NEW INNOVATIONS IN SWARM OPTIMIZATION VIA MULTI-CRITERION
DECISION MAKING

By

Ahmed I. EL-Gallad

Submitted
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Major subject: Electrical and Computer Engineering Department

at

DALHOUSIE UNIVERSITY

Halifax, Nova Scotia August, 2007

© Copyright by Ahmed EL-Gallad, 2007

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-35792-7
Our file Notre référence
ISBN: 978-0-494-35792-7
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

-DALHOUSIE UNIVERSITY

To comply with the Canadian Privacy Act the National Library of Canada has requested
that the following pages be removed from this copy of the thesis:

Preliminary Pages
Examiners Signature Page
Dalhousie Library Copyright Agreement

Appendices
Copyright Releases (if applicable)

I dedicate this work
To my mother, my wife and my sons: Fares and Joseph

In memory of my beloved father!

v

Table of Contents

List of Tables X
List of Figures Xi
List of Symbols and Abbreviations X1V
Acknowledgments XVil
Abstract XVviii
1T INErOAUCHION. ...ttt ee e e sesen e 1
L1 MOBIVALION.......vvttiiieeeieieieie ettt et 1
1.2 Darwin evolution vs. animal aggregations and SWarms...............c.oeeeeeeevrerersreennnn... 3
1.3 Proximity t0 aUtONOMOUS AZENLS........ceereieieieeeeeceeeesieeceeeeeseeeeeeeeesesseeeeeee e seseseresssns 5
1.4 OBJECTIVES ...ttt ettt en s e s eees e sesee e ee e 5
1.5 CONIIDULIONS. ..ottt se e 6
1.6 MEthOOIOZYcovviviiinieieieteec et es e ee e 7
1.7 TRESIS OULLIDESoevvireriiceeieiiceeicte sttt ee et s s eeee s 7
2 Literature REVIEWccooiiioiiiititeeeccee e 9
2.1 INTOAQUCTION. ...ttt ettt ettt e e e s s e s s e, 9
2.2 Cellular automata, emergence and SWAITNS................o.cueveveeeeeeeeeererereseresereeeeeeeeeeseeon. 10
2.3 Original particle SWarm OPtIMZETcooeueuemeeeeeeeeeeeeeeeeee oo e 13
2.4 Inertia WEIBHEc.coiviiiiieee e, 16
2.5 Analysis of the particle SWarm................c..co.ooooeueueereeeeeee oo 19
2.5.1 Trajectory ANALYSIScevurreruererieeceeteeeeeeeee e eee e ee e 20
2.5.2 Stability @naLYSIS........ccoeeeueuiuiicceceeeeeeeeeeeee et ee e, 22
2.5.3 Stability of the stochastic PSO...........couvivieeeeeeeeeeeeeeeeeeeeee oo 29
2.5.4 Local and global CONVETZENCEcueuevveeeerereeeeeeeeeeeeeee e, 31
2.6 Diversity and PSO.......c.cooumiiuiiieeieeeeeeeeee e 33
3 New Formulation for the Swarm Optimizationo.o.o.cococooo 37
3.1 INIPOAUCTION. ...ttt e 37
3.2 Complex adaptive SYSLEIMc.vuiuieeeeececeeeeeeeee e 38

3.2.1 Adaptability vs. determinability..........ccecercvreieriisiineriierenirere e 38

3.2.2 Complexity vs. complicatedness.coecveeueeieeeecerereeieeeeeeereee et 39
3.3 Understanding swarms and animal aggregations............c.cccceeveeveeeeeereeeceeneeeeenennn. 39
3.3.1 GIEGATIOUSIIESS......eouteurenreteierteice et ettt et e e s et e et st e e se st et e e anae s ansassnas 39
3.3.2 S0CI1al tOIETANCE......cc.eeeieeeieeeieee ettt et 40
3.3.3 Social forces and swarm’s dynamiSm.............coecveeueereereeeeeeieeeieereeereceeeereeere e 41
3.4 Free willing 1n animal WOrld.........cccocooiriioiirininiiiiieeeeeere et 41
3.5 Proposed Basic behaviorscccccceviviieiiiieiicieececeee ettt 42
3.5.1 Evidence of memory retrieVal..........ccoocveeieirieieeieieieeeee e 44
3.5 2 IMIALION ..ottt sttt ettt eeseese e st et esese s e sessesesssasbenneneensenseeenaneas 45
353 PIAY ottt bttt e 45
3.6 SUMIMNATY ...ttt ettt et et tesaebesteessese s e e eseenseseeseeneeneereensensonnessenns 46
4 The Proposed TeChRIQUE.................coomimiiiiiieiceeeeeeeeeeeeee e 47
4.1 INtrOQUCTION. ...ttt ettt et e e b eeb e aesaeeaeenneeeeanan 47
4.2 Multi criterion decision making (MCDM)ccccoeeveirereieeereieeeeeete e 48
4.2.1 Crisp reasoning based procedureecveveeeeevieeeeeveeeeeeeeeeeeeeeeeeeeee e 49
4.2.2 Fuzzy reasoning based procedure..............cocueevuerieeiererceeiereieeeeceeveeeeeeeeereenas 50
4.3 Elements of decision makKing PrOCESS........ccvvvereierereeereeeeeeeseeeeereeteseeeseeeseeeenenenes 51
4.3.1 GOAIS ..ttt ettt e e renene 51
4.3.2 AREINALIVES ..ottt sttt ettt sa et e beeestee e eaeeseeseesesneesesseensenesnsesaesaes 52
4.3.3 CIILETIA ..ottt ettt ettt eae ettt ete e easeaensesesnenssssesennenean 52
4.3.3.1 FIIESS vttt ettt en et e s e 52
4.3.3.2 Levenshtien edit DIStance...........ccoccoeveevnreinieeicceeeecieeete e 53
4.3.3.3 Criteria FUzzificationcceeeirureirieieieeieeee ettt 55
4.3.4 Decision rule: fuzzy OWA aggregation OPETatoroeveveveeveveuevsesesieernnnes 57
4.3.5 Agents’ POSItION UPAALEevvrverereiieietiereeeeeereeetee ettt eeeee et seeseanas 59

S APPLCALIONSooviiiiiiiiiie et et s ne 62
5.1 INEOQUCHION.eeiiiieeeieeee ettt er et es s seeneseeee e e e 62
5.2 The Traveling Salesman Problem..........cocooveeueieiiriieeiieeeteeeeeeeeee e 62
5.2.1 Back@round.........cccoveiieiiiiiiieesieiieteeeee ettt eene 63
5.2.2 TSP and graph repreSentationueeueueereveeeeeereeeeuieereeeeseseesee st seeeeeenene 64

vi

5.2.3 Demonstrative €Xamplecccvueeeiririrerereeiineiiiissieseseeesseseseeeseseeesesesese e 66

5.2.4 Decision alternatives and Criteria..........ooreveueueueeceeeiireeeeee e seeeees e ses e 68
5.2.5 Decision Tule (OWA)c.oiviiririeieieeee ettt es et s s 69
5.2.6 Larger scale TSP Problems.........c.c.cueueueuerereveverieiiieeeeee e ee e es e 74
5.3 Quadratic Assignment Problemc.c.eieveveviuieieiieeeee oo 76
5.3.1 The assignment Problem.........coueveveveueuieiiereeeeiiiieecce e e e 79
5.3.2 Linear assignment (LAP)..........cocoueeuiuierereeeeeeeeeeee e ese e es e 79
5.3.3 The quadratic assignment problem (QAP)ococooemeeereeeeeeeeeeeeeeeeeeerenn, 80
5.3.4 QAP DEnChMATKS ...ccvniiicete et 81
5.3.5 Testing and TeSUIEScocoouiuiiiiirieiiii et e e en e &3
5.4 Significance of error differences...........o.ovoveuiueieiieeceeeeeeeeeeee oo, 93
5.4.1 Anderson-Darling test of NOrMAalityc.coevvvverereeeeeeeeeeeeeeeeeeeeo, 93
5.4.2 Mann-Whithey teSt..........cceoreirrrrereiieiecreieieceieeeeeereeese et eeeee s s oo seeeeeeeena, 94
5.4.3 U-STASTIC ...ttt ettt e e s s e st 95
5.4.4 Performing the test..........ccooruriiurieiriieceieeeeee e, 96
5.5 MCDM-PSO versus Traditional PSO............c.c.cooeiieiemeeieeeeeeeeeeee oo 100
5.6 Concluding remarks...........c.cceururiruienreiieeeceeeee et 103
6 Extension to Continuous Variables Optimizationo.ococoooooio . 105
6.1 INOAUCTION.........oviiiiieieec et 105
6.2 The MCDM-PSO MOdeL........ccooiurimriieieceeeceeeeeeeeeee e 105
6.2.1 Momentum inflUeNCe...........coovuevieieiiecceeeeeeeeeee e 106
6.2.2 Memory retrieval inflUenCe.ooueveeeivivieeeeceeee e 106
6.2.3 Imitation infIUENCEc.oveeeieeiieeiececeeeeceeeeee e 107
60.2.4 Play infIUENCE.........ccouriimeieirieiieee et 108
6.2.5 Position Update eqUAtion..............co.o.eoeeeieeeeeeeeeeeeeeeeeeee oo 109
6.3 Computational EXPETimENtSc..vemuereeeeeeeeeeeeeeeee e eeeeeeee oo 109
6.3.1 Benchmark PIODICINSc.cuvueeeeririeeieieeeeeeeeee e 110
6.3.2 Test environment and MCDM-PSO Setting..............ovevveveeveeerreroeoo. 126
6.3.3 Algorithms used for COMPArISON..................c.ovveeeeeeeeeeeeeeeeeeeeeeeeeeeooo 127
0.4 TS TESUILS ..ottt 128
6.4.1 MCDM-PSO vs. traditional PSO.............c.ououeeereeeeeeeeeseeeeeeeoeoeeoesoeo 128

Vil

6.4.2 MCDM-PSO vs. other algorithmsc..cceovieeninnnninreeeecereeeeeeeeea 138

6.5 SUIMIMATYcooiiiiiiiiiiiiie ettt ettt ettt et e e stss e s s et e baebeesssaeesseseensensennensen 141
7 Conclusions and future Workccoooiiiiiiiiieeeee e 142
7.1 SUIMIMATY ..ottt ettt e et e e se e e e e e e seeeraesssesene e seeeneeensesensesnns 142
T2 FULUIE WOTK ...ttt ettt ettt er et enr s eens 145
BIbIIOZIAPRYcviieiiiiie ettt ettt e r e neeae e enes 146
APPENDIX ..ottt sttt ettt et se e saessetsereeseeseensennenrens 161

viii

List of Tables

Table 2.1: Transition function using Rule 30 for one-dimensional cellular automaton. .. 11
Table 4.1: Decision table [75].....cvceiereieiereieeetectesteee ettt 49
Table 4.2: Calculation of LD between permutations 7 and s.............c.ceceeeeceveeereeerenenennns 54
Table 4.3: Limits on the fitness and the distance for fuzzification process...................... 55
Table 4.4: AIternatives VS. CIETIA.oeueuerrirrereeiereieteeereecceese ettt eae 60
Table 4.5: Ranked fuzzyified (RF) values for each alternativeccccoevevvereevenenenn... 60
Table 5.1: Decision attributes for agent X at iteration &c.ceeeeeeeeeemeeereneeeeeeennn 68
Table 5.2: Fuzzification Limits...........c.ccoeivvecreeineereieeiececee e et et 68
Table 5.3: Ranked fuzZzy MEASUTESc.ceieveverieiieeeeeeeecece ettt e e 69
Table 5.4: Five different decision strategies [81]c.oceuevveieiuiiireeeeeeeeeereeeeeeeeeeeeeenn 70
Table 5.5: Simulation results for different TSPScc.ooveveeeieeeeveieeeeceeeceeeeeeee e 75
Table 5.6: SOIVING NUZ30....ceviieiieieieeeeete ettt ettt 78
Table 5.7: Results for Nug-type problems............cc.eeevvvveeececeeeeeeeeeereeeeeeeeeeeeeee e 86
Table 5.8: Results for Bur-type problems...........c.e.eueuevevevereveenceeeeeeeeeeee e 86
Table 5.9: Results for Chr-type problems.............oevveeeveeeeeieiieeeeeeeeeeeeeeeeeeseressre e 87
Table 5.10: Results for Esc-type and Els-types problemsccccoveeeeeeeererssrnnnn. 87
Table 5.11: Results for Had-type and Kra-type problems..........ccoueueuemverveeeeeereerennnn., 88
Table 5.12: Results for Scr-type and Rou-type problems..............c.ccueveveerereeeerererernannn. 88
Table 5.13: Results for Tho-type, Wil-type and Ste-type problems.........cocoevevveevuernn..... 88
Table 5.14: Results for SKo-type problems.............c.oeevvveveiveveeeeeeeeeeeeeeeeseeeeeeeeee e 89
Table 5.15: Results for Tai-a and Tai-c type problemsooeeeeeeeeeereeemeeerererernnnn. 89
Table 5.16: Results for Tai-b type problemsooecviveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesen, 90
Table 5.17: Results for Lipa-a type problems.................coovevemeeeeeeeeeeeeeeeeeeeessseeeseeen, 90
Table 5.18: Results for Lipa-b type problemsc.ooviiuiiecoeeeeeeeeeeeeeeeeesean 90
Table 5.19: Ranks for average case SAMPIESocoocovveeereeieeeeeeereeeeeeeseeeeee e 99
Table 5.20: Test Statistics for average case SAMPIESooememeeeeeeeeeeeeeeeeeseesererenn. 99
Table 5.21 Ranks for best case SAMPIES...............ccoeeeeeeeeeeeeeeeeeeeeeeeeee e, 99
Table 5.22: Test Statistics for best case SAMPIESc.oveeeeeeeeeeeeeeeeeeeeeeeeeereren, 99

X

Table 5.23: Values of parameters used in case of PSO and ACO [134]c.ccueue.... 100

Table 5.24: MCDM-PSO versus ant colony (ACO) and traditional PSO 101
Table 6.1: key players in memory retrieval relation.ccoveeeveveeriecceeeeeeeeene. 106
Table 6.2: key players for imitation influence.c.ccocoeeveveereeeeceeieeeceeeeeee, 107
Table 6.3: Both sides of the play influence.............cccoevrieuieeiereinrerieceeeeceee e 109
Table 6.4: Results for problems f| to f;, on 30 dimensions.ccccevevevererererereernenee. 129
Table 6.5: Results for problems f; to f,, on 100 dimensionsceeverereerevrerrnnee. 130
Table 6.6: Results for problems less than 30 dimensions.o.o.eoeeueueeceueeeereeeeeenen. 131
Table 6.7: Results for MCDM-PSO, ARPSO and SEA on problems of 30 dimensions or less.
... 139
Table 6.8: Results for MCDM-PSO, ARPSO and SEA on problems of 100 dimensions.140
Table 6.9: MCDM-PSO vs. some PSO variants on problems of 30 dimensions. 141

List of Figures

Figure 2.1: Visualizing Rule 30 in black and white [26]..........ccooooviueieimceeeereeeeeeeeeeeeeen, 12
Figure 2.2: The evolved pattern after 15 Steps [26]coovevevioiiemimeieeeeeeeeeeeeeeeeeeeeeee e 12
Figure 2.3: PSO publications from 1995-2006 (IEEE)..........cccoeoiiiveieeeeeeeeeeeeeeeeeeeeeae. 16
Figure 3.1: Combining basic behaviors to form a candidate movec.ccovevueeeeenenn.... .44
Figure 4.1: Membership function used in calculating fuzzy sets of the criteria................... 56

Figure 4.2: The OWA in the perspective of risk-tradeoff space of fuzzy aggregation operators

... 58
Figure 4.3: OWA-supported decision MmakKing [5]oovuvvemrueverveiiieieeeeeeeeseeeeeeeeeeeesseesans 59
Figure 5.1: Symmetrical and Asymmetrical TSP representation.................ceeeveeveeeeeeevrenenn.. 65
Figure 5.2: Attributes of a captured instant & for 17-cities ASTP problem.ocoouvun........ 67
Figure 5.3: Recursive displacement of items among permutations.cccccevvevevereeenn... 72
Figure 5.4: the pseudo code for the main steps of the proposed techniqueceoenn....... 74
Figure 5.5: Comparison between the traditional PSO and the proposed technique................ 76
Figure 5.6: Permutation encoding for LAP Of #=10.ooououeeeeeeveeeeeeeeeeeeeeeeesereveen 80
Figure 5.7: Classification of QAP benchmarks [129].......ocuvvviieeremeeeeeeeeeeeeeeeeeeseeeererereens 83
Figure 5.8: Differences between gaps assuming normality (average case).............oeve....... 92
Figure 5.9: Differences between gaps assuming normality (best case).ooveeveereerennnnn... 92
Figure 5.10: Anderson-Darling test reSults...........co.ovvviiuevieiererereeeeeeeee e e oo 94
Figure 5.11: Cumulative distribution function...........c.eceuevevieereeieieeeeceeseeeeeee e seesee e, 95
Figure 5.12: Nonparametric distribution fitting (aVerage case).ocoweveeeveveeeererreesererennn. 98
Figure 5.13: Nonparametric distribution fitting (Dest Case)...........o.ourereeveveereeereerereeesrennnns 98
Figure 5.14: Probability Plot of Levenshtien distance matrix for traditional PSO after 100

TEETALIOMS. ...ttt sttt r et se s et st sse e seesese et s s eeessessse s sesesseseas 102
Figure 5.15: Probability Plot of Levenshtien distance matrix for MCDM-PSO after 100

TEETALIOMS. ..ottt sttt ee et et e e sseeesenenenesseeas 103
Figure 6.1: Visualization of the Sphere modelc.o.ouvoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 111

xi

Figure 6.2: Visualization of the Rotated hyper-ellipsoids function..............cccceeveereverennee.e. 111

Figure 6.3: Axis parallel hyper-ellipsoids..........coceeeoirieeninieineieeeeee et 112

Figure 6.4: Visualization of the Rastrigin function; (a) between -5 and 5 and (b) between -1
AIA Lottt ettt ettt et te s seneenens 113

Figure 6.5: Visualization of the Schwefel functioncccoeoeveeieiiieiciiicce .114

Figure 6.6: Visualization of the Rosenbrock function; (a) between -2 and 2 and (b) around the
local minimum (between -0.5 and 1.5)c.coocoeuiiiiieieieeieeeeeeeeeeeee et 114

Figure 6.7: Visualization of the Griewangk function; (a) in the full range, (b) between -50

and 50 and (c) between -8 and 8ccoecuiiioiieiieieeeeeee e 116
Figure 6.8: Visualization of Ackley path function; (a) between -30 and 30 and (b) between -2
B0 ettt ettt et e teeteeae et et e b et et enrense st easestsesaseeeenanen 116
Figure 6.9: Visualization of the sum of different powers function..............ccccoeveveveveeeennnn. 117
Figure 6.10: Visualization of the Zakharov function.................cocccooeeeecevvesereeeeeseeeeen. 117

Figure 6.11: Visualization of the Langerman function; (a) for the first and second variables (b)
for the second and third variables with first variable set t0 Zeroccooveveuemenene... 119

Figure 6.12: Visualization of the Michalewicz function; (a) with variable 1 and variable 2 in
the range 0 to 3, (b) in the range 1.5 to 2.5 and (c) with variables 3 and 4 while variables
land 2 are setto zero inthe rang 0 t0 3ccooeiveieeiieiieeeeeeee e 119

Figure 6.13: Visualization of the Easom function; (2) between -20 and 20 and (b) between 1

A Sttt et en et e e eneeaen 121
Figure 6.14: Visualization of the Six-hump camel back function; (a) wide overview (b)

focused view around the MINimac.c.ovevieeeeeieieeeiereeeeeceeeeeeeee e 121
Figure 6.15: Visualization of the Branin functionocoovvevvmeeeeeeeeeeeeeeeeeesnan, 122
Figure 6.16: Visualization of the Hump functionccoceueveeeeiiieeeeeeeeeeeeeee e, 122
Figure 6.17: Visualization of the Matyas functionc.o.eeeeevvreeeseeeeeee s .124
Figure 6.18: Visualization of the Shubert function..............eoceeueereeeeeeeeeeeeeeeeeeeennn. 124
Figure 6.19: Visualization of the Trid functionccoeueiveeieeeeveeieeeeeeeeeeeeeeeeeeerennn. 125
Figure 6.20: Convergence of the 30 dimensions Sphere function.cceceevueveeeeverennn... 132
Figure 6.21: Convergence of the 30 dimensions Rotated hyper-ellipsoids function........... 132

Figure 6.22: Convergence of the 30 dimensions Axis parallel hyper-ellipsoids function.... 133
Figure 6.23: Convergence of the 30 dimensions Rastrigin function.c.coceevvveveveenennn... 133

X1i

Figure 6.24: Convergence of the 30 dimensions Schwefel function.cceoveveveeunnce.. 134

Figure 6.25: Convergence of the 30 dimensions Rosenbrock function...............coucuen....... 134
Figure 6.26: Convergence of the 30 dimensions Griewangk functioncccoccevevne.... 135
Figure 6.27: Convergence of the 30 dimensions Ackley function.............ccccoeuvveeuervevennn... 135
Figure 6.28: Convergence of the 30 dimensions The sum of different powers function...... 136
Figure 6.29: Convergence of the 30 dimensions Zakharov function............cocoveeeveeevevennn.... 136
Figure 6.30: Convergence of the 10 dimensions Trid function.coeeeeeeeeeveveevvenennn, 137

Xiil

PSO
WLC
SAW

MCDM
OWA

TSP
QAP
SGA
SEA

(Xe, X))
(X¢, %)
(X.Y")
2
VY

c;and ¢;

rand
A

S
NFL

EX(?)
ED()
{g(k)}

opt
ARPSO
SOC

List of symbols and abbreviations

Particle swarm optimizer
Weighted linear combination
Simple additive weighting
Multi-criterion decision making
Fuzzy ordered weighted average
Traveling salesmen problem
Quadratic assignment problem
Standard genetic algorithm
Simple evolutionary algorithm

Position of particle i at iteration k
Global best position at iteration k
Previous best position of particle i

Particle’s velocity in X direction

Particle’s velocity in Y direction

System’s parameters

Uniformly random variable between 0 and I

Fitness value for the i/ particle at " iteration

Swarm size ,
No free lunch theory
Inertia weight

Constriction factor

Expectation of X ()

Variance of X ®
Sequence of the generated global best positions
Optimality region

Attractive-repulsive PSO

Self organized criticality

X1v

LD
ghestx
pbestx
Nbestx
Randx
gbest

pbest

Nbest
Rndft
Xft
RF
TSPLIB
QAPLIB
STSP
ATSP
ICEO

n:A< B

P-value
ACO

Levenshtien edit distance

Position due to global best fitness
Position due to personal best fitness in agent memory

Position of agent that has the best fitness in the neighborhood
Randomly generated position

Global best fitness in the domain
Personal best fitness in agent memory

Best fitness value in an agent’s neighborhood

Fitness due to random position

Fitness at current position X *

Ranked fuzzy measure

Online library of the traveling salesman problem

Online library of the quadratic assignment problem
Symmetrical traveling salesman problem

Asymmetrical traveling salesman problem

International Contest on Evolutionary Optimization
bijective (one-to-one and onto) function from a set A to a set B
Imitation ranking index

Memory retrieval ranking index

Momentum ranking index

Play ranking index

Linear assignment problem

Best known solution

Average solution over given number of replications
Difference between the best known and the average solution
Difference between the BKS and the best solution
Mann-Whitney test statistic

cumulative distribution function

Level of significance

Ant colony optimization

XV

STD Standard deviation
77" Momentum rate
UPSO Unified particle swarm optimizer
FDR-PSO Fitness-distance ratio based particle swarm optimizer
FIPS Fully informed particle swarm optimizer
CPSO-H Hybrid Cooperative particle swarm optimizer

CLPSO Comprehensive learning particle swarm optimizer

Xvi

Acknowledgements

I would like to thank my thesis advisor Dr. Mo El-Hawary for his guidance and help.
During the period of my study I learned a lot from him; not only in my research but also
in several aspects of my life. It is really an honor to be one of Dr. El-Hawary’s students.

I would like to thank the supervisory committee members: Dr. Timothy Little and Dr.
William Phillips.

I thank Dr. Magdy Salama, the external examiner, for the time spent to read this work in
great details and for his valuable suggestions.

Finally, I would like to express my gratitude to my wife: Ghada Gabr for her patience and
endless support.

XVvii

Abstract

This thesis presents a new formulation for the swarm optimization technique as a
system of autonomous agents. The proposed technique is based on an intimate
understanding of swarms and animal aggregations in an attempt to simulate cognitive
thinking of their members. The dynamic balance between gregarious and social
intolerance behaviors demonstrated by social animals is used to form the swarm and keep
its persistence. In this work, members of the swarm are represented by agents that enjoy a
certain degree of freewill to respond adaptively to changes on the states of their swarm
mates. Adaptive responses are reflected on the way agents move inside the problem
domain. A new set of basic behaviors is defined, namely imitation, memory retrieval,
momentum, and play. A multi-criterion decision making process (MCDM) is employed
to update positions of swarm members in the problem space. Decision making
alternatives are defined from the set of basic behaviors. Fitness and diversity characterize
the decision criteria that are used to measure the performance of each alternative.
Levenshtien edit distance is used to measure the distance between agents in the genotype
space. Criteria are then standardized by means of fuzzy sets. Fuzzified values of criteria
are aggregated by the fuzzy ordered weighted average (OWA) to reach a single
evaluation function. The overall decision making process is made to promote both fitness
and diversity. The proposed technique is tested using the traveling salesmen (TSP) and
quadratic assignment problems (QAP). Results and comparisons show that the technique
outperforms the traditional particle swarm optimizer (PSO). Also, a comparison of the
proposed technique with the standard genetic algorithm (SGA) shows that comparable
results can be obtained. An extension of the proposed technique is also proposed to solve
optimization problems with continuous variables. For this class of optimization, a large
set of diverse benchmark problems is used to test the proposed technique. A comparison
of the performance with the simple evolutionary algorithm SEA and many other particle
swarm variants is also carried out. Results show that the proposed technique outperforms
other techniques included in the comparison in almost all the tested problems.

Xviil

Chapter 1 Introduction

Chapter 1: Introduction

1.1 Motivation

Animate matters do not behave the way inanimate complicated machines do.
There is always some sort of unforeseen randomness associated with the behavior of
animate matters, which is a feature that has always fascinated researchers observing
natural phenomena. The development of sciences like artificial life (Alife), complex
adaptive behaviors, and autonomous agents is a strong proof of that fascination. However,
designing a fully autonomous machine is very unlikely due to the fact that consciousness
and freewill cannot be coded in a computer language. Nevertheless, there are some
successful attempts to “resemble” such behaviors in a digital world.
Craig Reynolds [1] pioneered this field when he introduced the idea of boids (bird
+ android =boid [2]). Via mere observation, he simulated the process of birds flocking.
His model was built using a decentralized bottom-up principle where no central control is
imposed and the state of each individual in the swarm depends only on the state of its
adjacent individuals. Reynolds also defined the following steering rules for the boids:
1) Cohesion rule: to allow individuals to fly close to their flock mates.
2) Separation rule: to avoid collision with nearby flock mates.
3) Alignment rule: to match the direction with others.
In 1995, James Kennedy and Russell Eberhart [3] adopted Reynolds’s model to

solve optimization problems. Specifically, they exploited the cohesion and the alignment

Chapter 1 Introduction

rules of Reynolds’ and eliminated the separation rule [4] developing what is now known
as the particle swarm optimizer (PSO). Instead of aimless flocking, they employed a
simulated “cornfield vector.” This vector measures how far an individual bird is from a
food source, which is analogous to a function’s optimal solution. Surprisingly, this
simple paradigm is able to comparably solve optimization problems in several
engineering applications. However, the PSO is still relatively new and there are some
drawbacks and issues that need to be addressed further.

First of all, the PSO paradigm is based on Reynolds’ model, which has been
criticized due to the lack of ethological evidence and reliance on mere observation.
Moreover, Reynolds himself stated that “the animations showing simulated flocks built
from this model seem to correspond to the observer’s intuitive notion of what constitutes
flock-like motion. However, it is difficult to objectively measure how valid these
simulations are.” [1].

Second, the PSO system iterates by updating the so-called position equation. This
equation is constituted by adding two subjectively weighted terms namely: a social
component and a cognitive component. Aggregation of this type is called a weighted
linear combination (WLC) (or simple additive weighting (SAW)). Although it is not a
pure crisp application of AND/OR, reaching a decision on candidate moves using this
rationale is highly questionable [5]. Moreover, employing crisp logic expressed by an
accurate sense of geometrical terms like velocity and distance in swarms is hardly
imaginable [6]. _

Third, like many other heuristics, the PSO suffers from the problem of the
premature convergence. Members of the swarm could be dragged into the same region
(or point) in the search space causing a complete stagnation. This is a serious problem
and has raised the concern of many researchers in the field. Unfortunately, instead of
addressing causes, most of the work related to this issue focused on techniques to escape
local minima [7]. However, there are a few attempts that were suggested to directly
reduce the chance of trapping in local optima [8-12]. Rui Mendes [7] attributed the

premature convergence in the PSO to two main reasons:

Chapter 1 Introduction

1. Fully informed dense swarms: all members of the swarm have access to the global
best solutions in the search space. Accordingly, these solutions are rapidly
propagated through iterations causing a formation of clusters in certain regions.

2. Unused wealth of information: the PSO iterates by means of global best solutions
and best solutions found by its individuals. So, any other solution that is less in
quality than those two types are normally discarded as well as their corresponding
positions, despite the fact that these solutions might have valuable information
about other regions in the search space.

Discarding the separation rule defined by Reynolds [1] could also be another reason for
the premature convergence. This rule ensures that the flock mates fly close, but not too
close to each other in order to avoid collision. Collision in the particle swarm optimizer
means that two or more members occupy the same position in the genotypic landscape.
As a result, the diversity level needed to ensure that the system keeps iterating, drops and
eventually premature convergence takes place.

Fourth, due to its simplicity, many PSO modifications and variations have been
proposed over the last ten years [8-15]. Going through the literature one can easily
discover that the concept of the PSO is not fully understood. While there are many
proposals that have positively influenced the performance of the PSO, there are also a
few that appear to have a mixed understanding of the PSO and techniques that are built

after Darwin’s evolution.

1.2 Darwin’s evolution vs. animal aggregations and swarms

Swarm-based optimizers and evolution-based techniques have common features such as
population search mechanisms and random initialization. However, there are essential
differences between the two techniques. In this section, these differences are explained in

greater detail.

Simulated time frame:
> Evolution-based techniques represent a process that takes place over the

accumulation of millions of years.

Chapter 1 Introduction

» Swarm optimizers simulate short time missions such as migration, flocking,

roosting, and group hunting.
Principle:

» Techniques built by Darwinian evolution adopt the principle of survival of the
fittest.

» In swarm optimizers, a collective intelligence emerges by interactive
collaboration.

Members:

> Members of the population in the case of Darwinian techniques die off and new
offspring are produced through generations [13].

» Members of the swarm never die off and the same members continue to carry out
the mission until the end.

Persistence:

> In evolution based algorithms, advances made in the search space are achieved by
sexual reproduction (crossover) and asexual random variation (mutation).

> In swarms, advances are made by updating the positions of the swarm members.

Sources of innovation:

> In the case of Darwinian evolution, the main sources of innovation are genetic
operators such as crossover. This is a quasi-oriented process to combine two
parents in order to produce an offspring.

> In a traditional PSO, simulated cognitive and social components are subjectively
weighted and added together to form members’ candidate moves. In the proposed
technique this step is replaced by a rational decision making process.

Random variations:

» Generally, random variations are used to elevate the level of population diversity
that might be negatively affected due to the recombination process of two or more
solutions (in the genotypic sense). In Darwinian algorithms, the mutation process
1s simulated to achieve this purpose.

> In a traditional PSO, factors like random velocity, turbulence [14], and craziness

[15] are usually used as sources of innovation in the search space. In the proposed

Chapter 1 Introduction

technique, the play behavior demonstrated in the animal kingdom is simulated to

add a more naturalistic look to the swarm.

1.3 Proximity to autonomous agents

Autonomity of agent-based systems is just a relative (not absolute) feature that is set
by the designers. However, agents existing in a “digital” world have some properties that
were originally borrowed from agents in the real world. These properties can be stated as
follows [16,17]:

1. Autonomity: the power of decision making and taking control over their own

actions.

2. Identity and character: agents should demonstrate a certain degree of personality
to respond differently to others’ attitudes, to compare behaviors with those
previously observed, and to explore by means of random actions.

3. Sociability: the ability to communicate with other agents.

4. Flexibility: actions are not explicitly coded.

5. Adaptive learning: agents should be able to change their behavior as a result of
previous learning experiences.

6. Imitative interaction: agents should possess behaviors that allow imitation.

7. No specific role: no specific role is assigned to each agent.

The above properties summarize the main characteristics and the structure of autonomous

agent systems that are used to design the proposed technique.

1.4 Objectives

The main goals of the thesis can be summarized as follows:

1. Reformulating the idea of swarm optimizers for better performance and to gain a
clearer understanding in order to distinguish its identity among existing heuristic
techniques.

2. Introducing an autonomous agent system for the swarm that behaves in a more
realistic fashion due to its reliance on a credible study from the field of

sociobiology.

Chapter] Introduction

3.

The final intention of this work is to overcome most of the earlier mentioned

drawbacks in the traditional particle swarm optimizer.

1.5 Contributions

This work is highly motivated by the ability of animal aggregations to adapt to

changes in their environment. The main intention is to overcome the previously discussed

drawbacks in the traditional PSO. Accordingly, the contributions of this work can be

summarized as follows:

L.

Adopting a scientific ethological basis in forming and keeping the persistence of
the proposed swarm, instead of simple behavior observations used in the a
traditional PSO.

Defining a new set of basic behaviors that allows proximity to autonomous agent
systems.

Employing a rational decision making theory to obtain candidate moves in the
problem space instead of the subjective weighted addition used in the case of
traditional PSO.

Applying fuzzy logic to simulate the balance between gregariousness and social
intolerance behaviors.

Incorporating the diversity factor in the preferences of swarm members along
with the existing fitness factor.

Employing the Levenshtien edit distance [18] to measure the distance between
two individuals in the genotype landscape.

Addressing one of the most important problems in the field of combinatorial
optimization. The proposed optimizer is extensively tested using the quadratic
assignment problem.

Extending the proposed technique to handle optimization problems with
continuous variables. A diverse set of optimization problems is chosen from the

literature to test the technique.

Chapter 1 Introduction

1.6 Methodology

In order to achieve the goals set for this thesis, the following steps are carried out:

1. Reviewing materials on sociobiology to understand mechanisms of animal
aggregations and related behaviors.

2. Studying the multi-criterion decision making theory and criteria aggregation
functions.

3. Applying the acquired knowledge to design the optimizer.

4. Testing the algorithm using well known problems in the field of combinatorial
optimization (traveling salesmen and quadratic assignment problems).

5. Testing the proposed technique using real-valued optimization problems.

6. Analyzing and comparing simulation results with those obtained by other
techniques.

7. Reviewing and monitoring new related work through journals and conferences’

participation.

1.7 Thesis outline

Chapter 2 starts with an explanation of terminologies associated with the particle
swarm optimizer followed by a description of the original version and different variations
of the algorithm. Other related issues such as stability, convergence, and diversity are
also reviewed.

Chapter 3 presents the necessary biological background needed for the theory used in
building the proposed technique.

Chapter 4 presents the proposed technique along with a detailed description of new
mechanisms employed to build the algorithm.

Chapter 5 is dedicated to testing the performance of the technique with the traveling
salesmen and quadratic assignment problems. The comparisons and results are also
presented in this chapter.

In chapter 6, the proposed technique is extended to handle optimization problems with
continuous variables. Experimental tests of a large set of benchmark problems along with

comparisons with other heuristic techniques are also included in this chapter.

Chapter 1 Introduction

Chapter 7 summarizes findings of this work and suggests some directions for future

research.

Chapter 2 Literature Review

Chapter 2: Literature Review

2.1 Introduction

Since the dawn of civilization, human beings have enormously influenced the way
of life on Earth. More than any other living species, humans have developed major
innovations and great achievements that would not be possible without intelligence. The
intelligence that evolves by abstract reasoning is a unique feature to humans. Abstract
reasoning is defined as “the ability to analyze information and solve problems on a
complex intangible level.” [19] There is no doubt that humans are immensely proud of
their intelligence in a way that highly affects their desire to design smart machines.
Scientists have always dreamed of designing a machine that can perform tasks beyond
computing. They have dreamed of machines that are able to learn, adapt, think, make
decisions, and possess intelligence. It turns out that human intelligence is too complex to
synthesize and experiences in this direction are very modest (neural networks, expert
systems, and problem-oriented robotic schemes). Perhaps the ultimate artificial
intelligence model would be a human clone.

Because intelligence is social, scientists started looking at other species that live
in social groups. They found out that among animals, only those who live in aggregations
and swarms are able to survive longer and adapt better than others. Cellular automata
theory and the growing interest of decentralized thinking trends have highly contributed
to the development of the artificial life science (Alife). It is the field of simulating
behaviors of natural complex systems, either out of fascination or to better understand
these behaviors.

Reynolds’ boids model [1] is considered a milestone in this field. He simulated
the flocking behavior of birds using simple decentralized interactions among simulated

birds. In 1995 Kennedy and Eberhart [3] were able to manipulate Reynolds’ model to

Chapter 2 Literature Review

solve optimization problems developing a new technique called a particle swarm
optimizer. In this chapter, a review of the literature on the particle swarm optimizer is

given along with some variants of the algorithm.

2.2 Cellular automata, emergence, and swarms

Generally, the concept of automaton is very old and can be described as a
mechanism that is able to self-operate by following a sequence of pre-described
instructions without intimate intrusion of human element [20]. Von Neumann is a very
famous mathematician who lived between 1903 to 1957 and who is known for his
contributions in both sequential and parallel computing systems. His work aimed at a
broader sense of automata, a self-replicating machine that is able to replicate itself and
create automata that are even of a higher order than itself [21]. Von Neumann first tried
to design a kinematic model for that automaton but soon discovered that it would be hard
to work with it due to motion and geometry considerations. He later employed the notion
of “cell space” as per a suggestion from his colleague mathematician Stanislaw Ulam to
reduce the spatial complexity from three dimensions to two [22]. Cellular approaches
were then adopted to describe self-replicating automata that are now known as cellular
automata. A cellular automaton is a decentralized computing structure that facilitates the
emergence of complex behaviors from simple local interactions among its cells. It
consists of a regular array of cells on a grid which can be of » dimensions (typically one
to three) [23]. Each cell on the grid can be in one of a finite number of states. The
dynamism of the cellular automaton is a result of progression in a discrete time by
updating the state of each cell using a set of pre-specified deterministic rules called a
transition function. The state of each cell in the succeeding step is completely determined
by its current state and the states of its neighboring cells. The one-dimensional structure
is the simplest type of cellular automata. In this type the automata array is one row of
cells, where each cell has one of two possible cases (for example; / or 0). The
neighborhood is defined by 3 cells: the center, the left, and the right cell. The
neighborhood possibilities are represented by binary numbers starting from (771);
descending to (000), [24]. The transition function that determines the state of each cell in

10

Chapter 2 Literature Review

the next step can be any form of the known updating rules. For instance, Rule 30 is
considered for this example. This rule is proposed by Stephen Wolfram [25] to map three
bits to one bit according to the logic expression:

Rule 30: XOR[p,OR[q,r]] (2-1)

The vanables p, g, and r are states of the left, center, and right cell respectively.

Accordingly, the rules can be arranged as in Table 2-1.

Table 2.1: Transition function using Rule 30 for a one-dimensional cellular automaton.

Left neighbor p | Current state ¢ | Right neighbor r Next state
1 1 1 /6\ \
1 1 0 / 0
1 0 1 0
1 0 0 1
0 1 1 1
0 1 0 1
0 0 1 \ 1 /
0 0 0 ‘Q/

4

(00011110),=(30),,

The rule is named by the result of evaluating the logic expression over the given
neighborhood topologies in the specified order. In that case, the expression described by
Equation (2-1) for the arrangement shown in Table 2-1 is equal to (00011110),, which
corresponds to 30 in the decimal system. To visualize the complex pattern that has
emerged by updating the state of each cell according to this rule, the color black is given
to cells that have /-state and white for cells with 0-state [25]. In that sense, Rule 30 can
be described as shown in Figure 2-1. Starting with a row of cells with only one “life”
(black) cell in the middle, the pattern shown in Figure 2-2 will emerge after 15

progressive steps of states’ update by using the specified rule.

11

Chapter 2 Literature Review

IBI IBD ?] D=I D=EI L_lil i l

D 0 0 1 1 1 1 0

Figure 2.1: Visualizing Rule 30 in black and white [26]

<«+—— sdoajg

—» Cells

Figure 2.2: The evolved pattern after 15 steps [26]

More complex patterns can emerge by using cellular automata of higher orders.

The main reason that attracts researchers to cellular automata is its impressive
feature of emergence. It is a property of complex systems that has recently received much
attention and has played an essential role in developing “intelligence” without
complications. Although there is no formal definition of the emergence, it is highly
associated with the scale as referred by P. Anderson in his interesting article “More is
different.” [27] He stated that “the behavior of large and complex aggregates of
elementary particles, it turns out, is not to be understood in terms of a simple exploration
of the properties of a few particles. Instead, at each level of complexity entirely new
properties appear, and the understanding of the new behaviors requires research which I

think is as fundamental in its nature as any other.” [27] For example, on a molecular scale,

12

Chapter 2 Literature Review

a single molecule of H;O does not tell anything about liquidity, but a collection of
millions of molecules forms water [28]. On neuron scale, the study of one neuron does
not suggest consciousness but a collocation of millions of interacting neurons creates
consciousness [28]. Swarms and animal aggregations are also eligible for that; behavior
of solo individuals as a part, tells nothing about the stunning achievement that can be
done by the whole. Attaining goals via this approach is attributed to the intelligence that
emerges by interactions within a group of primitive individuals and is known as swarm
intelligence. Particle swarm optimizer (PSO) falls under this category.

Like cellular automata, in the PSO, intentions are not explicitly coded. Instead,
solutions emerge by updating the positions of individuals according to their own
experience and attitudes acquired from others. Unlike cellular automata, the state of
individuals in the PSO can take continuous values. Also, the locality is not an exclusive
property of the neighborhood in the PSO since states of individuals outside adjacent

neighborhoods can be also considered.

2.3 Original particle swarm optimizer

A particle swarm optimizer is a population-based search technique that aims at
solving nonlinear multi-model optimization problems without the need to calculate
derivatives of objective functions. This technique was inspired by simulated flocking
models in artificial life science. Kennedy and Eberhart [3] noticed the analogy between
birds flocking and function optimization, especially at times when birds cluster around
sites that they have no prior knowledge about. To simulate their idea for function
optimization, they assumed a simulated site at the coordinate (100,100) in a two
dimensional XY grid and set their swarm to find this site. The nearness (fitness) of an
individual to the simulated target is calculated using a so-called “comnfield vector”

(Equation (2-2)).

i =(X] =100)7 +/(/ ~100)? 2-2)
Where (X, ,Y,): the position coordinates that correspond to the fitness value £ for the i

individual at £ iteration.

13

Chapter 2 Literature Review

Individuals also remember their best fitness value F' (best position reached by this
individual) and its coordinates (X',Y") . Individuals compare their current position
(X,.,Y,) with their best position(X',Y"). In X direction, if the current position is situated
to the right of the best position; the position in the next step is updated by reducing the
speed in X direction (VX) by the amount c,rand according to Equation (2-3) (c; is a

system parameter taking constant value and rand is a uniformly random variable between
0 and 7). If the current position is located to the left of the best position; the position in
the next step is updated by increasing the speed in X direction (VX) by the amount

c,rand according to Equation (2-4).

if X,>X' .. VX], =VX|-crand (2-3)

if X,<X' . VX.,=VX]+crand (2-4)
The position in Y direction is also updated up and down by adjusting the speed in Y
direction (VY) as described by Equations (2-5) and (2-6).

if Y. >Y' . VY., =VY —crand (2-5)

if Y, <Y .. VY,=VY! +crand (2-6)
Moreover, individﬁals have access to the global best fitness F,f that has been found by
one of individuals and the corresponding position(X §,Y,#). They compare their current
position (X,,Y;) with the global best position (X 2,Y¢). Then, the position is updated by

the same manner using Equations (2-7) to (2-10) as described above. The value of the

system parameters c¢; and c, was set to 2.

if X.>X§ .. VX.,, =VX]-c,rand 2-7)
if X, <X§ .. VX],, =VX]+c,rand (2-8)
if Y/ >Yf - VY., =VY —c,rand (2-9)
if Y. <YE . VY., =VY +c,rand (2-10)

In their simulation, Kennedy and Eberhart used swarm sizes between 15 to 30 individuals.
Surprisingly the flock was able to cluster around the simulated cornfield that was marked

by a circle in the XY pixel plane after a few iterations. Instead of the crude inequality test

14

Chapter 2 Literature Review

used to adjust positions, the authors suggested a simplified version based on the
differences between current positions as well as both personal best positions and the
global best position as described by Equations (2-11) to (2-14) where c;rand and crand
are dimensionless. The iterative process was terminated when successive values of global
best solution were fixed or the difference between them was less than or equal to a pre-

specified tolerance & (Equation (2-15)).

iy g _ vyi
VX,. =VX;+crand X=X +c,rand X=X (2-11)
At At
; ; Y -Y! YE-Y!
VY, =VY +crand (——Q +c,rand & =) (2-12)
At At
X =X +VX' At (2-13)
Yo, =Y +VY,, At (2-14)
[FE-Fgl<e g=12...8 (2-15)

Due to its simplicity, PSO has attracted many researchers from different
disciplines. In an online search on the IEEE electronic library alone, from the year 1995
to the end of 2006, the query “swarm optimizer” has produced over a 1000 articles. For
the first 7 years (1995-2002) the appetite to explore the technique was not that big. From
2003 to 2006, the number of published works in the PSO has dramatically increased, as
shown in Figure 2.3.

15

Chapter 2 Literature Review

500 -
450 b —-
400 b oo -
B50 oo ;
c 7o S -
.0 -1 |-
200 -
150 -
100 - S

BO oo
; o] |

T H T T T T

IEEE Publications

@ B B R, Y, B, B, B, %, %, Y,

Year

Figure 2.3: PSO publications from 1995-2006 (IEEE).

The PSO has been applied to solve optimization problems in several research areas. In
many cases, the application of the PSO is accompanied with some modifications. These
modifications always target the position update equation (Equations (2-11) and (2-12)).
In the next subsections, some PSO variants, modifications, and issues related to PSO are

reviewed.

2.4 Inertia weight

Inertia weight factor is the first significant modification that has been made to the

PSO. The factor was proposed by Shi and Eberhart [29] to play a balancing role between

local search and global search abilities. According to the authors, the inertia weight can

be a constant value, linear, or nonlinear time-variant functions. The inertia weight (W) is

introduced to the position update equation as described in Equation (2-16).
(X' - X)) (Xf-X))

VX0 =W*VX| +c,rand~——%L 1 ¢ rand

2-16
At At ()

16

Chapter 2 Literature Review

Simulation results that have been obtained by the authors suggested that inertia weight
values in the range of [0.9, 1.2] would lead to a better performance. A linear time-
decreasing inertia was also tested. A significant improvement of the performance was
claimed by authors in the case of the decreasing inertia factor [29].

In reference [30], the same authors compared the impact of a constant inertia and
a linearly decreasing inertia on the performance of the PSO. They found that the
decreasing inertia weight starting at a value of 1.4 at the beginning of the search and
diminishing to zero by the end, is better than the fixed value inertia. According to the
authors, a higher value of inertia at the beginning of the search facilitates wider
exploration of the domain while the small value at the end allows fine tuning. They
finally concluded that the proper value of the time decreasing inertia would start at 0.9
and end at 0.4.

In contrast, Zhang et al. [31,32] have empirically tested a linearly time-increasing
inertia weight for the same purpose. Their setting for inertia weight was the opposite of
the setting proposed in reference [30]; the inertia weight is set to start at 0.4 and end at
0.9. They argued that both global and local searches can benefit from the small inertia
weight. In that sense, assuming a small inertia weight at the beginning will not do any
harm to the global search required at that stage. Moreover, a large inertia weight can help
stabilize the algorithm at the end of the search process when it is needed most. The
authors were able to get better results than those obtained using the decreasing inertia
weight in terms of accuracy and speed of convergence. However, decreasing the inertia
weight seems appealing to the majority of people who work with the PSO.

It seems that neither of the two strategies described above would be wrong.
Nevertheless, the apparent contradiction is just due to lack of hypothetical inference and
an expected implication of the No Free Lunch theory (NFL:“....for any algorithm, any
elevated performance over one class of problems is offset by worse performance over
another class” [33]).

Nonlinear classes of inertia weights have been also explored. In reference [34] the
authors proposed a nonlinearly decreasing inertia weight in the form described in

Equation (2-17).

17

Chapter 2 Literature Review

w, =[k.mk_—k} * Wy~ W)+ W, 2-17)

Where:

Wy: inertia weight at iteration k

k: iteration index

n: a user defined modulation index

koo maximum allowable iteration number

Win and Wy,: initial and final values of inertia weight factor respectively.

The authors also defined a so-called inertia slopem =(W,, —W,,)/k_, . Here, the

PSO system can be identified by a set of three parameters {W,,, m, n}; giving that all
other parameters are kept untouched. For n=1, the inertia weight factor will be a linearly
decreasing function as the one described in [29] and [30]. The authors reported that a
successful tuning of the three specified parameters could lead to better solution. As a
result of their simulation, they suggested that values of Wi, =0.2, m=-2.5*107 and n
=].2 would be satisfactory.

Lei et al. [35] proposed a PSO version with an inertia weight factor that can take
multiple values within the same population. Different values for inertia are generated by
using the Sugeno complement operator as described in Equation (2-18).

=%)
kzw; s>-1 (2-18)

In that case, a set of monotonic inertia weight curves can be generated by assuming
different values for the parameter s in Equation (2-18). For example, a value of s=0
would result in a linearly decreasing inertia weight.

It is not clear from reference [35], on what basis individuals are assigned to different
inertia weights. Apparently, the entire swarm is divided into equal sub-swarms and each
one is run with a different inertia weight. According to the authors, over the course of
iteration, global optima obtained by sub-swarms are examined at every definite interval.
Then, the inertia weight that results in the worst global optimum is replaced by the one

that produces the best global optimum. This process is repeated until the suitable inertia

18

Chapter 2 Literature Review

weight dominates the entire swarm. The authors claimed that this strategy was able to
speed up the convergence of the PSO.

Natural exponential forms were also among the functions that have been reported
in the literature for the inertia weights. In two independent papers, Chen et al. [36,37]
proposed several natural exponential functions for the inertia weight factor. Equation (2-
19) describes a so-called self-active inertia where inertia is adjusted adaptively according

to the fitness progress rate A(k).

Ak)

Wy =Wy + (Wi =T, % 26D (2-19)

A(k) =|f (k)= 1 (k -D)| (2-20)
The other two functions are described by Equations (3-21) and (3-22). Initial and final
values of inertia weight are often assumed to be 0.9 and 0.4 respectively as recommended

in reference [30].

kmax
Wy =Wyt Wy ~W)% 10 (2-21)
_[k/kmax]’.7
W, =W, + (W =W) ke (2-22)

2.5 Analysis of the particle swarm

Over time, a misleading fact about the PSO being a global optimizer was
established. Yet, there is no analytical proof that the simple paradigm of the PSO can
even converge to a local optimum. Moreover, the stability of the PSO is not guaranteed
unless special damping factors are incorporated. Due to its stochastic nature, the so-called
“drunkard walks” [38] of the particles during the course of the search process might
cause the PSO system to “explode.” Explosion can be in the form of exploring areas
outside the domain. This can also take place when the system does not terminate in a
finite number of steps. It is known that limiting the steps taken by particles to the upper

bounds of the problem’s variables is a good choice to avoid instability.

19

Chapter 2 Literature Review

2.5.1 Trajectory analysis

Ozcan and Mohan [39,40] have introduced the first study on the behavior of PSO
by analyzing the trajectory of motion. Although they did not specifically comment on the
convergence of the PSO, their work gave some insight into possible trajectories of
particles during the search process. The authors analyzed the behavior of a simple PSO
(no inertia factor) described by Equations (2-23) and (2-24). For simplicity, dimensions
in velocity and position update equations at a given time ¢ for an individual i are reduced

to one dimension.

V(o =V.(t-D+o[l(0)- X,(: -D]+p,[g(t) - X, (t - 1)] (2-23)
X0 =X,t-D+V,() (2-24)
where

g(¥) and [(?) are the global best and personal best positions respectively.
@, =c *rand
@, =c, *rand
Further assumptions about the PSO system have been made by the authors to make the
analysis more tractable.
Assumptions:
1- Deterministic PSO: The stochastic nature of the PSO was neutralized by assuming
constant values for ¢; and ¢,; @, = ¢, = constant .
2- No interaction: Analysis was made for a single particle (symbol i is dropped).
3- Global best and personal best positions were kept constant and equal during the
analysis; [= g = constant = p
Accordingly, Equations (2-23) and (2-24) can be simplified further as in Equations (2-26)
and (2-27).

V)y=V-D+elp-X(t-D]+e[p-X(-1)] (2-25)
V) =V(i-1)—eX(t-1)+gp (2-26)
X(@O=Xt-D)+V(@) (2-27)

where ¢, + @, = ¢

20

Chapter 2 Literature Review

By substitution between Equations (2-26) and (2-27), a non-homogenous linear
recurrence Equation (2-28) is obtained.

XO-Q-9)Xt-D)+XE-2)=¢p (2-28)

A solution to the position update equation expressed by recurrence Equation (2-28) is

described by the closed form (2-29), assuming initial conditions of V'(0) = v, ; X(0) = x,

and X(D)=x,(1-@)+v, +¢p.

X(t)=aZ) + pZ;+p (2-29)
where;
Z, =2—¢+5
2
z, _2-¢-6
2
S=+o'~4p
B =(x—pN6+9)/(26)—v,/6
a=x,—-p-p

The shape of the particle’s trajectory is completely defined by the value of § providing
that other system parameters are kept constant.

Real-valued § (¢ > 4):

Assuming that the particle starts at X(0)=x,=p=0; the trajectory Equation (2-29)

would be as described by Equation (2-30).

vo-{) (5=

It is clear from Equation (2-30) that the trajectory is described by an increasing

exponential function that might cause the particle to move outside the domain.

Complex-valued (p < 4)

Imposing the same initial condition as above; values of Z;, Z5, 6, f, and a will be complex
and the trajectory of the motion in this case can be described as in Equation (2-31).

_2-p+6

Z
! 2

21

Chapter 2 Literature Review

Z, - 2-¢9-0'

2
S'=i igoz - 4(0)
B=-v,/8
a=-4
X(6) = (2v, /|8 sinér 2-31)
where @ = tan‘{ﬂj

2-9¢

In this case, the trajectory is a sinusoidal wave. As a result, the particle could periodically
visit the same regions that have been already searched before.

At the root (p =0)

The recursive Equation (2-28) will be:

X@)-2X@t-D)+X(t-2)=0 (2-32)

The solution yields the closed form 2-33.
X(0)=(x,~ p)+ vt (2-33)
Assuming X (0) = x, = p =0, the particle in this case will keep moving with the initial

velocity until the end.

At the root (p =4)

In this case, the recursive Equation (2-28) can be written as in Equation (2-34) with a
closed trajectory form (2-35).

XO+2X(t-D)+X@-2)=4p (2-34)

X =(x = P)+Qx—p) =)D +p (2-35)

Imposing X (0) = x, = p = 0; the trajectory will yield the form X (¢) = —vt(-1)".

In this case the particle will move back and forth with the initial velocity.

2.5.2 Stability analysis
Kennedy and Clerc [38] have also studied the behavior of the PSO. Their study

was aimed at examining whether the simple PSO is able to eventually terminate at an

22

Chapter 2 Literature Review

arbitrary point or not. Alternatively, they examined the velocity of particles, which
supposedly converges to zero after a definite time at that point. The convergence point is
not necessarily a local or a global optimum. Again, the authors assumed a one-
dimensional single-particle system for their analysis. They deduced a slightly different
representation that will be reproduced in this section. The model is a state space one,
which is completely defined by the eigenvalues of its state matrix. Assuming constant /, g,

@1 and ¢, the velocity of a single particle in one dimension at time 7+ is repeated below:

Va+)=V(@O)+oll-X(O)]+plg - X()]
Ve+D)=V(t)+ol-9X(1)+0,g -9, X))
Vi+D) =V + (o +o)l(@l+9,8) (@ +¢,) - X(1)]
The authors made the assumption that p=(g/+¢,2)/(p +@,) and ¢ = o+, .
Accordingly, the velocity update equation will be:
Ve+D)=V@®)+elp- X))
With y(f) = p — X(¢), the velocity update equation is now:
Ve+)=V(E©)+ () (2-36)
The same arrangements are made to the position update equation; as described below:
Xt+D)=X@O)+V(t+1)
Substituting by the value of V(#+1) from Equation (2-36);
XE+D=XO)+V(@)+@(0)
Multiplying by -7 and adding p to both sides of the equation;
p=X@+)=p-XO)-V() -t
LY+ =y -V (@O - ()
ye+) =V @)+ 1-9)y) (2-37)
This results in a simple dynamic system specified by Equations (2-36) and (2-37) with a

state matrix M as shown below.
Vie+D) =V (@) +o(r)
yE+) ==V (@) +(1-p)y()

23

Chapter 2 Literature Review

1
M= 4
[—1 1—¢]

The authors studied this model and they found that, in order for this system to converge

the condition of max(e1|,|e2|) <1; where e; and e; are the eigenvalues of M, has to be

satisfied. Again, the concept of convergence that has been reported to this point is just the
convergence on its weakest form or the stability of the PSO as a dynamic system. A

dynamic system is said to be convergent if limV(f)=0 at an arbitrary point 4;

wherelim X (f) = 4. Accordingly, another model with a constricted velocity to prevent

1>

divergence was proposed. The idea was to introduce a PSO system with
eigenvalues ¢ ande, that already satisfy max(lel' I, 'e'z ’) <l.

The constricted velocity update equation was described as:

Vie+D) =2V () +e)]

where y is the constriction factor.

Therefore, the position update equation has become

X+)=XO)+ 2V () + ()]

p=X(t+D)=p-X@O) - 2V(O)+ ()]

Y+ =y(O)- 2V () - xp(?)

ye+D) ==V (O + (1 - z9)¥()

The new constrained state space model is now described by Equations (2-38) and (2-39)

and M'.

V(ie+D)= V() + yov(t) (2-38)
Y+ =—2V()+ (- yp)y() (2-39)
Ve [r xe }

-x l-yxp

To gain more control over the convergence rate they defined 5 parameters a, B, v, 8, and

n for the system as below:
Vi+1)=aV () + Bey(t)
Y+ = (1) +(6 -ne)y(1)

24

Chapter 2 Literature Review

Kennedy and Clerc derived several formulae for the constriction factor based on different
settings for the five control parameters. The advantage of using the constriction factor is
that the need to confine the steps taken by particles by the maximum limits of the domain
variables is now eliminated. Although all proposed constriction factors have the same
purpose, which is avoiding instability by constricting the velocity from growing
excessively, they vary in their effect on the convergence rate. The authors suggested
employing a moderate constriction that allows exploration of the entire domain and
prevents premature convergence to an unwanted point. The most common constriction

factor is described as:

2k
x= ,
’2_¢_\/¢2"4¢

The trajectory of a simple PSO with inertia weight was also analyzed by F. Bergh

withg=c,+c,24 and ke [0,1]

[41] to provide guidelines for the choice of the parameters c;, c;, and W. In addition to
insights about the stability of the PSO, he also addressed the ability of the system to
converge to local and global optima.

The velocity update equation for the one-dimensional single particle at time 7+/ was also

considered. So, the velocity of that particle can be specified by:
Ve+1)=wve)+ern@Ol@®) - X))+ (t)[g) - X ()]

where r; and r; are uniformly distributed random numbers between 0 and /.

Ignoring randomness and assuming constant /, g and W, the equation can be rewritten as:
Va+D) =WV +eall - X(O]+@,[g - X (1)]

Hence, the position update equation becomes:

XE+D)=X@O+WV D)+l - XO)]+plg - X ()]

XD =(1-0 -)X+ WV () + @l + 0,8

Substituting by V(¢) = X(¢) - X (¢ -1)

DX+ D=1+ W -0 -0) XO)+ WX -D+ ol +o,g

The solution to this non-homogenous recurrence relation, assuming initial conditions
X(0) = x, and X (1) = x, was given as:

X)) =k +ka +kp (2-40)

25

Chapter 2 Literature Review

where;
k = pl+ o8 (2-41)
o +o,
Y=+ W ~@ — @)} — W (2-42)
a=1+W_¢1_¢2+7 (2_43)
2
ﬂ=1+W_¢;_¢2_7 (2-44)
x,=(1+W-@ -0,)x, +Wx,+ ¢l + @,g (2-45)
k, = Bl —x)=—x +x, (2-46)
y(a-1)
alx, —x,)+x, —
= (o —x)+x, —x, (2-47)
y(B-1)

From Equation (2-40), in order to have convergence, the condition max(||a”, ” ﬂ”) <lhas to

be met. If the convergence is made available, the PSO system will converge to the

point X =k, = 2LEPE - pere tim X (1) = k, + ko' + kp =k
¢1 + ¢2 o

Assuming convergence at
X =k =t eg
o +o,

cx=—b_ . %
¢l+¢2 ¢’l+¢2

X=(-—2_y+ % ,
o+, o+e

X=(10-a)l+ag

where a=—22_ [0
P+

This means that the system will converge to a point X, which is a weighted mean of
personal best / and global best g.
The criterion for selecting c;, ¢z, and W that ensures the convergence of the PSO was

empirically proven to be:

26

Chapter 2 Literature Review

W>%@+@y4 (2-48)

Example for non-convergent parameters setting (original PSO)

The author tested the convergence of the originally developed PSO (c;=2, c,=2

and W=I) using his findings. It is clear that the criterion in Equation (2-48) was violated

since%(cl +c,)-1=1=W.

Also the condition of whether max(|a],|,]) < 1or not was also examined by calculating

b

values of a and B as follows

Substituting ¢ = ¢, + ¢, and W=1 into Equation (2-42).
y=v(2-9)’ -4
Ly =iip—¢’

Since y is a complex, a and f become complex conjugates and are calculated as in

Equations (2-43) and (2-44).

o= 2-@+idp-@°
2
a=222,; V49— ¢’
- 2

2

2 2
.'.||a"=\/(2_¢) +4(0—¢’ =1
4 4

This means that“ﬂ” = ”a” =1, therefore the condition for convergence (max(”a”, ”,B”) <1)

is violated and the system will diverge regardless of the value of ¢. This explains the
importance of limiting the velocity in this setting to ¥,,4 in order to reach a convergence
state.

Due to the fact that a and # are complex, the PSO trajectory in this case yields the
sinusoidal wave described below.

X(2) =k, + k,[cos 6 + isin 6]+ k,[cos & —isin &]

where 6 = arg(a) = —arg(f)

27

Chapter 2 Literature Review

Although the trajectory equation seems bounded, the convergence takes place due to the
oscillation effect that has been resulted from the sinusoidal wave. Thus, the particle is not
flying in hyperspace but rather searching the problem domain by surfing sinusoidal

waves [40].

Example for convergent parameters setting

F. Bergh [41] gave the following example for convergent PSO parameters; a

choice of ¢;=c,=1.49618 and W=0.7298. 1t is clear that the relation 2-48 is satisfied in

this case since%(c1 +¢,)—1=0.49618 <W . To examine the condition for convergence

(mx(le],

ﬂ”) <1); v, a and # are calculated

Y=+ W — @) —aW

¥ =/(1+0.7298 — p)* — 4(0.7298)

¥ = (0= 0.02122)(¢ — 3.4384)

There are two cases:

Case 1: yisreal if

(¢ 20.02122) and (¢ > 3.4384) , which is not acceptable because ¢ € (0,c, + c,) when
r,r, € U[0,1].

Or

(¢ <0.02122) and (¢ <3.4384)

So v 1s real for values of ¢ €[0,0.02122].

Accordingly, for real-valued y

1.7298 — 9+ /(9 — 0.02122)(p — 3.484) o

max{a} | = - ¢

Case 2: y is complex if

(¢ <0.02122) and (¢ > 3.4384), which is not acceptable.
Or

(9 >0.02122)and (¢ < 3.4384)

28

Chapter 2 Literature Review

So y 1s complex for values of ¢ €(0.02122,2.992] (note that, for this setting the value of
¢ 1s limited to c;+c,=2.992 rather than 3.4384).

Accordingly, for complex-valued y

a_1+W—¢+iJ4W—(1+W—¢)2
N 2

LW — @ — iAW —(1+ W - p)?
- 2

1+W -@)’ 4W-(1+W -9
ﬁ”)=”a”="ﬂ”=\/(+W4 ey, (“;) _0.8542<1

B

max(“a

>

Therefore, a PSO system with this setting will converge for all values of ¢ providing that

c1=c;=1.49618 and W=0.7298 without the need to limit the velocity to V4.

2.5.3 Stability of the stochastic PSO

From the above discussion, it can be concluded that the generic PSO does not
converge unless certain precautions such as velocity clamping and careful choosing of
parameters are made to ensure the stability. Although those kinds of behavior analysis
have provided valuable information about the technique, none of them reflects the reality
of the PSO. Assuming deterministic PSO by ignoring the stochastic behavior
demonstrated by »; and r; , has caused a loss of precision in the studied models.
Moreover, assuming time-invariant values for / and g does not seem to be the case with
the PSO. Practically, these variables are allowed to change over the course of iterations.

It was not until recently that the stochastic nature of the PSO has been taken into
consideration with the issue of convergence. In reference [42], the PSO was analyzed
using the stochastic process theory. The particle’s position is considered as a stochastic
vector. First the authors adopted the one-dimensional single particle model and then the
analysis was relaxed to include D-dimensional, M-particle representation. Also, the

authors allowed both the global best position (g) and the personal best position (J) to
change over the time as () and/ (#) respectively. The convergence of expectation and

variance of the random variable representing the particle’s position was employed to

29

Chapter 2 Literature Review

address the convergence of the system itself. In this case the particle swarm system is

said to be convergent if:

X .(t) converges in mean square to P Vie{l,2,....M }
Or yet, lim E|X, (1) - A =0.

Where:

X () 1s the position of i particle at time

EX .(¢)is the expectation of X (1)

P isan arbitrary position in the search space

M is size of the population

It also implies that in order for X,(7) to converge in mean square to P, lim EX (t) = Pand
—w®

lim Eﬁj (z) = O have to be simultaneously satisfied, where ED,. (#) 1s the variance.
120

The study found that the particle swarm system will converge in mean square to g when
the following limitations are satisfied:

W,c,c, 20

0<w<l1

¢ +c¢,>0and

0< £(1) cal+m o

cre

SO =—(c+c,)W* + (%cf +%c22 + %clcz)W +c,+c, —%clz —%czz —%clc2
Although the resulting relations seem very restrictive, settings that are empirically proven
to be good choices fall within these limits [42].

A stability analysis of the stochastic particle dynamics was also presented in [43].
A less generalized model was considered by assuming the position equation for the best
particle (i.e. /=g). During the analysis, the value of / was assumed to be time invariant
equal to a constant p (/=g=p). Sufficient conditions for stability were driven by using the
Lyapunov stability analysis. The stochastic PSO system was described by a set of

Equations (2-49) — (2-51).

30

Chapter 2 Literature Review

E(t+1) = AE() + Bu(f) (2-49)

y()=C5() (2-50)

u(t) =-p(1)y(t) (2-51)
X0-p) , (v wY (1)

where £(f) = (r) j , A= (0 W} B= (J C=(1 0)and

PO =)+ @), 0<p(t) < +c,

the Lyapunov stability theory is based on the fact that the total energy function of the
system should be monotonically decreasing in order for this system to be asymptotically
stable (i.e. f(£(t+1))— f(£(2)) <0, where f'is a Lyapunov function). The authors proved
that the system described by (2-49) — (2-51) has a unique equilibrium point at p, which is
asymptotically stable if:

200-2w|+w?)
W|<1, W=0and ¢, +c, <

1+W

This analysis is valid only for the best particle whose personal best position is the same as
the global best position and is not applicable for any other particle. The authors stated
that “violation of the stability conditions does not imply instability; rather that stability

cannot be guaranteed.”

2.5.4 Local and global convergence

In the earlier sections, analytical studies concerning the stability of the PSO and
convergence to an arbitrary point that does not necessarily coincide with local or global
optima are reviewed. In this section, a different prospective of convergence is reviewed.

The PSO system converges to a local/global optimum if:
lim{g(k)}=X", X'eR,

Where:

{g(k)} is the sequence of the generated global best positions
R, 1s the optimality region (locally or globally)

The ability of the PSO algorithm to converge to local and global optima was discussed in
[41], [44] and [45]. The authors of these references used the criteria derived by Solis and

31

Chapter 2 Literature Review

Wets [46] for stochastic search techniques to study the convergence of the PSO. For

convenience, Solis and Wets theorems on convergence are informally reproduced here

from reference [41]. Solis and Wets proposed three conditions for the convergence of

stochastic search algorithms. Specific combinations of these conditions will determine
the type of convergence.

> Hj: a new solution constructed by the algorithm should be no worse than the
current solution.

> Hj: the probability of repeatedly missing any sub-area s e S (where S: the area of

the entire search space) during the search should be zero, which implicitly means

that the probability of visiting areas inside optimality region R,, should be

NONZero.
> Hj: during the search process, the algorithm is able at every step to move an
arbitrary point z closer to optimality region by at least distance y with probability
greater than or equal to nonzero 1.
Thus, the theorems of Solis and Wets on local and global convergence as stated in
reference [41] are:

Theorem 1 (local search): suppose that f is a measurable function, S is a measurable
subset of R” and H; and Hs are satisfied. Let {z,};., be a sequence generated by the
algorithm. Then,
zi_r)gP[zk eRr,]=1

where Pz, € R,]is the probability that at step k, the point zy generated by the algorithm
is in the optimality region, R,

Theorem 2 (global search): suppose that f is a measurable function, S is a measurable
subset of R" and H; and H; are satisfied. Let {z,};_, be a sequence generated by the

algorithm. Then,
limP{z, eR, ,]=1

k—x

where Pz, € R,]is the probability that at step k, the point z; generated by the algorithm

is in the optimality region, R , .

32

Chapter 2 Literature Review

In references [41], [44], and [45] The PSO was proven to straightforwardly comply with
H, as described below.

Let D be the function that describes the process of generating a new solution by PSO, 4 is
the function performing PSO updates and fis the objective function (fitness). Assuming a
unimodal minimization problem, D can be described as:

& if fig,) < f(W(X),))
WX, if flig,)> f(h(X,))

By definition, it is clear that the function D is non-increasing. This means that the

D(g,, X)) ={

generated solution is always improving. Thus the PSO complies with H;.

In order to prove (or disprove) H; for PSO, one has to prove that areas explored
by particles cover the entire search domain S. Investigations done in this direction by
reported references proved that the union of sample spaces explored by all particles does
not necessarily equal S. So, there is a nonzero probability that a part of the domain could
be missed during the search. Accordingly the PSO fails to comply with H,.

Violation of H; was proved to be due to the possibility of having the PSO
prematurely converge as X, =/, = g Vjel....M , where M is the population size [41]. In

this case, the algorithm will stop making any further progress in the domain. Because g is
not necessarily in or even close to the optimality region R, , the probability of sampling
a point that is close to R, is definitely zero. This means that the hypothesis H; is violated.

Therefore, the PSO fails to comply with H,and Hj According to theorems 1 and 2,
the PSO is proven to be neither a local nor global optimizer. However, authors who
studied this problem suggest that local and global search abilities can be guaranteed by
manipulating the position equation to satisfy H; and H>. In references [44], [45] and [47],
authors claimed that their proposed PSO variants were able to guarantee local and global

optimality.

2.6 Diversity and PSO

As indicated earlier in this chapter, there are times when members of the swarm
are dragged together to the global best position found so far by one of them. It is however,

an expected consequence due to the nature of the PSO. The PSO is based on the cohesion

33

Chapter 2 Literature Review

and alignment rules of Reynolds’ model [1]. Besides, the roosting rule of Heppner’s
model is also adopted [48]. Therefore, the structure of the PSO promotes cluster
formation and does not suggest any dispersing. What makes it even worse, is the use of
the PSO with a global neighborhood topology. Thus, the neighborhood of a given particle
is the whole swarm so that each individual has an access to the global best solution.
Accordingly, during the course of iterations, individuals demonstrate a high tendency
toward the best position found by one of them. There is always the possibility that this
tendency might increase due to the fact that each particle seeks a point on the line
connecting its personal best (/) and the global best (g). Therefore, it will converge (if
there is any convergence) to a weighted mean of g and / as reported in section 2.5.
Consequently, a position X can coincide with g and / causing a complete stagnation of the
system. Although this is considered to be convergence from the weak convergence point
of view (stability), there is no proof (or disproof) that this point will coincide or even be
close enough to the optimal point. This phenomenon is called premature convergence.
this is not unique to the PSO; any algorithm that performs population-based searches with
stochastic moves can also suffer from this problem.

The logical solution for this problem is to diversify the population to avoid
crowdedness. In the literature, many mechanisms are proposed to avoid the premature
convergence by enhancing the global search ability of the PSO. 1t is clear that increasing
the global search ability does not mean that the algorithm is definitely a global optimizer.
Recalling H, from section 2.5.4, the global optimizer is the algorithm that employs a
search mechanism that must not repeatedly miss any sub-area inside the entire domain
during the course of iterations. The word “any” in the previous verdict means that the
probability of missing sub-area s inside the search domain S is zero. If the number of runs
is considered in that verdict, the algorithm should locate the global optimum at each run
in order to be called a global optimizer. For example, out of a hundred runs the algorithm
should locate the global optimum a hundred times. Algorithm A that misses 30% out of a
hundred is not a global optimizer but is better than the algorithm B that misses 50%.
Mechanisms employed to diversify the population increase that percentage and do not

necessarily address H, directly for the PSO.

34

Chapter 2 Literature Review

For example, Riget and Vesterstrom [49] proposed a so-called attractive and
repulsive PSO (ARPSO). The ARPSO is a particle swarm optimizer that switches
between two modes based on the value of a diversity sensor. In the attraction mode,
particles update their position according to the original PSO update equations that already
promote attraction. While in repulsion mode, the authors proposed a new update equation
for the velocity by inverting signs of the cognition and social terms on the original
velocity equation as:

Ve+D) =WV -el)-X0)-0,(g)- X©®)
During the run the algorithm frequently switched between the two phases according to

the diversity measure:

Is]

diversity(S) = | HLI Z Z(

Where § is the swarm size, L is the length of longest diagonal in the search space, N is

problem dimension, / is the personal best position and / is the average value of /.

If the diversity measure is below a threshold dj,., the ARPSO will work in the
repulsion mode and if it is higher than threshold dj, the ARPSO will switch to the
attraction mode. The authors were pleased with the results they achieved for a four multi-
modal test problems due to the positively biased conclusion drawn from a comparison
with the PSO and the genetic algorithm toward their technique. They also claimed that
their mechanism helped to reduce the incidents of premature convergence to a large
extent.

A very similar mechanism was proposed in [9] to add diversity to the PSO
population using the self organized criticality (SOC) instead of the diversity measure
reported earlier. The author stated that “the idea in the SOC that most state transitions in
a component of a complex system only affects its neighborhood, but once in a while
entire avalanches of propagating state transitions can lead to a major reconfiguration of
the system.” In the SOC-PSO, each particle is given a variable C called criticality, which
is initialized with zero value. Criticalities of individuals that are closer to each other than
a pre-specified distance 7D are increased by one each. Each individual is allowed to
accumulate criticality up to a global criticality limit CL. If for a certain individual the

criticality exceeded this limit, this individual has to relocate himself. Relocation of

35

Chapter 2 Literature Review

individuals is associated with a so-called criticality dispersing that directly affects the
criticalities of others in their neighborhoods and indirectly reflects on the whole swarm.
The authors proposed two schemes for relocation: random re-initialization and pushing
forward mechanisms. The results presented in the reference are far better than those
obtained by the simple PSO.

Thanmaya et al. [50] introduced a new term to the velocity update equation to
elevate the diversity level. Individuals in the swarm do not only learn from their own and
global best experiences but also exploit the best experience of individuals in their
neighborhood. The individual (other than the global best) that is selected to be exploited
is the one that can maximize the fitness-distance ratio FDR:

fitness(l,) — fitness(X,)

Il,- —X i’

where:

[, 1s the previous best position of the selected particle j

X, 1s the position of the particle to be updated.

Therefore, the authors proposed an update equation in the form of:
Vie+D)=WV.@)+ ol () - X1+ ,[g(1) - X, ()] +@s[l, (1) - X,()]
The authors found that, adding a third attractor to the particles has played a positive role
in preventing premature convergence and in the performance of the PSO.

The concept of charged particles inspired by attraction and repulsion in
electrostatics was introduced to avoid crowded zones in the population in reference [51]
and reference [52]. Models of multiple swarms, with flow of information about fitness

and distances among swarms have also been proposed to avoid premature convergence

[53-55].

36

Chapter 3 New formation for the swarm optimization

Chapter 3: New Formulation for the
Swarm Optimization

3.1 Introduction

As stated earlier in chapter 1, a new stand is adopted to form the proposed swarm due to
the lack of experimental evidences in Reynolds’ distributed behavioral model [1] that is
used to form the traditional PSO. In contrast, the proposed swarm optimizer is based on a
well established theory in the field of sociobiology in order to create a more realistic-
behaving swarm. In this chapter the balance between gregarious and social tolerance
behaviors demonstrated by social animals is manipulated to form the proposed swarm
optimizer. Accordingly, a set of lower level behaviors is defined to add the perspective of
freewill to members of the swarm.

As researchers shift their efforts from seeking intelligence through complicated
deterministic systems to complex adaptive ones, extensive work is going on in both
mathematical modeling and ethological directions, to reveal the secret behind the success
of social biological systems even in their very primitive forms. The complex adaptability
features of these systems have enabled them to preserve their kinds for millions of years.
One way to gain the most benefit from simulating the process of group decision making
emerging by animal aggregations (in this context the word “swarm” and the expression
“animal aggregation” are used alternatively) is to get a full understanding of these
phenomenon and get an intimate look inside social and behavioral motivations. Most
publications either in the field of ethology or mathematical modeling agree that swarms
are formed by a balance between two social forces: attraction and repulsion. The concern
of this chapter is the interpretation of animal behaviors that could lead to the formation of

these forces. Also, understanding stimuli could definitely lead to downsizing the big

37

Chapter 3 New formation for the swarm optimization

picture from a higher level phenomenon to “basic behaviors” that are easy to model. It is
also important to explain the differences between complex adaptability and complicated
determinability on systems in order to relate swarms and animal aggregations to systems

that are complex and adaptively behaving.

3.2 Complex adaptive system

The definition of a system in its broader sense is the collection of interacting
elements where a change in the state of one element contributes to the whole group.
Among systems themselves there are different types, for example a flock of birds and a
car engine are both systems. However, a collection of marbles in a bag does not

constitute a system simply because they are interacting [56].

3.2.1 Adaptability vs. determinability

The common feature between a car engine and a flock of birds as examples of two
different types of systems is the way by which they are constituted (from a group of
interacting elements). However, common sense can’t relate these two examples to each
other and no set or category, other than “system”, may have both examples under its
definition due to their unlikeness. A swarm of birds with its reputation of having the most
fascinating flocking behavior internally works in an unpredictable manner (each bird is
responding differently to the change of his neighbor’s state). However, the output of a car
engine with different levels of input is known in advance. Not only the predictability, but
also the relationship between input and output in both examples are different [56]. So, if
one agrees to describe the relationship between the input and output in the car engine as
“linear” since a small input yields a small proportional output and indeed a large output
needs a large input, in that sense, flock of birds as a system has nonlinear relationship
between its input and output. Unpredictability and nonlinearity are two common features
that differentiate a flock of birds as adaptive system from the car engine as a
deterministic system. In general, adaptive systems are constituted of elements that are

usually called “agents”. Agents possess a concept of identity required as a ground belief

38

Chapter 3 New formation for the swarm optimization

for having freewill to make decisions toward the level of response to changes on the

surrounding environment.

3.2.2 Complexity vs. complicatedness

A system is called complicated only if its performance completely depends upon
both the health of its constituent elements and the strength of the connections among
them. That is the system would fail to operate if one of its elements failed and it will
work properly in a fully deterministic way if its elements do. For these systems, elements
and their connections are both critical [56]. The car engine would not work properly if
one of its components was not working or if the wiring was not fully connected. By
contrast, a group of swarming birds would appear to us as a flock even if one of the birds
failed to keep up. That is the feature of complexity on adaptive systems. Elements or
agents themselves are not as critical as their connections [56]. The performance of the
entire system does not completely depend on the individual behavior but rather on the
degree of connectivity among agents. In addition, each agent responds unpredictably (but
within certain rules) to changes inside the system. The other feature that distinguishes
complex systems is a phenomenon called emergence. Emergent behavior is a type of
behavior that is considered to be a source of novelty in a complex system. It is also
described as the phenomenon that is responsible for the creation of fascinating high level
behaviors from low level, non-strictly described interactions among agents. To
summarize, complicated deterministic systems produce controllable and predictable
outcomes, whereas complex adaptive systems can produce innovated and emergent

outcomes [56].

3.3 Understanding swarms and animal aggregations
3.3.1 Gregariousness

One of the most realistic and sensible interpretations of flocking behavior of birds
as an example of swarms is the work published in reference [57]. The author described
the social attraction force of a member within the swarm to one of its kind as

“gregariousness.” He defined the term “gregariousness™ as the tendency of members to

39

Chapter 3 New formation for the swarm optimization

respond positively to the presence of others of its kind. He also stated that “some
psychologists describe it as a condition of responsiveness to social stimuli which, if
blocked leads to frustration activities.” Others have described it as an appetite of hunger
or sex and they tried to experimentally verify its remarkable consequence on isolated
individuals [57, 58]. Struggling to catch others, stragglers from flock of starlings and
passing crows responding to a group of their kind on the ground, were given as
illustrative examples for gregarious behavior [57]. Although gregarious behavior among
members of any animal aggregation is clear and needs no proof, scientists have found no
hormonal demonstration for this behavior. Instead, this behavior was physiologically
interpreted as a state in animals’ mind that probably leads to following a stereotyped

neural pattern [57].

3.3.2 Social tolerance

As stated earlier, forces that form and regulate animal aggregations are positive
and negative interactions among members of the flock. While a positive interaction is
demonstrated by gregariousness, negative interaction is established as a result of self
expression, identity, or independence and is described as social tolerance [57]. In
reference [57], the author described that factor as the force that is responsible for
promoting animal aggregations by acting in opposition to the forces that bring animals
together in response to gregarious behavior. He also preferred to describe that force in its
negative aspect as he calls it social intolerance. The unstable situations that take place
when a bird seeks a position that is too close to another settled bird on a section of
telephone wire, was given by the author as an illustrative example of that force. A
process of shuffling and reshuffling is then followed to keep at least six feet of spacing
distance between each bird. The state of agitation that kept Craig’s birds [58] busy for
hours to adjust both their appetite of getting close to a friendly mate and their aversion for
crowding, is also given as an example. Unlike the force of attraction or gregariousness,
social intolerance has hormonal origins. For example, injecting some birds with certain
hormones (male sex or thyroxin) could lead to drastic effects on their social intolerability
[59, 60].

40

Chapter 3 New formation for the swarm optimization

3.3.3 Social forces and swarm’s dynamism

The interaction between gregariousness and social intolerance controls the
process of forming and regulating swarm size, shape, and density. According to Emlen
[57] in describing a flock of birds, “gregariousness initiates the process of aggregation
and acts centripetally in drawing membership; while the social intolerance force serves as
regulatory role by limiting the size of flock and preventing close crowding through its

”

centrifugal action.” In his observations about cliff swallows; the author also mentioned
that although the long telephone wires extended for thousands of feet, only few segments
of the wire were used by birds to roost at any one time. At the beginning of aggregation;
positive attraction force is clear as one or two birds start to land on the wire forming a
nucleus for the flock. Shortly afterward, others randomly join the perching birds until
aggregation of hundred or more accumulated all within the space of 100: 150 feet [57].
Birds first fill the central area of the flock and then the peripherals. Social intolerance
forces were also demonstrated by members of swarm as shuffling and reshuffling
occurred as needed and only when a bird landed too close to its neighbor. In conclusion,
forces of attraction resulting from gregarious behaviors are responsible for initiating such
aggregations. If left uncontrolled, one would see very compact clusters of these social
animals. On the other hand, the negative force is a result of social intolerance or the
expression of “self” to regulate the inner spaces among neighboring individuals.
Speaking of the “self” and the identity in the case of non-human creatures will drag us to
point out a fact that was denied for many years about the truth of cognition in animals.
Contradictory to what most people believe, animals have some certain limits of free will
and they can make decisions in their everyday lives, and surprisingly, these decisions are
always “rational.” In the next few sections, animals’ freewill and the basic behaviors are

described in more details.

3.4 Freewill in the animal world

There is no doubt that the ultimate goal of any living organism is “survival.”

Every living organism tries to keep its own internal body state (chemistry and

41

Chapter 3 New formation for the swarm optimization

temperature) as constant as possible in the face of the changes in the surrounding
environment. This phenomenon is called self regulation [61]. Self regulation is a feature
of amimate matters that frees them from the impact of environmental changes. Unlike
inanimate matters, a living organism’s state does not obey Newton’s law but rather they
tend to keep their own state constant no matter what forces are applied [61]. By definition,
freedom and independence from the surrounding events is a sort of freewill associated
with having an identity. This seems to be a common aspect among all animate matters
ranging from cellular organisms to humans. For example, if you approach a bird you can
guess that it will fly away but you can never be sure whether will it walk few steps or
whether it will fly instantaneously as you get closer. In reference [61], the author presents
examples for freewill in the insect world. He mentioned the example of ants choosing
paths to their nest. Among an infinite number of paths, ants choose only a few to follow
to their nest, and one can never predict which path will be followed. Moreover,
differences in personality between two ants from the same colony are also demonstrated
by choosing two different paths. It is very clear that freewill is a property of life and
accordingly every living organism, no matter how primitive his brain enjoys certain level
of freedom to make decisions or to choose a particular alternative out of many

possibilities [61].

3.5 Proposed Basic behaviors

Although it is very hard to determine basic behaviors from which animal
aggregations are constituted, the earlier argument about identity and cognition is adopted
to set low level behaviors that if combined together will result in high level ones. the
gregariousness that is responsible for positive responses to others can be expressed
among members of the swarm by imitation or copying behavior. On the other hand,
social intolerance that is a reflection of “self” or “identity” can be expressed by the
psychological state of every individual’s mind inside the swarm. That psychological state
is a combination of memory, thoughts, and emotions. To a certain extent, every
individual tends to follow its own beliefs: a nature that could be described as

“momentum” or the tendency to do particular actions regardless of whether these actions

42

Chapter 3 New formation for the swarm optimization

proved to be successful or not. Also the concept of having free will is highly associated
with decision making processes and randomness. Randomness in animal minds is
expressed by play behavior. Finally, a rational decision making process is to be carried
out by every individual to aggregate both gregariousness and social intolerance. So the
set of basic behaviors that one is looking for can be expressed by:

a- Imitation (as a symptom of gregarious behavior),

b- Memory retrieval, play, and momentum (as reflections of “self” or social

intolerance).

Figure 3.1 describes the process of combining a set of basic behaviors inside an agent’s

brain to form his next move (X**’), Where:

» NbestX: represents the best successful experience in the neighborhood.

> PbestX: represents agent’s successful experience.

> XX agent’s current position.

» RandX: random position acquired by the agent.
In Figure 3.1, the imitation represents the behavior that allows the agent to copy a part of
the experience of the most successful agent in its neighborhood to its candidate move.
The memory of the agent is a feature that brings up a part of the agent’s best successful
experience to its candidate position. The play is a behavior that enables the agent to
generate random changes to its candidate position. The momentum is the act of copying a
part of the current position to the candidate one. The term “part” in the previous
paragraph means that the agent decides according to decision indices the magnitude of
adopted attitudes from others. More details about decision making and decision indices

are given in the coming chapters.

43

Chapter 3 New formation for the swarm optimization

NbestX Imitation
Memory
PbestX
Xk+1
RandX play
Momentum
Xk

Figure 3.1: Combining basic behaviors to form a candidate move.

In the next few sections, basic behaviors in the social animals’ world are given in greater

detail.

3.5.1 Evidence of memory retrieval

Scientists used to think of birds in a more robotic way, denying their ability as
cognitive creatures. The behavior of birds returning to places where they hide their food
was always interpreted as a simple act of returning to preferred places where they would
happen onto their caches [62]. Safe arrival of migrating birds to their destination was

-attributed only to their internal compass setting, guided by the eart’s magnetic field and
using a finely tuned sense of smell [63]. However, recent research work investigated
memory and skills of mental time travel in birds [64, 65, and 66]. Episodic-like memory
and whether birds can remember what, where, and when is also researched [67, 68, and
69]. Surprisingly, investigations in this direction have revealed that navigational skills
(used during migration) in older birds is more sophisticated than those in younger birds,
which proves their ability to learn from past experience. In laboratory tests, birds
demonstrate a remarkable level of recalling locations of food they buried months earlier
and can even retrieve favorite foods first [65]. Although there is no evidence that animals

can plan for their future or even feel pain when remembering sad events from their past

44

Chapter 3 New formation for the swarm optimization

(the way humans do), an extensive amount of research work is going on in this area for

the welfare of these creatures.

3.5.2 Imitation

Imitative behavior among animals is quite clear and needs no proof even in a
heterogeneous environment where animals are trained to imitate human acts. Acquiring
new skills by imitation is the most common mechanism of learning among animals.
Laboratory experiments proved that young rats acquired a new feeding technique of
stripping pine cones to get the nutritious seeds inside by watching their experienced
mothers doing it [70]. On the other hand, adult rats that have never been previously
exposed to such an experience were not able to do it efficiently. Moreover, high level
human-like acts gained by imitation were also pointed out in reference [71] among
animals. There are different simple mechanisms that could appear to observers as
imitative behaviors among animals. One of these mechanisms is the contagious behavior
that could be simplified by the rule of “if others are fleeing, flee also” [72, 73]. In
describing this mechanism, the author of reference [71] stated that: “the idea is that the
stimuli produced by the performance of a particular behavior serve as triggers for others
to behave in the same way.” Possible examples of contagious behavior include flight
responses, movement in flocks or schools, and chorusing by birds [71]. It is also worth
mentioning that a contagious behavior does not deny the degree of freewill that every
living organism enjoys. A person may yawn if a nearby person does, yet the former can
still have his own will which is known to all of us to be “free.”

So, it must be something that is transmitted socially (rather than genetically) that
enables animals to solve a complex correspondence problem in translating novel visual

input from observation into appropriate motor output [71].

3.5.3 Play

Being a living organism any animal enjoys a certain degree of personality or identity
which allows some degree of freedom in order to be able come up with some

unpredictable acts. This is also a common feature that is required for an element of any

45

Chapter 3 New formation for the swarm optimization

system to be called an “agent.” In the animal kingdom, unpredictability or randomness
can be specified by play behavior. There is no immediate benefit of play behavior for
animals. On the contrary, play behavior could put an animal at risk due to the potential of

being attacked by predators while busy playing.

3.6 Summary

Although simple rules could lead to lifelike patterns, there is no guarantee that
interactions among individuals of a swarm or aggregations (of living organisms) are that
“simple.” Cognition-related issues such as identity, freewill, and decision making are
discussed. After all, it is hard to believe that interactions among heterogeneous (from the
sense of different personalities) individuals when carrying out a collective task (for
example flocking) in the same space and at the same moment of time, would be from the
type that could be called “simple.” The term “simple” shouldn’t describe “interactions”
themselves but rather describes the framework that governs responses due to these
interactions. Given flocking behavior, every bird is connected to the flock by a certain
membership of belonging and has to respond to others in a way that satisfies simple rules;
preventing compact crowding and allowing harmony of flying. That is also a good reason
to rule out the idea of birds having crisp thinking that relies on the sense of accurate
calculations of distances and velocities. Instead, it would be more realistic to model

bird’s cognitive minds during flocking by fuzzy reasoning.

46

Chapter 4 The proposed technigue

Chapter 4: The Proposed Technique

4.1 Introduction

In this chapter, a model of the fuzzy reasoning process is proposed for each
member (agent) inside the swarm. Agents are assumed to be rational where the decision
making process is to be made on a rational basis. Agents have to make up their mind in
accordance with a multi criteria decision making process. Precisely, agents have to make
their decisions based on how much they are responding to others. In other words, they
have to make a decision that reflects a trade-off between imitating others’ behaviors
(gregariousness) and retrieving their own past experiences (as an aspect of social
intolerance). Imitation is simply copying others’ success. The process of recalling
previous experiences is the memory retrieval part of the cognitive process. Also, the
momentum and play behaviors are considered in the decision making process and
consequently on the genotype representation of agents.

For population-based search methods, promoting high fitness and maintaining
diversity of the population is the ultimate goal for people working in this area. The issue
of fitness-diversity correlation in genetic algorithms has been extensively discussed in the

literature. However, for the particle swarm optimizer this issue is not fully addressed. In

47

Chapter 4 The proposed technique

this chapter, the decision making process is introduced. Decisions are made to promote
high fitness and elevate the diversity level to prevent premature convergence. The
Levenshtien edit distance method is used to measure the distance between two
individuals in the genotypic space. The so-called Yager’s Ordered Weighted Average
(OWA) is employed to aggregate decision criteria [74].

4.2 Multi criterion decision making (MCDM)

Decision making is a process of choosing one alternative among a number of
possible alternatives by an agent. That alternative has to be characterized by a form of
rationality and fits the decision maker’s goals and desires. It is also very impértant to
distinguish between decision making based on a single criterion and those involving
multiple criteria. Single criterion decision making is simply an optimization problem to
find the best alternative that meets constraints or requirements, and is based on a single
objective like profit or cost function. However, in multiple criteria decision making, one
has a finite number of usually conflicting criteria that influences the choice of one
alternative over others. A decision maker has to aggregate these criteria by means of a
suitable aggregation operator in order to reach a compromise to guide the choice of one
of the available alternatives. In the proposed technique, the multi-criterion decision
making is used due to the availability of two criteria (fitness and diversity) for every
agent. In reference [75] the author summarizes the problem of MCDM as the problem of
choosing among » alternative that is based on m criteria. He also denotes the available
alternatives as A4j,....,4, while the criteria are indicated by Cj,...,C,,. For a typical MCDM
there is a decision table (Table 4.1) that provides a concise way of arranging the available
information and can be utilized by a broad range of decision making algorithms [75]. In
Table 4.1 each row represents an alternative and each column belongs to a criterion.
Scores §j; describe the performance of alternative 4; against criterion C; where i=1,....,n
and j=I,.....,m. Weights s are then assigned to each criterion by the decision maker in
a skewed way to reflect the importance of each criterion on the performance of
alternatives. Multi criterion decision making methodology is then applied to identify one

alternative or at least a short list of admissible alternatives.

48

Chapter 4 The proposed technigue

Table 4.1: Decision table {75]

C;) . Cn
W, . . W
A St . : Sim
An Snl . . Snm

Generally, two procedures are used in multi-criteria evaluations and are outlined in

reference [5] as classical crisp and continuous fuzzy procedures.

4.2.1 Crisp reasoning based procedure

Traditionally there are two methods to reach a crisp supported decision. First, the criteria
are expressed by Boolean values as “TRUE” and “FALSE” or “YES” and “NO” and then
an averaging binary operator such as AND (intersection) or OR (union) logic are used for
aggregation. Although the technique is very straightforward it does possess major
drawbacks. One known drawback is that wherever you draw boundaries between the set
of inadmissible criteria and those that are admissible, there is always a discontinuity due
to the fact that a drastic change in output might take place as a consequence of
insignificant incremental changes in the input. Accordingly, an alternative that is
relatively acceptable could end up rejected due to this type of judgment. For example, the
intersection operator may represent an aggressive case i.e. an alternative which is ideal
according to m-I criteria will be removed from consideration if it fails to fulfill just one
of its requirements. On the contrary, the union operation is far too liberal, where it is
sufficient if the alternative meets only one of its criteria, regardless of how bad the values
of the remaining ones are [5].

Another widely used MCDM technique is based on summations of normalized

weighted values of the criteria known as Simple Additive Weighting (SAW) or the

49

Chapter 4 The proposed technigue

Weighted Linear Combination (WLC) method. In this technique continuous criteria are
first rescaled to a common evaluation scale (normalized) and then averaged according to
assigned weights of importance as follows [5]:

Swe =2 WC IDW

where
S
W Weight of importance

Selection index

wic

C, Nomalized criterion

This technique might overcome some of the drawbacks of the previous method by having
a continuous measure for the selection index to prevent extreme risk situations (risk
aversion by AND operator and risk taking by OR operator) and avoid rigidity of borders
between acceptance and rejection. However, reaching a decision using a rationale of just

accumulating subjectively weighted criteria is not widely acceptable.

4.2.2 Fuzzy reasoning based procedure

This procedure is fairly related to Weighted Linear Combination, but is capable of
generating a vast range of decision strategies [76]. This approach attempts to transform
the synthetically crisp criteria of the Boolean approach into continuous criteria that
express a degree of aptness by modeling criteria using continuous variables ranging from
most appropriate (value 1) to least appropriate (value 0) [77]. Most of the drawbacks
mentioned in the previous subsection can be avoided by strengthening the utilized
reasoning using fuzzy measures and fuzzy operations. In this approach alternatives are
expressed by a fuzzy set where a small change in the input will just produce a small
change in the membership grade to avoid abrupt jumps between extremes [5]. Moreover,
using fuzzy t-norms and t-conorms instead of the crisp intersection and union operators
can also be more beneficial, especially if suitability evaluation is reached by means of a
fuzzy averaging operator. It is always good to reach a decision that permits trade-off
between criteria i.e. a good value in one variable may compensate for a bad value in
another. In that sense, the aggregation operator can be seen as ANDOR-operator which

allows full trade-off between all criteria. A solution to this issue is proposed by Yager [74]

50

Chapter 4 The proposed technique

who presented a method called Ordered Weighted Average (OWA) with continuous
control over degree of ANDOR-ness and with independent control over the degree of
trade-off [5].

4.3 Elements of the decision making process

Decision making is the study of identifying alternatives based on the values and
preferences of the decision maker [75]. The process consists of a set of essential elements:
1. Goals
2. Alternatives
3. Criteria
4. Decision making rule

The next subsections these elements are explained in more detail.

4.3.1 Goals

Traditionally, every agent (individual) in the swarm updates his move in
accordance with the highest fitness individuals in domain space. The proposed technique
adopts new criteria in adjusting the moves of every individual. The diversity of
population along with the fitness are taken into consideration. The diversity of population
in population-based optimization methodologies has been a significant issue. Promoting a
solution for only high fitness could be extremely tricky due to the high possibility of
getting a premature convergence as a result of tracking only good solutions and avoiding
other areas in the problem domain.

As a result, the goal is set to update agents’ moves in accordance with promoting both
fitness and diversity in the population. The proposed technique redirects the selection of
solution from simply the fittest to the fittest and the most diverse. Accordingly, in their

decision making process, agents prefer alternatives that are both fit and diverse.

51

Chapter 4 The proposed technique

4.3.2 Alternatives

The proposed technique is based on simulating a decision making process within
every agent’s mind to rank a finite set of available alternatives. According to the defined
goal for the MCDM process, these alternatives are:

1) Imitation Alternative: Imitating the success of swarm mates.

2) Retrieval Alternative: Retrieving memories about one’s own successful
experience.

3) Momentum Alternative: Continuation in the same direction.

4) Play Alternative: Adopting some random moves.
Individuals use single evaluation function (decision rule) to rank the alternatives

and then determine the magnitude of genotypic parts to be copied into their next move.

4.3.3 Criteria

The basis for a decision making process is the criteria that form an objective
measure of the goal and are able to measure how well each alternative achieves the goal
[75]. Criteria that are used to achieve the specified goal (promoting fitness and diversity)
are:

1- Fitness
2- Levenshtien edit Distance (as measure of diversity)
More details are given below for fitness and distance as two criteria for the proposed

MCDM.

4.3.3.1 Fitness

Fitness is determined by evaluating the problem’s objective function for every
agent at every move. For imitation alternative; the fitness is the best objective function
value in the neighborhood whereas, for retrieval alternative; the fitness is the value of the
objective function for the individual’s best experience. For the play and momentum
behaviors, fitness is described by the value of the objective function for a random

permutation and the current position, respectively.

52

Chapter 4 The proposed technigue

4.3.3.2 Levenshtien edit distance

As mentioned earlier, the diversity of a population is an important factor to reach
the global optimum of a problem. Loss of diversity could lead the swarm to act as parallel
separate hill climbers instead of cooperative agents. Therefore, incorporating the diversity
of the population in the position updates is a very novel step in the swarm optimization
and will cause substantial advantages due to the anticipated resistance to premature
convergence. Incorporating diversity along with fitness in updating agents’ moves
benefits PSO by adding more common sense through the transformation of calculations
from subjective to objective.

Levenshtien edit distance (LD) [18] is traditionally used to measure the distance
between two strings or sequences to determine their similarity. The method is named
after the Russian scientist Vladimir Levenshtien who devised the algorithm in 1965 [78].
In the proposed technique, permutation encoding is used to represent agents in the
genotype space. Therefore, Levenshtien edit distance is found to be suitable for
measuring the distance between two agents in the proposed swarm.

LD distance is defined as the number of deletions, insertions, or substitutions required for
transforming the permutation s into permutation ¢ [78]. The greater the difference
between the two permutations, the greater the LD distance is. For example, the LD
between two permutations ¢ :{ 32] 4} and s :{ 3 2 1 4} is LD(s,t)=0 (two permutations
are identical). The LD between two permutations # :{ 3 2 1 4} ands :f 3 1 2 4} is
LD(s,t)=2, because two changes are required to transform s into 7.

Steps to calculate LD between two permutations s and 7, can be summarized as follows
[78]:

Step 1:

Set n to be the length of s

Set m to be the length of t

If n=0, return m and exit

If m=0, return n and exit

Construct a matrix containing 0....m rows and 0....n columns
Step 2:

Initialize the first row to 0....n

53

Chapter 4 The proposed technique

Initialize the first column to 0...m
Step 3:

Examine each element of s (i from 1 to n)
Step 4:

Examine each element of t (j from 1 to m)
Step 5:

If s[i] equals t[j], the cost is 0

If s[i] doesn’t equal t[j], the cost is 1
Step 6:

Set cell d[i,j] of the matrix equal to the minimum of:

a. the cell immediately above plus 1: dfi-1,j]+1

b. the cell immediately to the left plus 1: d[ij-1]+1

C. the cell diagonally above and to the left plus the cost: dfi-1,j-1]+cost
Step 7:

After the iteration steps (3,4,5,6) are complete, the distance is found as the cell
dfn,m].

Example: Find the edit distance LD between two agents in genotype space where
their positions are expressed by the two permutations ¢ and s.
Where: t:{3214}ands :{3124).
Solution: The two permutation 7 and s are arranged as shown in the Table 4.2. Values in

the cells are computed according to the LD algorithm steps.

Table 4.2: Calculation of LD between permutations 7 and s.

3 2 1 4
t —»
l 0 1 2 3 4
S

3 1 0 1 2 3
1 2 1 1 1 2
P 3 2 1 2 2
4 4 3 2 2

54

Chapter 4 The proposed technique

The Levenshtien distance LD is the value in the lower right hand corner of Table 4.2 and

equals 2.

4.3.3.3 Criteria Fuzzification

Another important step in the MCDM process is the standardization of the criteria.
In order to reach a final aggregation score, the criteria are transformed into comparable
scales measured according to a standardized range. The process of fuzzification in a
fuzzy set theory is employed to standardize the criteria for the final aggregation function.
The fuzzification process transforms any value of criterion to a normalized value in the
range of (0-1). This value expresses a fuzzy membership grade and indicates a continuous
increase from non membership to complete membership [79]. A significant issue in the
fuzzification of criteria is the choice of limits for the membership grade. These limits
determine the lower and the upper boundaries for acceptable values of each criterion.

To choose fuzzification limits, a cost minimization function is considered.
According to the goals; one wants to promote higher fitness and maintain diversity. In
that sense, membership values are calculated. For the fitness criterion, the higher the
fitness, the higher the membership grades are. Memberships are therefore specified by a
decreasing function where the lowest membership grade is given to the highest value of
the objective funcﬁon and the highest membership grade is given to lowest value of the
objective function in the phenotype space.

For diversity (distance) criteria, the further the distance, the higher the membership
grades. In this case, memberships are specified by an increasing function. Limits for the

fuzzification process are given in Table 4.3.

Table 4.3: Limits on the fitness and the distance for fuzzification process.

Criterion Limitl Limit2
Fitness (Lowest value of objective (Highest value of the
function) objective function)
Distance Lowest value of distance Highest value of distance
min(LD) max(LD)

55

Chapter 4 The proposed technique

Membership functions used for calculating fuzzy sets of the two criteria are shown in the

Figure 4.1.
A
o 1
=]
<
)
o
2
wa
)
£
g
= Fitness value
(minimization)
0
Limit 1 Limit 2
A
]
Q i '
B 5 !
o i i
a i !
ey ! !
2 r :
3 ? i
£ ' !
) ! :)
= : ' Distance value
i i (LD)
0] :

Limit 1 Limit 2

Figure 4.1: Membership function used in calculating fuzzy sets of the criteria

56

Chapter 4 The proposed technigue

4.3.4 Decision rule: fuzzy OWA aggregation operator

The final and most important step in the MCDM process is forming an overall
function that aggregates the criteria. At one extreme, at least one of the criteria has to be
satisfied. This represents a pure OR operation. This operator is known to be the risk
taking alternative in the decision making process. At the other extreme, one needs all the
criteria to be satisfied. This represents the pure AND operation. This situation is known
as risk averse. To avoid these two extremes, Yager [74] introduced a new averaging
operator called the ordered weighted average (OWA). This operator provides an
aggregation that provides a different degree of ANDORness and lies in between those
two extremes. By choosing appropriate values for the so-called OWA weights, one can
model any degree of ANDORness between 0 (pure AND) and / (pure OR). In fact, the
OWA operator extends the space of quantifiers from the pair {for all (V), at least one (3)}
to the interval [for all (V), at least one (3)] [80]. Using the OWA procedure for MCDM
results in decision strategies that vary along two dimensions: risk and tradeoff [76]. Risk
levels are determined by the degree of ANDORness expressed by the weights of the
OWA operator. The tradeoff level is determined by the value of dispersion or the skew in
the weights of the OWA. Figure 4.2, which is reproduced from references [76] and [80],
shows the OWA in the perspective of risk-tradeoff space of fuzzy aggregation operators.

57

Chapter 4 The proposed technique

Risk

<
(Degree of ANDORness)

WLC (full trade-off)

(uoiszadsi(])
Jjo-opei, —*

Risk averse (V) . _
Risk taking (3)
’ N / 1
t-norms OWA t-conorms
Algebraic product T \
Arithmetic mean Fuzzy union Algebraic sum
Fuzzy Intersection (Pure OR)

(Pure AND)

Figure 4.2: The OWA in the perspective of risk-tradeoff space of fuzzy aggregation operators

According to Yager [74], the OWA is defined as a mapping F from
I" = I (wherel = [0,1]) which is called an OWA operator of dimension # if associated

with F, there is a weighting vector W,

w
W2
W = such that
w,
I- W;e1)

2- YW, =1
Where F(ay,a, ...,a,)=Wb +W,b, +..... Wb,
Where b; is the i ™ largest element in the collection (a,,a,....,a,). Yager called an »

vector B an ordered argument vector if each element b; € [0,1] and b> b; ifj >i.

58

Chapter 4 The proposed technique

Given an OWA operator F' with weight vector # and an argument tuple (a,,a,,a,)
one can associate an ordered input vector B with this tuple such that B is the vector
consisting of the argument of F put in descending order. Using this notation then
F(a,a,...,a,)= W B the inner product of W and B. Yager also emphasized that the
weights are associated with a particular ordered position rather than a particular element.
For any ordered vector argument vector B and any OWA operator F with weighting
vector W:
0<F(B)<I

An outline of an MCDM supported by ordered weighted average (OWA) can be

summarized as shown in Figure 4.3 [5].

INPUT CALCULATION OUTPUT

Criteria Calculation of
Fuzzyfied values

Limits y
Ranking of
Fuzzyfied values

A

OWA Calculation of) Decision
choice index

Figure 4.3: OWA-supported decision making [5]

4.3.5 Agents’ position update

Every agent in the swarm performs the decision making process to adjust its next
move in the space. Define the following symbols:
X* : Position at iteration K

X**!: Candidate position at iteration k+1

59

Chapter 4 The proposed technique

gbestx : Position due to global best fitness
pbestx : Position due to personal best fitness in agent memory

Nbestx : Position of agent that has the best fitness in the neighborhood
Randx : Randomly generated position
gbest : Global best fitness in the domain

pbest : Personal best fitness in agent memory

Nbest :Best fitness value in an agent’s neighborhood
Rndft : Fitness due to random position

Xft : Fitness at current position X

Every agent ranks the four available alternatives in accordance to their performance with
the two criteria. Alternatives in terms of criteria (fitness and distance) can be arranged as

shown in Table 4.4:

Table 4.4: Alternatives vs. criteria.

Fitness distance

Alternative 1 | Nbest LD(Nbestx , X*)

Alternative 2 | pbest | LD(pbestx, X*)

Alternative 3 Xft LD(X* x*)

Alternative 4 | Rndfi LD(Randx,X*)

Each criterion is then fuzzified according to their control points (limits). Fuzzy

membership values are then ranked in descending order as shown in Table 4.5.

Table 4.5: Ranked fuzzified (RF) values for each alternative

RF; RF,
Alternative 1 A Aj;
Alternative 2 Az; Az
Alternative 3 A3z Az
Alternative 4 Aqy A

60

Chapter 4 The proposed technique

Where values of RF; are greater than values of RF.

Having obtained the ranked fuzzy values for each alternative, the values of order weights
associated with OWA need to be specified. The values of order weights are determined
according to the decision maker preferences and based on the desired level of risk and
tradeoff between criteria. For example, order weights of (7, 0) will give full weight to the
highest RF of each alternative regardless of how poorly ranked the other criterion. This
strategy is represented by the risk taking or optimistic decision making in the risk-
tradeoff space described earlier. However, order weights of (0, 1) will give full weight to
the poorest RF no matter how good the other criteria. This decision strategy is described

in risk-tradeoff space by risk averse or pessimistic decisions. In simulations, the equation

W, =(k/n)* —((k-1)/n)* suggested by Yager is used to calculate the order weights.
Where;

n: number of criterion

o: A parameter allows the transformation from a qualitative scale to an order’s weight
[81].

Finally, an overall ranking index or choice index is calculated for each alternative as:
Ranking index (R/) =ZRF W,

The ranking indices for each alternative are then used to determine the magnitude of
imitation and memory retrieval from the corresponding position permutations. The
candidate position of an agent is based on number of elements that will be copied by
imitation and memory retrieval from the corresponding permutations into the permutation

of the candidate position.

Summary

This chapter, the manipulation of the gregarious and social intolerance behaviors in the
animal world to form the swarm is presented. The proposed decision making process
carried out by the swarm agents is also described. Details of the position update by means
of the set of basic behaviors are given. The decision strategies including goals,
alternatives, and criteria associated with the process are described. The fuzzy aggregation

function OWA and its weights are also demonstrated.

61

Chapter 5 Applications

Chapter 5: Applications

5.1 Introduction

In the previous chapter a description of the simulated decision making process
was given. Decision criteria and fuzzy aggregation were also described. In this chapter
the performance of the proposed optimizer is examined. Two applications are considered
here: the traveling salesman problem (TSP) and the quadratic assignment problem (QAP).
First, the technique is tested using a small size TSP problem to show the procedure,
followed by an agent to reach a decision. The technique is then tested with larger size
TSP problems (Symmetrical and Asymmetrical). In addition, the technique is extensively
tested using the quadratic assignment problem. Over a hundred problems from different
applications are considered in the simulations. A comparison between the proposed
technique and the standard genetic algorithm is also performed. Moreover, a comparison
between the performance of the technique and the traditional PSO is carried out for some

problems.

5.2 The Traveling Salesman Problem

Due to its generality, the traveling salesman problem is widely used as a

benchmark for testing new classes of combinatorial optimization algorithms.

62

Chapter 5 Applications

5.2.1 Background

In TSP, a salesman has to make a round trip between a given number of cities. In
the tour, the salesman has to minimize the traveling cost of the overall tour. He also has
to visit each city exactly once. The history of the problem dates back to the mid 1700’s
when Euler made his first attempt to find the optimal tour of a knight over the 64 squares
of chessboard [82]. The origin of the TSP as known today has many conflicting stories.
However, among the research community [83-87] the most credible story is stated as
follows.

The first nonmathematical formulation of the problem was introduced by a successful
German salesman in 1832. The Austrian mathematician K. Menger is thought to be the
first to introduce a mathematical statement of the problém in 1928. During his visit to
Harvard between 1930 and 1931, Menger exposed the problem to American scientists. At
that time Hassler Whitney was a PhD student at Harvard working on graph theory and it
seems that some discussion on this matter had taken place between Menger and Whitney.
Almost one year later, Whitney was working with the National Research Council at
Princeton and is believed to have given a seminar on a 48-states TSP. In 1937 Merril
Flood was attempting to obtain a near optimal route for a school bus problem. He
mentioned that he got some ideas for his routing problem from W. Tucker who heard
about the TSP from Whitney during his studies at Princeton University. In 1948 Flood
was encouraged by RAND (Research ANd Development) corporation of Santa Monica,
California to popularize the TSP. In 1954 the first algorithmic attempt toward solving the
TSP was introduced by RAND researchers G. Dantzig, R. Fulkerson, and S. Johnson [85].

Since that time the TSP attracted researchers’ attention due to its challenging nature.
The problem is easy to formulate but yet hard to solve. The only way to find an exact
optimal tour in a TSP can be done by using complete enumeration of all possible tours in
the search space, a process that can grow dramatically with size of the problem. For
example, the problem of 20 cities requires evaluations of factorial of 20 (2.4329e+018
possible tours). Assuming a computational time of le-9 seconds for every tour, a total
computer time of 77.1468 years is required for complete enumeration.

Heuristic search techniques have proven capable of finding near optimal solutions for

such problems by evaluating only a very small fraction of all possible tours. The swarm

63

Chapter 5 Applications

optimizer is one of the successful heuristics that have been recently proposed and rapidly

promoted in different research areas.

5.2.2 TSP and graph representation
In graph theory, the TSP can be expressed by a weighted-edge graph G: (V, E, D)

where:

V: set of vertices (cities)

E: set of edges (roads connecting two cities)

D: weights given to each edge (distances or cost of traveling). There are two well-known
categories of the TSP; namely the symmetrical and asymmetrical traveling salesman
problems (STSP and ATSP respectively).

In graph theory terminology, the STSP is expressed by a weighted-edge undirected graph
whereas the ASTP can be expressed by a weighted-edge directed graph. Figure 5.1
shows these two types (the graph is created using Graph Interface (GRIN) software [88]).

(a) Undirected graph

64

Chapter 5 Applications

d31
d1i3

(b) Directed graph

Figure 5.1: Symmetrical and Asymmetrical TSP representation.

In the case of STSP the weights of edges connecting two given cities in both directions
(forward and backward) are equal. It means that the cost of traveling from city i to city j
is equal to the cost of traveling from city j to city i (dj=d;). However, in the case of

ATSP this is not applicable i.e. (dj#d}).

Generally, to solve the TSP problem one must find the Hamiltonian cycle that has the
least cost of traveling or the least distance. A Hamiltonian cycle is a complete tour among
all cities ending at the starting point, providing each city was visited only once and edges
were not repeated. In the simulation, each generated Hamiltonian tour in the studied

problem is coded as an ordered permutation 7. Mathematically, the problem can be stated

as:
N-1

minimize Zdﬂ(mu + d”(N,l) (5-1)
i=1

Where:

N 1s the number of total cities;

65

Chapter 5 Applications

7 : A< B is a bijective (one-to-one and onto) function from a set A to a set B that
defines a permutation representing a given Hamiltonian tour;

d 4.y - The distance or the cost of traveling between a city that located in the order i and

k4
a city located in the order i+/ in the permutation x;

d v, - Tepresents the cyclic part of the tour.

4

5.2.3 Demonstrative example

In this section, the ATSP problem of 17 cities (br17) [90] is given as an illustrative

example to explain in detail the major steps of the proposed technique. Data, cost (or
distance) matrices, and optimal tours for the TSP problems presented here can be found
in the online library of the TSP problem (TSPLIB) [90].
In the simulation, a swarm size of 30 is employed to solve an asymmetrical 17 city
problem. The entire population is divided into five equal neighborhoods based on orders
of agents. For a given instant of time £, the attributes of the algorithm are captured in
Figure 5.2.

An agent that is characterized by the position X* and the fitness value of 235 is
located within the neighborhood N.

66

Chapter 5 Applications

Fitness Current positions for a specified neighborhood

n:::;émo—' 74 Jualrj{nlis[w[o][w[7][8[17][5]a]6]2]3

L 7s T2 [3lwlwo]e[w6][7]m3]o]1]1s]a]s5]8]ulz2]i7]

L2455 s [afnlofi[we[7]i3]w]is][4]17]1a]s]6]2]11]

AnhgentX —pof 235 J 13381 0f15[26141 [12][7][4a]16]17]11]10] 5|

L 220 Jualsle6 [t [oJw[735 [17]8]4]16]12]2 11]15]

L2600 s olw2]e6 5[] 7][17]a]1[t10]8 [11]2]3]

pbest Best previous position for an Agent X (pbestx)
107 J13[3]8[sJis[2]12[14]1]17]4]7]16]6 10]11]09

gbest Global best position (gbestx)
6t JuaJu[ul1[wv[uf7]w6[1i5]s[4][8[9]6 10]2]3

Rndft Randomly generated position (Randx)
234 §3[1afolols8[6[7[13[uf17]12]16]1]15]5]2]a

Figure 5.2: Attributes of a captured instant k for 17-cities ASTP problem.

It is required to simulate a multi-decision making process in the brain of the agent X (for
simplicity agents are identified by their positions) in order to determine its candidate
move X"/ in accordance with an acquired set of basic behaviors from several resources.
This set of basic behaviors consists of imitation, memory retrieval, momentum, and play.
Whereas, the best agent in the neighborhood, self attitude (current and successful past)
and the attitude acquired randomly constitute the set of mentioned resources. The best
individual in the neighborhood N is characterized by fitness Nbest=74 and a position of
Nbestx. The most successful experience of the given agent X is specified fitness
pbest=107 and position pbestx. The position that is randomly generated to express play
behavior is characterized by fitness Rndfit=234 and position Randx. The agent with
global best (gbest and gbestx) behavior is not directly engaged in the calculations but
rather in an indirect way to set limits for fuzzy membership function used to standardize

fitness values.

67

Chapter 5 Applications

5.2.4 Decision alternatives and criteria

For that very instant £ and a given agent X, the available decision attributes can be

arranged as shown in Table 5.1.

Table 5.1: Decision attributes for agent X at iteration k

Alternatives | Fitness | Distance from X
Imitation Nbest 74 16
Memory pbest 107 9
Momentum X 235 0
Play Rndft 234 15

The values of fitness criteria are obtained by tours’ direct substitution into the objective
function in Equation (5-1). Diversity criteria are expressed by distances (in genotype
space) measured between agent X and every agent that is engaged in the decision process.
Distances are computed using the Levenshtien edit Distance technique [78] and articulate
the number of deletions, insertions, or substitutions required for transforming two

permutations into each other.

The next step is to estimate the ranked fuzzy values for the decision criteria in order to
reach a suitable ranking index by applying fuzzy ordered weighted average aggregation.

In this case, the limits required for the membership function are given in Table 5.2.

Table 5.2: Fuzzification Limits

Criterion Limit1 Limit2
Fitness 61 254
Diversity 0 16

68

Chapter 5 Applications

Membership functions are constructed according to the ultimate goal: promote solutions
that are fit and diverse. For diversity membership, the further the distances, the higher the
membership grades. For fitness, the lower the value of objective function (Equation (5-1))
the higher the membership grades.

Accordingly, the ranked fuzzy measures (RF) are calculated as in Table 5.3.

Table 5.3: Ranked fuzzy measures

RF1 RF2

Imitation Nbest 1.0000 0.9326

Memory pbest 0.7617 0.5625

Momentum X 0.0984 0

Play Rudft 0.9375 | 0.1036

5.2.5 Decision rule (OWA)

In this step, the OWA is used to reach a single evaluation function. This function
measures the performance of each altemnative in terms of its criteria. Therefore, agent x
will be able to rank the available alternatives according to the value of that function. The
value of this function is described in the text as the ranking index R/. To proceed with the
calculations, order weights ¥ have to be specified. For known decision strategies with

two criteria, a set of order weights are given in Table 5.4 [81].

69

Chapter 5 Applications

Table 5.4: Five different decision strategies [81]

Decision strategy Order weights
Optimistic (1,0)
Moderately optimistic (0.81,0.19)
Neutral (0.5,0.5)
Moderately pessimistic (0.13,0.88)
pessimistic (0,1)

In the simulation, a moderately optimistic decision strategy is chosen (relative risk taking
with W=(0.81,0.19)).

As a result, the ranking indices values are calculated as:

For imitation alternative: RI; = 0.9872

For memory retrieval alternative: R, = 0.7239

For momentum alternative: R/, = 0.0797

For play alternative: RI, = 0.7791

In order to interpret these ranking indices to acquired behaviors by agent X at the

candidate step X**', Equation (5-2) is defined.

O, = floor(n*RI; /Y RI) (5-2)

Where 6=i, r, m or p and,
n: number of total items in permutation 7.
The floor function for a real number y is denoted by floor(y) defined by:

|y_|=sup{veZlvsy}
Where Z is the set of integer numbers [89].

Equation (5-2) determines the number of items O; in a position permutation to be

transmitted by an agent X into its candidate position from a particular individual due to an

acquired behavior 6.

70

Chapter 5 Applications

According to Equation (5-2) along with ranking indices values, agent X acquires six items
by imitation (O; =6), five items by play (O, =5), and four items by memory retrieval (O,
=4).

Ultimately, the permutation that represents agent X at iteration k+/ (X**') will be an
objective composition of permutations that represents the available alternatives.

To carry out this composition, permutations are first placed in ascending order
according to their ranking order. Second, items are transmitted from the first permutation
to permutation X . Recursively, this process is repeated with the succeeding permutations
until the final composed permutation X**’ is reached as shown in Figure 5.3. The reason
the permutations are placed in that order is that one wants the most successful (fit and
diverse) alternative to dominate. Note that the transmitted items are chosen randomly.
The entire decision making process is repeated with all agents in all neighborhoods until
a set of new positions are obtained. These positions are then employed to get new values
for the objective function. For this specific TSP (17 cities), the algorithm was able to
reach the optimal tour that cost 39 by checking only a fraction of 7.0286e-011 of the total
possible tours. The pseudo code of the entire process is shown in Figure 5.4. In addition,

the Matlab code and the necessary routines are included in the Appendices.

71

Chapter 5 Applications

XK [13 3 [8 [9 [15[2 [6 [14 [T J12 [7 J4 [16 J17 [11 [10 5 |

pbestx 43 T3 s [5 Jus [2 f2 Jue [t [[17 |16 |s fio B [9 |
G 9

12 6
4 7
10 11
U3[3|8|5[15|2[12|14[1[6[4|7[16|11%]10[11|9|

Randx [3 T JwoJo [s Fo J7 [13 [t L1z [z s |1 s s [2 [4]
14 3
6 2
11 1
4 12
17 15

[13|14[8|5|17_L6|4[3|11[2|12]7]16[15|10[1[?
1 1[i [11
Nbestx |14 [1 JoJu 5T (o 3 Jwo]7 (s [15 12 I6 12 131

12 8
15 17
3 13
17 7
10 6
9 ' 3
Xkt 9 M2 5J15[10] 43112 8]17]16] 7 6] 1]3]

Figure 5.3: Recursive displacement of items among permutations.

72

Chapter 5 Applications

For Agent = 1: Swarm Size
Initialize Agent’s random position X
Calculate Agent’s Fitness Xft
Assign Agent’s pbest and pbestx
End
Assign global best fitness and corresponding position gbest and gbestx
Divide the swarm into N neighborhoods
For neighborhood = 1: N
Assign Nbest and Nbestx
End
For k = 1: iterations
For Agent = 1: Swarm Size
Create random position for Agent’s play behavior Randx
Calculate Agent’s fitness due to random position Rndjft
% Computation of Levenshtein distances LD’s
LD, = LD(X, pbestx)
LD; = LD(X, Nbestx)
LD, = LD(X, Randbx)
LD, =LDX, X) =0
End
Set fuzzy limits for the fitness membership function
FL1 = best fitness (gbest)
FL2 = worst fitness
Set fuzzy limits for distance membership function
DLI=min (LD’s)
DL2=max (LD’s)
Construct fuzzy membership functions for fitness and diversity
For Agent = 1: Swarm Size
% Decision criteria standardization
[A1] = Fuzzified [LD, LD; LD, LD,]
[A2] = Fuzzified [pbest Nbest Rndft Xft]
RF, = [max(A11,421) min(411,421)]
RF; = [max(A12,422) min(412,422)]
RF, = [max(413,423) min(A13,423)]
RF,, = [max(414,424) min(A14,424)]

The figure continues on the next page

73

Chapter 5 Applications

% Calculation of Decision ranking indices RI'’s

RI, = [RE,]*[W]

RI; = [REJ*[W]"
Rl, = [RF,J*[W]"
RI, = [RFJ*[W]"

Calculate number of items to be acquired by each behavior Oj
For 6=i,r,mandp
O = floor (n*RI, /Y RI)

s

end
Arrange X, pbestx, Nbestx, Randx in ascending order according to RI’s
Transmit number of O; items from the first permutation to X
Update X
While final permutation in the arvangement is not reached
Transmit number of O; items from the arranged permutation to X
Update X
End While
New position X= updated X
Calculate Agent’s Fitness Xft
Update pbest and pbestx
End
Update gbest and gbestx
End Iterations

Solution = (gbest, ghestx)

Figure 5.4: the pseudo code for the main steps of the proposed technique

5.2.6 Larger scale TSP problems

The proposed technique is also tested with larger TSP problems namely; the symmetrical

29 city problem (bays29) and the asymmetrical 43 city problem (p43) [90].

Results from simulations are very promising and are very close to the known optimal

solutions [90] as shown in Table 5.5.

74

Chapter 5

Applications

Table 5.5: Simulation results for different TSPs

No. of cities optimal | MCDM-PSO Tested /total tours
ATSP-17 39 39 7.0286¢-011
STSP-29 2020 2085 5.6550e-027
ATSP-43 5620 5668 8.2761e-048

50,000 random tours generated over 10 runs for the 43 city problem are inspected. An

average fitness of 9646.2 is found. For the same number of evaluations, the

corresponding value calculated with the proposed technique (population size 50 and
iterations of 1000) was 5684.8.

Also a comparison between the traditional particle swarm optimizer PSO and the

proposed technique is held. Figure 5.5 shows the convergence of both MCDM-PSO and

the traditional PSO over time (represented by iterations) for the ATSP-43 problem.

MCDM-PSO has better performance over the entire search process. The figure also

shows that the traditional PSO is trapped at the objective function value of 5870 (before
the first 200 iterations) while the MCDM-PSO is able to reach better values. The

proposed technique is able to solve the problem to a value of 5655 at iteration 195.

75

Chapter 5 Applications

6200 | | | T .
. —— MCDM-PSO

| ~—— — traditional PSO
6100} .
6000f - - -

w R

8 - X: 196
£ 5900~ L0 Y: 5870
iy I
5800 - g |

5700 - L__k X: 195

¥¥¥¥¥¥ Y: 5655
|

|

iterations

Figure 5.5: Comparison between the traditional PSO and the proposed technique

5.3 Quadratic Assignment Problem

Swarm optimizers have been proven to be effective in solving wide classes of
combinatorial optimization problems in different disciplines. Surprisingly, the quadratic
assignment problem (QAP) appears not to have been fully addressed using swarm
optimizers. In this section comprehensive tests on the MCDM-PSO using numerous
QAP’s problems are conducted. The technique is tested with over a hundred QAP
benchmark problems ranging in size from 12 to 256. The chosen benchmark set covers
all types of QAP: dense and sparse, randomly generated and real life problems and
domains that are highly structured and as well as those that have uniformly distributed
local optima. Results are mainly compared with those obtained using a standard genetic
algorithm. The performance of the technique is also compared with the performance of

the ant colony and traditional PSO algorithms.

76

Chapter 5 Applications

The quadratic assignment problem (QAP) has been widely used for testing the
performance of heuristic techniques. The problem gains its reputation due to the fact that
many practical applications can be stated in terms of the QAP model. Throughout the
literature many real-life as well as randomly generated problems have been tackled.
Among these applications are hospital facility design (Nug-type and Els-type problems)
[91, 92], computer backboard wiring (Ste-type problems) [93], typewriter keyboard
design (Bur-type problems) [94], testing of self testable sequential circuits (Esc-type
problems) [95], weighted tree design (Chr-fype and Had-type problems) [96, 97] and
facility layout design (Scr-type and Rou-type problems) [98-100]. Also, another set of
randomly generated problems with known optimal solutions can be found in references

(Lipa-type and Tai-type problems) [101-105].

The complexity of the quadratic assignment problem is of the NP-complete type.
This means that finding a technique that is able to solve the problem in a polynomial time
frame is very unlikely. The time required to reach an optimal solution using an exact
technique will grow dramatically with the size of the problem. Complete enumeration of
the entire search space is the only way to find the exact solution. The process is very time
consuming and unfeasible for even a very moderate problem size. For example solving
QAP of size 30 requires evaluating 30! possible assignments. If a trillion assignments are
solved each second, it would take around 140 times the age of the universe to optimally

solve the problem [106].

Researchers have developed more sophisticated techniques to overcome the
computational complexity of the problem. A smarter enumeration process has been used
as a basis to develop such techniques. The branch-and-bound method is one of the most
successful exact solvers for the problem. The technique was originally introduced in 1960
[107] for linear programming problems. It relies on implicit enumeration by decomposing
the root problem into small sub areas constructing a tree-like search procedure. The lower
and upper bounds are then used to either prune or branch sub areas. Although the

technique of branching and bounding inclusively ensures an exact solution, the time spent

71

Chapter 5 Applications

on a sequential solving machine to reach a solution is still unreasonable. For example, it
was not until 2001 that Nug30 has been solved to optimality by branch-and-bound. The
experience of solving Nug30 using the branch-and-bound method is reported in [108].
According to the authors, sequential solving Nug30 on the most powerful desktop
workstation at that time would have taken around 7 years. Therefore, the authors decided
to use parallel processing to reduce the computational time. Table 5.6 shows some

interesting statistics about this experience.

Table 5.6: Solving Nug30

Average number of participating machines 652.7
Maximum number of participating machines 1009
Running wall clock time (days) 6.92
Approximate total cpu time (years) 11

Therefore, there is a need for techniques that could achieve a reasonable trade off
between precision and time.

Heuristic techniques can easily find suboptimal solutions for the problem by inspecting
only a small fraction of all possible assignments. Therefore, the time required to solve the
problem to that sub-optimality can be dramatically reduced.

Simulated annealing (SA) was one of the earliest attempt made to solve QAP in 1980
[109]. Then, a few other SA approaches have been proposed for the QAP [110-112]. The
most successful SA approach is attributable to Connolly [113].

Several Tabu search implementations have been also reported in the literature. The first
Tabu algorithm for the QAP problem was first introduced by Skorin-Kapov [114] in 1990.
Subsequently, some extensions and enhancements to that technique were proposed by the

same author [115]. Mechanisms such as short term memory and multiple starts have also

78

Chapter 5 Applications

been used to enhance the search diversification of the Tabu search for the QAP [116].
The robust Tabu search introduced by Talillard [117] is the best performing Tabu
technique known to deal with the QAP. An anti-stagnation mechanism for the
conventional Tabu search has been proposed by Battiti and Tecchiolli [118] to develop
the so-called reactive Tabu search.

Ant colony (ACO) based techniques have been employed in tackling the QAP. For
example, Maniezzo et al. [119] contributed the first ACO colony implementation for
QAP. Several other ACO applications can be found in [120-122]. There are also several
techniques based on genetic algorithm and its hybrids [123-125].

5.3.1 The assignment problem

In general, the assignment problem involves assigning a set of finite items to a set
of locations. A mere sense of items and locations does not apply for every application,
but rather depend on the nature of the problem at hand. For example in a job assignment,
the set of items are personnel while the locations are the jobs, in a marriage problem
items are one gender and locations are the other, and in a hospital layout problem, items
are services (departments) and locations are wards in the designated building. To solve
the assignment problem one must find the total assignment that maximizes the welfare of
all role players. Usually, the objective function is expressed by summation of the cost of

all individual assignments.

5.3.2 Linear assignment (LAP)

When only one weight matrix (usually called a flow matrix) is involved, the
assignment problem is of the type “linear” (LAP). In reference [126] the authors
described their LAP model by using the job assignment problem. A set of » people and
set of » jobs are given. Each person must then be assigned to one and only one job in a
way that minimizes the total cost of the assigning process. A cost (or flow) matrix is also
given where the matrix element c; expresses the cost of assigning a person i to a job J-

The total cost function can be formulated as:

79

Chapter 5 Applications

:Z]cifr(i) > (5-3)

Where j=n(i) and 7 is a bijective mapping of a set of n integers onto itself. Each
possible assignment is expressed by a permutation m so that the orders on this
permutation represent the set of people while jobs are represented by elements occupying

these orders as shown in Figure 5.6.

(12345678910)*—

Figure 5.6: Permutation encoding for LAP of n=10.

It is clear that the individual assignment of person i to job j is made independently and
does not influence any other assignment. Consequently, the cost of that assignment
depends only on the affinity between this particular pair, a feature that gives the problem

its linearity.

5.3.3 The quadratic assignment problem (QAP)

To facilitate a comparison between LAP and QAP, the same job assignment
model is also used here but with a slight change: the jobs are replaced by offices. The
problem now is assigning » people to n offices. In this case, a flow matrix C is given,
where the element c;; represents the volume of flow of activities between person i and
person j. A matrix D is also given where the element dy, represents the distance between
office k and office /. The cost of an individual assignment is now calculated as the flow of
activities between person i and person j times the distance between the office & (assigned
for person i) and office / (assigned to person ;). Then, the objective function to be
minimized is the double summation of the products of flows and distances over all 7.

Mathematically, the objective function can be expressed by:

LD IPIN AR (5-4)

il j=1

80

Chapter 5 Applications

Where k=n(i), I=n(j) and = is a bijective mapping of a set of n integers onto itself. A
potential assignment is expressed by a permutation 7t where the orders in this permutation
represent the set of » offices and elements occupying these orders represent the set of n
people. This formulation is known as the K-B statement which was originally suggested
by T. C. Koopmans and M. J. Berkmann [127] in 1957 to solve the facilities allocation
problem.

Another formulation of QAP was also introduced by the same authors by assuming a
binary variable x; that takes value of / if facility i is allocated to position j and zero

otherwise. Then the problem can be stated as [128]:

minizz’l:z%dk,xikxﬂ , (5-5)

i=1 j=1 k=1 I=]
Subject to:
Zx,.j =1, vj
i=1

Zn:x,.j =1, Vi
j=1

x, e, ij=1...n

Unlike LAP, in the QAP an individual assignment nonlinearly influences other
assignments especially with people who have nonzero entries in the flow matrix with this
particular person. The quadratic nature of the problem is a result of using an objective

function that has a term of the second degree.

5.3.4 QAP benchmarks

It is known that the performance of a heuristic search technique is highly influenced
by the nature of the problem studied. Among QAP problems, discrepancies are very high
due to the wide range of applications that QAP can cover. These involve the topography
of the fitness landscape and the sparsity of both flow and distance matrices. In the

81

Chapter 5 Applications

literature, the QAP problems are named after the authors who first introduced it. Usually
the first three (some times four) alphabetic letters in the problem name denote the author
name and the immediately following number refers to the size of the problems (for
example, the Nug30 is a QAP of size 30 due to C. Nugent [91]). For some problems,
different flow and cost matrices structures for the same problem can be found. In this
case, the problem name is distinguished by small letters at the end of the name (for
example, Tai35a and Tai35b). The distribution of local optima over the search space is an
important factor when determining the hardness of QAP at hand. Researchers have
agreed upon three main categories of QAPs regardless of their application. According to

[128] and [129] these three categories are:

L. Unstructured problems: In this case local minima are uniformly distributed over the
entire space. Random problems that were originally generated to test the robustness
of heuristic algorithms can be classified under this category. This type is considered
the hardest to solve to optimality [128]. Examples of this category are 7ai25a,
Tail00a and Rou20.

II. Strongly structured problems: This type includes problems that have concentrated
local optima in their search space. Usually, real-life problems and those generated
to resemble real-life problems are classified under this class. Examples of these
problems are Els19, Nug30 and Tai35b.

III. - Structured problems: In this category local minima are distributed over spread
clusters in the search space. Tail00b, Will00 and Thol50 are examples of this
category.

Figure 5.7 is a copy from reference [129] and shows the main categories of QAP

landscapes.

82

Chapter 5 Applications

e e% o o0 . .‘.v‘n" * e N
RN LR - R L
..o.a.‘.’ . ‘.:.c : a*.
«% . . @ .e
Type I type 111 Type II
uniform structured strongly structured

Figure 5.7: Classification of QAP benchmarks [129].

5.3.5 Testing and results

The algorithm is tested with 131 QAP problems that vary in size and also in
difficulty level according to the distribution of their local optima in the search landscape.
Data for all the tested problems are available at the online library of the quadratic
assignment problem QAPLIB [94]. For the simulations, the number of evaluations is kept
fixed by controlling both the population size and iteration number. For this purpose,
evaluations are considered to be the population size multiplied by the maximum number
of iterations. Because the set of tested problems are relatively large and sizes are widely
varied, the number of evaluations is chosen to be 30,000. In easy and/or small size
problems, a population size of 15 and maximum iterations of 2000 are used. For hard
and/or large size problems, population size and maximum number of iterations are set to
be 30 and 1000 respectively. The algorithm is coded in Matlab 7 and the results are
obtained by running the algorithm on a Pentium M 725 personal computer with the speed
of 1.6 GHZ. Ten runs for each problem are carried out and then descriptive statistics are
reported. The parameters of the standard genetic algorithm SGA [130] used for

comparison are as follows:

Population size=100
Maximum generation=500

Fitness scaling factor=3

83

Chapter 5 Applications

Crossover probability=0.8
Mutation probability=0.05

In Tables 5.7 to 5.18, the best known solution of each tested problem is stated as BKS.
The heading AVG represents the average value found for the objective function over ten
runs. AVG Gap heading refers to the percentage of error between the best known and the
average solutions. The Gap only heading represents the difference between the BKS and
the best solution reached by both algorithms.

For Nug type instances with sizes less than or equal to 22, Table 5.7 shows the
average performance of SGA with gap between 3-5% while the average performance of
MCDM-PSO always has a gap of around 1%. For the larger size Nug type problems, the
average gap for solutions found by using SGA are greater than 5% but for MCDM-PSO
this value is under 3%. It is also noticeable that MCDM-PSO outperforms the SGA when
comparing the best results obtained by both algorithms even for the hardest Nug
problems (Nug30). In general, the best values obtained by the algorithm are always lower
than 0.75 while in the case of SGA the gap reaches values above 4%.

In Table 5.8, the results for Bur type problems are reported. Bur type problems
are relatively easy and the accuracy of solutions found by both SGA and MCDM-PSO
exceeds 99 % in most cases. However, the average and best performances of MCDM-

PSO are significantly better than SGA even in the narrow range of that 1% error gap.

For Chr type problems (Table 5.9), the average performance of SGA is very poor
and in some cases the average gap reaches values over 30%. Although the average results
obtained by MCDM-PSO for 7 out of the 14 problems are not quite satisfactory, they are
still significantly better than those of SGA. For those seven problems the average gap can
be reduced by almost 50% using MCDM-PSO. There is also a noticeable improvement in
the best optima obtained using MCDM-PSO. In four cases optimal solutions are found

and for the rest of the problems the error is reduced by half by employing the technique.

84

Chapter 5 Applications

For Esc and Els type problems shown in Table 5.10, although the best
performance of SGA is relatively good, the average performance is very poor. The SGA
is able to find optimal solutions for most cases. However, the stability of the SGA is very
low as the average gap for some problems hits values over 80%. For example, while the
SGA is able to locate the optimal value for the problem Esc32f the average gap is
85.32%, which reflects low consistency in finding a reasonable solution in general.

On the other hand, the average performance of MCDM-PSO is very good and
significantly better than SGA. The algorithm shows high consistency with almost all
problems of this set (except for Esc128). The algorithm is able to find optimal solutions
for the ten problems at every run. The best solution found by MCDM-PSO is always
equal to the best known solution for all problems except for Esc32a, Esc32k and Escl28.
The problem with the size 128 (Escl28) is quite large and relatively hard to solve. This is
very clear with SGA as the average and best gaps are 63.64% and 52.24% respectively.
However, for the same problem with MCDM-PSO the solution has significantly

improved as the average and best gaps are reduced to 21.38% and 13.51% respectively.

Simulation results for Had, Kra, Scr, Rou, Tho, Wil, and Ste type problems are
reported in Tables 5.11 to 5.13. Except for Had type problems, the average and best
performance for SGA are very poor compared to MCDM-PSO. For SGA the average gap
reported is between 4-35% and gap of 1.88-28%. The average gap in the case of MCDM-
PSO for this set is always around 4%. However, the algorithm is able to reach solutions

with accuracy over 96% during ten runs for all problems including hard and large ones.

Randomly generated problems Sko, Tai, and Lipa types have large sizes and are
mainly generated to test the performance of heuristic techniques. Results for these
problems are reported in Tables 5.14 to 5.18. For Sko type instances the average gap for
SGA is always around 8% while for MCDM-PSO the value of the average gap is around
3%. For the best performance comparison, the gap reached by SGA is around 7% but for
MCDM-PSO this value is only 2%.

85

Chapter 5 Applications

For Tai-a and Tai-c type, an improvement is achieved using the proposed
MCDM-PSO for both average and best performances. The average gap obtained using
SGA ranges from 4% to 10% while for MCDM-PSO this value is 1% to 7%. For Tai-b
type problems (Table 5.16), while both average and best performances for SGA are poor,
MCDM-PSO has maintained the same level of improvement as with Tai-a and Tai-c
types.

Table 5.17 shows simulation results for Lipa-a type. This type is relatively easy
and the performance of SGA is satisfactory. However, MCDM-PSO still shows
superiority over SGA in terms of average and best gaps obtained in this case. Although
the Lip-b type is much harder and performances of both algorithms are not acceptable,

MCDM-PSO is able to reach better solutions than those obtained by SGA (Table 5.18).

Table 5.7: Results for Nug-type problems

SGA MCDM-PSO

Instance BKS AVG AVG Gap Best | Gap AVG AVG Gap Best Gap

Nugl2 578 603.8 4.27% 582 0.69% 586.6 1.47% 578 0.00%
Nugl4 1014 1057.4 4.10% 1018 0.39% 1030 1.55% 1014 0.00%
Nugl5s 1150 1190.6 3.41% 1160 0.86% 1157.2 0.62% 1150 0.00%
Nugl6a 1610 1679 4.11% 1610 0 16234 0.83% 1612 0.12%
Nugli6b 1240 1292 4.02% 1268 2.21% 1254 1.12% 1240 0.00%
Nugl7 1732 1803.8 3.98% 1744 0.69% 1756.8 1.41% 1732 0.00%
Nugl8 1930 2025 4.69% 1982 2.62% 1968.8 1.97% 1944 0.72%
Nug20 2570 2695.2 4.65% 2648 2.95% 2614 1.68% 2570 0.00%
Nug21 2438 2566.2 5.00% 2478 1.61% 2478.2 1.62% 2450 0.49%
Nug22 3596 3756.2 4.26% 3664 1.86% 3648.8 1.45% 3596 0.00%
Nug24 3488 3719.8 6.23% 3648 4.39% 3589.6 2.83% 3510 0.63%
Nug25 3744 - 39524 5.27% 3864 3.11% 3797 1.40% 3772 0.74%
Nug30 6124 6549 6.49% 6346 3.50% 6316 3.04% 6168 0.71%

Table 5.8: Results for Bur-type problems
SGA MCDM-PSO

Instance BKS AVG AVG Gap Best I Gap AVG AVG Gap Best Gap

Bur26a 5426670 5457625 0.57% 5441008 0.26% 5436784.2 0.19% 5432875 0.11%
Bur26b 3817852 3840110 0.58% 3826765 0.23% 3826543.3 0.23% 3824643 0.18%
Bur26c 5426795 5453160 0.48% 5436828 0.18% 5432053.1 0.10% 5427227 0.01%
Bur26d 3821225 3843722 0.59% 3824800 0.09% 3826175.6 0.13% 3821427 0.01%
Bur26e 5386879 5431801 0.83% 5400658 0.26% 5390803.8 0.07% 5387239 0.01%
Bur26f 3782044 3805317 0.61% 3784041 0.05% 3784339.5 0.06% 3782696 0.02%
Bur26g 10117172 10203375 0.84% 10146856 0.29% 10124142 0.07% 10118542 0.01%
Bur26h 7098658 7149410 0.71% 7103022 0.06% 7114724 0.23% 7099216 0.01%

86

Chapter 5 Applications
Table 5.9: Results for Chr-type problems
SGA MCDM-PSO
Instance I BKS AVG AVG Gap Best | Gap AVG AVG Gap Best Gap
Chrl2a 9552 12931 26.13% 10214 6.48% 10229.4 6.62% 9552 0.00%
Chr!2b 9742 11755.6 17.13% 9742 0 10648.8 8.52% 9742 0.00%
Chrl2c 11156 13675.2 18.42% 11156 0 11804 5.49% 11156 0.00%
Chrl5a 9896 14167.2 30.15% 11634 14.94% 10940.6 9.55% 9896 0.00%
Chrl5b 7990 13396.6 40.36% 10004 20.13% 9581.8 16.61% 8640 7.52%
Chri5c 9504 14118 32.68% 11310 15.97% 11792.2 19.40% 10678 10.99%
Chrl8a 11098 19065.4 41.79% 14418 23.03% 14832.8 25.18% 12680 12.48%
Chr18b 1534 1778.8 13.76% 1570 2.29% 1627 5.72% 1556 1.41%
Chr20a 2192 3340.8 34.39% 2822 22.32% 2699.8 18.81% 2554 14.17%
Chr20b 2298 3397.6 32.36% 2954 22.21% 2765.6 16.91% 2678 14.19%
Chr20c 14142 39151.2 63.88% 19696 28.20% 221104 36.04% 17546 19.40%
Chr22a 6156 7240.8 14.98% 6934 11.22% 6598.2 6.70% 6364 3.27%
Chr22b 6194 7254.6 14.62% 6840 9.44% 6499.8 4.70% 6292 1.56%
Chr25a 3796 6492 41.53% 5734 33.80% 5126.4 25.95% 4582 17.15%
Table 5.10: Results for Esc-type and Els-types problems
SGA MCDM-PSO

Instance BKS AVG AVG Gap Best ' Gap AVG I AVG Gap Best Gap
Escl6a 68 70 2.86% 68 0 68 0.00% 68 0.00%
Escl6b 292 292 0 292 0 292 0.00% 292 0.00%
Escléc 160 162 1.23% 160 0 160 0.00% 160 0.00%
Escléd 16 16.6 3.61% 16 0 16 0.00% 16 0.00%
Esclé6e 28 30.8 9.09% 28 0 28 0.00% 28 0.00%
Esclég 26 284 8.45% 26 0 26 0.00% 26 0.00%
Escl6h 996 996 0 996 0 996 0.00% 996 0.00%
Escl6i 14 14 0 14 0 14 0.00% 14 0.00%
Escl6j 8 9.8 18.37% 8 0 8 0.00% 8 0.00%
Esc32a 130 178.4 27.13% 166 21.69% 1438 9.60% 136 441%
Esc32b 168 2312 27.34% 212 20.75% 187.6 10.45% 168 0.00%
Esc32c 642 645 0.47% 642 0 642 0.00% 642 0.00%
Esc32d 200 214 6.54% 200 0 200.8 0.40% 200 0.00%
Esc32e 2 13.8 85.51% 2 0 2 0.00% 2 0.00%
Esc32f 13.8 85.51% 2 0 2 0.00% 0.00%
Esc32g 8.2 26.83% 6 0 6 0.00% 0.00%
Esc32h 438 462.4 5.28% 446 1.79% 442 0.90% 440 0.45%
Esc64a 116 138.6 16.31% 120 3.33% 118.6 2.19% 116 0.00%
Esc128 64 176 63.64% 134 52.24% 81.4 21.38% 74 13.51%
Els19 17212548 20337423 15.37% 17435470 1.28% 17522349 1.77% 17212548 0.00%

87

Chapter 5 Applications
Table 5.11: Results for Had-type and Kra-type problems
SGA MCDM-PSO
Instance BKS AVG] AVG Gap Best l Gap AVG I AVG Gap Best Gap
Had12 1652 1668 0.96% 1654 0.12% 1658.6 0.40% 1652 0.00%
Had14 2724 2737.8 0.50% 2724 0 2726.4 0.09% 2724 0.00%
Hadl6 3720 3740.2 0.54% 3720 0 37212 0.03% 3720 0.00%
Had18 5358 5416.2 1.07% 5374 0.30% 5383.2 0.47% 5358 0.00%
Had20 6922 6976.6 0.78% 6922 0 6945.2 0.33% 6922 0.00%
Kra30a 88900 98628 9.86% 95780 7.18% 92837 4.24% 91860 3.22%
Kra30b 91420 101470 9.90% 99540 8.16% 93652 2.38% 92170 0.81%
Table 5.12: Results for Scr-type and Rou-type problems
SGA MCDM-PSO
Instance] BKS AVG [AVG Gap Best | Gap AVG | AVG Gap Best Gap
Scrl2 31410 33040 4.93% 32236 2.56% 31857.2 1.40% 31410 0.00%
Scr15s 51140 56394 9.32% 54874 6.80% 53089.4 3.67% 51140 0.00%
Scr20 110030 126192 12.81% 118362 7.04% 1143194 3.75% 110994 0.87%
Roul2 235528 245944.8 4.24% 240038 1.88% 240143.6 1.92% 235528 0.00%
Roul5 354210 382082.4 7.29% 372560 4.93% 366093 3.25% 359748 1.54%
Rou20 725522 766679 5.37% 751964 3.52% 744858.4 2.60% 738232 1.72%
Table 5.13: Results for Tho-type, Wil-type and Ste-type problems
SGA MCDM-PSO
Instance BKS AVG AVG Gap | Best | Gap AVG | AVG Gap Best l Gap
Tho30 149936 160725.4 6.71% 157034 4.52% 154728 3.10% 154170 2.75%
Tho40 240516 266806 9.85% 262936 8.53% 255916 6.02% 255290 5.79%
Thol50 8133864 9082809 10.45% 9049974 10.12% 8532834 4.68% 8520968 4.54%
Wil50 48816 50993 427% 50456 3.25% 50034.8 2.44% 49946 2.26%
Wil100 273038 286112.4 4.57% 284734 4.11% 2822459 3.26% 277690 1.68%
Ste36a 9526 12113.2 21.36% 11676 18.41% 10542.9 9.65% 10043 5.15%
Ste36b 15852 24547.8 35.42% 21746 27.10% 16723.9 5.21% 16422 3.47%
Ste36¢c 8239110 10065947 18.15% 9499452 13.27% 8832323.6 6.72% 8630764 4.54%

88

Chapter 5 Applications
Table 5.14: Results for Sko-type problems
SGA MCDM-PSO
Instance BKS AVG I AVG Gap l Best | Gap AVG AVG Gap Best Gap
Sko42 15812 17105.6 7.56% 16936 6.64% 16412.8 3.66% 16322 3.12%
Sko49 23386 25255.4 7.40% 24990 6.42% 23865.8 2.01% 23782 1.67%
Sko56 34458 37309.8 7.64% 36858 6.51% 35456.2 2.82% 35018 1.60%
Sko64 48498 52669.2 7.92% 52252 7.18% 50470.4 3.91% 50418 3.81%
Sko72 66256 71864.6 7.80% 71202 6.95% 68156.2 2.79% 68082 2.68%
Sko81 90998 98693.6 7.80% 98326 7.45% 93575.6 2.75% 93434 2.61%
Sko90 115534 125670 8.07% 125026 7.5%% 119033.4 2.94% 118858 2.80%
Sko100a 152002 164847.8 7.79% 163894 7.26% 156678.8 2.98% 156560 291%
Sko100b 153890 166754 7.71% 166344 7.49% 158286.2 2.78% 158084 2.65%
Sko100c 147862 161477.2 8.43% 159682 7.40% 152013 2.73% 151778 2.58%
Sko100d 149576 162531.6 7.97% 161292 7.26% 153993.2 2.87% 153816 2.76%
Sko100e 149150 162335.4 8.12% 161262 7.51% 153467 2.81% 153232 2.66%
Skol100f 149036 161135.8 7.51% 159770 6.72% 153098.8 2.65% 152968 2.57%
Table 5.15: Results for Tai-a and Tai-c type problems
SGA MCDM-PSO

Instance BKS AVG AVG Gap Best Gap AVG l AVG Gap Best Gap
Tail2a 224416 243950.2 8.01% 229092 2.04% 236794.4 5.23% 229092 2.04%
Tail5a 388214 405865 435% 399716 2.88% 397486 2.33% 391586 0.86%
Tail7a 491812 520010.6 5.42% 511354 3.82% 505586.3 2.72% 496906 1.03%
Tai20a 703482 751416 6.38% 734536 4.23% 734276.5 4.19% 716954 1.88%
Tai25a 1167256 1253397 6.87% 1233592 5.38% 1210320.2 3.56% 1202804 2.96%
Tai30a 1818146 1933424 5.96% 1907086 4.66% 1881280 3.36% 1859570 2.23%
Tai35a 2422002 2602995 - 6.95% 2581634 6.18% 2562068 5.47% 2528876 4.23%
Tai40a 3139370 3378429 7.08% 3344316 6.13% 3256898 3.61% 3232998 2.90%
Tai50a 4941410 5357806 7.77% 5290886 6.61% 5252999.9 5.93% 5183240 4.67%
Tai60a 7208572 7832143 7.96% 7759426 7.10% 7642445.7 5.68% 7590492 5.03%
Tai80a 13557864 14633429 7.35% 14572116 6.96% 14531588 6.70% 14146664 4.16%
Tail00a 21125314 22787707 7.30% 22714742 7.00% 22268020 5.13% 21907198 3.57%
Taib4c 1855928 2049224 .8 9.43% 1936770 4.17% 1891672 1.89% 1863678 0.42%
Tai256¢ 44759294 47384658 5.54% 46530542 3.81% 46169617 3.05% 45934596 2.56%

&9

Chapter 5 Applications
Table 5.16: Results for Tai-b type problems
SGA MCDM-PSO
Instance] BKS AVG AVG Gap l Best | Gap AVG AVG Gap Best] Gap
Tail2b 39464925 41082684 3.94% 39464925 0 39912226 1.12% 39464925 0.00%
Tail5b 51765268 52013565 0.48% 51932236 0.32% 51916044 0.29% 51838283 0.14%
Tai20b 122455319 135380782 9.55% 124094680 1.32% 125718242 2.60% 122455319 0.00%
Tai25b 344355646 394382476 12.68% 354169763 2.77% 363005468 5.14% 350828954 1.85%
Tai30b 637117113 734364132 13.24% 663712392 4.01% 669087796 4.78% 638683376 0.25%
Tai35b 283315445 313592869 9.66% 294359840 3.75% 287713908 1.53% 286691656 1.18%
Tai40b 637250948 725153545 12.12% 686649955 7.19% 685075188 6.98% 642497530 0.82%
Tai50b 458821517 533230371 13.95% 506651344 9.44% 491245335 6.60% 490508067 6.46%
Tai60b 608215054 712435922 14.63% 675902852 10.01% 647761636 6.11% 646460819 5.92%
Tai80b 818415043 958168279 14.59% 932742966 12.26% 866025842 5.50% 863647828 5.24%
Tail00b 1.186E+H09 1.403EH09 15.45% 1.377E+09 13.88% 1.312E+09 9.62% 1.241E+09 4.41%
Tail50b 498896643 576996377 13.54% 571111565 12.64% 531089719 6.06% 530444728 5.95%
Table 5.17: Results for Lipa-a type problems
SGA MCDM-PSO
Instance BKS AVG I AVG Gap Best | Gap AVG AVG Gap Best Gap
Lipa20a 3683 3793.6 2.92% 3777 2.49% 3759 2.02% 3683 0.00%
Lipa30a 13178 13475.2 2.21% 13448 2.01% 13465 2.13% 13427 1.85%
Lipa40a 31538 32119.7 1.81% 32075 1.67% 32016 1.49% 31988 1.41%
Lipa50a 62093 63168.2 1.70% 63114 1.62% 63064 1.54% 63030 1.49%
Lipa60a 167218 108862.4 1.51% 108831 1.48% 108641.8 1.31% 108540 1.22%
Lipa70a 169755 172096.1 1.36% 171972 1.29% 171566.1 1.06% 171352 0.93%
Lipa80a 253195 256313.3 1.22% 256217 1.18% 255744.6 1.00% 255520 0.91%
Lipa90a 360630 364924.2 1.18% 364748 1.13% 363934.6 0.91% 363594 0.82%
Table 5.18: Results for Lipa-b type problems
SGA MCDM-PSO
Instance BKS AVG AVG Gap Best | Gap AVG AVG Gap Best Gap
Lipa20b 27076 31462.8 13.94% 30648 11.65% 28895 6.30% 27076 0.00%
Lipa30b 151426 178665.2 15.25% 176571 14.24% 172469 12.20% 167524 9.61%
Lipad0b 476581 577060.2 17.41% 572405 16.74% 571770.5 16.65% 564443 15.57%
Lipa50b 1210244 1466831 17.49% 1457456 16.96% 1445058 16.25% 1432712 15.53%
Lipa60b 2520135 3098152 18.66% 3086459 18.35% 3052813.2 17.45% 3017804 16.49%
Lipa70b 4603200 5701003 19.26% 5679828 18.96% 5592340.9 17.69% 5573648 17.41%
Lipa80b 7763962 9707771 20.02% 9669701 19.71% 9494589 18.23% 9442384 17.78%
Lipa90b 12490441 15643342 20.15% 15592856 19.90% 15378368 18.78% 15280839 18.26%

90

Chapter 5 Applications

In general, the MCDM-PSO is able to find sub optimal solutions for 115 out of
131 problems with a gap around 5%. Out of that set, 40 problems are solved to optimum
and 80 problems are solved with accuracy around 99%. To have better visualization of
the difference in error gaps in the cases of MCDM-PSO and SGA, the distributions of the
error gaps for both average and best performances are plotted in Figures 5.8 and 5.9.
For instance, normality regarding the distribution of error gaps is assumed just to show
the mean value of the error and its dispersion in each case. The smaller the mean value
the better the performance and the larger the dispersion the lower the consistency of
algorithm. In the analysis, the term consistency is defined as the ability of a particular
algorithm to find high accuracy solutions over larger portion of studied problems.
For average performance, the MCDM-PSO has a mean value of 6.56 and a standard
deviation of 8.16, whereas for SGA these values are 11.89 and 14.61 respectively (Figure
5.8). For best performance, while MCDM-PSO has error gaps with a mean of 2.95 and a
standard deviation of 4.6, the SGA algorithm has values of 4.79 and 6.22 respectively
(Figure 5.9). This leads to the conclusion that the MCDM-PSO has better average and the

best performances, as well as higher consistency than the SGA.

91

Chapter 5 Applications
351 —— SGA
— — MCDM-PSO
Mean StDev N
11.89 14.61 131
6.561 8.162 131
>
9]
£
)
S
o
o
&
T
75
%oError
Figure 5.8: Differences between gaps assuming normality (average case)
25 —— SGA
— — MCDM-PSO
Mean StDev N
20- 4797 6226 131
2.955 4.668 131
& 154
c
)
S
=
0
t 10_
5_
0) ¥ 1 i T I

T 1
-6 0 6 12 18 24 30 36
%Error

Figure 5.9: Differences between gaps assuming normality (best case).

92

Chapter 5 Applications

5.4 Significance of error differences

In this section, error gaps obtained by the MCDM-PSO and those obtained by the
SGA are statistically tested to prove that the differences are not due to chance. In the
previous section, normality regarding the distribution of error gaps is assumed to
facilitate a visual comparison. To go further and test the significance of the error
difference, one cannot simply assume normality; a statistical test is required to prove
normality. This step is very important in determining the type of test that can be
performed on the error samples. For samples that come from normally distributed
populations, a parametric test should be implemented. For samples that are not normally
distributed, nonparametric test types are the appropriate to carry out. In this case, the
Anderson-Darling test is performed to test whether the error gap samples are drawn from

normally distributed populations or not.

5.4.1 Anderson-Darling test of normality

In this test, the null hypothesis is evaluated as Hy: samples follow a normal
distribution versus the alternative hypothesis H;: samples do not follow a normal
distribution. The test is carried out using Minitab 14.2 with a chosen level of significance
a of 0.1. If the samples are perfectly normal, then the sample on the probability plot can
be reasonably fitted by a straight line. The outcomes of the test show that none of the
error gaps samples follows a normal distribution due to the lower values of p obtained in
each case. From Figure 5.10, it is clear that the p-value in each case is lower than the
chosen level of significance. There is therefore not enough evidence believe that samples
follow a normal distribution and the null hypothesis can be rejected at 0.1-level of
significance.

Accordingly, a nonparametric test should be chosen to test the significance of the

difference between the error gaps obtained by MCDM-PSO and SGA.

93

Chapter 5 Applications

p:

8

#

Percent

g3 BusgEaE 8 8
Percent

w5 BUAIBAE 8 8

e

20 10 0 10 20 30 40 50 60

8

8

Percent

s yusuedn 54

Percent
g5 wwssedm 88
@

01

Figure 5.10: Anderson-Darling test results

5.4.2 Mann-Whitney test

Mann-Whitney [131] is a nonparametric type of test that should be implemented when
the assumption of normality for certain distribution is violated. This test was originally
independently developed by Mann and Whitney [131] and Wlicoxon [132] to test the
significance of the difference between two random variables using their medians.
According to Mann and Whitney [131], if x and y are two random variables with » and m

observations respectively; the variable y can be declared stochastically larger than x if:

cdf (a)Xcdf (a), Va;

94

Chapter 5 Applications

where cdf is the cumulative distribution function that can described as shown in Figure
5.11.

cdf

cdf,

CUMULATIVE PROBABILITY

N — 4 — — e N\

DATA

Figure 5.11: Cumulative distribution function

5.4.3 U-statistic

The Mann-Whitney test is based on pairwise comparison of two random variables.
Observations from both variables are arranged in one increasing order then every value is
given a rank depending on its order. The sum of ranks is then used to test whether or not
the two samples are drawn from the same population. In order to achieve this, a statistic
called U was proposed by Mann and Whitney [131]. This statistic reflects how many
times each random variable precedes the other one in the order. For example, U, counts
the number of times y proceeds x (or x > y). Under the null hypothesis U has known
distribution that is tabulated in many statistics books for number of samples less than or
equal to 20. For larger sample numbers, the normal distribution approximation described

in the next subsection can be used.

95

Chapter 5 Applications

Generally, one wishes to test the null hypothesis Hy:
cdf, = cdf;
against the alternative hypothesis H;:
cdf, <cdf,.

Mann and Whitney [131] defined the decision on the test in case of P(U _<U ,)=aas

accepting the alternative hypothesis that the samples in x are significantly smaller than

the samples in y and the level of significance is a if U_<U)

5.4.4 Performing the test

In order to perform the test, the next few steps can be followed to calculate the U-
statistic and thereby make the decision.

1. Arrange observations from both variables in one increasing order.

2. Indicate which observation is related to which variable.

3. Rank every observation according to its position. Ties are dealt with by averaging

the ranks over common values under both variables.
4. Calculate the sum of the ranks for each variable as R, and R,
5. Calculate U for both samples as:

m(m+1)

U =mnm+ R (5-6)

m

D)

Uy =nmm R (5'7)

n

6. Calculate U-statistic as the smallest value between U, and U, (min{ Uy, U, }).
7. Use the Mann-Whitney statistical test table to locate the critical value of U. Reject
the null hypothesis if U-statistic is equal to or smaller than the critical value of U
at the specified level of significance.
The previous procedure is applied only in cases when the number of samples is less than
or equal to 20. However in the case of larger sample sizes, normal approximation for U-

statistic can be used as follows:

96

Chapter 5 Applications

V- ; with mean value of U as :
oy

Z =

Hy = % , and standard deviation as:

0'U=1/-@£1]\2’L1) and N=n+m

In the case of normal approximation, ties adjustment also has to be made to the standard

deviation of U. The equation for the standard deviation becomes [133]:

nm N} -N gtj—tj)
GU_\/N(N—I)XI: TR } 69

where;
g 1s the number of groups of ties

t; is the number of tied ranks in group ;.

To apply the test to the results, data are divided into two cases:

Case 1: error (gaps) for average results

Case 2: error (gaps) for best results.

In each case there are two groups of independent samples (SGA and MCDM-PSO) with
equal number of samples (n=m=131).

The possibility that the variables are normally distributed has been rejected based on the
results of Anderson-Darling test explained earlier. Figures 5.12 and 5.13 show

nonparametric distribution fitting for error samples in each case.

97

Chapter 5 Applications

0.07F : " : ; T oas] T y v " T —

‘T SGA ; MCDM-PSO

Density
Density

Figure 5.12: Nonparametric distribution fitting (average case).

0.2

SGA] S MCDM-PSO
0184
0.16H
0.14 i J . ‘.

0.12

Density

0.1

Density

' |
0 . h f h . . ; : T ;

0 5 10 15 20 25 30 3B 0 2 4 6 8 10 12 14 16 18 20
%Ermor %Ermor

Figure 5.13: Nonparametric distribution fitting (best case)

The test is carried out using SPSS 14.0 and the results are given in the Tables
(5.19-5.22). SPSS software provides two tables in the case of the nonparametric test for
two independent samples: rank table, which contains mean and sum of ranks for each
sample; and the other table contains statistics about the type of tests performed (in the
cases of: U for Mann-Whitney, W for Wilcoxon and Z for normal approx. of U). The
value of Z gives a two-sided P-value less than 0.0001. This means that the difference
between the two samples is highly significant and one can reject the null hypothesis that
the two samples are drawn from the same population. Also, the test concludes that the

apparent difference between the error gaps is really genuine and is not due to chance.

98

Chapter 5 Applications
Table 5.19: Ranks for average case samples
VARO00001 N Mean Rank | Sum of Ranks
VARO00003 SGA 131 152.23 19942.00
MCDM-PSO 131 110.77 14511.00
Total 262
Table 5.20: Test Statistics for average case samples
VARO00003
Mann-Whitney U 5865.000
Wilcoxon W 14511.000
Z -4.430
Asymp. Sig. (2-tailed) .000
Table 5.21 Ranks for best case samples
VARO00001 N Mean Rank | Sum of Ranks
VARO00003 SGA 131 150.96 19775.50
MCDM-PSO 131 112.04 14677.50
Total 262

Table 5.22: Test Statistics for best case samples

VARO00003
Mann-Whitney U 6031.500
Wilcoxon W 14677.500
V4 -4.174
Asymp. Sig. (2-tailed) |.000

99

Chapter 5 Applications

5.5 MCDM-PSO versus Traditional PSO

In this section, the technique is evaluated further by comparing its performance
with that of the traditional PSO technique reported in reference [134]. Although the
authors test only a few instances of QAP with relatively small size; their work is
considered one of the rarest literatures that use PSO to solve the QAP. In their work, the
main philosophy of the traditional PSO remains untouched. However, the authors
extended the perception of both velocity and position from real values to fuzzy matrices.
The authors also evaluated the performance of their technique against the ant colony
optimization (ACO) for the studied QAP problems.

In this section, the technique is compared with the performance of the earlier
mentioned PSO and also with the ant colony system reported in the same reference. To
facilitate fair comparison, agents are set to be equal to the swarm size in the PSO and
number of ants in the ACO. Table 5.23 shows the values of parameters used in
comparison for both ACO and PSO.

Table 5.23: Values of parameters used in case of PSO and ACO [134]

Algorithm Parameter name Parameter
value
Number of ants 5
Weight of pheromone trail a 1
ACO Weight of heuristic information 5
Pheromone evaporation parameter p 0.8
Constant for pheromone updating Q 10
Swarm size 5
PSO Self-recognition coefficient cl 1.49
| Social coefficient c2 1.49
Inertia weight w 0.9:0.1

100

Chapter 5 Applications

For MCDM-PSO, 5 agents and 10 replications are used for each problem with a
maximum of 1000 iterations. Results are averaged over ten runs and the mean value
(AVG) and standard deviation (STD) in every case are reported in Table 5.24.

The MCDM-PSO reaches a better average than those of ACO and the traditional PSO
over all the studied cases. However, the MCDM-PSO has a higher standard deviation
than ACO and PSO in few cases. Higher standard deviations reflect lower stability that
could be due to employing a small number of agents (5 agents). In general the
performance of MCDM-PSO is superior to both ACO and PSO in most cases due to the

diversity measure that has been considered in the technique.

Table 5.24: MCDM-PSO versus ant colony (ACO) and traditional PSO

ACO PSO MCDM-PSO
Problem
AVG STD AVG STD AVG STD
Nug5 50.0 0 50.2 0.6325 50 0
Nug8a 222.8 3.9101 218.8 3.2931 214.4 1.26

Tai8a 85934 800.4784 | 83294 2698.1 78711 1251.6
Chrl2a 16557 1661.6 13715 2098.0 10983 632.47
Tail2a | 256180 3066.5 254230 5809.9 | 2330304 8208.8
Chr20a | 5438.8 261.3909 | 4456.0 389.8974 | 3173.8 325.2

Dre30 1849.6 82.1998 1592.0 118.4736 1087 72.9

Tho40 | 302840 3603.3 286670 5318.3 263312.6 46172
Tai50a | 5626356 15225 | 5587622 52893 | 5342643.4 26634.9

To show the effect of the diversity criterion on the position update, the probability
distribution of the Levenshtien edit distance for MCDM-PSO versus that of the
traditional PSO is plotted after 100 iterations (Figures 5.14 and 5.15). The figures show
that agents in the proposed technique are more diverse than particles of the traditional
PSO even after the 100 iterations (both techniques are tested using a population of 100).
This diversity helps the population to “live” longer by avoiding the state of stagnation
and prevents premature convergence, the feature that gives the technique its uniqueness

and conquers one of PSO drawbacks.

101

Chapter 5 Applications

99.9

Mean 152 | !
Stbev 1732 |

3

st o e g e o

Percent

Distance

Figure 5.14: Probability Plot of Levenshtien distance matrix for traditional PSO after 100 iterations.

102

Chapter 5 Applications

Stbev 3.430 |: ‘ : : f

Percent

Distance

Figure 5.15: Probability Plot of Levenshtien distance matrix for MCDM-PSO after 100 iterations

5.6 Concluding remarks

For illustration, a step-by-step computation of the proposed technique was described
with a moderate size example of TSP. The technique was also tested with a larger scale
problem and was found to be effective in reaching a near optimal solution with both types
of STP (symmetrical and Asymmetrical). Compared to traditional PSO, the proposed
technique showed significant improvement in performance.

The quadratic assignment problem has a great deal of importance in the field of
combinatorial optimization. New heuristics are usually evaluated according to its
performance when used to solve QAP problems. The problem of QAP was extensively
tested by selecting a wide range of problems to cover various applications. The results of
simulation demonstrate the ability of MCDM-PSO to solve the problem with reasonable
accuracy. When compared to the standard genetic algorithm, the technique solved the
addressed problems with higher efficiency in both average and best cases. Moreover the

technique also shows superiority over the traditional particle swarm due to the employed

103

Chapter 5 Applications

diversity factor. To prove the significance of the error difference; the nonparametric
Mann-Whitney test was used. The test is known to be powerful and effective when
assumptions about normal distribution are violated, as in this case. The test results
suggest higher significance of error gaps and rule out the possibility that the difference
might be due to chance.

The availability of several alternatives for population agents facilitates higher
discrepancies in genotypic positions and accordingly reduces the risk of premature
convergence. The process of composing permutations using four alternatives is highly
effective compared to the method of crossover used in genetic algorithms. Unlike
crossover, the composition procedure relies on the objective mixing of four permutations
- while in crossover; permutations are generated using random sharing between two

parents.

104

Chapter 6 Extension to continuous variables optimization

Chapter 6: Extension to Continuous
Variables Optimization

6.1 Introduction

Although the proposed technique is intended for combinatorial optimization, in this
chapter the application to optimization problems with continuous variables is explored.
Unlike the applications presented earlier, the variables in this case are not coded by a
permutation of integers but rather by real values x € R” (R"is the set of real numbers).
Therefore the first significant change in the proposed MCDM-PSO would be the
elimination of the Levenshtein edit distance from the algorithm. The swarm diversity is
now expressed by the distance measured as the differences between the real values of the

variables.

6.2 The MCDM-PSO model

As explained earlier in chapters 3 and 4, in the proposed technique, the position of an
agent within the swarm is updated in accordance to its response to changes around it.
Attitude (position) change is acquired by four main basic behaviors namely; imitation,
memory retrieval, momentum, and play. So, the position update equation can be
expressed as:

New position = current position + momentum influence + memory retrieval influence +

imitation influence + play influence.

105

Chapter 6 Extension to continuous variables optimization

6.2.1 Momentum influence

The momentum is the tendency to continue the search in the current direction. In the
experiment, several schemes for momentum are tried. However, random portions of the
difference between the lower and upper limits of the variable are found to give the best
results. To gain more control over the momentum influence, a momentum rate 7 is
introduced to the position update equation so that the momentum influence is expressed
as:
rand" (Xmax — Xmin) (6-1)

Where,

e Xmin and Xmax are the minimum and maximum values allowed to the variable X

respectively.

e rand : is a uniformly distributed random number between 0 and 1.

e 77:1s the momentum rate.
More details about tuning the parameter 7 are given in the section specifying MCDM-
PSO setting.

6.2.2 Memory retrieval influence

The memory retrieval influence is a result of the relation between the agent’s current state
and its best experience. The magnitude of this influence is determined by the levels of
fitness and diversity of the agent’s best experience, which can be indicated by the
memory retrieval ranking index R/, . Both genotypic and phenotypic sides of that relation

are given in Table 6.1.

Table 6.1: key players in memory retrieval relation.

Genotypic side Phenotypic side
Agent’s current state X Xft
Agent’s best experience pbestx pbest

106

Chapter 6 Extension to continuous variables optimization

According to the proposed technique, the influence of memory retrieval should be

weighted by the memory retrieval ranking index R/, . This ranking index is a result of the

multi-criterion decision making process explained previously in chapters 4 and 5.

Therefore, the memory retrieval term of the position update equation can be expressed as:
RI_ (pbestx— X) (6-2)

Where:

z : 1s the normalized memory retrieval ranking index.

"’=RI,+RI,.+RIP

RI,: 1s the imitation ranking index.
RI, : is the play ranking index.
The second significant difference between the algorithm setting in the case of integer

permutations and real valued variables is that the momentum influence is no longer

included in the set of decision’s alternatives as shown in the normalized value of the

ranking index R, .

6.2.3 Imitation influence

Imitation is a one-sided interaction between an agent and the best agent in its

neighborhood. Table 6.2 shows the key players engaged in imitation behavior.

Table 6.2: key players for imitation influence.

Genotypic side Phenotypic side
Agent’s current state X Xft
State of the best agent in the
. Nbestx Nbest
neighborhood

The imitation influence is also weighted by the imitation ranking index RI, so that the

imitation influence term in the position update equation can be expressed as:
RI, (Nbestx — X) (6-3)
Where:

107

Chapter 6 Extension to continuous variables optimization

— R[i
" RI,+RI,+RI,

: is the normalized imitation ranking index.

6.2.4 Play influence

As explained earlier in chapters 4 and 5, play behavior can be expressed by random
moves in the domain space. However, total random moves could eventually have a
negative impact on the convergence process and the unity of the swarm as a whole due to
agents potentially wandering away from the swarm core. Therefore, a smart play action

would be in a neighborhood surrounded by pbestx , Nbestx , and gbestx . In the

experiment this random position is created using a random normal distribution formula

with mean equal to the average of those three points and standard deviation i so that:

(6-4)

Randx = normm d(gbestx + Nbestx + pbestx ’/‘j

3
Where;
Randjx : is the random position created to represent play behavior.

normrnd : is a Matlab function returns random numbers chosen from a normal

distribution.

+ Nbestx + Ix)..
[g bestx ;s pbes j : is the mean of the random numbers generator.

4 : 1s the standard deviation of the random numbers generator.
Details about tuning the parameter 4 are given in the section specifying MCDM-PSO
settings.

Play influence on the position update equation is determined by the relation
between the agent’s current state and its random state (created by play behavior). This

relation has two sides as shown in Table 6.3.

108

Chapter 6 Extension to continuous variables optimization

Table 6.3: Both sides of the play influence

Genotypic side Phenotypic side
Agent’s current state X Xft
Agent’s random state Randx Rndft

Play influence is also weighted by the play ranking index RI, so that the play influence

term in the position update equation can be expressed as:

Rl (Randx - X) (6-5)

Where:

y = £ : 1s the normalized play ranking index.
PRI +RI,+RI)

6.2.5 Position update equation

Now the final form of the position update equation for a single agent in one dimension

can be expressed as:

X" = X* + rand" (Xmax — Xmin) + RI*, (pbestx* — X*) + RI* (Nbestx* — X*) + RI;, (Randx* — X*)
Where:

k: 1s the iterations index.

The general form for the position update equation of an agent i in the dimension d would

be:

X*(i,d)=X*(i,d) + rand" * {Xmax(d) — Xmin(d)} + RI* (i,d) * {pbestc* (i,d) - X* (i,d)}

6-6
+ R, (i,d) * {Nbestx* (i,d) - X* (i,d)} + RI®, (i,d) * {Randx* (i,d) - X * (i,d)} (6-6)

6.3 Computational experiments

To evaluate the performance of the proposed algorithm on optimizing real-valued
problems, a large diverse set of benchmark functions is chosen from the literature [135-

155]. The set of 32 benchmark problems contains well-known functions on the field of

109

Chapter 6 Extension to continuous variables optimization

unconstrained optimization that are widely used to test the functionality of heuristic
techniques. The dimension of the test problems ranges from 2 to 100. Also the set
contains several classes of problems including both unimodal and multimodal types with

regular and irregular distribution of valleys and hills.

6.3.1 Benchmark problems
The proposed MCDM-PSO is tested using 22 functions (f; - f,,). Functions f,- f,, are

repeated in the test with 30 and 100 dimensions yielding a total of 32 test problems.
Details of test problems including definitions, variable ranges, dimensionality, and
optimal solutions are given below. Descriptions and visualizations of the problems are

credited to references [135], [136] and [137].

1. Sphere model
This is a unimodal function also known as De Jong's function 1. The definition of

the function is;
[=] -512<x,<5.12
d=1

The global minimum is £,(x)=0; x,=0, d=1:n
Visualization of the function in two different ranges is shown in Figure 6.1.
2. Rotated hyper-ellipsoids function
The function is also unimodal and it produces a hyper-ellipsoid surface.
The definition of the function is
n(d 2
fix) = Z(erj -65.536 < x, < 65.536
d=1\ e=1
The global minimum is f,(x)=0; x,=0, d=1:n
Visualization of the function in the range -50 to 50 is shown in Figure 6.2.
3. Axis parallel hyper-ellipsoids

This function is a weighted sphere model, meaning it is also a unimodal function.

The definition of the function is:

110

Chapter 6 Extension to continuous variables optimization

fix)=>dx] -512<x,<5.12
d=1

The global minimum is f,(x)=0; x,=0, d=1:n

Visualization of the function in the range -5 to 5 is shown in Figure 6.3.

8
g

44

-
b3
w
i

objective vaiue
- ~N (%3
: 2
objective value
v B
Q Q
: :

(=4
¥.

(@ (b)
Figure 6.1: Visunalization of the Sphere model;

(a) In the range -500 to 500 and (b) A closer look in the range -10 to 10

objedive value

verisble 2 50 .50 verisdie 1

Figure 6.2: Visualization of the Rotated hyper-ellipsoids function

111

Chapter 6 Extension to continuous variables optimization

]

3

objecive value
=]

26

variabie 2 5 variabie ¢

Figure 6.3: Axis parallel hyper-ellipsoids

4. Rastrigin function
This function is based on the sphere model except for the cosine term that
produces many local minima. The function is highly multimodal with regularly

distributed local minima. The definition of the function is:

fo(x) =D (x] - 10cos(2mx,) + 10) -5.12<x,<5.12
d=1

The global minimum is f,(x)=0; x,=0, d=1:n
Visualization of the function in two different ranges is shown in Figure 6.4.

5. Schwefel function

112

Chapter 6 Extension to continuous variables optimization

This is a multimodal function with many local optima. The complexity of this
function is due to the fact that the global optimal is far from the local optima, which
makes it hard to optimize if many agents fall into one of the deep local optima [138]. The

definition of this function is:

fs(x)=i—x,,.sin(M) -500 < x, <500
d=1

The global minima is f;(x) =-#n.418.9829; x,=420.9687, d=1:n

Visualization of this function in the full range is shown in Figure 6.5.

6. Rosenbrock valley function

This function is also known as the banana function. The global minimum of this
function is located inside a long, narrow, parabolic shaped flat valley with many
deceptive local minima. It is easy to find the valley but very hard to converge to the

global optimum. The definition of this function is:

n-1
fe(@) =D [100(x,,, - x3)* + (1 -x,)’] -2.048 < x,<2.048
d=1

The global minima is f(x)=0; x,=1, d=1:n

Visualization of this function in two different ranges is shown in Figure 6.6.

58

ohjective value
8

objective value
3

(@) (b)

Figure 6.4: Visualization of the Rastrigin function; (a) between -5 and 5 and (b) between -1 and 1.

113

Chapter 6 Extension to continuous variables optimization

Figure 6.5: Visualization of the Schwefel function.

4000 - 400 -
g:mn. e
~9m~ 3
g %
1000 §

N
¥

veriabie 2 05 05 ol 1

(a) (b)
Figure 6.6: Visualization of the Rosenbrock function; (a) between -2 and 2 and (b) around the local

minimum (between -0.5 and 1.5).

114

Chapter 6 Extension to continuous variables optimization

7. Griewangk function
This 1s a multimodal function with regularly distributed local minima. The definition of
this function is:

fr(x

1 -600<x, <600
4000 (JZ) e

The global optimum is f,(x)=0; x,=0, d=1:n

Visualization of this function in three different ranges is shown in Figure 6.7.
8. Ackley path function

This function is multimodal, with a global optimum located in a narrow basin and
surrounded by several shallow local minima. The definition of the function is:

A lznlx,% ——Zcos(Z;txd)

fi(x)=20+e-20e *V"A _g " ~32.768< x, < 32.768

The global optimum is f;(x)=0; x,=0, d=1I:n
Visualization of this function in two different ranges is shown in Figure 6.8.

9. The sum of different powers function

This is a unimodal function. The definition of the function is:

fi(x) = ilxdl(d“) 1<x, <1
d=1

The global minima is f;(x)=0; x,=0, d=1:n
Visualization of the function is shown in Figure 6.9.

10. Zakharov function

This is also a unimodal function. The definition of the function is:

2 4
@)= x] +(ZO.5.d.xd) +(ZO.5.d.de -5<x,<10
d=1 d=1

d=1
The global solution is f,,(x)=0; x,=0, d=1:n

Visualization of the function is shown in Figure 6.10.

115

Chapter 6 Extension to continuous variables optimization

150 .
_gmm _gz
b4 3
0
50
(@) (b)

objective value

©

Figure 6.7: Visualization of the Griewangk function; (a) in the full range, (b) between -50 and 50 and
(c) between -8 and 8.

objective value

objective value

(@) (b)

Figure 6.8: Visualization of Ackley path function; (a) between -30 and 30 and (b) between -2 to 2.

116

Chapter 6 Extension to continuous variables optimization

objective value

variale 2 A verisbie 1

Figure 6.9: Visualization of the sum of different powers function.

Figure 6.10: Visualization of the Zakharov function.

117

Chapter 6 Extension to continuous variables optimization

11. Langerman function
This is a multimodal function. The difficulty of this function is due to the
roughness of its landscape where its global minimum is located within several unevenly

distributed local minima. The definition of this function is:
5 1 2
~— X -41:5,0)] 2
== cd(e ™ .cos(z|X — A(1:5,d)|)J
d=1

X=[x,] 0<x,<10; d=1:5

9.6810 9.4000 80250 2.1960 8.0740 (0.8060
0.6670 2.0410 9.1520 0.4150 8.7770 0.5170
A=1|47830 3.7880 5.1140 5.6490 3.4670 |; C =|1.5000

9.0950 7.9310 7.6210 6.9790 1.8630 0.9080

| 3.5170 2.8820 4.5640 9.5100 6.7080 | | 0.9650 |
The best value to reach for this function is defined by the International Contest on
Evolutionary Optimization ICEO [139] to be f;,(x) =1.4.

Visualization of this function with two different sets of variables for the same range is

shown in Figure 6.11.

12. Michalewicz function
This is a multimodal function with several local minima. The definition of the

function is:
3, d.x?
fo(x)==) sin(x,).sin®"| == |; 0<x,<zm; d=1:5 m=10
12 d T d
d=1

The best value to reach for this function is defined by the International Contest on
Evolutionary Optimization ICEO [139] to be f,,(x) = -4.6876 .

Visualization of this function with two different sets of variables in different ranges is

shown in Figure 6.12.

118

Chapter 6 Extension to continuous variables optimization

objective vaiue

(@) (b)

Figure 6.11: Visualization of the Langerman function; (a) for the first and second variables (b) for

the second and third variables with first variable set to zero

objedive value
objedive value

ohjective value

Yariable 4 ¢ 0 varisble 3

©

Figure 6.12: Visualization of the Michalewicz function; (a) with variable 1 and variable 2 in the range
0 to 3, (b) in the range 1.5 to 2.5 and (c) with variables 3 and 4 while variables 1 and 2 are set to zero

in the rang 0 to 3.

119

Chapter 6 Extension to continuous variables optimization

13. Easom function

This is a unimodal function. The definition of the function is:

fi5(x) = —cos(x,).cos(x,).e” G =N _100<x,<100; d=1:2
The global solution is f;(x)=-1;, x,=7z, d=1:2
Visualization of this function in two different ranges is shown in Figure 6.13.
14. Six-hump camel back function

This is a multimodal test function with two global minima located among the total

of six local minima. The definition of the function is:
fi()=(4=2.17 +) x} +x,x, + (-4 +4x0)x2; -3<x,<3; d=1:2

The global minimum is f,(x) =-1.0316; (x,,x,)=(-0.0898,0.7126),(0.0898,-0.7126)
Visualization of this function in two different scales is shown in Figure 6.14.
15. Branin function

This function has no local minima and two global minima in the specified range.
The definition of the function is:

Sis(x)=(x, —ﬂ.xf +£.x1 —6)2 +10.(1—L).cos(xl)+10 0<x,<10;, d=1:2
4r T 87

The global minimum is f};(x)=0.397887; (xl,ﬁcz) =(pi,2.275),(9.42478,2.475).

Visualization of this function is shown in Figure 6.15.

16. Hump function
This is the same as function 14 except that the global solution is equal to zero.

The definition of the function is:
fie(x) =1.0316285 + 4x-21x; +x° + x,x,-4x] +4x3; -5<x,<5, d=1:2
The global solutionis f,,(x)=0; (x,,x,)=(0.0898,-0.7126),(-0.0898,0.7126)

Visualization of this function is shown in Figure 6.16.

120

Chapter 6 Extension to continuous variables optimization

Q
.

objective vaslue
&
!
2

(2) ®)

Figure 6.13: Visualization of the Easom function; (a) between -20 and 20 and (b) between 1 and 5.

objedive value
objective value

variable 1

Figure 6.14: Visualization of the Six-hump camel back function; (a) wide overview (b) focused view

around the minima

121

Chapter 6 Extension to continuous variables optimization

8

8

objadive valus

Figure 6.15: Visualization of the Branin function.

Figure 6.16: Visualization of the Hump function.

122

Chapter 6 Extension to continuous variables optimization

17. Hartmann 3-dimentional function
This is a multimodal function with four local minima; one of them is the global
solution. The definition of the function is:

S (x)= Za exp[ZA,d(x,, P)} 0<x,<1,d=1:3

i=1

310 30 6890 1170 2673

01 10 4699 4387 7470
=[1 12 3 32 ; 4= ;P=10"

3 10 1091 8732 5547

01 10 35 381 5743 8828

The global minimum is f,,(x")=-3.86278, x = (0.114614,0.555649,0.852547)

18. Hartmann 6-dimentional function
This is a multimodal function with six local minima; one of them is the global

solution. The definition of the function is:
fls(x)—_za exPl: Z‘Bxd(xd Q) }; 0<x,<l,d=1:6

10 3 17 305 17 8 1312 1696 5569 124 8283 5886

005 10 17 01 8 14 —4(2329 4135 8307 3736 1004 9991
o= [1 12 3 32]T B= O=1"*

3 35 17 10 2348 1451 3522 2883 3047 6650

178 005 10 01 14 4047 8828 8732 5743 1091 381

The global minimum is:
frs(x')=-3.32237; x" =(0.20169,0.150011,0.476874,0.275332,0.311652, 0.6573),
19. Shekel function

This is a multimodal function with m local minima; one of them is the global

solution. The definition of the function is:

m 4 -1
fio(x) = Z{Z(xd—Cdi)2+ﬂi} ; m=10,0<x,<10,d=1:4

=1 [d=1
4186 3258¢6 7
1 41 8 6 7 95 1 2 36
ﬂ=—[1224463755]T,C:4186323867
10
41867 931 2 36

The global minimum is f,,(x")=-10.5364, x" =(4,4,4,4)

123

Chapter 6 Extension to continuous variables optimization

Figure 6.17: Visualization of the Matyas function.

Figure 6.18: Visualization of the Shubert function.

124

Chapter 6 Extension to continuous variables optimization

Figure 6.19: Visualization of the Trid function.

125

Chapter 6 Extension to continuous variables optimization

20. Matyas function

This 1s a unimodal function. The definition of the function is:
Saol®) = 026(x! +x3)-048xx,; -10<x,<10, d=1:2
The global minimum is f,,(x")=0, x" =(0,0),
Visualization of this function is shown in Figure 6.17.
21. Shubert function

This is a highly multimodal function with 18 global minima. The definition of the

function is:
5 5

fo(x)= (Zicos((i +Dx, + i)](Zicos((i +Dx, + i)j; -10<x,<10,d=1:2
i=l i=1

The function has 18 global minima with f,,(x")=-186.7309

Visualization of this function is shown in Figure 6.18.

22. Trid function

This is a unimodal function. The definition of the function is:
Jp(x)= Z(xd) Zxdxd_l; -’ <x,<n’,d=1:n
d=1 d=2

The global minimum n=6is f,,(x")=-50 at x,=d(7-d), d=1:6
The global minimum n=10is f,,(x")=-210 at x;=d(ll-d),d=1:10

Visualization of this function is shown in Figure 6.19.

6.3.2 Test environment and MCDM-PSO setting

The MCDM-PSO for continuous optimization is coded on the Matlab 7 platform and is
run on an Intel Pentium M7255 machine. Test results are averaged over 30 runs for
problems f| to fi, and over 20 runs for problems f;, to f,,. The mean and standard
deviations of the solutions are recorded. Although a maximum of 2000 iterations is set
for every run, in most cases the MCDM-PSO is able to find reasonable solutions before

reaching the predefined maximum limit of iterations. In these cases, the number of

126

Chapter 6 Extension to continuous variables optimization

iterations other than the maximum limit is also recorded. A population size of 30 agents
is used for all problems. A neighborhood size of 30 is found to be the best setting for
problems with dimensions of 30 and 100, whereas a neighborhood size of 5 is suitable for
problems with dimensions less than 30. Positions of agents are randomly initialized
between the given ranges of variables for each problem. The value of the momentum rate
parameter 77 is manually tuned for each problem individually. While a very high value
for 77 could slow down the convergence, very low value causes big jumps in the search
landscape. Taking big jumps in the search space could lead the agents to miss rich sub-
areas or causes a cancellation of the position update step altogether because the position
in the proposed algorithm is set to the agent’s best position in the case of the boundary
violation. Typical values for the parameter 7 are 1, 10, 100, 1000, etc. For the play
behavior, the value of the parameter 4 is manually tuned for each problem individually
according the roughness of the search landscape and the distribution of the valleys and
hills on the surface. For a rough surface with irregular distribution of local optima, a
small value of uis preferred. It also controls the level of the desired quality of search.
For an intimate search around the best areas, a small value of x# should be chosen. The
value of u is also preferred to be equal or less than the upper limit of the variable
(Xmax) to ensure that agents stay inside the domain. Generally, small values of u will
not harm the quality of search but could significantly slow down the speed of
convergence. From the experiments, typical values for the parameter x are found to be

0.00001, 0.0001, 0.001, 0.01, 0.1, 1, etc.

6.3.3 Algorithms used for comparison

To gain more sense about the performance of the proposed technique, the results are
compared with results obtained by the traditional PSO and six other well-established PSO
variants that are previously proposed to overcome the problem of the premature
convergence in the PSO especially with multimodal problems. Also, the results are
compared with results obtained by an algorithm outside the PSO family which is simple
evolutionary algorithm (SEA). Namely, algorithms involved in the comparison are:

1. Traditional particle swarm optimizer PSO.

127

Chapter 6 Extension to continuous variables optimization

Attractive-repulsive particle swarm optimizer ARPSO [140].

Unified particle swarm optimizer UPSO [141].

Fitness-distance ratio based particle swarm optimizer FDR-PSO [142].
Fully informed particle swarm optimizer FIPS [143].

Hybrid Cooperative particle swarm optimizer CPSO-H [144].

Comprehensive learning particle swarm optimizer CLPSO [138§].

® N kW

Simple evolutionary algorithm SEA [145].

6.4 Test results

6.4.1 MCDM-PSO vs. traditional PSO

For the comparison, the traditional PSO with decreasing inertia weight is used. The
inertia weight function is decreased as the iteration index increases as:
W = rand* (Xmax — Xmin)

For both MCDM-PSO and traditional PSO, positions are set to the agent/particle self best
positions if the candidate move is found to be outside the search domain.
To have a fair comparison, the number of iterations in the case of traditional PSO is set to
be equal to those needed to reach solutions recorded for MCDM-PSO and shown in
Tables 6.4, 6.5 and 6.6. Also a population size of 30 is used for the traditional PSO.

First, both MCDM-PSO and traditional PSO are tested with problems f;- f;, on

30 and 100 dimensions. The mean and the standard deviations of the results in the case of
30-dimensional and 100-dimensional problems are presented in Tables 6.4 and 6.5
respectively. The best solutions are shown in boldface in the tables.

Results show that the proposed MCDM-PSO is able to quickly converge to very good
solutions for the specified test problems (in most cases 100 iterations are recorded). Also,
results show that MCDM-PSO significantly outperforms the traditional PSO in all test
problems of 30 and 100 dimensions. Moreover, the consistency (the ability to find the
same solution every run) of MCDM-PSO is very high due to the very small deviations
recorded over the 30 runs as shown in the tables. Convergence characteristics of MCDM-

PSO and traditional PSO with problems f,- f, on 30 dimensions are shown in Figures
6.20 to 6.29.

128

Chapter 6 Extension to continuous variables optimization

Table 6.4: Results for problems f, to f,, on 30 dimensions.

MCDM-PSO PSO
No. Function Name Iterations
Mean Std. Mean Std.
1 Sphere 100 1.3946996e-52 2.10e-53 1.65755 0.72711
2 Rotated hyper-ellipsoids 100 2.9970622¢-75 8.16e-76 | 53.592529 12.90
3 Axis parallel hyper-ellipsoids 100 1.5608442¢-76 5.02e-77 | 3.2740e+2 | 1.45¢+2
4 Rastrigin 100 0 0 1.6106e+2 | 36.08
5 Schwefel 500 -1.2569443e+4 0.06757 -1.253e+4 | 1.45e+2
6 Rosenbrock 1000 6.3956471e-5 1.00e-4 51.93666 | 29.3065
7 Griewangk 500 1.9613940e-16 2.74e-16 0.750479 | 0.23447
8 Ackley 100 8.8817841e-16 0 8.912487 1.703
9 The sum of different powers 100 8.0827494e-77 6.94e-77 9.334¢-6 1.36e-5
10 Zakharov 100 5.2377566¢-74 2.11e-73 37.64920 | 37.6492

129

Chapter 6 Extension to continuous variables optimization

Table 6.5: Results for problems f1 to f,, on 100 dimensions

MCDM-PSO PSO
No. Function Name Iterations
Mean Std. Mean Std.

1 Sphere 100 3.902412e-052 | 3.63e-053 | 1.103111e+2 21.98
2 Rotated hyper-ellipsoids 100 1.078668e-74 1.82¢-75 | 7.036120e+2 1.27e+2
3 Axis parallel hyper-ellipsoid 100 1.610309e-75 2.80e-76 | 2.206017e+5 4.89¢+4
4 Rastrigin 100 0 0 9.005449¢+2 97.38
5 Schwefel 500 -4.1898185e+4 | 0.2628846 | -4.12981e+4 4.68c+2
6 Rosenbrock 1000 1.6732261e-4 2.15¢-4 6.85716e+2 1.00e+2
7 Griewangk 500 7.0314124e-17 1.21e-16 | 53.41185543 | 16.676593
8 Ackley 100 8.8817841e-16 0 17.98391 0.45909
9 The sum of different powers 100 6.8741940e-77 | 4.85¢-077 3.9400e-4 4.65¢-4
10 Zakharov 100 3.6758269¢-74 1.05e-74 1.25867e+3 1.69¢+2

Second, the MCDM-PSO and traditional PSO are tested with problems less than 30
dimensions (£, - f3,) (Table 6.6). For this group of problems both MCDM-PSO and PSO

are performing almost the same except for a few cases. For example, for the problem
J/1sthe MCDM-PSO has a significantly better result than PSO. However, for the problem
J2o the PSO is able to find better minimum than MCDM-PSO. Other than that, solutions

obtained by both algorithms for that group are very slightly different. The convergence

characteristics of both algorithms on the problem f,, are shown in Figure 6.30. The figure

shows that MCDM-PSO and PSO have almost the same pattern of convergence with that

particular problem.

130

Chapter 6 Extension to continuous variables optimization

Table 6.6: Results for problems less than 30 dimensions.

MCDM-PSO PSO
No. Function Name Iterations
Mean Std. Mean Std.
11 Langerman 1000 -1.367 0.2855 -1.377 0.2548
12 Michalewicz 2000 -4.622 0.0900 -4.680 0.0335
13 Easom 500 -1 0 -0.95 0.2236
14 Six-hump 1000 -1.032 3.94e-5 -1.032 0
15 Branin 1000 0.397 2.56e-5 0397 0
16 Hump 1000 5.584e-5 5.11e-5 4.651e-8 0
17 Hartmann 1000 -3.862 5.87e-6 -3.862 2.2e-15
18 Hartmann 1000 -3.302 0.0448 -3.274 0.0599
19 Shekel 1000 -10.536 2.54e-5 -6.129 2.32
20 Matyas 1000 6.076¢-13 4.9¢-13 3.748e-030 1.1e-29
21 Shubert 1000 -1.867e+2 0.0120 -1.867e+2 3.8¢-14
22 Trid 2000 -2.099¢+2 0.0062 -2.098¢+2 0.143

131

Chapter 6 Extension to continuous variables optimization

——PSO E
—+— MCDM-PSO
0 ™ 4
N E
0 ; 3) -~ |
10° 1 Y \
s .
= Y 1,
o \ L,
5 ~
° . e
2 10 ¢ * § 4
8 \
£ \ |
Q 4
\ |
i
107, \ h 9
y I
\\ L
3 5
10 \\ L i
\ L
l\\‘ L
! i
10" \ ! Iy
10 10 10 10°
lterations

Figure 6.20: Convergence of the 30 dimensions Sphere function.

10 i
. ———PSO
1 . —+— MCDM-PSO
2 _H
10" ¢ — -
— —
* _L\—‘*
e
1 L\‘x
10 3 \\‘ \K\ E
. T
8 x
@ 10°+ \\ El
2 \
g ;
= *
O “‘
107 £
*
\
\
2 \\
107+ + E
,\
““\
*
10° e : ‘ ;
10° 10" 10° 10°
tterations

Figure 6.21: Convergence of the 30 dimensions Rotated hyper-ellipsoids function.

132

Chapter 6 Extension to continuous variables optimization

e 4

——PSO
o —+— MCDM-PSO

Objective function

_.
o
.
gt

-
o
Fp—

l LY .
10 10 10° 10°)
lterations

©

Figure 6.22: Convergence of the 30 dimensions Axis parallel hyper-ellipsoids function.

10° : .
4 PSO
\Mﬁ —+— MCDM-PSO
T
2 | T
107 L \ ~—_ q
*
10" L i
*
. !
S .
g +
? 1001 i 3
2 |
T *
g '
L A
© 4
*,
10" \ r
*
1074 1 4
|
+
10° + ‘ L
10° 10’ 10° 10°
lerations

Figure 6.23: Convergence of the 30 dimensions Rastrigin function.

133

Chapter 6 Extension to continuous variables optimization

-10
——PSO
—+— MCDM-PSO
= k y
s '
R
© : ~,
S \
8 I \
py i N
8 ‘r
I
r R 1
4 -
10! ‘ ! -
10° 10’ 16°
lterations

Figure 6.24: Convergence of the 30 dimensions Schwefel function.

\\ —pso

0 —+— MCDM-PSO | |
. - :

107 ¢ K - 4

Objective function
3
-
L

10° 10 10° 10° 10
lterations

Figure 6.25: Convergence of the 30 dimensions Rosenbrock function.

134

Chapter 6

Extension to continuous variables optimization

Objective function

T
ETT—

Objective function

S

I
-

\ |
i L .

3 I —pso 3
L — —+— MCDM-PSO

3

10°
lterations

Figure 6.26: Convergence of the 30 dimensions Griewangk function.

2
10" — 3
; ——PSO i
, —+— MCDM-PSO
’l\—m
0 e T 4
> \\\]
* R_\
L;_\

- g

10° b 5
\ E

A
¥
10" 3
s E
+
10°¢ + -
"
t
10° - *
10° 10 107 10°
lterations

Figure 6.27: Convergence of the 30 dimensions Ackley function

135

Chapter 6 Extension to continuous variables optimization

10
i PSO
- —+— MCDM-PSO
: 1
10° 1 4
i
g 10" L « -
[=4 -,
]
o _———
2 N .
8 | -
5 107t — 4
\RR
x Y
-
\—\
10°L ~ .
1
\
& B
10" - A = b ,
10 10

lterations

Figure 6.28: Convergence of the 30 dimensions The sum of different powers function.

. ——Pso
i
S —+— MCDM-PSO

X |
10° L o

Objective function

10 10°
tterations

Figure 6.29: Convergence of the 30 dimensions Zakharov function.

136

Chapter 6

Extension to continuous variables optimization

14000

——PSO
: - - - -MCDM-PSO
12000
)

10000

Objective function

-2000
10

10° 10° 10*
lterations

Figure 6.30: Convergence of the 10 dimensions Trid function.

137

Chapter 6 Extension to continuous variables optimization

6.4.2 MCDM-PSO vs. other algorithms

First, the proposed MCDM-PSO is compared with the attractive-repulsive particle swarm
optimizer (ARPSO) and the simple evolutionary algorithm (SEA). Results for ARPSO
and SEA are obtained by the authors of reference [145]. According to the authors, the
maximum number of evolutions allowed for ARPSO and SEA was set to 500,000 for
problems of 30 dimensions or less and 5,000,000 for problems of 100 dimensions. The
author used a swarm size of 25 particles for the ARPSO and a population size of 100 for
the SEA. His results were averaged over 30 runs for each problem. To be consistent, the
results are also averaged over 30 runs for all problems used in the comparison. Results
obtained by the proposed MCDM-PSO, ARPSO and SEA in cases of 30 or less
dimensions and 100 dimensions are listed in Tables 6.7 and 6.8 respectively. In the tables,
the entry BKS describes the best known solution of each problem. Also, the number
0.0000000e+00 means that the solution is less than 1e-25.

From Table 6.7, it is clear that results obtained by the MCDM-PSO for problems of 30 or
less dimensions are far better than those of the ARPSO especially with £, £, , fi, fo» /o »

Js» and f,, where differences are very significant. Also the proposed MCDM-PSO

outperforms the SEA in all cases except for f,, and f,,. However, in these two specific

problems differences on solutions obtained by the MCDM-PSO and the SEA are
insignificant.

For problems with 100 dimensions, results are presented in the Table 6.8. In all test
problems of this group, the proposed MCDM-PSO performs significantly better than both
the ARPSO and the SEA. Also variations of the results over the 30 runs for the MCDM-
PSO are very small compared to those of the ARPSO and the SEA.

138

Chapter 6 Extension to continuous variables optimization

Table 6.7: Results for MCDM-PSO, ARPSO and SEA on problems of 30 dimensions or less.

Problem MCDM-PSO ARPSO SEA
BKS
No. Mean Std. Mean Std. Mean Std.
1 0 0.0000000e+00 | 0.000c+00 | 68081735¢-13 | 5.3e-13 | 1.7894112¢-03 | 2.77¢-04
2 0 0.0000000e+00 | 0.000e+00 | 0.0000000e+00 | 2.13¢-25 | 1.5891817e-02 | 4.25¢-03
4 0 0.0000000e+00 | 0.000e+00 | 21491414 491 7.1789575¢-01 | 9.22¢-01
5 -1.2569¢+4 | -1.2569443e+4 | 0.06757 | _85986527¢+3 | 2.07¢+03 | -1.1669334e+4 | 2.34c+02
6 0 6.3956471e-5 1.00e-4 | 35509286c+2 | 2.15¢+03 | 3.1318954e+01 | 1.74e+01
7 0 1.9613940e-16 | 2.74e-16 | 92344555¢-2 | 3.4le-01 | 4.6366988¢-03 | 3.96e-03
8 0 8.8817841e-16 | 0.000e+00 | 18422773¢-7 | 7.15e-08 | 1.0468180e-02 | 9.08¢-04
14 -1.0316 -1.031588 2.64¢-5 10316284 3.84¢-08 -1.031630 3.16e-08
15 0.3978 0.3979103 4.34¢-5 039788736 5.01e-09 0.39788700 2.20e-08
19 -105 -10.53637 5.84¢-5 8.6155040 2.88 -9.7995696 2.24e+00

139

Chapter 6 Extension to continuous variables optimization

Table 6.8: Results for MCDM-PSO, ARPSO and SEA on problems of 100 dimensions.

Problem MCDM-PSO ARPSO SEA
BKS
No. Mean Std. Mean Std. Mean Std.
1 0 0.0000000e+00 | 0.000e+00 | 7.4869991e+02 | 2.31e+03 | 5.2291447¢-04 | 5.18-05
2 0 0.0000000e+00 | 0.000¢+00 | | 8174752e+01 | 2.50c+01 | 3.6846433¢-02 | 6.06¢-03
4 0 0.0000000e+00 | 0.000¢+00 | 4.8096522e+01 | 9.54e+00 | 9.9767318¢-02 | 3.04e-01
3 4.189e4 | -4.1898185e+4 | 0.2628846 | 1 1209102c+4 | 2.98¢+03 | -3.9430820e+4 | 5.36e+02
6 0 1.6732261e4 | 2.15¢-4 | 23609401e+02 9.2492247¢+01 | 1.29¢+01
1.25¢+02
7 0 7.0314124e-17 | 1.21e-16 | 85311042¢-02 | 2.56e-01 | 1.8932321e-03 | 4.42¢-03
8 0 8.8817841e-16 | 0.000e+00 | 56281044e-02 | 3.08e-01 | 2.9328603¢-03 | 1.47¢-04

Second, the proposed algorithm is compared to five other important PSO variants as
described abové. These variants are accompanied with different schemes to overcome the
problem of premature convergence and improve PSO performance in general. The
comparison includes problems f,, f,, f;, f;, / , and f; on 30 dimensions. Results for PSO
variants used in the comparison are originally presented in reference [138]. According to
the authors, for all PSO variants, a swarm size of 40 is used and a maximum number of
function evolutions is set to 200,000. Also results are based on an average of 30 runs for
each problem. Table 6.9 shows that the proposed MCDM-PSO performs better than any

other PSO variant for all problems except for f, where a comprehensive learning particle

swarm optimizer CLPSO shows a slightly better value.

140

Chapter 6 Extension to continuous variables optimization

Table 6.9: MCDM-PSO vs. some PSO variants on problems of 30 dimensions.

Problem BKS MCDM-PSO UPSO FDR-PSO FIPS CPSO-H CLPSO
No.
Mean Mean Mean Mean Mean Mean
1 0 0.0000000e+00 | 0.000e+00 0.000e+00 2.69¢-13 | 0.000e+00 | 4.46¢-14
4 0 0.0000000e+00 | 6.59¢+1 2.84e+1 7.3e+1 0.000e+00 | 4.85¢-10
5 -1.2569¢+4 -1.2569¢+4 -7.729¢+3 -8.959¢+3 -1.051e+4 | -1.148e+4 | -1.2569e+4
6 0 6.3956471e-5 1.5le+1 5.39¢00 2.45e+1 7.08¢00 2.le+l
7 0 1.9613940¢-16 1.66¢-3 1.01e-2 3.63e-2 3.14e-10
: 1.16¢-6 . .
8 0 8.8817841e-16 | 122e-15 2.84c-14 4.81e-7 493¢-14 | 0.000e+00

6.5 Summary
In this chapter, the proposed MCDM-PSO was extended to handle the continuous

optimization problems. A set of 32 diverse problems was chosen from the literature to
test the performance of the proposed algorithm. Based on the obtained results and the
comparison with the traditional PSO, one can find that the proposed technique has a
better performance and a greater resistance to be trapped in local optima. Also, the
performance of the MCDM-PSO was compared to other PSO variants. Results of the
comparison showed superior performance over these variants for almost all the test

benchmark problems.

141

Chapter 7 Conclusions and future work

Chapter 7: Conclusions and future work

7.1 Summary

This thesis presents a new swarm optimization technique. Unlike the traditional
particle swarm optimizer PSO, the proposed technique is not based on mere observation
of birds flocking. Instead, a well-established theory in the field of sociobiology is
manipulated to form the swarm and keep its persistence. Specifically, gregarious and
social intolerance behaviors demonstrated by social animals are adopted to introduce
another set of lower level behaviors that are easy to manipulate. This set of basic
behaviors includes imitation, memory retrieval, play, and momentum. The link between
this set of behaviors and gregariousness and social intolerance, along with the proof of
existence of such behaviors in the social animal world are introduced in chapter 3. Agents
of the proposed swarm are able to respond adaptively to changes made by their swarm
mates by controlling the proposed set of basic behaviors. This gives the proposed swarm

a more natural look by adding the aspect of freewill to each agent in the swarm. In order

142

Chapter 7 Conclusions and future work

for the agents to determine how to respond to changes of their flock mates, a multi-
criterion decision making process is employed instead of the simple additive weighted
logic used to update particles moves in the PSO. Moreover, the distance factor is directly
added to the position update equation in addition to fitness to reduce the chance of
premature convergence that could take place due to the lack of diversity. Therefore,
decisions made by agents are to promote both fitness and diversity. Among the new
mechanisms that are applied in this thesis is the Levenshtein edit distance. Positions of
agents in the domain space are expressed by permutations. Distances between agents in
the genotype space are measured by how similar are their permutations. Agents respond
negatively to those who are very close (social intolerance) and vice versa. Also, decisions
are made to favor those who have high fitness in the phenotype space. In coding language,
negative and positive responses are meant to control the number of items transmitted by
an agent to its permutation from the permutations representing others who are involved in
the decision making process depending on a decision index. To reach a meaningful
decision index, the fuzzy ordered weighted average (OWA) is used to aggregate the
diversity and the fitness criteria in a rational manner. Responses and changes of each
agent’s state within the swarm are elevated to help the system to iterate longer and
prevent stagnation.

The proposed technique is first tested with a few instances of the traveling
salesmen problems (TSP) from both symmetrical and asymmetrical types. The results are
very promising and agree to high extent to the best known solutions in the literature. The
technique is able to find near optimal solutions by testing few fractions of all possible
tours.

Afterwards, the technique is extensively tested with the quadratic assignment
problem (QAP). The QAP is a very important model in the field of combinatorial
optimization due to its generality and ability to fit many assignment problems in the real
world. Despite its importance, the QAP seems not to be adequately addressed by the
swarm based techniques in the literature. In this work, 131 QAP problems with different
sizes and structures are tested using the proposed technique. The results are compared
with the results reached by the standard genetic algorithm (SGA) in terms of average and

best gaps between the best known solutions and solutions obtained over 10 runs. To test

143

Chapter 7 Conclusions and future work

the significance of the difference between the error samples achieved by both techniques,
the nonparametric Mann-Whitney test of significance is applied for both average and best
results. The results of the test show that the errors in the case of the SGA are significantly
higher than those of the proposed technique for both average and best cases and there is
no chance that both error samples would be drawn from the same population.

The performance of the proposed technique is compared with the ant colony
optimizer (ACO) and the traditional particle swarm optimizer (PSO) on some QAP
problems. Results are averaged over ten replications and the mean and the standard
deviations of the obtained results are recorded. For all the studied problems in this case,
the proposed technique shows superior performance over the both techniques in terms of
the average results. However, higher standard deviations are observed with some
problems due to the use of small swarm size (five agents).

The technique is also extended to solve the continuous optimization problems
where variables are represented by real values. In this case, the Levenshtein edit distance
is eliminated and the distances between agents are expressed by the simple differences
between their variables. The position update equation in this case is set as a weighted
difference equation where weights are the decision indices described earlier. The
technique is tested with a large, diverse set of benchmark problems. A total of 32
problems with different dimensions ranging from 2 to 100 are used. The test problems
also include unimodal and multimodal types. The multimodal types are specifically
chosen to test the ability of the proposed technique to resist trapping in local optima.

The performance of the proposed technique is compared with the performance of
the traditional PSO. Solutions are recorded in terms of the means and the standard
deviations over 30 runs for the problems with dimensions of 30 or higher and over 20
runs for those with less than 30 dimensions. The results obtained by the proposed
technique for problems with 30 dimensions or higher are far better than the results
obtained by the PSO. Also the iterations vs. objective function plots for the studied
problems show faster convergence in the case of the proposed technique. For problems
with dimensions less than 30, both techniques perform equally well.

The performance of the technique is also compared with six PSO variants that

were proposed to overcome the problem of the premature convergence in PSO. The

144

Chapter 7 Conclusions and future work

results obtained by the proposed technique in almost all the studied problems are better

than those achieved by any of these variants.

7.2 Future work

Generally, the proposed technique shows very promising performance with both
combinatorial and continuous optimization problems. However, there are many issues
that need to be explored. For example, the significance of the ordered weights values and
the effect of the decision strategies on the performance of the technique need to be
studied. The influence of the neighborhood topology on the performance of the agents
inside the swarm is also another subject that could be studied in the future. The
performance of the proposed technique with the constrained optimization problems can

also be one of the directions for future studies.

145

10.

Bibliography

. Reynolds, C. W., “Flocks, Herds, and Schools: A Distributed Behavioral Model,

in Computer Graphics”, Proceedings of SIGGRAPH Conference, Vol. 21, No. 4,
pp- 25-34, 1987.

O'Sullivan, D. and Haklay, M., “Agent-based models and individualism: is the
world agent-based?”, Journal of Environment and Planning A, Vol. 32, No. 8, pp.
1409-25, 2000.

Kennedy, J. and Eberhart, R., “Particle swarm optimization”, Proceedings of
IEEE International Conference on Neural Networks, pp. 1942-1948, Piscataway,
NJ, 1995.

Villiers, D., "Using Particle Swarm Optimization for Offline Training ina Racing
Game”, Game Developer Magazine, 27 February, 2006. Available at:
<http://www.gamasutra.com/features/20051213/villiers_01.shtml>.

. Asproth, V., Holmberg, S. and Hakansson, A., "Decision Support functions

embedded in GIS," in The Nordic GIS Conference, Helsinki, October, 2001.
Iztok, L., Miha, M. and Nikolaj, Z., “Boids with a fuzzy way of thinking”,
Proceedings of the IASTED International Conference on Artificial Intelligence
and Soft Computing, Vol.7; pp.58-62, 2003.

Mendes, R., Population Topologies and Their Influence in Particle Swarm
Performance, PhD thesis, Departamento de Inform’atica, Escola de Engenharia,
Universidade do Minho, 2004.

Xie, X., Zhang, W. and Yang Z., “A dissipative particle swarm optimization”,
Proceedings of the Fourth Congress on Evolutionary Computation (CEC), Vol. 2,
pp 1456-1461, Hawaii, USA, 2002.

Levbjerg, M. and Krink, T., "Extending Particle Swarms with Self-Organized
Criticality”, Proceedings of the Fourth Congress on Evolutionary Computation
(CEC), Vol. 2, pp. 1588-1593, Hawaii, USA, 2002.

Krink, T., Vesterstrom, S. and Riget, J., “Particle Swarm Optimization with
Spatial Particle Extension”, Proceedings of the Fourth Congress on Evolutionary
Computation (CEC), Vol. 2, pp. 1474-1479, Hawaii, USA, 2002.

146

I1.

12.

13.

14.

15.

16.

Blackwell, T. and Bentley, P., “Don’t push me! Collision avoiding swarms”,
Proceedings of the Fourth Congress on Evolutionary Computation (CEC), Vol. 2,
pp.- 1991-1696, Hawaii, USA, 2002.

Parsopoulos, K., Plagianakos, V., Magoulas, G. and Vrahatis, M., “Stretching
technique for obtaining global minimizes through particle swarm optimization”,
Proceedings of the Workshop on Particle Swarm Optimization, Indianapolis, IN,
2001. |

Eberhart, R., Yuhui, S. and Kennedy, J., Swarm Intelligence, The Morgan
Kaufmann Series in Artificial Intelligence 2001.

Pulido, G. and Coello, C., “A constraint-handling mechanism for particle swarm
optimization”, Proceedings of Evolutionary Computation (CEC) Congress, Vol. 2,
pp. 1396-1403, June, 2004.

Ho, S., Yang, S., Guangzheng, N., Lo, E. and Wong H., “A particle swarm
optimization-based method for multiobjective design optimizations”, IEEE on
Magnetics, Vol. 41, Issue 5, pp. 1756-1959, May, 2005.

Belapaeme, T., Boer, B., Vylder, B. and Jansen B.,”The role of population

" dynamics in imitation”, Proceedings of the 2™ International Symposium on

17.

18.

19.

20.

21

22.

Imitation in animals and Artcraft, pp. 171-175, 2003.

Franklin, S. and Graesser, A., "Is it an Agent, or just a Program?: A Taxonomy
for Autonomous Agents," In Intelligent Agents III, Lecture Notes on Artificial
Intelligence, pp. 21--35. Springer-Verlag, Berlin, 1997.

The Levenshtein edit distance, Avilable online at http://en.wikipedia.org/wiki/-
Levenshtein_distance.

Logsdon, A., “Abstract Reasoning”, Your Guide to Learning Disabilities.
http://learningdisabilities.about.com/od/glossar1/g/abstractreason.htm

Cooper, N., “An historical perspective: from Turing and von Neumann to the

present”, Journal of Los Alamos Science, No. 9, pp. 22-27, 1983.

. Tempesti, G., Mange, D., and Stauffer, A., "Self-replicating and Self-Repairing

Multi-cellular Automata", Artificial Life, Vol. 4, No. 3, pp. 259-282, 1998.
Marchal, P., “John von Neumann: the founding father of artificial life”, Artificial
Life Vol. 4, No. 3, pp. 229-235, 1998.

147

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Sipper, M., Evolution of Parallel Cellular Machines: The Cellular Programming
Approach, Springer-Verlag, Heidelberg, 1997.

Gage, D. et al. "Cellular automata: is rule 30 random?", Midwest NKS
Conference, Bloomington, IN, October, 2005.

Wolfram, S., 4 New Kind of Science, Wolfram Media Publisher, Champaign, IL,
2002.

Weisstein, E., "Cellular Automaton", From MathWorld--A Wolfram Web
Resource. http://mathworld.wolfram.com/CellularAutomaton.html.

Anderson, P., “More Is Different”, Science, New Series, Vol. 177, No. 4047, pp.
393-396, 1972.

Fromm, J., The Emergence of Complexity, Kassel University press GmbH, Kassel,
Germany, 2004.

Shi, Y. and Eberhart, R., “A modified particle swarm optimizer”, Proceedings of
the IEEE International Conference on Evolutionary Computation, pp. 69-73.
Piscataway, NJ, 1998.

Shi, Y. and Eberhart, R., “Parameter selection in particle swarm optimization”,
Proceedings of the 7th International Conference on Evolutionary Programming
VII, LNCS Vol. 1447, pp. 591-1600, New York, 1998.

Zheng, Y., Ma, L., Zhang, L. and Qian, J., “Empirical study of particle swarm
optimizer with an increasing inertia weight”, Proceedings of the 2003 IEEE
Congress on Evolutionary Computation, pp. 221-226, Piscataway, NJ, 2003.
Zheng, Y., Ma, L., Zhang, L. and Qian, J., “On the convergence analysis and
parameter selection in particle swarm optimization”, Proceedings of the Second
International Conference on Machine Learning and Cybernetics, Vol. 3, pp.
1802- 1807, 2003.

Wolpert, D. and Macready, W., “No Free Lunch Theorems for Optimization”,
IEEE Transaction on Evolutionary Computation, Vol. 1, No. 1, pp 67-82, April,
1997.

Chatterjee, A. and Siarry, P., “Nonlinear inertia weight variation for dynamic
adaptation in particle swarm optimization”, Computers &Operations Research,

Vol. 33, pp. 859-871, 2006.

148

35.

36.

37.

38.

39.

40.

41.

42

43.

Lei, K., Qiu, Y. and He, Y., “A New Adaptive Well-Chosen Inertia Weight
Strategy to Automatically Harmonize Global and Local Search Ability in Particle
Swarm Optimization”, Proceedings of the Ist International Symposium on
Systems and Control in Aerospace and Astronautics, (ISSCAA 2006), pp. 977-
980, 2006.

Chen, G.et al, “Self-Active Inertia Weight Strategy in Particle Swarm
Optimization Algorithm”, Proceedings of the 6th World Congress on Intelligent
Control and Automation, pp. 3686-3689, 2006.

Chen, G. et al., “Natural Exponential Inertia Weight Strategy in Particle Swarm
Optimization”, Proceedings of the 6th World Congress on Intelligent Control and
Automation, pp. 3672-3675, 2006.

Clerc, M. and Kennedy, J., “The particle swarm - explosion, stability, and
convergence in a multidimensional complex space”, IEEE Transactions on
Evolutionary Computation Vol. 6, No. 1,pp.58 — 73, February, 2002.

Ozcan, E. and Mohan, CK., “Analysis of a simple particle swarm optimization
system”, Proceedings of Intelligent Engineering Systems through Artificial
Neural Networks, Vol. 8, pp. 253-258, St Louis, Missouri, November, 1998.
Ozcan, E. and Mohan, CK., “Particle swarm optimization: surfing the waves”,
Proceedings of IEEE Congress on Evolutionary Computation (CEC 1999), Vol. 3,
pp. 1939-1944, Washington, DC, USA, 1999.

Van den Bergh, F., An Analysis of Particle Swarm Optimizers, PhD thesis,
Department of Computer Science, University of Pretoria, Pretoria, South Africa,

2002.

. Jiang, M., Luo, Y. P. and Yang, S. Y., “Stochastic convergence analysis and

parameter selection of the standard particle swarm optimization algorithm”,
Information Processing Letters, Vol. 102, Issue 1, pp. 8-16, April, 2007.

Kadirkamanathan, V., Selvarajah, K. and Fleming, P., “Stability analysis of the
particle dynamics in particle swarm optimizer”, IEEE Transactions on

Evolutionary Computation, Vol. 10, No. 3, June, 2006.

149

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Zhihua, C. and Jianchao, Z., “A Guaranteed Global Convergence Particle Swarm
Optimizer”, Rough Sets and Current Trends in Computing, Springer-Verlag
Publisher, Vol. 3066, pp. 762-767, 2004.

Wang, R. and Zhang, X., “Particle Swarm Optimization with Opposite Particles”,
Proceedings of the 4th Mexican International Conference on Artificial
Intelligence, pp. 633-640, Monterrey, Mexico, November, 2005.

Solis, F. and Wets, R., “Minimization by random search techniques”,
Mathematics of Operation Research, Vol. 6, pp. 19-30, 1981.

Van den Bergh, F. and Engelbrecht A., “A new locally convergent particle swarm
optimizer”, Proceedings of the IEEE International Conference on Man, System
and Cybernetics, Vol. 3, Tunisia, 2002.

Heppner, F. and Grenander, U., “A stochastic nonlinear model for coordinated
bird flocks”, in: Krasner, S., (Ed.), The Ubiquity of Chaos, AAAS publications,
Washington, pp. 233-238, 1990.

Riget, J. and Vesterstrom, J., “A diversity-guided particle swarm optimizer - the
ARPSO”, Technical Report 2002-02, Department of Computer Science,
University of Aarhus, Denmark, 2002.

Peram, T., Veeramachaneni, K. and Mohan, C., “Fitness-distance-ratio based
particle swarm optimization”, Proceedings of the IEEE Swarm Intelligence
Symposium, pp. 174-181, 2003.

Blackwell, T. and Bentley, P., “Dynamic search with charged swarms”,
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO),
pp. 19-26, 2002.

Blackwell, T., “Particle swarms and population diversity”, Journal of Soft
Computing - A Fusion of Foundations, Methodologies and Applications, Vol. 9,
No. 11, pp. 793-802, November, 2005.

Yen, G. and Daneshyari, M., “Diversity-based Information Exchange among
Multiple Swarms in Particle Swarm Optimization”, Proceedings of the IEEE

Congress on Evolutionary Computation (CEC), pp. 1686-1693, July, 2006.

150

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

El-Abd, M. and Kamel, M., “Information exchange in multiple cooperating
swarms”, Proceedings of the IEEE Swarm Intelligence Symposium (SIS), pp.
138-142, June, 2005.

Baskar, S. and Suganthan, P., “A novel concurrent particle swarm optimization”,
Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Vol. 1,
pp. 792-796, June, 2004.

Jones, W., "Complex Adaptive Systems," Beyond Intractability. Eds. Guy
Burgess and Heidi Burgess, Conflict Research Consortium, University of
Colorado, Boulder, Oct. 2003. Available online at:

http:www .beyondintractability.org/essay/complex_adaptive systems/

John, E., "Flocking Behavior in Birds," The Auk Journal, Vol. 69, pp. 160-170,
April, 1952.

Craig, W., "Appetites and Aversions as Constituents of Instincts," Proceedings of
the National Academy of Sciences of the United States of America, Vol. 3, No. 12,
pp- 685-688, December, 1917.

Emlen, J. T. and Lorenz, F. W_, "Pairing Responses of Free-living Valley Quail to
Sex Hormone pellet implants." The Auk Journal, vol. 59, pp. 509-527, July, 1942.

Collias, N., “Statistical Analysis of Factors Which Make for Success in Initial
Encounters between Hens”, The American Naturalist, Vol. 77, No. 773, pp. 519-
538, 1943.

Scaruffi, P., Thinking about Thought: A Primer on the New Science of Mind,
Towards a Unified Understanding of Mind, Life and Matter. Writers Club Press,
2003,

Milius, S., "Where'd I Put That? Maybe it takes a bird brain to find the car keys,"
Science News Magazine, vol. 165, February 14, 2004. Available online at:
http://www .sciencenews.org/articles/20040214/bob8.asp

Owen, J., "Memory Aids Birds in Migration, Study Finds," National Geographic
News, April 29, 2003. Available online at:
http://news.nationalgeographic.com/news/2003/04/0429 030429 birdbrains.html

151

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Milius, S., "Birds with a Criminal Past Hide Food Well," Science News Magazine,
Vol. 160, November, 2001. Available online at:
http://findarticles.com/p/articles/mi_m1200/is 21 160/ai_81110067

Milius, S., "Birds can Remember What, Where, and When," Science News
Magazine, Vol. 154, September, 1998. Available online at:
http://www.sciencenews.org/pages/pdfs/data/1998/154-12/15412-04.pdf
Suddendrof, T. and Busby, J., "Mental Time Travel in Animals?" TRENDS in
Cognitive Sciences, Vol. 7, pp. 391-396, September, 2003.

Clayton, N., Bussey, T. and Dickinson, A., "Can Animals Recall the Past and Plan
for the Future?" Nature Reviews. Neuroscience,Vol. 4, pp. 685-691, August, 2003.

Suddendorf, T. and Busby, J., "Like it or Not? The Mental Time Travel Debate:
Reply to Clayton et al." TRENDS in Cognitive Sciences, Vol. 7, pp. 437-438,
October, 2003.

Clayton, N. and Dickinson, A., "Episodic-like memory during Cache Recovery by
Scrub Jays," The Nature Journal, Vol. 395, pp. 272-274, Septamber, 1998.

Galef, B. and Laland, K., “Social learning in Animals: Empirical Studies and
Theoretical Models”, BioScience, Vol.55 No.6, pp. 489-499, 2005.

Noble, J. and Todd, P., "Is it really imitation? A review of simple mechanisms in
social information gathering," in Proceedings of the AISB'99 Symposium on
Imitation in Animals and Artifacts, pp. 65-73, 1999.

Zentall, T. and Akins, C., “Imitation in animals: evidence, function and
mechanisms”, In Robert Cook (Eds.), Avian Visual Cognition, Comparative
Cognition Press, 2001.

Available online at: http://www.pigeon.psy.tufts.edu/avc/zentall/default.htm.
Alonso, E. et al, “Learning in multi-agent systems”, The Knowledge Engineering

Review, Vol. 16, No.3, pp. 277-284, Cambridge University Press, 2001.

152

74.

75.

76.

77.

78.

79.

80.

81.

82.

&3.

Yager, R., "On Ordered Weighted Averaging Aggregation Operators in
Multicriteria Decision making," IEEE Transactions on Systems, Man and

Cybemetics, Vol. 18, pp. 183-190, January, 1988.

Fulop, J., "Introduction to decision making methods," Biodiversity & Ecosystem
Informatics Workshop (BDEI-3), The Evergreen State College, Olympia,
Washington, December 13-15, 2004.

Eastman, J., "Decision Strategies in GIS," Directions Magazine, Dec. 2000,
Available online at www.Directionsmag.com.

Husdal, J., "Geographical Decision Making - Different approaches in IDRISI",
Available online at http://www.husdal.com/mscgis/gdm.htm, 1999.

Gilleland, M., "Levenshtein Distance, in Three Flavors,", Available online at:

www.merriampark.com/ld. htm.

Mendes, J. and Motizuki, W., "Urban Quality of Life Evaluation Scenarios: The
Case of Sao Carlos in Brazil," The professional Journal of the Council on Tall

Buildings and Urban Habitat (CTBUH Review), Vol. 1, pp. 1-11, February, 2001.

Larsen, H., "Importance weighted OWA aggregation of multi-criteria queries",
Proceeding of the North American Fuzzy Information Processing Society
Conference, pp. 740-744, June, 1999.

Rinner, C. and Raubai, M., "Personalized Multi-Criteria Decision Strategies in
Location-based Decision Support”, Journal of Geographic Information Sciences,
Vol. 11, pp. 149-156, June, 2005.

Larranaga, P., et al., “Genetic algorithms for the traveling salesman problem: A
review of representations and operators”, Artificial Intelligence Review, Vol. 13,
pp- 129-170, 1999.

Schrijver, A., “On the history of combinatorial optimization (till 1960)”, in:
“"Handbook of Discrete Optimization" (K. Aardal, G.L. Nemhauser, R.
Weismantel, eds.), Elsevier, Amsterdam, pp. 1-68, 2005.

153

84.

85.

86.

87.

88.
89.

90.

91.

92.

93.

94.

9s.

Held, M., Hoffman, A., Johnson, E. and Wolfe, P., “Aspects of the traveling
salesman problem”, IBM journal of Research and Development, Vol. 28, NO. 4,
pp- 476-486, July, 1984.

Dantzig, G. B., Fulkerson, D. R., and Johnson, S. M., “Solution of a Large-scale
Traveling Salesman Problem”, Journal of Operations Research, Vol. 2, pp. 393-
410, October, 1954.

Malkevitch, J., Sales and Chips, feature column on mathematical topics AMS
http://www.ams.org/featurecolumn/archive/tsp.html

Laporte, G. and Osman, 1. H., “Routing problems: A bibliography”, Annals of
Operations Research, Vol. 61, pp.227-262, 1995.

Petchenkine, V. , software package for graphs www.geocities.com/pechv_ru/
Weisstein, E. W., "Floor Function", From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/FloorFunction.html

Reinelt, G., “TSPLIB - a Traveling Salesman Problem Library”, Journal of
Operation Research Society of America on Computing (ORSA), Vol. 3, No. 4, pp.
376-384, 1991.

Nugent, C.E., Vollman, T.E., and Ruml, J., “An experimental comparison of
techniques for the assignment of facilities to locations” Journal of Operations
Research, Vol. 16, No. , pp. 150-173, 1968.

Elshafei, A.N., “Hospital layout as a quadratic assignment problem”, Operations
Research Quarterly Vol. 28, No. 1, Part 2, pp. 167-179, 1977.

Steinberg, L., “The backboard wiring problem: a placement algorithm” Journal of
the Society of Industrial and Applied Mathematics (SIAM Review), Vol. 3, No. 1,
pp- 37-50, 1961.

Burkard, R., Karisch, S. and Rendl, F., “QAPLIB — A Quadratic Assignment
Problem Library”, Journal of Global Optimization, Vol. 10, pp- 391403, 1997.
Eschermann, B. and Wunderlich, H., Optimized synthesis of self-testable finite
state machines. Proceedings of the 20th International Symposium on Fault-

Tolerant Computing (FFTCS 20), Newcastle upon Tyne, pp. 390-397, June, 1990.

154

96. Christofides, N. and Benavent, E., “An exact algorittm for the quadratic
assignment problem”, Journal of Operations Research, Vol. 37, No.5, pp. 760—
768, 1989.

97. Hadley, S.W., Rendl, F., and Wolkowicz, H., “A new lower bound via projection
for the quadratic assignment problem”, Journal of Mathematics of Operations
Research, Vol. 17, No.3, pp. 727-739, 1992.

98. Scriabin, M. and Vergin, R.C., “Comparison of computer algorithms and visual
based methods for plant layout”, Journal of Management Science, Vol. 22, No.2,
pp. 172-187, 1975.

99. Lashkari, R. and Jaisingh, S., “A Heuristic Approach to Quadratic Assignment
Problem”, Journal of the Operational Research Society, Vol. 31, No. 9., pp. 845-
850, 1980.

100. Hillier, F. and Connors, M., “Quadratic assignment problem algorithms and the
location of indivisible facilities”, Journal of Management Science, Vol. 13, No. 1,
pp- 42-57, 1966.

101. L1, Y. and Pardalos, P.M., “Generating quadratic assignment test problems with
known optimal permutations” Journal of Computational Optimization and
Applications, Vol. 1, No. 2, pp. 163-184, 1992.

102. Pardalos, P., “Generation of large-scale quadratic programs for use as global
optimization test problems”, ACM Transactions on Mathematical Software, Vol.

13, No. 2, pp. 133-137, 1987.

103. Knowles, J. and Corne, D., “Instance Generators and Test Suites for the
Multiobjective Quadratic Assignment Problem”, Proceedings of Evolutionary
Multi-Criterion Optimization (EMO 2003) Second International Conference,
Faro, Portugal, pp. 295-310, April, 2003.

104. Romeijn, H. and Morales, D., “Generating Experimental Data for the
Generalized Assignment Problem”, Journal of Operations Research, Vol. 49, No.
6, pp. 866-878, 2001.

105. Taillard, E.D., “Comparison of iterative searches for the quadratic assignment

problem”, Journal of Location Science, Vol. 3, No. 2, pp. 87-105, August, 1995.

155

106. Anstreicher, K. et al., “Nug30 is solved!!”, Available online at http://www-
unix.mcs.anl.gov/metaneos/nug30/.

107. Land, A. H., Doig, A. G. , “An Automatic Method of Solving Discrete
Programming problems” Journal of the Econometric society (Econometrica), Vol.
28, No. 3, pp. 497-520, July, 1960.

108. Anstreicher, K., Brixius, N., Goux, J. and Linderoth, J., “Solving Large
Quadratic Assignment Problems on Computational Grids”, Journal of
Mathematical Programming, Vol. 91, No. 3, pp. 563-588, 2002.

109. Mavridou, T. and Pardalos, P., “Simulated Annealing and Genetic Algorithms
for the Facility Layout Problem: A Survey”, Journal of Computational
Optimization and Applications, Vol. 7, pp. 111-126, 1997.

110. Tian, P. Wang, H. and Zhang, D., “Simulated annealing for the quadratic
assignment problem: A further study Proceedings of the 18th International
Conference on Computers and Industrial Engineering, Vol. 31, No. 3-4, pp. 925-
928, December, 1996.

111. Nissen, V. and Paul, H., “A modification of threshold accepting and its
application to the quadratic assignment problem”, Operation Research (OR)
Spectrum, Vol. 17, pp. 205-210, 1995.

112. Yip, P. and Yoh-Han, P., “Guided evolutionary simulated annealing approach to
the quadratic assignment problem”, IEEE transactions on systems, man, and
cybernetics, Vol. 24, No. 9, pp. 1383-1386, 1994.

113. Connolly, D., “General Purpose Simulated Annealing”, The Journal of the
Operational Research Society, Vol. 43, No. 5, pp. 495-505, 1992.

114. Skorin-Kapov, J., Tabu search applied to the quadratic assignment problem.
ORSA Journal on Computing, 2:33-45, 1990.

115. Chakrapani, J. and Skorin-Kapov, J., “Massively parallel tabu search for the
quadratic assignment problem”, Annals of Operations Research, Vol. 41,
pp-327-341, 1993.

116. Punnen, A. and Aneja, Y., “A Tabu Search Algorithm for the Resource-
Constrained Assignment Problem”, The Journal of the Operational Research
Society, Vol. 46, No. 2., pp. 214-220, 1995.

156

117. Taillard, E.D., Robust taboo search for the quadratic assignment problem.
FParallel Computing, Vol. 17, pp. 443455, 1991.

118. Battiti, R. and Tecchiolli, G., “The reactive tabu search”, Journal of Operation
Research Society of America on Computing (ORSA), Vol. 6, No. 2, pp. 126-140,
1994.

119. Maniezzo, V., Dorigo, M. and Colomi, A., The ant system applied to the
quadratic assignment problem. Technical Report IRIDIA/94-28, Universit'e
Libre de Bruxelles, Belgium, 1994.

120. Gambardella, L.M., Taillard, E.D. and Dorigo, M., “Ant colonies for the
quadratic assignment problem”, Journal of the Operational Research Society, Vol.
50, No. 2, pp. 167-176, 1999.

121. Maniezzo, V., “Exact and approximate nondeterministic tree-search procedures
for the quadratic assignment problem”, INFORMS Journal on Computing, Vol.
11, No. 4, pp. 358-369, 1999.

122. Maniezzo, V. and Colomi, A., “The Ant System applied to the quadratic
assignment problem”, IEEE Transactions on Data and Knowledge Engineering,
Vol. 11, No. 5, pp.769-778, 1999.

123. Chu, P. and Beasley, J., “A Genetic Algorithm for the Generalized Assignment
Problem”, Journal of Computers and Operations Research, Vol. 24, No. 1,
pp-17-23, 1997.

124. Misevicius, A., “An improved hybrid genetic algorithm: new results for the
quadratic assignment problem”, Journal of Knowledge-based systems, Vol. 17,
No.2, pp. 65-73, 2004.

125. Drezner, Z., “A new genetic algorithm for the quadratic assignment problem”,
INFORMS Journal on Computing, Vol. 15, No. 3, pp. 320-330, 2003.

126. Hanan, M., and Kurtzberg, J., “A Review of the Placement and Quadratic
Assignment Problems” Journal of the Society of Industrial and Applied
Mathematics (SIAM Review), Vol. 14, No. 2, pp. 324-342, April, 1972.

127. Koopmans, T.C. and Beckmann, M.J., “Assignment problems and the location
of economic activities,” Journal of the Econometric society (Econometrica), Vol.

25, No. 1, pp. 53-76, 1957.

157

128. Stiitzle, T. and Dorigo, M., “Local search and metaheuristics for the quadratic
assignment problem”, Technical Report AIDA-01-01, FG Intellektik, FB
Informatik, TU Darmstadt, Germany, 2001.

129. El-Ghazali, T. and Vincent, B., “COSEARCH: A parallel cooperative
metaheuristic”, Journal of Mathematical Modeling and Algorithms, Vol. 5, No. 1,
pp- 5-22, April, 2006.

130. Lim, M., Yuan, Y.and Omatu, S., “Extensive Testing of a Hybrid Genetic
Algorithm for Solving Quadratic Assignment Problems”, Journal of
Computational Optimization and Applications, Vol. 23, No. 1, pp. 47-64,
October, 2002.

131. Mann, H. and Whitney, D., “On a test of whether one of 2 random variables is
stochastically larger than the other”, Annals of Mathematical Statistics, Vol. 18,
No. 1, pp. 50-60, 1947.

132. Wilcoxon, F., “Individual comparisons by ranking methods”, Biometrics
Bulletin, Vol. 1, No. 6, pp. 80-83, 1945.

133. Shier, R., “The Mann-Whitney U Test”, Mathematics Learning Support Centre,

Loughborough Univ., England, Available at online at _http://mlsc.lboro.ac.uk/-
resources/statistics/Mannwhitney.pdf .

134. Liu, H., Abraham, A., and Zhang, J., “A Particle Swarm Approach to Quadratic

Assignment Problems”, 11th Online World Conference on Soft Computing in

Industrial Applications (WSC11), Springer Verlag, Germany, September, 2006.
135. Pohlheim, H., “Documentation for GEATbx version 3.7: Genetic and

Evolutionary Algorithm Toolbox for use with Matlab”, Available at

http://www.geatbx.com.

136. Hedar, A., Studies on Meta-heuristics for Continuous Global Optimization
Problems, A PhD. Thesis, Kyoto University, Kyoto, Japan, June, 2004.
137. Test Functions for Unconstrained Global Optimization, available at http:/www-

optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar files/go.htm.

138. Liang, J., Qin, A., Suganthan, P. and Baskar, S., “Comprehensive learning
particle swarm optimizer for global optimization of multimodal functions”, [IEEE

Transactions on Evolutionary Computation Vol. 10, No. 3, pp. 281-295, 2006.

158

139. Bersini, H., Dorigo, M., Langerman, S., Seront, G. and Gambardella, L.,
“Results of the first international contest on evolutionary optimization (1st
ICEO)”, Proceedings of IEEE International Conference on Evolutionary
Computation, pp. 611-615, May, 1996.

140. Mishra, S. K., “Performance of Repulsive Particle Swarm Method in Global
Optimization of Some Important Test Functions: A Fortran Program”, Social
Science Research Network (SSRN), Working Papers Series, August, 2006,
Available at http://ssrn.com/abstract=924339.

141. Parsopoulos, K.E. and Vrahatis, M.N., “Unified particle swarm optimization in
dynamic environments”, Lecture Notes in Computer Science, Springer Berlin /
Heidelberg publisher ,Vol. 3449, pp. 590 — 599, 2005.

142. Peram, T., Veeramachaneni, K., and Mohan, C., “Fitness-distance-ratio based
particle swarm optimization”, Proceedings of the IEEE Swarm Intelligence
Symposium SIS '03, pp. 174-181, April, 2003.

143. Mendes, R., Kennedy, J. and Neves, J., “The fully informed particle swarm:
simpler, maybe better”, IEEE Transactions on Evolutionary Computation, Vol. 8,
No. 3, pp. 204-210, June, 2004.

144. Van den Bergh, F. and Engelbrecht, A., “A Cooperative approach to particle
swarm optimization”, IEEE Transactions on Evolutionary Computation, Vol. 8,
No. 3, pp. 225-239, June, 2004.

145. Vesterstrem, J. and Thomsen, R., “A Comparative Study of Differential
Evolution, Particle Swarm Optimization, and Evolutionary Algorithms on
Numerical Benchmark Problems”, Proceedings of the 2004 Congress on
Evolutionary Computation, Vol. 2, pp. 1980-1987, 2004.

146. Ratnaweera, A., Halgamuge, S. and Watson, H., “Self-organizing hierarchical
particle swarm optimizer with time-varying acceleration coefficients”, IEEE
Transactions on Evolutionary Computation Vol. 8, No. 3, pp. 240-255, 2004.

147. Hirsch, M., Meneses, C., Pardalos, P., and Resende, M., “Global optimization
by continuous GRASP,” 19th International Symposium on Mathematical

Programming, Rio de Janeiro, Brazil, July 31 — August 4, 2006.

159

148. Song, Y., Chen, Z., and Yuan, Z., “New Chaotic PSO-Based Neural Network
Predictive Control for Nonlinear Process”, IEEE Transactions on Neural
Networks, Vol. 18, No. 2, March, 2007.

149. Zhang, W.]., Xie, X.F., Yang, Z.L., “Hybrid particle swarm optimizer with
mass extinction”, Proceedings of the International Conference on
Communication, Circuits and Systems, pp. 1170-1173, 2002.

150. Carlisle, A., and Dozier, G., “An Off-The-Shelf PSO”, Proceedings of the 2001
Workshop on Particle Swarm Optimization, pp. 1-6, Indianapolis, IN, 2001.

151. Molga, M., and Smutnicki, C., “Test functions for optimization needs”,
Available at http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf.

152. Vesterstroem, S. and Riget, J., "Particle swarms: extensions for improved local,
multi-modal, and dynamic search in numerical optimization." Master's thesis
Department of Computer Science, University of Aarhus, 2002.

153. Parsopoulos, K. E. and Vrahatis, M. N., "Initializing the particle swarm
optimizer using the nonlinear simplex Method," in Grmela, A. and Mastorakis, N.
E. (eds.) Advances in Intelligent Systems, Fuzzy Systems, Evolutionary
Computation WSEAS Press, pp. 216-221, 2002.

154. Yao, X. and Liu, Y. “Fast evolutionary programming”, Proceedings of the Fifth
Annual Conference on Evolutionary Programming (EP'96), pp.451-460, San
Diego, CA, USA, 1996.

155. Hongbo, L. and Abraham, A., “Fuzzy Adaptive Turbulent Particle Swarm
Optimization”, International Journal of Innovative Computing and Applications,

Vol. 1, No. 1, pp. 39-47, 2007.

160

APPENDIX

Matlab code for the proposed MCDM-PSO (QAP)

clear
rand('state',0) tt=cputime
itrr=50% itr=10
P=30
nP=5
ci=30
for i=1:P;
xpl(i,l:ci)=randperm(ci);
end
xpl;
x=[xpl];
for p=1:P
for uuu=l:ci
for vvv=l:ci
td0 (p) =dis (uuu, vvv) *yy(find (x (p, :) ==uuu), find (x (p, :) ==vvv)) ;
tdl (uuu, vvv)=td0 (p) ;
end
end
td(p)=sum(sum(tdl));

end

[

for p=1:P
pbest (p)=abs (td(p));
pbestx(p,l:ci)=x(p,1l:ci);
end
sl=abs(td);
s=[sl' x(:,:)]:
[u,vl=min(s(:,1));
gbest=u;
gbestx=s(v,2:ci+l);

for ii=l:itr
A=[zeros (P,1) x]:
B=[zeros(P,1) x];
for p=1:P
for pp=1:P
ld=leven dis(A(p,:),B((pp),:));
ldd (pp) =1d;
end
lddd(p, :)=1dd;
end
lddd;
%building membership functions for fitness and edit distances

limfl=gbest;

limf2=max (td);
limdl=min{(nonzeros (1ddd)) ;
limd2=max (nonzeros (1ddd)) ;

tfitness membership function(decreasing is good (minimization)

\Q

161

xfitnes=1imf2: (limfl-1imf2)/99:1imf1l;

yfitnes=0:1/99:1;

mffitnes=fit (xfitnes',yfitnes', 'linearinterp’');

& plot (xfitnes,yfitnes);%ploting membership function

feval (mffitnes, td);%evaluating membership for new fitness values

K

sedit distances membership function(increasing is good (promoting
diversity)

xdistance=limdl: (1imd2-1imd1)/99:1imd2;

ydistance=0:1/99:1;

mfdistance=fit (xdistance',ydistance', "linearinterp');

% plot(xdistance,ydistance);%ploting membership function

kki=feval (mfdistance, 1lddd); sevaluating membership for distance values
ghi=find(kki<0) ;

kki (ghi)=0;

rkki=reshape (kki, P, P);

sNeighborhoods best fitness and positions(neighborhoods are divided
every 5

Tmmbers)

nmmn=0;

for nesz=0:P/nP:P-(P/nP)
[n_best,n_best ord]=min (pbest((l+nesz): ((P/nP)+nesz)));
ne_best_ord=n_best ord+nesz;

nmmn=nmmn+1;

nei_best (nmmn)=n_best;%vector of the fitness(best) in every
neighborhood

nei_best ord(nmmn)=ne best ord;%vector of orders of every best in every
nigbborhood

for p=l+nesz: (P/nP)+nesz

A=[zeros(1l,1) x(p,:)1:

B=[zeros(1l,1) pbestx(ne_best ord,:)]:

lld=leven_dis(A,B);%Lev. edit distance between every individual and the
best of hi neighborhoecd

1ldd(p)=11d;%all Zev. edit distance between every individual and the
pest of his neighborhood

end

end

ot
o
i

3calculations of lev. edit distance between every individual and
best own experince positions

C=[zeros(P,1) x1;

D=[zeros (P, 1) pbestx];

fuz r total=cell(P,1);

for p=1:P

ldl=leven dis(C(p,:),D((p),:));%lev. edit distance between every member
his own best position

1ldddl (p)=1d1;

end

ldddi;

n h f £(1:(P/nP))=nei best(1l);

n_h f £((P/nP)+1:2*P/nP)=nei best (2);
n_h_f_f((2*P/nP)+l:3*P/nP)=nei_best(3);
n_h_f f((3*P/nP)+1:4*P/nP)=nei best (4);

162

n_h f £((4*P/nP)+1:5*P/nP)=nei best (5);
cpo=zeros (P,ci);

for jil=1:P
if jil<=(P/nP)

cpo(jil, :)=pbestx(nei_best_ord(1l),:):;
end
if (P/nP)<jil&jil<=(2*P/nP)
cpo(jil, :)=pbestx(nei_best_ord(2),:);
end

if (2*P/nP)<jilejil<=(3*P/nP)
cpo(jil, :)=pbestx(nei_best ord(3),:);

end
if (3*P/nP)<jil&jil<=(4*P/nP)
cpo(jil, :)=pbestx(nei best ord(4),:);
end
if (4*P/nP)<jil&jil<=(5*P/nP)
cpo(jil, :)=pbestx(nei best ord(5),:);
end

end

%creating random positions for play behavior
for i=1:P;
xprl(i,l:ci)=randperm(ci);
end
xprl;
xr=[xprl]:
%2fitness function calculations (distances)
for p=1:P
for uuur=l:ci
for vvvr=l:ci
tdr0 (p)=dis (uuur,vvvr) *yy (find (xr (p, :) ==uuur), find (xr (p, :) ==vvvr)):
tdrl (uuur, vvvr)=tdr0 (p) ;

end
end
tdr (p)=sum(sum(tdrl));
end

Q

%edit distance between random positicn xr{piay) and self position x
E={zeros(P,1) x]:
F=[zeros(P,1) xr]:
for p=1:P
ldr=leven dis(E(p,:),F((p),:)):
lddr (p)=1dz;

end
1ddr;

Y Yy YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Y Y Y Y Y YYYYYYYYYYYYYYYVYYYYYYYYYYYYYY

for p=1:P
fuz ml retre=feval (mfdistance,1dddl (p)):
if fuz ml retre<O

163

fuz ml retre=0;
end
fuz m2 retre=feval (mffitnes, pbest(p)):;

if fuz m2 retre<0

fuz m2 retre 0;
end

fuz_ml_imi=feval (mfdistance,11ldd(p));
if fuz ml imi<O0

fuz ml imi=0;

end
fuz_m2_imi=feval (mffitnes,n_h_f f(p));

if fuz m2 imi<0
fuz m2 imi=0;

YYYYYYYYYYYYYYYYYVYYYYYYYYYYY
%play behavior
fuz ml play=feval (mfdistance,lddr(p));
if fuz ml play<O0
fuz ml play=0;
end
fuz m2 play=feval (mffitnes, tdr(p));

<1
\
k

L(‘
b
<
<
bt
o
=
<
<
v
[
L "

if fuz _m2 play<0
fuz m2 play=0;
end
Y YYYYYYYYYYYYY VY YYYYY YV YYYYYYYYYYYYYYYYYYYYY
Smomentum b“ha"lo: (edit distance X,x 1is zero
grades are zeros
fuz mZ mom=feval (mffitnes, td(p)):

4
M
2

v

¥y
) - distance membership

if fuz m2 mom<O
fuz_m2 mom=0;
end

fuz_ranked—[sort [fuz_ml_retre fuz_m2_retre]),Sort([fuz_ml_imi
fuz m2_imi]);isort([fuz_ml_play fuz_m2_play]l);sort ([0 fuz m2 mom])];
fuz_r total{p}=fuz ranked;
order_wights=[.8 .2];
)1:

retre=[sum(fuz ranked(l,:).*order w1ghts(l

)
imi=[sum(fuz_ranked(2, :).*order _wights(1,:))1;
play=[sum(fuz_ranked(3,:).*order w1ghts)1
mom=[sum (fuz ranked(4,:).*order _wights (1l))],

odi_retre=floor ((retre/ (imi+retre+play+mom)) *ci);
odi_imi=floor((imi/ (imi+retre+play+mom))ci);
odi_play=floor ((play/ (imi+retre+play+mom)) *ci)
odi mom=floor ((mom/ (imi+retre+play+mom))*ci);

Y YYYYYYYYYYYYYYYYYYYYYYYYVYYYYYYYYYYYYYYYYYYYYYYYYYYY
%$behaviors order

beh ord=sort ([retre imi play mom]);
imi_ord=find(beh_ord==imi);

164

beh ord(imi_ord(1l))=nan;
retre_ord=find(beh ord==retre);
beh ord(retre ord(l))=nan;

play ord=find(beh ord==play);
beh ord(play ord(l))=nan;
mom_ord=find(beh ord==mom) ;

3imom_ord(1l) play ord(l) imi ord (1) retre_ord(l)];
recu_mat=zeros(5,ci);

recu_mat (1, (p,.),

recu_mat(play ord(l)+1, :)=xr(p,:):
recu_mat (imi ord(l)+l)=cpo(p,:);
recu_mat (mom_ord(l)+1,:)=x(p,:);
recu_mat (retre_ord(1l)+1, :)=pbestx(p, :);

rate mat=zeros(4,1);
rate_mat (play_ord(l))=odi_play;

(
rate_mat (imi_ord(l))=odi imi;
rate_mat (mom_ord(1l))=odi mom;
rate_mat (retre ord(l))=odi_retre;

a=recu mat(2,:);
b=recu_mat (1, :);
rate=rate_mat (1);
if rate==

rate=1;

end

imit
xxX(p,1l:ci)=b;

b=xx(p,1l:ci);
a=recu_mat (3, :);
rate=rate mat (2);
if rate==
rate=1;

end
imit
XXX (p,1l:ci)=b;

b=xxx(p,1l:ci);
a=recu_mat (4, :);
rate=rate_mat (3);
if rate==

rate=1;

end

imit
XXxXxX(p,1l:ci)=b;

b=xxxx (p,l:ci);
asrecu_mat(5,:);
rate=rate _mat (4);
if rate==
rate=1;
end

165

imit

xxxxx (p,l:ci)=b;
end

X=XXXXX;

xo0ld=x;

for p=1:P

hjl=randint (1,1, [1 ci]):
hj2=randint (1,1, [1 ci]);
x(p,hjl)=x0ld(p,hj2);

x({p,hj2)=x0ld(p,hjl);

end

for ii=l:itrr
for p=1:P
a=gbestx;
b=x(p,1l:ci);

rate=28;
if 11>=500
rate=13;
end
imit
xx(p,l:ci)=b;

end
for p=1:P
b=xx(p,1l:ci);

a=pbestx(p,l:ci);

rate=25;

imit
xxx(p,l:ci)=b;
end
for p=1:P
b=xxx(p,l:ci);
a=xx(p,l:ci);

rate=5;
imit
xxxx{p,l:ci)=b;
end

X=XXXX}
xold=x;

for p=1:P

166

hjl=randint (1,1, [1 cil);
hj2=randint (1,1, [1 ci]);

x(p,hjl)=xold(p,hj2);
x(p,hj2)=x0ld(p,hjl);

end
X;
for p=1:P
for uuu=l:ci
fer vvv=l:ci

td0 (p) =dis (uuu, vvv) *yy (find (x (p, :) ==uuu), find(x (p, :) ==vvVv)) ;
tdl (uuu, vvv)=tdo0 (p);
end
end
td(p)=sum(sum(tdl));
end
for p=1:P

h(p)=abs (td(p));

if h(p)<= pbest(p);
pbest (p)=abs (td (p)):
pbestx(p,l:ci)=x{(p,l:ci);

end
end
s=[pbest' pbestx];

[u,v]=min(s(:,1));
gbest=u;

gbestx=s(v,2:ci+l);
gbestxx(l:ci,ii)=gbestx’';
gbestt (ii)=[gbest];

[gbest, ord]=min (gbestt) ;
gbest
gbestx=gbestxx (l:ci, ord);
end

end

9,

for p=1:P
for uuu=1l:ci
for vvv=l:ci
tdO(p)=dis(uuu,vvv)*yy(find(x(p,:)==uuu),find(x(p,: ==vyvv));
tdl (uuu, vvv)=td0 (p) ;
end
end

167

td(p)=sum(sum(tdl));
end

for p=1:P

h(p)=abs (td(p));

if h(p)<= pbest(p);
pbest (p)=abs (td(p)):
pbestx(p,l:ci)=x(p,1l:ci);

else

pbest (p) =abs (td(p));
end
end

s=[pbest' pbestx];

[u,v]=min(s(:,1));
gbest=u;

gbestx=s(v,2:ci+l);
gbestxx(l:ci,ii)=gbestx"';

gbestt (ii)=[gbest];

[gbest,ord]=min (gbestt) ;
gbest

gbestx=gbestxx (1l:ci, ord);

5 x=3(:,2:(ci+l));%in case of o>l

ttt=cputime-tt

168

Levenshtein edit distance Function

function [L_d]=leven dis(x,y);

n=length(y):;
m=length (x);

z=zeros (m,n);

for n=2:n;
z(1l,n)=n-1;

end

for m=2:m;

z(m,1l)=m-1;

end
for j=2:m
for i=2:n
x(3J):
y(i):
if x(3)==y (1)
cost=0;
elseif x(3j)~=y (i)
cost=1;
end

zl=min(z (j,i-1)+1,z(3-1,1i)+1);
z(j,1)=min(zl,z(j-1,1i-1)+cost);

end

end
X7
yi

Z;
distance=z(1i,]j);

L_d=distance;
X;
Vi

169

Items transmission routine

rnd imit=randint (1, rate, {1, (ci-1)])
t= unlque(rnd imit);% not to repeat paths
[y,Z2]=size(t); %Z=no.of colums

bo=b;

for z=1:2
b(t(z))=a(t(z)):
v=find (bo==b (t(z)));
b(v)=bo(t(z));
bo=b;
bo=b;

end

170

Matlab code for continuous optimization problems
clear
format long;
warning ('off');
for num_run=1:1
t=cputime;
itr=2000
P=30
c2=0;
cl=0;
Q=1
pou=l%weight of gbestx in randx (normal average when pou=1)
muo=10;%std the random position from the mean (pbest,ne best , global
best)
mom_rate=100;
ci=5; %equals d the deimension
nP=5;
tol=0;
prob_no=4%for ICEO functions
xmin=0
xmax=pi
x=unifrnd (xmin, xmax, [ci P]);
XP=X;

«Q

1

for p=1:P
f(p)=iceo (prob _no,x(:,p)):
end

for p=1:P
pbest (p)=(£(p));
for d=1:ci
pbestx (d,p)=x(d,p);
end

end

[u,v]=min(s(1l,:));
gbest=u;
gbestx=s (2:ci+l1,v);

pbest=s (1, :);
pbestx=s (2:ci+l, :);
int gbest=u;

for ii=l:itr

fneighborhood best experience preparation(imitation) [matrix cpo has
all information positions and previous best solutions for neighbors]
nmmn=0;

for nesz=0:P/nP:P-(P/nP)

[n_best,n_best_ord]=min (pbest ((l+nesz): ((P/nP)+nesz)));

171

ne_best_ord=n_best ord+nesz;

nmmn=nmmn+1;

nei_best (nmmn)=n best;%vector cf the previous fitness(best) in every
neighborhood

nei_best_ord(nmmn)=ne_best ord;%vector of orders of every best in every
nigbborhood

pbestx_ne=[pbestx(:,nei_best ord)];

end
n_h f f£(1:(P/nP))=nei best(l);
f((P/nP)+1:2*P/nP)=nei best(2);
f((2*P/nP)+1:3*P/nP)=nei best (3});
f((3*P/nP)+1:4*P/nP)=nei_best (4);
f((4*P/nP)+1:5*P/nP)=nei_best (5);

o lis Be Nl]
oo gNe ey

f
f— _f_
f
_— _f_

sconstruct full matrix of neighbors previous best and corresponding
$pesition
cpo=zeros (ci+l,P);

for jil=1:P
if jil<=(P/nP)
cpo(l,jil)=nei_best (1);
cpo(2:ci+l,jil)=pbestx ne(:,1);
end
if (P/nP)<jilejil<=(2*P/nP)
cpo(1l,Jil)=nei best (2);

cpo(2:ci+l,jil)=pbestx ne(:,2);
end
if (2*P/nP)<jil&jil<=(3*P/nP)
cpo(l,jil)=nei best (3);

cpo(2:ci+l,jil)=pbestx ne(:,3);
end

if (3*P/nP)<jil&jil<=(4*P/nP)
cpo(l,jil)=nei best (4);

cpo(2:ci+l,jil)=pbestx ne(:,4);
end -
if (4*P/nP)<jil&jil<=(5*P/nP)
cpo(l,jil)=nei best (5);

cpo(2:ci+l,jil)=pbestx ne(:,5);
end

for joo=l:ci

172

randx (joo, i00)=normrnd ((pbestx (joo, 100) +pou*s (joo+1,v) +cpo (joo+l,p))/ (p
ou+2) ,muo) ; %¥-15*rand+15*rand;
while randx(joo,ioo)<xmin|randx (joo, i00) >xmax

randx(joo,ioo)=normrnd((pbestx(joo,ioo)+pou*s(joo+1,v)+cpo(joo+1,p))/(p
ou+2) ,muo) ; %$-15*rand+15*rand;
end

end
end

for p=1:P

end

sfuzzy memberships
d_play=abs (randx-x);

d imit=abs(cpo(2:ci+l,:)-x);
d_mem=abs (pbestx-x) ;
dmaxl=max (max (d_play));
dmax2=max(max(d_imit));
dmax3=max (max (d_mem)) ;

dmax pre=max (dmaxl, dmax2) ;

d_maxlimit=max(dmax_pre,dmax3);%max distance amongst all

fminl=min(f play);
fmin2=min (cpo (1, :));

fmin3=min (pbest) ;
fmin_pre=min (fminl, fmin2);
fmaxl=max (f play);
fmax2=max (cpo (1, :)):

fmax3=max (pbest) ;

fmax pre=max (fmaxl, fmax2);

f maxlimit=max (fmax pre, fmax3);

for p=1:P

for d=1:ci
alfal(d,p)=abs((cpo(d+l,p)—x(d,p)))/d_maxlimit;
betal (d,p)=-(cpo(l,p)/(f maxlimit-0))+1;

sortl=sort([alfal(d,p) betal(d,p)l):
rindxl (d, p)=sum(sortl.*[0.8 0.2]);
end

end

173

for p=1:P

for d=1l:ci
alfa2(d,p)=abs ((pbestx(d,p)-x(d,p)))/d_maxlimit;
beta2 (d,p)=-(pbest (1,p)/ (f maxlimit-0))+1

sort2=sort([alfa2(d,p) beta2(d,p)]):

rindx2 (d,p)=sum(sort2.*[0.8 0.2])

end

end

for p=1:P
for d=1:ci
alfa3(d,p)=abs ((randx(d,p)-x(d,p)))/d maxlimit;
beta3(d,p)=-(f_play(l,p)/(f maxlimit-0))+
sort3=sort([alfa3(d,p) betal3(d,p)l):
rindx3(d,p)=sum(sort3.*[0.8 0.2])
end
end

for p=1:P

for d=l:ci
rindx_imi (d,p)=rindxl(d,p)/ (rindx1l (d, p) +rindx2 (d, p)+rindx3(d,p)):
rindx mem(d,p)=rindx2(d,p)/ (rindxl (d, p) +rindx2 (d, p)+rindx3(d,p)):
rindx play(d,p)=(rindx3(d,p)/ (rindxl(d,p)+rindx2 (d,p)+rindx3(d,p))):

end

end

for p=1:P
rindx_mom=ones (ci,P);%has no influence in the algorithm

w=(rand"mom rate)* (xmax-xmin); %momentum influence
wl=(rand”®ii) * (xmax—-xmin) ;

FWwl=.0-(1i1*(0.9-.4) /ity ;

for d=1:ci

x(d,p)=(rindx_mom(d,p)*x(d,p))+(w)+(rindx_ imi(d,p)* (cpo (d+1l,p) -

W)+ (
x(d,p)))+(rindx _mem(d, p) * (pbestx (d,p) -
x(d,p)))+(rindx play(d,p)* (randx (d,p)-x(d,p)))+(c2*rand (1) * (gbestx (d) -
x{d,p)));
sx{d,p)=(x{d,p))+(wl)+(cl*rand (1)*(p estx(d,p) -
x(d,p)))+(u“*raﬂd() *(gbhestx (d)-x(d,p)));

if x(d,p)<xmin|x(d,p)>xmax
x (d,p)=pbestx(d, p) ; 5xp

end

end

end
XP=X;

for p=1:P
f(p)=iceo(prob_no,x(:,p));
end

174

for p=1:P

h(p)=(£(p));

if h(p)<= pbest(p):
pbest (p)=(f(p));
pbestx(:,p)=x(:,p);

end

end
s=[pbest;pbestx];
pbest=s(1,:);
pbestx=s(2:ci+l, :);
[u,vl=min(s(1,:)};

gbest=u

gbestx=s(2:ci+l,v);
gbestt (ii)=[gbest];

gbestx=s(2:ci+l,v);

end
gbesttt (num run)=gbest
end

extime=cputime-t;

175

