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ABSTRACT

The most important objective of any petroleum scheme is to extract more petroleum
fluids, which are the blood line to the petroleum industries. The objective would be
achieved more efficiently if the industry had the luxury of launching a ‘reservoir shuttle’
or a ‘petroleum balloon’ to roam around the reservoir. Since such is not the case, it
makes the task of modeling most daunting. This dissertation addresses a number of
complex phenomena such as nonlinearity in reservoir problems, non-Darcy flow,
multiple solutions to natural phenomena, laser drilling, microwave irradiation for
improved horizontal well performance etc. through theoretical, numerical or experimental
investigations.

This dissertation presents the state-of-the-art of reservoir simulation, which shows that
in the Information Age, the salient features of the Science of Intangibles are important
and necessary to be considered in the simulators. New, simple and explicit equations are
developed for interblock geometric factors and bulk volumes that can reduce complicated
logic in programming and source of confusion in reservoir simulation. The study on
linearization of single-phase fluid flow problem shows that linearization during
formulation can affect pressure results more than that caused by linearization during
numerical evaluation. The fluid viscosity and formation volume factor are found to
demonstrate weak nonlinearity in single-phase fluid flow problems. Several nonlinear
problems including the Buckley-Leverett equation (with capillary) are solved by the
Adomian Decomposition Method. The solution demonstrates that neither frontal shock
nor multiple saturation values are the true representation of the displacement process. In
another numerical study, the engineering approach eliminates the conventional notion of
giving preference to point-distributed grid over the block-centred grid in treating constant
pressure boundary problems. This dissertation also finds that theoretically multiple
solutions of any natural phenomenon are possible, although, some solutions may not be
readily recognizable as meaningful or even ‘real’. The complexity is attributed further to
non-Darcy condition in well-simulation involving constant production and non-flow
boundary. It is shown that the pressure drop predicted by the Forchheimer model is
higher than that predicted by the Darcy model at high-velocity and the pseudo-steady
velocity is also higher for the Forchheimer model than that for the Darcy model. The
numerical results provide comparable accuracy with the results provided by a recent
scheme reported to be Ax* and At* accurate. Results of a linear displacement study show
that the frontal movement is faster for Forchheimer model than Darcy model in an
accumulating reservoir. The effects of depletion or accumulation of fluid in a reservoir
on mixing length, displacement efficiency are also reported. Besides, a number of
miscible displacement runs are conducted to obtain correlations of areal sweep efficiency
as functions of mobility ratio and water-alternating-gas ratio. A comprehensive review
on the prospects of laser and modeling of laser-drilling in sandstone and limestone
indicate the technology to be the wave in future-drilling. The effects of microwave
irradiation phenomenon on immiscible fluids are also studied for temperature profiles and
a reasonable accuracy is found between the experimental and numerical results.
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Chapter 1

1 INTRODUCTION

The terms ‘modeling’ and ‘reservoir fluid movements’ are frequently used together in
petroleum engineering, sometimes in various technical terms, e.g., modeling of miscible
or immiscible displacement, modeling enhanced oil recovery schemes and others,
depending on the conditions, processes or $chemes that take place in petroleum
reservoirs. With the ubiquitous presence of computers and computer technology, the
current petroleum era is enjoying some of the most advanced and sophisticated
applications of technologies and science. However, the nature of technological progress
is such that the more there are solutions the more challenges surface. We often hear about
that the medical research doubles its knowledge in every seven years. Even the growth in
computer technology that sees doubling of capacity every 12-18 months (Moore’s law)
cannot keep up with the growth in knowledge. This growth in knowledge cannot be

accomplished without continuous research and innovation.
1.1. Objectives
1.1.1. Global Objective

Reservoir fluids are the blood line for the entire petroleum industry. Similar to the
general objective of any petroleum scheme, the various features of this dissertation are
also aimed to ensure extraction of more petroleum fluids either through direct or indirect
contributions. In terms of simulation, it is the prediction of recovery of petroleum fluids

as accurately as possible. Accuracy is the most desirable feature as it is close to reality or



the truth. However, results with better accuracy may involve lots of complexity, and

often such complexity is avoided.

The complexity in reservoirs is not just a matter of geological challenges or difficulties
associated with a recovery schemes, it is also a matter of limitations of underlying
assumptions behind numerous theories and laws that are used to describe fluid flow in
porous media. Because any petroleum reservoir is naturally occurring, its behavior is
non-linear and most often characterized as chaotic. Dealing with such a process with
engineering approaches, which mostly deal with idealized and linearized systems, is a
formidable challenge. In addition, the fact that monitoring reservoir, let alone accessing
it, is far from being an established technology makes it even a greater challenge because

one cannot validate the theory with experimental data.

The complexity of a phenomenon can be counterbalanced by the advantages gained out

of it. Such advantages include both tangible and intangible features, e.g.

1. less time requirement;
2. reduced cost, and
3. increased convenience (without losing any information that might be achieved as a

result of complexity) etc.
In addition, features such as-
4. advancements and/or refinement in theory;
5. new and advanced mathematical techniques, and

6. innovative and state-of-the-art technologies

can have tremendous impact in petroleum engineering research. The investigation of

these features remains one of the most important global goals of this dissertation.



In this dissertation, a number of complex phenomena associated with petroleum reservoir
fluids are addressed through modeling, which refers to theoretical, numerical or
experimental studies.

1.1.2. Specific Objectives

The primary specific objectives of this dissertation are as follows:

1. The effects of nonlinearity in reservoir problems;

2. Development of new, simple equations ﬁseful in reservoir problems;

3. Utilization of new and advanced mathematical method;

4. Modeling (numerical) of non-Darcy flow phenomenon in the reservoir;

5. Modeling (experimental) of first contact miscible water-alternating-gas displacement

system,;
6. Modeling (numerical) of novel drilling phenomenon;

7. Modeling (experimental and numerical) of irradiation phenomenon on immiscible
fluids.

Besides secondary specific objectives, which are also relevant and important in achieving

the global goals, are presented in this dissertation:

1. Description of the state-of-the-art of reservoir simulation;



2. Handling of Dirichlet boundary condition with Engineering Approach;

3. Investigation of possible multiple solutions in natural phenomena;

4. Use of the new mathematical method in solving nonlinear partial differential equations
including the Buckley-Leverett equation with capillary effects (note that nonlinearity is

an indicator of a complex process in the reservoir);

5. Preparation of diffusivity equations in accordance with the decomposition technique;

6. Comparison of pressure and velocity profiles based on Darcy and non-Darcy flow in
the reservoir using an advanced numerical scheme (note that the movement of reservoir

fluids may not be adequately described by Darcy’s law alone);

7. Prediction of pressure profiles analytically and numerically in accumulating and

depleting linear reservoirs, and

8. To study the effects of reservoir type, e.g., accumulating or depleting on the movement

of tracer front, the length of tracer mixing zone and displacement efficiency.

1.2. Organization of the thesis

Chapter 1 introduces the thesis and its layout. This chapter also outlines the global and
specific objectives both primary and secondary and shows how these objectives are to be

met in this dissertation.

To meet the specified objectives, it is important to have a general knowledge of the state-
of-the-art of reservoir simulation although each following chapter independently reviews

literature on the concerned topic of that particular chapter. Chapter 2 elucidates the



state-of-the-art of modeling of various fields, e.g., flow through fractures, coupled fluid
flow and mechanical deformation of the medium, fluid flow under the influence of

thermal stress, etc. The chapter also identifies the potential research areas.

One of the important aspects in any solution process is how suitably and easily the
governing equation can be handled without the loss of any significant information and
preferably without the loss of any information. The calculation of geometric factor and
bulk volume are needed in reservoir simulation when the reservoir is divided in many
gridblocks. Chapter 3 elucidates development of more user-friendly and simple
equations for the calculation of geometric factor and bulk volume that make use of the

presently available equations.

A number of factors affect fluid flow in petroleum reservoir and the dependence of
various factors on each other are nonlinear. However, to avoid the complexity, often
linearization on the flow equation is imposed. In Chapter 4, the effects of linearization in
the flow equation is investigated (Section 4.1). It may be added here that the suggested
equations in Chapter 3 are useful in calculating the geometric factor and bulk volume in

Chapter 4.

The most conventional practice is to use the finite difference concept when writing the
flow equations of gridblocks of a petroleum reservoir. However, the same exercise can
be accomplished by using the engineering approach (Abou-Kassem et al., 2006), which
is followed in Section 4.1 of Chapter 4. Since engineering approach is a recent addition
to reservoir simulation studies, Section 4.2 is included in Chapter 4. Section 4.2 is
offered to investigate the treatment of Dirichlet type boundary condition by engineering

approach in compare to the current practices.

The nonlinearity involved in Chapter 4 also raises a question if there can be more than a

single solution of any nonlinear process. In Chapter 5, several polynomials and



simultaneous equations of two variables as a model for a natural phenomenon is
presented in search of finding the complete spectrum of solutions. This Chapter
introduces the concept of inherently multiple solutions and the Knowledge dimension.
Even though concrete examples of this Knowledge dimension from petroleum reservoir
applications is a matter of significant future research, it is alluded that such dimension
exists and one must include the prospect of multiple solutions, including those that can be

best characterized as intangibles.

The content of Chapter 4 and Chapter 5 opens up the scope to employ advanced
numerical method in treating nonlinear problems. Some recent success of utilizing the
Adomian decomposition method (ADM) worked as the driving force to investigate the
method on several nonlinear problems in Chapter 6. The decomposition technique is
implemented on equations such as the Burgers equation, which is the simplest model for
one-dimensional turbulence in fluid flow or the Korteweg-de Vries (KdV) equation that
describes the motion of nonlinear wave in shallow water under gravity. This equation is
useful for geophysical applications and realtime reservoir monitoring. In absence of the
entire set of governing equations in reservoir flow, this equation serves as a valid
example, the generalization of which can shed light to the discovery of the Knowledge

dimension.

The Adomian decomposition technique is further applied in Chapter 7 to the Buckley-
Leverett (1942) analysis including the effects of capillary pressure. Features such as
multiple-valued saturation points and shock front are discussed during implementing the
mathematical investigation. In another application, the decomposition method is used

only to formulate the well-test equations as appear in Chapter 8.

In Chapter 9, complexity is assumed by considering non-Darcy flow is taking place in
the reservoir. The pressure analyses based on the Forchheimer flow equation is presented

in this chapter and compared with that based on Darcy’s equation.



The non-Darcy flow condition is further investigated into another miscible displacement
study in Chapter 10. In this chapter, results of frontal displacement features in
accumulating and depleting reservoirs as well as in a uniform, steady reservoir are
presented. The chapter also demonstrates analytical and numerical results of transient
pressure and velocity profiles in accumulating and depléting reservoirs in which non-

uniform flow is taking place.

The study of miscible displacement is extended to another application in Chapter 11. 1t
demonstrates an experimental investigation of solvent flooding using the water-

alternating-gas technique.

An indispensable part of the petroleum recovery process is drilling of wells and a
complete drilling activity costs huge amount of money. Any improvement in drilling
activities can save millions of dollars to the industries and understanding such fact,
Chapter 12 (including Sections 12.1 and 12.2) of this thesis is organized to examine a
novel drilling method using laser technology. In Section 12.1, the potential of laser as a
drilling option is reviewed. In Section 12.2, numerical studies are conducted using the

same technology to investigate its effects on limestone and sandstone samples.

The use of horizontal wells facilitates the recovery of petroleum fluids. For example,
horizontal wells are found to be beneficial in steam assisted gravity drainage (SAGD)
applications in Northern Alberta where land use is restricted as a result of growing
environmental concern. However, the benefits can be offset by precipitation of crude oil
components or plugging of wells. Chapter 13 demonstrates the microwave irradiation
technique to remove these precipitates. The chapter also includes experimental and
numerical models that predict transient temperature of petroleum fluids when irradiated

by microwave technology.



1.3. Research contribution
The most important contributions of this research are:

1. Experimental and numerical modeling of petroleum fluids (immiscible) under

microwave irradiation for improved horizontal well performance;

2. Mathematical modeling (using the Adomian decomposition method) of nonlinear

Bukcley-Leverett equation and avoiding unrealistic multiple saturation values;

3. Mathematical modeling of the effects of linearization on solutions of reservoir

engineering problems;
4. Numerical modeling of laser technology as a novel drilling method;

5. Developing new equations for geometric factor and bulk volume, which are derived

from those available in the literature, but are simple and avoid making estimations;

6. Flexibility in using the grid system in the engineering approach when treating Dirichlet

type boundary condition;
7. Mathematical modeling of the existence of multiple solutions in natural phenomenon;
8. Numerical modeling of frontal displacement features, such as, concentration profile,

displacement front mixing length, displacement efficiency of accumulating and depleting

reservoirs;



9. Analytical and numerical modeling of transient pressure and velocity profiles of
accumulating and depleting reservoirs using Darcian and non-Darcian (Forchheimer)

flow equations;

10. Developing new correlations of areal sweep efficiency as function of mobility ratio at

various water alternating gas ratios.

Publications

Chapter 2:
Chapter 2 highlights Secondary Specific Objective 1.

This chapter is accepted for publication in the Journal of Petroleum Science and

Technology, September, 2006.

Chapter 3:
Chapter 3 highlights Primary Specific Objective 2.
This chapter is accepted for publication in the Journal of Petroleum Science and

Technology, 2005, in press.

Chapter 4:
Chapter 4.1 highlights Primary Specific Objective 1.
This chapter is accepted for publication in the Journal of Petroleum Science and

Technology, August, 2006.

Chapter 4.2 highlights Secondary Specific Objective 2.
This chapter is a part of Chapter 5 of the book ‘A handbook of knowledge-based
petroleum reservoir simulation’, Gulf Publishing Company, Houston, TX, to be published

in 2006.
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This chapter is accepted for publication in the Journal of Nature Science and Sustainable
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Chapter 6 highlights Secondary Specific Objective 4.

This chapter is published in the Journal of Nature Science and Sustainable Technology,
vol. 1, no. 1, July, 2006.

Chapter 7:
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This chapter is submitted for publication in the Journal of Petroleum Science and

Technology, August, 2006.

Chapter 8:

Chapter 8 uses the mathematical technique associated with Primary Specific Objective 3.
It also highlights Secondary Specific Objective 5.

This chapter is published in the proceedings of the 4* International Conference on

Computational Heat and Mass Transfer, Paris-Cachan, May 17-20, 2005.

Chapter 9:
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Objective 6.

This chapter is submitted for publication in the Journal of Petroleum Science and
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Technology, September, 2006.
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no. 9-10, pp. 1173-1186, 2004.

Chapter 13:

Chapter 13 highlights Primary Specific Objective 7.

This chapter appears in the proceedings of the ASME International Mechanical
Engineering Conference and Exposition, Orlando, Florida, USA, November 6-11, 2005.
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Chapter 2

2 STATE-OF-THE-ART OF PETROLEUM RESERVOIR
SIMULATION

2.1. Abstract

Today, practically all aspects of reservoir engineering problems are solved with a
reservoir simulator. The use of the simulators is so extensive that it will be no
exaggeration to describe them as ‘the standard’. The simulators enable us to predict
reservoir performance, although this task becomes immensely difficult when dealing with
complex reservoirs. The complexity can arise from variation in formation and fluid
properties. The complexity of the reservoirs has always been handled with increasingly
advanced approaches. This paper presents some of the latest advancements in petroleufn
reservoir simulation. Also discussed is the framework of a futuristic reservoir simulator.

It is predicted that in near future, the coupling of 3D imaging with comprehensive
reservoir models will enable one to use drilling data as input information for the
simulator creating a real-time reservoir monitoring system. Time is also not far when a
virtual reservoir will be a reality and will be able to undergo various modes of production
schemes. The coupling of ultra-fast data acquisition system with digital/analog
converters transforming signals into tangible sensations will make use of the capability of
virtual reality incorporated into the state-of-the-art reservoir models. In their finest form,
the reservoir simulators must be intelligent enough to integrate environmental impacts of
enhanced oil recovery (EOR) processes into the technical and economical feasibility of
different EOR’s. The economics, however, should respect both short-term and long-term
impacts of oil production in order to claim technical accuracy as well as rendering

petroleum production schemes truly sustainable.
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2.2. Introduction

The Information Age is synonymous with Knowledge. However, if proper science is not
used, information alone cannot guarantee transparency, which is the pre-condition to
Knowledge. Proper science requires thinking or imagination with conscience, the very
essence of humanity. Imagination is necessary for anyone wishing to make decisions
based on science. Imagination always begins with visualization — actually, another term
for simulation (Abou-Kassem et al., 2006). Even though there is a commonly held
misconception that physical experimentation precedes scientific analysis, the truth is
simulation is the first one that has to be worked out even before designing an experiment.
This is why the petroleum industry puts so much emphasis on simulation studies. The
petroleum industry is known to be the biggest user of computer models. More
importantly, unlike other big-scale simulation, such as space research and weather
models, petroleum models do not have an option of verifying with real data. Because
petroleum engineers do not have the luxury of launching a ‘reservoir shuttle’ or a
‘petroleum balloon’ to roam around the reservoir, the task of modeling is the most
daunting. Indeed, from the advent of computer technology, the petroleum industry
pioneered the use of computer simulations in virtually all aspects of decision-making.
From the golden era of petroleum industries, very significant amount of research dollars
have been spent to develop some of the most sophisticated mathematical models ever
used. Even as the petroleum industry transits through its “middle age” in a business
sense and the industry no longer carries the reputation of being the ‘most aggressive
investor in research’, oil companies continue to spend liberally for reservoir simulation

studies and even for developing new simulators.

2.3. The Essence of Reservoir Simulation

Today, practically all aspects of reservoir engineering problems are solved with reservoir

simulators, ranging from well testing to prediction of enhanced oil recovery. For every
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application, however, there is a custom-designed simulator. Even though, quite often,
‘comprehensive’, ‘All-purpose’, and other denominations are used to describe a company
simulator, every simulation study is a unique process, starting from the reservoir
description to the final analysis of results. Simulation is the art of combining physics,
mathematics, reservoir engineering, and computer programming to develop a tool for
predicting hydrocarbon reservoir performance under various operating strategies. Figure
2.1 depicts the major steps involved in the development of a reservoir simulator (Odeh,
1982). In this figure, the formulation step outlines the basic assumptions inherent to the
simulator, states these assumptions in precise mathematical terms, and applies them to a
control volume in the reservoir. Newton’s approximation is used to render these control
volume equations into a set of coupled, nonlinear partial differential equations (PDE’s)
that describe fluid flow through porous media (Ertekin et al., 2001). These PDE’s are
then discretized, giving rise to a set of non-linear algebraic equations. Taylor series
expansion is used to discretize the governing PDE’s. Even though this procedure has
been the standard in the petroleum industry for decades, only recently Abou-Kassem et
al. (2006) pointed out that there is no need to go through this process (expression in PDE,
followed by discretization). In fact, by setting up the algebraic equations directly, one
can make the process simple and yet maintain accuracy (Mustafiz et al., 2006a). The
PDE’s derived during the formulation step, if solved analytically, would give reservoir
pressure, fluid saturations, and well flow rates as continuous functions of space and time.
Because of the highly nonlinear nature of the PDE’s, analytical techniques cannot be used
and solutions must be obtained with numerical methods. In contrast to analytical
solutions, numerical solutions give the values of pressure and fluid saturations only at
discrete points in the reservoir and at discrete times. Discretization is the process of
converting PDE’s into algebraic equations. Several numerical methods can be used to
discretize the PDE’s; however, the most common approach in the oil industry today is the
finite-difference method. To carry out discretization, a PDE is written for a given point in
space at a given time level. The choice of time level (old time level, current time level, or

the intermediate time level) leads to the explicit, implicit, or Crank-Nicolson formulation
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method. The discretization process results in a system of nonlinear algebraic equations.
These equations generally cannot be solved with linear equation solvers and linearization
of such equations becomes a necessary step before solutions can be obtained. Well
representation is used to incorporate fluid production and injection into the nonlinear
algebraic equations. Linearization involves approximating nonlinear terms in both space
and time. Linearization results in a set of linear algebraic equations. Any one of several
linear equation solvers can then be used to obtain the solution. The solution comprises
pressure and fluid saturation distributions in the reservoir and well flow rates. Validation
of a reservoir simulator is the last step in developing a simulator, after which the
simulator can be used for practical field applications. The validation step is necessary to
make sure that no errors were introduced in the various steps of development and in

computer programming.

There are three methods available for the discretization of any PDE: the Taylor series
method, the integral method, and the variational method (Aziz and Settari, 1979). The
first two methods result in the finite-difference method, whereas the third results in the
variational method. The “Mathematical Approach” refers to the methods that obtain the
nonlinear algebraic equations through deriving and discretizing the PDE’s. Developers of
simulators relied heavily on mathematics in the mathematical approach to obtain the
nonlinear algebraic equations or the finite-difference equations. A new approach that
derives the finite-difference equations without going through the rigor of PDE’s and
discretization and that uses fictitious wells to represent boundary conditions has been
recently presented by Abou-Kassem et al. (2006). This new approach is termed the
“Engineering Approach” because it is closer to the engineer’s thinking and to the
physical meaning of the terms in the flow equations. Both the engineering and
mathematical approaches treat boundary conditions with the same accuracy if the
mathematical approach uses second order approximations. The engineering approach is
simple and yet general and rigorous. In addition, it results in the same finite-difference

equations for any hydrocarbon recovery process. Because the engineering approach is
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independent of the mathematical approach, it reconfirms the use of central differencing in
space discretization and highlights the assumptions involved in choosing a time level in

the mathematical approach.

2.4. Assumptions behind Various Modeling Approaches

2.4.1. Conventional approach

Reservoir performance is traditionally predicted using three methods, namely, 1)
Analogical; 2) Experimental, and 3) Mathematical. The mathematical method, however,
is the most commonly used by the modem petroleum community. Methods, such as: 1)
material balance; 2) decline curve; 3) statistical; and 4) analytical are the predominant
techniques that are used in the mathematical model. Ertekin et al. (2001) discussed each

of the methods including their assumptions:

2.4.1.1. Mathematical method

2.4.1.1.1. Material balance

Material balance equations are known to be the classical mathematical representation of
the reservoir. According to the principle, the amount of material remaining in the
reservoir after a production time interval is equal to the amount of material originally
present in the reservoir minus the amount of material removed from the reservoir due to
production plus the amount of material added to the reservoir due to injection. This
equation describes the fundamental physics of the production scheme of the reservoir.

There are several assumptions in the material balance equation
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1. Rock and fluid properties do not change in space;

2. Hydrodynamics of the fluid flow in the porous media is adequately described by
Darcy’s law;

3. Fluid segregation is spontaneous and complete;

4. Geometrical configuration of the reservoir is known and exact;

S. PVT data obtained in the laboratory with the same gas-liberation process (flash vs.
differential) are valid in the field;

6. Sensitive to inaccuracies in measured reservoir pressure. The model breaks down
when no appreciable decline occurs in reservoir pressure, as in pressure maintenance

operations.

2.4.1.1.2. Decline curve

The rate of oil production decline generally follows one of the following mathematical
forms: exponential, hyperbolic and harmonic. The following assumptions apply to the

decline curve analysis

1. The past processes continue to occur in the future;

2. Operation practices are assumed to remain same.

2.4.1.1.3. Statistical method

In this method, the past performance of numerous reservoirs is statistically accounted for
to derive the empirical correlations, which are used for future predictions. Ertekin et al.
(2001) described it as a ‘formal extension of the analogical method’ and mentioned about

the following assumptions, which belong to this method

1. Reservoir properties are within the limit of the database;

2. Reservoir symmetry exists;
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3. Ultimate recovery is independent of the rate of production.

In addition, Zatzman and Islam (2006) recently pointed out a more subtle, yet far more
important shortcoming of the statistical methods. Practically, all statistical methods
assume that two or more objects based on a limited number of tangible expressions
makes it legitimate to comment on the underlying science. It is equivalent to stating if
effects show a reasonable correlation, the causes can also be correlated. As Zatzman and
Islam (2006) pointed out, this poses a serious problem as, in absence of time space
correlation (pathway rather than end result), anything can be correlated with anything,
making the whole process of scientific investigation spurious. They make their point by
showing the correlation between global warming (increase) with a decrease in the number
of pirates. The absurdity of the statistical process becomes evident by drawing this
analogy. Shapiro et al. (in press) pointed out another severe limitation of the statistical
method. Even though they commented on the polling techniques used in various surveys,
their comments are equally applicable in any statistical modeling. They wrote:
“Frequently, opinion polls generalize their results to a U.S. population of 300 million or a
Canadian population of 32 million on the basis of what 1,000 or 1,500 “randomly
selected” people are recorded to have said or answered. In the absence of any further
information to the contrary, the underlying theory of mathematical statistics and random
variability assumes that the individual selected “perfectly” randomly is no more nor less
likely to have any one opinion over any other. How perfect the randomness may be
determined from the “confidence” level attached to a survey, expressed in the phrase that
describes the margin of error of the poll sample lying plus or minus some low single-digit
percentage “nineteen times out of twenty”, ie., a confidence level of 0.95. Clearly,
however, assuming in the absence of any knowledge otherwise a certain state of affairs to
be the case, viz., that the sample is random and no one opinion is more likely than any
other, seems more useful for projecting horoscopes than scientifically assessing public

opinion.”
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2.4.1.1.4. Analytical method

Analytical methods can only apply to linear equations. Most approaches simplify
boundary conditions and apply to single-phase flow in order to solve the governing

equations.
2.4.2. Differential calculus

The history of differential calculus dates back to the time of Leibnitz and Newton. In this
concept, the derivative of a continuous function is related to the function itself. In the
core of differential calculus is Newton’s formula, which has the following approximation
attached to it: the magnitude and direction change independently of one another. There
1s no problem in having separate derivatives for each component of the vector or in
superimposing their effects separately and regardless of order. That is what
mathematicians mean when they describe or discuss Newton’s derivative being used as a
“linear operator”. Following this, comes Newton’s difference-quotient formula. When
the value of a function is inadequate to solve a problem, the rate at which the function
changes, sometimes, becomes useful. Therefore, the derivatives are also important in
reservoir simulation. In Newton’s difference-quotient formula, the derivative of a
continuous function is obtained. This method relies implicitly on the notion of
approximaﬁng instantaneous moments of curvature, or infinitely small segments, by
means of straight lines. This alone should have tipped everyone off that this derivative is
a linear operator precisely because, and to the extent that, it examines change over time
(or distance) within an already established function (Islam, 2006). This function is
applicable to an infinitely small domain, making it non-existent. When, integration is
performed, however, this non-existent domain is assumed to be extended to finite and

realistic domain, making the entire process questionable.
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2.4.2.1. Taylor series expansion

The Taylor series expansion is a very important tool in numerical analysis. By this
method of expansion, most well-behaved functions are converted to simple polynomials.
When the Taylor series expansion is carried out for a finite number of terms and the

remainder is ignored, the series becomes an approximation of the function.

2.4.2.2. Finite difference method

Finite difference calculus is a mathematical technique, which is used to approximate
values of functions and their derivatives at discrete points, where they are not known. The

following assumptions are inherent to the finite difference method.

1. The relationship between derivative and the finite difference operators, e.g., forward
difference operator, backward difference operator and the central difference operator is
established through the Taylor series expansion. In other word, it assumes that a
relationship between the operators for discrete points and the operators of the continuous
functions is acceptable.

2. The relationship involves truncation of the Taylor series of the unknown variables
after few terms. Such truncation leads to accumulation of error. Mathematically, it can
be shown that most of the error occurs in the lowest order terms.

a) The forward difference and the backward difference approximations are the first order
approximations to the first derivative.

b) Although the approximation to the second derivative by central difference operator
increases accuracy because of a second order approximation, it still suffers from the
truncation problem.

c) As the spacing size reduces, the truncation error approaches to zero more rapidly.

Therefore, a higher order approximation will eliminate the need of same number of
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measurements or discrete points. It might maintain the same level of accuracy; however,
less information at discrete points might be risky as well.

3. The solutions of the finite difference equations are obtained only at the discrete
points. These discrete points are defined either according to block-centered or point
distributed grid system. However, the boundary condition, to be specific, the constant
pressure boundary, may appear important in selecting the grid system with inherent
restrictions and higher order approximations.

4. The solutions obtained for gridpoints are in contrast to the solutions of the continuous
equations.

5. In the finite difference scheme, the local truncation error or the local discretization
error is not readily quantifiable because the calculation involves both continuous and
discrete forms. Such difficulty can be overcome when the mesh-size or the time step or
both are decreased leading to minimization in local truncation error. However, at the
same time the computational operation increases, which eventually increases the round-

off error.
2.4.3. Darcy’s law

Because most reservoir simulation studies involve the use of Darcy’s law, it is important
to understand the assumptions behind this momentum balance equation. The following

assumptions are inherent to Darcy’s law and its extension

1. The fluid is homogenous, single-phase and Newtonian;

2. No chemical reaction takes place between the fluid and the porous medium,;

3. Laminar flow condition prevails;

4. Permeability is a property of the porous medium, which is independent of pressure,
temperature and the flowing fluid;

5. There is no slippage effect; e.g., Klinkenberg phenomenon;

6. There is no electro-kinetic effect.
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2.5. Recent Advances in Reservoir Simulation

2.5.1. Improving quality of the reservoir model prediction: speed and accuracy

Advances have been made in many fronts. As the speed of computers increased
following Moore’s law (doubling every 12 to 18 months), the memory also increased.
For reservoir simulation studies, this translated into the use of higher accuracy through
inclusion of higher order terms in Taylor series approximation as well as great number of
grid blocks, reaching as many as billion blocks. The greatest difficulty in this
advancement is that the quality of input data did not improve at par with the speed and
memory of the computers. As Fig. 2.2 shows, the data gap remains possibly the biggest
challenge in describing a reservoir. Note that the inclusion of great number of grid
blocks makes the prediction more arbitrary than that predicted by fewer blocks, if the
number of input data points is not increased proportionately. This point is elucidated in
Fig. 2.3. Figure 2.3 also shows the difficulty associated with modeling with either too
small or too large grid blocks. The problem is particularly acute when fractured
formation is being modeled. The problem of reservoir cores being smaller than the
representative elemental volume (REV) is a difficult one, which more accentuated for
fractured formations that have a higher REV. For fractured formations, one is left with a
narrow band of grid blocks, beyond which solutions are either meaningless (large grid

blocks) or unstable (too small grid blocks).

2.5.2. New fluid flow equations

The fundamental question to be answered in modeling fracture flow is the validity of the
governing equations used. The conventional approach involves the use of dual-porosity,
dual permeability models for simulating flow through fractures. Choi et al. (1997)
demonstrated that the conventional use of Darcy's law in both fracture and matrix of the

fractured system is not adequate. Instead, they proposed the use of the Forchheimer
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model in the fracture while maintaining Darcy's law in the matrix. Their work, however,
was limited to single-phase flow. In future, the present status of this work can be
extended to a multiphase system. It is anticipated that gas reservoirs will be suitable
candidates for using Forchheimer extension of the momentum balance equation, rather
than the conventional Darcy’s law. Similar to what was done for the liquid system
(Cheema and Islam, 1995); opportunities exist in conducting experiments with gas as
well as multiphase fluids in order to validate the numerical models. It may be noted that
in recent years several dual-porosity, dual-permeability models have been proposed based

on experimental observations (Tidwell and Robert, 1995; Saghir et al., 2001).
2.5.3. Modeling coupled fluid flow and geomechanical stress

Coupling different flow equations has always been a challenge in reservoir simulators. In
this context, Pedrosa et al. (1986) introduced the framework of hybrid grid modeling.
Even though this work was related to coupling cylindrical and Cartesian grid blocks, it
was used as a basis for coupling various fluid flow models (Islam and Chakma, 1990;
Islam, 1990). Coupling flow equations in order to describe fluid flow in a setting, for
which both pipe flow and porous media flow prevails continues to be a challenge

(Mustafiz et al., 2005a).

Geomechanical stresses are very important in production schemes. However, due to
strong seepage flow, disintegration of formation occurs and sand is carried towards the
well opening. The most common practice to prevent accumulation as followed by the
industry is take filter measures, such as liners and gravel packs. Generally, such
measures are very expensive to use and often, due to plugging of the liners, the cost
increases to maintain the same level of production. In recent years, there have been
studies in various categories of well completion including modeling of coupled fluid flow
and mechanical deformation of medium (Vaziri et al., 2002). Vaziri et al. (2002) used a

finite element analysis developing a modified form of the Mohr—Coulomb failure
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envelope to simulate both tensile and shear-induced failure around deep wellbores in oil
and gas reservoirs. The coupled model was useful in predicting the onset and quantity of
sanding. Nouri et al. (2006) highlighted the experimental part of it in addition to a
numerical analysis and measured the severity of sanding in terms of rate and duration. It
should be noted that these studies (Nouri et al., 2002; Vaziri et al., 2002 and Nouri et al.,
2006) took into account the elasto-plastic stress-strain relationship with strain softening
to capture sand production in a more realistic manner. Although, at present both studies
lag validation with field data, they offer significant insight into the mechanism of sanding

and have potential in smart-designing of well-completions and operational conditions.

Recently, Settari et al. (2006) applied numerical techniques to predict subsidence induced
by gas production in the North Adriatic. Due to the complexity of the reservoir and
compaction mechanisms, Settari (2006) took a combined approach of reservoir and
geomechanical simulators in modeling subsidence. As well, an extensive validation of
the modeling techniques was undertaken, including the level of coupling between the
fluid flow and geomechanical solution. The researchers found that a fully coupled
solution had an impact only on the aquifer area, and an explicitly coupled technique was
good enough to give accurate results. On gridding issues, the preferred approach was to
use compatible grids in the reservoir domain and to extend that mesh to geomechanical
modeling. However, it was also noted that the grids generated for reservoir simulation are

often not suitable for coupled models and require modification.

In fields, on several instances, subsidence delay has been noticed and related to
overconsolidation, which is also termed as the threshold effect (Merle et al., 1976;
Hettema et al., 2002). Settari et al. (2006) used the numerical modeling techniques to
explore the effects of small levels of overconsolidation in one of their studied fields on

the onset of subsidence and the areal extent of the resulting subsidence bowl.
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The same framework that Settari et al. (2006) took can be introduced in coupling the

multiphase, compositional simulator and the geomechanical simulator in future.

2.5.4. Modeling fluid flow under thermal stresses

The temperature changes in the rock can induce thermo-elastic stresses (Hojka et al.,
1993), which can either create new fractures or can alter the shapes of existing fractures,
changing the nature of primary mode of production. It can be noted that the thermal
stress occurs as a result of the difference in temperature between injected fluids and
reservoir fluids or due to the Joule Thompson effect. However, in the study with
unconsolidated sand, the thermal stresses are reported to be negligible in comparison to
the mechanical stresses (Chalaturnyk and Scott, 1995). Similar trend is noticeable in the
work by Chen et al. (1995), which also ignored the effect of thermal stresses, even though

a simultaneous modeling of fluid flow and geomechanics is proposed.

Most of the past research has been focused only on thermal recovery of heavy oil.
Modeling subsidence under thermal recovery technique (Tortike and Farouq Ali, 1987)
was one of the early attempts that considered both thermal and mechanical stresses in
their formulation. There are only few investigations that attempted to capture the onset
and propagation of fractures under thermal stress. Recently, Zekr et al. (2006)
investigated the effects of thermal shock on fractured core permeability of carbonate
formations of UAE reservoirs by conducting a series of experiments. Also, the stress-

strain relationship due to thermal shocks was noted.

Apart from experimental observations, there is also the scope to perform numerical
simulations to determine the impact of thermal stress in various categories, such as water

injection, gas injection/production etc.
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Gas injection is the most important form of enhanced oil recovery. More recently, the
prospect of CO, sequestration has increased the appeal of gas injection scheme. Any gas
injection scheme (miscible or immiscible) goes through significant temperature change
(Joule-Thompson effect), which can be beneficial or detrimental to the process depending
on the reservoir characteristics. This effect is particularly significant for fractured
formations similar to the ones found in the Atlantic region. However, few researchers

have addressed this problem.

Cheema and Islam (1995) suggested that a dual-permeability, dual-porosity approach
might not be necessary for modeling naturally fractured formations. Instead, the average
anisotropy values could be assigned based on the direction of the rose diagram of the
formation. There is the potential to test this methodology for reservoir applications.
Saghir et al. (2001) used a finite element model in order to assess the role of natural
fractures as well as thermal stresses in determining fluid flow in a reservoir. However,
future opportunities lie in scaling up the proposed fracture flow model to a 3-D,
multiphase and compositional simulator. This model will be able to include various
thermal applications, such as miscible displacement in a thermally active fractured
formation. However, to translate this expectation into reality, a number of experimental

and numerical tasks need to be addressed:
2.5.4.1. Experimental challenges

The need of well designed experimental work in order to improve the quality of reservoir
simulators cannot be over-emphasized. Most significant challenge in experimental design
arise from determining rock and fluid properties. Even though, progress has been made
in terms of specialized core analysis and PVT measurements, numerous problems persist
due to difficulties associated with sampling techniques and core integrity. Recently,
Belhaj et al. (2006) used a 3-D spot gas permeameter to measure permeability at any spot

on the surface of the sample, regardless of the shape and size. Moreover, a mathematical
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model was derived to describe the flow pattern associated with measuring permeability

using the novel device.

In a reservoir simulation study, all relevant thermal properties including coefficient of
thermal expansion, porosity variation with temperature, and thermal conductivity need to
be measured in case such information are not available. Experimental facilities e.g.,
double diffusive measurements, transient rock properties; point permeability
measurements can be very important in fulfilling the task. In this regard, the work of

Belhaj et al. (2006) is noteworthy.

In order to measure the extent of 3-D thermal stress, a model experiment is useful to
obtain temperature distribution in carbonate rock formation in the presence of a heat
source. Examples include microwave heating water-saturated carbonate slabs with in
order to model only conduction and radiation. An extension to the tests can be carried
out to model thermal stress induced by cold fluid injection for which convection is
activated. The extent of fracture initiation and propagation can be measured in terms of
so-called damage parameter. Time-dependent crack growth still is an elusive topic in
petroleum applications (Kim and van Stone, 1995). The methodology outlined by Yin
and Liu (1994) can be considered to measure fracture growth. The mathematical model
can be developed following the numerical method developed by Wang and Maguid
(1995).

Young's modulus, compressive strength, and fracture toughness are important for
modeling the onset and propagation of induced fracture for the selected reservoir.

Incidentally, the same set of data is also useful for designing hydraulic fracturing jobs
(Rahim and Holditch, 1995).
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2.5.4.2. Numerical challenges
2.5.4.2.1. Theory of onset and propagation of fractures due to thermal stress

Fundamental work needs to be performed in order to develop relevant equations for
thermal stresses. Similar work has been initiated by Wilkinson et al. (1997), who used
finite element modeling to solve the problem. There has been some progress in the
design of material manufacturing for which in situ fractures and cracks are considered to
be fatal flaws. Therefore, formulation of complete equations is reqﬁired in order to
model thermal stress and its effect in petroleum reservoirs. It is to be noted that this

theory deals with only transient state of the reservoir rock.
2.5.4.2.2. 2-D and 3-D solutions of the governing equations

In order to determine fracture width, orientation, and length under thermal stresses as a
function of time, it is imperative to solve the governing equations first in 2-D. The finite
difference is the most accepted technique to develop the simulator. An extension of the
developed simulator to the cylindrical system is useful in designing hydraulic fractures in
thermally active reservoirs. The 3-D solutions are required to determine 3-D stresses and
the effects of permeability tensor. Such simulation will provide with the flexibility of
determining fracture orientation in the 3-D mode and guide as a design tool for hydraulic
fracturing. Although the 3-D version of the hydraulic fracturing model will be in the
framework put forward earlier (Wilkinson et al., 1997), however, differences of opinion

exist as to how thermal stress can be added to the in situ stress equations.
2.5.4.2.3. Viscous fingering during miscible displacement

Viscous fingering is believed to be dominant in both miscible and immiscible flooding

and of much importance in a number of practical areas including secondary and tertiary
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oil recovery. However, modeling viscous fingering remains a formidable task. Only
recently, researchers from Shell have attempted to model viscous fingering with the
chaos theory. Islam (1993) has reported in a series of publications that periodic and even
chaotic flow can be captured properly by solving the governing partial differential
equations with improved accuracy (Ax*, At?). This needs to be demonstrated for viscous
fingering. The tracking of chaos (and hence viscous fingering) in a miscible
displacement system can be further enhanced by studying phenomena that onset fingering
in a reservoir. It eventually will lead to developing operating conditions that would avoid
or minimize viscous fingering. Naami et al. (1999) conducted both experimental and
numerical modeling of viscous fingering in a 2-D system. They modeled both the onset
and propagation of fingers by solving governing partial differential equations. Recent
advances in numerical schemes (Aboudheir et al., 1999; Bokhari and Islam, 2005) can be
suitably applied in modeling of viscous fingering. The scheme proposed by Bokhari and
Islam (2005) is accurate in the order of Ax* in space and At® in time. Similar approach
can be extended for tests in a 3-D system in future. Modeling viscous fingering using

finite element approach has been attempted as well (Saghir et al., 2000).

2.5.5. Improvement in remote sensing and monitoring ability

One of the most coveted features in present reservoir studies is to develop advanced
technologies for real-time data transmission for both down-hole and wellhead purposes
(chemical analysis of oil, gas, water, and solid) from any desired location. This study can
lead to conducting real-time control of various operations in all locations, such as in the
wellbore, production string and pipelines remotely. However, several subtasks need to

be addressed to make advances in remote sensing and monitoring:
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2.5.5.1. Monitoring reservoirs and tubular

This task will improve the ability to capture phenomena occurring at three levels:
reservoir, wellbore, and wellhead/pipelines. The conventional seismic technology has a
resolution of 20m for the reservoir region. While this resolution is sufficient for
exploration purposes, it falls short of providing meaningful results for petroleum field
development, for which Im resolution is necessary to monitor changes (with 4-D
seismic) in a reservoir. For the wellbore, a resolution of 1 mm is necessary. This can also
help detect fractures near the wellbore. The current technology does not allow one to
depict the reservoir, the wellbore, or the tubular with acceptable resolution (Islam,
2001a). In order to improve resolution within a wellbore, acoustic response need to be
analyzed. In addition, fiber-optic detection of multiphase flow can be investigated.
Finally, it will be possible to develop a data acquisition system that can be used as a real-
time monitoring tool, once coupled with a signal processor. Recently, Zaman et al.
(2006) used a laser spectroscope to detect paraffin in paraffin-contaminated oil samples.
After passing through the oil sample, the laser light was detected by a semi-conductor
photodiode, which, in turn, converted the light signal into electric voltage. In their study,
the paraffin concentrations ranged between 20% and 60% wt and a thickness of 1 and 10
mm. They developed a 1-D mathematical model to describe the process of laser radiation
attenuation within the oil sample based on energy balance. Further the problem was
numerically solved, which were found to be in correlation with those obtained from the
experiments. Their model can be used to predict the net laser light and the amount of
light absorbed per unit volume at any point within the oil sample. The mathematical
model was extended to different types of oil products to determine the local rate of
absorption in an oil layer under different working environments. The effects of the angle

of incidence, bottom reflectivity, and layer depth were discussed in this regard.

It 1s true that there is skepticism about the growing pace of applying 4-D seismic for

enhanced monitoring (Feature-First break, 1997), yet the advancement in the last decade
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assures that the on-line monitoring of reservoirs is not an unrealistic dream (Islam,
2001a). Strenedes (1995) reported that the average recovery factor from all the fields in
the Norwegian sector increased from 34-39% over 2-3 years, due to enhanced
monitoring. The needs for an improved technique was also emphasized to face the

challenge of decine production in North Sea.

2.5.5.2. Monitoring offshore structures

In order to remain competitive in today’s global economic environment, owners of civil
structures need to minimize the number of days their facilities are out of service due to
maintenance, rehabilitation or replacement. Indicators of structural system performance
are needed for the owner to allocate resources toward repair, replacement or
rehabilitation of their structures. To quantify these system performance measures
requires structural monitoring of large civil structures while in service (Mufti et al.,

1997). It is, therefore, important to develop a structural monitoring system that will

integrate

1. Fiber optic sensor systems;

2. Remote monitoring communication systems;

3. Intelligent data processing system;

4. Damage detection and modal analysis system and
5. Non-destructive evaluation system.

It will be more useful if the monitoring device is capable of detecting signs of stress
corrosion cracking. A system of fiber optic-based sensor and remote monitoring
communication will allow not only monitoring of the internal operating pressures but also
the residual stress levels, which are suspected for the initiation and growth of near-neutral
pH stress corrosion cracking. Finally, the technology can be applied in real-time in

monitoring offshore structures. Along this line of research, the early detection of
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precipitation of heavy organics such as paraffin, wax, resin, asphaltene, diamondoid,
mercaptdans, and organometallic compounds, which can precipitate out of the crude oil
solution due to various forces causing blockage in the oil reservoir, well, pipeline and in
the oil production and processing facilities is worth mentioning (Zaman et al., 2004).
Zaman et al. (2004) utilized solid detection system by light transmittance measurement
for asphaltene detection, photodiode for light transmittance measurement for liquid wax,
detection, and ultrasound and strain gauge solid wax detection. Such attempt, if
effectively used, has a potential to reduce pigging (the common commercial term for

cleaning the pipeline) and in turn, the maintenance cost considerably.

2.5.5.3. Development of a Dynamic Characterization Tool (based on seismic-while-

drilling data)

It will use the inversion technique to determine permeability data. At present, cuttings
need to be collected before preparing petrophysical logs. The numerical inversion
requires the solution of a set of non-linear partial differential equations. Conventional
numerical methods require these equations to be linearized prior to solution (discussed
early in the paper). In this process, many of the routes to final solutions may be
suppressed (Mustafiz et al., 2006a) while it is to be noted that a set of non-linear
equations should lead to the emergence of multiple solutions. Therefore, it is important
that a nonlinear problem is investigated for multiple-value solutions of physical

significance.

The Adomian Decomposition Method (ADM) is relatively, a new mathematical approach
in petroleum engineering. In recent years, the technique has emerged as an alternative
method to solve various mathematical models including algebraic, differential, integral,
integro-differential, partial differential equations (PDEs) and systems, higher-order
ordinary differential equations, and others in physics and mathematics. Wazwaz (2001)

and Wazwaz and El-Sayed (2001) reported that the ADM is useful in solving problems
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without considering linearization, perturbation, or unjustified assumptions that may alter
the nature of the problem under investigated. Further, El-Sayed and Abdel-Aziz (2003)
noted that the ADM can be more useful than the numerical methods because of providing
with analytic, verifiable and rapidly convergent approximations adding insight into the
character and the behaviour of the solution as obtainable in the closed form solution.
However, there have been only few publications relevant to petroleum research that
utilized the Adomian technique (Mustafiz et al., 2006b; Rahman et al., in press; Mustafiz
et al., 2005b; Mustafiz and Islam, 2005). Recent studies indicate that a broad avenue still
remains open for the decomposition method to be investigated in nonlinear reservoir

problems.

2.5.5.4. Use of 3-D Sonogram

This feature illustrates the possibility of using 3-D sonogram for volume visualization of
the rock ahead of the drill bit. In order to improve resolution and accuracy of prediction
ahead of the drill bit, the 3-D sonogram technique will be extremely beneficial. The
latest in ultrasound technology offers the ability to generate images in 4-D (time being
the 4™ dimension). In preparation to this task, a 3-D sonogram can be adopted to detect
composition of fluid through non-invasive methods. Note that such a method is not yet in
place in the market. Also, there is the potential of coupling 3-D sonogram with sonic

while drilling in near future.

This coupling will allow one to use drilling data to develop input data for the simulator
with high resolution. Availability and use of a sophisticated compositional 3-D reservoir
simulator will pave the way to developing real-time reservoir modeling — a sought after

goal in the petroleum industry for sometime.



34

2.5.6. Virtual reality (VR) applications

In the first phase of this task, the coupling of an existing compositional, geomechanical
simulator with the VR machine is required. Time travel can be limited to selected
processes with limited number of wells primarily. Later time travel can expand as the

state-of-the-art in simulation becomes more sophisticated.

Indeed, reservoir engineers have the difficult task of conducting reservoir design without
ever going for a site inspection. This research is aimed at creating a virtual reservoir that
can undergo various modes of petroleum production schemes (including thermal,
chemical, and microbial EOR). It is comprehended that in future the virtual reservoir, in
its finished form, will be coupled with virtual production and separation systems. A
virtual reservoir will enable one to travel through pore spaces at the speed of light while
controlling production/injection schemes at the push of a button. Because time travel is
possible in virtual system, one does not have to wait to see the impact of a reservoir
decision (e.g. gas injection, steam huff-and-puff) or production problems (e.g. wellbore

plugging due to asphaltene precipitation).

The use of virtual reality in petroleum reservoir is being discussed only in the context of
3-D visualization (Editorial, Oil & Gas Journal, 1996). A more useful utilization of the
technique, of course, will be in reservoir management, offshore monitoring, and
production control. While a full-fledged virtual reservoir is still considered to be a tool
for the future, one must concentrate on physics and mathematics of the development in
order to ensure that a virtual reservoir does not become a video game. Recently, several
reports have appeared on the use of virtual reality in platform systems, and even
production networking (Editorial, Oil & Gas Journal, 1996). An appealing application of
virtual reality lies in the areas of replacing expensive laboratory experiments with
computational fluid dynamics models. However, petroleum-engineering phenomena are

still so poorly described (mathematically) that replacing laboratory experiments will lead
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to gross misunderstanding of dominant phenomena. Recently, Statoil has developed a
virtual reality machine that would simulate selected phenomena in the oilfield. Similarly,
Norsk Hydro has reported the virtual modeling of a cave. The reservoir simulator behind
the machine, however, is only packed with rudimentary calculations. More advanced

models have been used in drilling and pipelines.

Even though the concept is novel, the execution of the described plan can be realistic in
near future. The reservoir data (results as well as the reservoir description) will be fed
into an ultra-fast data acquisition system. The key here is to solve the reservoir equations
so fast that the delay between data generation and the data storage/distribution unit is not
‘felt” by a human. The data acquisition system could be coupled with digital/analog
converters that will transform signals into tangible sensations. These output signals
should be transferred to create visual, thermal, acoustic, and piezometric effects.
Therefore, this task should lead to coupling the virtual reality capability with a state-of-
the-art reservoir model. When it becomes successful, it will not be mere dream to extend

the model to vertical section of the well as well as surface facilities.

2.5.7. Intelligent reservoir management

Intelligent systems can be utilized effectively to help both operators and design engineers
to make decisions. The major goal of this management program is to develop a novel
Knowledge Based Expert System (KB ES) that helps design engineers to choose a
suitable EOR method for an oil reservoir. It should be a comprehensive ES that
integrates the environmental impacts of each EOR process into the technical and

economical feasibility of different EOR’s.

Most conventional reservoir management models are based on linear programing
(Liu and Ramirez, 1994). Recenty, non-linear optimization has been added.

However, nonlinearities are invoked as constraints and even then difficulties
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persist in solving these problems in its non-linear forms (Sarma et al, 2006).

In addition, true (human) intelligence is not incorporated.

Past intelligent reservoir management referred to computer or artificial intelligence.
Recently, Islam (2006a) demonstrated that computer operates quite differently from how
humans think. He outlined the need for new line of expert systems that are based on
human intelligence, rather than artificial intelligence. Novel expert systems embodying
pro-nature features are proposed based on natural human intelligences (Ketata et al.,
2005a, 2005b). These experts system use human intelligence which is opposite to
artificial intelligence. In these publications, authors attempted to include the knowledge
of non-European races who had a very different approach to modeling. Also, based on
Chinese abacus and quipu (latin American ancient tribe), Ketata et al. (2006a; 2006b)
developed an expert system that can be characterized as the first expert system without
using the conventional computer counting system. These expert systems provide the

basis of an intelligent, robust, and efficient computing tool.

Because all natural phenomena are non-linear, we argued that any acceptable
computational technique must produce multiple solutions. With this objective, Islam
(2006b) developed a new computational method that finds dynamic derivatives of any
function and also solves set of non-linear equations. More recently, Islam et al. (in press)
and Mousavizadegan et al. (in press), proposed a new technique for finding invariably
multiple solutions to every natural equation. These techniques essentially create a cloud
of data points and the user can decide which ones are most relevant to a certain

application.

Another significant aspect of ‘intelligence’ was addressed by Ketata et al. (2006a,
2006c). This aspect involves the redefining of zero and infinity. It is important to note
that any discussion of human intelligence cannot begin without the mathematics of

intangibles, which include proper understanding of these concepts.
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Finally, a truly intelligent reservoir model should be able to model chaos. It is recognized
that ‘chaos’ is the interrelated evolutionary order of nature elements. It is the science of
objects and systems nature. A new chaos theory has been developed by Ketata et al.
(20064).

2.5.8. Economic models based on futuristic energy pricing policies

There is a distinct need to integrate energy pricing and economic models with a reservoir
simulator. The energy pricing policy is one of the most complex and sensitive global
issues. With growing worldwide concern about environment and conservation of nature,
the economic models must reflect them through futuristic, green-energy policies. The
economics models should have the following features, which are often ignored in

economic models. They are (Khan and Islam, 2006; in press'):

1. Short-term and long-term impact of oil production on agriculture, livestock, fisheries
and others affecting the food chain;

Intangible cost of groundwater and air pollution resulting from petroleum activities;
Clean-up cost of accidental o1l spills;

Costs related to inherently deficient engineering design;

LA

Costs related to political constraints on energy pricing.

The comprehensive economic model will allow one to evaluate a project based on its
merit from economic as well as environmental and social values. Even though political
constraints constitute a part of social models, it is well known that petroleum policies are
more acutely dependent on world politics (Baade et al., 1990; Stickey, 1993). Therefore,
political constraints should be identified as the primary variable in energy pricing

(Zatzman and Islam, in pressl).
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The new model must also focus on the integration of pricing and qualitative controls in
the abatement of cost-effective reductions in energy related CO; emissions. Worldwide
demand for energy is increasing faster than ever (Dung and Piracha, 2000). The demand
for oil and gas is increasing faster than the growth rates of GDP in developing and
developed countries. Petroleum is used as inputs for manufacturing, construction,
agriculture, power generating, and service sectors. This is also a final consumer product.
As demand for goods and services increases, the demand for oil will also increase. As
GDP increases, the demand for oil as a final consumer product will also increase.
Therefore, inefficient supply and demand management policies on petroleum can impose
severe constraints on output, employment, standard of living, the backward and forward
linkage effects and the growth of other dependent sectors of the domestic and global
economy. The new model must develop a pricing policy that will ensure sustainable
development while allowing certain qualitative controls which will minimize the average
emissions of energy related CO,. Such policies are feasible and can be achieved at
minimum social cost (Howarth and Winslow, 1994). The qualitative control can be

achieved through the employment of green technologies (Islam, 2000).

Zatzman and Islam (in press®) investigated the possibilities about the true potential of a
given resource in the process of collecting during actual production information about
dynamic changes in reservoir conditions in situ. The idea would be to eliminate much of
the guesswork built into current demand-based modeling of energy prices. In general,
these models project costs well into the future to "take care" of the margin of error
incorporated in the guesswork. It can be considered a shift from the demand-based to the
supply-based modeling, from control exercised downstream over national production
companies upstream to a profound challenge against such control. According to the
proposal by Zatzman and Islam (in press®), it is less meaningful to speak of “future
energy price”, and more meaningful to think in terms of another energy pricing model.
The correction of guesswork with actual knowledge gathered in situ during production

has a number of implications. It renders moot, or irrelevant, any previous assumption of
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resource scarcity or globally finite supply as a boundary condition, as the issue shift

increasingly away from the price of energy to how this price and its trend are modeled.

The state-of-the-art model needs to be employed to predict the future oil price so that
producers, consumers, firms, governments and other stakeholders in the industry are able
to plan a sustainable growth of output, employment and income. Also the model should
be able to decompose the effects of each of the variables in determining the oil price and
computing the individual contribution. The behaviors of the following variables will

determine equilibrium world price of oil:

Excess demand;

Market power;

World commodity price index;
Price expectations;

Political power;
Environmental cost;

Taxes and tariffs, and

Sl B A S ol o

Cost of political constraints.

2.5.9. Integrated system of monitoring, environmental impact and economics

Recently, there have been renewed efforts by the petroleum companies to integrate
economics with reservoir simulation. As for example, Schlumberger has been
conducting reservoir management and economic analysis through ECLIPSE and
MERAK. MERAK can perform economic evaluation, decline analysis, and fiscal
modeling that calculate the value of oil and gas properties in Canada, the United States
and around the world. The merge of such package with a state-of-the-art reservoir
simulator can be used as research tool for validation of various concepts, such as, cost of

environmental impact, financial worth of bottom-line driven economy, and others. All
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engineering, economical, environmental, and socio-political constraints should be

integrated through a global optimization package (Finley et al., 1998).

It is also envisioned that a global optimization package, in its matured form, will initiate
the development of solution to environmental problems, including risk analysis and
decision support (Abdeh-Kolahchi et al., in press; Hossain et al., in press; Khan and
Islam, in press’; Khan et al., in press). An exposure assessment of the airborne and
waterborne pollutants during CO, and water injection processes respectively can be
conducted to study their impact on marine environment and offshore workers (Khan and
Islam, in press'). The study on the evaluation of pollutants in conjunction with fluid flow
injection will be helpful in creating a multiple-response experimental design. The
rationale for conducting experiments will be to introduce a non-bias approach from both
the process operation and environmental aspects. Most importantly, the goal should be to
mtroduce the principles of pollution prevention (P2) at the research level in order to
reduce the need for “end-of-pipe” mitigation strategies during implementation. Also the
exposure assessment and treatment mitigation phase can be incorporated into the virtual
reservoir model, as described previously. Recently, Lakhal et al. (in press) outlined how
petroleum operations can be rendered ‘green’ by following what they termed the

‘olympic’ model.

Finally, whenever the community in question could be viewed as having been
marginalized, and left behind by economic events, there is a perception that little is being
done to mitigate these contamination problems, in contrast to large cities where such
problems receive close attention, leading to the perception of an “environmental
injustice” regarding such pollution. However, with the increasing awareness of human
rights and justice in all aspects of life, the general public seems to be committed to have
such environmental injustice dealt with in a fair and equitable manner (Zatzman and

Islam, in press®).
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2.6. Conclusions

This paper presents descriptions of various features of a reservoir simulator including
their limitations, present status and potentials. The results of a reservoir simulation
studies have significant impact on environmental and socio-economic aspects of life.
The strength of a simulator cannot be measured only by its capacity to handle billions of
grid blocks, but also how closely it captures the science and mathematics of the reservoirs
with careful consideration of the impacts on economic and social aspects. The paper also
points out the scopes where the very latest knowledge can be implemented in a smart and

intelligent way through a state-of-the-art knowledge.
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Fig. 2.2. Data gap in geophysical data (Islam, 2001a); reservoir simulators can now
handle as many as billion grid blocks. However, monitoring technology has not been

advanced enough to provide realistic data for those grid blocks
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Chapter 3

3 NEW SIMPLE EQUATIONS FOR INTERBLOCK
GEOMETRIC FACTORS AND BULK VOLUMES IN
SINGLE-WELL SIMULATION

3.1. Abstract

This paper presents new equations for the calculation of interblock geometric factors and
bulk volume of blocks in radial-cylindrical coordinates for both block-centered grid and
point-distributed grid. The new equations require the knowledge of logarithmic spacing

constant () only for interblock geometric factor calculations and both logarithmic
spacing constant («, ) and radius of pressure points (7,) for bulk volume calculations.

The new equations are derived from those available in the literature, but are simple and
do away with the estimation, in the radial direction, of one set of block boundaries for
transmissibility calculations and another set of block boundaries for bulk volume

calculations.
3.2. Introduction

Single-well simulation is often used to study water and gas conning in wells (MacDonald
and Coats, 1970), to assess the effect of completion/production strategies of individual
wells, to create well production pseudo functions to conduct 2D areal simulation runs
(Chappelear and Hirasaki, 1976), and to aid in matching water-cut and Gas-Oil Ratio
(GOR) of individual wells during history matching (Emmanuel and Cook, 1974).
Gridblock dimensions in block-centered grid (or gridpoint spacing in point-distributed
grid) in the #- and z-directions and properties such as permeability, porosity, and

elevation are required for each gridblock (or gridpoint). The location of gridpoints or the
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points that represent gridblocks in the r-direction, bulk volumes, and interblock
geometric factors are calculated internally in the simulator. Their calculation must satisfy
certain conditions involving the estimation of the location in the r-direction of pressure
points, block boundaries for transmissibility (or interblock geometric factor) calculations
(logarithmic spacing in 7), and block boundaries for bulk volume -calculations
(logarithmic spacing in 7*). This requires complicated logic in programming and is a
source of confusion in reservoir simulation. Furthermore, such block boundaries in the 7-
direction are not needed in interpretation of simulation results. Therefore, the purpose of
this paper is to develop simple and explicit equations for the calculation of interblock

geometric factors and block bulk volumes for single-well simulation.

3.3. Current equations

The flow equations in radial-cylindrical coordinates have transmissibilities in the »-, §-,

and z-directions that are defined as:

Trsingn = Onarizga S rssingi (3.1a)
Tgi./ﬂ/l‘k = Gar.;':wz,k fei‘jtllz.k ’ (3.1b)
and

Tff./.kxllz = GZiJ.ktl/Zfzi./‘.kiln ’ (310)

where G = geometric factor and f = a function of pressure for single-phase flow

(f =$) or a function of pressure and fluid saturation for multi-phase flow (e.g.,

f= ; ). The grid construction in the# — and z-directions (gridblock dimensions or
PP

gridpoints spacing and block boundaries) is the same as that used in rectangular

coordinates for both block-centered grid and point-distributed grid. In the r-direction,



56

however, points representing gridblocks and gridpoints are spaced such that pressure
drops between neighboring points are equal, block boundaries for transmissibility
calculations are spaced logarithmically in » to warrant that the radial flow rates between
neighboring points using the integrated continuous and discretized forms of Darcy’s law
are identical, and block boundaries for bulk volume calculations are spaced
logarithmically in #* to warrant that the actual and discretized bulk volumes of blocks
are equal (Aziz and Settari, 1979; Ertekin et al., 2001). Therefore, the radii for the
pressure points (r,,, ), transmissibility calculations (r%,,, ), and bulk-volume calculations

(7..1,, ) are calculated as follows.

For pressure points,
_ _ i
Tin = Oty = CQph (3.2)

for i=123..n, 1.

For interblock geometric factors,

L i
¥, =—rr 3.3
/2 log, (... /7,) (3.3)

—7.

fori=123..n, -1

and
L =T
rloo= 3.4
i-1/2 loge(ri /ri-l) ( )
fori=23.n,.
For block bulk volume,
2 riil - riz
P2 = 35
" " log, 07 170) e

fori=123..n -1
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and

2 2
2 v, =l
. 3.6
T log (rF /1) G0
fori=23..n,.

For block-centered grid, &, K and bulk volume of Gridblock (i, j,k) are calculated

using-
/n,
7
a, =(r—j ; (3.7)
n =la, log, (@) (e, -1, (3.8)
and
Vb,-./-_k = (Faz —Tius Y(AAG)Az; (3.9a)

fori=123..n, -1, j=123..n,, k=123..n_;
and

4 = (re2 _rnZ,-X/Z)(%Agj)AZn,,j,k (3.9b)

Ny .k

for j=123..n,, k=1,23..n,.

For point-distributed grid,«,,, 7 and bulk volume of Gridpoint (7, j,k) are calculated

using-
r;: ti(n, -1)
@, =| = : (3.10)
rW
r=r, (3.11)
and

: "riil/z)(%Ae,‘)Azk : (3.12a)

A
b
I
—~~
-x
+
(™)
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Note that %, =r2 for i=1 and r>,,,=r’ for i=n, . That is to say, equation 3.12a

applies for i=23..n, -1.

Vo = o =1 )1 00)Az,, (3.12b)
fori=1,

and

Vo = (6 =10 1) (AA6)Az,, (3.12¢)
fori=n,.

The geometric factors are calculated next using Table 3.1 for block-centered grid and

Table 3.2 for point-distributed grid.

In Tables 3.1 and 3.2, r,, ry,,, and r%,,, depend on the value of Subscript i only for
J=123..n, and k=1,23..n; A, and AF,,,,, depend on the value of Subscript j only
for i=123..n, and k=123..n,. Az, and Az,,,, in Table 3.2 depend on the value of
Subscript & only for i=1,23..n, and j=1.23..n,, whereas in Table 3.1, Az, ;, and
Az; ;w12 depend on the value of Subscripts i, 7, and & for i=123..n; j=123..n,;

and k=1,2,3..n,. This difference is a result of grid construction in block-centered and

point-distributed grids.
3.4. Development of new equations

Abou-Kassem et al. (2006) have pointed out that equations 3.3 through 3.6 can be

expressed in terms of 7 and ¢, only as shown in Appendix A:
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T = {(a = D/llog (@)}, (3-13)
for i=123..n, —1;

rte = —D/ley, log, (@, )1}, (3.14)
fori=23..n_;

rl = {(ai -D/llog, (@)1}’ (3.15)
fori=1,23..n, -1;

i ={(a, —D/lay log, (e )1} (3.16)
fori=23..n,.

. . . L L L L L L
In addition, the quotients: #,/7._,,,, 1y, / s Hin /s Ty / Tigs @0d 1y, /12, are

functions of the logarithmic spacing constant «,, only as expressed in equations A-12, A-

15, A-7, A-10, and A-17, respectively.

vt =[ay, log, (a,)/a, -1), (3.17)
ralhy = (e, =D/ log,(a,), (3.18)
ha /1 =(a, —1)/log,(a,), (3.19)
T Vi1 =l log, (e, ) (e, = 1), (3.20)
and

T Mo, = @ (3.21)

Further more, equation 3.9 or 3.12 can be rearranged as-

(KAONr s =1h) =V, | Az, (3.22)
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Substitution of equations 3.17 through 3.22 into the equations in Tables 3.1 and 3.2

results in Tables 3.3 and 3.4, respectively.

For block-centered grid, equation 3.9a can be expressed as equation A-22.

v, =l =1 lag log (@)}’ (446,)bz, (3.2A)
for i =1,2,3,...n,_, ; and equation 3.9b becomes equation A-26,
%, . ={1-llog (@) (e, -DF (e = D/[ey log, ()} (540))Az, ., (3.23b)

fori=n,.

For point-distributed grid, equations 3.12a, 3.12b, and 3.12c can be expressed as
equations A-22, A-31, and A-29, respectively (for j=1,2,3,.n,and k£ =123,..n):

v, . ={lag —1) ag log (a1}’ (4 A6))Az, , (3.24a)

for i=23,..n,_;

V. . = l(ag —D/log (ap)]-1r, (A0,)Az, (3.24b)
fori=1;

and

Vi == (g — /e log,(ap)}r) (5 A6))Az,, (3.24¢)
fori=n,.

3.5. Calculation of pore volumes and interblock geometric factors

3.5.1. Block-centered grid

The procedure for the calculation can be simplified using the following algorithm:



1/n,
1. Define a,, = (r—e] .

7

w

2. Letr =[a,g loge(a,g)/(oz,g -Dlr,.

3. Setvr

i = Oty =T,
where i =1,23,..n, —1.

4. Estimate block bulk volume using-
V, = D [al log,(@2)}r2 (5 06,)Az, ;,
fori=123,.n ~-1; j=123,.n,; and £ =1,23,..n_;
and

V. = {1-[log () ey, - D (e, ~D/[ag log (@)1} (5 46))Az,

fori=n; j=123,.n,; and k=123,.n,.
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3.7)

(3.8)

(3.2)

(3.2A)

(3.23b)

5. Estimate interblock geometric factors in the radial, tangential, and vertical directions

using the equations reported in Table 3.3.
3.5.2. Point-distributed grid

The procedure can be simplified using the following algorithm:

1/(n,~1)
,

1. Define ¢, =(—E—J :
£ \r

w

2. Letr=r,.

3. Set r

i = 6‘(Igri = allgrl ’
where i =1,2,3,..n, —1.
4. Estimate block bulk volume for j =1,2,3,..n, and k£ =1,2,3,...n, using

V. ={ag =1 o log, (@, )}7’ (5 46,)Az,

ik

fori=23,.n,_;

(3.10)

(3.11)

(3.2)

(3.24a)
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Vys = {[(ag —1)/log, ()] =171 (4 A0,)Az,, (3.24b)
fori=1;and

v, . ={l-(ag —1)/le; log, (a)}r2 (4 A6,)Az,, (3.24¢)
fori=n,.

5. Estimate interblock geometric factors in the radial, tangential, and vertical directions

using the equations reported in Table 3.4.

It should be mentioned that equations 3.23 and 3.24, that are proposed in this paper for

the calculation of block bulk volumes are simpler than equations 3.9 and 3.12, that have

been reported in the literature because equations 3.23 and 3.24 use 7; and «,, only. The

proposed equations in Tables 3.3 and 3.4 for the calculation of interblock geometric
factors in the radial, tangential, and vertical directions in radial-cylindrical coordinates

are simpler and less confusing than those reported in the literature (Tables 3.1 and 3.2)

because they use a,, only. In fact, the quotient of the arguments of log, terms that
appear in Tables 3.1 and 3.2 are functions of the logarithmic spacing constant «,, only as

shown in equations A-8, A-10, A-12, A-15, and A-17. Therefore, estimation, in the radial
direction, of block boundaries for transmissibility calculations and block boundaries for

bulk volume calculations are no longer needed.
3.6. Conclusions

New equations for the calculation of interblock geometric factors and bulk volume of
blocks in radial-cylindrical coordinates for both block-centered grid and point-distributed

grid are presented. The bulk volume equations are expressed in terms of «,, and 7 only.
The interblock geometric factor equations are expressed in terms of «,, only. The new

equations are easier to program and eliminate confusion resulting from the estimation, in
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the radial direction, of two different sets of block boundaries for transmissibility and bulk

volume calculations.

3.7. Nomenclature

£()
f
G

Tist/ 2,5k

Zijktlr2

6 jr1/2.4

fluid formation volume factor, RB/STB [m’/std m’]
function of

the pressure and/or saturation dependent term in transmissibility
interblock geometric factor

interblock geometric factor between Block (i,j,k) and Block (i+1,/,k)

along the r direction in radial-cylindrical coordinates, defined in Tables 3.1,
3.2,33,and 3.4

interblock geometric factor between Block (i,j,k) and Block (i, j,k+1)

along the z direction in radial-cylindrical coordinates, defined in Tables 3.1,
32,33,and 3.4
interblock geometric factor between Block (i, j,k) and Block (i, jt1,k)

along the @ direction in radial-cylindrical coordinates, defined in Tables

3.1,32,33,and 3.4

permeability along the r direction in radial flow, md | pm’]

relative permeability to Phase p, dimensionless

permeability along the z axis, md [pm?]

permeability along the 6 direction, md [pm?]

natural logarithm

number of reservoir gridblocks (or gridpoints) along the » direction
number of reservoir gridblocks (or gridpoints) along the z axis
number of reservoir gridblocks (or gridpoints) in the & direction

pressure, psia [kPa]



Titl2..k

Zijktl2

gi./:tl 12k

A6,
Agjil/2

7
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distance in the 7 direction in the radial-cylindrical coordinate system, ft [m]

external radius in Darcy’s law for radial flow, ft [m]
r-direction coordinate of Point i+1, ft [m]
radii for transmissibility calculations, defined by equations 13 and 14, ft [m]

radii squared for bulk volume calculations, defined by equations 3.15 and
3.16, ft? [m’]

well radius, ft [m]

transmissibility between Point (i, j,k)and Point (i+1,;,k) along the r
direction at Time¢”, STB/D-psi or SCF/D-psi [std m’/ (d.kPa)]
transmissibility between Point (i, j,k) and Point (i, j,£+1) along the z axis,

STB/D-psi or SCF/D-psi [std m*/(d.kPa)]

transmissibility between Point (i, j,k)and Point (i, j+1,k) along the &

direction, STB/D-psi or SCF/D-psi [std m’/(d.kPa)]

bulk volume, ft’ [m’]
bulk volume of Block (i, j, k) , ft’ [m’]

distance in the z direction in the Cartesian coordinate system, ft [m]
size of block or control volume along the z axis, ft [m]

size of Block k along the z axis, ft [m]
size of Block (i, j,k) along the z axis, ft [m]
logarithmic spacing constant, defined by equation 3.7 or 3.10, dimensionless

transmissibility conversion factor whose numerical value is 0.001127 for

customary units or 0.0864 for SPE preferred metric units

angle in the & direction, rad

size of Block (i, j,k) along the 8 direction, rad
angle between Point (i, j,k) and Point (i, j £1,k) along the 8 direction, rad

fluid viscosity, cp [mPa.s]



Subscripts

i+1/2
(1, 7,k)
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index for gridblock, gridpoint, or point along the x or » direction

index for neighboring gridblock, gridpoint, or point along the x or r
direction

between i and i+1

index for gridblock, gridpoint, or point in x-y-z (or r-6-z) space

index for gridblock, gridpoint, or point along the y or 8 direction

index for neighboring gridblock, gridpoint, or point along the y or 6
direction

betweenj and ; +1

index for gridblock, gridpoint, or point along the z direction

index for neighboring gridblock, gridpoint, or point along the z direction
between & and k1

logarithmic

last gridblock (or gridpoint) in the z direction for a parallelepiped reservoir
phase

r-direction, relative

between i and i+1 along the » direction

z-direction

between k and 4 +1 along the z direction

@-direction

between j and j+1 along the § direction



66

3.8. References

Abou-Kassem, J. H., Farouq Alj, S. M., and Islam, M. R., (2006) Petroleum reservoir
simulation: A basic approach, Gulf Publishing Company, Houston, 445 p.

Aziz, K. and Settari, A., (1979) Petroleum reservoir simulation, Applied Science

Publishers, London, UK

Chappelear, J. E. and Hirasaki, G. J., (1976) A model of oil/water coning for two-
dimensional areal reservoir simulation, Society of Petroleum Engineering Journal, vol.

16, no. 2, pp. 65-72

Emmanuel, A. S. and Cook, G. W., (1974) Pseudorelative permeability for well

modeling, Society of Petroleum Engineering Journal, vol. 14, no. 1, pp. 7-9

Ertekin, T., Abou-Kassem, J. H., and King, G. R., (2001) Basic applied reservoir
simulation, SPE textbook series, vol. 7, 406 p., SPE: Richardson, TX

Farouq Ali, S. M., (1994) Elements of reservoir modeling and selected papers, Course

notes: Petroleum engineering, Mineral engineering department, The University of Alberta

MacDonald, R. C. and Coats, K. H., (1970) Methods for numerical simulation of water

and gas coning, Society of Petroleum Engineering Journal, vol. 10, no. 4, pp. 425-436

Pedrosa, Jr., Oswaldo, A. and Aziz, K., (1986) Use of hybrid grid in reservoir simulation,
SPE 13507, SPE Reservoir Engineering, vol. 1, no. 6, pp. 611-621



3.9 Appendices

3.9.1. Appendix A: Derivation of equations
Derivation of equations 3.13 and 3.14
Using equation 3.2, one obtains-

i

T —h=a.n—r=(a, -r,

Substitution of equations A-1 and A-2 into equation 3.3 yields equation 3.13,

L Tin — % (a,g Dr,
Fl, = = ={(a, ~1)/log (a, )}ir..
A log,(r.,, /1) loge(alg)i (o =D/ lo. (e, )i

Using equation 3.2 and replacing Subscript i +1 with Subscript 7,

rir =0,

Substitution of equations A-4 and A-5 into equation 3.4 yields equation 3.14,

L Y. —7.

— i i-1

n-rloy
i = =
loge (rz / }';-__] ) loge (alg )

={(a;, — /[, log, (a,)]}7;-
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(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)



Evaluation of arguments of log, in Tables 3.1 and 3.2

Equation A-3 can be rearranged to give-

r;'fl/Z / = (alg —1)/10gz(alg) s
from which-

log, (’}illz /r)=log,[(a, —1)/log (a,)].
Equations A-2 and A-3 can be combined by eliminating r,,

L 1

i+1/2 © 10ge (alg)
Equation A-9 can be rearranged to give-

’}+1 /r;‘f-llz = [alg loge (alg )]/(alg - 1) H
from which-

loge (7;-” / r;l;-] 2) = loge { [alg 1Oge (alg )] /(alg - 1)} .
Equation A-6 can be rearranged to give-

h /7}51/2 = [a[g log, (alg )]/(alg -1),

from which-

log,(r./7",,.) = log, {{a, log, (e, )]/(et,, — 1)} .

Equations A-4 and A-6 can be combined by eliminating 7,

(@, — D,/ 2,) = {(@, - /[, log, (@ )7, -
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(A-7)

(A-8)

(A-9)

(A-10)

(A-11)

(A-12)

(A-13)
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L 1

ron =, - 1)/alg](algr;'—l) =[(a, —1)/log (@)}, . (A-14)
loge (alg)

Equation A-14 can be rearranged to give-

Ty I h = (o, —D/log () , (A-15)
from which-
log,(rty,,/1y) =log,[(a, —1)/log,(a,)]. (A-16)

Equations A-3 and A-6 are combined to get-

a, —-1)/log, (o, )}r;
rffx/z "1'1:1/2 = Y % )/ 1og.( lg)}r‘ =, (A-17)
(e =D /[e log, (2, )]}r;
from which-
loge(r;'il/Z /rifx/z) =log, (a,). (A-18)
Derivation of equations 3.15 and 3.16
Substitution of equations 3.2 and A-2 into equation 3.5 yields equation 3.15,
2 2 2 2

2 Fin —F (@ —Dr; 2 2472
Firy = = =[(a, -1)/log ()] . A-19

i+1/2 loge(r}il /rlz) loge(alzg) [( ig ) ge( Ig)] i ( )
Substitution of equations A-4 and A-5 into equation 3.6 yields equation 3.16,

2 ’}2 —”,31 (l—l/alfg)r}z 2 2 2 2
Fian = = = {(alg -1 /[alg loge(alg)]}ri . (A-20)

log, (/7)) log,(al)
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Derivation of equations 3.23 and 3.24 (block bulk volume equations)

Subtraction of equation A-20 from equation A-19 yields-

, , (@p-1) , [ap-H/ag] ,
ri+1/2_’}'—1/2=10g (a2)i - log. (<) i
@ 1/ ) ) ¢ e (A-21)
o, — -1/
=% —=or = {(ag, —1) /e log, (@)1}
loge(alg)
Combining equation 3.9a (or equation 3.12a) and equation A-21 yields-
Vb,-‘,‘k = {(alzg -1)’ /[alzg log, (O‘Zg )]}riz (%Agj)Azi,j,lc‘ (A-22)

Equation A-22 can be used to calculate bulk volumes of blocks other than Gridblock

n, for block-centered grid and other than Gridpoints 1 and »n, for point-distributed grid.

For blocks having i = n, in block-centered grid, equation A-20 becomes-

2

Fo-tiz = {(alzg -1 /[al:; log, (alzg)]}rnz, ; (A-23)

where 7, can be expressed in terms of 7, by combining equations 3.2, 3.8, and 3.7 as
follows-
n.~1

r, =0y n = ay [, log,(a,)(a, DI,

. (A.24)
=a, [, log, () (@, —~D]r/ay ]=[log,(a,) (a, =D,

Substitution of equation A-24 into equation A-23 gives-



o112 = {(agy =1) /[t log, (o, )1} {log, (@, ) ey, = DI,
Substitution of equation A-25 into equation 3.9b results in equation 3.23b,
V.. = {1-[log () (@, -1)F (e, — 1)/ log, (e )37 (J40))Az, .
For blocks having i = n, in point-distributed grid,

n, -1

¥ — nl'
rnr _alg ri—alg r

w

n.-1

=ay " nlag " =r.

Substitution of equation A-27 into equation A-23 gives-

T 1 = (et = D/[ag log (@)1}

Substitution of equation A-28 into equation 3.12¢ results in equation 3.24c,
V,, | ={1-(@ ~D/lal log,(@2)Ir2(%46)Az, .

For blocks having 7 =1 in point-distributed grid, equation A-19 becomes-
B =[(eg =1/ log (@)’ =[(e, —1)/log,(eg)lrs, -

Substitution of equation A-30 into equation 3.12b results in equation 3.24b,

b, = Ul =1)/log (@)~ Bry (446)) Az,
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(A-25)

(A-26)

(A.27)

(A-28)

(A-29)

(A-30)

(A-31)



3.9.2. Appendix B: Tables

Table 3.1. Interblock geometric factors for block-centered grid
(Farouq Ali, 1994, Ertekin et al., 2001)
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Direction Geometric Factor
r G B.A8 ;

e log (nrh ) (A, ik, ) H1og, (nh I ) (A2, 4k, )

G ﬂcAej

Trelra, 1oge(r,-f1,2 /;;.)/(Az,.,j,kk,,__j'k ) +log, (7., /r,.f”z)/(Azl.ﬂ,].,kkrm_j_k )

¢ G, _ 28, 1°ge("ill1/2/"illx/z)
Lt 2k Ag] /(Azi.j,kke,-_,-,k )+ Aejil /(Azi,jil,kkﬁ,-_jﬂ_k )

z

_ Zﬂc(%Aej)(’iiuz“"i%x/z)
ZigkEli2 Azi'j‘k /kzi.j.k +Azi,j,k.ﬂ /kz

ijkxl




Table 3.2. Interblock geometric factors for point-distributed grid
(Pedrosa and Aziz, 1986)
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Direction Geometric Factor
r G _ B.AO Az,
Tk log, (r; /rifllz)/kr‘..l.‘k +log, (%), /ri—l)/kr,-_,'/-_k
o BAGz,
Tt log, (1, 1) K, +1og, (ruy /1 ) K,
g G, _ 28, IOge(rif-I/Z/rtfl/Z)Azk
MEIEE A4, /ke,_,'k +A8,4,2 /ke,.vjtl‘k
z

2805860, )r% 2 — 1)

% ks
" Azkilll /kz,-_lvk +Az44172 /kzi.j.kﬂ




Table 3.3.

New equations for interblock geometric factors in block-centered grids
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Direction Geometric Factor
r G ﬁcAej
Ticl/2,].k {loge[alg loge (alg ) /(alg — 1)] /(Azi,j,kkr,-_,.k )
+ Ioge [(alg - 1) / loge (alg )] /(Azl'_Lj»kkri—l.j.k )}
Gr‘ 1/2.j.k = ﬂCAgj
mert {log (e, —1)/log (@, )]/(Az, ik, )
+ loge[alg loge (alg)/(alg - l)] /(Azi+1vjvkkri+l.1.k )}
J2 G ~ 25, loge(a,g)
Grrmiias AO; Az, jikg, )+ 8Os (B2, 14k, )
z G _ 2.V, ,, 102 14)
Zi ksl Azi,j,k /kzi.j‘k +Azi,j,k:l /kzi.i.ktl




Table 3.4. New equations for interblock geometric factors in point-distributed grid
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Direction Geometric Factor
r B BAO Az,
"t log, [ar, log,(a,) (e, — D/, , +log,[(a, —1)/log (@,)V/k, , |
} B.A6 Az,
"t log [(ay, ~1)/1og, (e, k, , +log [, log,(a,) (a, - DI/,
6 6, - 28, log, (a5 )Az,
MR NGy g, |+ Ay Tk
z

25, (Vbi.j.k /Azy)
Zijkzl/2 Azkil/Z /kzi.j.k +Azki1/2 /kz

i, j okl
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Chapter 4

4.1 THE EFFECTS OF LINEARIZATION ON SOLUTIONS
OF RESERVOIR ENGINEERING PROBLEMS

4.1.1. Abstract

The natural processes are nonlinear. Each property is affected by the variation of other
properties existing in a process. However, it is necessary to impose some simplification
and linearization in order to obtain numerical description for majority of the problems in
applied sciences. The simplification may take place in mathematical formulation and/or
during numerical evaluation of a problem. This paper investigates the effects of
nonlinearity in the flow equation of a petroleum reservoir. The petroleum industry is
well-known for its intense use of computer models that employ various levels of
linearization. Because the computational operation is repeated numerous times for
billions of discrete gridblocks, any systematic error induced by linearization can have
profound impact on predicted results. In this paper, the dependency of the fluid and
formation properties on the variation of the reservoir pressure is evaluated during the
solution of the flow equation using the engineering approach. The continuous functions
and piecewise functions are applied to approximate the variation of viscosity, fluid
formation volume factor and permeability. The computational results are compared with
the linearized approximation for the variation of these properties. The approximation that
imposes linearization on the mathematical formulation is also evaluated. The continuous
nonlinear functions are not appropriate to approximate the variation of a process
property. The best approximation may be obtained using the piecewise function such as

spline function of different orders.
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4.1.2. Introduction

In traditional practice, analogical, experimental and mathematical methods are used to
predict reservoir performance. The mathematical method, however, is most commonly
used by the petroleum community. Methods, such as material balance, decline curve,
statistical and analytical techniques are the predominant ones that are used in a
mathematical model. However, often it becomes extremely cumbersome to utilize some
of these techniques. On the contrary, the advancement in numerical techniques for
solving partial differential equations, computing facilities etc. have drawn tremendous
attention to the researchers to opt-for computer-aided reservoir simulation. Such trend
has resulted in developing reservoir simulators, which are capable of handling
increasingly complicated enhanced oil recovery (EOR) techniques. The most common
aspect among all the simulators is the development of a set of algebraic equations from a
set of partial differential equations (PDEs). By utilizing the appropriate initial and
boundary conditions, the reservoir behavior is captured in the simulation approach. Since
the equations present the reservoir behavior, they must reflect the physical processes
taking place. However, inclusion of all of the physical processes in the simulator is not
simple and often requires simplifying assumptions (Ertekin et al., 2001). For example, the
classical mathematical representation of the reservoir is described by the material balance
equation and its fundamental principle is the conservation of mass. A number of
assumptions are imbedded in the material balance equation: (a) rock and fluid properties
do not change in space; (b) hydrodynamics of the fluid flow in the porous media is
adequately described by Darcy’s law; (c) fluid segregation is spontaneous and complete;
(d) geometrical configuration of the reservoir is known and exact; (¢) PVT data obtained
in the laboratory with the same gas-liberation process (flash vs. differential) are valid in
the field; (f) sensitive to inaccuracies in measured reservoir pressure. The model breaks
down when no appreciable decline occurs in reservoir pressure, as in pressure
maintenance operations. The mass-balance equation is also sensitive to inaccuracies in

measured reservoir pressure. In addition, the model may breakdown during pressure
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maintenance operations when no significant decline occurs in reservoir pressure. During
hydrocarbon recovery, the past performance of numerous reservoirs is statistically
accounted for to derive empirical correlations (statistical method), which are used for
future predictions. Such method is limited to use only when the reservoir properties are
within the limit of the regression database. Moreover, the estimation of a portion instead
of the whole reservoir may lead to erroneous and unrealistic results as high as 50%

(Ertekin et al., 2001).

Newton’s calculus and difference-quotient formula are broadly used in any reservoir
simulation. The history of differential calculus dates back to the time of Leibnitz and
Newton and in this concept, the derivative of a continuous function to the function itself
is related. In Newton’s calculus, the change in magnitude and direction are independent
of one another. There is no problem in having separate derivatives for each component
of the vector or in superimposing their effects separately and regardless of order. That is
what mathematicians mean when they describe or discuss Newton’s derivative being
used as a ‘linear operator’. When the value of a function is inadequate to solve a
problem, the rate at which the function changes, sometimes, becomes useful. Therefore,
the derivatives are also important in reservoir simulation. In Newton’s difference-
quotient formula, the derivative of a continuous function is obtained. However, this
method relies implicitly on the notion of approximating instantaneous moments of
curvature, or infinitely small segments, by means of straight lines. This alone should have
tipped everyone off that this derivative is a linear operator precisely because, and to the
extent that, it examines change over time (or distance) within an already established

function (Islam, 2006).

One of the most widely accepted mathematical techniques in reservoir simulation is the
finite difference calculus, which is used to approximate values of functions and their
derivatives at discrete points, where they are not known. This technique is also not free

from assumptions and errors. Here the relationship between derivative and the finite
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difference operators, e.g., forward difference operator, backward difference operator and
the central difference operator is established through the Taylor series expansion. In
other word, it assumes that a relationship between the operators for discrete points and
the operators of the continuous functions is acceptable. In the Taylor series expansion,
most well-behaved functions are converted to simple polynomials and it becomes an
approximation of the function when the expansion is carried out for a finite number of
terms and the remainder is ignored. The truncation of the Taylor series of the unknown
variables after few terms leads to accumulation of error. Mathematically, it can be shown
that most of the error occurs in the lowest order terms. There are also the forward
difference and the backward difference approximations, which are the first order
approximations to the first derivative. The approximation to the second derivative by
central difference operator increases accuracy because of a second order approximation

but it still suffers from the truncation problem (Mustafiz and Islam, 2006).

Implementation of the finite difference approximations results in finite difference
equations. The discretization step involves the conversion of the continuous equations to
finite difference equations, which are algebraic in nature. The solutions of the finite
difference equations are obtained only at the discrete points. In reservoir simulation,
these discrete points are defined either according to block-centered or point distributed
grid system. However, the boundary condition, particularly the constant pressure
boundary, may appear important in selecting the grid system with inherent restrictions
and higher order approximations. Also, the solutions obtained for gridpoints are in
contrast to the solutions of the continuous equations. In the finite difference scheme, the
local truncation error or the local discretization error is not readily quantifiable because
the calculation involves both continuous and discrete forms. Such difficulty can be

overcome when the mesh-size or the time step or both are decreased leading to
minimization in local truncation error. However, at the same time the computational

operation increases, which eventually increases the round-off error.
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In reservoir simulation, Darcy’s law (1856) is considered to be a comerstone. It
describes the empirical relationship between fluid flow rate through a porous medium and
potential gradient. There are also several assumptions in Darcy’s law such as (a) the fluid
is homogenous, single-phase and Newtonian, (b) no chemical reaction takes place
between the fluid and the porous medium, (c) laminar flow conditions prevail, (d)
permeability is a property of the porous medium, which is independent of pressure,
temperature and the flowing fluid, (e) there is no slippage effect; e.g., Klinkenberg
phenomenon, and (f) there is no electro-kinetic effect (Ertekin et al., 2001).

The solution techniques used in reservoir simulation are appropriate only for systems of
linear equations. The use of these techniques, therefore, requires linearization of the
finite difference equations. Such techniques include the explicit treatment of the
transmissibility terms, simple iteration of the transmissibility terms, extrapolation of the
transmissibility terms and fully implicit treatment of the transmissibility terms.
Transmissibility, 7, is a combination of viscosity, u, formation volume factor, B, and
geometric factor, G; where, ¢ and B are functions of pressure, P and temperature, 7. In
other words, while modeling single-phase flow, these techniques are used to linearize the
pressure-dependent properties. The explicit method does not offer any improvement in
the value of the nonlinearities as iterations progress. The simple iteration method
presents improvement in the value of nonlinearities in a stepwise manner. In the fully
implicit method, the improved value of nonlinearities falls on the tangent of the
nonlinearities at the previous iteration as the iteration continues. The same methods are
equally applicable to multiphase flow problems. Other linearization methods, such as the
linearized-implicit method (MacDonald and Coats, 1970) and the semi-implicit method
of Nolen and Berry (1972) are not applicable to single-phase problems. These two
methods are used in multiphase problems to deal with nonlinearities due to fluid

saturation only (Abou-Kassem et al., 2006).
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A number of algorithms can be used to solve a given system of linear equations. The
finite difference equations, if written for n simulation grids, produce n x n coefficient
matrix. The direct and iterative are the two general methods used in reservoir simulation.
Theoretically, the direct methods are capable of obtaining an exact solution after a fixed
number of computations are carried out. However, it is assumed that the computer is able
to take an infinite number of digits. In reality, no such computer, including the super
ones, has limitations leading to round-off errors, no matter how insignificant they are.
Numerous articles have been reported to improve the direct methods (i.e., Gaussian
elimination, Gauss-Jordan reduction) including the Crout reduction, the Thomas’
algorithm etc. Moreover, features such as sparse-matrix technique, pivoting, multiple
known vectors and iterative improvements have also appeared to add improvements to
the features of direct procedures (Ertekin et al., 2001). The iterative method has emerged
as a solution scheme, for which, each iteration experiences gradual reduction of error if
the scheme is converging. However, to reduce the slow convergence rate, and in turn, the
monotony of the iterative procedure, significant advancements have been made. Factors
such as convergence requirements, speed and storage needs have been addressed through
earliest attempts of Jacobi iteration, Gauss-Seidel iteration, successive over relaxation
(LSOR), block successive over relaxation (BSOR), alternating-direction-implicit-
procedure (ADIP) etc. However, the development of more powerful, yet linear solution
techniques, such as conjugate-gradient-like (CGL), has replaced the previously popular
techniques in the 1960°s and 1970’s (Ertekin et al., 2001).

This paper investigates the effects of the variation of fluid and formation properties, the
value of the time interval At and the simplification in formulation, on pressure of a

single-phase (compressible fluid) flow problem. In addition, a new approach in search

for multiple solutions resulting from nonlinearities is attempted.

4.1.3. Case study

An example (Abou-Kassem et al., 2006) on natural gas reservoir of 20 acre spacing and
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30 ft net thickness is taken as the test case in this paper. The reservoir is horizontal and
described by four gridblocks in the radial direction. It is also assumed that the reservoir
has homogeneous and isotropic rock properties with /=15 md and ¢ = 0.13. A vertical
well (d=0.5 ft) produces from the reservoir at a rate of 1 MMsc{/D. The initial reservoir
pressure is 4015 psia. The pressure distribution at different time intervals needs to be
calculated. The flow is considered to be in radial direction without any variation in z—~ and

G—directions.
4.1.4. Governing equations

The governing equations of fluid flow through porous media are obtained by combining
two basic engineering concepts including the principle of mass conservation and the
constitutive equation. In reservoir simulation, the constitutive property, i.e., the rate of
fluid movement into (or out of) the reservoir volume element is described by Darcy’s law
and 1s related to potential gradient. Therefore, the combination of Darcy’s law with the
conservation of mass results in the flow equation. The resulting differential form of the
flow equation is nonlinear. The discrete form of the flow equation may be obtained
directly using the engineering approach (Abou-Kassem et al., 2006) without using the
partial differential equations. During simulation, the reservoir is divided into gridblocks
in different directions and the flow equation is written for each of these gridblocks.
Finally, the resulting equations are a system of nonlinear algebraic equations that give the

pressure distribution along the reservoir at any time.

The general form of the flow equation for Gridblock » can be written in the engineering

approach (Abou-Kassem et al., 2006) as

. o ) Lo} A\UT ! o\
rEn 7 ™m WLLEI -~ e e — 7 L3 m i = k23 ’_ - —_
Z [@_n [l\]\’{ =Py b Nﬂlzr Zn J] + z ' i + ‘J:’(f“.n LYCAt [(B) ., B B}

tEE,
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The transmissibility along the r-direction in cylindrical coordinates is defined as

=G L (4.1.2)
Tbi;é.j,k (Trxi'.iF'.é«j-‘k (;13)’). 1
iF ‘..‘.'-"-““'

Logarithmic spacing constant (e, ), geometric factor (G) in the r-direction and bulk

volume (V) are calculated using the recently reported simple and explicit equations

(Abou-Kassem et al., in press)

1/n,
a, = [r—j (4.1.3)
rW
G chAej
Ttk {log,la, loge(a,g)/(a,g _1)]/(Azi,j.kkr,-,,‘k) (4.1.)
+1og,[(a, ~D/log (@, INAz,, K, )}
G B BAG;
Tl {loge[(alg —1)/loge(a,g)]/(Az,.,j‘kk,’_J‘k) 4.15)
+ loge[alg 1Oge (alg)/(alg - l)] /(Azl"i'l,j,kk’m./.k )}
Vb,.,j_k = {(0‘12 -1)° /[aliv log, (alzg N (KA6,)Az, (4.1.6)
fori=123,.n -1; j=123,.n,; and £k =123,.n,;
Y, ., ={1-[log (a,) (e, -1)T (e = 1)/[ex}, log, (@ )37 (5A6))Az, (4.1.7)
fori=n;; j=123,.n,; and k =1,2,3,..n,.
4.1.5. Results and discussion
The flow equation 4.1.1 can be written as
T'?.‘ 72 ST we - L.’b’ﬂ {i) : + I (;) "
(; e P =+ Goen = m B ] “\B i (4.1.8)
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Equation 4.1.8 can be simplified to Eq. 4.1.9 if —B_ is considered to be a linear function

of pressure.

";"; i ! n n
ZT’", e, = — (%) (i =] (4.1.9)

where, (%) is the chord slope of (%) between P/ and P’ .

n

Although, 4 and B are function of the fluid temperature and pressure, it is assumed that
temperature remains constant throughout the reservoir during the production period. The
gas formation volume factor, GFVF or B,, and viscosity, x4 as functions of reservoir

pressure are shown in Table 4.1.1.

They are expressed in mathematical form using the polynomial of fourth order for 4 and
the power function for B as shown in Fig. 4.1.1(a). These two fluid properties are also
fitted with the spline functions of different degrees as shown in Fig. 4.1.1(b). It is found
that the quadratic and cubic splines give a very good approximation to the variation of u
and B with P.

The flow equation for the gridblocks as specified in Eq. 4.1.8 can also be expressed in the

following form

B

| () oo ol e a6 8
6 ()" ry P’”J-&-G(,—fg); (P - P = | (%) iﬂ (%),
6 ()" ey - P =3 [(8) - ()]

(4.1.10)
and according to Eq. 4.1.9 as
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(¢ (&)" iry - Py - 100 = ( $) (P - Py
G (%)J(P P+ G (%) (P~ P3*) = B ('{7), (P - Py
G (}Tlﬁ):” PH Pm) + & (Lﬂ)’ \P_i"" — PE")} = ‘f& (;(J )’ Pl/—!-l _ pll”
|6 (&) e -pr = (%), P+~ ) (4.1.11)
b 1 m
where, 5 = Al is constant for each block. The function [ #Bjj depends on pressure

distribution in the reservoir. Two cases regarding subscript j are considered
I) pressure at the upstream, and

IT) pressure at the i-th Gridblock.

The superscript m is related to the time step, which is taken as m=v+/

Casel
For Case (I), Eq. 4.1.10 is written as

i 5 20kl . ! . : w1 S ¥
Gdp), PP -1t = [(75)1 ("’7)1]
st ” ! I

;(ylh,);+ (Pt Yl 4@ (LB)I o (Py+l Pyl = 3y (T;)+ - ;—3)w
< . , ;+‘l N+ N ;+] :

(&), - rrea () Rt - = (5). - (%)

. | "*1 R il ) ..3; w+1 & v ;

© (m) ¥ TP = (ﬁ . <ﬁ) 4}

(4.1.12)

and Eq. 4.1.11 is given in the form
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(4.1.13)

The pressure distribution at the center of gridblocks is computed using Eqgs. 4.1.12 and
4.1.13. Here u and B vary with pressure, however, k is assumed constant. The time step is
chosen as Ar=1month. Fig. 4.1.2(a) shows pressure at Gridblock 1 as a function of time
when the variation of x and B with pressure is approximated using continuous functions.
It is observed that there is no substantial discrepancy between the pressure values
obtained through original formulation and approximate formulation at different time
steps. However, the computational results suggest that, with increasing time, the
difference between the pressures from Eqgs. 4.1.12 and 4.1.13 increases. The effect of the
simplification of the formulation is more evident when the cubic spline is applied to

approximate the variation of 1 and B with pressure as shown in Fig. 4.1.2(b).

4.1.5.1. Effect of interpolation functions and formulation

The pressure distribution at the center of Gridblocks is also obtained using different
interpolation functions and various formulation. The results for Gridblock 1 is shown in
Figures 4.1.3(a) and 4.1.3(b). The non-linear continuous functions as given in Fig. 4.1.1,
linear interpolation and cubic spline are applied to approximate # and B in both figures.
The transient pressure results using cubic spline and linear interpolation are very close to
each other for both linear formulations [Fig. 4.1.3(a)] and original formulations [Fig.
4.1.3(b)]. It is also noticed that the continuous functional interpolation shows higher
values for pressure at different time steps. Such observation is found to be true for other

Gridblocks. The solution with the cubic spline is faster and more accurate.
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4.1.5.2. Effect of time interval

The effect of the time interval on the accuracy of the computation is obtained by using
different time steps ( A¢), which was varied from 1 day to 4 months. Results are based on
formulation following Egs. 4.1.12 and 4.1.13 while the interpolation function for 4 and B
follows the cubic spline. Figure 4.1.4(a), which is the solution with original formulation
at different time steps, shows that the accuracy is not affected by the time interval. In

most severe case, the mean relative error is

. Vn‘ P’A:=4 months P‘Az:l day) : T
relative error = in=0.014%
YA, R-‘ !

=1 At=d months

(4.1.14)

Relative errors are also calculated for the case of linear formulation and the results of it at
different time steps are shown in Table 4.1.2. The table clearly suggests that the

linearized formulation is more sensitive to the value of Ar.
4.1.5.3. Effect of permeability

To investigate the effect of permeability, computation is also carried out with the original
formulation. As a case study, a 10% variation in permeability between the boundary
blocks is assumed. Such variation can be described by a linear relationship between

permeability and pressure through the following equation

k =-0.0004286 p+15.22 (4.1.15)

During this computation, permeability, £, in each time step and iteration is renewed for
the gridblocks. The variation of pressure with time for Gridblock 1 with constant and
variable permeability is shown in Fig. 4.1.5(a). For the sake of clarity, the results are

repeated in a tabular form [4.1.5(b)]. It is noticed that there is a small difference between
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the constant permeability result and the variable permeability result. It is also observed

that the margin of difference is more evident in initial time than later time.
4.1.5.4. Effect of number of gridblocks

All of the previous computations are carried out with 4 gridblocks are four. In order to
investigate the effect of the number of gridblocks, the number of gridblocks is varied
from 4 to 64. For this study, the original formulation as given in Eq. 4.1.2 is applied and
the systems of algebraic equations are written for each number of gridblocks. The cubic
spline is taken as the interpolation function to include the variation of x and B; and k is
considered to vary according to Eq. 4.1.15. The Newton method is followed to solve the
systems of algebraic equations. Figures 4.1.6(a) through 4.1.6(d) illustrate the effect of
number of gridblocks at various time steps. It is observed that when the number of
gridblocks is increased from 4 to §, there is a difference in the pressure values predicted.
However, increasing from 8 to 16 or more than that provides with a smooth curve at all

four time steps.

4.1.5.5. Spatial and transient pressure distribution using different interpolation

functions

Figures 4.1.7(a) through 4.1.7(d) show pressure distribution based on cubic spline and
linear interpolation along the reservoir at different time. These figures show that the
linear interpolations of x and B give higher values of pressure than those predicted by the
cubic spline technique for all time period along the reservoir radius. However, the

difference is very small and is only about 5 psia in the severe case.
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Case Il
The original formulation is taken into account and the cubic spline is used to approximate
the variation of x4 and B. The system of nonlinear algebraic equations is obtained using

Eq. 4.1.10 and is given as

,

; p+1 v+1 LN\ P
" 1 T e 1 68 . & &
o e (6), - (5]
- f 1 vl ; 2 e | 1t R e 41 . P vl & »
o), pi o ms (5), - 8]

1 wdl el , . il N 1 & v
¢ (777?); (B + Py 2B =k (%)3 T \BJy

vl 41 ;LN

G() @ -y =nl(3) - ()]

A new method is used to formulate the problem. The first equation of the above set (Eq.

4.1.16) is nonlinear, for which the unknown is P1V+1. As a nonlinear equation, Equation

one of (4.1.16) has the potential to give more than one solution. Using P{*' from the

solution of Equation one in Eq. 4.1.16, Equation two of Eq. 4.1.16 can be solved for

Py *that may give more than one solution for each of P}*!. The procedure is continued

the similar way, i.e., applied to the equations three and four of Eq. 4.1.16. Therefore,

v+1

theoretically, multiple solutions can be expected for P; o

and consequently, forP,

To examine the feasibility of the technique mentioned above, we start with Equation one
of Eq. 4.1.16. It is found that there are two solutions for P; as obtained in the first

iteration. The solutions are
P; =4004.566 psia and 9312.639 psia.
The second equation is solved for P, using the result of P; and similarly the remaining

equations of (4.1.16) are solved for P; and P4. Table 4.1.3 shows the results after the first

iteration:
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The first and second sets give results, which are not only unexpected, but also unrealistic.
During the computation, the second iteration resulted in break down of the solutions.
However, the last set provides with satisfactory results following several iterations at

desired time interval (the table only shows pressure at t=30.42 days).

The pressure values for the gridblocks are also obtained by utilizing Eq. 4.1.16. In this
set, the system of algebraic equations is set up with the properties of the gridblock itself.
During the computation, p and B are updated using cubic spline and linear interpolation.
Both techniques show almost same results as evident in Fig. 4.1.8(a). The utilization of
gridblock and upstream flow properties are also éxamined in Fig. 4.1.8(b). The system of
algebraic equations (Eq. 4.1.12) is based on the upstream flow properties. The figure
shows that the results based on these two formulations are also very close to each other.

However, the difference increases as time increases (>500 days).

4.1.5.6. CPU time

In continuing discussion of the previous section, it is important to note the CPU time
required for computation. In fact, the main constraint during computation with Eq. 4.1.16
is the computing time. The CPU time required to compute pressure for all four gridblocks
for a peﬁod of 1.5 years with Ar=1month and using the formulation of Eq. 4.1.16, is
approximately 510 seconds. On the contrary, the same problem when utilized the
formulation of Eq. 4.1.12, takes only 1.156 seconds, which is significantly lower than the

previous ones.

It is important when the time step and the number of Gridblocks are increased. The
computation of the pressure distribution takes t = 1.672[sec] with formulation 4.1.12 (Eq.
4.1.12) for 64 Gridblocks and At = /months. The time to compute the pressure with
formulation 4.1.12 (Eq. 4.1.12) is t = 31.172[sec] with Af = / monthsfor a period of 1.5
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years. It indicates that the formulation 4.1.12 (Eq. 4.1.12) is more efficient in time than

the formulation 4.1.16 (Eq. 4.1.16).

4.1.6. Conclusions

The effects of the nonlinear behavior of some fluid and formation properties and the
simplification of the govemning equtions and the possibility of having multiple solutions
are investigated in this paper. A test example of a reservoir is taken into account and the
pressure distribution along the reservoir is computed with different type of the
formulations while the viscosity and the fluid formation volume factor is approximated

with different types of the interpolating functions.

Linearization of the coefficient of the formulation may lead to less accurate prediction of
the pressure distribution along the reservoir. The variation of the fluid and formation
properties are obtained more properly if they are approximated with spline functions. The
order of the piecewise polynomials has a very minimal effect if the original formulation
is applied. However, the computation shows that the pressure dependent properties have a

very weak nonlinearity effect and they may be neglected during the computations.

The problem is also formulated in such a way to produce multiple solutions for the
pressure distribution in the gridblocks. This formulation is promising and shows the
mathematical potential of having multiple solutions. More investigation is required to

confirm if multiple-valued solutions of physical significance exist.

4.1.7. Nomenclature

o
]

fluid formation volume factor, RB/STB [m’/std m’]

@
I

geometric factor
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Geometric factor of transmissibility along the r-direction between Block
(i, j,k) and Block (i u1, j,k) in radial-cylindrical coordinates

natural logarithm

number of reservoir gridblocks along the r direction

number of reservoir gridblocks along the z axis

number of reservoir gridblocks in the 8 direction

permeability along the  direction in radial flow, md [um?’]

well volumetric rate at reservoir conditions, RB/D [m3 /d]

well volumetric (production) rate at standard conditions, STB/D or scf/D
[std m®/d]

volumetric rate of fluid at standard conditions crossing reservoir boundary /
to block » at time #”, STB/D or scf/D [std m’/d]

well volumetric (production) rate at standard conditions from wellblock 7 at

time 7", STB/D or scf/D [std m*/d]

pressure, psia [kPa]

pressure of neighboring gridblock /, psia [kPa]

pressure of gridblock or wellblock #, psia [kPa]

distance in the r direction in the radial-cylindrical coordinate system, ft [m]

external radius in Darcy’s law for radial flow, ft [m]

well radius, ft [m]

transmissibility between gridblocks / and » at time ¢

transmissibility between Point (i, j,k)and Point (iml,,k) along the r-
direction, STB/D-psi or scf/D-psi [std m*/(d.kPa)]

time step, day

bulk volume, ft* [m’]



93

A = bulk volume of Block i, ft’ [m’]

VA = elevation below datum, ft [m]

Z, = elevation of Gridblock /, ft [m]

Z, = elevation of Gridblock (Gridpoint) », ft [m]

Az = size of block or control volume along the z axis, ft [m]

Az, ., = size of Block (i, j,k) along the z axis, ft [m]

a, = volume conversion factor = 5.614583 for Customary Units

a, = logarithmic spacing constant, dimensionless

B = ratio of bulk block volume to time step, ft*/D [m’/d]

B. = transmissibility conversion factor whose numerical value is 0.001127 for
customary units

6 = angle in the § direction, rad

AB, = size of Block (i, j, k) along the & direction, rad

y = fluid gravity, psi/ft [kPa/m]

o = porosity, fraction

)7 = fluid viscosity, cp [mPa.s]

W = a set containing gridblock numbers

v, = set of existing gridblocks that are neighbors to Gridblock n

Z = summation over all members of set

ley

Z = summation over all members of set v,

ley,

Z = summation over all members of set &,

leg,

Subscripts

b = bulk

g = gas-phase
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i = index for gridblock, gridpoint, or point along the x or r direction
ipl = 1index for neighboring gridblock along the r direction

inl/2 = between i and ipl

(i,j,k) = index for gridblock in r-6-z space

j = index for gridblock along the § direction

jul = index for neighboring gridblock along the 8 direction

jul/2 = betweenjand jpul

k = index for gridblock along the z direction

kpnl = index for neighboring gridblock along the z direction
kul/2 = betweenkand k pl

L = index of neighbouring gridblock

Zn = Dbetween gridblocks £ and n

n = index for gridblock for which a flow equation is written
Superscripts

m = time level m

n = time level n (old time level)

n+1 = time level n+1 (new time level or current time level)
1% =  old iteration v

v+l = current iteration v +1

=  derivative with respect to pressure
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4.1.9. Appendices

4.1.9.1. Appendix A: Tables

Table 4.1.1. The variation of the gas formation volume factor and viscosity with

reservoir pressure (Abou-Kassem et al., 2006)

pressure  GFVFE  Viscosity || pressure  GFVE  Viscosity
i psta) ({RB/scf) {cp) (psia) {RB/scf) tep)
215 0.016654 0.0126 2215 0001318 0.0167
415 Q008141 Q.0129 2410 Q.001201 0.0173
615 0.005371 0.0132 2615 0001100 06180
210 0.003456 0.4135 2815 001032 0.01%6
1615 0.003114 0.0138 3015 0.000u72 0.0192
1215 0002544 0.0143 3215 Ch 00022 6.40148
1415 0002144 0.0147 3415 O000878 0.0204
1615 OLOGERHT 0.0152 015 . 0004 0.0211
1515 0001630 0.0156 3815 0000808 0.0217
200150 L0 0.0161 4015 O.000774Y .0223

Table 4.1.2. Relative error at different time steps using linear formulation and cubic

spline interpolation

Time step (Ar) Relative error (%)
2 days 0.09
0.5 month 0.68
1 month 1.46
2 months 3.19
4 months 7.82




Table 4.1.3. Pressure solution at r=30.42 days for four gridblocks

time [days| Py [psial Py [psia] P [psia] Py [psial
30,420 9312.639800 5404920667 -384. 716501 577920652
30,420 A004. 566162 -5147.603731 “3104188TO 606, 315484

30,420 4004.566162  4009.7T83158  4012.393337 4012512134
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4.1.9.2. Appendix B: Figures
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Figure 4.1.1(a). Approximation of variation of x and GFVF with P

using continuous functions
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Figure 4.1.2(a). Pressure at Gridblock 1 with the linear and original formulation

using nonlinear continuous functions
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Figure 4.1.2(b). Pressure at Gridblock 1 with the linear and original formulation

using cubic spline
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Figure 4.1.3(a). Pressure at Gridblock 1 using the linear interpolation, cubic spline and

nonlinear continuous functions with linear formulation
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Figure 4.1.3(b). Pressure at Gridblock 1 using the linear interpolation, cubic spline and

nonlinear continuous functions with original formulation
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Figure 4.1.4(a). The effect of the time step in computation - cubic spline interpolation

using original formulation
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Figure 4.1.5(b). The effect of permeability variation on pressure variation with time —

tabular presentation
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Figure 4.1.6(b). The pressure distribution using different number of gridblocks,

t = 6 months
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Figure 4.1.7(a). The pressure distribution along the reservoir radius using cubic spline

and linear interpolation for variation of u and B when n = 64, ¢t = 1 month
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Figure 4.1.7(b). The pressure distribution along the reservoir radius using cubic spline

and linear interpolation for variation of u and B when n = 64, ¢t = 6 months
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Figure 4.1.7(c). The pressure distribution along the reservoir radius using cubic spline

and linear interpolation for variation of # and B when n = 64, ¢ = 12 months
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Figure 4.1.7(d). The pressure distribution along the reservoir radius using cubic spline

and linear interpolation for variation of 4 and B when n = 64, ¢ = 18 months



115

4000; - s E—
. ; ; — Cubic spline ;
o : : 1 f + Linear interpolation |!
3500 -+t D — :
A | i . | . !
4 Pt ; : ': ? E [
30000 - o S IR L
! * 4 ! : I
| 5 r
2500 B Tl e :
E i A H
|72] i . |
A= | L 5 |
— L A ! |
B 000 o e e ~:
LS00 e e S
I A
FOOQ -t -
E "a" ; |
0 100 200 300 400 500 600 700
Time [day]

Figure 4.1.8(a). The pressure at Gridblock 1 using different sets of system of algebraic
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117

Chapter 4

4.2 INVESTIGATION OF DIRICHLET TYPE (CONSTANT
PRESSURE) BOUNDARY CONDITION IN ENGINEERING
APPROACH

4.2.1. Introduction

One of the important tasks in reservoir simulation is reservoir discretization. The
discretization involves construction of grid-system in the reservoir, which either follows a
block-centred or point-distributed approach. It is also known that any reservoir boundary
condition reduces to either Neumann boundary condition or Dirichlet boundary
condition. Although, there is no hard and fast rule, yet depending on the reservoir
boundary condition, one grid system can be preferable to another grid system.
Traditionally, the block-centred grid system is preferable to point-distributed grid system
in handling Neumann boundary condition while the point-distributed grid system is

chosen over the block-centred grid system in addressing the Dirichlet condition.

Only recently, engineering approach is proposed in reservoir simulation and reported not
to go through the rigor of partial differential equations (Abou-Kassem et al., 2006). The
representation of boundary conditions in this method takes in the form of fictitious wells.
In this section, the treatment of Dirichlet condition by ‘engineering approach’ is
examined for compressible and slightly compressible fluids in both point-distributed and
block-centred grid systems. Also, the relative merits/demerits of the newly introduced

‘engineering approach’ in terms of grid-system are discussed.
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4.2.2. Case Study

Two problems involving linear flow of single-phase incompressible and slightly
compressible fluids respectively are examined here. The reservoir dimensions are 1000 ft
x 300 ft x 35 ft. The horizontal reservoir has homogeneous rock properties. The
permeability and porosity of the reservoir are 220 md and 0.23 respectively. Initial
reservoir pressure is 3600 psia. A Dirichlet type boundary condition (constant pressure
of 3600 psia) exists at the left boundary while a Neumann type boundary condition (loss
of fluid at a constant rate of 480 STB/D) exists at the right boundary of the reservoir.
The reservoir is assumed to have a regular grid size distribution and is described by four
equal gridblocks in case of block-centred grid approach and by five equally spaced
gridpoints in case of point-distributed grid approach. For both problems, the viscosity of
fluid and the fluid formation volume factor are 0.48 cp and 1.0 RB/STB. The
compressibility is also known for the slightly compressible fluid, which is 1.1x107 psi”.

For both problems, the pressure distribution in the reservoir using block-centred grid and
point-distributed grid systems will be compared. For the second problem that involves
slightly compressible fluid, the pressure distribution will be calculated after 1 day and 2

days.

4.2.3. Results and discussion

4.2.3.1. Problem 1: Incompressible fluid

Figure 4.2.1 presents the simulation results using the block-centred grid and point
distributed grid systems. The block-centred grid results are based on both current
(conventional) practice and the engineering approach. The figure shows that the block-
centred grid with the engineering approach gives a pressure distribution, which coincides

with that produced by the point-distributed grid system. However, the conventional
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pressure prediction as of using the block-centred grid (noted by the dotted line) is higher
than the predictions produced by the other two systems.

4.2.3.2. Problem 2: Slightly compressible fluid

Figures 4.2.2.1 and 4.2.2.2 give the comparison of the pressure profiles using different
grid systems for slightly compressible fluid at 1-day and 2-days respectively. A time step
of 1-day was used in the simulation runs. Once again, the block-centred grid with the
engineering approach shows an excellent agreement with that produced by the point-
distributed grid system. It is also noted that the pressure profiles do not follow straight

lines as noted in case of incompressible fluid pressure profiles in Fig. 4.2.1.

4.2.3.3. Theoretical explanations

4.2.3.3.1. General practice

In the point-distributed grid system, the boundary gridpoint falls on the boundary and the
specified pressure is assigned at the boundary gridpoint. In the block-centred gnid
system, the specified pressure is assigned at a point, which is half-block away from the
boundary and represents the boundary gridblock. Therefore, there exists a discrepancy
between the pressure profile based on the conventional block-centred grid system and the
pressure profile based on the point distributed grid system. To predict reservoir pressure
more accurately but not at the cost of shifting the grid system from the block-centred to
point-distributed, Ertekin et al. (2001) showed an extrapolation of the boundary pressure,

po from the two closest pressure points to the reservoir boundary

(1+Q)p, -Qp, = p, - (4.2.1)
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where, Q= Ax; /Ax; +Ax,).  For the special case of uniform grid spacing,

i.e.,Ax; = Ax,, Eq. 1 becomes

Py =Y 3Bp - py) (4.2.2)

Equation 4.2.2 is the common form of the extrapolation approach that appears in the
petroleum literature (Aziz and Settari, 1979). It has also elevated the improvement from
the first-order correct approximation to the second-order correct approximation (Aziz and
Settar1, 1979; Ertekin et al., 2001) when the block-centred grid system is followed. In
spite of being rigorous and to some extent accepted, this method has several

shortcomings:

1. Equation 4.2.2 must be solved along with the set of flow equations;

2. Equation 4.2.2 is valid for a reservoir that uses regular grid only;

3. Equation 4.2.2 does not resemble a flow equation. Typically, the flow equations of a
multidimensional system are represented by a matrix giving rise of a banded structure
inside. However, the non-uniformity of the additional equation may create
disturbance to the structural integrity;

4. Equation 4.2.2 neglects the effect of gravity;

5. Equation 4.2.2 is valid for rectangular grid system. However, the use of radial

cylindrical grids in single well simulation does not permit of utilizing Eq. 4.2.2.

On the contrary, no extrapolation is required to treat the specified pressure boundary on a
point-distributed grid system. Therefore, the common practice is to use the point-

distributed grid system for treating a Dirichlet type boundary condition.
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4.2.3.3.2. Engineering Approach

In the engineering approach, the boundary condition is replaced with a no-flow boundary
and a fictitious well. Note that the replacement of a boundary condition by a no-flow
boundary and a source term (Aziz and Settari, 1979; Ertekin et al.,, 2001) is not
uncommon in simulation practices. In fact, the presence of a fictitious well in the flow
equation of a boundary gridblock give the impression that two wells are present, one real
and one fictitious — which is an alternate way of expressing the conventional flow
equation without taking into consideration of any other mathematical expression.
Recently, Abou-Kassem et al. (2006) presented the expression for the flow equation for
Boundary Gridblocks that falls on reservoir boundary (note Fig. 4.2.3), which if written
for Gridblock 1 is

Vo 18 4
n+l1 +Tn+1 (Dn+1 __ch+1 + n+l1 = b Pnrt _ ¥ m 423
qs"h.x xlwz( 2 ! ) qSC. O.’CAI‘ [(B 1 (B)l ] ( )

in which, the flow rate of the fictitious well is (Abou-Kassem et al., 2006)

k.\’ AX

o " )

];Hl [(p, — plnﬂ) - 7:,1 (Z,-2)] (4.2.4)

Equations 4.2.3 and 4.2.4 were used to plot the pressure profiles based on the block-
centred grid system (engineering approach) in Figs. 4.2.1, 4.2.2.1 and 4.2.2.2. The
pressure profiles based on the block-centred grid system (conventional) were, however,

constructed on first-order correct approximations.
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4.2.4. Conclusions

The treatment of Dirichlet type (constant pressure) boundary condition is investigated by
the engineering approach. The fictitious flow rate equation in engineering approach
alleviates the assumptions involved with the use of equation as a second order correct
approximation. This new treatment offers an excellent agreement between the pressure
profile based on the block-centred grid system and the pressure profile based on the
point-distributed grid system. Therefore, there is no need to give preference to the point-
distributed grid sytem over the block-centred grid system for the treatment of constant

pressure boundary problems.

4.2.5. Nomenclature

A, = cross-sectional area normal to x-direction, ft°

b = reservoir boundary

B = fluid formation volume factor, RB/STB for liquid, RB/scf for gas

B = fluid formation volume factor at reference pressure p° and reservoir
temperature, RB/STB

c = fluid compressibility, psi™

h = thickness, ft

k, = permeability along the x axis, md

L, = reservoir length along the x axis, ft

)4 = pressure, psia

Dy = pressure at reservoir boundary, psia

D = pressure of Gridblock (Gridpoint) i, psia

prt! = pressure of Gridblock (Gridpoint) i at Time ™', psia

n+l —

o = pressure of Gridblock (Gridpoint) i+1 at Time 7**', psia



q:(‘

9.

n+l

4.,

qSCb,l

At

n+l
t

n+i

14172

well production rate at standard conditions, STB/D

production rate at standard conditions from Gridblock 1, STB/D
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production rate at standard conditions from Gridblock 1 at Time Leveln+1,

STB/D

volumetric flow rate at standard conditions across reservoir boundary to

Boundary Gridblock (Gridpoint) 1, STB/D

time, day

time step, day

old time level, day

new or current time level, day

transmissibility between Gridblocks 1 and 2 along the x axis at Time
STB/D-psi

bulk volume, ft’

bulk volume of Gridblock 1, ft’

distance in the x direction in the Cartesian coordinate system, ft
size of block or control volume along the x axis, ft

x-direction coordinate of Point i, ft

x-direction coordinate of Point i+1, ft

size of Block i+1 along the x axis, ft

x-direction coordinate of Block Boundary x,,,,,, ft
distance between Point i and Point i1 along the x axis, ft
elevation of center of reservoir boundary below datum, ft
elevation of Gridblock (Gridpoint) i, ft

volume conversion factor

transmissibility conversion factor

fluid gravity, psi/ft

n+l

r,
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) = potential, psia

®™' = potential of Gridblock (Gridpoint) i at Time #"*', psia

7 = fluid viscosity, cp

Subscripts

1,2 = between Gridblocks (or Gridpoints) 1 and 2

b = bulk or boundary

i = index for gridblock, gridpoint, or point along the x direction
itl/2 = between i and i+1

sc = standard conditions

x = x-direction

X2 = between i and ix1 along the x direction

Superscripts

n = Time Level n (Old Time Level)

n+1 = Time Level n+1 (New Time Level, Current Time Level)

]

reference pressure and reservoir temperature
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4.2.7. Appendices

4.2.7.1. Appndix A: Figures

Incompressible fluid
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Figure 4.2.1. Pressure distribution in 1-D reservoir for incompressible fluid
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Slightly compressible fluid (1-day profiles)
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Figure 4.2.2.1. Pressure distribution in 1-D reservoir for slightly compressible fluid
(1-day)
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Slightly compressible fluid (2-days profiles)
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Figure 4.2.2.2. Pressure distribution in 1-D reservoir for slightly compressible fluid

(2-days)
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Figure 4.2.3. Boundary gridblocks at left and right boundaries of a 1D reservoir
(Abou-Kassem et al., 2006)
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Chapter 5

S MULTIPLE SOLUTIONS IN NATURAL PHENOMENA

5.1. Abstract

Nature is nonlinear and all natural phenomena are multidimensional. The parameters
involved in a natural phenomenon are not independent of each other and the variation of
each of them causes others to be affected. The natural phenomena are chaotic-not in
conventional sense of being arbitrary and/or unpredictable, but in the sense that they
always produce multiple solutions and show no reproducibility. We are unaware of the
equations that truly govern natural phenomena and also the procedures to obtain multiple
solutions. Often several key simplifications are posed to get rid of nonlinearities and find
a numerical description of a natural phenomenon. Here, we applied several polynomials
and simultaneous equations of two variables as a model for a natural phenomenon in
which the other parameters are kept constant. It is shown that they produce multiple
solutions regardless of that the solutions are realistic or not and the number of solutions
depends on the degree of nonlinearity of the equation. From the study it can be inferred
that a phenomenon with only two variables produces more that one solution and,

therefore, a multi-variable phenomenon surely has multiple solutions.

5.2. Introduction

Even though claims have been to emulate nature, no modem technology truly emulates
the science of nature. It has been quite the opposite: observations of nature have rarely
been translated into pro-nature technology development. Today, some of the most
important technological breakthroughs have been mere manifestations of the

linearization of nature science: nature linearized by focusing only on its external features.
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Modeling is no exception. For instance, the knowledge that nature is strictly non-linear
has been there for centuries, yet currently used mathematical or numerical tools can only

handle nonlinearity of only trivial problems (Islam, 2006).

All mathematical models of the real physical problems are nonlinear. The nonlinearity is
related to the interaction and inclusion of different parameters involved in a physical
problem. Several key assumptions are posed to get rid of nonlinearities and find out a
numerical description of the problem. Some simplifications may also be imposed during
the numerical evaluation of a problem. In this way, a problem is forced to have a single
solution ignoring the possibility of having multiple solutions. In addition, not all of the
available methods are capable of predicting multiple solutions. In fact, until now, a

systematic method for determining multiple solutions is limited to three variables.

The general development of the set of governing equations always proceeds the same
way for any material. A set of conservation laws is usually applied in integral form to a
finite mass of material. Typical ‘laws’ express the conservation of mass, momentum, and
energy. It is asserted that the ‘laws’ are true and the problems become that of solving the
constitutive relationship of the ‘law’. These equations are then converted to a local form
and are cast in the form of partial differential equations. These differential equations
cannot be solved in a general way for the details of the material motion. In order to close
the system, the next step, always, is to specify the material response. The mathematical
conditions are usually referred to as the constitutive relations. The last step is to combine
these constitutive relations with the local form of the balance equations. The combination
of these two sets of relations is called the field equations which are the differential

equations governing the material of interest.

We are unaware of the mathematical model that truly simulates a natural phenomenon.
The available models are based on several assumptions. For examples, there are many

models that describe different fluid flows. The most general equations in fluid mechanics
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are the Navier-Stokes equations. The assumptions in derivation the Navier-Stokes

equation are:

e The fluid is a continuum media; it indicates that we deal with a continuous matter.

e The fields of interest such as pressure, velocity, density, temperature etc., are
piecewise continuous functions of space and time.

e The fluid is Newtonian; a further, and very strong, restriction used is a linear stress-

rate of strain relationship.

In the above, the term ‘Continuous’ means, there should be no boundary. Even quarks
are not continuous. In fact, unless the size of the constitutive particles is zero, there
cannot be any continuity. For any variable to be continuous in space, the above
requirement of zero size must apply. For a variable to be continuous in time, the notion
of ‘piecewise’ is absurd. Both space and time domains are continuous and must extend to
infinity for ‘conservation of mass’ to hold true. There is not a single linear object in
nature, let alone a linear relationship. In reality, there is not a single Newtonian fluid.
The assumption of linear stress-rate of strain relationship is as aphenomenal (Zatzman
and Islam, 2006; Khan and Islam, 2006) as the steady state assumption, in which the time

dimension is eliminated.

A general model that explains completely the fluid motion and describes the nonlinearity
due to the turbulence and chaotic motion of a fluid flow has not been developed so far.
The solution for a turbulent flow is usually obtained based on the Navier-Stokes
equations that are not developed for such a flow. Note that none of the above
assumptions can be remediated by invoking non-linear form of an equation. For instance,
non-linear power law equations cannot be invoked after the formulation, based on

Newtonian fluid rheology, is completed.
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The numerical description is also found based on some simplification and linearization
during the solution process. After the first linearization of the process itself by imposing
‘laws’ to forcibly describe natural phenomena, further linearization is involved during
solution schemes (Mustafiz et al., 2006). All analytical methods impose linearization by
dropping nonlinear terms, which is most often accomplished by neglecting terms or by
imposing a fictitious boundary condition. Numerical techniques, on the other hand,
impose linearization through discretization (Taylor series expansion), followed by

solutions of a linear matrix.

The existence of multiple solutions can be found in numerous problems. The occurrence
of multiple solutions in solving the TSD-Euler equation was examined by Nixon (1989)
and it was found that such solutions exist for a small range of Mach numbers and airfoil
thicknesses. Nixon (1989) also found that a vorticity flux on the airfoil surface can

enhance the appearance of multiple solutions.

We also observe the presence of multiple solutions, which depend on the pathway, in
material processing operations. The existence of multiple roots in isothermal ternary
alloys was discovered by Coates and Kirkaldy (1971) and was further explored by
(Maugis et Al. (1996). Coriell et Al (1998) continued investigation of one-dimensional
similarity solutions during solidification/melting of a binary alloy. Their study, to some
extent, was analogous to the isothermal ternary system, except that the phases were then
solid and liquid and temperature played the role of one of the components of the ternary.
The diffusivity equation was used to express the variation of temperature and
concentration of fluid and solid in time and space. The equation was transferred to an
ordinary differential equation using the similarity technique and the existence of multiple
similarity solutions for the solidification/melting problem was noticed. These results
corresponded to significantly different temperature and composition profiles. Recently, a
computational procedure to find the multiple solutions of convective heat transfer was

proposed by Mishra and DebRoy (2005). In this approach, the conventional method of
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numerical solution was combined with a real number genetic algorithm (GA). These led
the researchers to find a population of solutions and search for and obtain multiple set of

input variable, all of which gave the desired specific output.

The existence of multiple solutions was investigated in separation technology using
membrane separators by Tiscareno-Lechuga (1999). The author discussed conditions of
the occurrence of multiple solutions when the mole fraction of a component with
intermediate permeability was specified as a design variable. When the pressure in the
permeate chamber was significantly lower than that of the rententate, the conditions
turned to be simpler and were expressed through equations, which involved only the

composition of the feed and the permeability of the membrane.

The existence of multiple solutions in porous media mixed convection problems was
identified by Islam and Nandakumar (1986). They justified the existence of multiple
solutions due to the nonlinearity in the energy balance equation. When non-Darcy flow
equations were used, the range of multiple solutions became more discernible (Islam and
Nandakumar, 1988). They extended this work to unsteady state systems (Nandakumar
and Islam, 1990). In 1990, Islam et al. introduced solutions to the water heating/cooling
problem, near 4°C, for which an additional nonlinearity due to peculiar water density
behavior arises. Islam (1993) included the effect of chemical convection and showed
detailed maps of multiples solutions. Sattar and Islam (1993) showed that the number of
multiples solutions increases for large aspect ratios. Basu and Islam (1993) investigated
multiple solutions invoked by by large aspect ratios in the presence of thermo-chemical

convection.

We take into account some bivariate polynomials of different degree as a token-model for
a natural phenomenon. It is assumed that the other contributing parameters of the model

of the bivariate polynomial are constant. The number of solutions depends on the degree
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of the nonlinearity of the polynomial. The solutions are obtained using the Newton’s

method and presented in graphical form for a limited region.

Some nonlinear simultaneous equations are also taken into account and the solutions of
them are obtained with the Newton and Adomian decomposition methods (ADM). Our
objective is to show that conventional techniques do not generate multiple solutions, for
instance, the ADM, which 1s a very powerful method for solving nonlinear equations can
not produce multiple solutions. We also proposed a new scheme to show the feasibility of

generating multiple solutions.

5.3. Knowledge dimension

Dimensions provide the existence and imagination of the universe. It may be defined as
the elements or factors making up a complete personality or entity. The dimensions are
unique (each dimension has unique properties that makes it different from others),
codependent (the dimensions are equally dependent to each other for their existence) and
transcendent (dimensions have the ability of extending or lying beyond what would
otherwise be possible). Higher dimensions include all lower dimensions but opposite is
not true: lower dimensions do not include information in higher dimensions; e.g., length

do not include area or volume.

Knowledge is synonymous to truth and reflects information about the properties, which
exist in objects, events or facts. Knowledge explains the physical properties (which are
observable and measurable), date, history, theories, opinions, etc. It includes but goes

beyond, finite or particular space, mass and energy. Knowledge is a dimension for
phenomena and may be possible to measure it by bits of information. Information can

lead to an increase in knowledge only if proper science (science of nature) is used.

Some knowledge can be obtained through the physical and/or mathematical simulation of
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a phenomenon. The physical simulation is carried out by geometrical, kinematical and
dynamical scaling up or down of a problem. In many cases, it is not possible to obtain a
complete physical simulation and, therefore, the experimental results are based on several
assumptions. The mathematical simulation is obtained by finding the governing equation
and the internal relationships between the parameters involved. Since any phenomenon is
affected by a number of factors, any attempt to find the truth greatly relies on how closely
these factors are addressed. It is observed that when governing equations are used to
describe physical phenomena, several assumptions are needed. It is understandable that

as we reduce the number of assumptions, we reach closer to the truth.

The multiplicity of possible solutions is another aspect of the knowledge dimension. As
time is passes, knowledge is increased if the path of nature science is followed. This
process 1s just like time, irreversible. Knowledge cannot regress. Whenever, it is
necessary to retract or “lose” information, it becomes a matter of disinformation, which is
the pre-cursor to anti-Knowledge. Consciousness, which is knowledge of the knowledge,
is another distinct stage within the dimension. It may be considered as the second stage of
the knowledge dimension as compared to information alone. Each stage is naturally
independent and, therefore, it may allow independent knowledge to enter. There is no
limitation or beginning and end, of the knowledge dimension. This multiplicity of
possible solutions in the knowledge dimension is indicated as a range of solutions for a
specific phenomenon, arising from the presence of all those different factors that

contribute to the phenomenon.

If we conéider a pure material and plot the curve for melting or freezing of it at a certain
pressure, there is a constant temperature during the freezing or melting process. However,
there is no pure substance. In fact, when we refer to 100% pure, it pertains to detection
limit. It is impossible to create a 100% pure substance, at least under terrestrial
conditions. This is the nature of science of intangibles, which does not allow any

exactness (Islam and Zatzman, 2006). If an isomorphous alloy, which consists of an
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arbitrary composition of components A and B, is taken into account, the freezing or
melting process is taken place in a range of temperature depends on the composition of
the alloy and the pressure, as shown in Fig. 5.1(a). Therefore, we are dealing with a range
of temperature instead of a constant temperature. Another interesting point is that during
the freezing and melting process the concentrations of the equilibrium liquid or solid
phases are changing and varying in a certain range dependent on the final concentration
of liquid or solid state. This is more pronounced for an alloy of more components. Figure
5.1(b) shows how multiple solutions can be extremely valuable while making decisions.
With conventional analysis, most likely solutions that would be considered is the one
marked by dark bold line. With conventional mathematics, the focus is on tangible and
exactness, leading one to accept the first number that appears to be ‘real’. Because no
more solutions are sought, one is limited to a large domain of choice <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>