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Abstract

The existence of invariant subspaces for bounded lincar operators acting on an iufinite
dimensional Hilbert space appears to be one of the most difficult questions in the
theory of linear transformations. The question is known as the inwvarian! subspace
problem. Very few affirmalive answers are known regarding this problem. One of the
most prominent ones is the theorem on the existence ol hyper-invariant subsgpaces for

compact operators due to V.I. Lomonosov.

The aim of this work is to gencralize Lomonosov’s techniques in order Lo apply
them to a wider class of not necessarily compact opcrators. We start hy establishing
a connection between the existence of invariant subspaces and density ol what we
define as the associated Lomonosov space in a certain [unclion space. On a Hilbert
space approximation with Lomonosov functions results in an extended version of
Burnside’s Theorem. An application of this theorem Lo the algehra generated by an
essentially self-adjoint operator A yields the cxistence of veclor stales on bhe space
of all polynomials restricted to the essential spectrum of A. [inally, the invariant,
subspace problem for compact perturbations of self-adjoint operators is translaled
into an extreme problem and the soluticn is obtained upon differentiating certain

real-valued functions at their extreme.

The invariant subspace theorem for essentially sclf-adjoint operators acting on an
infinite-dimensional real Hilbert space is the main result, of this work and represents

an extension of the known techniques in the theory of invariant subspaces.

Vi
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Introduction

The question
Does every bounded linear operator on a Banach space have a non trivial closed
invariant subspace?

is known as the invariant subspace problem.

The examples due to Enflo [8] and Read {17] show that the answer to the invariant,
subspace problem is in general ncgative. However, there are no known examples
of operators without invariani subspaces acting on a refllexive Banach space and in
particular, on a Hilbert space. Furthermore, therc secms to be no evidence whal,
should be an expected answer for the opcrators acting on a llilbert, space, and the
experts in the field have different opinions on it.

It is therefore not surprising that there are relatively few special cases for which
the existence of invariant subspaces have been established. Onc of the most prominent,
results is the one on the existence of hyperinvariant subspaces for compact operators
due to Lomonosov [11, 16]. Another class of operators that is well understood in
terms of invariant subspaces are normal, and in particular, self~adjoint operators lor
which there is the powerful spectral theorem. However, it is nol known whether a

compact perturbation of a self-adjoint operator has a non-trivial invariant subspace.



This work f[ocuses on the existence of invariant subspaces for essentially sell-
adjoint operators and culminales in an affirmatlive answer in the case where the

underlying Ifilbert space is assumed to be real.

When dealing with the existence of invariant subspaces it is a comwmon prac-
tice [1, 4, 12] to study the space of certain continuous functions associated with the
algebra gencrated by an operator rather than the operator itself. We follow this ap-
proach and establish a conncction between the existence of invariant subspaces for
an operator algebra and densily of certain associated spaces of continuous functions
called Lomonosov spaces. The construction of these functions is based on the idea
of the partition of unity subordinale to an open cover, which is a standard tool in
approximation theory [7] and differential geometry [5, 18]. In [5] the partition of unily
is also used to prove the Arzela~Ascoli Theorem. It should be observed that similar
argument was employed by V.I. Lomonosov in the proof of his celebrated result [11].

On a Hilbert space differentiability of the norm yields a numerical criterion for
the construction of Lomonosov functions with certain properties. This results in an
extension of the Burnside Theorem and implies the solulion of what we define as the
“cssentially-transilive algebra problem”.

An application of the extended Burnside Theorem to the algebra generated by an
cssentially self-adjoint operator yields the existence of vector states on the space of
polynomials restricted to the essential spectrum of such an operator. The invariant
subspace problem for compact perturbations of self-adjoint operators is translated
into an extreme problem and the solution (in the case where the underlying Hilbert
space is real) is obtained upon differentiating certain real-valued functions at their

cxtreme.



-

"ol

Although the above-described techniques do not immediately extend to the com-
plex Hilbert spaces, it is very likely that further analysis of the space of vector states
will reduce the complex case to the real one and thus provide the affirmative answer

to one of the most difficult questions in the theory of invariant subspaces [13].



Chapter 1

The Space of Lomonosov Functions

In this chapter we give a constructive proof of an abstract approximation theorem,
inspired by the celebrated result of V.I. Lomonosov [11]. This theorem is applied to
obtain an alternatlive proof of some recent characterizations of the invariant subspace
problem, given in [1]. We also establish denaity of non~cyclic vectors for certain convex
scls of compact quasinilpotent operators, and conclude with a related open question.
In Chapler 2 we extend the techniques introduced in this chapter to non-compact

operators acting on a Hilbert space.

1.1 Introduction

V.I1. Lomonosov in his paper [12] conjectured that the adjoint of a bounded operator
on a Banach space has a non—trivial closed invariant subspace. In view of the known
examples of operators without an invariant subspace [8, 17], this is the strongest ver-
sion of the invariant subspace problem that can possibly have an affirmative answer.
In particular, if the Lomonosov conjecture is true, then every operator on a reflexive

Banach space has a non-trivial invariant subspace.



Counsidering the strong influence of Lomonosov’s results on the theory of invariant
subspaces, it is not surprising that both the conjecture and the techniques developed
in the interesting paper [12] received further attention. L. de Branges used this resull
to obtain a characterization of the invariant subspace problem in terms of densily
of certain functions. This stimulated another characterization of the invariant sub-
space problem given by Y.A. Abramovich, C.D. Aliprantis, and O. Burkinshaw in [1].
Section 1.4 presents a more detailed account of this work.

We take a slightly different approach. First we give a constructive proof ol the
approximation theorem, inspired by the well known Lomonosov construction used
in [11, 16]. This theorem is then applicd to give an altcrnative proof ol the main
result in [1]. Our proof applies to both real and complex Banach spaces, while the
original result was established for complex Banach spaces only. The alternative proof
somehow explains the role of compact operators that appear in the characterizations

of the invariant subspace problem [1].

One may notice that the weak*-compactness of the unit ball in dual Banach spaces
plays an important role in [1, 3, 4, 12], as well as in the applications given in this
chapter. In other words, if the Lomonosov conjecture is true, then the compaciness
of the unit ball, with respect to the weak* topology, is likely to be an important
ingredient of its proof.

In the last section we put this observation to the test. A straightforward ap-
plication of the approximation theorem obtained in Scction 1.3, together with the
Schauder-Tychonoff Fixed Point Theorem, yields density of non-cyclic veclors for
the dual of a convex set of compact quasinilpotent operators. We end with the open

problem of obtaining a similar result for the original set, rather than its dual.

il



This work is more or less self~conlained and the notation and terminology used
in it is (supposed to be) standard. However, here are a few conventions that hold

throughout this chapter:

By an operator we always mean a bounded linear operator acting on a real or
complex Banach space. I A is a set of operators and K is a fixed operator then
AK stands for the set {AK | A € A}. Saying that a set of operators A, acting on a
Banach space X, admits an invariant subspace, means that there exists a non~trivial
closed subspace of X that is invariant under all operators in A. The space of all linear
operators on a Banach space X is denoted by B(X), while C(S, X) stands for the set
of all continuous functions f: S — X. If S is a subset of a Banach space X, then
in saying that a linear operator A is in C(S, X), we actually refer to the restriction

of the operator A to the set \S.

1.2 Reflexive Topological Spaces and Continuous
Indicator Functions

This section introduces some topological preliminaries that lead to a fairly general
trcalment of the approximation theory in the next section, where an important role is
played by the partition of unity and the “continuous indicator functions” associated
with a basis for the topology on a compact domain of certain functions. The existence
of continuous indicator functions can be characterized by a purely topological property
of the underlying space, which is defined as “reflexivity” of the topological space. In

this section we introduce both concepts and establish the connection between them.



Definition 1.2.1. Let S = (5,7) be a topological space and denote by ((S,R) the
space of all continuous real-valued functions on S. A topological space S is called
reflexive if the topology 7 coincides with the weakest topology 7, on § lor which all

’

the functions in C(S,R) are continuous.

Remark 1.2.1. The reflexivily of lopological spaces is nol to be confused with the
corresponding concept of the reflexivity of Banach spaces. Indeed, we conclude this

section by showing that every subset of a locally convex space is reflexive.

Proposition 1.2.1. Reflexivity is a hereditary properly;, i.e. a subspace S of a

reflexive topological space X is reflexive wilh the relalive topology.

Proof. Consider the restrictions of the functions in C(X,R) to the subset S, and

observe thal they induce the relative topology on 5, whenever X is reflexive. [

Definition 1.2.2. Suppose U is an open subset of a topological space 5. A contin-
uous function I': § — [0,00) is called a continuous indicalor function of U in &
if
U={se S| TI'(s) >0}.
Remark 1.2.2. If X is a metric space then cvery open ball
U="U(zo,r)={z € X | d(z,z0) <7},
admits a continuous indicator function I'y: X — [0, 00), defined by

Fy(z) = max {0, r — d(z,z0)} .

Furthermore, suppose f € C(S,X). Then the open set V = [~1(U) C S “inherits”

an indicator function from U by setting: T'v(s) = T'y(/(s)).



This yields the following characterization of reflexivity.

Proposition 1.2.2. A topological space S = (S,7) is reflexive if and only if there

exisls an open basis B for the topology T such that each set V € B admits a continuous

indicalor funclion T'y: S — [0, 00).
Proof. By definition of reflexivity, the family

Bo={/"'(U) | [ €C(S,R)and U = (a,b) C R}
is a sub~basis for the topology 7 on a reflexive space S. Clearly,

i)

Tu(t) = max {0, oo \od

is a continuous indicator function of the open interval U = (a,b) in R. Consequently,
Ly(s) =Ty (f(q)) is a continuous indicator function for the set V = f~1(U) in S.

Lel V =WVin...NnV, for Vi, € By. A continuous indicator function of V can be
defined by
Ly(s) = H Ty, (s).
k=1
Therclore, each set in a basis

B={Vin...0V,| Vi €Bo; n < o0},

admits a continuous indicator function.
The other direction is trivial, because the continuous indicator funclions form a

subset of C(S,R). O

Remark 1.2.3. The argument in the proof of Proposition 1.2.2 shows that the space
R can be replaced by any metric vector space over R in the definition of reflexivity. In
particular, considering the complex valued functions would not change the definition

of reflexivity.



Remark 1.2.4. While an open set U is uniquely determined by any of its continuous
indicator functions, the converse is of course not true. However, Proposition 1.2.2

allows us to choose a basis B, and a corresponding lamily
Pp={ly: S —[0,00) | U € B}

of continuous indicator functions associated with the basis B for the topology on a
reflexive topological space S. In that sense, the correspondence between the elements

of B and an associated family of continuous indicator functions 'z can he established.

Although not all topological spaces are reflexive (consider for example the topol-
ogy of finite complements on any infinite set) the next proposition shows thal convex
balanced neighborhoods in a locally convex space admit continuous indicator func-

tions, and consequently, all locally convex spaces are reflexive.

Proposition 1.2.3. Every locally convex vector space X is reflczive (as a lopological

space).

Proof. Suppose B is a base for the topology on X consisting of open convex balanced

sets. Then for each U € B:
U={zeX| py(z) <1},
where gy is the Minkowski functional of U. The function
Iy(z) = max {0, 1 — py(z)}

is a continuous indicator function for U. By Proposition 1.2.2, X is reflexive. O
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1.3 Lomonosov Functions

The proofl of the celebrated result of V.I. Lomonosov [11, 16] was based on the inge-
nious idca of defining a continuous function with compact domain in a Banach space,
assuming that certain local conditions are met. In this section we generalize this idea
in the form ol an approximalion theorem. Since our construction was greatly inspired

by the prool of Lomonosov’s Lemma [11, 16], we suggest the following definition.

Definition 1.3.1. Let A C C(S5, X) be a subset of the space of continuous functions
from a topological space S to a locally convex space X. The convex subset L£(A) C

(9, X), defined by

L(A)z{ZakAkl Ap € A e € C(5,[0,1]) and Zakzl; n<oo}.

k=1 k=1
is called the Lomonosov space associated with the set A, and a function A € £(A) is

called a Lomonosov function.

Recall that the uniform topology on C(S, X) is induced by the topology on a linear

space X. If B is a local basis for the topology on X then the sets
U={feC(8X)| f(5)cUeB}

define a local basis for the uniform topology on C(S,X). If X is a locally convex
space then so is C(S5,X). In particular, if X is a Banach space then C(S, X) with

the uniform topology is a Banach space, as well.

We arc now ready to give a construction of the Lomonosov function that uniformly

approximates a continuous function within a given neighborhood.



[

Lemma 1.3.1. Let A C C(S, X) be a subset of continuous functions from a reflexive
compact topological space S to « locally convex space X. Fix an open convexr neigh-
borhood U of 0 in X. Suppose f: S — X is a conlinuous function thal al cach
point of S can be approvimated within U by some element of A; i.e. for coery point
s € S there exists a function A; € A such that A;(s) — [(s) € U. Then there exists
a finite subset {Ay,..., A} of A, together with continuous nonnegalive funcltions
ap: S — [0,1], such that 3, cx = 1, and the Lomonosov function A € L(A),

defined by
A(s) = D au(s)Aw(s),
k=1

lies in the prescribed neighborhood U of f C(S,X); t.e. A(s)—[(s) €U for cvery

seS.

Proof. By the hypothesis, for every point s € S there exists a function A, € A such
that A,(s) — f(s) € U. Continuity of the functions [ and A, implics the existence of
a (basic) neighborhood Wj of s in S such that As;(w) — f(w) € U for every w € W,.
In this way we obtain an open cover for S with the sels W;. Compactness of S yiclds

a finite subcover: W, U...UW, D S.

Each set W; is associated with a continuous indicator function 'y, : S — [0, 00).
Every point in S lies in at least one neighborhood W, ; therelore the sum 3%, FW,J (s)
is strictly positive for all elements s € S. Consequently, the functions cv: S — [0, 1],

defined by
FWsk (S)
?:1 FWsJ (S)

are well defined and continuous on S. Also, Y i, ax(s) = | for every s € 5, and

ak(s) =

ay(s) > 0 if and only if s € W,,. Therefore, ai(s) > 0 implies that A, (s)— [(s) € U.
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Set Ay = A;, (k= 1,...,n). Continuity of the functions ay: S — [0,1] and

Ap: S — X implies that the Lomonosov function A € £(A), defined by

n
A(s) = 3 on(s)An(s),
k=1
is continuous. Observe that

A(s) = [(s) = éaus) (Als) = £(5))

is a convex combination of the elementsin U, because only those coefficients ay(s) for
which Ay(s)— f(s) € U are nonzero. Since U is a convex set, it follows that the image
of A — [ is contlained in U. In other words, A lies in the prescribed neighborhood U

of [in C(S,X). O

Remark 1.3.1. The proof of Lomonosov’s Lemma [11, 16] introduces a special case
of the above construction: .S is a compact set in a Banach space X, defined as the
closure of the image of the unit Lall around a fixed vector &g, under a given nonzero
compact operator K. Furthermore, the vector 24 is chosen so that the set S doesn’t
contain the zero vector; A is the restriction to S of an algebra cf bounded linear
operators on X that admits no invariant subspaces. Under the stated hypothesis a
construction of the function A: S — X is given such that A € L{AK) maps S
into the unit ball around zo; or equivalently, the constant function f = z¢ can be
approximated on S within 1 by the elements of L(AK). It is clear from the original
construction as well as from Theorem 1.3.2 that in that case the set S can be mapped
into an arbitrary small neighborhood of zg; or equivalently, the function f = z; is in

the closure of the space L{AK).
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The following appreximation theorem follows immediately from Lemma 1.3.1.

Theorem 1.3.2. Let A C C(S,X) be a subset of continuous funclions from a refles-
ive compact topological space S to a locally convex space X. Suppose that : § — X
is a continuous function that at each point of S can be approzimated by some element
of A; i.e. for every s € S and every neighborhood U of 0 in X there cxists a fune-
tion A, € A such that A;(s) — f(s) € U. Then the function f can be approrimaled

uniformly on S by the elements of the associated Lomonoson space L(A).

In the next section we employ Theorem 1.3.2 to obtain an alternalive proof of a
characterization of the existence of invariant subspaces for algebras of bounded lincar
operators acting on a real or complex Banach space. The complex version of this
theorem was first established in [1], using rather different techniques buill on the

result of L. de Branges [4].

1.4 A Characterization of the Invariant Subspace
Problem

We introduce some basic concepts and notation that is consistent with [1]. [lowever,
for more details and further references on the invariant subspace problem, the reader

is advised to consult the nicely written and comprehensible original [1].

In this section X stands for a real or complex Banach space of dimension gicaler

than one and X’ for its norm dual. The algebra of all bounded lincar operators on
X is denoted by B(X). If A is any subset of B(X), then the adjoint sel A’ of A is
defined by A" = {A’| A € A}, where A’ is the Banach adjoint of A.
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The set S = {z € X'| ||lz|| <1} denotes the unit ball in the dual space X',

equipped with its weak* topology.

Definition 1.4.1. The vector space of all continuous functions from S to X', where
both spaces are equipped with the weak* topology, is denoted by C(S, X’). As usual,
C(S) denotes the commutative Banach algebra of all continuous complex valued func-

tions on S with the uniform norm.

Nole that for cach T € B(X) the restriction of the adjoint operator 7": & — X'

is a member of C'(9, X"). The vector space C(S, X'), equipped with the norm

/N = sup [Lf(s)1I,
sES

is a Banach space.

The Banach space C(S5,X’) played the central role in [1, 4, 12]. Lomonosov [12]
based his prool of an interesting extension of Burnside’s Theorem on the characteri-
zalion of the extreme points of the unit ball in the norm dual of C(S, X') using the
argument of the celebrated de Branges’ proof of the Stone-Weierstrass Theorem [3].
Louis de Branges [4] performed a deep analysis of the behaviour of these extreme
points that yiclded a vector generalization of the Weierstrass approximation theo-
rem, similar to the approximation theorem in the previous section. This approach
resulted in a characterization of the existence of a nontrivial invariant subspace for

the algebra A’ in terms of density of the linear span of the set
{aA" | € C(S)and A € A},

in the space of restrictions of the adjoint operators to S, with respect to a topology

in C(S, X"), introduced by L.de Branges.



Building upon this work, Y.A. Abramovich, C.D. Aliprantis, and O. Burkinshaw
in [1], oblained the following characterizations of the existence of a non trivial in-
variant subspace for an algebra A of bounded linear operators acting on a complex

Banach space X:

Theorem 1.4.1 (Y.A. Abramovich, C.D. Aliprantis, and O. Burkinshaw).
There is a non—trinal closed A-invariant subspace of X if and only if there cxists an
operator T' € B(X) and a compact operator K € B(X) such that K'T" does not belong

to the norm closure of the vector subspace of C(S, X') generaled by the colleelion

{aK'A"| a € C(S) and A € A}.

Theorem 1.4.2 (Y.A. Abramovich, C.D. Aliprantis, and O. Burkinshaw).
There is a non—trivial closed A'—invariant subspace of X' if and only if there cuisls an
operator T' € B(X) and a compact operator I € B(X) such that T'K' does nol belong

to the norm closure of the vector subspace of C(S,X") generaled by the colleclion

{@dA'K' | € C(S) and A € A}.

We will give a short proof of both theorems as an application of Theorem 1.3.2.
Our proof applies to real or complex Banach spaces, where in the case of a real Banach

space, C(.9) stands for the Banach algebra of all real-valued continnous finctions on

the set S.

Observe that the Lomonosov spaces L{K'A’) and L{A'K"), as defined in the previ-

ous section, are subsets of the linear manifolds introduced in Theorems 1.4.1 and [.4.2.
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Definition 1.4.2. The veclor z in a Banach space X is cyclic for the set of operators
A C B(X) whenever the orbit,
Az = {Az | A e A}

is a cdense subsel of X. If every nonzero vector is cyclic for A, we say that A acts
transilively on X. The terms 7-cyclic and T—transitive are defined in the same way,

by considering the space X equipped with a topology 7, instead of the norm.

The lollowing well known characterizations of the existence of a non-trivial in-

variant subspace [or an algebra A C B{X) follow immediately from the definition.

Proposition 1.4.3. Suppose A C B(X) is a subalgebra of bounded linear operators

on X. The following are equivalent:
(1) A admils no nontrivial closed invariant subspace.
(2) A acts weak-transitively on X.
(3) A acts transitively on X.
(4) A’ admits no nontrivial weak*-closed invariant subspace.

(5) A" acts weak*transitively on X'.

As in [L] we introduce the subspace of completely continuous functions in C'(.S, X').

Definition 1.4.3. A funclion f € C(S5,X") is said to be completely continuous if it
is conlinuous with respect to the weak* topology on S and the norm topology on X".

The subspace of all completely continuous functions is denoted by K£(.5, X*).



Note that K': S — X' is complelely continunous whenever K € B(.X) is a

compact operator on X (Theorem 6 [6, p.486]).
We are now ready to give a shorl proof of Theorems 1.4.1 and 1.4.2.

Proof of Theorems 1.4.1 and 1.4.2.

We start with Theorem 1.4.2, which is an almost straightforward consequence of

Proposition 1.4.3 and Theorem 1.3.2, applied to the space K(S, X').

Suppose A’ has a non—trivial closed invariant subspace. Then by Proposition 1.4.3,
there exists a pair of nonzero vectors 2/,y" € S such that ||A'2' — y'|| = € > 0 lor all
A" € A'. Choose any vector & € A" such that (2',2) = 1, and define the rank one
operators K = 2 @ 2’ and T' = 2 ® y'. Clearly T'K'2' = 4, and since T'K' cannol,
be approximated by the operators A’K’ al the point 2', it follows thal 7K’ is nol in

the norm closure of the linear space generated by {aA'K' | o € C(S) and A € A}.

Conversely, suppose A’ admits no non—trivial closed invariant subspases. There-
fore, A" acts transitively on X', and consequently, every operator 1"/’ can he ap-
proximated by A’K’ at each point of S. Furthermore, since K is a compact operator
in B(X), it follows that 7K' € £(.5, X’). Theorem 1.3.2 implies that 7"K" is in the

norm closure of the Lomonosov space L(A'K’) and thus completes the proof.

The proof of Theorem 1.4.1 is just slightly more complicated.

Suppose the algebra A admits a nontrivial closed invariant subspace M. Then
M+ is an invariant subspace for A’. Fix a nonzero vector & € M and a nonzero
functional y' € M+, and choose a vector y € X such that (y',y) = | and a lunctional
¢’ € X', with (z',2) = 1. Define the rank-cne operators K =z @y and T =y () 2.

Then K'T'y" = y' # 0, while K'A’y’ = 0 for every A’ € A". Consequently, the operator
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K'T" is not in the norm closure of the linear span of the completely continuous
functions {aK'A" | a € C(S5) and A € A}.

Converscly, suppose thal there exists a compact operator K and an operator T
such thal KT is not in the closure of the linear subspace generated by the completely
continuous functions {aK’A’ | a € C(S) and A € A}. Theorem 1.3.2 implies that
there exists a nonzero vector &' € S such that the orbit M = {K'A'2" | A € A} is not
a norm~-dense manifold in the closure of the subspace N = {K'T"s' | T' € B(X)}. By
the HHahn-{3anach Theorem there exists a functional y” € X" such that (y”, K'A'z') =
0 for evaty A" € A, and (y",K'T'z') = 1 for some T € B(X). Consequently,
K"y" # 0. Compactness of K implies that y = K"y"” € X, where X is considered
naturally embedded in its second dual X” (Theorem 5.5 [2, p. 185] or Theorem 2 [6,
p.482]). From (', Ay) = 0 for all A € A, it {ollows that the algebra A admits a

non-irivial closed invariant subspace. O

[L is possible to obtain similar characterizations that do not involve compact op-
eralors, by considering some other topology on C(S, X'). Theorem 3.1 in [1] and
Theorem 6 in [4] are examples of results in that direction. We conclude this section
by giving yel another characterization of transitivity for an algebra A in terms of
the closure of the Lomonosov space £(.A’) with respect to the uniform topology 7«,

induced on C(S, X") by the weak* topology on the dual Banach space X'

Theorem 1.4.4. Suppose A C B(X) is a set of bounded linear operators on X.
Then the dual set A' = {A' | A € A} acts weak*~transitively on S if and only if the

Twr—closure of the Lomonosov space L(A') is equal to the subspace

ColS, X') = {f € C(S, X") | f(0) =0}
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Proof. The proof is almost identical to those of Theorems 1.4.1 and 1.4.2 except *hal
Theorem 1.3.2 is now applied to the space C(S, X’) cquipped with the topolo, / Ty,
instead of (5, X’) with the norm topology.

If the set A’ does not act weak*—transitively on X' then there exists a nonzero
vector z' € S together with a weak™® neighborhood W of y' in S such thal Ala’ ¢ W
for all A’ € A’. Choose a vector @ € X such that (2/,2) =l and lel T = 2 y". Then
T'z' = y', and since T” € Co(S, X'} cannot be approximated by the operators in A’ at,
the point 2/, il follows that T" is not in the 7,+—closure of the associated Lomonosov
space L(A").

Conversely, if the set A’ acts weak*~transitively on S il follows from Theorem 1.3.2
that every function f € Co(5, X') can be uniformly approximated by the clements of

L(A"), and thus f is in the 7,-—closure of the Lomonosov space L{A'). O

Corollary 1.4.5. The algebra A admits no non—trivial closed invariant subspace if

and only if the Tyr—closure of the Lomonosov space L(A') is equal lo Lhe subspace
Co(5, X)) ={/ € C(5,X) | J(0) =0}.

Proof. By Proposition 1.4.3, the fact that A admits no non-trivial invariant, subspace
is equivalent to A’ acting weak*~transitively on S. The resull now follows from

Theorem 1.4.4. O

Note that the 7,+—closure of the Lomouosov space L(B(X)') is always cqual to
Co(S, X’). This observation yields a few allernative formulations of Corollary 1.4.5,

which are left to the reader.



1.5 On Convex Sets of Compact Quasinilpotent
Operators

In this section we combine Lemma 1.3.1 with the Schauder-Tychonoff Fixed Point
Theorem, to establish a densily result for non-cyclic vectors for the dual of a con-
vex set of compact quasinilpolent operators. We discuss in what sense this result
generalizes the celebrated Lomonosov Lemma [11], and conclude with a problem of

establishing a similar result for the original set, rather than its dual.

Recall thal an operator is called quasinilpotent if 0 is the only point in its spectrum.

Theorem 1.5.1. Suppose A is a convex set of compact quasinilpotent operators act-
ing on a real or complez Banach space X, and let A' = {A'| A € A} be its dual in

B(X'). Then the set of non—cyclic vectors for A’ is dense in X'.

Proof. Suppose not; then there exists a funclional zo € X' and a positive number
r > 0 such that all vectors in the ball S'= {2 € X'| ||z — 20| < r} are cyclic for A".
In parlicular, for every functional z € S there exists an operator A’ € A’ such that
|A’% — @o|| < r. By Lemma 1.3.1 it follows that there exists a Lomonosov function
A € L(A') such that ||A(z) — 20| < » for all z € S. Consequently, A maps S into
itsclf (weak*~continuously).

The Schauder-Tychonoff Fixed Point Theorem [6, p.456] implies that A has a

fixed point &y = A(zy) in §. By the definition of the Lomonosov space

A=Y oA, where Ay € A o € C(5,[0,1]) and Y oy =1; n < 0.

k=1 k=1

Therefore A" = 373, ay(z1)Aj, is an operator in the convex set A'. From A(z;) = 21,
we conclude that A'z; = z;. Since zy # 0, it follows that 1 is an eigenvalue for A’,

contradicting the assumption that A’ is a quasinilpotent operator. [
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Remark 1.5.1. Note that (unless A is assumed to be an algebra) it is nol cnough to
require that the operators in A’ have no common invariant subspace, in order to ensure
that A’ acts transitively on X’. 1t is indeed possible o give examples of manifolds of
nilpotent operators without a non-trivial closed common invariant subspace. For such
examples on finite-dimensional vector spaces sce [14,. By Theorem 1.5.1 a manifold
of such operators cannot act transitively on the underlying space.

Theorem 1.5.1 does not follow from the original work of V.1. Lomonosov [I1]. On
the other hand, Lomonosov’s Lemma [11] easily follows from Theorem L.5.1, in the
case when the underlying Banach space is reflexive. In that sense Theorem 15,1 is a
generalization of the Lomonosov Lemma.

This discussion suggests the following question, which we have nol been able to

resolve:

Does there exist a conver set A of compact quasinilpolent operators acling
on a real or complex Banach space X such thal the sel of non—cyclic

vectors for A is nol dense in X ?

By Theorem 1.5.1 the underlying Banach space in such an example (if it exists)
cannot be reflexive. Furthermore, Lomonosov’s Lemima implies thai the set, A cannol,
be of the form AK or KA, where K is a fixed compact opcrator. In particular, the

set A in such an example can never be an algebra.

Since, according to Theorems 1.4.1 and 1.4.2, compact operators arc closely related
to the existence of invariant subspaces for algebras of operalors, the answer to the

above question might be of some interest to the theory of invariani subspaces.



Chapter 2

An Extension of Burnside’s
Theorem

In this chapler we combine differentiability of the Hilbert norm with the Schauder—
Tychonoll' Fixed Point Theorem to show that for every weakly closed subalgebra
A # B(H), acting on a real or complex Hilbert space H, there exist nonzero vectors

[, 9 € H such that for every A € A:

IRe (Af, 9)| < |[Re Allegs {/,9) -

This result gencralizes an extension of Burnside’s Theorem, recently obtained by
V.1. Lomonosov, using rather different techniques. The theory developed in this chap-
ter has an interesting application to the invariant subspace problem for essentially

sclf-adjoint operators which is given in the last chapter.

2.1 Introduction

[n the first chapter we defined the Lomonosov space and gave a constructive proof of
the approximation theorem inspired by the well known result of V.I. Lomonosov [11].
This {theorem was then applied to obtain a connection between the existence of in-

variant subspaces for the norm dual of an algebra of bounded operators on a Banach
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space, and density of the associated Lomonosov space in certain function spaces.
These results cover recent characterizations of the invariant subspace problem by
Y.A. Abramovich, C.D. Aliprantis, and O. Burkinshaw in [1], who obtained their

resulls using the techniques introduced in [12] and [urther exploited in [4].

In this chapter we combine differentiability of the Hilbert norm with a construe-
tion of the Lomonosov functions and the Schauder-Tychonofl Fixed Point "Theorem

to establish a connection between the Lomonosov space and the transitive algebra

problem [16].

We start by briefly introducing a simplified Hilbert space terminology, thatl is
consistent with the first chapter, where the corresponding terms are defined in more

general, Banach space setting.

Definition 2.1.1. Suppose S is a bounded closed convex subsel of a real or complex
Hilbert space H, equipped with the rclative weak topology. The set ol all continuous
functions f: & — H, where both spaces are equipped with the weak topology, is
denoted by C(S,H). Similarly, C(S,[0,1]) stands {or the set of all weakly-continnous

functions f: & — [0, 1].

Remark 2.1.1. Recall that a bounded closed convex subset S in a Hilberl space is
weakly compact. Observe also, that a bounded linear operator A € B(H) is in
C(S,H). Whenever we say that A is in C(S,H), we actually refer to the restriction

of the operator A € B(H) to the subsel S C H.



Definition 2.1.2. Let A be a subset of C(S,H). The convex set L{A) C C(S,H),

defined by

L(A) = {Z apAy | Ak € A, e € C(S5,[0,1]) and > ap=1; n< oo}

k=1 k=1
is called the Lomonosouv space associated with the set A, and a function A € L(A) is

called a Lomonosov funclion.

Definition 2.1.3. Let W be a basic weak neighborhood of a vector [ € H:
(2.11) W={geH| (f-gh)|<1, i €H, k=1,...,n; n < oo}.

A conlinuous nonnegative function I'y: H — [0, 1], defined by

n

(2[2) FW({/) = H max {0)1 - |<f _‘gahk)l}a

k=1

is called a continuous indicator function of W.
Remark 2.1.2. Clearly, T'w is a nonnegative weakly continuous function and

W={geH| I'wlg) >0}.

The following proposition and its corollary introduce the idea that will lead to the

main result of this chapter.
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Proposition 2.1.1. Let § be a closed bounded and conver subset of H. Suppose the
sct A C C(S,H) salisfies the following property:
For every s € § there exists a function A; € A logether with a weak neighbor-
hood Ws of s such that A,(W,) C S.

Then there exists a Lomonosov funclion A € L(A) thal maps the set S info ilself.

Proof. By the hypothesis for every point s € S there exists a function A, together
with a basic weak neighborhood W; of s such thalt A,(W,) € 8. In this way we obtain
an open cover of §. Since § is a weakly compact sct there exists a finite subcover
Wi, ..., Wy, together with functions Ay, ... , A,, with the property that Ay(Wy) C 8
fork=1,...,n.

Let Ty : § — [0,1] denote the continuous indicator function of Wy as defined
by (2.1.2). Each point s € S lies at least in one neighborhood Wy (k = 1,...,n),
therefore the sum 377, I (8) is strictly positive for all vectors s € S. lHence, the

functions a: § — [0,1], defined by

are well defined and weakly continuous on §. Also, Y, ax(s) = L for every s € S,

(k=1,...,n),

and ag(s) > 01f and only if s € W.

The Lomonosov function A: § — &S, in the Lomonosov space L{A), associated

with the sct of functions A C C(S,H), is defined by

A(s) = Lz: a(s)Ar(s).

Observe that A(s) is a convex combination of the elements in S, and consequently, A

maps the set S into itself (weak-continuously). O
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Corollary 2.1.2. Suppose A is a conver subset of C(S,H) satisfying the condition

of Proposilion 2.1.1. Then there exists an element A € A with a fized point s € S.

Proof. By the Schauder-Tychonofl Fixed Point Theorem the Lomonosov function
A: S — S, constiucted in the proof of Proposition 2.1.1, has a fixed point s € S.
Let A = T}, ai(s)Ag. Convexity of the set A implies that A € A. Furthermore,

ftom A(s) = s it follows that A(s) =s. O

Remark 2.1.3. In our applications we will consider the situations when S is a closed
ball of radius » € (0,1) around a fixed unit vector fo € H, and A is a convex subset
of B(H). If the sct A satisfies the condition of Proposition 2.1.1 then Corollary 2.1.2

implics that the set A contains an operator A with an eigenvalue 1.

This gives rise to the following two questions:

I. When does the set A satisfy the condition of Proposition 2.1.17

2. When is the operator A in Corollary 2.1.2 different from the identity operator?

Complete continuity of compact operators, restricted to S, yields an affirmative
answer to the first question whenever A is a set of compact operators with the prop-
crly that for every s € § there exists an operator A; € S such that ||Ass — fo]| <.
Furthermore, if the space H is assumed to be infinite~dimensional then an affirmative
answer {o the second question follows from the fact that the identity is not a com-
pact operator. Iowever, compactness of the operators in A is much too strong an
assumption. In the next two sections we develop conditions based on the properties
of the essential spectrum and differentiability of the Hilbert norm that will replace

the condition of Proposition 2.1.1.
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2.2 On the Essential Spectrum

In this section we state some well known properties of the essential spectrum in the
form applicable to the situations arising later. We start with a lew definitions and

introduce notation and terminology that is consistent throughout this chapter.

Definition 2.2.1. Suppose H is a real or complex Hilbert space. The algebra of
all bounded linear operators on H is denoted by B(H), while AX(H) stands for the
ideal of compact operators in B(H). The speciral radius of the operator A € B(H)
is denoted by r(A) and its essential norm, i.e. the norm of A in the Calkin algebra

B(H)/K(H), is denoted by || Al

ess’

Definition 2.2.2. If A € C is a complex number then Re A and Im A denote its real
and imaginary parts respectively, i.e. A = ReX +:ImA. On the other hand, for a
bounded linear operator A € B(H), Re A and Im A stand for its rcal and imaginary
parts:

A+ A A— A

5 and ImA= 5

where A* is the Hilbert adjoint of A in B(H).

Re A =

Clearly, for every A € B(H) we have A = ReA + ImA. [Furthermore, this

decomposition makes sense on a real or complex Hilbert space, and

(2.2.1) [Re Al s < 1 A]lss < 1AL}

€SS €¢ss

Proposition 2.2.1. Suppose § and M are posilive numbers, and A is a fized operalor
in B(H). Then there ezists a weak neighborhood W of 0 in H such thal every veclor

feW with || f|| £ M, satisfies Lhe inequality

Re (Af, /)] < [[Re Al /1 + 6.
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Proof. From Re (Af, J) = ((Re A)f, f) and (Re A) = (Re A)* it follows that
IRe Al = sup [Re (Af, NIIIAI7*
J#0
By definition of the essential norm, we have

IRe Allss =

. inl
€8s [\’E}\:(H)

|(Re ) + K| = inf [Re(A-+ )]

in
Kek(
Hence, there exists a compact operator K such that

IRe Allyss > IRe(A+ K)|| = 36M~* 2 [Re (A + K)f, A7 - 36M 7%

€8s

The proposition now follows by the mixed (weak—to-norm) continuity of compact

operalors on bounded sets. O
The following proposition plays an important role in the subsequent sections.

Proposition 2.2.2. Suppose H is a real or complex Hilbert space, and A € C is a

point in the spectrum of the operator A € B(H), such that

(2.2.2) IReA| > |Re A

ess *

Then the norm closure of the algebra generated by A contains a nonzero finite-rank

operator.

Proof. We may assume that the Hilbert space H is complex, as long as we can con-
struct a finite-rank operator in the closure of the real algebra generated by A.
Clearly, (2.2.2) implies that A is not in the essential spectrum of A. From the well
known properties of the essential spectrum (for example, Theorem 6.8 and Proposi-
tion 6.9 in [2, p. 366]), it follows that every point in the spectrum of the operator A,
salisfying the condition (2.2.2) is an isolated eigenvalue of A, and the corresponding

Riesz projection has finite rank.



After first replacing the operator A by —A in the casc when Re A < 0, and then
substituting the translation A — max{Re) | A € ¢(A)} for A, we may assume that

maXyeq(4) Re A = 0. The condition (2.2.2) implics that
oo(A) ={r € 0(A) | RecA =0},

is a nonempty finite set, consisting of eigenvalues of A with finite multiplicity. By the
Riesz Decomposition Theorem [16, p. 31], the space H can be decomposed as H =
H1@® Ha, where dim(H;) < oo, and the operator A is similar to the operator Ay th Ay,
corresponding to this decomposition. Furthermore, the spectrum of A, is oq(A), and
the spectrum of Aj lies in the open left complex half-planc. Therclore r(et42) < |
for ¢ > 0, while r(e'4t) = 1 for any real argument ¢, By Rota’s Theorem [15, p. 136],
the operator 42 is similar to a strict contraction. Consequently,

611/\2

e i =

On the other hand, finite-dimensionality of H; implies that the sequence

CnA 1

T = ey

n=01...,
has a subsequence converging in norm to a nonzero finite-rank operator. O

Remark 2.2.1. Recall that the exponential function e? admits the power serics:

o0 "
I Spull

T
n=0 n:

Hence, the finite-rank operator constructed in the proof of Proposition 2.2.2 is indeed

contained in the norm closure of the real algebra, generated by A.
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2.3 Preliminary Geometric Results

This scction conlains preliminary resulis that are needed in the constructive proof of
the main theorem, given in the next section. The results presented here are mostly
casy observations and the proofs are somehow tedious and straightforward calcula-
tions, involving the standard “e,§” arguments.

Throughout, this section we make the following conventions:

H is a real or complex Hilbert space. Fix a unit vector fy € H and choose a

positive number r € (0, 1). The set S is defined as follows:

S={feH]| |fo—fI<r}.
Lemma 2.3.1. Let W be a subset of S and let A be a bounded linear operator on H.

Suppose thal
Re(Af, fo—f)>6>0, forall feW.

Then there exists a positive number p > 0, such that for any e € (0, p):
Nfo—(T+eA)f|| < |fo—= fll, forall feWw.
Proof. Note that [ € S implies ||f]| £ 1+ r < 2. Therefore for all f € S:
JASI < AL IF) < (147 14] < 2)14].
Set pu = aﬂ-fmg For any ¢ € (0,u) and f € W we have:
1fo = (I +eA)fI* = fo - f — eAf)?

= |lfo fII* — 26 Re(Af, fo— f) + € | AJ|’
<|fo= I - 2¢6 + %4 ||A|

= |lfo = FI” = 2¢(8 - e2[|AII") < llfo — fII°.

Hence g is the required positive number. [



by

Remark 2.3.1. Let 1'(0) denote the derivative of the function

bt) = (L +A)f — fo|*,

with respect to t, at the point ¢ = 0. A straightforward calculation yiclds
P'(0) = —2Re(Af, fo— /).

Therefore the statement of Lemma 2.3.1 corresponds to the well known fact that a
real funclion with (strictly) negative derivativeis (strictly) decrcasing. Note, however,
that positivity of Re (Af, fo — f) does not imply thal the mapping V() = (I +£A) [

is a contraction, as a function from W to S.

Lemma 2.3.1 gives a numerical criterion for the subset W C & 1o be mapped into
S, namely positivity of the function ®(f) = Re (A[, fo— f) on W. Since ¢(fo) =0,
this criterion cannot be employed at the point fo. However, the problem ol construct-
ing a function A: § — & can be easily reduced lo the subset of S not containing

the point fo. A simple observation in R? suggests the lollowing definition.

Definition 2.3.1. For a fixed ball § = {f € H | || o= [|| £} around the unit
vector fo € H, the polar hyperplanc Ps, of the origin wilh respect to S, is deflinea by

the following set:

Ps={feH| (i) =1-1}.
Remark 2.3.2. BEvery vector [ in Ps NS zan be decomposed as [ = (I —»?)fy + ¢,
where g L fo and ||g]|* < #(1 —#2). In particular, the boundary of Ps N S:

Psn8S={(1=rfo+g| gLl and oIt =1 -1},

contains exactly the points where the tangents from the origin to the ball § interseet,

the set S. Recall that in R? sucli a line is called a polar, and our definition is just
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a straightforward gencralization of this gecometric term {o the higher dimensional

Hilbert spaces,

The following lemma will reduce the problem of constructing a Lomonosov {unc-

tion A: § — S lo the polar hyperplane.

Lemma 2.3.2. The function Ag: S — S, defined by

Ao(f) = s

1
7?2 + <fa j0>
maps the sel S = {f € H | ||I = foll £ r} weak-continuously into itself. Further-

more, the sel of all fired points for Ag is equal to Ps N S.

Proof. Since Re ([, fo) > 0 for f € S, it follows thal Ag is well defined and weakly
conlinuous on §. Clearly, f € S is a fixed point {for Ag il and only if 2 + (f, fo) = 1.
By the definition of the polar hyperplane, that is equivalent to f € PsNS.

We have to prove that ||Ao(f) — fol| L r forall f € S.

Bvery vector [ € § can be decomposed as [ = (f, fo) fo + g, where ¢ L [y and
lgll* < * =11 = (/. o).

A straightforward calculation, using this decomposition, yields:

S I TS e S PR
HAo(f) - JO“ S <[’ f0>f fol| = |7_2 T <f, fo>|2 (7 + Hg“ )
1

< U S L ().

The conclusion follows if we can establish the following inequality:
4 2
P = L= () < P ()]
Setting ([, fo) = « + iy, this can be translated to

7,4 + 7.2 _ (1 _ .'1:)2 _ y‘l _<_ 7_'2(7"2 + .'1:)2 + 7"2,!/‘2’



or equivalently,
(L4 > vt r? = (1 = 2)* =22 (% + 2)?
=47 = L =)+ 201 — e — (L +rP)a?
= L+ (1 - ~2)"
The last inequalily is obviously always satisfied, with the strict inequality holding

everywhere, except in the polar hyperplane Ps. 0O

Definition 2.3.2. For every operalor A in B(H) define a real function A,y § — R

as follows:

AA(f)=m‘l‘“l_~m

Remark 2.3.3. Note that A4 is a “normalization” of the function Re (A[, fo — [) in

Lemma 2.3.1.
From the definition of the set Ps it follows that every vector [ in Ps NS can he

decomposed as f = (1 —12)fo+rv1 —r2g, wherc ¢ L fo and |jg]| < L. Consequently,

) A(f) = Re(A (fo+ 7=0)  fo — L2g)
- — Re (A fo, fo) ~ Re (Ag, 0) — Re ((LZZA = o A7) foyg)

r

In particular, for the identity operator I on H, we have A;(f) =1 — ||q||2 Therclore,
A1 > 0on PsNS, with the equality A;(f) = 0 holding il an only if / &€ PsN dS.
Observe that the function A 4: & — R is norm continuous, but it is in general not
weakly continuous, due to the presence of the quadratic form Re (Ag, g) = ((Re A)g, ¢)
in (2.3.1).
The next lemma imposes an additional condition on the operator A that guaran-

tees the existence of a weak neighborhood of [ in S on which Ay is positive.



Lemma 2.8.3. Supposc [ is a veclor in the polar hyperplane Ps NS, satisfying the

following strict inequalily for some A € B(H):
As(f) > [|Re Al As(F).

Then lhere exists a positive number § > 0, together with a weak neighborhood W of

[, such tha! for every h € WNS:
Aa(h) > |[Re Alless [A1(R)] + 6.
Proof. By the hypothesis, there exists a positive number § > 0 such that:
(2.3.2) A4(f) > |Re Al Ar(f) + 56.
For any positive number 0 < & < r2, define a weak neighborhood W, of Ps:
We={heH]| |1-r- (hy fo)| <€}
Every vector h € W, NS can be decomposed as h = (h, fo) fo+ g, where ¢ L fo and
lgl* < v* = {1 = (b, fo)* < 7% = (* = &)™,

[stimating roughly, we conclude:

Re (b, fo) (1 = {, fo))) = llgll

Al(h) = r2(1 — 7.'2)
(1—r2=e)(r?* —e) =12+ (r* —¢)? N 3e
r2(1 — r?) T r2(1— r2)’

Therefore, a weak neighborhood W, of Ps, such that ||[Re Al|, Ar(h) > =6, for every

ess

veclor b € W, N S, can be obtained by setting

2(1 _ 2
. or3(1 7).

1+ 3||Re A

€ss



A straightforward calculation yields:

(2.3.3)
AA(f ‘I‘g) = AA(f) + 2(1_., ) (RC ("\g’jo - [> - R(‘ (Afag) — RC (A.(/afl>) N

Proposition 2.2.1 implies the existence of a weak neighborhood W ol 0, such that for

every vector g € Wi, with ||g|| < 2:
(2.3.4) Re (Ag, 9) < ||Re Allo, llgll” + (1 —1?)6.

Clearly, by the weak-contlinuily of both sides of the inequalily, there exists a weak

neighborhood W, of 0, such that for g € Wi

Re(Ag, fo— f) —Re(A[,9) >
(2.3.5)
”R‘GAHess (RG (g7f0 - f) — Re <[,g>) — ,'2(| — ,.2)5_

Let W = W, N (f + Wi N Wz) be a weak neighborhood of f. Every vector A in
W NS can be written as h = f + g, where g € Wy N W, and |lg|| < 2. Putling the

inequalities (2.3.2-2.3.5) together, and using |Re A||,.. A1(h) > =6, implies:

Au(h) = Aa(f +9)
= Au(f) + =y (Re(Ag, fo— J) = Re(A[,9) — Re(Ag, 9))
> [[Re Allgss (Ar(f) + sy (Re (g, fo = [) = Re ([, 9) = Re(g,9))) +36
= |[Re Al Ar(f +9) 436

= |Re Al As(h) + 36

ess

> ”ReA”ess |A[(h)l + 6

Consequently, W is a weak neighborhood of [, with the required property. O


file:////g/f

36

2.4 The Main Result

We arc now ready to give the main result of this chapter, which is quite technical,

but, applicable to several situations discussed later.

Proposition 2.4.1. Lel A C B(H) be a convez subset of bounded linear operators
acting on a real or complex Hilbert space H. Fiz a unit vector fo € H and choose a
positive number r € (0,1). Suppose that for every vector g L fo and ||g]] < 1, there

caisls an operator A € A, satisfying the following strict inequality:

(2.4.1) Re (A (fo+ 72=9) , fo— ¥77g) > [[Re Al (1 = 9]*).
Then A contamns an operator Ao, with an eigenvector in the set

S={feH]| lfo—fll<r},
and the corresponding cigenvalue X satisfies the condition: |Re A| > ||Re Ag| -

Proof. Introducing the polar hyperplane Ps as before, observe that by (2.3.1) the
condition (2.4.1) implies that every vector in Ps N S satisfies the hypothesis of
Lemma 2.3.3 for some operator A € A. Consequently, for every vector f in Ps NS
there exisls an operator A € A, together with a (basic) weak neighborhood W of f,

and a positive number ¢, such that for every h € WN S:
Ax(h) > |Re Alls, |AL(R)] + 6.

By Lemma 2.3.1 there exists a positive number x such that the operator I +&A maps
the set WN S into S whenever € € (0, u).
In this way we obtain a weakly open cover of PsNS with basic neighborhoods. By

the weak-compactness of the set Ps NS, there exists a finite subcover Wy, ... , W,



together with the operators A in A, and positive numbers jp > 0, such that for

€ (0, pux) the operator T 4 eAy maps the set W, NS into S, and

(2.4.2) A, (B) > [Re Agll, AR,

€5H5

for every h € Wi, N S.
Define the weakly open sel Wo = {f € H | [(/, /o) — (1 = 2%)] > 0}. Associaled

with the set Wy is ils continuous indicator function [y: H — [0, co):

Do(f) = [(f = Jo) = (1 =+3)],

. AN
and the function Ag: § — S, defined in Lemma 2.3.2: Ag(f) = (7'2 +{/, ‘/0>) B

Fix a positive number € € (0, min {x,..., . }), and recall that every basic weak
neighborhood W admits a continuous indicator function [y: & — [0, 1], defined
by (2.1.2). Each point f € S lies at least in one ncighborhood Wy (k = 0,...,n),
therefore the sum 37 o [';(f) is strictly positive for all vectors [ € S. llence, the

functions oy S — [0, 1],

Tw(f)
1L=0 ]:‘j(f)

are well defined and weakly continuous on S. Also, Yo an(f) = 1 for every [ € S,

ar(f) = (k=0,...,n),
and ax(f) > 0 if and only if f € Wh.

The Lomonosov function A: § — S, in the Lomonosov space L{A U Ag), asso-

ciated with the set of functions AU Ay C C(S,H), is defined hy

a(f)
(f7f>f+Zak(f I+€Ak)/

Observe, that A(f) is a convex combination of the elements in S, and consequenily,

A(f) =

A maps the set S into itself (weak-continuously).
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The Schauder~Tychonofl Fixed Point Theorem implies that the Lomonosov func-

tion A: § — & has a fixed point f; € §. From A(fy) = f1, we conclude:

s(éak(ﬁ)x‘\k)fl =< T_%%ﬁ)“ Za‘ h )f]

k—
1
= w ] ———]fi.
0(f1)< P2 + (fl,f0>>f1
Outside the set W, U ... U W, the funclion A equals Ay and has no fixed points.
Conscquently, f1 € W, for at least one index & € {1,...,n}, and 2%, oy(fi) > 0.

Set,

__alh) __ ah) _
ﬂk-—zyﬂ U = T=aolf))’ (k=1,...,n).

Then Ay = S} BrAk is an operator in the convex set A. Clearly, fi € S is an

eigenvector for Ag, corresponding to the eigenvalue A:

94 _ CYo(fl) _ 1
(249) - 5(1 - aO(fl)) (1 ¥+ (f1,f0>).

Recall that by (2.4.2) the strict inequality A, (f1) > ||Re Ao [A1(f1)] is satisfied

whenever og(fi) > 0 (or equivalently S > 0). Therelore, nonnegativity of the

cocflicients i and subadditivity of the essential norm, imply

Ap(f) = ZﬂkAAk fi) > Zﬁk [Re Akl oo 181(f1)] > ||Re Aoll g |A1(f1)] -
k=1

By (2.4.3) the sign of Im A is the same as the sign of Im (fi, fo) = Im (f1, fo — f1)-
Hence, from Agf1 = Afy and Ag (/1) > ||Re Aolloo |AI(f1)], we conclude:
[Re M 1A (f1)] = (Re \)A(f1) = srsay Re ARe {f1, fo — i)
> i (Re)\Re (f1r fo— fi) = ImAIm (fy, fo — fr))
= 2(1_, yRe (A1, o~ f1) = Au(fi) > |[Re Aol s, [AL(f1)]-
The strict inequality implies that Aj(f1) # 0, and consequently A satisfies the required

condition: |[ReA| > ||Re Ao| a

ess’



39

2.5 Burnside’s Theorem Revisited

V.1. Lomonosov [12] established the following extension of Burnside’s Theorem Lo

infinite-dimensional Banach spaces:

Theorem 2.5.1 (V.. Lomonosov, 1991). Supposc X is a compler Banach space
and let A be a weakly closed proper subalgebra of B(X'), A # B(X). Then there crists

@€ X" andy € X', & £ 0 and y # 0, such thal jor cvery A € A

(2.5.1) [, A'y)| < || Al

css ®

The techniques introduced in the proof of this thecorem, based on the argument,
of the celebrated de Branges’ proof of the Stonc~Weierstrass Theorem [3], reccived
further attention in [1, 4]. Although in the Hilbert space case Theorem 2.5.1 is
equivalent to another theorem, also given in [12], we take a dillerent point of view
and employ Proposition 2.4.1 to obtain a stronger extension of Burnside’s Theorem

to infinite-dimensional Hilbert spaces.

The condition (2.5.1) is equivalent to the existence of unil clements x € X" and

y € X', and a nonnegative constant C' (depending on A), such thal

(2.5.2) H(z, Aly)| < C A for all A € A.

ess?

In general, the constant C' depends on the space X, and the algebra A. It is nol,
clear that on every Banach space there cxists an upper bound for ¢/, salislying the
condition (2.5.2), with respect to all proper weakly closed subalgebras of B(X). An
example of such a space would certainly be of some intercst. On the other hand, an

affirmative answer to the Transitive Algebra Problem [16] is equivalent to ' = 0.



40

At the moment we can provide no results concerning the estimates for the constant
¢ in any infinite-dimensional Banach space, otler than a Hilbert space. The next

theorem implies that on a complex Hilberl space the constant C is at most one.

Theorem 2.5.2. Suppose H is a complex IHilbert space and let A be a weakly closed
subalgebra of B(H), A # B(H). Then there exist nonzero vectors f,h € H, such that
forall A€ A:

(253) |RG <Af7 h’)' S ||R‘e A”css <f’ h) *

Proof. Supposc not; then the hypothesis of Proposition 2.4.1 is satisfied {or every unit
veelor fy and any positive number r € (0,1). Consequently, the algebra A contains

an operalor Ag with an eigenvalue A, satisfying the condition:

[Re Al > ||Re Al

ess *

Proposition 2.2.2 implies that the algebra A contains a nonzero finite-rank operator.
Therefore [16, Theorem 8.2}, the (transitive) algebra A is weakly dense in B(H),

coniradicting the assumption A # B(H). 0O

Remark 2.5.1. Note that (after arbitrary choosing the unit vector fo and then letting
r — 0) the argument in the proof of Theorem 2.5.2 shows that the set of all vectors
[ € H for which there exists a nonzero vector g € H satisfying the condition (2.5.3)

is dense in M.

Corollary 2.5.3. Suppose H is a complex Hilbert space and let A be a weakly closed
subalgebra of B(H), A £ B(H). Then there exist unit vectors f,h € H, such that for

al Ae A:

(2.5.4) (AL B < NIA

ess "



Proof. By Theorem 2.5.2 there exist unit vectors f, h € H, such that for every A € A

IRe (Af, )| < ||Re Al|,, -

Set
¢ = 1 il (Af,h) =0,
B ﬁ%,_;?ﬂ otherwise.
Then

[(AS, B} = [Re (EAS, RY] < [IRe(§A)lesy < N16ANleer = | Alless »

and consequently, the condition (2.5.4) is weaker than (2.5.3). 0O

The following definition yields an alternative formulation of the extended Burn-

side’s Theorem.

Definition 2.5.1. A vector f € H is called essentially cyclic for an algebra A C

B(H), if for every nonzero vector h € H there exists an operator A € A such that,
Re (Af,h) > ||Re Allogg L/ 1124 -

We say that a subalgebra A of B(H) is essentially transilive il every nonzero veclor

is essentially cyclic for A.

Remark 2.5.2. Note thal our definition of essentially transilive algebras does not,
coincide with the definition in [12]. In view of the discussion preceding Theorem 2.5.2,
we required that C is at most one in the definition of essential transitivily, while the

definition in {12] assumes no upper bound on C.
According to Definition 2.5.1, every essentially cyclic vector [ € H is also cyclic for

A, i.e. the orbit {Af | A € A} is dense in H. Consequently, an cssentially transitive

algebra is also transitive, as defined in [16].
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Theorem 2.5.2 can be restated as the following solution of the “Essentially Tran-

silive Algebra Problem”.

Theorem 2.5.4. An cssenlially transilive algebra of operators acting on a complex

[Tilbert space H, is weakly dense in B(H).

Remark 2.5.3. The reader may have noticed that, by Propositions 2.4.1 and 2.2.2, an
essenbially transitive algebra A, acling on a real Hilbert space, still contains a finite-
rank opcrator in its norm closure. However, in the case of a real Hilbert space this
is not, enough in order to conclude that A is weakly dense in B(H). A commutative

algebra J, generated by the matrix

1)
1 0
is an example of a proper essentially transitive algebra acting on R% The tensor
product B(H) ® J is an example of such an algebra acting on H @& H. However, the
exislence of a nonzero finile-rank operalor in the closure of an essentially transitive

algebra, implies the following commutative version of Theorem 2.5.4, which holds on

real or complex infinite-dimensional Hilbert spaces.

Theorem 2.5.5. A commutative algebra A, of operators acting on a real or complex

infinite~dimensional Hilbert space, is never essentially transitive.

Proof. By Propositions 2.4.1 and 2.2.2 the (norm) closure of every essentially tran-
sitive algebra contains a nonzero finite-rank operator T'. Since TA = AT for every
A € A, il follows that the range of T is a nontrivial (finite~dimensional) invariant

stbspace for A, contradicting the (essential) transitivity of A. O



Chapter 3

On Invariant Subspaces of
Essentially Self—Adjoint Operators

An application of the main result of the previous chapter to the algebra generated by
an essentially self~adjointl operator A yields the existence ol nonzero vectors w,y € H
such that 7(p) = (p(A)z,y) is a positive funclional on the space of all polynomials
on the essential spectrum of A. This result immediately implies the existence of real
invariant subspaces for essentially self-adjoint operators acting on a complex Hilhert,
space. Elementary convex analysis techniques, applied to the space of certain vector
states, yield the existence of invariant subspaces for essentially sell- adjoint operators

acting on an infinite-dimensional rcal Hilbert space.

3.1 Introduction

The existence of invariant subspaces for compact perturbations of sclf-adjoint op-
erators appears to be one of the most difficult questions in the theory of invariant,
subspaces [13]. The positive resulls about the existence of the invariani subspaces
for the Schatten-class perturbations of self-adjoint opcrators, acting on a complex

Hilbert space, date back to the late 1950’s. For the facts concerning such operators

43
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see Chapler 6 in [16], where a brief history of the problem, together with the ref-
ercnces Lo the related topics is given. The proofs of those results are based on the
concept of the separation of spectra. However, Ljubi¢ and Macaev [L0] showed that
there is no general spectral theory by constructing an example of an operator A such
that o(A|M) = [0, 1] whenever M is a nonzero invariant subspace for A. This sug-
gests that different techniques might be needed to establish the existence of invariant
sibspaces [or essentially sell~adjoint operators.

The fact that the right—-hand side of the inequality (2.4.1) depends only on the
essenbial norm of the real part of the operator A, suggests that Proposition 2.4.1 might,
have applications to the invariant subspace problem for compact perturbations of self-
adjoint, operators. In this chapler we apply Proposition 2.4.1 in order to construct
positive functionals 7(p) = (p(A)z,y) on the space of all polynomials restricted to
the cssential spectrum of A. Finally, in the case when the underlying Hilbert space is
real, the existence of invariant subspaces for A is established after solving an extreme

problem concerning certain convex subspaces of vector states.

Definition 3.1.1. Suppose H is a real or complex Hilbert space. An operator A €
B(H) is called essentially self-adjoint, if m(A) is a self-adjoint element in the Calkin
algebra B(H)/A(H), where n: B(H) — B(H)/K(H) is the quotient mapping.

Iiemark 3.1.1. Clearly, by definition of the Calkin algebra, A is essentially self-adjoint
il and only il A = 5 4 K, where § € B(H) is self-adjoint and K is a compact
operator. Hence, saying that A is essentially self-adjoint, is the same as saying that
A is a compact perturbation of a self-adjoint operator. Note, however, that this is

Jalse if we replace self-adjoint operators by normal ones.



3.2 On Real Invariant Subspaces

Recently V.I. Lomonosov [13] proved that every essentially self-adjoint operator act-
ing on a complex Hilbert space has a nonlrivial closed real invariant subspace. We
give an alternalive proof, based on Proposition 2.4.1, and thus introduce the idea that
will be later generalized in order to yield the existence of proper invariant subspaces
for essentially self~adjoint operators acling on a real Hilbert space.

Recall that a real subspace of a complex Hilbert space H is a subset Lhal is closed
under addition and multiplication by the real scalars. A real subspace M C H is
invariant for an opcrator A € B(H) if and only il M is invariant under all operalors

in the real algebra generaled by A, i.e. the algebra of all real polynomials in A.

Proposition 3.2.1. Supposc H is an infintle-dimensional complex [ilbert space and
let A be a convex sel of commuling essentially self-adjoint operalors. Then lhe sel of

non—cyclic vectors for A is dense in H.

Proof. Suppose not; then there exists a unit vector f; and a positive numberr € (0, 1)

such that all vectors in the sel

S={rem| lo-JlI< 7=},

are cyclic for A. In particular, for every vector ¢ € H and ||g|| < L, there exists an

operator A € A such that

Re (A (fo+ =9 i (o - L=2g)) > 0,

or equivalently,

Re(iA (fo + 75539) , Jo— E2g) > 0.



Since A is an cssentially self-adjoint operator, it follows that

ltm Al = [Re(i)ll,, = 0,

ess €ss

and consequently the convex set 14 = {1A| A € A4}, satisfies the hypothesis of
Proposition 2.4.1. Therefore, there exists an element Ag € A (Ag # 2[), with an
cigenveclor f; € S. Since the operators in A commute, fi cannot be a cyclic vector

for A, contradicting the assumption that all vectors in § are cyclic for A. O

Corollary 3.2.2 (V.I. Lomonosov, 1992). Every essenlially self-adjoint operator
on an infinite-dimensional complex Hilbert space has a nontrivial ¢l sed real invariant

subspace.

Proof. The commutative algebra Ag of all real polynomials in A consists of essentially
sell~adjoint operators whenever A is essentially self-adjoint. By Proposition 3.2.1 the
scl of non-cyclic vectors for Ag is dense in H. Since for every nonzero vector f € H
the closure of the orbit Agf = {T'f | T' € Ag} is a real invariant subspace for A, it

follows that A has a nontrivial closed real invariant subspace. O

Remark 3.2.1. II' A is a self—adjoint operator acting on a complex Hilbert space H,

then for every vector f € H and every real polynomial p we have:

(3.2.1) Im (p(A)f, f) = 0.

The condition (3.2.1) in fact characterizes self~adjoint operators on a complex Hilbert
space [9, p. 103]. Roughly speaking, Proposition 3.2.1 and its corollary establish a

similar fact for essentially self-adjoint operators acting on a complex Hilbert space.



3.3 The Space of Vector States

In the previous section we applied our machinery only to the imaginary part of an
essentially self~adjoint operator A. An application to ther -4 yields the existence
of “vector states” on the space of all polyncmials restricted to the essential spectrum
of A. Before proceeding, we make the fcilowing conventions that hold through the

rest of this chapter:

As usual, let H be an infinite~-dimensional real or complex Ilill);rx't space. The
underlying field of real or complex numbers (respectively) is denoted by F. Sup-
pose A € B(H) is a fixed essentially self-adjoint operator without non-trivial closed
invariant subspaces and lel £ denote its essential spectrum. [Furthermore, we may
assume that ||A]| ., <1, and consequently, &£ C [—1,1]. Let A C B(H) be an algebra
generated by A, i.e. A is the algebra of all polynomials p(A) with the coefficients iu

the underlying field F.

The algebra of all polynomials with the coefficients in F, equipped with the norm
Ipllee = max |p(e)],
is denoted by P(E).

Definition 3.3.1. Let D C H be the set of all nonzero vectors z € H for which there

exists a nonzero vector y € H satisfying the following incquality for every polynomial

p€P(E)

(3.3.1) Re (p(A)z,y) < |[Replly, (=, y) -
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Lemma 3.3.1. The sel D 1s dense in H.

Proof. Since the operator A has no invariant subspaces the condition of Proposi-
tion 2.4.1 is never satisfied for the algebra A. More precisely, for every unit vector
fo € H and any positive number r € (0, 1) there exists a vector g L fq such that for

every polynomial p € P(I)

Re <P(A) (fo + 7{%;79) yJo— 17-_T29> < |[Rep(A)]l,,s (1 = “9“2)
Clearly, for cvery polynomial p € P(F) we have

IRe p(A)|less = [|(Rep)(A)less = IRe Pl

The vectors

\Y4 1’;—7‘2 g

v = fo+ \/11—?79 and y= fo—

satisly the inequality (3.3.1). Lelting r» — 0, and replacing the vector @ by Az, where

A > 0, implies the required density of D. O
Lemma 3.3.2. For fized vectors x,y € H define a linear functional 7: P(E) — F
7(p) = (p(A)z,y) .

Then 7 15 a bounded positive functional on the space P(E) if and only if the following

inequality is salisfied for every polynomaal p € P(E):
Re (p(A)z,y) < |[Repll, (2,y) .

Proof. Suppose thal 7 is a positive functional on P(E). Then Re(p(A)z,y) =

((Rep)(A)z,y). Since ||Rep||, — Rep is a positive polynomial on E, we have

T(|[Repll, — Rep) = ((|[Rep|o, — Rep)(A)z,y) > 0,



or cquivalently,
Re (p(A)z,y) < ||Repll (v ).

Conversely, suppose 7 is not a bounded positive functional on P(/). Then either
there exists a real polynomial p such that Im (p(A)z,y) # 0, or (p(A)r,y) < 0 for
some positive polynomial p € P(E). After replacing p by =ip it is casy to sce that

Im (p(A)z,y) # 0 contradicts (3.3.1). Similarly, for a positive polynomial p we have

Hiplles = Plle < lIPlles -

Therefore (p(A)z,y) < 0 and (z,y) > 0 imply

(N2l oo = P(A)) 2, ) > [1plloo (@ 0) = Pl g — Pllos (2, 9),

contradicting (3.3.1). Finally, in the case when (z,y) < 0 the inequalily (3.3.1) fails

for the polynomial p=~-1. O

7

Definition 3.3.2. The set of all bounded positive lincar [unctionals on P(f) is de-

noted by 7. For each vector z € H define the set
L={yeH]| 7(p) = (p(A)z,y) € T}.
Lemma 3.3.3. For every veclor x € H, T, 1s a closed convex subsel of H.

Proof. Convexity of the set 7, is obvious. It remains to prove that the complement of
7, is an open subset of H. If y & T then there exists a positive polynomial p € P(F)
such that (p(A)z,y) Z 0. In that case there cxists a weak neighborhood W of y such
that (p(A)z,z) # 0 for every z € W. Consequently, the complement, of the sel 7, is

a (weakly) open subset of H. O3
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Definition 3.3.3. A positive functional 7 € 7 is called a stalc if ||7|| = 1, or equiv-
alently 7(1) = 1. The space of all states on P(E) is denoted by 7’. Similarly, for

every vector 2 € H the sel 7 is defined by
T;={yeH| r(p) = (p(A)z,y) € T'}.

Remark 3.3.1. From Lemma 3.3.1 and Lemma 3.3.2 it follows thal the set D of all
vectors & € H for which the set T, contains a nonzero vector is dense in H. If z and y
are nonzecro vectors and y € 7, then (z,y) > 0. However, since a positive functional
always attains its norm on the identity function, the equality (z,y) = 0 implies that
7(p) = (p(A)z,y) = 0 for every polynomial p € P(£), contradicting the fact that the
operalor A has no invariant subspaces. Therefore, the set 7 is nonempty for every
veclor ¢ in a dense sel D C H. In fact, for every vector € D the set 7 is the
interseclion of the cone 7, and the hyperplane M, = {y € H| (y,z) = 1}. Note

also, that for nonzero vectors € D and y € T, we have: (z,y) "y € T..

By Lemma 3.3.3 the set 7 is a weakly closed convex subset of H. We show that

the set 7. has no extreme points.
Lemma 3.3.4. For every vector x € H the set T, has no extreme points.

Proof. Suppose yg is an extreme point in 7. By definition of the set 7/, the functional

7'(p) = (p{A)z, yo) is a state on P(E). Hence,

w(p) = (1 = )p(t)) = (p(A)=, (1 — A")yo)

is a posilive functional on P(E). Consequently,

p= (1= A)ay0)™ (1 - Ao € 77,



Similarly,
yr=((1+A)r,y0)”" (L+ A")yo € T\

From

1 — Az, 1+ A,
Yo = ( 9) Jo) 1+ { 2)L 4ol Y2,

we conclude that yg = y; = y2. Therefore, (1 — A*)yo = ((1 — A)x, y) yo implies that,
Yo is an eigenvector for A*, contradicting the noncxistence of invariant subspaces for

the operator A. [
Corollary 3.3.5. For every vector @ € H the sel T is either emply or unbounded.

Proof. By the Krein—-Milman Theorem the set 7. cannot be weakly compact due to

the lack of extreme points. [J

Although the set 7 is unbounded [or every vector & € D, the following lemma
shows that it contains no line segments of infinite length. In particular, 7! is a proper

subset of the hyperplane

Mo ={yeH| (y,2)=1}.

Lemma 3.3.6. Every line segment in T has a finile length.

Proof. Suppose the set 7 contains a line segment of infinitc length. Then there exists
a vector y € T/, and a unit vector u L z such thal y + Alu € 7/ for every A > 0. lior
every power k = 0,1,..., and every vector z € 7/, we have: |<A":1;,z>| < I. Applying
this inequalily to a vector y + Au and letting A — oo implics that </\":1;,'{L> = (),

contradicting the fact that z is a cyclic vector for A. O
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3.4 Invariant Subspaces on a Real Hilbert Space

In this section we use vector states in order to establish the existence of invariant
subspaces for essentially self-adjoint operators acting on an infinite-dimensional real
Hilbert space. The invariant subspace problem for essentially self-adjoint operator
will be translated inlo an extreme problem and the solution will be obtained upon
diflerentiating certain functions at their extreme. Once again we will employ the

differentiability of the Hilbert norm. We start with the following lemma.

Lemma 3.4.1. Suppose & and y are any vectors in H such that Re (z,y) = 1. Fiz
a nonzero operator T € B(H) and let a = (||T) ||z]| |yll)~'. Then for every vector
z € H the funclion (X): (—a,a) — [0,00), defined by

2

B(N) = u (Re{(1 +AT)y,a) ) (1 +AT)y — 2
is differentiable on (—a,a). Furthermore, if 1’ denotes the derivative of ¢ then
$'(0) = 2Re <Ty,y —z—(|ly|* - Re (y,z))'z,> .

Proof. Since for A € (—a,a) we have Re ((1 4+ AT)y,z) > 0, it follows that the func-
tion 7 is well defined on (—a, a). In order to compute its derivative ’(0) first apply
the polar identlity to 9 and then use the product and chain rules for differentiation.

A straightforward calculation yields the required formula. [

Definition 3.4.1. For every vector x € D, define P;: H — T to be the projection

to the set 7/, i.e. for every z € H

1Pz = 2] = it 1y = 2.
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Remark 3.4.1. Since for & € D the set 7 is nonemply, closed, and convex it follows

that the projection Py is well defined on the whole space H.

Lemma 3.4.2. Ifx € D then for every vector z € H and cvery power k=0,1,...,

the Jollowing condition is satisfied:
Re (A*((|1Po2] = Re (Poz, ) + (I = Py)z), Puz) = 0.

Proof. Let T = A**, and fix a vector y € 7. The [unclion ®(\): (—1,1) — H is
defined by
®(A) = ((1+ AT)y,2)™" (1+ AT)y.

The same argument as in the prool of Lermuma 3.3.4 shows thal ® is well defined and
®(A) € T for every X € (—1,1).
Choose any vector z € H and consider the function (A): (—1,1) —= [0, c0),
defined by
$(N) = lo(A) - 2IP".

By Lemma 3.4.1 the function 1 is differentiable, and

¥'(0) = 2Re <Ty,y —z—(|ly||* = Re (y,z})m> .

By definition of the projection P, the function % altains ils global minimum al
the point A = 0 whenever y = P,z. Consequently, %'(0) = 0 for y = Pz, which

completes the proof. O

A remarkable fact is that Lemma 3.4.2 holds on a real or complex infinitc-
dimensional Hilbert space. It is now easy to establish the existence of proper invariant

subspaces for essentially self-adjoint operators acting on a real Hilbert space.
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Theorem 3.4.3. [very cssentially self-adjoint operator acling on a real infinite—

dimensional Hilberl space H has a nontrivial closed invariant subspace.

Proof. Suppose A is an essentially sell-adjoint operalor acting on a real infinite-
dimensional ilbert space H. We may assume thal ||A||,, < 1. If the operator A has
no nontrivial invariant subspaces then we can apply Lemma 3.4.2 and Lemma 3.3.6.
We will show that this contradicts the non-existence of invariant subspaces for A.

On a real Iilbert space Lemma 3.4.2 implies that for every k =0, 1,...:
Re (A*((|Po2ll” = Re(Paz, 2))z + (I = Py)2), Puz) =
(A*((|1Po2|l® ~ Re (Poz, )2 + (I = Py)z), Poz) = 0.

Since P,z # 0 it follows that
2
y: = (1Pez]’ = Re(Poz,2) )z + (1 — Po)z

is a non-cyclic vector for A whenever 2 € D. The proof is therefore completed if we
show that y, # 0 for a suitable choice of the vector z € H.

Recall that the sel 7. lies in the hyperplane M, = {y € H| (y,z) =1}. By
definition of the projection Py, the veclor y, = 0 for z € M, if and only if z € 7.
Lemma 3.3.6 implies that 7. is a proper subset of the hyperplane M, and thus

completes the proof. [

Remark 3.4.2. Theorem 3.4.3 yields the existence of invariant subspaces for an es-
sentially self-adjoint operator A acting on a complex Hilbert space, whenever the
opcrator A has a matrix representation with real coefficients. Although considerable
clforts have been made to reduce the general complex case to the real one, so far all

such attempts have been unsuccessful.
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We suggest that further research in this direction is likely going to reveal additional

.
properties of essentially self-adjoint operators and thus contribute to our understand-
ing of how such operators act on the underlying [Lilbert space in terms of invariant

subspaces.
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