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Abstract. 0 

Requiring only the one-dimensional primary structure as input, the .positions of the 

constituent residues of a globular protein are predicted in three-dimensional space by 

a model using current mathematical programming techniques. 

Semi-empirically derived parameters in the form of distances between points "are 
c 

utilized. The residues are positioned by minimization of a simple distance function 

of their hydrophobicity classes, given constraints on their near neighbour distances 

and bounds on their far neighbour distances. Disulfide bonding information or extra-
8 

primary substructures may also be used, where appropriate The objective function 

and constraints are combined into a nonlinear penalty function, which is minimized 

by a new low-storage optimization technique. Thg^opftimization method employs a 
A 

combination of steepest descent and a truncated-Newton methefdT 

The model is designed to be suitably constrained, in thatjfche predicted structures 

axe not overly dependent upon initial conditions and the solution space is small with 

respect to both Cartesian coordinate and distance coordinate space. The model is 
capable of predicting tertiary structures for all single strand globular proteins, with no 

restriction on length. 

The tertiary structures calculated are found t'o have global structures similar to 

those found by experimental crystal X-ray/diffraction techniques. Using the distance 

space root-mean-square {RMSv) as a measure, RMSy differences from the diffraction 

structures are found of*4.88 A, 4.45 ± 0.43 A and 5.75 A for rubredoxin (54 residues), 

BPTI (58 residues) and lysozyme (129 residues), respectively^ 

IX 
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1 A General Introduction to Protein Chehiistry and Physics, 
« 

1.1 Introduction. 

A central concern in molecular biophysics is the study of the three-dimensional con­

formations of proteins. Proteins are crucial in virtually all biological processes The 

elucidation of the three-dimensional structure of proteins aids in our understanding of 

these processes, because a'protein's function is determined entirely by its structure. , 

This problem is simple in principle. It is believed that the primary structure of a 

protein, the one-dimensional sequence of its constituent amino adid residues, uniquely 

determines its tertiary structure, namely the locations of its atoms in R3 [3,4,48,54]. 

That is, the protein will fold spontaneously into a unique stable three-dimensional , 

structure in a suitable environment, without the necessity of an additional energy or 

information input. The problem then, is to define an algorithm that produces the 

tertiary -structure from a given primary structure. Once tertiary structures can be 

accurately predicted, the causal relationship of structure to function can be properly 

addressed. 

The determination of the native three-dimensional conformation of proteins is a 

major unresolved problem in molepiiar biology. All theoretical approaches to this* 

problem are based on the accepted dogma that the tertiary structure of a protein is 

the direct result of its primary structure in the native environment. 

1.2 Prote in Physicochemistry and Structure. 

1.2.1 Fibrous versus Globular Proteins. 

Proteins can be classified into two groups according to their macrostructure. Fibrous 

proteins are those associated with structural elements in the ceil, and are largely 

1 



insoluble in an aqueous environment. They have high molecular weights and are ca­

pable of stretching and contracting. Tn"gehefal, their overall conformations are either 

long fibers or sheets. . ~ 

In contrast to fibrous proteins, the globular proteins are generally soluble in water, 

smaller and less symmetrical. Nearly all enzymes are globular proteins. Other glob-

ular proteins perform a remarkably diverse range of functions, acting as antibodies, 

hormones tind receptors, growth and differentiation controllers, and ion and molecule 

transporters. In this study, only globular proteins will be examined. w " 

For detailed accounts of protein chemistry and structure, the reader is referred .to 

Dicke°rson and Geis<[34], Schulz and Schirmer [101], or Creighton [28]. 

P. A 

1.2.2 P r o t e i n M a n u f a c t u r e . 

According to currently held ideas on protein synthesis [122],' the amino acid sequence in 

a polypeptide chain of a protein is a colinear and'nnique representation of the nucleotide 

sequence of the nucleic acid which codes it. Three adjacent nucleotides constitute a 

codon, and specify a single corresponding amino acid. Accordingly, the polypeptides 

are similar to nucleic acids in that they are linear, unbranched chain molecules with 

standard elements and one standard linkage. This arrangement allows for a simple and " 

universal nucleic acid reading and polypeptide synthesizing mechanism. 

In proteins, as in nucleic acids, not only the linkages but also the atomic groups 

forming the backbone of the chain are unifoim; in polypeptides all 20 common amino 

acids are of the a-type and have the L-configip>ation at their central C a-atoms. All 

differences, and therefore all information, are restricted to the rather short sidechains 

of the amino acids. » 



* 

€> 

U 
Figure 1: General Structure of an Amino Acid. 

1.2.3 T w e n t y A m i n o Acids . 

There are 20 standard amino acids residues occurring in natural proteins. These are 

listed in Table 1 along with their hydrophobicity classifications from various sources. 

The displayed hydrophobicity classifications will be discussed in Chapter 3.3 Table 1 

also gives the commonly used three-letter and one-letter abbreviations for the amino 

acids. The three-letter abbreviations will be utilized throughout this thesis. The molec­

ular weights of the amino acid residues range from 57 to 186 daltons with the mean, 

weighted by relative-abundance, being about 110. ** 

s The general structure of an amino acid is shown in Figure 1. All amino acids, with 

the exception of proline, have an amino (—NHv) group, a carboxyl (-COOH) group, 

a hydrogen atom,, and a distinguishing R group (called the sidechain), all bonded to 

a central (G£) carbon atom. The amino acids can be classified with respect to their 

sidechains as either polar or nonpolar-. The polar sidechains can be further subdivided 

into neutral, basic, or acidic. Figure 2 illustrates the 20 common-amino acid sidechains. 

In this figure, amino* acids with similar properties are grouped near one another. 



Amino Acid 
or Residue 

Alanine 
Arginine 
Asparagine 
Aspartic Acid 
Cysteine 
Glutamine 
Glutamic Acid 
Glycine 
Histidihe 
Isoleucine 
Leucine 
Lysine 
Methionine 
Phenylalanine 
Proline 
Serine 
Threonine 
Tryptophan 
Tyrosine 
Valine 

Three-letter 
Abbreviation 

Ala 
Arg 
Asn 
Asp 
Cys 
Gin 
Glu 

,Gly 
' His 

He 
.Leu 
Lys 
Met " 
Phe 
Pro 
Ser 
Thr 
Trp 
Tyr 
Val 

' One-letter 
Symbol 

A 
R 
N 
D 
C 

9 
E 
G 
H 
I 
L 
K ' 
M 
F 
P 
S 
T 
W 
Y 
V 

Ref 

# 1 
a 
1 
a 
1 
a 
I 
1 
1 
a 
b 

' b 
1 -
b 
b 
1 
a 
a 
a 
a 
b 

Ref 

# 3 
a 

r 
a 
1 
a 
a 

'1 
a 
1 
b 
b 
1 
b 
b 
b 
a 
a 
b 
1 

,b 

Ref 
# 3 

a 
a • 

1 
1 
b ' 
1 
1 
1 
b 
b 
b 
1 
b 
b 
1 , 
a 
1 
b 
a 
b 

Ref 
# 4 

a i 

1 
1 
1 
b 
a 
1 
a 
1 
b 
b 
1 
b 
b 
a 
1 
a 
a 
1 
b 

Ref 
# 5 

1 
a 

a 
1 
b 

- b 
a 
b 
b 
b 
a 
1 
b 
b 
a 

Ref 
# 6 

a 
1 
1 
1 . 
b 
I 
1 
a 
a 
b 
b 
1 
b 
b 
1 
1 
I 
b 
a 
b 

Table shows hydrophobicity classifications by various authors for the twenty amino, 
acids commonly found in natural proteins. The three hydrophobicity classes used are 
b = hydrophobic, / = hydrophilic, and a — ambivalent. The sources are Goel and Y£as 
[46] (Ref #1) , Dickerson and Geis [34] (Ref #2); Wertz and Scheraga [124] (Ref #3), 
Charton and Charton [16,17] (Ref #4), Lawson et al. [64] and Jones [55] (Ref #5), and 
Meirovitch et al. [74,75,76] (Ref #6) . 

Table 1: Notations and Hydrophobicity Classifications for the 20 Common Amino Acid 
Residues of Proteins. 

4 
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.Cs 

non-sing'* bond r^jrcct.t 

Shown are the sidechains for the 20 common amino acids^ For proline, part of the main 
chain is inserted. The other sidechains are shown as they emerge from the Ca-atom of • 
the residue. t 

Figure 2: Amino Acid Side Chains (from Schulz and Schirmer 1979). 



1.2.4 Characteristics and Polarities of Amino Acids; 

The standard amino acids differ only.'with respect to their sidechams. Each sidechain 
^ » •> 

is so specific that it cannot be easily substituted with another one without altering the 

gross properties of the protein. Glycine has only a hydrogen as its sidechain. "With 

no sidechain hindrance, Gly residues can -Idopt unusual dihedral angles, giving rise to 

kinks jn the main chain. Therefore, tne presence of these 'amino acids will increase "the 

flexibility of the polypeptide chain. Gly and Ala are so small that they can -apparently 

be accommodated in the interidr of a protein or on its surface with-equal ease. The 

nonpolar sidechains of Val, He and Leu are branched. Branched sidechains are stiffer, 

making them easier to fix in specific positions. Met has a rather flexible sidechain 

containing one sulfur atom. The nonpolar amino acids are predominantly found on the 
: 

Q * 

inside of protein molecules. Pro, the only amino acid in which the sidechain reattaches 

itself to the main chain, has the unique property of disrupting an a-helix and forcing 

a~Bend in the main chain. 

The aromatic amino acids Phe, Trp and Tyr all contain one methylene group that 

acts as a spacer between the Ca-atom and the aromatic ring. Without this group the 
i 

° main chain would be extremely stiff due to the steric hindrance at the Ca-atom. 

Typical polar and-neutral sidechains are those of Cys, Sej, Thr, Asn, Gin and Tyr. 

They tend to form hydrogen bonds and to be found on the outside of the molecule. 
* 

Most of the active centers of enzymes contain His amino acids. Asp and Glu are 

negatively charged amino acids at physiological pH and are both found at protein 

surfaces. Positively charged Lys and Arg residues also tend to be found at the surface. 

Cys can help to stabilize protein structures because of the ability of two such amino 



• acids to combine to form a disulfide bond within a protein. These disulfide bridges are 

the only common covalent cross-links in proteins. 

1.2.5 P e p t i d e B o n d F o r m a t i o n a n d Geomet ry . 

. Amino acids are polymerized into a polypeptide chain on ribosonies in the cell. The 

polymerization is based on the formation of substituted amide bonds, usually called 

"peptide" bonds. Once polymerized, the individual amino acids are referred to as 

"residues". Typically, a single chain of a protein will contain 50-1000 residues. Globular 

proteins are composed of one or more residue chains, or strands. The chain direction is 

defined as pointing from the amino end (JV-terminus) to the carboxyl end (C-terminus), 

coinciding with the direction of chain synthesis in vivo. 

The geometry and the dimensions of the peptide bond are shown in Figure 3. These 

data have been derived by Marsh and Donohue [73] and Ramachan'dran et al. [89] as a 
i 

refinement of the pioneering studies of Pauling et al. [25,81], using crystal structures of 

small polypeptides. The peptide linkages are predominantly trans (Figure 3) so that 

the hydrogen of the (—NH) group is as far as possible away from the oxygen of the 

(—'C = O) group; the alternative cis peptides, wherein the (—NH) group hydrogen is 

as close as possible to the (—C = O) oxygen, occur rarely. Rotation around the peptide 

bond is inhibited by resonance, causing a partial double bond of (O = C — JV). This 

makes the peptide bond essentially ̂ planar. The rotational freedom of the backbone is 

thus localized in the two single bonds {Ga - N) and (Ca ~ G). With a stiff peptide 

bond and with rather rigid bond lengths and bond angles, the distance between the 

Ca-atoms of two adjacent residues in the chain is found to be essentially constant, equal 

to 3.80 A. 

\ 

o' 
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Standard angles and distances for the usual trans peptide bond as given by Ramachan­
dran et al. (1974). 

Figure 3: The Peptide Bond (from CretgKton 1983). 
H 

b 

1.2.6 Side Chain Chemistry. 

The local chemistry within the protein is affected by the peptide bond, which is stiff 

(restricting the chain flexibility) and rather bulky (giving jfcise to substantial steric 

hindrance). Except for Gly and Pro, the sterically allowed regions for all" residues 

are essentially the same and rather small [9Q,9l]. This causes residues that are close 

together in primary sequence (the "near neighbour" residues) to have strict and specific 

limitations on their maximum and minimum pairwise distances in Rz. 

The packing density of a molecule is defined as the ratio of the van der Waals radii 

of its atoms to the volume it actually occupies in space [94]. Because globular proteins 

possess a high packing density- (close ta the density of crystals of small molecules that 

are held together by van der Waals forces), the final structure of a protein is very ' 

dependent upon noncovalent forces. The noncovalent forces drive the spbntaneous 

folding process, and later act as the mediators of enzyme-substrate reaction mechanisms 

tr5 
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or other biological activities. Noncovalent forces in the protein include dispersion forces 
u u 

and electrostatic interactions between partially charged residue sidechains (van der 

Waals forces), hydrogen bonding between two residue^ or between a single residue and 

a water molecule, and hydrophobic forces from the nonpolar residues. Polar residues 
o » 

in the interior of the protein help stabilize the protein by the formation of numerous 

hydrogen bonds. k -

/ 

1.2.7 Disulfide Bonds, Salt Bridges, Prosthetic Croups. 

Salt bridges are weak ionic interactions between oppositely charged sidechain groups. 

There are. <only a few salt bridges in proteins. They are usually located on the exterior 

of the protein, although interior salt bridges would be much more useful in stabilizing 

the structure of a protein. 

Disulfide bridges can be formed between pairs of Cys residues. These covalent bonds 

can serve to cross-link different parts of a protein chain. As a rule, these bonds form 

spontaneously. 

Historically, it was thought that-disulfide bonds determine the three-dimensional 

structure of the protein. However, it was found that the disulfide bonds in most proteins 

can be fully reduced and denatured, and) the denatured protein will refold into its native 

structure with correct disjjlfiaes upon reoxidation (c/., Haber and Anfinfeen [49}). It 

was also determined from denaturing-renaturing experiments that some S-S bonds are 

transient during the folding process of a protein, and the disulfide pairings of the final 

folded structure may actually be formed after the secondary and the tertiary structure 

of the protein has been achieved [27]. Furthermore, a great many S-S links of proteins 

*can be broken without the loss of the protein's structure or function. For example, 

N. 
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all three disulfide bonds of a-amylase can be reduced without impairing its enzymatic 
c 

activity [105]. ' i 

Apparent exceptions to the hypothesis of spontaneous S-S bond formation occur 

. with insulin and a-chymotrypsin, which-cannot be renatured onSe"their disulfide bonds 

are broken [44]. However, both of these proteins are formed from larger precursor 

molecules by proteolytic cleavage, and both 'of their precursors (proinsulin and chy-

motrypsinogen) reform their native structures and S-S bond pairings upon reduction 

and reoxidation. This indicates that insulin and a-chymotrypsin require the energy 

contributions from their native set of S-S bonds for stability. The common function of 

disulfide bonds then, is not to determine the three-dimensional structure'but to give 

extra stability to otherwise properly folded proteins [4,101], These bonds are conse­

quences of folding, and not the driving forces. 

Prosthetic groups, although often noncovalently bound to the polypeptide chain, 

may in some cases be linked to the sidechains of protein residues. It is possible in many 

instances to remove the prosthetic group without damage {e.g., the heme in globins), 
to 

whereas in other cases the protein becomes denatured (e.g., the heme in catalase). 

1.2.8 Hydrophobicity. 

One of the principal driving forces of protein folding results from the energetically un­

favorable interactions between nonpolar sidechains and water. This "hydrophobicity" 

causes the majority of nonpolar residues in native proteins tocluster inside the molecule, 

away from the aqueous environment, fomring a tightly packed solvent-inaccessible hy-

drophobic core. As first observed bv/Danielli [31] and Kauzmann [58], this\ydrophefeicity 

is a major factor in determining<the three-dimensional shape of proteins, an^Tieiree^their 
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activity. Nonpolar sidechains that do remain at the surface are frequently found to be 

oriented so that their contact with water is minimized. 

Since globular proteins have diameters of about 30 angstroms, sidechains cannot be 

buried in the protein interior without also burying part of the backbone, the polar amide 

and carbonyl groups. However, the polar groups coexist well with water. Burying them 

in the interior without loss of free energy is achieved only by the formation of hydrogen 

bonds. Regular hydrogen bonding patterns are commonly observed among residues in 

the interior of a protein; these give rise to what are termed "secondary structures". It 

. has been found that the fraction of buried nonpolar groups increases with a protein's 

^ J size, whereas the fraction of buried polar groups remains relatively constant [18]. 

The removal of charged groups from water is energetically very unfavorable. The 

vast majority of charged sidechains are at the protein surface. JThese types of residues 

~a£e referred to as "hydrophilic". 

The hydrophobicity rule of "nonpolar in, charged groups out" helps to s tabi l ized 

rdtfein in aqueous solution, giving proteins their globular shape. The arrangement of 

the internal sidechains is remarkably efficient. If the internal volume is compared to 
0 

the sum of the volumes of the constituent sidechains, the interior of the protein is found 

to be packed at about the same density as solid crystalline amino acids [94]. ! 

Hydrophobicity indices or classifications have been proposed by several authors, and 

several of these are listed in Table 1. These consist of rating or classifying the residue 

types on their preference to be situated within or away from the aqueous environment. 

They are discussed in detail in Chapter 3.3. 
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1.2.9 Secondary Structure. 

As suggested „by the terms primary structure and tertiary structure, there exists a 
! 

hierarchy of identifiable geometrical structures in proteins. This hierarchy will be 

described in the following three sections. ^ 

The secondary structure of a protein, intermediate between primary and tertiary 

structure, can be defined as the arrangement of its main chain atoms without regard to 

the types or conformation of its sidechains or its relationship with other chain segments. 

i 
Secondary structures are stabilized by hydrogen bonds between the peptide amide and 
carbonyl groups. Four types of secondary structures are commonly found in globular 

proteins: 

1. The a-helix [83], a regularly repeating structure containing 3.6 residues per helical • 

turn, resulting in small uniform distances betwem near neighbour residues 

2. The ^-strand [82], a helical structure such that the polypeptide chain is iiearly 

fully extended, resulting in largejmiform distances between near neighbour residues; 
p * 

I 

3. The 3io-helix [35], an intermediate helical structure, occurring less frequently in 

proteins, which contains 3.0 residues per turn; ^ 

4. Reverse, or hairpin, turns [115], sharp turns containing four residues and usually-

n ft 
stabilized by a single hydrogen bond. 

The o>helix is the most abundant secondary structure in proteins, effecting rather 

i 

stable rods through the interiors of globular proteins. The stability of normal helical 

conformations is affected by both the polypeptide length and the residue sequence. 

Gly and Pro have the characteristic of destabilizing any hydrogen bonding patteyn and 
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are termed helix disrupters, albeit for different reasons. A Pro residue does not have 

a hydrogen atom on its1 peptide nitrogen atom and, therefore, is unable to contribute 

to the hydrogen bonding patterns of a helix. With only a hydrogen atom for its 

sidechain, a Gly residue "can destabilize a helix due to its extensive flexibility. Residues 

0 

are theoretically capable of forming helices of types other than the ones listed above. 

However, none has beer), found with any significant frequency in real proteins. 

/3-strand( arrangements differ from other regular helical structures because they 

involve hydrogen bonding between sequentially distant residues. /?-strand systems are 

observed of two types: parallel and antiparallel, in which adjacent ^-strands run in the 

same or in opposite directions, respectively. In these, the stabilizing hydrogen bonding 

pattern occurs between residues of opposing /3-strands These arrangements are termed 

/S-pleated sheets. 

Reverse turns are usually located on the surface of a protein. They are quite flexible, 

and susceptible to changes in environment. They generally have distinctly, recognizable 

conformatiQns and are often restricted in their residue composition [5], with Gly being 
* 

the major participant. About one quarter of all protein residues are involved in turns. 

1.2.10 Tertiary Structure. 

Tertiary structure refer^ 

strand of a protein. T 

ture. Tertiary structurl 

the main chain and disulfide 

hydrogen bonding, van 

After synthesis on 

to the(three-dimensional conformation of the atoms in a single 

ae function of a protein is dependent upon its tertiary struc-

is stabilized not only by the covalent bonding of the atoms in 

bonds, but also by essential noncovalent forces such as 

der Waals forces and hydrophobic interactions. 

I _ 
the ribosome, general physical principles imply that the polype^ 
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tide chain will fold spontaneously into a primary sequence-dependent globular protein 

by adopting a state of minimal free energy. It is probable that folding already starts 

during the synthesis. The resulting folded structure determines the biological activ ity 
a *** 

l 

of the protein. 

i 

Experimental evidence supports the hypothesis that, under native conditions^ a 

protein will fold into a three-dimensional structure that is unique [4,48,54]. This com-

plicated structure (c/.; Figures 4 and 5) is dictated only by the amino acid sequence 

and the chemical environment. However, the relationship between sequence and struc­

ture is highly degenerate [97,]. That is, many primary sequences can give similar folded 

structures and biological activity [113]. 

There appear to be only" a limited number of amino acid sequences that can pro­

vide a unique structure in a given environment [97]. Artificially constructed random 

polypeptide strings tend not to have unique configurations, but instead behave as ran­

dom coils that continually* shift from one structure to another [15,91]. This implies 

the natural proteins may be a small subset of polypeptides, selected partly for their 

stability of structure [36]. 

The tertiary structures of natural proteins are not only unique, but they are also 

specific in a given environment. Only a few specific residue substitutions are possible 

that will allow the molecule to retain some activity. / * 

As will be discussed in Chapter 2.2, the knowledge of the secondary structures! 

of a protein unfortunately does not greatly aid the elucidation of tertiary structure. 

The tertiary structure of a protein thus cannot adequately* be described as a simple 
Li 

aggregate of connected secondary structures. 
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The residues are numbered sequentially from the amino end to the carboxyl end. Only 
the central C^-atoms of the residues are shown, connected by virtual bonds. 

.Figure 4. Tertiary Structure" of BPTI Molecule (from Scheraga 1983). 
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Only the Ca-atoms of the polypeptide backbone are shown; connected by virtual bonds. 

Figure 5: Tertiary Structure of Lysozyme Molecule (from Stryer 1981). 



17 

1.2.11 Quaternary Structure. 

Many proteins exist as large molecules formed by the specific aggregation of several 

, identical or non-identical protein strands. These strands may 'be held together by 

i 

disulfide bonds, hydrogen bonds or hydrophobic bonds. The quaternary structure 

deals with the arrangement of the constituent strands. For example, hemoglobin is a 

protein with a quaternary structure consisting of two pairs of single-chain subunits. 

Each of these four strands is folded into a shape similar to a myoglobin molecule, 

which is a single strand protein. The four separate strands are consolidated into a 

single staKe. structure by a great many hydrophobic interactions, along with a few 

hydrogen bonds and charged-group interactions. Proteins that have molecular weights 

in excess of 50,000 are likely to involve two or more polypeptide chains. 

1.2.12 Fluctuat ions . 

A protein molecule is not a static structure. Protein atoms are in a constant" state 

of motion. The fluctuations of the atoms are possible from bond rotations that are 

available in the polypeptide backbone and sidechains, and separated by only small 

energy barriers. 

These high-frequency fluctuations may be a factor in the functions of proteins, such 

as enzyme catalysis [57,123]. However, the scale of the fluctuations is only of the order 

of 0.5 A for an* individual atom,"with larger movements being prohibited „by the tight 

m - ' 

packing of the molecule. This means that the fluctuation magnitude is smaller than 
«• 

the resolution of the present theoretical models, as well as being beyond the resolving 

power of current experimental methods for tertiary structure generation. Therefore, 
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fluctuations will not be considered fmther in this thesis. 

I 

0 



2 . Previous Approaches to Tertiary Structure Predic­
tion. " \ 

This chapter is concerned with reviewing the methods that are currently being em-

ployed for theoretical prediction of the tertiary structures of globular proteins. The 

starting point for all of these methods is the hypothesis that all the information needed 

to define the three-dimensional structure of a protein is inherent in its amino acid 

sequence. 

2 . 1 E n e r g y Min imiza t ion Mode l s . 

The existence of a unique stable conformation under native conditions indicates that 

the Gibbs free energy of the system consisting -of the protein and the surrounding 

solvent must correspond to a minimum state. Therefore, the most straightforward 

approach for prediction of tertiary structure is to write the equations that describe 

c 

the free-energy state of the molecule in its solvent, and solve for a global minimum. » 

In„ principle, this method should always be successful, and the structures of simple 

"chemical systems have been determined by such direct energy minimization. However, 

the numerous attempts to° determine protein structures by this method have met with 

limited success in practice, mainly due to the enormous size of these molecules (c/., 

Nemethy and Scheraga [78]). 

The set of equations describing even a moderate-sized protein is so large that the 

f equations would be virtually impossible to write down, let alone solve. The computation 

of the potential energy of a conformation is based on the assumption that the energy 

can be expressed as a sum of interactions between the atoms of the protein, with 

individual interaction terms required for all possible pair combinations of the atoms.' 
t 

19 
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This amounts to a computation in the order of »2 nonlinear distances and energy 

terms for every evaluation of the energy function for a molecule containing n atoms; 

for example, over a million terms would be calculated for the small enzyme lysozyme 

at each iteration. 

The equations are nonlinear and the free-energy surface is characterized by an ex-

tremely large number of local minima. This "multiple-minima" problem is considered 

a major obstacle in the solution of free-energy equations for any large chemical sys-

tem [100]. Mathematical procedures developed to solve the multiple-minima problem 

by passing from one potential well to another consume far too much computer time, 

and it is not practical to apply them to a polypeptide longer than a few residues [29]. 

Currently/energy minimization models are being developed" that attempt to. circum­

vent the multiple-minima problem; for example, the real-spa^e renormalization group 

technique familiar to the world of theoretical physics can be used [100]. . 

- A further complication for this method is that it is unclear whether a protein's 

free-energy state in vivo corresponds to a global minimum'or to a strong loca^mini-

mum. If the native" conformation does not correspond to a global minimum, this would' 

mean that certain conformations are energetically inaccessible because of high potential 

energy barriers and that there is a limited number of possible pathways along which 

a protein can fold. ^This has led researchers away from the exploration of the entire 

conformational space in search of a free-energy minimum, and instead to consider only 

!> 
directed pathways of folding, leading through, intermediate conformations involving 

stable near neighbour and secondary structure arrangements. In effect, this amounts 

to the consideration of a problem that is different from the energy minimization of the 

true protein system, but much more amenable to solution. 

j 
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The complexities of direct free-energy minimization have stimulated a search for al­

ternate solution techniques. One method is to grossly simplify, modify or approximate • 

the free-energy function in order to make it tractable [67,68,107,108,109,110,111,112,129]. 

This often involves treating each residue as a single point instead of as. a group of atoms, 

or using information such as homologies between proteins to choose initial conforma-

tions that are already close to the real structure. Also, empirical or simplified functions 

are used in place of the original free-energy equations. These simplification approaches , 

haye also proved difficult. Either the equations remain highly nonlinear and unwieldy, 

with a multitude of local minima, or the original functions become so distorted that 

they are barely recognizable. 

It appears unlikely" that realistic free-energy equations can be solved in any real 

sense in the near future. Therefore, one must search for other means of tackling this 

problem. 

2,2 Secondary Structure Based Models . 

One alternative technique is to first predict the secondary structures of a protein by 

statistical methods such as those pf Chou and JFasman [19,20], and then to compose 

the structural elements into a suitable globular structure [21,37,38,85,104]. 

Most approaches to protein structure prediction have concentrated on secondary 

* structure, since .most prptein residues participate in some type of a-helix, ^-strand or 
4 

hairpin turn. The object of these approaches is to first accurately predict secondary 

structure elements and then learn how to pack them together to generate the' cor­

rect tertiary structure. The empirical tendencies of the amino acids to form various 

secondary structures have been studied on an individual basis [66] for conformational 

f 
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correlations, with marginally significant results. A more successful empirical scheme to 
I ' . 

predict the occurrence of secondary structures is based upon first ranking the amino 

acids with respect to forming, breaking, or being ambivalent to each type of secondary 

conformation. Then the relative positions of near neighbour residues are observed with 

respect to the primary sequence of a protein, and the prediction proceeds by an elabo-

ration on the number and kind of residues, required to nucleate and terminate a given 

structural element. The best known of these methods is the Chou-Fasman technique 

[19,20], perhaps because of its ease in implementation [26], Secondary structure pre-

dictions from basic nonempirical considerations, such as statistical mechanics [60] or 

stereochemistry [69] have also been proposed. , 

However, none of these prediction methods has been found to be highly accurate. 

At best, only about 50 per cent of the residues in a given protein are correctly classified 

as elements with respect to the four secondary structure categories: a-helix, jS-strand, 

reverse turn or irregular conformation [28]. It appears that residues widely separated in 

primary sequence have a substantial effect on secondary structure determination, but 

these far neighbour interactions are generally not included in the prediction techniques. 

Even when the secondary substructures along the residue chain are known, the 

final stage of assembling the resultant secondary structures into a reasonable tertiary 

structure is far from straightforward. The algorithms developed for combining the 

secondary structures of a protein into tertiary structure [21,37,38,85,104] have not met 

with much success. The reverse turns and irregular segments .are "flexible"; they are 

not fixed structures in evolutionary related proteins. Even though their geometry 

is local, they are determined,, by nonlocal interactions. They can thus been seen as 

points of least resistance in folding, and not as active folding elements. This makes the 

* 
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relative orientations of the secondary structures difficult to predict. Small differences 

in the (rf>, <f>) angular orientations of residues involved in a turn can result in completely 

different global structures. 

Therefore, it appear^ that the information on secondary structure locations is not 

sufficient to predict an accurate tertiary structure [50], One aspect where the tech­

niques for predicting secondary structure locations do show much promise is in refining 

the resolution of structures whose tertiary characteristics « e roughly known. Thus * 

a complementary approach may be in order, where first a distance constraint model 

gives the correct global tertiary structure, and then is refined by a secondary structure 

prediction model and further refined by a model concerned with direct local energy 

minimization. ! 

2.3 D i s t a n c e C o n s t r a i n t M o d e l s . 

Another alternative approach from dirjet free-energy minimization modelling is to use 

empirical and 'statistfeat methods to exploit the information available from the X-ray * 

diffraction studies of crystalline proteins (c/., Chapter 7.3.1) These folded structures 

can be investigated empirically for common structural restrictions that give rise to uni-

versal characteristics in the geometry. The tertiary structure of ah unresolved protein 

may then be predicted by forcing its residues into a conformation sharing the properties 

of the known structures. 

The geometry of all globular proteins with known tertiary structures have been 

found to contain common structural restrictions, which are, naturally expressed as 

constraints on distances between pairs^of atoms. For example, the distance between 

Cyn-atoms of adjacent residties is a constant 3.80 A. Tertiary structure prediction models 

i ^ 
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using this type of ob^ervaTHpe^Jiay^_shpwn much promisejua^centjfears. These mod­

elling approaches ar* variously referred to as distance constraint, distance geometry or 

semi-empirical models. 

With distancfi constraint models, a small number of simple controls force the protein 

into its fih*i tertiary Structure. These models do (not at tempt to follow the folding 

process in any way, but when the constraints are well chosen, they do reflect the 

underlying dynamics of the folded state of the protein. In other words, the free-energy 

equations are implicit in the empirical constraints. Also, by using known native protein 

structures as their basis, the question of whether thermal folded protein lies at a local 

or global free-energy minimum is irrelevant for distance constraint models. 

The major contributions to this type of model will be outlined here. The specifics of 

these models are discussed in Chapter 7.3, wherein their prediction results are compared 

to the results generated by the present model. ( 

The model of Goel, Y£as et al. [14,45,46,128] attempts to satisfy a set of distance 

constraints identically by writing the constraints in the form of a weighted penalty 

function (c/., Chapter 7.-3.2). Various constraint combinations are presented to be 

solved exactly with the constraints being either pairwise distance constraints, minimum 

or maximum bounds on distances, or set average constraints. The set averages are 

weak constraints requiring a set of residues to attain an average distance, with no 

restrictions on individual distances. The penalty function is solved- by minimization 

in the corresponding Cartesian coordinates. A sequential optimization is performed 

where each residue is selected in turn and its position optimized while keeping all other 

residues fixed. Their method is quite successful at the prediction of final structures 

with various constraint combinations used as input. However, this approach seems to 
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be overly dependent on the choice of the initial configuration, which implies that their 

models may not be suitably constrained in a sense to be described in Chapter 4. 

The approaches of Kuntz, Crippen et al. [30,50,5J,',52,61,62,63] are summarized in 

Chapter 7.3.3. Their more recent approach [50,51,52,62] first imposes a set of distance 

constraints directly on the matrix of all pairwise distances between the residues, limit-

ing specified'entries in this distance matrix to be within upper and lower boundsV Thus 

the model works directly with a geometry of pairwise distances (c/., Chapter 4.1). Tne-

system is easily solved with respect to this coordinate system by simply assigning val­

ues in the distance matrix. Unfortunately, since it requires four, not" three, pairwise 

distance coordinates to specify a point in distance space, an arbitrary distance matrix 

will correspond to a structure in Rn, where n > 3. Hence, the difficulty arises in mak­

ing the nonlinear transformation of the optimized structure from the distance space, 

a space of higher than lihree dimensions in general, into Rz. There is nq.obvious way* 

to-perform this embedding process optimally, and the system behaves essentially as 

an overconstrained one. The most difficult step of this approach is to decide in some 

rigorous fashion which distance constraints to relax so that the distance matrix can 

be embedded in R3, whether the embedding process occurs during or after the opti­

mization step. In spite of this, the method shows very promising results in prediction 

of tertiary structure, and is improving as the properties of the transformation become 

more familiar. r 

The models'of Wako and Scheraga [117,118,119,120], discussed in greater detail in 

Chapter 7(.3.4, combine distance constraint bounds similar to those of Kuntz, Crippen 

et al. with algorithms for free-energy minimization. Mean distance constraints obtained 

from such sources as primary structure, secondary structure, hydrophobicity and hy-
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' drophilicity ratings of the residues, as well as estimated possible sites from chemical 

cross-linking studies, are used to force the protein into pa energy conformation space 

close to that of the real structure, so that free-energy minimization can refine the 

structure. In addition, semi-empirical estimates are derived for possible candidates of 

- residue pairs that are involved in short-, medium- or long-range contact with respect to 

tertiary structure. The protein structures are optimized for these distance constraints 

/

on two-dimensional or three-dimensional lattices. Scheraga [100] extends this model for 

tertiary structure prediction by outlining a procedure which consists of repeated cycling 

between the method of distance constraint optimization utilized above and techniques 

for free-energy minimization. 

"*"Xi The Present Model. 

-The distance model to be presented in this thesis has employed the model of Goel 

and Y&as [46] as its starting point. However, it differs from the previous models in 

several important aspects, apart from the number and type of geometrical constraints 

involved. These differences rnainly deal with the mathematical form of the objective 

function and constraints. The model is formulated as a standard nonlinear optimization 

problem. It was deliberately designed tcrbe suitably constrained with respect to both 

Cartesian coordinates-and the coordinates defined by pairwise distances between points 

(c/., Chapter 4). Furthermore, the solution algorithm was expressly designed for this 

problem, using current ideasf in nonlinear programming. As with the other distance 

constraint models, it does not yet attempt a high resolution prediction of the tertiary 

structure, only the correct global characteristics. 



3 The Basic'Parameters of Distance Constraint Models. 
I * 

In this chapter, the general geometrical characteristics of the chain conformation of 

'globular proteins°areexplored. These characteristics lend themselves naturally to de-

scription in terms of distance geometry coordinates. 

In order to simplify the discussion of the geometry of the protein, a protein will be 

i • 

represented by the locations of the central Ca-atoms of its residues.. This representation 

corresponds to a "virtual bond" description of the molecule [79], which is explained in 

Chapter 11.1. (" "' • 
i 

3.1 Near Neighbour Distances. . \ , 
\\ , n 

<» O 
* i * 

A detailed discussion of the near neighbour distances of proteins is given in Ghapter 11, 
ri< ft 

where theoretical near neighbour parameters are calculated and analyzed. 

The local peptide geometry determines the near neighbour distances for the residues. 

First of all, the distance between Ca-atoms of adjacent residues in a protein will gen­

erally be a constant, equal to 3.80 A. These first neighbour distances are found to be 
f 

essentially constant both from theoretical consideration of the basic geometry and from 

empirical data. It is this constraint that gives the*protein its chain structure. 

Pairs of residues that are not adjacent but close together in the primary structure 

are found to have separations that are nonconstant, but lie within strict minimum 

and maximum bounds. The minimum and maximum bounds on these near neighbour 

distances are determined by steric hindrance and van der Waataforces. These minimum 

bounds are best estimated by empirical methods (c/., Chapter 11), and the present 

model employs the empirical results_of Goel and Y2as [46\from X-ray diffraction data ^ 

of 21 globular p/oteins to obtain these parameters. Maximum bounds less than k.* 3.80 

27 
•3 
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ateo exist for the near neighbour distances. These maximum bounds are determined by 

theoretical methods in Chapter 11, to avoid using measurement errors from the X-ray 

diffraction data. Analysis of empirical distributions of these near nfeighbour distances 

reveals unimodal peaked distributions for both second neighbour and fourth neighbour 

distances {46]. Therefore, it is justifiable to use the mean values of these distributions 

as parameters. The mean values for these distances are best determined empirically, 

since X-ray diffraction errors will^tend to be averaged by this calculation and any 

theoretical procedure would necessarily involve an empirical evaluation of secondary 
*< 

structure proportions. 

. The distribution of the third neighbour distances is bimodal [46], and it follows 

« •* 

that the third neighbour average distance may not be a useful parameter for distance 

constraint models. 

Usually, only first to fourth neighbour distances are included for near neighbour 

constraints in distance models. Pairwise distances for residues farther apart in the 

chain show larger variability, and therefore, the additional information gained by the 

inclusion of mean value constraints for these residues would be small. 

Possible near neighbour distance parameters for use in distance constraint models 

are given-in Table 21 of Chapter 9.3, including the relevant parameters used in the„ 
« —-

present" model. *> 

3.2 Distances Between Far Neighbour Residues. 

• Let the1 distance between two residues that ;are far apart with respect to primary se­

quence (t.t»./ separated by more than abou,t 8 residues) be referred to as "far neighbour" 

distances, to conform with the "near neighbour" terminology of the previous section. 
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Any exact knowledge of pairwise distances for residues that are far apart in the chain 

is extremely valuable in that the information gained from such data would be global in 

nature, not local [119]. However, these far neighbour distances show large variability 

empirically, and so their usefulness is limited. The twentieth neighbour distances, for 

example, are found to show a substantial variability within a single protein and their 

/ 
mean values also vary irregularly when compared over a set of proteins. No correla-

tion was found between far neighbour mean distances or standard deviations for far 

neighbour distances, and therefore these statistics are not incorporated into the present 

model. 

If mean values for far neighbour distances are to be used in distance constraint mod­

elling, they should be best determined empirically, not theoretically. The coordinates 
a 

obtained from X-ray diffraction studies would be used for this empirical evaluation, and 

errors in these coordinate values would tencHtr be averaged out by the calculation of 

mean values. Also, any theoretical procedure would have the disadvantage of involving 

some empirical evaluation of the secondary structure proportions. 
e 

All residue pairs that are far apart in the primary structure do lie within absolute 

minimum and maximum distances with respect to the tertiary structure. The minimum 

bound on the distances between far neighbour residues is controlled by steric hindrance 

and van der Waals forces. It is an absolute number, not dependent upoja*£ither the size 

of the molecule or the separation in primary sequence of the residues involved. This 

bound is difficult to determine theoretically because it depends upon the orientation 

of the sidechains. of the various residues that are nearby in tertiary structure. The 

. minimum bound is best estimated by empirical methods, and the value given by Havel 

- et al. [50] is used in the present study. 
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Residues far apart with respect to primary structure also show a-definite maximum 

distance of separation, which is a function of the length n of the primary sequence, but 

has a value much less than 3.80 x n. This characteristic is due to the tight hydrophobic 

packing1 of the residues, resulting in the globular, or roughly spherical, shape of the 

molecule. B 

The parameters used for the far neighbour distance constraints of the present model 

are given in Table 22 of Chapter 9.3. These include a maximum bound for the far neigh-

V-"bour distance between any two residues in a chain of length n (derived in Chapter 9.3) 

and a semi-empirically obtained parameter for the minimum b$und. No far neighbour 

mean value parameters are employed. 

3.3 H y d r o p h o b i c i t y C o n s t r a i n t s . 

Globular proteins conform to a "hydrophobicity" rule in an aqueous environment 

[31,58,128]. Some amino acids have hydrophilic sidechains, that are preferentially lo­

cated on the outside surface of the molecule. Other types have hydrophobic sidechains, 

that tend to bury themselves beneath the surface. The hydrophobicity rule (c/., Chap­

ter 1.2.8) separates thfe twenty common amino acids by the tendencies of their residues 

to lie in the interior or on the exterior of the globule, essentially due to the chemi-

cal properties of their sidechains. The rule is only approximate, but it is valuable in 

providing global information about the tertiary "structure. 

The hydrophobicity rule can be expressed in terms of distance measurements between 

each residue Ca-atom and the centroidal point of the molecule, where the centroidal 

point is defined as the average^Cartesian coordinate location of the CL-atoms of the 
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residues: 

A A 1 -A 1 A \ 
(xCp,VcP,zCp) = I - }2x» - zJ&> ~ zJ2» • t1) 

— -— ^ 

The rule can be stated as a tendency for the C7a-atom of each amino acid type to fall 

into exactly one of three classes: 

J± — hydrophobic — tends toward the centroidal point of the configuration. 

Ji — hydrophilic — tends toward the surface of the configuration, away from the 
centroidal point. 

~<r 
J$ — ambivalent — has no tendency. H 

\ 
Table 2: Hydrophobicity Classification with Respect to the Centroidal Point. 

i Although the hydrophobicity rule is caused by sidechain chemistry, the volumes of 

globular proteins are large enough that the burying of residue sidechains will also result 

in the burying of a corresponding part of the backbone of the protein^ In fact, there 

is found to be a strong correlation between backbone and sidechain orientations [74]. 

Therefore, it is acceptable to express the hydrophobicity rule in terms of the backbone 
/ 

Ca-atoms. " 

An important consideration for the implementation of the hydrophobicity restric-

tions in a distance geometry model is the method of racing each of the amino acid 

types' with respect to their relative preferences for the inside and outside of globu­

lar proteins. There are numerous hydrophobicity classification indices for the amino 

acids [16,17,34,46,55,59,64,74,75,76,80,124], and six of these classifications are given in 

Table 1 of Chapter 1. 

The residues are sometimes rated on hydrophobicity index scales based on local 
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energy considerations or chemical properties of the sidechains [16,17,34,55,59,64,80]. 

Numerical hydrophobicity scales have been developed [55] by experimental methods, in 

which the free energy of transfer of amino acid sidechains from ethanol to water [80] or 

from cyclohexylpyrrolidine to water [64] is taken as a measure of the contribution of each 

sidechain to the total hydrophobic effect. Hydrophobicity has also been investigated 

experimentally by neutron diffractio|i and the hydrogen exchange technique [59] and 

by statistical-chemical methods [16,17]. The statistical methods define hydrophobicity 

as a function of chemical properties, such as the presence or absence of (—OH) or 

(-NH) groups capable of forming hydrogen bonds, the presence of chemically basic 

groups, or the numbers of atoms other than hydrogen bonded to the first and second 

"~cSfBoh atoms of the sidechains. 

Alternatively, hydrophobicity can be defined empirically by examination of the 

known tertiary structures of globular proteins. This approach is different in princi­

ple from the experimental approach, which does not reflect the influence of secondary 

structures, chain connectivity or long-range interactions. Empirical methods can in­

volve geometrically defining a "surface" for a protein, which can then be used to assign 

residues to the inside or the outside of the structure [124]. In this way, a relative 

hydrophobicity index can be compiled by observing the overall fraction of each residue 

type that is found inside the surface. Simpler empirical methods involve observation of 

the average relative distances of the residues from the centroidal point of the globule 
\ i -

[46,74], the distribution of relative distances of the residues from the centroidal point-

[84], or the average orientations of the sidechains of the residues with respect to the 

centroidal point [74]. ^ 

The hydrophobicity measures are often presented as numerical indexing scales, 
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resulting in twenty different hydrophobicity classes, one for each residue type. Due 
i 

to the imprecision of the classification techniques, perhaps a more realistic scheme is to 

employ only three categories: hydrophobic, hydrophilic and ambivalent, as in Table 2 

at the beginning of this section. Alternatively, a separate and fourth category can 

be justified [46], containing the residues of Gly and Pro exclusively. These two types 
•m 

do not behave as chemically hydrophilic residues but can be classified as empirically 

hydrophilic. This is because they tend to participate in hairpin turns, which usually 
u 

occur toward the surface of the protein molecule. 

As shown in Table 1 of Chapter-1, the various methods of measuring hydrophobicity 

give similar results, but with some notable differences. The experimental classifications 

arise from investigating chemical properties of the individual amino acids from small 

peptide studies (not studies of complete proteins) or from elaborate physicochemical 
Or 

weighted functions evaluating the non-covalent forces of a protein. None of the ex­

perimental classifications appears to*, be highly correlated with respect to the known 

protein structures. Since" the hydrophobicity rule just reflects tendencies for residues 

to prefer inside or outside, and is not yet expressible in\ terms of physics, statistical 

results obtained from real protein structures will presently^ provide the best da ta jo r 

parameter estimation. 

For the present model, the simple empirical classification of Goel and YEas [46] is 

used. They divided the twenty naturally occurring amino acids into three hydrophobicity 

categories by semi-empirical observation, as in Table 3. 

For this hydrophobicity classification, the centroidal point distances were measured 

for all residues in twenty-one globular proteins. The amino acids were then classified 
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Hydrophobics — Val, Leu, He, Phe, Met. 

Hydrophilics —• Arg, Asp, Glu, Gin, Gly, Lys, Pro. 

Ambivalent — Ala, Asn, Cys, His, Ser, Thr, Trp, Tyr. 

Table 3: Empirical Hydrophobicity Classification of Residues (from Goel and YSas 
1979). 

geometrically with respect to their observed average distances from the respective cen­

troidal points. Whenever an amino acid showed an inconsistent behaviour, presumably 

as measured by the standard deviation, it was classed as ambivalent. 

Given these three hydrophobicity classes, the model implements the hydrophobicity 

condition as a set of radial distance tendencies from the centroidal point for the in­

dividual Ca-atoms of the residues. The numerical hydrophobicity parameters used in 

this model are presented in Table 24 of- Chapter 9.3, and a full explanation of these 

hydrophobicity parameters is given in that chapter.* r , 

3.4 Chemically Derived Constraints^ 

There are other distance constraints that may be available from the chemistry-x>f~a 

specific protein, the most obvious ones being the location of disulfide bonds. Disulfide 

bonds are cross-links connecting pairs of Cys residues, which may be far apart in the 

primary sequence. These covalent bonds are probably not integral to the folding process 

but certainly aid in the stability of the folded protein. Disulfide bond locations are not 

strictly part of the primary structure information. However, they are stable covalent 

bonds and can easily be found by the same techniques as those used to determine 

primary sequence. For example, the proteins can be clea-Hd into small polypeptides, 
& * •* 

a 
' 4* 
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and the peptides can be separated under chemical conditions such' that the disulfides . 

remain intact. The primary structure identities of the Cys residues linked by the 

disulfides can then be determined [28], 

L The model has an option to use a mean value parameter for the distance between 

Cys residues that are known to be connected by a disulfide bond. The numerical value 

for the parameter used in the present model is obtained from the empirical studies 

of Thornton [114]. The possible parameters for this type of constraint in distance 

constraint models are given in Table 25 of Chapter 9.3. 

Using the techniques of bifunctional reagent bonding [125,126], nonradiative excita-

tion'energy transfer [2], fluorescence energy-transfer [11,100], proton nuclear magnetic 

resonance [7,116,127], nuclear Overhauser measurements [10] or other physicochemical 

techniques [23], alternate chemically derived constraints are possible. 

*• In theory, cross-linking experiments using bifunctional reagents can derive informa­

tion such as the location of medium-jrange pairs of Asp, Glu, Lys or Tyr residues [50]. 

However, these studies require considerable effort in practice and are often unreliable, 

due to the possibility of protein distortion or multiple effects from the reaction. This . 

type of study holds promise for the future in the extra-primary prediction of distances 

between specific residue pairs. 

The residues Phe, Tyr and Trp have aromatic sidechains. These residues tend to 

interact in pairs or larger networks^within the hydrophbbit'cores of globular proteins, at o 

pairwise distances of about 4.5 to 7.0 A [13], These medium-range aromatic-aromatic 

r 
interactions are not well correlated, but may help to stabilize protein structure. They 

, may be of some value in providing far neighbour constraints for distance geometry 

models if reliable prediction algorithms become available. 
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Chemical and physicochemical methods have been used sucessfully in distance con­

straint predictions for protein tertiary structures. For the protein ribonuclease, Scher­

aga and his co-workers [100] found by chemical techniques the locations of the four 

disulfide bonds, the proximity of Hisl2, Hisl l9 and Lys41 in the active site, and the 

pairings of carboxyl groups with "tyrosyl groups, which were all expressed in the form 

of distance constraints. They then used these constraints in an energy-minimization 

model to predict/ the tertiary structure. Cohen and Sternberg^ [23] used chemically 

derived distance constraints in th,e form of the locations of potential candidates for 

interacting residues in the central, fold and the proximities of the His64 and His93 

residues to the heme iron in order to predict the tertiary structure of myoglobin. 

As observed by several authors [45,51,119], the exact knowledge of only afew„short-

range or long-range distances between far neighbours in the chain can greatly facilitate 

the final resolution of a tertiary structure prediction. On the other hand, the approx- * 

imate knowledge of a great many medium-range distances may not be as effective in 

determining the final conformation. Thus, the use of extra-primary distance informa­

tion is potentially very valuable, and may even be crucial for this type of model to be 

successful. 
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4 Suitably Constrained Systems. 

This chapter will treat distance constraint models as a single class of problems. It 

..involves formulating, and then putting into practice, objectives for distance constraint 

modelling. 

In Sectiony&.l, general geometric aspects for describing a one-dimensional chain 

within a three-dimensional Euclidean space will be considered. The most natural choice 

of coordinate system for empirical constraint modelling is found to be the pairwise dis­

tances between points, and this geometry is explored in some detail. The complicated 

relation between these coordinates and the canonical Cartesian coordinates are out-

lined in Section 4.2. The rest of the chapter is concerned with deriving conditions such 

tha t a distance constraint model is suitably constrained; these conditions involve point-

wise continuity properties of the mapping from distance coordinate space to Cartesian 

coordinate space, uncler^the geometrical restrictions imposed by the model. 

Some ideas concerning the suitable constraining of distance geometry models have 

been presented in Foster [40], where it was shown that the present model contains a 

^necessary and sufficient number, and type of constraints so that the solution space of 

optimized structures for a given protein will be small with respect to both distance 

coordinates and Cartesian coordinates. These ideas are continued and expanded in 

this chapter. /J 

4 .1 Choice of Coordinate System. „ 

As in most distance constraint models, the tertiary structure of a protein will be ap­

proximated by the positions of the central C^-atoms of its constituent residues. Various 

primary coordinate systems have been chosen in recent literature [70,71,79,86,87,88] to 

%" X -
37. 
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elicit the relative positions of a protein's Ca-atoms in R3. Since the distance between 

any two adjacent residues is effectively â  constant, proteins are usually envisaged as 
r 

open polygonal arcs of length n, where n is the number of residues. Still, knowledge of 

any one of the following sets of data is sufficient to uniquely determine the conformation 
of a protein represented by n residue points: 

i 

- v • • . 
1. 3» Cartesian coordinates {(ar», y«,xr,)| * = 1, . . . , n } . 

» if 

2. 3n Cartesian coordinates with respect to the canonical orthogonal basis for 22s, 

given by e\ = (1,0,0), ei — (0,1,0) and e% = (0,0,1). Note that there are only 

3n — 6 degrees of freedom in (#1) and (#2), but the remaining 6 coordinates are 

necessary to fix the molecule in R3 with respect to rigid rotations and translations. 

3. (K, T) - the curvature and torsion of the arc length [86,87,88]." These are the usual 

descriptions of a local inference frame from differential geometry. " 
• ' .. • 

4. (b, w) - parameters controlling the shape of a regular parametrized surface, where 

b is a size or "bulkiness" parameter and w controls the amount of twist [70,71]. 

5. (t(),(f>)- the dihedral Ramachandran angles for each residue (cf., Chapter 11.1). 

6. (0,7)- virtual bond angles connecting the C^-atoms of the residues into a chain 

" (cf., Chapter 11.1). » 
9 

fl 7. 3n — 6 coordinates, consisting 6f n — 1 distance coordinates d* t+i > plus n—2 valiies 

of rfi,«+2 and n - 3 values of d t l,+3, provided that the sign of dht^s is specified 

\ with respect to the plane determined by the points C?, G?+1 and <7?j.2 [119]. 

8. 4n - 10 coordinates, consisting of independent elements of the set dt,t+f [119]. 
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Each of these data sets can be seen to be coordinate systems on a manifold locally 

homeomorphic to Euclidean space -.R3. 

In Chapter 3, possible parameters for tertiary structure prediction models were 

discussed that could be estimated by utilizing the semi-empirical and theoretical results 

. realizable from known tertiary structures. These parameters are based solely on the 

observed common geometrical characteristics of globular proteins. \ 

The most striking geometrical characteristic of proteins is that the distance between 

first neighbour Ca-atoms is effectively constant. Most coordinate systems implemented 

for the description of protein configuration (e.g., coordinate systems # 3 - # 8 above), 

are chosen so as to take advantage of this property. Cartesian coordinate systems (#1 * 

- #2) do not easily incorporate this basic property. 

Characteristic features of proteins involving residues that are close together but 

not adjacent in the primary structure, such as the geometry of secondary structures 

(cf., Chapter 11.4.2), are also easily described in the various local coordinate systems 

(#3 - #6) or in distance coordinates (#7 - #8). Yet, those coordinate systems with 

. a local frame of reference (#3 - #6) are very poor in dealing with non-local phenom-

ena, such as a disulfide bond occurring between two Cys residues that are far apart 

in primary structure. However, observed "global" characteristics of proteins, such as 

disulfide bonding and the hydrophobic close-packing of residues, are important geomet-

rical restrictions on the folded molecule which cannot be adequately described by any 

simple combination of local geometry rules. Distance coordinates (#7 - #8) then, are 

the "natural" coordinates for expressing the empirical geometric properties discussed 

in Chapter 2. 
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4.1.1 Distance Geometry. ,. 

Distance geometry may be defined as the study of Euclidean configurations using the 

> . 1 
distances between points as the primary coordinate system. The set of all distances 

* • ' 

between pairs of points for a collection of m points forms a matrix D with elements 

dij. The present model uses such distance matrices to display the results of tertiary 

structure predictions in Chapter 7. In these displayed results, the matrix elements are 

in the form of coded symbols for the distances between the«Ca-atoms of the protein. 
* 

When the distance matrix is used as a representation of the coordinates of a protein, it 

has the advantage of containing all the structural information of the Ca-atom positions 

(up to translations, rotations and reflections) in a two-dimensional form. 

The distance matrix D has several obvious properties: * , • 

1. it is a symmetric mx m matrix (d^ = <22-,); 

2. all elements on the main diagonal are equal to zero (dtt = 0); 

3. all' elements off the main diagonal are strictly greater than zero (di3 > 0, t ^ j). 

When the distance matrix is used to represent a protein configuration, elements of 

the first diagonal above (or below) the main diagonal represent first neighbour distances 

d*,i+it which are effectively constant. The elements close to the main diagonal represent 

local structures, whereas elements far from the main diagonal represent long-range, or 

global, structures. Any available global geometric constraints such as disulfide bond 

locations can immediately be incorporated into the -distance matrix by specifying the 

distance di} between the two residues involved7*~A chain can be protected from self-

intersecting by the requirement that all elements must be strictly greater than some 
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positive number, representing 'a minimum distance of approach. 

It is not difficult to find a distance matrix that satisfies all the properties given 

above, and yet not have a realizable conformation in R3. As an example [30], note that 

there is no arrangement of four points in two dimensions that satisfies the following 

i 

distance matrix representation: ~ i 

D 

( 0 1 1 1 ^ 
1 0 1 1 
1 1 0 1 

Vi i voj 
(2) 

This distance matrix (2) represents a tetrahedron, requiring three dimensions. 
/ ' 

Proceeding one step further, it is observed that the following distance matrix repre­

sents a four dimensional structure, and cannot be realized by any arrangement of five 
points limited to R3: 

/ 0 1 1 1 1 \ 
1 0 1 1 1 

D = 1. 1 0 1 1 (3) 
1 1 1 0 1 

g i l l i e , ' — 
Any four points of this configuration can be positioned at unit pairwise distances, 

resulting in the tetrahedral structure. However, the fifth point cannot be added in 
* » 

R3 such that its distance from each of the other points is one unit. It is important 

to note that furthermore, there is no method of slightly perturbing the elements of 

this distance matrix (3) such that the modification would result in a three-dimensional 

configuration. It is not at all obvious which configurations of five points in R3 would 

be most "similar" to this structure. 

These examples emphasize related problems concerning the use of distance geonietry 

for modelling: 

1. how to generate a distance matrix that represents a three-dimensional structure; 
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2. how to test a distance matrix for correspondence to a three-dimensional structure; 

3. how to optimally embed the points of an arbitrary distance matrix from Rn into 

R3. * v 

The necessary and sufficient conditions for being able to embed k points in Rn, for 
(* 

any given n, are derived in a theorem due to Blumenthal [9], which is here specialized 

to three dimensions, as in Crippen [3Q]. This theorem does not/utilize distance matrices 

directly, but instead is concerned with bordered matrices of squared distances. The 

matrix of squared distances D^ = {d^} is defined as the matrix whose elements are 

the squares of the elements of D. The bordered matrix of squared distanced, D\ , 

is a matrix consisting of D$) augmented- by|tig!^!ct6Htional row and column consisting 

of all ones except for their common diagonal element, which is given the value zero. 

A Cay ley-Men ger determinant is the determinant of a bordered matrix of squared 

distances det(Z>g '), as follows: « ' 

d e t ^ ) = 

0 

4a 
4> 

4x 
0 

d\x 

^02 •' 

4, • 
0 . 

.. 1 
1 

.. 1 (4) 

- ~\. 
Now the theorem can be given. Assuming points to be uniquely distinguished by 

their distances to other points, the theorem can be employed to test for the embed-

dability of any set of k points in Euclidean three-space. This theorem should also 
0 

pro-e valuable in^he attempt to modify any general matrix of distances into one that 

is embeddable in R3. 

THEOREM ^Blumenthal). A necessary and sufficient condition that a semi* 

metric k-tuple may be irreducibly embeddable in R? for k>4 is that the sign of all non-
y * 

vanishing Cayley-Mtnger determinants of M points be given by (— 1)**- for all M < 4, 
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at least one Cayley-Menger determinant of 4 points is nonzero, and the value of all 

Cayley-Menger determinants of more than 4 points is zero. 

For the proof of this theorem, the reader is directed to Blumenthal [9] or Havel 

et'al [51]. In Havel et al. [51], this theorem is used to generate algorithms for testing 

the dimensionality of distance matrix configurations. 

Havel et al. [51] show that the conditions for embeddability in R3 can be reduced 

to a series of tests on the Cayley-Menger determinants. For instance, the condition on 

the Cayley-Menger determinant for two points in Euclidean space is 

det(D^{pQ,Pi}) = 
0 d*Q1 1 

40 0 1 = 2d§! > 0. (5) 
1 1 0 

This merely states that the Euclidean distances must be real numbers. 

For three points, the condition on the Cayley-Menger determinant is 

det(Dl2){PQ,puP2}) = 

X v. 

o 4t d2
m 1 

d% 0 d\2 1 
d\0 4i -° 1 
J, 1 1 0 

<o, (6) 

which re'duces to restrictions on the distances doi, rfo2 and d\i. The distance do2 must 

be less than or equal to rfoi + di2 (the usual triangle'inequality), and must be greater 

than or equal to |doi — «ii2| (an "inverse triangle inequality" lower bound). Similar 

restrictions must hold for the other permuted distances d0i and du. The points are 

also constrained to be not all collinear. 

The Cayley-Menger determinant restrictions on four points results in a "tetrangle 

inequality". With reference to Figure 6, this inequality requires that cfca be restricted 

to distances attainable when the dihedral angle of rotation about the line segment 

connecting points pi and p% is between -180° and +180°. A formula relating 4o3 to the 

angle of rotation is derived in [51]. From Figure/6 it is seen that the* first configuration 
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The two extreme solutions of the tetrangle inequality for a configuration of four points 
are shown. The first configuration cannot be continuously deformed into the second 
witftout passing through a three-dimensional configuration. 

Figure 6: The Tetrangle Inequality for a System of Four Points, 

cannot be continuously deformed into the second without passing through a three-

dimensional configuration, given Jhat the other distances remain constant. 

Finally, two equality relations, the "pentangle equality" and the "hexangle equality" 

must also be satisfied to ensure embeddability in R3. These relationships arise from 

Cayley-Menger determinant restrictions on five and on six points, respectively. For 

these relationships, sign relations for various dihedral angles need to be compared for 

each set of five and of six points. 

The Cayley-Menger restriction for five points has a similar interpretation as that 

for four points, except in three dimensions. There are found to be two possible dis-

tances dM that result in realizable configurations in R3, and it is not possible to pass 

from one configuration to the other without either altering some of the other distances 

or passing through a four-dimensional configuration. This results in a multiple mini­

mum problem for distance geometry optimization, because two structures with similar 
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distance matrices can be expected to be separated bjr-arbarrier when restricted to R3. 

The Cayley-Menger restriction for six points is necessary to ensure that the relative 

chiralities for each combination of four points contained in any R3 configuration of six 

points are mutually consistent. Any configuration of six points is uniquely determined 

if all but one of the distances (e.g. doc) are known. The distance cfos must correspond 

to one of the two solutions of the pentangle equality for each of the four sets of five 

points that contain po and p$. Changing to the other solution of the pentangle equality 

in any of these sets of five points will reverse the relative chiralities of its two quartets of 

points that do not include rfos- Thus the hexangie equality creates an additional barrier 

between R3 configurations, prohibiting continuous transformations of the distances that 

alter the relative chiralities. 

Testing for each of these equality and inequality relationships for each subset of 

points in a large structure can be seen to be very time consuming and quite difficult 

' computationally. However, the use of distance coordinates is natural far the descrip­

tion of' a polygonal arc. Two contrasting approaches have been attempted to optimize 

protein tertiary structures by using distances between the points as the primary coor-

dinates. ,, 

Crippen [30] was the first to consider the direct application of distance space coor-

dinates for the protein folding problem. His work has since been substantially extended 

by Kuntz, Crippen and co-wor*ers [50,52,62,63]. 

In the approach of Crippen [30], a distance matrix is initially optimized with re­

spect to all required constraints on distances between residues, with no restrictions 

on the Euclidean dimensionality of the resultant matrix. Then a three-dimensional 

configuration is sought containing a set of pairwise distances that are similar to those 

/ 
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of the optimized matrix. In practice, the latter stage consists of an exhaustive ap­

plication of the triangle inequalities followed by an exhaustive search of the tetrangle -

inequality from the optimized matrix in order to find any three-dimensional structure 

with distance properties similar to that of the optimized matrix. Due to the enormous 

computer time involved, this method could only be tested on very small systems (8 

points). Even if more efficient algorithms were introduced for embedding a general 

Rn distance matrix into R3, the criteria for optimally, embedding this matrix would 
i ° 

remain even more difficult to implement. Optimal embedding would probably involve 

choosing the element from the set of all J23-corresponding distance matrices such that 

the RMSy (cf, equation (8) of Section 4.2) with respect to the optimized matrix is 

minimized. The multiple-minimum problem arising from the pentangle and hexangle 

equalities make this optimal embedding computationally-intractable. 

The secoftd approach [51] attempts to maintain three-dimensionality at each step 

of the optimization process. This method writes the set of distance constraints as a 

penalty function, to be minimized directly in distance space. The penalty function is 

augmented with a set of equality and inequality constraints, as follows: • 

Minimize p(x) " (7) 

subject tos 

9\(x) < 0 

g2(x) < 0 

f : 

^ $m(x) < 0 

hi(x) = 0 

TV 

t 
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h2(x) *= 0 

hn(x) = o. 

The constraints represent the triangle inequalities, tetrangle inequality/ and pentangle 

and hexangle equalities for each subset of points. - The amount of computation in-
q * 

volved in this approach has also proved to be formidable. Havel et al. [51] offer several 

suggested approaches for implementing this type of system (7). 
w a 

4.2 The Mapping $ : Y -> X. 

In this section, the relationship between the two principal coordinate representations for 

protein tertiary structures will be investigated. Subsection 4.2.1 contains an outline of a 

derivation due to Rosen [9,6] of linear criteria concerning the continuity of the mapping 

^ : Y —*• X from the space of distance coordinates to the space of Cartesian coordinates. 

In [96], .Rosen found conditions in the linear case under which near-optimal values of 

a function expressed in terms of distance coordinates will yield-correspondingly small 

errors with respect to Cartesian coordinates. 

However, the transformation from distance geometry coordinates into Cartesian 

coordinates can be given in explicit form for the case when the distance matrix can be 

embeddable in R3. When an explicit calculation of this coordinate transformation is 

derived as in Subsection 4.2.2, the nonlinear version of the Rosen criteria can be found. 

This is accomplished in Subsection 4.2.3, with the final nonlinear criteria for point-

wise continuity of the mapping if;: Y —> X being found to involve expressions relating 

the Cartesian coordinates to perturbations of squared distances. Finally, in Subsec­

tion 4.2.4 it is demonstrated that structures that are close with respect to distance 
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coordinates under the present model will necessarily be close with respect to their •> 

Cartesian coordinates. Thus the present model is shown3to be suitably constrained 

with respect to the number and type of constraints. 

It is clear that the objective function and constraints are essentially defined on a 

space (call it Y) of distances between residues. Details of the geometry of this distance 

1/ 

space, as well as problems associated with working directly in these coordinates, have 
r 

been described in Section 4.1. 

A basic goal of the present research is to clarify the properties of distance models 

in general. The present model will be solved by transforming the distance coordinates 

into the coordinates of the usual orthogonal Cartesian system (call this X), although 

comparisons of the final structure to other structures will be made in Y. These compar-

isons are made in order to study the efficiency of the model as,one of a class of distance 

models, and to judge the relative merits of the different functions that comprise the 

function space of distance constraint models. 

The relationship between these distance coordinates and "the usual Cartesian coor­

dinates is complicated. Nevertheless, their mapping VJ ; Y —*• X and the comparison of 

structures with respect to X-space cannot be ignored. Suppose that a point y* € Y 

is a solution of the constrained problem, and let x* € X be the same point expressed 

in Cartesian coordinates. It is necessary that y* be in a neighbourhood of the global 

minimum not only in Y, but also in X. However, a study of the mapping if) : Y —*X 

reveals that a small arbitrarjTperturbation y° —*• y' in Y can result in a large change 

in the corresponding coordinates ip(y°) -+ if>(y') in X [98]. In other words, structures 

tha t are close together according to some metric in Y-space may turn out to be dis­

similar with respect to a metric in X-space. The minimization of a function F on Y 
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can.be regarded as a way to restrict the perturbations y* ~+ y' that are allowable, 

by the requirement that F(y') be close to £he minimum F(y*). Rosen [95,96] derives 

linear conditions on a function F such that if F(y') is close to F(y*) then the distance 

in X between vb(yf) and ^(j/*) 18 small (cf, Subsection 4.2.1). It is demonstrated in 

Subsection 4.2.4 that similar conditions are met by the present mo'del, and. thus when 

the model reaches a neighbourhood of the solution to_the constrained problem, the 

X coordinates of the resulting configuration must necessarily be close to those of the 

optimized structure. This property of the model ensures that the algorithm will not be 

' an underconstrained one in which tlie optimized structures are highly dependent upon 

the initial pre-folded configurations. On the other hand, the model is not so highly 

constrained as to become trapped in a myriad of local minima. 

Along with the obvious goal of being able to obtain folded configurations similar 

to the in vivo structures, any mathematical model formulated in distance geometry 

coordinates (F-sp^ace) must satisfy three conditions [40] in order to yield useful results: 

I . Accurate solutions y* of the" mathematical model (i.e., tertiary structure predic-

• tions) must be achievable in practice. ^r 

I I . The space of all possible solutions y* € Y must be small, in a sense to be made 

„ precise below. 

° H I . The domain of the solution space must be small with respect to the usual Cartesian 

coordinates in R3 (Jt-space). fn other words, all of the solutions x* C X must be 

"close"together" with respect to some X-space metric. 

Condition I simply states that there must exist an algorithm that is guaranteed to 

systematically find a solution if there is one, given an initial configuration. This con-

http://can.be
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dition may seem trivial, but is decidedly nontrivial with large-scale nonlinear systems 

Assuming that the primary structure folds, if condition II does not hold, then the 

algorithm is underconstrained and the predicted tertiary structures will be found to be 

dependent upon the initial configurations. Different initial configurations will produce 

I 
y* values which are far apart in the solution space. 

Condition III refers to local continuity properties of the mapping ^ : Y —• X [96]. 

Differences in structures with respect to Y-space are generally measured by the distance 

root-mean-square metric: , 

RMSy- (8) 

where d and.d ' are thejset-of respective ditt+3 distances for the two structures, JV 

is the total number of residue pairs and the summation is over all pairs of residues. 

Differences in structures with respect to X-space coordinates will be measured by t h e v 
* 

X-space root-mean-square metric: 

RMSX £ D . ^ 
_ i 

(9) 

where x and x' are the usual Cartesian coordinates for the two structures, 3n is the 

number of coordinates in a protein of length n, and the summation is over all coordi­

nates. These two metrics are discussed in more detail in Chapter 7. 

It has been found that small perturbations of a structure in Y-space as measured 

by RMSy can produce large changes in the structure with respect to the X-space 

coordinates as measured by RMSX. For instance, Sanati [98]*has shown an example 

of a small change in RMSV causing a large change in RMSX for an algorithm similar 

to that of Goel and YSas [46] in the protein bovine pancreatic trypsin inhibitor. One 
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; a 

! 

purpose of a distance geometry model must be to eliminate all such perturbations 

since, clearly, the existence of dissimilar optimized structure predictions a:* for a single 

protein is unacceptable. 

4.2.1 Linear Criteria for a Suitably Constrained System. f 

It is essential that all models formulated in distance space should demonstrate restric­

tions on the pointwise continuity of the function ij?: Y —> X. If not, neighbouring 

structures calculated in Y may turn out to be only remotely related with respect to X.. 

Any configuration C of points in Euclidean space can be represented with re-

spect to a Cartesian frame (X-space;) by a particular choice of coordinates /x(C) = 

(xi, X2,-.., xm), and in distance-space (Y-space) by a corresponding set of coordinates 

v(C) = (yi,y2,- ••,yjfc)- Each of these two coordinate sets will totally represent the 

same configuration; therefore, a mapping »̂ : Y —> X can be established between them. 

This mapping expresses the fact that, if the complete set of pairwise distances are 

known, it is possible to generate a corresponding Cartesian coordinate representation. 

Similarly, an inverse mapping <j>: X —>• Y is calculable. 

The mapping i}> : Y —* X can be determined as a set of m functions: 

<J> = (fl,--->fm), 

where f%(yi,\ .. ,yjt) = xt. The function / , may be interpreted as the means of calcu­

lating a single Cartesian coordinate of some point p from the overall set of distances 

Given any specific point y° = ( y j , . . . , y°.) G Y, the pointwise continuity properties 

of ip : Y —• X can be investigated by determining the amount of error induced in X 

r 
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when y° is replaced by a neighbouring point y' € Y. This is of considerable importance 

in the comparison of configurations. If the mapping y> : Y -* X is not sufficiently 

smooth, structures that are neighbouring with respect to Y may turn out to'be far apart 

in X. For protein tertiary structure prediction it is required that, when a conformation 

is generated with pairwise distances similar to those of the real structure, the generated 

conformation must also be similar to the real structure in X-space. This condition 

must hold in order for a distance constraint model to produce meaningful results. This 

condition is especially pertinent since distance constraint models "by natuire do not 

specify a protein configuration exactly in Y, but only to the extent of satisfying a set 

of general average distance characteristics. 

Consider some definite configuration C°, whose unique representation in Y is given 

by: • ^ * " 

- v(C°) = (yl,...,y°k). 

The properties of yj : Y —* X within a vicinity of the configuration C° are here of 

concern. In this subsection, the situation will be investigated by means of a linear 

analysis due to Rosen [96]. * ^ 

In the Y-space neighbourhood of the configuration C°, each of the functions /,• may 

be" approximated by a linear Taylor's expansion as follows: ^ 

f 
m = /«(yi, . . . , » t ) - / . ( » i , . . - , y%) 

This expresses the error % introduced into the tth coordinate function /,- = X( in terms 

of the errors <y = (y£ — y?) produced by replacing the given point y° by a nearby point 

y ' e Y . 
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From the above, it is seen that the RMSX error between V(y') aa^ ^(y°) is given 

by 

RMSX = E^tt-X)1 

U = l L * = l 

If the RMSX is to be small, then each »j,- must be individually small. 

If each t)i is required to be small for every sufficiently small perturbation y° —• y' 

in Y, then" this condition can only be satisfied for those points y° which simultaneously 

come close to extremizing all of the functions /,-. That is, the set of »/, can only be 
\ •> 

small simultaneously if all the partial derivatives dfxjdy3 are* individually close to zero 

at y°. However, while this extremely strong condition is sufficient, it is not necessary. 

This is because the space of allowable perturbations y° —»• y' will be restricted to those 

which are compatable with, the condition that F(y') is small. 

For the linear case,. Rosen [96] has derived the necessary condition such that all of 

the rjt will be small simultaneously. This is given as follows. The point y° must have 

; ' • ^ •—-
the property that, for each function /,, the gradient vector: 

(10) 

evaluated at y^must be approximately orthogonal to the perturbation vector (e i , . . . , ejt) 

for every perturbation y° —*• y' such that F(y') is small. To test a particular distance 

constraint model for this^sondition, it only remains to ascertain the subspace of al-

lowable perturbations. This will vary according to the composition of each particular 

function F(y)^ 

\ 
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4.2.2 Explicit Form of the Mapping yj : Y -> X. 

To quantify conditions II and IH, the mathematical form • of the transformation 

yj : Y —> X and the effect of distance geometry models on yb must be investigated. 

In order to derive the mapping yj: Y —+ X, assume that the complete set of Y-space 

coordinates for a protein of length n is known. It is sufficient to know. An — 10 coor­

dinates, consisting of independent elements of a set of di}, in order to determine the 

complete coordinate set. A mapping y) was derived originally by Crippen [30], and can 

be written as follows: 

* ' (*i,W,*i) = (o,o,o) t 

(z2,SA>*2) = (e*i2,0,0) 

, A (dm2 - d2S
2 + du

2 r , 2 j l l n \ ' ,--* 
(zs,!fe,*s) = I 2d ' 1*8 a * j >°) C11) 

, v (du2 -^du2 + dn
2 d14

2 - dSi
2 + d13

2 - 2zsxi 
(X4,y4,Zt) = „ I — 

(z,,yt,2t) 

2di2 2y3 

[du2 - *42 - yrf) 

' dlt
2 - d2t

2 + d12
2 da2 - d3

2.+ di3
2 - 2a;3gt-

2di2 ' 2y3 

±[dli
2-xi

2-yt
2]*y, t=5,....,«. 

Crippen also notes that the mapping is not stable. For example, if d13 ~ d23 » <̂12> 

then a small perturbation in any of these Y-space coordinates would cause a large 

change in the value of S3. A distance geometry model will act to reduce the effective 

degrees of freedom in Y-space and a good model must eliminate the instabilities in the 

mapping, 

-It must be noted here that Sippl and Scheraga [103] have produced a stable ver­

sion of the mapping if>: Y —* X, effectively resolving the troublesome ± term for 2,- in 



Crippen's mapping. In their derivation, it is assumed from the outset that the distance 

matrix corresponds to a structure in R3, and so the essential problem of the embedding . 

of a general distance coordinate set into R3 is not considered. However, this section is . 
a 

more concerned with the local continuities of y), to show that conditions II and III hold 

under the present model. For this exercise, Crippen's mapping „will serve as a better 

example. , > 

L 
4.2.3 Nonlinear Criteria for a Suitably Constrained System. 

*It is proven here that conditions II and III are met by the present model, and thus 

when the model reaches a neighbourhood of the solution to the constrained problem, 

the X coordinates of the resulting configuration must necessarily be close to those of 

the optimized structure. This proof is attained by explicitly calculating the /, and 

examining the-effect of an arbitrary perturbation vector." 

Assume that an optimum point y* SY has been reached with respect to the model. 

A small perturbation y* —> y' should served push the configuration to a non-optimum 

. one (condition II). If the model is suitably constrained, the change in stro-cture with 

respect to X-space should also be small (condition III)^ „ 

Unfortunately, under most models a perturbation y* —• y' will affecrF the X-space 

coordinates of the first four.residues, as well as those of (xt,yt3zt). However, since 

Crippen's equations (11) will ho lde r the choice of any four points for the coordinate 

References', any set of four virtual residues may be chosen, as follows: 

1. (0,0,0) — the centroidal point of the molecule. 

2.- («2,0,0). 
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3. >(X3,y3,0). 

4. (X4,y4,z4). * 

Under an arbitrary perturbation, the,respiting change in the^point pi will be given 
J r <. 

in X-space coordinates by: 

/ • * 
Xt ~~ x% 

{dl*-d*2)-(dg-dt) '<-
2rfi2 

s , _ y, . «-g)^«-g) _ | f e , _ 0 , (12) 

• • ,;,_,. . W-^)"4-<tf)_ftfa._'^_aW-^. ' 
ZZ4 , £4 Z4 

, , Using this explicit transformation y) : Y —» X between the X and- Y coordinates, 

an explicit nonlinear version of the Rosen criterion can now be stated. 

,,A sufficient condition for nt to be small is that (c^- ~-dj2) be-nearly.,, zero for j — 

' ' . s 15 2, % and 4 for every,,* — 1 , . . . , m. This condition is almost equivalent to requiring the 

^y - ' [iefturbatipn vector (a\t — dj1( d'2i — d^, d'zi — 'd%{, e^, - d^t) to be, small with respect to 

. every Y-space, coordinate of the Jpasis set. This is, of course, a very strong condition. 

.• _ • Ifdhe "distances d l t»can be considered to.be constant for every t (for example, by 

* * . * .V<" '• '" • 
- - , - representing du by the first neighbour distances), then a necessary condition for % t o 

be small^reduces to 
1 a ' 

-J, 
« 

i 

. 0 * * - . L 

, <% - d j t * 

• 

«: x2 

< y3 (13) 

This condition may be equivalSntly stated .by requiring the perturbation vector to be 

approximately orthogonal to*the vector a , , » B , M 

4,+<%••<&'+&<+<% 
•SC2I " ys, Zi 

(14) 

http://to.be


for every perturbation such that F(yl) is small. 

As in the lhtear case, the event of this condition being satisfied for a particular 

distance constraint model will depend upon the individual form of the function F(y) 

that is employed. Note that the vector given in expression (14) is quite dissimiliar from 

its counterpart expression (10) in the linear case. It is thus found that the linear does 

not give a truly necessary condition for small arbitrary perturbations r)t. However, it 
\ 

may hold for all practical cases, in which the magnitudes of d' • and d* are similar and 

the distance rf*- is not close to zero. 

4.2.4 A Suitably Constrained Model; 

If, as in the present model, exact conditions are required on the centroidal point, first 

neighbour and second neighbour distances at equilibrium, then the X-space coordinates 

of the four reference "points will be invariant under any perturbation y* --> yr. Under 

the requirements of this model, it follows that: 

Xi' — x,* = 0 * 

y,'-y,-* = o • (15) 

d*2 - d'2 

' ' " . 2z4 • 

i. 

The last expression simply reduces to z£ = ±zt*. Thus any perturbation y* —• y' 
r 

under this model will limit the perturbations possible in X-space to a set of measure 

zero. _ The addition of further minimum or maximum constraints to the model may 

limit the allowable perturbations in Y-space to zero. Therefore, the ijnodel as written 
i 

in Chapter 9,2 is suitably constrained. 
\ 

When the model does not include exact.second neighbour constraints, analytical 
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results are extremely difficult to obtain. The argument that conditions II and III are 

satisfied must proceed heuristically. A test for such a model is to optimize the same 

protein from several random starting configurations (cf, Chapter 7), and to further 

test the model by optimizing with slightly changing parameter values from the same 

initial configuration. 

This concludes the discussion of distance coordinate geometry and its special rela-

tionship to Cartesian coordinates in the representation of protein tertiary structure. 

L 

7 

- \ 

% 



5 The Mathematical Model 

A protein will be modelled by the coordinate, locations of the central Coc-atoms of its 

amino acid residues. The initial data used will be the primary structure of the protein, 

namely, the number and sequence of its residues. For the model, no other data is 

needed a priori from the specific protein to be folded. However, other data such as 

the locations of disulfide bonds or chemically derived information may be incorporated 

into the model as required. 

In order to predict the tertiary structure of single-strand globular proteins, known 

structures found by X-ray diffraction are examined empirically for geometric properties 

that are universal. The properties take the form of distance restrictions between pairs 

* of points: between various residue pairs or between single residues and the centroidal 

point of the structure. A discussion of possible distance constraints to be used m the 

model is given in Chapter 3. The actual numerical values for the parameters of the 

1 * 
present model are derived in an appendix (Chapter 9.3). A set of empirically found 

'. * 

distances from Goel and Y£as [46] is used" to develop many of the parameters in the 

model. ' "* 

The mathematical model employed in the thesis is formulated to meet several ob­

jectives. The model incorporates the information from the semi-empirical distance 

• constraints in such a way that it remains simple in form and easy to modify. Equally 

important, it is capable, of methodically obtaining solutions (i.e., predicted tertiary 
f 

structures) for an entire class of primary structures. This class consists of all single 

strand globular proteins, with virtually n» restriction on primary sequence length. The 

model is suitably constrained, in the sense described in Chapter 4, so that the predicted 

59 
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tertiary structures are not dependent upon the imposed initial prefolded conditions, and 

the range of the solution space is small with respect to both Cartesian coordinate space 

and distance coordinate space. 

The^ model is written as a nonlinear programming problem* which is described in 

detail in an appendix (Chapter 9). 

The hydrophobicity condition is presented as the objective function of the pro­

gramming problem. The constraints consist only of first neighbour mean distances, 

second neighbour mean distances (although another constraint subset may be substi­

tuted for these distances in a subsequent model), and minimum and'maximum bounds 

for other near neighbour and far neighbour distances.«The constraints also include 

disulfide bond distances where appKcable. The model can easily take advantage of 

other chemically derived distance constraints that may be available, for instance the 

location of medium-range residue pairs of Lys, Tyr, Glu or Asp residues [50] or inter­

action distances between pairs of aromatic resMues [13]. The model is formulated in 

terms of distance geometry coordinates, since this formulation most naturally reflects 

—xi_ 
the empirical constraints. However, it is more efficient tb solve the model in the space 

v 
of Cartesian coordinates (Chapter 10). 

{ 



6 The Optimization Algorithms. 

The distance constraint model is formulated as a nonlinear programming problem which 

in turn is solved by employing a penalty function. The programming formulation and 

the conversion into a penalty function are explained rigorously in Chapter 9. The over-

all problem is solved by combining the objective function (hydrophobicity conditions) 
\ 

and the constraints into a quadratic loss penalty function, alternately minimizing the 

penalty function for a fixed value of the constraint weights and strengthening the con-
\ 

straint weights. This\jffectively transforms the constrained problem into a sequence of 

•unconstrained problems .^The expression for the penalty function is nonconvex; there­

fore, an overall solution may\orrespond to a strong local minimum, and not to a global 

minimum. 

The overall optimization methodTor solution of the nonlinear programming problem 

is explained fully in Chapter 10. It was\designed specifically for this problem by the 

author, with the technical assistance of P.F. (D'Neill of the Department of Mathematics, 

Statistics and Computing Science at DalhousieXUniversity [41]. The minimization of 

the penalty function is accomplished by emp!oying\a strategy based on the steepest 

descent algorithm and Newton's method. Steepest descent is the principal gradient 

( \ 
search algorithm for nonlinear optimization of a continuously differentiable function, 

v 
whereas Newton's method is the fundamental nonlinear algorithm exploiting the second 

order information from the variables [39]. The optimization technique further employs 

a refinement strategy for large-scale systems, called the truncated-Newton method [33]. 

The truncated-Newton algorithm saves on computer execution time and memory space 

/ by calculating only an approximate solution to the Newton equations at each step, 

61 
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using a conjugate gradient iterative scheme. Hence, the penalty "function is minimized 

by an appropriate combination of steepest descent steps and truncated-Newton steps. 

. The overall solution method was designed in conjunction with tne mathematical * 

model, and fully exploits the sparsity of the Hessian matrix of second derivatives. 

There is no standard procedure for solving large-scale nonlinear systems of equa- ° 

tions, and there are not as yet standardized test problems for evaluating solution tech­

niques. In the present case, the best method was to design an algorithm which could 

utilize explicit second order information of a continuously differentiable function, while 

maintaining low storage spacMrom the sparse Hessian. 



\ 

7 Results. 

The results of the present model will be described in this chapter, both as numeri­

cal results in tabular form and graphically as two-dimensional contact maps. These 

results will be compared to the published results of other distance constraint models 

in Section 7.3. Some of the results shown, specifically those of Figures 7 and 8 and 

Tables 8 and 12 for the proteins BPTI (initial configuration A) and lysozyme, have 

previously tosen published in Foster [40]. 

The model results are obtained from a FORTRAN implementation of the algorithm 

(Chapter 10) on three globular proteins, performed on a CYBER 170-730 computer at 

Dalhousie University, in Halifax, Nova Scotiq,, Canada. The mathematical form to be 

optimized is the penalty function p(xjp) given'in Chapter £k2, using the parameters5* 

itemized in Chapter 9.3. The computed protein structures are compared to known 

X-ray diffraction coordinates at each stage of the optimization process (i.e., for each 
i i / « 

value p. of the penalty function p(x,p)). The coordinate structures obtained from 

X-ray diffraction studies of crystalline proteins are regarded as the "real" structures. 

These X-ray diffraction coordinates were supplied by the Protein Data Bank of the 

Brookhaven National Laboratory [1]. 
B 

-4 

The initial configurations used are sets of n points, generated at random in R3, 
i. • * 

but scaled approximately to the volume of the protein. These initial sets of points^ 

are thought to provide suitably unbiased structures, in that no actual tertiary struc-

* 

ture information is provided a priori. The execution time required for the nonlinear 

optimization can be substantially decreased by generating initial cpnfigurations with 

correct first neighbour characteristic^(i.e., random chain conformations), and this will 
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be implemented in future studies. However., it was decided that this preprocessing 
d 

could be viewed as influencing the optimization process and therefore-was not included 

for the present study. 

The metric .widely used for comparing protein structures is the RMSV, which is 

defined as follows: 
i 

' RMSv = 7}Y,(d-d')2 \ • (16) 
L {••->•) J 

Here d and d1 are the sets of respective di^+j distances for the two structures being 

compared, N — n(n —1)/2 is the total number of resjdue pairs for a protein containing 

n residues, and the summation is over all residue pairs. This distance (Y-space) root-

mean-square value is the most commonly used metric for measuring the similarity in 

protein structures, mainly due to the difficulty in calculating root-mean-square values 

withrespect to Cartesian (X-space) coordinates. Differences in structures with respect 

to X-space coordinates are measured by the RMSX metric, defined, by: 
* "* * -r 

i J-

^RMSx = [±.j:(x^xy]\ (17) 

In equation (17), x and x' are the usual Cartesian coordinate representations for the . 

two structures, 3n is the number of coordinates in a protein of length n, $nd the 

summation is over the set of all coordinates. The problem in calculating RM,S,X arises 

.because this value as shown in equation (17) is dependent upon relative rotations or 

reflections of the two structures. In1 actual evaluations for protein comparisons between 

the'coordinates of the crystal structure {x} and the generated structure {a;'}, a unique 

«^v value for RMSs^is obtained by rotation of the primed frame so as to minimize the value 

2 

t . of the expression (17). This optimal rotation* has an essential singularity, and therefore ' 
-. • > ' 

,i ^difficult to compute." 

/ 
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Cohen and Sternberg [22] state that the RMSX provides a more effective and sig­

nificant method of comparing structures than the RMSy. However, it is shown in 

Chapter 4 that the present model is suitably constrained so that small RMSV differ­

ences will also be small with respect to RMSX. Also, the RMSy measure was chosen 

for the present study in order to provide a meaningful comparison to the results of 

other distance Constraint models, where the RMSV was often used exclusively. 

As a general guideline, an RMSy value of 1-3 A implies that the two structures are 

very similar, whereas an RMSy value greater than 6 A indicates that the two proteins 
o 

c 

may^have dissimilar global structures [22,93], There exists a weak direct relationship 

between the RMSV and the length n of the chain; therefore, it.is suggested both by 

Cohen and> Sternberg [22] and by Remington and Matthews [93] that any structural 

comparisons be judged in the light of the expected value for a random structure of the 
. * "** 

same size. * 

7.1 Numerical Results for Structural Predictions of Three Globular 
Proteins. 

» 

The globular proteins used for this study include rubredoxin, bovine pancreatic trypsin 

fl " » ^ 
inhibitor (referred to as "BPTP) and lysozyme. 

•i 0 & 

j Rubredoxin is a carrier molecule, a very small non-heme~ iron-sulfur protein that 

functions as an electron transporter. It is found in many anaerobic bacteria and is 

similar in structure to bacterial ferrodoxm, which i t can replace in certain enzymatic 

reactions. The-molecule is composed of 54 amino acid residues and has a molecular 

weight of approximately 6100. The sulfur atoms .of its four Cys residues are coordi-

nated to a single iron atom in a tetrahedral Fe-S* complex. From the crystallographic 

evidence, it is believed to be a pliable, readily deformable molecule [53,121]. 
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Bovine pancreatic trypsin inhibitor (BPTI) has become a standard test case for 

tertiary structure prediction models because it is a very small protein containing several 

important structural elements of globular proteins: a-helix, antiparallel ^-strands and 

hairpin turns. One of numerous inhibitor proteins, whose physiological function is to 

inhibit the digestive enzymes, it acts to inhibit trypsin and other proteases by binding 

with them as a pseudosubstrate. BPTI contains 58 amino acid residues (MW = 6500), 

which are cross-linked by three disulfide bridges. These disulfide bonds may account for 

its high ^"ability against denaturation. The molecule has dimensions of approximately 

43 X 23 X 49 A. It contains two domains of secondary structure: a double stranded 

antiparallel /? structure, composed of residues 16 through 36, and an a-helix composed 

of residues 47 through 56. Tfte p structure is considerably distorted, but the amelix 

is very regular between residues 48 and 54. BPTI also contains four internal water 

molecules, occupying space in crevasses of the outer surface.i This unusually high 

number of internally-bonded water molecules is probably a consequence of the small 
i 

size of the BPTI chain. The peptide bond Lysl5 - Alal6, which appears at the binding 

site of BPTI to trypsin, is strained and deviates significantly from planarity [32]. 

Lysozyme was the first true enzyme to have its tertiary structure determined by 

X-ray diffraction [8]. Its function is to dissolve certain bacteria by hydrolyzing the 

polysaccharide component of their cell walls, causing the cell to lyse. Lysozyme is a 

relatively small enzyme (129 amino acids, MW — 14600) ,o crosslinked by four disulfide 

bridges, Which contribute to its high stability. J t is a compact molecule, roughly el­

lipsoidal in shape, 'with dimensions of 45 x 30 X 30 A. Residues AsplOl, Trp63 and 

Trp62 are the main binding participants in the active site. The active site also involves 

residues Asn59 and Alal07o as well as Glu35 and Asp52. There is an a-helix contain-
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ing residues 5 through 15, two helices intermediate between a-helices and 3io-helices at 

residues 24 through 34 and residues 88 through 96, and a 3io-helix containing residues 

80 through 85. There is*an incompletely-formed antiparallel /3-sheet involving residues 

41 through 48 versus residues 49 through 54 [8,77]. 

/ The numerical results from the optimizations for the three proteins are summarized 

in Tables 4 - 7 . Each row of Tables 4 - 7 represents one call to the algorithm Inner 

Loop (see Chapter 10). The column "RMSy" indicates the root-mean-square deviation 

of pairwise distances between the tertiary structure of the protein found from X-ray 

diffraction techniques and the structure returned by Inner Loop. It is noted that the 

X-ray diffraction structure is comprised of coordinates of the crystalline form of the 

protein and is at best an averaging of in vivo states of the true fluctuating structures 

However, it is at present the best available representation of the actual structure for 

ji 

purposes of comparison. '* > 

The RMSy differences found between the optimized structures and their real coun-

terparts were determined to be 4.88 for rubredoxin (no disulfide bond constraints), 

5.58 for BPTI (no disulfide bond constraints included), 4.22 for BPTI (all three disul-

fide constraints included) and 5.75 for lysozyme (all four disulfide constraints in-

eluded). According to the generalized probability distribution result of Remington 

and Matthews [93], these results represent structural agreements that are better than 

average (i.e., random chain) by approximately 2.7, 2.1, 2.9 and > 4.0 standard devia-

• . tions, respectively. The frequencies with which these levels of agreement are expected 

to occuf by chd&ce in a random population are approximately 0.3%, 1.8%, 0.2.% and 
0 

< 0.001%, respectively. For,theser calculations, the RMSX and RMSy measures #re 
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RMSU = 0.75RMSX + 0.19 '(18) 

(Cohen and Sternberg [22]). 

Steepest 
Descent 

322 
94 
79 
0 

• 

Negative 
Curvature 

0 
0 . 
0 
19 

Rubredoxin (54 amino acids) 
(contains 

Newton 

0 
0 
0 

21 

no disulfide 
CPU 
(sec) 
119 
126 
101 
50i 
847 

s bonds) 
RMSV(4) 

2.36 
2.17 
2.14 
2.02 

RMSy 

5.06 
4.98 
4.98-
4.88 

ARMSy 
— 
6.70 
1.11 
0.27 
0.99 

Table 4: Numerical Results: Rubredoxin. 

Steepest 
Descent 

342 
106 
95 
0 

Bovine Pancreatic Trypsin Inhibitor (58 amino 
(disulfide Tjonds not included) 

Negative Newton CPtf RMSy(4) 
Curvature (sec) 

0 
0 * 
0 
12 

0 
l o 

0. 
17 

' 

147 
175 
154 

, 383 
859 

2.20 
2.07 
2.02 
1.86 

acids) 

RMSt 
r 

5.99 
5.78 
5.74 
5.58 

r 

f 

ARMSy 

7.41 
1.17 
0.33 
1.41 

Table 5: Numerical Results: BPTI, No Disulfide Bond Constraints. 
tf\ 

The column uARMSy
p indicates the root-mean-square difference between the struc-

ture input at the'beginning of frner Loop and the structure which is returned at the 
' ' " ' » , " • 

end of Inner Loop. For example, the Brit-numerical entry in column ARMSy repre-
,'- ». ,) 

" \ {l 

sents the RMSy difference between the^initial structure of randomly generated points 

and the^ structure returned after the f-jxst call to Inner Loop. 
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Steepest 
Descent 

511 
106 
87 
0 

Bovine Pancreatic Trypsin Inhibitor (58 amino 

Negative 
Curvature 

0 
0 
0 

* " 9 

(3 disulfide bonds 
Newton. CPU 

(sec) 
0 203 
0 171 
0 131 
12 193 

698 

i included) 
RMSV(4) 

u 1.84 
1.68 
1.64 
1.65 

acids) 

RMSy 
V 

4.96 
4.73 
4.68 
4.22 ^ 

ARMi 

6.65 
1.05 
0.46 
1.54 

Table 6: Numerical Results: BPTI, Including Disulfide Bond Constraints. 

Steepest 
Descent 
°*546 

69 
184 
0 

-
e ^ J 

Negative 
Curvature 
* 0 

0 , 
0 

* ' 17 

Lysozyme (129 amino acids) 
(4 disulfide bonds 

' Newton 
i „ 

0 -
0 

. o . 
8, 

CPU 
(sec) 
475 
557 
1338-

'749 

included) 
RMSy(4) 

" 

2.58 
2.46 

« 2.35 
2.26 

f 

, 
RMSy 

* 

6.61 
6.37 
6.21 
5.75 

"..-• 
AHKli 

'<> 
9.54 
0.98 
1.04 
2.36 

3119 

Table 7: Numerical Results: Lysozyme. 

P 

& 
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' " ' , * i. 
. . ' " - : 'l 

Also, supplementary RMSy measures are calculated where only the firsts to fourth 

'• M . i • „ . 

i neighbour distance terms are included in the RMSy formula: 

i 
i2M5l/(4) =" 

1 - 4 n" J 

™E£<W-<.+,)a 
^ . l o * 

(2° 

(19)' 

"* 

These "RMSy(4),) values indicate'the degree to which the near neighbour distances . 

correspond in the real and optimized structures. The RMS^A) results corresponding 

. to thetfour. optimized strictures, above were 2.02, f»86, 1.65 and'2.26 A, respectively. 

The columns f Steepest Descent", "Negative Gurvature" and "Newton" indicate the* 

\ < ,f* ? \ 
number of iteratidns applied for each kind of descent direction. Nq'te that the Newton '> 

' " * * . . ' • . '• , d ' \ . 

steps were not attempted until the fjnal call to Inner Loop in the present algorithm. 

" * Column "CPU3' indicates the number of 'CPU seconds required by aCYBER*170-730 

*; . , - - / • - * • -1 •. -.-. 

computer to perform Ihe calculations. The'minimum and maximum bound constraints * \ 

for far neighbour residues were not'applied until th§ second and subsequent calls to * * v 

Inner Î oOp." This results in the CPU time per steepest-descent iteration being much , -

- snjalicr cluring\he first Inner Loop than in the other Inner Loops. From Tables 4 - 7*, . 
* * "* *"" 

it is seen that the CPU time increases nonlinearly with n, as is expected. , * 

The results of the optimizations are alsb^displayed in the form of distance* matrices, 

or "contact maps" [67,128]. in these displays, the elements of the FTspace coordinate '' 
< • " ' " ' * 

matrix for a protein are shown symbolically. In Figure 7 - 15,.if rf,;,+J- < 3.0 A for 
. ' 0 « 

' S l • 

ftome i and j , then the corresponding .position for0 dhi+J in the matrix wjll He denoted, • 

by a blank space; if d\t%¥. > 10.0 (or d^t. > 12.5 for lyso'zymejj the corresponding 

- position will be denoted- by a period; if 3.0 < d,^ < 10.0 (or 3.'0 fdilt+j < 12.5 for 

lysozyme*), the position will bedenoted by a coded letter symbol. Note that the main,. 
" . * s. ^ V -

dingonai will always be blank, since it represents the Bet of distancekrf,,, =s 0. » ^ . 

A "I * . . - - . - • 'M =;• •-#>•• 
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Each protein"structure shows a characteristic pattern on a contact map. Secondary 

structures are readily identifiable. An o>helix, configuration shows ds a broad band 

along the diagonal because it results in small near neighbour distances. Along parallel 

/3-strands, the residues separated by some j positions in primary sequence will be close 

, together in tertiary structure. This gives rise to' a band of close contacts on a diagonal 

parallel to the main diagonal, but offset, from it by j elements. The hydrogen-bonding 

, patterns of antiparallel /3-strands appear as a band running perpendicular to the main 
r 

"diagonal. -

\Since the distance matrix.is symmetric,, only-one half of'the matrix needs tp be 

' shown. Fof comparison purposes^the contact maps .of Figures 7 - 1 5 will' always show 
" « " ' « " " > , • • r 

the real structure below the main diagonal, and the structure to be compared above 
K i •• ' _ * v 

*„ the main .diagonal. - K ' 
° * \ - "• ' • * ' - . . ' 

In Figure 7 the contact maps for the optimization of BPTI are given, for the case in„ 

'.1 -J 

winch' the three disulfide bond constraints^ave been included. The optimized structure 
>'- : \ , * - * -. • 

i' ' . ' „ 0 * 
» , * . n u 

*••" can be compared with tile real one by observation of ̂ the diagram at the lower right 
- . r i j ' . • -

*, of Figure 7. Both the. Teal and the optimised structures show- a well-formed a-helix 

' J for residues 45-58.- I3oth structures also exhibit close contact structures containing'the 

' • , . V ' . " " * ' • .* " * 
regidues^approximately 2-14 Versus 14-26, although the optimized structure has many 

.'•' u > V"» t i - - •. " " ;. ""• 

more close contacts in this region and may be considered tp possess an approximate 

p oantiparallel /^-structure here. The optimized, structure does not predict the magnitude 
1 -i - '- " . ' -\ 

. ( - . . , . I " <. • ' " % ' -

<asf the antiparallel structure for residues, 4-26 versus 26Y-43, and also contains an ex-
traneojls close-contact substructure involving residues 31-36 versus 40-55. Therefore,* 

although the two structures show similarities, there, are also some* differences with re-

r % * n > i ' ; ^ - ' • ' • > , . - » * * . «v * * • • A ' ' , i - - ? '-: ^ , ' : ' , r 
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For eaf3T>̂ f the, 4 displaced cbfttact^ap^, the real structure is shown below .the main 
diagqnal of the matrix. The following''a^nent representations ate shown above th# 
mairi diagonals in the contact maps: (i) thfe real structure, (ii) ifhe initial configuration, •" 
^iii) the structure'returned by the. first'call-to Inner Loop, and, (iv) the optimized. ' 
structure. In the contact map, the distancesvrf,>+/ between residues i andjf (in A) are 
letter .coded as follows: Man$ = 0.0 to 3.0, I = 3.0 to'4.4, T — 4.4 to 6.6, O fc 6.0 to'7 

8.0uX°=?&.Q,*o«lp:o, &nf,period= greater than 1Q.0.V ' " 

' • Figure 7: Contact foaps for BPTI, Including Disulfide Bond Constraints. 
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Foi^each of the 4 displayed contact maps, the real structure is shown below the main 
diagonal' of the matrix. The following different representations are shown above the 
main diagonals in the contact maps: (i) the real structure, (ii) the initial configuration, 
(iii) the structure; ietunied by the first call to Inner Loop, and (iv) the optimized 
structure. Letter codes for the distances dt>i^ are identical to those of Figure 7. 

Fjgure 8i Contact Maps for BPTI, Excluding Disulfide Bond Constraints. 
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spect to secondary structures and close contact surfaces. This is not surprising since 

no secondary structural information was included c prion in the model. 

Further details of the optimized structure for BPTI. are giveri in Table 8. These 

statistics show that although general parameters nonspecific to the BPTI molecule 

were employed* the optimized configuration still conforms well to the real structure 

n 

* with respect to both the near neighbour distances and the distances of the individual 

o 

residues from the centroidal point. The effectiveness of the hydrophobicity condition 
f 

•3. 

as represented by the objective function of the present algorithm is further illustrated 

in Figure 9, where the distances of the individual residues from the centroidal point 

are compared for the optimized and real structures. It is seen that the centroidal point 

: .- J 
distances for the optimized structure closely follow the pattern df centroidal point 

distances shown by the real structure. 

Figure 8 shows contact maps for the optimization of BPTI where? the disulfide bond 

constraints have been removed. In the optimized structure, many of the secondary 

structures are now absent. The a-helix at 45-58 and the antiparallel structure at 4-26 

versus 26-43 are both missing, although the short antiparallel structure at 2-14 versus 

14-26 is present. ' V A 

TfVom Figures 7 and 8, as well as Tables 5 and 6, it is seen that the optimized 
i . . 

structure^ is improved considerably by the inclusion of the disulfide bond locations. 
8 

This demonstrates the importance of far neighbour constraints for these distance con-

straint models, even if the constraints are not known precisely. It may be that some 

chemically derived far neighbour distance information may be necessary for these mod-

els to ftonsistently generate^accurate predictions. Alternatively, it may be speculated 

.C~JHRS * M < - t t - ^ 

^ is >T* V* 
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^J~sS 

t . 

Distance 

di,i+i 
di,x+2 

dt,i+3 

di,i+4 

Distance 

% 

di>Cp(i <=/J£ 

dttcp(\ 4 Jr. 
di,cp{i ¥ Js. 

dt,cp(m\) 

Mean 
3.80 
6.12 
8.12 
9.94 

t 

Mean 
8.48 
11.23 
9.30 
9.99 

Real 

Real 

S.D. 
0.03 
0.69 
1.71 
2.48 

x 

S.D. 
2.88 
3.02 
3.85 
3.48 

Optimized 
Mean S.D. 
3.80 0.003 
5.96 0.02 
7.85 1.25 
9.53 1.72 

Optimized 

Mean S.D. 
5.81 2.44 
10.75 2.50 
9.19 2.45 
9.28 2.99 

• 

a 

' . 

Mean 
Difference 

S 
y 3.63 . 

2.00 
2.21 . 
2.36 

Statistical comparison of the optimized structure for BPTI (3 disulfide bond constraints 
included) to the structure from X-ray diffraction results. The X-ray diffraction struc­
ture is considered "real". The amino acids are divided into three classes J\ (hydropho­
bic), J2 (hydrophilic) anaT^ (ambivalent). The notation dliCp denotes the distance of 

idue » from the centroidal point of the molecule. 

Table 8: Numerical Results for BPTI: Near Neighbour and Centroidal Point Distance 
Statistics. * 

< 

«* 

^ > 7 < ^ vfH ^ 
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0 

The distances of the residues from the centroidaKpoint (in A) are plotted for the 
molecule BPTI. The individual centroidal point distances for the. 58 residues of the 
optimized configuration of BPTI (3 disulfide bonds included) are represented by points 
(.), connected by a solid line. The centroidal point distances for the real"structure are 
denoted by (+) signs, also connected by a splid line/ D 

roit Figure 9: Distances of the Residues from the Centroidal Point for Optimized Structure 
ofBPTI. < _ " \ 
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that the disulfide bond locations- are an integral part of the stable tertiary structure of 

BFIKfflrad^feature that cannot be predicted accurately by the model without explicit 

addition of the disulfide constraints. 

The rubredoxin molecule was folded using thtVset of general parameters given in 

Chapter 9T with no disulfide bond constraints included. The four Cys residues of 

rubredoxin do not specifically form disulfide bonds in the real structure, but are found 

to be in close contact due to the formation of a prosthetic Fe-S^ complex in the interior 

of the molecule. 

The contact map for the. real structure of rubredoxin^Figure 10, upper left) exhibits 

e 

a noticeable lack of well-formed secondary structures. The three very short antiparallel 

substructures of the pattern are probably"due, to the major tertiary structure of rubre-

doxm: the Fe-S* tetrahadralfcomplex involving residues Cys6, Cys9, Cys39"and Cys42. 

TKe contact map of the optimized structure (Figure 10, lower right) is very similar to 

that of the real structure. Both the real and optimized structures show the three small 

antiparallel regions and close contact between the iV-terminal and C-terminal residues. 

In Table 9, it is seen that, as-Avith BPTI, the optim# structure closely conforms 
» < 

with the real structure in its near neighbour and centroidal point statistics, even though 

no parameters specific to rubredoxin were used in the optimization jjiodel. 

Tab^a 10 and 11 give the pairwise distances for the |our Cys residues involved in 

the tetrahedral Fe-S!* complex.of rubredoxin for the real structure and the optimized 
structure, respectively. No explicit constraints for these distances were included in the 

* 
model for this chemical structure. The optimized structure seems to account for the 

proximities of the Cys„ residues despite this lack of information. An average pairwise 

->|H»L, -r ' . V -«* ' - , . * , ' , k | ' "̂  - * < 
<*•*. 
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For each of tiie 4 displayed contact maps, the real structure is shown below the main 
diagonal of the matrix. The following representations are shown above the main di­
agonals ih the Contact maps: (i) the real structure, (ii) the initial configuration, (iii) 
the structure returned by the first call to Inner Loop, and (iv) the optimized structure. 
Letter codes for thFcHsfeapces df,-,,-+J are identical to those of Figure 7. 

Figure 10: Contact Maps for Rubredoxin. 
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Distance i 

<J»,t+i 
dt,i+2 
di,*+3 

di,t+4 

Distance 

-i 

di,cp(i € Ji) 
di,ap(i € J2) 
dlsCp(i<S J3) 

rf.,CP(all) 

"Real 
Mean 

. . 3.79 
6.08 
7.97 
9.70 

Real 

Mean 
•8 .96 

9.66 
8.53 
9.44 ' 

S.D. 
0.38 
0.66 
1.75 
2.47 

S.D. 
2.01 
1.72 
2.45' 
2.02 

/ 
Optimized 

.Mean S.D. 
3.80 0.001 
5.95 * 0.003 
7.50 \ .37 
8.85 2.13 i 

Optimized 

Mean S.D. 
6.26 1.80 
10.68 v 1.59 
7.53 1.48 
9.25 2.62 

J 
/ 

1 

Mean 
Difference 

* 2.94 

+ 1.91 
2.87 
2.38 

'J 

Statistical comparison of the jfcfcimized structure for rubredoxin (no disulfide bond 
constraints) with the structurerfrom X-ray diffraction'results. The X-ray diffraction--
structure is considered "real". The amino acids are divided into three classes J% (hy­
drophobic), J2 (hydrophilic) and J3 (ambivalent). Let d,iCp represent the distance of 
residue 1 from the centroidal point of the molecule. 

Table 9: Numerical Results for Rubredoxin: Near Neighbour and Centroidal Point 
Distance Statistics. 

* • *> pf 

<*r£i\ „ , 
r/*" » 'I *X t '\ 
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distance of 9.87 A was obtained in the optimized structure for all pairs of Cys residues; 

this is significantly smaller than the average pairwise distance of 12.88 A found for 

all residugs in the rubredoxin optimized-structure (12.96 A for all residues in the real 

stnocfure). Also the maximum Cys-Cys distance of 13.06 A in the optimized structure 

was much smaller than the maximum pairwise distance of 24.96 A found for all residues 

in the optimized structure (25.90 A in the real structure). The distances between 

Cys9 - Cys39 and Cys9 - Cys42 cannot be considered true close contacts. On the other 

hand, they do not represent global structural errors either, with the pairwise distances 
h 

f 

of nearby Cys9 -,Val38t(9.90.JA), Val8 - Cys39 (9.86 A), Val8 - Cyffl2'(8.87 A) and 

Cys9 - Leu41 (10.36 A) being respectably small in the optimized structure. 

"3 

Rubredoxin (Real Structure) ' 
(distances between the Cysteine residues) 

Residue # 6 # 9 '#39 #42 
#6 * V *""* 5.77. 6.37 « 8.44 

, , #9 0 8.45 5.96 . 
#39 , " 0 5.83 
#42 V 0 

Distances for, all six pairs of «2ys residues are given. !in A. The calculated mean is a 
separation of 6.80 A, with a standard deviation of 1.29^. V 1 

Table 10: Distances Betweenthe Cys Residues in Rubredoxin (Real Structure). 

'In future studies, the model will be used to predict the structure of^jbredoxin, with 

the explicit inclusion pf the proposed chemical constraints on the four'Cys residues. It 
o 

is expected that these constraints will improve the RMSy error due to the addition of 

this extra-primary information. However, the improvement to the final'structure may 
n * * 

not be substantial, as evidenced by the correct juxtaposition of the Cys residues in the 

* * ^ ^W* * ']., \ "V 

\ 
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Rubredoxin (Optimized Structure) 
(distances between the Cysteine residues) 

Residue' - #6 , ' . # 9 * ^ #39 #42 
# 6 0 8.76 * ' 10.69 t 5.00 

* # 9 * * • 0, 13.06 12.46 
#39 ' , * 0 9.23 
#42 * * - 0 % 

Distances" for all six pairs of Cys residues are given in A. The calculated mean is a 
separation pf 9.87 A, with a standard deviation of 2.93 A. 

Table l l ! Distances Between the Cys Residues in Rubredoxin (Optimized Structure). 

present optimized version. It appears that the Fe-S^-complex may not be integral to 

the actual*folding of rubredoxin but only serve to stabilise the final structure, and that 
i s / ^ - — 

the tertiary structure, may be essentially attainable without it. 

The lysozyme molecule contains 129 residues; therefoKe, it is much larger and more 

structurally complex than either BPTI or rubredoxin. Nevertheless, with the penalty 

function in its present form,«the optimizing algorithm is capable of handling second 

order information to find strong optima for proteins several times the size of lysozyme. 

The tertiary structure of lysozyme was optimized with the inclusion of constraints 

' for the four disulfide bonds. The contact map of the optimized structure, shown in 

Figufe .14, has a pattern generally similar, to the real structure, with some notable 

differences in the proximal residues'near the active site. 

'The contact map for the'optimized structure of lysozyme (Figure 14) is found to 

* resemble the real structure in many ways; the structure of the last 30 C-terminal 

residues are similar, as are the patterns for the residues far apart in primary structure. 

Most of the close contacts in lysozynle are small and local in primary structure, implying 

> 
N . - . . • ' ] - . ..! P 
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For each of the 4 displayed contact maps, the real structure is shown below the main 
diagonal of the matrix. The following representations are shown above the main diag­
onals in the contact maps: (i) ̂ he real structure, (ii) the initial configuration, (iii) 1;he 
structure returned by the first call to Inner Loop, and (iv) the optimized structure. In 
the contact map, the distances <&,,+/ between residues i and j (in A) are letter coded 
as follows: blank = 0.0 to 3.0, I = 3.0 to 4.4, T = 4.4 to 6.0, O = 6.0 to 8.0, X ~ .8.0 
to 12.5, and period — greater than 12.5. 

Figure 11: Contact Maps for Lysozyme, the Four Disulfide Bonds Included. I. The 
Real Structure. 
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For each of the 4 displayed contact maps, the real structure is shown below the main •_ 
diagonal of the matrix. The following representations are shown above the main diag- • 
onals in the contact maps: (i) the real structure, (ii) the initial configuration, (iii) th«* . 
structure Returned by the first call to Inner Loop, and (iv) the optimized structure In 
the contact map, the distances <fi,»+y between residues i and j (in A) are letter coded 
as follows: blank = 0.0 to 3.0,1 = 3.0 to 4.4, T - 4.4 to 6.0, O 6.0 to 8.0, .Y K.(J 
to 12.5, and period = greater than 12.5. 

Figure 12: Contact Maps for Lysozyme. the Four Dfculftd* Bond-* InHwhMp II Iimiai ' 
Configuration " 
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For each of the 4 displayed contact maps, the real structure is shown below the main 
diagonal of the matrix. The following representations are shown above the main diag­
onals in the cont«act maps: (i) the real structure, (ii) *the initial configuration, (iij) the 
structure returned by the first call to Inner Loop, and (iv) the optimized structure. In 
the contact map, the distances d%yt^ between residues i and j (in A) are letter coded 
as follows: blank = 0.0 to 3.0, I = 3.0 to 4.4, T = 4-4 to 6.0, O = 6.0 to 8.0, X ~ 8.0 
to 12.5;, and period = greater than 12.5* 

Figure 13: Contact M$ps for Lysozyme, the Four Disulfide Bonds Included. III. First 
Outer Loop. 
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For each of the 4 displayed contact maps, the real structure is shown below the main 
diagonal of the matrix. The following^ representations are shown above the main diag- -
onals in the contact m&ps: (i) the real structure, (ii) the initial configuration, (iii) the 
structure returned by the first call to Inner Loop, and (iv) the pptimized structure. *In 
the contatt map, the distances d,-|f;+j between residues i and j (in A) are letter coded 
as follows: blank = 0.0 to 3.0,1 = 3.0 to 4.4, T = 4.4 to 6.0; O = 6.0 to 8.0, X ="8,0 
to 12.5, and period = greater than 12.5* 

Figure 14: Contact Maps for Lysozyme, the Four Disulfide Bonds Included. IV. 
mized Structure, 

\ 



86 

that most of the secondary structures contain few residues, and in these local patterns 

the two structures are dissimilar. Most of the helical structures of the real structure are 
/ 

absent in the optirrfized structure, and extra close contacts are seen for .residues 7-19 

* i 

versus 20-32. The op/imized'structure thus has correctly predicted the global structure 

of lysozyme as measured by the .RMSy difference, but has errored in prediction of many 
l 

of the local substructures as displayed in the contact map. 

Distance 

rfM+i 
dt,i+2 

dt,t+3 
dt,i+4 

<=> Distance 

dt)Cp(i°G J i ) 
di,ep(i € J2) 
d,,cp(i &J3] 

d,,oP(aU) 

Mean 
4.32 
6.28 
7.35 
8.51 

Mean 
10.10 
15.12 
12.63 
13.09 

Real 

Real 

i 

S.D. 
1.47 
1.42 
2.00 
2.48 

S.D. 
3.34 
4.11 
3.44 
4.01 

Optimized 
Mean S.D. 
3.80 q.oi 
6.05 0.19 
8.08 . 1.18 
9.76 1.81 

* Optimized 

' Mean S.D 
9.09 2.78 
14.99 . 3.12 
11.66 3.82 
12.39 , 3.96 

c 

S 

• 

'Mean 
Difference 

2.95 
2.61 
2.70 

-2.74 

Statistical comparison of the optimized structure for.lysozyme (4 disulfide bond con­
straints included) with the structure from X-ray diffraction results. The X-ray diffrac­
tion structure is considered "real". The amino acids are divided into three classes J\ 
(hydrophobic), J2 (hydrophilic) and J$ (ambivalent). Let d{-cp represent the distance 
of residue i from the centroidal point of the .molecule. 

- * i p 

Table 12: Numerical Results for Lysozyme: Near ^Neighbour and Centroidal Point 
Distance Statistics. ' - . 

The optimization statistics md'RMSy comparisons between the optimized struc-

" ture and the real structure for lysozyme are found in Table 7. Further comparisons are 

, found in Table 12. From the ritar neighbour dij+j comparisons in Table 12, it is seen 
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„ that the X-ray diffraction data employed is slightly in error, with a mean value of 4.32 A -

for the first neighbour distance instead of the expected'3.80 A. Also the convergence of 

the optimized structure is shown to be incomplete from the standard deviation results 

of 0.01 A for <f;,t+i and 0.19 A for d{>t+2, as compared to the corresponding values of-

0.003 A for dM+1 and 0.02 for dti,-+2t,in the optimized structure for BPTI (Table 8). % 

The centroidal point distances for the residues of the-optimized structure are very-close 

to their counterparts in the X-ray diffraction structure, differing by an average of only 

2.74 A. 

An optimization of the lysozyme molecule was also carried out using only the first -

128 residues, omitting the C-terminal Leu residue. This optimization resulted in a 

final tertiary structure that was remarkably dissimilar from the one discussed above. 

In fact, it showed an incorrect supersecondary structure in the neighbourhood of the 

G-terminus," with a final RMS$ result greater than „8 A. This shows that the model 

can be sensitive to small changes in the primary structure, as is observed with in vivo 

w 

proteins. Therefore, it is indicated that the model can correctly predict structural 

modifications resulting from primary structure insertions, deletion^ and substitutions, 

, although this is a matter for'further study. 
*. 

The X-ray diffraction coordinates available for the present study were found to be 

incomplete in that the only 53 of the 54 residue Ca-atom coordinates were available 

for rubredoxin (Clostridium pasteurianum, 2 A resolution, unrefined) and only 128 
d 
f 

of the 129 Ca-atom coordinates were included for lysozyme (hen egg-white lysozyme, 

2.5 A resolution). Coordinates for the C-terminal residues were omitted in each case. 

Correspondingly, the RMSy difference calculations for these two proteins were per­

formed via the omission of .the C-terminal residue for each protein. The effect of this 
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modification on the calculated results is expected to be negligible. The optimized struc-

tures of both these proteins correctly show the C-terminus behaving as a hydrophobic 

residue a„s judged by centroidal point distance, and also correctly predict the proximities 

of the C- and iV-terminal residues in each case. 

7.2 R e p e a t e d O p t i m i z a t i o n of B P T I f rom Different In i t i a l Configu­
r a t i o n s . 

Repeated runs from different initial configurations indicate whether or not the final 

structures are insensitive to the initial values. Also this exercise may be the best way* 

to approach the global minimum for, any such nonconvex problem. a 

Repeated optimizations from different random point initial conditions were per-

formed for the globular protein BPTI, with inclusion of the three ^disulfide bond con-

straints in each case. All of these tests used identical parameter values and termination 

# 

criteria for each Inner Loop. 

The termination criteria used were as follows. For-the Inner Loops that exclusively 
- ) 

employed steepest descent iterations (Inner Loops i = «1, 2 and 3), the Inner Loop was 

* terminated when the gradient norms at two successive iterations were calculated to" be 

less than a specified value: * 

l iv /^ i i + i iv /^ 1 ) !^ '^ . (20) 

The values for the tolerances €{ were given to be e% = 10.0, €2 — 10.0, and £3 = 1.0. 

Typically, the norm of the gradient for an initial configuration would be | |V/| | fa 10s. 

The introduction *of minimum and maximum far neighbour constraints at the second 

t a v 

^ Inner Loop typically resulted in the initial gradient norm of the second Inner Loop 

having a value of |[V/f| « 2500, and thus the stopping tolerance e2 also represents a 
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considerable reduction. At the start of the third Inner Loop, the gradient norm would 

generally have a value of || V./|| « 20. 
< • -» 

For the first Inner Loop only, it was additionally required that the value of the 

function was to be reduced by' a suitable amount. This, constraint on the penalty func­

tion valua was empirically chosen to be p(ar, 1.0J < 450, where the initial configuration 

V would typically correspond to a value of p(wi 1.0)*M 105. 
A * * 

t "° * •» ' ' „ 
t, ° o 

'For the'Snal Inner Loop, in which the truncated-Newton algorithm was performed, 

the 'termination criterion was as follows: 
. ' < : 0 | |V 0 / ( ^ ) | |< C 4 = io - 3 . : . ; . (21) 

Other stopping criteria in the form of time limits for the completion of each Inner 

Loop were available. However;, these were found to be unnecessary in the optimizations 

performed. The results of these repeated optimizations<are given in the following series 

of tables and figures. Initial configuratipn A is the same as that of Table 6, but the 

optimization results vary slightly because slightly different termination criteria were 
a 

used for the two cases at each Inner Loop. 

Steepest 
Descent 

788 
91 
116 
0 

, Bovine Pancreatic Trypsin Inhibitor (58 amino acids) 
(3 disulfide bonds included) « -

Negative •„ * Newton CPU RMSy(4) RMSV 

Curvature (sec) 
0 
0 
0 ** 
11 

$ 

0 
0 

. °" * 8 

271 
151 
158 
171 
751 . 

1.85 4.78 
1.65 4.57 
1.62 ' 4,52 

. 1J& 4.21 
s 

c 

ARMSy 

6.78 
1.01 

» 0.41 
' 1.30 

Table 13: Numerical Results: BPTI, from Initial Configuration A. 
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Steepest 
Descent ^ 

628 
103 
139 
0 

Bovine Pancreatic 

Negative 
, Curvature 

0 

'o 
0 
22 

Trypsin Inhibitor'(58 amino 
(3 disulfide bonds 

Newton 

0 
- . V j 

0 
82 

CPU 
(sec) 
220 
164 
187 

2245 
2816 

included) 
RMSV(4) 

. 

2.17 
2.05 
1.99 
1.90 

acids) 

RMSy. 

5.22 
5.15 
5fl2 
4.84 

« 

ARMl 

7.42 
1.19 
0.39 
1.46 

t, 

Table 14: Numerical Results: BPTI, from Initial Configuration B. 

. 

, 
• Steepest 

Descent 
678 
174 
95 
0 

vr s 
Bovine Pancreatic Trypsin Inhibitor (58 amino 

Negative 
Curvature 

0 
0 
0 
9 

(3 disulfide bonds included) 
Newton CPU RMSV(4) 

(sec) 
0 236 ° 1.80 
0 250 1.69 9 - ' 
0 127 •' 1̂ .69 
12 , 283 1.74 

896 

a 

acids) 

RMSy 

4.92 
4.78 
4.180 
4.95 

ARMSy 

7.52 
' 1.51 

0.25 
0.63 

© 

Table 15: Numerical Results: BPTI, from Initial Configuration C. 

< Steepest 
Descent 

673 
103 
131 
0 

- < 

Bovine Pancreatic Trypsin Inhibitor (58 amino 
(3 disulfide bonds 

Negative * Newton CP-U 
Curvature (sec) 

0 0 234 
0 " ' 0 145 
0 0 172 
29 51 1534 

included) 
RMSy(4) 

» 

2.07 
1.73 
1.66 
1.73 

acids) 
t> 

RMSy 

4.47 
4.13 
4.04 
3^94 

4 
• 

' 

ARMSy 

. 7.37 
0.97 
0.38 
1.17 

(. 2085 

Table 16: Numerical Results: BPTI, from Initial Configuration D. 

7 ' . 
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Bovine Pancreatic Trypsin Inhibitor (58 amino 

Steepest Negative 
Descent . Curvature 

652 0 
152 0 

• 150 * 0 
0 «, 55 

(3 disulfide bonds included) 
Newton 

( F 
0 
0 

^57 

Table\l7: Numerical Resulfes 

CPU RMSy(4)t 

(sec) 
• 228 2.24 
218 2.07 
213 • 1.89 
2403 ' 1.85 
3122 / 

acids) 

RMSy 

4.93 
4.78 
4.67 
4.29 

i^J3PT4» frorn. Initial Configuration 

ft 

ARMS), 

" fm 
l .n 
0:63 
1.97 

E. 
„ i 

Bovine Pancreatic Trypsin Inhibitor (58 amino acids) 
(3 disulfide bonds included) 

A 
B 
C 
D 
E 

Real 

A 

a 
B 

3.67 
0 . 

C 
4.48 

.4.58 
0 

•i 

, 
„ 

D 
3.85 r • 
3.80 -
4.08-

0 

E 
4.49 

. - 3.68 
3.80 
3.55 
.0 

Real 
4.21 
4.84, 
4.95 
3.94 
4.29 

0 

Table 18: Comparison of Optimized RMSy Structures for BPTI. 

i * 

A 
B 
C 
D 

„ E 
Real 

A 
0 

Bovine Pancreatic Trypsin Inhibitor (58 amino 
(3 disulfide bonds included) p 

B C D ' E 
1.19' 1.14 0.99 1.33 

0 
-

-

-

0.98 
0 

» 

*1.10 
0.96 

0 

1.26 
1.05 
1.08 

0 

acids) 

a 

0 

Rjeal 
1.63 
1.90 
1.74 
1.73 , 
1.85 

0 

» 

» 

Table 19: Comparison of Optimized RMSy(4) Structures for BPTI. 
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A 
B 
C 
D 
E 

Bovine Pancreatic-Txypsin Inhibitor (58 amino acids) 
(3 disulfide bonds included) 

RMSy of Optimized Structure vs: 
Real 
4.21 
4.84 
4.95 
3.94 
4.29 

ABCDE(ave.)4,45±0.43 

Others 
4 . 1 ^ 0 . 4 3 
3(93 ±'0.44 
4.z\±0.36 
*.82±<042 
3.88 ± 0.42s 

4.00 ±0.38 

RMSy (4) of Optimized Structure 
Real 
1.63 
1.90 
1>4 
1.73 * 
1,85 

1.77 ±0.11 

..Others 
1.16 ±0.14 
1.13 ±0.12 
1.03 ± 9.08 
1.03 ±0.07 
1.18 ±0.14 
1.11 ±0.12 

Table 20: Further Comparison of RMSV and RMSy (4) Final Structures for BPTI. 

The calculated statistics of Tables 18 and 20 indicate that the five optimized struc­

tures show an average RMSy error of 4.45 A when they are separately compared to the 

"real" X-ray diffraction structure. When the five optimized structures are compared 

with each other pairwise, the average RMSy difference between optimized structures 

was, found tp be 4.00 A. This shpws that the structures are converging within a rather 

small neighbourhood, and that this neighbourhood is close to the configuration of the 

real structure. Also, from Tables 19 and 20 it is found that the structures are all locally 

similar from the evidence of their near neighbour RMSy(4) distknce statistics. 

•Note that for this model, small RMSy differences between structures also imply 

structural differences that are small with respect to the usual" Cartesian coordinates. 

Contact maps for the optimized structures of BPTI from^ihenew initial configura­

tions B, C, D and E are given in Figure 15. It is seen that these optimized structures 

as a group predict the secondary structures very well, including the long antiparallel 

/^-structure dominating the off-diagonal of the contact maps and the short a-helix near 

^*ne C-terminal end. 



^ For each of the 4 displayed contact maps, the real structure is shown below the main 
diagonal of the matrix. Representations for the optimized structures of BPTI, with the 
three disulfide constraints included in each case, are shown above the main diagonals 
in the contact maps. The structures are respectively optimized from different random 
initial configurations: (i) configuration B, (ii) configuration C, (iii) configuration D 
and (iv) configuration E. In the contact map, the distances efc.t+j between residues » 
and j (in A) are letter coded as follows: blank = 0.0 to 3.0,1 = 3.0 to 4.4, T — 4.4 to 
6.0, O - 6.0 to 8.0, X = 8.0 to 10.0, and period = greater than 10.0. 

Figure 15: Contact Maps for BPTI. Optimized Structures from Dissimilar Initial Con­
figurations. 
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It is believed that the RMS errors between the optimized and' the real struc- --

tures will improve as better and more accurate parameters are determined either semi-
0 

empirically or theoretically. The most obvious improvement would be to" replace the 

second neighbour mean value constraint with a set of far neighbour chemically-derived 

constraints. These chemically-derived constraints may need to be tailored to the indi­

vidual protein being folded. It may alternatively be possible to derive universal em­

pirical far neighbour constraints from repeated chemical studies. However, the model 

can be used in its present form to calculate tertiary structures of globular proteins 

with a medium level (3 - 6 A differences in RMSy) of structural derail, that can sub-

sequently be refined by other algorithms such as those focusing on secondary structure 

or free-energy minimization. 

7.3 Comparison tp Previous Distance Constraint Models . 

7.3.1 X-ray Diffraction Technique. j£ 

The tertiary structures of over 200 crystallized globular proteins are now available 

from the laboratory technique of X-ray diffraction, although many of these proteins 

\ » 
are homologous in structure. 

X-ray diffraction works in two stages. In the first stage, the object under examina-

tion scatters the X-rays unevenly in all directions, forming a diffraction pattern. In the 

second stage, thisjrecorded diffraction pattern is mathematically reconstituted into the 

image. It is necessary to apply X-rays (or electrons or neutrons) to molecular studies 

instead of visible light because the radiation must possess a wavelength small enough 

,(1 - 2 A) to produce the required resolution for an object this small. 

In protein studies, individual molecules do not prdvide the necessary contrast for 
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a discernible diffr/action pattern. Therefore, a large number of the molecules (a* IO15) -

are consolidated into a crystal, which serves to amplify the diffraction pattern. Fur­

ther, in order tjo make possible the second stage of reconstructing the original protein, 

isomorpbous Replacement of some elements in the crystal lattice by heavy atoms must 

be performed. The crystallization of protein molecules is not a complete process; pro­

teins rarely form crystals that are regular enough to diffract to a resolution better than 

1.5 A. ^ 

Reconstruction of the detailed structure of the protein from the diffraction pattern 
t 

is achieved by Fourier transform"analysis. The clarity of the reconstructed image, the 

"electron density map", depends upon the accuracy and resolution of the data, and 

the degree of order of the protein crystal. Individual atoms can only be detected if 

the resolution is better than 1.5 A; with resolution better than 3.0 A, peptide groups 

and the general shape of sidechains can usually be distinguished; with lower resolution, 

only gross features such as regular secondary structures can be identified. Portions 

of the protein that are mobile or can adopt several alternative conformations may be 

unidentifiable from the electron density map. 

„ The primary structure of the protein must be known a priori in order to interpret 

the electron density map. The actual interpretaflron in terms pf atom locations is rather 

subjective, and proceeds from an ideahzed model of the protein, containing standard 

bond lengths and angles. The mathematical refinement, stage consists of finding a 

best fit between the idealized model and the experimental diffraction data, again using, ̂  _ 

Fourier difference maps. This analysis attempts to extend the final resolution of the 

structure beyond the initial experimental resolution of the diffraction pattern. 

The crystallization and diffraction stage of the X-ray diffraction procedure can be 



very costly in terms of human time. It can literally require years of laboratory work' 

to obtain the crystal structure of a single globular protein, Frequently, groups of 

proteins with similar primary sequences and functions are studied by X-ray diffraction 
t n i 

researchers in order to expedite the procedure by employing similar methods on the 
n 

homologous structures. 
HI 

The refinement stage can be very costly in terms of computer time. For example, 

Dejsenhofer and Steigemann [32] required over 60 hours of computer time on a Siemens 

4004/150 computer to refine BPTI from 2.5 A resolution to 1,5 A, using a real-space 

model building procedure and five Fourier difference maps. 

, The X-ray diffractions technique has certain drawbacks. It models the crystal struo 

ture of a molecule, which in some cases is significantly different from the native struc­

ture. Also, a bias is introduced info the overall analysis of globular proteins since 

only protein"structures that make good crystals are resolved, The technique is also 

extremely expensive and time cdhsuming. However, it is thought to produce a good 

average of a protein's in vivo structures in most cases ̂ n d presently produces a far 

Jaetter resolution of the tertiary structure of proteins than any other experimental or 

theoretical prediction method. 

o 

a 

7.3.2 Goel, Yeas et al. ' -

In the approach of Goel, Yfcas et al. [14,45,46,98,128], the constituent residues of a 

protein are represented by the locations of their Ca-atoms connected by virtual bonds. 

Their approach attempts to satisfy a set of distance constraints identically by optimiz­

ing a weighted penalty function of the constraints. Various constraint combinatjonH 

are presented to be satisfied exactly, with the constraints being either fixed distances 



97 

between points, minimum or maximum bounds on distances between points, or "set 

average" constraints. The set averages.are weak constraints requiring a set of distances 

to attain a specified average value, with no restrictions on individual pairwise distances. 

The penalty function, to be minimized, is written ag; 
y 

F = wtFx + w2F2 + wzFz + vJiF* + wsFs + vjcp(Fcpi + Fcp2 + Fcp3), (22) 

where 
\ 

' Fx = 

F2 = 

F3 = 

FA = 

n - l 

YKdi~ di,i+i) 

n-2 _ 

J2(d2 - d{ii+2) 

n~-3 _ 

X)(rf3 - di,%+z) 

£ ( 3 4 - d,,,+4) 

T 2 

l » = l 

Fs= Yjfh-du,)' 

-Pcpl ~ 

•cp2 

JZ idjuep ~ di,cp) 
ieJi 

J2 (dji,cp ~ dt,Cp) 
*<=J2 

T 2 

(23) 

(24) 

(?5) 

(26) 

(27) 

(28) 

(29) 

(30) A Fcpz = 22 (dja,ep - dt>cp) 
,t€J& 

The mean values 2%, d2, 33, rf4, 3,5, 3j l i C p , djs,cp and 3jrS|Cp are employed as the 

parameters of the model. They are estimated semi-empirically, using statistical data 

from the atomic coordinates of a set of twenty-one proteins with structures known from 

X-ray diffraction studies, supplied by the Protein Data Bank at the Brookhaven Na-
t 

tional Laboratory [1]. The values djuep, dj%<ep and dj^ep denote the average distances 

\J 
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from the centroidal poinl; of the molecule for the sets of hydrophobic (Ji), hydrophilic 

(J2) and ambivalent (J3) residues, respectively. Otherwise, the notation is identical to 

that given in Chapter 9.1. The first neighbour (.Pi) and disulfide tfond (Fs) constraints 

restrict pairwise distances individually; all other constraints are of the "set average" 

type. For example, F2 is a single constraint employed for second neighbour distances, 

and is minimized (to F2 = 0) when the average distance for the set of all second nei^h-

_ > 

bour residues {dtit+2} is equal t o , ^ , with no specific requirements on the individual 

d\,i+2 pafrwise distances. 

Their model optionally includes set average constraints on the standard deviations 

of the near neighbour distances. This is done by adding extra terms w3Gj to F, where 

the Gj are of the form: 

» 

G , = /sr=7te-<»-Bn ; i = 2,3,4, (31) 

where sj- is the specified standard deviation for the j th neighbour Ca-atoms. 

Also, the. near neighbour set average constraints can be modified to include mini-

mum and maximum bounds for the pairwise distances for each residue k, as follows: 

F>3 u3
L(dJ-dktk„J)+u3

R(d3-dkM])+ x; & - < w 

k= l,...,n; j-2,3,4, 

(32) 

where 

1 1 M > 1 otherwise 
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and t 
3 \ M > 1 otl 

< dk,k+3 < Uj 
otherwise. 

Here the-parameters-%^aTid Ut are minimum and maximum, empirical bounds for 

the near neighbour distances. 
»̂ _ —- * 

It is also shown [45,98] that the hydrophobicity class constraints may be replaced by 

an equivalent set of constraints expressing the hydrophobicity rule in terms of average 

pairwise distances between the residues of the various hydrophobicity classes, such as: 

i ^ = 

n2 

£ (dj^ - d%]) (33) 

Here, djy j t represents an empirically derived average distance between residues that are 

both of hydrophobicity class J%. Similar constraints would be imposed for all pairwise 
c 

permutations of the classes Ji , J 2 and J3. 

The paper of Cariani and Goel [14] is concerned with the additional information 

thatfjcan be gained from imposing secondary structure conditions on the model. 

The various forms of the penalty function in the approach of Goel, YSas et al. 

[14,45,46,98,128] are solved by minimization in the corresponding Cartesian coordi­

nates. A sequential optimization is performed, either by a method of repeated random 

direction linesearches [12] or by a steepest descent algorithm (cf, Chapter 10.3). The 

residues of a protein are selected one at a time in a randomly generated sequence. For 

each selected residue in turn, the three variables (xk, yki zk) are optimized under the 

function F, while keeping the variables for all the other residues fixed. One iteration 
i 

consists of all residues being chosen for optimization exactly once. Iterations are then 
&<• 

repeated as desired. The optimizer has the advantage that the dimensionality of each 
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eubproblem is' small and no derivative calculations are required. However,, since the 

variables in the nonlinear penalty function F are not truly separable, the sequential 

optimization can lead tb a poor convergence rate and local minima trapping or cycling. 

Goel and his co-workers have used this method to generate predictive structures 

for several proteins. Their model is quite successful in predicting protein tertiary 

structures, using the various combinations of terms used as input in F. It seems, 

however, to be overly dependent on the choice of initial configuration, implying either 

Using the methods outlined above, Goel and YiSas [46] folded BPTI using five 

different optimizing sequences for the residues, using a large perturbation of the real 

BPTI structure for the starting configuration. They obtained RMSy errors of 5.39, 

5.16, 4.76, 5.45 and 5.79 A from the Xi-ray diffraction coordinates for these five trials. 

These results gave an average of 5.31 ± 0.38 A from the-reaf structure, and differed 

by 4.70 ± 0.65 ^ . 7 w n e n compared with one another pairwise. They also [46] folded 

BPTI using an identical optimizing sequence of residues, but folded from three different 

semi-random perturbations of the real structure. For this case, the final configurations 

differed by 5.49 ±0.15 A from the real structure and by 5.93 ±0.05 A from each other. 

The proteins lysozyme and staphylococcal nuclease (146 residues, no disulfide bonds) 

were also folded in a similar manner, except that all the* parameters used in this case 
•j 

were derived specifically from the protein to be folded. The final RMSy differences 

from the real structures were 5.63 and 7.12 A, respectively. 

Goel et al. [45], using an underconstrained system of "set average" constraints, 

obtained RMSy values of 6.46 A for BPTIand 6.80 A for parvalbumin (a globular 

protein containing 108 residues and no disulfide bonds) from a random chain input 
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configuration, and, an RMSy value of 6.25 A for BPTI from a perturbed real structure 
* » 

initial configuratipn. They aJscLobtajned"RMSy values of 4.86 A for BPTI and 5.21 A 

for parvalbumin from a similar input by the use of an overconstrained system in which 

the residues were forced to satisfy distance constraints individually. In all cases their 

results were found to be dependent Upon the choice of initial configuration, indicating 

the possibility of unsuitably constrained systems. During this study, they also analyzed 

the model by folding BPTI when given complete exact distance information, complete 

information with some errors, several forms of complete information ds approximate 

values without errors, and incemplete exact distance information. All of these latter 

studies included distance information that would generally be inaccessible a priori. 

7.3.3 Kuntz, Crippen et al. * . 

The original model of Kuntz, Crippen, Kollman and Kimelman [61,63] is written as a 

penalty function consisting of constraints on the pairwise distances between residues. 

Each amino acid residue is represented by the first atom of its side-chain (the C^-atom), 

excegt for Gly which is represented by its Ca-atom. The 3 x « Cartesian coordinates of 

the C^-atoms are chosen as the independent variables to be optimized for a protein of 

length n. The penalty function, called an "error" function", is composed of five terms: 

F =• wiFi + W2F2 + W3Fz + W4F4 + wsF$, (34) 

where each of the terms represents a distance constraint set. The weights (wt) are 

empirically chosen to reflect the relative importance of the various constraints: 

u>i = W3 — W4 = tw5 = 100, w2 = 25. (35) 
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The first term of the penalty function (34) is given to be as follows: 

Ft = £ I <*M+I2 ~ V I, " (36) 

where diit+i represents the distance between C^-atoms of nearest neighbour residues 

and L\ is a discontinuous step function: / 

' 3.8 A if rf,,t+i'< 3.8 A 
Lx ~\ 4.9 A if iiti+l \ 4.9 A (37) 

di,i+i otherwise. 
9 ° . ' 

This term F\ restricts the C^-atom first neighbour distances to lie between a minimum 

distance of 3.8 A and a maximum distance of 4.9 A. Kuntz et ah also state that the 
• * 

diti+2 and d,-,,+3 distances are constrained to an allowable range between ct-helical and 

extended chain conformations, but do not show" these terms explicitly. 

The &jcond term of the penalty function represents the interactions between various 

classes of residues. Pairs of hydrophobic residues are constrained to a pairwise distance 

of less than 10 A, as are polar-ionic residue interactions and pairs consisting of residues 
t f 

with appropriately charged ionic sidechains. Ionic-hydrophobic or polar-hydrophobic 

residue pairs are constrained to lie more than 15 A from each other. The N- and 

C-terminal residues are classified as ionic. Thie penalty term is achieved as follows: 
J 

I 

^ = £E^(W-V), ^ (38) 

where C,j is a weighting coefficient for the interaction between residues i and i + j . 

The coefficient CtJ- has a possible range of -100 to +25, with values determined by the 

types of residues involved. It has positive values when residues i and i + j are ionic-

hydrophobic or polar-hydrophobic pairs, negative values for hydrophobic-hydroph6bic, 

polar-ionic or ionic-ionic residue pairs, and is equal to zero otherwise. The step function 
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L2 is given by 

{ 10 A when C,y > 0 and <*,•,,+,• > 10 ~~ 

15 A When C,,- < 0 and diii+J < 15 & (39) 
dij+j otherwise. 

The third term constrains hydrophilic residues (defined as alt residues except Met, 

Val, Leu, He, Phe; Trp and Tyr) to a specified minimum distance from the centroidal 

point of the molecule: - o ° „ ' ' • 
I _ ^ 

* = £ Mc"-d^)^ \ ^ 4 ^ 
ighydrophilic n % - fj 

for all hydrophilics such that ditCp.-£ f̂,cp>
 an<* z e ro , otherwise. The scalar d£fip is set 

equal to 10 A* This parameter, estimated empirically from examination of BPTI and -
• ' TV 

e 

rubredoxin residue distributions, determines the volume of the hydrophobic core. 
A 

The fourth term prevents the chain from self-intersecting: 

* = £ £ f l V i * - W ) . (41) 
»=i i=2 

Here V,it+j is the sum of the effective van 'der .Waals radii of the. sidechains of residues 

t and i + j . Whenever di,i+j > Vi,i+ji the value of F4 is set to zero. 

The fifth term is a constraint for the Cys residue pairs that are connected by 

disulfide bonds: , ca 

Fs = £ fa*2 - L5
2), (42) 

(l,k)tzS 

where L$ — 6A is the desired pairwise distance for C^-atoms of disulfide bonded Cys 

residues. ^Again, this constraint is set to zero whenever dik < L5. 
1 

1 

• ' ' The*initial configurations used for this model are extended chains, in which each 

residue is positioned at 3,8 A from the'"preceding residue, the steps being made al-

ternately along the as, y and z axes. The penalty function is minimized in Cartesian 

.'^coordinates by use of a steepest descent algorithm without linesearch. Only one step 



lot 
D 

is attempted along the direction of steepest descent perlteration, with the step-si*e-

being determined by the relative success of the previous iteration. 

Using this model, Kuntz et al. [63] computed optimized structures for BPTI and 
(• * 

' for rubredoxin (using 53 residues). They reported that their best results for BPTI hadd 

RMSy errors of 4.70 to' 5.0 A, They obtained a structure for rubredoxin with an RMSy 

error of 4.7 A when the same weight and parameter values afs those of BPTI were used. 

Their best RMSy result for rubredoxin was reported to be a value of 3.99 A. When 

the Fe-S interaction distances were not included in rubredoxin, the prediction accuracy 

dropped to an RMSV error of approximately 6 A. 

J . ' ' ' 

They generated "a number" of structures for BPTI and rubredoxin. The resulting 

RMSV errors from the X-ray diffraction structure were in the range of 4.7 to 6.5 A for 

BPTI when the three disulfide bonds were given correct distances. The RMSV errors 

for rubredoxin were found to.be 4.0 to 6.0 A, given correct distances between the four 

Gys residues involved in the Fe-S* complex. 

In their more recent approaches, Kuntz et al. [30,50,51,52,62] first impose a set of 

distance constraints directly on the matrix consisting of all pairwise distances between 

the Ca-atoms of the residues, where specified entries in this distance matrix are limited 
•A 

to be within upper and lower bounds. Therefore, the model works directly with a 

geometry of pairwise distances. 
i 

Distance constraints between residue pairs are incorporated as entries in upper and 

lower bound distance matrices, denoted by U and L, respectively. First neighbour 

residue distances are given corresponding values of «,,,+! — 3.80 A and fl)t+i ~ 3.80 

A in the first diagonals of U and L, respectively. Values for the elements in the 

second diagonals (second neighbour distances) are chosen to be u,*-^ — 7.30 A and 

http://to.be
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'i,«+2 = 6.00 A. bisulfide bond locations are assumed to be known, with pairs of 

residues I and Jfc connected by these bonds being given the upper bound restrictions 

1 of ttj.ife = 6.50 A. All other elements of U are then set to a reasonable absolute upper 

bound distance (given by 40.0 A in [50] and 38.0 A in [62]), and all other elements 
\ 

of L are set to an absolute lower bound distance (5.0 A in [50] and 6.0 A in [62]). 

The resulting distance matrices U and L are then smoothed by satisfying triangle and 

t 
reverse triangle inequalities for all residue triplets (cf, Chapter 4). The boundary 

matrices thus obtained ase representations of a nonintersecting ideal chain containing 

I « 

acceptable virtual bond angles and disulfide bonding. 

The remaining pairwise distances are further restricted by considerati6n of sec-
a 

i 

ondary structure algorithms for a-helices, /?-strands or hairpin turn contacts, or by 

prediction of hydrophobic contacts. In Havel et al. [51], constraints consisting of a 
ti 

tetrangle inequality, and pentangle and hexangle equalities are included -(cf, Chap-

ter 4). These arise from the distance geometry itself, and ensure that, a given distance 

matrix will correspond to a three-dimensional Euclidean structure. 

The model is easily solved with respect to the distance coordinate system, by simply 

assigning values in the distance" matrices. The difficulty arises when the nonlinear 

transformation is made from distance space, a space of higher than three dimensions 

in general, into R3. Either the distance bounds must initially be chosen carefully to 

limit the optimized configurations to R3 structures or a supplementary process must 

be devised to embed the distance matrix configurations' into R3. * 
* " i 

e 
\ " A 

There is no obvious way to perform this embedding process optimally (cf, Chap-

ter 4), and the system betiaves essentially as an overconstrained one. The most difficult 

step of this approach is to decide in some rigorous fashion which distance constraints 
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to relax during the embedding process, whether the embedding occurs during or after 

the optimization step. In spite of these obstacles, the meothod shows very promising 
i 

results in the prediction of tertiary structure, and is improving as the properties of the 
•3 

transformation become more familiar, 

Upon repeatedly optimizing the tertiary structure of BPTI, Kuntz et al. [62] 

reported RMSy values of 5.46 ± 0.28 A, employing the method of steepest descent 

combined with the conjugate gradient method. These results corresponded to RMSX 

results of 6.59 ± 0.60 A. Using a Monte Carlo procedure, similar results of 5.48 ± 0.28 

A were obtained for RMSy. However, it is mentioned that the beat results were in the 

range 3.75 - 4.25 A for RMSV errors and 4.8 - 5.2 A for RMSX errors. In this study, not 

only 'were the structures repeatedly generated, but the RMSX errors were calculated 
-» „ 

as well. 

7.3.4 Wako and Scheraga. 

The model of Wako and Scheraga [100,117,118,120] consists of the application of sue-

cessive approximations proceeding from a short-range distance constraint algorithm to 

subsequent incorporation of medium- and long-range interactions, followed by energy 

minimization of the entire molecule. 

For this model, the mean distances dj for all residues separated in primary structure 

by j residues are -determined, with weights w3- determined from their standard devia-

l tions. The values d3 and w3 are determined from the primary sequence by taking into 

account differences between short-, medium- a'nd long-range effects (where the ranges 

are defined to be j < 8, 9 < j < 20 and / > 21, respectively), and also by considering 

the neighbouring residue types. 
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For near neighbour distances, the values of dj and Wj are adopted from the em­

pirical analysis of known protein structures. The penalty function employs empirically 

determined mean values dj> weighted according to their standard deviations: 

1 
w0 = -2 . (43) 

The near neighbour distances also use secondary structure prediction algorithms. 

For medium and far neighbour distances, d3 and uij are mainly determined by 

hydrophobicity and hydrophilicity indices, using the scales of Meirovitch et al. [74,75,76]. 

These evaluations additionally employ empirical mean and standard deviation results, 

which are supplied in linear regression form. 

Other factors, such as disulfide bondsor interactions between nonbonding Cys 

residue pairs or between specific oCys and aromatic residues also contribute. Exact 

distances for specified pairs of residues are also included if this data is considered to 

be obtainable from experimental techniques. 

All of the above effects are incorporated by appropriate choices of dj and w3, which 

vary according to the effects being considered. 

The protein is represented by the coordinate locations of its Ca-atoms, connected 

by virtual bqnds. The coordinates are varied to minimize a function of the form: 

F=EY,Vi(dj-dl,i+i)
2-' (44) 

Possible chain self-intersection fs not accounted for explicitly in the model. In actual 

practice, unfavorable far neighbour contacts were encountered when a two-dimensional 

representation for the protein was used [120], but no chain entanglement was encoun-
? 

\ 
tered on folding in,three dimensions [117,118], 

\ 



108 
i 

For the optimization of the structure of BPTI, several choices for the initial con­

figuration were used. The initial configurations generally were close to that of the real 

structure. For example, the optimization of one structure reduced the RMSy deviation 

from 4.25 to 2.24 A. For this particular case, the general model was supplemented with 

exact distance information on some residue pairs far apart (Argl - Lysl5, 29.80 A; -

Lysl5 - Ala58, 35.12 A) and some pairs close together (Leu6 - Ala25, 5,78 A; TyrlO -

Asn43, 7.99 A; Asn24 - Asn43, 9.26 A) with respect to the tertiary structure. 

l 

Optimization of the penalty function was carried out in Cartesian space. First a 

gradient minimizing routine was used. This routine tended to become trapped in local * 

minima as the structure became more compact. Therefore, tpTrmnimizing procedure 

was changed to a Monte Carlo method at the stage when the excluded volume effect 

became evident. The Monte Carlo method was local, in that it optimized the position 

of each residue sequentially along the chain, taking into account only the distances 

between near neighbour residues. * 

Wako and Scheraga [118] obtained tertiary structure results by folding BPTI from 

several initial conformations, using various constraint combinations. When only pri­

mary structure obtainable constraints plus the locations of the three disulfide bonds 

were used as constraints, the following RMSy and RMSX errors from the X-ray diffrac-

' tion structure were obtained for the folded structures: RMSV — 4.83 A and RMSX ~ 

7.77 A from an initial conformation with an error of RMSy — 5.90 A, RMSy ~- 4.30 and 

RMSX = 5.98 A from an initial RMSy = 21.27 A, RMSy = 4.83 and RMSX « 9.09 

t A from an initial RMSy = 8.10 A, RMSU - 4.43 and RMSX = 9.84 A from an 

initial RMSy ~ 5.80 A and an RMSy s= 4.10 and RMSX = 5.88 A from an initial 

RMSy = 4.25 A. Aggregate statistics on these results would not be meaningful since 
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many of the trial results were folded from conformations similar to that of the real 

structure. 



8 Discussion; 
<? 

Distance constraint models are found to be valuable as reliable predictors of protein 

tertiary structure. The accuracy of resolution attainable by this type of model alone 

is indicated to be in the range of 3 - 5 A error. This is generally considered to be of 

"medium" resolution, intermediate between experimental X-ray crystallography results 

® 

and the results obtained from other types of theoretical models. All that is required for 

input into distance constraint models is the primary structure of a*protein. However, 

the resolution can generally be improved by the inclusion „of constraints representing 

disulfide bond locations or other specific information concerning distances between 

residues that are far apart in the primary "structure. 

Distance constraint models are a relatively quick and inexpensive method of ob-
/ 

c 

taining medium resolution predictions for tertiary structures. For this reason, they 

may be implemented as first approximations to actual tertiary structures, which could 

„ be refined by laboratory techniques such as X-ray studies. Improvements in the res-

olution of theoretical predictor models may be attained by repeated cycling between 

distance constraint models, secondary structure predictor algorithms and methods of 

free-energy minimization. * ° -
8.1 Improvements for the Present Model . » 
Improvements for the model fall into two general categories: parameter resolution and 

o 

computation. 

The nonlinear optimization algorithm may possibly be improved by employing 

* • * new optimization algorithms currently being developed which can utilize quasi-Newton y 

methods (which usually perform better than Newton methods) for large-scale problems 

110 
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such as these. Other algorithms can be explored which can better exploit the special 

structure of distance constraint models by operating in another Euclidean metric, such 

as those employing an L± or Loo norm (cf, Coleman and Conn [24]). These types of 4 

algorithms are relatively new, and as yet'have not been adequately developed to handle 

large scale systems. 

Tlje time required for execution of the algorithm can be lessened by use of ini­

tial configurations that include correct first neighbour distances and other constraints. 

Alternately, initial configurations cam be quickly generated by use of low resolution, 

algorithms such as those outlined in Section 8.2. 

Marginal improvements to the parameter values will come as the database of known 

tertiary structures grows and is analyzed statistically. The parameters can certainly im­

prove if rfewclTenncal or other techniques for obtaining short distance or long distance 

contacts in R3 can be found for far neighbour residues in the molecule. Possible param­

eters of this type that may be accessible from empirical studies alone include interaction 

4 

distances between Cys and aromaticlresidues [117,118], interaction distances between 

pairs of aromatic residues [13] or between pairs of nonbonding Cys residues [117,118], 

or a priori assignment of centroidal point distances to the hydrophobic residues [72,84]'. 

The model in its present fornvcan calculate tertiary structures for much larger 

molecules. On the other hand, it can also be used to predict structures for peptide 
8 

hormones, neurotransmitters and other polypeptides thaf are fragments of protein 

precursor molecules. With some knowledge of spedfteHntramolecular bonding, the 

model can be expanded to calculate structures of broken chain and multiple-strand 

proteins. 
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8.2 Alternative Algorithms for Solution. 
v. 

There are several methods other than nonlinear optimization bjnvhich the tertiary 

structure prediction-problem may be approached. The advantage of these methods is 

the speed in obtaining structures. The disadvantage is that the structures obtained 

are of low resolution (RMSy errors in the vicinity of 6 A) in comparison with distance 

geometry-models (RMSy errors approximately 4 A). 

Some possible approaches that sidestep the difficulties of nonlinear optimization . 

include: 

1. linearization of the objective function and all constraints with respect to the 

Cartesian coordinates; 

2. reduction of the problem to a one-dimensional system by fixing two of the dis­

tance coordinate locations for each residue. For .example, the first neighbo'ur and 

second neighbour distances can be specified initially for each residue, making the 

radial distance from the centroidal point then calculable analytically from the 

J 
hydrophobicity conditions; 

3. optimization of the residues on a three-dimensional integer lattice ("packing the 

snake"). The remainder of the subsection is devoted to a brief outline of an 

implementation of this approach. 

/ 
The "packing the snake" algorithm (M. Yfcas, personal correspondence) exploits 

an important geometrical characteristic of tertiary structure, namely the high and 

effectively-constant packing density of residues in a protein [94]. The high density 

of the packing of the residues varies little from protein to protein. Since this packing 
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density is difficult to achieve^it greatly limits the allowable conformations. The volume 

occupied by sidechains is also restrictive. It is specific for each sidechain and is observed 

to vary by only ahout5%. Therefore, the tight folding of the protein under the excluded 

volume restrictions of the sidechains can be seen to be analogous to a snake that is 

tightly coili ^_ 

Residues that are far apart with respect to primary sequence also tend to be far 

apart physically in R3. This principle has been observed in all globular proteins con­

taining clearly detectable domains [101]. Conversely expressed, the domain structure 

shows a high degree of "neighbourhood correlation", with the distance along the chain 

and three-dimensional distance exhibiting a positive correlation. This observed neigh­

bourhood correlation is probably a consequence of the chain folding process. The 
4 

correlation suggests that a folding chain is analogous to a string that is held at one end 

and allowed to fall down. The resulting coil is not random but shows neighbourhood 

correlation. It does not become entangled and it can be easily unravelled by picking 

up the end. .This concept is confirmed by the absence of "knots" in all protein struc­

tures known thus far, the term knot being used in the everyday sense and not in the 

mathematical sense. This principle can also be utilized in the packing algorithm. 

/ Initial attempts have been made by the author to implement this algorithm on 

a three-dimensional cubic lattice. The positions of the Ca-atoms of a protein are 

optimized on the vertices of the lattice. Each vertex is either occupied or unoccupied 

by a residue. First neighbour residues are denoted by occupied adjacent lattice vertices. 

For all other residue pairs, there is a volume exclusion rule prohibiting them from 

occupying identical or adjacent vertices. For example, this results in second neighbour 

residues that are either 2.0 C«-atom units apart (probability = 0.20) or y/2 units apart 

\ 
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(probability = 0.80). For residue pairs connected by disulfide bonds, the pairwise 

distance is restricted to a range of l.Q to \/3 units. The existence of disulfide bonds 

in a protein can facilitate the folding process by operating as nuclei for the overall 

structure. The centroidal point hydrophobicity conditions are included in the form of 

an objective function to be minimized, under the previously mentioned constraints. 

This method was tested by predicting the tertiary structure for rubredoxin (54 

residues, no disulfide bonds),'using a modified tree-search integer programming opti­

mizer.- The optimized structure contained an RMSy error of 5.37 A from the X-ray 

diffraction structure, with RMSy(4) = 2.05. The optimization process-required less 

than 97 CPU seconds on a CYBER 170-730 mainframe computer. Overall, the mean 

difference in centroidal point distance between the real and optimized residues was 

only 2.14 ± 1.68 A. The mean values for the first, second, third and fourth neigh­

bour distances for the optimized structure were calculated to be 3.80 ± 0, 5.18 ± 0.89, 

7.41 ±1.10 and 8.61 ± 1.92 A, respectively. These statistics compare well to those of 

the real structure, given in Table 9 of Chapter^7.1. 

Present work includes modifying the above problem from one of integer prqgram-

mmg to one of pattern generation. This change should result in a great saving of 

) 
execution time for the algorithm in predicting structures of large proteins. 

8.3 Implications for Future Study. 

Distance constraint models certainly are not as yet optimal with respect to the constraint 

set imposed or to the mathematical form of the problem. All distance constraint models 

must conform to certain conditions relating to their formulation in distance geometry 
0 * 

coordinates and to their inverse mapping into Cartesian coordinates, as discussecfin 

> if 
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Chapter 4. In fact, one could envision a Hilbert space of distance constraint functions. 

The problem would then be to define a set of conditions in order to decide on a function 

that'is "optimal". The work of Chapter 4 is a step toward categorizing the space of 

distance constraint functions. 

= Effects of substitutions, deletions or additions of residues to proteins can be easily 

evaluated by the model. In the present model for example, the protein lysozyme was 

folded with the C-terminal residue omitted from the chain (cf, Chapter 7). It was 

found that this single deletion significantly affected the final structure obtained. 

With improvement in the accuracy of theoretical models, the important relationship 

between the structure and function of proteins can be explored in general for the first 

time. % 

Theoretical aspects regarding evolution versus tertiary structures of proteins can 

be evaluated via the model. This is important for the taxonomy of proteins, in order 

to find evolutionary related proteins, which may perform far different functions at the 

present time. .This research is also important thebretically, in the investigation of the 

relationship between $ie evolutionary rapidly substituting sections of a protein and 

\ , 

their corresponding structures in DNA°[6]. 

With a reliable distance constraint model now available for the prediction of tertiary 

structures using primary structures as the sole input, it is possible to generate an atlas 

of tertiary structures from the existent primary structure tables. There are thousands 

of proteins for which primary structures are known but tertiary structures are unknown. 

Onc<& a catalogue of tertiary structures is generated, the general topologies of folded 
n i 

structures can be investigated. Also, the catalogue of folded structures may be used 

to explore the entire class of primary structures capable of folding into stable tertiary 
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structures, ̂  opposed to the unstable and random coil sequences of polypeptides. 

Perhaps the most important benefit from the cataloguing of protein tertiary structures 

concerns the inverse problem. This involves determining the set of primary structures 

that will fold into a given tertiary structure. As a corollary, it gives the possibility of i j 

inexpensively constructing an artificial protein wjth certain desired properties that are 

present in a natural protein. Once the classes of possible folding chains are known, the 

entire set of primary sequences that can fold to obtain a specified active site may be 

determined. This 'has obvious possibilities in the fields of agriculture, pharmacology 

and medicine. * 

•^b 



9 Appendix: The Mathematical Model. 

In this Appendix are given the details of the mathematical formulation of the distance 

geometry model for tertiary structure prediction. The mathematical representation 

comprises a set of restrictions on the Euclidean distances between the amino acid 

\ 

In Section 9.1, the mathematical notation for the parameters of the model is pre­

sented. Section 9.2 includes the distance coordinate description of the mathematical 

model and its conversion into a penalty function. The mathematical model is designed 

to specify the geometrical characteristics of globular proteins while remaining tractable. 

Optimization of the penalty function is performed in the space of Cartesian coordinates 

by techniques,of nonlinear programming described in Chapter 10. The final sections of 

this Appendix are devoted to derivations of the numerical scalar values or expressions 

for the parameters used in the present model. A summary of the parameter values 

used in the model is given in Table 26 at the end of this Appendix. 

9 .1 P a r a m e t e r N o t a t i o n . 

A protein will be represented by the locations of the Ca-atoms of its constituent 

residues. This simplified representation Is one of the benefits of distance constraint 

models; these models can elicit the complex underlying energetic interactions of the 

atoms of the protein through relatively simple geometric characteristics. Since pro­

teins are non-branching chain molecules, the residues can be numbered sequentially 

from 1 (the iV-.terminus) to n (the C-terminus). . 

Let 

S = { (/, k) ] residue / and residue k are connected by a disulfide bond}. 

117 
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i- The following notation will be used in the description of the parameters of the 

model: 

d\ = mean distance between residues i and * + 1 

^2 = mean distance between residues * and * + 2 

dj — mean .distance between residues t and i + j 

ds = mean distance between residue pairs forming a disulfide bond 

L, = minimum distance between j th neighbour residues for small j , (usually 

i = {3,4» 

U3 = maximum distance between j th neighbour residues for small j 

Ljf = minimum distance between j th neighbour residues for large j , (usually j > 4) 

?! 
Uj<r = maximum distance between j th neighbour residues for large j . 

o 

In the model, the values of the parameters defined above will not be implemented 
' ,' 

• " ' ' . 

as statistips corresponding to the specific protein being folded^ but instead will be 

given as representative mean values and minimum and maximum bounds for the set 

of all globular proteins. Note that there are distinct values for the near neighbour 

minimum distances Lj and for the near neighbour maximum distances Uj for each dif­

ferent amount (j) of residue separation in primary sequence, whereas the far'neighbour 
# 

distance bounds L& and Uff are independent of j . ^ 

V 
r 
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For the Ca-atom of each residue, three variables xt, yt and zt are introduced which 

represent its Cartesian poordinates in R3. Let d,-^ represent the Euclidean distance 

between residues *' and * + jT~*7 

diti+3 = [(*, - xi+3)
2 + (9i - y i + j )

2 f (z{ - zt+3f] " . (45) 

In the model, it is convenient for the centroidal point of the protein, defined by 

equation (l) of Chapter 3.3, to be situated at the origin with respect to a Cartesian 

coordinate frame. This is equivalent to placing a virtual residue at the centroidal 

point of the molecule, and assigning it the Cartesian coordinate representation of 

(xCp,ycp)Zcp) = (0,0,0). Let d,|Cp denote the distance between residue i and the cen­

troidal point of the protein. It follows from (45) that, the Euclidean distance between 

the centroidal point of the protein and any residue with coordinates (a:,-, yt,Z{) is given 

by: —= 

dhcp^(x? + yi2 + z2y. (46). 

As explained in Chapter 3.3, the hydrophobicity rule describes the tendencies for 

each amino acid residue type to be situated in the interior or on the outer surface 

r 

of a globular protein. The following notation will be used to designate the three 

hydrophobicity classes of the present model: 

Jx — hydrophobic — residue tends toward the centroidal point of the configuration, 

j 2 — hydrophilic — residue tends toward the surface of the configuration, 

J$ — ambivalent — residue has no tendency. 

For the model, the residues are divided into the three hydrophobicity classes as follows: 

hydrophobics {Val, Leu, lie, Phe, Met}, hydrophiHcs {Arg, Asp, Glu, Gin, Gly, Lys, 

. \ 

*H. o 
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Pro} and ambivalent {Ala, Asn, Cys, His, Ser, Thr, Trp, Tyr}. Chapter 3,3 explains 

\ 
the basis for categorizing the residue types into separate hydrophobicity classes and 

the reasons for selecting this particular classification for the present model. 

In the model, an "ideal" position for all residues of the hydrophobic class is given to 

be at the centroidal point of the molecule. The parameter D-is'used to denote an ideal 

distance from the centroidal point for the individual hydrophilic residues. The value 

of D is derived in Chapter 9.3 by requiring the average distance from the centroidal 

point for all hydrophilic residues and hydrophobic residues of a protein to be equal to 

T 
a specified semi-empirical value. The ideal positions from the centroidal point for the 

hydrophobic and hydrophilic residues-are not strictly realized in the optimal structure 

of a protein folded by the model. These parameters are only used to evoke the empirical 

trends found for the locations of the residues. 

9.2 The Nonlinear Programming Formulation. 

A specific protein is required to conform to a set of average geometrical characteristics 

found from the class of all globular, proteins. This is accomplished by constructing a 

mathematical model in the form of a nonlinear programming problem, as follows: , 

Minimize * = £ dt>cp
2 + £ (D - rf,,cp)

2 (47) 
tsJi *GJ2 

(the hydrophobicity restrictions), 

subject to: 

£** = o,£» = o,;f>=:o (48) 
» = 1 t = l * = 1 

(centroidal point constraints, forcing the centroidal point to (xcp,ycp>Zcp) = (0,0,0)) 

dt,i+j = dj'ti = l,...,n~j (49) 

n. 
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(jth nearest neighbour constraints, usually j = {1,2}) 

dlk^ds;(l,k)eS . (50) 

, (disulfide bond constraints) 

h ^ dtii+3 < Uj\ i = 1 , . . . , n - j ' (51) 

(minimum and maximum distance constraints for near neighbours: usually j = {3,4}) 

LN <d,,i+3 <UN; i = l,...'in~j • (52) 

(minimum and maximum distance constraints for far neighbours: usually j > 4). 

Thus, given that the constraints are to be satisfied exactly, the optimum value of a 

hydrophobicity measurement, the objective function, is sought. The residues classified 

as hydrophobic are required by the objective function to tend toward the molecule's 

centroidal point and the residues classified as hydrophilic are required to tend toward 

the surface of a sphere of radius D centered at the centroidal point. The residues in 

the ambivalent category are considered to have no preference with respect to the inside 

or the outside of the molecule; therefore, they do not contribute a set of terms in the 

objective function. The sphere itself has no physical significance, as the radius (D) of 

the sphere is chosen simply to reflect the empirical packing density of the residues. 

The hydrophobicity rule is presented as the objective function of the model and 

not as part of the constraint set because the residue types are empirically found to 

only exhibit tendencies for the inside hydrophobic or outside hydrophilic environments. 

The residue types are not observed to be situated at any specified distance from the 

molecule's center ift general. 

ft 
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The centroidal point constraint is satisfied if and only if the centroidal point of the 

protein is situatid at the origin with respect to the Cartesian coordinate representation 

of the residue locations. Since the model is eventually solved as a penalty function in 

Cartesian space, this constraint has the purpose of maintaining a sparse form for the 

Hessian matrix of second derivatives during the optimization process (Chapter 10). 

The j'th nearest neighbour constraints are satisfied if and only if for each pair 

of residues t and * + j , the distance between residue t and residue i + j equals d3, 

the expected average distance between j th nearest neighbours. The minimum and 

maximum distance constraints for near neighbours are satisfied if and only if for each 

pair of residues t and i + j separated by' a specified number of positions (j) in primary 

sequence, the distance between residue i and residue * + j is between the lower bound 

L3 and the- upper bound U3, the expected extrema for j th nearest neighbours^ The 

minimum and maximum distance constraints for far neighbours are satisfied if and only 

if for each pair of residues i and i+j for any "large" j (i.e., j > 4) the distance between 

residue i and residue i+j is between LN and UN, the absolute lower and upper bounds 

applicable to all far neighbour distances. 

Although the nonlinear programming model as given by equations (47) - (52) is 

naturally expressed in terms of distance space coordinates {<£,t+j}, it is more efficient to 

solve the model in the space of Cartesian coordinated (•cf, Chapter 4.1). Therefore, each " 

distance diti+J in the model is transformed into its corresponding Cartesian coordinates 

by equation (45) before beginning any optimization steps. 

The model is solved by transforming the constrained nonlinear optimization prob­

lem into a series of unconstrained problems via a penalty function approach, A 
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quadratic loss penalty function is used in the present model, and is given as follows: 

n • Minimize p(x, p) = pg „ (53) 

+ j Y* x% j + ( £ y, J + f £ Z{ J I centroidal point penalties 

2 n-j _ ( 

+ ]T^ £(<*/ — dit%+3)
2 < j th nearest neighbour penalties 

+ ^ ( is — dijfc)2 < disulfide bond penalties 
(MOes I 

4 n - j ( 
+ £ £ [min(0, Uj — d,*iI+J-)]

2 < near neighbour maximum distance penalties 

+ ]T^ /J[min(0, C/jv — dti,+j-)]2 < far*neighbour maximum distance penalties 
j>4i-i [ ' 

4 n-j ( 
+ £ £ [min(0, rf,-,i+j' — Lj)]2 I near neighbour minimum distance penalties 

i=3 .=1 ' ( 

n-j ( 

+ £ y^[min(0, d,ti+j — Ljf)]2 I far neighbour minimum distance penalties. 
j>* «'=i { 

As with most other penalty methods, the overall solution for the original uncon­

strained problem, given by equations (47) - (52), is found by alternately, minimizing 

p(x} p) for a fixed value of the scaling parameter p and reducing p. In practice about 

four calls to the Inner Loop algorithm are executed by Outer Loop to perform this re-
a 

peated minimization (cf, Chapter 10.7), reducing p to a tenth of its former value each 
~y 

time.~AjT/i —* 0, the local minimizers of p(x, p) that are sufficiently close to satisfying 

the constraints will approach local solutions of the constrained nonlinear programming 

problem. 

A main reason for choosing this penalty function approach is that the Hessian (i.e., 

the matrix of second-order mixed partial derivatives) of p(x, p) has a block structure 
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which is sparse. The sparsity of the Hessian is ensured in this case by requiring the 

Cartesian coordinate representation to have its origin situated at the centr^difl point 

of the protein. Without sparsity in the Hessian, the practical usefulness of any pro-
l 

posed algorithm would be severely restricted because of the data storage limitations of 

computers. 

Quadratic loss penalties are chosen for the present model, as opposed to quartic 

loss penalties used by some other distance constraint models [62,63,119]. Quartic lohs 

penalties may be written in the following general form: 

£ £ $ - < , + J ) 2 - " (54) 

« _ - * 

Quadratic loss penalties are found to result in a smoother penalty'function; quartic loss 

penalties cause the resulting penalty function to possess sharper contours and stronger 

local minima in the vicinity of a solution, which can hinder or trap an optimization 

procedure. 
9 . 3 / x f e e ^ a l u e s ^ a £ J ; h e P a r a m e t e r s . 

<*. 

The numerical-values of the parameters used in the model are presented in this section. 

d The reference sources or required derivations for the parameters are also shown here. 

For a general exposition of the parameters used in distance constraint modelling, the 

reader is referred to Chapter 3. 
€> 

9.3,1 . Near Neighbour Parameters.1 

Possible near neighbour distance parameters for use in distance constraint models are 

shcSwn in Table 21, including the relevant parameters used in the present model. 

) 
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In the present model, the near neighbour parameters include mean distances be­

tween first neighbour and second neighbour residues, and extrema bounds for third 

and fourth neighbour residues. Note that for the first neighbourdjstances, the mean, 

the maximum and the minimum are>effectively equal. For second neighbours, the use* /"" 

of only maximum and minimum boundVmay be a more logical choice for parameters, 

but the mean distance is used because it imposes a much stronger constraint on the 

degrees of freedom of the system, allowing the system to be "suitably constrained" (cf, 

Chapter 4). This condition may be relaxed when additional strong conditions on the 

residues can be imposed, such as the acquisition of chemically-derived hydrophobicity 

conditions. Parameters for the mean third neighbour and fourth neighbour distances 

are not used. Instead, the distances between thikl and fourth neighbSur residues are 

constrained to°be between specified minimum and maximum bounds. 

Distance 

First neighbour 
Second neighbour 
Third ne:ghbour 
Fourth neighbour 

Mean 
Value 
3.80° 
5.95* 
7.24* 
8.77* 

Standard 
Deviation 
* * 

- 0.63* 
1.82* 

" * 2.44* 

> 

Minimum 
Bound 
3.80° 
4.7* 
4.5* 
4.5* 

Maximum 
Bound 
3.80a 

7.1° 
10.7C 

13.9C " 

Statistical information for the distances (in A) between near neighbour C^-atoms. The 
sources used for the Table are: (a) Pauling et al. [81], (6), Goel and Y£as [46], (c) 
Chapter 11.4. , * 

Table 21: Near Neighbour Parameters for Distance Constraint Models. 

, As indicated in Table 21, the first neighbour distance parameter originates from the 

studies of Linus Pauling and his group [25,81], who were the first to study the details 

of polypeptide structures. 

"'1 • • 
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The values for the near neighbour maximum bounds are obtained theoretically 

in Chapter 11. Starting with a set of*standard bond angles and lengths [89] and 

restrictions on the bond rotations [90,91,92,99], strong upper bound estimates for these 

maximum, distances are computed. These upper bounds are used as parameters in 

the present model. Estimates for near neighbour mean values and minimum bounds 

are also calculated theoretically in* Chapter 11. However, the lower bound estimates 

calculated for the minimum distances were found to be too weak to be employed as 

parameters in the model. The theoretical mean value parameters for near neighbour 

distances were reasoned to be largely dependent upon the types and proportions of 

secondary structures present* within the individual proteins. It was decided to defer 

the implementation of these mean value parameters until more reliable estimators are 

developed for the proportions or primary sequence locations of the secondary structures. 

For the present mddel^mean value parameters are employed for the 'ftrst neighbour 

and second neighbour distances. The numerical values for these parameters are ob­

tained from the empirical results of Goel and Yeas [46], who calculated mean distances, 

minimum values and maximum values for the first to fourth neighbour Ca-atoms in a 

set of twenty globular proteins. 

The model also .employs empirical results for near neighbour minimum distances. 

Using the identical set of twenty proteins as that of Goel and YSas [46], the mini-

mum distance parameters were obtained by rounding from the set of near neighbour 

distances: the smallest 1% of the distances found between j th neighbours were dis­

carded as possible measurement errors from the X-ray diffraction technique, and the 

next smallest value chosen to act as the parameter. 
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9.3.2. Far Neighbour Parameters . 

Unfortunately, individual far neighbour parameters cannot be effectively included for 

each amount of residue separation in primary structure. The mean value for the set of 

all far neighbour residue pairs separated by some fixed number of residues shows a high 

degree of variability both within a single protein and between proteins. Therefore, mean 

value parameters for far neighbour distances will not be used in the present model. The 

only far neighbour parameters used in the model are absolute minimum and maximum 

bounds on far neighbour distances. These parameters are independent of the amount 

of separation of thchfesidues with respect to primary structure. ° • „ „ t 

The mihimum value parameter is obtained through Havel et a\ [50], who reasoi^d 

that 5 A is a commonly observed minimum Ca-Ca distance in proteins and hence 

an effective excluded volume diameter for a protein residue. Far neighbour minimum 

value constraints are a necessity in distance constraint models in order to prevent self-

intersection of the protein chain. , 

The parameter CTjy was found semi-empirically during this research in order to find 

a value for the maximum distance for pairs of residues in a protein of length n. This 
? 

4 

maximum distance is a function of thesize of the protein, and replaces the upper bound 

scalar estimates [50] or protein-specific values [46] of previous models. 

The parameter for the maximum far neighbour distance Uff is now derived. Using 

all possible pairs of <7a-atoms in each protein, the'maximum far neighbour'distances 

between residues were found for the same set of twenty proteins as that of Goel and 
IS 

^ Yfcas [46]. An analysis was performed on these maximum distances, where the Unear 

least-squares regression equation and the linear correlation coefficient were calculated. 

y 

- \ 
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The results were as follows: 

y = 9.91na - 8.75 . (55) 

(correlation: r = 0.93) 

where y represents the maximum pairwise distance between Ca-atoms in a protein of 

length n. 

This type of constraint may nqt be cost effective in distance constraint models that 

also include explicit hydrophobicity constraints, since there are of the order of n2 pairs 

/ 
of far neighbour residues, and the hydrophobicity conditions (the objective function of 

the present model) will already force the tertiary structure to have a globular shape. 

At any rate, the constraint may easily be removed from the model by means of a simple 

binary flag in the computer implementation. 

The parameters used in the far neighbour distance constraints of the present model 

are shown in Table 22: 

Distance 

Far neighbour 

Mean 
Value 

highly variable 

Minimum 
Bound 
5.00a • 

Maximum 
Bound 

(9.91na - 8.75)* 

Statistical information for the distances (in A) between far neighbour Ca-atoms. Let n 
represent the number of residues in the protein. The value for the minimum distance 

\ bound is independent of n. The sources used for this Table are: (a) Havel et al. [50], 
(b) Chapter 9.3. 

Table 22: Far Neighbour Parameters for* Distance Constraint Models. 
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9.3.3 Hydrophobicity Parameters . 

The hydrophobicity parameters used in the present model are given in Table 24. In the 

model, the ideal position for all hydrophobic residues is given to be the centroidal point. 

The parameter D, an ideal distance from the centroidal point for hydrophilic residues, 

has been calculated using semi-empirical results (Table 23) for the average distances of 

the residues from the centroidal point of the protein. The value of D, a function of the 

number of residues of the protein, is determined by requiring the average centroidal 

point distance for the hydrophilic and hydrophobic residues to equal a corresponding 

semi-empirical value. «v 

Goel and Y£as [46] classified three hydrophobicity categories for the residues empiri­

cally (Table 3 of Chapter 3.3), according to their observed distances from the centroidal 

points of proteins. As explained in Chapter 3.3, this "geometrical hydrophobicity" clas­

sification was not explicitly calculated from physicochemical properties of the sidechains 

as were the classifications from several other sources [16,17,34,55,59,64,80], but best 
'4 \ 

describes the empirical hydrophobicity characteristics of known protein tertiary struc­

tures. The average distance of each kind of amino acid from the centroidal point was 

calculated for twenty-one protein structures, and the residues were classified on the 

basis of differences in the average distances from the centroidal point and consistency 

of behaviour. Geometrically, Gly and Pro were found to behave as hydrophilic residues, 

due to their abundance in external turns. The residue His showed erratic behaviour 

with respect to the centroidal point, and so it was classified as ambivalent.. 

Goel and Y£as found a" very high correlation between the cube roots of the number of 

residues in the proteins and the mean hydrophobicity class distance from the centroidal 
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points; therefore, they fitted linear regression equations by the method of least squares 

to express the relationship between these two variables. Their results are used in the 

calculation of the parameter D in the present model and are consequently shown here 

(Table 23). 

Class Correlation 
Hydrophobic 
JHydrophilic 
Ambivafent 
{G>,Pro} 

All residues 

-2.52 
0.31 
-2.02 

— 3.57 
-0.89 

2.74 
2.80 
3.02 
2.23 
2.80 

0.92 
0.97 
0.96 
0.88 
0.98 

Linear least squares regression equations for the various hydrophobicity classes of amino 
acids. Let y=a + bn a, where y is the mean distance of the Ca-atoms of the class from 
the centroidal point in A, and n is the number of residues in the protein. The amino 
acid types.that constitute each of the three hydrophobicity classes are given in Table 3. 

Table 23: Regression Statistics for Hydrophobicity Classes of the Amino Acids (from 
Goel and YSas 1979). 

The parameter D is estimated using the expression of Goel and Yfcas (Table 23) for 

the mean distance of any residue frqrft the centroidal point for a protein of length n\ 
f 

y = 2 .&W - 0.89 (56) 
^ 

(correlation: r = 0.98). 

If it is assumed that hydrophobic residues (class J\) have a tendency toward the cen-

troidal point (i.e., to y = 0) and the hydrophilic residues (class J2) tend away from the 

centroidal point (i.e., to y = D), then for the residues in classes sTi and J2 combined 

to satisfy their mean distance formula, it must be that: 

ni + n2 
D = 

n2 

-(2.80U3 - 0.89), (57) 



if 

where the class J i contains rrrresidues and class J2 contains n2 residues of the proteiq' 

The value of the parameter D, then, is chosen to elicit the hydrophobicity rule of 

"hydrophiHcs out, hydrophobics in", while causing the protein to* conform to a desired 

volume (generated semi-empirically). The close packing of residues is known to vary 

little from protein to protein [94], This principle is envoked in deriving the equation°(57) 

for D, and is reflected in the high correlation coefficient found for the relationship (56). 

Class Ideal Distance from Centroidal Point 
Hydrophobic * 0.00 
Hydrophilic * ^ ( 2 . 8 n 3 _ 0 8 9) 
Ambivalent t> ' No tendency 

The model parameters for "ideal" distances (in A) of "the hydrophobicity classes from 
the centroidal point of the protein. These parameters will not be satisfied exactly 
upon optimization of the model algorithm, but instead represent tendencies for the 
various residues to be situated close to, or away from, the centroidal point. Let ni and 
h2 represent the number of hydrophobic and hydrophilic residues, respectively, in a 
protein of total length n. The hydrophilic class parameter used in this Table is derived 
in this section, using the results from Goel and Yfcas [46] shown in Table 23. 

Table 24: Hydrophobicity Parameters for the Distance Constraint Model. 

The hydrophobicity rule is presented as the objective function of the nonlinear 

programming formulation of the present model. This means that the residues of a , 

protein will attempt to reach the centroidal point distances given by the parameters 

of Table 24 as closely as possible, such that the other model constraints are satisfied 

exactly. These "ideal3 centroidal point distances are not actually realized in the final 

folded structure of a protein. 

The objective function represents an idealization of the hydrophobicity rule, even 

to the extent of being chemically inaccurate. Chemically, the rule follows from the 
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polarity of the sidechains of the residues; nonpolar sidechains seek the hydrophobic 

interior of the globule (not the centroidal point) and the polar sidechains seek the 

aqueous environment at the protein-water interface (not the surface of a sphere of 

radius D). However, A e objective function in its present form can mathematically 

reflect the empirically found hydrophobicity tendencies of the residues in terms of 

pairwise distances. This effects the hydrophobicity rule in a much simpler form than 

one which would be obtained by chemical considerations. 

The artificial construction of the sphere of radius D centered at the centroidal point' 

avoids the difficult problem of attempting to define a "surface" for a globular protein, 

an imaginary shell separating an "inside" from an "outside" of the molecule. Proteins 

'J / really do not possess.anything that resembles a surface. Methods for geometrically 

defining a surface for a protein in order to empirically assign residues to an inside or an 

outside of a protein of known structure- [65,102,124] tend to be difficult and somewhat 

arbitrary. 
1 ' * 

As a final note, it has been empirically determined that the N- and C-terminal 

residues of globular proteins behave as hydrophilic, irrespective of the type of ammo 

acid [63]. In respect for this property, the distance constraint models of Kuntz et al. 

[63], Goel et al. [45] and Sanati [98] reclassify the terminal residues of the chain 

A (and sometimes their nearest neighbours) as hydrophilic, regardless, of their original 

hydrophobicity classes. These reclassifications are not carried out in the present model. 

It was found duringthe course of experimenting with the model that better results in 

RMS error were obtained by not separately reclassifying these residues, and that these 

residues tended generally to situate on the outside of the folded protein in any event. 

This result is due in part to the hydrophobicity condition being implemented as the 
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objective function in the mathematical model. The observed centroidal point tendency 

for the iV- and C-terminals appears to be an artifact of the folding geometry and not 

an actual alteration of the hydrophobicity characteristics of the residues. 

9.3.4 Disulfide Bond Parameters . 

Disulfide bonds are covalent cross links between pairs of Cys residues. They are 

technically not part of the primary structure, but can be readily found by chemical' 

means. 

Goel and Y£as [46] used a set of twenty disulfide bonds from six proteins in order 

— to calculate empirical statistics for <7a-atoms of cysteine residues linked by disulfide 

bonds. Their results are shown in Table 25. Thornton [114] subsequently found similar 

, statistics for a larger database of disulfide bonds. He found that, within the set of 

all proteins of known structure, there were fifty-five independent examples of disulfide 

bridges, from twenty-eight proteins. Omitting those disulfides from proteins with very 

similar structures, he found statistics for the thirty remaining disulfide bridges of known 

geometry. These statistics are also given in Table 25. 

The present model will have the option to use a mean value distance parameter for 
if 

Ca,-atoms of disulfide-bonded Cys residues. The mean value of 5.69 found by Thornton 

[114] will be used for this purpose since it represents the stronger empirical finding. It 

should be noted, however, that the model is not particularly sensitive to the value of 

this parameter. , 

If the pairwise distance dtli+j between any two specific residues t and t + j of 

a protein can be determined with some accuracy by chemical or other means (cf, 

r Chapter 3.4), their tertiary separation can be easily included in the mathematical model 
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Reference ' Mean S-S V' Standard Minimum Maximum 
Value Deviation Distances* Distance 

Goel and YSas [46] 5̂ 46 0\80 3.87 • 6lJ2 
Thornton [114] i.„ < 5.69 0.76 4.6 7.4 

Statistical information for'the distances (in A) between C«-atoms of pairs of Cys 
residues participating in disulfide bonds. In the model of this thesis, the mean S-S 
value of 5.69 from Thornton [114] is employed. 

Table 25: Disulfide Bond Parameters for Distance Constraint Models. 

w 

by substituting the value diti+j for the disulfide mean value ds in a disulfide mean value 

constraint. The disulfide bond constraints in the model may then be envisaged as the 

general store of extra-primary information. 

"~~ if 

9.3.5 . Summary of Parameter Values. 

The values of the parameters used in this model are given in Table 26. When the value 

for each parameter is decided upon, the question arises whether to attempt a theoretical 

derivation from first principles or to estimate the value statistically from a database of 

the known tertiary structures of proteins. It is argued in Chapter 11 that theoretical 

calculations are valuable in estimating upper bound distance parameters, whereas it is 

most reasonable to estimate mean value and lower bound distance parameters semi-

empirically. This method has been followed, and the calculated theoretical results from 

Chapter 11 are used along with the empirical findings of Pauling et al. [81], Havel et al. 

[50], Goel and YSas [46] and Thornton' [114]. 
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Mean value parameters: 

Lower bound parameters: 

Upper bound parameters: 
t 

Centroidal point 
distance parameter: 

di = 3.80 

L3= 4.5 

ET8- 10.7 

l(2-

d2 = 5.95 

£4= 4.5 

J74= 13.9 

80»3 - 0.89) 

ds = 3.69 

LN= 5.0 

tf>= 9.91nt -

& 

-8.75 

N 

The values of the parameters used in the mathematical model. The value for di is 
obtained from the polypeptide structure determination of Pauling et al. [81]. The values 
for d2i Lz and Li are taken from the semi-empirical results of Goel and YEas [46]. The 
value for Ljq is obtained from Havel et al. [50]. The value for ds is from Thornton [114]. 
The values'for Uz and U4 were calculated theoretically by the author from standard 
chemical bonding considerations (Chapter 11), using normal Ramachandran limits on 
the dihedral angles (if>,<f>). The values for Ujf and D are derived by the author in 
Chapter 9.3, using semi-empirical methods. The notations jii and n2 represent the 
number of hydrophobic and hydrophilic residues, respectively, in the protein of length 
n. 

Table 26: Parameter Values for the Present Model. 



10 Appendix: The Algorithms. 

The optimization method employed in this research was specifically designed for this 

problem by the author in collaboration with P.F. O'Neill of the Department of Mathe­

matics, Statistics and Computing Science at Dalhousie University (Foster and O'Neill 

[41], unpublished). The optimization method minimizes the penalty .function p(x,p) 

given by equation (53) of Chapter 9.2. The method is derived from two of the fun­

damental algorithms for minimizing a continuously differentiable function: Newton's 

method and steepest descent. The reader is referred to a standard text such as Gill and 

Murray [43] or Fletcher [39] for a more detailed discussion of these techniques. 

It was found during the course of the research that the large-scale nature ,of the 

present problem limited the effectiveness of the current general purpose algorithms 

available for nonlinear optimization. If second order information is to be utilized, as 

in the case of quasi-Newton algorithms, the computer storage of the matrix of second 

derivatives quickly becomes a difficult issue. If the second order information is not 

exploited, as in the steepest descent algorithm or Monte Carlo methods, the conver­

gence rate will be slow or nonexistent and execution time can become prohibitive to a 

solution. Exact penalty function methods (cf, Coleman and Conn [24]), although not 

requiring second derivative calculations, generally entail a great deal of computer space 

for storage of the active constraint locations and gradients. -Therefore, an algorithm 

was developed in order to combine efficient second order convergence properties with 

low storage requirements, ' ' ° 
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10.1 Notat ion. 
3 

i c . „ 

In the notation used to describe the algorithms, iteration counters .appear as super-
l% 

scripts. Thus, xk is the vector x at iteration k and not the .scalar x to the power k. In "," r° 

each case, the algorithm is-given to minimize /(*)-where x e J?" and /(a:) G j?1. The 

notation V/(x*) refers to the vector of partial derivatives of / evaluated at a;*; H(xk) ; 

refers to the Hessian matrix of -secodSr order mixed ..partial derivatives of / evaluated 

y" • ^ ,̂ ft 

*„ ' « • * 

Let n refer to the number of residues in-a,protein" to be folded. Then, the number 

of variables to be optimized is 3 x n when the protein is represented by the Cartesian 

coordinates of its Ca-atoms. " ' 
i • * r " 

10.2 Newton ' s Method . " " • " 

Newton's method is based on a quadratic model. A Taylor series expansion of f(x) 

about a;*, truncated after the quadratic term, is used to approximate f(x). In this way, 

local second order information from the Hessian matrix (H) of second partial derivatives 

can be utilized. The-fcst and second partial derivatives, for the terms comprising the 

penalty function of the model can quite easily be calculated explicitly and therefore, 

exact formulae are used for all required derivatives in the program. 

Algorithm NEWTON: 
•0 

I * 

step (1). Input »°. Set &<-0. 

i, 
step (2). Solve H(xk)d = -Vf(xk) for d. 

si 

step (3). Set xk+l<~xk + d. 

Set Jb*-Jb + 1. 
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I- <i$ 

step (4). If Vf(xk)^0, stop; ,_ > . *• 

otherwise, go to step (2). , „ ' > \ -

(In„practice,"terminate when |]V/(a;*)|| < e). , „ 

° Thejsystem o£ linear equations at step (2)v is referred to as the Newton equations 

case, The search vector d is called the Newipji directionvor Newton step. In thefpresent c 

,'P ^b,e 3 x n vector xk is the representation of the tDartesian coordinate locations for the 

0 O H p * 

Ca-atpms of a protein at iteration k. " „ 
i ti / o 

The advantage of Newton's, method is a quadratic rate'of convergence in the neigh-
f « „ 0 , 

_bourhoodJof a strong local minimizer. There are several disadvantages, however: 

1- +he sequence of iterates may not converge; 

% the algorithm is undefined if H(xk) is singular; 

. a ^ * u & n » i , 

„ ' ' 3. the vector dmay not be a descent direction; hence, the iterates may converge to 

••"" a maximum or to a saddle point ancLnot to a minimum; »; 
0 ; * " B „ 

4. a 3n X 3n, system of linear equations must he solved at eacj* iteration. 
* r, 

•3 t ' 

, 10^3 ^Steepest Descent M e t h o d . .* _. 

Algorithm STEEPEST DESCENT:" u « 

s t e p (1 ) . Input 9JC°, Set k<-0. , <& 
. ; ~" ] * ' "' ""- . - ", 

s t e p ^ y . Set d<- - Vf(xk). ' '• ^ - ' 

step <3). Find A such that f(xk+ Ad)' << J(xk). • • 

- step (4). Set xk+1^-xk + Xd. , s « . ' " , , ' . 
<• " * i "" 

Set fc<— fc" + 1 . " " . »° . , '.*-• 
n * i «. 

I * "* _ * _. ^ 

* • • • , • V 
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step (5). Jf Vf(xk) = 0, stop; 

otherwise, go*to step (2). 
f 

(In practice, terminate when ||V/(a:*)]| < e). 

In the present model, a cubic Knesearch algorithm is implemented to calculate the 

steplength A at each iteration. To guarantee that f(xk + Ad) << f(xk), the Armijo-

Goldstein conditions [47] are applied: ^ , 

' Find A such that f(xk + \d) < f(xk) +^cXVf(xkfd and V/(a;* + Xdfd > 

pVf(xkfd, where a € (0, A) and p € (a, 1). 

\ The steepest descent method has several advantages: 

V 
1. the sequence of iterates always converges; t 

2. the algorithm is always defined if / is/iontinuously differentiable;. 

3. the vector d is always a descent direction; 

4. there are relatively few arithmetic operations per iteration. -

The disadvantage of the steepest descent algorithm is that it has only a linear 

rate of convergence in the neighbourhood of a solution. In fact, this method usually 

shows oscillatory behaviour in the vicinity of a solution, and round-off effects can cause 

termination before the solution is reached. 

Thus, if xk is close to a minimum, Newton's method will exhibit a much superior 

rate of convergence than the steepest descent method. If a:* is not close to a minimum, 

Newton's" method may not offer a stronger convergence and will be muchmorV expen-

sive to calculate per iteration. The obvious strategy is to use steepest descent as long 

as xk appears not to be in the vicinity of a minimum (i.e., if |[V/(a:*)|| is "large"); 

( 
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otherwise, use Newton's method. This strategy can be refined, however, by using an 

approximation of the Newton direction and allowing the1 accuracy of the approximation 

( 
to increase as a minimum is approached, thus decreasing the average number of calcu-

lations per iteration. Furthermore, it is desirable to compute the approximate Newton 

direction in such a way that the sparsity of H can be fully exploited . 

10.4 T r u n c a t e d - N e w t o n M e t h o d . 

The "refined strategy" given above jtas been called a "truncated-Newton method" by 

Dembo and Steihaug [33], who dispuss its properties in detail. T,he essential reasoning 

behind the, truncated-Newton algorithm is° that the complete solution of the Newton 

equations at each iteration is expensive to compute and is not expressly required when • 

far from a solution. In large-scale problems such as this, the Newton equations must 

be solved by means of an iterative method due to computer storage limitations In 

this event, there is a trade-off between the amount of accuracy with which the Newton 
4 A 

equations are solved and the execution time used to compute a search direction. In 

the truncated-Newton method, imprecise solutions are found for the Newton equations 

using an iterative method, in order to find an acceptable approximation for the Newton 

direction. The accuracy of these solutions is gradually increased as the algorithm 

approaches an overall solution. 

The truncated-Newton strategy is implemented by a modification of the algorithm 

NEWTON at step (2). The second step of algorithm NEWTON is replaced by: 

step (2). Apply an iterative method to solve the system of linear equations 

H(xk)d=-Vf(xk). 

If ||jET(sc*)d* + V/(a:*)|[ < 7fc||V/(a:*:)[| at iteration t of the iterative method for 
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some constant 7* > 0, terminate the iterations and set d-t—d*. 

If Vf(xk)Td < 0, accept d as a useable approximation of the Newton direction; 

otherwise set d* V/(a;*) and perform a steepest descent iteration. 

The value of the scalar 7* in the above is chosen to be 

7* = i r d n ( £ j V / ( « * ) | | ) . 

o ° 

When far from a solution, [|V/(a?*)|| is large and hence it is inexpensive to compute 

an acceptable ^approximate direction d. However, as a minimum is approached, the 

sequence {7*} forces the approximate solution of the Newton equations to become 

increasingly accurate." 

There are additional safeguards that are observed in the truncated-Newton al­

gorithm. If at iteration i of the iterative method used to solve the Newton equa­

tions there is encountered a direction of negative curvature in the update for d* (i.e., 

cf M(xk)dt < 0), then the iterations terminate. The existence of such a direction 

implies that / is not convex in the neighbourhood of xk and therefore, the Newton 

direction may not point«$oward a local minimum. In this case, the current estimate 

d* is a useable descent direction [33], although it does not constitute a proper Newton 

step and the linesearch must be implemented to estimate a proper step size. In order 

to guard against nonconvergence of the iterative scheme, a maximum bound is placed 
v 

on the number of iterations allowed. 

10.5 Conjugate Gradient Method, 
4 

The essence of the approximation technique for finding the Newton direction is to use 

an iterative scheme for solving the Newton equations and to terminate the iterations^ 

% t 
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when the trial solution is either' a sufficiently good approximation or reaches a direc­

tion of negative curvature. In the present approach, a conjugate gradient algorithm 

has been implemented as the iterative scheme for solving the^set of linear equations. 

The conjugate gradient method was chosen because of its robustness, low storage re­

quirements and desirable convergence properties. Also, it is well-suited for use with the 

truncated-Newton method because it minimizes the quadratic approximation of f(x) 

over the subspace spanned by the directions that are generated. The reader is referred 

to Gill and Murray [42] for more details. Note that the conjugate gradient method 

was employed only for solving the linear Newton equations H(xk)d = ~Vf(xk), and a 

conjugate gradient algorithm was not used to solve the general nonlinear programming 

problem." 

Let H(xk), Vf(xk) and 7* be'denoted by H\ V / and 7, respectively. For each k, 

the maximum number of iterations (denoted by 1) permitted in the conjugate gradient 

algorithm is denoted by maxit. 

Algorithm GNJGRD (conjugate gradient method). 
c 

step (1). Set d°*-0, r°<- - Vf, p°<-r°, 8°*-roTr°, t<-0. 

step (2). Set qt-^-Hpi. 

•T • • I p^ if t = 0 
If P* 3* < «£% set d<— < \,- , . and stop, (p1 is a direction of negative 

curvature); 

otherwise, go to step (3). 

step (3)^Set a ' ^ - t r ' V j / f p ' V ) , dl+1*-dt + «»>*', r'^t-r1 - <*y. 

If ||r'+1 | | < 7||V/||, set d<~d*+1 and stop, (cf is an approximation of the Newton 

[ 
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I 

direction); 

otherwise, go to step (4). 

step (4). Set/3'V(r»+irr*+1)/(r''Tr*), j)'+1^-r'+1 + /3y , 5»+l
<-(r'"+lTr«'+1) +/3'^'5«'. 

Set i+—i + 1. 

If i < maxit, go to step (2); 

otherwise, stop. 

A sufficient condition for convergence of the algorithm CNJGRD is that H is posi­

tive definite. However, the algorithm may converge even if this condition is not satisfied. -

To prevent infinite cycling in case of nonconvergence, no more than maxit iterations are 

allowed to be performed. The truncated-Newton strategy rarely permits the number 

of iterations, in CNJGRD to reach maxit — 3 x n in practice. « 

10.6 Solving t h e N o n l i n e a r P r o g r a m m i n g P r o b l e m . 

The nonlinear programming problem* is solved by converting the objective function and 

constraints into the penalty function p(x,p), which allows the constrained problem to 
~> n o i 

be solved by the use of an unconstrained algorithm. The overall solution is obtained 

by performing several iterations wherein first n(x, p) is minimized for a fixed value of 

p and then p is reduced in value. If the starting point (a;0) is sufficiently close to a 

constrained local minimum df the nonlinear programming problem, then as p —*• 0, the 

sequence of points thereby generated will converge to a constrained local minimum. 

The truncated-Newton procedure will always converge to a local minimum of the 

penalty function. However, unless x® is sufficiently close to the set of points which 

satisfy the constraints of the nonlinear programming model, it may not converge to a 
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point which satisfies the constraints. 

10.7 Outer Loop Algorithm. 

An algorithm called Outer Loop is employed to control the reduction of p and to test 

for convergence. Outer Loop calls another algorithm Inner Loop that minimizes p(x, p) 

for a fixed value of p. 

Let m be the maximum number of iterations of Outer Loop; typically m = 4 or 

f 
m — 5 Let ei, e2, ..., e^ be vectors containing* stopping tolerances for each successive 

call to Inner Loop. Let x° be the starting point (i.e., the initial configuration). Let 

S be a tolerance for V / which controls when Newton steps are to be attempted. Let 

newt be a binary flag which allows Newton steps to be performed only on the final call 

to Inner Loop. Let j be the iteration counter-for the number of Inner Loops. 
a 

Algorithm OUTER LOOP: 

step (1). Input m, e., e2, ..., em, x°, S. 

Set ji— 1, p<— 1, newt *—false. 

step (2). If j = m, set newt *—true. 

step (3). Call Inner Loop with e = €j. 

step (4). Set x}'+1*-x*, j*-j + 1. 

step (5). If j > m, stop; 

otherwise, set p*—p/10 and go to step (2). 

Due to the efficiency of the steepest descent algorithm away from tKe^neighbqurhood 

of the optimum point, the truncated-Newton method is used only for the final iteration 
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of the Outer Loop algorithm in the current version of the model. In all preceding Outer 

Loop iterations, steepest descent is employed exclusively. Thus for all Outer Loops 

except the last, the optimization is continued only until a neighbourhood of a p(x, p) 

minimum is reached. It was found that further reduction of p(x, p) in these early outer 

loops does not give a significant difference in the coordinates of x*, and is not worth -

the expense. The final Outer Loop iteration is continued until the truncated-Newton 

method converges to a strong minimum. 

10.8 Inner Loop Algorithm. 

For a fixed value of p, let f(x) = p(x,p). Algorithm Inner Loop solves the problem 
i 

of minimizing f(x), using a combination of truncated-Newton and steepest descent 

methods. The test | |V/| | < S is used to determine when a neighbourhood of a local 

minimum is reached, (i.e., when it is appropriate to attempt truncated-Newton steps). 

In practice, however, for all the optimizations whose results are reported in Chapter 7, 

the truncated-Newton steps are attempted only in the final iteration of the Outer Loop • 

.algorithm. That is, newt = false until the initiation of the final Outer Loop iteration, 

when newt .= true. * 

The algorithm Inner Loop is given' by means of a flow chart, labelled Figure 16. 

.9 Compact Storage of the Hessian. 

The design of the penalty function is such that the Hessian is sparse. This is of practical 

necessity since the full storage and manipulation of the 3n x 3n matrix even for an 

average-sized protein would not be poss ibles mdst mainframe computers. 

Due to the simple form of the penalty function, it is possible to calculate explicitly 

all the terms for the Hessian matrix. Because the" centroidal point of the configuration 

- \ 
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call CNJGRD 

x1*1- xk +ad 
k - * +"1 f 

a- 1 

^ 

Stop 

3" 

I .—**__ 

Find a *uch thai 
/ ( * ' + ad) « / ( * * ) 

X 

Figure 16: Flowchart of the Inner Loop Algorithm. 
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Figure 17: The Nonzero Hessian Matrix Elements. 

was required to lie at the origin in R3, the hydrophobicity conditions give .rise to 

nonzero Hessian elements only in a pattern of 3 x 3 blocks along the main diagonal. 

The constraint that forces the centroidal point to lie at the origin results in nonzero, 

but constant, terms for every third diagonal of the Hessian, and zeroes elsewhere; 

however, none of these elements need to be stored explicitly. (The nonzero entries are 

the dxjdxk) dy3dyk) dz3dzk terms, and the zero entries are the cross terms.) Each of 

the near neighbour constraints, disulfide bond constraints, or unsatisfied maximum or 

minimum distance constraints contributes a term to a 3 X 3 block on the main diagonal 

as well as giving an extra 3 x 3 block of nonzero elements on either side on the main 

diagonal. In the diagram of Figure 17, each "x" represents an element of the Hessian 

which may be nonzero, for the case where the j th nearest neighbour constraint set 

includes only the first neighbour distances (j = 1) and a disulfide bond exists between 

residues 1 and 5. . 

The-first band of blocks above the main diagonal are for first neighbour penalties; 

r * > 
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Figure 18: Required Hessian Matrix Elements, Symmetry Included.- ° 

the second band of blocks above the main diagonal are for second neighbour penalties, 

and so on. If a pair of residues (/, k) are connected by a disulfide bond, then the blocks 

in positions (l,k) and (k,l) are nonzero. If maximum or minimum distance constraint 

for diti+3 is violated then the blocks in positions (i,i + j) and (j + i,i) are nonzero. 

Because each 3 x 3 block is symmetric, and the Hessian itself is symmetric, only 

the nonzero elements shown in the diagram labelled Figure 18 need to be stored. / 

Thus the Hessian can be stored compactly during the optimization process, but 

its elements are easily accessed by a suitable row and column indexing scheme for the 

blocks. 

The set of blocks along the main diagonal of the Hessian are actually stored ins 

an array HD of n blocks with six elements in each block. The nonzero elements of 

the off-diagonal blocks are stored in # i array Hp containing a total of n* blocks with 

six elements in each block, where n* varies with the number of violated constraints. 

Experience with the algorithm indicates that n* is typically of the order of n* ~= 

s 
i 
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0.005(n2) + 2n. This means that the Hessian may be compactly stored in only about 

6n + 6n* = 0.03(n2) + 18n storage locations, compared to the 9(n2) locations that 

would have been required to store the entire Hessian. 

•/ Let the indexing of the full Hessian matrix be referred to as G(I, J), where I is the 

index of the row. and J is the index of the column. To access an element that would lie 

in a block along the main diagonal, the correspondences for the*%ix distinct elements 

of the block are as follows: JHi>(l.I) = G(3I- 2,31 - 2), HD(2,1) -= G(ZI-1,51- 1), 

HD(3,I) « G(3/,3J), HD(4,I) = G(3I - 2 ,3 / - 1), HD(5,I) = G(3I - 1,31) and 

HD(6, I) = (3(3/ — 2,37). To access the nonzero elements of the off-diagonal blocks, 

an indexing pointer scheme is used. Let irow(J) and icol(J) refer to the block row 

number and block column number, respectively, of the block Hp (I, J) which contains 
A v 

nonzero elements. Foirexample, consider the case when (3(10,20) contains a nonzero 

element, such as G(10,20) = 3. This means that the block consisting of {(3(10,19), 

<?(10,20), (3(10,21), G(ll,19), G(ll,20), G(U,21), G(12,19), G(12,20), G(12,21)} 

would be denoted a nonzero block. In this case, for some J in the set J — 1,..., n*, 

the values of the index counters would be irow(J) = 4 (where the "4" refers to a block 

containing rows 10-12) and icol(J) = 7 (where the "7" refers to a block containing 

columns 19-21). Also, the fourth element of the six elements comprising the J t h blocTT 

of Hp would be equal to 3, or Hp(4, J) — 3, since Hp(4, J) would correspond to the 
i 

element G (10,20). 

Even though the disulfide constraints could sometimes overwrite existing nonzero 

blocks from near neighbour or minimum or maximum constraints, they are always given 

separate storage locations in order to not waste execution time searching through Hp 

each time a disulfide constraint is calculated. 
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It is possible to devise indexing schemes" that are even more compact. One such 

indexing scheme would be to use a total of n* row pointers trow (J) as before, but 

o 
to employ another pointer index irown(K) in place of the set of n* column pointers 

icol(J). The pointer irown(K) would contain the number of nonzero blocks in the Kth. 

• ft 

row. This would result in a vector irmin requiring only n elements. The savings of this 

indexing scheme are not enough to warrant the extra execution time used to store Hp 

and to* access the elements Hp(6, n*) once they are stored. 
» ti 

In the event of an unusual initial conformation, such as the residues forming a 

straight line, the first Outer Loop iteration could still encounter Hessian storage prob-

lems due to violation of a large number of maximum far distance constraints. The 

minimum and maximum distance constraints for far neighbours are purposely omitted 

during the first Outer Loop for this reason, and also because this set of^constraints 

is large (of the order n2) and costly to evaluate. The maximum far neighbour con­

straints are,relatively unimportant in any event, since the hydrophobicity conditions 

by themselves effectively shape the -residues into its compact globular shape After the 

first Outer Loop, however, the full set of constraints is included. In the latter stages of 

the optimization, inclusion of the minimum far neighbour constraints is necessary to 

ensure that the chain is self-avoiding. 

In conclusion, the design of the mathematical model and algorithms are such that 

the tertiary structure can be efficiently predicted for any single-strand globular protein 

of natural strand length, from virtually any initial configuration of its points. 



11 Appendix: On Theoretical Near Neighbour Distance 
Parameters. 

The purpose of this chapter is to investigate the geometry of near neighbour residues 

theoretically, "and to use the results of this investigation to generate parameters for 

near neighbour constraints in distance constraint models. The fundamental resource 
ii 

used for the theoretical calculations is a set of chemically derived bond angles and 

bond lengths for the polypeptide backbone. These chemical data can be considered 

effectively fixed, or constant. They have been derived from the crystal study of small 

polypeptides [25,73,81,89], in which resolutions as high as 0.1 A can be attained. The 

resulting "standard" bond angles and lengths from these studies are shown in Figure 3 

of Chapter 1. 

The calculation of the distance between the Ca-atoms of adjacent residues in the 

polypeptide chain from a set of standard bond lengths and angles is straightforward. 

Due to the planar nature of the peptide bond, this first neighbour distance d,-,,+i can be 

found by elementary trigonometry. The value is found to be a constant: d,,,*+i = 3.80A. 

Let this distance be denoted by dj. 

The situation is more complicated for a system of three residues. The general 

backbone configuration for three residues is not planar, nor does it correspond to a 

constant" a,-,^ distance. However, relationships can be found by methods of planar 

trigonometry that result in an expression for d,i>+2 as a function of the peptide bond 

lengths and angles. The result obtained is identical to the equation (80) derived later 

in this Appendix, and is found to vary with the nonconstant dihedral angles (yj, <j>). 

These "Ramachandran'' angles (yj,4>), discussed in Section 11.1 follAwiig, correspond 

H. 
151 
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to angles of rotation about the single bonds in the polypeptide backbone. 

It is impractical to attempt the derivation of higher neighbour- distances, such as c ° 

d% t + s or dt i+4, directly from the bonding lengths and angles. Therefore, the following 

sections are devoted to their derivation by utilizing a virtual bond description of the 

polypeptide chain. 

1 1 . 1 R a m a c h a n d r a n Angle a n d V i r t u a l B o n d Desc r ip t ions of a Po lypep ­
t i d e . , 

4 

A characteristic feature of a polypeptide chain is'tfiat'each peptide group is a rigid 
Ci 

plaqar unit: the C — N link" is a partial double-bond, which allows for no freedom of 

rotation. In contrast, the links Ca — C and Ca — N on either side of the peptide unit 

are pure single bonds, and these bonds allow for a large amount of rotational freedom. 

With rigid bond angles and bond lengths and a planar peptide bond, the polypep­

tide chain has only two degrees of freedom for each Tesidue. "These are described by 

the dihedral angles yj and <j> at the <3a-atoms, as shown in Figure 19. 

The angle y) represents the amount of rotation about the axis of the single bond 

Ca — C; similarly, the angle <f> gives the rotation about the Ca — N axis. The direction 

of rotation for both ip and ^ are defined to be positive when the C-terminal side of 

the specified bond is rotated in a clockwise direction as viewed from the atom on the 

JV-terminal side of the bond. The zero positions for both y> and 4> occur when the two 

peptide planes joined at the Ca-atom are coplanar and trans. Thus the (ip, $) angles 
Ik 

of the dipeptide configuration depicted in Figure 19 are i/>» = 180° and <f>, - 180°. The 
0 

angles y) and dmay assume any values from —180° to +180°. 

A list ofrtnV(Vv^) values for all residues of a single strand protein will completely 

define the tertiary chain path. 
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Ik The dihedral angle Vt represents the amount of rotation about the axis of the single 
bond C" — C,; the angle <j>t represents the rotation about the C,a — JV,* axisv The 
relative orientation of the two peptide planes in the figure correspond to (y^, <j>) angles 
of uV~ 180° and fa = 180°. * 

Figure 19: Definitiak of Ramachandran Bond Angles for a Polypeptide Chain (from 
Schulz and Schirmer 1979). 

/ 
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Due to electrostatic interactions and the steric hindrance caused by the bulky pep­

tide unit, not all possible combinations of the rotational angles (yj, ^) are realizable in 

a protein. G.N. Ramachandran and his group at Madras have studied m detail the re­

strictions on the ranges of the (ip,<f>) angles [90,91,92,99]. For this reason, the dihedral 

angles (yj,<ft) are sometimes referred to as "Ramachandran" angles. 

The backbone of a dipeptide is usually described by its four dihedral angles (tpi, <fo) 

and (^2,^2)- This would constitute the complete Ramachandran angle description of 

a dipeptide configuration. However, the vast majority of peptide groups are planar. 

Whenever a peptide group Js planar, the distance from C" to C"+1 will be independent 

of the dihedral angles. This permits an alternate and simpler virtual bond description 

of a dipeptide (Figure 20), wherein the backbone configuration can be specified by only 

three variables: 

1. the angle between the virtual bonds C§ — C° and Cf — Cf, designated as 9\\ 

2. the angle between the virtual bonds Cf— Cf and Cf — Cf, designated as 92; 

3. the dihedral angle around the Cf — Cf bond, designated as 7. 

The virtual bond angle 7 is defined to be 7 = 0° when C§ is cis to Cf, as in 
1 * 

Figure 20, and 7 may take on any value from —180° to +180°. As shown in Figure 20, 

the clockwise rotation of Cf — Cf when looking from Cf to Cf gives a positive change 

in 7. 

The angle 9 is restricted, due to the geometry of tjtie peptide chain, to lie within a 

range of values: 

#min < 9 < 9max. 
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Definitions of the angles 0% and 02 between the virtual bonds and the dihedral angle 7 
for a dipeptide. ' ' . 

Figure 20: Definition of Virtual Bond Angles for a Dipeptide (from Nishikawa et al. 
1974). . 

The range of possible values for this virtual bond angle 9 can be found empirically 

in much the same fashion as the bounds for the dihedral angles (y),(f>), or it may be 

calculated directly from known (ip,^) bounds once a mapping from (y>,<f>) coordinates 

to (0,7) coordinates qan be determined. 
-1 

-!.Both the Ramachandran angle (ip,(f) description and the virtual bond angle (0,7) 

description of a polypeptide will be used for the theoretical research on near .neighbour* 
•a 

distances in the following sections. The use of virtual bonds facilitates the calculations 

involved, whereas the known range restrictions on the more traditional Ramachandran 

angles are used to obtain numerical results. 
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11.2 Theoretical Calculation of Near Neighbour Distances as Func­
tions of. Virtual Bond Angles. 

// 

In this section, the near neighbour distances will be calculated as .functions of the virtual 
\ 

bond angles (0,7). In Section 11.3, the relationship between the virtual bond angles 
a 

and the Ramachandran angles (ip, <f) will be utilized to formulate the near neighbour 

distances as functions of the Ramachandran angles. 

The pairwise distances rff.,+2, e£,,t+3 and <f,|t+4 will/first be found as functions of 

the virtual bond angles (0,7), which is quite easily accomplished due to the Way that 

this coordinate system simplifies the geometry of the polypeptide. Then the work 

of Nishikawa et al. [79] will be followed in order to generate a mapping between the 

two sets^f coordinates (0,7) and (ip,4>\ By this approach, it will be possible to find 

distributions, as well as theoretical mean values and minimum and maximum distances, 

for d,|t+2, d,-)t+3 and d||t+4, when given various Umits and probability distribution sets 

for the Ramachandran angles (y), <f) as input. 

11.2.1 Finding dt>t+2 = f(0). • 

.From the chemistry of the peptide bond [73,81,89], it may be assumed that c/,,,+1 -= d\ 

is a constant and that the peptide groups under consideration are planar. "* a 

It is seen from Figure 21 that the distance.between Cf and Cf is a function only 

of c?i and the interior virtual bond angle 0. This is defined as the second neighbour 
* 4 

distance, designated as dM+2- The geometry forms an isosceles triangle, which gives 

the relationship: 

A , + 2
2 = 2d 1

2 ( l - cos0 ) . (58) 
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Figure 21: Second Neighbour Distance: Virtual Bond Residues. 

From this equation, the following useful inverse relations are calculated: 

COS0 = 
2fc?!2 - < f t t i + a

3 

2di2 (59) 

sin0 = ^?V/4d1
2-rfM-n

2. (60) 

11.2.2 Finding di>t+s = / ( 7 ) . 

Consider a dipeptide configuration in a fixed Cartesian coordinate system in R3, such 

'that all first neighbour distances are of a length d\. Let: 

Cf = (0,0,0) 

Cf = (0,-^,0), (61) 

as in Figure 22. 

* Translations in the coordinate planes and rotations about the coordinate axes will 

now be used to determine the coordinate locations of Cf and Cf. The possible rotation! 

.about the three coordinate axes are given by:, 
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Figure 22: Third Neighbour Distance: Virtual Bond Residues. 
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Equations (62), (63) and (64) represent the clockwise rotation of an angle e about 

the x-axis, y-axis and z-axis, respectively. With reference to Figure 22, it can be seen 

that: 

Cf = TlhC$ = (di sin 02, - d i cos 02,0) (65) 

and . . „ 

. Cf = Cf + T l / F ^ C f - C f ) 

= (disin0scos7, —d\ + di cos 03, di sin 03 sin 7). 

Equations (65) and (66) may be used to calculate an expression for 

N 

d l > +3 2H|Cf-Cf | | 2 

(66) 

(67) 

in terms of 02, 03 and 7: ' 

diti+s
2 - di2[3 + 2cos02cos03 - 2cos02 - 2.cos03 - 2sin02sin03cos7]. (68) 

Using equations (59) and (60), this expression (68) may be simplified to an equation 

stating the third neighbour distance d, :+z as a function of only 7 and the interior 
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pairwise distances: 

W = di2 + ^ (d13d2i - \ / W - d 1 3
2 ^ 4 d 7 ^ 7 cos7) . 0 (69) 

As with equations (59) and (60), the inverse relationship for equation (69) may be 

found, by solving for 7 as a function of the d,-il+J-: 

« » , - W - M . V W - * ' ) , (70) 

v dizd24\j4d\2 - di32\/4di2 ~ ^242 

11.2.3 Finding dti;+4 = / (d , | t + J ) . 

The calculation of the fourth neighbour distance dM-+4 is performed similiarly to the 

calculation of the third neighbour distance d,)t-+3. That is, a tripeptide configuration is 

fixed within an (x,y,z) orthogonal coordinate system in R3, and the distance d,,,+4 is 

calculated using translations along the coordinate axes and rotations about the axes. 

Let the point of departure for the 0,^+4 calculation be the'dipeptide configuration/ 
? ' " 

representation of Figure 22. Consider the conversion of this configuration into* a tripep-

tide by the addition of another residue, represented by a Cf atom attached to Cf by 

a virtual bond as in Figure 23* • 

• The valu'e^Sf do4 = di,t+4 will be a fimction of the variables {0i,02,03,71,72}- Alter­

natively, by employing equations (59), (60) an4 (70), it may be expressed as a function 

of the,interior small-neighbour distances {di,do2>di3,d24>do3,di4}, where d,»+i = di 
* h 

is a constant for all t. ' 

The fourth neighbour distance d»,,+4 is calculated from 

di,i+42 = \\C2-CS\\2. ' (71) 

Therefore, the coordinate locations of Cf and Cf must be found. T/he coordinates of 

Cf are given in equation (66), replacing 7 by 72. The coordinates for Cf are calculated 
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W 2 
-7/ 

Figure 23: Fourth Neighbour Distance: Virtual Bond Residues. 

r 
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as follows, using the coordinates of Cf given in (61) and the coordinates of Cf from 

(65): 

' yielding: 

PS = 

/ i a /ma _ rpz rpy rpz f^ot 

+di sin 02 — di cos 0j sin 02 — di sin 0* cos 02 cos 71 
—d\ cos 02 +n di cos 0i cos 02 — di sin 9\ sin 02 cos 71 

di sin 0i sin 71 __ 

(72) 

(73) 

Now an expression for dM+4 may be found, by substituting equations (66) and (73) 

into equation (71): 

d*,*+4 2di2 [2 — cos 0i — cos 02 — cos 0s + 

COS 01 COS 0J + COS 02 cos 03 — COS 01 COS 02 COS 03 + (74) 

sin $1 sin 02lcos 71 (cos 03 — 1) + sin 02 sin 03 cos 72 (cos 0i — 1) + 
. 1 , *J 

sin 0i sin 03(cos02°cos 71 cos 72 — sin 71 sin 72)]. i 

f %. 

Using the identities (59), (60) and'ffO), d,--,+4 may be expressed as a function soleb/7"* 

of its interior d,-ii+J'. This expression is cumbersome, however, and therefore will not 

be* shown. 

11»3 Theoretical Calculation of Near Neighbour Distances" as Func­
tions of the Ramachandran Angles. 1 

" c l . * ' 

In this section, the work of Nishikawa, Momany and Scheraga [79] is followed essentially. 

They have derived the formulae giving the virtual bond angles (0,7) as a function of 

the Ramachandran angles (y),<ft). Their work is carried further in this thesis, by the 

calculation of the near neighbour distances df,,+2 j d^+3 and dij+4 as functions of (yj, <f), 

using representative values for the fixed bond lengths and angles of the dipeptide units. 
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Nishikawa et al. found that the angle 0 depends upon only the two angles (tp, <f>) of 

the particular residue in question; however, the angle 7 was found to possess a more 

complicated relationship, being a function of all four dihedral angles {tpi,<Pi,ip2,<f>2} of 

a dipeptide. In the relationships that are calculated, they include the following angles, 

which are essentially fixed within a normal dipeptide: | 

a = J V ! - C f - C 2 

f = C f - C f - J ^ i ' (75) 

V = Ci-C?-C2. 

The calculated standard values for the angles a, f and r\ as derived from chemical 

studies [25,73,81,89] are shown in Table 27. The set of values given by Ramachandran 

et al. [891 is considered a refinement of the work of Corey and Pauling [25] and Marsh 

and Donohue [73]; therefore, it will be used for the numerical calculations in the present 

study. The results of Corey and Pauling are included in Table 27 because they aire still 
c 

employed in much of the current literature. , 

angle Corey and Pauling Ramachandran et aim 
a = N1-Cf-C2 110° 111.6° 
£ = Cf - Cf - JVi * " 13.2° ' ' „ 14.7° t , 
n = Cf - Cf - C2 22.2° 2L0° 

The "standard" values jfor the peptide bond angles as calculated from the data of two 
reference sources (Corey and Pauling [25] and Ramachandran et al. [89]) are given. 
Note that these angles are not truly constant over the set of all polypeptides, but can 
vary in response to local environment. The definitions for the angles a, £ and ij are 
given in equations (75). * • 

•o 

k Table 27: Standard'Values for the Peptide Bond Angles. 
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In order to simplify notation, the following are defined initially: 

a — cosfjcosa + s inf / s inacos^ 

6. = cos n sin a — sin t] cos a cos tp (76) 

d = cosf cos a + sin £ sin a cos ^ 

' e = cos f sin a — sin £ cos a. cos <j>. 

Nishikawa et al. use the defined values of a and b in their expression calculated for 
f 

the valueof 0 =^\f(tp,4>)'- ' . 

cos0 = a c o s f + 6sinf cos^ — sin £ sin t? sin ^ sin >̂. (77) 

In equation (77), only positive values of 0 are.considered. From this, it can be seen that 0 

can be given uniquely within the range 0° < 0 < 180° for any value of the set (tp,<p). The 

maximum and minimum values of 0 are obtained by substituting (tp, <p) — (180°, 180°) 

and (tp,<p) = (0°,0°), respectively, into (77): 

0max = Ot + (C + T]) n 

f. 

0min = <x-($+n). - (78) 
_ 1 

Substituting the standard values for the angles a, £ and n into (77) via the defini­

tions of a and b gives the value of 0 = f(tp,<p): 

cos 0 = -0 .33 + 0.32 cos tp + 0.22 cos^ + 0.03 cos tpcos6- 0.09 sin tp sin fa (79) 
° * 4 

f r> J 

Now the work of Nishikawa et al. can be carried further for the present study. 
• • f -

The direct relationship between d,,,+2 and (tp,fa) can 'be calculated, using (79) and 

equation (58) from the previous section: 
Q 

di ,-+22* = 38.48 - 9.31 cos tp - 6.36 cos A - 0.97 cos tp cos A + 2.63 sin tp sin fa (80) 

J 

\ 
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As usual, the distance d\ is treated as a constant d% = 3.80. It is noted that this 

equation (80) is identical to the expression for di that can be found using trigonometric 

methods as discussed at the outset of this Appendix, in which the dipeptide angle 

measurements are employed directly. 

In Nishikawa et al, the virtual bond angle 7 is calculated as a function of the 

Ramachandran angles by first defining auxiliary variables Ai and A2 as the dihedral 

angles for rotation of the planar peptide groups about the virtual bonds Cf — Cf and 

Cf - Cf, respectively, with respect to the plane formed by the points Cf, Cf and Cf. 
•a ° 

The angle 7 , the angle A2 of the first single-residue unit and the angle Ai of the second 

single-residue unit are all defined about the same-virtual bond C" — Cf. Hence, they 

are found to be related as follows: 

7 = (A2)i8t + (Ai)2nd + 180o, (81) 

where the constant, 180° arises from the definition of the zero positions of (A2)ist and 

(^i)2nd- The values for the auxiliary angles Ai and A2 aire found to be 

. —bsinA — BmncosAsintp ' ". . 
tan Ai = —r—-— 7 - — r-j—.—r (8-2J 

a s m £ — bco&zcosA + cos£smn smcpsmip 

, — eamtp — s i n £ c o s ^ s m ^ t . 
tanA2 — -rrr, r~; :—» • , .—r (831 

d aiii n — e coS tj cos tp + cos n sm £ sin A sin tp 

where a, b, d and e are defined ih-equations (76). 

The standard values for the fixed angles from Ramachandran et al. [89], given in 
a 

Table 27, can be substituted into equations (82) and (83), via the relations given in 

(76). The following are obtained: 

. 0.87 sin ^ + 0.13003^ sin ^ +0 .36 cos <£ sin V> ,at\ 
tan Ai == . 1 , , (84) 

0.09 - 0.08 cos tp + 0.84 cos A + 0.13 cos tp cos # - 0 . 3 5 sin A sin tp v ' 
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^ 0.90 sin tp + 0.09 cos Acoatp + 0.25 cos tp sin A 

t a U 2 ~ 0.13 - 0.08 cos A + 0.84 cos tp + 0.09 cos A cos tp - 0.24 sin (fslntp * * ° ' 

Equation (84) has two solutions for Ai, but one of the solutionsxan be eliminated 

because it gives a negative value for 0 when applied to an equation relating fa Ai and 0, 

Similarly, equation (85) has two solutions for A2, but one such solution gives a negative 
0 

value for 0 when applied to an equation relating A, A2 and 0. „ 

The equations relating {faXi,0} and relating {A,X2,9} are not calculated in 

Nishikawa et oLj and are therefore calculated here. 

The equation relating A, X% and 0 is obtained by eliminating A2 and tp from the 

following identity, given by Nishikawa et al.: 
* t. 

TiSB rp£ rpX rpzmxrnz rpxrpz - / / c n \ 
Ai i.(,r-e) iA2 — 1^1^1(ir-a)J'il>1t,- f \P») 

This equation is now Rearranged, and multiplied* on both sides by the row vector 

v = (1,0,0) and the column vector u = vT, in order to eliminate tp and A2 from the 
4 

right-hand side, yielding 

cos r] = cos 0 (cos a cos £ + sin a cos A sin £) r 

+ sin 0 cos Ai (sin a cos A cos £ — cos a sin £) (87) 

+ sin a sin A sin 0 sin Ai. 

Similarly, the equation relating fa X2, and 0 is found by rearranging and then 
i 

multiplying through by a row vector and a column vector:>* 

Ti l rpZ mx rn* rpX __ rpZrrtXrrit tua\ 



• * t a. 

Multiplying through by t; = (1,0,0) and u = vT and rearranging gives: 

" *' cos £cos a - cos n cos 0 + sin £sin a cos A + sin»; sin 0 cos A2 = 0. (89) 

When values for the fixed angles are substituted into these identity equations for Ai 

arid A2, the results are, respectively: >• 

cos 0(0.24 cos ̂ -0.36)+sin 0 cos Xt(0.09+0.90cos <£)+0.93 sin A sin 0 sin Ai = 0.93 (90) 

and , 3 

- 0.93 cos 0 + 0.24 cos #% 0.36 sin 0 cos A2 = 0.36. \ (91) 

. To summarize the calculation of 7 as a function of Ramachandran angles (tp,A), it 

was shown (equation (81)) that 7 was given by: 

' ' 7 - (A»)iit + (Ai)2i,d +180°, . ' V , 

* < 

where expressions for the auxiliary variables Ai and X2 are found in equations (84) and % 

(85). Now, since equations (84) and (85) afford two solutions for X\ and A2̂  it must *>v \ 

be decided which solution is correct. This is done by first noting the .value of 0, given 

angles tp and A, from equation (79): 

* 
cos 0 ~ - 0.33 + 0.32 cos tp + 0s22 cos 6 + 0.03 cos tp cos A - 0.09 sin tp s\u fa 

Given this solution for 0,' each of the two values of At ..are substituted into equation (90). 

. "4The correct candidate will give an identity in equation (90). Similarly, the two values 

of X2 are substituted into equation (91) to find the true value. 
"** * \ • 

' d-nce the -value for 7 is obtained,* the distance d,\,+3 can be found from equation (69) 

ot the "previous section: *̂ "% 

> *,+»*•« dt* + ̂ i ( d l 3 d 2 4 - y W - d^US - d2i* cos7): * -
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In this equation, d\ — 3.80 is assumed, di3 and d24 are the second neighbour distances 

which can be calculated by equation (80), and the value of (cos 7) can be calculated ' 

using equation (81): k 

cos 7 = cos[(A2)i8t + (Ai)2nd + 180°] 

x - = -cos[(Aa)iBt + (Ai)2nd]-

1 Whereas the calculation of the d,)t+3 distance from the corresponding Ramachan-

* ̂  dran angles requires a good deal of effort, the derivation of the distance d,lJ+4 is com-
a 

paratively simple. The major work involved is the calculation of 71 and 72, and these 
* • • < * 

are fbund in the course of evaluating dt,«+3> The dfj,+4 distance can subsequently be 
•• 

found by direct application of equation (74). Alternatively, it can be calculated solely 

ak a function of the interior diti+2 and d,,i+3 distances, without reference to either the 

virtual bond angles or the Ramachandran angles. 

11 ,4 N u m e r i c a l Resu l t s : Theore t i ca l N e a r N e i g h b o u r D i s t ances . 

Using the theoretical results from the previous section, a FORTRAN computer imple-

1 a 

mentation for the calculation" of d,-,,+2, di,f+s and dt",i+4 distances from Ramachandran 

* 

angle ^t&,{tp^,fa, tp2i A2,tpz, ^3} has been made. From, this program, numerical results 

were obtained regarding maximum, minimum and mean value statistics, as well" as 
\f ft 

distributions for" ̂ ,+2 , df>1+3 and d^t+4 distances from" various input information re-

garding Ramachandran angle bounds and secondary structure proportions. The results" 

are expounded in this section, and the possibility of deriving theoretical parameters for 

use in distance constraint models is discussed. Theoretical maximum bounds for near 
« 1 

neighbour distances areJobtained for use in the present model. 
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11.4.1 Minimum and Maximum Distance ^Parameters. 

First, let the near neighbour distance bounds be found with no restriction on the (tp, A) 

angles (that is, -180° < Vt < +180° and -180° < fa < +180°). The extreme values 

for the second neighbour distances can be found from equations (58) and (78), using the 

set of standard angles given in Table 27. The calculated extreme values are found to 

be 0mm = 75.9° and 9,max = 147.3°, with corresponding distances of mt'n(d,(t+2) = 4.67 

and max(dtii+2) — 7.29. The minimum and maxuwim distance bounds, plus the mean 

- values of the distributions assuming equal probabilities for each angle, were calculated 
- t 

by the program for distances dM'+2> df̂ +a and d»,,+4, and are shown in Table 28. 

Distance 
min(dM+2) 
max(d,,,+2) 
d2 

minfd^+s) 
max(d,i,+3) 
ds 
min(d,-iI+4) 
max(dlit+4) 
d4 _ 

. . Value 
4.67 
7.29 

6.13 ± 0.67 
3.72 
10.96 

• 7.95 ± 1.42 
1.53 
14.54 * * 

9.39 ± 2.23 

ty»i,&) 
(0,0) 
(180,180) 

(0,0,0,180) -
(180,180,180,180) 

T 

(0,0,180,180,0.-0) 
(180,180,180,180,180,180) 

\ * 
\ 

Near neighbour distance statistics and their 'corresponding Ramachandran angles 
(tp,A). The possible Ramachandran angles are unrestricted. The mean values and 
standard deviations were determined by assuming equal probabilities for each pair of 
angles (tp,A). - * 

Table 28: Theoretical Near Neighbour Distance Statistics. 

The distributions for the di)t+2, d,-,,-+3 and dM-+4 distances were also found,for this 

case of equiprobable (tp, A) angles with no restrictions on the (tp, A) angle pairs. Graphs 
8 

of these distributions are shown in Figures 24 - 26, along with the distributions ob-
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tained when the (tp,A) angles were restricted to what are termed normal limits and 

/ / • * • - . . . ' 

extreme outer limits (Table 30). To produce these distributions, sets of random (tp,fa) 
^^ 

angles were repeatedly generated from a uniform distribution of all allowable angles.. 

For this study, 1500 separate random.angle sets were generated for each example of 

Ramachandran limits. 

The results shown in Table 28 contain several notable features. One is that all the 

extrema values correspond to planar configurations of the peptide groups. This result 

could have"been easily predicted for the case of d,-),+2, where the equations are found to 

have local extrema only at (tp,A) = (0°,0°), (0°,180°), (180°,0°) and (180°, 180°) by 

requiring the first derivatives to simultaneously equal zero. The equations for dM+3 and 

cf,|t+4 in terms of the (tp,A) angles, however, are found to contain many local extrema, 

and it is ntfejjjrapus that the resulting global extrema would be planar configurations. 

j min(dt,,+i) minfd,-,,.}.j) - min(d,,;+j-i) max(d, |t+3) max(dM:fJ) - max(dM+JJi) 
1' 3.80 ' 3.80 
2' • 4.67 > v. +0.87 • 7.29 +3.49 
3 3.72 -0.95 - ^10.96 +3.67 
4 1.53 ' -2.19 14.54 " +3.58 

Table 29: Differences in the Near Neighbour Distance Bounds: (tp,A) Angles Unre­
stricted. ' ' 

Other features of the results can be discussed with reference to Table 29. Since no 
SI 

restrictions have been put on the (tp, A) angles, the max(d,ti+3) values are almost as 

large as (d,-it+y_i + di) for every j = 2,3,4. This result, in which the maximum values 

for di,i+j are only slightly smaller than j X di, does'not correspond to the results of 

empirical measurements. The anomaly Borings from allowing the (tp, A) angles to be 
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**. 

The theoretical probability distributions for second neighbour distances "(in A) are 
found by generating 1500 separate random (V>#) angle sets, assuming equal probability 
for each pair of angles (tp,A) within the allowable angle ranges. The ranges used are: 
(—) no restriction,'on the angles, (+) normal Ramachandran. limits, and (o) extreme 
outer limits. - ° , ,° ' 

t Figure 24: Theoretical Distributions* of dM+_ Distances. 
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li.7 MJ< 

; The theoretical probability distributions fon third neighbour distahces (in A) are found 
by generating 1500 separate random (tp, fa) angle sets, assuming equal probability for 
each pair of angles (tp, A) within the allowable angle ranges. The ranges used are: (—-) 
no restriction, (+) normal limits, and (b) extreme outer limits. 

\ Figure 25: Theoretical Distributions of d,,,+3 Distances. <C 

~v * n 
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r-
The theoretical probability distributions for fourth neighbour distances (S\ A)"are found 
by generating 1500 separate random (tp, A) angle sets, assuming equal probability for 
each pair of angles (tp, fa) within the allowable angle ranges. The ranges used are: (—) 
no restriction, (+) normal limits, and (•) extreme outer limits. 

Figure 2& Theoretical Distributions of d»(,+4 Distances 

I . 
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unrestricted. The residues of actual polypeptides are found to have largely restricted 

possible (tp,fa) angles ranges, due to steric hindrance and other noncovalent, factors 

[34,90,91,99]. The restriction of (tp,A) angles to so-called Ramachandran limits is thus 

necessary in these numerical calculations. * i J 
The third and fourth neighbour min(dhi+3) values from Table 29 are smarter than -

those found empirically. This finding also stems from the lack of restrictions on the 

(tp,fa) angles. However, the values cannot be rectified in this case by_yfequiring the ) 
» 

angles t6 be within specified Ramachandran limits. Here the phenomenon of steric , 

hindrance also plays a part. ^ ** 

The overall effect of steric hindrance cannot easily be incorporated into the near 

neighbour distance equations. Whereas steric hindrance will restrict the value ranges 

for the two angles (tpi,fa) for each residue, the aggregate restriction on the ranges 
a 

for theofour angles (tp%,fa,tp,+i,fa+i) of adjacent residues will be greater than, that 

of the two residues considered separately. The values calculated using Ramachandran 

limits will give lower bounds for the minimum near neighbour distance estimates and 

upper bounds for the maximum near neighbour distance estimates. The calculated 
a 

4stimates for the minimum distances are found to be of minimal value in deriving 

distance constraint parameters. For this reason the empirical Values, not the theoretical 

values, will be used to derive parameters for min(dtii+z) and min(d,-i,-+4). 

A danger of utilizing'empirical results for point values*such as maxima or min­

ima), as opposed to aggregated values (such as means or standard^eviations) is that 

point values are highly susceptible to measurement or calculation error, whereas the 
-. . < • -. . " 

derivation of aggregated statistics tends to "average out" this type of error. The values 

used for min(diti+z) and m m f d , ^ ) in the present model are found by observation of 
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the near neighbour distances for a set of twenty proteins with known tertiary struc-

tures (the set of proteins from Goel and Ydas [46}), discarding the smallest 1% of the 

distances as possible measurement errors, and using the next-smallest values* as the" 

parameters. 

Normal limits: " V = {90° - 180% 300° - 320°} " 0 = {20° - 130°} 
Extreme outer limits: tp = {30° - 190°,290° - 330°} A = {0° - 140°, 220° - 240°} 

Table 30: Limits on the Ramachan<kan Angles (tp,A). 

*» 

ft< 
Distances 

min(d,,,+2) 
max(d,-(,'+2) 
d2 

min(dtii+3) 
max(d,,,+3) 
d3 
imn(rf«,«+4) . 
max(d,,,+4) 
dt 

— 

No Restriction 

4.67 
7.29 

6.13 + 0.67 
3.72 
10.96 

7.95+1.42 
1,53 / 

- 14.54 
9.39 + 2.23' ' 

Normal 

(iM) 
4.89 
7.16 

6.42 ± 0.57 
4.6 

\ 10.71 
J8.10 + 1.16 

^ 2.3 ' 
lf.95 

9.01 + 1.89 

^ -
Extreme 

4.79 
7,20 

6.15 + 0.63 
4.0 

10.82 
7.66 ± 1.40 

1.6 
14.37 

, 8.63 ± 2.37 

Empirical 

4.65, 
7.77 

5.95 ± 0.63 
• 4.33 

10.88 
7.24+1.82 

4.39 
13.84 

8.77 ± 2.44 

Near neighbour distance statistics with various inputs for the allowable Ramachandran 
angle sets (tp,A). Pairwise distance values are given for: (i) no restriction on the (tp,fa) 
angles, (ii) the angles (tp,fa) restricted to their "normal* values, and (iii) the (tp,fa) 

, restricted to their "extreme outer limit" values. These are compared to the empirical 
values found by Goe.1 and YJJas [46]. 

' • ° 

Table 31: Theoretical Near Neighbour Distance Statistics for the Standard Limits on 
. (tp, A) Angle Sets. 

• * * • K^ 

<i - More accurate thleoretjeal predictions for the maximum bounds on dj,t+2> d,|1+3 

Mid dij+4 can be found by restrictinl the Ramachandran angles (tp, A) to fall within 

definite limits [92]. These are referred to as the normal and the extreme Ramachan-

{ v 
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Extreme Ramachandran angles: 
Distance - —(V»«yk) 

max(d t>+3) - • ' 10.82 (189,140,160,140) 
max(d,^+4) 14.37 (178,140,159,140,190,220) 

Normal Ramachandran angles: 
Distance (fa>fa) 

max(d,it+3) - 10.71 ' (»180,130,151,130). 
max(d,-^4) 13.95 (90,130,180,130,164,130) 

Table 32: Ramachandran Angle Sets Corresponding to the Theoretical Near Neighbour 
Distance Maxima. J ^ 

( ' 

dran limits (Table 30), and were determined by Ramachandran and his group using 

graphical methods. The "normal" Ramachandran angle (tp, fa) range corresponds to 

generally accepted minimum contact distances for short-range non-bonded atoms; the 

"extreme outer limit" (tp, A) range corresponds to configurations where the minimum 

short-contact distances are estimatedto be at their absolute minimum values. 

For each of the two Ramachandran limit ranges, distance statistics and distributions 

were calculated for near neighbour residues. The distribiraons of the second, third 

i 
and fourth neighbour distances are shown in Figures 24 - 26. In generating these 

distributions, each angle within the specified Ramachandran limits is given an equal 

probability of being chosen. Table 31 shows the values obtained for the various near 

neighbour distance statistics, and compares these'theoretical values to the empirical 

results of Goel and Yfcas [46]. Table 32 includes the Ramachandran angle^ets that 

were found to correspond to the max(a\i%^ j) values. 

The near neighbour distance parameters m'ax(diti+j) are to be estimated theoret­

ically. For the present model, it was decided to use the set of results calculated from 

the normal Ramachandran angles. Specifically, the model utilizes the following third 
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and fourth neighbour maximum bounds: Xv ^ 

max(d,,,+3) = 10.7 V 

max(dij,+4) = 13.9 

It would be unrealisticjo-proceed as if the peptides can assume' any (tp, fa) orientation. 

Whereas it may be possible for a single residue to attain extreme outer limit (tp, A) 

values outside the normal range (this is certainly possible for Gly residues), it must 

be reiterated that the calculated values represent upper bounds for the true values. 

In general, the dihedral angle ranges will actually be more restrictive than the normal 

Ramachandran limits when a complete triplet or quadruplet of residues is considered 

as a unit. This is the? reason for choosing the bounds obtained from the normal range 

as model parameters. 

11.4.2 Mean Value Parameters ; Secondary Structure Distances. 

Mean value parameters for near neighbour distances can only be calculated theoretically 

with any accuracy if some estimate of the secondary structures (cf, Chapter 1.2.9) of 

the molecule can be determined. Since the majority of the residues in globular proteins 

are involved in secondary structures which contain distinctive dihedral (tp, fa) angles and-

hence distinctive near neighbour distances, it would not be valid to calculate theoretical 

near neighbour mean distances under the assumption of equal probabilities for the 

(tp,A) angles, regardless of the (tp,fa) angle limits that are specified. The probability 

distribution for the (tp,fa) angles must instead depend upon the proportion of each 

type of secondary structure that exists Within the protein to be folded. Therefore, 

the calculation of near neighbour mean value parameters requires secondary structural 
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information of two types: the proportion of residues that participate in each type of 

secondary structure in a given protein and the theoretical near neighbour distances for 

the residues involved in these structures. 

If, in addition to the secondary structure ̂ proportions, the actual primary sequence 

locations of the. helical structures could be accurately estimated c priori for a protein, 
•k-

the distance constraint model could employ a set of theoretical mean value parameters, 

where each parameter would be specific to a secondary structure type. 

* ' - * I "' 
The theoretical calculation of near neighbours distances! for the residues within regu-

' . '. . I 
lar secondary structures is easily accomplished by method! of elementary trigonometry. 

The usual secondary structured such as the o>heUx«.nd /7-strand, are helices. These 
e a 

are periodically repeating hydrogen-bonded structures, such that the near neighbour 
\ 

di,i+j distances are constant for each». For example, within a regular a-helix], all second 

neighbour distances are expected to be •equal. This implies that with perfect helices 

the mean value parameters for near neighbour distances have<a special significance: the 

variance of the observed distances will be zero. That is, all neas neighbour distances 
T ^ 

di,i+j will match the mean value, as is generally the case for first neighbour distances 
di. 

Consider a general simple helix containing m residues per turn. Let p denote the 

pitch, or the depth of one full turn of helix. A general9equation expressing the pairwise 

distance dij+f between any two residues can be calculated in, terms of the parameters 
. . . ' \ 

tn and >p, and can be written as follows: 

sin * (£) mz 1 sin2 (£) J 
«• . « > ' 

• Note that the> calculated pairwise distances in this case depend/upon the primary 

A> 
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s • • - 4 s . sequence separation j of the tyro residues, but do not depend upon their specific posi­

tions I within the helix. From the1 general equation (93), particular expressions for the 

pairwise distances d»,,+2> <f*,i+s a n ( i »̂,«+4 c a n ^ e calculated: 

d,-,,+2
2 *= 4 [discos2 (£ ) + ^ s i n 2 (£ ) ] (94) 

° ' di>i+z2 = d*2 [4cos2 (*) - I ] 2 + S^sin2 (X) [2cos2 (£) + l] " (95) 

W = 16 [d!2cos2 (£)cos2 ( g ) + £ ( l - cos2 (£)cos2 ( J ) ) ] . (96) 

The o>helix ideally will have 3.61 residues per turn and a pitch of p — 5.41 [92]. 

However, perfect a-helices are rarely seen in globular proteins. Most helices aretfound to 

be twisted or tilted from the vertical, not fully hydrogen-bonded, or otherwise distorted-

As an example, statistics for the secondary structures of bovine pancreatic trypsin 

inhibitor are shown in Table 33. These statistics show a larger variability than would 

be expected within the classes df>%+2, d,-t,-+s and dt|,-+4.' Also their mean values do not 

conform exactly to the theoretically expected averages calculated below (Table 34). 

These statistical results are typical of the failure of in' vivo secondary structures to 

form completely. Therefore, although secondary structures yield particularly simple 

results for near neighbour distances theoretically, the values obtained are not readily 

applicable in practice. 

For the fully extended chain structure, the ^-strand, the axial distance between 

adjacent residues is estimated from theoretical Hydrogen bonding studies to ideally 

have a value of 3.5 A, with a helical radius of/x.O A. This structure yields a pitch of 

p = 6.95, with m = 2.00 residues per turff [92]. } 

Table 34 gives a set of pairwise distances of the form d,,«+j for near neighbour 

residues within regular secondary structures: a-helix, j(?-strand and 3i0-helix. The 
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a-helix. 
(residues 47 « 56) 

d2 

(Tmn(dtti+2)Jma.x(diti+2)) 
dz 

(imn(dti,+s)±max(dM+3)) 
d4 

(min(dt|t+4), max(d,,t+4)) 

5.56 ± 0.37 
(5.15,6.09) 
5.26 ± 0.56 
(4.58,6.04) 
5.79 + 0.70 
(4.55,6.56) 

antiparallel ^-strands 
(residues 16 - 25 vs 28 - 36) 

6.61 ± 0.42 
|5.83,7.13) 
9.78 ± 0.45 
£9.12,10.66) 
12.84 ± 0.62 
(11.36,13.85) 

Near neighbour distance statistics within the secondary structures found in BPTI. 
Shown are the mean, standard deviation, minimum value and maximum value for each 
of the second, thjrd and fourth neighbour distances for the residues involved in the 
secondary structures of BPTI. Residue locations for the secondary structures are from 
Deisenhofer and Steigemannf [32]. 

Table 33: Secondary Structure Examples: BPTI. • 

valu.es are calculated from equations (94), (95) and (96) 

a-helix ^-strand 

m 
P 

3.61 
5.41 

2.00 
6.95 

d,*,,+2 
^«,*+3 
dt,f+4 

5.41 
5.06 

.6.18 

6.95 
10.54 
13.90 

3i,rhelix 
' " 3.0 ^ 

6,0 
5.14 
6.00 
8.63 

Table 34: Theoretical Near Neighbour Distances: Secondary Structures. 

At the present time, it is* difficult to predict o priori the proportions of secondary 

structures that will be contained in a particular protein, unless its evolutionary family 

is known. It is has been estimated from empirical studies that globular proteins contain 

on average nearly 40% a-helix residues, 15% /9-strand residues and 25% of the residue!* 

in reverse turns [20]. Unfortunately, these proportions vary greatly from protein to 

http://valu.es
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t' 

protein, and are not correlated with the size of a protein. Also, many examples of 
\ 

secondary structure within proteins are considerably distorted, and it is often difficult 

to determine whether or not a particular residue should be included-as an. element of 

a discerned helix [56]. 

Due to the difficulty in predicting the proportions of the various secondary struc-
> ° 

, tures in a protein to be folded, mean value parameters for near neighbour distances are 

not employed in the presenF model. Due to the difficulty in predicting the locations 

of the secondary structures and the variability in near neighbour distances observed 
j 

o 

within the helices of globular proteins, predictions for the locations of protein secondary 

structures are also not used in the model. 

Statistical secondary structure prediction techniques \cf, Chou and Fasman [20]) 

will undoubtedly become more reliable in the future. In this event, general distance 

constraints for near neighbour mean values or specific distance constraints for the 

mean values of residues believed to be involved in secondary structures could be ac-

cornmodated by the model. The general mean value parameters could be found by 

incorporating the proportions of each type of secondary structure into a probability 

distribution of (tp, A) angles. The mean distance corresponding to this probability dis-

tribution would then be calculated by the method of the previous section. Specific 

- m e a n value parameters used for each separate type of secondary structure are < much 

more easily, implemented; they would simply be the valu§s given in Table 34. That 
ti 

is, each pair of residues that are predicted to exist within a given secondary strjucture 

could be constrained to lie at an exact pairwise distance, given by the parameters in 
r • 

Table 34. 
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