such as eq. (13) is the bilinear hat function
(figure D1(b)).

Substituting the expression for the trial solution (eq. D3) into the weighted sum of

the residuals (eq. D2), gives:
IP(ZNI,uP).Nq dQ = jR.quQ
Q p Q

The differential operator P is linear, so that the order of summation and integration may

be reversed to give:
Yu, [P(N,).N,dQ = [R.N, dQ
p Q Q

This equation is formulated in terms of the global coordinates over the domain, and p and

q refer to global node numbers. The global system to be solved can also be written as:

Zquup =F,
P

..(D4)

where K, = ‘jl P(N,).N,dQ; F;= ‘IlR. N, dQ

Kpq is the global system stiffness matrix.

The usefulness of the finite element technique is derived from assembling the global

system of equations (D4) from the equivalent equations at the element sub-domain level
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(i.. over the local domain). The stiffness matrix from equation (D4) may be written:

total number
of elements

K= I Kj
e=1

where K§ = [P(N;)N;dxdy
(-]

The summation is over the total number of elements in the domain. K‘fJ is the local

stiffness matrix, and i and j represent the local nodal parameter numbering.

By a suitable transformation of coordinate systems, the evaluation of the stiffness
matrix at the local (element) level using numerical integration techniques becomes routine.
An appropriate choice of isoparametric mapping (x,y)—(r,s) allows the element to be be
transformed to a unit square whose centre is at (1, s)= (0,0) (figure D1(c)). Then the local

(element) stiffness matrix is:

K§ = [P/(N})N}Jdrds
ef

where the dashes represent the mapping from (x,y) to (r,s), and J is the Jacobian of the
transformation. The operator P’ is related to P by the chain rule of differentiation. The
integrals are evaluated by utilizing Gaussian quadrature (i.e. by summing the weighted
values at the Gauss points). The interpolation functions and their derivatives may be pre-
computed for the reference element, 50 that the problem of evaluating the integrals is
reduced to the detesmination of the Jacobian of the transformation for each element,
which may be coraputed using the shape functions and the cartesian values of the local
coordinates.

The element stiffness matrices are assembled into a global matrix, Kpq, and the

right-hand side is similarly assembled. The Dirichlet boundary conditions for the velocity
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field (i.e. prescribed velocities on the boundaries) at a given nodal point are inserted by
the addition of a large number to the diagonal of the stiffness matrix, and adding the same
large number multiplied by the prescribed velocity to the left hand side of the equation.
Neumann boundary conditions (i.e. prescribing the normal components of the derivative
of a velocity to be zero on the domain boundary, also called Natural boundary conditions)
are satisfied automatically in the calculation. The stiffness matrix is a symmetric, positive
definite, banded matrix, and these properties reduce the number of equations that need to
be solved. The solution to the global equation (D4) is found using straightforward matrix

solver routines.

Figure D1: (a) A schematic illustration of the discretization of a domain, Q(x,y), into
nodes and elements. (b) Nlustration of the interpolation function for
quadrilateral elements. The interpolation function for nodal parameter p (=
degree of freedom) is interpolated linearly to zero at all adjacent nodes. (c)
An element e may be mapped from (x,y) to (r,s) using a bilinear
transformation function. The shape functions and their derivatives in (r,s)
space are the same for each transformed element. The shape functions are
also used as interpolation functions, to interpolate positions and velocities

for the nodal parameters.
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(b)

Figure D1(a, b)
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» x

4
x(r,s) = ZNf (r,8)x;

i=1
4
y(,s)= Z N§{(r,8)y;
i=1
where:
Ni = %(1+ r)(1+s)
N5 = %(l —1)(1+5)
N3 = l(1- r)(1-5s)
4
Ni = %(l+r)(1-—s)
Nf are the shape functions
and:

4
i° = ZNf(r, s)y;

i=1

4
Ve = ZNf(r, s)V;

i=1

Ny are the bilinear interpolation functions

Figure D1(c)
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Appendix E

Derivation of Natural Length-Scales of Deformation

Neglecting crustal gradient terms in dS/dx, the linear viscous eq. (12) in the text
may be written as:
d 9 ou, A ofj

28’ (aﬁ§)+S' (== +
ox; 0Xj oxj oxj ox{

)= Am (T — up;) ...(E1)

where ((i, j)=(x, 2)). In the case of normal convergence with no variation along strike, the

only non-zero component of the strain-rate tensor £; is du’/ox’, and assuming that §'~1,

(E1) becomes:

2,
4—3%--—Amii’=—Amu{n ...(E2)
X

By Fourier Transforms, the solution to this equation is:

U’ = ———exXp

., _Am (_mn‘
2 2

Ix’l)* U, «..(E3)

where * indicates that the forcing term u’p(x) is convolved with a term containing the
natural response in the crust. For normal convergence with infinitely extending boundary
conditions along strike, this means that the crustal response normal to the boundary, as
measured by the normal velocity component G’(x) and also its derivative €;,, dies away
with a normalized length-scale given by 2/+/Am , and that the full-width normalized
length-scale for the orogen is therefore 4/+/Am .

In the case of transverse motion that does not vary along strike, the only non-zero
term in strain-rate tensor &j; is (1/2)9v’/dx’, and eq. (E1) becomes:
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-;-)}-’---Vi’-—Am'\7’=*~Amv;n ....(E4)
ox’

which, by a similar process, yields a normalized natural full-width response length-scale
of 2/+/Am for a model with transcurrent boundary conditions. For a linear vi cous
model, the ratio of natural length-scales for normal:transcurrent deformation is therefore 2
provided the Ampferer number is not too large. If ANB < Am (Am > 1) the problem is
forced by the base, so the ratio tends to 1. For very small values of the Ampferer
number, the solution becomes dominated by the side boundary conditions. In this case,

the deformation has no natural length-scale.

The non-linear two dimensional equivalent to (E1) is:

1, on 1
9 [ =51 9] 0 [=-1du ou 1
2 [ E'n e § U m _J_+ 1 =Am =r_ .t . ES
S a"f[ aﬁ}'s 3x§(E (ax; axj)) (@ -u)n . (BS)

where crustal gradients have been neglected. For normal convergence, the strain-rate

invariant E'may be replaced by du’/dx’, and (ES) reduces to:

1

d (0t \n , 1
S = = U —up)n ...(E6
4s ax'(ax’) Am(u’ - uf,) (E6)

To find the natural response length-scale for this case, note that the natural length-
scale for the linear problem could also have been found by solving the homogeneous
differential equation (i.e. neglecting the forcing velocity u’y). Assuming that this can also

be done for n>1, and again that S’~1, the equation:
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is solved by assuming an exponential function for the natural response u’pagyral, Which

has solution:

n

[ exp(-—(-l?-i‘:‘-@-)"+l Ix’1)

The full-width normalized length-scale for normal deformation, as measured by the
normal velccity component T'(x) and its derivative €5, , is therefore given by:
n

4 Yot
}14 =2 ——
N8 (nAm]

For transverse motion along strike, (E5) equivalently reduces to:

, 0 (10v )\ ST
28 5}7(56#) =Am (V' - v/ )a -.(ET)

Solving for the natural response by neglecting v’y gives:

n

“A’“)"—‘“—lux'l)
4

Vs =exP(-2

and the full-width transcurrent length-scale is therefore:
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n

4 Yol
Mg =| ——
n(m)

The ratio of length-scales for normal: transcurrent deformation for n>1 is thus seen
to be the same as the linear case, i.e. o0 = 2. It should be noted that these natural solutions
are only valid for ANB, ATB >> Am. As n — oo, the second derivative in the equations
drops out, deformation in the crust operates on the forcing length-scale Ay, and the

normal: transcurrent ratio tends to 1.
Normal Deformation Length-scale for t’ > 0

For normalized convergence times t’ > 0, the effect of gravity on crustal thickness

contrasts may nc longer be neglected. The equation (12) for normally incident

convergence is:
o’w o8 oW o8’
45’ +4 =2ArS'— +Am(u —u, ...(E8
ax;Z ox’ ox’ ox’ m (u um) ( )

An approximate analytical solution to this equation may still be found, for the case where

S’ is still relatively close to 1. The coniinuity equation (14):

3 __as'®)

ot’ ox’
reduces to:
oS ot
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provided 9S'/0x'’ is still << dT’/ox’, which will be true for S’ still close to 1.

Substituting this approximation into an expression for 9S’/0x:

dt’

ay } P i |
'ax ¢ ox"

0

allows the expression (E8) to be written as:

a2—r t a2—l
4—8-—7 = —2A1'J—Tdt + Amu ....(E9)

where the term in dS’/0x” on the left hand side of (E8) and the forcing velocity term have

been neglected, and S’~1. Using the further approximation that:

t aZ-ﬁf it = aZ ’

{) ax12 ox 2 t

gives:
ot _( Am -
x| 4+2Art

with solution:

giving a full-width length-scale of:



, 4 { Art’ , Art’
hmszm 1+ 3 =KNB|;'=0 1+-—Z—-
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for the normal velocity component U’(x) and its derivative €;,, where hﬁall,=0 is the

normal deformation length-scale at t'=0.

For a non-linear rheology, the equivalent expression to (E9) is:

axIZ axrz

1
T 1
f‘-(—a“,)" o +241] 9T 4y = Amis
n\ox °

which cannot be solved easily analytically.

..(E10)
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Appendix F
Examples Used in Length-Scale Analyses

The Albany-Fraser Orogen

The amaigamation of western Australian cratons in the Proterozoic initiated the
Albany-Fraser orogeny along the southeast margin of western Australia (Myers, 1990).
High-grade metamorphism indicates that significant crustal thickening and exhumation
accompanied the collision. An along-strike dimension D>1500 km is a minimum estimate
because of subsequent overprinting by the Paterson Orogeny (Myers, 1990). The across-
strike length-scale AN is estimated to be 250450 km.

The Alleghanian Orogen

During the Permian (290-250 Ma), the collision of Gondwana and Laurentia along
the eastern edge of proto-North America produced a major period of Appalachian
mountain building, the Alleghanian orogeny. This event, and the contemporaneous
Variscan orogeny in Europe (Ziegler, 1988), formed an internal suture for the Pangaean
supercontinent.

It is believed that the Alleghanian orogeny involved significant crustal thickening
and shortening, although the exact amounts are not well constrained (Ziegler, 1988). I
use a convergence estimate of 4003200 km. The collisional boundary with Africa
extended over 16002300 km, and terminated in complicated strike-slip deformation at
either end (Lefort, 1989). The northern strike-slip region connected Alleghanian
deformation to the adjoining Variscan orogen (Ziegler, 1988). The width of Alleghanian
deformation, estimated from deformation in eastern North America and west Africa

(LeFort, 1989), is approximately 9501350 km.



326

The European Alpine System

The contraction of the Paleo-Tethys ocean during the late Permian and early
Triassic resulted in a series of collisions between island arcs, and subsequently
continental masses, comprising the European Alpine system (the Carpathanians, the
Apennines, the Hellenides, and the Southern, Western and Eastern %+ . The timing
and inter-relations between the formation of these mountain chains 1> complex. The
Carpathanians, Apennines and Hellenides formed in a retreating subduction environment,
and collision ceased shortly after all oceanic lithosphere was consumed (Royden, 1993a).
Therefore, only the Eastern, Western and Southern Alps, which formed as a result of the
terminal continent-continent collision, are used in the length-scale analysis.

I take the along-strike length D to be 6001100 km, from the western termination
of the Alps near the Apennines, to the Pannonian Basin in the east. The region has a
moderate curvature, which is neglected in the measurement of D. An across-strike
deformation length-scale of 15050 km can be estimated from the current position of
deformation fronts (Royden, 1993a). Structural data indicate combined post-collisional
shortening in the Southern and Eastern Alps of several hundred kilometres (Royden,
1993a). I assume 200250 km of shortening. The maximum present-day crastal thickness
is ~50 km (Triimpy, 1980), and therefore is likely to have been > 50 km at the peak of
orogenic activity (20-30 Ma).

The Anatolian Fault Systems

The continued convergence betw=en Arabia and Eurasia has caused the lateral
motion of Turkey westwards, away from areas of crustal thickening, along the Northern
and Eastern Anatolian strike-slip faults (Jackson and McKenzie, 1984). The Northern
Anatolian Fault Zone has a length of 1000£100 km, and deformation appears to be
confined to a narrow zone, no more than 30320 km wide, with surface expression of the

fault over a few kilometres (Jackson and McKenzie, 1984). The Eastern Anatolian Fault
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Zone has an along-strike length of 500150 km. There is a small component of
compression along most of the Eastern Anatolian Fault Zone (Kiratzi, 1993).
Transcurrent deformation also seems to be restricted to a narrow zone (30420 km), and
there is a suggestion of strain partitioning due to the occurrence of thrust faulting over a

slightly wider (50+20 km) area (Kiratzi, 1993).

The (Neogene) Andes

The Andes are a present-day example of an oceanic-continental plate boundary, with
the subduction of the Nazca plate beneath South America causing net compression of
crust between the trench and the South American craton. The eastward movement of the
trench with respect to the stable interior is occurring at somewhere between 2-10 mm/yr
(Sudrez et al., 1983). The topography of the Andes is spectacular, with significant areas
at over 3km in elevation. The variation in topographic features and relief along-strike can
be roughly correlated with the dip of the subducting slab (Jordan gt al., 1983). The
central Bolivian Andes extend to a distance of about 800 km “om the fore-arc region, and
form a plateau of moderate relief. To either side of the Bolivian Andes, the slab dips less
steeply, and the mountains are more rugged, but extend only ~400 km from the fore-arc
region.

The convergence velocity of the trench, vy, relative to South America, does not vary
significantly in magnitude or direction along the plate boundary (Dewey and Lamb,
1992). 1 therefore take the along-strike length-scale D from lat. 5°S to 45°S (Jordan gt al.,
1983), which roughly corresponds to the along-strike extent of the Nazca plate, and is a
distance of 45001500 km. The curvature of the orogen is accounted for in estimates of D
and Ano. The present Andean deformation is thought to have been created over the past

20 Ma, with net shortening estimates ranging from 150 to 350 km (Isacks. 1988).
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The Banda Arc

At the southern edge of the South China Sea, an arcuate trench system stretches
from the Andaman Sea to New Guinea. The eastern limit of the trench system, the Banda
Arc, is thought to have ceased oceanic subduction very recently (within the last 3 Ma
according to Johnston and Bowin, 1981), and is the site of an ongoing collision between
the Banda arc and the northern Australian margin. The along-strike extent of collision is
bounded to the west by the transition from Australian continental to oceanic crust, and to
the east by the New Guinea trench/arc system, giving D=1500+200 km.

Deformation associated with the arc-continent collision has moved progressively
from continental margin sediments, into the volcanic island arc (Johnston and Bowin,
1981). Total convergence is estimated at 150150 km, and the across-strike deformation
length-scale is approximately the same (150+50 km). The small time interval since the
continental margin has entered the subduction zone implies that subdt.tion of oceanic
lithosphere may still be occurring underneath Timor ( Johnston and Bowin, 1981).
According to Karig et al. (1987), in many ways the deformation of the Banda arc still
resembles a normal subducting-arc system, because the transition to arc-continent
collision is so recent.

Focal mechanisms suggest that a back-arc basin which formed before the
collision, the Banda Basin, is presently being extruding laterally in response to the north-
south convergence across the arc (McCaffrey and Abers, 1991).

The Capricorn Orogen

The assembly of Gondwana in the Proterozoic involved several suturing
collisions between cratonic masses in southwestern Australia (Unrug, 1992). Of these,
the Capricorn orogen represents the best-preserved of the Proterozoic orogenic belts
(Myers, 1990). A complete section is exposed along the western part of the orogen and

its margins. Strike-slip faulting along the western part of the orogen may indicate an
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oblique component to the collision, or late-stage tectonic escape (Tyler and Thome,
1990).

A minimum estimate for the along-strike length-scale D is constrained by the
dimensions of the Pilbara and Yilgarin cratons, and later overprinting by the Paterson
Orogeny, to be > 1100 km. The across-strike deformation length-scale Ano = 28050
km (Myers, 1990). The amount of convergence is unknown, but from the exposed
metamorphic grades and inferred uplift histories, it was probably signifi-ant.

The Chaman Fault Zone (The Sulaiman Fold Belt)

The convergence between India and Eurasia has created a system of transform
faults on either side of the Indian continent. The dextral fault system to the west, which
includes the active Chaman fault, is deformed over a width of 120480 km (Lawrence et
al., 1981). The transform boundary is 8001100 km long, from the west Himalayan
syntaxis to the Makran fold belt.

A jog in the plate boundary near the mid-point of the transform boundary is
marked by the Zhob convergent zone. This 220+50 km-long zone has an across-strike
width of 220150 km (Lawrence gt al., 1981). Displacement is on the order of several 10s
of kms, with large rotations occurring in the Pliocene and early Pleistocene, analogous to
the rotations of the Transverse Ranges, California. At the southern end of the Chaman
Fault Zone, the plate boundary changes to the slightly oblique advancing subduction of
oceanic crust (Lawrence gt al., 1981), in the Makran Convergent Zone. The Makran fold
belt extends from the Chaman Transform to the Persian Gulf, a distance of 900100 km.
Associated deformation extends inland for 250450 km.

The Damaran Orogen
Continental collision between the Congo and Kalahari cratons in southern Africa

occurred in the Late Proterozoic (Kukla and Stanistreet, 1991). Because the cratons
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remained sutured together after collision, it is possible to recontruct the dimensions of the
orogen.

The lateral extent of the Damaran orogen is constrained by the dimensions of the
Kalahari craton, to give D = 8004200 km. Across-strike deformation can be
reconstructed using sediment sequences deposited in the Khomas trough, and positions
of imbricate thrusting (Kukla and Stanistreet, 1991). These estimates give Ano = 120£50
km. The total amount of convergence is un‘mown, but was probably around 100 km

(Kukla and Stanistreet, 1991).

The Great Slave Lake shear zone

The Great Slave Lake shear zone (GSLsz) is a 25 km-wide dextral zone of
mylonites (Reinhardt, 1969; Hanmer and Lucas, 1985), which is believed to be a major,
1300 km long continental transform, bounding the Early Proterozoic collision between
the Slave and Rae Provinces (the Thelon orogeny) (Hoffman, 1987). The relationship
between the major topographic expression of the Thelon orogeny (the Queen Maud
Uplift) and the GSLsz, is conjectured to be similar to the present-day association between
the Tibetan Plateau and the bounding Chaman and Saigang transform faults (Hoffman,
1987).

Deflection of magnetic anomalies across the shear zone suggest that there has been
at least 300-700 km of right-lateral offset. The across-strike width of the transcurrent
deformation is likely to be under-estimated by the width of the mapped mylonite shear
zone. I use the apparently continuous offsets of anomalies from the published magnetic
anomaly map of North America (Geol. Surv. Canada), and from the offset of the Taltson
and Thelon magmatic arcs, to estimate the approximate width of shearing, giving Ao =

8040 km.
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The Kibaran Belt

The Kibaran belt marks the contact between the Congo and Tanzanian cratons,
and was deformed in the Middle Proterozoic. The length of the Belt is 1500+300 km, and
the deformation attains a width of 280+50 km (Pohl, 1987). The amounts of crustal

convergence and thickening are not known.

The Levant Fault

The Levant Fault, also known as the Dead Sea Transform, is a left-lateral
transform fault that links the extensional Red Sea rift zone to the Zagros mountains, a
distance of 1000£100 km (Garfunkel et al., 1981). Small variations in the angle of the
fault have caused areas of extension (pull-apart basins, e.g. the Dead Sea) and
compression (e.g. the Lebanon Mountains) to develop.

The formation of the Levant transform in the Cenozoic accompanied the breakup
of the African-Arabian continent (Garfunkel, 1981). Since the onset of faulting, a
minumum estimate of 105 km of sinistral displacement has occurred over a narrow zone,
estimated to be no more than 30 km wide, and often marked at the surface by only one
major fault strand (Garfunkel, 1981). The 150+30 km-long compressive bend near the
mid-section of the Levant shear zone has caused the strike-slip faulting t» splay out over a
width of 50%30 km, with compressive deformation in the Lebanon and Anti-Lebanon
mountains extending a little further (80230 km).

The Najd Shear Zone

The Najd fault system developed in the Late Precambrian in Arabia and Egypt.
The origin of the Najd shear zone as a continental transform system has been variously
ascribed to collisional tectonics during a major Late Precambrian continent-continent
collision, or to extension tectonics and rifting at the north-western end of the shear zone

(Stern, 1985). The complex system of left-lateral strike-slip faults and ductile shear zones
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has an exposed length of 1100 km, from the eastern margin of the Red Sea to Yemen
(Stern, 1985). Alignments with faults on the South Yemen coast and extrapolations using

satellite imagery (Sultan gt al., 1988) suggest a total length of over 2000 km (Moore,
1979).

The New Quebec Orogen

Dextral oblique collision between the Superior and Rae provinces occurred in the
Early Protrozoic (ca. 1850 Ma). The along-strike extent of the ensuing orogeny is over
800 km, constrained at the southern end by deformation from the Mid-Proterozoic
Grenvillian orogeny, and at the northern end by the termination of the Superior Province
(Van Kranendonk gt al., 1993).

The across-strike extent of the New Quebec orogen is 100+30 km. Amounts of
convergence and crustal thickening are not well constrained, but were probably small,
based on maximum pressure estimates from exhumed rocks and the limited width of the

orogen.

The New Zealand Southern Alps

The South Island of New Zealand is the site of an oblique continent-continent
collision between the Pacific and Australian plates. Convergent shortening of 50+35 km
(Walcott, 1984) has been accommodated in the modern Southern Alps since the mid-
Miocene (10 Ma). The surface trace of collision is marked by the Alpine Fault, which has
undergone both thrusting and dextral strike-slip motion. Along-strike displacements of ~
480km since the early Miocene (23 Ma) have occurred along the Alpine Fault (Kamp,
1986). The plate convergence vector varies along-strike due to the proximity of the pole
of rotation. Convergence can be resolved into parallel and normal components of 0.7 and
3.6 cm/yr, respectively, in the central portion of the collisional boundary (DeMets gt al.,
1990).
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At the northern end “f '%c Southern Alps, the collision zone changes to
subduction of the Pacific plate along the Hikurangi subduction zone. The southern extent
of collision is bounded by the Puysegur trench, an ocean-continent convergent boundary.
These limits give an estimate for D of 500+100 km. Across-strike normal and
transcurrent deformation occur over length-scales of less than 100 km, with significant
displacement along the Alpine Fault (Walcott, 1978). Strain does not appear to be

partitioned over most of the collision boundary (Braun and Beaumont, submitted).

Papua and Western New Guinea

The Melanesian Arc has been colliding with the Australian continental margin
since the Miocene (15 Ma), forming a zone of oblique collision on the island of New
Guinea (Smith, 1990). The convergence is taken up in a complex faulted region, with
compressional and strike-slip features which may be partitioned (McCaffrey and Abers,
1991). The ~45° obliquity of convergence is caused by the south-east motion of the
Pacific plate relative to the northwards moving Australian plate.

The lateral extent of collision can be estimated from the dimensions of the
Melanesian Arc, giving D = 1500+200 km. Focal mechanisms suggest that across-strike
normal deformation and thickening is distributed over the New Guinea Highlands, a
distance of 200150 km, whereas strike-slip deformation may be confined to a dual
system of faults on either side of the Highlands, with much smaller length-scales of
50130 km (McCaffrey and Abers, 1991). The total amount of shortening and
convergence since the initaition of collision across New Guinea is estimated to be 6020
km (Abers and Lyon-Caen, 1990), with a maximum crustal thickness of 55+10 km
(Smith, 1990).
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The Paterson Orogen

The Paterson orogen resulted from the collision and accretion of a suspect terrane
(possibly part of the central Australian craton) with Western Australia in the Middle
Proterozoic. The orogen is dominated by thrusts, accompanied by sinistral faults which
may indicate an oblique component of collision (Myers, 1990). The amount of crustal
thickening is uncertain, but probably significant.

The along-strike dimension of the belt is 1300+300 km, the eastern extent of the
western Australian craton. The width of normal deformation, estimated from the location
of thrust belts, is 250100 km (Myers, 1990).

The Patos-Seridé System

During the amalgamation of the Gondwana supercontinent in the NeoProterozoic
(Unrug, 1992), collision between Brazil and Africa initiated the Brasiliano-pan-African
orogeny. A complex system involving strain transfer at a continental scale developed in
northeastern Brazil (Corsini gt al., 1991). This system includes east-west trending dextral
ductile strike-slip faults (the Patos shear zone), linked with a northeast-trending
transpressional fold belt (the Serid6 belt) in the east.

The Patos shear zone is up to 30 km wide and several hundred kms long, giving
D =400£100 km and Ao = 30 = 5 km. Using the width of the ductile shear zone as an
estimate for across-strike deformation gives a minimum length-scale only. The shear zone
merges into the slightly tranpressive Serid6 belt, which has an along-strike dimension D
> 300 km, and an across-strike width of 100 km, which is again a minimum estimate.
Strain does not appear to be partitioned in the Seridé belt, and strike-slip movement is
accommodated along with compression, in a flower-structure system of faults (Corsini gt
al., 1991).
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The Pyrenees

The Pyrenees form a part of the Alpine collision belt, where the Iberian and
European plates collided between the Late Cretaceous and Early Miocene (Mufioz, 1992).
Palinspastic restorations suggest shortening amounts of 125425 km for the upper crust.
The ECORS seismic profile across the central Pyrenees, when combined with balanced
cross-sections, indicates a mid-crustal detachment layer at ~15 km depth, with the lower
crust subducting along with the mantle lithosphere (Mufioz, 1992).

The across-strike dimension of the thickening is 120420 km. D is constrained by
the dimensions of the Iberian plate to be 4001100 km. Convergence was predominantly
normal to the plate boundary (Decourt gt al., 1986). Maximum crustal thickness in the
central Pyrenees is constrained by the ECORS profile to be ~ 50410 km.

The San Andreas Fault

The San Andreas Fault is the major surface expression of the transform fault
boundary between the Pacific and North American plates. The present strike-slip
boundary is 12001100 km long (Wallace, 1990), and formed as a result of the northward
migration of the Mendocino Triple Junction in the last 25-30 Ma (Furlong, 1993). For
most of its length, the plate boundary is predominantly strike-slip, with a small
component of compression which has caused thrust faulting and folding over a width of
about 200150 km (Stein and Yeats, 1989). A bend near the southern end of California is
responsible for an area of increased convergence, corresponding to the position of the
Transverse Ranges (Bird and Piper, 1980).

Paleomagnetic data indicates that Cenozoic transcurrent deformation extends
between 100-200 km from the plate boundary (Sonder gt al., 1986; Wallace, 1990). 1
take the length-scale of transcurrent deformation to be 100+50 km. Note that these long-
term estimates constrast with more recent geodetic estimates of deformation (summarized

by Furlong and Hugo, 1989), which suggest that transcurrent deformation is restricted to
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within 30 km of the plate boundary.

Taiwan

Taiwan is located at the convergent plate boundary between an island arc and the
Chinese continental margin. To the north of the island, the Philippine sea plate is
subducting beneath the continental Eurasian plate at the Ryukyu trench. To the south, the
South China Sea is subducting at the Manila Trench. Convergence is oblique, with
approximately equal components of motion normal and parallel to the plate boundary.
Onset of the collision varies along-strike from 4 Ma in northern Taiwan, to Recent in
southernmost Taiwan (Suppe, 1987), with convergence estimates of 300150 km to 0 km
from north to south, and crustal thickness increasing from 30 km (Chinese continental
margin) to 40 km (Lu and Malavieille, 1994). Strike-slip movement is estimated to be 360
km over the last 4 Ma.

The along-strike extent of collision is approximately 200150 km, constrained by
the position of the Ryukyu amd Manila trenches. Thrusting and uplift is presenily
occurring over a length-scale of 100350 km (Suppe, 1987). Strain partitioning is
conjectured from the high density of strike-slip faults near the centre of the island (Lu and
Malavieille, 1994), with an across-strike length-scale for transcurrent motion of

approximately 50+20 km.

The Thelon Orogen

During the Early Proterozoic amalgamation of Laurentia, an oblique collision
between the Rae and Slave provinces (Hoffman, 1989) created the Thelon orogeny with
accompanying uplift of a hinterland plateau (the Queen Maud uplift). Hoffman (1987)
estimated the total along-strike extent of the dextral collision at ~1.9 Ga to be 3200 km;
however, the deformation may only be traced continuously from the Great Slave Shear

Zone in the south, to the end of the Slave craton in the north, giving a conservative
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minimum strike length D>1500 km. The Great Slave Shear Zone marks the southern end
of the Slave-Rae collision, and is thought to have experienced 600-700 km of dextral
offset during the collision. Post-collisional movement of approximately 100 km occurred
along the brittle McDonald and Bathurst Fault zones (Hoffman, 1989). There is no strong
evidence for strain partitioning during the Thelon orogeny. The width of deformation is
approximately 300+100 km. Crustal thickening amounts must have been significant,
creating the Queen Maud Uplift which is thought to be a small-scale analogue to the
Tibetan Plateau. High exhumation rates and large sediment transport distances indicate
that the Thelon orogen experienced considerable erosion (Hoffman and Grotzinger,
1993).

The Tibetan Plateau

The ongoing continental collision between India and Eurasia is responsible for the
formation: of the high Tibetan Plateau, which has average elevations over 4000 m and is
bordered to the south by the Himalayan mountain range. Since the onset of continental
convergence in the Eocene between 60 and 40 Ma, India is estimated to have moved
20001500 km relative to the Eurasian craton, in a direction approximately normal to the
plate boundary. The Indus-Tsangpo suture, located ~ 300 km from the southern limit of
deformation, is believed to mark the surficial contact between Indian and Eurasian crust.

The lateral extent of collision is somewhat more than the distance between the
syntaxes, 3000+500 km. The across-strike extent of deformation as measured by crustal
thickening and recent estimates of uplift (Chen gt al., 1991), is 22004500 km, excluding
the Tarim Basin, which is assumed to act as a rigid 'spacer’. The current stress regime
over the southern part of the Plateau is extensional (Burchfiel and Royden, 1985; Mercier

¢t al., 1987).
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The Torngat Orogen

Sinistral oblique collision between the Nain and Rae provinces occurred in what is
now eastern Labrador shortly before ihe New Quebec orogeny to the west, at ca. 1860
Ma (Van Kranendonk et al., 1993). Deformation may have occurred in more than one
stage, because the sii istral shearing seems to have taken place in an already thickened
crust, along the Abloviak shear zone at 1845 Ma (Mengel and Rivers, 1991).

The along-strike extent of the orogen is determined by the lateral extent of the
Nain Province at the northern end, and overprinting by Grenvillian deformation at the
southern end, giving D>600 km. Deformation occurs over across-strike distance of
100230 km. Peak pressures of 10 kbar in metamorphosed rocks now at the surface
indicate that the crust was at least 35 km thick; total amounts of crustal thickening and

convergence were probably small.

The Trans-Hudson Orogen

The Trans-Hudson orogen, in its broadest definition, sutured together the cratons
to form Laurentia in the Early Proterozoic (1.9-1.85 Ga) (Hoffman, 1989). The main
exposed segment is in Manitoba, and occurred along an oblique sinistral collision
between the Hearne-Wyoming and Superior cratons. From the southern extension, which
is overprinted by the Central Plains orogen, to the dog-leg bend, a minimum estimate for
D is 1500 km. The width of deformation is 400+100 km. The amount of crustal

thickening and convergence is unknown, but thought to be significant.

The Urals

The deeply eroded Ural mountains are a relict of the continental collision between
the Siberian plate and Laurussia in the late Permian (approximately 245 Ma (Ziegler,
1993)). The Ural tectonic zone stretches for 25004500 km from north of the Caspian
Sea, to the Barents Sea (Dymkin and Puchkov, 1984). The deformed zone is 300100
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km wide (Dymkin and Puchkov, 1984) and includes a tectonic melange, or suture, calied
the Main Uralian Deep Fault (MUDF), which dips steeply to the east. A belt of Paleozoic
island-arc and ophiolitic assemblages in the Eastern Urals were formed on an active
subduction boundary.

The amount of post-collisional convergence is unknown. It was probably
significant. Present crustal thicknesses in the Urals increase from a regional value of 40
km to over 50 km (Ryzhiy ¢t al., 1992). High pressure rocks, including eclogite facies,
are exhumed near the MUDF, and high-temperature amphibolite facies assemblages occur
to the east. Later stages of the collision may have involved a significant dextral

component of motion (Zonenshain gt al., 1990).

The Variscan Orogen

The Variscan orogen resulted from the formation of the supercontinent Pangaea in
the Carboniferous and Permian (365-325 Ma), which produced dextral oblique collision
between Gondwana and Fennoscandia/Baltica. The Variscan fold belt had an arcuate
shape, with major oroclinal bending and wrench faulting. The western limit of the
Variscan deformation is taken to be the location of intense strike-slip transport, along the
Tornquist Line, (Lefort, 1989). To the east, the extent of the collision is less clear.
Ziegler (1988) suggested that deformation continued beyond the zone of collision
between Africa and Eurasia, but a more conservative estimate for D is to locate the eastern
end at the site where Gondwana continental crust merged into the proto-Tethys ocean (see
figure 55(d)). These limits give D=2000£500 km. Structural indicators, palinspastic
restorations, and plate reconstructions (Ziegler, 1988) suggest that deformation extended
over a distance of 1000+500 km, although the involvement of Iberia in the orogeny is not
yet clear. A minimum estimate for convergence amounts during deformation is given by
LeFort (1993) using shortening estimates for French crust. Results from seismic imaging

in this case indicate at least 150 km of convergence (50% shortening), but since the study
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only examined a part of the Variscan deformation, total amounts of convergence will

probably be greater. I use an estimate for total convergence of 400200 km.

The Zagros Mts

The Zagros fold belt in Iran formed as a result of the northward movement of the
Arabian/African continent, and the subsequent closure of the Neo-Tethys ocean, during
the Alpine-Himalayan orogeny. Some debate exists over the timing of the change from
subduction of Arabian oceanic lithosphere to continental collision between the Arabian
margin and Eurasia. The current theory is that inital collision occurred at the northern end
of the Arabian promontory in the mid-late Eocene (45-36 Ma) (Hempton, 1987), and that
the contact spread eastwards from the Bitlis to the Zagros suture during the early Miocene
(22 Ma). Crustal stacking of the thinned Arabian continental margin is thought to have
delayed the spread of deformation to the north until ca. 15 Ma. The convergence and
associated volcanics eventually caused the thickening of the Iranian and Anatolian
plateaus, and uplift and deformation in the Caucasus mountains (Philip et al., 1989).
Further convergence initiated 'extrusion tectonics', to the west along the northern and
eastern Anatolian fault systems, and to the east along the Zagros suture, increasing the
relative obliquity of the Arabia-Eurasia collision.

The collision zone extends laterally from the Persian Gulf to the junction with the
Anatolian Fault in Turkey, giving a length-scale D = 19002200km. Estimates for the
extent of across-strike deformation, derived from crustal uplift rates and seismicity
(England and Jackson, 1989), range from 800km in the north, between the Bitlis suture
and the Caucasus mountains, to 1200 km in the south, between the Zagros simply folded
belt and the Kopet Dagh. Convergence since collision in the Eocene is estimated to be
500+150km (from reconstructions of Hempton, 1987), with maximum crustal
thicknesses of 50+5 km. It is estimated that over half of the mass added due to

convergence has escaped laterally along the strike-slip fault system.
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Appendix G

Incorporation of a 1D Numerical Thermal Code in the Mechanical Model

The change in Moho temperature with time, at each location in the thin-sheet model,
is calculated using a one-dimensional thermal finite element code written by Jean Braun
(Braun, 1988). Details of the numerical temperature routine are described by Braun
(1988). Inputs to the code are: the initial temperature field as a function of depth, T(z)
(°C), the distribution and magnitude of radiogenic heat production in the crust, A(z)
(Wm-3), the thermal conductivity of the lithosphere, k (Wm-1°C-1), the dynamic specific
heat, pc (kgm-1s-2°C-1), and the heat flux from the mantle asthenosphere, Q* (Wm-2),

The code solves the one-dimensional time-dependent heat-flow equation:

E — + .o 1

In order to compute the thermal relaxation of the Moho in a region of thickened crust, the
numerical code must calculate the temperature field at the detachment layer. As discussed
in section 6.2, differential motion between the model crust and mantle lithosphere will
mean that, in general, the two layers have different residence times. This will create an
incremental discontinuity in temperature at the Moho, over length-scale h, where h is the
thickness of the detachment layer (on the order of 1 km thick). In the numerical
implementation of diffusion, this temperature discontinuity thermally relaxes at each
timestep, so that the temperature of the weak layer can be assumed to be near uniform.
The thermal code is incorporated into the thin sheet model by creating an array of
crustal temperatures T(z) for each thin-sheet element. A vertical resolution of 11 nodal
points for the temperature array is used in the crust. In order to compute the geotherm
correctly as a function of horizontal position, depth, and time, the crustal temperature

array must be matched to the underlying mantle lithosphere temperature field at each time-
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step, before computing the incremental change in temperature. Figure G1 illustrates how
this is accomplished. The basal grid, which is Eulerian and has a fixed velocity
distribution at the basal nodes, is assigned a temperature array for each basal element,
also with a resolution of 11 nodes. There are therefore two temperature arrays for each
horizontal location: the crustal temperature array, Tc(2), and the mantle lithosphere
temperature array, Ti(z). At each time-step, the position of each crustal element is found
with respect to the underlying basal grid, and the temperature arrays of corresponding
crustal and basal elements are combined to form a temperature array for the lithosphere,
T(z), at each horizontal position. The one-dimensional heat conduction equation is
solved, for a time increment equal to the mechanical timestep, for this temperature array.
The updated T(z) is then split into its component crustal and basal temperature arrays
(Te(z) and Tp(2)).

Once the updated temperature arrays have been computed, the local Ampferer
number (Am(x)) for each crustal element is found using an empirical relationship derived

from figure 19(a), as follows:

Am = (316.4)exp(:g:1"—“’:‘)°-) ..(G2)

The local Am values are used in the thin-sheet computation, which proceeds as detailed in
chapter two. Once the grid has been solved for horizontal displacement and thickening of
the crust, the positions of the temperature arrays must be updated. The vertical position of
the temperature nodes changes with time, according to the thickening of the crustal
element, so that after thickening by factor f, the new temperature nodal depths z’j (i=1 to

11) for an element will be:
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In the mantle lithosphere temperature grid, the vertical spacing between temperature nodes

does not change with time, since there is no mantle thickening. The depth of the top basal

node is set to the depth of the corresponding bottom crustal node at each time-step. Since

the crustal grid is Lagrangian, the crustal temperature array is automatically advected

horizontally with time. However, the basal grid is Eulerian, and so the basal temperature

array must be advected according to the basal velocity field. Advection is performed using
simple interpolation routine.

Once the positions of the temperature arrays have been updated, the local Am for
each crustal element is ready to be computed for the next timestep, and the process
described above is repeated. In summary, the numerical method and approximations
used in the thermal/mechanical code are as follows:

(i Ateach timestep, the temperature arrays for the crust and mantle lithosphere are
computed using eq. (G1) for each crustal column, and the corresponding basal
element over which it resides at that timestep;

(ii) The crustal and basal temperature are reset according to the new temperature array at
that location. The local value of Am for each crustal element is computed using eq.
(G2).

(iii) The displacements a= solved, and crustal thickness is updated in the usual way;

(iv) The basal temperas  "~Id is advected according to the basal velocity field.

The parameters used in the thermal calculation are as follows:

A(z) =0 Wm-3(no radiogenic heat production in the crust)

pc(z) = 2.5x10-6 kgm-1s-2°C-1 (V 2)

k(z) =225 Wm'I"C-1 (V z)

Q* =0.03375 Wm2

initial temperature array: T(z)=0.015z, giving a temperature at the Moho of 450°C
Values for k and pc are taken from England and Thompson (1984). The mantle heat
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flux, Q*, is chosen to give an initial geothermal gradient of 15 *Ckm-!.

For simplicity, radiogenic heat production in the crust is neglected; however, when
calculations are performed with a 15 km thick radiogenic heat-producing layer (and A =
2x10-6 Wm-3, with Q* = 0.02625 Wm-2 so that the initial Moho temperature is still
450 °C), the difference in length-scale predictions, compared to calculations which
neglect radiogenic heat production, is less than 5% after a normalized convergence of 70.
This result indicates that radiogenic heat production in the crust does not significantly
affect the increase in Moho temperature with thickening, provided the mantle heat flux Q"
is adjusted accordingly. The initial agreement in length-scale predictions is expected,
since the mantle heat flow in each case has been adjusted to give the same temperature at
the base of the (unthickened) crust. The lack of a length-scale discrepancy after large
amounts of convergence is probably a result of competing effects on length-scales from
scaling factors Am and Ar. The case which includes radiogenic heating in the crust, will
heat up (and weaken) more rapidly than the case where A=0), so that Am will not decrease
as fast. However, Ar will increase more rapidly as the crust thickens. The changes in Am
and Ar seem to roughly cancel out the expected ctange in length-scale due to the extra
radiogenic heat production. Also, the coupling between crust and mantle lithosphere near
the edges of the deforming region, which is expected to be the most important area in
controlling length-scales (the 'bookend’ effect, discussed in chapter six), will not be
greatly affected by the radiogenic heating, because the extra radiogenic heat production
associated with crustal thickening has had little time to cause a large difference in the
effective parameter values Am and Ar.

An illustration of the change in temperature array with time, for a crustal element
which is initially over the detachment point, is shown in figure G2. The geotherm initially
steepens, as the crust thickens at the advective limit (=0 to 10). Once the thickening rate
for the element decreases, thermal relaxation causes the geotherm to shallow with time

(¥'=10 to 50). The depth of the Moho with respect to the surface changes with time, as
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shown by the filled circles on the figure.

Figure G1: A schematic illustration of the temperature arrays used in the thermo-
mechanical model. At each timestep, a temperature array for each
lithospheric column is assembled from separate temperature arrays in the
crust and mantle lithosphere, for crustal and basai elements which are in
contact with each other. The combined temperature array is used to solve
the one-dimensional transient heat flow equation (G1), and the resulting
temperatures are used to reset the crustal and basal temperature arrays
before elements are advected. S is crustal thickness for the element
indicated; M is the thickness of the mantle lithosphere; Q” is the heat flow

from the mantle asthenosphere.
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Figure G2: Change in the geotherm with normalized convergence, for a crustal
element initially above the mantle detachment zone. Crustal temperatures
are shown vs. depth, along with the corresponding mantle lithospheie
temperatures from a corresponding basal column at each timestep. The
position of the Moho is indicated by the filled circle. Note that this figure
shows the change in temperature with convergence for an incident velocity
Vp=1 cm/yr. For the case where Vp=5 cm/yr, the effects of thermal

relaxation with convergence are reduced.
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