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A}astract. I ‘

Requiring only the one-dimensional primary structure as input, the ositions of the

constituent residues of a globular protein are predicted in three-dimensional space by

°

a model using current mathematical programming téchniques.

Semi-empirically derived parameters in the form of distances between points are e

utilized. The residues are positioned by minimization of a simple distance function

of their hydrophobicity classes, given constraints on their near neighbour distances

. - T ¢

and bounds on their far neighbour distances. Disulfide bonding information or extra-

y
s

primary substructures may also be used, where appropriate The objective function

!
and constraints are combined into a nonlinear penalty function, which is minimized

[

by a new low-storage optimization technique. Thg__gﬂtimization method employs a
y )

P

v

combination of steepest descent and a truncated-Newton meth

o T 0

The model is designed to be sditably constrained, in that the predicted structures

.

are not overly dependent upon initial conditions and the solution space is small with
A

respect to both Cartesian coordinate and distance coordinate space. The model is

At

capable of predicting tertiary structures for all single strand globular proteins, with no

-
z

restriction on length.

The tertiary structures calculated are fqund to have global structures sumilar to

those found by experimental crystal X-ray/diffraction techniques. Using the distance

2 [
P o

space root-mean-square (RMS,) as a measure, RMS, differences from the diffraction

2

structures are found of?.SS A, 4.45+0.43 A and 5.75 A for rubredoxin (54 residues),

BPTI (58 residues) and lysozyme (129 residues), respecth‘d&j

7

©

¥
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1 A General Introduction to Protein Chemistry and Physics.

]

1.1 Introduction.

A central concern in molecular biophysics is the study of the three-dimensional con-

formations of proteins. Proteins are crucial in virtually all biological processes The

g, ‘
elucidation of the three-dimensional structure of protéins aids in our understanding of

AR

these processes, because a'protein’s function is determined entirely by its structure. .
3

This probler;l is simpl;. in principle. It is believed that the primary structure of a
protein, the one-dimensional sequence ofgits constituent amino a(fl:iﬁ residues, uniquely
determines its tertiary structure, namely the locations of its atoms in R3 [3,4,48,54].
That is, the protein will fold spontaneously into a umgque stable three-dimensional
structure in a suitable environment, without the necessity of an additional energy or

information input., The problem then, is to define an algorithm that produces the

gertiaﬁ’ structure from a given primary structure. Once tertiary structures can be

accurately predicted, the causal relationship of structure to function can be properly

addressed.

——

The determination of the native three-dimensional conformation of proteins is a

the direct result of its primary stricture in the native environment.

[

1.2 Protein Physicochemistry and Structure.

* ——

1.2.1 }?‘ibrous versus Globular Proteins.

’ » . » + . M 5
Proteins can be classified into two groups ?ccordmg to their macrostructure. Fibrous

- proteins are those associated with structural elements in the cell, and are largely
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<3
insoluble in an aqueous environment. They have high molecular weights and are ca-

a

pable of stretching and contracting. Tn general, their overall conformations are either
long fibers or sheets. . —_—

In contrast to fibrous proteins, the globular proteins are'generally soluble in witer,

»

smaller and less symmetrical. Nearly all enzymes are globular proteins. Other glob-
ular proteins perform a remarkably diverse range of functions, acting as antibodies,
4

hormones and receptors, growth and differentiation controllers, and ion and molecule

g "

transporters. In this study, only globular proteins will be examined.
For detailed accounts of protein chemistry and strhpture, the reader is refen;-ged.‘to

Dickerson and Geis {34], Schulz and Schirmer [101], or Creighton [28]:

1.2.2 Protein Manufacture.

I8

According to currently held ideas on protein synthesis [122], the amino acid sequence in

a polypeptidechain of a protein is a colinear and‘ynique representatién of the nucleotide

-

sequence of the nucleic acid which codes it. Three adjacent nucleotides constitute a

codon, and specify a single corresponding amino acid. Accordingly, the polypeptides

o

are similar to nucleic acids in that they are linear, unbranched chain molecules with

standard elements and one standard linkage. This arrangement allows for a simple and *

.

universal nucleic acid reading and polypeptide synthesizing mechanism.

In proteins, as in nucleic acids, not only the linkages but also the atomic groups
forming the backbone of the chain are uniform; in polypeptides all 20 common amino
acids are of the a-type and have the L-configyration at their central Cy-atoms. All

differences, and therefore all inforfnation, are restricted to the rather short sidechains

- -

a

of the amino acids. "

. JR— ———

]
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Figure 1: General Structure of an Amino Acid.

1.2.3 Twenty Amino Acids.

There are 20 standard amino acids residues occurring in natural proteins. These are
listed in Table 1 along with their hydrophobicity classifications from various sources.
The displayed hydrophobicity classifications will be discussed in Chapter 3.3 Table 1
also gives the commonly used three-letter and one-letter abbreviations for the amino
acids. The three-letter abbreviations will be utilized throughout this thesis. The molec-
ular weights of the amino acid residues range from 57 to 186 daltons with the mean,

3

weighted by relative-abundance, being about 110. #

o

The general structure éf an amino acid is shown in Figure 1. All amino acids, with
the exception of proline, have an arnino (—N Hj) group, va carboxyl (~COOH) group,
a hydrogen atom, and a distinguishing R group (called the sidechain), all bonded to
a central (Cy) carbon atom. The amino acids can be classified With respect to their
sicjlechairis as either polar or nonpolar.-; The polar sidechains can be further subdivided

into neutral, basic, or acidic. Figure 2 illustrates the 20 common-amino acid sidechains.

P
o

In this figure, amino,acids with similar properties are grouped near one another.




Amino Acid Three-letter ~ One-letter | Ref Ref Ref Ref ‘Ref Ref
or Residue Abbreviation Symbol #1 H#2 H#3 H#4 H#5 ¥#6-

Alanine Ala A a a a a .« 1 a
Arginine Arg R 1 I a " 1 a 1
Asparagine Asn N a a 1 1 1 1
Aspartic Acid Asp D 1 1 1 1 1 1.
Cysteine Cys C a a b b 1 b
Glutamine Gln Q I a 1 a 1 1
Glutamic Acid Gl E 1 1 1 1 1 1
Glycine Gly G 1 a 1 a a a
Histidine " His H a 1 b 1 1 a
Isoleucine Ile I b b b b b b
Leucine .Leu L b b b b -b b
Lysine Lys K I- 1 1 1 a 1
Methiénine Met M b b b b b b
Phenylalanine Phe F b b b b b b
Proline Pro P 1 b 1 . a b 1
Serine Ser ) S a a a 1 a 1
Threonine Thr T a a 1 a | 1
Tryptophan Trp w a b b a b b
Tyrosine Tyr Y a 1 a 1 b a
Valine Val v b b b b a b

Table shows hydrophobicity, classifications by various authors for the twenty amino,
acids commonly found in natural proteins. The three hydrophobicity classes used are
b == hydrophobic, | = hydrophilic, and a = ambivalent. The sources are Goel and Y&as
[46] (Ref #1), Dickerson and Geis [34] (Ref #2); Wertz and Scheraga [124] (Ref #3),
Charton and Charton [16,17] (Ref #4), Lawson et al. [64] and Jones [55] (Ref #5), and
Meirovitch et al. [74,75,76] (Ref #6).

Table 1: Notations and Hydrophobicity Classifications for the 20 Common Amino Acid
Residues of Proteins.
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cr

Shown are the sidechains for the 20 common amino acids. For proline, part of the main
chain is inserted. The other sidechains are shown as they emerge from the Cy-atom of -

the resiglue. {

Figure 2: Amino Acid Side Chains (from Schulz and Schirmer 1979).
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1.2.4 Characteristics and Polarities of Amino Acids.

RS <

The standard amino acids differ only, with respect to their sidechafns. Each sidechain
Ay o Y

z
.

is so specific that it cannot be easily substituted with another one without altering the

- .

gross properties of the protein. Glycine has only .a hydrogen as its sidechain. - With

o A

4

no sidechain hindrance, Gly residues can §dopt unusual dihedral arigles, gﬁring rise to

kinks in the main chain. Therefore, the presence of these amino acids will increase ‘the

1

flexibility of the polypeptide chain. Gly and Ala are so small that they can apparently

be accommodated in the intérior of a protein or én its surface with.equal ease. The

’

nonpolar sidechains of Val, Ilé and Leu are branched. Branched sidechains are stiffer,

making them easier to fix in specific pesitions. Met has a rather flexible sidechain

containing one sulfur atom. The nonpolar amino acids are predominantly found on the

inside of protein molecules. Pro, the only amino acid in which the sidechain reattaches

o

itself to the main chain, has the unique property of disrupting an o-helix and forcing

a bend in the main chain.

The aromatic amino acids Phe, Trp and Tyr all contain one ;nethylene group that

acts as a spacer between the Cy-atom and the aromatic ring. Without this group the

1

> main chain would be extremely stiff due to the steric hindrance at the Cp-atom.
Typical polar and-neutral sidechains are those of Cys, Seg, Thr, Asn, Gln and Tyr.

They tend to form hydrogen bonds and to be found on the outside of the molecule.

/’ n
Most of the active centers of enzymes contain His amino acids. Asp and Glu are

¢

negatively charged amino acids at physiological pH and are beth found at protein

surfaces. Pgsitively charged Lys and Arg residues also tend to be found at the surface.

°

Cys can help to stabilize protein structures because of the ability of two such amino

¢



- acids to combine to form a disulfide bofid within a protein. These disulfide bridges are

[l

= §

the only common covalent cross-links in proteins.

4

, 1.2.5 Peptide Bond Formation and Geometry.

-Amino acids aré polymerized into a pblypeptide chain on ribosomes in the cell. The

o
Rt

: @
polymerization is based on the formation of substituted amide bonds, usually called

“peptide” bonds. Once polymerized, the individual amino acids are referred to as

b 1

“residues”. Typically, a single chain of a protein will contain 50-1000 residues. Globular

proteins are composed of one or more residue chains, or strands. The chain direction is

a

defined as pointing from the amino end ( N-terminus) to the carboxyl end (C-termiﬁus),

coinciding with the direction of chain synthesis in vivo.
4

The geometry and the dimensions of the peptide bond are shown in Figure 3. These

data have been derived by Marsh and Donohue [7 3} and Ramachandran et al. [89] as a
refinement of the pioneering studies of Pauling et al. [25,81], using crystal structures of
small polypeptides. The Peptide linkages are predominantly irans (Figure :"{) so that
the hydrogen of the (—NH) group is as far as possible away fromv the oxygen of the
‘(-—‘G' = 0) group; the alternative cis peptides, wherein the (—N H) group hydrogen is
as close as possible to the {(—C = O) oxygen, occur rarely. Rotation around the peptide
bond is inhibited by resonance, causing a partial double bond of (O = C — N). This
] makes éhe peptide bond essenti;.mllyaplanar. The rotational freedom of the backbone is
P_ thus localized in the two single bonds (G’,, ~ N) and EC:,, — ). With a stiff peptide
bond and with rather rigid bond Iengths“ and bond angles, the distance between the

Cu-atoms of two adjacent residues in the chain is found to be essentially constant, equal

to 3.80 A.
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Snta.ndard angles and distances for the usual trans peptide bond as given by Ramachan-~
dran et ol. (1974). ' )

Figure 3: The Peptide Bond (from Crelgliton 1983).

1.2.6 Side Chain Chemistry.

¢
o

The local chemistry within the protein is aﬁ'ectend by the peptide bond, which is stiff
(;'est;icting the chain flexibility) and rather bulky (giving }i’ée to substantial steric
hindrar;ce). Except for Gly and Pro, the sterically allowed regions for all’ residi.cs
are essentially the same and rather small [90,91]. This causes residues that are close
together in primary sequence (the “near neighbour” residues) to have strict and specific

limitations on their maximum and minimum pairwise distances in R®.

The packing density of a molecule is defined as theé ratio of the van der Wga]s radii

=
]

: <
of its atoms to the volume it actually occupies in space [94]. Because globular protfeins

. possess a high packing d:énsity(close to the density of crystals of small molecules that

®

are held together by van der Waals forces), the final structure of a protein is very
dependent upon noncovalent forces. The noncovalent forces drive the spontaneous

folding process, and later act as the mediators of enzyme-substrate reaction mechanisms

i

L\



or other biological activities. Noncovalént forces in the protein include dispersion forces

[

and electrostatic interactions between partially charged residue sidechains (van der

-

Waals forces), hydrogen bonding between two residueg or between a single residue and

a water molecule, and hydrophobic forces from the nonpolar residues. Polar residues

o
L . .

in the interior of the protein help stabilize the protein by the formation of numerous

N

hydrogen bonds.

- -

/
1.2.7 Disulfide Bonds, Salt Bridges, Prosthetic Groups.

BN

Salt bridges are weak ionic interactions between oppositely charged sidechain groups.

»

-

There are only a few salt bridges in proteins. They dre usually located on the -exterior
of the protein, although interior salt bridges would be much more useful in stabilizir}g
the structure of e;. protein.

Disulfide bridges can be formed between pairs of Cys residues. These covalent bonds

can serve to cross-link different parts of a protein chain. As a rule, these bonds form

)

P

spontaneously. .

-

Historically, it was thought ”g}latn disulfide bonds determine the three-dimensional

structure of the protein. However; it was found that the disulfide bonds in most proteins

can be fully reduced and denatured, and)the denatured protein will refold into its native

structure with correct disgHides upon reoxidation (¢f., Haber and Anfinken [49]). It

was also determined from denaturing-renaturing experiments that some S-S bonds are

transient during the folding process of a protein, and the disulfide pairings of ‘the final
- %

folded structure may actually be formed after the secondary and the tertiary structure

of the protein has been achieved [27]. Furthermore, a great many S-S links of proteins

scan be broken without the loss of the protein’s structure or function. For example,
Y

%
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all three disulfide bonds of a-amylase can be reduced without impairing its enzymatic

L
€

activity [108] : j

Apparent exceptions to the hypothesis of spontaneous S-S bond formation eccur
. with insulin and a—chymotryl;sin, which cannot be renatured on2e their disulfide bonds
are broken [44]. However, both of these proteins are formed from larger precursor
molecules by proteolytic cleavage, énd both ‘of their precursors (proinsulin and chy-
motrypsi{mgen) reform their hat“ive structures and S-S bond pairings upon reduction
and reoxidation. This indicates that insulin and a-chymotrypsin require the energy
contributions from their native set of S-S bonds for stability. The common function of
disulﬁ;e bonds then, is not to determine the three-dimensional structure*but to give
_extra stability to otherwise properly foldéd proteins [4,101]. These bonds are conse-
quences of folding, and not the driving forces. . -

Prosthetic groups, although often noncovalently bound to the polypeptide chain,
may in some cases be linked to the sidechains of protein residues. It is possible in many
instances to remove the prosthetic group without damage (e.g., the heme in globins),

-
whereas in other cases the protein becomes denatured (e.g., the heme in catalase).

1.2.8 Hydrophobicity. .

One of the principal driving forces of protein folding results from the energetically un-
favorable interactions between nonpolar sidechains and water. This “hydrophobicity”

causes the majority of nonpolar residues in native proteins to cluster inside the molecule,

; > .
away from the aqueous environment, forpaing a tightly packed solvemg-inaccessible hy-
‘ .

drophobic core. As first observed byDanielli [31] and Kauzmann [58], this dropW

LY
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activity. Nonpolar sidechains that do remain at the surface are frequently found to be

&

oriented so that their contact with watei' is minimized. ¢

Since globular proteins have diameters of about 30 angstroms, sidechains cannot be

buried in the protein interior without also burying part of the backbone, the polat amide

@
o
Y

and carbonyl groups. However, the polar groups coexist well with water. Burying them
in the interior without loss of free energy is achieved only by the formation of hydrogen

bonds. Regular hydrogen bonding patterns are commonly observed among residues in

@

the interior of a protein; these give rise to what are termed “secondary structures”. It

a —

]

. has been found that the fraction of buried nonpolar groups increases with a protein’s
size, whereas the fraction of buried polar groups remains relatively constant [18].

The removal of charged groups from water is energetically very unfavorable. The

vast majority of charged sidechains are at the protem sgd[ //‘}‘hese types of residues

-arfe referred to as “hydrophilic” .

The hydrophobicity rule of “nonpolar in, charged groups out” helps to stabilizé a

\\pro’éin in aqueous solution, giving proteins their globular shape. The arrangement of
the internal sidechains is remarkably efficient. If the internal volume is compared to
the sum of the volumes of 'the constituent sidechains, the interior of the protein is found
to be packed at about the same density as solid crystalline amino acids [94]. *
Hydrophobicity indices or classifications have been proposed by several au@hars, and
several of these are listed in Table 1. These consist of rating or classifying the residue

types on their preference to be situated within or away from the aqueocus environment,

They are discussed in detail in Chapter 3.3.
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1.2.9 Secondary Structure. !
' t

i

A

As suggested by the terms primary structure and tertiary structure, there exists a

!
. . Iy
hierarchy of identifiable geometrical structures in proteins. This hierarchy will be

|
'
i

described in the following three sections. ‘

The secondary structure of a protein, intermediate between primary and tertiary
I
structure, can be defined as the arrangement of its main chain atoms without reg?.rd to

. o *

the types or conformation of its sidechains or its relationship with other chain segr]pents.

Secondary structures are stabilized by hydrogen bonds between the pep‘},ide amide and

.

carbony] groups. Four types of secondary structures ate commonly found in glctrbular‘

. Q
protems:

1. The a-helix [83], a regularly repeating structure containing 3.6 residues per helical ¥

-~

turn, resulting in small uniform distances betw&gl near neighbour residues;

f
PR N °

2. The B-strand [82], a helical structure such that the polypeptide chain 1s nearly

fully extended, resulting in large uniform distances between near neighbour residues;

s

) .
8. The 3j0-helix [35], an intermediate helical structure, occurring less frequently in

K
) /
v

proteins, which contains 3.0 residues per turn; . e

4. Reverse, or hairpin, turns [115], sharp turns containing four residues and usually -

Y, bl

stabilized by a single hydrogen bond. .

v
» he

The a-helix is the most abundant secondary structure in proteins, effecting %a.ther

stable rods through the interiors of globular proteins. The stability of normal helical

conformations is affected by both the polypeptide length and the residue seq‘hence.

Gly and Pro have the characteristic of destabilizing any hydrogen bondirg patteln and

g -



. 1.2.10 Tertiary Structure. i

) 13

f
]

i * >
are termed helix disrupters, albeit for different reasons. A Pro résidue does not have
' |

a hydrogen atom on its peptide nitrogen atom and, therefore, is unable to contribute

to the hydrogen bonding patterns of a helix. With only a hydrogen atom for its

«

sidechain, a Gly residue’can destabilize a helix due to its extensi\_'e flexibility. Residues
are theoretically capable of forming helices of types other than the ones li§tecl above.
However, none has been found with any significant frequency in real proteins,
B-strand arrangemeLts differ from other regular helical structures because they
involve hydrogen bonding t;etween sequentially distant residugs. f-strand systems are
observed of two types: parallel and ::mtipa.rallel, in which adjacent g-strands run in the
sz;,me or in opposite directions, respectively. In these, t};e stabilizing hydrogen bonding

pattern occurs between residues of opposing S-strands These arrangements are termed

B-pleated sheets, R , )

Reverse turns are ustually located on the surface of a protein. They are quite flexible,

L)
and susceptible to changes in environment. They generally have distinctly recognizable
conformations and are often restricted in their residue composition [5], with Gly being

*+
the major participant. About one quarter of all protein residues are involved in turns.’

“ 1

0

Tertiary structure refers to the three-dimensional cofiformation of the atoms in a single

strand of a protein. The function of a protein is dependent upon its tertiary stric-

3]

ture. Tertiary structu % is stabilized not only by the covalent bopd-i@he atoms in

[

the main chain and disulfide bonds, but also by essential noncovalent forces such as

a

hydrogen bonding, van der Waals forces and hydrophobic interactions.

Sl § pra—
, After synthesis on the ribosome, general physical principles imply that the polypep-

v
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tide chain will fold spontaneously into a primary sequence-dependent globular prot?in
by adopting a state of minimal free energy. It is probable that folding already starts
during the synthesis. The resulting folded structure determines the biological activjty -

of the protein. ) : .

Experimental evidence supports the hypothesis that, under native conditions, a
protein will fold into a three-dimensional structure that is unique [4,48,54]. This com-  «
plicated structure (cf., Figures; 4 and 5‘,) is dictated only by the é@no acid sequence
and the chemical environment. However, the relationship between sequence a}ld struc-

ture is highly degenerate [97]. That is, many primary sequences can give similar folded

structures and biological activity [113].

There appear to be only’a limited number of amino acid sequences that can pro-

vide a unique structure in a given environment [97]. Artificially constructed random

-
* -

polypeptide strings tend not to have unique configurations, but instead behave as ran-

dom coils that continually’ shift from one structure to another (15,91]. This implies

T

the natural proteins may be a small subset of polypeptides, selec!‘,ed partly for their
stability of structure [36].

The tertiary structures of natural proteins are not only unique, but they are also
specific in a given environment. Only a few sp.eciﬁc residue substitutions are possible

that will allow the molecule to retain some activity. ¢

As will be discussed in Chapter 2.2, the knowledge of the secondary structuresr c

of a protein unfortunately does not greatly aid the elucidation of tertiary structure.

The tertiary structure of a protein thus cannot adequately be described as a simple

2]

aggregate of connected secondaty structures.
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The residues are numbered sequentially from the amino end to the carboxyl end. Qnly
the central Cy-atoms of the residues are shown, connected by virtual bonds.

=
r

Figure 4. Tertiary Structure of BPTI Molecule (from Scheraga 1983).

p
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Onl‘\} the Cy~atoms of the polypeptide backbone are shown; connected by virtual bc/;nds.

Figure 5: Tertiary Structure of Lysozyme Molecule (from Stryer 1981). o



1.2.11 Quaternary Structure.

Many proteins exist as large molecules formed by the specific aggregation of several

identical or non-identical protein strands. These strands may’ be held together by

]

disulfide bonds, hydrogen bonds or hydrophobic bonds. The quaternary structure

deals with the arrangement of the constituent strands. For example, hemoglobin is a_

L)

protein with a quaternary structure consisting of two pairs of single-chain subunits.

e

Each of these four strands is folded into a shape similar to a myoglobin molecule,'
i .

\ .
which is a single strand protein. The four separate strands are cogsolidated into a

single stable structure by a great many hydrophoBic interactions, along with a few

hydrogen bonds and charged-group interactions. Proteins that have molecular weights

in excess of 50,000 are likely to involve two or more polypeptide chains.
[.d

Y

1.2.12 Tluctuations.

PR

A protein molecule is not a static structure. Protein atoms are in a constant’ state

13

. . . 8 .
of motion. The fluctuations of the atoms are possible from bond rotations that are

available in the polypeptide backbone and 'sidechains, and separated by only small

©

energy barrjers.
These high-frequency fluctuations may be a factor in the functions of proteins, such
as enzyme catalysis [57,123]. However, the scale of the fluctuations is only of the order

of 0.5 A for an-individual atom, with larger movements being prohibited by the tight

g_:

packing of the molecule. This means that the fluctuation magnitude is smaller than
¢

" the resolution of the present theoretical modgls, as well as being beyond the resolving

‘power of current experimental methods for tertiary structure generation. Therefore,

«



fluctuations will not be considered fuither in this thesig.
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2 . Previous Approaches to Tertiary Structure \{’redic-
tion. ) ‘

N

-
This chapter is concerned with reviewing the methods that are currently bei{}g em-

ployed for theoretical prediction of the tertiary structures of globular proteins. The

starting point for all of these methods is the hypothesis that all the information needed

¢

to define the three-dimensional structure of a protein is inherent in its amino acid

sequence. : ' L

2.1 Energy Minimization Models. .

The existence of a unique stable conformation under native conditions indicates that
Ch .
-

" the Gibbs fre;a energy of the system consisting -of the protein and the surrounding
solvent must correspond tc; a minimum state. Therefore, the most straiglftforward
approach for prediction of tertiary structure is to write the equations that describe
the free-energy state of the molecule in its solvent, and solve for a global minimum.
In_principle, this method should always be successful, and the structures of simplc;
‘chemical systems have been determined by such direct energy minimization. However,
the numerous attempts to"de;termitie protein gtructures by this method have met with

>

limited success in practice, mainly due to the enormous size of: these molecules (cf.,

Nemethy and Scheraga [78]). )
The set of equations describqin‘g even a moderate-sized protein is so large that the
equatio}ls would be virtually impossible to write down, let alone solve, The computation
. « .
of the potential energy of a confc;rrx‘ldtion is based on the assumption that the energy

can be expressed as a sum of interactions between the atoms of the protein, with

individual interaction terms required for all possible pair combinat/ions of the atoms.’

t

19
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This amounts to a computation in the order of n? nonlinear distances and energy

terms for every evaluation of the energy function for a molecule containing n atoms;
.
for example, over a million terms would be calculated for the small enzyme lysozyme

at each iteration.

LY

The equations are nonlinear and the free-energy surface is characterized by an ex-

Fad
I3

tremely large number of local minima. This “multiple-minima” problem is considered

a major obstacle in the solution of free-energy equations for any large chemical sys-

2

tem [100]. Mathematical procedures developed to solve the multiple-minima problem

. &
by passing from ome potential well to another consume far too much computer time,

a

and it is not practical to apply them to a polypeg)t;ide longer than a few residues “[29].
Currently,/energy minimization models are being developed that attempt to.circum-
vent the multiple-minima problem; for example, the real-spdce renormalization group
technique familiar to the world of theoretical physics can be useci [100]. Py

+ A further complication for this method is that it is unclear whether a protein’s

+

free-energy state in vivo corresponds to a global. minimum or to a strong local, mini-
mum. If the native conformation does not correspond to a global minirhum, this would’
mean that certain conformations are energetically inaccessible because of high potential

energy barriers and that there is a limited number of possible pathways along which

-

a protein can fold. -This has led researchers away from the exploration of the entire
L

~

conformational space in search of a free-energy minimum, and instead to consider only

] .
directed pathways of folding, leading through intermediate conformations involving
L

LY

stable near neighbour and secondary structure arrangements. In effect, this amounts

to the consideration of a problem that is different from the energy minimization of the

true protein system, but much more amenable to solution.

¢

®

[
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The complexities of direct free-energy minimization have stimnulated a search for al-

ternate solution techniques. One method is to grossly simplify, modii:‘fr or approximate -

9

the free-energy function in order to make it tractable [67,68,107,108,109,110,111,112,129)].

This often involves treating each residue as a single point mstead of as.a group of atoms,

~

’ .
or using information such as homologies between proteins to choose initial conformna-

“ :

tions that are already close to }hﬁreal structure. Also, empirical or simplified functions

are used m place of the original free-energy equations. These simplification approaches ,

o
have also proved difficult. Either the equations remain highly nonlinear and unwieldy,

4
' o

with a multitude of local minima, or the original funcfions become so distorted that

,’*
they are barely recognizable.

It appears unlikefy" that realistic free-energy equations can be solved in any real

sense in the near future. Therefore, one must search for othér means of tackling this

A

problem.

2.2 Secondary Structure Based Models. !

One alternative technique is to first predict the secondary structures of a protein by’
»

statistical methods such as those of Chou and Fasman [19,20], and then to compose

the structural elements into a suitable globular structure [21,37,38,85,104].

Most approaches to protein structure prediction have concentrated on secondary
h A,

' structure, since most protein residues participate in some type of o-helix, f-strand or

+

hairpin turn. The object of these approaches is to first accurately predict secondary
structure elements and then learn how to pack them together to generate the cox-

rect tertiary structure. The empirical tendencies of the amino acids to form various

secondary structires-have been studied on an individual basis [66] for conformational

¥

o
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correlations, with marginally significant results. A more successful empirical scheme to
) . .
predict the occurrence of secondary structures is based upon first ranking the amino

acids with respect to forming, breaking, or being ambivalent to each type of secondary

conformation. Then the relative positions of near neighbour residues are observed with

o

respect to the primary sequence of a proteir;, and the prediction proceeds by an elabo-

ration on the number and kind of residues, required to nucleate and terminate a given
$

structural element. The best known of these methods is the Chou-Fasman technique

[19,20], perhaps becanse of its ease in implementation [26]. Secondary structure pre-

dictions from basic nonempirical considerations, such as statistical mechanics [60] or
-
stereochemistry [69] have also been proposed. . L
/ - . ¢
However, none of these prediction methods has been found to be highly accurate.

>

At best, only about 50 per cent of the residues in a given protein are correctly classified

as elements with respect to the four secondary structure categories: a-helix, f-strand,
k4 : [ ’ ¥

reverse turn or irregular conformation [28]. It appears that residues widely separated in

primary sequence have a substantial effect on secondary structure determination, but
these far neighbour interactions are generally not included in the prediction techniques.

Even when the secondary substructures along the residue chain are known, the

0 v

final stage of assembling the resultant secondary structures into a reasonable tertiary
structure s far from straightforward. The algorithms developed for combining the

a E
secondary structures of a protein into tertiary structure [21,37,38,85,104] have not met

3

with much success. The reverse turns and irregular segments.are “flexible”; they are

I3

. st

v

not fixed structures in evolutionary related proteins. Even though their ‘geometry
is local, they are determined,by nonlocal interactions. They can thus been seen as

points of least resistance in folding, and not as active folding elements. This makes the

- e
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relative orientations of the secondary structures difficult to prediét. Small differences

in the (1, ¢) angular orientations of residues involved in a turn can result in completely

-

different global structures.

Therefore, it appears that the information on secondary structure locations is not

<

sufficient to predict an accurate tertiary structure [50]. One aspect where the tech-

-

niques for predicting secondary structure locations do show much promise is in refining

a

the resolution of structures whose tertiary characteristics fire roughly known. Thus -

&

a complementary approach may be in order, where first a distance constraint model

0

gives the correct global tertiary stricture, and then is refined by a secondary structure

N D

prediction model and further refined by a model concerned with direct local energy

(v

minimization. !

2.3 Distance Constraint Models.

a

Another alternative approach from digget free-energy minirmzation modelling is to use
empirical and ’st% methods to exploit the information available from the X-ray °
diffraction studies of crysﬁallige protems (cf., Chapter 7 .3.1) These folded structures
can be investigated empirically for common strucnural'restrictions that give rise to uni-
~

versal characteristics in the geometry. The tertiary structure of ah unresolved protein
may then be predicﬁed by forcing its residues into a conformation sharing the properties
of the known structures.

The geometry of all globular pofdins with known tertiary struc;,ures have been
found to contain comrnon structural restrictions, which arg naturally éxpressed as

constraints on distances between pairswof atoms. For example, the distance between

C.-atoms of adjac%;e;idnes is a constant 3.80 A. Tertiary structure prediction models

»
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using this type of ob etva. have sh?wnmuch promise, in recent Gars. These mod-
elling approaches ar¢ variously referred to as distance constrg , distance geometry or
semi—empi;ical modad]s.

With distange condtraint models, a small number of simple controls force the protein
into its fne tiarf ktructure. These models do not attemgt to follow the folding
process in any way, but when the constraints are well chosen, they do reflect the
underlying dynamics of the folded state: of the protein. In other word,s, the free-energy

equations are implicit in the empirical constrgints. Also, by using known native protein

structures as their basis, the question of whether the folded protein lies at a local

or global free-energy minimum is irrelevant for distance cons

F

The major contributions to this type of model will be cutlined here. The specifics of

these models are discussed in Chapter 7.3, wherein their prediction fegults are compared

3

to the results generated by the present model. ;

The model of Goel, Y¢as et al. [14,45,46,128] attempts to satisfy a set of distance

constraints identically by writing the constraints in the form of a weighted penalty

3

function (cf., Chapter 7.3.2). Various constraint combinations are presented to be
solved exactly with the constraints being either pairwise distance constraints, minimum

or maximum bounds on distances, or set average constraints. The set averages are

%

weak constraints requiring a set of residues to attain an average distance, with no

-
.

restrictions on individual distances. The penalty function is solved- by minimization

-

77 =, in the corresponding Cartesian coordinates. A sequential optimization is performed
i where each residue is selected in turn and its position optimized while keeping all other
residues fixed. Their method is quite successful at the prediction of final structures

with various constraint combinations used as input. However, this approach seems to

&



be overly dependent on the choice of the initial configuration, which implies that their
models may not be suitably constrained in a sense to bé described in Chapter 4.

The approaches of Kuntz, Crippen et al. [30,50,51,52,61,62,63] are summarized in

Chapter 7.3.3. Their more recent approach [50,51,52,62] first imposes a set of distance

constraints directly on the matrix of all pairwise distances between the residue

-

s limit-
i

ing specified ‘entries in this distance matrix to be within upper and lower bounds\ Thus
the model works dlrectly with a geometry of pau‘w1se distances (cf., Chapter 4.1). Th
system is easily solved with respect to this coordmate system by simply assigning val—
ues in the distance matrix. Unfortunately, since it requires four, not three, pairwise
distance coordinates to specify a point in distance space, an arbitrary distance matrix

will correspond to a structure in R™, where n > 3. Hence, the difficulty arises in mak-

.
o EN
-

ing the nonlinear transformation of the optimized structure from the distance space,
a sl':ace of higher thaf three dimensions in general, into RS, There is noﬁgbvmus way,
to- perform this embedding process optimally, and the system behaves essentially as
an overconstrained one. The most difficult step of this a'pproach is to decide in some
rigorous fashion whigch distance constraints to relax so that the distance matrix can

A
-

be embedded in R3, whether the embedding process occurs during or after the opti-

mization step. In spite of this, the method shows very promising results in prediction

N 1

of tertiary structure, and is improving as the properties of the transformation become

more familiar. -

a

The models’of Wako and Scheraga [117,118,119,120], discussed in greater detail in

Chapter 7.3.4, combine distance constraint bounds similar to those of ‘Kuntz, Crippen
B

et al. with aﬁgorithmé for free-energy minimization. Mean distance constraints obtained

from such sources as primary structure, secondary structure, hydrophobicity and hy-

o«
-
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* drophilicity ratings of the residues, as well as estimated possible sites from chemical

cross-litking studies, are used to force the prot((a‘in into an energy conformation space

close to that of the real structure, so that free-energy minimization can refine the

1

structure. In addition, semi-empirical estimates are derived for possible candidates of

+ residue pairs that are involved in short-, medium- or long-range contact with respect to
t A hd =3 -
terti::n'y structure. The prof‘éin structures are optimized for these distance constraints

on two-dimensional or three-dimensional lattices. Scheraga [100] extends this model for

tertiary structure prediction by outlining a procedure which consists of repeated cycling

between the method of distance constraint optimization utilized above and techniques

°

for free-energy minimization.

————

2.4 The Present Model.

The distance model to be présentgd in this thesis has employed the model of Goel

and Yéas [46] as its starting point. However, it differs from the previous models in

P

several important aspects, apart from the number and type of geometrical constraints

involved. These differences mainly deal with the mathematical form of the objective
- -« M -

function and constraints. The model is formulated as a standard nonlinear optimization
problem. It was deliberately designed torbe suitably constrained with respect to both
Cartesian coordinates and the coordinates defined by pairwise distances between points

(¢f., Chapter 4). Furthermore, the solution algorithm was expressly designed for this

. ¥

probleng using current idea# in nonlinear programming. As with the other distance

constraint models, it does not yet attempt a high resolution prediction of the tertiary

@

structure, only the correct global characteristics.

9
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3 The Basic'PaL'ameters of Distance Constraint Models.

‘ 14 -
s ‘ o

In this ch.a\.pter, the genlral geometrical characteristics of the chain conformation of

“globular pr';;;ls\“;\?equored. These characteristics lend themselves naturally to de-

wene | @ . "
scription in terms of distance geometry coordinates. - ' .0
In order to simplify the discussion of the geometry of the protein, a protein will be ®

2

& . *
represented by the locations of the central Cy-atoms of its residues.. This representation

) >
corresponds to a “virtual bénd” description of the molecule [79], which is explairgjed in

Chapter 11.1. ’ T

¢
. n

3.1 Near Neiéhbour Distances.

A\

- n o (9]
5

A detailed discussion of the near neighbour distances of proteins is 'given in Chapter’11,

-

where theoretical near neighbour parameters are calculated and analyzed.

of

The local peptide geometry determines the near neighbour distances for the fesidues.

u
O !

First of all, the distance between Cy-atoms of adjacent residues in a protein will gen-

-

erally be a constant, equal to 3.80 A. These first neighbour distances are found to be

-~

essentially constant both from theoretical consideration of the basic geometry and from

empirical data. It is this constraint that gives th@protein its chain structure,

w

g Y

" Pairs of residues that are not adjacent but close together in the primary structure -
0 » : N * i ~

are found to have separations that are nonconstant, but lie withip strict minimum
and fnaximum bound‘s. The minimum and maximum bounds on these near neighbour
distances are determined by steric hindrance and van der Waals forces. f[;hese minimurn
bounds are best estiﬁlated by empirical methods (cf,, Chapte;' 11), and the’present
model employs the empirical results of Goel and 'YEas [46Nfrom X-ray diffraction data

o

of 21 globular proteins to obtain these parameters. Maximum bounds less than k- 3.80)

H

( 27 o
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also exist for the near neighbour distances. These maximum bounds are determined by

x

theoretical methods in Chapter 11, to avoid using meaSurement errors from the X-raw
i . o~

diffraction data. Analysis of empirical distributions of these near néighbour distances

reveals unitnodal peaked distributions for both second neighbour and fourth neighbour

-

distances [46]. Therefore, it is justifiable to use the mean values of these distributions

as parameters. The mean values for these distances are best determined empirically,

since X-ray diffraction errors will tend to be averaged by this calculation and any
\ R .

=3

theoretical procedure would necessarily involve an empirical evaluation of secondary
N A

k4
structure proportions.

el
T - ?

- . The distribution of the third neighbour distances is bimodal [46], and it follows

that the third néighbour average distance may not be a useful parameter for distance

T
P .

constraint models. g ! ’

-

Usually, only first to fourth neighbour distances are included for near neighbour

constraints in distance models. Pairwise distances for residues farther apart in the

N [

“

" " ¢hain show larger variability, and therefore, the additional information gained by the

b
»

inclusion of mean value constraints for these residues would be small.

.

v

Y

Possible near neighbour distance parameters for use in distance constraint models

are given-in Table 21 of éhapter 9.3, including the relevant parameters used in the

2 ¢
3 ®

4 U

present model. s
.-

3.2  Distances Between Far Neighbour Residues,

[N

¥

v .
" Let the distance between two residues that ‘are far apart with respect to primary se-

quence"(t'. ¢., separated by more than about 8 residues) be referred to as “far neighbour”

2
.

distances, to conform with the “near neighbour” terminology of the previous section.

s i
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Any exact knowledge of pairwise distances for residues that are far apart in the chain
is extremely valuable in that the information gained from such data would be glob?l in
nature, not local [119]. However, these far neighbour distances show large variability
empirically, and so their usefulness is limited. The twentieth neighbour distances, for

example, are found to show a substantial variability within a single protein and their
/
t
mean values also vary irregularly when compared over a set of proteins. No correla-

w

tion was found between far neighbour mean distances or standard deviations for far
neighbour distances, and therefore these statistics are not incorporated into the present,.
model.

I mean values for far neighbour distances are to be used in distax'lce constraint mod-

elling, they should be best determined empirically, not theoretically. The coordinates

u

obtained from X-ray diffraction studies would be used for this empirical evaluation, and

errors in these coordinate values would tend-to be averaged out by the calculation of
mean values. Also, any theoretical procedure would have the disadvantage of involving

some empirical evaluation of the secondary structure proportions.
¢

All residue pairs that are far apart in the primary structure do lie within absolute

3

i

minimum and maximum distances with respect to the tertiary structure. The minimum

bound on the distances between far neighbour residues is controlled by steric hindrance

and van der Waals forces. It is an absolute number, not dep?;giwther the size
1

of the molecule or the separation in primary sequence of thé residues involved. This

bound is difficult to determine theoretically because it depends upon the orientation

*»

of the sidechains of the various residues that are nearby in tertiary structure. The

. minimum bound is best estimated by empirical methods, and the value gijven by Havel

n

- et al. [50] is used in the present study.

.
"
«
. -
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Residues far apart with respect to primary structure also show ar\deﬁnite maximum
distance of separation, which is a function of the length n of the primary sequence, but

has a value much less than 8.80 x n. This characteristic is due to the tight hydrophobic
- \ wo®

packing'of the residues, resulting in the globular, or roughly spherical, shape of the

o
¢ t o
1

b
molecule.

&
ir ]

The parameters used for the far neighbour distanée constraints of tl\le present model
are given in Table 22 of Chapter 9.3. These include a maximum bound 'for the far neigh-

Mour distance between any two residues in a chain of'le’;xgl;hﬁn (derived in Chapter 9.3)

! &
-

and a semi-empirically obtained parameter for the minimum kgund. No far neighbour

mean value parameters are employed.

3.3 Hydrophobicity Constraints.

)

Globular proteins counform to a “hydrophobicity” rule in an aqueous environment

~

[31,58,128]. Some amino acids have hydrophilic sidechains, that are preferentially lo-
cated on the outside surface of the molecule. Other types have hydrophobic sidechains,

that tend to bury themselves beneath the surface. The hydrophobicity rule (cf., Chap-

R

ter 1.2.8) separates?ﬁT twenty common amino acids by the tendencies of their residues

to lie in the interior or on the exterior of the globule, essentially due to the chemi-

4 hd Y
cal properties of their sidechains. The rule is only approximate, but it is valuable in .
At '\
providing global information about the tertiary structure. g

a

The hydrophobicity rulne can be expressed in terms of distance measurements between

s
% d

each residue Cy-atom and the centroidal point of the molecule, where the centroidal

1] . e

point is defined as the average? Cartesian coordinate location of the Cy-atoms of the &

-
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residues:

. 1 n 1 n 1 n
(xcp:ycmch) = (;Zwu ;‘;Zyu ;;Zzs) . (1)

s=x1 gzl f=1 \)

“The rule can be stated as a tendency for the Cy~atom of each amino acid type to fall -

into exactly one of three classes:

J1 — hydrophobic — tends toward the centroidal point of the configuration.

J2 — hydrophilic — tends toward the surface of the configuration, away from the
centroidal point.

7
Js — ambivalent — has no tendency. {/

Table 2: Hydrophobicity Classification with Respect to the Centroidal Point.

° N

[ 4

f Although the hydrophobicity rule’is caused by sidechain chemistry, the volumes of
globular proteins are large enough that the burying of residue sidechains will also result
in the burying of a corresponding part of the backbone of the protein, In fact, there .

is found to be a strong correlation between backbone and sidechain orientations [74].

Therefore, it is acceptable to express the hydrophobicity rule in terms of the backbone '
. [ E ‘
Cy-atoms. - Q

_ An important consideration for the ‘_impI{\rrixltﬁgion’ of the hydrophobicity restric-

4

tions in a distance geometry model is the method of rating each of the amino acid

types with respect to their relative preferences for the inside and outside of globu-

lar proteins. There are numerous hydrophobicity classification indices for the amino

o

acids [16,17,34,46,55,59,64,74,75,76,80,124], and six of these classifications are given in ’

Table 1 of Chapter 1. ' —

The residues are sornetimes rated on hydrophobicity index scales based on local

a
Ly
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energy considerations or chemical properties of th.e sidechains [16,17,34,55,59,64,80].
Numerical hydrophobicity scales have been developed [55] by experimental methods, in
which the free e.nergyd of transfer of amino acid sidechains from ethanol to water [80] or
from cyclohexylpyrrolidine to water [64] is taken as a measure of the contribution of each
sidechain to the total hydrophobic effect. Hydr;phobicity pas also been investigated
experimentally by neutron diffractiof and the hydrogen exchange technique [59] and
by statistical-chemical methods [16,17]. The statistical methods define hydrophobicity

as a function of chemical properties, such as the presence-or absence of (—OH) or

4 ¢

(=N H) groups capable of forming hydrogen bonds, the p esence of chemically basic
groups, or the numbers of atoms other than hydrogen bontZled to the first and seco;a
—carbon atoms of .the sidechains.

Alternatively, hydrophobicity can be defined engpirically by examination of the
knc;Wn tertiary structures of globular proteins. This approach is different in princi-
ple from the experimental approach, which does not reflect the influence of secondary
structiires, chain connectivity or long-range interactions. Empirical methods can in-
volve geometrically ;ieﬁnin'g a “surface” for a protein, which can then be used to assign
residues to the inside or the outside of the structure [124]. In thi§ way, a relative

hydrophobicity index can be compiled by observing the overall fraction of each residue

¢

type that is found inside the surface. Simpler empirical methods involve observation of

I

the average relative distances o@' the residues from the centroidal point of the globule

-
[46,74], the distribution of relative distances of the residues from the centroidal point-

-

[84], or the average orientations of the sidechains of the residues with respect to the

centroidal point [74]. "

The hydrophobicity measures are often presented as numerical indexing scales,

L
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£

resulting in twenty different hydrophobicity classes, one for each residue type, Due

1

to the imprecision of the classification techniques, perhaps a more realistic scheme is to
1

employ only three categories: hydrophobic, hydrophilic and ambivalent, as in Table 2

at the beginning of this section. Alternatively, a separate and fourth category can

‘be justified [46], conté.ining the residues of Gly and Pro exclusively. These two types

do not behave as chemically hydrophilic residues but can be classified as empirically

hydrophilic. This is because they tend to participate in hairpin turns, which usually
%

£

occur toward the surface of the protein molecule.

i
-

As shown in Table 1 of Chapter.1, the various methods of measuring hydrophobicity

give similar results, but with some notable differences. The experimental classifications

©

arise from investigating chemical properties of the individual amino acids from small
peptide studies (not studies of complete proteins) or from elaborate physicochemical
1.4

weighted functions evaluating the non-covalent forces of a protein. None of the ex-

perimental cl@%siﬁcations appears toy be highly correlated with respect to the known

[}

protfi}\x structures. Since the hydrophobicity rule just reflects tendencies for residues

L)

to prefer inside or outside, and is not yet expressible in, terms of physics, staiistipal

~

results obtained from real protein structures will presentlk\ provide the best?ﬁta\for
Y . R S

Kl

parameter estimation.

+
&

For the present model, the simple empirical clasmﬁcatlon of Goel and Yéas [46] is

used. They divided the twenty naturally gccurrmg amino acids into three hydrophobicity

<
categories by semi-empirical observation, as in Table 3.
L]

W
-

For this hydrophobicity classification, the centroidal point distances were measured

“for all residues in twenty-one globular proteins. The amino acids were then classified

L)

)

—
ffy

=

o
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4

Hydrophobics -— Val, Leu, Ile, Phe, Met.
Hydrophilics — Arg, Asp, Glu, Gln, Gly, Lys, Pro.

. : ~”
Ambivalent — Ala, Asn, Cys, His, Ser, Thr, Trp, Tyr.

Table 3: Empirical Hydrophobicity Classification of Residues (from Goel and Ydas
1979). :

geometrically with respect to their observed average distances from the respective cen-

troidal points. Whenever an amino acid showed an inconsistént behaviour, presumably

*

as measured by the standard deviation, it was classed as ambivalent.

Given these three hydrophobicity classes, the model implements the hydrophobic_ity
condition as a set of radial distance tendencies from the centroidai point for the in-
dividual C,~atoms of the residues. The numerical hydrophobicity parameters used in

this model are presented in Table 24 of- Chapter 9.3, and a full explanation of these

»

hydrophobicity parameters is given in that chapter.

+

3.4 Chemically Derived Constraints:.”

]

There are other distance condtraints that may be available from' the cherﬁistrrof“a
specific protein, the most obvious ones being the location of disulfide bonds. Disulfide
bonds are cross-links connecting pairs of Cys residues, which may be far apart in the
r;—)rimary sequence, These covalent bonds are probably not integral to the folding process
but certainly aid in the stability of the folded protein. Disulfide bond locations are not
i strictly part of the primary structure information. However, they are-stable covalent

bonds and can easily be found by the same techniques as those used to determine

primary sequence, For example, the proteins can be c_lea.‘d into small polypeptides,

o
@
&~
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and the peptides can be separated under chemical conditions such that the disulfides
remain intac};. The primary structure identities of the Cys residues linked by the
disulfides can then be determined [28].

. The model has an option to use a mean value parameter for the distance betweenv

Cys residues that are known to be connected by a disulfide bond. The nur;lerical value

o ]

for the pa;ameter used in the present model is obtained from the empirical studies

1

of Thornton [114]. Tlie possible parameters for this type of constraint in distance

ES

Rl

constraint models are given in Table 25 of Chapter 9.3.

AS

Using the technicﬁ:es of bifunctional reagent bonding [125,126], nonradiative excita~
tion energy transfer [2], fluorescence energy-transfer [11,100], proton nuclear magnetic
resonance |7 ,1U16,127], nuclear Overhauser measurements [10] or other physicochemical
techniques [23], algernate chemically derived constraints are possible.

“In theory, chss—Iinking—ex—i)eriments using bifunctional reagents can derive informa-
tion such as the ‘loc:;tion of medium-range pairs of Asp, Glu, Lys or Tyr residues [50].

o

However, these studies require considerable effort in practice and are often unreliable,

&

due to the possibility of protein distortion or multiple effects from the reaction. This .

t

type of study holds promise for the future in the extra-primary prediction of distances

between specific residue pairs.

The residues Phe, Tyr and Trp have aromatic sidechains. These residues tend to

y u o) b

interact in pairs or larger networks within the hydrophobit'cores of élobu}ar proteins, at

pairwise distances of about 4.5 to 7.0 A [13]. These medium-range aromatic-aromatic

7

/ interactions are not well correlated, but may help to stabilize protein structure. They

- 13 - @ » :
may be of some value in providing far neighbour constraints for distance geometry

models if reliable prediction algorithms become ayailable.

t

‘e

A0

rad

Ta
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Chemical and physicochemicﬁl methods have been used sucessfully in distance con-
straint predictions for protein tertiary structures. For the protein ribonuclease, Scher-

aga and his co-workers [100] found by chemical techniques the locations of the four

" disulfide bonds, the proximity of Hisl2, His119 and Lys41 in the active site, and the
pairings of carboxy! groups with tyrosyl groups, which were all expressed in the form
-

of distance constraints. They then used these constraints in an energy-minimization

Il

model to predicy the tertiary structure. Cohen and Sternberg_ [23] used chemically

*

derived distance constraints in the form of the locations of potential candidates for
interacting residues in the central.fold and the proximities of the His64 and His93
residues to the heme iron in order to predict the tertiary structure of myoglobin.

As observed by several authors [45,51,119)], the exact knowledge of only a few.short-

L

- “ !\ % . * - - - ay*
gange or long-range distances between far neighbours in the chain can greﬂl): facilitate

; the final resolution of a tertiary structure prediction. On the other hand, the approx-
e - +

+

_ imate knowledge of a great many medium-range distances may not be as effective in

Ay
®

" determining the final conformation. Thus, the use of extra-primary distance informa-

tion is potentially very valuable, and may even be cruciaﬁc:r this type of model to be
v, N o

successful. -

-
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4 Suitably Constrained Systems.

L]

This chapter will treat distance constraint models as a single class of problems. It
. - . L

-

-
Anvolves formulating, and then putting inta practice, objectives for distance constraint

°

modelling,

w3

-

In Section 4.1, general geometric aspects for describing a one-dimensional chain
within a three-\:iﬁimensiona.l Euclidean space will be considered. The most natural choice
of coordinate system for empirical conshrain}‘: modelling is found to be the pairwise dis-
tances ﬂbetween points, and this geometry is explored in some detail. The complicate:d
relation between these coordinates and the canonical Cartesian coordinates are out-

i,
lined in Secfion 4.2. The rest of the chapter is concerned with deriving conditions such

that a distance constraint model is suitably constrained; these conditions involve point-

wise continuity properties of the mapping from distance coordinate space to Cartesidn

coordinate space, 1

the geornetrical\restrictions imposed by the model.

Some ideas concerning the suitable cpnstraining of distance geometry models have

-

o

been presented in Foster [40], where it was shown that the present model contains a

«necessary and sufficient number, and type of constraints so that the solution space of

0

optimized structures for a given protein will be small with respect to both distance

coordinates and Cartesian coordinates. These ideas are continued and expanded in

1
IS ”

this chapter.

4.1 Choice of Coordinate System.

«

a

« -

As in most distance constraint models, the tertiary structure of a protein will be ap-

t

proxim@;ted by the positions of the central C,-atoms of its constituent residues. Various

“
>

. primary coordinate systems have been chosen in recent literature [70,71,79,86,87,88| to

- ™ -

> o

Ty
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elicit the relative positions of a protein’s Cy-atoms in R%. Since the distance between

any two adjacent residues is effectively a copstant, proteins are usually envisaged as

i A}
4

open polygonal arcs of length n, where n is the number of residues. Still, knowledge of

any one of the following sets of data is sufficient to uniquely determine the conformation
AR

of a protein represented by n residue points:

[
a

. - .
1. 3n Cartesian coordinates {(z;, yi,2,)|1 = 1,...,n}.

[y

3
u
o«

[

2. 3n Cartesian coordinates with respect to the canhonical orthogonal basis for B3,

given by e; = (1,0,0), ez = (0,1,0) and e3 = (0, 0,1). Note that there are only

" 3n — 6 degrees of freedom in (#1) and (#2), but the remaining 6 coordinates are

necessary to fix the molecule in R3 with respect to rigid rotations and translations.

]

-3 (x,7) — the curvature and torsion of the arc length [86,87,88]. These are the usual

descriptions of a local zeference frame from differential geometry.

a »

-

4. (b, w) — parameters controlling the shape of a regular parametrized surface, where
K )

b is a size or “bulkiness” parameter and w controls the amount of twist [70,71].

5. (¢, #)- the dihedral Ramachandran. angles for each residue (cf., Chapter 11.1).

6. (0,~)- virtual bond angles conﬁecting t@e Ca-atoms of the residues into a chain

.

y
.

" (ef., Chapter 11.1).

7. 3n—6 coordinates, consisting of n—1 distance coordinates d;,11, plus n—2 values

of d,i42 and n — 3 values of d;;,3, provided that the sign of d,,,’s is specified

w

}  with respect to the plane determined by the peints Cf¥, C2,, and Cf, [119].

8. 4n — 10 coordinates, consisting of independent elements of the set dy v {119)].

-
~
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‘Each of these data sets can be seen to be coordinate systems on a manifold locally

o

homeomorphic to Euclidean space-R3.

A}

o

In Chapter 3, possible parameters for tertiary structure prediction models were

-~

discussed that could be estimated by utilizing the semi-empirical and theoretical results

)

. realizable from known tertiary structures. These parameters are based solely on the

4

observed common geometrical characteristics of globular proteins. N

v

The most striking geometrical characteristic of proteins is that the distance between

first neighbournC'a-atoms is effectively constant. Most coordinate systems implemented

-~

for the-description of protein configuration (e.g., coordinate systems #3 - #8 above),
are chosen so as to take advantage of this property. Cartesian coordinate systems (#1

- #2) do not easily incorporate this basic property.

Characteristic features of proteins involving residues that are close together but

not adjacent in the primary :cstructure, such as the geometry of secondary structures

£

(cf., Chapter 11.4.2), are also easily described in the various local coordinate systems

(#3 - #6) or in distance coordinates (#7 - #8). Yet, those coordinate systems with

v

a local frame of reference (#3 - #6) are very poor in dealiné with non-local phenom-

ena, such as a disulfide bond og@ng between two Cys residues that are far apart

in primary structure. However, observed “global” characteristics of proteins, such as

»

disulfide bonding and the hydrophobic close-packing of residues, are important geamet-

% .
rical restrictions on the folded molecule which cannct be adequately described by any
simple combination of local geometry rules. Distance coordinates {#7 - #8) then, are

the “natural” coordinates for expressing the émpirical geometric properties discussed

v

in Chapter 2.



40

T

4.1.1 Distance Geomeiry. .
E

8

Distance geometry may be defined as the study of Euclidean conﬁgufations using the

) !
distances betwden points as the primary coordinate system. The set of all distances

» °
between pairs of points for a collection of m points forms a matrix D with elements

dy;. The present model uses such distance matrices to display the results of tertiary

structure predictions in Chapter 7. In these displayed results, the matrix elements are

in the form of coded symbols for the distances between the-C,-atoms of the protein.

5 ¢
When the distance matrix is used as a representation of the coordinates of a protein, it

.

has the advantage of containing all the structural information of the Cy-atom positions _

(up to translations, rotations and reflections) in a two-dimensional form.

.
= .

The distance matrix D has several obvious properties: - Lot
- &
1. it is a symmetric m X m matrix (d;; = )3

2. all elements on the main diagonal are equal to zero (d,, = 0);

S

3. all'elements off the main diagonal are strictly greater than zero (di; > 0, 1 % 7).

When the distance matrix is used fo represent a protein configuration, elements of

- w

the first diagonal above (or below) the main diagonal represent first neighbour distances
d, i+1, which are effectively constant. The elements close to the main diagonal represent

local structures, whereas elements far from the main diagonal represent long-range, or

- @

global,ﬂ structures. Any available global geometric constraints such as disulfide bond
locations can immediately bé incorporated into the distance matrix by specifying the

distance d;, between the two residues involved. A chain can be protected from self-
| .
intersecting by the requirement that all elements must be strictly greater than some

14
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»  positive number, representing 'a minimum distance of approach.

-

It is not difficult to find a distance matrix that satisfies all the properties given

s @

above, and yet not have a realizable conformation in R3. As an example [30], note that

there is no arrangement of four points in two dimensions that satisfies the following

. !
distance matrix representation: ™ g

. D=
4

’ (=)

s
bt cd e O
-t (O ke
= O e et
O i et

’

This distance matrix (2) repreosents a ?qtrahedron, requiring three dimensions.

v
B

Proceeding one step further, it is observed that the following distance matrix repre-

" sents a four dimensjonal structure, and cannot be realized by any arrangement of five

[
1

" peints limited to RS: : : -
. 01111
- , 10111
D=|1.1011 (3)
11101
1111 0- c T

Any four points of this configuration can be positioned at unit pairwise distances,

resulting in the tetrahedral structure. However, the fifth point cannot be added in
¢ ‘ [ 2

R? such that its distance from each of the other points is one unit. It is important

“

. to note that furthermore, there is no method of slightly perturbing the elements of

this distance matrix (3) such that the modification would result in a three-dimensional

configuration. It is not at all obvious which configurations of five points in R® would

be most “similar” to this structure.

+

These examples emphasize related problems concerning the use of distance georetry

M -
g

for modelling:

+

1. how to generate a distance matrix that represents a three-dimensional striicture::
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2. how to test a distance matrix for correspondence to a three-dimensional structure;

4

3. how to optimally embed the points of an arbitrary distance matrix from R" into

R3, 8 '
C \

The necessary and sufficient conditions for being able to embed k points in B", for

any given n, are derived in a theorem due to Blumenthal [9], which is here specialized

o+ oo

to three dimensions, as in Crippen [30]. This theorem does notﬁltilize distance matrices
directly, but instead is concerned with bordered matrices of squared disj;;a.'nces. The
matrix of squared distances D(®) = {d%} is defined as the matrix whose elements are

lS a matrix consisting of D) augmented-by

the squares of the elements of D. The bordered matrix of squared dlstancés D(ZJ
itionkl row and column consisting

i of all ones except for their common diagonal element, which is gwen the value zero.

\

A Cay‘ley-Menger determinant is the determinant of a bordered matrix of squared

distances det(D,Sz)), as follows: - . ) .
' 0 di di 1
, dis 0 d} 1 : .
det(D,(,z)) =|dho dy 0 ... 1} (4
‘ ' 1 1 1 ...0

Now the theorem can be given. Assuming points to be uniquely distinguished by
their distances to other points, the theorem can be employed to tést for the embed-

dability of any set of k points in Euclidean three-space. This theorem should also

L%
4

pro=e valuable inﬁheﬂattempt'to modify any general matrix of distances into one that

3

is embeddable in R3.

* »

“

THEOREM {Blumenthal). A necessary and sufficient condition that a semi-

metric k-tuple may be irreducibly embeddable in R3 for k > 4 is that the sign of all non-

¥

vanishing Cayley- Menger determinants of M points be given by (=)™ for all M < 4,

“ & M 3
s
'
o
K -
’ ,

&

»
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at least one Coayley-Menger determinant of 4 points is nonzero, and the value of all
Cayley-Menger determinants of more than 4 points 1s zero.

For the proof of this theorem, the reader is directed to Bluméntllz;} [9] or Havel
etal [51]. In Havel et al. [51], this theorem is used to generate algorithms for testing
the dimensionality of distance matrix configurations.

Havel et al. [51] sﬁw that the conditions for embeddability in R3 can be reducegl
to a series of tests on the Cayley-Menger determinants. For instance, the condition on'

Yy

the Cayley-Menger deterininant for two points in Euclidean space is

°

o

- 0 di 1 ‘
det(D{ po,p1}) = | % 0 1|=2d} >0, (5)
1 1 0 -

This merely states that the Euclidean distances must be real numbers.

R

For three points, the condition on the Cayley-Menger determinant is

0 d% di, 1

2 0 d2, 1
det(D® {po, p1, pa}) = | 410 2 - <o, 6
(D;”'{po,p1,p2}) &, &, -0 1|5 (6)

11 1 0O

-

which reduces to restxx'ic'tions on the distances doy, doz and dy». The distance dps must
be less than or equal to dpy + diz (the usual triangle imequality), and must be greater

than or equal to |dgy — dyz| (an “inverse triangle inequality” lower bound). Similar

restrictions must hold for the other permuted distances dg; and d;2. The points arc
also constrained to be not all collinear.

The Cayley-Menger determinant restrictions on four points results in a “tetrangle
1’ 1
inequality”., With reference to Figure 6, this inequality requires that dps be restricted

-
- o

4 »
to distances attainable when the dihedral angle of rotation about the line segment

connecting points p; and p; is between —180° and -+180°. A formula relating dy3 to the

angle of rotation is derived in [51]. From Figur76 it is seen that the first configuration

"
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\

The two extreme solutions of the tetrangle inequality for a conﬁgurati&n of four pomts
are shown. The first configuration cannot be continuously deformed into the second
witBout passing through a three-dimensional configuration.

Figure 6: The Tetrangle Ineqnality for a System of Four Points.

cannot be continuously deformed into the second without passing through a. three-

dimensional conﬁguratiog, given $hat the other distances remain constant.

Finally, two equality relations, the “})entangle equality” and the “hexangle equality”

~ y
must also be satisfied to ensure embeddability in R®. These relationships arise from

Cayley-Menger determinant restrictions on five and on six points, respectively. For

these relationships, sign relations for various dihedral angles need to be compared for

v

each set of five and of six points.
The Cayley-Menger restriction for five points has a similar interpretasion as that

for four points, except in three dimensions. There are found to be two possible dis-

tances dg4 that result in realizable configurations in R3, and it is not possible to pass

from one configuration to the other without either altering some of the other distances

£

or passing through a four-dimensional configuration. This results in a multiple mini-

mum problem for distance geometry optimization, because two structures with similar
]

o



distance matrices can be expectell to be separated b)(;an‘ier when restricted to R3.

The Cayley-Menger restrictiogl for six points is necessary to ensure that the relative
chiralities for each combination of four points containéd in any R? configuration of six
points are mutually cor}sistent. Any configuration of six points is uniquely determined
if all but one of the distances (e.g. dps) are known. The distance dps must correspond
to one of the two soluticns of the pentangle equality for each of the four sets of five
poin'ts that contain pp and ps. Changing to the other solution of the pentangle equality
in any of these sets of five points will reverse the relative chiralities of its two quartets of
points that do not include dps. Thus the hexangle equality creates an additional barrier
between R® configurations, pr-c_xiiibiting continuous transformations of the distances that
alter the relative chiralities.

Testing for each of thégse equality and inequality relationships for each subset of

points in a large structure can be seen to be very time consuming and quite difficult

- computationally. However, the use of distance coordinates is natural for the descrip-

tion of a polygonal ar\c. Two contrasting approaches have been attempted to optimize

s

protein tertiary structures by using distances between the points as the primary coor-

dinates. .

[

Crippen [30] was the first to consider the Eirect application of distance space coor-

dinates for the protein folding problem. His work ~has since been siibstantially extended
by Kuntz, Crippen and co—wo%rs [50,52,62,63].

In the approach of Crippen [30], a distance ‘matrix is initially optimized with re-
spect to all required copstraints on distances between residues, with no restrictions

on the Euclidean dimensionality of the resultant matrix. Then a three-dimensional

configuration is sought containing a set of pairwise distances that are similar to those

/£
/s

s
/
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N

of the optimized matrix. In practice, the latter stage consists of an exhaustive ap-
plication of the triangle inequalities followed by an exhaustive search of the tetrangle -
inequality from the optimized matrix in order to find any three-dimensional structure
with distance properties similar to that of the optimized matrix. Due to the enormous
computer time involved, t‘;his method could only be tested on very small s;/stems (8
points). Even if more efficient algorithms were introduced for embedding a general

v

R™ distance matrix into R3, the criteria for optimally. embedding this matrix would

a
3

remain even more difficult to implement. Optimal embedding would probablgr involve
choosing tlle element from the set of all R3-corresponding distance matrices such that
the RMS, (cf., equation (8) of Section 4.2) with respect to the optimized matrix is
o o

" ¢ minimized. The multiple-minimum problem atising from the pentangle and hexangle
equalities make this optimal embedding computationally intractable.

The secofid approach [51] attempts to maintain three-dimensionality at each step
of the optimi;ation process. This method writes the set of distance constraints as a
penalty function, to be minimized directly in distance space. The penalty function is

o

augmented with a set of equality and inequality constraints, as follows: «

¢

“

Minimize p(z) - (7
, subject tot
gi(z) £ 0 .
_ { g2(z) < 0 ]
5 i

= gm(z) < 0

hi(z) = 0



-—

3

ha(=)

il
o

ho(z) = 0. :

-

N B

The constraints represent the triangle inequalities, tetrangle inequality; and pentangle

and hexangle equalities for each subset of ponts. - The amount of computation in-

q
-

volved in this approach has also proved to be formidable. Havel et al. [51] offer several

suggested approaches for implementing this type of system (7).

4.2 The Mapping ¢:Y — X. '

-

In this section, the relationship between the two principal coordinate representations for
protein tertiary structures will be investigated. Subsection 4.2.1 confains an outline of a

derivation due to Rosen [96] of linear criteria concerning the continuity of the mapping

“

¥ : Y — X from the space of distance coordinates to the space of Cartesian coordinates,

¢

In [96], Rosen found conditions in the linear case under which near-optimal values of

»

a function expressed in terms of distance coordinates will yield-ecorrespondingly small

errors with respect to Cartesian coordinates.

Hawever, the transformation from distance geometry coordinates into Cartesian
coordinates can be given in explicit form for the case when the distance matrix can be
embeddable in R®. When an explicit calculation of this coordinate transformation is

derived as in Subsection 4.2.2, the nonlinear version of the Rosen criteria can be found.

°
This is accomplished in Subsection 4.2.3, with the final nonlinear criteria for point-

wise continuity of the mapping ¢ : Y — X being found to involve expressions relating

<

the Cartesian coordinates to perturbations of squared distances. Finally, in Subsec-

4

tion 4.2.4 it is demonstrated that structures that are close with respect to distance

&
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L3

coordinates under the present model will necessarily be close with respect to their = \

Cartesian coordinates. Thus the present model is shown’to be suitably constrained

b Y °

with reépect to the number and type of gonstraiﬁts.
It is clear that the objective function and constraints are essentially defined on a ,

space (call it ') of distances between residues. Details of the geometry of this distance
[‘/ -

space, as well as problems associated with working directly in these coordinates, have

€
?

been described in Section 4.1.

W

A basic goal of the present research is to clarify the properties of distance models
¢ \
in general. The present model will be solved by transforming the distance coordinates

into the coordinates of the usual orthogonal Cartesian system (call this X), although

co‘mparisons of the final structure to other structures will be made in Y. These compar- ~
- °

isons are made in order to study the efficiency of the model as one of a class of distance

a

models, and to judge the relative merits of the different functions that comprise the

3

function space of distance constraint models.
The relationship between these distance coordinates and the usual Cartesian coor-
dinates is complicated. Nevertheless, their mapping ¢ : ¥ — X and the comparison of

' ) N
structures with respect to X-space cannot be ignored. Suppose that a point y* €Y

R

is a solution of the constrained problem, and let z¥ € X be the same point expressed

a

in Cartesian coordinates. It is necessary that y* be in a neighbourhood of the global

minimum not only in ¥, but also in X. However, a study of the mapping p: Y - X

reveals that a small arbitrary perturbation y° — ' in Y can result in a large change - -
in the correspondigg coordinates ¥(¥°) — ¢(¢') in X [98]. In other words, structures
that are‘close togethér according to some metric in Y-space may turn out to be dis-
similar with respect to a metric in X-space. The minimization of a function F on Y

|
'

a7
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can, be regarded as a way to restrict the perturbations y* -3 y' that are allowable,

+

by the requirement that F'(y') be close to the minimum F(y*). Rosen [95,96] derives
> linear conditions on a functnon F such that if F(y) is close to F(y*) then the dxstance‘
in X between ¥(y') and t/)(y*) is small (cf., Subsection 4.2.1). It is demcnstmted in
Subsection 4.2.4 that su'mlar conditions are met by the present model, and thus when
the model re;ches a neighbourhood of the solution to_the constrained problem, the
X coordinates of the resulting configuration must necessarily be close to th(;se of the
optimized structure. This property of the model ensures that the algorithm will not be
© an underconstrained one in which the optimized structures are ‘highly dependent upon _
tlgé initial p;e—folded configurations. On the other hand, the model is not so highly ‘
constrained as to bec;)me trapped inna. myri'ad of local minima.

Along with the obvious goal of being able to obtain folnded configurations similar

to the in vivo structures, any mathematical model formulated in distance geometry

coordinates (Y-space) must satis:fy three conditions [40] in order to yield useful results:

©

I. Accurate solutions y* of the mathematical model (i.e., tertiary structure predic-

- tions) must be achievable in practice. g

II. The space of all possible solutions y* € ¥ must be small, in a sense to be made

. precise below. . a

"II. The domain of the solution space must be small with respect to the usual Cartesian
coordinates in B3 (X-space). in other words, all of the solutions z* ¢ X must be

a8

“close together” with respect to some X-space metric.

Condition I simply states that there must exist an algorithm that is guaranteed to

systematically find a solution if there is one, given an initial configuration. This con-
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dition may seem trivial, but is decidedly nontrivial with large-sca!e nonlinear systems
th as these. ' L J
Assuming that the primary structure folds, if condition II does not holéf[, then the
algorithm is underconsi;rained and the predicted tertiary structures will be found to be
dependent upon the initial configurations. Different initial configurations will produce

}
y* values which are far apart in the solution space.

©
)

Condition III refers to local continuity properties of the mapping ¢ : Y — X [96].

N a

Differences in structures with respect to Y-space are generally measured by the distance

n -
.
! b

root-mean-square metric: “

|1 a2 :

where d and_d' are the set-of respective d;,;, distances for the two structures, NV

°

is the total number of residue pairs and the summation is over all pairs; of residues.

Differences in structures with respect to X-space coordinates will be measured by thew
L4
X-space root-mean-square metric:

1

. RMS, = [51; Yz~ zf)z] d N (9)

¥ o
where z and z' are the usual Cartesian coordinates for the two structures, 3n is the

number of coordinates in a protein of length n, and the summation is over all coordi-
nates. These two metrics are discussed in more detail in Chapter 7.

It has been found that small perturbations of a structure in ¥ -space as measured

J
by EMSy can produce large changes in the structure with respect to the X-space
coordinates as ineasured by RMS,. For instance, Sanati [98]-has shown an example

of a small change in RMS, causing a large change in RM S, for an algorithm similar

~ =

(24

to that of Goel and Y&as [46] in the protein bovine pancreatic trypsin inhibitor. One

1 1
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1
purpose of a distance geometry model must be to eliminate all such perturbations

since, clearly, the existende of dissimilar optimized structure predictions z* for a single

. protein is unacceptable.

-
IS
[

'4.2.1 Linear Criteria for a Suitably Constrained System.
+ It is essential that all models formulated in distance space should demonstrate restric-
tions on the pointwise continuity of the function ¢: Y — X. If not, neighbouring

(W

structures calculated in Y may turn out to be only remotely related with respect to X..

B Any configuration C of points in Euclidean space can be represented with re-

spect to ;"Cartesian frame (X-spacg) by a particular choice of coordinates p(C) =
(z1,%2,...,%m), and in distance space (Y -space) by a corresponding set of coordinates

/ o v(C) = (y1,¥2,-..,Yk). Each of tl:}ese two coordinate sets will totally represent theh
! same configuration; therefore, a mapping ¢ : ¥ — X can be established between them.
This mapping expresses the fact that, if the complete set of pairwise distances are

known, it is possible to generate a corresponding Cartesian coordinate repre‘sentatiqn.

'

Similarly, an inverse mapping ¢ : X — Y is calculable.

The mapping ¢ : ¥ — X can be determined as a set of m functions:
g :
: v="_(f1,.--,fm), )
where f;(y1,..,9x) = #,. The function f, may be interpreted as the means of calcu-
lating a single Cartesian coordinate of some point p from the overall set of distances
Yk
Given any specific point y° = (¥§,...,y5) €Y, the pointwise continuity properties

3

of ¢ : Y — X can be investigated by determining the amount of error induced in X
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when y° i&s replaced by a neighbouring point ¥’ € Y. This is of considerable importance

in the comparison of configurations. If the mapping 9 : Y — X is not sufficiently

%

smooth, structures that are neighbouring with respect to ¥ may turn out to'be far apart
in X. For protein te;'tiary structure prediction it is required that, when a conformation
is generated with pairwise distances similar to those of the real structure, the generated
conformation must also be similar to the real structure in X-space. This condition
must hold in order for a distance constraint model to produce meaningful results. This
condition is especially pertinent since distance constraint models by natl/ire do not

¢

specify a protein configuration exactly in Y, but only to the extent of satisfying a set

S

of ge§1eral average distance characteristics.

-

Consider some definite configuration C°, whose unique representatic;n in Y is given
by: . - -
O = ()
The properties of 1/) Y — X within a vicinity of the configuration C° are here of-
concern. In this subsection, the situation will be investigated by means of a linear
analysis due to Rosen [96]. * <
In the Y-space neighbourhood of the configuration C°, each of the functions f; may
be"oapproximated by a linear Taylor’s expansion as follows: //
. .
mo= fil¥-- 90 — AlYEs - 0R)
b k o o .
afi(y13°°'3yk) r o
s ° (yJ - yj )
oy2
J/ Jj=1 3

This expresses the error #; introduced into the ith coordinate function fi = z; in terms
of the errors «€; == (y} — y?) produced by replacing the given point y° by a nearby point

yeyY.

-



FrC}m the above, it is seen that the RM S, error between ¥(y') and ¥(y°) is given

by

o

m S ormy
»,RMS,—_: [Z ol C 2] = {Z —n

A

kS

f=1

f==1

1
]2

"If the RM .S;:_,, 1s to be small, then each 7; must be individually small,

$
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o

If each #; is required to be small for every sufficiently small perturbation y° — ¢'

in Y, themn this condition can only be satisfied fot those poiflts y° \which simultaneously

come close to extremizing all c<f the functions f;. That is, the sef of 7, can only be

2

small simultaneously if all the partial derivatives 8 f, +/ 0y, areindividually close to zero

at y°. However, while this extremely strong condition is sufficient, it is not necessary.

This is because the space of allowable perturbations y° — y' will be restricted to those

which are compatable with, the condition that F(y') is small.

For the linear cia?e",, Rosen [96] has derived the necessary condition such that all of

the n, will be small simultaneously. This is given as follows. The point y° must have

fe

the property' that, for each function f;, the gradient vector;

constraint model i'or this

lowable perturbations. This will vary according to the composition of each particular

function F(y)._

Vf,=(

ofi 9
Ay’ Ay

)

-

-

(10)

ndition, it only remains to ascertain the subspace of al-

©

/
{

S
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4.2.2 Explicit Form of the Mapping ¢ :Y — X.

To quantify conditions II and III, the mathematical form:of the transformation
¢:¥V — X and then effect of distance geometry models on 1 must be investigated.
In o;der to derive the mapping ¢ : Y — X, assume that the complete set of Y-space
coordinates for a protein of le;lgth n is kné:wn. It is sufficient to know 4n — 10 coor-
dinates, consisting of independent elemgnts of a set of d;,, in order to determine the

complete coordinate set. A mapping 4 was derived originally by Crippen [30], and can

be written as follows:

@ ) (371) Yi, 2'1) = (0, 0, 0) . -
(52192352) = (dlzaoa 0) ’ . «T
dis® — das® + di2® 3 '
(“:3: !/3:38) = ( 1 22312 = ) [dl?:2 - 332] ’ ,0 (11)
(= 2) = dia® =d3z® + d1a® dis® — d3i® + dia® — 2w334
4y Yds 24 2 2d12 ’ 2!/3 ’
2%
" [d142 — z4® — y4 ] ) ‘
dyi® — dp? + dia? dy® — da,®+ dig® — 2wz -
(ml’ y” z{) ] y
2d;g 2ys
1
. :f:[d1,‘2—-z;2—y,2]2); t=05...,n,

+*

Crippen also notes that the mapping is not stable. For example, if dj3 =~ daz >> dy2,
then a small pertur};a“bion in any of these Y-space coordinates would cause a large

- %+
change in the value of z3. A distance geometry model will act to reduce the effective

degrees of freedom in Y-space and a good model must eliminate the instabilities in the

_ mapping.

-It must be noted here that Sippl and Scheraga [103] have produced a stable ver-

sion of the mapping ¢ : ¥ — X, effectively resolving the troublesome = term for 2; in
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I8
Crippen’s mapping. In their derivation, it is assumed from the outset that the distance

matrix corresponds to 3 structure in B3, and so the essential problem of the embedding .
of a general distance coordinate set into B3 is not considered. However, this section is .

more concerned with the local continuities of ¥, to show that conditions II and III hold
i

under the present model. For this exercise, Crippen’s mapping will serve as a better

a

example. .

~

i)

<

4.2.3 Nonlinear Eriteria for a Suitably Constrained System.

by It is proven here that conditions II and IIl are met by the present model, and thus

S =

when the model re:;xchés a neighbourhood of the solution to the constrained problem,

N \

the X coordinates of the resulting configuration must necessarily be close to those of
the optimized structure. This proof is attained by explicitly calculating the f, and
examining the-effect of an arbitrary perturbation vector.”
Assume that an optimum point y* € Y has been reached with respect to the model.
A small perturbation y* — y' should serve to push the c;nﬁguration to a non-optimuin
. one (condition IT). If the model is suitably constrained, the change in strircture with
respect to X-space should also be small (condition III)L
Unfortuna.tely, under most models a perturbation y* — y' will affe@the X-space

coordinates of the first four.residues, as well as those of (z,,y,2). However, since

LY

Crippen’s equations (11) will hold &or the choice of any four points for the coordinate

p;;g&erences”, any set of four virtual residues may be chosen, as follows:
1. (0,0,0) — the centroidal point of the molecule.

2. (wg ,0,0) .
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- pefturbation vector (dj, — d}

3

5 - -
S . -

L4

(%

A sufficient condition for 5, to be small is that (&?

£3)?

an explicit nonlinear version of the Rosen critérion can now be stated.

[N

)

% —d3?) benearly. zero for j =

¢

' §_c
d2£ - d;i’fisi - dg

lfgte "d“lb\tapces dj,rcan be cc\msidered to be constant for €very ¢ (for example,

1;2,3 and 4 for every.i = 1,...,m. This condition is almost equivalent to requiring the

o> &y~ df,) to be,small With respect to_

- every Y-space coordinaté of the basis set. This is, of course, a very strong condition.

by
< vk 'rcpfese,ntin@ dy, by the first neighbour distances), then a necessary condition for n; to
s v 5, o N . . ) - .
be small-reduces to S ol
¢ - LI “ - L] .
- " § 4 M I . , L] » . . .
- - . ) 2 _ 2 . . )
AT C o dE-dy < 3 . N “
5 . Uv& ¢ . . - I.,_ -
) . il . ,
C. S dg-dy < oy . , . (13)
~ « Bt M " . i ~
[ ‘ ¢ ® e - .
s . 2 2 . )
. ‘ do —dg. < 74
[ * . L, -

.. ~

'

'Q

"

%
» This conditio

.« Y
N «
%

. ~ y - Lo ..
approximately orthogonal to.the vector - . . e
B « ' N b St
¢ ol [
i L . [d'h + d;. "dISt + d; d4: + d:: “ K
¥ 'ﬁ: G . . " xz‘ :‘ 3 v ys, b z4 ) s } \
© - PR A . j. - ?
B 'p , " ° . M R N * ‘
A - 7, : ) . ° * \
* . ¢ . . T . . ¢
M . ) 1 . 3 @ - T ¥
o, . " - P |
. R :‘ "
. \ .

n may be equivalﬁktly stated by requiring the perturbation vector to be

3

(14)

a

. 56
3 N ! ' < - ';. ~ ) .
3. (x3,y3,0). . ; . '
4. (24,94524)- “\ , g -
- Under an arbitrary pgrturbation, the resulting change in the point p; will be given
in X-space coordinates by: : . .
. I (4§ — di?) — (d% — dz? - )
. - N ' 2d12 *
e d* — a2 — di2 — d%* T .
, y.l‘m y‘* —_ ( i) Is ( 3 gz) _ __3\_(2:’1 — 2,*) . (12)
© . 2ys U- B
e L (@R -(@-d) . '
! — ] 1 44 i) T2l oy *) — ) — 2¥).
X 3 T . 2z, 7z (yt Y ) ( 1 ) .
. ~Using .this explicit transformation ¢ : Y — X between the X and. Y coordinates,

-
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_in Chapter 9.2 is suitably constrained.

-3

&

“

for every perturbation such that F(y') is small.

As in the lifiear case, the event of this condition being satisfied for a particular

o -

distance constraint model will depend upon the individual form of the function F{y)

that is employed. Note that the vectar given in expression (14) is quite dissimiliar from

> 4

its counterpart expression (10) in the linear case. It is thus found that the linear does
not give a truly necessary condition for small arbitrary pertu‘rba.tions 17,. However, it
. Y . !
e f
may hold for all practical cases, in which the magnitudes of d'J ; and d}, are similar and

the disthnce d}; is not close to zero. . . '

’

4.2.4 A Suitably Constrained Model:

If, as in the present model, exact conditions are required on the centroidal point, first

neighbour and second neighbour distances at equilibrium, then the X-space coordinates

of the four reference points will be invariant under any perturbation y* -+ y'. Under
Y

the requirements of this model, it follows that:

i~ ‘
’ « °
.- -zt = 0
' — .
. wWow =0 (15)
2 12
Z' * T d:: —d4t
'Y ""’Zg -— .
e . 2z4
) »

The last expression simply reduces to z;' = xz*. Thus any perturbation y* — y'

A

. L3
under this model will limit the perturbations possible in X-space to a set of measure

zero. The addition of further minimum or maximum constraints to the model may
- e l

limit the allowable perturbations in Y-space to zero. Therefore,‘the model as written
|

l

- !
v

When the model does not include exact.second neighbour constraints, analytical
v y,

‘
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results are extremely difficult to obtain. The argument that conditions II and III are
satisfied must proceed héuristically. A test for such a mosiql is to opéimize the same
protein from several random starting configurations (cf.,, Chapter 7), and to further
test the model by ?ptimizing with sligixtly changing parameter values from th'e same
initial conﬁgurabior;.

This concludes the discussion of distance coordinafJe geometry and its special rela-~

ov

tionship to Cartesian coordinates in the representation of protein tertiary structure.

L h
.
]

SR 1



5 The Mathematical Model

A protein will be modelled by the coordinate locations of the central Cy-atoms of its
amino acid residues. The initial data used will be the primary structure of the protein,

namely, the number and sequence of its residues. For the model, no other data is

— R
- —

needed @ prior: from the specific protein to be folded. However, other data such as
the locations of disulfide bonds or chemically derived information may be incorporated
into the model as required.

In order to predict the tertiary structure of single-strand globular proteins, known

[N

structures found by X-ray diffraction are examined empirically for geometric properties

[y

that are universal. The properties take the form of distance restrictions hetween pairs

of points: between various residue pairs or between single residues and\;be centroidal
*

A
point of the structure. A discussion of possible distance constraints to be used in the

#

model is given in Chapter 3. The actual numerical values for the parameters of the

present model are derived in an appendiJc (Chapter 9.3). A set of empirically found

hY .
)

. $ "
distances from Goel and Y&as [46] is used’to develop many of the parameters in the

model. 4 ' A

[ ‘

The mathematical model employed in the thesis is formulated to meet several ob-

jectives. The model incorporates the information from the semi-empirical distance

! ¢ . ¥
. constraints in such a way that it remains simple in form and easy to modify.. Equally
_important, it is capable. of methodically obtaining solutions (i.e., predicted tertiary

’ 3 [3 » .
structures) for an entire class of primary structures. This class consists of all single

4 e ©

strand globular proteins, with virtually nw restriction on primary sequence length. The

]
model is suitably constrained, in the sense described in Chapter 4, so that the predicted

A @y
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tertiary structures are not dependent upon the imposed initial prefolded conditions, and
the range of the solution space is small with respect to both Cartesian coogdinaté space
and distanc;z\ coordinate space.

The model is written as a nonlinear programming problem, which is described in
deta.ii in an appendix (Chapter 9).

‘ The hydrophobicity condition is presented as the objective function :)f the pio-
gramming problem. The constraints consist only of first neighbour mean distances,
sécond neighbour mean distances (although another constraint subset may be substi-
tuted for these distances in a subsequent model), and minimum and"maximum bounds
for other near neighbour and far neighbour distances.. The constraints also inclucie

‘ L
disulfide borid distances where applicable. The model can easily take advantage of

other chemically derived distance constraints that may be available, for mnstance the

=

¢ -

location of medium-range residue pairs of Lys, Tyr, Glu or Asp residues [50] or inter-

action distances l;et\\?een pairs of aromatic residues [13]. The model is formulated in

v

terms of distance geometry coordinates, since this formulation most naturally reflects

the empirical constraints. However, it is more efficient to solve the model in the space

. \
of Cartesian coordinates (Chapter 10).



6 The Optimization Algorithms. .

The distance constraint model is formulated as a nonlinear programming problem which
in turn is solved by employing a penalty function. The programming formulation and
the canversion into a penalty function are explained rigorously in Chapter 9. The over-

\ . @
all problér\n is solved by combining the objective function (hydraphobicity conditions)

and the constraints into a quadratic loss penalty function, alternately minimizing the

-

penalty function for a fixed value of the constraint weights and strengthening the con-
\

straint weights. This\@ely transforms the constrained problem into a sequence of
L]

N

‘unconstrained problems.The expression for the penalty function is nonconvex; there-

fore, an overall solution may torrespond to a strong local minimum, and not to a global

minimum. .

I3

descent algorithm and Newton’s method. Steepest descent is the pi"incipal gradient
search algorith;n for/ nonlinear optimization of a contintiously differentiable function,
whefeas Newton’s method is the fundamental nonlinear algorithm exploiting the second
order information from the variables [39]. The optimization technique further employs
a reﬁ;xement strategy for large-scale systems, called the truncated-Newton method [33]. "

The truncated-Newton algorithm saves on computer execution time and memory space
./ o

. by calculating only an approximate solution to the Newton equations at each step,

=
.
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using a conjugate gradient iterative scheme. Hence, the penalty ‘function is minimized
* . by an appropriate combinationi of steepest descent steps and truncated-Newton steps.
. The overall solution method was designed in conjunction with the mathematical -

< model, and fully exploits the sparsity of the Hessian matrix of second derivatives.

= [

1

There is no standard procedure for solving large-scale nonlinear systems of equa- °
tions, and there are not as yet standardized test problems for evaluating solution tech-
niques. In the present case, the best method was to design an algorithm which could

utilize explicit second order information of a continuously differentiable function, while

maintaining low storage spacd-{rom the sparse Hessian. .



7 Results.

The results of the present model will be described in this chapter, both as numeri-
cal results in tabular form and graphically as two-dimensional contact maps. These
results will be compared to the published results of other distance constraint models
in Section 7.3. Some of the results shown, specifically those of Figures 7 and 8 and

Tables 8 and 12 for the proteins BPTI (initial configuration A) and lysozyme, have

-

previously been published in Foster [20]

L3

The model results are obtained from a FORTRAN implementation of the algorithm
(Chapter 10) on three globular proteins, performed on a CYBER 170-730 computer at

Dalhousie University, in Halifax, Nova Scotig, Canada. The mathematical form to be

optimized is the penalty function p(z}u) given'in Chapter %2, usitig the parameters™

itemized in Chapter 9.8. The computed protein structures are compared to known

X-ray diffraction coordinates at each stage of the optimization process (i.e., for each
T . ®

value u of the penalty function p(z,u)). The coordinate structures obtained from

X-ray diffraction stué?es of crystalline proteins are regarded as the “real” structures.

3

These X-ray diffraction codrdinates were supphed by the Protein Data Bank of the

-

Brookhaven National Laboratory [1].

‘
L]

The initial configurations used are sets of RG poi‘nts, generated at random in R%, _

but scaled approximately to the volume of the protein. These initial sets of pc’)intsé
are thought to provide suitably unbiased structures, in that no actual tertiary struc-

¥

ture information is provided a priori. The execution time required for the ponlfnear
[ gy
optimization can be substantially decreased by generating initial configurations with

correct first neighbour characteristic® (z.e., random chain conformations), and this will ~
: ¥

e 4
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N

be implemknted in future studies. However, it was decided that this preprocessing
' a . :
could be viewed as influencing the optimizZation process and therefore-was not included

“for the present study.

3
The metric widely used for comparing protein structures is the RM Sy, which is

defined as follow;: .
2
RMB, = [% > (d- d’)z] . - (16)
(5.4)

Here d and d' are the sets of respective d;;,; distances for the two structures being
compared, N = n(n —1)/2 is thé total number of resjdue pairs for a protein containing
n residues, and the summation is over all residue pairs. This distance (Y-space) root-

mean-square value is the most commonly used metric for nieasuring the similarity in

“ .

1] e‘ ’ 4
proteQx structures, mainly due to the difficulty ifi calculating root-mean-sqare values

with-respect to Cartesian (X-space) codrdinates. Differences in structures with respect

- - °

to X-space coordinates are measured by the EMS; metric, defined by:
. . “RMS _[1 Z ,2]§ "17
.= [ X7 (17

]

In equation (17), = and 2’ are the usual Cartesian coordinate representations for the
I3 \ o . 5 . w >

two structures, 3n is the number of coordinates in a protein of length n, and the

£

-

summation is over the set of all coordinates. The problem in calculating RMS; irises

RN
vor - - ¢

'

.because this value as shown in equation (17) is dependent upon relative rotations or
" R 2 4 -

- reflections of the two structures. I actual evaluations for protein comparisons between
"

) the'coordinates of the crystal structure {z} and the gewerated structure {z'}, a unique

i

' o 'p )

“}/"/ value for RM .S, is dhtained by rotation of the primed frame so as to minimize the value
. - - 4, . ' ! - - - 9 ¥
of the expression (17). This optln@l\rotatxop" has an essential singularity, and thetefore -
P} 4 ’ b 5 ’ ’ =
o j§difficult t6 compute. ) : -

; z
¢
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Cohen and Sternberg [22] state that the RMS; provides a more effective and sig-
nificant method of comparing structures than the RMS,. However, it is shown in
Chapter 4 that wthe present model is suitably constrained so that small RMS, differ-
ences will also be small w&th respect to RMS;. Also, the RMS, measure was chosen
for the present study in order to provide a meaningful comparison to the results of
.other distance constraint models, where the RM.S, was often used exclusively.

As a general guideline, an RM S, value of 1-3 A implies that the two structures are

° w

very similar, whereas an RM S, value greater than 6 A indicates that the two proteins

e

s * 2
may 'haye dissimilar global structures [22,93]. There exists a weak direct relationship
between the EM'S, and the length n of the chain; therefore, it.is suggested both by

Cohen and: Sternberg [22] and by Remington and Matghews (93] that any structural

: L3 ° ¢
comparisons be judged in the light of the expected value for a random structure of the

. ! ' ﬁc
same size. . . ’

-

<. -
7.1 Numerical Results for Structural Prediptions of Three Globular .
Proteins. :

v
- @
E

. s
o 4 v S .
The globular proteins used for this study include rubredo%:in, bovine pancreatic trypsin

-

L,ﬂ : ® -

inhibitor (referred to as “BPTI”) and lysozyme.
2 e £ 1
-Rubredoxin is a carrier molecule, & very small non-heme iron-sulfyr protein that

. +

° ©

. - ¢ . . . . .
functions as an électron transporter. It is fournd in many anaerobic bacteria and is

i - »
* s

e ey .o o ey e ) Qhré " . .
similar in structure to bdeterial férrodoxin, which.it can replace in certain enzymatic

* .

-~ - * i
reactions. The-molecule is composed of 54 amino acid residues and has a molecilar
: ) a ¥ i -

weight of approximately 6100. The sulfur atoms of its four Cys residues are coordi-

e s

-

nated to a single iron atom in a tetrahedral Fe-S4 complex. From the crystallographic

¢ [

- evidence, it is believed to be a pliable, readily deformable molecule [63,121].

“
£
L4
&
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@

Bovine pancreatic trypsin inhibitor (BPTI) has ibecome a st;andard test case for
tertiary structure predi;:tion models because it is a very small protein containing several
important structural elements of globular prpteins: a-helix, antiparalle] #-strands and
hairpin turns. One of numerous inhibitor proteins, whose physiological function is to
inhibit the digestive enzymes, it acts to inhibit trypsin and other proteases by binding
with them as a pseudosubstrate. BPTI contains 58 amino acid residues (MW = 6500),
which are cross-linked by three disulfide bridges. These disulfide bonds may account for
its high #ability against denaturation. The molecule has dimensions of approximately

43 x 23 x 49 A. It contains two domains of secondary structure: a double stranded
{

antiparallel # structure, compposed of residues 16 thri':)ugh 36, and an a-~helix composed .

of residues 47 through 56. THe g structure is considerably distorted, but the o elix

is very regular between residues 48 and 54. BPTI also containg four interngl water

molecules, occupying space in crevasses of the outer surface.. This unugfially high

number of internally-bonded water molecules is probably a cox‘#sequence of the small
|

size of the BPTI chain. The peptide bond Lysl5 - Ala16, which apgears at the binding
site of BPTI to trypsin, is strained and deviates significantly from planarity \[32].

Lysozyme was the first true enzyme to have its tertiary structure determined by

A

X-ray diffraction [8]. Its function is to dissolve certain bacteria by hydrolyzing the
polysaccharide component of their cell walls, causing the cell to lyse. Lysozyme is a

relati;'ely small enzyme (129 amino acids, MW = 14600), crosslinked by four disulfide

g1

. bridges, which ontribute to its high stability. It is a compact molecule, roughly el-

s
v

lipsoidal in shz;pe, with dimensions of 45 x 30 x 30 A. Residues Aspl01, Trp63 and

Trp62 are the main binding participants in the active site. The active site also invdlves

@

residues Asn59 and Alal07, as well as Glu35 and Asp52. There is an a-helix contain- .

-

]
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i +
ing residues 5 through 15, two helices intermediate between a-helices and 31p-helices at

residues 24 through 34 and residues 88 through 96, and a 3;p-helix containing residues

80 through 85. There is an incom: ly-formed antiparallel g-sheet involving residues
41 through 48 versus residues ﬁthrough 54 [8,77].
/ The numerical results from the optimizations for the three proteins are summarized

in Tables 4 - 7. Each row of Tables 4 - 7 r‘ep;esents one call to the algorithm Inner
’ © ) "l
Loop (see Chapter 10). The column “RMS,” indicates the root-mean-square deviation

of pairwise distances between the tertiary structure of the protein found from X-ray
diffraction techniques and the structure returned by Inner Loop. It is noted that the

X-ray diffraction structure is comprised of coordinates of the crystalline form of the

protein and is at best an averaging of in vivo states of the true fluctuating structure.

13

However, it is at preseﬁt the best available representation of the actual structure for °

1

purposes of comparison. ;
L]

The RM S, differences found between the optimized structures and their real coun- .
v . .
terparts were determned to be 4.88 for rubredexin (no disulfide box;d constraints),

5.58 for BPTI (no disulfide bond constraints included), 4.22 for BPTI (all three disul-

fide constraints included) and 5.75 for lysozyme (all four disulfide constraints in-
cluded). According to-the generalized probability distribution result of Remington

and Matthews [93], these results represent structural agreements that are better than

average (i.e., random chain) by approximately 2.7, 2.1, 2.9 and > 4.0 standard devia:

« . tions, respectively. The frequencies with which these levels of agreement are expected .

r .‘ % .

to occuf by ch#ce in a random population are-approximately 0.3%, 1.8%, 0.2% and

- a

< 0.001%, respectively. For,these calcul';.t,;iogs, the RMS, and RMS, measures are °
. J ) . )

v

A
’
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a
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o

assumed to be approximately linearly related by

RMS, = 0.T5RMS, + 0.19 " (18)

(Cohen and Sternberg [22]).

+

Rubredoxin (54 amino acids)

s (contains no disulfide bonds)
Steepest  Negative Newton CPU RMSy(4) RMS, ARMS,
Descent Curvature (sec) -
322 0 0 119 2.36 5.06 6.70
04 o . 0 126 2.17 4.98 1.11
79 0 0 101 2.14 4.98 0.27
] 19 21 501 2.02 4,88 0.99
847

r’.[‘able 4: Numerical Results: Rubredoxin.

g

ot ° v

Bovine Pané.rea.tic Trypsin Inhibitor (58 amino acids)
. : . (disulfide bonds not included)
Steepest  Negative Newton cryY RMS,(4) RMS, ARMS,

Descent Curvature (sec)
342 0 0 147 2.20 5.99 7.41
106 0 - 2 0 175 2.07 5.78 1.17
95 0 0. 154 2.02 5.74 . 0.33
0 12 17, . 383 1.86 5.58 1.41
B 859
Table 5: Numerical Results: BPTI, No Disulfide Bond Constraints.
[
® )

-

[ <
4

The column “ARM S,;;’ indicates the root-mean-square difference between the struc-

2
- b « M ®

ture input at the’ beginning of Inner Loop and tine structure which is returned at the

3 &

end of Inner Loop. For example, the firgt-numerical entry in column A‘RM Sy repre-
b(i e Ve -
* ° o ( /

sents the RM S, difference betweé&l theinitial structure of randomly generated points

and the’structure returned after the first call to Inner Loop.

o0 H
¥ "
]

-
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.
Bovine Pancreatic Trypsin Inhibitor (58 amino acids) .
(3 disulfide bonds included) -
) Steepest Negative Newton. CPU  RMS,(4) RMS, ARMS,
Descent  Curvature N N (see) .
511 0 0 203 1.84 4.96 6.65
106 0 0 171 1.68 4.73 1.056 .
87 0 0 131 1.64 4.68 0.46
~ 0 9 12 193 1.65 4.22 1.54
698
! - 2
Table 6: Numerical Results: BPTI, Including Disulfide Bond Constraints.
r 3
4 '
-
Lysozyme (129 amino acids) Y
’ o (4 disulfide bonds included) CoL e
Steepest Negative  ° Newton CPU RMS,(4) RMS, ARAS, |
Descent Curvature ' " (sec) - : 0
°*546 -0 o - 475 2.58 6.61 954
. 69 0, 0 557 2.46 o 6.37 0.98 °
. 184 0 0 1338 « 235 6.21 1.04
0 © T 8. 749 2.26 5.75 2.36
: ) ’ # - v . -~
Table 7: Numel‘f:al Results: Lysozyme. - N
, . T ;
. 4 ’ )
’ T '
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. to the‘four optumzed stﬂ'xcture\;\ a.bove were 2.02, 1:86 1.65 a.nd 2.26 A, respect
¢ v

a

d L2

-

The columns Steepest Descent” “Nega.twe Curvature” and “Newton 1ndxca.1;e the. .
K . ‘FR . c‘ 2 \ .

o

’ <

number of iterations applied' for each kind of descent direction. Note that the Nem\r:ton "

v

(‘, b’

- ) 1
) [ 3

4

¢ (;olumn' “ ‘PU” indicates uhe number of ‘CPU seconds requlred by erGYBER"HO—i

v .

- "
o a “ N

mmputer to perform the calculatmns. .The minimurn, and max1mum bound constramts
I

fur far naghbour resxdues were not’ apphed until thé second and subset’iueht calls to ‘
. p

-

L4

r &

"

¢ w

o

Inner Loop. This results in the CPU time per sbee\pest»deséent ltera.tmn being much
! " . - ’ .

.

-
v
s ’

s!;eps were not attempted until the final call to Inner Loop in the present algont%—xm *
0

sialler during the first Inner Loop ;;han_ in til_e other Inner Loops. From Tables 4 - 75

) v
r [
M » &
4 ¥
-
.o N

it is seen that the CPU time i-hcreases nonlinearly with n, as is expected
- 4
A F] ‘g

"
0 1

v x\
The rvsults of the upt;mxza.txons are alsb\qxsplayed in the form of dlst;a,nctgt matrices,
\ . o '

or “contact maps” [67,128]. In these \displays, the elements of the Y:sp‘éce coordinate

A

matrix for a protein are ghovn."n sxmbolﬂica]ly.d' In Figures 7 - 15,.if dipq; < 3.0 A for

, ‘ . A s . - . )o‘ . .
some f and J, then the correspohdmg Jposition for.d, ;,, in the matrix will bgdenoted

5

the correspondmg

\s'

- 1

bx‘ a biank space, if d, sy > 100 (or dy?;, > 125 for lysdzyme),
di sty < 12.5 for

+ ki

- pusition will be denmtd b) a penod i£3.0<dyy < 10. 0 {or 3.0

v

ivmz:,mv), the pns;tmn wxll I:-e denobed by a coded letter symbol.

- ’ K

ote that the main,,
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) .
1 » L) »

¢ * L . -~ .
' . Each protein’structure shows a characteristic pattern on a contact map. Secondary

«
t y
»

along the d1agona1 because it results in small near neighbour distances. Along parallel
1 Ld ‘ * L] ‘g a \
. ﬂ-—stra.nds, the residues séparated by some _7 posntlons in prxma.ry sequence will be close

1
L - bl
~ . ~

: ~, . together in tertiary structure. This gives rise to'a band of close contacts on a diagonal

v L3

£
9

. % p:q.rall'ef to the main diagonal, but offsetfrom it by j elefuents. The hydrogen-bonding

., -

- : N ) £y » ) . . T
o . batterns of antiparallel S-strands appear as a band runmng'perpendxcular to the main

3 K3 - r
: e S o . &
y . "diagonal. R

s . ., "
& ~

. . Yo e e .. 0 ,
. o< . Since the distance matrix.is symmetric,. only- one half 'of the matrix néeds to be

S a ’,
' ~

" ;  "'shown. For comparison purimseuthe contact maps of Figures T - 15 will always show
, N P . o 4 & o [

N s
B o u - " N -

2 [ ‘s r - . -
. the real] structure bélow the main diagonal, and the structure to be compared above
R S 9 @ -~
» . . \ N
\"- - -y .) < * " ! -
' ., the main.diagonal. - . t
a o ‘ ' - o, v v -

«%a ®

In Flgure 7 the conta.cf; ma.ps for the optlmlzatlon of BPTI are given, for the case in,

[l 1
v

0 o wh;,ch the rhgee dlsulﬁde bond constra.lntsg:; been included. The optrmlzed structure

t e o
3

! can be combare;_i with tﬁ?eal one by obsepvation of the diagram at the lower rlght

M .. - . R
A he] . o . L]
£ b

.. % of Figure 'Z . Both the.teal and the optimized structurés show- a well-formed c-helix
- > 3 L o

L, . R . ) N . B .
S o . , R i ;
a ~
o e

- “for residués 45-58.- Both structures also exhibit glosencont;ach structures containing the

»
.
. . t - W K

reS1dues approxxmately 2-14 versus 14—26 a.Ithough the optlmized strucg‘.ure has many

3 on . P
N

. B
s - >

- more close contacts in thls region and may be considered, to possess ‘an approJ(lma.te

2 4

s
»

: . 4 " r - . ki .
- J » oantlparallel ﬂ-structure here. The opt.umzed structure does nof; predlcﬁ the mdgmtude

‘, \} . v ‘7 - N . .
N P— L] M 2 p(!

o , " af the antlpa.rallel structure for residues, 4-26 versus 26-43, and also’ eontams 3R ex-

>
' - -
1 n ]
» - w [ @ IJ(

. S tranequs close—contacﬁ substructure lnvolvmg resudues 31-36 versus 40-55. Therefore,

p ° . .
4 P % L . a 5 f ey R
4

o o Y 2 Q ay ? » .
A hlt%ough the two structures show similarities, there, are a.lsc some-differences with re-
\ & - A\ o b

3

k L/ structures are rea;din identifiable. An c-helix, configuration shows ds a broad band
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spect to secondary structures and close contact surfaces. This is not surprising since

1

» no secondary structural information was included a priori in thjjdel.
Further details of the optimized structure for BPTI are giveén in Table 8. These

statistics show that although general parameters nonspecific to the BPTI molecule
»

were employed; the optimized configuration still conforms well to the real structure

B

"with respect to both the near neighbou; distances and the distances of the individual

3

residues from the centroidal point. The effectiveness of the hydrophobicity condition

;

as repregented by the objective function of the present algorithm is further illustrated

. in Figure 9, where the distances of the individual residues from the centroidal point

are compared for the optimized and real structures. It is seen that the centroidal point

distances for the optimized structure closely follow the pattern of centroidal point

v Y

distances shown by the real structure.

i a

Figure 8 shows contact maps for the optimization of BPTI wher¢ the disulfide bond .

constraints have been removed. In the optimized structure, many of the secondary

~

" structures are now absent. The a-helix at 45-58 and the antiparallel structure at 4-26
. F

versus 26-43 are both missing, although the short aptiparallel structure at 2-14 versus

LY

14-26 is present. . .

4rom Figures 7 and 8, as well as Tables 5 and 6, it is seen that the optimized

la

t : .
structuré-ig improved considerably by the inclusion of the disulfide bond locations.

4 L]

This demonstrates the importance of far neighbour constraints for these distance con-
straint models, even if the constraints are not known precisely. It may be that some

chemically derived far neighbour distance information may be necessary for these mod-

. els to tonsistently generateraccurate pr?dictions. Alternatively, it may be speculated

R v

-~
"
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1“
Distance Real Optimized
Mean S.D. Mean s.D. |°
di i1 3.80 0.03 3.80 0.003
disr2 6.12 0.69 5,96 0.02 .
. . diies 8.12 1.71 7.85 1.25 )
diitvd 9.94 2.48 9.563 1.72
Distance ' Real . Optimized Mean
. o Differenge
, Mean s.D. Mean s.D. f’y “
d.-,cp(i €R) 8.148 2.88 5.81 2.44 3.63
dy op(i & J2) 11.23 . 3.02 10.75 2.50 2.00
d;,cp(i J3) 9.30 3.85 9.19 2.45 2.21.
d, .p(aY) 9.99 3.48 0.28 2.99 2.36

Statistical comparison of the optimized structure for BPTI (3 disulfife bond constraints
1nc1uded) to the structure from X—ray diffraction results. The X-ray diffraction stric-
ture is considered “real”. The amino acids are divided into three classes J; (hydropho-

bic), J2 (hydrophilic) an

idue 1 from the centroidal point of the molecule.

3 (ambivalent). The notation d, ., denotes the distance of

Table 8: Numerical Results for BPTI: Near Neighbour and Centroidal Point Distance

Statistics.
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molecule BPTI. The individual centroidal point distances for the 58 residues of the
optimized configuration of BPTI (3 disulfide bonds Yncluded) are represented by points
(.), connected by a solid line. The centroidal point distances for the real structure are
denoted by (+) signs, also connected by a solid line/ ) -

. Figure 9: Distances of the Residues from the Centr()\idal Point for Optimized Structlﬁ;
P of BPTL ' ‘ ) 1



“@feature that cannot be preéicted accurately by the model without explicit
s 7 . N
addition of the disulfide constraints.
+ ) - .
The rubredoxin molecule was folded using tﬁset of general parameters given in

Cha.pfet 9, with no disulfide bond constraints included. The four Cys residues of
rabredoxin do not specifically form disulfide bonds in the real structure, bu,t, are found
to be in close con;act due to the fJormation of a prosthetic Fe-S4 complex in the interior
of the mo!ecule.

The contact map for t;he,mreal. structure of rubrédoxin (Figure 10, upper left) exhibitd
a noticeable lack of well-formed ;econdary structures. The three very short antiparallel
substx“dcttﬁs of the pattern are probably'due to the major tertiary‘ structiire of rubre-
doxin: the Fe-Sy tetrahadralfc_omplex. invc;lvir{g residues Cys6, Cys9, Cys39°and Cys42.

“The contact map of the optimized structure (Figure 10, lower right) is very similar to

~
o

L] o .
that of the real structure. Both the real and optimized structures show the three small
TS

antiparallel regions and close contact between the N-terminal and C-terminal residues.

o ! J

) In Table 9, it is seen t};at, as-with BPTI, the optirr;i/ structure closely conforms

/

Ry _ . . . . .
with the real structure in its near neighbour and centroidal point statistics, even though

a

- * " ' . s s « ®
no parameters specific to rubredoxin were used in the optimization guodel.

.z
<

o

¢ e L3
Tab& 10 and 11 give the pairwise distances for the four Cys residues involved in
-
the tetrahedral Fe-S4 (?omplexsof rubredoxin for the real 'structure and the optimized

. - . » - P lj ) 3 1
. & structure, respectively., No explicit constraints for these distances were included in the

L] &
. " model for this chemical structure. The optimized struc@;e seems to account for the
proximities of the Cys residues despite this lack of information. An average pairwise_
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the real structure
the first call to' Inner Loop, and (
ces d; 4., are identical to those of Figure 7.

maps: (
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Figure 10: Contact Maps for Rubredoxin.

played contact maps, the real structure
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%

N e T
Distance | - Real . Optimized
, Mean S.D. -Mean S.D. Vol
dign |. . 379 0.38 3.80 0.001 o
d, i+2 6.08 0.66 5.95 - o003 | /.
dirvs 797 "1.75 7.50 .37 \/
;i 9.70 2.47 8.85 2.13 ¢
Digtance Real . Optimized Mean
\ Difference
) an S.D. Mean S.D.
d op(i € J1) ‘%.ege 201 . 626 180 | Y 2o
di ep(i € J2) 9.66 1.72 10.68 . 1.59 L 1ot
d ep(i € J3) 8.53 2.45 7.53 1.48 2.87
d, zp(all) 9.44 2,02 9.25 2.62 2.38
i L)

Statistical comparison of the gtimized structure for rubredoxin (no disulfide bond
constraints) with the structure®rom X-ray diffraction ‘results. The X-ray diffractiom- -
structure is considered “real”. The amino acids are divided into three classes J; (hy-
drophobic), J2 (hydrophilic} and J3 (ambivalent). Let d;, represent the distance of
residue ¢ from t\;he centroidal point of the molecule.

Table 9: Numerical Results for Rubredoxin: Near Neighbour and Centroidal Point
Distance Statistics. ’
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distance of 9.87 A was obtained in the optimiized structure for a]l pairs of Cys residues;

v -

this is significantly smaller than the average pairwise distance of 12.88 A found for

‘,

all residugs in the rubredoxi;x optifnized.structure (12.96 A for all residues in the real

stpacture). Also the maximum Cys-Cys distance of 13.06 A in the optimized structure
was much smaller than the maximum pairwise distance of 24.96 A found for all residues

in the optimized structure (25.90 A in the real structure). The distances between

’

Cys9 - Cys39 and Cys9 - Cys42 cannot be consideréd true close contacts. On the other

N

hand, they do not represent global structural errors either, with the pairwise distances

Y

of nearby Cys9 -'Val38 (9.90 A), Val8 - Cys39 (9.86 A), Vals - CyﬂZr(8.87 A) and

Cys9 - Leudl (10.36 A) being respectably small in the optimized structure.

9

Rubredoxin (Real Structure) o
~ (distances between the Cysteine residues)
Residue . #6

, #9 . #39 442
#6 "o M 5.77. 6.37 - T 844

O #9 0 y 8.45 596 .
#39 . 0 5.83
#42 \ L 0

D1stances for all six pairs of ¥ys residues are given fin A. The calculated mean is a
sepdration of 6.80 A, with a standard deviation of 1.29" A, v ‘

Table 10: Distances Between'the Cys Residues in Rubredoxin (Real Structure).

-

Y
‘In future studies, the model will be used to predict the structure of:

v,

doxiy, with

the explicit inclusion pf the proposed chemical constraints on the foyr’Cys residues. It

@

s ‘éxpected that these constraints will improve the RM S, error due to the addition of

. . ~ v .
this extra-primary information. However, the imprcvement to the final ‘structure may

n « -
4

" not be substantial, as evidenced by the correct juxfaposition of the Cys residues in the

v .
{ }‘p"‘; P s ‘ S hd «
o e §

| #3
¥

o
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»

' Rubredoxin (Optimized Structure)
' (distances between the Cysteine residues)

Residue ' - ##6 , . F#9 < #39 #42
#6 o 7 8.76 10.69 5.00
L I 0 13.06 12.46
#39 " . o0 9.23
#42 o : 0.

'
, o a

Distances for all six pairs of Cys residues are given in A. The calculated mean is a
separation of 9.87 A, with a stendard deviation of 2.93 A. '

“Table 11! Distances Between the Cys Residues in Rubredoxin (©ptimized Structure).

9

! -

T
+

¢ v

present optimized version. It appears that the Fe-Sgcomplex may not be integral to

the actual-folding of rubredoxin but only serve to stabilize the final structure, and that

~ "
the tertiary structure may be essentially attainable without it.

The lysozfme molecule contains 129 residues; tflel‘efote, it is much larger and more

v

structurally complex than either BPTI or rubredoxin. Nevertheless, with the penalty

function in its present form, the optimizing algorithm is capable of handling second
order informat)ion to find strong optima for proteins several times the size of lysozyme.

1

The tertiary structure of lysozyme was optimized with the inclusion of constraints

for the four disulfide bonds. The contact map of the optimized structure, shown in

A ©

Figure 14, has a pattern generally similar to the real structure, with some notable
i X

U yerp . . . , . .
differences in the proximal residues'nmear the active site.

o

"The contact map for the*optimized structure of lysozyme (Figure 14) is found to

resemble the real structure in many ways; the structure of the last 30_C~terrﬁinal

- R
' - »
residues are similar, as are the patterns for the residues far apart in primary structure.
4

» . ' &
Most of the close contacts in lysozynie are small and local in primary structure, implying

2
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Contact Maps for Lysozyme, the ¥our D
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108
t]

e

onals in the contact maps: (i) the real structure, (ii) the initial configuration, (ili) the
to 12.5, and period

For each of the 4 displayed contact maps, the real structure is shown below the main
structure returned by the first call to Inner Loop, and (iv) the optimized structure. In
the contact map, the distances d, ,;, between residues ¢ and j (in A) are letter coded

diagonal of the matr
as follows: blank
Figure 13

Outer Loop.
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For each of the 4 displayed contact maps, the real structure is shown below the
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that most of the secondary structures contain few residues, and in these local patterns

L]

the two structures are dissimilar, Most of the helical structures of the real structure are
!

ized structure, and extra close contacts are seen for residues 719

+

absent in the opti

of lysozyme a\s\fneasured by the RM .S;,, difference, but has errored in prediction of many

3

of the local substructures as displayed in the contact map.

Distance Real Optimized ’ ,
, ’ Mean S.D. Mean S.D. .
dyor1 4.32 1.47 3.80 0.01
dy itz 6.28 1.42 6.05 0.19
d; 443 7.35 2.00 8.08 . L18|” .
dyiv4 8.51 2.48 9.76 - 1.81
., = Distance Real . Optimized “Mean
Dafference
Mean S.D. * Mean S.D
d, cp(i°€ J1) 10.10 3.34 9.09 2.78 2.95
di.cp(i € J3) 15.12 411 1499  , 3.12 2.61
d, op(i € J5) 12.63 3.44 11.66 3.82 2.70
d, sp(2ll) 1309 , 401 12.39 3.96 | 2,74

o
o

¢ .

" Statistical comparison of the optimized structure for, lysozyme (4 disulfide bond con-
straints included) with the structure from X-ray diffraction results. The X-ray diffrac-
tion structure is considered “real”. The amino acids are divided into three classes J)
(hydrophobic), Jz {(hydrophilic) and J3 (ambivalent). Let d;;, represent the distance
of residue 1 from the centroidal point of the molecule.

. ¢ I . , ’ . ”
Table 12: Numerical Results for Lysozyme: I}Iear Neighbour and Centroidal Point
Distance Statistics. ' . .

o

) n

o

_The optimization statistics and' RMS, comparisons between the optimized struc-
' . - ) )
“ture and thie real structure for lysozyme are found in Table 7. Further comparisons are

o

found in Table 12, From the iitar neighbour dj 345 comparisons in Table 12, it is seen
v

1
@3

4
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e

. . .
., although this is a matter for further study.

o

PEN “

. that the X-ray diffraction data employed is slightly in error, with a mean value of 4.32 A .-
]

for the first neighbour distance instead of the expectéd '3.80 A. Also the convergence of

the optilnized structure is shown to be incomplete from the stanadargi deviation results
*

of 0.01 A for d;,+1 and 0.19 A for d;e+2, as compared to the corresponding values of*
S ~ \

® &

0.003 A for d, s+1 and 0.02 for d, ¢4 in the optimized structure for BPTI (Table 8). .
The centroidal point distances for the residues of the-optimized structure are veryclose

to their counterparts in the X-ray diffraction structure, differing by an average of only

4

2.74 A. A .

An optimization of the lysozyme molecule was also carried out using only the first -

128 residues, omitting the C-terminal Leu residue. This pptiI;ﬁzation resulted in a

Y

final tertiary strueture that was remarkably dissimilar from the one discussed above.
) . 3

-

In fact, it showed an incorrect supersecondary structure in the neighbourhood of the

Al

C-ferminus; with a final BM S; result greater than.8 A. This shows that the model

can be sensitive to small changes in the primary structure, as is observed with in vivo

A\

proteins. Therefare, it is indicated that the model can correctly predict structural

modifications resulting from primary structure insertions, deletions and substitutions,
AY
’R / o

]

A

The X-ray diffraction coordinates available for the present study were found to be
v

incomplete in that the only 53 of the 54 residue Cy-atom coordinates wetre available
\
for rubredoxin (Clostridium pasteurianum, 2 A resolution, unrefined) and anly 128

r

of the 129 C,-atom coordinates were included for lysozyr;xe (hen egg-white lysozyme,
2.5 A resolution). Coordinates for the C-terminal residues were omitted in each case.

Correspondingly, the RM S, difference calculations for these two proteins were per-

formed via the omission of the C-terminal residue for each protein. The effect of this

1

: 3
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&

modification on the calculated results is expected to be negligible. The optimized struc-

N .
v

tures of both these proteins correctly show the C-terminus behaving as a hydrophobic

-

" residue as judged by centroidal point distance, and also correctly predict the proximities

of the C- and N:terminal residues in each case.

7.2 Repeated ‘Optimizati'on of BPTI fronf Different Initial Co'nﬁ;oru-
rations. . -

¢ —
—~—

Repeated runs from different initial configurations indicate whether or not the final

4 o .
structures are insensitive to the initial values. Also this exercise may be the best waye

to approach the global minimum for, any such nonconvex problem. ,
_Repeated optimizations from different random point initial conditions were per-

formed for the globular protein BPTI, with inclusion of the three disulfide bond con-
:w h
straints in each case. All of these tests used identical parameter values and termination
A »
criteria for each Inner Loop.

i

The termination ctiteria used were as follows. For.the Inner Loops that exclusively
& -4

M

¢

employed steepest descent iterations (Ixfner Loops 1 =vi, 2 and 3), the Inner Loop was

~

¥ . > . o s .
terminated when the gradient norms at two successive iterations were calculated to be

less than a specified value: : ' ’ . N
Y ! °

n o V& ' 4 e 1 o

' IVFEN + VA < & (20)

The values for the tolerances ¢ were given to be ¢; = 10.0, ¢ = 10.0, and ¢3 = 1.0.
. 4 K B

Typically, the norm of the gradient for an initial configuration would be ||V f|| = 108,

¥
The introduction.of minimum and maximumn far neighbour constraints at the second

[ 4 2

.Inner Loop typically resulted in the initial gradient norm of the second Inner Loop

. having a value of |[V]}] ~ 2500, and thus the stopping tolerance €; also represents a

-



o

-
<

f

generally have a value of ||V.f|| &~ 20.

¥ would typically correspond to a value of p(z, 1.0).~ 10°.

~

of tables and ﬁgure;. Initial conﬁgl}rz;.tion A is the same as that\of Table 6, but the

-

o \ 89

5
K

considerable reduction. At the start of the third Inner Loop, the gradient norm would

M
v
1

+

< “ 4

For the first Inner Loop bnulyz_ it was additionally required that the value of the

»

o - ’ .

function was to be redlﬁé’d by a suitable amount. This constraint on the penalty func-

tion value was empirically chosen to be p(z, 1.0) < 450, where the initial configuration
- = ~ . -

T
~a ° e

For thé'final Inner Loop, in which the truncated-Newton algorithm wag pelifo;med,

I

LRI Y

s

the ‘termination criterion was as follows:

» o~ @
. ¢ —

I <a=10"t @)

Other stopping criteria in the form of time limits for the completion of each Inner

o
3

Loop were available. However, these were found to be unnecessary in the optimizations .

vperforrrfed. The results of these repeated optimizationsare given in the following series

optimization results vary slightly because slightly different termination criteria were .
N .

;;sed for, the two cases at each Inner Loop.

? @

~ T
e M I

$

Bovine Pancreatic Trypsin Inhibitor (58 amino acids)
(3 disulfide bonds included) ., - .
Steépest Negative ' * Newton = CPU  RMS,(4) RMS, ARMS,

Descent Curvature " (sec) o

788 0 0 271 " 1.85 4.78 6.78

91 0 0 151 1.65 . 4.87 101

116 o " .0 158 1.62 4.52 041

o 1 8 171 163 421 130 :
™, ) 751 . : '

Table 13: Numerical Results: BPTI, fro;g Initial Conﬁgur'alxtion A.

¥ > a
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Bovine Pancreatic Trypsin Inhibitor (58 amino acids)
(8 disulfide bonds included)

Steepest  Negative Newton CPU
Descent , Curvature (sec)

628 0 0 220
103 ‘0 °< .0 164
139 0 0 187

0 22 82 2245
2816

RMS,(4)

217
2.05
1.99
1.90

RMS,,

5.22
5.15
52
4.84

13

ARMS,

7.42
1.19
0.39
'1.46

Table 14: Numerical Results: BPTI, from Initial Configuration B.,

\

N
+

o ¢
J

cno @ ey

&

o

Bovine Pancreatic Trypsin Inhibitor (58 amino acids)

(3 disulfide bonds included)

@

‘. Steepest Negative Newton = CPU  RMS,(4) RMS, ARMS,
Descent Curvature . (sec)
678 0 0 236 ° 1.80 492 7.52
174 0 . 0 250 ' 169 , -7 4.78 1.51
95 0 0 127 1.69 480 - 0.25
0 9 12, 283 1.74 4.95 0.63
896 o )
.  Table 15: Numetfcal Results: BISTI, from Initial Configuratjon C.
. ) : 4
Bovine Pancreatic Trypsin Ihhibitor (58 amino acids) '
(3 disulfide bonds included) " - -
. - Steepest Negative 's Newton CPU RMS,(4) BRMS, ARMS,
" Descent Curvature (sec) :
673 0 ‘ 0 234 2.07 4.47 7.37
103 o - 0 145 1.73 4.13 0.97
131 0 0 172 1.66 4.04 0.38
0 29 51 1534 1.738 3.94 1.17
S (. 2088



. 1
\w/ et
. Bovine Pancreatic Trypsin Inhibitor (58 amino acids) |
(3 disulfide bonds included)
Steepest Negative ~ Newton =~ CPU  RMS,(4). RMS, ARMS,
Descent _ Curvature (sec)

. 652 0 o -228 2.24 4.93 ° T08
152 0 0 218 ., 2.07 4.78 111
150 0 0 213 - 1.89 467 0.63

0 . 55 257 2403 '1.85 4.29 1.97
3122 ,
Table\|7: Numerical ResuM/T//P_,ﬁ‘o Initial Configuration E.
< :
Bovine Pancreatic Trypsin Inhibitor (58 amino acids)
(3 disulfide bonds included)
A B C D . ., Real
A 3.67 4.48 3.85.° 449 4.21
B 0 -« .4.58 380 - ..368 4.84
: O 0 4.08- 3.80 495
D 0 3.565 3.04 N
E .0 4.29
Real o 0
Table 18: Comparison of Optimized RM.S, Structures for BPTL. ,
. Bovine Pancreatic Trypsin Inhibitor (58 aminé acids)
(8 disulfide bonds included) - . ’
A B C D' E Real
" A 0o - 1.19~ 1.14 0.99 1.33 1.63
B ) 0 0.98 1.10 1.26 1.90
¢ ° 0 0.96 1.05 . 1.74
D ' 0 1.08 1.73
. B . 0 1.85
Real 0

Table 19: Comparison of Optimized RMSy(4) Structuresﬂfor BPTIL

©

o

¥
<

L



Bovine Pancreatic.Trypsin Inhibitor (58 amino acids) .
. . (3 disulfide bonds included)
RMS, of Optimized Structure vs: | RMS,(4) of Optimized Structure vs:
* -, Real ) Others Real .Others

A 4.21 4. 0.43 1.63 1.16 £ 0.14

B '4.84 3193 £ 0.44 1.90 i 1.134+0.12

C 4.95 4.28 +0.36 - 1.74 1.03 £ 0.08

D 3.94 ) 3.8%”@\22 .73 ° 1.03 £:0.07

‘ E 4.29 3.88 4 0.42 1.85 1,18 +£0.14
ABCDE (ave.)4.45 + 0.43 4.0040.38 1.77 £ 0.11 1.11+0.12

Table 20: Further Comparison of RMS, and RMSy(4) ‘Final Structures for BPTI.

@
— TP o

) T

[

The calculated statistics of Tables 18 and 20 indicate that the five optimized struc-

©
v

tures show an avet?zge RMS, error of 4.45 A when they are separately compared to the

“real” X-ray diffraction structure. When the five optimized structures are compared

Q

with each other pairwise, the average RM S, difference between optimized structures
was, found to be 4.00 A. This shows that the structures are cofiverging within a rather
small neighbourhood, and that this neighbourhood is close to the configuration of the

«

real structure. Also, from Tables 19 and 20 it is found that the structures are all locally

%

Note that for this model, small RMS, differences between

w °

structural differences that are small with respect to the usual Cartefian coordinates.
g o . "

Contact maps for the optimized structures of BPTI from tife new initial configura-

tions B, C, D and E are given in Figure 15. It is seen that these optimized structures

K

as a group predict the secondary structures very well, including the long antiparallel

B-structure dominating the off-diagonal of the contact maps and the short «-helix near

— 0

/ﬂ{e C-terminal end. .

/

v
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Tt is believed that the RMS errors between the optimized and the real struc--

-

tures will improve agﬁbetter and more accurate parameters are determined either semi-~

¢
empirically or theoretically. The most obvious improvement would be to replace the

second neighbour mean value constraint with a set of far neighbour chemically-derived
constraints. These chemically-derived constraints may need to be tailored to the indi-_
vidual protein being folded. It may alternatively be possible to derive universal'em-
pirical far neighbour constraints fro;;} repeatesl chemical studies. Howe‘ver, the model
can be used in its present form to calculate tertiary structures of globular proteins
with a medium level (3 -6 A {differgnceg in RMS,) of structural de#ail, that can sub-
sequently be refined by other algorithms such as those focusing on secondary structure

or free-energy minimization.

7.3 Comparison to Previous Distance Constraint Models.
7.3.1 X-ray Diffraction Technique. l{‘}
{

The tertiary structures of over 200 crystallized globular proteins are now available
from the laboratory technique of X-ray diffraction, although many of these proteins

. \ 33
are homologous in structure.

X-ray diffraction works in two stages. In the first stage, the object under examina-
tion scatters the X-rays unevenly in all dirgctions, forming a diffra‘;tion pattern. In the
second stage, this recorded diffraction pattern is mathematically reconstituted into the
image. It is necessary to apply X-rays (or elect.roxlls or neutrons) to molecular studies
instead of visible light because the radiation must possess a wavelf;ngth small enough

" .(1 -2 A) to produce the required resolution for an object this small.
7

In protein studies, individual molecules do not provide the necessary contrast for

s

1
v
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a discernible diﬂ'r/a.ction patte}n. Therefore, a large number of the molecules (~ 10'%) -

- |

are consolidated into a crystal, which serves to amplify the diffraction pattern. Fur-

ther, in order to make possible the second stage of reconstructing the original protein,
§

.
t

isomorphous 7eplacement of some elements in the crystal lattice by heavy atoms must

o

be performed. The crystallization of protein molecules is not a complete procesé; pro-

teins rarely form crystals that are regular enough to diffract to a resolution better than

1.5 A. N\

k4

Reconstruction of the detailed structure of the protein from the diffraction pattern

is achieved by Fourier transform’analysis. The clarity of the reconstructed image, the

“glectron density map”, depends upon the accuracy and resolution of the data, and
the degree of order of the protein crystal. Individual atoms can only be detected if

the resolution is better than 1.5 A; with resolution better than 3.0 A, peptide groups

7
and the general shape of sidechains can usually be distinaguished; with lower resolution,

only gross features such as regular secondary structures can be identified. Portions

-

of the proteig that are mobile or can adopt several alternative conformations may be

unidentifiable from the electron density map.

. The primary structure of the protein must be known a priori in order to interpret
the eléctron density map. The actual interpretaf®n in terms of atom locations is rather

o

subjective, and proceeds from an idealized model of the protein, containing standard

@
bond le}xgths and angles. The mathematical refinement stage consisis of finding a

best fif between the idealized model and the experimental diffraction data, again using, _ _

J—

Fo:xrier difference maps. This analysis attempts to extend the final resolution of the

A
-

structure beyond the initial experimental resolution of the diffraction pattern.

o
The crystallization and diffraction staﬁe of the X-ray diffraction procedure can be



Ly
L4

very costly in terms of human time. It can literally require years of laboratory work’

to obtain the crystal structure of a siffgle globular protein, Frequently, groups of

u Sy

proteins with similar primary sequepces and functions are studied by X-ray diffraction

researchers in order to expedite the procedure by employing sitnilar methods on the

0

homologous structures. .

L8
~

The refinement stage can be very costly in terms of computer time. For example,
Deisenhofer and Steigemann [32] required over 60 hours of computer time on a Sicmens

4004/150 computer to refine BPTI from 2.5 A resolution to 1.5 A, using « real-space

& > ©

model build‘mg proced{]re and five Fourier difference maps. o

= >

, The X-ray diffractior®technique has certain drawbacks. It models the crystal struc-
)

ture of a molecule, which in some cases is significantly different from the native struc-

1

ture. Also, a bias is introduced info the overall analysis of globular proteins since

LI B,

only protein’structures that make good crystals are resolved, The technique is also

- L]

extremefy expensive and time consuming. However, it is thought to produce a good

average of a protein’s in vivo structures in most cases, and presently produces a far

better resolution of the tertiary structure of proteins than any other experimental or

-

theoretical prediction method.

o
[

7.3.2 Goel, Yéas et al. '~

Q

In the approach of Goel, Yéas et al. [14,45,46,98,128], the constituent residues of a

.

protein are represented by the locations of their C,-atoms connected by virtual bonds.

-~ ’

Their approach attempts to satisfy a set of distance constraints identically by optimiz-

ing a weighted penalty function of the constraints. Various constraint combinations

3

are presented fo be satisfied exactly, with the constraints being either fixed distances

¢
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o+ :

. . o ! . .
between points, minimum or maximum bounds on distances between points, or “set

.
average” constraints. The set averages.are weak constraints requiring a set of distances

. . - . L ® . .. . . .
to attain a specified average value, with no restrictions on individual pairwise distances.

*

The penalty function, to be minimized, is written ag:
s .
/ e

Fe=wl +wiFy +w3F3+ w4F4 4 wg Fg + wcp(Fcpl + Fcp2 + Fcp3), (22)

where | " .
7 \ . i n-1 . »
Fi= Y@~ diga) : (23)
=1 * , \
[n—2 _ 12
Fy= |3 (d2 — diiy2) (24)
Li=1 o
-3 12 '
. F3= Z(ds = dias)| , (25)
. . L3 J ) N
-4 12
Fa= |3 (@ - dyrs) (26)
L$==1 s
(L,k)esS ) ‘
- 12
Fep1 = ah.cp — dicp) (28)
o T _c'EJl Jde
- 12
FcpZ = z (zlg,cp - dt,cp) (29)
Y e s A - ®
- 72
Fops = Z (als.cp - dt.cp) (30) A
veJs ] r '

The mean values dy, dp, da, dy, dg, Ejhcp, Z;mcp and 'J,;s,cp are employed as the

o

parameters of the model. They are estimated semi-empirically, using statistical data
from the atomic coordinates of a set of twenty-one proteins with structures known from
X-ray diffraction studies, supplied by the Protein Data Bank at the Brookhaven Na- \)

tional Laboratory [1]. The values dj, op, dy, cp and dj,, denote the average distances

\

4

k @
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from the centroidal poinf of the molecule for the sets of hydrophobic (J1), hydrophilic

(J;) and ambivalent (J3) résidues, respectively. Otherwise, the notation is identical to
that given in Chapter 9.1. The first neighbour () and disulfide Hond (F5) constraints

restrict ﬂairwise distances individually; all other constraints are of the “set average”

type. For example, F 1s a single constraint employed for second neighbour distances,

o

and is minimized (to F; = 0) when the average distance for the set of all second neigh-

-..

bour residues {d;,+2} is equal to dy, with no specific requirements on the individual

dy iy2 pafr-v'vise distances.

‘Their model optionally includes set average constraints on the standard deviations

A

of the near neighbour distances. This is done by adding extra terms w,G, to F, where

the G; are of the form:

¢ L

. 192 .
n—j "'. _ ¢ \2 2 .
G, = [%‘ - (Eml 8 i) ) ] ;5=2,3,4, (31)

n—j

where 3j'is the specified standard deviation for the jth neighbour Cf-atoms,

\

Also, the. near neighbour set average constraints can be modified to include mini-

L

mum and maximum bounds for the pairwise distances for each residue k, as follows:

v

2
F; = [Uf'(EJ - dk,k-v) + UJR(EJ - dk.k+1) + Z (EJ = dyy f‘J) i (32)
. s#k,kt)
k=1,...,n; §=2,38,4,
3
) \
where i

pk=}1 Ly < dpe-5 < U,
I M > 1 otherwise

AR}
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RN gg
" ] \ 'I
and d 0 e L4 \ ° 4
¢
pR=l 1 Lj < dyptg S Uj
7 M > 1 otherwise. »

Here the-parameters-Z;and U, are minimum and maximum.empirical bounds for

By

the near neighbour distances.

| J—

o

. <

t . It is also shown [45,98] that the hydrophobicity class constraints may be replaced by

an equivalent set of cons&raints expressing the hydrophobicity rule in terms of average

-~ el

pairwise distances bétween the residues of the various hydrophobicity classes, such as:

3
o 2 —e

) Fy, = Z (2-71-71 - dl.)f)' . (33)
’ (#1)e1

3

Here, dj, j, represents an empirically derived average distance between residues that are

. both of hydrophobicity class Jy. Similar constraints would be imposed for all pairwise

3
3

permutations of the classes Jy, J2 and Js.

e

The paper of Cariani and Goel [14] is concerned with the additional information

o s

that' can be gained from imposing secondary structure conditions on the model.

i

The various forms of the penalty function in the approach of Goel, Yéas et al.

3]

[14,45,46,98,128] are solved by minimization in the corresponding Cartesian coordi-

far s

nates. A sequential optimization is performed, either by a method of repeated random

direction linesearches [12] or by a steepest descent algorithm (cf., Chapter 10.3). The

@

residues of a protein are selected one at a time in a randomly generated sequence. For

“r

cach sclected residue in turn, the three variables (zx,yk, 2) are optimized under the

®

function F, while keeping the variables for all the other residues fixed. One iteration

i
consists of all residues being chosen for optimization exactly once. Iterations are then

3
- 7

ﬂ v
repeated as desired. The optimizer has the advantage that the dimensionality of each

[}

f ° L
o
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subproblem is’ small and no derivative calculations are required. However, since the

0

variables in the nonlinear penalty function F are not truly separable, the sequential

G»)

optimization can lead to a poor convergence rate and local minima trapping or cycling.
2 ! ¢ .

Q

Goel and hjs co-workers have used this method to generate predictive structures

for several proteins. Their model is quite successful in predicting protein tertiary

v

structures, using the various combinations of terms used as input in F. It seems,

however, to be overly dependent on the choice of initial configuration, implying either

Y

!

an ill-constrained system or an ineffe&&vioptinﬁzer routine.

-a

different optimizing seqli‘ences for the Tesidues, using a large perturbation of the real
BPTI structure for the starting configuration. ‘ They obtained RMS, errors of 5.39,
5.16, 4.76, 5.45 and 5.79 A from the X-ray diffraction coordinates for these five trials.
These results ga.:fe an average of 5.31 == 0.38 A from the- real structure, and di;fered
by 4.70 + 0.65 A when compared v;ith one another pairwise. Tﬂhey also [46] folded
BPTI using an identical optimizing sequence of residues, but folded from ;:hree different
semi-random perturbations of the real structure. F(‘)r this case, the final configurations
diff:ered by 5.49+0.15 A from the real structure and by 5.93 +0.05 A from each other.
The ;;roteins lysozyme and staphylococcal nuclease {146 residues, no disulfide bonds)
were also folded ir‘xna similar manner, except that all the' parameters used in this case
were ::lerived specifically from the protein to be folded. The final RMS, differences

from the real structures were 5.63 and 7.12 A, respectively. o

-
Goel et al. [45], using an underconstrained system of “set average” constraints,

obtained RMSy values of 6.46 A for BPTI’and'G.BO A for parvalbumin (a globular

protein containing 108 residues and no disulfide bonds) from a random chain input

P o

A}

Using the methods outlined above, Goel and Ytas [46] folded BPTI using five

N
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configuration, and an RM.S), value of 6.25 A for BPTI from a perturbed real structure
initial configuratipn. They a.lsoﬂbtainefRMSv values of 4.86 A for BPTI and 5.21 &
for parvalbumin from a similar ihput by the use of an overconstrained system in which

the residues were forced to satisfy distance constraints individually. In all cases their

ES
a

results were found to be dependent upon the choice of initial configuration, indicating
the posgibility of unsuitably constrained ;ystems. Du;ing this study, they also analyzed
the model by folding BPTI when given complete exact distance information: complete
information with some errors,‘several forms of complete information ds approximate
values without -errors, and incompléte exact distance information. All of these latter

N '

studies included distance information that would generally be inaccessible a priori.
ki

a
o

- 7.3.3 XKuntz, Crippen et al.

-

The original model of Kux}tz, Crippen, Kollma.n' and Kimelman [61,63] is written as a
.penalty function consisting of constraints on the pairwise distances between residues.
Each amino acid residue is represented by the first atom of its side-chain (the Cg-atom),
excégt for Gly which is represented by its C-atom. The 3xn ‘qutesian coozdinates of

the Cg-atoms are chosen as the independent variables to be optimized for a protein of

length n. The penalty function, called an “error function”, is composed of five terms:

F = wiF + waF3 + waF3 + we Fe- ws Fs, (34)

&

where each of the terms represents a distance constraint set. The weights (w,) are

L]
empirically chosen to reflect the relative importance of the various constraints:

wy = wg = w4: = ws = 100, wp = 25. . (35)

(3
]
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The first term of the penalty function (34) is given to be as follows: | .
n"l 3
Fr=7" |digsa® — L? |, (36)
i=1

a

where d;,41 represents the distance between Cp-atoms of nearest neighbour residues

e 4

and L1 is a discontinuous step function: / .

13

38R ifd,,1'<384
Li={ 494 ifdjzy 2494 (37)
d; i1 otherwise. .
P ° . '
This term Fy restricts the Cg~atom first neighbour distances to lie between a minimum
N 4 o

distancbg of 3.8 ;& and a maximum distance of 4.9 A. Kuntz et gk also state that the

- &
ks . %
jad

dii+2 and d;, 43 distances are constrained to an allowable range between a-helical and

[
AN

extended chaifi conformations, but do not show* these terms explicitly.
The sucond term of the pena‘lty function represents the interactions between various

. . - . N . A . L3
clasges of residues. Pairs of hydrophobic residues are constrained to a pairwise distance

‘

kd - ) - » » » . » 3
of less than 10 A, as are polar-ionic residue interactions and pairs consisting of residues

»

with appropriately charged ionic sidechains. Ionic-hydrophobic or polar-hydrophobic
. x A

“

residue pairs are constrained to lie more than 15 A from each other. The N- and

C-terminal residues are classified as jonic. Thie penalty term is achieved as follows:

H
n
)

. . RB= nil 2\;.:01': (dipts” = L"), ; (38)

=1 5=1 . .
where Cj,; is a weighting coefficient for the interaction between residues i and i + j.
The coeiﬁpieqt C,; has a possible range of —100 to 25, witl; values determined by the
types of residues involved. It has positive values when residugé ¢+ and ¢ + J are ionic-

hydrophobic or polar-hydrophobic pairs, negative values for hydrophobic-hydrophobic,

polar-ionic or ionic-ionic residue pairs, and is equal to zero otherwise. The step function
)

¥
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‘L2 is given by - .
10 A when Ci; > 0 and d; 45 > 10 -
Ly=4 156 A when C;; <0and d;;4, < 15
di iy, otherwise.

(39) ~

The third. term constrains hydrophilic residues (defined as all residues except Met,

o
—_— ! 5

Val, Leu, Ile, Phe; Trp and Tyr) to a specified minimum distance from the centroidal

v

point of the molecule: - ) e
E RN "/V
’ x 2 2y & ’ ) "!
FB = z s di',cP - dt,cp )’ \—’(40)"@\‘(
’ schydrophilic o . 73,
for all hydrophilics such that dicp-< df oy, and zero otherwise. The scalar df,, is set
equal to 10 A. This parameter, estimated empirically from examination of BPTI and S

rubredoxin residue distributions, determines the volume of the hydrophobic core.

The fourth term prevents the chain from self-intersécting:

©

n—2n—s

' Fy=3_ 2 (gsi® = dipss®)- (41)

=1 F=2

Here V, 14; is the sum of the effective van ‘der Waals radii of the, sidechains of residues

a

i and ¢+ j. Whenever d;;1j > Vit 4, the value of Fy is set to zero.

The fifth term is a constraint for the Cys residue pairs that are connected by

5

duisulﬁde bonds: ) w .

) Fs= 3 (du’ - Ls%), (42)
o - (Lk)ESs ’

-

where Lg = 64 is the desired pairwise distance for Cjg-atoms of disulfide bonded Cys
°*  residues. Again, this constraint is set to zero whenever di, < Ls.

*© ' The'initial configurations used for this model are extended chains, in which each

~
- - -

& 2
residue is positioned at 3.8 A from the preceding residue, the steps being made al-

ternately along the z, y and z axes. The penalty function is mihimizécl in Cartesian

."‘coordinates by use of a steepest descent algorithm without linesearch. Only one step

-
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n

o

is attempted along the direction of steepest descent per itération, with the step.size— .

; . -, .
being determined by the relative success of the previous iteration.

-

Using this model, Kuntz et al. {63] computed optimized structures for BPTI and
C @ ,
for rubredoxin (using 53 residues). They reported that their dest results for BPTT kradd

RMS, errors of 4.70 to 5.0 A, They obtained a structure for rubredoxin with an RMS,

error of 4.7 A when the same weight and parameter values g3 those of BPTI were used.

a
i o

Their best RM Sy result for rubredoxin was reported to be a value of 3.99 A When

the Fe-S interaction distances were not included in rubredoxin, the prediction accuracy

o)

droppéd to an RMS, error of approximately 6 A.

They gene}a.ted “a number” of structures for BPTI and rubredoxin. The resulting

RM S, errors from the X-ray diffraction structure were in the range of 4.7 to 6.5 A for
BPTI when the three disulfide bonds were given correct distances. The RMSy errors

for rubredoxin were found to,be 4.0 to 6.0 A, given correct distances between the four

LY
1S

Cys residues involved in the Fe-Sy compléx'.'__w
In their more recent approaches, Kuntz et al. [30,50,51,52,62] first impose a set of
3

distance constraints directly on the matrix consisting of all pairwise distances between

o

the C,-atoms of the residues, where specified entries in this distance matrix are limited

Y

ﬁ Tt
to be within upper and Tower bounds. Therefore, the model works directly with a

,
©

geometry of pairwise distances.
1

Distance constraints between residue pairs are incorporated as entries in upper and

lower bound distance matrices, denoted by U and L,qrespectively. First 'neighbour

e

residue distances are given c'corresporgding values of u, 43 = 3.80 A and L1 = 3.80
A in the first diagonals of U and L, respectively. Values for the elements in the

second diagonals (second neighbour distances) are chosen to be w, 4,2 ~= 7.30 A and

f/‘y . ’// 4
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Liiyz = 6.00 'A. Disulfide bond locations are assumed to be known, with Pairs of

q

residues ! and k connected by these bonds being given the upper bound restrictions

]

of uy = 6.50 A. All other elements of U are then set; to a reasonable absolute upper

a i

bound distaelce (given by 40.0 A in [50] and 3;.0 A in [62]), and all other elements
of L are set to an absolute lower bound distance (5.0 A in [50] and 06.0‘ A in [62)).
The resulting distan_ce matrices U and L are then smoothed by satisfying triaﬂgle and
reverse triangle inequalities for all residue tri&plets (cf.,‘Chapter 4). ‘The boundary

matrices thus obtained axe representations of a nonintersecting ideal chain containing
- —— P’ o £ S «

acceptable vi;'tual bond angles and disulfide bondin_g.

< -~

The remaining pairwise distances are further restricted by consideration of sec-

2z

ondary structure algorithms for a-helices, S-strands or hairpin‘turn contacts, or by
prediction of hydrophobic contacts. In Havel et al. [51], constraints consisting of a

tetrangle inequality, and pentangle and hexangle equalities are included -(¢f., Chap-

<
v

ter 4). These arise from the distance geometry itself, and ensure that.a given distance

matrix will correspond to a three-dimensional Euclidean structure.

[}

The model is easily solved with respect to the distance coordinate system by simply

°

assigning values in the distance matrices. The difficulty arises when the nonlinear

3

t

transformation is made from distance space, a space of higher than three dimensions

[ *
k4

in general, into R3. Either the distance bounds must initially be chosen carefully to

limit the optimized configurations to R® structures or a supplementdry process must

be devised to embed the distance matrix configurations into R2, :
L

o
g
e

There is no obvious way to perform this ‘embedding‘ process optimally (ef., Chap-

3

ter 4), and the system behaves essentially as an overconstrained one. The most difficult

step of this approach is to decide in some rigorous fashion which distance constraints
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N “
v 2, &

T

.l

“to relax during the embedding process, whether the embedding occurs during or after

o

the optimization step. In spite of these obstacles, the method shows very promising
‘ !
results in the prediction of tertiary structure, and is improving as the properties of the

9

transformation become more familiar,

@

I

Upon repeatedly optimizing the tertiary structure of BPTI, Kuntz et al. [62]
reported RMS, values of 5.46 & 0.28 A, employing the faethod of steépest descent
combined with the conjugate gradient method. These results corresponded to RM S,

)

results of 6.594-0.60 A. Using a Monte Carlo procedure, similar results of 5.48 +0.28

" A were obtained for RM Sy. However, it is mentioned that the best results were in the

range 3.75 - 4.25 A for RM S, errors and 4.8~ 5.2 A for RMS, errors. In this study, not

only ‘were the structures repeatedly éenerated, but the RMS, errors were calculated
-0 qQ
as well.

%

7.3.4 Wako and Scheraga.

The model of Wako %nd Scheraga [100,117,118,120] consists of the a.pplica.tir;n of suc-

\

cessive approximations proceeding from a'short-range distance constraint algorithm to

subsequent incorporation of medium- and long-range interactions, followed by energy

minimization of the entire molecule.

I

For this model, the mean distances d; for all residues separated in primary structure

R gmEE 7

by j residues are -determined, with weights w; determined from their standard devia-
tions. The values d; and w, are determined from the primary sequence boy taking into
account differences between short-, medium- dnd long-range effects (where the ranges

are defined to be 7 £ 8,9 < 5 < 20 and j > 21, respectively), and also by considering

the neighbouring residue types.
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o

For near neighbour distances, the values of Ej and w; are adopted from the em-

pirical analysis of known protein structures. The penalty function employs empirically

it

determined mean values ‘?‘1:,-, weighted according to their standard deviations:

(43)

- w, =
—

N@NI L
.

The near neighbour distances also use secondary structure prediction algorithms.

1

For medium and far neighbour distances, d, and w; are mainly determined by

hydrophobicity and hydrophilicity indices, using the scales of Meirovitch et al. [74,75,76].

These evaluations additionally employ empirical mean and standard deviation results,

o

which are supplied in linear regression form.
Other factors, such as disulfide bonds or interactions between nonbonding Cys
residue pairs or between specific Cys and aromatic residues also contribute. Exact

x

distances for speciﬁe'd pairs of residues are also includ(ed if this data is considered to
be obtainable from experimental techniques.

All of the above effects are incorporatedaby appropriate choices of E,- and w,, which
vary according to the effects being considered.

The protein is represented by the coordinate locations of its Cy-atoms, cennected

by virtual bonds, The coordinates are varied to minimize a function of the form:

n—1n-—i o,
— 5 2
F=3 > wild; - disys)”. (44)
i=1 =1
' Possible chain self-intersection is not accounted for explicitly in the model. In actual
practice, unfavorable far neighbour contacts were encountered when a two-dimensional

representation for the protein was used [120], but no chain entanglement was encoun-
?

\
tered on folding in, three dimensions [117,118].
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For the optimization of the structure of BPTI, several choices for the initial con-

figuration were used. The initial configurations generally were close to that of the real

-

structure. For example, the optimization of one structure reduced the RM S, deviation

from 4.25 to 2.24 A. For this particular case, the general model was supplemented with

exact distance information on some residue pairs far apart (Argl - Lysl5, 29.80 A; -

Lys15 - Ala58, 35.12 A) and some pairs close together (Leu6 - Ala25, 5.78 A; Tyrl0 -

Asn43, 7.99 A; Asn24 - Asn43, 9.26 A) with respect to the tertiary structure.
Optimization of the penalty function was carried out in Cartesian space. FirstsL a
o gradient minimizing routine was used. This routine tended to become trapf)ed in local
minima as the structure became more compact. Theret&ore, the minimizing procedure
was changed to a Monte Carlo metth at the stage when the excluded volume effect
became evident. The Monte Carlo method was local, in that it optimized the pom‘tion

of each residue sequentially along the chain, taking into account only the distances

between near neighbour residues. ~
Wako and Scheraga [118] obtained tertiary structure results {)y folding BPTI from
% severaril initial conformations, using various constraint combinations. When only pri-
mary structure obtainable constraints plus the locations of the three disulfide bonds
were used as constrajnts, the following RM Sy, and RMS; errors from the X-ray diffrac-
* tion structure were ;)i)taix;ed for the folded structures: RMS, = 4.83 A and RMS, =
7.77 A from an initial conformation with an error of RM S, = 5.90 A, RM S, == 4.30 and
RMS, = 5.98 A from an initial RMSy = 21.27 A, RMS, = 4.83 and RMS, == 9.09
. A from an initial RMS, = 8.10 A, RMS, = 4.43 and RMS, = 9.84 A from an
initial RMS, = 5.80 A and an RMS, = 4.10 and RMS, = 5.88 A from an initial

RMS, = 4.25 A. Aggregate statistics on these results would not be meaningful since

-
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many of the trial results were folded from conformations similar to that of the real

structure.

dr

L

‘o



8 Discussion. ‘ :

@

Distance constraint models are found to be valuable as reliable predictors of protein
tertiary structure. The accuracy of resolution attainable by this type of model alone

is indicated to be in the range of 3 - 5 A error. ‘This is generally considered to be of

@

“medium” resolution, intermediate between experimental X-ray crystallography results

s

and the results obtained from other types of theoretical models. All that is required for

-
o

input into distance constraint models is the primary structur%:f)mrotein, However,

»

the resolution can generally be improved by the inclusion of constraints répresenting
disulfide bond locations or other specific information concerning distances between
residues that are far apart in the primarystructure.

Distance constraint model;s are a relatively quick and inexpensive method of ob-

a

taining medium resolution predictions for tertiary structures. For this reason, they

A .

may be implemented as first approximations to actual tertiaty structures, which could

be refined by laboratory techniques such as X-ray studies. Improvements in the res-

-

olution of theoretical prédictor models may be attained by repeated cycling between

distance constraint models, secondary structure predictor algorithms and methods of

. - . - ‘
free-energy minimization. -

8.1 Improvements for the Present Model. v

n

&

Improvements for the model fall into two general categories: parameter resolution ard

o

computation. v

The nonlinear optimization algorithmm may possibly be improved by employing
new optimization algorithms currently being developed which can utilize quasi-Newton )

methods (which usually perform better than Newton methods) for large-scale prcblers

e s ¢

LY
-
£l
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such as these. Other algorithms can be explored which can better exploit the special

structure of distance constraint models by operating in another Euclidean metric, such

o

as those employing an Ly or Ly, norm (¢f., Coleman and Conn [24]). These types of

algorithms are relatively new, and as \):et ‘have not been adequately developed to handle
/ ™

large -cale systems.
The time reyuired for execution of the algorithm can be lessened by use of ini-
tial conﬁgur&;i&na that include correct first neighbour distances and other constraints.

Alternately, initialhconﬁgurations cam be quickly generated by use of low resolution.
t";& . 4
algorithins such as those outlined in Section 8.2.

L4

Marginal improvements to the parameter values will come as the database of known
tertiary structures grows and i¢ analyzed statistically. The parameters can certainly im-

prove if % chemical or other techniques [or obtaining short distance or long distance

-

contacts in R® can be found for far neighbour residues in the molecule. Possible param-

eters of this type that may bs accedbible from empi&ica.l studies alone include interaction

distances between Cys and aromatic residues [117,118], intéraction distances between

=

pairs of ‘aromatic fesidues [13] or between pairs of nonbo;lding Cys residues [117,118],
or a priori assignment of centroidal point distances to the hydrophobic residues [72,84].

The model in its present form-can calculate tertiary structures for much larger

-
molecules. On the other hand, it can also be used i‘.o predict structures for peptide
hormones, neurotransmitters and c;ther polypepi:ides thaT “are fragments of protein
= /
prcchursor molecules. With some knowledge of specific'fiitramolecular bonding, the

~ - et r

model can be expanded to calculate structures of broken chain and multiple-strand

proteins.



8.2 Alternative Algorithms for Solution.
N \

There are several methods other than nonlinear optimization by which the tertiary

©

structure prediction-problem may be approached. The advantage of these methods is

the speed in obtaining structures. The disadvantage is that the structures obtained

are of low regolution (RM S, errors in the vicinity of 6 A) in comparison with distance

gé;nytry odels (RMS, errors approximately 4 A).

Some possible approaches that sidestep the difficulties of nonlinear optimization .

include:

<
v

1. linearization of the objective function and all constraints with respect to the
\

. 1

Cartesian coordinates;

~

2. reduction of the problem to a one-dimensional system by fixing two of the dis-

tance coordinate locations for each residue. For.example, the first neighbour and

]

second neighbour distances can be specified initially for each resi'due, making the
LN «

A3

radial distance from the centroidal point then calculable analytically from the

hydrophobicity conditions;

”

3. optimization of the residues on a three-dimensional integer lattice (“packing the
snake”). The remainder of the subsection is devoted to a brief outline of an

implementation of this approach. . '

i

/
The “packing the snake” algorithm (M. Y&as, personal correspondence) exploits
an important geometrical characteristic of tertiary structure, namely the high and
effectively constant packing density g& residues in a protein [94]. The high déysity

of the packing of the residues varies little from protein to protein. Since this packing



Residues that are far apart with respect to primary sequence also tend to be far
apart physically in R®. This principle has been observed in all globular proteins con-

taining clearly detectable domains [101]. Conversely expressed, ‘the domain structure

<

shows a high degree of “neighbourhood correlation”, with the distance along the chain

and three-dimensional distance exhibiting a positive correlation. This observed neigh-

bourhood correlation is probably a consequence of the chain folding process. The
° 4

correlation suggests that a folding chain is analogous to a string that is held at one end

1

and allowed to fall down. The resulting coil is not random but shows neighbourhood

correlation. It does not become entangled and it can be easily unravelled by picking

a

up the end..This éoncept is confirmed by the absence of “knots” in all protein struc-

tures known thus far, the term knot Qbeing used in the everyday sense and not in the

s

mathematical sense. This principle can also be utilized in the packing algorithm.
,f Initial atternpts have been made by the author to implement this algoritﬁin on

a three-dimensional cubic lattice. The positions of the Ca-ato}ns of a protein are
w ; : !
optimized on the vertices of the lattice. Each vertex is either occupied or unoccupied

by a residue. First neighbour residues are denoted by occupied adjacent lattice vertices.
For all other residue pairs, there is a volume exclusion rule prohibiting them from

5

occupying idéntical or adjacent vertices. For example, this results in second neighbour

residues that are either 2.0 C-atom units apart (probability = 0.20) or 1/2 units apart

»

P

113,
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(probability = 0.80). For residue pairs connected by 'disulfide bonds, the pairwise

distance is restricted to a range of 1.0 to v/3 units. The existence of disulfide bonds
in a protein can facilitate the folding process by operating as nuclei for the overall

structure. The centroidal point hydrophobicity conditions are included in the form of
I'd

an objective function to be minimized, urider the previously mentioned constraints.
This method was tested by predicting the tertiary structure for rubredoxin (54

residues, no disulfide bonds), using a modified tree-search integer programming opti-

[t}

mizer.. The optimized structure contained an RMS) error of 5.37 A from the X-ray
" diffraction structure, with RMS,(4) = 2.05. The optimization process required less

than 97 CPU seconds on a CYBER 170-730 mainframe computer. Overall, the mean

2
¢

difference in centroidal point disfance between the real and optimized residues was
only 2.14 £ 1.68 A. The mean values for the first, segond, third and fourth neigh-

bour distances for the optimﬁized structure were calculated to be 3.80 0, 5.18 -+ 0.89,

e

7.41 =+ 1.10 and 8.61 = 1.92 A, respectively. These statistics compare well to those of

the real structure, given in Table 9 of Chapter.7.1.

Present work includes modifying the above problem from one of integer program-

ming to ene of pattern generation. This change should result in a great saving of

0
P

execution time for the algorithm in predicting structures of large proteins.
?

8.3 Implications for Future Study. '

b

Distance constraint models certainly are not as yet optimal with respect to the constraint
set imposed or to the mathematical form of the problem. All distance constraint models
must conform to certain conditions relating to their formulation in distance geometry

o i » s I3 . « J . » »
coordinates and to their inverse mapping into Cartesian coordinates, as discussed’ in

L} k4 ¥

a3
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Chapter 4. In fact, one could envision a Hilbert space of distance constraint funct‘:ions.
The problem would then be to define a set of conditions in order to decide on a function
that'is “optimal”. The work of Chapter 4 is a step toward categorizin‘g the spa‘ce" of
distance constraint functions.

"« Effects of substitutions, deletions or additions of residues to proteins can be easily
evaluated l?y the model. In the present model for example, the protein lysozyme was
folded with the C-terminal residue omitted from the chain (cf., Chapter 7). It was

found that this single deletion significantly affected the final structure obtained.

“ ]

With improvement in the accuracy of theoretical models, the important relationship

between the structure and function of proteins can be explored in general for the first

>

time. s
Theoretical aspects regarding evolution versus tertiary structures of proteins can

be evaluated via the model. This is important for the taxonomy of proteins, in order

.

to find evolutionary related proteins, which may perform far different functions at the

present time. This research is also important theoretically, in the investigation of the

q

relationship between the evolutionary rapidly substituting sections of a protein and

A\ .

]

their corresponding structures in DNA'[6].
With a reliable distance constraint model now available for the prediction of tertiary

structures using primary structures as the sole input, it is possible to generate an atlas
of tertiary structures from the existent primary structure tables. There are thousands

14

of proteins for which primary structures are known but tertiary structures are unknown.

o o

OQCS; a catalogue of tertiary structures is generated, the general topologies of folded

"~ L

structures can be investigated. Also, the catalogue of folded structures may be used

to explore the entire class of primary structures ¢apable of folding into stable tertiary

E3

U
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structures, gg opposed to the unstable and random coil sequences of polypeptides.
Pex\:haps the most important benefit from th? cataloguingcof protein tertiary structures

concerns the inverse problem. This involves determining the set of‘prima.ry_ structures

that will fold into a given tertiary structure. As a corollary, it give;s the possibility of | |

inexpensively constructing an artificial pretein with certain desired properties that are

present in a natural protein. Once the classes of possible folding chains are known, the
entire set of primary sequences that can fold to obtain a specified active site may be
determined. This has obvious possibilities in the fields of agriculture, pharmacology

'l

and medicine. °

—

Y
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9 Appendix: The Mathematical Model.

In this Appendix are given the details of the mathematical formulation of the distance
geometry model for tertiary structure prediction. The mathematical representation

comprises a set of restrictions on the Euclidean distances between the amino acid

residues, °

In Section 9.1, the matile dtical notation for the parameters 'of the model is pre-
sented. Sect‘jon 9.2 includes the distance coordinate description of the mathematical
model and it; conversion into a penalty function. The mathematical model is designed

» - -

to specify the geometrical characteristics of globular proteins while remaining tractable.
iy ¢ v v

Optimizatie}l of the pen’a.lty function is performed in the space of Cartesian coordinates

by techniques of nonlinear programming described in Chapter 10. The final sections of

this Appendix are devoted to derivations of the numerical scalar valu;as or expressions

for the parameters used in the present model. A summary of the parameter values

LY

used in the model is given in Table 26 at the end of this Appendix.

9.1 Parameter Notation. o

A protein will be represented by the locations of the Cy-atoms of its constituent

N
-

res:idues. This simplified representation is one of the benefits of distance constraint
models; these models can elicit the complex underlying energetic interactions of the

atoms of the ?rotein through relatively simple geometric characteristics. Since pro-
tgins are non-branching chain molecules, the residues can be numbered sequentially

b

from 1 (the N-terminus) to n (the C-terminus). |

Let ‘ .
S = { (I, k) | residue ! and residue k are connected by a disulfide bond}.

117
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« The following notation will be used in the description of the parameters of the

model:

- —

d; = mean distance between residues ¢ and { + 1

dz = mean distance between residues ¢ and 1 + 2

&

: = mean distance between residues ¢ and 1 +

'
ds = mean distance between residue pairs forming a disulfide bond i

-

L, = minimum distance between jth n'eighbour residves for small 7, (usually

i=1{34) | :

o .
U, = maximum distance between jth neighbour residues for small 5

Ly = minimum distance between jth neighbour residues for large 7, (usually 7 > 4)

i

Uny = maximum distance between jth neighbour residues for large 7.

o

In the model, the values of the parameters defined above will not be implemented
as statistics corresponding to the specific protein being foldegy b/ﬁlti, instead will be
given as representative mean values and minimum and maxix:num bounds for the set
of all globular proteins. Note that there are distinct values for the near neighbour
minix:xum distances L; and for the near neighbour maximum distances U; fc?r each dif-

ferent amount (7) of residue separation in primary sequence, whereas the far neighbour
L B

distance bounds Ly and Un are independent of j. N

e



, ' " 119

"

For the Ca-atdm of each residue, three variables =, 3, and 2, are introduced which
represent its Cartesian goordinates in R3. Let d; i+, represent the Euclidegm distance

between residues 1 and ¢ + 57,

.

[N

ds,H—: = [(mi - xi+])2 + (yi - yi-i-j)z + (z,- - zs+_1)2] . (45)

"In the model, it is convenient for the centroidal point of the protein, defined by
b

equation (1) of Chapter 3.3, to be situated at the origin with respe(;t to a Cartesian
p——

coordinate frame. This is equivalent to placing a virtual residue at the centroidal

point of thie molecule, and assigning it the Cartesian coordinai;e representation of

(%eps Yeps 2ep) = (0,0,0). Let d, op cienote the distance between residue i and the cen-

troidal point of the protein. It follows from (45) that.the Euclidean distarrxcé betwee;l

the centroidal point of the protein and any residue with coordinates (z:,9s, 2) is given

by: —

O

dt,cp = (xiz + yiz + 212) (46).

As explained in Chapter 3.3, the hydrophobicity rule describes the tendencies for
each amino acid residue tyfae to be situated in the interior or on the outer surface

of a globular protein. The following notation will be used to designate the three

hy@rofahobicity classes of the present model:

Jy — hydrophobic — residue tends toward the centroidal point of the configuration,

" ° .~
J2 — hydrophilic — residue tends toward the surface of the configuration,

3
<+

Js — ambivalent — residue has no tendency.

For the model, the residues are divided into the three hydrophobicity classes as follows:

hydrophobics {Val, Leu, Ile, Phe, Met}, hydrophilics {Arg, Asp, Glu, Gln, Gly, Lys,
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Pro} and ambivalent {Ala, Asn, Cys, His, Ser, Thr, Trp, Tyr}. Chapter 3.3 explains

v ..
the basis for categorizing the residue type\s into separate hydrophobicity classes and

the reasons for selecting this particular classification for the present model.
ne " r

In the model, an “ideal” position for all residues of the hydrophobic class is given to
be at the centroidal point of the molecule. The parameter D-s"tised to denote an ideal
distance from the centroidal point for the individual hydrophilic residues. The value

@

of D is derived in Chapter 9.3 by requiring the average distance from the centroidal

" point for all hydrophilic residues and hydrophobic residues of a protein to be equal to

a specified semi-empirical value. The ideal positions from the centroidal point for the

hydrophobic and hydrophilic residues-are not strictly realized in the optimal structure

—

of a protein folded by the model. These parameters are only used to evoke the empi‘rical

trends found for the locations of the residues.

v

9.2 The Nonlinear Programming Formulation.

A specific protein is required to conform to a set of average geometrical characteristics

found from the class of all globular proteins. This is accomplished by constructing a

mathematical model in the form of a nonlinear programming problem, as follows: |

Minimize g = 9 dyop? + I (D = diep)? (47)
sedy ey

(the hydrophobicity restrictions),

subject to:

n n n

3 m=0,Y %=0 =0 (48)

1=} i=1 i=]

)

(centroidal point constraints, forcing the centroidal point to (Zep, Yep, 2ep) = (0,0,0))

d,,,'+5=—j;i=1,...,n—~j (49)
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+

(7th nearest neighbour constraints, usually j = {1,2})

& -
il dy =dg; (k)€ S . (50)

.(disulfide bond constraints)

L, <dyiy; SUs;i=1,...,n—3 (51)

- k)

(minimum and maximum distance constraints for near neighbours: usually j = {3,4})

Iy < dyyy SUy; i=1,.in—j ‘ (52)

(minimum and maximum distance constraints for far neighbours: usually j > 4).
Thus, given that the constraints are to be satisfied exactly, the optimum value of a

.

hydrophobicity measurement, the objective function, is sought. The residues classified
as hydrophobic are required by the objective function to tend toward the molecule’s
centroidal point and the residues classified as hydrophilic are required to tend toward
the surface of a sphere of radius D centered at the centroidal point. The residues in

by

the ambivalent category are considered to have no preference with respect to the inside
or the outside of the molecule; therefore, they do not contribute a set of terms in the
objective function. The sphere itself has no physical significance, as the radius (D) of
the sphere is chosen simply to reflect the empirical packing density of the residues.
The hydrophobicity rule is presented as the objective function of the model and
not as part of the constraint set because the residue types are empirically found to
only exhibit tendencies for the inside hydrephobic or outside hydrophilic environments.

The residue types are not observed to be situated at any specified distance from the

molecule’s center ifi general.

e
"



The centroidal point constraint is satisfied if and only if the centroidal point of the

-

protein is situafed at the origin with respect to the Cartesian coordinate representation
of the residue locations. Since the model is eventually solved as a penalty function in
Cartesian space, this constraint has the purpose of maintaining a sparse form for t_;'lza
Hessian matrix of second derivatives during the optimization process {Chapter 10).

The jth nearest neighbour constraints are satisfied if and only if for each pair
of residues ¢ and i + j, the distance between residue { and residue { + j equals d,,
the expected average distance between jth nearest neighbours. The minimum and
maximum distance constraints for near neighbours are satisfied if and only if for each
pair of residues ¢ and 1 + j separated by'a specified number of positions (7) in primary
s:equence, the distance between residue 7 and residue 1 4 j is between the lower bound
L, and the- upper bound U, the expected extrema for jth nearest neighbours, The
minimum and maximum distance constraints for' far neighbours are satisfied if and only
if for each pair of residues ¢ and § + 7 for any “large” j (i.e., 7 > 4) the distance between
residue ¢ and residue £+ 7 is between Ly and Uy, the absolute lower anc'l upper bounds
applicable to all far neighbour distances.

Although the nonlinear programming model as given by equations (47) - (52) is
naturally expressed in terms of distance space coordinates {d, ;+, }, it is more efficient to
solve the model in the space of Cartesian coordinates z.c/:f , Chapter 4.1). Therefore, each
distance d; ;4., in the model is transformed into itS corresponding Cartesian coordinates
by equation (45) before beginning any optim;zation steps.

The model is solved by transformiqgﬁthe constrained nonlinear optimization prob- *

H]

lem into a series of unconstrained problems via a penalty function approach. A
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quadratic loss penalty function is used in the present model, and is given as fpllows:

- - Minimize p(z, ) = pg - (53)

&

n 2 Y 2 n 2 )
+ (E a:.-) + (Z y,) + (Z z;) {centroidal point penalties

1=1 ge=1 g=1

2 n—3 '
+ Z Z((-ij - d;,,.,._.,)z { jth nearest neighbour penalties
j=14i=1

+ z (ds — d;k)z { disulfide béngi penalties

(Lk)es - .
4 n—y
+3 > [min(0,U; - d,,,.,.J ))? { near neighbour maximum distance penalties
j=84i=1

i

n-j
+>° Z[min(o, Un — dy115)]* { farneighbour maximum distance penalties
>4 i=l i
n—j
+ E > " [min(0,d; 34 — L;)]* { near neighbour minimum distance penalties
J=381=1

n—y )
+ Z > [min(0,d, 345 — Lx)]? { far neighbour minimum distance penalties.
i>4i=1

As with most other penalty methods, the overall solution for the original uncon-
strained problem, given by equations (47) - (52),Qis found by alternately, minimizing
p(z,p) for a ﬁxeod value of the scaling pa.ran’leter 4 and reducing p. In practice about
four calls to the Inner Loop algorithm are executed by‘ Outer Loop to perform this re-
peated minimization (cf., uGha.pi:er 10.7), reducing p to a tenth of its former value each
time.”As pu — 0, the local minimizers of p(:c::) that are sufficiently close to satisfying
the constraints wili approach local solutions of the constrained nonlinear programming

v
problem. ’ - /

A main reason for choosing this penalty function approach is that the Hessian (i.e.,

the matrix of stcond-order mixed partial derivatives) of p(z, u) has a block structure
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which is sparse. The sparsity of the Hessian is ensured in this case by requiring the

by

Cartesian coordinate representation to have its origin situated at the W point_

of the protein. Without sparsity in the Hessian, the practical usefulness of any pro-

+

i
.- posed algorithm would be severely restricted because of the data storage limitations of

computers. > i

<
rd

' Quadratic loss penalties are chosen for the present model, as opposed to quarti¢

loss penalties used by some other distance constraint models [62,63,119]. Quartic loss .

penalties may be written i the following general form:

-~

, ZZ(E: - dtz.t+J)2' u (54)

3

&

Quadratic loss penalties are found to result in a smoother penalty function; quartic loss
penalties cause the resulting penalty function to possess sharper contours and stronger

local minima in the vicinity of a solution, which can hinder or trap an optimization

2l

procedure.

- -

Mues he Parameters.

/ The numerical-values of the parameters used in the model are presented in this section.

, &
The reference sources or required derivations for the parameters are also shown here.

4

4

For a general exposition of the parameters used in distance constrail& modelling, the
7

s

reader is referred to Chapter 3.
LA

" 3

9.3.1 . Near Neighbour Parameters. .

-

Possible near neighbour distance parameters for use in distance constraint models arc
o

shéwn in Table 21, including the relevant parameters used in the present model.
7 ‘o N . i \r’

2
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of polxpéptide structures.
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d&
In the present model, the near neighbour parameters include mean distances be-

o~

tween first neighbour and second neighbour residues, and extrema bounds for third

-3

and fourth neik}xbour residues, Note that for the first neighbour distances, the mean,

{?

the maximum and the minimum ardeffectively equal. For sécond neighbours, the use. /’ )

of only maximum and minimum boundd\gnay be a more logical choice for parameters,

1bu_t the mean distance is used because it imposes a much stronger constraint on the
degrees of free;!om ‘'of the system, allowing thle”sy;tem to l;e “suitably constrained” (cf.,

, . . .
Ckifi)ter 4). This condition may be relaxed when additional strong conditions on the
residues can be imposed, such as the acquisition of chemically-derived hydrophobicity
conditions, Param}et;ere. for the mean thix:d neigvhbour and fc:urth neighbaur distances

are not used. Instead, the distances between third and fourth neighbdur residues are

I3 " . * » . '
constrained to be between specified minimum and maximum bounds,
Al N n .

Distance . Mean . Standard Minimum Maximum
. i Value .  Deviation Bound Bound
“First neighbour 3.80° - 3.80° 3.80%
Segond neighbouar 5.95" - 0.63° 4.7 7.1°
Third ne*zhbour 7.24° 1.82% 45% 10.7°

' Fourth neighbour 8.77° © T 2,44 4.5° 13.9°

i

Statistical information for the distances (in A) between near neighbour C-atoms. The
sources used for the Table are: (a) Pauling et al. [81], (b). Goel and Yé&as [46], (c)
Chapter-114. | ’

s

Table 21: Near Neighbour Parameters for Distance Constraint Models.

L}

N

. N .

S
*«
e ¥ 4

-

. As indicated in Table 21, the first neighboﬁ; distance parameter originates from the

studies of Linus Pauling and his group [25,81], who were the first to study the details
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The values for the near neighbour maximum bounds are obtained theoretically
in Chapter 11. Starting with a set of-standard bond angles and lengths [89] and
rgstricti;)ns on the bond rotations [90,9‘1,92,99], strong upper bound estimates for these
" maximum distances are computed. These upper bounds are used as parameters in

the present model. Estimates for near neighbour mean values and minimum bounds

] <>

are also calculated theoretically in® Chapter 11. However, the lower bound estimates
’ i
calculated for the minimum distances were found to be too weak to be employgd as

parameters in the model. The theoretical mean value parameters for near neighbour

[N t -

a
distances were reasoned to be }argely dependent upon the types and proportions of
secondary structures present V\ixithin the individual préteins. It was decided to defer

the implementation of these mean value parameters until more reliable estimators are

=

developed for the proportions or primary sequience locations of the secondary structures.

For the present mddel; mean value parameters are employed for the first neighbour

-

and second neighbour distances. The numerical values for these parameters are ob-

tained from the empirical results of Goel and Yas [46], who calculated mean distances,

©w

minimum values and maximum values for the first to fourth neighbour C,-atoms in a

- 4
set of twenty globular proteins.

The model also smpl:)ys empirical results for near neiaghbour minirr}um distances.
Using the identical set of twenty proteins as that of Goel a.gd Yéas [46], ;;he mini-
mum distance parameters were obtained by rounding from the set of near neighbour
distances: the smallest 1% of the distances found between jth neighbours were dis-

~

carded as possible measurement errors from the X-ray diffraction technique, and the

next smallest value chosen to act as the parameter.
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9.3.2_ Far Neighbour Pararmeters.

®

Unfortunately, individual far neighbour parameters cannot be effectively included for
each amount of residue separation in primary structure. The mean value for the set of

all far neighbour residue pairs separated by some fixed number of residues shows a high

©
¢

s . . \ o .
degree of variability both within a single protein and between proteins. Therefore, mean
’ ]

value parameters for far neighbour distances will not be used in the present model. The

only far neighbour parameters used in the model are absolute minimum and maximum

o

bounds on far neig900ur distances. These parameters are independent of the amount
I -1 ®

of separation of th%‘r?sidues with respect to primary structure. o T

3 ‘ .
The mihimum value parameter is obtained through Havel et a}. [50], who reasomed

T
¢

’ ‘ * i
that 5 A is a commonly observed minimum C,-C, distance in proteins and hence

an effective excluded volume diameter for a protein residue. Far neighbour minimum

4

value constraints are a necessity in distance constraint models in order to prevent self-

a

intersection of the protein chain. ‘ »

The parameter Uy was found semi-empirically during this research in order to find

£ S

a value for the maximum distance for pairs of residues in a protein of length n. This

7
4

maximum distance is a function of the size of the protein, and replaces the upper bound
scalar estimates [50] or protein-specific v,ah;s [46] of previous models.

The parameter for the maximum far neighbour distance Uy is now derived. Using

°

-~y ’ . "\J
all possible pairs of €,-atoms in each protein, the ‘maximum far neighbour distances

between residues were found for the same set of twenty proteins as that of Goel and

L}

. Ytas [46]. An analysis was performed on these maximum dis?ta.nces, where the linear

least-squares regression equation and the linear correlation coefficient were calculated.

©




o 128

The results were as follows:

y=9.91n3 — 875 (55)

> ¥

(correlation: r = 0.93)

where y represents the maximum pairwise distance between C,-atoms in a protein of
length n.

This type of constraint may nat be cost effective in distance constraint models that
also include explicit hydrophobicity constraints, since there are of the order of n? pairg
of far neighbour residues, and the hydrophobicity conditions (the objective function gf
the present modeol) will already force the tertiary structure to have a globular shape.

At any rate, the constraint may easily be removed from t&le model by means of a simple

binary flag in the computer implementation.

The parameters used in the far neighbour distance coastraints of the present model "

3 ¢

are shown in Table 22:

Distance Mean Minimum Maximum
Value Bound Bound ﬁ
Far neighbour highly variable 5.00% - (9.91n3 — 8.75)°

Statistical information for the distances (in A) between far neighbour Cy-atoms. Let n
represent the number of residues in the protein. The value for the minimum distance
bound is independent of n. The sources used for this Table are: (a) Havel et al. [50],
(b) Chapter 9.3.

Table 22: Far Neighbour Parameters for Distance Constraint Models.
e~
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9.3.3 Hydrophobicity Parameters.

The hydrophobicity parameters used in the present model are given in Table 24. In the

model, the ideal position for all hydrophobic residues is ";;i;'en to be the centroidal point.

The paramet;,r D; an ideal distance from the centroidal point for hydrophilic residues,
has been calculated using semi-empirical results (Table 23) for the average distances of

the residues from the centroidal point of the protein. The value of D, a function of the
* |

number of residues of the protein, is determined by requiring the average centroidal

3

point distance for the hydrophilic and hydrophobic residues to equal a corresponding
semi-empirical value. &
Goel and Y¢¥as [46] classified three hydrophobicity categories for the residues e piri-

cally (Table 3 of Chapter 3.3), according to their observed distances from the centroidal

i

points of proteins. As explained in Chapter 3.3, this “geometrical hydrophobicity” clas-

sification was not explicitly calculated from physicochemical properties of the sidechains

¥

as were the classificatjons from several other sources [16,17,34,55,59,64,80], but best
%

describes the empirical rophobicity characteristics of known protein tertiary struc-
tures. The average distance of each kind of amino acid from the centroidal point was
calculated for twenty-one ‘protein structures, and the residues were classiﬁesl on the
basis of differences in the average distances from the centroidal point and consistency
of behaviour. Geometrically, Gly and Pro were found to behave as hydrophilic residues,
due to their abundance in external turns. The residue His showed erratic behaviour
with respect to the centroidal point, and so it was classified as ambivalent. .

Goel and Y&as found a very high eorrelation between the cube roots of the number of

residues in the proteins and the mean hydrophobicity class distance from the centroidal

®
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points; therefore, the:;' fitted linear regression equations by the method of least squares
to express the relationship between these two variables. Their results are used in the

calculation of the parameter D in the present model and are consequently shoWa here

(Table 23). ‘

Class a b Correlation
Hydrophobic -2.52 2.74 0.92
Hydrophilic 0.31 2.80 0.97
Ambivalent -2.02 3.02 0.96

{Gly,Pro} —- 357 2.23 0.88
All residues -0.89 2.80 0.98

51

Linear least squares relgressxon equatlons for the various hydrophobicity classes of amino
acids. Tiet y'= a+bn3, where y is the mean distance of the C,-atoms of the class from
the centroidal point in A, and n is the number of residues in the protein. The amino
acid types.that constitute each of the three hydrophobicity classes are given in Table 3.

Table 23: Regression Statistics for Hydrophobicity Classes of the Amino Acids (from

Goel and Ydas 1979). ) .

-

R

The parameter D is estimated using the expression of Goel and Y&as (Table 23) for

_ the mean distance of apy residue frorh the centroidal point for a protein of lenﬁf{ n
L y = 2.80n% — 0.89 (56)

« (correlation: r = 0.98).

.
I

If it is assumed that hydrophobic residues (class J1) have a tendency toward the cen-

& i

troidal point (¢.e., to y = 0) and the hydrophilic residues (class J2) tend away from the

centroidal point (i.e., to y = D), then for the residues in classes J; and J; combined

to satisfy their mean distance formula, it must be that:

n1+nz

D= ———>(2, 80n} — 0.89), (57)

o f
i

o
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' ; . L
where the class J; contains iy residues and class J; contains ng residues of the protem‘.
The value of the parameter D, then, is chosen to elicit the hydrophobicity rule of
“hydrophilics out, hydrophobics in”, while causing the protein to-conform to a desired
volume (generated serni-empirically). The close packing of residues is known to vary

little from protein to protein [94]. This principle is envoked in deriving the equation-(57)

for D, and is reflected in the high correlation coefficient found for the relationship (56).

Class Ideal Distance from Centroidal Point
Hydrophobic - 0.00
Hydrophilic 1‘—1,5;'-'2—"1(2.871% — 0.89)
Ambivalent 3 ) No tendency

s

. The model parameters for “ideal” distapces (in A) of the hydfophobicity classes from
the centroidal point of the protein. These parameters will not be satisfied exactly
upon optimization of the model algorithm, but instead represent tendencies for the
various residues to be situated close to, or away from, the centroidal point. Let n; and
ny represent the number of hydrophobic and hydrophilic residues, respectively, in a
protein of total length n. The hydrophilic class parameter used in this Table is derived
in this section, using the results from Goel and Y¢as [46] shown in Table 23.

&

Table 24: Hydrophobicity Parameters for the Distance Constraint Model.

The hydrophobicity rule is presented as the objective function of the nonlinear
programming formulation of the present model. This means that the residues of a,
protein will attempt to reach the centroidal point distances given by the parameters

- of Table 24 as closely as possible, such that the other model constraints are satisfied

\

ezactly. These “ideal” centroidal point distances are not actually realized in the final

A

folded structure of a protein.
w

The objective function represents an idealization of the hydrophobicity rule, even

to the extent of being chemically inaccurate. Chemically, the rule follows from the
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o

polarity of the sidechains of the residues; nonpolar sidechains seek the hydrophobic
interior of the ‘globule (npti the centroi;ial/f)oint) and the polar sidechains seek the
:{(i;eous environment at the protein-water interface (not the surface of a sphere of
radius D). However,.the objective function in its present form can mathematically
reflect the empirically found hydrophobicity tendencies of the residues in terms of
M L .

pairwise distances. This effects the hydrophobicity rule in a much simpler form than

one which would be obtained by chemical considerations. '

The artificial construction of the sphere of radius D tentered at the centroidal point’

avoids the difficult problem of attempting to define a “surface” for a globular protein,

an imaginary shell separating an “inside” from an “outside” of the molecule, Proteins
1 T , //
really do not possess.anything that resembles a surface. Methods for ge métrically

defining a surface for a protein in order to empirically assign residues to an inside or an
outside of a protein of known structure.[65,102,124] tend to be difficult and somewhat

arbitrary.
! , - )
As a final note, it has been empirically determined that the N- and C-terminal

©

residues of globular proteins behave as hydrophilic, irrespective of the type of amino

acid [63]. In respect for this property, the distance constraint models of Kuntz et al.

W

[63], Goel et al. [45] and Sanati [98] reclassify“ the terminal residues of the chain

<

(and sometimes their nearest neighbours) as hydrophilic, r:agardless,of their original
hydrophobicity classes. These reclassifications are not carried out in the present model.

It was found duringthe course of experimenting with the model that bétter results in

o

RMS error were obtained by not separately reclassifying these residues, and that these
W v )

residues tended generally to situate on the outside of the folded };rotein in any event.

This result is due in part to the hydrophobicity condition being imf)lemented ag the ,
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9

objective function in the mathematical model, The observed centroidal pgint tendency
for the N- and C-terminals appears to be an artifact of the folding geometry and not

an actual alteration of the hydrophobicity characteristics of the residues.

9.3.4 Disulfide Boruxd Parameters.

®

Disulfide bonds are covalent cross links beywéen/pa.irs of Cy& residues. They are

s

technically not part of the primary st}uCture, but can be readily found by chemical

means.

EY

Goel and Y&as [46] used a set of twenty disulfide bonds from six proteins in order

to calculate empiri(‘:al statistics for C,-atoms of cysteine residues linked by disulfide

bonds. Their results are shown in Table 25. Thornton [114] subsequently found similar

statistics for a larger database of disulfide bonds. He found that, within the set of

A2

all proteins of known structure, there were fifty-five independent examples of disulfide

bridges, from twenty-eight proteins. Omitting those disulfides from proteins with very

similar structures, he found statistics for the thirty remaining disulfide bridges of known

geometry. These statistics are also given in Table 25.

0

The present model will have the option to use a mean value distance parameter for

Cqaratoms of disulfide-bonded Cys residues. The mean value of 5.69 found by Thornton

~

[114] will be used for this purpose since it represents the stronger empirical finding. It
should be noted, however, that the model is not particularly sensitive to thg\va.lue of

this parameter.

|
)

‘

If the pairwise distance d,;+; between any two specific residues ¢ and ¢ + j of
a protein can be dete;rminéd with some accuracy by chemical or other means (cf.,

Chapter 3.4), their tertiary separation can be easily included in the mathematical model

0
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Reference - Mean S-S v Standard Minimum Maximum
Value Deviation Distan: Distance
Goel and Yé&as [46] 5.46 0.80 3.87 6.62
Thornton [114]1. . 5.69 0.76 : 4.6 ' 74

]

Statistical information for” the distances (in A) between C,-atoms of pairs of Cys
residues participating in disulfide bonds. In the model of this thesis, the mean S-S
value of 5.69 from Thornton [114] is employed.

Table 25: Disulfide Bond Parameters for Distance Constraint Models.

et

by substituting the value d; ;. ; for the disulfide mean value dg in a disulfide mean value
X

constraint. The disulfide bond constraints in the model may then be envisaged as the )

P
o

general store of extra-primary information.

s

Ao

9.3.5 . Summary of Parameter Values.

The values of the parameters used in this model are given in Table 26. When the value
for each parameter is decided upon, the question arises whether to attempt a theoretical
derivation from first principles or to estimate the value statistically from a database of
the known tertiary structures of proteins. It is argued in Chapter 11 ;hat theoretical

calculations are valuable in estimating upper bound distance parameters, whereas it is

» *

most reasonable to estimate mean value and lower bound distance parameters semi-

L]

empirically. This method has been followed, and the calculated theoretical results from

Chapter 11 are used along with the empirical findings of Pauling et al. [81], Havel et al.

3

[50], Goel and Y¥as [46] and Thornton [114].

"f..‘
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Mean value parameters: d; = 3.80 dz = 5.95 dg = 3.69
Lower bound parameters: Ls= 4.5 Ly= 4.5 Ly=5.0 .
Upper bound parameters: Us= 10.7 Usy=13.9 Un= 0.91n3 — 8.75
Centroidal point \
1
¥ distance parameter: D = 21£82(2 80ns — 0.89) N

The values of the parameters used in the mathematical model. The value for dj is
obtained from the polypeptide structure determination of Pauling et al. [81]. The values
for dg, Ls and L, are taken from the semi-empirical results of Goel and Ytas [46]. The
value for Ly is obtained from Havel et al. [50]. The value for dg is from Thornton [114].
The values'for Uy and Uy were calculated theoretically by the auth® from standard
chemical bonding considerations (Chapter 11), using normal Ramachandran limits on
the dihedral angles (1,4). The values for Uy and D are derived by the author in
Chapter 9.3, using semi-empirical methods. The notations ny; and na represent the
number of hydrophobic and hydrophilic residues, respectively, in the proteir of length
n .

Table 26: Parameter Values for the Present Model.



10 Appendix: The Algorithms. -

PO

The optimization method employed in this research was specifically designed for this

. ——

problem by the author in collaboration with P.F. O’Neill of the Department of Mathe-
matics, Statistics and Computing Science at Dalhousie University (Foster and O’Neillq
[41], unpuBlished). The optimization method minimizes the penalty function p(z, 1)
given by equation (53) of Cha};ter 9.2. The method is derived frem two of the fun—‘
damental algorithms for minimizing a continuously differentiable function: Newton’s
method and steepest descent. The reader is referred to a standard text such as Gill and
Murray [43] or Fletcher [39] for a more detailed discussion of these techniques,

It was found during the course of the research that the large-scale ;xaﬁure of the
present_problem limited the effectiveness of t‘he current general purpose algorithms
available for nonlinear optimization. If second order information is to be utilized, as
in the case of quasi-Newton algorithms, the computer storage of the matrix of second
derivatives quickly becomes a difficult issue. If the second order information is not
exploited; as in the steepest descent algorithm or Monte Carlo methods, the conver-
gence rate will be slow or nonexistent and execution time can become prohibitive to a
solution. Exact penalty function methods (¢f., Coleman and Conn [24]), although not
requiring second derivative calculations, generally ejltail a great deal of comp'uter space

2

for storage of the active constraint locations and gradients. -Therefore, an algorithm

was developed in order to combine efficient second order convergence properties with
€ o g ¢
N )

low storage requirements. _ °

Y ° . : 136
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10.1 Notation.

In the notation used to describe the algorithms, iteration counters.appear as super-

A}

écripts. Thus, z* is the vector « at iteration k¥ and not the scalar z to the power k. in Voon g

-

o

each case, the algorithm is-given to minimize f(z)-where z € R® and f(z) € R*. The

e @

notation Vf(z*) refers to the vectér‘of partial derivatives'of f evaluated at z¥; H(z*)

Pl .S o 3

e a » @ o = ] 2 S -
refers to the Hessian matrix of »seganﬂ' drdér mixed .partial détivatives of f eva.lu?ted
s . . . )
EA 4 El ” n
at ¥, . ; L as *

o
.
N N ]

Let n refer to the number of residues in'a,pgéteiﬁ‘ to be folded. Then. the number
.t : - . -

4 3 o u

B
°

"

“of variables to be optimized is 3xn when the protein is represented by the Cartesian )

” I -

coordinates of its C-atoms.
5 b o ’ ® ° d r .

10.2 Newton’s Method. | - ;~

* »

~

Newton’s method is based on a quadratic model. A: Tayloi' series expansion of f(z)

- °
«

about z*, truncated after the quadratic term, is vised to approximate f(z). In this way,

o @

local second order information from the Hessian matrix (H) of second partial derivatives

can be utilized. The-fzst-and-second partial derivatives for the terms comprising the

penalty function of the model can quite ea;ily be calculated explicitly and therefore, ’
ety — T

o

exact formulae are used for all required derivatives in the\{ogram.

Algorithm NEWTON:

step (1). Input z°. Set k0.

step (2). Solve H(z*)d = —V f(z*) for d.

L

step (3). Set z*tle—gb 4 d.

Set kv—k 4 1. .

]

2Lt
\:,A

o
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LI = w a N "
step (4). If Vf(zF) = 0, stop; ‘ CL LI
'otherwise, ga to §tep (2. . SR S
T (In,,pr'a.cti’cg,‘termi‘nate\v!_hen Vi8N <e. . . T
T : R i v b, . o .
» The system olﬁ linear éqthgtions at step (2) is referred to as the Newton equations
. “ L . ca

»x doos

- * ) ® . \{ -
The search veclor d is called the Newton glrectlomor Newton step. In the'present case,

0

o 8 8 v .
- [t ” 0, - =Y
o °

°
=] 5 v o

~ 2

“q‘:’it’.‘{io' ° . . . —o .o o .
Q’trhge 3 X n vector zF is the representation of the Cartesian coordinate locations for the

o - ' N T e " . ¢
a v IQ a . » » h “ I v *
C-atoms of a protein at iteration k. . ) .
¢ Lo i B 4 o
+ Z e . hd - . .
The advantage of Newton’s method is a quadratic rate of convergénce in the neigh-
. R - v or a R “ L) ) ] T
—bourhood- of a strong local minimizer. There are several disagvantages, however:
' ) ’ o ‘ “"u A o - i ’ K
% « " < L8 =
1. the sequence of iterates may not converge; - °
- G‘J . . - [N . » ‘o o -
2: the algorithm is undefined if H(z¥) is singular; v
° © s *ow . n ‘: Y
. A

A 2
’ v - -
o 3 . ,

] & A -

- Iy [
‘¢ 3. the véctor dmay not be a descent direction; hence, the iterates may converge {0

»* a maximum or to a saddle point and.not to a minimum; < '
LY o M . . . - R .

4. a 3n x 3n.system of linear equations must be solved at eacl iteration.
i ~ I} - ° . - N Y

. 10,3 "Steepest Descent Method. L ,
S s, . Toeos - . .,
Algorithm STEEPEST DESCENT: " °
© - I ° ﬂ(s’ ‘:t: ' ’

. Lo ° % . R
step (1). Input,z®, Set k(——O.g S N :
step.(2). Set de— — V f(z*). e e e

3 © T K v ’
step (3). Find X such that f{z* + Ad) << f(z*). - - L
5 ) N o o ] . . a0 . ) 2
o - step (4). Set zF*leak + Ad. T -
Set ke—K+1¢ t. o X e "
m\f » ! . N ’ T e : "

]

“!r)‘\u‘
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4

step (5). If Vf(z*) = 0, stop; ;>

!

otherwise, go/to step (2).

(In practice, terminate when ||V f(z*)|| < €).

¥
In the present model, a cubic Hnesearch algorithm is iw)lemented to calculate the

steplength A at each iteration. To guarantee that f(z* + Ad) << f(zF), the Armijo-
3
Goldstein conditions [47] are applied: | :

* Find X such that i (z* + Ad) < f(zF) +arV f(a:k)Td and Vf{zF + Ad)Tc} >
AV f(z*)7d, where a € (0,1) and § € (a,1).

| The steepest descent method has several advantages:
\//

1. the sequence of iterates always converges;

2. the algorithin is always defined if f is gontinuously differentiable; .

4
e A

3. the vector d is always a descent direction; .

4. there are relatively few arithmetic operations per iteration. -

°

) ¥ .
The disadvantage of the steepest descent algorithm is that it has only a linear

rate of convergence in the neighbourhood of a solution. In fact, this method usually

shows oscillatory behaviour in the vicinity of a solution, and round-off effects can cause

termination before the solution is reached.

Thus, if z* is close to a minimum, Newton’s method will exhibit a much superior

rate of convergence than the steepegt descent method. If z* is not close to a minimum,

Newton’s method may not offer a stronger convergence and will be much-mor expen-

sive to calculate per iteration. The obvious strategy is to use steepest descent as long
Ll

as z* appears not to be in the vicinity of a minimum (f.e., if [V f(z*)|| is “large”);

W
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-

otherwise, use Newton’s method. This strategy can be refined, however, by using an
approximation of the Newton direction and allowing the'accuracy of the approximafion
to increase as a minimum is approached, thus decreasing the average number of calcu-
lations per iteration. Furthermore, it is desirable to con';pute the approximate Newton

direction in such a way that the sparsity of H can be fully exploited.

10.4 Truncated-Newton Method. .

1
The “refined strategy” given above has been called a “truncated-Newton method” by
Dembo and Steihaug [33], who‘ discuss its properties in detail. The essential reasoning
behind the, grunéated—Newton algorithm is’ that the ;:omplete soll;tion of the Newton

h equations at each iteration is expensive to compute and is not expressly required v:rhen-
far from a solution. In large-scale problems such as this, the Newton equations must

be solved by means of an iterative method due to computer storage limitations In

" this evént, there is a trade-off between the amount of accuracy with which the Newton

»
13

equations are solved and the execution time used to compute a search direction. In
the truncated-Newton rr;ethod, imprecise solutions are found for the Newton equations
using #n iteratix;e method, in order to find an acceptable approximation for the Newton
“dire fon. The accuracy of these solutions is gradually increased as the algorithm
approaches an overall solution.

The truncated-Newton strategy is implem;nted by a modification of the algorithm

NEWTON at sgep (2). The second step of algorithm NEWTON is replaced by:

step (2). Apply an iterative method to solve the system of linear equations

“

H(a*)d = —Vf(z*).

If |H(z*)d + Vf(zF)|| < v¥||Vf(z*)|| at iteration ¢ of the iterative method for



¢ o 141

some constant v¥ > 0, terminate the iterations and set d«d*.

KEVf (a:")Td < 0, accept d as a useable approximation of the Newton direction;

otherwise set de — V f(z*) and perform a steepest descent iteration.

The value of the scalar 4* in the above is chosen to be

9

: 7 =min (51971 .

< [}

When far from a solution, ||V f(z*)|| is large and hence it is imexpensive to compute
an acceptable gapproximate direction d. However, as a minimum is approached, the
sequence {y*} forc:es ‘the approximate solution of the Newton equations to become
increasingly accurate. - .

There are additional safeguards that 3re observed in the t‘;runcated-Newton al-
gorithm. If at iteration ¢ of the iterative method used to solve the Newton equa-
tions there is encountered a direction of negative curvature in the update for &' (i.e.,
& H (a:")d' < 0), then the iterations terminate. The existence of such a direction

?

implies that f is not convex in the neighbourhood of z* and therefore, the Newton
direction may not point«foward a local minimum. In this case, the current estin;late
d* is a useable descenf: direction [33], although it does not constitute a proper Newton
step and the linesearch must be implemented to estimate a proper step size. In order

to guard against nonconvergence of the iterative scheme, a maximum bound is placed
A

on the number of iterations allowed,

10.5 Conjugate Gradient Method,

[}

The essence of the approximation technique for finding the Newton direction is to use

an iterative scheme for solving the Newton equations and to terminate the iterations—

%]

[PPSR

RO

— i i et it
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when the trial solution is eiéﬁgl‘ a sufficiently goo‘d ap}{foximation or reaches a direc-
b Vi N

v

tion of negative curvature. In the present approach, a conjugate gradient algorithm
has been implemented as the iterative scheme for solving the,set of linear equations.
The conjugate gradient method was chosen because of its robustness, low storage re-
quirements and desirable convergence properties. Also, it is well-suited for use with the
truncated-Newton method because it minimijzes the quadratic ;pproximation of f(z)
over the subs;!ace spanned by the directions that are generated. The reader is referred
to Gill :«;nd Murray [42] for inore details‘. Note that the conjugate gradient methoé

was employed only for solving the linear Newton equations H(z*)d = —V f(z*), and a

conjugate gradient algorithm was not used to solve the general nonlinear programming
. .

Ll

-

problem,
Let H (mk), V f(z*) and v* be-denoted by H, Vf and 7, respectively. For each k,
the maximum number of iterations (denoted by i) permitted in the conjugate gradient

algorithm is denoted by mauzit.

.

Algorithm CNJGRD (conjugate gradient method).
step (1). Set d°0, r%— — Vf, p%r?, §%—y0T 0 0.
step (2). Set ¢*«~Hp'.

3 I3 ’ 0 i 1 = . . . .
i If p’Tq' < €b*, set d+—-{ Z, :ft;ler;r)ise and stop, (p* is a direction of negative

curvature);

otherwise, go to step (3).

-

step (3).-Set a‘«——(r’Tr‘)/(p‘Tq'), dtled + o' pf, r'tler® — ofph.

If ||rtY| < 9||VFIl, set ded*+! and stop, (d is an approximation of the Newton
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direction);

5

otherwise, go to step (4).
step (4). Set ﬂid__(,-‘+1T,.:+1) /(,.iT r), pHlertl 4 gipf 5t+14__(rs'+1T,.i+1) + B BiS.
T Set fe1 1.
I 1 < marit, go to step (2);

otherwise, stop.

A sufficient condition for convergence of the algorithm CNJGRD is that H is posi-

t

tive definite. However, the algorithm may converge even if this condition is not satisfied.

n -

To prevent infinite cycling in case of nonconvergence, no more than mazit iterations are

allowed to be performed. The truncated-Newton strategy rarely, perr£1its the number

P

of iterations in CNJGRD to reach mazit = 3 X n in practice. o

[t

10.6 Solving the Nonlinear Programming Problem.

The nonlinear programming problent is solved by converting the objective function and
constraints into the penalty function p(z, u), which allows the constrained problem to

By a @

be solved by the use of an unconstrained algorithm. The overall solution is obt;zined
by performing several iterations wherein first /p(a:, ) is minmmized for a fixed value of
4 and then u is reduced in value. If the? starting point (z°) is sufficiently close to a
constrained local minimum 6f the nonlinear programming problem, then as g — 0, the
sequence of points thereby generated will co;lverge to a constrained local minimum.
The truncated-Newton procedure will always converge to a local minimum of the

penalty function. However, unless 29 is sufficiently close to the set of points which

satisfy the constraints of the nonlinear programming model, it may not converge to a
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point which satisfies the constraints.

t

10.7 Outer Loop Algorithm.,

An algorithm called Outer Loop is employed to control the reduction of ¢ and to test

Q
5

for cOnverggnce. Outer Loop calls another algorithm Inner Loop that minimizes p(z, u)

for a ﬁ35ed value of p.

Let m be the maximum number of itgra.tions of Outer Loop; typically m = 4 or
m=2>5 Let e, €2, ..., €, be veczors containing stopping tolerances for each successive
call to Inner Loop. Let z° be the starting point:'(z'.e., the initial configuration). Let
6 be a tolerance for V f which controls when Newton steps are to be atterpted. Let

newt be a binary flag which allows Newton steps to be performed only on the final call

to Inner Loop. Let j be the iteration counter-for the number of Inner Loops.

o

Algorithm OUTER LOOP:

(4

- step (1). Input m, ey, €, .- ., €m, 2°, &. ‘

Set j+—1, u—1, newt *—-falae'."

a

step (2). If j = m, set newt «true.

-

step (3). Call Inner Loop with € = ¢;. '
step (4). Set a7 tle—z* jej +1.

step (5). If j > m, stop;

otherwise, set p«pu/10 and go to step (2).
)

- I3

Due to the efficiency of the steepest descent algorithm away from thé\peighbourhood

a

of the optimum point, the truncated-Newton method is used only for the final iteration

»
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*

~ of the Outer Loop algorithm in the current version of the model. In all prec%ding Outer
Loop iterations, steepest descent is employed exclusively. Thus for all Outer Loops
except the last, the optimization is continued only until a neighbourhood of a p(z, ©)
minimum is reached. It was found that further reduction of p(m, ) in these early outer
loops does not give a significant difference in the coordinates of z*, and is not worth -
the expense. The final Outer Loop iteration is continued until the truncaﬁed—Newton.

i

method cl't/an'verges to a strong minimum.
,;. 11 °
<

10.8 Inner Loop Algorithm.

3

For a fixed value of p, let f(z) = p(z,u). Algorithm Inner Loop solves the problern
. §
of minimizing f(z), using a combination of truncated-Newton and steepest descent

. methods. The test |[Vf|| < § is used to determine when a neighbourhood of a local

-

minimum is reached, (4.e., when it is appropriate to attempt truncated-Newton steps).

\ In practice, however, for all the optimizations whose results are reported in Chapter 7,

7 .
the truncated-Newton steps are attempted only in the final iteration of the Outer Loop -
; " .algorithm. That is, newt = false until the initiation of the final Outer Loop iteration,
-~ when newt = true. o

The algorithm Inner Loop is given by means of a flow chart, labelled Figure 16.
A

» 9 Compact Storage of the Hessian.
' ¢ . 65
 The design of the penalty function is such that the Hessi7n is sparse. This is of practical

"o

necessity since the full storage and manipulation of the 3n x 3nbmatri}é_even for an
average-sized protein would not be possible-on m¢st mainframe cémputers.
53 & .

Due to the simple form of the penalty function, it is possible to calculate explicitly

AY
all the terms for the Hessian matrix. %eca.use the centroidal point of the configuration
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Figure 16: Flowchart of the Inner Loop Algorithm.
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Figli;e 17: The Nonzero Hessian Matrix Elements. °

was required to lie at the origin in R3, the hydrophobicity conditions give.rise to

nonzero Hessian elements only in a pattern of 3 x 3 blocks along the main diagonal.
€

The constraint that forces the centroidal point to lie at the origin results in nonzero,

- <

but constant, terms for every third diagonal of the Hessian, and zeroes elsewhere;

-

however, none of these elements néed to be stored explicitly. (The nonzero entries are

the dz;0z, dy,dyx, 02,0z termis, and the zero entries are the cross terms.) Each of

N ’
the near neighbour constraints, disulfide bond constraints, or unsatisfied maximum or

minimum distance constraints contributes a term to a 3 X 3 block on the main diagonal
. b

5
-

as well as giving an extra 3 x 3 block of nonzero elements on either side on the main
diagonal. In the diagram of Figure 17, each “x” represents an element of the Hessian
which may be nonzero, for the case where the Jth nearest neighbour constraint set
includes only the first neighbour distances (5 = 1) and a disulfide bond exists between
residues 1 and 5.

.

The-first band of blocks above the main diagonal are ’for first neighbour penalties;
‘ J

X X X|X X X X X X -
X X X|[x x x X X X
X X Xix X X x ox x|
X x-x|x x x|x x.x \
X X X|[x x x|x x x .,
X X x|{x x x|x x X .
X X x|x x x|[x x x
x x-xlx x x{x x x
x x—x]x x x|[x x x
X X x|x x X|x x X
X X x|x x x{x x x|*
X X X|]X X X|X X X “
X X X X X'X|{X X X|x x x
X x x| X X X[X X X|X x X
X X X . X X X|x x'x|[x x x

1y
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X X X|{X X X X X X
X X X x X X
S 4 X x
X X X|X X X
X X X X ’
X X
X X X|{X X x
X X X x
X . X
X X X|x x X
. X X X X
X X
' - X X X|X X Xx
X Xx X X
X X
e

Figure 18: Required Hessian Matrix Elements, Symmetry Included.” «

Al

the second band of blocks above the main diagonal are for second neighbour penalties,

and so on. If a pair of residues (I, k) are connected by a disulfide bond, then the blocks

in positions (I, k) and (k,!) are nonzero. If maximum or minimum distance constraint
for d; ;, is violated then the blocks in positions (1,5 + j) and (5 + 1,) are nonzero.
- Because each 3 X 3 block is symmetric, and the Hessian itself is symmetric, only

the nonzero elements shown in the diagram labelled Figure 18 need to be stored. /

Thus the Hessian can be stored compactly during the optimization process, but

its elements are easily accessed by a suitable row and column indexing scheme for the

blocks.

®

The set of blocks along the main diagonal of the Hessian are actually stored in_

°

an array Hp of n blocks with six elements in each block. The nonzero elements of

3

the off-diagonal blocks are stored in ¥ array Hp containing a total of n* blocks with
six elements in each block, where n* varies with the number of violated constraints.

Experience with the algorithm indicates that n* is typically of the order of n* .-
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0.005(n?) + 2n. This means that the Hessian may be compactly stored in only about
6n + 6n* = 0.03(n?) + 18n storage locations, compared ;;o the 9(n?) locations that
would have been required tog store the entire Hessian. —

,// Let the indexing of the fl.‘:ll Hessian matrix be referred to as G(I,J), where I is the
inde‘x of the row, and J is the; index of the column. To access an element that would lie
in a block along the main diagonal, the correspondences for thdsix distinct elements
of the block are as follews: Hp(1.I)=G(3I-2,3I-2), Hp(2,I) = G(3I—1,3I—1),
Hp(3,1) = G(31,31), Hp(4,I) = G(38I — 2,31 1), Hp(5,1) = G(3I — 1,31) and
Hp(6,I) = G(3I — 2,3I). To access the nonzero elements of the off-diagonal blocks,

an indexing pointer scheme is used. Let srow(J) and icol(J) refer to the block row

number and block column number, respectively, of the block Hp(I,J) which contains

Y -
¥

nonzero elements. For-example, consider the case when G(10,20) contains a nonzero

' element, such as G(10,20) = 3. This means that the block consisting of {G(10,19),

b

G(10,20), G(10,21), G(11,19), G(11,20), G(;,I,ZI), G(12,19), G(12,20), G(12,21)}
would be denoted a nox,zzerc T:lock. In this case, fo; some J in the set J =1,...,n%
the values of the inde:c counters would be drow(J) = 4 (where the “4” refers to a block
containing rows 10-12) and icol(J) = 7 (where the “7” refers to a block containing
columns 19-21). }:lso, the fourth element of the six elements compris.ing the Jth bleck
of Hp would be e;qual to 3, or ‘H F(4,J) = 3, since Hp(4,J) would correspond to the
elemfnt G(10,20).

Even though t:he disulfide constraints could sometimes overwrite existing nonzero
blocks from near neighbour or minimum or maximum constraints, they are always given

separate storage locations in order to not waste execution time searching through Hyp

each time a disulfide constraint is calculated.

O
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It is possible to devise indexing schemes that are even more compact. One such

indexing scheme would be to use a total of n* row pointers frow(J) 'as before, but
9
to employ another pointer index irown(K) in place of the set of n* column pointers

tcol(J). The pointer srown(K) would contain the number of nonzero blocks in the Kth
&
row. This would result in a vector ir‘m requirmg only n elements. The savings of this

indexing scheme are not enough to warrant the extra execution time use;i to store Hp
and t8 access the elements Hp{6, n*) once they are stored.
In t};e ‘event of an unusual initial cc;nforma.ticn, such as th; residues formingkg )
-
straight line, the first Outer Loop iteration could still encounter Hessian storage prob-
lems due to violation of a large number of n:la.ximum far distance constraints. The
minimum and maximum distance constraints for far neighbours are purposely omitted
during the first Outer Loop for this reason, and also because tilis set ofgconstraints
is large (of the order n?) (and# costly to evaluate. The maxinium far neighbour con-
straints are, relatively unimportant in any event, s;ince the hydrophobicity conditions
by themselves effectively shape the residues into its compact globular shape After the
ﬁrsi; Outer Loop, however, the full set of cons;;aints is included. In the latter stages of
the optimization, inclusion ot: the minimum far neighbour constraints is necessary to
ensure that the chain is self-avoiding.
In conclusion, the design of the mathematical model and algorithms are such that

the tertiary structure can be efficiently predicted for any single-strand globular protein

of natural strand length, from virtually any initial configuration of its points.

-~
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11 Appendix: On Theoretical Near Neighbour Distance

-
i

Pl

The purpose of this chapter is to investigate the geo;n;ztry of near neighbour residues
theoretically, and to use the results of this investigation to generate parameters for
near neighbour constraints in distance constraint mode}s. The fundamental resource
used for the theoretical calculations is a set of chernically'derived bond angles and
bond lengths for the polypeptide backbone. These chemical data can be considered
effectively fixed, or constant. They have been derived from the crystal study of small
polypeptides [25,73,81,89], in which resolutions as high as 0.1 A can be attained. The
resulting “standard” bond angles and lengths from these studies are shown in Figure 3

of Chapter 1.

The calculation of the distance between the C,-atoms of adjacent residues in the

-polypeptide chain from a set of standard bond lengths and angles is straightforward.

Due to the planar nature of the peptide bond, this first neighbour distance d;,4.; can be

found by elementary trigonometry. The value is found to be a constant: d, ;11 = 3.80A.
3
Let this distance be denoted by dj.

The situation is more complicated for a system of three residues. The general

@

s F

backbone configuration for three residues is not planar, nor does it correspond to a
constant-d; ¢z distance. However, relationships can be found by methods of planar
trigonometry ;hat result in an expression for d; ;.2 as a function of the pel;tide bond
lengths and angles. The result obtained is identical to the equation (80) derived later
in this Appendix, and is found to vary with the nonconstant dihedral angles (v, ¢)-

These “Ramachandran” angles (¥, 4), discussed in Section 11.1 follpwihg, correspond
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to anéles of rotation about the single bonds in the polypepgide backbone.

a ¢ )

It is impractical to attempt the derivation of higher neighbour- distances, such as , °

“dy 143 or d, ;14, directly from the bonding leggtghs and angles. Therefore, the following

ow e e s : -
sections are devoted to their derivation by utilizing a virtnal bond description of the

polypeptide chain. . i

o3 «

/ 11.1 Ramachandran Angle and Virtual Bond Descriptions of a Polypep--
tide. ~ . . ’

& A

A characteristic feature of a polypeptide chain is 'that’each peptide group is a rigid

planar unit: the C — N link'is a partial double-bond, which allows for no freedom of
)
rotation. In contrast, the links C, — C and C, — N on either side of the peptide unit

» T
are pure single bonds, and these bonds allow for a large amount of rotational freedom. ’>

-
//

With rigid bond angles and bonci lengths and a planar peptide Bond, the polypep-
tide chain has only two degrees of freedom for each residue. “These are described by
the dihedral angles 4 and ¢ at the C,-atoms, as shown in i:‘igure 19.

The: angle 1 represents the amount of ‘rotation about the axis of the single bond
Cy — C; similarly, the angle ¢ gives the rotation about the Cy — ¥ axis. The direction

of rotation for both ¢ and ¢ are defined to be positive when the C-terminal side of

N

the specified bond is rotated in a clockwise direction as viewed from the atom on the

n

N-terminal side of the bond. The zero positions for both ¢ and ¢ occur when the two @

peptide planes joined at the C,-atom are coplanar and trans. Thus the (¢, ¢) angles

L3

of the dipeptide configuration depicted in Figure 19 are ¢; = 180° and ¢, - 180°. The
© .
angles ¢ and ¢Lma.y assume any values from —180° to --180°.

A list € (t,b,/¢) values for all residues of a single strand protein will completely

»

define the tektjary chain path.



-

‘The dihedral angle 4; represents thg amount of rotation about the axis of the single
bond C* —~ C,; the angle ¢, represents the rotation about the C — N; axis. The
relative orientation of the two peptide planes in the figure correspond to (1, ¢) angles
of ¢,.= 180° and ¢, = 180°.

3

_ Figure 19: Deﬁniti‘ of Ramachandran Bond Angles for a Polypeptide Chain (from
Schulz and Schirmer 1979).

4 L
-
~
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Due to electrostatic interactions and the steric hindrance caused by the bulky pep-

tide unit, not all possible combinations of the rotational angles (¢, ¢) are realizable in

5

a protein. G.N. Ramachandran ang his group at Madras have studied in detail the re-

strictions on the ranges of the (¢, ¢) angles [90,91,92,99]. For this reason, the dihedral

' angles (¢, #) are sometimes referred to as “Rama,c\handran” angles.

e

The backbone of a dipeptide is usually described by its four dihedral angles (¢1, é1)

and (t2,¢2). This would constitute the complete Ramachandran angle description of
5

a dipeptide configuration. However, the vast majority of peptide groups are planar.

a

Whenever a peptide group.is planar, the distance from CJ¥ to C;3, will be independent
of the dihedral angles. This permits an alternate and simpler virtuel bond description
of a dipeptide (Figure 20), wherein the backbone configuration can be specified by only

three variables:

1. the angle between the virtlal bonds C§ — C¢ and C§ — C§, designated as 61; o

)

2. the angle between the virtual bonds Cf-— C% and C§ —'C§, designated as 0y;

.

3

3. the dihedral angle around the Cf — C§ bond, designated as v. ~

The virtual bond angle « is defined to be vy = 0° when Cf 15 cis to C¢$, as in

Figure 2(?, and v may take on any vah;: from ~180° to +180°. As shown in Figure 20,

v the clockwise rotation of C§ — C§ when fooking from C¢ to CF gives a positive change
in 4.

The angle # is restricted, due to the geometry of the peptide chain, to lie within a

] . t
range of values: ) .

0min < 6 < omax‘
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»

'Definitions of the angles 63 and 62 between the virtual bonds and the dihedral angle v

for a dipeptide. ' .

“

Figure 20: Definition of Virtual Bond Angles for a D1pept1de (from Nishikawa et al.
1974).

= -

The range of possible values for this virtual bond angle 6 can be found empirically

in much the same fashion as the bounds for the dihedral angles (¢, ¢), or it may be
calculated directly from known (v, ¢) bounds once'a mapping from (9, ¢) coordinates
to (#,~) coordinates can be determined. '

<Both the Rama.chandran angle (¢, ¢) description and the virtual bond angle (4,7)

descnptxon ofa polypeptlde will be used for the theoretical research on near neighbour’

distances in the following sections. The use of virtual bonds facilitates the calculations

hd
'

involved, whereas the known range restrictions on the more traditional Ramachandran

angles are used to obtain numerical results,




°Q
L

11.2 Theoretical Calculation of Near Neighbour Distances as Func-
tions of Virtual Bond Angles.

’

[

In this section, the near neighbour distances will be calculated as functions of the virtual
\

bond angles (#,<). In Section 11,3, the r:elationship between the virtual bond angles

and the Ramachandran angles (1, ¢) will be utilized to formulate the near neighbour

s

distances as functions of the Ramachandran angles. '

LY

-
The pairwise distances d;;y2, d;;43 and d;;1.4 willfirst be found as functions of

the virtual bond angles (#,7), w};ich is quite easily adcomplished due to the way that
this coordinate system simplifies the geometry of the polyl;eptide. Then the work
of Nishikawa et al. [79] will be followed in order to generate a mapping between the
two sets 4 coordinates (6,~) and (4, ). By this approach, it will be possible to find

distributions, as well as theoretical mean values and minimum and maximum distances,

for d;s42, dis+s and d, 444, when given va‘r‘ious limits and probability di*stribution" sets

for the Ramachandran angles (v, ¢) as input. "

-

11.2.1 Finding d,,; = f(9). - ‘

a

.From the chemistry of the peptide bond [73,81,89], it may be assumed that d, ;11 = di
is a constant and that the peptide groups under consideration are planar. t

’ ) -

It is seen from Figure 21 that the distance between Cf and Cf is a function only

A
of dy and the interior virtual bond angle #. This is defined as the second neighbour

*
4

distance, designated as d; ;1. The geometry forms an isosceles triangle, which gives

the relationship:

@

dipi2? = 2d1% (1 - cos 6). (58)



~
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R v

Figure 21: Second Neighbour Distance: Virtual Bond Residues.

From this equation, the following useful inverse relations are calculated:

o 2dy? = di g0t '
- = — 59
) cos 24,2 ~ ( )
} -
. . digyn 2 2
sinf = YRl 4d1 - d,,,'.i.z . (60)
2d1 ?

11.2.2 Finding d;,;5 = f(%).

o
£

Consider a dipeptide configuration in a fixed Cartesian coordinate system in R2, such

‘that all first neighbour distances are of a length dy. Let: -
cg = (0,0, 0)
Cg = (0, —'dh O)a (‘61)
Y

as in Figure 22.
" Translations in the coordinate planes and rotations about the coordinate axes will

now be used to determine the coordinate locations of C§ and Cg. The possible rotation

v

.about the three coordinate axes are given by:



Y




| and

0 0 ;
coso —sineg ’ (62)
0 sinoe coso

~
]

Il

<

@ il

= 0

cose¢ 0 sinco

t w=| o 1 o |. (63)
. —sine 0 coso .o .
! e
cosg sing 0
) T?=| —sino cosoc 0 (p4)

0 o 1
Equations (62), (63) and (64) represent the clockwise rotation of an angle ¢ about

. . « . ‘- 'o o . \ .
the x-axis, y-axis and z-axis, respectively. With reférence to Figure 22, it can be seen

that:

{

Cf = T%;,C§ = (dy sin bz, —dy cos bz, 0) (65)

and . .

oy = Cg+ThTL(C5-0F)

g

= (dysinfgcosy, —dy + dy cosfz,d; sin b3 sin ). (66)

e

Equations (65) and (66) may be used to calculate an expression for

R
. diars® = ||CF — CF|? (67)
. y £ ,_/ . ~
_in terms of 83, 63 and : " ’ .
d.-,,-+32 = d1?[3 + 2cos by cos 03 — 2cos 02 — 2.cosf3 — 2sin fz sin f5 cos 7l (68)

Using equations (59) and (60), this expression (68) may be simplified to an equatio:n
» & < «

stating the third neighbour distance d; ;i3 as a function of only « and the interior

- ' » °

& ) —
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pairwise distantes:

disd 5
dijrs® = d* + —;%;3—4 (d18d24 ~\adi? - dlszy 4ds” — day* cos ’7) o (69)

As with equations (59) and (60), the inverse relationship for equation (69) may be

found, by solving for v as a function of the d;,;:

o

° cosy = digdas® — 2d1? (d; 5182 — di?)

' d1sdz4\/ 4dy” - d1s2\/ 4di® — dyy?

(70)

11.2.3 Finding d, ;44 = f(d,',,'.;._,).

L >

7 The calculation of the fourth neighbour distance d, ;44 is performed similiarly to the

9

calculation of the third neighbour distance d, ;+3. That is, a tripeptide configuration 1s

k]

fixed within an {z,y, z) orthogonal coordinate system in R®, and the distance d, 444 is

calculated using translations along the coordinate axes and rotations about the axes.
¢ 4

» ) : X
Let the point of departure for the d; ;14 calculation be the'dipeptide cbnﬁgaatiorg >
. L
representation of Figure 22. Consider the conversion of this configuration inta a tripep-

N o
tide by the addition of another residue, represented by a C§ atom attached to Cf by

a virtual bond as in Fig‘ure 23! Lt

- The valu'e@m = di 144 will be a finction of the variables {61,62,03,71,72}. Alter-
natively, by employing equations (59), (60) and (70), it Jmay be expressed as a function_
of the_ iiterior small-neighbour. distances {dl,dolz,dls,du,dog,dn}, where d.;,“q = d

is a constant for all 1. 4 ’
2 M ». v
The fourth neighbour distance d, 4 is calculated from i

o 4 e

dised® = ||CF - CEIP. ‘ (71)

4

Therefore, the coordinate locations of CJf and C§ must be found. The coordinates of

C¢ are given in equation (66), replacing 4 by v2. The coordinates for C§ are calculated
o a

1 ) ) \ . ’ .
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as follows, using ‘\the coordinates of C§' given in (61) and the coordinates of Cf from

‘ (65): | a
r
1
C§ =Cf —TZ, TV TZ, C¢, (72)
‘ yielding: \ ' v :
\ +dy sinfz — di cos 0y sin 2 — dy sinf; cosfz cos vy
C§ = | —dycosfz -+ djcosfycosfy — dysinfysinfacosyy (73)

d1 sin 01 sin 711

. “

Now an expression for d, ;.4 may be found, by substituting equations (66) and (73)

»

into equation (71):

&

d,,,+42 = 2d1,2 [2 — cos b1 — cosfz — cos bz +
cos 8y cosf -+ cos fz cos f3 — cos By cos b2 cos b3 + (74)

. : sin 6y sin 63 cos y1(cos 83 — 1) + sin f sin f3 cos yz(cos 6 — 1) +
sin f sin 03 (coé 03 cos 1 cosyz — sin Y1 sinyz)].

1
» (S

Usmg the identities (59) (60) and%{)), d;. w4 maj be expressed as a function solely?c%'

g oo

o

of its 1ntenor d;41,. This expression is cumbersome, however, and therefore will not

«) N

L3

’ bé skown. ‘

. = 11s3 T}leoretical Calculation of Near Neighbour Distances as Func-
' tions of the Ramachandran Angles. \-

-
- »
4

In this section, the work of Nishikawa, Momany and Scheraga/[79] is followed essentially. 1

a N »

They have derived the formulae giving thg?viurtual bond angles (8,%) as a function of

a

the Ramachandran angles (1, ¢). Their work is carried further in this thesis, by the

®

calculation of the near neighbour distances d, ;42, d; i.+3 and d; ;44 as functions of (1, ¢),

using representative v;,lues for the fixed bond lengths and angles of the dil;eptide units.

- —
v
LS
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Nishikawa et al. found that the angle § depends upon only ti1e two angles (v, ¢) of
the particular residue in question; however, the angle 4 was found to possess a m01‘-e
complicated relatioxfsilip, being a function of all four dihedral angles {t1,$1,%2,42} of
a dipeptide. In the relationships that are calculated, they include the following angles,

which are essentially fixed within a normal dipeptide: |

a = Ni—-C§—Cy
¢ = Op-Cg-M ‘ (75)

n = C¢—Cg—Ch

The calculated standard values for the angles «, £ and 5 as derived from chemical
studies [25,73,81,89] are shown in Table 27. The set of values given by Ramacham/iran
et al. [89] is consideréd a refinement of the wor]g;of Corey and Pauling [25] and Ma.rssl‘li
and Donohue [73]; therefore, it will be used for the numerical calculations in the present
study. The resultsof C)orey and Pauling are included in Table 27 because they ate still
employed in much of the current lii:era.ture.C |

hud 1

|

angle Corey and Pauling Ramachandran et alw
o= N1 - Og - Cg 110° i 111.6°
E=C—-C¢ - N v 13.2° . 14.7° ‘
n=C§ —Cf~Cy 22.2° 21.0°
‘ a

Iy

The “standard” values for the peptide bond angles as calculated from the data of two
reference sources (Corey and Pauling [25] and Ramachandran et al. [89]) are given.
Note that these angles are not truly constant over the set of all polypeptides, but can
vary in response to local environment. The deﬁmtnons for the a.ngles o, £ and n are
given in equations (75).

<

A Table 27: Standard'Values for the Peptide Bond Angles.

L
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In order to simplify notation, the following are defined initially:

kY

s a = cosncosa-+sinysinoecosy
b. = cosnsina — sinycosccos i (76)
d = cosfcosa+sinésinacos¢
' e = cosésina — sin £ cosacos@.

o

Nishikawa et al. use the defined values of a and b in their expression calculated for

’
e L3

-

the value of 0 =i f(v, 4):

cosf = acos £ + bsin £ cos ¢ — sin £ sin 9 sin gsin 1. (77)

In equation (77), only positive values of # are considered. From this, it can be seen that 0

can be givén uniquely within the range 0° < § < 180° for any value of the set (¢, ¢). The

®

maximum and minimum values of § are obtained by substituting (¢, ) = (180°, 180°)

and (¥, $) = (0°,0°), respectively, into (77):

b

emu = 05+(E+77) r o

s 0

o

Opin = a— (f+ 7))' r (78)

Substituting the standard values for the angles a, £ and 5 into (77) via the defini-

~ -

tions of a and b gives the value of ¢ - f(¥,9):

A

cosf = —0.33 + 0.32cos 9 + 0.22 cos$ + 0.03cos hcos¢ — 0.09sin psing.  (79) .

v °

Now the work of Nishikawa et al. can be carried further for the present study.
. a R ? -
The direct relationship betwéen d, ;12 and (¢,¢) can be calculated, using (79) and

i

© B
equation (58) from the previous section: .,
7

©

 diiya™= 38.48 — 9.1 cos ) — 6.36.cos § — 0.97 cos cos ¢ -+ 2.63 sinpsing.  (80)

o ©
. 4 . "
a

. o
Pl

/e

[

LY

?

B
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o

As usual, the distance dj is treated as a constant dy = 3.80. It is noted that this
equation (80) is identical to the expression for d; that can be fqgnd using trigonometric
methods as discussed at the outset ;)f this Appendix, {n which ‘the dipeptide angle
measurements are employed directly. B

In Nishikawa et al., the virtual bond angle « is calculated as a function of the
Ramachandran angles by first defining auxiliary variables A; and ) as the dihedral
angles for rotation of the planar peptide groups about the virtual bonds C'-f‘ —~ Cf and
ij‘ — CF, respectively, with respfct to the plane formed by the points Cf, C§ and C¥'.
The angle 7, the angle Az of the first single-residue unit and the angle A; of the second

single-residue unit are all defined about the same.virtual bond C§ — C§. Hence, they

are found to be related as follows:

7= (A2)ast + (Ar)2na +180°, (81)
where the constant, 180° arises from the definition of the zero positions of {Az)1s; and

{M)2na- The values for the auxiliary angles Ay and Xz are found to be

©

—bsin ¢ — sinn cos¢siny : |
tan Ay = .
ania asin & — bcos £ cos¢ + cos £ sin 7 sin @ sin ¢ (82)
tan g = —esin ¢ — sin £ cos ¢ sin ¢ u(83)

dsin 1 — ecosy cosy + cosn sin £ sin psin ¢
where a, b, d and e are defined M-equations (76)

' 'The standard values for the fixed angles from Ramachandran et al. [89](, given in

Table 27, can be substituted into equations (82) and (83), via the relations given in

¥

~ - *

(76). The following are obtained:

»

o

0.87sin ¢ ++ 0.13 cos ¢sin ¢ + 0.36 cos ¢sin ¢ (84)
0.0Q — 0.08 cos ¢ + 0.84 cos ¢ -+ 0.13 cos ¢y cos ¢ — 0.35sin psin ¢

tan Ay =

;z,

.
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o

t 0.90sin 1 -+ 0.09 cos ¢ cos ¢ + 0.25 cos ¢ sin ¢

— . (85
0.13 — 0.08 cos ¢ + 0.84 cos ¢ + 0.09 cos ¢ cos  — 0.24 sin ¢ sin ¢ (85)

tan Az =

=
s

vKuation (84) has two solutions for A1, but one of the solutions'can be eliminated
because it gives a nega.tivg va.h;e for § when applied to an equation relating ¢, A; and 0.
Similarly, equation (85) has two solutions for Az, but one such solution gives a negative
value for § when applied to an equation relating ¢, X¢ and 6. ,

The equations relating {$,A1,0} and relating {¢,X2,0} are not calculated in

Nishikawa et al.; and are therefore calculated here.

a

The equation relating ¢, A; and & is obtained by eliminating A2 and ¥ from the
. e
following identity, given by Nishikawa et al.:

B Lo-0T%, = TET T - T Ty - (/(iiﬁ)

-
+
-

This equation is now rearranged, and multiplie® on both sides by the row vector

°, t

s .
v = (1,0,0) and the column vector u= vT, in order to eliminate ¢ and A2 from the

right-hand side, yielding

.

cosn = cosb(cosacosé -+ sinacos ¢sin £)

o

+ sinfcos Ay(sin cos¢cos £ — cosasin §) (87)

-

+ sinasinésinfsin ;.

~

Similarly, the equation relating ¢, Ag, and 6 is found by rez;rranging and then

multiplying through by a row vector and a column vector:{’

TE T, g TE, T2, T2y = TETETY, (88)

(x-a)



e

1

r

«*

2 * \
' k [ . 167 \
’ \ \
Multtqumg through by v = (1,0,0) and u= vT and rea.rra.ngmg gives: )

AT

LN}

» n
<

cos £cos & —~ cos 7 cosf -+ sin sin cos @ -+ sin g sin d cos Ay = 0. (89)
" W

-~

When values for the fixed angles are substituted into these identify equations for A;

and Az, the results are, respectively: . ,
' ‘ - T et

co8 §(0.24 cos ¢—0.36)-+sin @ cos A1 (0.09+0.90 cos ¢)+0.93 sin ¢ sin  sin A; = 0.93 (90) |

£l

° L4

and 2 ¢

*

*

— 0.93cos 8 + 0.24 cos g% 0.36 8in 6 cos A; = 0.36. *, (91)

2

-

. To suminarize the calculation of 4 as a function of Ramachandran angles (¢, ¢), it

~ <

was shown (equation (81)} that 4 was given by:

4 = (A2)1st -+ (A1)2na +180°%, . L
+ 2 B ) O M '
Fe. £ ! (
where expressions for the auxiliary variables A; and A, are found in equations (84) and & ’

&

(85). Now, since equations’(84) and (85) afford two solutions for A; and Ag; it must » %

be decided which solution is correct. This is done by first noting the yalue of 4, given

»

\ angles 1 and ¢, from equation (79):

v * AN "
o . -

€688 = ~0.33 + 0.32 cos ¢ + 0:22 cos ¢ + 0.03 cos h'cos ¢ — 0.09 sin ¢ sin ¢. \ a
- N ; \ >

Given this solution for 8, each of the two values of Ay .are substituted into equation (90). -

)
. ‘4lhe correct candidate will give an identity in equation (90). Similarly, the two values
of A; are sg_bstitutéd into equation (S1) to find the true value. ) .o
. » ﬂ‘ . a
Once the value for 7 is obtained, the distance d; 413 can be found from equation (69) -
+* * [y P ’
of theprevious section: Y -, \ )
T » | h
' 0 1342
. dyass® = dy? + 2d,; =224 (dyaday — \/ 4d* — disz\/ 4d,* - dza. cos '1) .

-
© 8
.
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In this equation, dy = 3.80 is assumed, dis and dz4 are the second neighbour distances
which can be calculated by equation (80), and the value of (cos4) can be calculated

using equation (81): . '

¥

: cosy = cos[(Az)1et + (A1)2nd + 180°]

§ . =~ cos|(Az)1st + (A1) 2nd]- ' (92)

i

&

" . Whereas the calculation of the d, ;45 distance from the corresponding Ramachan-
x -

., dran angles refquires a good deal of effort, the derivation of the distatnCe d, 514 18 com-

9

. paratively simple. The major work involved is the calculation of '1; and <2, and these
& . . P .

‘are found in the course of evaluati;lg dii+s. The d, 44 distance can subsequently be
s ' x ‘ !

foind by direct application of equation (74). Alternatively, it can be calculated selely

. e

¢ A

a8 a function of the interior d; ;12 and d, ;3 distances, without reference to either the

-
2]

virtual bond apgles or the Ramachandran angles.

<

N 11.4 Numerical Results: Theoretical Near Neighbour Distances.

e
L

Using the theoretical results ffom the previous section, a FORTRAN computer imple-
K] [ N » ]

! *

[ : s - . [t N
mentation for the ¢alculation of d;, 9, d, i3 and d;, ;4 distances from Ramachandran
, !

- * 1
Y ¥

o “ angle %ﬁ&{ﬂ[l@, $1,%2, $2,¥s, #3} has been thade. From. this program, numerical results
- % . Q “ . N 3 \

were obtained regarding maximum, minimum and mean value statistics, as well a8
" 4

8

©

2 distributions for'd, 42, d\,+s and d, ;44 distances from' various input information re-
5 a ® N

8
S » © PR

garding Ramachandran angle bounds and secondary structyre proportions. The results

»

are ezq{ounded in this section, and the possibility of deriving theoretical parameters for
M K bl * . ]
use in distance eonstraint models is discussed. Theoretical maximum bounds for near

xleiéhpour distances *a.rr.}obtained for use 1n the present model.

2o
<
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11.4.1 Minimum and Maximum Distance Parameters. »

First, let the near neighbour distam;e bounds be found‘with no restriction on the (t/),:gﬁ)
angles (that is, —180° < ¢, < +180° and ~180° < ’¢.~ < +180°). The extreme values -
for the second neighbour distances can be found from equations (58) and (78), using the
set of standard angles given in Table 27. The calculated extreme values are found to
be ﬂ;nm = 75.9° and Opmax = 147.3°, with corresponding distances of min(d, ;42) = 4.67
l and maz(d, 42) = 7.29. The minimum and max\i&xm di§tance bounds, plus the mean
values of the distributions assuming equal probabilities for each angle, were calculated

. p -
by the program for distances d,; 12, d;¢1s and d, ;1 4, and are shown in Table 28.

]

Distance . . Value (vi,94)

min(d; 42) 4.67 (0,0)

max(d, ,+2) . 7.29 (180,180)

d2 , 6.131+0.67

min(d, ,+3) 3.72 (0,0,0,180) -

max(d; ;+3) 10.96 (180,180,180,180)

ds © 195142 ’ C

min(d; s44) ' 1.53 (0,0,180,180,0,0)

max(d, ,44) 1454 (180,180,180,180,180,180)
A

dy 9.39 4+ 2.23

Near neighbour distance statistics and their ‘corresponding Ramachandran angles
(¥,9). The possible Ramachandran angles are unrestricted. The mean values and
standard deviations were determined by assuming equal probabilities for each pair of

angles (v, ¢). - .
Table 28: Theoretical Near Neighbour Distance Statistics.

‘ n

The distributions for the d; 42, dii+s and d; ;44 distances were also found, for this
) o .
case of equiprobable (1, ) angles with no restrictions on the (¢, ¢) angle pairs. Graphs

)

of these distributions are shown in Figures 24 - 26, along with the distribiitions ob-
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" tained when ?le (¢, ) angles were res&icted to what are termed normal limits and
/ .

extreme outer limits (Table 30), To produce thése distributions, sets of random (¢, ¢)

o ° <
angles were repeatedly generated from a uniform distribution of all allowable angles.,

=

For this study, 1500 separate random_ angle sets were generzxfed for each example of

Ramachandran limits.

L} 1]

The results showr. in Table 28 contain several notable features. One is that all the
extrema values correspond to planar conﬁguratim)s of the peptide groups. This result

could have'been e’asi'ly predicted for the case of H;,,+2, where the equations are found to

have local extrema only at (,4) = (0°,0°), (0°,180°), (180°,0°) and (180°,180°) by

IS

" requiring the first derivatives to simultaneously equal zero. The equations for d, ;.3 and

?

c?,,,+4 in terms of the (¢, ¢) angles, however, are found to contain many local extrema,

I Secs .‘Ma
T

Y

us that the resulting global extrema would be planar configurations.

1

o ® ) . R .
jmin(di,+;) min(d;4;) — min(d,;4;-1) max(d,;y,) max(d, y+,) — max(dy+,-71)

1° 3.80 ’ 3.80

2" 467 - +0.87 - 7.29 +3.49

3 372 ~0.95 - ., 10.96 , F3.67

4 153 ° —2.19 14.54 +3.58
]

Table 29: Differences in the Near Neighbour Distance Bounds: (t,¢) Angles Unre- -

stricted, - . e

¢ v - .
Other features of the results can be discussed with reference to Table 29. Since no

o«

restrictions have been put on the (1, $) angles, the maz(d,;4;) values are almost as

large as (d;,4j—1 + d1) for every j = 2,3,4. This result, in which the maximum values

for d;., are only slightly smaller than 5 x d1, does'not correspond to the results of

empirical measurements. The anomaly s}‘grings frfm allowing the (1, ¢) angles to be

a

¢

N,



The theoretical probgbxhty distributions for second neighbour distances "(in A) are |
found by generating 1500 separate random (1/) ¢) angle sets, assuming equal probability
for each pair of angles (¢, ¢) within the allowable angle ranges. The ranges used are:
“(—) no restriction. ‘on the angles, (+) normal Ramachandra.n limits, and (o) extreme
outer limits. - ° .0

Figure 24: Theoretical Distributionsof d, .2 Distances,
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The theoretical proba.blhty dlstnbutlons fox third nexghbour distances (in A) are found
by genera.tmg 1500 separate random (¢, @) angle sets, assuming equal probability for
each pair of angles (¢, ¢) within the allowable angle ranges. The ranges used are: (—)
no restnctlon, (+) normal hrmts and (o) extrerile outer: limits. . 6,?;?

[

- F?gure 25: Theoretical Dm}nbu'tlons of d, s+s Distances.
. * « !
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no resiriction, (+) normal limits, and (¢) extreme outer limits.

-
- Figure 26: Theoretical Disgributions of d;,+4 Distances.

-
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unrestricted. The residues of actual polypeptides are found to have l:;rgely restricted

;)ossible (¢, ¢) angles ranges, due to steric hindrance and other noncovalent, factors

[34,90,91,99]. The restriction of (¢, ¢) angles to so-called Ramachandran limits is thus -
o

necessary in these numerical calculations. . /

_ The third and fourth reighbour min(d, ;) values from Table 29 are smaJKr than

those found empirically. This finding also stems from the lack of restrictions on the

(,4) angles. However, the values cannot be rectified in this case equiring the )

»
A

angles t6 be within specified Ramachandran limits. Here the phenomenon of steric

“ N )

-

hindrance also plays a part. -

a

1

The overall effect of ste;ic hindrance cannot easily be incorporated into the near
neighbour distance equations. Whereas steric hindfance will restrict the, ‘ va}ue ranges
’& » \

for the two angles (1;,¢,) for each residue, the aggregate restriction on the ranges

[¢]

for the, four angles (%> b5, Yit15 Pi1) OF a;ijaﬁ:ent residues will be greater than that
of the two residues cpnsidereci separately. The values calculated using Ramachandran

limits will give lower bounds for the minimum near neighbour distance estimates and
3 Q {\
upper ?Blmds for the maximum near neighbour distance estimates. The calculated

-

3

#stimates for the minimum distances are found to be of minimal value ig derfving

]

o

distance constraint patameters. For tlgis reason the empirical /alues, not the theoretical

values, will be used to derive parameters for min(d, ;13) and min(d;;iq)-
Sy

A danger of utilizing ‘gmpirical results for point values*such as maxima or min-

. Y
“

ima), as opposed to aggregated values (such as means or standard®eviations) is that

L4

point values are highly susceptible to measurement or calculation error, whereas the

derivation of hggregated statistics tends to “average out” this type of error. The values

»
o

- used for min(d;;43) and min'(d,,,-“) in the present model are found by observation of

©n
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the near neighbour distances for a set of tw;nty proteins with known tertiary struc-
~

- 3

tures (the set of proteins from Goel and Y¢as [46}), discarding the smallest 1% of the

distances as possible measurement errors, and using the next-smallest values’as the’

parametars. ’

s

Normal limits: ¢ = {90° — 180°,300° — 320°} " ¢ ={20° —130°)
.+ Extreme outer limits: ¢ = {30° — 190°,290° — 330°} ¢ = {0° — 140°,220° — 240°}

Table 30: Limits on the Ramachancka.n Angles (v, ;:5)

L]

® —
.

Distances No Restriction Normal Extreme Empirical
(¥,4) (¥, ¢)

min(d, ;12) 4.67 4.89 4.79 465,

max(d; i+ 2) 7.29 7.16 7.20 7.77
“dy 6.13 +0.67 6.42 + 0.57 6.15 4 0.63 5.95 4 0.63

min(d,',.-.l.s) 3.72 ~ 4.6 . 4,0 $ 433

max(d; .+3) 10.96 1071 - 10.82 10.88

ds 7.95 4 1.42 “\)8.10 +1.16 7.66 & 1.40 7244 1.82

min(dy ,44) 1.53 23 1.6 4.39

max(d, i+4) 1454 13.95 14.37 13.84

dy 9.39 + 2.23 901+1.80 = 8.63+237 8.77 4 2.44

Near neighbour distance statistics with various inputs for the allowable Ramachandran
*angle sets (1, ¢). Pairwise distance values are given for: (i) no restriction on the (1, ¢)
angles, (i) the angles (v, $) restricted to their “normal® values, and (iii) the (¢,¢)
. restricted to their “extreme outer limit” values. These are compared to the empirical
values found by Goel and Y¢as [46].

. Tablk 31: Theoretical Near Neighbour Distance Statistics for the Standard Limits <;n
- . (¢, ) Angle Sets.
. N ot

® [ §
' F!
PR .
g

7

A

s + More accugate th‘eoreticgl p!::adictions for the maximum bounds on d;;y2, d;iis
- ‘ [
) ’ ¢
and d;;.4 can be found by restrictini the Ramachandran angles (1, ¢) to fall within

definite limits [92]: These are referred to as the normal and the extreme Ramachan-

d ’

&

£



Extreme Ramachandran angles: ) .
Distance - (i, d)

max(d; i.13) < " 10.82 (189,140,160,140)

max(d, s+4) 14.37 - (178,140,159,140,190,220)

Normal Ramachandran angles:

' Distance (s é,)
max(d;it3) - 10.71 © (1180,130,151,130).
max{d;}4) 13.95 ( 90,130,180,130,164,130)

. Table 32: Ramachandran Angle Sets Corresponding to the Theoretical Near Neighbour
Distance Maxima. ’ b L
' 4 \k ( -

4 \ : )

3

dran limits (Table 30), and were determined by Ramachandran and his group using

graphical methods. The “normal” Ramachandran angle (¢, ¢) ;a.nge corresponds to

-

generally accepted minimum contact distances for short-range non-bonded atoms; the
“extreme outer limit” (1, ¢) range corresponds to configurations where the minimum

. short-contact distances are estimated to be at their absolute minimum values.

’

For each of the two Ramachandran limit ranges, distance statistics and distributions

were calculated for near neighboyr residues. The distribptions of the second, third

. ¥
and fourth neighbour distances are shown in Figures 24 - 26, In generating these
S | <,

distributions, each angle within the specified Ramachandran limits is given an egual
probability of being chosen. Tal\)le 31 shows the values obtained for the various near

neighbour distance statistics, and compares these'theoretical values to the empirical

.

results of Goel and Y&as [46]. Table 32 includes the Ramachandran angle sets that

were found to correspond to the maz(d;,4 ;) values.

A

The near neighbour distance parameters m'a:z:(d.-,.-.,_,-) are t6 be estimated theoret-
ically. For the preseﬁt model, it was decided to use the set of results calculated from

R the normal Ramachandran angles, Specifically, the model utilizes the following third

n
o
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.

+ -

and fourth neighbour maximum bounds: E
~
max(d;;+3) = 10.7 \'

. max(d;i+4) = 13.9

&

It would be unrealistic oceed as if the peptides can assume' any (1, ¢) orientation.

Whereas it may be possible for a single residue to attain extreme outer limit (¢, ¢)

|
values outside the normal range (this is certainly possible for Gly residues), it must

be reiterated that the calculated values represent upper bounds for the true values.

- +

In general, the dihedral angle ranges will actually be more restrictive than the normal

v

Ramachandran limits when a complete triplet or quadruplet of residues is considered

A

as a unit. This is the reason for choosing the bounds obtained from the nérmal range

as model parameters.

11.4.2 Mean Value Parameters: Secondary Structure Distances.

%

Mean value parameters for near neighbour distances can only be calculated theoretically

L4

with any accuracy if some estimate of the secondary structures (cf., Chapt;er 1.2.9) of
. |
the molecule can be determined. Since the majority of the residues in globular proteins
are involved in secondary structures which contain distinctive dihedral (1,1), #) angles and- ﬂ ‘»;_J
hence ar{t’i:u?tive near neighbour distances, it would notcbeavalid to calculate theoretical ’
near néighbou;' mean distances under the as;sumption of equal probabilities for the
(¥, ¢) angles, regardless of the (4, ¢) angle limits that ar;a ~speciﬁed. The probability .
' distribu?ion for the (qbu, #) angles must instead depend upon the proportion of each
type of secondary structure that exists within the protein to be folded. Therefore,

the calculatioh of near neighbour mean value parameters requires secondary structural

5 -~ -
s
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3 - . =
* information of two types: the proportion of residues that participate in each type of

® LY

secondary structure in a given protein and the theoretical near neighbour distances for
the residues involved in these structures. ,
If, in addition to the secondary structure proportions, the actual primary sequence

locations of the.helical structures could be accurately estimated a priori for a protein,

IA'-
the distance constraint model could employ a set of theoretical mean value parameters,
# . .

a

where each parameter would be specific to a secondary structure type.

o o § /

The theoretical calculation of near neighbour, distanced for the residues within regu-

{
. . . | . . '
lar secondary structures is easily accomplished by method% \of elementary trigonometry.

- \
The usual secondary structured)y such as the a—helixﬂimd PB-strand, are helices. These

are periodically repeating hydrogen-imnded structures, such that the near neighbour

Il - ¢ -

L]
d; i+; distances are constant for each i. For example, within a regular o-helix), all second
" s < a

r
.
I 5\ RS

. ~
neighbour distances are expected to be €qual. This implies that with perfect helices

the mean value parameters for near neighbour distances have a special significance: the
variance of the observed distances will be zero. That is, all near neighbour distances .

dii+; will match the mean value, as is generally the case for first neighbour distances

N -

di.

a

Consider a general simple helix containing m residues per turn. Let p denote the

-

pitch, or the depth of one full turn of helix. A generalqequ:ation expressing the pairwise

- o 3

distance d; ;.7 between any tWo residues can be calculated in terms of the parameters

-

m and 4;, and can be written as follows:

LY . 2« , N ¢ 2 . -
)’ 2 _ d 2Bm f\%) + __}f_ j2 - sin ( ) X (93)
Yein? (%) | m? sin® (

o ’ v +

o i

Note that the calculated pairwise distances in this case depend,upon the primary

ST EIrS

- - . o

o7

.
” -
[] ¥
T
.
i
. "



g

179

¢ . . .
sequence separation j of the ??yo‘ residues, but do not depend upon their specific posi-
tions ¢ within the helix. From thé general equation (93), particular expressions fof the

pairwise distances d, iz, d;i+3 and di 4 can be calculated:

i s a

digra® = 4 [dr%cos? () + Zsin? (Z))] (04)
) d;;ivs® = df? [4cos? (Z) - 1]2 + 8%3;sr.in2 (Z) [2cos? (Z) +1] (95)
digial =16 [d12c052 (Z)cos? (%l"i) + % (1 — cos? (X)cos? (%))] . (96)

The a-helix ideally will have 3.61 residues per turn and a pitch of p = 5.41 [92].

However, pe;-fect a-helices are rarely seen in globular proteins. Most helices are found to

S

be twisted or tilted from the vertical, not fully hydrogen-bonded, or otherwise distorted.

As an example, statistics for the secondary structures of bovine pancreatic trypsin

in{libitor are sl;own in Table 33. These statistics show a larger variability than would

1

be expected within the classes d;, 2, d;;4s and d,,,-+4.' Also their mean values do not

conform exactly to the theoretically éxpected averages calculated below (Table 34’.

These statistical results are typical of the failure of in' vivo secondary structures to

s \] < -
form completely. Therefore, although secondary structires yield particularly simple

results for near neighbour distances theoretically, the values obtained are not readily

applicable in practice. ) )
s "

For the fully extended chain structure, the B-strand, the axial distance between

adjacent residues is estimated from theoretical hydrogen bonding studies to ideally

have a value of 3.5 A, with a helical radius of/1.0 A. This structure yields a pitch of
-~

s

P = 6.95, with m = 2.00 residues per turm [92]. ‘,
Table 34 gives a set of pairwise distances of the form d;;y; far near neighbour

residues within regular secondary structures: o-helix, f-strand and 3jp-helix. The

P <
-

¥
r
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y ~

o-helix antiparallel S-strands
(residues 47 » 56) (residues 16 - 25 vs 28 - 36)
dy 5.56 £ 0.37 ‘ 6.61 & 0.42
(min(d, ;4 2), max(di +2)) (5.15,6.00) (5.83,7.13)
ds 5.26 == 0.56 9.78 + 0.45
(min(d, i+s), max(d; i+s)) (4.58,6.04) (9.12,10.66)
ds 5.7940.70 12.84 1:0.62
(min(d, ;44), max(d, i+4)) (4.55,6.56) (11.36,13.85)

Q

Near neighbour distance statistics within the secondary structures found in BPTI.
Shown are the mean, standard deviation, minimum value and maximum value for each
of the secom{, third and fourth neighbour distances for the residues involved in the
secondary sbructures of BPTI. Residue lo¢ations for the seconidary structures are from
Deisenhofer and Steigeman [32].

Table 33: Secondary Structure Examples: BPTI. )

o

@

valyes are calsulated from equations (94), (95) and (96)

k]

a-helix B-strand ) 3;,-helix

m , 361 2.00 T30 .
p 5.41 6.95 6.0
Cdiaya 5.41 6.95 T 5
disis ° 5.06 10.54 6.00
d; i 618 . 13.90 8.63

-, Table 34: Theoretical Near Neighbour Distances: Secondary Structures.

Y

de &£

At the present time, it id difficult to predict a priori the proportions of secondary

A}

structures that will be contained in a particular protein, unless its evolutionary family

is known. It is has been estimated from empirical studies that globular proteins contain
q
on average nearly 40% o-helix residues, 15% S-strand residues and 25% of the residues

o

in reverse turns [20]. Unfortunately, these proportions vary greatly from protem to

L7
Y
3

Vi
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protein, and are not correlated with the size of a protein. Also, many examples of
. o

N
secondary structure within proteins are corisiderably distorted, and it is often difficult

to detetmine whether or not a particular residue should be included-as an element of

a discerned helix [56]. ) - )
Dug to the difficulty in predicting the proportions of the various secondary struc-

. tures in a protein to be folded, mean value parameters for near neighbour distances are
' ) - C( r

X -
not employed in the presenf model. Due to the difficulty in predicting the locations

of the secondary structures and the variability in near neighbour distances observed

a

within the helices of globular proteins, predictions for the locations of protein second\akr\y

structures are also not used in the model.

.y . .
B, "1

«

_ Statistical secondary structure prediction techniques :’(’Z{?f, Chou and Fasman {20})
N 4

will undoubtedly become more reliable in the future. In this event, general distance

constraints for near neighbour mean values or specific distance constraints for the

“

mean values of residues believed to be involved in secondary structures could be ac-

commodated by the model. The general mean value parameters could be found by
e
incorporating the proportions of each type of secondary structure into a pgpbability

L]

distribution of (1, #) angles. The mean distance corresponding to this probability dis-
“~

tribution would then be calculated by the method of the previous section. Specific
-~ mean value parameters used for each separate type of secondary structure are.much

more easily, implemented; they would simply be the valugs given in Table 34. That

1

is, each pair of residues that are predicted to exist within a given secondary structure

13

cogld be constrained to lie at an exact pairwise distance, given by the parameters in

Table 34. ’

©
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