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ABSTRACT

This work presents new methods for extracting information from
multivariate data sets based on the Kalman filter, a digital filter for recursive
estimation of parameters associated with a linear model. Paralle! Kalman filter
networks are used to take advantage of the diagnostic properties of the Kalman
filter, namely its ability to detect the extent and nature of modeling errors in
real-tims.

The potential of the network is demonstrated for reaction-rate methods of
analysis, using data from the molybdenum blue method for the determination of
phosphate. These Kalman filter models, implemented in a quasi-continuous
form, describe first-order reactions with & range of rate constants. The best
model for a given set of data is selected by examining the innovation sequences.
This algorithm successfully corrects for errors arising from variations in the
pseudo-first-order rate constant yielding improved concentration estimates.

The ability of Kalman filter networks to perform recursive principal
components analysic (PCA) is also demonstrated. Application to absorbance
matrices such as those in chromatography with multisensor detection are
considered. This network contains discrete models for describing one- and two-
component bilinear responses. The mode! deviations can be used to elucidate
the rank of the data set such that peak purity detection can be performed in real-
time using an élgorithm called evolving principal components innovations
analysis (EPCIA). The fundamental and experimental limitations of this
approach are examined for unresolved mixtures in liquid chromatography with
UV-visible detection. The results can indicate the presence of minor impurities.
Furthermore, the innovation sequences estimate the elution profiles of the
individual compenents. These profiles were further refined with the iterative

target transform.
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NOTATION

The discussions that follow will obey these conventions:

x is a scalar value (i.e. a number) represented by a lower case letter,

except for established symbols, like A for absorbance, listed on the
following page.

xl
X=|X,| Iisavector, represented by a bold lower case letter.

xS
xl,l xl.?..

X = X,; X,, | is @ matrix, represented by a bold upper case letter.
X1 X3z

~

The ~, called 'hat’, above a quantity signifies an estimated quantity, e.g., X.
The superscript -1 indicates the inverse of a matrix, e.g., X -1

The superscript T indicates the transposed matrix or vector:

T X, X,
XT = [X] = [ H 2l xglil
xl.:.’ Xy x32
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ABBREVIATIONS AND SYMBOLS USED

A absorbance

Acas measured absorbance

Apred predicted (Beer's law) absorbance

b sample pathlength

B background absorbance

c concentration

C matrix of concentration profiles

CLS Classical Least-Squares

e' orthogonal innovations

E error matrix

EFA Evolving Factor Analysis

ECR Effective Concentration Ratio

EMG Exponentially Modified Gaussian
EPCIA Evolving Principal Components Innovation Analysis
f relative contribution of the stray light
FA Factor Analysis

FWEFA Fixed Window Evolving Factor Analysis
GC Gas Chromatography

HPLC High Performance Liquid Chromatography
ITT lterative Target Transform

LC Liquid Chromatography

MCA Multicomponent Analysis

MS Mass Spectrometry

Ne number of ocbsevable components
Np number of principal components

Ng number of samples (e.g. spectra)

Ny number of wavelengths

PAH polyaromatic hydrocarbon

ppm parts per million

IR infrared

k rate constant

P radiant power



PCA

rsd
rms

SMCR

SSR
S/N

TFA

-—aqq;>a>ml>§'-d><§%“ﬁ'

Principal Components Analysis
chromatographic resolution

relative standard deviation

root mean squared

matrix of pure spectral profiles
Self-Modeling Curve Resolution

Sum of Squared Residuals

signal to noise ratio

Transmittance

transformation matrix

Target Factor Analysis

retention time of a chromatographic peak
time

ultraviolet region (200 to 380 nm)
visible region (380 to 780 rm))

scores matrix (abstract chromatograms)
loadings matrix (abstract spectra)
baseline width of a peak

spectral bandpass of the spectrometer
molar absorptivity

Squared eigenvalue matrix
wavelength

angle (degrees)

standard deviation

1/rate constant.

Kalman filter symbols
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innovation

observation matrix

Kalman gain matrix

error covariance matrix

model noise covariance matrix
measurement covariance matrix
state transition matrix
measurement noise vector
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system noise vector
state vector
measurement vector
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INTRODUCTION

1.1 MULTIDIMENSIONAL METHODS

Analytical chemists are often called upon to provide quantitative and qualitative
assessments of exceedingly complex mixtures, such as those found in
environmental or biological samples. This assessment involves three major
stages: (1) the design of an experiment, (2) the measurement of an analytical
signal, and (3) the extraction of information from the data. Questions of a larger
scope c¢an be answered with a combination of this information and previous
knowledge. For many complex instruments, the importance of the measurement
process alone is typically overestimated, as it is the chemist's ability to select
appropriate operating conditions and interpret the wealth of data that finally
determines the success of the analysis. This work examines how chemical
information is best extracted from the measurements obtained from modern
analytical instruments.

The purpose of each of these stages is illustrated here for the analysis of
a water sample. In this hypothetical example, the sample is analyzed to learn
more about the system under study, namely the water supply of a town. In the
experimental design stage, we should decide what properties of the sample will
be measured, and consider what is already known about the system. Then, a
clear goal is set for the experiment; for example, determining the concentration
of mercury in a sample that contains a number of other ions. Next, an analytical
method is designed. For this example, it may be the atomic absorption of

mercury measured at a suitable wavelength. The actual measurement is an
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intensity. At this stage, the analysis is still incomplete. In this experiment, like
most in analytical chemistry, the analyte concentration is not measured directly.
Instead, the property of interest (mercury concentration) must be estimated
indirectly. Thus the final stage is one of information extraction, where the raw
data generated by the experiment are used to answer questions about the
sample. Two common tools in this final stage are mathematical transforms and
models. One example of a transform is the logarithm that converts measured
intensities into absorbances. Others include averaging, differentiation, and
normalization. The next step in our experiment is predicting a concentration
from the calculated absorbance. This involves a model that incorporates prior
knowledge of the relationship between the measured signal and the property of
interest. The model can be derived from theoretical considerations, as well as
measurements of calibration samples. The accuracy of this estimate depends
on the model's validity for this particular sample. Similarly, providing error
bounds for the estimate requires an understanding of the measurement noise,
and how it propagates through all the calculations. In summary, the “"quality” of
the estimate depends on the amount of information that the experiment provides,
and our ability to reliably extract that information from the noisy measurements.

Unlike the atomic absorbance experiment, the analytical techniques used
in this work produce more than one datum per experiment. In fact, experiments
such as those that combine chromatography and spectroscopy produce a data
matrix, which often contains thousands of points. Although many more points
are taken, the end goal of this analysis is still to provide specific answers about
the chemical system being measured. At this point, one might ask what
motivates chemists to produce these seemingly unmanageable data sets? This

thesis will demonstrate advantages of muitidimensional techniques including:
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1. They are efficient. Multiple concentrations can be estimated with the
results of a single experiment. Furthermore, complex properties that
depend on multiple chemical species can be estimated with such
measurements. One example is the near-IR spectroscopic analysis of

grain for protein, starch, and moisture content?.

2. The precision of the estimates is improved by using multiple points of the
data2. For instance, concentrations can be estimated from entire analyte

spectra, rather than the absorbance at a single wavelength.

3. The accuracy of multipoint methods is often better than single point
methods, since procedures can be designed to detect, and correct for,

interferences that might otherwise invalidate a calibration model3.

This work demonstrates how digital filters, particularly the Kalman filter, enhance

these properties of multidimensional methods.

1.2 INTELLIGENT INSTRUMENTS

Computers and semiconductor electronics have profoundly influenced the
practice of analytical chemistry, altering the techniques of making measurements
and interpreting them. A perfect example is the comparison of a scanning
spectrometer to the diode array spectrometer used in this work. Scanning
spectrometers, the more traditional design, have a single detector that measures
the intensity at one wavelength interval chosen by a monochromator. To record
a spectrum, the monochromator is scanned to sequentially measure the
intensities over a range of wavelengths. In contrast, a diode array spectrometer

can be built with no moving parts. Instead, a multichannel detector is used, with
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each channel fixed at one wavelength interval of the spectrum. Each of the
several hundred detectors is a photodiode. Remarkably, this entire diode array
and its associated electronics fit on a chip the size of a postage stamp.

This spectrometer is also an example of an "intelligent" instrument, as it
has a central processor that coordinates its operations. The instrument can
control many aspects of the experiment including sample loading, measurement
timing, error checking, and signal processing. The resulting measurements are
stored on a laboratory computer for viewing and further analysis. Such
automated instruments have freed the chemist from the Iabor of taking repetitive
measurements. Besides, the computer is better for such tasks, as its timing is
precise, its operations are repeatable, and its resuits are free of transcription
errors.  Consequently, the chemist's time can be better spent on the
experimental design and interpretation stages.

Computerized instruments, like the diode array, generate data at a
tremendous rate. The problem arising in their use is the data alone are not
information and it is our interpretative abilities that often limit us. "“The added
mass of data is, at best, underused and, at worst, tends to obscure the hidden
information rather than clarify it."4 Furthermore, the time saved by using these
“efficient” instruments is easily negated if the results are presented in an
indecipherable form. This work uses digital filters to transform and interpret
chemical measurements. These filters run on the same laboratory computers
that store the digital measurements.

At the end of an analysis we want to have estimated properties that
summarize the data. Typically, these are properties that identify or quantify the
sample. The connection between the data and this information is not always

obvious. Earlier, it was suggested that data can be transformed and combined
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to efficiently produce these estimates. But what transformation or combination of
the data should be used? It would be impossible to try every possibility, aind
even if we did, how would we define the "best" method? ChemometricsS-8
considers questions like these. Massart has defined chemometrics as: "the
chemical discipline that uses mathematical, statistical, and other methods
employing formal logic {a) to design or select optimal measurement procedures
and experiments, and (b) to provide maximum relevant chemical information by
analyzing chemical data."® Chemometrics adapts methods from many fields,
such as the digital filters used in this work, which originated in engineering.

The greatest benefits are gained when chemometrics is employed at
every stage of the analysis. While techniques such as factor analysis can find
hidden relationships in the data and sclve difficult calibration problems, they
don't create information. Simply put, the amount of information that comes out of
an experiment cannot exceed the amount available from the data. For this
reason, experimental design and response surface methods!0 are important
areas of study. Another early consideration is choosing calibration samples1?
that result in accurate and precise results for the unknown samples.

This work has two themes. First, that the chemist's ability to interpret
chemical data can not be replaced by a computer: "It is often underestimated by
chemometricians what a good spectroscopist can do without us. We should
never under-estimate the pattern recognition capabilities of people."12 Qften the
results just need to be compressed or recast into a more interpretable form.
With this in mind, the results from Kalman filtering of chromatographic data will
often be presented in terms of prediction errors versus time such that the filtering
results have similar features to a chromatogram. As will be seen in Chapter 3,

interfering peaks produce characteristic features on this plot that are readily
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interpreted by the chemist. The second theme of this work is that the most
powerful and refiabls methods are those which incorporate prior knowledge of
the sample, experimental system, and measurement noise. The difficulty is
usually in transferring the chemist's intuitive knowledge of these into a more
mathematical form. This transformation will be expiored in Chapters 4 and 5.

In summary, modern instruments are potentially very powerful, but the raw
data are rarely used directly. Chemometric methods attempt to realize the
potential of these instruments. The digital filters used in this work extract
reliable estimates of desired parameters from chemical measurements.
Choosing the best chemometric technique is like choosing the best analytical
instrument - without considering the analytical problem under study the question
is meaningiess. Each technique has advantages and limitations. As in any field,
this choice can be difficult for a new user due to the cryptic terminology and

exaggerated claims of the literature.

1.3 CHEMOMETRICS AND INSTRUMENTATION

The amount of information an instrument can provide depends, ultimately, on the
nature of the analytical signal produced. To generalize these abilities,
instruments can be categorized as zero-, first-, or second-order13.14 by the form
of the resulting data. Examples of zero-order instruments are pH meters, single
wavelength spectrophotometers, and any other instrument that produces a
single datum per sample. The signal produced by such an instrument is typically
related to analyte conceniration with a calibration curve, that is used to predict
the concentration of one chemical component. However, a zero-order method is

incapable of detecting or correcting for interferences. This is a severe limitation
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when it is not possible to design an instrument that is specific to the analyte, or
to completely remove the interfering species from the sample.

To deal with more complex samples, first-order techniques producing
multiple analytical signals per sample may be used. These signals are reported
as a function of a variety of variables such as time (chromatography and
reaction-rate methods), energy (spectroscopy), and potential (electrochemistry).
In chromatography, a physical separation of the analytes is necessary, while in
spectroscopy the analytical signals are separated by a monochromator. As a
result of this separation, these techniques can estimate multiple properties
(concentrations) from the results cf a single experiment.

First-order methods provide information by distinguishing among chemical
species. Chromatography is a good case to consider, as the pure analyte signal
is generally a single peak. In the following discussion, we will assume a
constant peak shape and width along the chromatogram. The goal is to estimate
the “peak capacity* of a column as the maximum number of resolvable
components in a chromatographic run. Chromatographic resolution is defined

351 5

_ Aty
=W (1.1)

Where Atg is the difference in retention times of two peaks and W is the

R,

baseline width of the peaks. Figure 1.1 illustrates two Gaussian peak with
Rg = 1.0. For a Gaussian peak with a standard deviation of o Equation 1.1 is

equivalent to:

_ At
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(1.2)
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Figure 1.1 A two-component chromatogram with Gaussian peaks at Rs=1.0.

In this discussion, two peaks are considered at resolved at Rgs = 1.0, that is when
they are separated by at least one peak width.

The maximum number of components is separated when the peaks elute
sequentially, at equally spaced intervals. With this approximation, Giddings'8
estimated typical peak capacities of 10 for gel methods, 50 for liquid
chromatography and 200 for gas chromatography. This provides a rough
estimation of the information content of these techniques. The information
content of other methods, including the common spectroscopic technigues, have
been estimated by Crozier and Reevel?. Thus, the resolving power of an
instrument can be estimated when some assumptions are made about its typical
signals.

Another consideration in first-order methods is efficiency: the amount of
information produced divided by the time for the experiment. In chromatography,

the length of the experiment is set by the time needed for a physical separation.



9
For any column, there is a compromise between obtaining rapid analyses and
maintaining separation. By comparison, spectroscopic measurements can be
very rapid, particularly for instruments that observe all the elements of a signal
simultaneously. This category includes UV-visible spectrometers witn diode
array detectors and Fourier transform infrared spectrometers.

At this point, one might ask why a more complex instrument is necessary
to solve analytical problems. To answer this, the problems arising in qualitative
and quantitative assessments of mixtures will be reconsidered. As the set of
potential compounds in a mixture grows, the odds that they can be differentiated
with a first-order instrument decrease rapidly. Using chromatography as an
example, the certainty in assigning a peak from a single retention time is limited.
Similarly, it is difficult to quantify a peak consisting of two overlapped
compounds, or even detect when this is occurring. These problems can be
minimized by providing more information on each component of the sample, as
well as a greater separation between components. To achieve this, second-
order instruments rely on more than one method of separation18.

One of the best illustrations of a second-order instrument is gas
chromatography combined with mass spectrometry (GC/MS), which first
separates a mixture of components by retention time, and then separates by
molecular mass. The resulting data forms a matrix. It is important to note that
the two separation methods are different, and the separation generated in the
first stage is maintained in the second. When the above conditions are met, the
gain in peak capacity is multiplicative’9. In contrast, when the two first-order
techniques are used individually, the gains are additive. In practice, the gain in
peak capacity falls somewhere in between these limits. The limiting factors in

achieving a multidimensional separation are difficulties in obtaining truly
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orthogonal separations, and in maintaining the first separation while achieving
second separation.

Davis and Giddings20 have developed a statistical theory of component
overlap in multidimensional chromatograms. A pictorial representation of this is
given in Figure 1.2. The top panel shows 10 peaks that are randomly distributed
along the first axis of separation. Twenty single-component peaks could fit
across this axis if they were spaced the right distance apart, that is, we are only
working at half the peak capacity of the method. Despite this, the majority of the
peaks are unresolved. Rosenthal has also shown that both in theory and in
practice that: "the occurrence of overlapping components is far more prevalent
than may have been previously realized"2!. For comparison, the bottom panel
show the same peaks after another random separation along a second axis.
Here, the peaks are easily separated. A similar improvement could not be
expected from simply doubling the number of theoretical plates for the first

separation.

1.4 SIGNALS, NOISE AND FILTERS

The previous section emphasized that first- and second-order methods separate
the signals from different chemical species. If an analyte signal is completely
separated from other signals a univariate calibration can be used. Where the
signal is a spectroscopic peak, the analyte concentration could be estimated
from the absorbance at the peak maximum. The need for multivariate
techniques, such as digital filters, becomes apparent when a more realistic view
of a measurement is considered. Even in a well-designed experiment,

measurements will contain noise as well as the pure analyte signal. Random
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noise causes differences among repetitive measurements. The random nature
of this noise implies that its sign and magnitude vary over a sequence of
measurements. This noise is reduced with averaging. In contrast, no amount of
averaging can remove systematic (also known as cyclic) noise, since it repeats
itself during each experimental cycle. This noise can result from instrumental
artifacts or interfering chemical signals. One instrumental example of systematic
noise is when the excitation source in a fluorescence experiment contaminates
the analyte emission. This is a systematic interference, since the same noise
would appear with each measurement of the sample. Chemical sources of
systematic noise are also called interferences. They result when the instrument
responds to chemical species other than the analyte, that is, when the
instrument is not totally selective towards the analyte. The likelihood of this
occurring increases for complex mixtures. Both random and systematic noise
tend to obscure the analyte signal, making it difficult to identify and quantify.
Since random noise limits the precision of our estimates, it should be
minimized through expzrimental design and signal processing. All attempts to
extract information from a signal contained in noise are based on assumptions of
how the two differ. A common model is white noise, defined to contain all
frequencies in the same way that wiite light contains all the colors. Accordingly,
some frequencies of this noise can be filtered out with no effect on the signal,
just as a colored filter can remove portions of white light. While the sign and
magnitude of each deviation is by definition unpredictable, a large <ollection of
these can be used to characterize the noise. The magnitude of white noise has
a Gaussian distribution?2, This distribution is symmetric with a maximum at zero
deviation, implying that the effect of random noise is as likely to be positive as

negative. Another feature of this distribution is that its second central moment
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can be estimated as the standard deviation. This allows us to define the signal
to noise ratio (S/N) as the mean signal divided by the standard deviation.

White noise, and its associated Gaussian distribution, is only one
possibie form of noise. In practice, noise arises from many sources. These
include the observation of a random event, like radioactive decay, (a Poisson
distribution) and fluctuations in the instrumental response (1/f or flicker noise).
Each instrument has its own noise characteristics. For example, the noise in a
spectrometer results from fluctuations in the source intensity and the dark
current of the detector, as well as noise from electronic components like
amplifiers. Specific knowledge of these noise characteristics will help to design
strategies for their removal.

If the measurement consists of a single datum, then there is no possibility
of correcting for random noise, for although the overall character of the noise
can be defined, there is no way of knowing its influence on a single value. Atthe
other extreme, the average contribution of white noise is zero for an infinite
number of measurements. The compromise is to repeat the experiment a
number of times with the goal of reducing rather than eliminating the effects of
noise. This process, called ensemble averaging?3, involves summing repetitive
measurements. Assuming they are constant for each measurement, the analyte
signals will add coherently. In contrast, the repeated values of the random noise
tend to cancel each other, so that its effect converges towards zero. In this
case, ensemble averaging improves the S/N by up to n'2, where n is the
number of replicate measurements. [n summary, ensemble averaging a series
of repetitive measurements will improve the precision of the estimated signal.

Ensemble averaging illustrates some desirable qualities of a noise-

reduction method. Notably, it minimizes the influence of random variations



14
without degrading the underlying information of the signal. Unfortunately, it is
only suitable for repeatable experiments. Generally, this limits its application to
stable, nondestructive methods of analysis, and experiments where repetitive
measurements can be obtained on a reasonable time scale. Consider that if the
precision after 10 measurements is inadequate, then 30 or more measurements
are needed to double the S/N.

By definition, wach higher-order measurement contains many data points.
For example, one measurement of a sampie can produce an entire spectrum.
With some assumptions about the properties of the signal and noise, the S/N of
this data can be improved by digital filtering. Unlike ensemble averaging,
filtering can be applied to the signal measured in a single experiment.

The word ‘filter' invokes many images to a chemist. One would certainly
think of filters that remove large impurities from liquids. There are also optical
filters that attenuate selected regions of light. To design a filter that passes
analytical signal but suppresses noise, there must be some means of
discriminating between the two. One way of discriminating is by frequency -
assuming that the noise is at high frequencies, while the signal consists of
mostly low-frequency or DC components. Filters that eliminate high frequencies
are called smoothing or low-pass filters. For an electronic signal, this noise
reduction is often accomplished with an electronic filter constructed from
resistors and capacitors. As digital signals have become common in such
diverse fields as analytical chemistry, music, and communications, digital filters
have been developed for many operations traditionally done with electronic
ones, including smoothing, differentiating, and integrating24.

A digital filter is an algorithm in which coefficients are convolved with a

series of data points to obtain a new estimate of a particular data point
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(Figure 1.3). The simplest example is a moving average filter, which can be
used to smooth data collected at evenly spaced intervals. For example, each
smoothed data point could result from the convolution of seven raw data points
with the seven coefficients of the filter, divided by a normalization factor
(although some texts define this operation as digital smoothing rather than
digital filtering, no such distinct will be made in this work). The coefficients for
this filter are all equal to unity, and the normalization factor is seven. After each
smoothed data point is calculated from the data in the window, the filter moves
forward, taking in one new point at the beginning and dropping the oldest point
off the end before repeating the calculation.
The moving average filter described above works best when the signal
being filtered does not change significantly within the seven-point window.

When the signal is varying rapidly, peak shapes and heights will be distorted
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Figure 1.3 Schematic illustration of a symmetric digital filter.
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causing information to be lost. For many data sets, a smooth curve better
approximates the underlying function. Accordingly, polynomial functions are
often used to smooth localized regions of the data set. For example, a subset of

seven data points could be fitted to the quadratic function

y(x) =apx2 + a;x + ag (1.3)

For a number of reasons, including random errors in measuring y, it is unlikely
that such a curve will go through all the data points in the window. Still, the
parameters (as,a;,ap) should be adjusted to give the greatest agreement
between the predicted and actual points. For normally distributed errors, this
"best fit" is obtained by a least squares solution?5. A variety of computational
methods are avaitlable to find this, the oldest treatment was developed by Gauss
in 1795 for astronomical data28.

More recently, Savitzky and Golay27 introduced digital filters based on
such least squares solutions to analytical chemistry in 1964. They used the
central point of this polynomial curve as the smoothed paoint, since it combines
information from the original point and neighboring points based on a polynomial
model. Furthermore, they showed that the value of this smoothed point can be
calculated by a digital filter to give a least squares solution to this problem. For
example, a seven-point quadratic filter would have the coefficients
[-2, 3,6, 7,6, 3, -2], with 21 as the normalizing factor. In general, this approach
can be used for polynomial functions over any odd number of points. While
such filters do not increase the amount of information in the data, filtering can
improve the S/N of a peak.

The choice of signal processing method depends on the prior knowledge

available. At one extreme is ensemble averaging, which assumes nothing about
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the signal except that it is repeatable. This method provides the best noise
reduction under conditions of no signal distortion. Digital filters are often more
useful since they can be applied to non-repetitive signals. These filters estimate
the noise-free signal by using temporal correlation in the measurements. A
convolution function defines how the data in the window are combined, thus
determining the properties of the filter. Convolution functions were presented for
fow-pass filters, which suppress the high frequency components of the
measurement. These filters incorporate more prior knowledge than ensemble
averaging, as they assume the analyticai signal is composed mostly of low
frequency components. When this is true, these filters can successfully estimate
the smooth underlying signal. If high-frequency components are also associated
with the signal (sharp features) then excessive smoothing will distort the signal,
resulting in a loss of information. Thus smoothing is a compromise between
removing noise and changing the signal's shape.

The other extreme in prior knowledge is when the true form of the signal
is already known. In this case, the problem is one of quantitation and detection
rather than identification. Accordingly, the goal is to maximize the S/N, even at
the expense of distorting the signal. This is achieved with a matched fiter28.
The convolution function of the matched filter is simply the noise-free signal.
This is the optimal filter for a signal contaminated by white noise. This is
reasonable, considering that (1) every point in the measurement is used,
(2) points where the signal is strongest are given the highest weighting, and
(3) points with only noise are given a weighting of zero. Thus, matched filters
achieve the highest S/N ratio improvement, but require the most prior

knowledge.
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The methods discussed so far remove random noise from chemical
measurements. This noise reduction increases the precision of properties
derived from these measurements. All of these methods decrease the influence
of random noise, but they are not designed to remove the systematic noise that
often limits the accuracy of our estimates. Figure 1.4 illustrates how smoothing
affects a noisy signal. This example contains both random noise and systematic
noise (in the form of a sioping background on the last peak). Applying a moving
average filter {(seven point window) to this measurement reduces the random
noise, but the systematic noise is essentially unchanged. Also note that this
filter reduces the height of the narrow peaks and significantly distorts their
shape. The wider peak is also distorted, but to a lesser degree since it contains
mostly lower frequencies. The quadratic smoothing filter (seven point window)
introduces less signal distortion, but is less effective in reducing the random
noise. There are many types of digital filters for smoothing, and choosing
among them is not a trivial problem29.30,

Unlike random noise, systematic noise repeats itself with every cycle of
measurement. Thus, ensemble averaging will not reduce systematic noise or
the biases it produces. The ability to detect and compensate for systematic
noise depends on the nature of the measurement. Notably, zero-order methods
are incapable of detec*ng or correcting for it. Their calibration models assume a
totally selective response, but have no way of determining when this model fails.
A major advantage of higher-order methods is their ability to detect systematic
noise. An example is a first-order calibration based on a full spectrum of the
analyte. Interferences could be detected by the unexpected peaks they produce
in ihe measured spectra. Of course, this assumes that the analyte and

interference don't have an identical response at every wavelength. In other
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Figure 1.4 Smoothing filters applied to a noisy signal: (a) noise-free signal; (b)
signal plus random and systematic noise; (c) output from a moving average filter
(seven point window); (d) output from a quadratic smoothing filter (seven point
window).



20

words, the instrument has at least a partial selectivity to these species. Second-
order instruments can detect systematic noise in a similar way, except using
both dimensions of separation.

When systematic noise is a problem, there are two possible solutions:
1) an experimental approach that physically separates the analyte from
interferences, and (2) a mathematical approach, such as digital filtering, that
makes corrections at the data analysis stage. An example of the second
approach is the use of derivative filters3l. These are conceptually similar to
smoothing filters in that they distinguish between the signal and noise by
frequency. The difference is that derivative filters attenuate the low frequencies
of the signal. For instance, a flat background has a derivative (slope) of zero,
but a relatively sharp peak superimposed on this background has a significant
derivative on its ieading and trailing edges. Although the output of the derivative
filter does not resemble the analyte signal, it can still be used for quantitative
and qualitative purposes. When the signal has a linear relationship with
concentration, then the derivative of the signals will also change linearly.
Furthermore, the derivative signals are relatively unaffected by broad or sloping
background. In practice, derivative filters are most suitable for dealing with the
low-frequency systematic noise such as instrumental artifacts.

Figure 1.5 shows the effect of a derivative filter (seven point quadratic) on
a signal contaminated with random and s/stematic noise. The second and third
peaks give very similar signals in the filtered data, despite the sloping
background. Also note that broad peak's intensity is attenuated, as it contains
mostly lower frequencies. This is the opposite of what was observed in Figure
1.4 for the smoothing filter. The derivative filter is successful in certain

applications because the systematic noise and the signal contain significantly
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Figure 1.5 Derivative filtering of a noisy signat: (A) signal plus random and
systematic noise; (B) output from a derivative filter (seven point quadratic).

different frequencies. When the systematic noise is from a chemical
interference this approach is less practical, particularly for an interference with
properties very similar to the analyte. Still, there are many chemometric
techniques for this situation. Again, the choice of technique depends on the
form of the data, and the extent of previous knowledge. With first-order
instruments, these corrections generally require some knowledge of the
interfering species. One method for quantifying overiapped signal is linear
regression, also known as curve fitting. This method assumes that the
measurement is a linear combination of the individual signals, such as is the
case in spectroscopy when Beer's law is obeyed. When the measured spectrum
contains the absorbance of both analyte and interferences, the problem is one of
estimating the contribution of the analyte to the overall measurement. This can
be solved by linear regression when the spectra of the analyte and all of the

interferences are known32. An equivalent solution can be obtained with the
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Gram-Schmidt filter™28, This filter is like the matched filter in that it optimally

combines the data to maximize the signal to noise ratio, but it can deal with
random as well as systematic noise. The derivation of this filter also requires a
prior knowledge of the analyte and interfering signals. While the matched filter
emphasizes the data with high S/N, this fiter emphasizes data with partial
selectivities between the analyte and the interference. In summary, there are
methods of correcting for systematic interferences based on both linear
regression and digital filtering. Prior knowledge of the analyte and interfering
signal is usually required to apply these methods to first-order data, however,
The case of unknown interferences is often relevant in dealing with real
samples, and more problematic to solve. Most of the solutions to this problem
involve factor analysis, which will be outlined in Chapter 3. Briefly, these
methods require a matrix of data. Such data can resuit from a single experiment
with a second order technique, like liquid chromatography with a
multiwavelength detector. Alternatively a matrix can be built with a first-order
instrument using a set of calibration samples. Next, this matrix is decomposed
into a number of factors that explain the systematic variance in the data. In this
way, the data are assumed to be a linear combination of these factors, rather
than a combination of the known spectra. The final stage involves building a
model to predict the properties of interest in future samples. This is done by
examining how the factors correlate with the value of this property. The
advantages of this approach include: (1) it can compensate for unknown

interferences which are included in the calibration set, (2) it can correct for

“This filter is more commonly called the Kalman innovation filter. This name is not used here, to

avoid confusion with the Kalman filter. Despite their similar names, these are very different
approaches.
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nonlinear responses, (3) it takes advantage of the entire data set, unlike

approaches that use selected wavelengths. Thus, second-order instruments

make it possible to detect and correct for unknown interferences.

1.5 SUMMARY

This chapter has introduced digital filters for extracting information from signal

contaminated with both random and systematic noise. These are summarized in

Table 1.1.

Table 1.1 Summary of digital filters.

Random Noise
Prior Knowledge Present

Random and
Systematic Noise

Signal can be measured Ensemble
repeatedly averaging

Frequency content of Smoothing filters
noise and signal differ

Pure analyte response Matched fiiter

Derivative filters

Gram-Schmidt filter

(requires knowledge
of the interferences)

The following chapters discuss how another type of filter, the discrete Kaiman

filter, can be used to extract information from noisy signals of various types.
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THE KALMAN FILTER

2.1 INTRODUCTION

The fundamentals of digital filters and selected applications were presented in
the introductory chapter. Figure 2.1 summarizes the different contributions to an
experimentally measured signal and digital filters for treating each case.
Smoothing and matched filters are appropriate when only random noise is
present. By combining multiple values of the measurement, these filters can
estimate the underlying signal with increased precision. The next class of filters,
including the Gram-Schmidt and derivative filters, can also minimize the
contribution of known systematic effects that would otherwise limit the accuracy
of the filtered signal. A calibration or transformation step is still required to
predict the properties of these systems. Usually, we are interested in properties
like analyte concentration. This chapter introduces the Kalman filter33-36 as an
alternative method of estimating these properties of interest, or state
parameters, directly from noisy measurements.

The Kalman filter combines many advantages of the digital filters
introduced so far. One advantage of the digital smoothing and derivative filters
is that they can be applied during the data collection, like their electronic
counterparts. Recursive filters, like the Kalman filter, are also suited to real-time
applications. Another attribute of polynomial filters is the flexibility that results
from using polynomial equations with adjustable parameters, especially since

these do not need to be known before the experiment. Similarly, the Kalman
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Figure 2.1. An overview of digital filters for state parameter estimation.
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filter has adjustable parameters in its model of the system. In contrast, the
Gram-Schmidt and matched smoothers have more exacting requirements for
prior knowledge of the system. The strength of these approachs is that all the
measurement data is incorporated into the estimates in a manner that results in
optimal estimates of the signals. The Kalman filter also shares this ability to
provide optimal estimates.

In the last case illustrated on Figure 2.1, an interference is present, but
not included in the model. This interference will cause inaccurate results, that
may not be identified with the output of a simple filter. The Kalman filter can
often detect the presence of such unmodelled compenents, and discriminate
against them. In summary, the advantages of using the Kalman filter include its
flexibility, real-time operation, and ability to provide diagnostic information for
detecting model errors.

The Kalman filter is fundamentally different from the filters introduced so
far, in that it is a recursive filter37. Recursive filters include past values of their
output as part of their current input. This could be regarded as 'feedback' in
comparison to an electronic filter. A simple operation that can be carried with a
recursive filter is integration: the output of the filter at point % is calculated by
adding the signal's current value to the previous (k-1) output of the filter. In
contrast, the polynomial smoothing filter, discussed earlier, is nonrecursive since
its only inputs are the measured values of the signal. Recursive smoothing
filters are also used, but their design is more difficuit and they are often less
stable.

This chapter will demonstrate: (1) how recursive filters estimate signal

properties in real-time; (2) what state space models are; (3) by what definition
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these filters give optimal estimates; and (4) how Kalman filters aid in model

evaluation.

2.2 RECURSIVE FILTERS

The concept of a recursive filter is demonstrated here with a simple example.
The problem is one of estimating a fixed signal from a series of noisy

measurements:
Z, =X+ Vy (2.1)

where z,, is the kth value from the series of measurements z = { 16, 14, 17, ..},
X is the true value of the signal, which is assumed to be constant; and v, is the
value of the noise. This is the same case as treated earlier by ensemble

averaging, but here our goal will be to provide an estimate of the signal (X,)

after each measurement. One scheme for estimating the signal would be:

5\(1221 =].6
i2=’.]2‘Z]+:12'Z2= 1_&.::"2;14_ =15

ig = %ZI +":I'3“ZZ +%Z3 = 16+14+17 -H:;-H = 15.7

3 N L vee 4+ L

X100 = 10621 T 10022 Tt 1002100
This algorithm is consistent with the previous digital filters in computing its
output as the weighted sum of the inputs. For instance, X5 is calculated by

applying the convolution function [1/3, 1/3, 1/3] to the first three measurements.

Although this method calculates the correct results, it is rather inefficient.
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Like nonrecursive filters, recursive filters also refine the estimate with each new
measurement. The difference is in the way that they calculate the estimate. The
recursive solution computes the new estimate (X;) using only the previous

estimate (}“{k.l) and the most recent measurement z;. For example,

i'l:Z] =16
ig —_-%}‘(}_ +%Zg = 5 =15
Ry =48y +1z5 = =15.7

X100 = T%%X% + 1‘(])62100

This recursive algorithm is practical for real-time operations as the number of
calculations foilowing each measurement is fixed. For example, measurements
1 to 99 are not explicitly involved in calculating the 100" estimate since any of
the useful information they contain is already incorporated into the 99th estimate.
The filter gain is the relative weight placed on the new information (provided by
the measurement) versus the old information (contained in the prior estimate).
For this example, the gain is simply 1/k. This illustrates that recursive algorithms
can estimate the true signal in real time from noisy measurements.

The above example shows the computational elegance of the recursive
approach. [t would be usefui to extend this approach to more complex problems
where the signais and noise statistics vary over the course of the experiment. A
solution for estimating the current signal's value from a series of noisy

measurements was found by Wiener38.39 in 1949. He showed that a filter can
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be designed to output an optimal estimate from a weighted sum of ail the
previous measurements. Unfortunately, such filters are not recursive, as they
require all the weighting terms to be recalculated after each new measurement.
Consequently the Wiener filter saw little practical use. The other limitation of the
Wiener filter is the difficulty in extending it to include multiple inputs and outputs.
Both of these limitations were overcome by R.E. Kalman#40 in 1960, who derived
a recursive solution to the same problem.

The Kalman filter was originally presented in the engineering literature, so
it uses the terminology of contro! theory. In this language, the Kalman filter is a
state space method for modeling a system. In chemistry, the system couid be a
reaction, a mixture of chemical species, or an instrumental response. In
modeling this system we seek a set of mathematical equations to account for its
dynamic behavior, that is, to describe its state at any point in time. Although
originally developed for time series, other independent variables such as
wavelength can be used. The state vector contains the adjustable parameters of
the model that summarize the properties of the system. The Kaiman filter
estimates the state vector (and hence the properties of interest) recursively from

noisy measurements made on the system.

23 KALMAN FILTERS

2.3.1 The Discrete Kalman Filter Algorithm

In this section the equations used in each cycle of the Kalman filter will be

described. The measurement model is defined as
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z =Hkxk + vy (22)

where z; is an (m x 1) vector which consists of m measurements made at
interval k, and vy, is the associated (m x 1) measurement error vector assumed
to be a white noise sequence. This vector approach allows the system to be
monitored with an array of sensors, such as the diode array, as opposed to a
single sensor. These measurements are used to estimate the (n x 1) state
vector X;. This vector contains the properties of interest, such as the
contribution of each chemical species in a mixture. These state parameters do
not need to be measured directly. For example, the initial concentration of a
reaction mixture could be a state parameer, even when its value can only be
inferred from absorbance measurements made during the experiment. The
measurement vector and the state vector are related through the (m x n)
observation matrix H,,.

Uniike the frequency-based approach, the state space method allows an
explicit time dependence of the model; that is, the state parameters incorporate
prior knowledge of the system. The Kalman filter then uses this knowledge to
predict future states. Dynamic systems can be modeled at two stages. For the
reaction-rate examples, that follow, the time-dependence will be included in the
observation matrix41. The values of this matrix will change over time according
to the system's model. For example, a reaction-rate model could incorporate
first-order kinetics. In modeling other systems, such as a drifting instrumental
response3®, there is no deterministic model for the changes. The temporal
changes in these systems can be modeled as an uncertainty in propagating the
state vector. Thus the Kaiman filter is capable of incorporating prior knowledge

of the experimental system's random and systematic behavior.
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An example of a "system" would be a zero-order reaction*2 that produces
a spectroscopically observable product. in the following example, the system is
"observed" by measuring the product's absorbance (Ap) once per second.
According to the reaction rate model, this absorbance should increase linearly

with time:

A)=mt+b+v, (2.3)

such that a plot of A () versus time has a slope m (related to the rate
constant), a background of b and a contribution from random noise v;. Recast

in the form of the measurement model:

<= [m}
b (2.4)
H=[t 1] (2.5)

where X is the state vector and H is the observation matrix. Note that unlike a
smoothing filter, which estimates the noise-free values of A ,(£), the Kalman filter
estimates two parameters (m, b) that describe the state of the system at any
time. These state parameters are assumed to be constant, because the
observation matrix described by Equation 2.5 already accounts for the time
dependence of the absorbance. Later, methods for testing the validity of this
model will be explored.

With each new measurement the Kalman filter calculates a state

estimate update:

X, =X, + Kk(Zk -H, i\fle—l) (2.6)
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where X, is the updated (n x 1) state vector

X, 1is best estimate of the state vector before measurement &
Z;, is the {(m x 1) measurement vector at point k

K} is the (n x m) Kalman gain matrix

H; is the (m x n) observation matrix.

As before, only the current measurement is used explicitly in this equation. The
extent to which this new measurement changes the state vector depends on the
innovation (Figure 2.2), defined as the difference between the actual
measurement (z,) and the predicted measurement (H, f(k_]). A correct
prediction gives an innovation of zero, which causes no changes in the state
vector. Otherwise, the state vector changes by a weighted portion of the
innovation. The extent and direction of these changes are dependent on K, the
gain of the filter. As in previous filters, these weights define the properties of the
filter. Unlike the filters discussed in Chapter 1, the Kalman filter gain usually
changes over the course of an experiment. Next, we will consider what
properties we want this filter to have, which leads us to the definition 2f the
Kalman gain.

The goal of the Kalman filter is to provide "optimal” estimates of the state
vector. If measurements made on the zero-order reaction were error free, then
only two measurement cycles would be needed to calculate the true values of
the slope and intercept. Experimentally, each measurement has an uncertainty,
due to the noise sequence, v;,. We cannot know the individual values of this
sequence, but instead we can only summarize their statistics. For the Kalman
filter the measurement covariance matrix R, contains the noise statistics

associated with the measurement of the system z;,. In this example, the
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Figure 2.2. The Kalman filter applied to the fourth point of a data sequence.
The innovation is the difference between the measured value of this point and its
predicted value.
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absorbance is measured at one wavelength so R;, simply contains the variance

of this absorbance reading.

When the measurements are only approximations to the true values, then
so are all calculations resting upon them. Thus, our goal is to develop the best
approximation to the true state vector as possible. This is equivalent to
minimizing the error in the estimate [X,,,,, - X]. but in practice this can not be
calculated since X, is unknown. Still, this sequence of errors in the state
vector can be described by its statistics in the same way as the measurement
error, resulting in an error covariance matrix, P. In summary, when there are
random errors in the observation of the system, such as the absorbance
measurements, then there will be random errors in any parameters that are
estimated from them. The random errors in the measurements are contained in
the measurement covariance matrix, R. These errors can be evaluated
experimentally. The error covariance matrix, P, indicates the extent that these
measurement errors are propagated to the state parameters.

Now corsider the desirable properties for an estimate. First, the state
vector is expected to converge on its true value, such that the average
estimation error is zero. In other words, the Kalman filter should provide an
accurate estimate. Second, these estimates should be precise, such that the
errors [X,,,,. — X;,] are as small as possible. The values on the diagonal of P
summarize the expected size of these errors, expressed as variances. If we
have no knowledge about the initial values of the state parameters, x,, before
the experiment is conducted, they are set to zero. This absence of knowledge is
expressed in the initial value of the error covariance matrix, P, by setting its
diagonal elements to infinity - approximated by a large value such as 1030 in

computations. The ideal experiment would yield the exact values of the state
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vector, such that the elements of P, are zero. Thus the goal of estimating the
state vector x in an "optimal" way can be defined more exactly: the Kalman filter
should use the measurements to minimize the uncertainty of the estimated state
vector. To do this, it must employ the gain K that minimizes P along the
diagonal. This definition results in @ minimum mean square error estimate43,

Equation 2.6 updates the state vector for point k, using a gain of K. In
the Kalman filter, this gain is calculated to give an optimal estimate (as defined

above) of the state vector. The (m x n) Kalman gain matrix is computed as

K = P,H! (H,P,H] +R,)” 2.7

This gain considers three things: (1) the uncertainty in the measurement made
on the system, which is contained in R, the measurement error matrix; (2) the
uncertainty in the present state vector stored in the estimated covariance matrix,
P, which reflects the amount of information already gleaned from previous
measurements; and (3) the abservation matrix, H, which indicates the magnitude
by which the state parameters should be changed, and in what direction.

After computing a new state vector, the next step is to perform the error

covariance update:
P, = (I - Kka)Pk_ (2.8)

In the notation used here, the "-" superscript of P~ indicates that this is the
estimated covariance matrix before assimilating the new measurement at interval
k. and I is the (n x n) identity matrix. This equation decreases the variance
associated with each state parameter. Since the new estimates include

information from the kth measurement, the new value of P is smaller to reflect
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this improvement. In this work, a more computationally stable form of Equation
2.8 is used44 which propagates the square root of the covariarice.

Figure 2.3 summarizes the recursive cycle of the Kalman. The "project
ahead" stage was not used in our example since the state parameters were
assumed to be constant. Otherwise, the model requires a state transition matrix
(), to describe the manner in which the state changes between measurements.
Any uncertainty in this relationship is expressed in the matrix Q. in this case, ¢
is equal to the identity matrix and Q is equal to all zeros as the state vector is
assumed to be constant. Note that random changes in the state, such as those
introduced by instrument drift, deteriorate the model's ability to predict the future
states of the system. Consequently this uncertainty increases P, counteracting

the benefits of previous measurements.

2.3.2 Example: One Cycle of Kalman Filtering Reaction-Rate Data.

This example will work through one cycle of the Kalman filter algorithm applied
to the zero-order reaction data shown in Figure 2.2. Specifically, the following
calculations update the state vector to include the fourth measurement. The test
data were generated with Equation 23 usingm =1, b=2,and t =[1, 2, 3,
4,..), that is, one measurement per second. Gaussian distributed noise was
added to this data to simulate a measurement error, v, with a standard deviation
of 0.2.

After three cycles of Kalman filtering

2. | 075 p, .| 0.020 ~0.040
871937 $71-0.040 0.093
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Enter prior estimate x- and
its error covariance P~

Compute Kalman Gam
K=PH(HPH+R)

Project ahead: Update Estimate with
= 9x measurement z:
=¢P¢+ Q x = x~+ K(z - Hx")

Compute error covariance
for updated estlmate
P=(I-KH)P

R (nxn) covariance of noise x (nx1) state vector

¢ (nxn) state transitior. matrix P {nxn) error covariance matrix
Q (nxn) covariance of model noise  H (mxn} observation matrix

z (mx1) expermental measurement K (nxm) Kalman gain matrix

nxn

Figure 2.3. Summary of discrete Kalman filter equations.
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this state vector is based on the first three noisy measurements. The variances
associated with its state parameters (the slope and background) are on the

diagonal of the error covariance matrix P. Thus the estimated state parameters

are

" | 2.37+/0.093

X3 =
where the error is expressed as one standard deviation. Equivalently,

Moy =0.75+£0.14  (my,, =1)

. [0.75-: \/0.020}

by =2.37+£0.30 (b, =2)

To update this state vector to include the fourth measurement requires the

observation matrix,
Hy=[t 1]=[4 1]
and the Kalman gain matrix calculated from Equation 2.7 with R, = (0.2)2 gives:
K, = [ 0. 3}
-0.5
The observation matrix multiplied by the state vector predicts the value of the

fourth point. The innovation is the difference between the measured response

and this predicted response:

0.75

z-Hx= 6.30-[4 1][2 37

] =6.30-5.37=0.93
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The Kalman gain multiplied by this innovation is used to update the state

parameters. Finally the error covariance matrix is updated with Equation 2.8

giving,

s = 1.03 P _ 0.008 —0.020
1711.90 171.0.020 0.060

or equivalently

m,, =1.03+0.09

by, =1.90£ 0.2

Note that both estimated values have improved. The estimated slope was
increased and the estimated background has been decreased. The signs of
these changes, in relation to the innovation, were defined by the Kalman gain
vector. Furthermore, the uncertainty in both estimated values is decreased by

including another measurement.

2.3.3 Diagnostic Abilities of the Kalman Filter

The Kalman filter used above had a static model with no prior estimates of the
state parameters. In other words, the background and reaction rate were
assumed to be constant, and their values were unknown before the experiment.
In such cases, the final estimates of the Kaiman filter are identical to those
calculated by a traditional least-squares fit38. Thus, in this application, the
Kalman filter can be regarded as a recursive means of computing least-squares
estimates. Since the final estimate of the state vector is the most precise, it

might be asked if there is any advantage to calculating its intermediate values
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during the experiment. This thesis will emphasize that the Kalman filter provides
important diagnostic information on the fit, thus indicating when the incoming
data are not accurately described by the model.

One such indicator is the innovation, the difference between the
measurement predicted by the current state parameter and the actual
measurement. This is already calculated for each measurement in the state
estimate update (Equation 2.6). If the noise in the measurements is a white
noise sequence, then the innovation sequence should be too38. Therefore, the
innovation sequence can be examined to verify it has the appropriate statistical
characteristics. in this way, the assumptions of the model can be assessed in its
use.

Figure 2.4 continues the example of modeling a zero-order reaction with
the Kalman filter. In this example, the zero-order model fails to describe the data
after about 15 points. The innovations (Figure 2.4B) appear random for the first
15 points, as expected, since the model is correctly predicting the measured
data. Thus, we assume the state vector is converging on the true vaiues [m, b]
with increasing precision. After point 15, a change is observed: the magnitude
of the innovations increases, and they are consistently negative. This indicates
that the measured data are systematically lower than the predicted values. The
state vector must also be changing in an attempt to minimize prediction errors of
future measurements. This suggests that data collected after about point 15 are
not described by the same state vector as the previous ones. Thus the ability of
the final state vector to summarize the behavior of this system is questionabie
because the zero-order model is not consistent with all the data. The advantage
of the Kalman filter is that it flags these erroneous results, and identifies the

locai region of modei failure.
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In contrast, the application of traditional least-squares yields only one set
of estimated parameters. These can be substituted into the reaction rate model
to calculate the fitted line (Figure 2.4A). The distance of the experimental points
from the points predicted by this equation are known as the residuals. Unlike
the innovations, all of these residuals are calculated from one set of the fitted
parameters. For example, the residual for experimenta! point A5 would be
calculated from parameters fitted to all 25 experimental points, even though
some of these data are inconsistent with the proposed model. In contrast, the
innovation for Ay is calculated from f{M, a state vector fit to the first 14 points.
Although this state vector is based upon fewer points than the regression
estimates, the points it uses are all in a region where the model is obeyed.
Figure 2.4C illustrates that while the residuals can indicate a poor fit of the
model, they don't suggest that the model was correct for the bulk of the
measured points. The diagnostic properties of the Kalman filter become
increasingly important with complex data and models.

The diagnostic features of the Kalman filter have been exploited with the
adaptive Kalman filter which can be used to compensate for model errors. The
adaptive Kalman filter was introduced into the analytical chemistry literature by
Rutan and Brown43.46 who showed that in certain cases errors resulting from
spectral components not included in a model could be corrected.

In summary, the Kalman filter is based on the following principles:
(1) recursive estimation - since the computation time and storage requirements
of the algorithm are fixed, this is a practical approach for {aboratory computers
and real-time applications; (2) state space estimation - this allows the
properties of interest to be estimated directly, and the time-dependent behavior

to be included in the model; (3) optimal estimation - by definition, the Kalman
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gain results in a minimum variance estimate; and (4) model selection and
evaluation - the Kalman filter can evaluate prediction errors in real-time with its
innovations. The diagnostic abilities of the Kaiman filter will be explored further

in this thesis.

2.4 KALMAN FILTERS IN ANALYTICAL CHEMISTRY

Since its introduction to engineering in 1960 the Kalman filter has been applied
in many fields including navigation4’, physics36, and biotechnology*8. Early
work in chemistry includes applications by Seelig and Blount*® (1976) to
voltammetry data, and Poulisse50 (1979) to multicomponent determinations in
UV spectroscopy. Poulisse noted the practical advantages of directly coupling
the measurement device to a computer, and considered how theoretical results
in Kalman filter theory apply to the design of analytical experiments. From 1980
on, applications of the Kalman filter to analytical chemistry have steadily
increased, likely reflecting the increasing availability of laboratory computers and
computer-controlled instruments.

For a comprehensive review of the Kalman filter in analytical chemistry
the reader is directed to Brown33 (1986) and subsequent biannual reviews of the
field of chemometrics8. Brown grouped applications into four areas: noise
removal: peak resolution; detection and compensation of instrumental drift, and
model identification and improvement. Another useful summary by Rutan34
illustrated Kalman filtering approaches to five problems: resolution of overlapped
responses; removal of variable background responses; calibration with drift
correction; determination of kinetic parameters; and estimation of

electrochemical charge-transfer parameters. The following discussion will
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summarize applications that are typical of each of these areas, as well as those
which illustrate advantages of the Kalman filter over more traditional

approaches.

2.4.1 Noise Removal

The nonrecursive digital filters that Savitzky and Golay introduced to chemistry
are commonly used for smoothing and differentiation. The Kaiman filter can be
used for the same applications®!, with the state parameter simply being the
noise-free value, or the numerical derivative of the instrumental response.
Lavagninis2 et a/ used the Kalman filter to smooth voltammograms and estimate
protonation constants from titration curves. In both cases the results compared
favorably with those obtained with more traditional methods. They also noted
that the Kalman filter was computationally efficient and, in the case of
smoothing, it had fewer parameters to optimize than other methods. As was
demonstrated for polynomial filters in Figure 1.4, smoothing is a compromise
between noise reduction and signal distortion. When the signal's characteristics
change over the course of the experiment, such as peak width in
chromatography, so do the properties of the optimum smoothing filter. These
changes can be incorporated into the Kalman filter model. Filters can also be
designed which adapt to changes in the incoming data53.54. These are useful in
cases where the system's behavior is not well characterized before the
experiment. Similarly, LilleySS demonstrated a self correcting smoothing routine,

based on the Kalman filter, that prevented over-smoothing of transient peaks.
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2.4.2 Determination of Kinetic Parameters

An earlier example illustrated a Kalman filter for zero-order reactions. The
Kalman filter has been applied to a wide range of reaction-rate studies.33.34.41,56
to determine rate constants, rate laws, and analyte concentrations. One
example is simultaneous kinetic determinations#!, which take advantage of
differences in the rate constants for parallel reactions to determine more than
one analyte simultaneously. In such determinations, the Kaiman filter often
outperforms graphical and initial rate methods, particularly when the first-order
rate constants are very similar. Velasco et al used such a Kalman filter for the
determination of three phenolsS7. Kalman filtering has alsc been used for the
simultaneous determination of species following different kineticsS8, specifically,
simultaneous first- and second-order reactions with the same reagent.
Furthermore, the Kalman filter model for reaction-rate methods can include the
absorbances at multiple wavelengths9.60, thus allowing spectral as well as

kinetic differences to be observed.

2.4.3 Resolution of Overlapped Responses

The introductory chapter noted that overlapped responses often occur in first-
order methods like spectroscopy, chromatography and electrochemistry. If the
instrumental responses of all the individual components are known, their
concentrations can be estimated from the overlapped response®1.62.  Although
this multicomponent analysis cannot resolve components with identical
responses, it has been applied in UV spectroscopy when there are no specific

wavelengths for the analytesS0, and in square wave voltammetry with highly
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overlapped responses®3, Other examples include spectrophotometric
determination of five metals in hair%4; and of active constituents in anaigesics85.
Advantages of the Kalman filter include its ability to process data in real-time, to
handle complex models, and to investigate interactions among the different
components€6,

In many of these determinations the analyte signal is superimposed on a
background signal. If this background is reproducible then it can be explicitly
included in the measurement mode!, but often the background is poorly
characterized. Inductively coupled plasma-atomic emission spectrometry data is
one case where variable and nonlinear backgrounds can limit the accuracy of
determination. Kalman filtering of such data®7 has several advantages over
conventional processing techniques, like three-point corrections, including lower
detection limits and greater reliability. Powerful background correction routines
have also been developed for fluorescence detection with thin layer

chromatography%8, and infrared monitoring of atmospheric pollutants®9.

2.4.4 Calibration with Drift Correction

The process of calibration requires summarizing an instrument’s response to a
series of known samples, often with a linear calibration graph. These estimated
parameters are subsequently used to predict the properties of unknown
samples, assuming that the instrumental response is unchanged. In general,
calibration parameters change slowly over time due to random fluctuations in
experimental conditions and systematic changes like lamp and column aging.
Thijssen et al studied methods of on-line drift compensation that can be

incorporated into intelligent analyzers. They designed a Kalman filter’0 to
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predict analyte concentrations from flow injection analysis data, evaluate the
accuracy of the calibration model, and schedule recalibrations. This self-
monitoring approach has also been applied to graphite furnace atomic
absorption spectrometry?! for detecting, correcting and forecasting drift.
Adaptive Kalman filtering has also been used to discriminate against outliers in
small calibration sets?2, again, an important stage in automating an analytical

process.

2.4.5 Model Identification and Improvement

In resolving overlapped responses, a set of single-component responses (e.g.
spectra) are fit to the analytical signal of an unknown mixture. These single-
component responses are usually measured experimentally for pure samples.
The multicomponent model is only correct when all the components of the
unknown are present in the model, and their responses are the same as those in
the pure calibration samples. As noted earlier, the innovations produced by the
Kalman filter are useful for detecting modeling errors. For example, peak width
changes or shifts between single-component voltammograms and
multicomponent voltammograms produce a correlated innovation sequencef2,
This innovation sequence has a sinusoidal appearance instead of being flat,
indicating nonoptimal performance of the Kalman filter. Similarly, the sensitivity
of fluorophores to the polarity of their environment can cause difficulties in fitting
overlapped fluorescence responses’3. In such cases, the innovations sequence
can be an indicator of peak shifts in a sample relative to the calibration spectra.
In addition, the innovations can also be used to estimate both the direction and

the degree of this shift.
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The goal of adaptive filtering#9.46.74.75 is to prevent deviant points or
modeling errors from corrupting the parameter estimates. To achieve this,
outliers or regions of model failure are identified by their large innovations, and
then these points are effectively rejected from the model. For this approach to
succeed, the model information must be accurate for some region of the data.
Rutan%® has demonstrated the use of adaptive fiters in modeling gas-liquid
partition coefficients. Another difficuit problem that has been tackled is
estimating concentrations when responses for all the contributing species may
not be known’®. In such cases the filter is often restarted several times with
different initial guesses, a process that can be automated with simplex
optimization?7.

A major problem in Kalman filtering atomic emission spectra is
instrumental shifts in wavelength positioning. Such shifts will cause modeling
errors over the entire spectrum that result in a structured innovation sequence.
In correcting these errors, van Veen®7.78 used the flatness of the innovation
sequence as a criterion. Specifically, the summed innovation was found to go
through a minimum for the best correction. This differs from adaptive Kalman
filtering in that none of the data is being rejected, rather, the innovations are
used in designing an accurate model for the entire data set. This model
optimization was an iterative process of adjusting the wavelength correction,
filtering the data, and evaluating the innovations. As a result, the Kalman filter's
capacity for real-time filtering was relinquished. In the work that follows?®, the
innovation sequence will be used to select the best model to fit experimental
observations. This will be achieved in real-time, by running a parallel network of
filters. The use of parallel and block sequential filters for processing speech

signals has been described in the engineering literature8C, but this is the first
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application of this type we have encountered. The parallel Kaiman filter will be
applied to reaction-rate data in which, like the atomic emission example given

above, the model! failure is usually glcbal rather thon localized.

2.5 PARALLEL KALMAN FILTER NETWORKS FOR KINETIC
METHODS OF ANALYSIS

Analytical methods based on kinetic responses have been widely applied for
many years81-83, The determination of a large variety of chemical species is
possible through the direct or indirect measurement of kinetic parameters
associated with appropriate reactions. To simplify the experimental and
computational aspects of kinetic methods, most strategies use conditions under
which zero- or pseudo-first-order kinetics apply. The former is limited to cases
such as the determination of enzymes and catalysts, whereas the latter is more
widely applicable and is the focus of this work.

One of the disadvantages of kinetic methods is that they are susceptible
to experimental factors affecting the rate constant, k. This problem is
aggravated hy the fact that many of these effects are nonlinear so that even
minor changes in conditions such as temperature, pH and ionic strength can
dramatically affect the rate constant84. To combat these problems, several
approaches have been developed to provide compensation at various stages of
the experiment85-93, Some of these have been compared in the literature, both
for their susceptibility to variations in the rate constant and their performance in
the absence of those variations94. The focus in the development of these
methods has been on correcting for sample-to-sample variations rather than

variations within a single run because: (a) the former problem is more tractable,
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and (b) between-sample variations are likely to be a bigger problem due to
factors such as matrix variations and long-term temperature drift.

In this work, an approach to correct for between-sample variations in the
pseudo-first-order rate constant is described. This method is based on the use
of a parallel Kalman filter network. A modification of the linear Kalman filter, the
extended Kalman filter, was used by Corcoran and Rutan to compensate for
variations in rate constants92.95, but this suffered from some of the difficulties
normally associated with nonlinear parameter estimation. The approach
presented here utilizes a set of discrete models (the "network") with the linear
Kalman filter in an attempt to compensate for changes in kinetic parameters.
Kalman filter networks exhibit several important advantages, including speed,
simplicity, stability, and a parallel algorithm. These features become particularly

important in view of advances in digital signal processing chips and parallel

computing architectures.

2.5.1 Theory

An analytical reaction which follows pseudo-first-order kinetics will exhibit an
exponential change in some response parameter with time. For the purpose of
simplifying the discussion, we will assume that the reaction of the analyte with a
reagent produces a product which can be observed spectrophotometrically
(although any response linear with concentration would be appropriate). The

change in absorbance with time can then given by:

A, = AA(1-exp(-ks)) + B (2.9)

where A, is the absorbance at time £, AA is the absorbance change due to the

product at £ = o, k is the pseudo-first-order rate constant, and B is the
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background absorbance term. The presence of B in this model can account for
either one of two effects: a constant absorbance by an interfering species in the
matrix, or experimental variations in the measurement of t = 0. In the first case,
AA is the quantity sought, whereas AA+ B is of interest in the second case. If
both the background absorbance and the time delay are unknown, accurate
compensation is not possible for a first-order model.

Traditional kinetic methods, which are still widely used, seek to measure
parameters such as A, or dA,/dt, but these methods can result in substantial
errors if there are significant sample-to-sample variations in k84, Optimized
methods85-88 attempt to minimize this problem at the data collection level by
selecting optimum measurement conditions, but these have limited
effectiveness. Multipoint computational methods®9-93 attempt to compensate at
ihe data analysis stage by applying Equation 2.9 to estimate AA, which should
be independent of k. These methods should, in theory, be able to provide total
compensation for between-sample variations in the rate constant. The
application of a parallel Kalman filter network falls into this last category.

Equation 2.9 provides a linear system model amenable to the Kalman
filter only if k is accurately fixed, and a nonlinear model otherwise. Onr<e method
of treating nonlinear models is with the extended Kalman filter92.93 but this is
quite sensitive to initial estimates, requires several passes through the data, and
is not guaranteed to provide optimal estimates. The adaptive Kalman filter,
which can correct for certain types of model errors, is generally ineffective for
nonlinear models since the model is invalid at all points on the curve. Another
course of action utilizing the innovations sequence is possible, however. If a
number of different models are employed, each with a slightly different value of

k, then a series of linear systems results, each of which can be applied to the



52
data through the Kalman filter. By examining the innovations sequence,
specifically the running sum of squares of innovations for each model, the best
model can be selected and the corresponding parameters extracted. This
strategy is illustrated in Figure 2.5.

The measurement models used to implement the strategy shown in

Figure 2.5 are all of the form:

Aij = [(1 - exp(—kjt)) : 1] [Af?jl +V

(2.10)
where A;; is the predicted absorbance for point i (corresponding to time ¢) and
model j, and AA and B are the mode! estimates of the absorbance change due
to product and the background absorbance, respectively. The quantity v is the
measurement error, which is characterized by the measurement noise variance,
R, in the Kalman filter model. The vaiue of R was assumed to be constant for all
experiments and estimated from previous measurements. In principle, R could
be obtained more precisely as a function of absorbance, but only an
approximate value is needed. The value of the pseudo-first-order rate constant

for model j is given by:
K; = Knom + jAk (2.11)

where k.., is the nominal rate constant for the reaction measured under
expected experimental conditions, and Ak is a predetermined increment. In a
symmetric network, the quantity j is an integer extending from -(m-1)/2 to
(m—1)12, where m is the number of modeis. The values of m and Ak are
determined by the expected deviation of k from its nominal value, the precision

of the data, the desired accuracy of the model equations, and computational
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constraints. Typically, a range of ko, #40% was employed in this work with
m=41, but these values can vary considerably with changing conditions.
Alternative distributions of models (e.g. Gaussian distribution of k's) may also be
effective, but were not examined in this work.

Several other matrices need to be defined for the Kalman fiiter aigorithm.
The state transition matrix is the identity matrix in this case, and the noise vector
associated with the state vector was assumed to be zero. The diagonal
elements of the error covariance matrix were initially assigned large values
(1030) and the off-diagonal elements were initialized to zero. The state vector
was initialized to zero.

After initialization of the required matrices, absorbance measurements
made during the course of the reaction were processed in sequence. Following
each measurement Aj, the innovation for each model j was computed as the
difference between the measurement and the predicted measurement based on

the current state vector estimate for the model:
e;j = A,: - AU (2.12)

The state vector for each model was then updated according to the Kalman filter
algorithm. A decision parameter, D; j» was updated for each model after each
measurement according to:

D = Dy +¢5 (2.13)

Values of D were initialized to 0 and Equation 2.13 was not used until i =10,
While this was not essential, it was intended to avoid the excessively large
innovation values associated with the first few measurements as the Kalman

filter converges to reasonable estimates of the state parameters. For optimal
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estimation, the innovation sequence should be a white noise sequence, so the
expectation value of D is n R (n = number of measurements processed, R=
noise variance) if the model is perfectly correct, and should be significantly
larger otherwise. After a fixed number of measurements, the optimum model
was selected as that which exhibited the smallest value of D. Alternatively, the
best model could be evaluated by examination of D at each step and data
acquisition terminated when the corresponding covariance matrix indicated that
error estimates in the parameters were satisfactory. The parameters (AA, B, k)
from the best model were extracted and employed in calibration or

measurement.

2.5.2 Experimental

Reagents. All solutions were prepared from reagent-grade chemicals (unless
otherwise specified) in distilled water and stored in polyethylene bottles to
prevent contamination with silicon from glass. A phosphate stock sciution of
100 ppm phosphorus was prepared by dissolving 0.4393 g of primary standard
KHoPQ4 and diluting to 1 L. Working standards of 1, 2, 3, 4 and 5 ppm were
prepared from this stock. The molybdate reagent consisted of 0.30 M Mo(Vl)
prepared from 5.3 g of ammonium molybdate in 1 L of 1.0 M nitric acid. A 0.2%

(wiv) L-ascorbic acid solution was prepared fresh daily.

Apparatus. A diode array spectrophotometer (Hewlett-Packard HP 8452A) with
a 1 cm quartz cell and thermostated cell holder was used for measurement of the
absorbance of the reaction product. Complete mixing of the reagents in the cell

v-as ensured by the use of a magnetic stirring unit. The spectrophotometer was
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interfaced to an I1BM-compatible computer via an IEEE-488 parallel interface and

data were acquired with the manufacturer's software.

Procedure: All solutions and the cell compartment were thermostated at the
appropriate temperature. 1.00 mL of the molybdate solution and 1.00 mL of the
phosphate standard were placed in the cell and allowed to mix for approximately
one minute. Upon the addition of 0.500 mL of ascorbic acid with an Eppendorf R

pipette, the data acquisition was initiated. The absorbance at 660 nm was

measured every 0.2 s for 30 s.

Computational Aspects. All calculations were carried out on an 16 MHz IBM-
PC/AT compatible personal computer with a math coprocessor using double
precision arithmetic. The software was written in our laboratory using Microsoft
QuickBASIC version 4.5. The Kalman filter program used the standard

algorithm, with the modified covariance update equation for numerical stability.

2.5.3 Results and Discussion

Simulation Studies. To examine the limitations of the paraliel Kaiman filter
approach, a series of computer simulations were conducted to study the effect of
three parameters: data range, the number of data points, and measurement
noise. These were considered to be the primary factors affecting filter
performance. A reference set of conditions was chosen to reflect realistic
experimental data and each study considered the effect of varying one of the
three factors from these reference conditions. The reference conditions
consisted of 100 data points with AA =1, B =0.05, a noise level of 1% RSD
(Gaussian), and a data range of 2.5t (t=1/k). For each set of conditions

evaluated in the simulations, 500 data sets were generated and the mean error
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and RSD of the estimates of AA and k were determined (errors in B correlated
well with errors in AA). In all cases, 81 models were used with rate constants
encompassing +20% of the true value. This number of models is probably
excessive for real applications, but allowed sufficient resolution to avoid
quantization error in the rate constant estimates.

The data range (i.e. the number of half-lives over which measurements
are taken) is an important parameter in muiltipoint kinetic methods since a
sufficient portion of the reaction curve needs to be used to extract estimates of
AA and k independently. To examine the effect of this parameter on the Kaiman
filter algorithm, the data range was varied from 0.5t to 8t. The results are
shown in Figure 2.6. Figure 2.6B shows the deviation of the mean estimates of
AA and k from their true values. In this case, as with the other simulation
studies, no significant bias was found. Figure 2.6A shows the RSD in the
estimates as a function of data range. The most precise estimates for both
parameters were obtained when the data range was greater than 21, but useful
results can be obtained below this threshold. The reliability of thé estimates
diminishes rapidly at short times, however, as independent estimation becomes
a problem. In this study, the number of paints was kept constant as the data
range was expanded, effectively increasing the sampling interval. Since this
reduces the number of points in the region of maximum curvature, parameter
estimates are not as good as they might be expected to be at long durations if
the sampling interval had remained constant.

When the data range is fixed at 2.5t and the number of points is varied,
similar behavior results as shown in Figure 2.7. Only the RSD of the estimates
has been plotted in this case since the mean estimates were again centered on

the true values. Although the precision of the estimates becomes poorer as the
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number of points decreases, remarkably few points are required for reliable
estimation of AA. Even with only 15 points, the precision is roughly the same as
the measurement error.

The final simulation study examined the effect of measurement noise on
the reliability of the estimates. As shown in Figure 2.8, the precision of the
estimates exhibits a roughly linear dependence on the precision of the
measurements. This linear system behavior is anticipated and a desirable

feature for processing analytical data.

Molybdenum Blue Reaction. In order to evaluate the performance of the
parallel Kalman filter network on experimental data, the molybdenum-blue
reaction® for the determination of phosphate was used. The pseudo-first-order
rate constant for this reaction under the conditions employed ranged from 0.08
to 0.12s™1 over the temperature range of 25to0 30°C. To determine the
effectiveness of the ¥2man filter approach fclar minimizing between-sample
variations in the rate constant, calibration data were obtained at three different
temperatures (25.0, 27.5, and 30.0 °C). Typical reaction curves are shown in
Figure 2.9. Five concentrations of phosphate were used for the calibrations and
each solution was run in duplicate at each temperature. The nominal rate
constant for the reaction was determined by fitting a typical reaction curve at the
middle temperature to Equation 2.9 by nonlinear least-squares. This value was
used as k,,,, for data at all three temperatures. Calculations with the Kalman
filter used 41 models encompassing a range of +40% around the nominal rate
constant. A data range of 1.5t (80 points) was employed. The calibration
parameter plotted was AA + B rather than AA to help compensate for uncertainty

in the reaction starting time that resulted from the manual addition of reagents.
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Results of this study are shown in Figure 2.10. Figure 2.10A shows
calibration curves obtained at three different temperatures with the Kalman filter
method. For comparison, Figure 2.10B shows calibration results obtained using
the fixed-time method over an equivalent time period. It is clear that the
response parameters extracted with the Kalman filter are largely temperature
independent while those for the fixed-time method show the expected systematic
variations.  Calibration piots obtained by nonlinear least-squares were
essentially identical to those generated from the Kalman filter network. Reliable
estimates of the pseudo-first-order rate constants were aiso obtained from the
parallel filter. Using 80 points (1.5t), the estimates were 0.082+0.007,
0.10+0.01, 0.129+0.005 s*1 at 25.0, 27.5, and 30.0 oC, respectively (precision
estimates are one standard deviation based on the ten samples at a given
temperature). The precision of these estimates improved when the data range
was doubled, with values of 0.077+0.005, 0.096+0.005, and 0.115+0.003 s-1.
For comparison, estimates obtained through nonlinear least-squares were
0.081+0.007, 0.105+0.006, and 0.128+0.005s' with 80 points, and
0.076+0.004, 0.095+0.004 and 0.110+0.003 s-1 with 160 points. The two
methods also showed good correlation for changes in the rate constant

estimates between individual data sets.

Evaluation. As demonstrated in the previous section, the parallel Kalman filter
approach provides compensation for between-sample variations in the pseudo-
first-order rate constant that can cause problems with traditional kinetic methods
(fixed time, variable time, initial rate, derivative). It should also be superior in
this respect to optimized methods (optimized fixed time85, optimized
derivative86-88), although to a lesser degree. Other workers have compensated

for variations in the rate constant by employing experimental measurements of
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temperature or pH82.97  These methods are quite effective, but in different
category from the current study since they employ information assumed to be
unavailable. Further comparisons will therefore be limited to other multipoint
kinetic methods that aim for total compensation.

Comparisons among multipoint kinetic methods are difficult because of
the many parameters that can influence the effectiveness of the algorithms.
Nevertheless, the relationship of the Kalman filter network to some of the other
methods can be considered. To date, actual implementation of these muitipoint
methods for routine use has been somewhat limited, probably because of the
complexity of the algorithms relative to simple single parameter measurements.
The emphasis in this work has been on the development of a robust method
which can be employed as a digital filter in real-time. A disadvantage of many
multipoint methods, including nonlinear regression, multilinear regression89, and
the extended Kalman filter82:95 is the need for multiple iterations and reliable
initial estimates. With the Kalman filter network, only a single pass of the data is
needed, so it may be employed by signal processing hardware as data are
acquired. While the Kalman filter network cannot easily deal with more than one
ronlinear parameter, other linear variations to the model, such as sloping
Eackaraunds , are easily accommodated.

Nonlinear regression is clearly the most effective means of nonlinear
parameter estimation in that multiple nonlinear parameters may be continuously
varied to obtain the optimal estimates. The Kalman filter network is a more
"brute force" approach to this process, limited to a discrete estimate of a single
nonlinear parameter. However, the Kalman filter network is simpler and not
prone to divergence or arithmetic failure. Convergence of the filter is virtually

independent of the initial estimates of AA and B, which is sometimes not true for
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nonlinear regression methods. While a reasonably reliable estimate of k is
required for the filter network, this is usually available for a reaction that is
routinely used. Ancther feature of the Kalman filter network is that the best
parameter estimates and their associated errors can be continuously provided
during data acquisition, which is not true for nonlinear regression methods.
Additionally, the computation time per cycle and storage requirements are
independent of the number of data points to be processed with the filter network.
The network implemented in this work required about 6 s for 80 points and 41
two-parameter models. For comparison, a nonlinear least-squares program
based on a steepest-descent algorithm required 7 to 35 s with reasonable initial
estimates. It is likely that the performance o nonlinear regression could be
considerably improved through optimization of the algorithm, but the same is
true for the filter network. Enhancements in the latter case could include.
(1) utilization of more efficient variants of the Kalman filter algorithm,
(2) precalculation of covariance matrices, (3) implementation using digital signal
processors, and (4) implementation on a machine with a truly parallel
architecture to take advantage of the naturally parallel structure of the algorithm.
Although the last two circumstances are not widely exploited at the present time,

they will no doubt become more important in the future.

26 CONCLUSIONS

In conclusion, the Kalman filter network has several advantages when applied to
Kinetic methods based on first- or pseudo-first-order kinetics. The algorithm is
relatively simple and well-defined, requiring only a single pass of the data and

providing continuous estimates of model parameters and their associated errors.
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It is fast enough to be implemented in real-time and usage of computational

rescurces is fixed. Finally, it is well-suited to trends in computing towards vector

processing.
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THE KALMAN FILTER AND ORDERED DATA SETS

3.1 INTRODUCTION

This chapter introduces factor analysis4.5.98-102 a5 a tool for examining
multivariate data. Factor analysis encompasses a family of techniques suitable
for modeling, interpreting and predicting chemical data. An overview of this field
by Malinowski193 includes applications in analytical, physical and medicinal
chemistry. In the work presented here, factor analysis has been applied to
spectroscopic data cbtained from chemical mixtures, focusing on liquid
chromatography with multiwavelength detection as an example. The problem of
mathematically resolving overlapped chromatographic profiles will be addressed.
This process consists of three steps: detection of peak cverlap, identification of
individual analytes, and quantitation of components. This chapter outlines and
demonstrates an approach to the first problem, one of peak purity analysis, that
combines the advantages of Kalman filtering with factor analysis.

The aim of chromatography is to separate the components of a mixture on
the basis of their physical and chemical properties. Such results are used to
identify and quantify the chemical components of a mixture. Chromatography
using a detector measuring a single property, such as thermal conductivity or
absorbance at one wavelength, produces first-order datall. From this,
chromatographic peaks are identified by their retention times. To deal with more
difficult problems, chemists often combine a chromatographic separation with

first-order (multisensor) detection®, to  oduce second-order data. A wide
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range of first-order instrumental techniques have been used for chromatographic
detection104, including UV-visible absorbance195.108 and fluorescence!97, IR
absorbance’08, atomic emission199, and mass spectrometry?10. The advantage
of these detection schemes is that peak identity can be based on both retention
time and the detector signal.

As the sample mixture becomes more complex, the likelihood of having
overlapped chromatographic peaks increases. The presence of two (or more)
chemical components that are not separated into distinct peaks complicates the
interpretation of the data. With first-order data, the quantitation of the analyte
will be inaccurate if the overlapped impurity also contributes to the detector
response. This can also be a problem with second-order data when the
selectivity of the detector is limited. Furthermore, the spectrum collected on the
chromatographic peak is a composite of two chemical components, which would
confuse most library searching routines. Thus, accurate identification and
quantitation of a chromatographic peak relies on a knowledge of the number of
chemical components it contains. To this end, an algorithm has been developed
in this work that identifies both the number of components under a particular

peak, and where the contribution of each becomes significant.

3.2 BEER'S LAW

in this section the nature of data from chromatography/spectroscopy
experiments will be considered. For simplicity, the following discussion
considers only absorption spectroscopy, which is commonly encountered in
liquid chromatography with diode array detection. Quantitation in absorbance

spectroscopy is usually based on Beer's law:
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A=¢gbc (3.1)

where the absorbance, A, from the analyte depends on its molar absorptivity, €,
the path length of the radiation, b, and the analyte concentration, c. Equation
3.1 is appropriate for a single species absorbing monochromatic radiation. The
situation is more complicated for a chromatographic run where the detector
makes multiple readings at multiple wavelengths.

First, consider the case where there is more than one substance
absorbing monochromatic radiation. A row vector, ¢, is defined to contain the

concentration of each absorbing substance in the mixture:

c= [Cl,Cg,C;;] (32)

where element ¢; is the concentration for it component. Similarly, the vector s

is defined as a column vector of detector responses:

s, (3.3)

where s; is the detector response to the if! component at the chosen
wavelength. These are the molar absorptivities per path length, which

incorporate € and b into a single constant. Provided there is no interaction

among the various species the total absorbance for a muiticomponent system is

given by

A= 81bC1 + 82b02 + 83ng

=cs (3.4)
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Note the absorbance is a scalar value, as it is the total absorbance at a single
wavelength. Next, this equation is extended for the case of a first-order detector,
such as the diode array spectrometer, that measures the absorbance at multiple
wavelengths. This requires a matrix of sensitivi'ties, S, that has one row for each
wavelength such that s;; is the detector response at the ith wavelength for the ith

analyte. Thus the spectrum can be calculated as,

S;1 812 S13 Si14
[Al A2 A3 A4]= [Cx C2 03] So) S22 S23 S24
S31 S32 S3gz S34

a
(1xnw) (1 Slc) , (ncx nw) (35)

where n,, is the number of wavelengths and n. is the number of abscrbing
components in the mixture. Equation 3.5 calculates the absorbance spectrum
for a multicomponent sample. Usually, multiple spectra will be collected during a
chromatographic run, with each new spectrum adding another row to the data
mairix. Accordingly, we define the consentration matrix C, with element c;
containing the concentration of the jf? absorbing species at the time 6f the ith
scan of the diode array. Thus the general form of Beer's law for a
chromatographic run with first-order detection is,

D =C S+ E (3.6)

Ny ) (ngxng) (nexnw) (ns*nw)

where D is the data matrix
C is the matrix of concentration profiles
S is the mairx of spectral profiles
E is the matrix of experimental errors
ng is the number of samples in time (i.e. snectra)
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Ny is the number of wavelengths

ne is the number of absorbing components

Figure 3.1 illustrates these matrices for a mixtrz of 'wo chemical species. The
data matrix D can be considered to be a collection of chromatograms measured
at different wavelengths, or equivalently, a collection of spectra acquired at
different points during the elution profile.

Equation 3.6 gives bilinear data where the rows and columns of a mixture
response are the sums of the responses of the individual components. For now,
two assumptions will be made: that this model accurately describes the
spectrochromatogram, and the noise in matrix E is randomly distributed with
uniform variance. The validity of these assumptions for the diocde array
spectrometer will be assessed in Chapter 4. By no means are these bilinear
data structures unique to LC/UV. Data from other chromatographic systems
(e.g. LC-fluorescence and GC-MS), or other techniques such as kinetics and
spectrophotometric titrations can be modeled in a similar fashion. The only
restriction is that the detector response follows a linearly additive model like
Equation 3.6. Due to the wide range of analytical systems that produce these

results, there is considerable interest in techniques that extract data from

bilinear matrices.

3.3 EXTRACTING INFORMATION FROM BILINEAR DATA

Some common goals of these multidimensional analytical techniques are the
identification and quantitation of some or all of the chemical species in the
sample. This is most difficult when the anaiytes are not clearly resolved in either

dimension. That is, the chromatographic peaks are overlapped and completely
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selective detector channels are unavailable or unidentified. When this occurs,
there are two possible solutions. The first is an instrumental solution, such as
improving the separation and detection schemes. The alternative is a
mathematical solution, like curve resolution111.112 which extracts the matrices C
and S from a bilinear data matrix. Clearly, if the analyst succeeds with a curve
resolution approach, which avoids repeating or modifying the instrumental
method, a significant savings in time and cost can be realized. Even if the
results of curve resolution are not entirely satisfactory, they can often serve as a
guide in modifying the experimental approach.

As before, the appropriate method for extracting information from
experimental results depends on the goal of the experiment and the extent of
prior knowledge. When pure spectra are known for all of the chemical species
present, curve fitting can estimate their chromatographic profiles. This process
involves using least-squares methods to fit a linear combination of the pure
spectra to the data matrixS, thus estimating the contribution of each of the
chemical species. A similar strategy can be used to estimate the spectral matrix,
S, from a set of individual concentration profiles for the components. In either
case, only one matrix (C or S} is extracted from the measurement data through
the complete knowledge of the complementary matrix. When this "known" matrix
is incomplete, such as the when the number of absorbing species is
underestimated, the accuracy of the results will suffer32.  Therefore, the
requirements for prior knowledge generally preclude applying this approach to
unknown mixtures.

Soft-modeling is an alternative means of modeling the data when there is
insufficient knowledge for curve fitting; that is, when there are undentified

components. The advantage of this method is that it requires no assumpticns to
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be made regarding the number of components, or the shapes of component
spectra or elution profiles. With soft-modeling, principal components analysis
(sometimes referred to as factor analysis) is used to decompose the data matrix,
usually of large dimensions, into @ smaller number of "significant” factors which
can generally be associated with components of the mixture. in this way, the
data matrix, D, is represented as the inner product of two other matrices: the

scores matrix, X, and the loadings matrix Y, such that
D=XY (3.7)

Note that like Equation 3.6 this is a bilinear model. The matrix S in Equation 3.6
has one row for each absorbing species, by comparison, the matrix Y has one
column for each "factor". Two fundamental problems in factor analysis are:
(1) defining the mathematical properties of the factors and (2) relating these
mathematical (or abstract) factors to the true (or chemical) factors. Principal
components analysis100.102 (PCA) is commonly used for the first problem.

PCA is a method for describing the space of the original data with a set of
new axes, also known as a basis set. This will be illustrated here with graphice:
examples. More thorough mathematical treatments are given in the
references103. The first example considers the absorbance measurements of
twenty samples (ng= 20) acquired at twenty wavelengths (ny, = 20), resulting in a
20 by 20 data matrix D. These samples contain varying amounts of the same
analyte, with no other absorbing species. Figure 3.2a shows a plot of each
sample in a two-dimensional subspace of the original 20-dimensional space.
Here the coordinate axes are the instrumental responses for the sample at the
two wavelengths. The basis set contains all 20 wavelengths. The data points

are highly correlated in this space, as they are in the full space of twenty
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Figure 3.2, One-component data are shown in two coordinate frames:
(a) the measurement axes corresponding to absorbances at individuai
wavelengths A4 and A,, and (b) the first two principal component axes e4
and e,.
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wavelengths, The first step of PCA is to calculate the eigenvectors, which are
the new set of axes. The direction of each eigenvector is chosen to successively
account for the maximum amount of variance in the data while retaining
perpendicularity with all previously selected eigenvectors. The first eigenvector,
e4 in Figure 3.2b, is a linear combination of all of the measurement vectors, A, ;.
The position of the samples along this new axis describe the variance in the data
much better than the individual absorbance values would alone. Still, not all the
points fall on the line described by e4 so a second eigenvector e,, perpendicular
to ey, is included to account for the residual variance. For the full dzta set, this
process continues until twenty eigenvectors have been calculated.

These eigenvectors form a new basis set in which each sample can be
described by its coordinates. For this one-component data, there is a wide
range of values for the samples projected onto this first eigenvector. In contrast,
the distribution of the sample points about the second eigenvector is much
smaller. Eigenvalues quantify the relative importance of each eigenvector in
describing the data. For this one-component example, the first eigenvalue would
be much larger than the second, and then the following eigenvalues would
continue to decrease slowly.

Since this first data set contains experimental noise, all twenty of the
eigenvalues are nonzero. This indicates that every eigenvector is required to
reproduce the data exactly. In practice it is generally not necessary to model the
original data exactly; instead it is normally sufficient to model the data within
experimental noise. In this case, only the first eigenvector contains useful
information. The remaining factors simply reprociuce the experimental noise, so

they are discarded. In this way the model is compressed to
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~

=X Y (3.8)

(nyxnw} (nu‘"p)(“p"“w)

Where. n, is the number of samples, n, is the number of wavelengths, and ng is
the number of principal components. In this example np= 1, since only one
principal component was required to describe the data. A central problem in
PCA is determining the number of principal components required to adequately
describe the data from a mixtures.

The important idea presented here is that soft modeling provides a new
basis set for describing the data. This basis set, found through PCA, defines a
vector space. Each sample is then represented as a point in this space, where
its position reflects its chemical properties. The are many advantages to using
this space over the original measurement space.

Figure 3.3a shows the case where the samples contain mixtures of two
absorbing species. The instrumental response to the two pure components is
indicated by the spectral vectors s; and s, which are assumed to be unknown
before the experiment. Note that the instrument is only partially selective to
each chemical species, as they both absorb at wavelengths Aq and A,.
Figure 3.3b shows how the first two eigenvectors are required to describe these
data. Accordingly, the original set of twenty eigenvectors can be divided into a
set of two principal compeonents that summarize the chemical information, and a
set containing 18 eigenvectors associated with experimental noise. The first two
eigenvectors define a plane. Since the illustration is only in two dimensions, it
appears coplanar with the two original axes, but this is not usually true when all

twenty wavelengths are included. As before, the position of the points in this
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- Al;

Figure 3.3. Two-component data are shown in two coordinate frames:

(a) the measurement axes, and (b) the first two principal component axes.
s, and s, are the spectral responses for pure samples of the two chemical
components.
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twenty-dimensional space can be summarized by their coordinates in the new

basis set:
D=XY
d1.1 d1,20-‘ X1 X1,2-\
: I I : yir oo Y120
: : Vo1 -0 o ¥2.20
(dyo; - - daoz0] [X201 X202

There are several advantages to this data compression. First, it is a more
efficient way of representing the data. For this example, the data are
reproduced by multiplying a matrix containing the coordinates of each point, with
a matrix describing the direction of the eigenvectors in terms of the original
measurement vectors. Thus 80 values (two 40 element matrices) contain the
information extracted from a 400 element data matrix. The second advantage is
the noise reduction achieved by discarding the vectors that represent primarily
experimental error!13.114. Calculations using this new basis set will propagate
less noise.

The rank of a matrix115 is defined as the minimum number of independent
vectors it contains. For this two-component chemical system, each row of the
data matrix D is some combination of the two spectral vectors, and thus the
matrix has a rank of two. Accordingly it can be described by two principal
components. For bilinear data, the number of observable components will be
given by the true rank of the data matrix, but the apparent rank is often much
larger due to experimental noise116. Thus an important stage in PCA is deciding
which factors contain useful information rather than noise. An understanding of

the chemical system and the measurement device is critical at this stage. In
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practice this is a difficult problem, but it is a crucial step in applying factor
analysis to chemical data. In this work, the number of principal components will
be estimated with Kalman filter networks on the basis of little or no information
other than the multivariate data set itseif.

It is important to realize that while the set of factors obtained by PCA
describe the data matrix as well as the real factors, they are not identical. For
instance, the direction of the second eigenvector in Figure 3.3b is negative
compared to some of the original axes, such as A; ¢ in this example. Figure 3.4
shows the scores and loadings matrices for the data shown in Figure 3.1. Since
the columns of matrix X are associated with the concentration vectors, they are
often called abstract chromatograms. Likewise, the rows of Y are called abstract
spectra. In summary, PCA calculates a row matrix X and a column matrix Y that
describe the data within experimental error using a bilinear model. This
reduction is guided by mathematical goals and as such it may not be chemically
relevant. Accordingly, these vectors are collectively called abstract factors.
There are many advantages to using this new basis set. Three common

applications using factor analysis are:

1. Pattern recognition: The principal components summarize useful
information contained in the datal17-119.  This is convenient for
visualizing the data, since the similarities or differences between samples
can be evaluated with principal component plots. Since the eigenvectors
are by definition orthogonal, they will contain unique information. In
contrast, for the raw data set there are 190 different plots of the pairs of

wavelengths that often contain highly correlated information.
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Figure 3.4. Result of principal components analysis on the data shown in

Figure 3.1. The first (solid line) and second (dashed line) principal components
are shown,
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2. Prediction: The properties of the samples can be calibrated and
predicted as a function of their coordinates in this new space3.32.120.121,
This procedure, called principal component regression, has been applied

to many difficult calibration problems.

3. Mixture Analysis: In most cases the true factors (the pure component
spectra) are not the same as the abstract factors, but they share the same
space. In the two-component example above (Figure 3.3) the pure
component solutions have been restricted to a two-dimensional plane
instead of the original space of twenty noisy variables. The goal in
mixture analysis111.112,122 js to find a transformation that converts the

abstract factors into real factors.

For all of these applications, choosing the correct size of the factor space is very
important. In the analysis of mixtures, the number of factors should be the same
as the numbe- of observable chemical components in the mixture, but the
determination of this value is complicated by random noise and other

experimental artifacts.

3.4 DEDUCING THE NUMBER OF FACTORS

This section considers some different approaches for determining the number of
chemical components that contribute to the spectra of chemical mixtures123-127,
As was mentioned previously, this number would be the rank of the data matrix
in the absence of experimental error. In practice, measurement noise inflates
the eigenvalues of unnecessary eigenvectors to small, but nonzero, values128.

So, while important factors typically have larger eigenvalues, it is difficult to
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answer the question: "how large is a 'significant' eigenvalue ?". Naturally, the
magnitude of eigenvalue for noise vectors depends on the noise characteristics
of the measurement system. When the magnitude of the noise is unknown
before factor analysis empirical methods123.125 must be used. These methods
are based cn the presence of trends in the progression of eigenvalues, oftenitis
assumed that since meaningful factors explain a substantial amount of the
variance in the data, their inclusion in the model is associated with a large drop
in the next eigenvalue. In other words, there application will significantly reduce
the amount of unexplained variance in the data. In contrast, the addition of an
eigenvector that only explains random noise will not reduce the eigenvalue by as
great a proportion since the noise is basically uncorrelated with the vector.
These methods should be used with care since their assumptions may not hold
true for all experimental measurements12°.

Another approach is based on examining the properties of the
eigenvectors themselves. Here the assumptions are similar to those used in
smoothing filters, namely that eigenvectors associated with chemical information
will contain lower frequencies than those associated with noise 130,131,

If the magnitude of the experimental noise is known or can be estimated
from the data set, then it can be used to estimate the number of principal
components126.132.133 Eingenvectors can be added to the model until its fitting
errors are reduced to same size as the expected experimental error. The
Kalman filter approach presented in this chapter falls into this category since it

uses the innovations to indicate when systematic errors are occurring.
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3.5 ORDERED DATA SETS

One weakness of the factor analysis methods mentioned so.far is they do not
take advantage of one impoitant characteristic of chromatographic data - it is
ordered in time. An ordered data set is one in which the contributions of
underlying factors evolve -ontinuously with time or some other variable in a
manner that is consistent with the physical phenomenon being obst =2d. For
example, the chromatographic elution of components in a mixture ' <curin a
particular order. A spectrophotometric titration is another example of .  rocess
leading to an ordered data set since it involves the disappearance of one
species and the appearance of others as the titrant is added, resulting in
compositional changes that occur in a predictable fashion. In contrast, a series
of samples for calibration measurements will not generally resuit in an ordered
data set since there is no restriction on the relationship between two consecutive
samples measured (this is especially true for multivariate calibration, where
many components are unknown).

An example of noise-free ordered data from chromatography is shown in
Figure 3.5. The overall rank of this data is three, since there are three
absorbing species present, but local rank as well as global rank shouid be
considered!34. The local rank varies from zero, in the baseline regions, to the
maximum of three. The eigenvalues that result from "batch” factor analysis do
not reflect this information. These eigenvalues remain unchanged when rows or
columns of the data matrix are interchanged, thus they cannot reflect the
ordered nature of the data. When ordered data sets also involve multivariate

measurements, such as UV-visible spectra, the temporal structure of the data
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Figure 3.5. Concentration profiles are shown for a data set with three absorbing
components (top). The overall rank of this data is three, but the local rank varies
from zero to three (bottom) depending on the elution time.
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can be exploited advantageously in the data analysis. One way to do this is
through evolving factor analysis (EFA) 135-140 gnd related techniques141-144,

In principal components analysis (PCA), a data set is analyzed to
determine its intrinsic dimensionality, or rank, and then expressed in terms of the
product of a scores matrix and a loadings (or eigenvector) matrix. With EFA and
related methods, subsets of the original data matrix are examined by PCA. The
rank of these smaller matrices is often less than the overall rank and can provide
information about the structure underlying the data. In EFA, the data matrix
grows as a function of time (or other ordinal variable) as a new row of
measurements is added to the matrix at each measurement interval. By plotting
a suiiable parameter, such as the logarithm of the eigenvalue for each
eigenvector, changes in the rank (i.e. the appearance of new components) can
be detected as a function of the ordinal variabie (time, pH, etc.). There are two
principal benefits to EFA: (1) it indicates where individual components begin to
appear in the data sequence, permitting regions of spectral purity to be
assessed and aiding in the extraction of pure component profiles, and (2) it
improves the reliability of rank estimation by allowing relative comparisons to be
made as opposed to the evaluation of a single figure of merit.

A variation of EFA is fixed-window evolving factor analysis?42 (FWEFA).
In EFA, the size of the data matrix analyzed continues to grow as each new set
of measurements is acquired, but for FWEFA the size of the data matrix remains
constant. As the most recent measurements are acquired, the oidest ones are
dropped, resulting in a data matrix that is a "window" of the entire matrix. The
size of this window remains fixed as it "slides" along the data, and the resulting
rank can increase and decrease depending on how many components are

present in the window at a particular time. The main advantage of FWEFA is
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that it can more clearly show the appearance and disappearance of components
and provide an indication of where the peak analyte concentrations occur. The
matrices employed are also smaller, which decreases calculation time but also
reduces the noise rejection capabilities somewhat over EFA. It is also
necessary to select the optimal window size for FWEFA.

An alternative to these apprecaches, which will be referred to as evolving
principal component innovation analysis (EPCIA), will be described in the
following section. This method exploits the best features of EFA and FWEFA,
and is capable of real-time operation through its implementation via the Kalman

filter.

3.6 PARALLEL KALMAN FILTER NETWORKS FOR PEAK
PURITY ANALYSIS

The problem of mathematically resolving overlapped chromatographic profiles is
an old and difficult one in chemical analysis. It consists of essentially three
steps: detection of peak overlap, identification of individual analytes, and
quantitation of components. A variety of methods have been proposed for the
first of these problems, the simplest involving the monitoring of response ratios
at two detector settings'4® (e.g., absorbances at two wavelengths). This
approach, while straightforward, suffers from a number of disadvantages,
including a susceptibility to a sloping background and the requirement of a pre-
existing knowledge of wavelengths to be used. Its biggest drawback, however,
is that it doesn't identify the number and nature of coeluting analytes or provide

quantitative results.
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In recent years, a number of algorithms based on PCA have been
described for curve resolution in HPLC with UV-visible diode array
detection111.112.  QOne of the drawbacks of chromatographic curve resolution
based on PCA is that calculations are generally performed after ail of the data
have been acquired. Chromatographic regions of interest must first be selected
manually or automatically and subjected to PCA to determine the number of
components. Thorough analysis requires interrogation of all chromatographic
peaks. A simple peak purity test can be performed to screen particular areas of
interest, but this suffers from the problems previously noted. A useful alternative
would be the ability to carry out PCA recursively, i.e. while the data are being
acquired. This would allow the determination of the number coeluting
components in real-time and also act as a preprocessing step for seif-modeling
curve resolution. The development of a real-time PCA algorithh'n was the
objective of this work.

The possibility of conducting recursive principal components analysis is
made difficult by the fact that the usual PCA procedure is already iterative. To
be capable of real-time implementation, a recursive procedure needs to maintain
a static cycle time for each new data point obtained. One solution to the
problem is to use the principles of adaptive Kalman filtering. The adaptive
Kalman filter can be used as a recursive linear least-squares estimation
procedure that has some built-in features to compensate for model errors. The
strength of the adaptive Kalman filter is that it provides diagnostic information on
model validity. If a parallel network of filters is employed, each with a different
model, this information can be used to select the best model to fit experimental
observations. This is the basis of the work described here48, in which initial

results for a recursive PCA method are presented. The recursive PCA
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procedure developed here is limited to two-component models, but extensions to
higher dimensionality are possible. Computer simulated chromatographic
profiles and experimental data from coeluting dyes are used to demonstrate the

capabilities of the algorithm.

3.7.1 Theory

The use of parallel Kalman filter networks for kinetic methods of analysis was
described in Chapter 2. The general scheme is illustrated in Figure 3.6. The
incoming data sequence is applied to the inputs of a number of Kalman filters,
each with a different model. These models may be used to handle data from
nonlinear systems by introducing small variations in nonlinear parameters
between adjacent models (quasi-continuous case) as was the case in Chapter 2,
or they may represent distinct aiternatives (discrete case). The recursive PCA
application described here employs the latter form. In either case, the
application of each filter provides new estimates of the state parameters for the
corresponding model. These parameters are used to evaluate the performance
of each model in terms of its consistency with actual observations. A useful
measure of model performance is the innovations sequence which has been
employed for adaptive Kalman filter algorithms45:46. The innovation is defined
simply as the difference between the actual and predicted measurement (for
multiple measurements in a single cycle, the innovation is a vector). The
innovation differs from the residual normally used in modeling problems in that it
is calculated after each measurement on the basis of current model parameters,

whereas residuals are calculated in a batch procedure. The innovations
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sequence is particularly useful where model deviations are localized, since it
indicates regions of model validity.

The application of the Kalman filter to chromatographic peak resolution
has been previously described by Brown and coworkers147.148 and by Hayashi
et al'49, but these methods require a knowledge of individual component spectra
or elution profiles and differ from the present work which seeks to function in the
absence of this information. The principles of the recursive PCA approach are
best illustrated with an example. Figure 3.7 shows synthetic chromatograms
obtained for the elution of one- and two-component mixtures. For simplicity,
Gaussian, noise-free peaks have been assumed, but this is not a requirement of
the algorithm. !t is also assumed that the two components are not completely
overlapped and have sufficiently different spectral profiles. These are
requirements of most curve resolution methods. Shown adjacent to the two
representative chromatograms in Figure 3.7 are plots of absorbance
measurements at two wavelengths for each sampled point. The wavelengths
selected are the absorbance maxima of the two hypothetical components. Plots
such as these (which will be referred to as A2 plots) illustrate the principles of
both the absorbance ratio and PCA methods for peak purity assessment. It is
clear that the one-component mixture gives a constant Ay/Aq, while the two-
component case does not. Methods based on PCA extend this principle further
by recognizing that in an n-dimensional absorbance space (An), the one-
component case will always fit a linear model within experimental error.
Likewise, a two-component chromatogram will fit a planar model in AP space.
Therefore, the minimur: number of components in an overlapped region can be

determined from the intrinsic dimensionality (i.e. rank) of multivariate absorbance
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data. Obviously, the PCA method is more general than simple approaches such
as those based on absorbance ratios.

Two notable drawbacks of usual methods based on PCA are the need for
batch processing of the data and difficulty of accurately determining the
dimensionality of the data. The former problem has already been mentioned.
The latter results from the difficulty of distinguishing residual eigenvectors
arising from experimental error from those that represent true components. This
problem is further complicated by experimental realities such as a sloping
background that may appear as additional chromatographic components. Such
features, while of interest in quantitation, can be misleading in the detection of
peak overlap. Part of the difficulty in the determination of the true number of
chromatographic components is that rank is normally assessed on the basis of
one or more scalar quantities103,150,151 that ignore information available in the
temporal structure of the data. Clearly, deviations from an n-dimensional model
due to the presence of additional components or a sloping background should
exhibit characteristic patterns if the evolution of the model is examined. This
behavior can be detected if PCA is performed recursively.

The principle of operation of recursive PCA or evolving principal
components analysis (EPCIA) is that an n-dimensional data set projected onto
an n+1 dimensional space (or higher) should always give a fit to a multilinear
function which is satisfactory within experimental error. Thus, the one-
component data in Figure 3.7 will give a satisfactory fit to a straight line at any
two wavelengths, but the fit for the two-component data should be unsatisfactory
for at least certain pairs of wavelengths., Both data sets should give a good fit to
a planar model in any A3 space, but a three-component data set should not.

This strategy can be extended to higher dimensions, although visualization
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becomes more difficult. On this basis, the intrinsic dimensionality of the data set
can be deduced by selecting a number of wavelengths and fitting data in lower
subspaces comprised of various wavelength combinations. A one-component
model should exhibit comparable residuals for both linear and planar models,
but a two-component data set should exhibit excessive residuals for the linear
model at certain wavelength combinations. Furthermore, the resulting modeis
will serve as a means to construct good approximations to the principal
components vectors. For example, the linear models should be projections of
the first eigenvector, and the planar models should all be contained in the planes
defined by the first two eigenvectors. The correspondence between the true
eigenvectors and the reconstructed vectors may not be exact, since the
multilinear least-squares models are general'y constructed assuming no errors
in the x-direction152, but the correspondence should be close under the right
conditions.

The use of multiple models of lower dimensionality offers no particular
advantages over traditional PCA except when used in conjunction with the
Kalman filter. The Kalman filter can be used to generate fits to linear and planar
models recursively. This increases the potential for real-time implementation of
the algorithm and observation of model evoiution. Before the algorithm is
initiated, n wavelengths at conveniently spaced intervals are selected. For the
one-component model, the absorbance at one wavelength {(designated A,) is

selected as the independent variable and a series of n-7 models of the form,

Aij =q; ij + Bi (3.9)

are used for the Kaiman filter. In this equation, A; represents the predicted

absorbance at wavelength / for measurement j, A,; is the measured absorbance
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at the wavelength chosen for the independent variable, and o; and §; are
parameters associated with the one-dimensional model. The parameter
estimates evolve as each measurement is processed by the Kalman filter. The
model may be limited to the trivial case of single parameter (o)) if @ zero
intercept is assumed, but this will not always be the case. These models are
used as n-1 elements of the parallel filter network. Likewise, n-2 two-

dimensional (planar) models of the form,
Aij =aiij+Bi Ayi""yi (3.10)

are also used. In this case, absorbances at two wavelengths (arbitrarily
designated as Ay and A,) are needed as independent variables and three
parameters are estimated. Models of higher dimensionality are also possible,
but were not employed in this initial work. The 2n-3 models described are
sufficient to indicate one, two, or more than two coeluting components.

The strategy for implementation of the models in the parallel Kalman filter
network is shown in Figure 3.8. As each set of absorbance values for a single
chromatographic point is received, a set of innovations corresponding to the

2n-3 models is calculated using predicted measurements according to,

~

eij=A A (3.11)

y oAy

where g;; is the innovation for measurement j at wavelength i, and A ij and A; are

the predicted and measured absorbances, respectively. In each cycle, there are
n-1 innovations calculated for the one-dimensional models and n-2 for the two-
dimensional models. The magnitude of the innovations should be close to the
measurement noise level if the correct model is used, but significant deviations

should be observed otherwise. Thus, the absolute value of the innovations
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Parallel Filter Network for Coelution Profile Analysis
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Figure 3.8. Parallel Kalman filter network for recursive PCA application.
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sequence can be used to indicate when the dimensionality of the data does not
match the dimensionality of the model. Not all of the innovations will provide this
information, however, since the wavelengths used in a particular model may not
be appropriate for observing model variations (e.g. if there is no absorbance for
the dependent variable). One way around this problem is to examine the
maximum absolute innovation for each set of models, but this will be sensitive to
outliers in the data. An alternative approach is to calculate the root mean

square (rms) value of innovations for each set of models:

rms(e;,) = e (3.12)

where the summation is over the number of models of order k, m,. The rms
values can be piotted in real-time along with the chromatogram and the
sequence should remain fairly flat as long as the dimensionality of the data is a
subset of the model space.

A number of practical problems need to be addressed in implementing the
above strategy. The first is the selection of wavelengths which will act as
independent variables in the models. The selection is not entirely arbitrary since
the independent variable will exhibit a certain amount of uncertainty along its
axis. In the case of a one-dimensional model, this means that if the wavelength
selected for the x-variable shows no absorbance for any component, the least-
squares fit will result in a nearly vertical line for those models whose dependent
variable is non-zero. Although this may result in a valid least-squares fit, the
innovations (measured in the y-direction) will be excessively large. One way to
minimize this problem is to ensure that the wavelengths chosen as the

independent variables in an n-dimensional model exhibit significant absorbance
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for some portion of the data. In practice, the wavelengths exhibiting the highest

absorbance when the peak is first detected are used. This does not eliminate
the problem entirely since the magnitude of the innovations will still increase with
the slope of the line. In the two-dimensional case, the problem is compounded
by the likelihood of high correlation between the independent variables. A more
robust solution uses innovations measured orthogonally from the model rather
than vertically. For the one-dimensional model, it can be shown that the

orthogonal innovation is given by,

}

~cihy + Ay~
e = (3.13)
! yoi+1

and likewise for a two-dimensional model,

o\ = _aiij - Biij + Au —¥; (3.14)
l -_— .
’ Joi+pit+l

Extension to higher dimensions 13 straightforward. These modified innovaticns

were used in place of the usual values for model evaluation (Equation 3.12)
since they should more accurately reflect the true model errors. The modified
values were not used in the Kaliman filter 'algorithm, however, since they would
lead to erroneous results.

Another practical aspect of the implementation of the EPCIA algorithm
concerns its activation. In practice, the Kalman filter network is not activated
until a peak is detected, although in principle the baseline region could be used

if appropriate independent variables could be selected in advance. Once
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activated, the rms innovations for each mode! (Equation 3.12) may exhibit high
values for the first two or three points as the model converges on reasonable
parameter estimates. Display of these points could be suppressed, but this was

not done for the results presented here and is generaily not necessary.

Relationship to Principal Components Analysis. In view of the importance of
the connection drawn between PCA and the Kalman filter algorithm developed
here, a more detailed discussion of this relationship is warranted. There are
obvious computational differences between the traditional batch processing
method for performing PCA and the multilinear approach presented here. This
means that the resultant vectors are not necessarily identical, but the differences
should be small enough to be inconsequential. It is known that the Kalman filter
will provide model equations that are virtually identical to the traditional least-
squares method as long as the diagonal elements of the covariance matrix are
initially set to large values relative to estimated measurement error38.30. In this
work, a ratio of >1010 was normally used for the diagonal elements in order to
achieve the least-squares solution (off-diagonal elements were initially set to
zero).

The relationships between the PCA eigenvectors and the Kalman filter
results are as follows. For the set of one-dimensional models given by Equation
3.9, the vector resulting from the combination of all modeis into AN spacze
corresponds to the first eigenvector obtained by traditional PCA methods if the
absorbance data were mean-centered at each wavelength. As this eliminates
residual eigenvectors resulting from an offset at particular wavelengths, it is
preferred for peak purity analysis. |f mean-centering of the absorbance vectors

is not carried out prior to batch PCA, the first eigenvector will correspond to the
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vector generated by the models in Equation 3.9 if the B;'s are forced to zero. In

either case, the first eigenvector from the Kalman filter (e4) will be given by:

T nl,
e1=[a1 oy ... O,y 1] 1+ Zla; (3.15)

The first n-1 components of the vector are the projections of the n-1 dependent

variables of the models, while the last represents the wavelength selected as the
independent variable. The denominator simply serves to normalize the vector.
To find the second eigenvector, both the one- and two-component models are
required. This is because the two-component mode! only defines the plane
containing the first two eigenvectors and not the vectors themselves. Generally,
if it is known that two-components are present, a knowledge of the plane of the
first two eigenvectors is sufficient to perform self-modeling curve resolution.
Nevertheless one method of obtaining the actual eigenvectors is presented here.
As in the case of the one component models, omission of the offset parameter
(in this case v;) will lead to the PCA result for data which are not mean-centered

for absorbance. The plane containing the first two eigenvectors will also contain

the vectors v and v.

V1=[a1 Qo ... Up_ 1 O]T

V2=[Bl Ba ..o Bra 0 l]T

The (n-1)th component of the vectors corresponds to the first independent
variable and nth component to the second. These vectors correspond to the
intersection of the planar model with the (n-1) dimensional subspaces along the

axes of A, and A, After normalization of vy to ny, @ vector n, which is
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orthonormal to n4 is determined by projection of v, onto ny, subtraction, and

normalization.

n; =v;/|vy| (3.16)
P = ve—(viTvg)v, (3.17)
n, = p/|p| (3.18)

The vectors nq and n,, are just one set of orthonormal vectors which can be used
to define the plane. Ideally, the first eigenvector obtained from the one-
dimensional models (e4) will lie in this plane, but in practice there may be a
slight elevation due to minor computational differences for the two models. To
ensure the integrity of the two component plane, the first eigenvector is

recalculated as its projection onto the plane defined by the orthonormal vectors.

e1= (ef'n)n; + (eT ny)ny (3.19)

In all cases that we have checked, the difference between e4 and e4' has been
insignificant, but calculation of the projection is more robust. Calculation of the

second eigenvector, e,, in the two-dimensional subspace is now trivial.

e; = —(e'nyn; + (e/Tn))my (3.20)

Extension of these principles to systems of higher dimensionality should be

straightforward, but will not be considered here.
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3.7.2 Experimental Section

Simulation Studies. Generation of absorbance vs. wavelength vs. time data to
test the Kalman filter algorithm was carried out with a program that allowed a
variety of conditions to be simulated. For simplicity, Gaussian shapes were
assumed for spectral and concentration profiles. Normally distributed random
values were added to simulate measurement noise. Further details of conditions

used accompany resuits presented in the Results and Discussion section.

Dye Coelution. In the absence of an HPLC/photodiode array system,
experimental results for coeluting components were obtained using a continuous
flow system in a merging zones configuration as shown in Figure 3.9. Dye
solutions employed for the results presented here were 0.312 uM methyl orange
(acid orange 52, color index 13025; Fisher, Fair Lawn, NJ) and 1.17 .M
naphthol blue (Meldola's blue, basic blue 6, color index 51175; Pfaitz & Bauer,
Waterbury, CT), both prepared in 0.5 M HCI. These concentrations were found
to give a noise level suitable for testing the algorithm. The samples were
injected simultaneously into the stream using two six-port two-way valves
(Rheodyne model 5020, Cotati, CA) with 180 uL sample loops. The injected
samples were transported to the detector through 0.8 mm i.d. PTFE tubing by an
8-roller Ismatec SA peristaltic pump (Cole-Parmer, Chicago, IL). A Hewlett-
Packard model 8452A photodicde array spectrometer (Hewlett-Packard, Palo
Alto, CA) with a 30 pL flow cell (Helima Cells, Jamaica, NY; was used to acquire

spectra at 1 s intervals for about 100 s after injection.

Computational Aspects. All calculations were carried out on a 18-MHz IBM

PC/AT compatible computer with a math coprocessor. Programs were wiitten in
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Figure 3.9. Merging zones continuous flow apparatus for studies of dye
coelution with spectra of dyes inset.
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Microsoft QuickBASIC (Microsoft Corp., Redmond, WA). Implementation of the

Kaiman filter employed the standard algorithm4! with double precision
arithmetic. Principal components analysis was carried out using subroutines
written in our laboratory and based on procedures outlined by Malinowski and
Howery103, Three-dimensional displays of experimental data were generated

with the program SURFERR (Golden Software, Golden, CO).

3.7.3 Results and Discussion

Simulation Studies. To provide an initial evaluation of the EPCIA algorithm,
simulated chromatographic data were used. Because a large number of
parameters will affect the performance of the algorithm (chromatographic peak
shapes, spectral profiles, spectral and chromatographic resolution, number of
components, component ratios, noise level, background absorbance, number of
wavelengths used, etc.), only a limited subset of results is presented here to
demonstrate the principles of the method. More complete studies to investigate
the limitations of the algorithm are presented in Chapter 4.

The simulated experimental data presented here utilized Gaussian
profiles in both the chromatographic and spectral domains for simplicity.
Component 1 was assigned a wavelength maximum of 400 nm and component 2
a maximum at 500 nm. The width of both spectral peaks was ¢=100 nm and
equivalent molar absorptivities were assumed. The concentration ratio and
chromatographic resolution of components were varied between studies.
Chromatographic peak widths of o = 10 s were used with a simulated spectral

sampling rate of 1 s. The noise level (typically 0.5% RSD) was computed as a
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percentage of the maximum of the entire absorbance matrix. For all of the
results presented here, 10 waveiengths at equally spaced intervals were used.

Figure 3.10 shows typical results obtained with the parallel Kaiman filter
network for the elution of a single component. The top part of the figure shows
the chromatographic trace at the absorbance maximum while the bottom portion
shows the rms orthogonal innovations for the one- and two-component models.
Note that both models indicate acceptable performance, verifying that there is
only one component present. In contrast, Figure 3.11 shows resuits for two
eluting components (3:1 ratio, 0.35 resolution, 0.1% noise). Under these
conditions, the two-component modei gives a fairly flat innovations trace, while
the trace for the one-component model indicates significant model deviations.
Furthermore, the point at which the innovations sequence begins to diverge for
the one-component model reveals where the second component begins to
appear. This information is not available from batch PCA and is significant
because it allows a key set of factors to be identified for target
transformation103.111,153 This couid expedite the generation of component
elution profiles considerably.

In order to illustrate how the EPCIA algorithm functions, the evolution of a
single one-dimensional model for a two-component data set is shown in
Figure 3.12. One A2 data space for the data in Figure 3.7c is shown. Lines in
Figure 3.12 correspond to the one-dimensional model at various points
throughout the elution of the peak and are labeled to correspond to points
indicated in Figure 3.7c. Initially, when only one component is present, the
linear model fits the observed data relatively well and the innovations are small.
As the second component introduces curvature into the data, the least-squares

fit must accommodate this nonlinearity and the model begins to track the
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Figure 3.10. Results of application of Kaiman filter PCA algorithm to a single
component elution profile (simulated). The top trace shows the chromatographic
signal at the wavelength of maximum absorbance. The bottom trace shows the
sequence of rms orthogonal innovations for each model type.
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Figure 3.11. Results of application of Kalman filter algorithm to a simulated
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measurements more poorly, leading to larger innovations. Although the model] is
no better when the signal returns to the baseline, measurements near the origin
do not exhibit large deviations and so the innovations return to their original
level.

As an indication of the limitations of the EPCIA algorithm, Figure 3.13
shows results obtained with a 10:1 component ratio and a resolution of only
0.25. The second component can still be detected in this case. The ability of
the algorithm to detect minor components is very dependent on the noise level,
as expected. Generally it was found that when the recursive algorithm failed to
distinguish a second component, visual inspection of the data in the plane
resulting from the first two eigenvectors also suggested only one component. As
anticipated, performance of the method also improves with chromatographic and
spectral resolution, and with the number of wavelengths used. The latter effect
arises from the increased likelihood of selecting wavelengths with maximum
discriminating ability, and smoother traces for the rms innovations.
Improvements in results achieved by increasing the number of wavelengths are
quickly limited by the spectral correlation of the two components, however. The
order of component elution (i.e. minor component first or second) affects the
shape of the innovations trace but does not significantly diminish the ability of
the algorithm to determine the dimensionality of the data set in most cases. In
some extreme cases, the rms innovations of the two-component model exhibit a
small disturbance when the second component is detected (i.e. the reverse of
the usual case) but this due to the fact that the planar model "floats” around its
primary axis until the necessary points are obtained to more rigidly define the

second eigenvector.
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Figure 3.13. Results of application of Kalman filter algorithm to a simulated
two-component elution profile near limiting conditions.
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An example of a simulated three-component mixture is shown in
Figure 3.14. In this case, the third component was assigned a wavelength
maximum of 300 nm with o = 100 nm. The concentration ratio (c4:cp:C3) is 1:3:1
and components elute in order with a resolution of 0.4 between adjacent peaks.
Other conditions are as previously given. Note that the trace of rms innovations
indicates the successive failure of the one- and two-component models. It
should be pointed out, however, that failure of the two-component model was not
always observed for three-component mixtures, depending on the relationships
among spectra and elution profiles. It is believed that this probiem has its roots
in the correlation between wavelengths selected for independent variables.
Solutions include a more rareful selection of wavelengths or imposition of a
compiete set of models with all wavelength combinations. Other options also
exist, but may not be necessary as the pattern of the innovations for the one-
dimensional model will indicate the presence of a third component in most

cases.

The computational performance of the parallel Kalman filter network is
currently limited by its implementation in serial fashion but is still quite
acceptable. Cycle times of about 0.1 s are not difficult to achieve with one- and
two-component models at ten wavelengths. This is in a range suitable for most
chromatographic applications. The efficiency of the serial implementation will
diminish as the modeis of higher dimensionality are added and the number of
wavelengths is increased. The highly parallel nature of the algorithm can exploit
trends in computing towards vector processing, however, and this should

dramatically reduce computation time.
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Figure 3.14. Results of application of Kalman filter algorithm to a simulated
three-component elution profile.
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Experimental Results. Since simulated experimental data often imposes
deterministic and stochastic characteristics which are not observed in practice
(e.g. Gaussian profiles, uncorrelated noise), the EPCIA algorithm was also
applied to experimental data from the coelution of organic dyes. One of the data
sets used in this study, obtained with the apparatus in Figure 3.9, is shown in
Figure 3.15. Dye concentrations were reduced to a level which gave 2 relatively
noisy signal (approximately 3% baseline noise relative to the absorbance
maximum). It also appears from the figure that the noise exhibits some
correlation, possibly due to pump pulsations. The ratio of peak heights (methyl
orange to naphthol blue) was 2:1 and the resolution (determined by individual
injection) was about 0.4. Ten wavelengths at equally spaced intervals were
used. Results of the application of the Kalman filter are shown in Figure 3.16.
The presence of two components in the elution profile is clearly indicated by the

rms innovations sequence even though the noise level is quite high.

Comparison with PCA. A comparison between the eigenvectors computed by
the usual batch PCA procedure and those determined by the parallel Kalman
filter network is given in Table 3.1. The basis of the comparison is the angle
between the eigenvectors calculated through the batch PCA procedure and the
Kalman filter network. Results under various simulation conditions for a ten-
dimensional space (ten wavelengths) are shown. The first eigenvector used
from the Kalman filter network was that obtained from the combination of one-
and two-component models rather than from the one-component model alone,

but differences were insignificant.
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Table 3.1. Comparison of eigenvectors produced by traditional
principal components analysis and the Kalman filter method.

angle between
eigenvectors, deg

no. of concn resoin noise first eigen-  second eigen-

comp. ratio level % vector vector
1 - - 0.5 0.01 53.0
2 3:1 0.35 0.5 0.06 1.37
2 3:1 0.35 20 0.49 7.99
2 10:1 0.25 0.5 0.02 6.39
2 5:1 0.2 0.5 0.08 3.12
2 1:5 0.2 0.5 0.06 3.02

Agreement between the two PCA methods, while not perfect, is very good
in most cases. One exception is where an attempt is made to determine the
second eigenvector for the one-component data set. In this case, the second
eigenvector is defined purely by noise and is of no real consequence, however.
Certainly the agreement between batch and recursive procedures should be
good enough to permit further calculations, such as self-modeling curve
resolution, to be carried out.

The recursive PCA method does not directly provide eigenvalues or the
row and column matrices associated with batch PCA, but these can be easily
determined (if necessary) once the eigenvectors are assigned. Eigenvalues are
not as essential for determination of rank with the recursive algorithm since this

information is provided by the rms innovations sequence.
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3.7 CONCLUSIONS

The initial studies presented here have demonstrated the viability of performing
principal components analysis recursively through the use of a parallel Kalman
filter network. Application to the problem of chromatographic peak purity
analysis has shown how the rank of a data matrix can be deduced while the data
are being acquired. Although more extensive studies are required to fully
explore the potential and limitations of the EPCIA approach, several important
advantages are apparent. First, because the algorithm is recursive and parallel
with a fixed cycle time, it should be significantly faster than traditional PCA
methods, especially when implemented on parallel computing architectures.
The speed advantage does not result from a more computationally efficient
algorithm, but rather because data analysis is performed while data are being
acquired. A second advantage of the recursive approach is that it provides
information on the temporal evolution of models. This is particularly useful in
cases such as chromatography and titrimetry where certain types of behavior
can be anticipated. To obtain equivalent information by batch PCA, numerous
subsets of the data would have to be processed independently. The information
provided by EPCIA should be particularly useful in resolving ternary component
mixtures by window factor analysis144 since it identifies regions in which certain
models are valid. Furthermore, it can help diagnose model deviations arising
from factors such as a sloping background. Absolute information on model
deviations is readily provided by the rms innovations sequence, which should
approximate measurement noise when the model is valid. Finally, the flexibility

of the Kalman filter models allows for a variety of processing options to be
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exercised, simultaneously if desired. Inclusion of the offset term in the models,
for example, will have the same effect as mean-centering the absorbance data
prior to batch PCA. Unlike some approaches, however, the absorbance data are
not normalized, so the measurement noise information is retained at its original
magnitude.

In spite of these advantages, the utility of the Kalman filter network in
cases where real-time data processing is not required remains to be explored.
This will be addressed in Chapter 4. The algorithm is also likely to become less
useful as the number of factors to be extracted becomes large, since the number
and complexity of models become more difficult to handle. Nevertheless, it may

allow techniques such as self-modeling curve resolution to be more readily

implemented in real-time.
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LIMITATIONS OF EPCIA

4.1 INTRODUCTION

in this chapter, some aspects of the application of EPCIA to unresolved two-
component mixtures in liquid chromatography with multiwavelength UV-visible
diode array detection are discussed. The treatment is limited to two-component
mixtures because of the difficulties involved in studying interactions of many
variables in mixtures of more components, and because this case is especially
important for peak purity assessment in quality control142,  Simulated and
experimental data are used to demonstrate how the performance of the
technique is affected by spectral correlation, chromatographic resolution and
peak shape, concentration ratios, and other factors.

The principles of the EPCIA algorithm were described in the previous
chapter and will only be treated briefly here. The approach used is to consider
each spectrum in the ordered data set as a point in the n-dimensional
absorbance space, where n is the number of wavelengths employed (typically 20
to 50). With factor analysis based methods, this is the space decomposed by
PCA. With EPCIA, a modified treatment produces results that closely
approximate those from PCA, but allows the use of the Kalman filter for real-time
implementation.  The philosophy of the EPCIA approach is that the
chromatographic elution of a one-component mixture will give rise to a data set
that is intrinsically one-dimensional in an n-dimensional space and therefore will

project onto straight lines in the (n-1) two-dimensicnal subspaces. The rms of

120
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the orthogonal innovations should therefore approximate the standard deviation
of the absorbance measurements at all points across the elution profile; i.e. it
should be a flat line when the measurement errors have a constant variance.
The appearance of a spectrally different second component incompletely
resolved from the first will lead to a two-dimensional data set in the absorbance
space that will not project onto straight lines. Prediction errors will then become
larger than anticipated, leading to an increase in the rms ir.novations where the
second component appears. In this way, the second component is detected.
Although the procedure described refers to the implementation of a one-
component model, it can be extended with relative ease for the extraction of
higher principal component vectors. in this work, since the emphasis is on
detecting impurities under chromatographic peaks, higher order models are not
extensively used.

In the results presented here, the rms sum of the orthogonal innovations
obtained from the EPCIA algorithm, designated as rms(e'), is evaluated as a tool
for detecting incomplete resolution of chromatographic peaks. In some cases,
this parameter is plotted below the chromatogram to illustrate how it deviates
from the baseline in the presence of a second component. In other cases, the
maximum value of rms(e') is plotted to indicate its sensitivity to various

experimental factors.

4.2 EXPERIMENTAL

The EPCIA algorithm was characterized primarily through simulation of spectral
and chromatographic responses, since this allowed maximum flexibility in the

conditions and permitted the effect of variables to be independently assessed.
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Gaussian profiles were generally used in both domains, although in some cases
spectra of polycyclic aromatic hydrocarbons (PAH's) were employed. The PAH's
(anthracene, fluoranthene, phenanthrene, and triphenylene) were obtained from
Aldrich Chemical Co. (Miiwaukee, WI1) with a minimum 98% purity. In all
simulations, Gaussian noise was added at varying levels. The EPCIA algorithm
was written in Microsoft QuickBASIC (v. 4.5), and run on an 80486 based
computer under DOS 5.0. Analysis of a complete data set generally took only a
few seconds.

Experimental results presented were obtained using an HP 8452A diode
array spectrometer (Hewlett-Packard, Palo Alto, CA) as the detector. For
chromatographic studies, this was equipped with a 30 ul flow cell (Hellma Cells,
Jamaica, NY) at the end of a C, reversed-phase column (10 x 0.46 cm) with a
20 pl injection valve {(Rheodyne, Cotati, CA). Para-xylene calibration solutions
were prepared in ethanol to cover a range of 1x104 to 1 % (viv). For scme
experiments, a photographic step tablet (#3, Eastman Kodak, Rochester, NY)
was used to reduce the source intensity. This strip was graduated with 21
neutral density filters ranging from approximately 0.05 to 3.05 AU. For the
stopped-flow studies, the soiutions were transported through the flow cell using
two peristaltic pumps (Ismatech MS Reglo, Cole Parmer, Chicago, IL). Methyl
orange solution from 2 to 15 ppm and praseodymium chloride solutions from 1 to

8 % (wi/v) were both prepared in 0.1 M HCI.
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4.3 FUNDAMENTAL LIMITATIONS

4.3.1 Effect of Peak Shape

The ultimate objective of curve resolution methods in chromatography is to
obtain the pure component elution profiles and spectra. In the application of
EPCIA, it was noted that the shape of the rms innovations sequence closely
resembled the pure component elution profiles. To investigate this further, a
series of simulation results were generated using different elution profiles.
Profiles used were Gaussian, exponentially rmodified Gaussian (EMG)134, and
triangular.  The individual component profiles, as well as the overall
chromatographic peak (with 0.5% Gaussian noise added) are shown in the top
part of Figure 4.1. The spectra used for the two components were Gaussian
With Amaxt =450 nm and Apaxe =550 nm, a width of ¢ =100 nm, and equal
heights. For the filter network, 21 wavelengths were used at equally spaced
intervals between 300 and 700 nm. The bottom part of the Figure 4.1 shows the
rms innovations sequences obtained when the filter was used in the forward and
reverse directions. It is necessary to filter the data in both directions to obtain
information on both components. In each of the three cases, it is apparent that
the shape of the innovations sequence closely approximates the true peak
shapes. Small differences are evident, however, particularly in the case of the
EMG peaks, and these have been found to depend on the shape of the peak
and concentration ratio of the two components.

The similarity between the innovation sequences and the peak shapes
can be understood by considering the evolution of the first principal component

vector generated by the Kalman filter network. As the first component begins to
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elute, the first eigenvector is aligned with its spectrum in the n-dimensional
absorbance space. If this vector were "locked in" before the appearance of the
second component (as is done in adaptive Kalman filtering), then the
innovations would approximate the difference between the spectrum of
component 1 and the total spectrum for future points. This difference depends
on the spectrum of the second component and the concentration ratio of the two
components. Since the spectrum of the second compcnent is fixed for a given
mixture, the difference reflects the shape of the concentration profile for the
second component. In reality, EPCIA does not fix the position of the first
eigenvector, but allows it to continue to adjust once the second component
appears. Nevertheless, the eigenvector lags the mixture spectrum in
absorbance space and the effect is similar to results obtained if it had been
fixed. Thus an approximation to the elution profile of the second component is
obtained. This approximation is most valid when the second component is the
minor component and the changes in its concentration are gradual. Of course,
these arguments extend to the component eluting first when the filter is passed
through the data in the reverse direction.

The effects of peak shape and component concentration on the accuracy
of the approximation of the innovations sequence are clearly illustrated in Figure
42. The simulated concentration profiles for this case were rectangular
functions with a concentration ratio of 1:1 for Figure 4.2a and 4:1 for Figure 4.2b.
As before, the figure compares the rms innovations sequences for forward and
reverse filtering with the true elution profiles. In Figure 4.2a, both concentration
profiles are poorly estimated because of the abrupt changes arising from the
rectangular peak shapes. In Figure 4.2b, however, the profi'e of the second

component is more accurately modeled in spite of its unusual shape because
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the large influence of the major component effectively fixes the first eigenvector.
This observation is significant because it is usually the elution profile of the
minor component of a mixture that is more difficult to estimate. Such profiles
may be particularly useful as starting points for methods such as iterative target
transformation factor analysis1$1. Furthermore, better elution profiles should be
possible by coupling the results of EPCIA with principles of adaptive Kalman
filtering.

It should be pointed out that in order to obtain good peak shape
approximations, the EPCIA models should not contain the intercept term
(constant) as a model parameter. This assumes that the pure spectral vectors
pass through the origin, but the inclusion of the additional term permits two ways
for the models to adapt to the appearance of an additional component and does

not allow for the calculation of a reliable difference spectrum.

4.3.2 Effect of Spectral Correlation

The ability of the EPCIA algorithm to detect the presence of an unresolved
impurity depends primarily on the similarity of the two spectra, the
chromatographic resolution, the concentration ratio, and the noise level. With
this method, the baseline level of the rms innovations sequence in the absence
of a second component should be approximately equal to the noise level in the
absorbance measurements. This provides a reference point when assessing
limitations imposed by the first three factors; that is, one can examine whether or
not the maximum in the rms innovations sequence exceeds the baseline level.
Unfortunately, there is an interaction among these factors that can make this

difficult to do in practice. Nevertheless, the three factors were examined
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independently to see if an indication of their general influence could be
obtained.

To examine the effect of spectral correlation on the EPCIA algorithm, a
series of simulations were run in which the similarity of the two spectra was
varied. The simulated spectra were Gaussian with ¢ = 50 nm and Apax1= 400
nm. The position of Apaxo Was varied to adjust the spectrai correlation, and
wavelengths were sampled at 10 nm intervals beginning at 2c before the first
peak (i.e. 300 nm) and ending at 2c after the second peak (i.e. Amaxz + 100 nm).
Although the number of wavelengths sampled varies with spectral correlation in
this approach, it is preferable to adjusting the sampling interval each time. As
discussed later, the number of wavelengths used does not generally affect the
magnitude of the maximum rms innovation, but the sampling interval can be
important when sampling becomes sparse. Gaussian peaks were also used for
the chromatographic profiles (¢ = 5 s with a sampling interval of 1 s) and results
are reported for chromatographic resolutions of 0.5 and 0.2 (Rg = At/4o).
Conditions were set so that the maximum absorbance of the pure component
profiles was unity and the noise level was 0.001%. The noise level was low in
these studies to allow the observation of the systematic variations in innovations
sequence.

Figure 4.3 shows the results of the simulation studies. The maximum of
the rms innovations sequence (forward filtering) for the two different
chromatographic conditions is plotted as a function of spectral similarity. The
spectral correlation on the abscissa is represented as the angle between the
pure component spectra in absorbance space, 6, rather than with the correlation
coefficient since the latter proved to be less linear. As expected, the maximum

rms innovation (i.e. the peak of the rms innovations sequence), which is directly
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related to the detectability of the second component, decreases as the spectral
similarity increases (6 decreases). The relationship is approximately linear with
8 over most of the range, with a slope that is dependent on chromatographic
resolution as shown. At sper’ral angles above those shown in the figure, the
line shows some curvature as the result of the fact that the spectra are almost
completely resolved and the there is a region of little or no absorbance between
them.

When real spectra are considered, the study of the effects of spectral
correlation are complicated by the fact that the spectra do not normally have the
same shape. In simulating the effects with real spectra, it is desirable to
normalize the two spectra so that the effects of spectral similarity are isolated
from changes in the effective concentration ratio (see section 4.3.4).
Normalization can be done on the basis of the area or maximum of the spectra,
with somewhat different results. A second set of simulations was carried out
with the same conditions as in Figure 4.3 (with Rg=0.35), but using the
measured spectra of polycyclic aromatic hydrocarbons (PAH's) rather than pure
Gaussians. These were normalized to the same maximum absorbance and the
maximum rms innovations were determined for various pairs of spectra. Two
different wavelength ranges, 200-300 nm and 200-400 nm, were used with a
sampling interval of 4 nm. The results are shown in Figure 4.4 along with the
curve predicted on the basis of pure Gaussian spectral peaks employed under
similar conditions for the smaller wavelength range. All of the pairs follow the
predicted behavior closely, although there are some deviations due to
differences in shape. When the spectral range is increased, however, there is a
decrease in the maximum rms innovation. This is because the PAH spectra

show little or no absorbance between 300 and 400 nm and there is a
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corresponding reduction in the individual innovations for that region and
therefore the rms sum. For this reason, selection of a wavelength range for the

algorithm should avoid empty regions of the spectrum.

4.3.3 Fffect of Chromatographic Resolution

In some ways, understanding the effect of chromatographic resolution on the
EPCIA algorithm is more important than for spectral correlation since the latter is
fixed but the former can be changed by varying the separation environment. As
before, a series of simulations were carried out to evaluate this effect. The
spectra used for these simulations were Gaussian with ¢ = 100 nm and Aqax1=
450 nm. Two values of Aqayo (500 and 550 nm) were used to confirm the
consistency of the behavior under different conditions. The resolution of the
Gaussian chromatographic peaks (c =5 s, sampling interval = 1 s), was varied
by changing the peak separation. As before, the pure component profiles were
normalized to a height of unity and the noise level was 0.001%. The results of
the study are presented in Figure 4.5. It will be noted that the maximum rms
innovation varies in an exponential manner with chromatographic resolution.
The curve is approximately linear up to a resolution of about 0.5 and bends over
as the peaks approach complete separation. The maximum rms innovation
obtained will be determined by the spectral correlation. Although the peak
shapes obtained under real chromatographic conditions are often not pure
Gaussians, it is expected that the behavior will be similar for peaks that do not

deviate radically from this model.
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4.3.4 Effect of Concentration Ratio

Up until this point, most of the simulations have considered mixtures of equal
concentrations. This may seem an unusual choice, since the normal objective of
applying methods such as EPCIA to two component mixtures is to detect the
presence of the minor component. A 1:1 mixture provides a good reference
point, however, since by definition it represents the maximum attainable
concentration of the minor component. The effect of concentration ratio can
then be evaluated with this as the limit. In discussing concentration ratio, the
concept of an effective concentration ratio (ECR) will be implied. This is
necessary because, in all curve resolution methods, it is not the absolute
concentration of a component that is important, but rather the product of the
concentration and the absorbance spectrum. Therefere, the ECR in this work is
defined as,
ECR = Emax2 C2
Emax1 € (4.1)
As before, Gaussian profiles were used to simulate chromatographic and
spectral conditions. Spectra were centered at 450 and 55G nm with a width of
5=100nm. The chromatographic resolution was 0.35 {(c=5s, sampling
interval = 1s). To study the effect of concentration ratio, spectra of both
components and the elution profile of the first component were set to a maximum
of unity. The maximum of the elution profile of the second component was then
varied. The absolute noise level was fixed at values of 10~* and 105,
The results of the simulations are presented in Figure 4.6 for an ECR

between O and 0.1. The relationship between maximum rms innovation and
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concentration of the minor component is linear over the range, although a slight
deviation is evident at the high end. This curvature becomes more obvious at
concentration ratios above 0.1, but the relationship continues to be
approxima:ly linear even up to a ratio of unity. The linearity is potentially very
useful, since it means that the relative contribution of a minor impurity in a series
of mixtures can be determined without actually identifying it. It also implies that
if the maximum rms innovation is known for a given concentration ratio, it may be
predicted for other ratios.

Another useful representation of the concentration ratio dependence is
given in Figure 4.7, which displays the same resuits on a logarithmic scale. This
figure shows that the linear relationship is valid over a wide range and also
clearly shows that the EPCIA algorithm will fail to detect the presence of the
minor component when the maximum rms innovation reaches the level of the
noise. As soon as this happens, the curve becomes flat. This is illustrated in
the figure for two different noise levels. Other workers in this area have found
that a baseline noise level of about 104 AU. is reasonable for most
instruments138.139,155,156 and we have observed similar limitations in this work.
Changes in the chromatographic resolution and spectral correlation should
affect the slope of the line in Figure 4.6 and the intercept (but not the slope) of
the linear portion in Figure 4.7. This will naturally have an effect on the

minimum detectable concentration of the minor component.

4.3.5 Combined Effects

The key to assessing the limitations of the EPCIA algorithm is being able to

predict the maximum rms innovation and determining if this is larger than the
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baseline noise. This is a difficult task because the performance of the algorithm
is influenced by interactions among the variables discussed in the preceding
sections. Nevertheless, an attempt can be made to estimate the maximum rms
innovation for a given situation if certain approximations are made. Figure 4.8 is
a contour plot showing how the maximum rms innovation for the second
component varies as a function of chromatographic resolution and spectral
angle when the ECR is 0.1. To generate this plot, Gaussian chromatographic
and spectral profiles were assumed and the maximum absorbance of the first
component was taken to be unity. The use of this surface can be iliustrated with
the following example. Suppose the two components in a mixture have a
spectral angle of 8 = 40°, a chromatographic resolution of 0.3, an ECR of 0.05,
and a maximum absorbance of 0.1. On the contour surface, the first two
conditions give a maximum innovation of about 0.018, but this must be
decreased by a factor of 10 since the maximum absorbance is not 1 but 0.1 (this
is actually the combined maximum, but the true value for the first component will
be very close to this). The prediction must be further reduced by a factor of 2,
since the ECR is 0.05 and not 0.1, so that the final estimate for the maximum
rms innovation is 0.009. Of course, this is only accurate to the degree that the
assumptions made in generating the surface are valid, but the method is a good
starting point for assessing the utility of the EPCIA algorithm for a given
application. Obviously, in many applications, the characteristics of a potential
impurity are not known, but these results provide an indication of the limitations

of the algorithm.
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4.3.6 Experimental Results

To illustrate the utility of the contour plot presented in Figure 4.8, a real
chromatographic mixture consisting of phenanthrene (3.00 pg/mL) and
fluoranthene (0.25 ug/mL) was examined. The sample volume injected was 20
uL and the eluent was 100% acetonitrile at a flow rate of 0.5 mb/min. Figure 4.9
shows the spectrochromatogram obtained, together with the rms of the
orthogonal innovations at each point. The plot of rms(e’) shows a peak on the
trailing edge of the elution profile, indicative of the presence of a second
component (the initial perturbation is believed to be due to the baseline
irregularity). Under these conditions, the effective concentration ratio was about
1:11, the chromatographic resolution was approximately 0.6, the spectral angle
was 37° and the maximum absorbance was 0.18. Applying these conditions to
Figure 4.10, the predicted maximum rms innovation is about 0.004, whereas the
maximum value observed in Figure 4.10 is about 0.0025. Although this is
slightly low, the agreement is very good considering that neither the
chromatographic nor spectral peaks are Gaussian, as was used for the
simulation studies. This demonstrates that Figure 4.8 can act as a guide for

assessing the limitations of the EPCIA algorithm.

4.3.7 Other Variables

Throughout this discussion, three of the variables which have been largely
ignored are the chromatographic sampling interval, the number of wavelengths
employed in the filter, and the wavelength selected as the independent variable.

The reason for this is that the values are not critical to the performance of the
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Figure 4.9. Spectrochromatogram of a mixture of phenanthrene and
fluoranthene.
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algorithm as long as certain minimum conditions are met. In terms of
chromatographic sampling, it is important to maintain an acquisition rate high
enough to avoid distorting the peak through undersampling. A minimum of 20
points across the peak (or 5 points/c for Gaussian peaks) has been used in this
work. As long as this minimum is maintained and sampling occurs at equally
spaced intervals, the maximum rms innovation is not significantly aitered by the
sampling rate.

A minimum requirement for the number of wavelengths used must also be
met, but spectra have a greater variability than elution profiles and the lower limit
will depend on the spectral features. The range of wavelengths used should
encompass the regions of greatest spectral difference between the two
components, but exclude regions where neither component absorbs. intervals
should also be frequent enough to capture any sharp features in the spectrum.
As an alternative to selecting wavelengths at fixed intervals, particular
wavelengths representative of the two spectra could be selected, but this
requires prior knowledge of the components. In any case, it should be noted
that the spectral angle (6) and ECR described earlier refer to the wavelengths
selected and not to the entire spectrum. There is no upper limit on the number
of wavelengths, although it will increase the computational burden. The use of
more than a minimum number of wavelengths should not change the maximum
rms innovation obtained for the same range, but it should decrease the baseline
noise in the rms innovations sequence by a factor of Jn if spectral noise is
uncorrelated. This may have some effect in determining the lower concentration
limit detectable. All pairs of spectra will have an optimum set of wavelengths

based on their correlation, but in the absence of prior knowledge, 20 to 50



144
wavelengths at equally spaced intervals over the useful range of the UV-visible
spectra of the components should be sufficient.

The choice of the wavelength used for the independent variable in the
EPCIA algorithm will affect the maximum rms innovation obtained. in the results
presented here, the wavelength of maximum absorbance of the first componerit
encountered was employed. In the absence of prior knowledge of the
component spectra, using the wavelength of highest absorbance should produce
the largest rms innovation for the minor component. This follows because, these
points will exhibit a high leverage when plotted in absorbance space. This
inhibits the model from adjusting rapidly when the second component appears
and therefore maximizes the deviations of the new points. The selection of this
wavelength is easily made after the data have been collected. When using the
filter for real-time data analysis, the selection is not as reliable because it is
based on incomplete information, but this should not seriously affect the

performance of the filter.

4.4 EXPERIMENTAL LIMITATIONS OF EPCIA

In the derivation of the EPCIA algorithm and the simulation studies, the
spectroscopic data were assumed to follow a bilinear model. When Beer's law is
obeyed this holds true, and the number of observable chemical species equals
the number of principal components predicted by EPCIA. Unfortunately, there
are experimental conditions where a plot of analyte concentration versus
measured absorbance does not produce the straight line and zero intercept that
Beer's law predicts. This will occur when the assumptions, from which the law

was derived’57, are violated.  These systematic errors often reflect



145
concentration-dependent changes in the physical and chemical environment of
the analyte. Systematic deviations also result from instrumental errors158, in
which the absorbance reported by the spectrometer differs from the true
absorbance of the sample. It is important to understand these effects, because
they increase the rank of the data in a manner that could be misattributed to
chemical components. In summary, nonideal chemical or instrumental behavior
can cause EPCIA to overestimate the number of chemical cocmponents in a
mixture.

Another experimental consideration is random noise, since it sets a
baseline value for the innovation sequence. As was shown earlier, a peak in the
innovation sequence for a one-component model wili signal when the spectra
have contributions from more than one chemical species. This signal, and the
associated chemical impurity, is only observable when it exceeds the baseline
noise. Thus, high levels of experimental noise can cause EPCIA to
underestimate the true number of chemical species. In the computer
simulations, random deviations from Beer's law were generated by adding white
noise of constant variance to the data. The noise characteristics of experimental
data are typically more complex, as will be shown for absorbance measurements
collected with the diode array spectrometer in which the noise increases with
absorbance. In some cases these changes in the noise can be mistaken for
additior;al chemical species. Therefore, the properties of the noise are important
because they can cause the number of chemical species in a mixture to be over-

or underestimated.
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4.4.1 Systematic Deviations

Chemical and Physical Deviations. The derivation of Beer's law requires
some assumptions about the physical and chemical state of the analyte and the
method of measurement. It is based on a monochromatic beam of radiant
energy passing through the absorbing sample. Within this sample are
absorbers (atoms, molecules, ions, efc.) that absorb photons and reduce the
radiant energy of the beam. According to Beer's law the absorbance of a

sample varies as

A=abc 4.2)

since the number of absorbers that a photon passes as it travels through the
sample increases linearly with the path length b and the concentration of the
absorbers ¢. The absorptivity a, is a proportionality constant that depends on
the wavelength of the incident radiation and the nature of the absorber. This
constant reflects the probability of a photon interacting with an absorber, or
equivalently, the effective cross section of the absorber. When ¢ is expressed in
units of moles per liter and b in centimeters then the proportionality constant is
called the molar absorptivity, €.

Apparent deviations from Beer's law can occur when the concentration of
the absorbers is only a portion of the total analyte concentration. This will occur
when the analyte is involved in equilibria such as

AH 2 A~ + H*
where more than one analyte species exists in solution. The effect of this
equilibrium on Beer's law depends on the two analyte spectra. If only one of the

specias (AH or A-) absorbs radiation, then a plot of its absorbance versus the
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net analyte concentration will be nonlinear, with either negative or positive
deviations. This is an apparent deviation from Beer's law as the errors resuit
from inaccurate values of the absorber concentration rather than a failure of the
law itself. Although the plots of A; against C are nonlinear, in this case the A?
piots used in EPCIA would stil be linear. This is because the relative
absorptivities (A;/A;) for the absorbing form of the analyte are unaffected by the
equilibrium. In other words, the spectra still lie on a single spectral vector.

The other possibility is that both forms of the analyte (AH and A™) absorb
radiation, but have different spectra. Again, this could cause positive or
negative deviations from Beer's law. In this case, EPCIA would indicate that two
components contribute to the spectra. While this is true, it might be confusing
since we usually assume that each analyte has a unique absorption spectrum.
Since the EPCIA algoiithm has no way of knhowing that the two absorbing
species originate from the same analyte, the chemist's knowledge is required to
overcome this ambiguity.

Along with its chemical state, the properties of an absorber also depend
on its physical environment. This includes the effects of solvent, temperature,
and electrolytes. All of these influence the molecular environment of the analyte
and thus effect its absorption spectrum. In ger.eral, these properties do not vary
greatly over a chromatographic peak, so they are not a major problem in EPCIA.
What does change within ordered data sets is the concentration of the analyte.
In Beer's law the absorptivity of a substance is assumed constant with respect to
changes in concentration, but this requires that the absorbers act independently
of each other. At high analyte concentrations or electrolyte concentrations this

assumption may fail, due to sc**e-solute or solute-solvent interactions. The
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resulting systematic deviations can increase the rank of the spectroscopic data
and cause EPCIA to overestimate the number of chemical components present.

In summary, the presence of equilibria involving the analyte can cause
both positive and negative deviations from Beer's law. These arise from
nonlinear relationships between the net analyte concentration and the individual
absorber concentrations. Despite these nonlinearities, EPCIA can often
correctly identify the number of absorbing species. \What EPCIA cannot do is
identify the origin of each absorbing species since this requires chemical
knowledge that it lacks. Deviations from Beer's law also occur when the
molecular environment of the analyte changes with concentration. The resuiting
spectral changes are more problematic for EPCIA since their effects may be

=mistaken for a chemical impurity.

Instrumental Errors. Unlike the chemical and physical effect discussed above,
instrumental errors don't alter the true absorbance of the sample. Instead, they
degrade the accuracy and precision of the measured absorbance values. This
section considers errors associated with the spectrometer which limit the
accuracy of the measured values. For EPCIA we are most concerned with
instrumental errors whose magnitude is dependent on the absorbance of the
sample; that is, errors that produce a nonlinear response in absorbance rather
than a constant bias. There are many possible sources for these systematic
errors, including nonidealities in optical design, detector response, and
electronic components like amplifiers. For the diode array spectrometer, stray
light and polychromatic radiation can cause significant deviations from Beer's
law. The magnitude of each of these errors depends on the total absorbance

and spectra of the samples.
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Figure 4.11 compares measured absorbances of a series of para-xylene
solutions to absorbances predicted by Beer's law. These prediciions are based
on the molar absorptivities of dilute solutions (0.5 AU or less). No systematic
deviations were observed at these values, but at higher absorbances significant
deviations from Beer's law occur. All of these deviations were negative
(measured absorbance is less than predicted), which is typical of instrumental
errors158, Furthermore, these deviations were generally smaller at wavelengths
where the spectrum is relatively flat. This behavior will be examined in the
following sections.

To understand the origins of systematic and random errors in absorbance
measurements the design of the diode array spectrometer198-162 will briefly be
considered. The conventional design for a UV-visible spectrometer focuses light
onto a monochromator that selectively transmits a narrow band of light. After
this light passes through the sample cell its intensity is measured by a single
detector. In contrast, a diode-array spectrometer (Figure 4.12) has the positions
of the dispersive device (grating) and the sample reversed. This is called a
reverse-optics design. Thus, polychromatic radiation passes through the sample
first, and then it is dispersed onto a linear array of detectors. In this way, each
element of the photodiode detector measures the intensity of a different region
of the spectrum.

The spectrometer used in this work has an array of 316 diodes. The first
diode is positioned to record the absorbance at 190 nm, the next at 192, 194,
196, ... .820 nm. Thus the spectrum is digitized with 2 nm increments. Although
each diode is centered on a particular wavelength, it actually measures the
spectrum for a bandpass around this value. The width of this bandpass is

related to the performance of the polychromator and the physical size of the
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photodiode. The spectral bandwidth of the polychromator usually depends on
the width of its entrance slit. A narrow slit decreases the bandwidth, but aiso
decreases the amount of light reaching the detector. The detector bandwidth
indicates the region of the spectrum that gives a response for each diode. While
the lower limit should be 2 nm for this detector, its actual bandwidth is somewhat
wider because the sensing areas overlap for adjacent diodes60. The overall
bandpass of the spectrometer depends on both the spectral and detector

bandwidths, but it is limited by the larger of the two.

Detector Linearity. Spectrometers do not measure the absorbance of a sample
directly, but instead measure the attenuation of the beam of power P, to P by the

absorbing solution. Then the absorbance is calculated as:

A =log % =-logT (4.3)

where T is transmittance. To measure the power of the incident radiation, the
detector converts the radiant energy of photons into an electrical signal, such as
current, which is easier to quantify. An ideal detector would have a linear
response with respect to the incident radiant power. To evaluate this
relationship experimentaily, the detector's response was measured for a range of
photon fluxes. These were achieved with a photographic step tablet, a strip of
photographic film with calibrated steps of silver density. Each step increases
absorbance by a fixed amount. Thus a plot of measured absorbance against
step number should be linear.

A mask was cut to expose individual steps of the tablet. Then, this mask

was fixed in the sample compartment with its opening centered in the beam.
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Measurements made over a range of 15 steps are shown in Figure 4.13 The

linearity of the detector was evaluated with the equation
A=kn’ (4.4)

where A is the measured absorbance, k is a system-dependent constant, n is
the step tablet index and r is the response index of the detector. The response
index should not be confused with a correlation coefficient which shares the
same symbol. An ideal detector would have r equal to unity. The response
index for the step tablet at 400, 600, and 800 nm was found to be 0.96 + 0.01
over a range of about 3 AU. Over smaller ranges of absorbance the response
index approached unity. The linearity of the detector response could not be
measured in the UV region with this experiment due to the film base absorbance.
The response indices for the para-xylene solutions (Table 4.1) were much lower
than those calculated for the step tablet, even though they are calculated for a

smaller range of absorbance values.

Table 4.1 Results from fitting Equation 4.4 to the para-xylene
calibration data.

Wavelength Maximum
Sample (nm) absorbance Response Index
step tablet 600 2.95 0.96
para-xylene 240 276 0.88
para-xylene 250 2.26 0.91
para-xylene 260 2.19 0.85
para-xylene 268 2.27 0.65
para-xylene 272 2.10 0.53
para-xylene 274 2.19 0.62

para-xylene 278 1.79 0.67
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If the detector behavior is similar in the UV region to that observed from 400 to
800 nm, then nonlinear detector response is insufficient to explain the deviations
observed for the chemical samples. Some attributes of para-xylene must cause
Beer's law to fail at lower absorbances. One important difference between the
step tabiet and the chemical samples is the iatter have nonuniform absorbance
across their spectra, making them more susceptible to the effects of stray light

and polychromatic radiation.

Stray Light. Stray light is defined!82 as detected light of any wavelength that is
outside the bandwidth of the select=d wavelength. Ideally, all the light of a given
wavelength would be able to reach the appropriate diode, but a portion of this
light is misdirected due to imperfections in the gratings and optics. Scattered
light can also include light that has not passed through the sample and light
dispersed by higher orders of the grating. These photons can then contribute to
the signal at another region of the spectrum, perhaps hundreds of nanometers
away, causing inaccurate results. Spectrometers with reverse-optics designs
are susceptible to stray light as polychromatic light is projected onto the grating.

The effect of the stray light on the measured absorbance is,

_ P+ P\ 100 Dirwe +f
Ameas——log(PoTPS)— 10%( 147 ) (4.5)

where A .. = measured absorbance
P, = power of the stray radiation
Tirue = true transmitance of the sample
f = relative contribution of the stray light ( P,/ B,)
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Stray light causes negative deviations that increase nonlinearly with
absorbance. These errors usually limit the maximum absorbance that the
spectrometer can record. The level of stray light is dependent on instrumental
design and the quality of the grating used, but it is also necessary to consider
the properties of the sample. In general, it will affect a sample with a few narrow
absorbance bands more than one with a broad flat spectrum, like the neutral

density filters.

Polychromatic Radiation. Beer's law assumes that the incident radiation is
monochromatic, but for reasons explained earlier, spectrometers always have a
finite bandpass. For example, a diode centered at 500 nm might respond to
photons in the range of 499 to 501 nm. All of these photons contribute to the
measured response since they are indistinguishable to the detector. This
polychromatic radiation causes both bias and nonlinearity in the measured
absorbance.

Dose and Guiochon'®4 have modeled the dependence of the
spectrometer response on bandpass and the shape of the absorbing sample's
spectrum. To do this, the detector signal is calculated by integrating the radiant
energy over the bandpass. The model assumes that the incident power and
diode response are constant over the bandpass of the instrument. Then the

measured absorbance Ap,.,, €an be calculated as:

A eas = — log(r"M/glO‘Amdk) (4.6)

A, —AM2
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where A = the spectral bandpass (nm)
Ao = the detection wavelength
A(A) = the true absorbance at wavelength A

If the sample absorbance does not vary over the bandpass, such as would be
the case for monochromatic radiation, then Equation 4.6 reduces to Beer's law.
Deviations from Beer's law are appreciable when there are large changes in
absorbance within the bandpass, such as on the sides of sharp spectral
features. One rule of thumb is that the bandpass should be 1/10 the width of the
peak to give an error of less than 0.5%. This rule assumes that the wavelength
is set to the peak maximum. To provide a more general evaluation of the effects
of stray light, Dose and Guiochon modeled the absorbance of the sample with a
Taylor series in A about the band's central wavelength A,. In the case of a first-

order expansion the integral can be written in a closed form:

A= A1 sinh(Ka,A/2)
1= 20708 TR A/2 @&.7)
where A; = absorbance predicted by a first-order expansion
A, = Beer's law absorbance
K = In(10)
a) = absorbance derivative (dA/dA)

Thus the absorbance is partitioned into two terms: the Beer's law absorbance
(A,) and a correction term that is nonlinear with concentration. Also note that
the correction term for polychromatic radiation is always negative.

The values of a; and A were estimated from para-xylene solutions with
absorbances less than 0.5 AU. Equation 4.7 was then fit to a wider range of
absorbance values to estimate the value of the spectral bandpass. This fit was

evaluated for wavelengths where there was little curvature in the spectra, that is,
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regions where the second derivative is small. These regions were chosen for
two reasons: (1) they are on the sides of peaks where the absorbance changes
rapidly with &, (2) the first-order approximation is reasonable. In contrast, an
accurate description of the peak maximum would require a second-order Taylor

series expansion. Some typical results are given in Table 4.2

Table 4.2 Results from fitting Equation 4.7 to the para-xylene
calibration data.

Wavelength Maximum
(nm) absorbance Agit Notes
250 1.65 479
250 2.75 7.20 poor fit
270 1.68 4.38
270 2.10 7.04 poor fit

At absorbances below 1.7 AU Equation 4.7 adequately described the deviations
from Beer's law. At higher absorbance the model failed to describe the
measured absorbances and the estimated spectral bandpass increased. This is
physically unreasonable since the bandpass should be independent of
absorbance. Assuming the additional contribution at high absorbances was due
to stray light, a composite model was designed which included the effects of

stray and polyct.romatic radiation

107M + f J

Asteay = A1 log( 1+1 (4.8)

The result for this model are given in Table 4.3. including the stray light term

improved the model's performance at high absorbances. The results in Figure
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4.14 are from fitting the entire calibration curve at 278 nm. The deviations from
Beer's law were negative, and they increased with absorbance. Equation 4.8
accurately described these deviations over the full range of the experiment. In
turn, the fitted values of the stray light and the polychromatic terms can be used
to predict the relative contributions of the two effects. As an illustration, Figure
4.15 gives the errors predicted at a wavelength with a molar absorptivity of
10,000 and a first derivative of 1000 (a;/A, = 0.1). These are typical values for
a peak with a width of 10 nm at half height. While both effects increase with
absorbance, the stray light term is less important at low absorbances. This
explains why Equation 4.7 alone was successful in modeling deviations at lower

absorbance. At higher absorbances the stray light dominates.

Table 4.3 Results from fitting Equation 4.8 to the para-xylene
calibration data,

Wavelength Maximum Agt

(nm) absorbance (nm) frit
242 3.03 4.3 0.93x 1073
250 2.98 3.7 1.1x10°3
264 2.62 6.7 2.8x10°3
270 2.17 43 59x1073
276 2.01 45 88x 1073
278 1.79 4.3 7.9x1073

Average 2.54 44102 2.7+1x 1073

Scan Time. The diode array spectrometer continucusly exposes all the diodes

to the spectrum during an absorbance reading. These diodes are reverse-
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biased such that they don't conduct electricity until the incident photons produce
charge carriers. Thus the charge produced by each diode circuit should be
proportional to the incident power. Each diode has a capacitor to store this
electrical charge. The process of reading these capacitors and converting their
charge to a digital signal is carried out sequentially. Thus the electronic reading
of the detectors, not a mechanical scanning of a monchromator, determines scan
time of this instrument. This is analogous to a row of buckets collecting rain,
where the water level in each bucket is recorded and then emptied in a
continuous cycle. The instrument used in this work has a scan time of 100 ms
for the full spectrum. Thus, to record a spectrum for 1 s, the diode array sums
the results of ten 100 ms scans.

Instrumental artifacts arise when the sample absorbance changes rapidly
during the scan time198, just as large changes of absorbance (as a function of
wavelength) were a problem with polychromatic radiation. To understand this
problem, consider a simpler system where there are ten diodes over the
spectrum with a one second scan time. We start to record a spectrum at 1.0 s.
The signal recorded at the first dicde was integrated between 0 and 1.0s. The
signal at the next diode is also for a 1.0 s integration, but it is for the signal
between 0.1 to 1.1 s. This continues to the last diode, whose signal is read at
2.0 s. There are no problems for static systems, since the signal is integrated
for the same duration at each wavelength, but with dynamic systems the lag time
between diode readings can alter the appearance of the spectra. On the rising
edge of a chromatographic peak, the last diode read will be observing a higher
concentration of the analyte than the first diode. On the trailing edge, the effect
is reversed. The effect of scan time is illustrated in Figure 4.16 where two

spectra obtained at different points on the elution profile of phenanthrene are
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compared. The magnitude of these errors increases for narrow chromatographic
peaks, but would decrease for an instrument with a faster scan time, such as
one specifically designed for HPLC detection. Alternatively, mathematical

corrections156.165 can be appliec.

4.4.2 Random Deviations

Random noise limits the precision with which absorbance measurements can be
made. There are a variety of potential noise sources for a spectroscopic
measurement166.167  These include instrumental sources such as electronic
components, and fundamental sources like the particle nature of light. In this

discussion we will consider two general classes of noise:

1. Shot noise refers to random fluctuations associated with the counting of a
random event, Poisson statistics predict a standard deviation of n1/2 for
counting n events. In spectroscopy, this fundamental noise results from
random arrival times of the photons at the detector. Another source of
shot noise is the dark current from thermally generated charge in the

diodes.

2. Flicker noise is noise due to fluctuations in the source intensity. This is a
nonfundamental effect since it depends on the stability of the lamp.
These fluctuations can be minimized by using double beam geometry,
optical feedback, or source modulation. The standard deviation of flicker
noise is proportional to the intensity of the beam.  Fluctuations in the
detector response or background, such as those occurring with

temperature changes, also produce flicker noise.
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There are other possible noise sources for diode array spectrometers, including
amplifier noise and limited resolution in the analog to digital conversion, but in a
good instrumental design these are not the limiting noise sources.

Muiltiple values of a signal are needed to calculate a standard deviation
but these are easy to acquire with the diode array since it measures the sample
every 100 ms. Repetitive scans allow an average signal and noise estimate to
be calculated at each point in the spectrum. These calculations are performed
by the spectrometer's processing unit in real-time.

instrumental noise can be characterized by its magnitude and frequency
characteristics'66. |n the simulation studies, the variance of the noise was
assumed to be constant. The precision of the diode array spectrometer was
evaluated with the para-xylene solutions between 210 and 310 nm. The
standard deviation was estimated from 60 scans of the diode array. Figure 4.17
shows that the noise is heteroscedastic, that is, its magnitude is dependent on
the absorbance of the sample. At absorbances of 0.5 AU or iess the noise is
almost independent of sample absorbance. By 1.0 AU the noise is roughly
doubled, and by 2.0 AU it has increased by more than an order of magnitude.

Highly absorbing samples reduce the number of photons reaching the
detector, which degrades the precision of the absorbance measurement. The
flow cell has a smaller aperture than the normal cuvette that also reduces the
beam intensity. As a result, the precision of a sample measured in the flow cell

is lower than for the standard cuvette.

Frequency Characteristics. The magnitude and frequency of the nc se can be

examined in more detail by calculating its power spectrum from replicate
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measurements. Flicker noise is also known as 1/f noise since the magnitude of
its power spectrum varies inversely with frequency. That is, the fluctuations are
predominantly low frequency. For shot noise, the magnitude of the noise is
independent of frequency, giving a flat power spectrum. Another possibility is
interference noise at specific frequencies, such as 60 Hz line noise.

The noise power spectrum of the diode array spectrometer was found to
vary with sample absorbance. Figure 4.18B shows that the power spectrum of
the blank reading contains predominantly low frequency noise, indicating that
flicker noise is present. At higher absorbances, the magnitude of the noise
increases and its distribution become less dependent on frequency (Figure
4.18A). Although flicker noise is still present in this reading, the shot noise
appears to dominate. Both of these noise sources vary with incident power:
flicker noise increases linearly with P, while shot noise increases as P12 where
P is the number of photons measured. Thus the relative contribution of flicker
noise increases with increasing photon counts. Hence flicker noise skould be

most apparent in the blank where the incident power is at its maximum.

Ensemble Averaging. When integration times longer than 100 ms are used,
the absorbance signal reported by the diode array spectrometer is an ensembie
average. For example, a 2.0 s absorbance readings is the average of 20 scans
of the detector. Ensemble averaging of n scans should improve the S/N by a
factor of 111/2 for a signal contaminated by wiite roise28, Table 4.4 compares
this predisted improvement to the actual improvement for a sample with an
absorbance of 2.0.

For short integration times, ensemble averaging gives the signal

enhancements expected for white noise. As the integration times increase, the
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actual improvements are smaller than the predicted. This suggests that the shot
noise is reduced by ensemble averaging, but the remaining flicker noise is
harder to remove because it contains predominantly low frequencies. The
efficiency of ensemble averaging also decreases for samples with low
absorbance, such as the biank readings. For example, averaging 16 scans of
the blank reading decreased the standard deviation from 3.7 to 2.1 x 104 this

is a S/N enhancement of only 1.76.

Table 4.4 Improvements in S/N from ensemble averaging a
2 AU signal.

O apsorbance predicted actual
scans averaged (x 103 AU)  improvement  improvement

1 5.80 - -
2 3.91 1.41 1.5
4 3.20 2 1.8
16 1.83 4 3.1
64 1.31 8 4.4
128 0.96 11.3 6.0

In summary, the spectrometer's noise characteristics depend on the
incident power reaching the detector. When this power is at its maximum (low
absorbances), flicker noise dominates and the noise power spectrum contains
predominately low frequencies. As the power decreases, the relative error in the
detector signal and the absorbance measurements increases. This noise results
predominantly from random shot noise, and is therefore easier to remove with

ensemktle averaging.
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4.4.3 Effect of Systematic and Random Noise on EPCIA

The previous sections showed how experimental artifacts can cause deviations
from Beer's law. In practice, peak purity detection is usually limited by these
experimental and instrumental non-idealities?56,165,168-171  rather  than
fundamental mathematical ones. The magnitude of these deviations increase
with absorbance, but the nature of each depends on the experimental conditions

in a different way:

1. Stray light causes negative deviations. The size of these deviations
depends primarily on the relative contribution of stray light (f). Thus,
there is no simple way to change the contribution of stray light to a given

sample absorbance.

2. Polychromatic radiation also causes negative deviations from Beer's
law, so its effects are difficult to distinguish from those of stray light. The
size of these deviations depends on (A), the bandpass of the
spectrometer, which is fixed for the diode array, but also on the shape of
the spectrum. The effects of polychromatic radiation are most

aronounced at wavelengths with large spectral derivatives.

3. Random noise results from instrumental sources like the lamp and the
detector. It cause both positive and negative deviations. While the noise
characteristics of the spectrometer components are fixed, their effect on
the absorbance readings is not. For instance, the precision of the
absorbance readings can be improved with ensemble averaging. Also,
the precision decreases under experimental conditions that reduce the

power of the blank reading (P,).
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4. Scan-time causes problems for dynamic systems. Its magnitude and
direction depend on the absorbance changes over time (dA/dt). Thus it

has no effect on measurements of a static system.

Experiments were designed to emphasize each of these noise sources so that
their effects on EPCIA can be observed. To do this, a flowing system was
constructed with two peristaltic pumps, one for controlling the flow of a solvent
and the other for an analyte solution (Figure 4.19). The flow rates of ii.¢ pumps
were computer controlied. The analyte and solvent streams were combined in a
mixing coil. The analyte/solvent flow ratio was varied over the experimental run
to produce a Gaussian concentration profile, with a constant total fiow rate. The
two flowing streams were then combined in a mixing coil before reaching the
flow cell.

There are several advantages to using this setup. First, the system can
be used in a stopped-flow mode where the pumps are turned off before the
spectra are acquired. With the flow stopped, the analyte concentration in the
cell should remain constant, thus eliminating scan-time effects. The stopped-
flow also allows long integration times that increase the precision of the
absorbance measurements and provides good variance estimates. A third
advantage of this system is that it gives reproducible peak profiles for the
analytes regardless of their concentration or the solvent used. This aliows
results from different 2—alytes to be compared fairly.

In the initial studies, a stopped-flow approach was used with a 4 s
integration. These conditions should emniasize the effects of stray and
polychromatic radiation. Both methyi orange and praseodymium chioride were

studied. Methyl orange has a relatively broad spectrum (Figure 4.20) in acidic



172

@ 30cm Mixing Coil

S
Sample Total flow =
1.5 mL/min
A—
HP Dicde Array
with 30ul flowcell
| v
Solvent

Waste

Figure 4.19. Stopped flow apparatus used to evaluate the effect of systematic
and random noise on EPCIA.



173

Absorbance

- . it
420 440 460 480 500 520 540 560

Wavelength (nm)
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solution, which was recorded at 26 wavelengths (6 nm intervais). The

praseodymium spectrum has sharper spectral features. It was also recorded at

26 wavelengths (2 nm intervals).

Methyl orange. EPCIA was initially evaluated for nine methyl orange samples
with maximum absorbances from 0 to 2 AU. The resulting matrices each
contained 70 spectra at 26 wavelengths. The concentration profile had a
haseline width of roughly 40 points as seen on the top panel of Figure 4.21. For
samples with maximum absorbances of 1 AU or less, the EPCIA results were
comparable to those obtained for simulated one-component systems. The one-
and two-component models had flat innovation sequences, consistent with the
presence of one chemical component. For more concentrated samples, the one-
component innovations increased beyond those of the two-component model.
This behavior, shown on the bottom of Figure 4.21, was not seen for simulated
one-component systems that contained perfectly bilinear data. The failure of the
one-component model suggests that two components are present, but a double
hump is not expected for two chemical components. This behavior continued for
more concentrated solutions giving increasingly large one-component
innovations (Figure 4.22). While the two-component innovations also increased,
they did not exceed the level of the random noise.

The second component that EPCIA detects is likely an instrumental
artifact rather than a chemical component. This was investigated by performing
principal components analysis on the data matrix. The scores plot (also called
an abstract chromatogram) shown in Figure 4.23 illustrates the contribution of
each principal component as a function of sample number. The first principal

component (PC1) explains the majority of the variance in the data, and thus has



175

1.00

0.75 +

0.50 -

Absorbance

0.25

0.0G

0.004 -

0.002 -

rms(e’)

0.0060C

Point Number

Figure 4.21. Elution profile of methyl orange (top), and rms innovation
sequences for cne (solid line) and two (dashed line) ccmponent models.



176

| Tt T 1" 1 )

M 15 -

x.

2 o

p _

S ¢!

2

O

>

@) _

- > )

< / ‘o

- i ." -
1.5 2.0

Maximum Absorbance

Figure 4.22. Largest innovations from one (O) and two (®) component models
plotted for each data matrix against the maximum absorbance. For exampie, the
result of Figure 4.21 are the two values at 1.4 AU. The expected magnitude of
the random noise (3o) is given for comparison (dashed line).



177

Scores

L_l—-l__l._l__l_l._l__j__l_._l [T O U D SO YU S U W Y N T AU TS G bt

0 10 20 30 40 S0 60 70

Point Number

Figure 4.23. Results from PCA of the data shown in Figure 4.21. The scores ¢f
the first (dashed line) and second (solid line) principal component are shown.



178
the shape of the concentration profile. This component models the average
spectrum of methyl orange. If PC1 explained all the systematic variance, then
PC2 would only contain random variations. For these data, the PC2 scores
have a systematic trend, with the largest scores occurring at the top of the
concentration profile. The most negative values of PC2 occur for samples where
there is significant absoiDance, but Beer's law is still obeyed. Thus PC2
explains the systematic differences that occur for highly absorbing samples.

The double hump in the innovations also resuits from the nonlinearities,
which affect Kalman filter differently since it is an evolving model. At the
beginning of the concentration profile the filter estimates state parameters to
predict the methyl crange spectra. Up to about point 25, these predictions are
accurate, so the innovations reflect only the level of random noise. Then the
spectra start to change systematically as the analyte absorbance increases
beyond about 1 AU. These changes result in larger prediction errors for the
model. The state parameters are adjusted in response to spectral changes
resulting from deviation from Beer's law, but, because the model is incorrect, the
prediction errors increase faster than the parameter adjustments. After the
chromatographic peak reaches its maximum, the spectral vector begins to shift
back to its original value, so the innovations begin to decrease as it comes
closer to the EPCIA model. At some point on the return, the spectrum passes
the EPCIA model momentarily, causing the minimum in the double hump. Then
it overtakes the EPCIA model in the other direction, causing the innovations to
increase again. Finally, the innovations decrease as the signal returns to the
baseline. Thus the two components that EPCIA detects are not associated with
different chemical species, but rather they are associated with different

experimental conditions. In this sense, the two species detected by EPCIA are
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methy! orange at low absorbance values and methyl orange at high absorbance
values, which are spectroscopically different due to deviations from Beer's law.
The results do not permit attribution of the deviations to chemical effects, stray

light, or polychromatic radiation.

Praseodymium chloride. For comparison, praseodymium samples were run
using the same concentration profile and integration time. EPCIA of these data
gave comparable results for both the appearance and magnitude of the
innovations (Figure 4.24). The praseodymium chloride was expected to show
greater deviations due to polychromatic radiation, because its spectrum contains
sharper features, but it did not. To investigate this, EPCIA was applied to only
the largest spectral peak (436 to 452 nm) in the praseodymium spectrum. In this
analysis, the one-component model failed at lower absorbance values (0.7 AU)
than any of the previous runs, again showing the characteristic double hump. At
higher absorbances the results were similar to those for methyl orange and the
analyses using the full spectrum fpr praseodymium. This suggests that the
effects of polychromatic radiation are only observable for wavelength ranges
with predominantly large spectral derivatives, otherwise stray light dominates.

In evaluating the effect of the derivative, its sign is not important since the
hyperbolic sine in Equation 4.7 is symmetric. Thus, the average magnitude of
the derivative can be used for comparing spectra. Table 4.5 contains the
spectral derivatives for samples with a maximum absorbance of 1 AU. Recall
that the relative contributions of stray light and polychromatic radiation were
shown in Figure 4.15 for a wavelength with a spectral derivative of 0.1, which is
close to the average derivative for the largest praseodymium peak. The model
predicted that the contribution of polychromatic radiation at 1 AU was

-1.8 x 1072, roughly twice the stray light. The dependence of the polychromatic
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radiation on the spectral derivative is nonlinear, though, such that decreasing
the derivative by half causes the contribution of polychromatic radiation to drop
to —4.5 x 1073, making it smaller than the contribution of stray light. Thus the
effect of polychromatic radiation on the EPCIA is only significant wihen the
average derivative of the spectrum is large. This was observed for selected
regions of the para-xylene and praseodymium spectra. Each of these spectra
had an average derivative that was roughly 10% of their maximum absorbance.
Interestingly, these values are similar to the average derivative of a Gaussian

peak with a standard deviation equal to the bandpass of the instrument.

Table 4.5 Spectrai derivatives of the samples studied

Wavelength Range  Average Derivative

Sample (nm) (nm—1)
methyl orange 420 - 570 0.012
PrCly 436 - 486 0.050

PrCls 436 - 452 0.096
para-xylene 266 - 280 0.086
Gaussian (o= 4.4 nm) 4c 0.098

in summary, at low absorbance (<0.7 AU) the innovations from both the
one- and two-component models were flat, with a magnitude reflecting the
random noise. This indicates that the one-component model predicts the
spectrum within the precision of the instrument and therefore the system
contains one chemical component. At high absorbance (>1.5 AU), systematic
deviations from Beer's law cause the one-component model to fail. These
deviations were attributed to stray light since their contribution was independent

of the spectral shape of the analyte. The effects of polychromatic radiation could
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be observed for samples between 0.5 and 1.5 AU, but only when the average
magnitude of the spectral derivative was large. Stray and polychromatic
radiation increase the rank of the data and cause EPCIA to overestimate the

number of chemical components present.

Random noise. In characterizing the spectrometer, the variance of the random
noise was found to increase with absorbance. The effects of this
heteroscedastic noise on EPCIA were not obvious in the previous stopped-f!-

experiments since the systematic noise dominated. While the systema.

sources of noise cannct be eliminated, the contribution of the random noise can
be increased. Accordingly, the methyl orange experiments were repeated with
two changes: (1) the integration time was reduced from4sto 0.1 s, and (2) a
neutral density filter (1.3 AU) was used to reduce the intensity of the
spectrometer source, P,. This moves the blank reading and subsequent sample
readings (P) into a noisier range for the detector. The systematic effects are
assumed to be unchanged since the model for polychromatic radition is
inpependent of power, and the neutral density filter would attenuate stray light to
the same extent as the spectrometer source. Figure 4.25 shows how the noise
affects EPCIA. The innovations for the one- and two-component models
increased at high absorbances where the variance of the random noise
increases. The scores plot (Figure 4.26) indicates that PC1 is similar to earlier
results (Figure 4.23), but PC2 models only random noise in this case. Note that
the values of PC2 scores, like the variance of the noise, increase with
absorbance. The maximum innovations are shown in Figure 4.27a. Note that
the scale is larger than the one used for the original methy! orange data (Figure

4.22) by a factor of five. At the highest absorbances, the one-component model
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Figure 4.25. Elution profile of methyl orange with the neutral density filter in
place (top). The effect of heteroscedastic noise on the innovation sequences is
shown (bottom) for one (solid line) and two (dashed line) component models.
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Figure 4.26. Results from PCA of the data shown in Figure 4.25. The scores of
the first (dashed line) and second (solid line) principal components are shown.
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became slightly larger than the two-component model, due to effects of the
nonlinearities.

If these large innovations are mostly due to random noise, they should be
reduced by ensemble averaging. Figure 4.27b shows that ensemble averaging
the spectra for a 4 s integration reduces the innovations significantly. in
contrast, the innovations for methy! orange with 0.1 s integration but no neutral
density filter were within 10% of the results for the 4.0 s integration. This
suggests that, under normal operating conditions, the deviations of the one-
component innovations are mostly due to systematic effects, such as stray light,

that cannot be removed by averaging.

4.5 CONCLUSIONS

The results presented here ’:ave demonstrated that the EPCIA aigorithm is a
useful approach to the problem of peak purity assessment in chromatography
when multiwavelength UV-visible absorbance detection is available. It has been
shown that the shape of the rms orthogona! innovations sequence will
approximate the shape of the elution profile of the minor component, and that
the maximum of this seguence is proportional to the concentration of a given
minor component over a wide range. This maximum also decreases with
increasing spectral correlation and decreasing chromatographic resolution. The
minor component will not be detected when the maximum rms innovation
approaches the noise level of the absorbance measurements.

The effectiveness of the algorithm may be limited in practice by
heteroscedastic noise, spectral scan time, baseline perturbations, and nonlinear

response. For one-component systems with sample absorbance below about
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0.7 AU on the HPB8452A spectrometer, the innovations were attributable to
random noise of essentially constant magnitude.  With higher sample
absorbances, nonlinear instrumental response became important. This caused
a double hump in the innovations of the one-component model, but had little
effect on the two-component model. This is different behavior than observed for
a two-component chemical system, which gave a single peak in the one-
component innovations. Heteroscedastic noise caused both the one- and two-
component innovations to increase, but was only evident when neutral density
filters were used to attenuate the spectrometer beam. The ability of EPCIA
algorithm to detect impure chromatographic peaks could probably be improved

by correcting for these nonidealities by experimental or computational means.
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SELF-MODELING CURVE RESOLUTION

5.1 INTRODUCTION

Second-order analytical techniques are designed to produce a matrix of data for
each sample run. The theoretical advantages of these multidimensional
methods are well documented, particularly for the case where many chemical
components may be present in the run. In practice, these advantages will only
be realized when suitable techniques for processing the resulting data have
been established. This chapter considers technigues for extracting the pure
concentration profiles from overlapped mixtures, which result from techniques
such as chromatography, kinetics and titrations. This chapter uses liquid
chromatography with multiwavelength detection as an example, but the
techniques discussed are applicable to data from many other experiments. The
goal of the techniques discussed in this chapter is to estimate the matrix of pure

concentration profiles, C, from bilinear data of the form:

D =C S + E

(ngxnw ) tngxng)(nexng)  {ngxny) (51)

where D is the matrix of experimental data
C is the matrix of concentration profiles
S is the matrix of spectral profiles
E is the matrix of experimental errors
ng is the number of samples in time (i.e. spectra)
ny, is the number of wavelengths
n, is the number of absorbing components.

There are many methods for extracting information from bilinear data, and the

'best’ method is the one that takes advantage of all the prior information
188
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available. The most commonly used information is a knowledge of the pure
component spectra, that is, knowledge of the spectral matrix S. Three cases are

considered:

1. Complete knowledge of the spectral profiles exists. The number of
chemical components is known and a pure spectrum is available for each.
This would be the case for a well-characterized mixture where the

concentrations of the components are unknown.

2. Partial knowledge of the spectral profiles exists. In this case the
components of the overlapped peak are assumed to be members of a
larger set. Specifically, the spectrum of each pure component is
contained in a library of known spectra, but components of the peak are
otherwise unidentified. Accordingly, the problem is one of identification

and quantitation.

3. No knowledge of the spectral profiles is available. This situation often
occurs when a peak purity algorithm, such as EPCIA, detects a
chromatographic peak containing more than one component. This
chapter will focus on mathematical methods of extracting the pure
concentration profiles from such data that don't require prior knowledge of

the spectral profiles.

There are two general approaches for estimating concentration profiles.
Traditional methods estimate the mixture spectra as a linear combination of
known spectra, thus estimating the contribution of each component. Since they
require prior knowledge of the pure spectra, these methods can only be applied
to the first and second cases listed above. The other approach, based on

principal components analysis, is to estimate the mixture as a linear
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combination of the principal components. For example, the mixture spectra can
be estimated as linear combinations of abstract spectra, or similarly, the
individual concentration profiles can be estimated as linear combinations of the
abstract chromatograms. Since the principal components are calculated directly
from the experimental data, these factor analysis methods are suitable for the
second and third cases listed above. A goal of this work is to use information

obtained from EPCIA for mixture analysis, when there is no pricr knowledge of

the spectral profiles.

5.2 TRADITIONAL METHODS FOR MIXTURE ANALYSIS

§.2.1 Classical Least-Squares

Classical least-squares32.120 (CLS) is the traditional method for treating the first
case menticned in the introduction, where the spectrum of each component in
the mixture is known. Thus CLS is used for quantitative, rather than qualitative,
spectral analysis. As was shown in Chapter 3, each element d;; of the data
matrix, D, contains the total absorbance of the it sample at the j! wavelength.
Thus, a system of simultaneous equations can describe the contribution of each
component to the mixture spectra. For a simple example with two components

and two wavelengths, the following equations can be written for a single sample:

component 1 component 2

wavelength1 d;; = C;1S11 + C;2S2] (5.2)
wavelength2 d;2 Ci1812 + Ci2 S22 (5.3)
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If pure component spectra are known, then these two simultaneous equations

can be solved for the two unknown concentrations (c;; and c;g) in this sample as:

¢ =DSs! (5.4)

In Equation 5.4 the concentration profiles are estimated with the inverse of the
spectral matrix, which is only defined for square matrices where the number of
equations equals the number of unknowns. Often a full spectrum is used in
mixture analysis, such that there are more wavelengths than chemical
components. This is called an overdetermined system, as the number of
equations is greater than the number of unknowns. The least-squares solution

for an overdetermined system is:

¢=DS"(sS")” (5.5)

This gives the best fit of the pure-component spectra to the mixture spectra. The
drawback to this method is it requires a knowledge of all the pure signals
contributing to the measurement. If an absorbing component is not included in
the spectral matrix S, the model is incomplete. Furthermore, the accuracy of all

the concentration estimates suffers with an incomplete CLS model32.172,

5.2.2 Multicomponent Analysis

The goal of multicomponent analysis173-175 (MCA) is to extend the classical
least-squares approach to a library of reference spectra. In this case the
number of candidate reference spectra in the library exceeds the number of
components in the overlapped peak. The library is made from a set of pure

component spectra. In contrast, the experimental spectra often contain mixtures



192
of components in unknown proportions. Thus, the problem is to identify the
components of the mixture and estimate the contribution of each. To achieve
this, Equation 5.5 is solved with the matrix S containing the complete library of
spectra. This calculates the least-squares fit of C, the estimated concentration
profiles of each member of the library. Ideally, members of the library contained
in the sample have reasonable concentration profiles and species that are
absent have zeros for their columns of C. One difficulty in practice is the nced
for the library spectra to match the experimental spectra welll75. In LC-UV this
becomes a problem when the library spectrum for an analyte has been recorded
in a different solvent than {ne one it elutes with during the experiment. Small
differences between these spectra can lead to errors in quantitation, or worse, a
misidentification of the number and nature of the components. Finally, in CLS,

the MCA model is only accurate when all the components of the mixture are

included in the model.

5.3 FACTOR ANALYSIS METHODS FOR MIXTURE ANALYSIS

In principal components analysis a data matrix, usually of large dimensions, is

decomposed into two smaller matrices:

~

(ns]")nw) - (nsgnp)(n];xan) (56)

where D is the factor reproduced matrix
X is the scores matrix
Y is the loadings matrix
Ng is the number of samples in time (i.e. spectra)
Ny is the number of wavelengths
Ny, is the number of principal components
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As this reduction is guided by mathematical principles, namely the explanation of
variance, the factors obtained may not be chemically relevant. As was shown in
Chapter 3, the number of principal components is equals the number of
spectroscopically observable components for perfectly bilinear data. In practice,
the effects of systematic and random noise, as discussed in Chapter 4, can
increase the number of principal components required to accurate model the
data. In such cases the concentration matrix, C, has the same dimensions as
the scores matrix X, and accordingly its columns are often considered abstract
chromatograms. A similar connection exists between the spectral matrix, S, and
the loadings matrix Y, such that its rows are considered abstract spectra. Thus
a fundamental problem in factor analysis is deriving a transformation matrix, T,
that converts the abstract factors to the true factors. This transformation matrix

estimates the pure component spectra and elution profiles as

C=XT (5.7)

S=T1'Y (5.8)

where T is the (n¢ x ng) transformation matrix. Methods of estimating T can be
subdivided into two categories: (1) modeling methods and (2) self-modeling
methods. Modeling methods76 use a "hard" model of the true factors, such as
Beer's law with pure component spectra. Modeling methods can also use a
functional form of the concentration profile such as a peak shape for
chromatography or equilibrium equations for titrations. These hard models
require many assumptions about the chemical system understudy, that are often
unavailable for an unknown sample. In contrast, self-modeling or “soft* methods

use information extracted from the data set and mathematical constraints. One
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example of a constraint would be that the estimated concentration profiles must
be nonnegative. The advantage of self-modeling methods is that they can be

applied with very little prior knowledge, the disadvantage is that the results can

be ambiguous.

5.3.1 Target Factor Analysis

Target factor analysis150.175 (TFA) is a tool for mixture analysis that can be used
with only a partial knowledge of the spectral profiles. Thus, it is a factor analysis
approach to solving the problem treated previously (Section 5.2.2) with
multicomponent analysis. It is a hard-modeling methed since it requires pure
component spectra. The goal of TFA is to select which members of a spectral
library contribute to the experimental spectra. This is equivalent to asking which
of these candidate spectra, or targets, are true factors of the data set. The
underlying assumption of this approach is that true factors can be accurately
described by a linear combination of abstract factors.

There are three major steps in TFA. The first is to calculate the

combination of abstract spectra that best describes the target:

— T
ti =Y Starget i
{nexl) (nexnw) (nwxlj

(5.9)
Starget,i IS the ith target vector (j.e. the test spectrum), and t; is the it column of

the transformation matrix. Then the predicted vector is calculated with the
transformation:

A T

S, = ti Y

(lxnlw) {1xng) (nexny) (5_10)
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Where §5 is the projection of the it? target vector into the factor space. This is
the best description of the candidate spectrum that can be calculated as a
combination of the abstract spectra. If this candidate spectrum is a member of
the mixture, the original target vector, S;;,4¢,; . @nd this predicted vector, S;,
should be very similar. Thus the final stage of target factor analysis is to
evaluate if the transformed absiract factors describe the target factor within

experimental noise:

P ¢
S; = Siest,i (5.11)
Malinowski125 has suggested statistical tests for equation 5.11 that consider
errors in the data matrix and the target itself. As in any statistical test, there is a
finite chance obtaining a false-positive result. For example, one of the library
spectra may coincide with the factor space, even though it is not in the mixture.

If this process can be repeated to find all the component spectra, the
entire transformation matrix can be deduced. Finally the concentration profiles
can be predicted with Equation 5.7. The advantage of TFA is that it allows the
targets to be tested individually. Therefore, results from TFA may still be valid
even when the spectral library is incomplete. In some cases, the concentration
profiles of the identified components can be estimated!44.177 despite the
incomplete model for the mixture. This was not possible with the traditional
methods. Another advantage of TFA is that it is more robust than MCA when
differences exist between the library spectra and experimental spectral’s. The
disadvantage of TFA, like all the factor analysis techniques considered in this

chapter, is that it requires some chromatographic separation.
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5.3.2 Self-Modeling Curve Resolution

The term self-modeling curve resolution (SMCR) has been used by Delaney178
to encompass techniques that: 'determine the number of components in an
overlapped chromatographic peak as well as the spectrum and concentration
profiles of each compound, without assumptions regarding peak shape, location,
or identity." SMCR attempts to find the transformation matrix that converts the
abstract factors into true factors. The crux of the curve resolution problem is to
find the 'best' transformation. This cannot be calculated in the least-squares
sense since there is no 'hard’ model to compare with the transformed results.
Instead, the generai approach is to constrain the solutions to those that are
physically and chemically reasonable. Some common constraints are: (1) that
all points in the component concentration profiles are nonnegative, (2) that all.
points in the component spectra are nonnegative, and (3) that the component
concentration profiles are unimodal, that is, each has a single maximum.

The accuracy of results from SMCR depends upon choosing constraints
that are reasonable for the experimental system. For example, the constraint of
nonnegative spectra is not valid for measurements like optical rotation.
Similarly, the constraint of unimodal concentration profiles is only applicable to
certain types of ordered data, such as spectrochromatograms. Another
practical consideration is how experimental noise, both random and systematic,
can invalidate these assumptions. In making too rigid an assumption, the
accuracy of SMCR may weli suffer. Conversely, if the constraints are too
general, the 'precision' of SMCR is limited, in that a wide range of solutions may

be mathematically satisfactory. With these considerations in mind,
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Gemperline't! has cautioned that, “without a theoretical model to base the
results on, an infinite number of reasonable solutions or ‘best fits' exist, while
constraints can narrow the set of feasible solutions somewhat, physically correct
solutions are never guaranteed.”

Many different approaches have been taken to attempt to solve the SMCR
problem. Some of which are briefly summarized here. For a more extensive
discussion of the area, the reader is directed to a review by Hamilton and
Gemperline'!1, and tutorials by Vandeginste!12, and Windig10t. The first
application of SMCR was reported by Lawton and Sylvestre!79 in 1971. They
used SMCR to estimate the pure UV-vis spectra of a twec-component mixture by
assuming the resolved spectra had ncnnegative absorbance and unique
spectral regions. From these estimates in the spectral domain, the
concentration profiles were calculated with the traditional least-squares
approach. This technique has also been applied to other experimental systems,
including GC/MS180 and IR spectra of equilibrium mixturesi81.  Also, various
attempts have been made to extend this approach to three components?82.183,

The complementary approach is to solve for the elution profiles first, and
then estimate the component spectra. This will be referred to as the
concentration domain approach. Much of the work in the concentration domain
has been based on the iterative target transform151.175,184-187 (ITT) approach,
which is outlined in the following section. Vandeginste and coworkers have
noted several advantages!88.189 of working in the concentration domain as
compared to the spectral domain. These include more accurate quantitative
estimates and a lower sensitivity to noise. Also, concentration-domain methods
have been extended to systems of greater complexityi40 including four-

component chromatographic peaks and muiticomponent equilibria.
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The concentration and spectral domain approaches are not necessarily
exclusive. SMCR techniques based on alternating regression!90 apply
constraints in both domains concurrently. Another area of active research
involves designing interactive or graphical methods that combine factor analysis
techniques with the user's intuitive knowledge of the experimental system.
Examples include the SIMPLISMA method developed by Windig and

coworkers191, and the HELP method of Kvalheim ef a/192.

5.3.3 Iterative Target Testing

All the curve resolution results that follow will be calculated with the iterative
target transform (ITT) applied in the concentration domain. This technique was
independently developed by Gemperline!®1 and Vandeginste!85 to model the
concentration profiles of overlapped chromatographic peaks. As the name
implies, ITT is related to target factor analysis, but there are two important
differences between the methods. First, ITT is a self-modeling method that uses
information from the data matrix, rather than an external reference, for the target.
Second, ITT is an iterative method that generates progressively refined

estimates of the transformation matrix. Figure 5.1 shows the four major steps to

the ITT algorithm:

1. A starting profile is generated from the data matrix, often with a factor
analysis-based method. This starting profile is a first guess at one of the

underlying concentration profiles.

2. The starting target is projected into the factor space with the estimated

transformation matrix:
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Figure 5.1. A schematic illustration of the iterative target transform.
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= A=l T
t;=A"'X Ciarget,j

(5.12)
¢ =X¢; (5.13)
where tj is one column of the transformation matrix
A is a diagonal matrix of the squared eigenvalues
X is the scores matrix

Ciarget|S the target vector

¢; is the predicted vector

These are the target testing equations for a concentration profile. The
eigenvalue matrix serves to normalize the scores vectors to unit length.
This was unnecessary for spectral targets (Equations 5.9 and 5.10)
because the loadings matrix is, by definition, already normalized. If the
starting profile is a true factor of the data matrix it will be unchanged by
this projection. On the first few iterations of ITT, the predicted
concentration profile usually changes significantly. Often the predicted
vector is a better approximation to the true concentration profile than the
starting profile, but it may still have some undesirable characteristics,

such as regions of negative concentration.

3. The next step is to remove the undesirable characteristics of the projected
target. This is cailed adapting or refining the target, and it is at this stage
that constraints are applied. For example, regions of negative

concentration may be set to zero.

4. The adapted target becomes the starting target for another iteration of the
procedure. Ideally, this new starting point gives a better estimate of the

transformation matrix and the concentration profile. Obviously there must
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be some criteria to terminate the iterative process. Examples of
termination criteria include: (i) the predicted target is not significantly
different from the starting target, (ii) the current refinements on the
predicted profile are larger than the previous one - suggesting that the
profile is getting worse with continued transformation, and (iii) a maximum

number of iterations has been reached.

A major advantage of ITT is that it estimates the concentration profile of each
component individually. Thus, in principle, there are no restrictions on the
number of components it can resolve from an overlapped chromatographic peak.

The main difference in the ITT approaches reported by Gemperline and
Vandeginste lies in the method for calculating starting profiles from the
experimental data. Gemperline used a needle search that starts with a set of

vectors containing a unit vector for each retention time:

!

t;=[1 0 0 - 0 0]

!

ts=[0 1 0 - 0 0]

!

t, =[0 0 0 - 0 1]
These needle vectors could be considered to be very narrow Gaussian peaks.
The next step was to select one of these starting vectors for each unresolved
component. Ideally, needle vectors that matched the retention times of the true
concentration profiles would be selected. Gemperline chose starting profiles

from this set with target factor analysis.
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Vandeginste used a method called varimax rotation, which originated
from the application of factor analysis in the social sciences. This method
assumes that the abstract factors are related to the true factors with an

orthogonal rotation matrix. For a two-component case, this matrix is of the form:

cos® —sinb
T= {sine cosH j| 5.14)

This transformation matrix is used in Equation 5.7 to predict the concentration
matrix. The angle 8 is chosen to maximize the varimax function:
n, 1 n, 4 1 i 2 2
V=22 a2

i=l € j=1

(5.15)

for the normalized predicted vectors ¢;. The varimax function maximizes the
squared variance of this vector. The theory is that this function favors a rotated
vector which combines large and small elements over one with all intermediate
values. This rotation generally gives a smooth maximum in each column of the
starting profiles.

Starting profiles can also be generated with evolving factor analysis135
139 (EFA). This method uses a series of eigenvalues calculated from subsets of
the experimental data matrix (see Section 3.5 for details), thus it takes
advantage of the ordered nature of the data. Results from evolving factor
analysis have been used in the SMCR of spectrochromatograms137,
spectrophotometric titrations?93, and pyrolysis mass spectra.

An alternative method for generating starting profiles, which has not been
explored, is EPCIA. As was shown in Chapters 3 and 4, the rms orthogonal

innovations from EPCIA can be used to estimate the concentration profiles from
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a spectrochromatogram. Therefore, it would seem natural to use these as

starting profiles for the ITT.

5.4 ITERATIVE TARGET TESTING AND EPCIA

This section compares results of ITT starting profiles from the time-domain
generated by EPCIA, varimax rotation and needle search. EFA was also
considered in a preliminary study, but it showed a dependence on experimental
parameters, such as the sampling rate and the length of the baseline, that was
not seen for the other three methods. This behavior made it difficult to fairly
assess EFA, and it was not included in subsequent work. Exclusion of EFA from
consideration here does not imply that EFA is a poor method for generating
starting profiles, but instead, it suggests that a more comprehensive study is
required to understand its performance. The suitability of the starting profiles for
[TT is also addressed. The goa!l of this study was to determine what effect the
quality of the starting profile has on the final concentration profile generated by
ITT. As all the results are for simulated data, this can only be considered a
fundamental study of the different approaches. The effects of experimental
nonidealities like heteroscedastic noise and nonlinear instrumental response are
not considered here, but they are important considerations in the application of
any SMCR method. In practice, the ability of a method to generate realistic
starting profiles in the presence of such experimental difficulties may prove to be

more important than the limitations considered here.
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5.4.1 Experimenta'

The simulated data used in this study were generated in the same manner as
those used to evaluate the fundamental limitations of EPCIA (see Section 4.2 for
details). The concentration profiles were Gaussian profiles with a standard
deviation of 15 s. These were sampled once per second to give 60 spectra
across the chromatographic profile. While this sampling rate was higher than
required for these techniques, it allowed subtle changes in the predicted
retention times to be observed. The spectrochromatograms were generated by
multiplying concentration profiles, of varying degrees of chromatographic
overlap, with experimentally measured PAH spectra. The spectra of anthracene,
fluoranthene, phenanthrene and triphenylene were recorded between 210 and
310 nm at 4 nm intervals. The chromatographic peak was recorded from 4o
before the retention time of the first peak to 4c after the retention time of the last
peak. Random noise was added with a standard deviation of 0.01 % of the
maximum absorbance.

To examine the limitations of the different approaches, simulation studies
were carried out on the effects of three parameters: chromatographic resolution,
spectral correlation and effective concentration ratio. A reference set of
conditions was chosen; each study considered the effect of varying one of the
three parameters. The reference conditions used here were a two-component
peak of phenanthrene and fluoranthene with a chromatographic resolution of
0.35 and an effective concentration ratio of unity.

The ITT algorithm was written in MatLab. The profiles were refined by

setting the negative concentrations to zero on each iteration. The transform was
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repeated ten times for each starting profile. Greater numbers of iterations were

tested, but no significant improvements were obtained for these data sets.

5.4.2 Effect of Chromatographic Resolution

Starting Profiles. Figure 5.2 shows starting profiles generated by EPCIA,
varimax rotation, and needle search of an overlapped chromatographic peak.
Each method has a characteristic shape. For EPCIA, the starting profiles are
quite similar to the true concentration profiles. These profiles contain only
positive values since they are the rms of the innovations. The varimax profiles
are also similar to a Gaussian profile, except they contain regions of negative
concentration. The needle search profiles provide reasonable estimates of the
retention times, and by definition contain only positive values. Other than this,
they do not resemble the concentration profiles. The quality of the starting
profiles was evaluated with three metrics: (1) Euclidean distance, (2) retention
time, and (3) peak width. Euclidean distance refers to the distance between the
true concentration profile (eyye) and the starting profile (cga1). This distance

was evaluated as the sum of the squared residuals (SSR):

0,

2
SSR = Z(ctrue,j - cstart,j) (5.16)

j=1
Both concentration vectors were normalized to unit area before this calculation.
The retention time was taken to be the maximum of the concentration profile.
The peak width was measured at 10% of the peak maximum. This measure was
used instead of the standard deviation because the shape of the starting profiles

often deviated significantly from a Gaussian peak.
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Figure 5.2. Starting profiles generated by EPCIA, varimax rctation and needle
search are compared to the true concentration profiles of an overlapped
(Rg=0.38) two-component peak. For compariscon all peaks are scaled to unit
height.
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The quality of the starting profiles was compared for two-component
peaks with chromatographic resolutions of 0.1 to 1. The resuits given in Figure
5.3 are for the fluoranthene concentration profile; the results for phenanthrene
are not shown, but they were almost identical. The overall performance of all
three methods for generating starting profiles decreased steadily for
chromatographic resolutions of 0.5 or less. In this region the EPCIA gave the
lowest SSR, followed by varimax rotation. The needle search vectors had a
large SSR for all the cases studied, reflecting the significant differences between
the shape of the starting profiles and the true profiles. With chromatographic
resolutions above 0.7, the starting profiles from varimax rotation were closer to
the true profiles, but EPCIA also gave good results.

These methods were found to give very different estimates of the peak
widths. The needle search method does not really estimate peak width, as it
gives only an estimated retention time. The varimax rotation gave accurate
estimates of peak width when the two peaks were completely separated, but
these estimates got steadily worse for overlapped peaks (Figure 5.3b). Two
changes were observed in the varimax profiles as the chromatographic
resolution was decreased: the profiles showed greater regions of negative
concentration, and the peak widths were underestimated. In contrast, EPCIA
gave good estimates of the peak width down to a resolution of 0.1.

The ability of the three methods to estimate retention time was found to
be very similar in this study (Figure 5.3c). All the methods tended to
overestimate the retention time of the second component and underestimate that
of the first. As a result, the starting profiles suggest a larger separation between
the two peaks than is actually present. This implies that these methods

emphasize the pure component regions on the ‘outsides’ of the peak cluster.
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Transformed Profiles. The more important results are those for the
transformed profiles produced by ITT of the starting profiles. The profiles from
all three method converged with 10 iterations or less. The EPCIA profiles
usually converged fastest, often taking only three or four iterations. The quality
of these transformed profiles is indicated in Table 5.1. The method with the
smallest SSR for the initial profiles gave the smallest SSR for predicted
concentration profiles in every case. The differences among the transformed
profiles from the three methods were less dramatic than the differences evident
in the starting profiles. Notably, the results from the needle search and varimax

rotation were nearly identical despite the differences in their starting profiles.

Table 5.1 The effect of chromatographic resolution on the
concentration profiles predicted by ITT is given for each type of

starting profile.
Sum of the Square Residuals
Rs EPCIA Needle Search Varimax
1.0 0.001 0.000 0.000
0.8 0.002 0.001 0.001
0.6 0.003 0.011 0.010
0.5 0.017 0.028 0.028
0.4 0.023 0.062 0.061
0.35 0.056 0.087 0.085
0.2 0.083 0.119 0.119
0.1 0.146 0.200 0.200

ITT improved the peak width estimates of the varimax and needle profiles,
but EPCIA stiil gave more accurate resuits. The transformed profiles had correct

retention times when the chromatographic resolution was larger than 0.4. For
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more overiapped peaks, the predicted retention times still overestimated the
separation between the two components, but these errors were reduced in
magnitude. For example, with Rg= 0.1 the predicted retention time from EPCIA
had an error of 4 s, while the errors from the varimax and needle search were
6s. For comparison, all three methods had an error of 8 s for their initial
profiles. As the ITT results from the varimax and needle search were practically
identical the following sections will report varimax results only, unless the two
results differ.

Figure 5.4 compares two concentration profiles with Rg= 0.2 to the
predicted profiles from the ITT of EPCIA starting profiles. The systematic errors
in peak width and retention time are apparent at this degree of overiap, but
otherwise the profiles are reasonable. These profiles have been normalized to
unit area. In the absence of calibration standards, SMCR cannot provide
absolute concentration estimates. The predicted profiles and the true
concentration profiles are related through unknown scaling factors. The relative
concentrations of the two components can be estimated by assuming the
compounds give the same detector response. One way of using this assumption
is to estimate the relative concentrations from the lengths of their predicted

spectral vectors.

Spectral Profiles. Once the concentration profiles have been estimated the
spectral profiles can also be extracted with Equation 5.8. Table 5.2 compares
the estimated and true spectral profiles for a range of chromatographic
resolutions. The accuracy of these results follow the same trends as those seen
in the concentration profiles, which is not surprising since both estimates are
based on the same transformation matrix. Figure 5.5 illustrates the systematic

errors in a spectrum extracted from a highly overlapped (Rg= 0.1) two-
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Figure 5.5. Results from ITT a two-component peak with Rg = 0.1: (a) the
extracted spectrum of phenanthrene, (b) the true spectra of phenanthrene
(solid line) and triphenylene {dashed line).
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component peak. The estimated spectrum of the first component
(phenanthrene) is recognizable, but it shows some features of the second
component (fluoranthene) at this degree of overlap. This spectral "leakage" is
due to errors in the concentration profiles being propagated into the spectral

profiles.

Table 5.2 The effect of chromatographic resolution on the pure
spectral profiles predicted by ITT is given for each type of starting
profile. The SSR is the sum for both components.

Sum of the Square Residuals

Rs EPCIA Varimax
1.0 0.001 0.000
0.8 0.001 0.000
0.6 0.001 0.005
0.5 0.010 0.015
0.4 0.014 0.034
0.35 0.035 0.050
0.2 0.104 0.129
0.1 0.194 0.211

in summary, the starting profiles obtained from EPCIA gave the best
results for two-component mixtures of equal concentration. The starting profiles
and predicted concentration profiles from ITT were closer to the actual elution
profiles in most cases, particularly those with low chromatographic resolution.
This result is probably due to their more realistic shape, since the retention times
of the starting profiles from all three methods were similar. All three methods
tended to overestimate the separation between the two components, which limits

their performance for peaks with chromatographic resolution of less than 0.4.
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5.4.3 Effect of Spectral Correlation

The effect of spectral correlation was assessed for six different pairs of spectra
(Table 5.3). The starting profiles from varimax rotations were identical in each
case. In contrast, the starting profiles from EPCIA improved with increasing
spectral correlation. Recall that in studying the limitations of EPCIA (Chapter 4),
the maximum of the innovation was found to decrease with increasing spectral
overlap. The results from this study suggest that the EPCIA approach also gives
better starting profiles with highly correlated spectra, perhaps because under
these conditions the innovations are similar to what would be obtained with

adaptive filtering.

Table 5.3  The effect of spectral resolution on the concentration
profiles predicted by ITT is given for EPCIA and varimax starting

profiles.
Sum of the Square Residuals

Components  Spectral Angle EPCIA Varimax
Anth / Phen 17.4 0.076 0.656
Phen / Tri 32.9 0.147 0.656
Anth / Tri 38.0 0.171 0.656
Phen/Flu 39.6 0.175 0.656
Anth / Flu 517 0.189 0.656
Flu/Tri 55.9 0.212 0.656

Unlike the innovations, which are calculated from the raw data, the varimax
method is used to generate starting profiles from abstract factors that are

normalized to unit area. The general appearance of these abstract
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chromatograms is independent of spectral correlation, long as the two
components are spectroscopically different. The only property of the abstract
chromatograms which depends on the spectral correlation is their signal-to-noise
ratio. As the differences between the spectra decrease they will eventually
become comparable to the experimental noise. At this extreme, the quality of
the varimax starting profiles would be degraded. This behavior was not
observed for the varimax starting profiles in Table 5.3, because the S/N ratio of

these data is very high.

5.4.4 Effect of Concentration Ratio

From the studies in Chapter 4, the effective concentration ratio was known to
affect the appearance of EPCIA starting profiles. For instance, EPCIA gave
better estimates of the peak shape for the minor component of a two-component
peak. The rationalization was that the resuits for the minor component are
closer to what would be produced by adaptive filtering in these cases. This
argument also seems consistent with the effect of increased spectral correlation,
which decreased the magnitude of the innovations and made them better
starting profiles. The results in Table 5.4 show that while the starting profile of
the minor component changed slightly with the changes in concentration ratio,
the concentration profile predicted by ITT was relatively unaffected. In all cases,
the EPCIA-generated starting profiles gave better results than those obtained
from a varimax rotation.

In this study, the EPCIA profiles were found to be less suitable for the
major component, particularly for systems with an ECR below 0.1. As the ECR

decreased, the following changes were observed in the EPCIA starting profiles:
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(1) the width of the major peak increased, (2) the predicted retention time
moved towards the center of the peak cluster, (3) the width of the minor peak
decreased. In some ways, these changes are consistent with the data as the
major component does dominate the chromatographic peak for a wider region
when the contribution of the minor component is decreased. Unfortunately,
these changes in the major peak make it a poor starting profile for ITT. Note that
the ITT does not improve the major peak significantly (Table 5.4). As seen in
Figure 5.6, the major peak converges to a combination of the real concentration
profiles. The constraints do not prevent this, because the composite peak stili
has positve concentration profiles. Thus the EPCIA starting profiles are

unsuitable for a major component overiapped with a minor component.

Table 5.4 The effect of concentration ratio on elution profiles
predicted by ITT of EPCIA starting profiles. Sum of the square
residuals is given for each peak. Bold type indicates that EPCIA
outperforms the varimax method.

Major Component Minor Component
Effective Starting  Transformed  Starting  Transformed
Conc. Ratio Profile Profile Profile Profile
1.0 0.088 0.058 0.096 0.060
0.5 0.017 0.015 0.133 0.068
0.2 0.128 0.108 0.153 0.071
0.1 0.224 0.206 0.159 0.072
0.05 0.294 0.282 0.161 0.072
0.02 0.345 0.33%8 0.162 0.073

0.01 0.370 0.364 0.170 0.073
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Figure 5.6. The concentration profile predicted by ITT for the major component
(solid line) compared to the true profiles (dashed lines). See text for details.
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5.4.5 Three-Component Systems

To demonstrate that the EPCIA approach can be applied to more complicated
systems, an example of a three-component mixture is shown in Figure 5.7. Both
the one- and two- component models would be expected to show regions of
model failure in this case. Consider the Kalman filter applied in the forward
direction. The one-component model would show an increase in its innovations
upon encountering the second chemical component. These innovations would
remain above the baseline until after the third component elutes, since the
spectra in this region have contributions from more than one component. The
two-component model would indicate the region in which the third component
elutes. Therefore, the two-component innovations can be used as a starting
profile for the last chemical component. Similarly, the reverse two-component
model can be used for the first component. What remains to be achieved is a
reasonable starting profile for the middle component. Although neither of the
one-component models accurately describe its concentration profile, the leading
edge of this peak is identified by the forward model and the trailing edge by the
reverse model. Thus a reasonable starting profile can be obtained by splicing
these two innovations sequences together. This synthesis of the third
component is similar to the approach used in evolving factor analysis, where the
forward and reverse sequences of eigenvalues are joined to identify components
in the middie of a set.

This method was applied to a three-component peak generated with
phenanthrene, fluoranthene and triphenylene with Rg= 0.4 (between adjacent

peaks) and ECR = 1:1:1. The result from this study were very interesting, in that
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Figure 5.7. The concentration profiles predicted by ITT compared to the true
profiles. Resuits from EPCIA and needle search starting profiles are shown.
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the EPCIA, varimax, and needle search methods gave different results. The
results from the ITT are shown on Figure 5.7 for needle search and EPCIA
starting profiles. Starting profiles from the needle search converged to bimodal
distributions which were combinations of the true concentration profiles. Results
from the ITT of varimax starting profiles were also bimodal, but not to as great an
extent. This problem has been noted in other work. Additional constraints are
usually applied during the refinement of ITT profiles to eliminate these minor
peaks. Vandeginste'85 removed any peak that was separated from the major
peak by a region of zeros. Gemperline184 applied linear constraints, that forced
the concentration profile to decrease on either side of the maximum. These
additional constraints were not needed with the EPCIA starting profiles used in
this example to obtain good estimates of the concentration profiles. These
results suggest that prior knowledge of peak shapes may become important as

the complexity of the problem increases, however.

5.5 CONCLUSIONS

The advantage of self-modeling curve resolution over traditional methods of
mixture analysis is that it can be applied without a knowledge of the pure
component spectra. In this work, the iterative target transform (ITT) was applied
to simulated data of overlapped chromatographic peaks with UV-visible
detection. The performance of ITT was compared for three different methods of
generating starting profiles: EPCIA, varimax rotation and needle search. The
innovation traces from EPCIA were found to be good starting profiles since they
accurately estimated peak widths and contain only positive concentrations. For

two-component mixtures of equal concentration, the concentration profiles
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predicted by ITT of EPCIA profiles were more accurate than the other methods,
particularly for cases of low chromatographic resoiution and high spectral
overlap. The major limitation of all three types of starting profiles was that they
overestimated the chromatographic separation between the two peaks. The ITT
could not correct for this at resolutions of less than 0.4, and thus, the accuracy of
the predicted concentration profiles suffered. When the concentrations of the
two components were dissimilar, the EPCIA profiles used to start ITT gave poor
results for the major component. If this problem can be overcome, EPCIA-based
approaches for mixture analysis might have significant advantages over existing

methods, particularly for more complex systems.
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CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

To deal with complex mixtures, analytical chemists ofteri use multidimensional
methods, in which two instruments that provide complementary information
about a sample are linked in series. The advantages of mullidimensional
methods include their efficiency, precision and accuracy. This work has
demonstrated how digital filters, particularly the Kalman fiiter, enhance these
properties of muitidimensional methods.

in Chapter 2 the concept of parailel Kalman filter networks was
introduced. These networks take advantage of the diagnostic properties of the
Kalman filter, namely its ability to detect the extent and nature of modeling errors
in real-time. The network can be implemented in a quasi-continuous or discrete
form. The quasi-continuous form was used in kinetics determinations to
compensate for variations in the pseudo-first-order rate constant. The Kalman
filter models predicted the changes in analyte absorbance based on a range of
rate constants. The performance of each model was evaluated by examining the
innovations, the differences between the measured value of a signal and the
value predicted by the Kalman filter. The best model was chosen as the one
with the smallest sum of squared innovations. Experimental data from the
molybdenum blue method for the determination of phosphate was used to
demonstrate the insensitivity of this algorithm to variations in the rate constant.
The results were found to be more accurate that those from a fixed-time method,

furthermore, the estimated concentrations were more precise because the
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Kalman filter uses all the experimental points. The efficiency of this algorithm
made it suitable for real-time applications on a laboratory computer.

In Chapter 3, the discrete form of the network was used to perform
recursive principal components analysis. This network contained models for
describing one- anc two-component bilinear responses, that were used to
elucidate the rank of data from chromatography with multisensor detection. The
performance of each model was evaluated by plotting the rms innovations as a
function of time. For pure chromatographic peaks the innovations gave a flat
baseline, that reflected the level of random noise. The elution of additional
chemical components produced local regions of model failure, indicated by
innovations that exceeded the baseline value. This algorithm for peak purity
analysis in real-time was called evolving principal components analysis (EPCIA).

In Chapter 4, the fundamental and experimental limitations of EPCIA were
examined for unresolved mixtures in liquid chromatography with UV-visible
detection. It was shown that the innovation sequence from the EPCIA model
approximates the elution profile of the minor component, and that the maximum
of this sequence determines the detectability of the impurity. This maximum
decreases with increasing spectral correlation and decreasing chromatographic
resolution. When these two variables are fixed, the maximum innovation is
proportional to the concentration of the minor component over a wide range.
Experimentally, the validity of the EPCIA model may be limited by a variety of
effects including heteroscedastic noise, spectral scan time, baseline
perturbation, and nonlinear instrumental response. At high absorbance values
(>1.0 AU) the one-component innovations were inflated by the nonlinear
response of the diode-array spectrometer, attributed to the effects of stray light

and polychromatic radiation.
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In Chapter 5, self-modeling curve resolution was used to extract pure
component elution profiles and spectra from overlapped chromatographic peaks.
In particular, the iterative target transform was applied to concentrations profiles
generated by EPCIA. These starting profiles were found to give better resuits
than established methods for two-component mixtures of roughly equal
concentrations. The disadvantage to the EPCIA profiles was the poor results
obtainec for the major peak when the two components had dissimilar

contributions to the observed spectral region.

6.2 FUTURE WORK

The work presented here has demonstrated the potential of Kalman filter
networks and laid the groundwork for future applications. While the application
of quasi-continuous methods was demonstrated for reaction-rate methods with
first-order kinetics, many other possibilities can be envisioned. For example, the
measurement model could be expanded to include kinetic interferences, such as
those due to silicate in the determination of phosphate. The Kalman filter
models could also include absorbances at multiple wavelengths, thus allowing
spectral as wel! as kinetic differences to be observed. In addition, there are
many other types of experimental results that would benefit from the application
of these Kalman filter networks. In general, these are cases where the Kalman
filter alone is unsuitable, due to nonlinear models or the presence of systematic
errors that cause global failures of a linear model. Possible applications include
real-time correction of wavelength shifts due to instrumental drift in emission
spectroscopy and environment-dependent changes in fluorophores.

EPCIA was demonstrated as an application of discrete networks. It was

shown to be a powerful technique for examining spectrochromatograms. The
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ability of this algorithm to detect minor impurities could be improved, particularly
for samples with large absorbances, with models that compensate for the
nonlinear response of the spectrometer. More sophisticated models for
packground correction should also be pursued. In this work only one- and two-
component models were explored, but it would be useful to extend the algorithm
to include more than two-component models. This would allow EPCIA to be
applied to more complex systems in chromatography and to results from
spectrophotometric titrations.

In this work the results from EPCIA were usually shown as an rms
innovation trace, plotted as a function of elution time. The disadvantage to using
the rms values is that the direction and magnitude of innovations from individual
models are lost. This information may be useful in distinguishing among random
errors, systematic errors, and real chemical information. For exampie, the ‘raw'
innovations could indicate the wavelengths where different models fail. There
are other properties of the Kalman filter that should be considered in future work,
including its ability to include prior knowledge in the state vector. This may
prove useful for chemical systems where there is a partial knowledge of the
members of a mixture. Anocther possibility is the use of nondeterministic models
that consider errors caused by drifting systems. These improvements to both
forms of Kalman filter networks should allow them to extract information from a

wide range of existing and future experimental techniques.



APPENDIX A
PROGRAM LISTING FOR HP-PCA.BAS

HP-PCA.BAS

Version 4.0

Written by Stephen Vanslyke
Dalhousie University
Sept./90

KP-PCA loads data files that are created by the operating softwore of the
Hewlett Packard diode array. The absorbances at selected wavelengths are
stored into an array which is then passed to the Kalman filter routine for
principal component analysis. The results should indicate the presence of
coeluting peaks,

Revision 2.0 the Kalman filtering subroutine BigKal3 is used.
The major difference being the use of orthogonal innovations

Revision 3.0 the filter in run through the data in both directions.

Revision 4.0 modified to loa?7d the variance data from the *.TIM file.
(note that the variance is not used by the KF routine)

—nesrseesm T msmEEEsESCsss=s===ss=E==c

- . Emm e m m ow W mow oEm @ e e e & =

iwex faclarations and such ***

DECLARE SUB Displnn (Innovi{), SpecData#(), NPntsX, NWavesX)

DECLARE SUB Display (Array2D#¢), IndexX, FirstPntX, LastPntX, Min, Maxl)
DECLARE SUB HGen (IWX¥, IWY%, IPTX, AB#(), H#(), NWavesX)

DECLARE SUB Kalman (Profile#(), NWavesX, NPntsX%, Threshl, StateP!(), Innov!(}}
DECLARE SUB KeyPress (KX, K$)

DECLARE SUB Label8 (X!, Label$)

DECLARE SUB ListDir (Wild$)

DECLARE SUB Loadbata (SpecData#(), VarData(), NPntsX, NWavesX, Min, Max, Maxvar, SpecLabel$(),
MaxWaves%)

DECLARE SUB SaveFile (Array!(), NRowsX, NColX, TransX)

DECLARE SUB Mind (SpecData#(), NWavesX, NPntsX, Thresh)

DECLARE SUB VGADisplay (Array2d!(), IndexX, FirstPntX, LastPntX, Max!, ColX)

CONST 8lack¥% = 0, Blue% = 1, GreenX = 2, Aqua% = 3, RedX = 4, PurpleX = 5
CONST OrangeX = &, White% = 7, Grey% = 8, BBlue = 9, BGreenX = 10
CONST BAquaX = 11, BOrangeX = 12, VioletX = 13, YellowX = 14, BWhiteX = 15
CONST Path$ = "\SJV\SIM\"

Iwkd Dynamic Arrays **%
MaxPnts¥% = 100
MaxWavesX = 51 ' 26 corresponds to 4nm resolution over 100nm
DIM SpecData#(MaxWavesX + 1, MaxPntsX) 'One extra to store the maximum
DIM VarData({MaxWaves% + 1, MaxPnts¥%) '‘One extra to store the maximum

DIM StateP(2 * MaxWavesX - 3, 3)
DIM Innov(S, MaxPnts¥%)
DIM Spectabel${MaxWavesX)

iwa* Dafaults for Variables ***
NWavesX = 26
CONST StdDev = .0005
Thresh = 6 * StdDev

226



iwwxww Main program starts here ****w

SCREEN 0

CLS

D0

« w»% | oad the data into the array SpecDataX()***

227

CALL LoadData(SpecData#(), VarData(), NPnr<¥, NWavesX, Min, Max, MaxVar, SpecLabel$(), MaxWavesX)

+ »»» pDigplay the data ***
DO
CLS
PRINT * Column# Wave Length"
FOR I% = 1 TO NWavesX

PRINT » " 1%;
PRINT * u: SpecLabel$¢1X)
NEXT 1%
PRINT * ". NuWavesk + 1;
PRINT © " “MaxPlot"
PRINT ¢ “- NWavesk + 2;
PRINT * n. oyarPlot"
DO

INPUT "Chromatogram®; ChromX
LOOP UNTIL (ChromX >= 0) AND (Chrom% <= NWavesX + 2)
[F ChromX <> 0 THEN

SCREEN 12

IF Chrom% <= NWavesZ THEN

CALL Display(SpecData#(), ChromX, 1, NPntsX, Min, Max)

TempMax = 0
FOR IX = 1 TO KPntsX

IF VarData{Chrom%, 1%X) > TempMax THEN TempMax

NEXT %

CALL VGADisplay(varData(), Chrom¥, 1, NPntsX, TempMax, PurpleX)

ELSEIF ChromX = (NWaves% + 1) THEN

CALL Display(SpecData#(), ChromX, 1, NPntsX, Min, Max)

ELSEIF Chrom% = NWavesX + 2 THEN

CALL Disploy(SpecData#(), NHaves% + 1, 1, NPntsX, Min, Max)
CALL VGADisplay{VarData(), NwWavesX + 1, 1, NPnts}%, MaxvVar, PurpleX)

END IF
CALL KeyPress{KX, K$)
SCREEN 0
END IF
LOOP UNTIL ChromX = 0

' ** Yindow the data ***
CALL Wind(SpecData#(), NWavesX, KPntsX, Thresh)

¢ www Eilter the Data ***

CALL Kalman(SpecData#(), NWaves%, NPntsX, Thresh, StateP(), Innov{()})

CALL Displnn(Innov(), SpecData#(), NPntsX, NWavesX)
CALL SaveFile(Innov(), 5, NPnts¥, 1)
VIEW
WINDOW
SCREEN O
'LOCATE 3, 15
'PRINT “Press 'Q' to quit"
"CALL KeyPress{(KX, K$}
LOOP UNTIL K$ = "Q"

varPata(Chrom%, 1%)



END

*This section treps errors during file loading

ErrorTrap:
PRINT ERR
FileErrorX = 1
RESUME NEXT

SUB DispInn (Innovi{}, SpecData#(}, NPnts%, NuWaves¥)
]

'Subroutine to display the innovations traces
'

*** Find the maxima *¥*
The array Max() stores the following maxima

1

1

' Kax(1) = forward innovation for one component
t Max(2) = forward innovation for two component
' Max{3) = reverse innovation for one component
* Max(4) = revrse innovation for two component
' Max(5) = absorbance

DIM Max(5)

FOR I% = 1 7O NPnts¥%
IF Innov!{l, IX) > Max{1) THEN Mox{1)
IF Innov!(2, I%X) > Max{2) THEN Mox{2)
IF Innovi(3, 1%) > Max{3) THEN Max(3) = Innovi(3, 1%}
IF Innovi(4, IX) > Max(4) THEN Max(4) = Innov!(4, 1X)
Innovi(5, 1X) = SpecData#(NWaves% + 1, 1X)
IF ImnovI(5, I%) > Max(5) THEN Max(5) = lnnov(5, 1%}
NEXT I%

tnnov! (1, 1%)
tnnov! {2, 1%}

wouonwn

twrw Digplay the Innovations and the Max Absorbance ***
VIEW PRINT
SCREEN 12
CLS
LOCATE 2, 10

' ** Results from the forward filter **
COLOR BBlueX
PRINT "Cne Component Model®
COLOR BWhiteX
CALL VGADisplay({lnnovi(), 1, 1, NPnts¥, Max(1) * 2, BBlue¥X)

LOCATE 2, 35

COLOR GreenX

PRINT “Two Component Model®

COLOR BwhiteX

CALL VGADisplay(innovi(), 2, 1, NPntsX, MKax(1) * 2, GreenX)
CALL tabel8(Max¢1), Label$)

LOCATE 16, 1

PRINT Label$;

LOCATE 2, 59
PRINT “Maximum Absorbance®
CALL VGADisplay({Innov!(), 5, 1, NPntsX, Max(5), BWhiteX}

228
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CALL KeyPress(K%, K$)
cLS

+ w» pesults from the reverse filter **
LOCATE 2, 10
COLOR BBlueX
PRINT "One Component Model"
COLOR BWhiteX
CALL VGADisplay(lnnovi(), 3, 1, NPntsX, Max(3} * 2, BBlueX)

LOCATE 2, 35

COLOR Green%

PRINT "Two Componcnt Model®

COLOR BWhiteX

CALL VGADisplay(Innav!(), &4, 1, WPntsX, Max(3) * 2, GreenX)
CALL Label8(Max(3), Label$)

LOCATE 16, 1

PRINT Label$;

LOCATE 2, 59
PRINT "Maximum Absorbance"
CALL VGADisplay(lnnovi(), 5, 1, NPntsX, Max(5), BwhiteX)

LOCATE &

FOR 1% = 17105
LOCATE , 65
PRINT Max(IX)

NEXT 1%

END SUB

SUB Display (Array2D#(), Index¥, FirstPnt%, LastPntX, Min, Max) STATIC

+ % The subroutine Display3 uses screen mode 12 to display the collected
data in the array Array20#() as an X-Y graph. The X-axis is scaled to
the number of data points ard the Y-axis displays the value

of that array elemert.

Array20#(i,j) = the array containing the data to be plotted.

Indexx = the row of the array to be plotted
FirstPnt¥%, LastPntX = first and last | values to be plotted
' Min Max = Values to scale the screen to

1 *% | abel axis **
CALL Label8(Max, Label$)
LOCATE &4, 1
PRINT Labels;
CALL Label8{Min, Label$)
LOCATE 28, 1
PRINT Label$;

' ** praw a frame around the graph **
LINE (69, 40)-(626, 445), Aquak, 8
LINE (71, 42)-(624, 443), Aqua¥, B

1 % Sat up a view port inside this box **



1F LastPntX < 2 THEN EXIT suB
VIEW (75, 48)-(620, 437)

+ w* Scale this graphics wirklow **
WINDOW (FirstPntX, Min)-(LastPntX, Max)
LINE (FirstPntX, 0)-(lLastPntX, 0), WhiteX
¢« #» plot the data in Array20#() *=

230

LINE (FirstPntX, Array20#(indexX, FirstPntX})-(FirstPntX + 1, Array20#(IndexX, FirstPntX + 1)),

Yel lowX
FOR 1% = (FirstPntX + 2) TO LastPntX
LINE -(I%, Arrayl20#{IndexX, 1%)), YellowX
NEXT 1%

¢ »= peset to normal screen **
WINDOW
VIEW

END SUB

SUB HGen CIWX%, IWYX, IPT%, AB#(), HH(), NWavesX)

]
'Subroutine to generate observation matrices.
[}

Leww UARNI“G Y dr
' when the number of nonzero clements is changed, the values of
' the NCOEFFSX matrix (in the Kalman subroutine) should be modifed.

(R 22 a2 21122 4t d g

+ ** One-component model **
FOR 1% = 1 TO NWaves% - 1

R#CI%, 1) = ABHCIWXYG, IPT%)
R#CI%, 2) = 1
H#¢1%, 3y =0

NEXT 1%

' k% Tyo-component model **
FOR IX = NWavesX TO (2 ™ Nwaves% - 3)

HECLZ, 1) = ABR(IWXX, IPTX)
H#CIX, 2) = ABR(IWYR, IPTX)
HECIX, 3) =1
NEXT IX
1
END SUB
DEFOBL A-2

SUB Kalman (Profile(), WWavesX, NPntsX, Thresh!, StateP!(}, Innov!()})

%

tSubroutine to perform parallel Kaimen filtering of multiwavelength

telution profiles (recursive PCA),

1

' Profilel() - the elution absorbance matrix, dimensioned at least

' (NWaves% NPntsX), which contains absorbances at each wavelength
4 at each point in time. Maximum number of wavelengths which

’ can currently be handled by this subroutine is 20.

' Thresh! - Threshhold for turning on the filter

' StateP() - is an array which returns the state parameter estimates.

! Innovi() - array containing the rms of the innovations at each point

1
1
1

XFor%k,XBack - indices of the wavelengths used for one-component models.
YForX,YBacX - indices of the wavelengths used for two-component models.



231

IStartX - point number where the KF starts

Shared veriables
NWavesX - is the number of wavelengths recorded (should be <=20).
NPntsX - is the number of spectral readings made (should be <=300).

’
‘Initialization.
1]
NModelX = 2 * NWavesX - 3
DIM AB¢1 TO NWaves%, 1 TO NPnts¥%) 'Double precision array for the absorb.
DIM P(NModelX, 3, 3)
DIM H(NModetX, 3), X(NModelX, 3)
DIM Gain(3)
DIM NCOEFFSX(NModelX)
DIM TMP1(3), TMP2(3, 3), TMP3(3, 3)

Var = CDBL(StdDev * StdDev) 'Variance
PINIT = Var * 1D+59 'Approximation to infinity

1** [nitialize motrices w*
REDIM Innov! (S, NPnts¥X)
FOR Dir¥ = 1 TO -1 STEP -2 1ww Fi{rers the data in both directions
CLS
LOCATE 18, 10
IF Dir¥ = 1 THEN
PRINT “Forward Filter"
FOR 1% = 1 TO NPntsi
FOR JX = 1 TO NWavesX
AB(JX, 1X) = (Profile(J%, 1%))
NEXT J%
NEXT 1%
ELSE
PRINT "Reverse Filter"
FOR 1X = 1 TO NPntsX
FOR J% = 1 TO NWavesZ
AB(JX, 1%) = (Profile(J%, NPnts% - 1X + 1))
NEXT J%
NEXT 1%
END IF

FOR 1% = 1 TO NModel%
IF 1% <= NWavesZ - 1 THEN

NCOEFFSXCI%) = 1 i  <gs=s=xm=o=
ELSE
NCOEFFSX(IX) = 2 | g========x
EKD IF
KEXT 1%

FOR 1% = 1 TO NModelX
FOR JX = 1 TO NCOEFFSX(1%)
FOR K% = 1 TO NCOEFFSX(1%)
PCIX, JX, K%) = 0

NEXT KX
PCI%, J%, JX) = PINIT
X(I%, J%) = 0
NEXT JX
NEXT 1%

'wait for a peak to be detected, then take two largest signals for model.
IStart¥ = 0
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DO
IStartX = IStartX + 1
IWX% = 1 ‘Assume these are the greatest absorbances
WYX = 2
IF AB(1, IStartX) < AB(2, I1StartX) THEN SWAP IWXX, IWYX
FOR 1X = 3 TO NWavesX
IF AB(I%, IStartX) > AB(IWXX, IStartX) THEN

INYX = IWX%
IWX% = IX
ELSEIF AB(IX, IStartX) > AB(IWYX, IStartX) THEN
Y% = 1%
END IF
NEXT IX

LOCP UKTIL (AB(IWXX, IStartX) > Thresh!) OR (IStart® = NPntsX)

IF IStartX = NPntsX TKEN

PRINT ¢ ERROR -- No pesk detected.”
BEEP
CALL KeyPress(K%, K$)
EXIT suB
ELSE
PRINT " Peak detected at point®; IStartX

IF (Dir¥% = 1) THEN
IF (XFor®X <> ) THEN

PRINT © Using input from menu®:

IWXX = XForZ
ELSE

XFor% = IWX%

PRINT ™ Using the maximum absorbances:'
END IF
YForX = IWYX

ELSEIF (DirX = -1) THEN
IF (XBac% <> 0) THEN
PRINT * Using input from menu":
IWXZ = XBack
ELSE
XBack = IWXX
PRINT ¢ Using the maximum absorbances:™
END IF
YBack = WYX
END IF

i2 1 4 Teﬂp L 2 2 4
W% = 15
WYX = 10

iR 82 a2 4 2 ¢ ¢4 ¢ 4

PRINT ¥ Wavelength X ="; [WXX; ¥ Wavelength Y = *; IWYX
END IF
]
v** [oop to filter cach point for each model **
PRINT * Kalman Filtering Point:"
IntntX = 1
FOR IX = IStartX TO NPntsZ
LOCATE 22, 32
PRINT IX
CALL HGenCIWX%, IWYX, 1%, AB(), K(), NWavesX)
RSum1! 0
RSum2f = 0
FOR MX = 1 7O NModel%
i#* Caiculate Kalman gain **



IF MX < NWevesX THEN 'One component model
y = AB(MX, I%)
IF M% >= [WXX THEN y = AB(MX + 1, 1%)
ELSE 'Two component model
IDXX = MX - NWavesX + 1
IF 1WXX > IWYX THEN
IF IDXX >= WYX THEN IDXX = IDXX + 1
IF IDXX >= IWX%X THEK IDX% = IDXX + 1
ELSE
IF IDX% >z IWXX THEN IDXX%
IF IDXX >= JWYX THEN 10XX
END [F
y = ABCIDXX, 1%)
END IF

10X% + 1
IoXX + 1

Temp = 0
FOR JX = 1 TO NCOEFFSX(MX)
TMPI(JX) = O
FOR KX = 1 TO NCOEFFSX(MX)
TMPICJ%) = TMPI(JX) + P(M%, J%, KX) * H(MX, KX)
NEXT KX
Gain{J%) = TMP1(JX)
Temp = Temp + H(MX, JX) * TMP1(JX)
NEXT J%X
Temp = Temp + Var
FOR 4% = 1 TO NCOEFFSX(MX)
Gain(JX) = Gain(JX) / Temp
NEXT J%
]
‘Got Kalman gain, now update estimate of the state vector.
YCalc = 0
FOR J¥% = 1 TO MCOEFFSX(MX)
YCale = YCalc + X(MX, J%) * H(MX, J%)
NEXT JX
Diff = y - YCalc
‘Calculate the orthogonal residuals.

P1 = AB(IWXX, 1%}
P2 = AB(IWYX, IX)
IF M% < NWaves% THEN
0Diff = -X(MX%, 1) * P1 + y - X(M%, 2)
0Diff = ODiff / SQR(X(M%, 1) ~ 2+ 1)
ELSE
P3 = ABCIDX%, 1X%)
top = -X(MX, 1) * P1 - X(MX, 2) * P2 + P3 - X(MX, 3)
00iff = top / SOQR(X(M%, 1) = 2 + X(MX, 2) "2+ 1)
END IF

nou

FOR J% = 1 TO NCOEFFSX(MX)
X(M%, JX) = X(MX, J%) + Gain(JX) * Diff
NEXT J%

Innt = CSNGCABS(ODiff))
1F MX < NWavesX THEM
RSum1! = RSumi! + Inn! ° 2
ELSE
RSUM2! = RSum2! + Innt ~ 2
END !F
'
'Now update the covariance matrix.
FOR J%X = 1 TO NCOEFFSX(MX)
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FOR KX = 1 TO NCOEFFSX(MX)
THP2(JX, KX) = -Gain(JX) * H(MX, KX)
REXT KX
TMP2¢JX, JX) = 1 + THP2(JX, J%X)
NEXT JZ

FOR JX = 1 TO NCOEFFSX(M%)
FOR KX = 1 TO NCOEFFSX(MX}
TMP3(JX, KX) = G
FOR LX = 1 TO NCOEFFSX(MX)
TMP3(JX, KX) = TMP3(J%, KX) + TMP2(JX, LX) * P(MX, LX, K%
NEXT LX
NEXT KX
NEXT JX

FOR JX = 1 TO NCOEFFSX(MX)
FOR KX = 1 TO NCOEFFS%(MX)
P(MX, J%, K%) = 0
FOR LX = 1 TO NCOEFFSX(MX)
P(MX, JX, KX) = P(M%, JX, KX) + TMP3(J%, LX) * THP2(XX, LX)
NEXT L%
PCMZ, JX, KX) = P(MX, J%, KX) + Gain{J%) * Var * Gain(K¥)
NEXT KX
NEXT JX
NEXT M%

twaw gtore all but the first innovation ***
IF (DirX = -1) AND (InCnt% > 1) THEN
Innov!i(3, NPntsX - [% + 1) = SQR(RSum1| / (NModel¥% - 1))
Innov!(4, NPntsXk - IX + 1) = SQR(RSum2! / (NModelX - 2))
ELSEIF (Dir¥ = 1) AND (InCntX > 1) THEN
Innovi(1, I%) = SQR(RSum1! / (NModelX - 1))
Innovi(2, I%) = SQR(RSum2! / (NModelX - 2))
END IF

InCntX = InCnt% + 1
NEXT 1X
NEXT Dir%

'** Transfer the state parameters into their array **
FOR IX = 1 TO NModelZX
FOR JX = 1 TO NCOEFFSX{IX)
StateP! (IX, J¥%) = CSNG(X(1¥X, JX))
NEXT JX
NEXT 1%

END SU8

DEFSNG A-2
SUB KeyPress (K%, K$}

stores the value of a non-null inkey$ into the variable >KS$<
stores its ascii value into the variable >K¥%<

if inkey$ returns s two-byte string (extended ascii), then KeyPress strips
the first byte and sets >K$< equal to the 2nd byte. >K< is then set to the
ascii value of >K$< + 300.

! *** £irst clear the input buffer ***



00
K$ = INKEYS
LOOP UNTIL K$ = ¢

’ *** Then get the next keypress ***
DO
K$ = INKEYS
LOCP WHILE K$ = M

' »** Thig conditional deals with the extended characters ***
IF LEN(KS) = 1 TKEN
K$ = UCASES(KS)
XX = ASC(KS)
ELSE
X$ = RIGHT$(KS, %)
K% = ASC(KS$) + 300
END IF

1

END SUB

SUB Lebel8 (X, Label$) STATIC
s
tThis subroutine converts the real number X into a character string
tnot greater than cight characters long and returns it in LABELS. It
tis intended to fix the length of tick mark tabels in graphics applications
'to a maxiTrm of 8 characters.
]
'First convert to string and strip off excess spaces.
ORIGS = STRS(X)
STRIPS =
FOR IZ = 1 TO LEN(CRIGS)
Temp$ = MID$CORIGS, I%, 1)
IF Temp$ <> ™ ™ THEN STRIPS = STRIPS + Temp$
NEXT 1%
IF LEN(STRIPS) < © THEN
Label$ = SPACES(8 - LEN(STRIP$)} + STRIPS
EXIT Sus
END IF
‘That didn*t do the trick. Next look for exponential notation. If
‘this is the case, we can take the last four characters (exponent)
‘and the first four characters (mantissa). Round if necessary.
EPCS = INSTR(STRIPS, “E™)
IF EPOS <> 0 THEN
CHARIS = MIDS(STRIPS, 4, 1) 'Last digit in mantissa
CHAR2S = MID$(STRIPS, 5, 1) 'Truncated digit in mantissa
1F CHAR2S > 4" THEN CHAR1$S = CHR$(ASC(CHARI$) + 1) 'Round it
Label$ = LEFTS(STRIPS, 3) + CHARIS + RIGHT$(STRIPS, 4)
EXIT SUB
END IF
tNot exponential notation. The only exception I have found to this
tis of the form "-1.234567". This is assumed for anything which has made
tit this far and the leftmost 8 characters will be taken, with rounding.
CHAR1S = MIDS(STRIPS, 8, 1) tlast retained character
CHARZS = MID$(STRIPS, 9, 1) ‘First truncated character
IF CHAR2S > ¥4" THEN CHAR1$ = CHRS(ASC(CHARIS) + 1) ‘*Round it
Label$ = LEFTS(STRIPS, 7) + CHARIS
END SUB

SUB ListDir (Wilds)

Cmnd$ = "DIR/W " + Wild$ + ">DIRFILE"
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LOCATE 3, 15
PRINT “Oirectory #; Wild$
PRINT
SHELL Cmnd$
OPEN “OIRFILE"™ FOR INPUT A5 #1
FOR IX =170 4
LINE INPUT #1, Lines$
NEXT 1%
Do
LINE INPUT #1, Line$
PRINT Lines$
LOOP UNTIL EOF(1)
CLOSE #1
KILL "DIRFILE"

END SUB

SUB LoadData (SpecData#(), VarData(), NPnts¥%, NWavesX, Min, Max, MoxVar, SpecLabet$(), MaxWavcsX)

[}

' The subroutine LoadData is used to load in the infomation stored in the
' file "FileName.TIM", a file created by the Hewlett Packard diode array
' software. The structure of this file is documented in appendix B of the
' UV/VIS Software handbook. These files consist of a header section and a
* data section. This subroutine checks the header section to see if the

' acquisition mode of the selected file is 5, wavelength renge spectra.

' 1t also checks that the std.dev = 0 (data stored without varisnce

! estimates). Files that do not meet these requirements will not be loaded.
L}
[}
L}
1
1
3

The std.dev feature of the diode array could be added in a latter version
of this program tc provide a noise estimate for the Kaiman filter.

*** Open the Data File *»*

SHARED FileError¥ tA shared variable needed for the error trap
DO
Errorflagd = 0
o]o]
FileErrorX = 0 1lear the error flag
ON ERROR GOTO ErrorTrap tTurn on the error trap
CLs

LOCATE 3, 15

CALL ListDir(Path$ + '"** TIMN")

PRINT

INPUT "File to be loaded (no extension)"; FileNames

IF UCASES(FileName$) = Q" THEN END

FileName$ = Path$ + UCASES(FileNameS) + " TIM" tadd the path & ext.

OPEN FileName$S FOR INPUT AS #1 ‘Open the file

CLS

LOCATE 3, 15

If FileErrork = 1 THEN 'Has the error trap been set?
PRINT " - Unable to find “; FileName$;
SOUND 300, &
CALL XeyPress(KX, X$)

END IF

LOOP WHILE FileErrork

ON ERROR GOTO O ‘Turn off error trap

cLs
LOCATE 3, 15
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PRINT FileNome$;

1 ws¥ Get out the data for the Kalman filter ***
INPUT #1, Junk, JunkS, TimeData$, DateData$
INPUT #1, Junk, IntTime, StdbevOnX
INPUT #1, Junk
LINE INPUT #1, Junk$
LINE INPUT #1, JunkS
LINE INPUT #1, Junk$
INPUY #1, WaveModeX, Junk, NWavesStoredX, Junk
INPUT #1, StartWaveX, EncMaveX, Junk, Junk, Junk, Junk
INPUT #1, AcgModeX, RunTime, CycleTime, StartTime

' Check the file's storage mode
IF StdDevOnX <> 0 THEN
‘ErrorFlag® = 1
'CLOSE #1
PRIRT * - Standard deviation was set"
END IF
IF AcgModeX <> 5 THEN
ErrorFlagZ = 1

CLOSE #1
PRINT " - ERROR - wrong acquisition mode"
SOUND 400, 3
CALL XeyPress{K%, KS$)
END IF

LOOP WHILE ErrorFlagk
NPntsX = CINT((RunTime - StartTime) / CycleTime) + 1

PRINT * - TimeData$, DateDara$

PRINT TAB(14); NWavesStored%; “Wavelengths from"; StartWaveX; "to"; EndWaveX
PRINT TAB(15); “Cycle Time = "; CycleTime; "; Integration Time; *; IntTime; "*
PRINT TABC15): “Run time ="; RunTime; ", ¥, Start; "Time = “; StartTime
PRINT TABC15); "Number of Readings ="; NPnts¥X

PRINT

twax Now the file is open, get out the goodies ***
Do
PRINT Number of wavelengths to use <"; NWavesik; ">";
INPUT TempX
LOOP UNTIL (Temp% >= 3) AND (TempX <= MaxWavesX) AND (Temp% <= NWavesStored®) OR TempX = 0
IF TempX% <> O THEN NWavesX = TempX

After the first wavelength has been read, there will be (NWavesStoredk - 1)
wavelengths left to choose from. We want to divide this range up evenly and
select the remaining (NWaves% -1) wavelengths from it. The distance betueen
these wavelengths is StepSize.

StepSize = CSNG{NWavesStoredX - 1) / CSNG(NWavesX - 1)
'Fill in the nm wavelength values for the Waves

FOR IX = 1 TO NWavesX
SpecLabel$S(IX) = STRS(StartWave% + CINT(CSNG(I% - 1) * StepSize * 2))
NEXT IX

LOCATE 12, 15

PRINT "Loading point#t
Min =10

Max = O

FOR IX = 1 TO NPntsX



LOCATE 12, 30 ‘Update display
PRINT IX%
INPUT #1, Temp 'Input abs at the first wavelength

IF Temp > Max THEN Max = Temp
IF Temp < Min THEN Min = Temp

SpecData#(1, 1%) = COBL(Temp) ‘Store it in the array
WavePointer® = 1

At this point we have to do some careful bookkeeping to ensure we know
where we are in the sequential file. WavePointerX stores the position of
the lest absorbance stored to the array. The number of absorbances to read
before we get to the next one to store in the array is stored in Skip%.
FOR JX = 1 TO (NWavesX - 1)
SkipX = 1 + INT(CSNG(JX) * StepSize) - WavePointer%
WavePointer¥ = WavePointerX + SkipX
FOR KX = 1 TO SkipX
INPUT #1, Temp
NEXT K%
IF Temp > Max THEN Max = Temp
IF Temp < Min THEN Min = Yemp
SpecData#(J% + 1, 1X) = COBL(Temp)
REXT J%

' 1f the last absorbance read was not the last one on that line of the file,
' then we read the rest of the line.

IF WavePointer% < NWavesStored% THEN LINE INPUT #1, Junk$
' 1f the Standard Deviation were recorded they will be on the next line

IF StdDevOn¥% <> 0 THEN
INPUT #1, varData(l, 1%) 'Input Var at the first wavelength
WavePointerX = 1
FOR JX = 1 TO (NWaves% -~ 1)
Skip% = 1 + INT(CSNG(J%) * StepSize) - WavePointerX
WavePointerX = WavePointerX + Skip¥X
FOR K% = 1 TO Skip%
INPUT #1, Temp
NEXT KX
VarData(JX + 1, %) = Temp
NEXT J%
IF WavePointerX < NWavesStored% THEN LINE INPUT #1, Junk$

END IF
NEXT IX
CLOSE #1

' The last trick is to store the maximum absorbance of each sample
Maxver = 0
FOR 1% = 1 TO NPntsX
RowMax = -10
MeanVar = 0
FOR J% = 1 TO NWaves%
IF SpecData#(JX, IX) > RowMax THEN RowMax = SpecData#(JX%, %)
MeanvVar = MeanVar + VarData(JX, 1%)
NEXT J%
SpecData#(NwavesX + 1, 1%) = RowMax
Temp = MeanVar / CSNG(NWavesX)
varData(NWavesX + 1, 1%) = Temp
IF MaxVar < Temp THEN MaxVar = Temp
NEXT 1%
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END SUB
sUB SaveFile (Array(), NRows¥%, NColZ, TransX)

LOCATE 30, 25
PRINT "Output the data to a file (Y/N) ?¥;
CALL KeyPress(XX, K$)
IF X$ = WY" THEN
LOCATE 30, 25
PRINT »
LOCATE 30, 25

INPUT ; "File Name (No Extension)"; FileName$

FileName$ = FileName$ + Y.DAT"
OPEN FileName$ FOR QUTPUT AS #1

IF TransX = 1 THEN
FOR JX = 1 TO NColX
FOR 1% = 1 TO NRowsX
PRINT #1, Array(l%, J%); “,*;
NEXT 1X
PRINT #1,
NEXT J%
ELSE
FOR J% = 1 TO NRowsX
FOR IX = 1 TO NCol%
PRINT #1, Array(Jx, I%); . »;
NEXT [%
PRINT #1,
NEXT JX
END IF
CLOSE #1
END IF
LOCATE 30, 25
PRINT ¥
END SUB

SUB VGADisplay (Array2D(), Index%, FirstPnt%, LastPnt%, Max, ColX) STATIC

» %% The subroutine VGADISPLAY uses screen mode 12 to display the collected
' data in the array Array() as an X-Y graph. The X-axis is scaled to
' the number of data points and the Y-axis displays the value

' of that array element.

+ w% {abel axis **
IF LastPntX - FirstPntX < 1 THEN EXIT SUB
IF Hax <= 0 THEN Max = 1

CALL Label8(Max, Label$)
LOCATE 4, 1

PRINT Label$

CALL Label8(0, Label$)
LOCATE 28, 1

PRINT Label$

v »* Oraw & frame around the graph **
LINE (69, 60)-(626, 445), AquaX, B
LINE (71, 42)-(624, 443), AquaX, B

' wx Set up 8 view port inside this box **
VIEW (75, 48)-(620, 437)

239



240

v ww Scale this graphics window **
WINDOW (FirstPntX, -.1 * Max)-(LastPntX, Max * 1.03)
¢ w* plot the date in Array2D() *+

LINE (FirstPntX, Array2D(IndexX, FirstPnt¥X)}-(FirstPnt® + 1, Array20(Index¥%, FirstPntX + 1)),
ColX
FOR IX = (FirstPntX + 2) TO LastPntX
LINE -¢IX, Arrey2D(lndexX, 1X)), ColX
NEXT 1%

¢ w* Reset to normal screen *»
WINDOW
VIEW

END SUB

SUB Wind (SpecData#(), NWaves¥X, NPntsX, Thresh)
StartX = 1
StopsX = NPnts%

SCREEN 12

' ** Draw & frame around the graph *+
LINE (69, 40)-(626, 445), AquaX, B
LINE (71, 42)-(624, 443), Aqua%, B

' ** Set up a view port inside this box **
VIEW (75, 48)-(620, 437)

LOCATE 1, 10
PRINT "Use the cursor/ tab keys to select a window of data. S to save it."
ToggleX = 1
Do
CLS
Min = 0
Max = 0

FOR IX = StartX TO Stops%
Temp = SpecData#(NWavesX + 1, 1X)
IF Temp < Min THEN Min = Temp
IF Temp > Max THEN Max = Temp
NEXT IX

! ** Scale this graphics window **
WINDOW (Start%, Min)-(Stops¥%, Max)
LINE (Start%, 0)-(Stops%, 0), White%

' ** plot the data **
Temp = SpecData#(NWevesX + 1, StartX)
1F Temp > Thresh THEN
LINE (Start%, SpecData#(NWavesX + 1, StartX})-(Startk + 1, SpecData#(NWaves¥ + 1, StartX +
1), YellowX
ELSE
LINE (StartX, SpecData#(NWaves% + 1, StartX))-(StartX + 1, SpecData#(NWaves¥% + 1, Start% «+
1)), BBlueX
END IF
FOR IX = (StartX + 2) TO Stopsk
Temp = SpecData#(NWavesX + 1, %)
IF Temp > Thresh THEN
LINE -(1%, Temp), YellowX
ELSE
LINE -(I%X, Temp), B8lueX
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END IF
KEXT 1%

IF ToggleX = 1 THEN
LOCATE 29, 9
COLOR RedX
PRINT StartX;
COLOR WhiteX
LOCATE 29, 75
PRINT Stops¥X; % u.

ELSE
LOCATE 29, 9
COLOR WhiteX
PRINT StartX;
COLOR RedX
LOCATE 29, 75
PRINT Stopsk;
COLOR WhiteX

END IF

LOCATE 29, 40

PRINT "Threshold

#: Thresh; * ",

CALL KeyPress(K%, K$)
PRINT KX
IF ToggleX = 1 THEN
IF (K% = 377) AND (Start% < (Stops¥% - 2)) THEN StartX = Start% + 1
IF (KX = 375) AND (Start®% > 1) THEN Start¥® = StartX - 1
ELSE
IF (KX = 377) AND (StopsX% < (NPntsX}) THEN Stops¥ = StopsX + 1
IF (KX = 375) AND (Stops¥% > (StartX + 2)) THEN StopsX = Stopsk - 1
END IF
IF KX = 9 THEN ToggleX = ToggleX * -1
IF (KX = 372) THER
IF {(Thresh > StdDev) THEN
Thresh = Thresh * 1.5
ELSE
Thresh = Thresh + StdDev
END IF
END IF

IF (KX = 380) THEN
IF (Thresh > StdDev) THEN
Thresh = Thresh / 1.5
ELSE
Thresh = Thresh - StdDev
END IF
END IF
IF X$ = "S"™ THEN

LOCATE 30, 20
PRINT "File name (no extention)";
INPUY ; FileName$S
FileName$S = FileName$ + “_DAT"
OPEN FileName$ FOR OUTPUT AS #1
FOR JX = 1 TO NPnts¥X

FOR IX = 1 TO (NWavesX)

PRINT #1, CSNG(SpecData#(1%, J%)); ",";

NEXT IX
PRINT #1,
NEXT JX%
CLOSE #1



LOCATE 30, 20
PRINT SPACE$(40);
END IF

LOOP UNTIL KX = 13
' %% Reset to normal screen **
WINDOW
VIEW
SCREEN 0

FOR IX = StartX TO StopsX
FOR JX = 1 TO (NWavesX + 1)

SpecData#(JX, (I1X - StartX% + 1)) = SpecData#(JX, 1%)

NEXT J%
NEXT 1%
NPntsX = StopsX - Start¥ + 1

END SUB
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APPENDIX B
PROGRAM LISTING FOR

TARGET.M

3 Target.M
% Performs lterative Target Foctor Analysis

% Port 1. Load in the data end results to the Kalman filter

X Output:

* C = Concentration

% S = Spectra

% D = data = C*S + noise

% Tk = target vectors (Kalman innovations)

clear all

clear global

Xfname = 'test’;

fname = input ('File Name (no ext) >','s');

% Concentration matrix *.CON
tomp = (fname , '.con'l;
eval{['load *,templ);

C = eval(Ifnome,*(z,1:3)'1);
ns = length(C(:,1));

% Spectral Matrix *.SPC
temp = [fname , '.spc');
eval(['load ', templ };

s = eval([frame,'{:,1:2)°'1);
s =8';

nw = length(S{1,:));

% Data motrix *.DAT
temp = [(fneme , '.dat'];
eval({{'load ', temp]);

D = eval(fname);

% Innovations Matrix ".INN
temp = [fname , '.inn');
eval(['load *',templ);
Tktemp = eval(fname};

clear frnome temp test;
part 2. factor analysis on data matrix (D™D')
Output:

v

A
L

Eigenvector matrix
Scores matrix
eigenvalues

I 2L 2T T 2E R

fa
C = C(:,3:nc);
Cn = C./¢(ones{length(C(z,*)),1) * (sum(C. 2)).°0.5));

% Part 3. Kalman filter
% Output: Tk

% For n two-componcnt system the innovations from the one-component
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% Kalman filter are used as target vectors.
if ncma2
Tk = Tktemp(:,(3,11);
clseif nc=a3
Tk = zeros(ns,nc);
Tk(:,1) = Tktemp(:,4);
Tk{:,3) = Tktemp(:,2);
cross = max(find(Tktemp({:,1) < Tktemp(:,3)))
Tk(:,2) = [Yktemp{l:cross,1)' , Tktemp{(cross+1):ns,3)*']1';
end
Tk = Tk./(ones{length(Tk(z,1)3,1) * (sum{Tk. 2))."0.5);
clear cross Tktemp

Part 4. Needle Search

%
%
% Outputs:
% Tn = Target vector for needle search

needle
% Part 5. Varimax rotation
X Output: Tv = target vector

varimax

»

part 6

plot(Te)

title(*EFA target vectors');
hold on

plot(Cn,'r:*)

hold off

pause

ELEE IR AR R I

plot(Tk)

title('Kalman filter target vectors');
hold on

plot(Cn,'r:*)

hold off

pause

plot(Tn)

title('needle search target vectors');
hold on

plot(Cn,*":*)

hold off

pause

plot(Tv)

title('varimax target vectors');
hold on

ptot(Cn,’'r:*)

hold off

X F = [diag(Te' * Cn)*,
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X diog{Tk' * Cn)*,
% diag(Tn' * Cn)*,
% diag(Tv* * Cn)*);

F = (diag(Tk® * Cn)',
diag(Tn* * Cn)’,
diag{Tv! * Cn)*);

F = acos(F).*(180/pi);

% Dist s[(sum{{Te - Cn)."2)).°0.5,
X (sum({(Tk - Cn)."23).70.5,
% (sum{(Tn - Cn}. 2)).70.5,
% (sum({Tv - Cn)."2)).°0.51;
pist =[{sum({Tk - Cn}."2)).70.5,
{sum{{Tn - Cn)."2)).°0.5,
(sum{{Tvy - Cn)."2)).70.5];

Fitl = [F,Dist]
X7 = [Te, Tk, Tn,Tvl;
T = [Tk, Tn,Tv];

Part 7
t ITT {scparate script file)

FA.M
FA performs factor analysis on data matrix D*D!

Output:
v
A
L

Eigenvector matrix
Scores matrix
eigenvalues

R REER

Iv,L] =eig(D*D');

L = flipud(fliplr(L));
v = fliplriv);

A = Vi* D,

echo off

subplot(211),plot (diag(L(1:5,1:5))3;
title (*Eigenvalues*®)
subplot(212),plot(Vv(:,1:3));
titie(*Abstract Chromatograms')

nc = input({'Number of Components? ');
Xne = 2;

V =z ¥(:,1:nc);

A = A(T:nc,:);

L = L{i:nc,1:ne);
X L = diag(l);

subplot(211),mesh (D);

title('Raw Data Matrix*)

subplot(212),mesh(v * A);

title('Reconstruction from Principte Components')
pause

WL R R
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subplot(111)
% global D VAL

% Needle.M

% Needle Search

X

X Inputs:

X V = Eigenvectors of D*D®

l = size(V(:,1));
t = [1:];
for i = 1:1,

T = zeros(l,1);

Tiy=1; *Make test vector
R=VH*T;: XCalc. rotation
Tp = (V * R); XCalc. predicted vector
c(i) = T' * Tp; %Compare vectors

end

% Plot the results
plot(max(max(C))*c/max(c), 'g+')
hold on
plot{max(max(C))*c/max(c),'g-')
plot(C,'r-*)
hold off
pause

% Produce a target vector

Tn = zeros(l,nc);

for i=l:nc
p = find(Cn(:,i)==max({Cn(:,i)))
plot(t({p=10):(p+10)} , c((p-10):¢p+10)),'g+")
j = input('Target Vector? ');
™m(j,i) = 1;

end

clear i jReTTpLl p

% Varimax.M

% This procedure follows algorithm as spelled out in

% Harman (1960) in Chapter 14, section 4. To run the
% program - the loadings are put in an array called

X lding. Type return to continue processing.

X The notation follows Harman. The routine vfunct.m is
X called to compute the variance of the loadings

% squared.

lding = v;
b=lding;
[n,nfl=size(lding);

V0 = vfunct(lding) ; % variances of loadings™2
for it=1:10; X% Never seems to need very many iterations
for i=1:nf-1 X Program cycles through 2 factors

jl=i+; % at a time.

for j=jl:nf



xjslding{:,§); % notation here closely
yislding(:,j); % follows harman
uj=xj.*xj-yi.*yi;

vjm2*xj.*yj;

Ao=sum({uj);

Bo=sum(vj);

Coaujt*uj-vj'*vj;

Do=2%uj'*vj;

numeDo-2*A0*Bo/n;
denaCa-(A0"2-Bo"2)/n;
tanbpsnum/den;
phi=atan2(num,den}/4;
angle=phi*180/pi;

if abs(phi)>.0000001;
Xj=cos(phi)*xj+*sin{phid*yj;
Yj=-sin(phiY*xj+cos{phi)*yj;
bj1=Xj;
bj2=Yj;
b(:,i)=bj1;
b(:, j)=bj2;
lding¢:,i)=b(z,1);
lding(:, j)=b(:, });
end
end
end;
lding=b;
ym=vfunct(lding);
if abs{vm-v0)<,000001;break;else V0=Vm;end;
end;

Tv = lding;
rot = ones{1,nf) - 2*(max(Tv) < abs{min{Tv))};
Tv Tv * diag(rot);

peskpos = zeros(C,1);
for i=1l:nc

peakpos(i) = find(Tv(:,i)==max(max(Tv(:,i)}}));

end
[peakpos, j] = scrt{peakpos);
Tv = Iv(:,j);

clear Ao Bo Co Do VO vm Xj Yj angle lding rot peakpos
clear b Bj1 bj2 den i it j jl n nf num phi tandp uj vj Xj Y]

X IT.M
% Iterative Target Transform Factor Analysis
%
% Inputs:
X T = target vector
X Vv = Eigenvectors of D*D*
m = length(T(1,:));
t = [1:ns];
clear F1 F2

% Target testing

Xni = input('number of jterations '};
ni = 10;
for i = 1:ni % Number of iterations
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R=y: *71; X Rotation vector

Tp=V*R; X Tp = target projected into the factor space
%plot{Tp)

Xhold on

T = 7p;

X Target transform
% Set the negative elements to zero
z = find(T < 0.000);
T(2) = zeros(size(T(z)});

% Normalize the target profiles to unit length
Sum = (sum(T."2)).°0.5;
Sun = ones{length(7(:,1)),1) * Sum;
T = 7./Sum;

% Compare the targets to the true concentration profiles
F=T"*Cn;
f1 = acos(F(:,1)).*(180/pi) ;
F1 =[F1',f1);
f2 = acos(F(:,2)).*(180/pi);
F2 = [F2',f2]1';
if nc==
£3 = acos(F(:,3)).*(180/pi);
F3 = [F3',f3)';
end
end
hold off

a4 nn

% Show the results
Xpause
subplot(211)
plot(F1)
title(*peak one')
subplot(212)
plot(Cn(:, 1), 'b+t)
hold on
plot(T(z, [1:nc:ml))
hold off
pause

subplot(211)
plot(F2)
title{'peak two')
subplot(212)
plet(tn(:,2),'b+1)
hold on
plot(T(z,(2:nc:m]))
hold off

pause

if nc==
subplot(211)
plot(F3)
title('peak three')
subplot(212)
plot(Cn(:,3),b*+*)
hold on
plot(T(:, B:nc:m]))
hotd off

pause
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end
subplot

%0ist =[{sum((T(:,31:2) - Cn). 2)3.70.5,
X (sum({T(:,3:4) - Cn). 2)).70.5,
% (sum({T(:,5:6) - Cn)."2))."0.51;
Fit2 = [f1,f2]

clear R Sum i | 2 Tp m Dist 1 f2
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