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ABSTRACT

This dissertation presents the strategies used for developing four damage indices, based
on various signal analysis methods, used for locating and quantifying structural damage.
The proposed damage indices demonstrate the effectiveness of a series of coupled
mathematical/engineering approaches that enable us to detect damage in structures,
reliably and accurately. The proposed health monitoring methodology is based on
monitoring the vibration response of structures using piezoelectric sensors. The Fast
Fourier transformation (FFT), FFT integration, wavelet transformation (WT), wavelet
packet transformation (WPT) and the Empirical Mode Decomposition (EMD) methods
are used to examine the structure’s dynamic response signals caused by an impacting
force. Novel “damage indices” expressions are developed based on the evaluation of the
vibration induced energies. The proposed methodologies were verified both numerically
and experimentally. Finite element analysis was used to simulate the response of healthy
structures, as well as structures with various size damages with piezoelectric patches
mounted on them. Various damage cases were studied to verify the proposed damage
indices. The proposed formula was also used to assess the integrity of bonded joints.
Experimental results demonstrated that the proposed methodologies could detect the
integrity of adhesive bonded joints with the use of only a single sensor. A system
identification technique was developed based on EMD and the Hilbert-Huang transform
(HHT) and was verified numerically for a six degree freedom mass-spring system.
Experimental investigation was also carried out for evaluation of damping of PVC pipes
with equipped piezoelectric sensors with the various available techniques and the results
were compared to that obtained through the proposed EMD/ HHT system identification
method.

The proposed methods have been found to be successful in localizing the damage in the
structure and in system identification application.
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Chapter 1
Introduction

1.1 Introduction

Structural health monitoring has been an evolving area of research in the past
two decades with increasing need of online monitoring the health of large structures.
The damage detection by visual inspection of the structure can prove impractical,
expensive and ineffective in case of large structures such as multi-storied buildings
and bridges. This necessitates the development of a structural health monitoring
(SHM) systems that can effectively detect the occurrence of damage in the structure
and can provide information regarding the location as well as severity of damage and
possibly the remaining life of the structure. The SHM system analyzes the structural
response by excitation due to controlled or uncontrolled loading. The controlled
loading may be attributed to impulse excitation whereas the uncontrolled loading may
be attributed to the excitation by automobiles on bridge, a random excitation due to
wind loads or due to earthquake excitation.

The terms “Smart Structures” and “Intelligent Material Systems” are fast
becoming a common phrase among the engineering community. Although there is no
agreed definition for intelligent material systems, Rogers (1992) proposed two
definitions. The first one is based upon a technology paradigm: “the integration of
actuators, sensors, and controls of a material or structural component.” The second
one is based upon a science paradigm and addresses the goal of intelligent material
systems: “material systems with intelligence and life features integrated in the
microstructure of the material system to reduce mass and energy and produce
adaptive functionality.”

An on-line structural health monitoring system should meet three requirements
Rogers and Lalande (1996) : (i) it must be small, non-intrusive, and must offer the
possibility of being located in inaccessible remote areas of the structure and, as such,
it must be able to transmit information easily to a central processor;(ii) it must be as

sensitive as conventional non-destructive evaluation (NDE) techniques, i.e. it must be



able to detect minor damages such as small cracks, delaminations or loose
connections; and (iii) it must be able to monitor a certain minimum area of the
structure as opposed to the point measurements offered by presently available NDE
equipment.

Conventional NDE techniques such as ultrasonic testing and X-radiography can
provide significant details about the nature of damage. However, these techniques
usually require direct access to the structure being investigated and involve bulky
equipment. Moreover, the structure should be scanned at every location to detect
presence of any flaw. These techniques usually require the structure to be out of
service during the inspection and this may cause major disruptions to the service. For
these reasons, these techniques are not favored for on-line structural health
monitoring.

The major goal of this thesis has been to develop and introduce novel energy
based damage indices evaluated through the output of piezoelectric sensors to identify
damage. Three new damage indices are introduced based on the Fast Fourier, Wavelet
and Empirical Mode Decomposition (EMD) methods. It has been shown that the
proposed damage indices can identify the presence and location of damage with a
good accuracy and consistency.

The proposed piezoelectric based structural health monitoring technique along
with the introduced damage indices investigated in this research provide an effective
solution for on-line structural health monitoring. This technique utilizes the direct
electromechanical properties of piezoelectric materials, for sensing the vibrational
response of a structure. Physical changes in the structure cause changes in the
structural mechanical properties and systems. Due to electromechanical coupling
between the piezoelectric material and the structure, the change in structural
mechanical property induces a change in the electrical output of the piezoelectric
material. Hence, it is possible to determine when a structural damage occurs or is
becoming imminent by monitoring the output voltage of the piezoelectric sensor.

This work involved numerical modeling and experimental investigation to
verify the introduced damage indices. In the numerical modeling, two models were

developed based on Finite Element Method (FEM) and an analytical solution. In the



experimental investigation two setups were also developed and investigated to verify
first the integrity of the proposed system identification, and then the effectiveness of

the proposed damage indices.

1.2 Thesis Organization

Chapter 2 presents thorough literatures review of current damage detection
techniques and most structural health monitoring systems. The literature review
focused on vibrational based methods for damage identification and location because
it is believed that vibrational based SHM is an effective and efficient solution.

Chapter 3 provides details of piezoelectric materials and the associated
formulation for the materials when used as sensors.

Chapter 4 introduces the Fast-Fourier, Wavelet and Hilbert-Huang mathematical
formulations for processing the output signal of piezoelectric sensors and introduces
the proposed damage indices derived based on these methods.

Chapters 5 to 9 are written in series paper format some of which have been
published and some of them are under review for publication.

Chapter 5 outlines the experimental setup and procedures used to verify the
integrity of the proposed system identification and damaged indices. The setup used a
PVC pipe which had been instrumented with five piezoelectric patch sensors. This
setup was developed to find the applicability of piezoelectric sensors to monitor
vibration of the structure and to verify the applicability of the Hilbert-Huang based
system identification method verification. For that the calculated damping coefficient
of the structure was evaluated and compared with those obtained by most of the
commonly used methods.

Chapter 6 presents two numerical models used to verify the integrity and
accuracy of the proposed damaged indices and system identification method. The
system is a 6-DOF mechanical system subjected to an impact load has been solved by
an exact analytical solution, using MATLAB software, as well as with finite element
method, using ANSYS program. The presence of damage was simulated by reducing

the stiffness of the springs used to idealized the stiffness of the spring-mass system.



Chapter 7 outlines the numerical analysis which is provided to evaluate the
integrity of the proposed damage indices in a pipe structure based on Fourier and
Wavelet analysis. Finite element analysis was used to simulate the response of a
healthy pipe, as well as pipes with various sizes of damages. The pipes’ degradations
(defects) were assumed to have existed in the form of local patches of corrosion,
simulated by reducing the wall thickness in various areas around the circumference of
pipes.

Chapter 8§ presents the same numerical work of Chapter 7 which is provided to
evaluate the integrity of the proposed damage indices in a pipe structures based on
developed damage indices with Fourier, Wavelet and EMD analysis.

Chapter 9 outlines an experimental setup which was used to check and verify
the proposed damage indices for two pipes joined by an adhesive. The aim of this
setup was to detect any debonding of adhesive bonded structures. In this chapter all of
the proposed damage indices have been used and compared to each other.

The conclusions and recommendations for the future studies are summarized in

Chapter 10.



Chapter 2

Literature Review

The research in structural health monitoring and damage detection has recently
become an area of interest for a large number of academic and commercial
laboratories. Especially, a need to develop in-service and on-line health monitoring
techniques is increasing. This kind of technique allows systems and structures to
monitor their own structural integrity while in operation and throughout their life,
such techniques are useful not only for improving reliability of the structures, but also
reducing their maintenance and inspection cost.

Damage in a structure can be classified as linear and non-linear. Linear damage
is the case when the initially linear-elastic structure remains linear-elastic after
damage is created (Doebling, 1996a). This occurs, for example, when the structure is
subjected to a sudden damage of relatively low intensity. The modal parameters
change in this case, but the structure would still exhibit linear response after the
damage. This facilitates the formation of a simple model of the structure, and to
derive equations of motion based on an assumption of linear structural properties.

Non-linear damage is a case when the initially linear-elastic structure exhibits
non-linear behavior after initiation of the damage. A fatigue crack initiated in a shaft
subjected to cyclic loading can be called a non-linear damage case. In this case the
crack opens and closes during every cycle, thereby making the shaft’s stiffness non-
linear. Most of the damage detection techniques assume linear damages when

modeling the structure.

2.1 Types of Damage Detection Techniques

Current damage detection methods can be mainly categorized into local damage
detection methods and global damage detection methods. In the case of local damage
detection methods, the approximate location of damage in structure is generally

known and the structure is analyzed locally to detect the damage. In this case, the



damaged region needs to be easily accessible to effectively detect its exact location,
and severity. Some of the examples of the local damage detection techniques are eddy
current technique, acoustic or ultrasonic damage detection techniques and
radiographic technique.

Contrary to the local damage detection methods, the global methods do not
require prior knowledge of the location of damage in the structure. The global
methods monitor the changes in the vibration characteristics of the structure to detect
the location and severity of a damage. The changes in dynamic properties of the
structure may be attributed to the damage occurrence in the structure, as the modal
parameters (comprising the natural frequencies, mode shapes and damping ratios) are
functions of the physical properties i.e. (mass, damping and stiffness) of the structure.

Any change in the physical properties would therefore change the modal parameters.

2.2 Levels of Structural Health Monitoring

Various global damage identification techniques have been developed to date.
The effectiveness of each method can be evaluated by the extent of the information
obtained about the damage. Rytter (1993) proposed a system of classification for
damage-identification techniques, defining four levels of damage identification as
follows:

Level 1: Determination of the presence of damage in the structure

Level 2: Determination of the geometric location of the damage

Level 3: Quantification of the severity of the damage

Level 4: Prediction of the remaining service life of the structure

According to above levels, damage identification techniques used in industrial
machineries may be limited to Level 1, commonly known as fault identification
technique. However most of the damage detection techniques implemented for SHM

systems of civil infrastructures fall under the Level 3 and or Level 4.

2.3 DAMAGE IDENTIFICATION TECHNIQUES:

As stated, various damage identification methods, based on the measurement of

the dynamic properties of structures have been developed to date. These methods can



be categorized based on the type of data collected when monitoring the structure, or
the technique implemented to identify damage. Some of the methods worth
mentioning are those monitoring the changes in the modal parameters, the matrix
update methods, the neural network based methods, the pattern recognition methods,
the Kalman filter based methods and those based on statistical approach. The

following sections provide a summary of the above stated methods.

2.3.1 Change in Modal Parameters:

Any change in the dynamic properties of structure causes change in the modal
properties of the structure, including change in the natural frequencies, mode shapes
and modal damping values. These values can be tracked to get information about the
damage present in the structure.

The idea that changes in vibration characteristics could provide information
regarding damage in a structure is very intuitive; one may however ask the question:
Why has it taken such a long time for the technology to be formally and generally
recognized and adopted by the modern engineering community? The answer maybe
that there are several confounding factors that make the vibration-based damage
identification methods difficult to implement in practice. Firstly, the standard modal
properties represent a form of data compression. Modal properties are estimated
experimentally from measured time history responses. A typical time-history may
have 1024 data points, and if measurements are made at 100 points, then there would
be 102,400 pieces of information regarding the state of the structure.

Through the system identification procedure commonly referred to as
experimental modal analysis (Ewins, 1984), the volume of data is converted into
some number of resonant frequencies, mode shapes and modal damping values. This
data compression is done because the modal quantities would be easier to visualize,
and physically interpret, in terms of standard mathematical modeling of vibrating
systems, than are the actual time-history data. As an example, if twenty real modes
are identified, then the 102,400 pieces of information would have been reduced to
2020-2040 pieces of information (20 modes, each consisting of 1 resonant frequency

value, 1 modal damping value and 100 modal amplitude values).



Intuitively, information about the current state of the structure may be lost in
this data reduction and system identification process. The loss of information occurs
primarily from the fact that for a linear system, the modal properties are independent
of the excitation signal characteristics (amplitude and frequency content) and the
location of the excitation, whereas the time histories are not. In addition, if the input
excites response at frequencies greater than those that can be resolved with the
specified data sampling parameters, the identified modes will not provide any
information regarding the higher frequency response characteristics of the structure
that are contributing to the measured time-history responses. Within the measured
frequency range of the response, it is often difficult to identify all the modes
contributing to the measured response, because of the coupling between the modes
that are closely spaced in frequency. This difficulty is observed more commonly at
the higher frequency portions of the spectrum, where the modal density is typically
greater. Also, the introduction of bias (or systematic) errors, such as those that arise
from windowing of the data, finite frequency resolution, and those arising from the
changes in the ambient condition during the test, would tend to make the identified
modal parameters less representative of the true dynamic properties of the structure.

Another confounding factor is the fact that a damage is typically a local
phenomenon. Local response is captured by higher frequency modes, whereas lower
frequency modes tend to capture the global response of the structure and are less
sensitive to local changes in a structure. From the experimental prespective, it would
be more difficult to excite the higher frequencies of a structure, as more energy would
be required to produce measurable response at such higher frequencies than at the
lower frequencies. These factors, coupled with the loss of information resulting from
the necessary reduction of time-history measurements to modal properties, add
further difficulties to the process of vibration-based damage identification. These
factors have also limited this technology to the research area with only limited cases
practiced by the engineering community.

A logical question then would be “why not examine the time-histories directly

for indications of damage?”



The answer may be, despite the difficulties associated with damage detection
based on changes in modal properties, it is even more difficult to identify damage by
direct examination of the time histories responses. To identify that damage has
occurred based on the changes in patterns of time histories, and to relate these
changes to physical changes in the structure pose certain complexities. If the
excitation sources and/or the environmental condition change, then this process
becomes even further complicated. However, it should be pointed out that in a
situation where the system response changes from linear to nonlinear, the time
histories alone (actually their frequency domain power spectra) would not constitute
sufficient information to identify the damage. Generally, an identification technique
requires the knowledge of the location of the damage as a priori, as for instance is
typically the case with loosening of bearings in rotating machinery. Detecting the
onset of nonlinear vibration behavior in rotating machinery represents one of the most
widely practiced forms of vibration-based damage identification (Wowk, (1991)).

Notwithstanding the difficulties mentioned above, the advances in vibration-
based damage detection over the last 20-30 years have produced new methods
utilizing dynamic data for indications of structural damage. These methods are seeing
more widespread applications. One of the most prominent examples of this
application is NASA’s space shuttle modal inspection system (Hunt, 1990). A
vibration-based damage detection system was developed because of the difficulties in
accessing the exterior surface caused by the thermal protective system. This system
could identify damage that would have eluded the traditional non-destructive testing
methods because of inaccessibility to the damaged components. The methodology has
then been adopted as a standard inspection tool for the Space Shuttle Orbiter
structures.

It is the intent of this literature survey to provide an overview of the recent
advances in vibration-based damage detection methodology. This literature survey is
mainly based on a detailed review of the vibration-based damage detection literature
(Doebling, 1996b).

As mentioned previously, the field of damage identification is very broad and

encompasses both local and global methods. This literature review will be limited to
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global methods that are used to infer damage from changes in vibration characteristics
of structures. Many different issues are critical to the success of using the observed
changes in mechanical vibration characteristics of a structure for damage
identification and health monitoring. Among the important issues are the excitation
and measurement considerations, including the selection of the type and location of
sensors, and the type and location of the excitations. Another important topic is the
issue of signal processing, which includes such methods as the Fourier analysis, time-
frequency analysis and wavelet analysis. In this literature survey, these peripheral
issues will not be directly addressed. The scope of this literature survey will be
limited to the methods that use changes in modal properties (i.e. modal frequencies,
modal damping ratios, and mode shapes) to infer changes in the mechanical
properties and the application of these methods to engineering problems. The review
includes both methods that are based solely on changes in the measured data, as well
as those that use a finite element method in their formulation. The reader should note
that methods based on identifying nonlinear response or non-parametric models (such
as the neural network-based approaches) are only briefly noted in this review.

Most of the modern developments in vibration-based damage detection
stemmed from studies performed in the 1970s and early 1980s by offshore oil
industry. For more information the reader should review Vandiver (1975; and 1977),
Begg (1976), Loland and Dodds (1976), Wojnarowski (1977), Coppolino and Rubin
(1980), Duggan (1980), Kenley and Dodds (1980), Crohas and Lepert (1982),
Nataraja (1983), and Whittome and Dodds (1983) for more details on these studies.
However, in the view of this author, most of the proposed techniques were less than
successful. Because of the lack of success, the oil industry mostly abandoned pursuit

of this technology in the mid-1980s.

2.3.1.1 Change in Natural Frequency
The natural frequency of a structure is a function of the stiffness and mass of the
structure. Any damage occurring in the structure would cause loss of stiffness,

whereas the mass of the structural members remains unchanged resulting in the
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reduction of the natural frequency of the structure. Thus a reduction in the natural
frequency of the structure can be used as an indicator of damage in the structure.

The damage identification with this technique is implemented with two types of
approaches. One of the approach models damage mathematically and predicts the
frequency of the structure. The predicted natural frequency is compared with the
measured natural frequency and the damage is hereby identified. The second
approach evaluates damage parameters like crack length and location from the
frequency shifts and thus measures the intensity and location of damage in addition to
just identifying of the damage as observed in the first approach.

The amount of literature related to damage detection using shifts in resonant
frequencies is quite large. Salawu (1997a) presented an excellent review on the use of
modal frequency changes for damage diagnostics. The observation that changes in
structural properties cause changes in vibration frequencies was the impetus for using
modal methods for damage identification and health monitoring. Because of the large
amount of literature, not all papers that the authors have reviewed on this subject are
included in the reference list of this thesis. A more thorough review and reference list
can be found in Doebling (1996a). An effort has been made to include some of the
early works on the subject, some papers representative of the different types of work
done in this area, and papers that are considered by the author to be significant
contributions in this area.

It should be noted that frequency shifts have significant practical limitations for
applications to the types of structures considered in this review, although ongoing and
future work may help resolve these difficulties. The somewhat low sensitivity of
frequency shifts to damage requires either very precise measurement sensors or large
levels of damage. However, recent studies have shown that resonant frequencies have
much less statistical variation from random error sources than other modal parameters
(Farrar,1996; Doebling,1996b).

For example, in offshore platforms damage-induced frequency shifts are
difficult to distinguish from the shifts resulting from increased mass due to marine
growth. Tests conducted on the Interstate 40 highway bridge (Farrar,1994) also

demonstrated that frequency shifts are not sensitive indicators of damage. In this
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investigation when stiffness of the cross-sectional at the center of a main plate girder
had been reduced by 96.4%, which reduced the bending stiffness of the overall bridge
cross-section by 21%, still no significant reduction in the modal frequencies were
observed. Currently, using frequency shifts to detect damage appears to be more
practical in applications where such shifts can be measured very precisely under a
controlled environment, such as for quality control in manufacturing. As an example,
a method known as “resonant ultrasound spectroscopy”, which uses homodyne
detectors to make precise sine-sweep frequency measurements, has been used
successfully to determine the out-of-roundness of ball bearings (Migliori, et al.,
1993).

Also, because modal frequencies are a global property of the structure, it is not
clear that shifts in this parameter can be used to identify more than Level 1 damage.
In other words, the frequencies generally cannot provide spatial information about
structural changes. An exception to this limitation occurs at higher modal frequencies,
where the modes are associated with local responses. However, the practical
limitations involved with the excitation and extraction of these local modes, caused in
part by high modal density, can make them difficult to identify. Multiple frequency
shifts can provide spatial information about structural damage because changes in the
structure at different locations will cause different combinations of changes in the
modal frequencies. However, as pointed out by several authors, there are often an
insufficient number of frequencies with significant changes to uniquely determine the

location of the damage.

2.3.1.1.1 The Forward Problem

The forward problem, which usually falls into the category of Level 1 damage
identification, consists of calculating frequency shifts from a known type of damage.
Typically, the damage is modeled mathematically, and then the predicted frequencies
are compared to the measured frequencies to determine the damage. This method was
used extensively by the previously mentioned offshore oil industry investigators.

As an example, Cawley and Adams (1979) gave a formulation for detecting

damage in composite materials using the frequency shifts. They started with the ratio
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between frequency shifts for two different modes in their procedure. A grid of
possible damage points was considered and an error term was constructed that related
the measured frequency shifts to those predicted by a model based on a local stiffness
reduction. A number of mode pairs were considered for each potential damage
location and the pair giving the lowest error indicated the location of the damage. The
formulation did not account for multiple-damage locations.

Friswell (1994) presented the results of an attempt to identify damage based on
a known catalog of likely damage scenarios. The authors used an existing model of
the structure which was highly accurate. Using this model, they computed frequency
shifts of the first several modes for both the undamaged structure and all the
postulated damage scenarios. Then ratios of all the frequency shifts were computed.
For the candidate structure, the same ratios were computed, and a power-law relation
was fit to these two sets of numbers. When the body of data was noise-free, and when
the candidate structure lay in the class of assumed damages, the correct type of
damage would produce a fit that would be a line with unity slope. For all other types
of damage the fit would be inexact. The likelihood of damage was keyed on the
quality of the fit to each pattern of known damage. Two measures of fit were used:
the first was related to the correlation coefficient; the second was a measure of how
close the exponent and coefficient were to unity. Both measures were defined on a
scale from 0 to 100. It was hypothesized that damage was present when both
measures were near 100.

Juneja et al. (1994) presented a forward technique called the “contrast
maximization”, matching the response of the damaged structure to a database of
structural responses, thus locating the damage. They also develop a predictive
measure of the detectability of the damage. Gudmundson (1982), Tracy and Pardoen
(1989), and Penny (1993) also presented other approaches to the forward problem.

2.3.1.1.2 The Inverse Problem

The inverse problem, which, is typically considered as Level 2 or 3 damage
identification, consists of calculating the damage parameters (e.g., crack length and/or

location) from the frequency shifts.
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Lifshitz et al. (1969) presented probably the first journal article to propose
damage detection technique via vibration measurements. They looked at the change
in the dynamic moduli, which could be related to the frequency shift, as an indication
of damage in particle-filled elastomers. The dynamic moduli, which are the slopes of
the extensional and rotational stress-strain curves obtained under dynamic loading,
were computed for the test articles from a curve-fit of the measured stress-strain
relationships at various levels of filling.

Stubbs (1990a; 1990b) developed a damage detection method using the
sensitivity of modal frequency changes that was based on work of Cawley and Adams
(1979). In this method, an error function for each mode and each structural member
was computed assuming that only one member was damaged. The member that
minimized this error was determined to be the damaged member. This method was
demonstrated to produce more accurate results than the previous ones in the case
where the number of members is much greater than the number of measured modes.
The authors also pointed out that this frequency-change sensitivity method relied on
sensitivity matrices that were computed using finite element method. This
requirement increased the computational burden of these methods and also increased
the dependence on an accurate prior numerical model. To overcome this drawback,
Stubbs (1992) developed a damage index method, which is presented in the section
on methods that use mode shape curvature changes.

Morassi (1997) presented an inverse technique to localize notch effects in steel
frames using changes in their modal frequency. This study focused particularly on the
accuracy of the assumed reference (undamaged) structural configuration and the
practicality of making vibration measurements in the field. Koh (1995) used a
recursive method based on static condensation to locate damage based on measured
modal frequencies.

Further examples of inverse methods for examining changes in the modal
frequencies for indications of damage are presented by: Adams, et al. (1978), Wang
and Zhang (1987), Stubbs et al. (1990), Hearn and Testa (1991), Richardson and
Mannan (1992), Sanders et al. (1992), Narkis (1994), Brincker et al. (1995), Balis
Crema et al. (1995), Skjaerbaek et al. (1996a), and Villemure et al. (1996).



15

As natural frequencies of a structure are global properties of a structure, they
cannot provide spatial information about damage in the structure and thus only
indicate the occurrence of damage and can only be used as a Level 1 damage
detection technique. The exception to this is modal response at higher natural
frequencies, because the mode shapes are associated with local responses at higher

modal frequencies.

2.3.1.2 Change in Mode Shapes

Mode shape information can be utilized to locate damage in the structure and
this technique can be implemented as Level 3 damage detection technique. Damage
present in structure causes change in its mode shape and the relative change in the
mode shape can be graphically monitored to locate damage in the structure. The mode
shapes need to be normalized in order to effectively find the location of damage.

West (1984) presented what was possibly the first systematic use of mode shape
information for the location of structural damage without the use of a prior FEA
model. He used the modal assurance criteria (MAC) to determine the level of
correlation between modes from the test of an undamaged Space Shuttle Orbiter body
flap and the modes from the test of the flap after it had been exposed to acoustic
loading. The mode shapes were partitioned using various schemes, and the change in
MAC across the different partitioning techniques was used to localize the structural
damage.

Fox (1992) showed that single-number measures of mode shape changes, as the
MAC were relatively insensitive to damage in a beam with a saw cut. Again this
highlights the problem that too much data compression can cause in a damage
identification. “Node line MAC,” a MAC based on measurement points close to node
points for a particular mode, was found to be a more sensitive indicator of changes in
the mode shape caused by damage. Graphical comparisons of relative changes in
mode shapes proved to be the best way of detecting the damage location when only
resonant frequencies and mode shapes were examined. A simple method of

correlating node points in modes that showed relatively little change in resonant
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frequencies with the corresponding peak amplitude points in modes that showed large
changes in resonant frequencies was shown to locate the damage. The author also
presented a method of scaling the relative changes in mode shape to better identify
the location of the damage.

Mayes (1992) presented a method for model error localization based on the
mode shape changes known as the structural translational and rotational error
checking (STRECH). By taking ratios of relative modal displacements, STRECH can
assess the accuracy of the structural stiffness between two different structural degrees
of freedom (DOF). STRECH can also be applied to compare the results of a test with
an original FEM or to compare the results of two tests.

Ratcliffe (1997) presented a technique for locating damage in a beam that used a
finite difference approximation of a Laplacian operator on mode shape data. Cobb
and Liebst (1997) presented a method for prioritizing sensor locations for structural
damage identification based on an eigenvector sensitivity analysis. Skjaeraek et al.
(1996b) examined the optimal sensor location issue for detecting structural damage
based on changes in mode shapes and modal frequencies using a substructure
iteration method.

Yuen (1985), Rizos et al. (1990), Osegueda et al. (1992), Kam and Lee (1992),
Kim et al.(1992), Srinivasan and Kot (1992), Ko et al. (1994), Salawu and Williams
(1994, 1995), Lam et al. (1995), Salawu (1995), Salawu (1997), and Saitoh and Takei
(1996) also provided examples of other studies that examined changes in mode
shapes. The studies focused primarily on MAC and coordinate MAC (COMAC)

values to identify damage.

2.3.1.2.1 MODE SHAPE CURVATURE/STRAIN MODE SHAPE
CHANGES

An alternative to using mode shapes to obtain spatial information about sources
of vibration changes is using mode shape derivatives, such as the curvature. It is first
noted that for beams, plates and shells there was a direct relationship between
curvature and bending strain. Some researchers discuss the practical issues of

measuring strain directly or computing them from displacements or accelerations.
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Pandey et al. (1991) demonstrated that absolute changes in a mode shape
curvature could be a good indicator of damage for the beam structures they
considered. The curvature values were computed from the displacement mode shape
using the central difference operator.

Stubbs et al. (1992) presented a method based on the decrease in modal strain
energy between two structural DOF, as defined by the curvature of the measured
mode shapes. Topole and Stubbs (1995a, 1995b) examined the feasibility of using a
limited set of modal parameters for structural damage detection. In a more recent
publication, Stubbs and Kim (1996) examined the feasibility of localizing damage
using this technique without using the baseline modal parameters.

Chance, et al. (1994) found that numerically calculating curvature from mode
shapes resulted in unacceptable errors. They used directly measured strains instead of
measuring curvature directly, which dramatically improved the results.

Chen and Swamidas (1994), Dong et al. (1994), Kondo and Hamamoto (1994),
Nwosu et al.(1995), and Yao and Chang (1995) presented other studies that identify

damage from the changes in mode shape curvature or strain-based mode shapes.

2.3.2 Methods Based on Dynamic Flexibility Measurements

These methods use the dynamically measured stiffness matrix in order to detect
damage. The flexibility matrix of the structure is defined as the inverse of stiffness
matrix, and each column of the flexibility matrix of the structure corresponds to the
displacement pattern of the structure when subjected to a unit force at a particular
node. The flexibility matrix can be derived by calculating mass-normalized mode
shapes and natural frequencies. In case of a structure having large number of degrees
of freedom (DOF), due to limitations in calculating of all mode shapes and natural
frequencies, only significant low- frequency modes and their corresponding natural
frequencies are considered.

While implementing this technique, damage is detected by comparing a
calculated flexibility matrix obtained by using the modes of the damaged structure to

the flexibility matrix obtained with the modes obtained from the undamaged
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structure. Sometimes, for a comparison of flexibility matrices, a flexibility matrix
obtained by finite element model (FEM) of the undamaged structure may be used
instead of a measured flexibility matrix of the undamaged structure. This technique is
considered as a Level 3 damage detection technique.

Because the flexibility matrix is defined as the inverse of the static stiffness
matrix, the flexibility matrix relates the applied static force and the resulting
structural displacement. The measured flexibility matrix can also be estimated from
the mass-normalized measured mode shapes and frequencies. The formulation of the
flexibility matrix by this method is approximate due to the fact that only the first few
modes of the structure (typically the lowest frequency modes) are measured. The
synthesis of the complete static flexibility matrix would require the measurement of
all of the mode shapes and frequencies.

Typically, damage is detected using flexibility matrices by comparing the
flexibility matrix synthesized using the modes of the damaged structure to the
flexibility matrix synthesized using the modes of the undamaged structure or the
flexibility matrix from a FEM. Because of the inverse relationship to the square of the
modal frequencies, the measured flexibility matrix is most sensitive to changes in the
lower-frequency modes of the structure. Therefore, Aktan et al. (1994) proposed the
use of measured flexibility as a “condition index” to indicate the relative integrity of a
bridge. They applied this technique to two bridges and analyzed the accuracy of the
flexibility measurements by comparing the measured flexibility to the static
deflections induced by a set of truck-load tests.

Pandey and Biswas (1994, 1995) presented a damage-detection method based
on changes in the measured flexibility of the structure. The method applied to several
numerical examples and to an actual spliced beam where the damage was linear in
nature. Results of the numerical and experimental examples showed that evaluation of
the damage condition and its location of the damage could be obtained from just the
first two measured modes of the structure.

Toksoy and Aktan (1994) computed the measured flexibility of a bridge and

examined the cross hyphen sectional deflection profiles with and without a baseline
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data set. They observed that anomalies in the deflection profile could indicate
damage, even without access to a baseline data set.

Mayes (1995) used the measured flexibility to locate damage from the results of
a modal test on a bridge. He also proposed a method for using the measured
flexibility as the input for a damaged detection method (STRECH), which evaluated
the changes in the load-deflection behavior of a spring-mass model of the structure.

Peterson et al. (1995) proposed a method for decomposing the measured
flexibility matrix into elemental stiffness parameters for an assumed structural
connectivity. This decomposition is accomplished by projecting the flexibility matrix
onto an assemblage of the element-level static structural eigenvectors.

Zhang and Aktan (1995) suggested that changes in curvatures of a uniformly
distributed load surface (deformed shape of the structure when subjected to a uniform
load), calculated using the uniform load flexibilities, were sensitive indicators of local
damage. The authors stated that changes in the load surface could also be used to
identify uniform deterioration. A uniform load flexibility matrix was constructed by
summing the columns of the measured flexibility matrix. The curvature is then

calculated from the uniform load flexibilities using a central difference operator.

2.3.3 Model Update Methods

This type of technique uses a structural model and the structural model
parameters (i.e. mass, stiffness and damping) are calculated from the equations of
motion and the dynamic measurements. The matrices for mass, stiffness and damping
in the model are formulated in such a way that the model response will be almost
similar to the measured dynamic response of the structure. The matrices are updated
with new dynamic measurements and the updated stiffness, as well as damping
matrix, can be compared to the original stiffness and damping matrix, respectively, to
detect the location and intensity of the damage in a structure.

Various other methods have also been developed, each with different approach
for model updating. Those can be classified in different categories depending on the
objective function for minimization problem, constraints placed on the model or

numerical method used to accomplish the optimization. For more information about
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the model update methods the reader is referred to Smith and Beattie (1991a) and
Zimmerman and Smith (1992).

2.3.4 Neural Network (NN) based Methods

The neural network, a concept developed as generalization of mathematical
models of human cognition or neural biology, has proven to be an efficient technique
for damage detection. According to Haykin (1998), a neural network is a massively
parallel distributed processor made of simple processing units, which has a natural
propensity for storing experimental knowledge and making it available for use. With
its capacity of performing accurate pattern recognition and classification, adaptivity,
modeling non-linearity, and learning capabilities, neural networks can be used for
SHM in different ways:

1. To model the dynamic behavior of a system or part of the system under
control (Chen et al. 1995, and Adeli, 2001)

2. To model the restoring forces in civil structures (Liang et al., 1997 and
Saadat, 2003)

3. To carry out pattern recognition for fault detection in rotating machinery, e.g.,
for gear box failure (Dellomo, 1999), turbo-machinery (Kerezsi and Howard, 1995),
and bearing fault detection (Samanta et al., 2004).

Application of neural network model for SHM can also be found in Saadat
(2003) where the author used an “Intelligent Parameter Varying” (IPV) technique for
health monitoring and damage detection technique that accurately detects the
existence, location, and time of damage occurrence without any assumptions about
the constitutive nature of the structural non-linearity. The technique in Saadat (2003)
was based on the concept of the “gray box”, a concept which combines a linear time
invariant dynamic model for a part of the structure with a neural network model used
to model the restoring forces in a non-linear and time-varying system. The detailed
information about the technique can be found in Nelles (2000).

Even if good results are obtained with NN techniques, one of the challenges in

implementing it for a practical application in SHM is appropriate level of training and
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avoiding over-training of the network. Recent work in integration of NN with other

computational techniques to enhance their performance can be found in Adeli (2001).

2.3.5 Pattern Recognition Techniques

Damage present in the structure causes change in the modal parameters which
in turn causes change in the pattern of the structural response. This pattern can be
monitored to detect the time, location and intensity of damage. Hera & Hou (2003)
successfully detected sudden damage in the ASCE benchmark structure by
monitoring the spikes present in the higher level details of the acceleration response.
A motivation behind this approach was that a sudden damage in structure causes
singularity in the acceleration response and this singularity results in a spike in higher
level details of the wavelet transform of the signal.

Another pattern recognition method, proposed by Los Alamos National
Laboratory, is based on statistical considerations. A statistical pattern recognition
framework was proposed which consisted of the assessment of structure’s working
environment, the acquisition of structural response, the extraction of features sensitive
to damage and the development of statistical model that was used for feature
discrimination. More information and application of this method can be found in
Sohn and Farrar (2001), Sohn et al. (2001a & 2001b), Worden (2002) and Lei et al.
(2003).

2.3.6 Kalman Filter Technique

Kalman filter technique is the model based technique that implements an
optimal recursive data processing algorithm to estimate structural parameters
necessary to identify damage in the structure. The parameters with which damage in a
structure can be identified (i.e. stiffness and damping of the structure) cannot be
measured directly, and in general practice, acceleration, velocity or displacement of
the structure is measured. The Kalman filter technique uses a set of equations of
motion that relates structural properties with. the measured parameters. It works in a
predictor-corrector manner (i.e. it estimates the value of the structural parameter
based on the dynamic model and the previous measurements and then optimizes the

estimated value by comparing it with the value obtained by a measurement model and
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actual measurements). The optimization of the estimated value is done to minimize
the square of the difference between the estimated and the measured value. This
technique accounts for the effect of noise introduced during a measurement, as well
as the effect of modeling errors. Kalman filter has been applied for damage detection

(Lus et al.,1999).

2.3.7 Statistical Approach

This newly developed technique is fundamentally based on the Bayesian
approach, a well known theorem in statistical theory. An important advantage of the
Bayesian approach is that it can handle the non-uniqueness of a model that can appear
in the cases with insufficient number of measurements. In order to take care of
uncertainties, Beck and Katafygiotis (1998) developed a Bayesian statistical
framework for system identification and structural health monitoring. The statistical
model was developed to take care of the uncertainties introduced due to incomplete
test data as a result of limited number of sensors, noise contaminated dynamic test
data, modeling errors, insensitiveness of modal parameters to the changes in stiffness,
and to describe the class of structural models that include as much prior information
as possible to reduce the uncertainties and degree of non-uniqueness.

The method can be used for updating the system probability model to account
for the above-mentioned uncertainties and to provide a quantitative assessment of the
accuracy of results. The applications of the approach for modal identification can be
found in Yuen et al., (2002), and Yuen and Katafygiotis (1998), whereas the methods
application for an ASCE benchmark SHM problem can be found in Yuen et al,,
(2002), and Lam et al., (2004).

2.3.8 SIGNAL PROCESSING METHODS

A signal collected from the accelerometers mounted on a structure cannot be
analyzed directly to draw useful conclusions about damage unless the damage
intensity is very high. It needs to be processed in order to extract useful information
about the structural parameters and damage. The signal is often transformed into
different domains in order to better interpret the physical characteristics inherent to

the original signal. The original signal can be reconstructed by performing inverse
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operation on the transformed signal without any loss of data. The popular methods in
signal processing for SHM applications include the Fourier, Wavelet Analysis and
Hilbert-Huang Analysis. All of these methods can be distinguished from one another
by a way in which it maps the signal and each has advantages over one another in
terms of applicability for analyzing specific data type. A brief introduction of each

method is given below.

2.3.8.1 Fourier Analysis

Fourier analysis of a signal converts the signal from time domain to frequency

domain. Mathematically the Fourier transform of a signal f{#)’ can be represented

H() = [; F(e™ dr 2.1)

where ‘H(w)’ is the Fourier transform of signal 7{#)’. Fourier transform
represents the signal in frequency domain and useful information about the frequency
content in the signal can be extracted. The plot of the power of Fourier transform
versus frequency exhibits peaks at the dominant frequencies present in the signal and
the amplitude of the power indicates intensity of the frequency component.

Note that the Fourier transform of a signal integrates the product of the signal
with a harmonic of infinite length; therefore the time information in the signal may be
lost or become implicit. If the signal to be analyzed is a non-stationary signal i.e. (if
the amplitude or frequency changes abruptly over time), then, with the Fourier
transform of the signal, this abrupt change in time spreads over the whole frequency
axis in ‘ H(®)’. Therefore Fourier transform is more appropriate to analyze a
stationary signal.

To cope with the deficiency of losing time information in Fourier transform, the
Short-Time-Fourier-Transform (STFT) was developed. STFT uses a sinusoidal
window of fixed width to analyze the signal and it shifts along the data to be analyzed
in order to retain the time information in the signal. Thus in contrast to only

frequency representation (H(w) as in case of Fourier transform), STFT employs a
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time-frequency representation, H(w,7), of the signal ‘f(z)’ as in the following

equation 2.2.

H(o,H)= wj fg t-7)e™ dt 2.2)

where g(t—7) is a window function. Once the window width is chosen, then the

time-frequency resolution obtained remains fixed over the entire time-frequency
plane. Consequently, and one can either get good time resolution, or good frequency
resolution in the analysis, but not both. More information about the STFT can be
found in Allen and Rabiner (1977) and Rioul and Vetterli (1991).

Because of its ability to identify the frequency content and intensity of the
frequency component of a signal, significant information about the modal parameters
(i.e. natural frequency, mode shapes and damping) can be extracted from the Fourier
transform of the structural response. Various methods of fault diagnosis and damage
detection based on the Fourier transform of the vibration response of the structure can

be found in Chiang et al., (2001).

2.3.8.2 Wavelet Analysis

Analyzing the response data of general transient nature without knowing the
time at which the damage occurred, would result into inaccurate results if one uses
the traditional Fourier analysis. This is due to the time integration conducted over the
entire time span. Moreover, damage usually develops progressively (such as stiffness
degradation due to mechanical fatigue and chemical corrosion); therefore a change in
stiffness might never be detectable. As an extension of the traditional Fourier
analysis, the wavelet analysis provides a multi-resolution and time-frequency analysis
for non-stationary data; therefore, it can be effectively applied for structural health

monitoring.

2.3.8.2.1 Continuous Wavelet Transform (CWT)
The Continuous Wavelet Transform (CWT) of a signal f{?), Wxa,b) , is defined

as
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W, (@)= (107 3

Here y is the conjugate of a mother wavelet functiony, ‘a’ and ‘b’ are called

as the dilation parameter and the translation parameter, respectively. Both of the

parameters are real and ‘a’ must be positive. The mother wavelet y needs to satisfy

certain admissibility condition in order to ensure existence of the inverse wavelet
transform.

The dilation parameter ‘a’ and the translation parameter ‘b’ are also referred as
the scaling and shifting parameters, respectively; they play an important role in the
wavelet analysis. By varying the value of translation parameter ‘b’, a signal is
examined by the wavelet window piece by piece localized in the neighborhood of
‘t=b’; thus, the non-stationary nature of the data can be examined, in which case, it
becomes similar to the Short Time Fourier Transform (STFT). By varying the value
of the dilation parameter ‘a’, the data portion in the neighborhood of ‘b’ can be
examined in different resolutions; thus, a time varying frequency content of the signal
can be revealed by this multi-resolution analysis, a feature not available in the STFT.
The continuous wavelet transform maps the signal on a Time-Scale plane. The
concept of scale in Wavelet analysis is similar to the concept of frequency in Time-
Frequency analysis; the scale is inversely proportional to the frequency. Performing
the inverse wavelet transform on the wavelet transform of a signal, the original signal
can be reconstructed without any loss of data. For detailed information of wavelet
transform readers are referred to Rioul and Vetterli (1991) and Daubechies (1992).
Early applications of wavelets for damage detection of mechanical systems were also

summarized in Staszewski (1998).

2.3.8.2.2 Discrete Wavelet Transform (DWT)

The computational cost of performing continuous wavelet transform can be
reduced by implementing Discrete Wavelet Transform (DWT). In DWT, the dilation
parameter ‘@’ and the translation parameter ‘b’ are discretized by using the dyadic

scale, i.e.,
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a=2' b=k2’ jkez (2.4)

where z is a set of positive integers.

In the case of DWT, the wavelet plays a role of dyadic filter. The DWT
analyzes the signal by implementing a wavelet filter of particular frequency band to
shift along a time axis. The frequency band of the filter depends on the level of
decomposition, and by shifting it in the time domain, the local examination of the
signal becomes possible. As a result, the signal can be decomposed into a tree
structure, with wavelet details and wavelet approximations at various levels as

follows
fO=3. D0+ 4 @25)

where D, (t)denotes the wavelet detaill and 4 (f)stands for the wavelet

approximation at the j’h level, respectively. A graphical representation of DWT of a

signal is shown in Figure 2.1.

SIGNAL

Figure 2.1 Schematic of the Discrete Wavelet Transform Decomposition Tree
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The DWT decomposition of the signal with each level of decomposition results
in halving the time resolution, but doubling the frequency resolution. The signal can
be easily reconstructed as the dyadic wavelet filter family forms an orthonormal basis
(Daubechies, 1999). Recent applications of discrete wavelet transform for structural

health monitoring can be found in Hou et al. (2000) and Hera and Hou (2003).

2.3.8.3 Wavelet Packet Transform

As aresult of decomposition of only the approximation component at each level
using the dyadic filter bank, the frequency resolution in higher-level (e.g. Al and
D1), DWT decompositions in a regular wavelet analysis may be lower. It may
therefore cause problems while applying DWT in certain applications, where the
important information is located in higher frequency components. The frequency
resolution of the decomposition filter may not be fine enough to extract necessary
information from the decomposed component of the signal. The necessary frequency
resolution can be achieved by implementing a wavelet packet transform to
decompose a signal further (Goswami and Chan, 1999). The wavelet packet analysis
is similar to the DWT with the only difference that in addition to the decomposition
of only the wavelet approximation component at each level, a wavelet detail
component is also further decomposed to obtain its own approximation and detail

components as schematically shown in Figure 2.2.
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Figure 2.2 Wavelet Packet Decomposition Tree Schematics

Each component in this wavelet packet tree can be viewed as a filtered
component with a bandwidth of a filter decreasing with increasing level of
decomposition; one can then view the whole tree as a filter bank. At the top of the
tree, the time resolution of the WP components is relatively good, but at the expense
of poor frequency resolution. On the other hand, at the bottom of the tree, the
frequency resolution is relatively good but at the expense of poor time resolution.
Thus, with the use of wavelet packet analysis, the frequency resolution of the
decomposed component with high frequency content can be increased. As a result,
the wavelet packet analysis provides better control of frequency resolution for the

decomposition of the signal.

2.3.8.4 Hilbert-Huang Analysis

NASA Goddard Space Flight Center (GSFC) developed a signal analysis
method, known as the Empirical Mode Decomposition (EMD) method, which
analyzes the signal by decomposing the signal into its monocomponents, called the

Intrinsic Mode Functions (IMF) (Huang et al., 1998). The empirical nature of the
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approach may be partially attributed to a subjective definition of the envelope and the
intrinsic mode function involved in its sifting process. The EMD method used in
conjunction with the Hilbert Transform is also known as the °Hilbert-Huang
Transform’ (HHT). Because of its effectiveness in analyzing nonlinear, non-
stationary signals, the HHT has been recognized as one of the most important
discoveries in the field of applied mathematics in NASA’s history. By the EMD
method, the original signal 'f{#)’ can be represented in terms of the IMFs as:

fO=Y e+, 2.6)

where c,(t) is the i" Intrinsic Mode Function, and r,, is the residue.

A set of analytic functions can be constructed for these IMFs. The analytic
function ‘z(?)’ of a typical IMF ‘c(?)’ is a complex signal having the original signal
‘c(t)’ as the real part and its Hilbert transform of the signal as its imaginary part. By

representing the signal in the polar coordinate form, one has

z(t) =c(t) + jH[c()] =a(?).e’*" 2.7

where ‘a(t)’ is the instantaneous amplitude and ‘ ¢(¢)’ is the instantaneous phase

function. The instantaneous amplitude ‘a(?)’ and the instantaneous phase function

‘4(t)’ can be calculated as

a()={c®} +{Hlc ()]} 2.8)
L [HIe®)]
¢(¢)=tan {———c(t) } (2.9)

The instantaneous frequency of a signal at time ¢ can be expressed as the rate of
change of the phase angle function of the analytic function obtained by Hilbert
Transform of the signal (Ville, 1948). The expression for the instantaneous frequency
is given by:

dg (1)

*O="4

(2.10)
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Because of the capability of extracting the instantaneous amplitude ‘a(?)’ and

the instantaneous frequency @(¢) from the signal, this method can be used to analyze

non-stationary vibration signals. In a special case of a single harmonic signal, the
phase angle of its Hilbert transform is a linear function of time, and therefore, its
instantaneous frequency is constant and is exactly equal to the frequency of the
harmonic. In general, the concept of instantaneous frequency provides an insightful
description as how the frequency content of the signal varies with the time. The
method can be used for damage detection and system identification and the relevant
applications can be found in Vincent et al., (1999), Yang and Lei (2000), Yang et al.,
(20034, 2003b, 2004).
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Chapter 3

Piezoelectric Material Behavior and Formulation

3.1 History of piezoelectricity

Centuries ago natives from Ceylan and India noticed a peculiar property of
tourmaline crystals. Thrown in hot ashes, these crystals first attract them and then
rejected them a few moments afterwards.

This observation came into Europe with the import of tourmaline by Dutch
tradesmen at the beginning of the 18™ century. The tourmaline was called the Ceylan
magnet.

In 1756, the electrical origin of that behavior was demonstrated by the German
physicist, Aepinus (electrical capacitance’s inventor). That behavior was named
pyroelectricity by the Scottish physicist Brewster in 1824. The pyroelectric effect can
be defined as the induction of polarization by thermal energy absorption; the induced
polarization is proportional to the resulting temperature variation. The inverse
property, of much less amplitude, is called the electro caloric effect.

The piezoelectric effect was first mentioned in 1817 by the French mineralogist
Rene’ Just Hauy. However, it was first demonstrated by Pierre and Jacques Curie in
1880. Their experiments led them to elaborate the early theory of piezoelectricity.
This theory was complemented by the further work of G. Lippman, W.G. Hankel,
Lord Kelvin and W. Voigt (beginning of 20™ century).

Until the beginning of the century, the piezoelectricity did not leave the
laboratories. The first applications appeared during the first world war with the sonar
in which piezoelectric quartz were used to produce ultrasonic waves (P.Langevin) and
as sensors. In the twenties, the use of quartz to control the resonance frequency of
oscillators was proposed by an American physicist: W. G. Cady. It is during the
period following the first world war that most of the applications we are now familiar

with (microphones, accelerometers, ultrasonic transducers, benders ...) were
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conceived. However, the materials available at the time often limited device
performance. The development of electronics, especially during the Second World
War, and the discovery of ferroelectric ceramics increased the use of piezoelectric
materials.

The direct piezoelectric effect describes of the ability of certain crystalline
materials (i.e. ceramics) to generate an electrical charge in proportion to an externally
applied force. The direct piezoelectric effect has been widely used in transducers
design (accelerometers, force and pressure transducers, etc). According to the inverse
piezoelectric effect, an electric field induces a deformation of the piezoelectric
material. The inverse piezoelectric effect has been applied in actuator design.

The use of piezoelectric materials as actuators and sensors for noise and
vibration control has been demonstrated extensively over the past few years (e.g.
Forward, 1981; Crawley and de Luis, 1987). There are two classes of piezoelectric
materials used in vibration control: ceramics and polymers. The best known
piezoceramic is the Lead Zirconate Titanate (PZT); it has a recoverable strain of 0.1%
and is widely used as actuator and sensor for a wide range of frequencies, including
ultrasonic applications; it is well suited for high precision applications as well.
Piezopolymers are mainly used as sensors; the best known is the Polyvinylidene
Fluoride (PVDF). The PVDF were first studied by Kawai (end of the 60’s) and were

made commercially available in the early 80’s.

3.2 Constitutive equations

In a first section, the unidimensional constitutive equations are established
starting from the electrostatics point of view. The general thermo piezoelectric
constitutive equations are derived from the laws of thermodynamics in the second

section.

3.2.1 Piezoelectricity

In an unstressed one-dimensional dielectric medium, the dielectric displacement
D (charge per unit area, expressed in Cb/m?) is related to the electric field E (V/m)
and the polarization P (Cb/m?) by Equation.(3.1).
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D=¢E=¢g,E+P 3.1
P=(s-¢,)E (3.2)
Similarly, in a one-dimensional elastic body placed in a zero electric field, the stress

T (N/m2) and the strain S are related by

T=cS (3.3)

where c is the stiffness of the material (the Young’s modulus).

For a piezoelectric material, the electrical and mechanical constitutive equations
are coupled. A strain S in the material induces a polarization eS by the direct
piezoelectric effect. The total induced polarization is given by

P=(s—¢g))E+eS (3.4)

Conversely, an applied electric field E tends to align the internal dipoles,
inducing stresses —€E in the material by the inverse piezoelectric effect. The coupled
equations finally become:

T=ctS—eE (3.5)

D=eS+£°E (3.6)

In equation (3.5), the piezoelectric constant e relates the stress to the electric
field E in the absence of mechanical strain and c” refers to the stiffness when the
electric field is constant. In equation (3.6), e relates the electric charge per unit area D
to the strain under a zero electric field (short-circuited electrodes); e is expressed in
NV'm™ or Cb/m?. £%is the permittivity under constant strain.

Equation (3.5) is the starting point for the formulation of the equation of a

piezoelectric actuator, while equation (3.6) is that for a sensor.

3.3 The Finite element approach

The study of physical systems frequently results in partial differential equations
that either cannot be solved analytically or lack an exact analytic solution due to the
complexity of the boundary conditions or domain. For a realistic and detailed study, a
numerical method must be used to solve the problem. The finite element method is

often found to be the most efficient numerical tool.
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Over the years, with the development of modern computers, the finite element
method has become one of the most important analysis tools in engineering. It has
penetrated successfully many areas such as solid mechanics, heat transfer, fluid
mechanics, electromagnetism, acoustics and fracture mechanics. Commercial finite
element packages are now widely available on personal workstations.

Basically, the finite element method (Zienkiewicz, 1971; Reddy, 1984; Hughes,
1987) consists in a piecewise application of classical variational methods to smaller
and simpler subdomains called finite elements connected to each other in a finite
number of points called nodes. The fundamental principles of the finite element
method (displacement based) are:

The continuum is divided in a finite number of elements of geometrically
simple shape. These elements are connected in a finite number of nodes. The
unknowns are the displacements of these nodes. Polynomial interpolation functions
are chosen to describe the unknown displacement field at each point of the elements
related to the corresponding field values at the nodes.

The forces applied to the structure are replaced by an equivalent system of
forces applied to the nodes. The situation where they are nearly collocated is
particularly critical, because the zeros of the frequency response function are
dominated by local effects (See Preumont (1997); Loix et al. (1998) ). These can
easily be accounted for by finite elements (Piefort & Henrioulle, 2000).

A finite element formulation accounting for the coupling between the equations
of electrostatics and elastodynamics becomes necessary when the piezoelectric

material represents a non negligible fraction of the entire structure.

3.3.1 History
Following the early work of Eer Nisse (1967) and Tiersten (1967) who

established variation principles for piezoelectric media, the finite element modeling
of structures with embedded piezoelectrics has known important developments in
recent years. Allik and Hughes (1970) proposed a tetrahedral volumic element
accounting for the piezoelectricity. Starting from Hamilton’s principle and the

constitutive equations for piezoelectric media, a simple volumic element (tetrahedron)
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taking into account the piezoelectric coupling is presented. The element has 4 nodes
and 4 degrees of freedom per node (3 translations and the electric potential); it uses
linear shape functions for both displacement and electrical fields.

Lerch (1990) developed a general formulation accounting for the piezoelectric
coupling for two and three-dimensional finite element modeling of piezoelectric
devices. Comparisons between numerical simulation and experiment are presented for
the vibration of piezoceramic parallelepiped bars.

A higher order tetrahedral element was proposed by Moetakef et al. (1995).
Interpolation functions of higher order were used; tetrahedron of 10 (linear strain
element) and 20 nodes (quadratic strain element) were presented; brick elements were
obtained by assembling tetrahedrons using a Guyan condensation of the resulting
internal nodes to reduce the number of degrees of freedom; these elements were used
to model a bimorph pointer (actuation), for which the results were compared to an
analytical solution, and a cube under uniform pressure (sensing). An experiment
consisting of generating an elastic wave in a cantilever beam was also described in
Moetakef et al. (1996); results from the model are compared to experimental ones and
shown good qualitative agreement.

With the increasing number of shell structures, the need for a finite element
modeling tool for plates and shells with embedded distributed piezoelectric actuators
and sensors has become more and more evident. Different approaches for modeling
thin and thick shells have been proposed.

Tzou and Tseng (1990, 1991) derived a thin brick element for distributed
dynamic measurement and active vibration control of a rectangular plate; the element
consists of a thin solid piezo-electric brick having 8 structural nodes with 4 degrees of
freedom per node (3 translations and the electric potential) and 3 internal nodes
(condensed using a Guyan’s reduction) to dissipate the excessive shear energy due to
the small dimension in the thickness direction. A classic configuration for an
intelligent structure is composed of a master structure sandwiched between 2
piezoelectric thin layers acting as the distributed sensor and actuator. Both bonded
and embedded piezoelectric sensors and actuators result in a laminate; the multilayer

structure is modeled by stacking the thin brick elements together and connecting the



36

corresponding nodes. The model was applied to the vibration control of a simply
supported square plate. Mode shape and modal voltage distribution were obtained
thanks to the model.

Ha et al. (1992) used a similar brick element, where the multilayer structure was
taken into account; the element matrices were integrated over the thickness of each
layer and summed. That element is used to model the cantilever plate described in
(Crawley and Lazarus, 1991) (static case), to determine the step-response of a
cantilever beam and to design the active damping of the first mode of sensor/actuator
composite cantilever plate. The results were compared to the results found in
(Crawley and Lazarus, 1991) and showed good agreement.

Rao and Sunar (1993) established a finite element formulation of
thermopiezoelectric problems starting from the linear thermo piezoelectric
constitutive equations established Mindlin (1974) and the Hamilton’s principles.
Sunar and Rao, (1996, 1997), used the quasi static equations of thermo
piezoelectricity to develop heat, sensor and actuator equations; a finite element
formulation was also presented. A distributed control system consisting of a
cantilever beam sandwiched between a piezoelectric sensor/actuator pair was used to
evaluate the proposed finite element approach on the static and dynamic behavior.

Tzou and Ye (1996) derived a 12-nodes triangular thin solid plane element with
4 degrees of freedom per node. The element uses shape functions quadratic in the two
in-plane direcﬁons and linear in the transverse direction with the assumption of a
layer wise constant shear angle (Mindlin hypothesis). A laminate can be composed of
laminae which could be either elastic material or piezoelectric material; the laminated
structure is obtained by stacking elements together and connecting the corresponding
nodes; this element was validated by modeling the actuation of a bimorph pointer. To
stress the influence of the piezoelectric coupling on the vibration characteristics, a
semicircular ring shell was modeled using 60 triangular shell elements (20 for each
layer and 10 element meshes along the length); the evolution of its Eigen frequencies
with a growing number of short-circuited electrodes was examined. The number of
short-circuited electrodes varies from 1 to 10 (fully short-circuited). This element has

been extended later by K oppe et al. (1998) to isoparametric curved triangular and
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quadrangular elements with shape functions of different polynomial degree for each
layer; the model is applied to a rectangular plate of composite material with surface
bonded piezo patches under static voltage load, simply supported on two edges.

The modeling of shells using solid elements results in an excessive shear strain
energy in the thickness direction. By reducing one dimension compared to the others,
the transverse shear stiffness term becomes excessively important (linked to the linear
interpolation of the strain) leading to what is usually called the shear locking
phenomenon. A commonly used solution to overcome this difficulty consists in
adding internal degrees of freedom resulting in large problem size requiring
techniques such as the Guyan’s reduction (also known as static condensation) to
reduce the number of degrees of freedom.

Lee and Saravanos (1996) derived a thermopiezoelectric multilayer beam
element; it uses shape functions linear along the beam and linear through the
thickness of each layer (layerwise linear).

A reduced integration scheme for the transverse shear stiffness was used; the
element takes into account the effect of constant thermal load (constant gradient of
temperature); A cantilever beam under thermal load was modeled. Heyliger et al.
(1996) extended the layerwise linear formulation to a piezoelectric shell element and
applied it to static and dynamic modeling of a simply supported plate and a
cylindrical shell. Later, Saravanos (1997) presented a multilayer piezoelectric thin
plate using the Kirchhoff-Love assumption (linear displacement field through the
thickness) and bilinear shape functions; it has 1 electrical degree of freedom per
piezoelectric layer per node, assuming a constant electric field through the thickness
for each layer (layerwise linear transverse shape function for the electric potential).
That shell element has been applied to the modeling of a simply supported plate and
shown good agreement with exact solutions for moderately thin plates (a/h = 50), an
actuated cylindrical panel to study the effect of the actuator placement through the
thickness which exactly matched a Ritz solution. Cantilever cylindrical shell was used
to show the effect of actuation and sensing, and of the difference between continuous
and discontinuous transducers (4 across the length), as well as the effect of the

curvature on the tip displacement and sensing. The element later used to evaluate the
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passive damping of piezoelectric shells with integrated electrical network and the
results were compared with experiments (Saravanos, 2000).

A pure bending (Kirchhoff assumption) plane rectangular plate element was
proposed by (Hwang and Park, 1993); the main idea was the use of a multilayered
plate element with a single electrical degree of freedom per piezoelectric layer, the
voltage across the thickness of the layer, uniform on the element surface. This
multilayer element has 4 nodes with 3 degrees of freedom per node (1 translation and
2 rotations) and 1 electrical degree of freedom for each piezoelectric layer (voltage
across the layer). This element neglects the transverse shear and is therefore not
suitable for modeling thick shells; it does not account for the extension, thus
modeling only the bending behavior. The bimorph pointer was modeled numerically
and the results were compared to an analytical solution, and showing a good
agreement. Chen et al. (1997) used an isoparametric pure bending element to model a
bimorph beam for vibration control design.

Samanta et al. (1996) used a cubic displacement field with an 8-node quadratic
rectangular multilayer plate with 2 electrical degrees of freedom (constant voltage
over the element across the only two piezoelectric outer layers) and 11 mechanical
degrees of freedom per node (3 translations, 3 slopes and 5 higher order rotations). A
simply supported plate was modeled; the fundamental natural frequencies and forced
response were computed and showed good agreement with exact solutions.

Suleman and Venkayya (1995a) and Suleman and Goncalv'es (1995) proposed
a 4 node plate element using bilinear shape functions and the Mindlin assumption
(constant shear angle) to accommodate thick as well as thin shells; each node having
5 degrees of freedom (3 translations and 2 rotations), the element has also one
additional electrical degree of freedom per piezoelectric layer (voltage across the
thickness). It uses a reduced integration scheme for the transverse shear stiffness to
avoid the shear locking phenomenon. This element was verified using the plate
described by Crawley and Lazarus (1991), a bimorph pointer and panel flutter
control; comparison with the work of Ha et al. (1992) was also made.

Chattopadhyay et al. (1999) developed a quasi-static coupled thermo

piezoelectric model for a smart composite plate structure with surface bonded
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piezoelectric materials using a variational approach. Linear piezoelectricity was
assumed and a higher order transverse shear strain distribution was used (third order).
A simply supported unidirectional graphite/epoxy laminate plate was modeled to
verify the formulation. The influence of transverse shear and couplings were
discussed. A shell finite element formulation was derived (Zhou et al., 2000) with the
same transverse shear strain distribution and a higher order thermal field. A
rectangular fiber-reinforced laminated plate with surface bonded piezoelectric patches
is modeled; the influence of the couplings on the dynamics of piezo and thermo-
actuated structures is discussed.

When plate’s thickness becomes small, the behavior of the elements accounting
for the transverse shear strain (e.g. Mindlin elements) is driven by transverse shear
stiffness while the transverse shear strain should be negligible. This also leads to the
shear locking phenomenon. Solutions to overcome this problem can be either using a
reduced integration scheme for the transverse shear stiffness (Suleman and Venkayya,
1995b; Hong and Chopra, 1999), or to use different interpolation functions for the

transverse shear strain.

3.3.2 Finite element formulation

The displacement field {u} and the electric potential 4 over an element are
related to the corresponding node values {u,}and {¢,} by the mean of the shape
functions [Nu],lN ¢J

fub=[v, fu} 3.7)

¢ = lN ] }{¢1}

And therefore, the strain field {S} and the electric field {E} are related to the

nodal displacements and potential by the shape functions derivatives [Bu] and

lB¢ Jdeﬁned by

{s}=[DIV, fu,}=[B,Ju.]
{E}=-V|N, [ig.} =8, 4.} (3.8)
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where Vis the gradient operator and [D] is the derivation operator defined such as

{S} = [DHu}
[, 0 0]
0 o9, 0
0 0 3,
ol=| 2, 0,
8, 0 0,
0, 98, 0]

Substituting expressions (3.7) into the variational principle yields

su Y [ ov, T v, v it {ou, Y [[B,Tc*]B, vy,

¥ (8T8, ks ) tosF [[oF [e]T[Bu]dV{u.-}
+lop Y [[B,][e° I8, v {g b+ oY [N, T {7, Jav
+ou )" [ N[ {FoJae+{ou, ) [Nu]{FP}

~{og,} [Iv, [ sa—{ss, Y [N, 0 (3.9)

which must be verified for any arbitrary variation of the displacements {6, }and
electrical potentials {5¢i} compatible with the essential boundary conditions.

For an element, Equation (3.9) can be written under the form

[ ¥, }+ K, S 3+ K St 3 = S, (3.10)

K, 3+ K, 8} = a0} 3.11)
with

I= [ oV} [V, Jav (3.12)

[KW]= [T 18 kv (3.13)

[x.,]= [[B.T [T [B, v (3.14)

K, l= -[ [8, T[], kv (3.15)
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[k, ]=[%.,] (3.16)

or, the element mass, stiffness, piezoelectric coupling and capacitance matrix,

respectively
U&=LMA%&MV+LMHW&MD+MHWB} (3.17)
g}=-[ [v.I saa-[¥,] 0 (3.19)

the external mechanical force and electric charge.
Each element k of the mesh is connected to its neighboring elements at the

global nodes and the displacement is continuous from one element to the next. The

element degrees of freedom (dof) ({u,. }(k),{¢i }(k) )a:re related to the global dof ({U},
{ ¢ }) by the mean of the localization matrices [Lu ](k) and [L¢ ](k) :
fu ¥ =[L,1°{U} (3.19)
{60 =[1,1°t6) (3.20)
The element ij of [L, [ is equal to 1 if the i mechanical dof of the finite element k
corresponds to the j” global dof and is zero otherwise. The element ij of [L¢ ](k) is

equal to 1 if the i” electric dof of the finite element k is connected to the ;" global
electric dof and is zero otherwise.

The Hamilton’s principle must also be verified for the entire structure, which

results in (by summation of the contribution from each finite element):

R AR A AT A A %
H3 L1 [P 10 Jol- 2L ]

oY [, 1 I P11 o+ (B, [, 1 T 1P, 1 Yol 3, I, 1 s,

(3.21)
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again for any arbitrary variation of the displacements {5U } and electrical potentials

{5¢} ,and verifying the essential boundary conditions.

Equation (3.21) can be rewritten in the form

MG+ [K o YU+ Ko 6} = (F)
lK¢u J{U}+ [KM J{¢} ={G}

where the assembled matrices are given by:

M]=3 IL T [m@]L,]
Koo ]= 3 [LT (KO
(&)= > 12T [k IL]
LAES NN 1A
[k, )= &2 ]z,
(Fr=3 LT ()
GEDWIMETH

(3.22)

(3.23)

(3.24)
(3.25)
(3.27)
(3.28)
(3.29)
(3.30)

(3.31)

Equations (3.23) and (3.24) couple the mechanical variables {U} and the

electrical potentials {¢ }; {F} represents the external forces applied to the structure

and {G} the electric charges brought to the electrodes.
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Chapter 4

Signal Analysis Method

4.1 Fourier Analysis

4.1.1 Introduction

The Fourier transform has long been a principal analytical tool in such diverse
fields as linear systems, optics, probability theory, quantum physics, antennas, and
signal analysis. This mathematical tool originally was used for analysis of continuous
signals and systems. Application of digital technology in signals and systems resulted
in modifications and development of the Fourier transform for discrete signals and
systems. Computational aspects of the Fourier transform were further developed to
speed up the computation that is demanded for real applications. Further advances in
digital hardware technology, along with high-speed computational algorithm for the
Fourier transform, resulted in extensive application of this mathematical tool.

One of the areas that significantly benefited from this advancement is digital
signal processing. With present day technology, it is possible to calculate the Fourier
transform of a real-time discrete signal (e.g., speech signal or digital videos) and
process the result in transform domain, and carry out the inverse transform all in real-
time. Computational solutions for variety of hardware implementation of the Fourier
transform are available. Most of these solutions are in public domain and are free.

The Fourier transform, with its wide range of applications, like many other
mathematical tools, has its limitations. For example, this transformation cannot be
applied to non-stationary signals. These signals (e.g. speech and image) have different
characteristics at different time or space. Although the modified version of the
Fourier transform, referred to as the short-time (or time-variable) Fourier transform
can resolve some of the problems associated with non-stationary signals, t it does not
address all issues of concern. The short-time Fourier transform is extensively used in

speech signal processing, but rarely, if ever, used in image processing.
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The wavelet transform, which was developed independently on different fronts,
is gradually substituting the Fourier transform in some essential signal processing
applications. Multi-resolution signal processing, used in computer vision; subband
coding, developed for speech and image compression; and wavelet series expansions
developed in applied mathematics, have been recognized as different views of a
single theory.

Wavelet transform applies to both continuous and discrete signals. This
transformation provides a general technique that is applicable to many tasks in signal
processing.

The wavelet transform is successfully applied to non-stationary signals for
analysis and processing and provides an alternative to the short-time Fourier
transform (STFT). In contrast to STFT, which uses a single analysis window, the
wavelet transform uses short windows at high frequencies and long windows at low
frequencies. This flexibility is introduced in the spirit of so-called “constant O or
constant relative bandwidth frequency analysis. For some applications it is desirable
to obtain the wavelet transform as signal decomposition onto a set of basis functions,
referred to as wavelets. These basis functions are obtained from a single prototype
wavelet by dilations and contractions (scaling) as well as shifts. Recent surge in
application of wavelet transform in various areas of signal processing resulted from
the effectiveness of this mathematical tool for analysis and synthesis of signals.

In the foll'owing sections, first different formulations of the Fourier transform
are presented. Details of discrete Fourier transform and time-dependent (short-time)
Fourier transform are further discussed. Then, the wavelet transform is presented and

its properties and characteristics for discrete signals are detailed.

4.1.2 Fourier Transform

The essence of the Fourier transform of a waveform is to decompose or separate
the waveform into a sum of sinusoids of different frequencies. In other words, the
Fourier transform identifies or distinguishes the different frequency sinusoids, and
their respective amplitudes, which are combined to form an arbitrary waveform. The

Fourier transform is then a frequency domain representation of a function. This
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transform contains exactly the same information as that of the original function; they
differ only in the manner of presentation of the information. Fourier analysis allows
one to examine a function from another point of view, the transform domain.
Mathematically, this relationship is stated by a pair of equations denoting the
forward and inverse transformation. In the case of continuous function, the transform

pair, known as Fourier Transform (FT) is given by

Forward FT - X(f)= [ x@e ™ ar
K | (4.1)
Inverse FT: x(t) = EOX(f)eﬂ"ﬁ dt

In above relations, j =+/—1, x(f) is the continuous function in time and X (f)

is its corresponding Fourier transform, which is a continuous function in frequency.

This formula is mainly applied to functions with bounded energy. In other words, x(¢)

should be an energy signal satisfying the following bound.

2
Eolx(t)l dt < 42)

This Fourier transform is mainly used for theoretical analysis and design of
continuous signals and systems. For example, when designing an analog filter, the
filter frequency response is obtained by applying the Fourier transform to the impulse
response of the filter. Also when analyzing an energy signal, the signal spectrum is
obtained by using the Fourier transform. This transformation is also used in many
areas of applied mathematics such as solution of differential equations.

In the case of continuous periodic functions, the function does not have a finite

energy. If x(¢t) is periodic with a period of T and fundamental frequency of
fo =%, x(t) satisfies x(t) =x(t+7T)for all ¢ 's, and if it has a finite power, the

periodic function can then be expressed as a linear combination of harmonically
related sinusoidal functions. The pair of equations, which defines the Fourier series

(FS) of a periodic function, is stated by
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Forward FS: ck=% Tllzzx(t)e'””"f"dt
4.3)

Inverse FS: x(t)= ch e

k=-c0
In the above relations, c,'s are Fourier series coefficients of x(t) . The

condition of having finite power for the periodic function x(f) is stated by the

following bound.
1 2
= [ o) de <o (4.4)

This transform converts a continuous periodic function to a sequence of
complex numbers. In general, this sequence is infinite. However, in most practical

cases, only finite number of c,'s have significant values. The Fourier series

expansion of periodic functions or functions with finite support, finite duration,
allows analysis and design of signals and systems under some very special conditions.
This transformation is also used in many areas of applied mathematics, like in solving
partial differential equations.

Advances in computers and digital technology resulted in design of discrete
signals and systems and modifications in the Fourier transform. The Fourier
transform that is applied to discrete sequences and referred to as discrete time Fourier

transform (DTFT) is defined by the following pair of equations.

Forward DTFT:  X(7)=Y x[np7*”
n=—e 4.5)
Inverse  DTFT : x[n]= f X(e?*)e® df
In the above relations, x[n] is the discrete function and X(e/") is its
corresponding Fourier transform. The transform function is continuous and periodic

in the frequency domain, with the period of 2z . In this formulation, the frequency

variable, f is normalized by the sampling frequency f, . In other words, if f, is the
actual frequency in Hz, f = J% is the normalized frequency used in equation (4.5).

This transformation is commonly used for analysis of discrete signals and systems.
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Calculation of DTFT by computers can only be carried out for finite sequences

and for discrete samples of in frequency domain. These requirements and constraints
result in another formulation of the X(e/*”)Fourier transform that is defined for
periodic discrete functions. Let x[n] be a periodic sequence with a period of N ; i.e.,
x[n]= x[n+ N] for all n's, the pair of the Fourier transform relations, referred to as

discrete Fourier transform (DFT), for x|n], is defined by:

N-1
Forward DFT:  X[k]= Zx[n]e’fz""m for k=0,1,2,...,N -1
ﬁ-‘ (4.6)
Inverse DFT: x[n]=7v- X[k]ejz’d‘”v Jor n=0,1,2,..,N -1
k=0

In above the relations, both discrete x[n] functions and its DFT, x[k], are

periodic with the same period N . For graphical purposes and better visual
representation of the signal spectrum, the forward DFT can be calculated for
M >> N points in frequency domain as follows.

N-1

x[k]=Y x[nle > '™ for k=0,1,2,..,M -1 (4.7)

This formulation is obtained from the forward DTFT in (4.6) by using Af = ﬁ

for the sampling of the normalized frequency.

Although different formulations of the Fourier transform have real applications
in analyzing signals and systems, but only the last one, the DFT relations shown in
(4.7), is practically used in real world computations. Some of the applications of DFT
in signal processing are spectrum estimation, feature extraction, and frequency
domain filtering. Due to advances in fast computation algorithms for DFT, known as
Fast Fourier Transform (FFT), and high-speed hardware implementation, this
approach is used for real-time digital signal processing (DSP). It is therefore
necessary to address performance and limitation issues of DFT for various

applications.
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Let x[n] for n=1,2,...,N -1 , be the sequence of real numbers obtained from
sampling an analog temporal signal with sampling period of T seconds. The actual

duration of this signal is therefore equal to 7, = NT seconds. When calculating the

DFT of this sequence, the resultant sequence, x[k], is in general a complex sequence
in frequency domain. The actual distance between frequencies associated to the two

consecutive samples of x[k] is 1/(NT) Hertz (Hz). Due to the symmetry properties of

x[k] and sampling constraints, center of x[k] sequence corresponds to the maximum
frequency of the signal. This frequency is f,, = (N / 2)(%VT)= %T Hz, which is
determined by the sampling period 7. Resolution of DFT is fixed at

Af = yNT = %0 Hz and is depended on the duration of the original analog signal.

Increasing the number of samples by reducing the sampling period does not change

the overall resolution.

One main assumption in using DFT for calculation of the spectrum of a discrete

signal is that the observed signal is stationary during the observation time 7, . In

other words, the spectrum of the signal is assumed to remain the same during the
observation time. For most practical signals, this assumption is not valid. For
example, in speech signals, spectrum of the signal may vary significantly from one
point to another. This depends on the contents of the speech and the sampling period.
In this case and other similar cases, the Fourier transform is modified such that a two-
dimensional time-frequency representation of the signal is obtained. The modified
Fourier transform referred to as the short-time or time-dependent Fourier transform
depends on a window function. For the discrete signals, this transformation, referred
to as the discrete short time Fourier transform (DSTFT) is obtained by using a
window function, g[l ] , where

gll]#0  for 0<i<L-1

4.8
g[l]=0 for [<0orilz>2L 48)

The pair of equations, which define the DSTFT of a discrete sequence, is stated
by
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M-
Forward DSTFT: X[nk]=Y x[n+ilgftle~2™'"

1=

(4.9)

1 |
I DSTFT : xln+l|l=—= X|nkp/2*'¥
nverse [ ] Ng[[] ; [ ]2

The index & in equation (4.9) is similar to the frequency index in DFT given in
equation (4.6). The resultant forward Fourier transform in this case provides estimates
of the instantaneous frequency spectrum of the signal at any desired time. The
window g[l] has a stationary origin, and as » changes, the signal slides past the
window so that, at each value of n, a different portion of the signal is viewed. The
operation detailed in equation (4.9) can be carried out by using linear filtering. For

example, the K" component of the forward transform, X [n, k], can be obtained by

filtering x[n] with an FIR filter whose impulse response is
h,[n]= g[-n]e/™'" (4.10)

The main purpose of the window in the time-dependent Fourier transform is to
limit the extent of the transformed sequence, so that the spectral characteristics are
reasonably stationary over the duration of the window function. The more rapidly the
signal characteristics change, the shorter the window should be. Resolution in
frequency depends on the duration of the window function. In the discrete case and

for the uniform window, the actual frequency resolution, in terms of the sampling
period 7, equals toAf = Ll_T’ which is the inverse of the actual size of the window.
For other shaped windows (e.g. the raised cosine function), the resolution is obtained

from Af = % in which, 0 < @ <1depends on the shape of the window.

4.2 Wavelets

4.2.1 Introduction

Wavelets offer an alternative to traditional Fourier bases for representing

functions. Wavelets may be thought of as oscillations that are localized in time (or
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space) and in frequency. A representation of a function or signal based on these
localized oscillations is attractive, because the coefficients associated with each
wavelet convey details in time and frequency. A small coefficient means there is little
variation in the function or signal in the vicinity of that particular small oscillation,
whereas a large coefficient indicates that there is appreciable change in the signal or
function. Analysis of the coefficients allows features in the function or signal to be
identified.

Furthermore, because coefficients are identified with a localized frequency and
time, small coefficients can be replaced by zeros, without greatly affecting the
reconstruction of the signal. This strategy leads to the efficient representation of
functions and algorithms for de-noising of general signals. In summary, the
combination of the two localization properties makes wavelets attractive for the
following applications:

» sparse representation of functions,

« feature detection in signals,

* de-noising of signals.

As an illustration of the de-noising and sparse representation properties, a signal
arising from the calibration of a hydrophone has been plotted in Figure 4.1 (a)(see
Harris 2005), and in Figure 4.1(b) the same signal reconstructed from a wavelet
decomposition where over 90% of the coefficients have been replaced by zero. The
horizontal axis shows the indices of the data points in the signal; the vertical axis is
the voltage across the hydrophone (measured in volts).

In this introduction some of the fundamental mathematical properties of
wavelets are discussed and the wavelet transforms analogous, to the Fourier and fast
Fourier transforms are introduced. The aim is to introduce the reader to the basic
concepts and terminologies associated with wavelets. For a more comprehensive
review of the mathematics involved the reader is referred to (Daubechies (1992),
DeVore et al (1991), and Jawerth et al (1994). There is also a great number of on-line
resource pages for wavelets, containing information on the whole range of wavelet

analyses, introductions to recent research papers and guides to available software.
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Two good such sites are. http://www.wavelet.org, and http://www.mathsoft.com/

wavelets.html).

4.2.2. Mathematical Properties of Wavelets

4.2.2.1 Background

From a signal processing point of view, a wavelet decomposition may be
thought of as a combination of high and low pass filters that have particular
properties. Let g be a high pass filter and H be a low pass filter and suppose function
F is to be examined. Then a wavelet decomposition successively decomposes the
function F using the filters into spaces of “approximations” {Vj} and “details” {Wj}.
This process is illustrated in Figure 4.2. The high pass filter ,g, extracts “detail”,
whereas the low pass filter H smoothes the signal. The coefficients in the filters

determine the properties of the decomposition.
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Figure 4.1. (a) A sample signal (b) Reconstruction Using Fewer than 10% of the

Coefficients from the coiflet 4 Wavelet Decomposition

F - Fe ¥ 153 Approximation
W, s ¥, Details

Figure 4.2. Schematic View of a 3-level decomposition of a function F by
wavelet into an approximation space V3 and detail space W3 by a combination of
low(H) and High(g) pass filter
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An important consequence of this decomposition is that in order to reconstruct
the function F, all that is required are the coefficients from the detail spaces {Wj ,j =
1, ..., ], and the final approximation V; . We can think of decomposition as taking us
from a fine to a coarse approximation, while reconstruction takes us in the opposite
direction. The reconstruction process is schematically shown in Figure 4.3, in which
we see that to reconstruct F, all that is required are the detail spaces Wy, W5, W3 and

the final approximation Vj.

F ¥ s ) i Approximation
\ § \ y \

f ’y Wy Details
Figure 4.3. Schematic reconstruction of the function F from the 3-level
decomposition. The approximation space V3 and the detail space W1,W2,W3 are all

that are required

Another way to introduce wavelet decomposition is in terms of a wavelet basis
and coefficients that convey information both about frequency and spatial/temporal
position. To obtain such a basis we use dilations and translations of a wavelet
function: these wavelet functions form a basis for the detail spaces {W;}. There are
associated scaling functions that form a basis for the approximation spaces {V;}. Both
wavelet and scaling functions will be discussed in subsequent sections.

Notation: Throughout this introduction we will use j to denote the level of scale
of the details. Note, however, that there is no standard convention in the literature or
computational packages as to whether j = O represents the finest or coarsest scale.

Shifts in position are denoted throughout by k.

There are two important features about the wavelet coefficients that make

wavelets so attractive:

1. Data Compression: A key to a good basis is being able to represent a function

with as few basis functions as possible. For an arbitrary function, a large number of
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the wavelet coefficients are either zero or very small. Since these coefficients
contribute little to the reconstruction of the function, they can be replaced by zero and
so good data compression is achieved. This suppression of near-zero coefficients can

allow for effective de-noising of a function with noise.

2. Feature Extraction: We have seen above that wavelet decomposition is
achieved by a combination of high and low pass filters. This decomposition will
essentially identify high, medium and low scales in the function. In addition, the non-
zero wavelet coefficients can be related to the size of the derivative of the function in
a particular region. This relationship is useful for feature extraction, the large
coefficients identifying where there are steep gradients or discontinuities in the

function.

To help illustrate the use of wavelets, we will consider in the following sections
the signal shown in Figure 4.1. This waveform arises from measurements made in a
Reverberant tank of the response of an underwater electroacoustic transducer driven
by a discrete-frequency tone-burst: Two transducers are suspended in a tank of finite
size filled with water; one acts as a projector or transmitter and is driven by the tone-
burst, the other as a receiver, used to record the response of the projector. We can
observe in the waveform a number of important features of the measurement. The
“turn-on” of the projector is followed immediately by an oscillation representing its
resonant behavior. After three or four cycles of this oscillation, the resonant behavior
is sufficiently damped to observe the steady-state response which takes the form of an
undamped oscillation at the frequency of the drive signal. Finally, a change in the
waveform results from the “turn-off” of the projector and the arrival at the receiver of
reflections from the tank walls. Throughout, the measured waveform is contaminated
by high-frequency noise. In what follows, instead of considering the signal in Figure
4.4 directly, we modify the waveform to include a discontinuity by padding the signal
with zeros as in Figure 4.5. Note that in Figure 4.4, we plot the voltage (V) against
the indices of the data points in the signal, while in Figure 4.5 the padded waveform

is plotted against position in the signal.
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4.2.3 Continuous Wavelet Transform (CWT)

Suppose we are given a time signal f{2). A Fourier analysis of this signal extracts

information about the frequencies contained in f{#). The standard Fourier transform

1
f(a))= m

je-‘“" F(Ddr (4.11)

Figure 4.4. An example signal for wavelet analysis, original from the calibration

of a hydrophone

.. i A ' " " x. 3 "
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Figure 4.5. Same example as figure 4.4 with zero added to pad the signal to have

a length 2048 and create a discontinuty
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will give frequency information. However information concerning time-localization
is more difficult to obtain from f(@).Windowing the signal f{?) is a step towards
obtaining such information. Here the signal is first restricted to an interval (with
smoothed edges) by multiplying it by a fixed window function, before carrying out a
Fourier analysis of the product. Repeating the process with shifted versions of the
window function allows localized frequency information throughout the signal to be

obtained.
T f)@,0) = [f(s)g(s e ds (4.12)
where g is the windowing function having compact support .
The continuous wavelet transform gives time-frequency decomposition by
taking translations and dilations of a (real or complex) wavelet:
1

o

Wap () = w(%) (4.13)

The continuous wavelet transform (CWT) of f is then given by

C(arb) =<f,%,b>=ﬁ [ (4.14)

where t/_/denotes the complex conjugate of y which is mother wavelet
function.
The {C(a, b)} are called the wavelet coefficients, with a and b referred to as the scale

and translation parameters respectively. It is assumed that the wavelet has zero mean

so that

jwdt =0 (4.15)

A classical choice for w(¢) is the “Mexican hat” function, which is represented

by:

tZ
w(t)y=(01-1")e ? (4.16)
This function is localized both in time and frequency and satisfies the zero mean

condition. The Mexican hat function with a = 1, b = 0 has been plotted in Figure
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4.6(a) it can be seen that is centered about the origin. Figure 4.6(b) illustrated the two
scaled and translated versions of the function with a =2, and b = £5.

In what follows, we will use the terms "high frequency” and "low frequency” to
refer respectively to low and high values of the scale parameter. This”inverse
relationship” between scale and frequency is quite intuitive: we can think of a low
scale as corresponding to a compressed wavelet, where the details are changing
rapidly, similar to the behaviour of a high frequency signal. We also talk about the

resolution which is simply defined as the reciprocal of the scale parameter.

&
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Figure 4.6. Example of effect of scaling and translation of the Mexican hat
function. Note that (a) corresponds to a high frequency, whereas in (b), the function

are at a lower frequency and are less localized.

The original function f can be reconstructed from its continuous wavelet

transform by evaluating

f@&)=C;! [[a*C(a,byy,, (t)dadb (4.17)
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where the constant C,, satisfies an admissibility condition given by

C, =27 [l &) d& < @.18)

This reconstruction formula (known as the inverse wavelet transform) was

proven in Daubechies (1992); however, it is rarely used in practice.

4.2.4 Discrete Wavelet Transform (DWT)

The key difference in a discrete wavelet analysis is that the scale parameter (a)
and translation parameter (b) in equation (4.11) are no longer continuous, but instead
are integers. Indeed, in the majority of cases, the choice of (a) and (b) is limited to the

following discrete set:

(j,k)eZ?
a=2’
b=k*2' =ka

The indices a and b in y, , are replaced by j and k respectively, and so equation
(4.18) becomes
v, () =27y t-k),j ke Z? 4.19)

Reconstruction of a signal from its DWT is possible, provided that the wavelet

satisfies certain conditions. The reconstruction formula is analogous to equation
(4.14):

OEDNVAZN MONALY 4 (4.20)
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4.3. The Empirical Mode Decomposition and Hilbert-

Huang Transform

Data analysis is a necessary part in pure research and practical applications.
Imperfect as some data might be, they represent the reality sensed by sensors;
consequently, data analysis serves two main purposes: (i) to determine the parameters
needed to construct the necessary model, and (ii) to conform the model we
constructed to represent the phenomenon.

Unfortunately, the data, whether from physical measurements or numerical
modeling, most likely will have one or more of the following problems: (a) the total
data span is too short; (b) the data are non-stationary; and (c) the data represent
nonlinear processes. Although each of the above problems can be real by itself, the
first two are related. A data section shorter than the longest time scale of a stationary
process can appear to be non-stationary. One has limited options to use such in data
analysis.

Historically, the Fourier spectral analysis has provided a general method for
examining the global energy—frequency distributions. As a result, the term ‘spectrum’
has become almost synonymous with the Fourier transform of the data. Partially
because of its prowess and partially because of its simplicity, Fourier analysis has
dominated the data analysis efforts since soon after its introduction, and has been
applied to all kinds of data. Although the Fourier transform is valid under extremely
general conditions (Titchmarsh 1948), there are some crucial restrictions of the
Fourier spectral analysis: the system must be linear; and the data must be strictly
periodic or stationary; otherwise, the resulting spectrum will make little physical
sense.

The stationarity requirement is not particular to the Fourier spectral analysis; it
is a general one for most of the available data analysis methods. Therefore, it behaves

us to review the definitions of stationary here.
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According to the traditional definition, a time series, X(f), is stationary in the
wide sense, if, for all ¢,

E(X (1)) <o,

E(X(@®)=m, (4.21)

C(X#),X(1t,)=CX(t, +1), X, +7)=C(t, -1,),

in which E(') is the expected value defined as the ensemble average of the quantity
(.), and C(*) is the covariance function. Stationarity in the wide sense is also known as
weak stationarity, covariance stationarity or second-order stationarity (Brockwell &

Davis 1991). A time series, X(?), is strictly stationary, if the joint distribution of

[X (@), X)), ... X (2,)] and  [X(t, +7), X(t, +7),.., X(t, +7)] (4.22)
are the same for all tj and 7 . Thus, a strictly stationary process with finite second
moments is also weakly stationary, but the inverse is not true. Both definitions are
rigorous but idealized. Other less rigorous definitions for stationarity have also been
used; for example, piecewise stationarity is for any random variable that is stationary
within a limited time span, and asymptotically stationary is for any random variable
that is stationary when 7 in equations (4.21) or (4.22) approaches infinity. In practice,
we can only have data for finite time spans; therefore, even to check these definitions,
we have to make approximations. Few of the data sets, from either natural
phenomena or artificial sources, can satisfy these definitions. It may be argued that
the difficulty of invoking stationarity as well as ergodicity is not on principle but on
practicality: we just cannot have enough data to cover all possible points in the phase
plane; therefore, most of the cases facing us are transient in nature.

Other than stationarity, the Fourier spectral analysis also requires linearity.
Although many natural phenomena can be approximated by linear systems, they also
have the tendency to be nonlinear whenever their variations become finite in
amplitude. Compounding these complications is the imperfection of our sensors
and/or numerical schemes; the interactions of the imperfect sensors even with a
perfect linear system can make the final data nonlinear. For the above reasons, the

available data are usually of finite duration, non-stationary and from systems that are
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frequently nonlinear, either intrinsically or through interactions with the imperfect
sensors or numerical schemes. Under these conditions, the Fourier spectral analysis is
of limited use. For lack of alternatives, however, the Fourier spectral analysis is still
used to process such data. The uncritical use of Fourier spectral analysis and the
insouciant adoption of the stationary and linear assumptions may give misleading
results; some of those are described as follows.

First, the Fourier spectrum defines uniform harmonic components globally;
therefore, it needs many additional harmonic components to simulate non-stationary
data that are non-uniform globally. As a result, it spreads the energy over a wide
frequency range. Here, many Fourier components are added to simulate the non-
stationary nature of the data in the time domain, but their existence diverts energy to a
much wider frequency domain. Constrained by the energy conservation, these
spurious harmonics and the wide frequency spectrum cannot adequately represent the
true energy density in the frequency space. More seriously, the Fourier representation
also requires the existence of negative light intensity so that the components can
cancel out one another to produce the final delta function. Thus, the Fourier
components might make mathematical sense, but do not really make physical sense at
all. Although no physical process can be represented exactly by a delta function,
some data, such as the near field strong earthquake records, are of extremely short
durations, lasting only a few seconds to tens of seconds at most. Such records almost
approach a delta function, and they always give artificially wide Fourier spectra.

Second, Fourier spectral analysis uses linear superposition of trigonometric
functions; therefore, it needs additional harmonic components to simulate the
deformed wave-profiles. Such deformations, as will be shown later, are the direct
consequence of nonlinear effects. Whenever the form of the data deviates from a pure
sine or cosine function, the Fourier spectrum will contain harmonics. As explained
above, both non-stationarity and nonlinearity can induce spurious harmonic
components that cause energy spreading. The consequence is the misleading energy—
frequency distribution for nonlinear and non-stationary data.

Hilbert Huang (1996) introduced new data analysis method based on the

empirical mode decomposition (EMD) method, which will generate a collection of
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intrinsic mode functions (IMF). The decomposition is based on the direct extraction
of the energy associated with various intrinsic time scales, the most important
parameters of the system. Expressed in IMFs, they have well-behaved Hilbert
transforms, from which the instantaneous frequencies can be calculated. Thus, we can
localize any event on the time as well as the frequency axis. The decomposition can
also be viewed as an expansion of the data in terms of the IMFs. Then, these IMFs,
based on and derived from the data, can serve as the basis of that expansion which
can be linear or nonlinear as dictated by the data, and it is complete and almost
orthogonal. Most important of all, it is adaptive. The principle of this basis
construction is based on the physical time scales that characterize the oscillations of
the phenomena. The local energy and the instantaneous frequency derived from the
IMFs through the Hilbert transform can give us a full energy—frequency—time
distribution of the data. Such a representation is designated as the Hilbert spectrum,; it
would be ideal for nonlinear and non-stationary data analysis. He has obtained good
results and new insights by applying the combination of the EMD and Hilbert spectral
analysis methods to various data: from the numerical results of the classical nonlinear
equation systems to data representing natural phenomena.

The classical nonlinear systems serve to illustrate the roles played by the
nonlinear effects in the energy frequency—time distribution. With the low degrees of

freedom, they can train our eyes for more complicated cases.

4.3.1 Instantaneous frequency

The notion of the instantaneous energy or the instantaneous envelope of the
signal is well accepted; the notion of the instantaneous frequency, on the other hand,
has been highly controversial. Existing opinions range from editing it out of existence

(Shekel 1953) to accepting it but only for special ‘monocomponent’ signals
(Boashash 1992; Cohen 1995).

There are two basic difficulties with accepting the idea of an instantaneous
frequency. The first one arises from the deeply entrenched influence of the Fourier
spectral analysis. In the traditional Fourier analysis, the frequency is defined for the

sine or cosine function spanning the whole data length with constant amplitude. As an
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extension of this definition, the instantaneous frequencies also have to relate to either
a sine or a cosine function. Thus, we need at least one full oscillation of a sine or a
cosine wave to define the local frequency value. According to this logic, nothing
shorter than a full wave will do. Such a definition would not make sense for non-
stationary data for which the frequency has to change values from time to time. The
second difficulty arises from the non-unique way in defining the instantaneous
frequency. Nevertheless, this difficulty is no longer serious since the introduction of
the means to make the data analytical through the Hilbert transform. Difficulties,
however, still exist as ‘paradoxes’ discussed by Cohen (1995). For an arbitrary time
series, X(¢), we can always have its Hilbert Transform, Y (¢), as

X()

4.23
— (4.23)

Y@=%P£

where P indicates the Cauchy principal value. This transform exists for all
functions of class L” (Titchmarsh 1948). With this definition, X(¢) and Y (¢) form the

complex conjugate pair, so we can have an analytic signal, Z(¢), as

Z(t) = X(t) +iY (t) = a(t)e'®® (4.24)
in which
o) =[x+ 1), 00) = arctan (1), (4.25)
’ X(t)

Theoretically, there are infinitely many ways of defining the imaginary part, but
the Hilbert transform provides a unique way of defining the imaginary part so that the
result is an analytic function. A brief tutorial on the Hilbert transform with the
emphasis on its physical interpretation can be found in Bendat & Piersol (1986).
Essentially, Equation (4.23) defines the Hilbert transform as the convolution of X{(¥)
with 1/¢; therefore, it emphasizes the local properties of X{(¢). In Equation (4.24), the
polar coordinate expression further clarifies the local nature of this representation: it
is the best local t of an amplitude and phase varying trigonometric function to X(7).
Even with the Hilbert transform, there is still considerable controversy in defining the

instantaneous frequency as
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o= % (4.26)

This led Cohen (1995) to introduce the term, ‘monocomponent function’. In
principle, some limitations on the data are necessary, for the instantaneous frequency
given in Equation (4.26) is a single value function of time. At any given time, there is
only one frequency value; therefore, it can only represent one component, hence
monocomponent’. Unfortunately, no clear definition of the ‘monocomponent’ signal
was given to judge whether a function is or is not ‘monocomponent’. For lack of a

precise definition, ‘narrow band’ was adopted as a limitation on the data for the

instantaneous frequency to make sense (Schwartz et al. 1966).

4.3.2 Intrinsic mode functions

An intrinsic mode function (IMF) is a function that satisfies two conditions: (1)
in the whole data set, the number of extrema and the number of zero crossings must
either equal or differ at most by one; and (2) at any point, the mean value of the
envelope defined by the local maxima and the envelope defined by the local minima
is zero.

The first condition is obvious; it is similar to the traditional narrow band
requirements for a stationary Gaussian process. The second condition is a new idea; it
modifies the classical global requirement to a local one; it is necessary so that the
instantaneous frequency will not have the unwanted fluctuations induced by
asymmetric wave forms. Ideally, the requirement should be ‘the local mean of the
data being zero’. For non-stationary data, the ‘local mean’ involves a ‘local time
scale’ to compute the mean, which is impossible to define. As a surrogate, we use the
local mean of the envelopes defined by the local maxima and the local minima to
force the local symmetry instead. This is a necessary approximation to avoid the
definition of a local averaging time scale. Although it will introduce an alias in the
instantaneous frequency for nonlinearly deformed waves. With the physical approach
and the approximation adopted here, the method does not always guarantee a perfect
instantaneous frequency under all conditions. Nevertheless, we will show that, even
under the worst conditions, the instantaneous frequency so defined is still consistent

with the physics of the system studied.
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The name ‘intrinsic mode function’ is adopted because it represents the
oscillation mode imbedded in the data. With this definition, the IMF in each cycle,
defined by the zero crossings, involves only one mode of oscillation, no complex
riding waves are allowed. With this definition, an IMF is not restricted to a narrow
band signal, and it can be both amplitude and frequency modulated. In fact, it can be
non-stationary. As discussed above, purely frequency or amplitude modulated
functions can be IMFs even though they have finite bandwidth according to the
traditional definition. A typical IMF is shown in Figure 4.7.

Having defined IMF, we will show that the definition given in equation (4.26)
gives the best instantaneous frequency. An IMF after the Hilbert transform can be

expressed as in equation (4.24). If we perform a Fourier transform on Z(¢), we would

have:
W(w)= J‘a(t)e""(')e"“”r dt= Ia(t)ei(g(’)'”') dt 4.27)

Then by the stationary phase method (see, for example, Copson 1967), the

maximum contribution to #(w) is given by the frequency satisfying the condition
d
— @) -wt)=0 4.28
7 @) -w?) (4.28)

therefore, equation (4.26) follows. Although mathematically, the application of the
stationary phase method requires a large parameter for the exponential function, the
adoption here can be justified if the frequency, w, is high compared with the inversed
local time scale of the amplitude variation. Therefore, this definition fits the best for
gradually changing amplitude. Even with this condition, this is still a much better
definition for instantaneous frequency than the zero-crossing frequency; it is also
better than the integral definition suggested by Cohen (1995). Furthermore, it agrees
with the definition of frequency for the classic wave theory (Whitham 1975).

As given in Equation (4.28) and the simple analogy given in Equations (4.24)—(4.26),
the frequency defined through the stationary phase approximation agrees also with
the best fit sinusoidal function locally; therefore, we do not need a whole oscillatory
period to define a frequency value. We can define it for every point with the value

changing from point to point. In this sense, even a monotonic function can be treated
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Figure 4.7. A typical intrinsic mode function with the same numbers of zero
crossings and extrema, and symmetry of the upper and lower envelopes with respect

to zero.

as part of an oscillatory function and have instantaneous frequency assigned
according to equation (4.26). Any frequency variation is designated as frequency
modulation. There are actually two types of frequency modulations: the interwave
and the intrawave modulations. The first type is familiar to us; the frequency of the
oscillation is gradually changing with the waves in a dispersive system. Technically,
in the dispersive waves, the frequency is also changing within one wave, but that was
not emphasized either for convenience, or for lack of a more precise frequency
definition. The second type is less familiar, but it is also a common phenomenon. If
the frequency changes from time to time within a wave, its profile can no longer be a
simple sine or cosine function. Therefore, any wave-profile deformation from the
simple sinusoidal form implies the intrawave frequency modulation. In the past such
phenomena were treated as harmonic distortions. We will show in detail later that
most such deformations are better viewed as intrawave frequency modulation, for the
intrawave frequency modulation is more physical. In order to use this unique
definition of instantaneous frequency, we have to reduce an arbitrary data set into
IMF components from which an instantaneous frequency value can be assigned to
each IMF component. Consequently, for complicated data, we can have more than
one instantaneous frequency at a time locally. We will introduce the empirical mode

decomposition method to reduce the data into the needed IMFs.
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4.3.3 The empirical mode decomposition method: the sifting
process

Knowing the well-behaved Hilbert transforms of the IMF components is only
the starting point. Unfortunately, most of the data are not IMFs. At any given time,
the data may involve more than one oscillatory mode; that is why the simple Hilbert
transform cannot provide the full description of the frequency content for the general
data as reported by Long ef al. (1995). We have to decompose the data into IMF
components. Here, we will introduce a new method to deal with both non-stationary
and nonlinear data by decomposing the signal first, and discuss the physical meaning
of this decomposition later. Contrary to almost all the previous methods, this new
method is intuitive, direct, a posteriori and adaptive, with the basis of the
decomposition based on, and derived from, the data.

The decomposition is based on the assumptions that: (1) the signal has at least
two extrema one maximum and one minimum; (2) the characteristic time scale is
defined by the time lapse between the extrema; and (3) if the data were totally devoid
of extrema but contained only inflection points, then it can be differentiated once or
more times to reveal the extrema. Final results can be obtained by integration(s) of
the components.

The essence of the method is to identify the intrinsic oscillatory modes by their
characteristic time scales in the data empirically, and then decompose the data
accordingly. According to Drazin (1992), the first step of data analysis is to examine
the data by eye. From this examination, one can immediately identify the different
scales directly in two ways: by the time lapse between the successive alternations of
local maxima and minima; and by the time lapse between the successive zero
crossings. The interlaced local extrema and zero crossings give us the complicated
data: one undulation is riding on top of another, and they, in turn, are riding on still
other undulations, and so on. Each of these undulations defines a characteristic scale
of the data; it is intrinsic to the process. We have decided to adopt the time lapse
between successive extrema as the definition of the time scale for the intrinsic
oscillatory mode, because it not only gives a much finer resolution of the oscillatory

modes, but also can be applied to data with non-zero mean, either all positive or all
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negative values, without zero crossings. A systematic way to extract them, designated
as the sifting process, is described as follows.

This is still not an IMF, for there are negative local maxima and positive
minima suggesting riding waves.

By virtue of the IMF definition, the decomposition method can simply use the
envelopes defined by the local maxima and minima separately. Once the extrema are
identified, all the local maxima are connected by a cubic spline line as the upper
envelope. Repeat the procedure for the local minima to produce the lower envelope.
The upper and lower envelopes should cover all the data between them. Their mean is
designated as m;, and the difference between the data and m; is the first component,
hy, 1.e.

X(@t)—m, =h (4.29)

The procedure is illustrated in Figures 4.8a—c (Figure 4.8a gives the data;
Figure 4.8b gives the data in the thin solid line, the upper and the lower envelopes in
the dot-dashed lines, and their mean in the thick solid line, which bisects the data very
well; and Figure 4.8¢ gives the difference between the data and the local mean as in
Equation (4.29).

Ideally, A; should be an IMF, since the construction of 4; described above seems to
have been made to satisfy all the requirements of IMF. In reality, however,
overshoots and undershoots are common, which can also generate new extrema, and
shift or exaggerate the existing ones. The imperfection of the overshoots and
undershoots can be found at the 4.6 and 4.7 s points in Figure 4.85. Their effects,
however, are not direct, for it is the mean, not the envelopes, which will enter the
sifting process. Nevertheless, the problem is real. Even if the fitting is perfect, a
gentle hump on a slope can be amplified to become a local extremum in changing the
local zero from a rectangular to a curvilinear coordinate system. An example can be
found for the hump between the 4.5 and 4.6 s range in the data in Figure 4.8a. After
the first round of sifting, the hump becomes a local maximum at the same time
location as in Figure 4.8c. New extrema generated in this way actually recover the
proper modes lost in the initial examination. In fact, the sifting process can recover

low-amplitude riding waves with repeated siftings.
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Still another complication is that the envelope mean may be different from the
true local mean for nonlinear data; consequently, some asymmetric wave forms can
still exist no matter how many times the data are sifted. We have to accept this
approximation as discussed before.

Other than these theoretical difficulties, on the practical side, serious problems
of the spline fitting can occur near the ends, where the cubic spline fitting can have
large wings. Left by themselves, the end swings can eventually propagate inward and
corrupt the whole data span especially in the low-frequency componénts. At any rate,
improving the spline fitting is absolutely necessary. Even with these problems, the
sifting process can still extract the essential scales from the data.

The sifting process serves two purposes: to eliminate riding waves; and to make
the wave-profiles more symmetric. Toward this end, the sifting process has to be
repeated more times. In the second sifting process, 4 is treated as the data, then

b —my =y, (4.30)

Figure 4.9a shows the much improved result after the second sifting, but there
are still local maxima below the zero line. After another sifting, the result is given in
Figure 4.95. Now all the local maxima are positive, and all the local minima are
negative, but many waves are still asymmetric. We can repeat this sifting procedure £

times, until 4;; is an IMF, that is
Pygeyy =y =y (4.31)

The result is shown in Figure 4.7 after nine siftings. Then, it is designated as:
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Figure 4.8. Illustration of the sifting processes: (@) the original data; (b) the data
in thin solid line, with the upper and lower envelopes in dot-dashed lines and the

mean in thick solid line; (c) the difference between the data and m1.

The final IMF is shown in Figure 4.7 after nine siftings.

¢, =hy (4.32)
the first IMF component from the data.

As described above, the process is indeed like sifting: to separate the finest local
mode from the data first based only on the characteristic time scale. The sifting
process, however, has two effects: (a) to eliminate riding waves; and (b) to smooth

uneven amplitudes.
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Figure 4.9. Illustration of the effects of repeated sifting process: (a) after one
more sifting of the result in Figure 4.8¢, the result is still asymmetric and still not an
IMF; (b) after three siftings, the result is much improved, but more sifting needed to
eliminate the asymmetry.

While the first condition is absolutely necessary for the instantaneous frequency
to be meaningful, the second condition is also necessary in case the neighboring wave
amplitudes have too large a disparity. Unfortunately, the second effect, when carried
to the extreme, could obliterate the physically meaningful amplitude fluctuations.
Therefore, the sifting process should be applied with care, for carrying the process to
an extreme could make the resulting IMF a pure frequency modulated signal of
constant amplitude. To guarantee that the IMF components retain enough physical
sense of both amplitude and frequency modulations, we have to determine a criterion
for the sifting process to stop. This can be accomplished by limiting the size of the

standard deviation, SD, computed from the two consecutive sifting results as

_ T ‘(hl(k—l) (t) - hlk (t)]z
D= Zo: Py (£)

(4.33)

A typical value for SD can be set between 0.2 and 0.3. This is based on the fact
that the two Fourier spectra, computed by shifting only five out of 1024 points from

the same data, can have an equivalent SD of 0.2-0.3 calculated point-by-point.
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Therefore, a SD value of 0.2-0.3 for the sifting procedure is a very rigorous limitation
for the difference between siftings.

Overall, ¢; should contain the .nest scale or the shortest period component of the
signal. We can separate ¢, from the rest of the data by

X(@#)—c =n (4.34)

Since the residue, r;, still contains information of longer period components, it
is treated as the new data and subjected to the same sifting process as described
above. This procedure can be repeated on all the subsequent #; s, and the result is

B—Cy =Vyyuuee ¥y —C, =1, (4.35)

The sifting process can be stopped by any of the following predetermined
criteria: either when the component, c,, or the residue, r,, becomes so small that it is
less than the predetermined value of substantial consequence, or when the residue, r,,
becomes a monotonic function from which no more IMF can be extracted. Even for
data with zero mean, the final residue can still be different from zero; for data with a
trend, then the final residue should be that trend. By summing up equations (4.34) and
(4.35), we finally obtain

X(t)= zn:c,. +r, (4.36)

Thus, we achieved a decomposition of the data into n-empirical modes, and a
residue, r,, which can be either the mean trend or a constant. As discussed here, to
apply the EMD method, a mean or zero reference is not required; EMD only needs
the locations of the local extrema. The zero references for each component will be
generated by the sifting process.

Finally, let us examine the physical meaning of each IMF component. The
components of the EMD are usually physical, for the characteristic scales are
physical. Nevertheless, this is not strictly true, since there are cases when a certain
scale of a phenomenon is intermittent. Then, the decomposed component could
contain two scales in one IMF component. Therefore, the physical meaning of the
decomposition comes only in the totality of the decomposed components in the
Hilbert spectrum. Even with the entire set of decomposed components, sound

physical interpretation is still not guaranteed for other decompositions such as Fourier
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expansion. Because this decomposition is a posteriori, the check should also be a

posteriori.
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Chapter 5
Application of Hilbert-Huang Transform for
Evaluation of Vibration Characteristics of Plastic
Pipes Using Piezoelectric Sensors

N. Cheraghi, M.J. Riley, and F. Taheri*
Publication status: Submitted to Journal. of Structural Engineering and Mechanics,

July 2005.

5.1 ABSTRACT

This paper discusses the application of piezoelectric sensors used for evaluation
of damping ratio of PVC plastics. A systematic experimental and analytical
investigation was carried out to demonstrate the integrity of several methods
commonly used to evaluate the damping of materials based on a single degree

freedom formulation. The influence of the sensors’ location was also investigated.

Besides the commonly used methods, a newly emerging time-frequency
method, namely the Empirical Mode decomposition, is also employed. Mathematical
formulations based on the Hilbert-Huang formulation, and a frequency spacing
technique were also developed for establishing the natural frequency and damping
ratio based on the output voltage of a single piezoelectric sensor. A numerical
investigation was also conducted and the results were compared and verified with

experimental resultys, revealing good agreement.

Keywords: Plastics, Damping, FFT, Finite Element Analysis, Hilbert
Transform, Frequency Spacing, Empirical Mode Decomposition (EMD).
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5.2 INTRODUCTION

Characterization of damping forces in a vibrating structure has long been an
active and challenging area of research in structural dynamics. The demands of
modern engineering have led to a steady increase in the interest in recent years.
Nonetheless, in spite of a large amount of research, the fundamental understanding of
structural damping still requires further exploration. A major obstacle is that in
comparison to the forces related to the inertia and strain energy of the body, it is not
generally clear which state variables would be the most relevant for determining the
damping force. By far the most common approach is to assume the so-called
“yiscous damping”, a linear model in which it is assumed that the instantaneous
generalized velocities are the only relevant state variables that affect damping. This
approach was first introduced by Rayleigh (1945) via his famous “dissipation
function”, in which a quadratic expression was formulated to characterize the energy
dissipation rate with a symmetric matrix of coefficients, also refereed to as the
“damping matrix”. A further idealization, also pointed out by Rayleigh, is to assume

the damping matrix to be a linear combination of the mass and stiffness matrices.

Rayleigh was quite clear in stating that his proposed approach was solely based
on mathematical convenience, because it allowed the damping matrix to be
simultaneously diagonalized with the mass and stiffness matrices, thus preserving the
simplicity of an uncoupled and real normal mode, as in an undamped case. Since its
introduction, this method has been used extensively and is now usually referred to as
the “Rayleigh damping”, or the “proportional damping”, or the “classical damping”
method.

Imregun (1991) compared two different single-degree-of-freedom (SDOF)
modal analysis techniques, as well as a global multi-degree-of freedom (MDOF)
method applied to frequency response function measurements taken on a lightly
damped linear structure. For the SDOF, the circle-fit and the line-fit that were used to
identify the modal prosperities resulting in very similar outcomes in comparison to
the other techniques considered. It was however noted that at times it was not
possible to fit a reliable circle to the FRF data. Also, the weak and coupled modes

were among the most difficult ones to analyze. He concluded that the circle-fit
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method could provide reliable results so long as there are enough data points around
the resonance and that damping is not too low. On the other hand, it was stated that
the method should not be used when the data contains noise around the resonance. He
found that the global MDOF identification method could produce more consistent set
of modal properties and is much faster than the SDOF approach.

In another paper, Fahey and Pratt (1998a) also explained the use of SDOF and
MDOF techniques for fitting the experimental data. The SDOF techniques used were
the Half-Power and Finite Difference method. They stated that the aforementioned
techniques would be suitable when performing quick field analysis or when wanting
to provide initial estimates of the parameters for use in the more complex MDOF
techniques. As for the MDOF techniques they considered the simultaneous
frequency-domain method and the rational polynomial method. They also addressed
the topic of refitting the data for evaluating the global modal parameters. But in
another article (1998b), they compared different time-domain modal estimation
techniques.

Iglesias (2000) reported the comparison of the Half Power Frequency Domain
Method, the Hilbert Transform Method and the Half Power Frequency Domain
Method based on the so-called “zoom” measurements. It was concluded that third
method was time consuming and that it should be used only when it is absolutely
necessary to improve the frequency resolution. It was also stated that for light
damping the Hilbert Transform would give better results than the Half Power
Frequency Domain Method. Moreover, the first method was shown to have produced
better fast loss factor with faster calculation speed in cases where coherence was good
with small frequency resolution.

In another study, Naghipour et al. (2005) used different methods based on
SDOF to evaluate vibration damping of Glass Fiber Reinforced plastic (GRP) glulam
composite cantilever beams. The GRP used to reinforce the beams had various lay
ups. They showed that damping coefficient based on the SDOF methodologies could

be obtained with reasonable accuracy.

Yang (2003) used EMD for system identification of four degrees of freedom
mechanical system, and evaluated the natural frequencies and damping of an in-sifu

tall building. Based on an experimental investigation, Xu and Chen (2004) also used
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EMD for damage detection of a three story shear-walled building. He concluded that
damage location could be identified by the spatial distribution of the spikes (spikes in
the curve of the sensor’s quantity, i.e. voltage versus time), in the vicinity of the

damage location in a building.

This paper outlines the details of six techniques used for determining the
damping of a PVC material used in a pipe, based on time, frequency, and time-
frequency domain methodologies. The methods considered in the time domain were
Logarithmic Decrement Algorithm (LDA) and the Hilbert Transform Analysis
(HTA). The method considered in the time-frequency domain was Hilbert-Huang
spectral analysis based on Empirical Mode Decomposition (EMD). In the frequency
method, the Moving Block Analysis (MBA), the Half Power Bandwidth (HPB), and
the Circle fitting method were considered. The first two and the fourth methods were
also used by Smith and Wereley (1997) for evaluation of damping ratio of composite
rotorcraft flex beams reinforced with viscoelastic damping layers. For this, a PVC
pipe with the length of 1531 mm and 159.1mm outer diameter and wall-thickness of
4,55 mm was considered. The pipe was then instrumented using piezoelectric sensors
and tested, and their damping ratios were evaluated using the above-mentioned
methods. Five piezoelectric sensors were mounted at different locations along the
length of the pipes and the pipe was subjected to an induced displacement and

vibrational data was collected.
The other main objectives of our investigation are as follows:

o To validate the Hilbert-Huang spectral analysis approach and its formulation
for system identification by comparing the results obtained from this method to those

of other commonly used methods.

o To evaluate the influence of the location of the piezoelectric sensors used

for gathering data on the resulting damping ratios.

o To compare the results obtained based on the three different approaches

(i.e., the time domain, frequency domain and time-frequency domain).

Based on our findings, discussions are provided outlining the strengths and

shortfalls of the approaches.
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To the best of our knowledge, the comparison of the methods considered within
this work has not been reported in literature. Moreover, this is the first time that the
Empirical Mode Decomposition (EMD) method has been applied to evaluate

structural damping based on the data obtained from piezoelectric sensors.

5.3 Modeling and formulation of piezoelectric material

Various finite element formulations have been presented by several researchers
for the assessment of dynamic response of piezoelectric materials. For instance, Tzou
and Tseng (1990), and Rao and Sunar (1994) used the following equations to

represent the dynamic response:

[} + &, Ju}+ | u¢J{¢
[Kw]{” [ ¢¢]{¢ = G-

where:

[M]= I/p[N . J[V,]4V is the kinematically consistent mass matrix;
K,.]= “Bu i [CE IBu JV is the elastic stiffness matrix;

[Ku p ] = .“B" Ilel [B¢ ]dV is the piezoelectric coupling matrix;

[K py ] =- j: [B¢ ]T [cc,‘][B¢ ]dV is the dielectric stiffness matrix;

Fy= [V 1A dV+_L N T {fs}do+[N, T {f.} is the mechanical

force vector, and

{0}=- L v , g,d0- [N , ]ch is the electrical force vector.

In the above equations, [M] is the mass matrix, u is the displacement, ¢

is the electric potential, Q is the applied concentrated electric charges, p is

the mass density, [Bu] and lB¢J are the derivatives of the shape functions,
[Nu] and [N ¢J; [C), [€], and [e] are the elasticity, dielectric, and

piezoelectric matrices respectively; f; denotes the body force, f; is the
surface force, f; is the concentrated force, g; is the surface charge, q. is the

point charge, S, is the region to which the surface forces are applied, and S;



is the region where the electrical charges are applied. The above equations
are presented in a partitioned form to reflect the coupling between the elastic
and electric fields. Equation (5.1) can be condensed to represent the

sensor’s potential in terms of the sensor displacement in the form:

{¢s } = [K¢¢ }1 (_[K uT¢ ”})

5.4 Experimental procedure and set up

5.4.1 Test Setup and Instrumentation

78

(5.2)

The test specimens used to determine the damping ratios were pipes made of

PVC. A PVC pipe was instrumented by five piezoelectric sensors, as shown in

Figure 5.1. These sensors were bonded to the surface of the pipes using a West

System’s two-part epoxy. Once the sensors were bonded, they were held in place for

eight hours under 20” of mercury vacuum to remove air voids and to ensure a strong

bond. The pipes were held by a rigid metallic collar fastened to a massive steel

platform. The material properties of the PVC pipe and piezoelectric patches are

tabulated in Table 5.1.

Table 5.1: Basic properties of the materials.

E 2800 MPa
v 0.35
D 1150 Kg/m’
Piezoelectric Patches
E 69000 MPa
v 0.35
ds, -179E-12 m/V
KsT 1800
7700 Kg/m’
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Figure 5.1. Schematic of test setup.

5.4.2 Test Procedure

As stated, the pipes were held in place as a cantilever beams. The rigid metallic
collar was then secured in place under a 500 1b force using a 440,000 1b capacity
Tinus-Olsen Universal Testing machine. Loading of the specimen was performed by
hanging a known mass from a plastic strap on its free end, thus displacing the pipe’s
free end by a predetermined value. The strap was then cut, and the resulting vibration

was monitored by the five piezoelectric patches.

The responses of the piezoelectric patches were simultaneously monitored with
a differential channel set-up using a multi-purpose DT3010 data acquisition card
manufactured by Data Translation (MA, USA). A C++ program was developed in-

house to collect and process the data, using a sampling frequency of 1500 Hz.

5.5 ESTIMATION OF DAMPING RATIO USING VARIOUS
METHODS OF ANALYSIS

As stated, several methods of analysis, based on the time, frequency, and time-
frequency domains were considered in our investigation. The following sections

provide the details of each methodology.
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5.5.1 Evaluation of damping ratio by the logarithmic decrement
analysis (LDA)

The true damping characteristic of a typical structural system is quite complex
and rather difficult to define. However, it is a common practice to express the

damping of a real system in terms of an equivalent viscous-damping ratio, £, which

exhibits a similar decay rate under free-vibration condition. Consider any two

successive positive peak amplitudes v,and v

n+l?

. . 27
occurring at times n — | and
@p

(n+1)[—2—7—r-J, respectively. For a critically damped system, the ratio of these two
@p

successive values can be represented by:
Yn = a
A L= exp(27¢ wD) (5.3)

where o is the natural frequency, and subscript D indicates the damped

condition.

Taking the natural logarithm (In) of both sides of the above equation and

substitutingw,, = w+/1-£> , one obtains the so-called “logarithmic decrement” of
damping, &, by:

Solntr =27 (5:4)

Vn+1 ﬂl—gez

The logarithm of the ratio of the amplitude of two oscillations that are n cycles

apart from each other, on the decaying transient of a single degree freedom system is
defined by:
v 2nné

m

In—" = (5.5)

View  AJ1—&2

where the peak amplitude of the m™ cycle and that of the n'™ cycles apart from it

can be calculated by the transient signal of an under critically- damped system

equation:

v(t) = e sin([1- &0 t + B) (5.6)

For low values of damping, Equation (5.3) can be simplified to:
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0 =2mé (5.7

The damping ratio can thus be determined from the slope of the best-fitted line
to the natural logarithm of each peak magnitude. Mathematically, the slope is equal
to ~¢w,, .

Here we use output results of the piezoelectric sensors, which would be voltage
versus time instead of using the usual displacement-time result. Typical output
results of the piezoelectric sensors #1 and #5 are illustrated in Figures (5.2a, b), and
the data sensors #2, #3, and #4 was processed by the LDA methods, as illustrated in
Figures (5.3a, b, c).

5.5.2 Evaluation of damping ratio by the Hilbert Transform Analysis
(HTA)
The Hilbert transforms are linear operators that can be defined for a time

domain, x (t), by a convolution integral (Bracewell, 1999):
o6=-1 for 1<0
y() =;lr- ‘]-5(1_)(:(_17))611_ where{ §=0 for 1=0 (5.8)
- o=+l for 1>0
The Hilbert transform computes the so-called discrete-time analytic signal
x = x, +ix,; such that x; is the Hilbert transform of the real vectorx, .
For a discrete-time analytic signal x, the last half of FFT(x) is zero, and the first (DC)
and center (Nyquist) elements of FFT(x) are purely real. Moreover, an analytical
signal represented by [z(t) =x() +iy(t) = A(t)ei‘g(')J, consists of a real part (the
original data) and an imaginary part (the Hilbert transform portion). One of the most
useful properties of this transformation scheme relative to the Fourier transform is
that when x(t) passes through the Hilbert Transformation, it leaves the magnitude of
X(f) unchanged (where X(f) is the Fast Fourier transform of x(t)), but rotates the

phase angle by g— The Hilbert transform is therefore useful in calculating the

instantaneous of a time domain, especially the amplitude and frequency.

Based on the above introductory background, the damping analysis can be

performed by calculating the envelope signals for the transient output data of the



82

piezoelectric sensors using the Hilbert transformation. This method was also applied
by Smith and Wereley (1997) to evaluate the damping properties of a composite
beam. For the transient response of a typical viscously damped system, the envelope

signal, A(t), and the instantaneous damping ratio £(#) can be expressed by:
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Figure 5.2. Typical responses obtained from the sensors, (a) Sensor #1 (b)

Sensor #5.
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Figurer 5.3. Results obtained from the LDA method (a) Sensor # 2, (b) Sensor # 3, (c)

Sensor # 4.
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_d(n4@)
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n

ARy = and ()= g ®

A line can therefore be fitted through the logarithm of the envelope, and the
slope of this line, —¢w, , would be equivalent to the damping ratio. Typical results of

the HHT method for sensor # 1 is illustrated in Figures (5.4a, b)

Envelope Function(Hilbert Transfoerm)

Qutput voltage of Sensoe 1

Output voltage and lts Hilbert Transform of Sensor 1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)
(a)
(b)

Figure 5.4, (a): Output voltage of Sensor #1 with its Envelope Function based on

Hilbert transform, (b): plot of /n of Hilbert transform vs. time for data of sensor #1.
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5.5.2.1 Mathematical Description of HHT
The Hilbert-Huang Transform (HHT) method was proposed by Huang et al.

(1998). It consists of two parts: (i) the Empirical Mode Decomposition (EMD), and
(ii) the Hilbert Spectral Analysis. With EMD, any complicated data set can be
decomposed into a finite and often a smaller number of intrinsic mode functions.

The method is based on decomposing a signal into intrinsic mode functions
(IMFs) using the empirical mode decomposition (EMD) method, where each IMF
admits a well-behaved Hilbert transform. Then, the Hilbert transform is applied to
each intrinsic mode function to obtain a decomposition of the signal in the frequency-
time domain. This approach is also referred to as the Hilbert-Huang spectral analysis
(HHSA) and it is applicable to any non-stationary signal (Huang et al., 1998; Huang
et al., 1999). In this paper, the EMD method proposed by Huang (1998) and Huang
et al. (1999), and will be used to decompose the measured response signal (output
voltage of the piezoelectric sensors) into IMFs that would admit a well-behaved
Hilbert transform. Based on the EMD, the modal response of each mode can be
extracted from output voltage of a piezoelectric sensor.

The EMD procedure involves construction of the upper and lower envelopes of
the signal by spline fitting, and then the average of both envelopes is computed.
Then, the signal is subtracted from the mean. This process is referred to as
the“sifting” process. The sifting process is repeated until the resulting signal
becomes a monocomponent. The resulting monocomponent signal admits a well-
behaved Hilbert transform,; it is therefore referred to as an IMF. The original signal is
then subtracted from IMF, and the repeated sifting process is applied to the remaining
signals to obtain other IMFs. The process is iterated until m IMFs are obtained. The
IMFs extracted from the sifting process may contain more than one frequency, which
may not be the modal response of the output signal. During the sifting process in
EMD, one can also impose an intermittency frequency, denoted by @, so that the

resulting IMF will not contain any frequency components smaller thanw,,, . This is

accomplished by removing data that have frequencies lower thanw,, , from the IMF

iut ?

by a straightforward counting process. This process was also implemented in the

EMD procedures used by several others (Huang et al., 1998; Huang et al., 1999).
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A code produced in MATLAB language was developed for carrying out the

EMD procedure for the output voltages of the piezoelectric sensors.

5.5.2.2 Band-pass filtering and EMD

The isolation of modal responses using the EMD method presented above has
an advantage in that the frequency content of the signal at each time instant can be
presented. However, the numerical computation based on this approach may be quite
involved, in particular when the modal frequencies are high, and/or when the signal is
polluted by an elevated noise level. In these cases, in order to obtain accurate modal
responses, one should increase the number of siftings in the EMD. To simplify and
decrease the computational efforts, an alternative approach based on the band-pass
filter method was proposed by Yang et al. (2003). With Yang et al’s proposed
method, one can determine the approximate frequency range for each natural
frequency from the Fourier spectrum of the output voltage. For example, if one
considers the power spectrum analysis of sensor 1, as illustrated in Figure 5.7a, one
would see that the first mode is between 18 to 20 Hz. Each signal is then processed
through the band-pass filters with a set frequency band. The time history obtained
from the jth band-pass filter (jth natural frequency) is then processed through EMD.
In this way, the first resulting IMF would be quite close to the jth modal response.
By repeating the above procedure for the other natural frequencies, one can then

obtain n modal responses.

5.5.2.3 Evaluation of damping ratio by Hilbert-Huang Spectral Analysis
(HHSA)

The equation of motion for an n-DOF structure can be expressed by (Yang et
al., 2003):

MX(t)+CX () + KX(t) = F(t) (5.10)
in which X (¢) =[x,,x,,....,x,] represents the displacement vectors, F(¥) is the

excitation vector and M, C and K are the (nxn) mass, damping, and stiffness matrices,
respectively.  With the assumption of the existence of normal modes, the

displacement and acceleration responses can be decomposed into n real modes:
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XO=Y$7,@; 0= (5.11)
=1 =1

From the above equations, it is apparent that the nxnmode-shape matrix ¢

serves to transform the generalized coordinate vector Y to the geometric coordinate
vector X. The generalized components in vector Y are called the “normal
coordinates” of the structure.

By substituting Equation (5.11) into Equation (5.10) and using the orthogonal
properties of the mode shapes, one can decouple Equation (5.10) into » modes:

" : .
Y, +28,0,Y +0Y =4/ F(t)/m, (5.12)

where o, is the i™ modal frequency, &, is the j™ modal damping ratio, and

J
m; is the j™ modal mass. Now, let’s consider an impact load applied at the p™ DOF
(e f,(0)=Fd(@) and f,(1)=0 for all j# p, where f;(#) is the jth element
of F(t)). Then, the acceleration response of the j™ generalized modal co-ordinate is
given by:

. Fo,0, _;,

Yj(t)=—(£5ﬂ—’—e sos cos(a)djt+¢)j+£) (5.13)

2 2
m;\1-¢&;

where ¢, is the p™ element of the j™ modal vector ¢ s Wy =01 —g"f)o‘s , 18

the j* damped modal frequency, and @, = tan™ (2&,/1- &2 /(1-2¢2)) is the phase

lag of the j™ mode. The impulse acceleration response %,(¢) of the structure at k

(k=1,. .., n) DOF is given by:

()= ﬁ;%i"j(t) = le:x,q ) (5.14)
= =
where:
%,() = 9,7,(0) = B, e cos(wyt +p, + % +0,,) (5.15)
in which:

gl

(16)
m\1-¢]

K.p



38

2 2 . b/
¢t $ o, sin(wyt+9, +5+¢,q)p)+
x,(t)=B *

K,
J,P (§j2wj2 + a)dj2)2

2 T 2 . 4
$,0,0, cos(@yt+ 9, +5+(okj’p)—w¢ sin(@ 4t + @, +5+¢7kj,p)

(5.17)

—§0

x, (=B

2 2 2\2 2 2 2 T
Kp .2 2 2 z*|:\/(§f 0, ~04") +45 0, 0," cos(w,t+ o, +_+¢kj,p“9)}
€0, +a,%) 2

where:

2 2 2
f! wf _wdf )

6=tg"
g 20,0,

(5.18)

In Equations (5.15, 5.17, and 5.18), ¢,; , is the phase difference between the k"

element and the pth element in the jth mode shape. With the existence of normal

modes, all the mode shapes are real and hence ¢, , is either +2mzor +(2Zm+)r,

where m is an integer, i.e.

@y /@, >0 when ¢, , =£2mzn
@y /@, <0 when ¢, =2C2m+1)rx
The Hilbert transform x,(#) in Equation (5.18) can be obtained using the
Bedrosian’s theorem (Hahn, 1996), as follows:
-&;0;t 2 2 2.2 2 2 2
Fo’%”%]wj € (\/(fj o, ta, ) +ig; 0, 0, )*

m1=¢,} 0, +0,) (5.19)

fk/(t) =

. T ~ 7
[au{,j sin(w! + @, +5+(okj’p —0)+dy, , cos(@,t+ @, +5+(pkj,p —6)}

where:
1 po 25,0
a,, =—| ————cos(wt)dw 5.20
LK.j ”f §jza)j2+a)2 (o) ( )
1 25160 .
ad.,., =—| —— 72 _sin(e)dw 521
K. ﬂ-[;;‘jza)j2+a)2 (@0) (5-21)

The analytical signal Z, (¢) of the i™ mode is given by:
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Z,(1) = x,(t) + %, () = 4, ()" (5.22)

In which the instantaneous amplitude A4, (f) and instantaneous phase angle B, (¢)are

represented by:
( - 11/2
e " cos? (wyt +, 0y, -0)+
2 2 242 2 2 2
A (=B G o, o, ) +45 0, 0, ) . pu 2
i \") = g p (szwjz+way2)2 aLK,j(t)Sln(a)djtJr(oj+E+¢kj,p_9)+ (
~ 7T
A iy cos(wdjt +o, +5+¢kj,p -0)
(5.23)
1) ¢o, 3 ~
ﬂkj(t) = tan 1{66, /fliaLKJ(t)tan(a)djt+qoj +—2-+¢kj’p —9)+aHK’j(t)} (5.24)

For a special case in which & is very small (less than 10%) and o, is large,

Equations 5.20 and 5.21 yield:

1 2§/a) —§w;t
a,,  ~— | —2L2 _cos(wt)dw = e " (5.25)
LK,j P fé:jzij +a)2
- 1 Ko, |
a L= — —— < sin(ot)dw =0 5.26
s =5 [ gy g (526)

Thus, Equation (19) becomes:
=&t 2 2 242 2.2 2
R, o o, (€70 +0, ) +45 00, )

m; 1_512 (512“’12 +“’djz)z

~ . T
X, (1) = *sm(a),gt+(pj+5+¢kj,p—0)

(5.27)
and the amplitude 4, (r) and phase angle S, (¢) in Equation (5.22) are given
by:

Fo‘¢kj”¢pj|a)j e-fj‘”j’(\/(sza)jz +wdj2)2 +4§j2wj2wdj2J

2 2 2 2 {2
m\1=¢, (f,- Oy T0y )

4,0 = (5.28)

T
ByO=aut+0,+=+0,, -0 (5.29)
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From Equations (5.28) and (5.29), one can obtain:

_ F0‘¢/q'”¢pj‘a)j (\/(51‘2&)12 +wdjz)2 +4‘f/‘2wjza)ay2)
In4,, () =&, +In( . '—l—g“jz (;‘jza)jz +a)dj.2)2 ) (5.30)

0,(t)=dB,(O)/dt =0, (5.31)

With the measured output voltage of piezoelectric sensors, the EMD method
can be used to decompose each measurement signal into » modal responses. Then,
each modal response can be processed through the Hilbert transform to determine the
signal’s instantaneous amplitude and phase angle. Finally, the system identification
can be conducted to evaluate the natural frequencies and damping ratios by the
process described below.

It should be noted that for the sake of generality, the formulation presented in
the above was developed based on the displacement data; alternatively, the above
formulation can be developed based on the data obtained from another type of sensor,
such as accelerometers or strain gauges.

The advantage of the outlined approach used for evaluating the damping and
natural frequency is that it is not sensitive to the choice of sensor used to collect the
data. In principle, signals obtained through any suitable sensors can be used for
evaluation of the parameters of interest. For instance, one can directly input the
output voltage of a piezoelectric sensor in Equation (5.29) to start the calculations. In
this paper we have used the output voltage of piezoelectric sensors for evaluating the

damping of a PVC pipe.

5.5.2.4 Evaluation of natural frequencies and damping ratios Based on
Hilbert-Huang spectral analysis (HHST)

As stated, the advantage of the HHST method is that one needs data from only a
single sensor (in our case, from one piezoelectric sensor), in order to evaluate the
frequencies @, and damping ratios £, for a structure with j=1, 2, ..., n DOF. The
measured output voltage response of the piezoelectric sensor contains sufficient

information about w; and &, (=1, 2,..., n). The procedure is described as follows:
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For a £, (less than 10%), it follows from Equation (5.13) that the damped
natural frequency @, can be obtained from the slope of the plot of phase angle
6, (1) versus time, t, for which —-¢& @, can be estimated from the slope of the plot of

the decaying amplitude In 4, (¢) versus time t, obtained from Equation (5.30).

o For the general case in which &, is not small, 4, (f)and &, () are obtained
from Equations (5.28) and (5.29). In this case, both &,,(f) and In4,,(f) would not
be a linear functions of time t. Theoretically,£, and @, can be determined from the

non-linear Equation (5.28). However, examination of the numerical results of

Equation (5.28) would reveal that the variation of amplitude A4, (f) introduces an

instantaneous frequency modulation. This frequency modulation is referred to as
“intra-wave modulation” by Huang et al. (1998). It was shown that the amplitude
variation could cause a frequency fluctuation around the mean value of a carrier
frequency, but not a change of its mean value (Huang et al., 1998). Consequently, we
propose the use of linear least-square fit procedures to estimate the mean values of the
natural frequencies and damping ratios for general case.

Figure 5.5 illustrates a typical sensor (output voltage of sensor #1) with its
IMFs. As stated, one can determine the frequencies of the system from data obtained
from any of the sensors. For the sake of illustration, the first natural frequency was
derived from the date obtained from sensor # 4 (the slope of the curve) and illustrated
in Figure (5.6c). It should be noted that alternatively the data from other sensors
could have been used to produce the same frequency. Moreover, to demonstrate the
strength of this method, the data obtained from sensors 1 and 3 are used to construct

the curves of InA, () versus t (Figures 5.6(a) and (b)). The damping ratio is

extracted from the slope of the curves, which are shown to be very similar in values

(see Table 5.3).

5.5.3 Evaluation of damping ratio by the Moving Block Analysis
(MBA)

The Moving Block Analysis was introduced by Hammond and Doggett (1975),

who investigated the response of a rotating model-scale rotor system. Tasker and
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Chopra (1990) showed that this method of damping analysis could be used to identify
the stability characteristics of a high-level noise system. It was demonstrated that this
method of analysis could effectively estimate the damping ratio for a variety of
vibrating systems. This method was also used by Smith and Wereley (1997) for
characterizing the dynamic response of a cantilevered composite beam hosting

viscoelastic damping layers, excited by piezoelectric actuators.

In brief, the MBA is based on the calculation of the discrete approximation of
the FFT of transient response data. This was presented by Tasker and Chopra (1990)

in mathematical form as:

X(0) = gx(rm)e“””“ T = NAt (5.32)

r=0

For a damped transient response, the above could be represented by:
X(@,t,) = J’ ™ ge™ sin(y1- &2 t+ @) dr (5.33)

where T is the block length and t; is the initial time of FFT.

Hammond and Doggett (1975) showed that the plot of the natural logarithm of

the magnitude of FFT (i.e., 1n|X (w,,t|) versus time would be the superposition of a

straight line with a slope of -¢w,, .

Table 5.3. Damping ratio evaluated based on the methods outlined.

Sensor LDA [HTA | HHT MB Circle HPB
Number (EMD) A Fitted Method
1 147 |1.39 1.42 1.36 1.37 1.86
2 1.55 |1.36 1.38 1.32 1.27 1.86
3 1.56 |1.33 1.35 1.25 1.22 1.86
4 1.55 |1.30 1.32 1.22 1.21 1.94
5 Not .94 1.62 .96 1.00 1.74
acceptable*
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5.5.4 Determination of damping ratio using the Half Power
Bandwidth method
According to Richart et al. (1970), material damping (&) for each vibration

mode can be determined from the respective resonant curve (see Figure (5.8a)), by

means of the following expression:

mf_ _m(f-f) [ A4 1-2¢ 530
4, '

e 2 2 &7 12

where Ap, is the maximum amplitude and A is the amplitude at frequencies f; and f,
at both sides of the resonant frequency fy, For the case of a low damping ratio (less

than 10%), Equation (5.33) can be simplified to:

fz2 _flz

&=4
JALE =242 212+ A2 1 416242 - 42)

(5.35)

Further simplification of Equation (5.34) is obtained if the amplitude A is taken

m

NG

at with the resonant curve being symmetric with respect to f;:

r=-fzh (5.36)

2f
The above HPB formulation is one of the frequency domain methods usually
admissible for materials that have small damping (Lanzan, 1968). Karnopp et al.
(2000) showed that when considering the plot of the frequency response function

versus frequency, the bandwidth at point corresponding to L of the maximum

N

amplitude would be approximately twice the product of the damping ratio and natural
frequency. Some typical power spectrum results of the output voltage of some of the

piezoelectric sensors# 1, 2, and 5 have been illustrated in Figures (5.7a, b, c).
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5.5.5 Evaluation of damping ratio by the Circle-Fitting Method

This method, first introduced by Kennedy and Pancu, uses the Argand plane to
display the real and imaginary parts of the receptance frequency response function
(FRF). In this manner, in the vicinity of each natural frequency, the FRF curve
approaches a circle; the natural frequency can then be located at the point where the
rate of change of the arc length of frequency attains a maximum. The model assumed
that the damping is the hysteretic one and the damping factor could be evaluated from
a simplified half-power point calculation, and the mode shapes could be calculated
from the ratios of the diameters of the circles fitted around each natural frequency for
the various output response. In the present study, the circle-fitting method has been
implemented as a mathematical solution, which accurately predicts the natural

frequency @, and the damping factor 7. Based on the vibration theory (Ewins,

1984), the receptance FRF of an N degree of freedom system with hysteretic damping

can be evaluated by the following equation:

N erk

@ ji =Z

2 2 . 2
el O, —@ +1n,0,

(5.37)

where 7., o,and C7, are the hysteretic damping ratio, natural frequency, and complex
constant, respectively, associated with each mode r. The Nyquist plot of
(w? -@* +inw?)'is a circle. Thus, multiplication by the complex constant
C’, means a magnification or reduction of the circle radius, as well as giving a certain

degree of rotation. In practice, the complex curve will not be exactly a circle around
each natural frequency, but the curve will have circular arcs around those frequencies,

especially when the modal frequencies are very similar.

The location and determination of the natural frequency are usually based on a
frequency spacing technique. For a given mode, and apart from the effect of the

complex modal constant, the phase angle 6,associated with the dynamic response is

given by Equation (5.38) from which the resonant frequency w,can be extracted at a

location where do’ is a minimum. The phase angle can also be evaluated by:
do,
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Figure 5.8. Schematics of the formation of the (a) HPB and (b) CFM methods.

6, = tan"' [, (1-—)?] (5.38)
[0)]

r

It is evident that calculating the minimum of 4@ A)’ is equivalent to

r

do’ 0 Thus, with reference to Figure (5.8b), by taking two points, a and b on the

circle, one corresponding to a frequency slightly below the natural frequency (w, ),
and the other corresponding to a frequency slightly above the natural frequency (@, ),

one can express the damping factor 7, by:

o} -} 1
=% 7, =2 5.39
= T anae) +anag) " (539)

r

An optimization program was developed for establishing the location of the
centre of the circle. Figure (5.9) illustrates the circles plotted based on the vibration

data obtained through all piezoelectric sensors.

5.5.6 Finite Element Method for Calculation of Natural Frequency of
Structure
To further verify the integrity of the approaches used here, a finite element

analysis (FEA) was also conducted to evaluate the first two natural frequencies of the
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PVC pipes. NISA finite element software (NISA, 2004) was used for this task. The
Solid 8-node element of NISA with 3 DOF per node (translational DOF) was used to
model the pipes. NISA’s solid 8-node piezoelectric element with 4 DOF per node (3
translational and one electric DOF (¢ in Equation (5.1)) was also used to model each
piezoelectric patch. All displacements at the fixed end of the pipe were restricted in
order to simulate the clamping of the pipe. The mesh that was used to model the pipe
consisted of 242 elements in the axial direction and 80 in the circumferential
direction, with 2 layers of elements through the thickness. Each piezoelectric patch
was modeled with 8x4x1 piezo elements (length X width X thickness, respectively).
The Lanczos method was used for extracting the eigen-values of the system
with a consistent mass formulation and a frontal solver. The results from the eigen-

value and the Fast Fourier analysis are tabulated in Table 5.2.

5.6 Evaluation of the Damping Ratio and Discussion of
the Results

As stated earlier, the main objective of this paper was to validate the Hilbert-
Huang spectral analysis and formulation for system identification by comparing the
results obtained from this method to those of other commonly used methods found in

the literature.

Moreover, we also wanted to investigate the influence of location of the sensors
on the dynamic response of the pipe. For this, we used the power spectrum method to

establish the basic dynamic response of the pipe.

The mechanical material properties of the PVC pipe are tabulated in Table 5.1.
The natural frequencies of the pipes were obtained based on the Fast Fourier analysis.
The time history was collected using the five piezoelectric sensors. These results

were considered as the time domain data for conducting the Fast Fourier analysis.

The natural frequencies of the pipes were calculated, by FEA, and by the EMD
method. The FEA results are tabulated in Table 5.2. As can be seen, the
experimental results are in good agreement with the FEA results. The first and

second vibration mode shapes of the pipe are also illustrated in Figure (5.10a and b).
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Moreover, using the LDA method, the natural logarithm of each peak (the
absolute value of response obtained through each piezoelectric sensor) was calculated
and plotted versus time (see Figure (5.3)). A line was fitted through the resulting data
using a least-mean-squares approach. The damping ratio was obtained through the
slope of the best-fit line, as illustrated in Figure (5.3). A summary of the results is
tabulated in Table 5.3. A similar procedure was also followed for obtaining the
damping ratio using the HTA, MBA, HPB, EMD and the circle-fitted methods, with
the results also reported in Table 5.3. As it can be seen, all methods are capable of
producing acceptable results, however, it is noted that the mixed time-frequency
methods (i.e., HTA, EMD and MBA) could produce more consistent results than the
other two methods. Therefore, the time-frequency domain approaches summarized
above are recommended when evaluating the damping property of such damped

materials.

Moreover, it is also noted that the results reported in the last row of Table 5.3
(i.e., the 5% sensor’s results) are comparatively inconsistent with the results obtained
form the other sensors. The data gathered through the 5™ sensor exhibited some dual
peaks in some of the first half cycles. This is believed to be due to the interference of
loading induced high frequencies at the location of the sensor which was very close to

the loading point.

Table 5.2. Natural frequency values obtained from the experimental and finite

element analysis.

Bending Natural Frequency | Natural Frequency | Natural Frequency
Mode (Hz) (FEA) HZ) Experiment | (Hz) Experiment
(FFT) (EMD)
1 19.01 19.07 19.05
2 109.17 112.7 111.3

5.7 Conclusions

Our experimental and analytical investigations considered two important

dynamic issues governing the dynamic characteristics of plastic (PVC) pipes. Firstly,
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the integrity of five different admissible analytical methods for evaluating the
damping ratio of plastic pipes was systematically examined both experimentally
(through free vibration tests) as well as computationally (using finite element
analysis). Secondly, the influence of the location of the piezoelectric sensors used for
sensing the pipes’ vibration was also investigated. Thirdly, the results obtained
through the time domain analysis were compared to those obtained through the

frequency domain methods.

An important aspect of the work presented here is the application of the
Empirical Mode Decomposition (EMD) for evaluating the structural damping based
on the data obtained from piezoelectric sensors. The advantage of this method was
observed to be the fact that the approach requires data from only a single sensor;

therefore, it is an effective and efficient approach.

The results clearly showed that the time domain results (i.e., the LDA method)
obtained from the data from sensors positioned at various locations along the pipe’s
length were not consistent. It is believed that the discrepancy is due to the loading
system used. It was also observed that some of the first half cycles in the response
domain had dual peaks, which is believed to have occurred due to the nature of the
applied loading and the adopted clamping mechanism. Nevertheless, results obtained

through the frequency domain methods were found to be more consistent.
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(a)

(b)
Figure 5.10.: Pipe’s mode shapes determined by FEA (a) First mode, (b) Second
Mode.

Therefore, the frequency domain approaches summarized above are

recommended when evaluating the damping property of such damped materials.
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An important aspect of the work presented here is the application of the
Empirical Mode Decomposition (EMD) for evaluating the structural damping based

on the data obtained from piezoelectric sensors.

It is noted that although both pure time-domain method (i.e., LDA) and pure
frequency-domain method (i.e., HPB) could produce consistent and acceptable
results. It appears that the mixed time-frequency methods (i.e., HTA, EMD and
MBA) produced more consistent results. Therefore, the time-frequency domain
approaches summarized above are recommended when evaluating the damping

property of such damped materials.
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Chapter 6

APPLICATION OF THE EMPIRICAL MODE
DECOMPOSITION FOR SYSTEM IDENTIFICATION
AND STRUCTURAL HEALTH MONITORING

N. Cheraghi, and F. Taheri*

Publication Status: Accepted to Publish at International Journal of Applied
Mathematics and Engineering Sciences, May 2006

6.1 Abstract

When measured vibration data of a structural response contains damage related
data, it is crucial to extract as much damage related information as possible. This
paper presents an analytical and numerical investigation into the applicability of the
empirical mode decomposition (EMD) for structural damage detection caused by a
sudden change of structural stiffness, in conjunction with a novel idea based on
energy of intrinsic mode functions (IMFs). A 6-DOF mechanical system was
modeled and analyzed subject to an impact load by exact solution, using MATLAB
software, as well as with the finite element method, using the ANSYS program. The
presence of damage was simulated by reducing the stiffness of the springs of the
idealized spring-mass system. Dynamic responses including displacements and
accelerations were calculated. With this method, the measured response data was
first decomposed into modal response using the empirical mode decomposition
(EMD) approach employing the band-pass intermittency criterion. Then, the Hilbert
transform was applied to each modal response to obtain the instantaneous amplitude
and phase angle time history. A linear least-square fit procedure was used to identify

the system’s natural frequency and damping ratio from the instantaneous amplitude
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108

and phase angle for each modal response. Then the structural mode shapes, and
subsequently the stiffness and damping matrices, were identified. It will be shown
that the proposed damage index could effectively detect the presence of the damage.
Moreover, the location of damage was also determined by comparing the stiffness

matrix of the system before and after damage.

6.2 INTRODUCTION

Vibration-based structural damage detection methods have attracted
considerable attention in recent years for health monitoring of large civil structures
(Xu et al., 2004). Most of the currently used vibration-based structural damage
detection methods are formulated based on the idea that the measured modal
parameters, or the properties derived from these modal parameters, are functions of
the physical properties of the structure. As a result, changes in the physical properties
will cause noticeable and detectable changes in the modal parameters (Dowbling et
al. 1998). Although these methods have demonstrated a certain degree of success in
damage detection of small structures, there are several confounding factors that make
the applicability and effectiveness of these methods for health monitoring of larger
structures rather questionable. One issue of primary concern is that these methods
presume access to a set of data extracted from the structure at its undamaged (healthy)
state; however, such information is not usually readily available in the case of most
existing civil structures. Another factor is that most of these methods operate based
on the data recorded before and after the occurrence of the damage. Moreover, often
a linear structural behavior is assumed for the structure during the data collection. On
the contrary, the identified modal parameters (the damage indices) in fact represent
the average characteristics of the structure over the duration of the data collection,
thus they may not be accurately sensitive to damage, since damage is typically a local
phenomenon. Consequently, if a damage event suddenly occurs during the
measurement period, the time of the occurrence of the damage cannot be determined

by these methods.
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In contrast to a large number of publications pertaining to damage indices using
the average modal characteristics, there is a paucity of research works addressing
instantaneous damage indices. It is believed that the application of time~frequency
data processing would be necessary to detect a damage event, including
characterization of the event time. The logical candidates for such a task would be
the wavelet method, and the recently emerged signal processing technique, as well as
the empirical mode decomposition (EMD), introduced by Huang et al. (1998, 1999).

In 2002, Sun and Chang (2002) proposed a wavelet packet transform-based
method for damage assessment. The transient signals measured from a structure were
first decomposed into wavelet packet components in the time domain. The
component energies were then calculated and used as inputs into neural network
models developed for damage assessment purposes. Hou et al. (1999, 2000) also
proposed a wavelet-based approach to identify the time of damage and its location in
a simple structural model with breakage springs. The basic concept of their approach
is that the sudden breakage of a structural element would cause discontinuity in the
response signals measured in the vicinity of the damage location. By decomposing
the vibration signals in the time-domain using the wavelet analysis, the discontinuity
would form a specific signal feature (termed the “damage spike”) among the wavelet
details. The damage time instant could then be identified in terms of the occurrence
time of the spike, and the damage location could be determined by the spatial
distribution of the observed spikes. The same idea was adopted by Vincent et al.
(1999) and Yang et al. (2001), however EMD was used to decompose the vibration
signal to capture the signal discontinuity. Numerical simulations carried out in their
studies showed that the EMD approach could also identify the instant at which the
damage occurred, and .of course its location by using a signal feature of the damage
spike. Yang at al. (2003, 2004) further used EMD for system identification of a four
degree of freedom (DOF) mechanical system and identified the natural frequencies
and damping of a tall building. Xu et al. (2004) also used EMD for damage detection
of a three-story shear walled building based on experimental (acceleration) data. He
concluded that damage location could be identified by the spatial distribution of the

spikes around the building. Compared with the wavelet-based approach for which a



110

proper mother wavelet, as well as a decomposition level should be decided before
decomposition, the EMD approach provides a more attractive possibility, because it
decomposes the signal based on the time scale of the signal itself with an adaptive
mean. Nevertheless, the aforementioned studies using either the wavelet analysis or
the EMD approach are based on numerical simulations. Several important
assumptions made through such analyses will require further investigation and
verification. It is therefore desirable to verify the integrity of these approaches by
laboratory-scale experimental investigations before their application in large

structures could be fully justified.

6.3 Background to the Hilbert-Huang Transform (HHT)

One of the most widely used dynamic data processing tools is the Fourier
Transform (FT) and its digital analogue, the Fast Fourier Transform (FFT). The FT
(developed decades ago) and its fairly recently developed counter-part, the FFT carry
strong a-priori assumptions about the source of data, such as linearity and stationary
properties.  Natural phenomena responses are essentially nonlinear and non-
stationary. The accommodation of this fact in FFT-based analysis often involves
using more data samples to assure acceptable convergence and non-algorithmic
procedural steps in the interpretation of FFT results. Therefore they cannot be
considered as the most optimum methods for studying non-linear waves and other
nonlinear phenomena. Wavelet-based analysis yields some improvement over the
FFT, because it can handle non-stationary data, but the limitation of a linear data set
remains constant. Wavelet methods may also prove inadequate because although
being well suited for analyzing data with gradual frequency changes, its non-locally
adaptive nature causes leakage. This leakage can spread frequency energy over a
wider range, removing the details of data and thus giving it an overly smooth
appearance.

To overcome these shortfalls, the Empirical Mode Decomposition method was
recently proposed (Huang et al. (1998, 1999)). This method is based on the use of the
Hilbert-Huang Transform (HHT), and provides a novel approach to the solution of

the nonlinear class of problems. The initial application of the method was used to
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analyze hydrospheric processes. The HHT allowed direct algorithmic analysis of
nonlinear and non-stationary data functions by using an engineering and a posteriori
data processing method, namely an Empirical Mode Decomposition method (EMD).
EMD can decompose any complicated transient data into a finite (often smaller)
number of intrinsic mode functions (IMFs), which in turn could admit well-behaved
Hilbert transforms. With the Hilbert transform, the IMFs yield instantaneous
frequencies as functions of time. The final presentation of the results is a time-
frequency-energy distribution, designated as the Hilbert spectrum. Being different
from the Fourier and wavelet decompositions, EMD has no specified “basis”; it is an
adaptive procedure applied to the signal itself, offering high decomposition
efficiency, sharp frequencies, and time localization.

A key feature of the signal analysis based on HHT is its physical attributes,
which has made the method popular to a wide range of researchers and experts in
signal processing and other related fields. Several works based on the framework of
HHT theory have been reported in the recent years (Deng et al., (2001), and Flandrin
et al., (2004)). Its application for signal analysis have spread into earthquake research
(Loh et al. (2001), ocean science (Huang, 1999, biomedicine (Huang et al., 1998,
1999), Zhihua et al., (2004), and Phillips (2003)), speech signal analysis (Yang et al.,
2004), and image analysis and processing (Han et al. 2003.

Nunes et al. (2003) further extended the EMD method from one-dimension to
developing a decomposition algorithm for two-dimensional data, referred to as
“Bidimensional Empirical Mode Deposition” (BEMD). The algorithm was used to
extract texture features at multiple scales or spatial frequencies (Nunes, 2003) and for
other applications. For an approximately periodic signal containing rich high
frequency components, the relation between its period and its main frequencies is
found by analyzing the influence of the signal’s non-linearity on the distribution of
the main frequency. It is used to estimate the period according to the main frequency

distribution (MFD) of a signal.
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6.3.1 Mathematical Description of the HHT

The HHT method consists of two parts: (1) the Empirical Mode Decomposition
(EMD), and (2) the Hilbert Spectral Analysis. As stated earlier, with EMD, one can
decompose any complicated data set into a finite and often less intrinsic mode
functions (IMFs). An IMF is defined as a function satisfying the following
conditions:

(a) The number of extrema and the number of zero-crossings must either equal
or differ by at most one in the signal function being considered,

(b) At any point, the mean value of the envelope defined by the local maxima
and the envelope defined by the local minima should be zero.

The resulting IMF then would admit a well-behaved Hilbert transform. In this
way, EMD decomposes signals adaptively and is applicable to nonlinear and non-
stationary data (the fundamental theory on nonlinear time series can be found in
Huang et al., (1998). In this section, only a brief introduction is given to make this
paper somewhat self-contained. The readers are referred to Huang et al. (1998) for
details.

The Hilbert transform, Y (f), of an arbitrary function, X(¢), in Lp-class
(Titchmarsh et al.,1948), is defined by:

Y@ =%P w%t;,)dt' 6.1)

where P indicates the Cauchy principal value. Consequently an analytic signal,

Z(t), can be produced by:

Z({t) = X(t)+iY(t) = at)e'’" (6.2)
where
al) =[X* O+ Y (]2, 49(!)—arctan(X(t)) (6.3)

are the instantaneous amplitude and phase angle of X{(?).
Since Hilbert transform Y (¢) is defined as the convolution of X(¥) and 1/¢ by
Equation(6.1), it emphasizes the local properties of X(), even though the transform is

global. In Equation (6.2), the polar coordinate expression further clarifies the local
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nature of this representation. With Equation (6.2), the instantaneous frequency of
X(¥) can be defined by:

o(f) = ? (6.4)

 However, there is still considerable controversy on this definition. A detailed
discussion and justification of the above definition can be found in Huang et al.,
(1998).

EMD is a necessary pre-processing of the data before the Hilbert transform can
be applied. It reduces the data into a collection of IMFs and each IMF, which
represents a simple oscillatory mode, is a counterpart to a simple harmonic function,
yet is more general.

Moreover, by the application of EMD, any signal X(¢) can be decomposed into a
series of finite IMFs, or imfj(¥) j = 1, . . . ; n), and a residue, r(f), where n is a

nonnegative integer depending on X(¥); that is,
X (@)=Y imf (6)+r() (6.5)
=

Let Xj() = imfj(f), whose corresponding instantaneous amplitude, a,(¢), and
frequency, @, (¢), can be computed by Equations (6.3) and (6.4). Through Equations
(6.2) and (6.4), the imfj(f) can be expressed as the real part (RP), in the following

form:
imf, (t) = RP[a, () exp(i j o, (Hdr] (6.6)

Therefore, using Equations (6.5) and (6.6), X(¥) can be expressed as the IMF

expansion as follows:
X = RPZn: a,(t)exp(i f o, (1)dt) +r(t) 6.7)

which generalizes the following Fourier expansion by admitting variable

amplitudes and frequencies

X = ia e (6.8)
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Consequently, the main advantage of EMD over FFT is that it could effectively
accommodate nonlinear and non-stationary data. Equation (6.7) thus enables one to
represent the amplitude and the instantaneous frequency as a function of time in a
three-dimensional plot, in which the amplitude is contoured on the time-frequency
plane. The time-frequency distribution of amplitude is designated as the Hilbert
amplitude spectrum or simply the Hilbert spectrum, denoted by H(w,t). Having

obtained the Hilbert spectrum, the marginal spectrum can be easily determined by:
h@) = [ H(o,tdr (6.9)

This marginal spectrum offers a measure of the total amplitude (or energy)

contribution from each frequency value.

6.4 Modal Response of n-DOF Structures Due to Impulse
Loading

The equation of motion of an n-DOF structure can be expressed as

MX@)+CX(@)+ KX (1) = F(t) - (6.10)

in which X(t)=[x,,x,,...x, ] is the displacement vector, F(?) is the excitation
vector and M, C, and K are the mass, damping, and stiffness matrices, respectively.

With the assumption of the existence of normal modes, the displacement and

acceleration responses can be decomposed into n real modes
XO=Y4Y,05 X0)=Y4,50 (6.11)
j=1 Jj=1

In the above equation, it is apparent that the 7 x nmode-shape matrix ¢ serves

to transform the generalized coordinate vector Y to the geometric coordinate vector
X. The generalized components in vector Y are called the normal coordinates of the
structures.

Substituting Equation (6.11) into Equation (6.10) and using the orthogonal

properties of the mode shapes, one can decouple Equation (10) into n modes

Y, +26,0,Y +0lY =¢ F(t)/m, (6.12)
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in which @, is the i" modal frequency, & ; is the i* modal damping ratio, and

m; is the j™ modal mass. Consider an impact loading applied to the p* DOF of the

system, i.e. f,(1)=F,6(t) and f;(1)=0 for all j# p, where f,(#) is the jth

element of F(#). Then, the acceleration response of the jth generalized modal co-

ordinate is given by:
Fd,0,

7= e cos(w t + 9, +=) (6.13)
m.\[1-¢&2 2

J J
in which ¢, is the pth element of the jth modal vector ¢,, o, =a,(1-&7)"

is the jth damped modal frequency, and ¢, =tan™(2&,\/1-&7 /(1-2£7)) is the
phase lag of the jth mode. The impulse acceleration response X, () of the structure at

k (k=1,. .. ,n) DOF is given by:

£.0=.8,7,0)=.%,0 (6.14)
Jj=1 J=1
where
. > -£.0; T
xkj(t) = ¢ijj(t) =B, e st cos(a)djt+¢j +5+ go,g.’p) (6.15)
Fo.. lw .
B, =_°l¢"/ ”¢PJ} 21 6.16)
m; l—g”j
2 2. /1
Py ¢ o, sm(a)djt+(oj +—+go,w)+
* 2
ka(t)szl,F(§2w2+0) 2)2 T T
;% Ty 280,00, cos(@yt+ @, +E+¢,g,p)—wﬁzsin(a)djt+¢j R
(6.17a)
_ 3—51‘0)11 N 2 2 2.2 4 2 2 2 T 0
xy (1) =By, E of ra,) \/(fj O =0y ) +45, 0, 0y cos(@yt+ o, + 0y, —0)
(6.17b)
where
2 2 2
L. — @,
9=tg‘1(§’ L9 (6.18)
2§jcoja)ay
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In Equations (6.15) to (6.18), ¢, , is the phase difference between the kth

element and the pth element in the jth mode shape. With the existence of normal

modes, all the mode shapes are real and hence ¢, , is either +2mzor +(2m+1)7

where m is an integer, i.e.

Dy /¢pj >0 when Pyp = ommr
¢y /@, <0 when @, , =+(2m+1)z
The Hilbert transform x,,(¢) in Equation (6.9) can be obtained using Bedrosian’s
theorem (Hahn, 1996)
2 2, 0 2\2 2 2 2
~ E)|¢kj“¢w|wj (\/(fj wj +way ) +4§j a)j a)dj )*
X, () = e — :
mAl=¢, €l +0,'f (6.19)

) T - /s
Ak sm(a)djt +, +—2—+ Py -0)+ Ay cos(a)djt +¢, +5+ Pyjp — 0)

where
1 pg 26,0,
a,, =—| —————~——cos(wt)dw 6.20
wy = [ gr e (6.20)
1 2o, |
a,p  =— | ——L———sin(wt)dw 6.21
wes=—[ P 6:21)

The analytical signal Z,;(¢) of the jth mode is given by:
Zy (1) =x, () + 5y (O) = 4, (D™ (6.22)
In which the instantaneous amplitude 4,;(f)and instantaneous phase angle

By (1) are:

2w, P
e cos’ (@t + @, +5+¢kj’p -0)+

2 2 22 2 2 2
\/(é’j 0"ty ) +4§j 0, 0, () sin(e, - 9 2
Ha,, . Osin(w t+¢. +—+@, —)+
(.;,“jza)j2 +a)dj2)2 Lk o' T ¥ 2 Pur

Akj (t) = Bkj,p

~ 4
Ay oy COS(@ 4t + @, +—2—+ Py =)
\

(6.23)

172
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B, () =tan™ {e@’”" {am, JOtan(w it + @, + % +@y, — ) +ay (t)}}
(6.24)

For a special case in which ¢, is very small and o, is large, one obtains from

Equations (6.20, 6.21)
1 2§ja)' -t
a,, , ~— | ————~—cos(wt)dw =e "’ 6.25
LK, j 7 fsza)jz +a)2 ( ) ( )
~ 1 2w, |
dye =— | —————sin(ot)dw =0 6.26
wes=— [ ST 7 D (6.26)

Thus, Equation (6.19) becomes:
=&t 2 2 252 2 2 2
Flo o o, ¢ (€70 v 0,/ +470 0 )

m1=¢;} (gjza’jz +“’dj2)z

~ . Vi1
X, (1) = *sm(a)djt+¢)j+5+qo,g.’p—t9)

(6.27)
and the amplitude A, (r) and phase angle f, (¢)in Equation (6.22) are given by:

F0}¢kj”¢pj‘a)j e—fjwj'(\/(egjzwjz +a’ay2)2 +4§j260,20)d,~2)

m1=-¢," (512“’1'2 + a’djz)z

4,(t)= (6.28)

/3
ByO)=wyt+0,+=+0y, =0 (6.29)

From Equations (6.28) and (6.29), one can obtain
2 2 2 2 2 2
(F0’¢,g.“¢pj|a)j (\/(-fj o +0,’) +4 0 0, ))
mﬂ/l—é‘jz ({,’jza)12+a)dj2)2

(6.30)
o,(t)=dB,(O)/d =0, (6.31)

Ind,(t)=-¢,0,t+1In

As seen with the measured impulse response vector, the EMD method can be

used to decompose each measurement into n modal responses. Then, each modal
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response can be processed through the Hilbert transform to determine the
instantaneous amplitude and phase angle. Finally, the system identification can be
completed, including natural frequencies, damping ratios, mode shapes, mass matrix,

damping matrix, and stiffness matrix, as follows.

6.5 Modal Response Using Empirical Mode
Decomposition Baesd on Band Pass Filtering

There is a disadvantage in the way the modal response gets isolated in the EMD
method. This is because the frequency content of the signal at each time instant (t) is
preserved. Moreover, the numerical computation based on this approach may be
quite involved, particularly when: (i) the modal frequencies are high, and (ii) the
signal is polluted by a high noise level. In such cases the only means of obtaining
accurate modal response is by applying a large number of siftings in the EMD. To
simplify the computational efforts, therefore, an alternative approach based on the
band-pass filter and EMD has been proposed; the procedure for which is as follows:

e Determine the approximate frequency range for each natural frequency, i.e.

W) <0, ROy G=1, 2, . .. ,n), from the Fourier spectrum of the acceleration
response X, (f).
e Process the signal X, (f) through the band-pass filters each with a frequency

bandw; <®; <@, . The time history obtained from the jth band-pass filter is then

processed through EMD, and the resulting first IMF would be quite close to the "
modal response.

¢ Repeat the same procedures for j=1, 2... n, to obtain the n modal responses.

This approach enables one to extract the modal response X () easily and

removes all the noises outside the frequency range, ,, <w, <®,, . It is important

to note that the phase shift of the band-pass filter used should be as small as possible.
To ensure this criterion is fulfilled, it would be sometimes necessary to pass the signal

through the band-pass filter, two or three times. The approaches presented above for
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obtaining the modal responses will be demonstrated later through numerical

simulations.

6.5.1 Identification of natural frequencies and damping ratios

It should be noted that for the identification of natural frequencies w, and
damping ratios ¢, for j=1, 2 ..., n, only one measurement (i.e. from one sensor),
say X ,(£), would be sufficient, so long as that signal contains all the information o,
and &, (j=1, 2, e measured response is ..., n) of the system (this issue will be clarified
later). The procedure is as follows:

oFor a small &, , it follows from Equation (6.13) that the damped natural
frequency @, can be obtained from the slope of the plot of the phase angle 6, (¢)
versus time, whereas — &, (hence, damping ratio) can be estimated from the slope
of the decaying amplitude of the ‘In A, (¢f) versus time’ plot (see Equation (6.26)).
For the general case in which &, is not too small, 4, (¢)and 6, () are given by
Equation (6.22). In this case, both 6,(¢) and In4, (¢) are not linear functions of

time, t. Theoretically, £,

; and @, can be determined from the non-linear equation
represented by Equation (6.22). However, it is observed from the numerical results of

Equation (6.22) that the amplitude variation 4, (#) introduces an instantaneous

frequency modulation. This frequency modulation is referred to as the “intra-wave
modulation” by Huang et al. 1998. It was shown that the amplitude variation could
cause a frequency fluctuation around the mean value of a carrier frequency, but not a
change of its mean value (Huang et al., 1998). Consequently, a linear least-square fit
procedure is used to estimate the mean values of the natural frequencies and damping

ratios for the general case.
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6.5.2 Identification of mode shapes, and mass, damping, and
stiffness matrices

As stated previously, only one measurement, at one location of the impulse

response function X, (f) is needed to determine all the natural frequencies and

damping ratios of a given system. However, to identify mode shapes and mass,
damping, and stiffness matrices, the response time histories at all DOF should be
measured. It follows from Equations (6.16) and (6.26) that the ratio of the absolute

value of the modal elements ¢, to 4,, (m, n=1, 2...) can be determined by:

B8

in which 4,,(f,) and 4, (f,) are the magnitude of the fitted line for the

= eXP(A;’nj (t) - Ar’tj (%)) (6.32)

decaying amplitude In4, (#)and In4, (¢), at the arbitrary time ¢ =¢,, respectively.
Moreover, the difference between the phase angle of the modal element ¢, and that

of ¢, follows from Equation (6.25) as:

¢mj,n = 0;'"}‘ (%) - er’lj () (6.33)
in which &4

’
my

(t,)and G, (t,) are the magnitudes of the fitted line for the phase
angle 0,,(¢) and 6, (¢) at the arbitrary time 7 =1¢,.

Another method which one can use for mode shape identification is based on
the modal response. In fact, mode shape specification can be identified by comparing
the first IMF of every degree of freedom of the structure in the time domain data.
The phase angle and amplitude of the mode shape can be calculated through dividing
the amplitude response of the first IMF of one degree freedom, at a specific time, to
those of another degree of freedom taken at the same time. If the quantities have the
same sign (positive or negative), it would indicate that there is no phase angle.

After identifying the modal frequency®,, the damping ratios £, and mode
shapes vector ¢j for j =1,2,...., the mass, damping, and stiffness matrices of the

structure can be determined using the following procedure.
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) The generalized modal mass can be evaluated by substituting Equation

(6.25) at t =t, into Equation (6.27), that is:

_ F0'¢lq'H¢pjle (\/(é:fzwfz +wdj2)2 +4§j2wj2a)dj‘2)

" 4y (0)\/@ (512‘”12 + “’djz)z (639

in which Fj is the level of the measured impact loading. The generalized
modal stiffness,k;, and modal damping. c;, are obtained from the following
relations:

2
ki=mw,;c,=2mo, (6.35)

ii T
Noting the following orthogonal properties:
O MD = diag[m ], O'KD = diaglk,]; O'Ch = diaglc,] (6.36)
in which @ is the nxnmodal matrix with the jth modal vector ¢, as the jth

column. Hence, the mass, stiffness, and damping matrices can be represented as

follows:

M= (I)’Tdiag[mj o7 K= CD'Tdiag[kj o ;C= (I)‘Ta?iag[cj](l)‘1 (6.37)

6.6 Case Study # 1: a Healthy (Undamaged) Structure

To investigate the effectiveness and integrity of the application of the proposed
system identification for damage detection methodology in a structural system, the
integrity of the Hilbert-Huang approach is investigated by applying it onto a 6-DOF
mechanical system. Later, the same system will be investigated bearing a damage.

Consider the 6-DOF mechanical system, as shown in Figure (6.1), with the
following properties:

m=m,=m,=m, =ms =mg =1lkg

ky=k,=k, =k, =k; =k, =k, =7500N/m,

€, =C,=Cy3=C, =C5=C¢ =C;, =.T5Ns/m

The Hilbert-Huang spectral approach, with its procedure outlined as above, will

be applied to the system. In this problem, the displacement impulse responses of all
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masses in response to an impact load applied to the third mass are measured. ANSYS
finite element software was used to model the system, and modal and transient
dynamic analyses were conducted. The results of the finite element analyses were
compared to those reached through the exact solution, which were obtained using

MATLAB software. The measured displacement X, (¢), is shown in Figure (6.2a).

The Fourier transforms of

Figure 6.1. Schematic of the 6-DOF mechanical system.

the displacement responses of all degrees of freedom of the system

(X, (¢) through X (¢)) are shown in Figure (6.2b). The modal frequency ranges are

summarized in below:

(1)5.38Hz = w,, <o, < @, = 6.88Hz for the first mode

)1121=w,, <o, <w,, =12.71  for the second mode
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(3)16.44 =w;, <w, <m,,; =17.94  for the third mode

D208=0,, <0, <w,,; =223 for the fourth mode

(5)24.08 =5, < w5 < w5, =25.58  for the fifth mode

(6)26.12 =0, <w; <0, =27.62  for the sixth mode

Subsequently, the band-pass method was used to carry out the EMD
calculations and to extract the IMFs. The procedure is as follows:

+ The signal for each DOF (X(¢), shown in Figure 6.2a was passed
through a fourth-order band-pass filter, each within the frequency band noted above.

The resulting six time histories from each DOF are denoted by

X,;(j=123,45,6) for each corresponding mass number.
¢ Then, all of the resulting X, were processed through EMD and the

first IMF is used to identify the modal response of X ;. As an illustration, the

signature of the 4™ DOF (mass) and its IMF is illustrated in Figure (6.3). It is
important to note that the band-pass filter used for the operation should have the
smallest possible phase shift to produce the best results. It should be noted that due to
the phase shift, a segment of the modal response near t=0 is not a decaying function.
Such a segment should be discarded prior to the application of the Hilber transform.

* After removing this segment, the modal responses illustrated in Figure

(6.4) are processed through the Hilbert transform and the instantaneous phase angles
ij (*)and a,, (t) are obtained. The plots of 8,;and 6, versus time t for the first
mass are illustrated as the dotted curves in Figures (6.4a) and (6.4b), respectively.

* Slopes of these curves represent the first and sixth natural frequencies
of the system. Figures (6.5a) and (6.5b) illustrate the plots of logarithm of the
amplitude of the first and sixth DOF (lna,, and Ina, ) versus time. The linear least-
square fits of the curves are also shown in the above noted figures by the solid lines.
The natural frequencies @, and w,, and the damping ratios & and &, can be

extracted from the slopes of the least square lines, as outlined earlier.
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. The above process was repeated for all six DOF, and the natural
frequencies and damping ratios of all DOF were obtained. The results are outlined in
Table (6.1).

It is observed from this table that the correlation between the theoretical values
(frequencies and damping) and the identified results is excellent. The efficiency of
the procedure can be better appreciated by noting that only one response
(displacement or acceleration), measured through only one sensor, was used to
generate all the natural frequencies and damping ratios of the system. It should also
be noted that the results presented in Table (6.1) are based averaging the mass of the

system per segment.
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Table 6.1. Natural frequency and damping ratios of the healthy six DOF

mechanical systems.

Theoretical Values Identified Values

Mode Frequency Hz) | Damping ratio | Frequency Hz) | Damping ratio
1 6.13 0.19 6.13 0.19

2 11.96 0.38 11.95 0.38

3 17.18 0.54 17.17 0.54

4 21.55 0.68 21.50 0.68

5 24.84 0.78 24 81 0.79

6 26.87 0.84 26.70 0.85

Moreover, the complete mass matrix of the system can be calculated by

repeating the above procedures for each DOF of the system. For illustration, the

calculated mode shapes and their comparison with those obtained through the closed-

form solution are tabulated in Table (6.2). The second and third modal responses are

illustrated graphically in Figures (6.6a) and (6.6b). The identified stiffness matrix

and damping matrices, as well as those obtained theoretically are listed below:

The identified modal mass:

(18.16
0.04
~0.14
0.03
0.12
| 0.01

[q> perfect ] x [M] X [(D,perfect] =

The identified stiffness matrix:

K = O™ xdiag[K,]x[®'] =

perfect

The theoretical stiffness matrix:

0.04
5.71
0
0.01
0.05
0

[ 14684
—-17327
-128
-153
131

| —188

-0.14
0
3.69
-0.01
0.10
-0.03

-17327
15176
- 7381
-56
418
-3

0.03 0.12 0.01 ]
001 005 0
-0.01 0.10 -0.03
3.67 0.04 -0.01
0.04 532 0.02
-0.01 0.02 18.73 |
-128 -153 131
-7381 -56 418
14743 -7537 -139
—7537 14744 —7443
-139 7443 15229
13 -4 —7430

-188 1

~7430
14885 |




15000
—-7500
0

theory —

0
0
0

-7500
15000
-7500

0

0

0

The identified damping matrix:

C=0"x diag[cj]x[CD‘l]' =

The theoretical damping matrix:

(1.5
-0.75
0

theory =

0
0
0

-0.75
1.5
-0.75
0
0
0

0
- 7500
15000
—-7500

0

0

0

-0.75

1.5

-0.75

0
0

[ 1.4739
-0.7331
~0.0148
-0.0151
0.0133
| -0.022

0

0
-7500
15000
-~ 7500

0

0
0

-0.75
1.5
-0.75

—-0.7331
1.5213
—-0.7382
-0.0074
0.0389
- 0.0001

0

0

0
—-7500
15000
—-7500

0
0
0
-0.75
1.5

0 -0.75

-0.75

o O O

0
-7500
15000

—-0.0148
—-0.7382

1.4781

-0.7571
—-0.0158

0.0016

[T e N o B ]

1.5

-0.0151
-0.0074
-0.7571
1.4781
—0.7445
-0.0023
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0.0133
0.0389
—-0.0158
-0.7445
1.5266
—-0.7435

As can be seen, there is good agreement between the identified and theoretically

obtained results.

6.7 Case Study # 2: a Damaged Structure

In this section we consider the above mechanical system with only one

difference. In this case, the stiffness of the fourth DOF (%, ) has been reduced from

7500 KN/m to 2500 KN/m (i.e. representing the presence of a damage in that region).

The Hilbert-Huang spectral analysis presented above has also been applied to the new

(damaged) system.

The measured displacement at the location corresponding to the third DOF

(X,,()) is shown in Figure (6.7a).

The Fourier transforms of all DOF (i.e.,

~0.022 ]
~0.0001
0.0016
~0.0023
~0.7435
1.4941 |
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X,,(t) through X, (t) are illustrated in Figure (6.7b). The frequencies of the DOF

fall in the following ranges:

(D)S538Hz =w,; <w,; <, =6.88Hz for the first mode
(2)8.88=w,,; <w,; <@,y =10.39 for the second mode

31644 =w,,; <w,; <05, =17.94 for the third mode

DH18=w,, <0, <0, =19.42 for the fourth mode
O)24=w,; <05y < @54y =25 for the fifth mode
(6)25 =04y < Wgy < Bgyy =27.95 for the sixth mode

Figure 6.8 illustrates the signature of the fourth DOF of the damaged structure,
as well as the signature’s (signal’s) IMF. The plots of for §,and 8,, versus time ¢ for

the first DOF (mass) are illustrated as dotted curves in Figures 6.9a and b,
respectively. It can be seen that curves are quite straight and consequently, their least
square fits are indistinguishable. Moreover, the third modal response of the damaged
system in a certain portion of time domain has been illustrated in Figure (6.10). As
an illustration, the signature of displacement of the 4™ DOF (mass 4) and its IMFs in
the damaged system is shown in Figure (6.11).

All natural frequencies and damping ratios of the damaged structure evaluated
based on the presented approach, as well as the theoretical ones, are tabulated in
Table (6.3). Similarly, the theoretically calculated mode shapes and those identified
by the proposed approach are tabulated in Table (6.4).

The identified stiffness matrix and damping ratios of the damaged system, as well as
those calculated by theoretical methods are listed below.
The identified modal mass:

[18.16 0 -0.14 004 027 0.06

0 988 -0.01 0.01 -0.02 0.01

(© e I MIX [ ] = —-0.14 -0.01 3.6873 —0.05 0.06 -0.06
0.04 0.01 -0.05 4.02 0 0.01

027 -0.02 0.06 0 559  0.01

| 0.06 001 -006 001 001 7.01 |




The identified stiffness matrix:

K tomaged = Putamaged " * BZLK st iamagei) 1 ¥ [ Prtamaged ' ' =
14900 -7403 -176 —174 88 -81 ]
—-7403 15251 -7435 89 288 35
—176 —7435 9844 —2648 —44 -88
—174 89 2648 9786 -7505 10
88 288  —44 =7505 15347 -7415
| - 81 35 -88 10 —7415 14661
The theoretical stiffness matrix:
15000 —7500° O 0 0
—-7500 15000 -7500 0O 0
0 -7500 10000 —2500 O
Koneory = 0 0  -2500 10000 -7500
0 0 0  —7500 15000
0 0 0 0 -7500
The identified damping matrix:
[ 1.6795 -0.714 -0.0687 -0.0377
-0.71 1.6656 -—0.7315 -0.0133
c _|-0.0687 -0.7315 1.1761 -0.453
dameged 1 0.0377 -0.0133 -0.453  1.1689
-0.0347 —0.0913 -0.026 —0.7383
|—0.1846 -0.0392 0.564 —0.0478

0

0

0

0
—7500
15000 |
~0.0347 -0.1846
-0.0913 -0.0392
-0.026 0.0564
—-0.7383 —0.0478
1.6754 -0.7147
-0.7147  1.6547 |
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By examining the identified stiffness and damping matrices, one can clearly

distinguish the damage location of the system. Otherwise, it is seen that the stiffness

of the structure between DOFs

three and four

have been changed.
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6.9 Conclusions

A theoretical investigation was carried out to investigate the vibration
characteristics of a six degree freedom mechanical system. The investigation was
carried out to demonstrate the integrity of Empirical Modal Decomposition (EMD).
Moreover, the integrity of EMD in detecting the vibrational changes of the system as
a result of sudden changes in stiffness at a particular location in the structure was also
examined. The identification of the change in the stiffness of the structure due to a
local change in the structural stiffness was used in the development of a damage
index, by which the system’s health could be monitored. The damage index was
developed based on the energy of the first intrinsic mode function (IMFs). Some of
the more significant observations from this study are summarized below:

1.The Hilbert-Huang spectral analysis method could be effectively used for the
identification of the dynamic characteristics of multi-DOF structural systems. The
formulation for evaluating stiffness and damping matrices was developed based on
the measured free vibration-time histories of displacement of all degrees of freedom
(though any measured quantity, such as acceleration could also be used).

2.The natural frequencies and damping ratios of the system could be effectively
calculated based on the data collected through only one single sensor used for
measuring the free vibration-time history of the system (more importantly, only at
one single location).

3.If the time history responses are evaluated at all degrees of freedom of the
system, one can effectively evaluate the mode shapes, as well as the mass, stiffness,
and damping matrices of the structure.

4 Establishing the above information for a healthy system, as well as a
damaged system can also effectively establish the presence of damage and its
location by way of the proposed damage index. The developed damage index is
based on the first intrinsic mode function.

Two case studies were used to demonstrate the integrity of the proposed

identification system, as well as the developed damage index.
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7.1 Abstract

One of the most important issues in today’s oil and gas industry is access to an
effective and reliable damage detection system for health monitoring of pipeline
systems. Vibration-based damage detection systems have been contemplated in the
past with varying success. This paper demonstrates the effectiveness of a series of
coupled mathematical/engineering approaches that are used to detect damage in
pipes, reliably and accurately. The proposed health monitoring methodology is based
on monitoring the vibration response of pipes using piezoelectric sensors. Finite
element analysis is used to simulate the response of a healthy pipe, as well as pipes
with various size damages. The degradations (defects) have been assumed to exist on
the pipes in the form of local corrosion, simulated by reducing the wall thickness in
various areas around the circumference of pipes. Fast Fourier transformation (FFT),
FFT integration, wavelet transformation (WT) and wavelet packet transformation
(WPT) methods are used to examine the pipe’s dynamic response to an impacting
force. Novel “Damage Indices” expressions are developed based on the evaluation of
vibration signal induced energies. As it will be seen, the damage indices can
effectively establish the existence of defects. Moreover, the energy indices can
distinguish the differences among various size defects. It was observed that all the
approaches considered could essentially establish the existence of the defects with
good accuracy; however, incorporation of the WT and WPT energy components

yielded a more precise identification of damage in the pipes examined.
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7.2 Introduction

Pipelines are essential structural systems for transportation of natural gases,
crude oils, and other refined oil by-products on and offshore. They are also used for
both separation and transportation of bitumen in oil sand. Reliable and low-cost
operation of pipelines is an important and critical aspect for the energy industry. As
pipes age, their integrity deteriorates. Many factors such as corrosion, damage caused
by excavation equipment, bending/buckling/wrinkling caused by earth and
subsidence movement, cracks, and defective welds can impact the integrity of
pipelines. Various non-destructive and in-line inspection methodologies have been
developed and used with some success to detect the factors that can threaten the
integrity of pipelines at the early stages of their development, thus preventing the
resulting leakage and/or accidents and costly shutdowns. Most in-line inspection tools
that are available today use either the magnetic flux leakage (MFL) method (Reber et
al. 2002) or the ultrasonic guided wave method (Wilkie et al. 2002). Experimental
works have also demonstrated the potential of piezoceramic actuators for controlling
vibration in cylindrical shell applications (Fuller et al. 1990 and Silcox et al. 1992).

In comparison, piezoelectric sensors are light, can easily be adhered to
components, use little power and are sensitive to small changes in strain and
vibration, and are less sensitive to noise, thus are ideal for pipeline applications. Sun
et al. (1995) and later Ayres et al. (1998) reported the use of PZT transducers for
damage detection on a laboratory sized truss structure and a prototype truss joint,
respectively. The proposed damage detection method is based on the principle of
electromechanical coupling between the host structure and the bonded PZT
transducer. The change in structural impedance due to the occurrence of damage
modified the effective electrical impedance of the PZT adhered to the structure. This
effected change in the driving point impedance of the PZT transducer was used to
identify the onset of damage in the hosting structure (Giurgiutiu and Rogers 1997,
1998). Soh et al. (2000), Tseng et al. (2000) and Bhalla (2000) have reported some
successful applications of the above method on concrete and other civil engineering
structures. Tseng and Naidu (2002) and Jian et al. (1997) used piezoelectric patches

for damage detection of composite structures, based on the non-parameter
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characterization method. Hu and Fukunaga (2001) proposed a two-stage damage
identification method based on the piezoelectric sensors for damage detection in
composite structures. A proposed on-line damage diagnostic technique was
successfully applied by Keilers and Chang (1993 and 1995b) for predicting
delamination with piezoelectric sensors and actuators adhered to the top and bottom
surfaces of a beam. The methodology was also validated experimentally (Keilers and
Chang, 1995a). The diagnostic scheme was a search-based technique with an iterative
damage identification algorithm combined with a wave response and a frequency
domain method. Majumdar and Suryanarayan (1988) used the electromechanical
effect of piezoelectric material for predicting the output voltages from the sensors
when a delaminated beam was excited by the actuators. The presence of damage was
identified by the difference between the output voltage obtained from the sensors
attached to the damaged and undamaged structure. A review of damage detection
methods using piezoelectric sensors and actuators can be found in Zou et al. (2000).

In this paper, a three-dimensional finite element model (FEM) is employed to
characterize the vibration response of a pipe hosting piezoelectric sensors. The
fundamental electrostatic equations governing the piezoelectric media are solved
numerically by FEM. The piezoelectric sensors voltages are extracted from the
dynamic response due to impact (much like an excitation induced by an impact
hammer or a pendulum). Then, the Fast Fourier transformation (FFT), wavelet
transformation (WT) and wavelet packet transformation (WPT) methods are used for
analyzing the time-dependent piezoelectric voltage signals. Specifically, the FFT, the
integral of the amplitude of the FRF, the WT and WPT equivalent energies over
various ranges are taken as means of developing damage indices for establishing the
presence and intensity of defects in cantilever pipes.

The motivation for the development of the damage detection methodology was
prompted by a failure that occurred, in 2000, in one of Nova Scotia’s offshore oil and
gas facilities. The initial application of the method was therefore targeted toward
exposed pipes on offshore facilities and refineries.

Our analysis indicated that although damages could be successfully detected by

all the proposed methodologies, nevertheless, comparison of the energy components
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obtained by WT and WPT yields a clearer means for identification of damage in
comparison to those obtained through the FFT and the integral of FRF over the
frequency ranges. These proposed algorithms can also distinguish the difference

between different defect sizes.

7.3 Modeling and formulation of piezoelectric material

Various finite element formulations have been presented by several researchers
for the assessment of dynamic response of piezoelectric materials. For instance, Tzou
and Tseng (1990), and Rao and Sunar (1994) used the following equations to

represent the dynamic response:

[Mi}+ [k, Jod+ K u¢]{¢ =
[Kw]{“ [ ¢¢]{¢ = -

where

= I/ o[V, T[NV, a7 is the kinematically consistent mass matrix;
K., ]= “Bu i [C £ IBu gV is the elastic stiffness matrix;
[ . ¢ i[B ]a'V is the piezoelectric coupling matrix;

[K y ]= - L [B¢ ]T [a][B¢ ]dV is the dielectric stiffness matrix;

J:[N {f,}av + L [N, ] {f:}d@+[N,[{f,} is the mechanical force
vector, and

—L [N P ]T q,dQ - [N p ]ch is the electrical force vector.

In the above equations, [M] is the mass matrix, « is the displacement,

¢ is the electric potential, O is the applied concentrated electric charges, p
is the mass density, [B, ] and [B¢J are the derivatives of the shape functions,
[Vv,] and |N,]; [C), [€] and [e] are the elasticity, dielectric and

piezoelectric matrices, respectively; f, denotes the body force, f; is the

surface force, f; is the concentrated force, g; is the surface charge, g, is the
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point charge, S; is the area where mechanical forces are applied at, and S; is
the area where electrical charges are applied. The above matrix equations
are written in partitioned form to reflect the coupling between the elastic and
electric fields. Equation (7.1) can be condensed to represent the sensor’s

potential in terms of the sensor displacement in the form:

{.)=[K, I &7 Jud (72)

7.4 FFT-based Damage Detection Methods

All the methods presented here for comparison purposes are based on the
assumption that damage is located between the points where the change in damage
index is the greatest. The selection of these points is arbitrary. The methodology
relies on vibration data obtained through the sensors located on these points. If more
than one defect is located in between two sensors, the methodologies, at their present
form, cannot detect that there are more than one defect. However, the methodologies
can detect muti-defects, as long as each defect is located in between a pair of sensors.

The calculation of discrete approximation of FFT of the transient response data
can be represented by (Santamarina and Dante 1998):

X(w)= NZ:x(rAt)e'””A' At At = v (7.3)

The equivalent energy can be represented by:
E.=[ |X() do (7.4)

The equivalent FFT energy index is assumed to be:

E Damaged
XX
Healthy
xx

24100 (1.5)

FRF_E,=Y ~

where E2? and E™*“™ are the before and after damage energies in the pipe,

respectively.
This research proposes the integral of the amplitude of the FRF evaluated over
various frequency ranges as a damage index. The selected frequency intervals should

be such that their limits bound the natural frequencies of the original undamaged
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system, because these are the regions most sensitive to the changes in response to the
damage causing parameters.

It should be noted that if one looks at the time-domain data, there is not any
noticeable change in the signal; there is, however, a slight shift in the natural
frequency when considering the frequency domain data. Nevertheless, the
observation of the behaviour of this integration quantity would enable one to detect

damage in pipes. This integral is defined by:

+0

I, = [ |X(@)do (7.6)

~m

The damage index of FFT integration is defined as

IDamaged _ IHealthy

FRF I, = | x x l><1oo (1.7)

Healthy
I x

where 7% and 17" are the integral of pipe’s signals at the damaged and

undamaged state, respectively.

7.5 Wavelet transformation and damage index

7.5.1 THE DISCRETE WAVELET TRANSFORM

The following paragraphs briefly review wavelets and wavelet transformation
methodologies with the aim of providing the reader with a better perspective of the
work carried out in this paper.

Transformation of a signal is just another form of representing a signal, and it
does not change the content present in the signal. In the context of the work presented
here, the Wavelet Transform (WT) provides a time-frequency representation of a
signal. This method was developed to overcome the short coming of the Short Time
Fourier Transform (STFT), which is commonly used to analyze non-stationary
signals. While STFT gives a constant resolution at all frequencies, WT uses multi-
resolution technique by which different frequencies are analyzed with different

resolutions.
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A wave is an oscillating function of time or space, and periodic in nature, and
wavelets are localized waves. They have their energies concentrated in time or space
and are suited for analysis of transient signals. Fourier Transform and STFT use
waves of regular shapes to analyze signals. The Wavelet Transform uses wavelets of
finite energy to do the same. Figure 7.1 illustrates schematics of a FFT and Wavelet

waves.

-

(2) (b)

Figure 7.1. Schematics of (a) a typical FFT function; (b) a typical wavelet

function

A wavelet analysis is very similar to a STFT analysis. In STFT analysis the
signal to be analyzed is multiplied by a window function, while in wavelet analysis,
the function is multiplied with a wavelet function. However, as shown in the Figure
7.1, unlike the STFT, in WT, the width of the wavelet function changes with each
spectral component. As a rule of thumb, the WT provides good time resolution and
poor frequency resolution at high frequencies, but it conversely results in good

frequency resolution and poor time resolution when used at low frequencies.

7.5.2 The Continuous Wavelet Transform and the Wavelet

Series

A continuous wavelet transform of a function f(t) is defined by Newland (1993):

« t=b
\/— ff(t) v (e

W, (a,b)= (7.8)
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where Wy is the calculated wavelet coefficient, which can be used to recompose the

original function f(t) (where f(t) itself is the function (signal) to be transformed); b is

the translation parameter; a is the scale parameter; v (©) is the transforming function
(the so called “mother wavelet” or the “basis function”). All wavelet functions used in
a given transformation are derived from the mother wavelet through translation
(shifting) and scaling (dilation or compression).

The mother wavelet used to generate the basis functions is selected based on
some desired characteristics associated with that function. The translation parameter b
relates to the location of the wavelet function as it is shifted through the signal; thus,
it corresponds to the time information in the WT. The scale parameter a is analogous
to |1/frequency|, corresponding to the frequency information. By scaling the function,
one may either dilate (expand) or contract (compress) a signal. Large scales can be
used (at low frequencies) to dilate the signal and provide detailed information hidden
in the signal, while small scales (used at high frequencies) can compress the signal
and provide global information about the signal. It is important to note that the WT
merely convolutes the signal and the basis function. This is quite useful, as in most
practical applications, the high frequencies (at low scales) do not last for a long
duration, but instead, appear as short bursts. Conversely, low frequencies (high
scales), usually last for entire duration of the signal.

On the other hand, the recomposition equation can be expressed by:
1 %% o t=b
fo=—/| j W, (@b’ (—=) dadb
Cy o (7.9)

where ¢, =27 Nyx(r)[)z (dr/r) <o, in which W(r)is the wavelet base function
0
of r.

7.5.3 Wavelet Families

There are a number of Mother Wavelets or basis functions that can be used in
WT. Common Wavelet families are Haar, Daubechies4, Coifletl, Symlet2, Meyer,
Morlet, and the Mexican Hat. These families represent various shapes, from simple

shape (as in the Haar shown in Figure 7.2(a)), to more complex shape (such as the
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Morlet shown in Figure 7.2(b)). For more information on these families, see the text
book by Mallat (1999).

Since the mother wavelet produces all wavelet functions used in the
transformation through translation and scaling, it determines the characteristics of the
resulting wavelet Transform. Therefore, the details of the particular application
should be taken into account and the appropriate mother wavelet should be selected

so that the Wavelet Transform is accomplished effectively.

1.0 |
05 F
0.0 0.0 |
-05 |
-1.0
L L |
0 05 1.0 -8 -4.0 0.0 4.0 8.0

Figure 7.2. Two different mother wavelet functions: (a) Haar and (b) Morlet
Wavelet

One of the most useful methods in practice is the wavelet packet analysis

(WPT) (Sun and Chang 2002). Here, the WPT algorithm is briefly discussed.
Let g7(1) €U/, then g7 (#) can be expressed as

gl (0)=Yd/"y,(2/t-]) (7.10)

in which y, is the wavelet base, ¢ is the time, and:

Jj+2n-1 _ Jn
{d1 = Zk a;_,d;

: . 7.11
d1j+1,2n - Zk bk_zdli,n ( )
where the recomposing {d fid } can be calculated by:

de’n = Z [h[_de]{+l,2n_1 + g1—2kd1{+1’2nJ (7'12)

k
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where h(k) and g(k) are the discrete filters (Wickerhauser 1994). Defining the
signal energy Urby:

where the wavelet packet component energy U Jen Can be considered to be the
i
energy stored in the component signal d,” (¢) as
U = [Careya (7.14)

The WPT damage index introduced in this analysis is therefore defined as:

o UDamaged _ Healthy
lr,n f;t.n
WPT U= ‘ ey I>< 100 (7.15)
i=l fli,r'

where U ﬁ‘_’:""ged and U ;Iff”hy are the energies of the pipe before and after the
i1 {

damage, respectively.
In summary, the wavelet-based approaches can be considered as adaptive, while

the FFT-based approaches are non-adaptive.

7.6 Examples

To investigate the effectiveness of the proposed piezoelectric-based vibrational
sensing damage detection methodology for assessing health of pipes, we investigate
the response of aluminum pipes bearing various levels of damage. In each analysis,
the pipe hosts nine piezoelectric patches bonded onto it. The physical and material
properties of the pipes which are made of aluminum are provided in Table 7.1. Nine
PZT BM500 patches with dimensions of 0.05 m long and 0.05 m wide and thickness
of 1 mm, with mass density of 7650 kg/m> were used in this analysis. The material

properties of PZT BM500 piezoceramic from Sensor Technology Limited (2001) are

given as:
[12.1 754 752 0 0 0 ]
7.54 12.1 7.52 0 0 (7.16)
752 7.52 111 0 0 0 .
[cf]= x10% [N /m?]
0 0 0 211 0 0
0 0 0 0 226 0
L0 0 0 0 0 226




0 0 0

]zl 0 o o0

~54 -54 151

811 0 0

S]=| o 811 o0
0 0 7349

x107° [F /m]
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123
0 | [c/m] (7.17)
0

(7.18)

where [C%] is the elasticity matrix, [e] is the piezoelectric matrix and [£°] is the

dielectric matrix. The commercial finite element program ANSYS is employed for

modeling the response of pipes and the piezoelectric sensors. The three-dimensional
coupled element (SOLID5) of ANSYS is used for modeling. The pipes are

cantilevered (fully supported in one end, and free at the other end). The mesh density

has 40 rows of element along the axial direction, 18 elements along the pipe’s

circumference, in each row, and two layers through the thickness, as shown in Figure

7.3(a). The pipe is assumed to be impacted at its free end by pendulum, which is

simulated by applying a concentrated load with magnitude of 1000N applied in a time

interval of 2.5 us. Different damage locations, sizes and stiffness reductions (as a

damage form) are considered, as described in the following sections.

Table 7.1. Geometry and material properties of pipe

Outside diameter 273.5 mm
Wall thickness 9.3 mm
Length 2000 mm
Young’s modulus 67x10° N/mm>
Poisson ratio v=0.33

Mass density 2730 kg/m’

7.6.1 Case 1: Dynamical response of piezoelectric sensors for

different damage locations

To evaluate the integrity of the proposed methodologies, three different

cantilevered aluminum pipes, each having damage at different locations along their

length, were considered. This form of damage is assumed to result from corrosion,
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and the subsequent reduction of material at that location. This is simulated by
removing one layer (interior layers) element within two rows (i.e., a 100 mm width)
from the mesh forming the pipe. The defects are assumed to be located in mid-
distance between sensors 2 and 3, sensors 5 and 6, and sensors 7 and 8. These
damage locations are referenced as DL1, DL2 and DL3, hereafter. The comparison of
the natural frequencies obtained by the FEM (eigenvalue) analysis with those
obtained from the frequency response function (FRF) analysis of the sensors for the
healthy and damaged pipes (DL2) are provided in Table 7.2. Moreover, the first and
second mode shapes for the healthy pipe are shown in Figures 7.3(b) and (c). As
indicated in Table 7.2, a relatively close agreement between the two approaches is
obtained. Typical FRF response curves of one of the sensors (sensor 5) for the healthy
and damaged pipes are shown in Figure 7.4. Figure 7.5 illustrates the FRF response
curves of sensor 5 for the pipes having damage at three locations (DL1, DL2 and
DL3). The response of sensors 2, 4 and 7 for damage located in location 2 (DL2) is
illustrated in Figure 7.6. Careful examination of the FRF responses shown in Figures
7.5 and 7.6 indicates that identical piezoelectric sensors, mounted under a similar
condition on a pipe respond differently depending on the presence and location of
damage in the substrate. This is a significant observation, in that health monitoring of
pipes could be effectively achieved by using an array of piezoelectric transducers.
The following section will provide justification for this statement.

Furthermore, wavelet analysis was also applied to the three cases. Specifically,
the db3 wavelet (Daubechies3 Wavelet) and wavelet packet were used to conduct the
analyses. Detailed wavelet responses obtained through the analysis of sensor 4 for the
healthy and DL2 damaged pipe cases are shown in Figures 7.7(a) and 7.7(b),
respectively; similarly, the information obtained for the wavelet packet analysis is
shown in Figures 7.8(a) and 7.8(b). Notice that the wavelet methodology adopted
here involves a multi-resolution analysis for a piece of data windowed by shifted and
scaled wavelets generated from, or the so-called “mother wavelet” (Wickerhauser,
1994). Only the higher-resolution details were used to make the above observation.

Therefore, to detect a potential damage at a particular point in time would only
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require a small portion of data neighboring that particular time. This is an attractive
feature of this approach and an effective mean for on-line heath monitoring of pipes.
The component of energies obtained by the FFT, WT and WPT are tabulated in
Table 7.3. In this table, the WT and WPT energy components are evaluated based on
the db3 wavelet at the 4™ level decomposition. In the case of the WT approach, the

d;(t) and d{ (f) component of energies shows sensitivity to damage. However, in

the case of the WPT approach, the d,(f) component of energy exhibits more
sensitivity to damage.

Figure 7.9 illustrates the damage signatures (damage energy indices evaluated
based on the FFT, FFT integration, WT and WPT methodologies at the damage
locations) as a function of the sensor number mounted along the axial direction of the
pipe for the case where the damage is located in location 2 (DL2). It is observed that
all four approaches can detect the defect locations within the range of a pair of
sensors. However, it is noted that the WT and WPT methodologies can predict the
damage location more accurately than the FFT methods (i.e. the differences in the
energy indices from the sensors have much larger margin in WT and WPT than in the
other methods). The results also confirm the suitability of PZT sensors and their
sensitivity in detecting damage in pipes.

Moreover, the influence of noise on the data was also investigated. In general,
piezoelectric sensors produce excellent response, with minimal noise. Nevertheless,
it is instructive to examine the influence of noise on the results obtained through the
four methods.

The results are illustrated in Figure 7.9. The comparison of the results reveals
that only FFT method gets marginally affected by the noise, and the results obtained

from the other methodology are not affected.



Table 7.2. Comparison of natural frequencies
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Pipe Condition Modes FE  (eigenvalue) | FRF solution (Hz)
solution (Hz)
1 62.4 63.8
Healthy pipe 2 339.1 332.1
3 379.2 380.1
1 62.3 63.7
Damaged pipe 2 333.1 326.6
(DL2) 3 377.1 376.3
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7.6.2 Case 2: Detection of damage due to reduction in flexural
rigidity

To further examine the integrity and sensitivity of the selected methodologies,
this case study examines a pipe having reduced flexural rigidity in its mid-span,
between sensors 4 and 5. This effect was simulated by reducing the Young’s
modulus of two rows of elements at the pipe’s mid-span. The reduction in flexural
rigidity ranges from 10% to 50% to represent different intensities of damage. The
comparison of FRF response for the cases of 10%, 30% and 50% reduction in rigidity
is plotted in Figure 7.10. The comparison of the damage indices evaluated by FFT,
FFT integration, WT and WPT methodologies for the case of 30% damage are
illustrated in Figure 7.11. The damage indices are clearly increased near the location
where the pipe’s rigidity is decreased. At a first glance, the reader may not appreciate
the difference in the indices obtained by the various methods. However, if for
example, we plot the indices obtained from the FFT (as shown in the insert of Figure
7.11), the difference between the indices can be seen more clearly. Furthermore, the
slight difference (the shift) between the results from WPT and Wavelet is due to the
nature of the tree structures in WT and WPT. Otherwise, the locations of the baby
wavelets within the trees create the difference. Figure 7.12 also presents the
summary of the results in the form of variation in the damage indices as a function of

various percentiles of degradation extent, as predicted by the four methodologies.

7.6.3 Case 3: Detection of partial damage around the circumference
of the pipe

To date, most research works (Melhem and Kimhas, 2003; Wei et al., 2004; Qin
and Zhong, 2004) have considered the effect of damage within the full depth of a
beam or around the entire circumference of a pipe, since most approaches cannot
easily detect relatively small defects (with respect to the overall size of the structure
hosting the defect). The purpose of this case study is to demonstrate the ability of the
proposed approaches in detecting partial damage around the pipe’s circumference.
For this, three different pipes, each having a different size defect, are examined. The

first pipe has a defect around the entire circumference, in the second pipe the defect
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7.7 Conclusions

Access to an effective health monitoring system is an important aspect of
pipeline maintenance. The availability of an accurate and reliable damage detection
system can significantly reduce the life-cycle cost of a pipeline system. This research
introduced a new health monitoring approach based on sensing of vibration response
of a pipe using smart piezoelectric transducers, and then evaluating the vibration
response of the pipe using the data obtained by the transducers. In conjunction with
the use of three-dimensional piezoelectric FE analysis, a novel approach was
proposed for evaluating the “damage energy indices” established based on the Fast
Fourier transform and wavelet transform methodologies. The damage indices can
reveal the location of the defect. Case studies were considered to evaluate the
integrity of the proposed methodologies. For this, cantilevered pipes having various
forms of defects were examined. The defects were assumed to be at various locations,
having different intensities (i.e., in the form of reduction of wall thickness to simulate
a reduction in stiffness due to presence of corrosion). The numerical results confirm
that the proposed approaches could effectively identify the existence and intensity of
defects in the pipes. Among the FFT energy, FFT integration, wavelet energy and
wavelet packet energy methodologies, the wavelet transform proved to be the most

sensitive methods in detecting the location and intensity of the damage.
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Chapter 8

A DAMAGE INDEX FOR STRUCTURAL HEALTH
MONITORING BASED ON THE EMPIRICAL MODE
DECOMPOSITION
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8.1 Abstract

This paper presents two novel damage indices based on the empirical mode
decomposition (EMD) and Fast-Fourier integration for identifying structural damage
caused by a change in structural stiffness. The paper also demonstrates the
effectiveness of proposed damage indices formulated based on a series of coupled
mathematical/engineering approaches that are used to reliably and accurately detect
damage in pipes. The main approach is based on monitoring the vibration response of
pipes using piezoelectric sensors and the first intrinsic mode functions (IMFs). Finite
element analysis is used to simulate the response of a healthy pipe, as well as pipes
with various size damages. The damages are meant to represent the outcome of local
corrosion (damage) with varying reduction in area around the circumference of the
pipe. The evaluated damage indices could effectively establish the location of the
defects. Moreover, the evaluated energy indices could also distinguish various size
defects. To further demonstrate the effectiveness of our proposed damage indices, the
results are compared with other effective indices based on wavelet packet and other

statistical methods reported in the literature.
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8.2 INTRODUCTION

Today’s vital energy resources like oil and gas are transported through pipelines
that span through various terrains. Therefore, pipelines are critical elements, and their
health and reliability through their designed service life is an important issue for
design and maintenance engineers. Ground movement, resulting from natural and
unavoidable circumstances, could significantly change the supporting condition of
pipelines, thus subjecting them to loads and boundary conditions that would not have
been considered during the design phase. Moreover, as pipes age, their materials
deteriorate. Therefore, many factors such as corrosion, damage caused by excavation
equipment, cracks, and defective welds could severely impact the integrity of
pipelines. There are several ramifications resulting from such changes to the original
status of the pipe, thus causing massive costly dilemmas for industry stakeholders,
including the producers, pipeline operators, regulatory agencies and public.
Therefore, establishment of a safe and reliable method for detecting damage in
pipeline is an important issue for not one, but several parties.

There are currently several industrially established non-destructive and in-line
inspection methodologies available with some success to detect the factors that affect
the safe performance of pipelines. Most in-line inspection tools that are available
today use either the magnetic flux leakage (MFL) method (Reber et al. 2002) or the
ultrasonic guided wave method (Wilkie et al. 2002). On the other hand, Experimental
works have also demonstrated the potential of piezoceramic actuators for controlling
vibration in cylindrical shell applications (Fuller et al. 1990 and Silcox et al. 1992).

Some of the reasons for using piezoelectric sensors are that they are lightweight,
can easily be adhered to components, use little power and are sensitive to small
changes in strain and vibration, and are less sensitive to noise, thus are ideal for
pipeline applications. Sun et al. (1995) and later Ayres et al. (1998) reported the use

of PZT transducers for damage detection on a laboratory sized truss structure and a
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prototype truss joint, respectively. The proposed damage detection methods are based
on the principle of electromechanical coupling between the host structure and the
bonded PZT transducer. Several other workers have also explored the use of
piezoelectric patches for detecting damage in structures. A review of damage
detection methods using piezoelectric sensors and actuators can be found in Zou et al.
(2000), and also in the recent article of Cheraghi et al (2005).

The present work follows the work done earlier (Cheraghi et al., 2005), with its
main objective to demonstrate the effectiveness and integrity of two novel damage
indices that were developed based on the empirical mode decomposition (EMD) and
Fast-Fourier integration for identifying structural damage caused by a change in
structural stiffness. A series of coupled mathematical/engineering approaches were
used in the development of these indices, which as will be seen, would reliably and
accurately detect damage in pipes. The demonstration will be based on the simulation
of the response of a healthy pipe, as well as pipes with various size damages by Finite
element method. Our cases studies will also demonstrate that the proposed indices
could also establish the location of the defects, as well as the relative sizes of the
defects.

Comparison will also be made by the results reported in the literature that were

established based on the wavelet packet and other statistical methods.

8.3 MODELING AND FORMULATION OF THE
PIEZOELECTRIC SENSORS

Various finite element formulations have been presented by several researchers
for the assessment of dynamic response of piezoelectric materials. For instance, Tzou

and Tseng (1990), and Rao and Sunar (1994) used the following equations to

represent the dynamic response:
MK} + (K. Jub+ K, o} = {F)
[K¢u ]{u}+[K¢¢ ]{¢}= {0} 8.1

where
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[M]= [ o[V, T[N, ]V is the kinematically consistent mass matrix;

[K..]= [[B.T[C?IB, 1 is the elastic stiffness matrix;

[, 1= [[8,] [e] [B, Jav is the piezoelectric coupling matrix;

(K, 1=~ [ [B, ] [€]B, Jav is the dielectric stiffness matrix;

{FY= [T ar + [ VT {fJa+ [N, T{£.} is the mechanical
force vector, and

{0}=~ -L, v y g.d0-[N ; ]ch is the electrical force vector.

In the above equations, [M] is the mass matrix, u is the displacement,

¢ is the electric potential, Q is the applied concentrated electric charges, p

is the mass density, [B, ] and [B¢J are the derivatives of the shape functions,
[V,] and |[N,|; [CF), [€] and [e] are the elasticity, dielectric and
piezoelectric matrices, respectively; f, denotes the body force, f; is the
surface force, f; is the concentrated force, g; is the surface charge, g. is the
point charge, S; is the area where mechanical forces are applied, and S is
the area where electrical charges are applied. The above matrix equations
are written in partitioned form to reflect the coupling between the elastic and

electric fields. Equation (8.1) can be condensed to represent the sensor’s

potential in terms of the sensor displacement in the form:

p.)=1x, I'l&% ) (82)

8.4 FFT-BASED DAMAGE DETECTION METHOD

All the methods presented here for comparison purposes are based on the
assumption that damage is located between two locations that exhibit the greatest
damage indices. The selection of these locations is arbitrary. The methodology relies
on vibration data obtained through the sensors located on these points. If more than

one defect is located in between two sensors, then the methodologies in their present
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form could not indicate the existence of more than one defect. However, the
methodologies could detect muti-defects, as long as each defect is located in-between
a pair of sensors.

The calculation of discrete approximation of FFT of the transient response data

can be represented by (Santamarina and Dante 1998):

N-1
X (@)= x(rAt)e™ ™ At At = % (8.3)
r=0

In above Equation, x(z) is a periodic function ( containing the output of the

piezoelectric sensors) with a period of 7', N is the total number of samples, X (@) is

the frequency response of x(t).

The equivalent energy can be represented by:

E,=[ |X(@) do (8.4)
The equivalent FFT energy index is assumed to be:
EDamaged )
FRF_E,=Y. ﬁ%—ﬁxloo (8.5)
where E2™%? and EM™ are the before and after damage energies in the

pipeline, respectively.

This research proposes the integral of the amplitude of the frequency response
function (FRF) evaluated over various frequency ranges as a novel quantity, i.e.,
damage index. The selected frequency intervals should be such that their limits bound
the natural frequencies of the original undamaged system, because these are the
regions most sensitive to the changes in response to the damage causing parameters.

This integral is then defined by:
1, = | [X(@)do (8.6)

The damage index of FFT integration is defined as

1 f)amaged .y fealthy|

|><100 (8.7)

FRF I, -|

Healthy
I x
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where 77" and I™“™ are the integral of pipe’s signals at the damaged and

undamaged state, respectively.

8.5 WAVELET TRANSFORMATION AND DAMAGE INDEX

8.5.1 The Discrete Wavelet Transform

The following paragraphs provide brief reviews of wavelets and wavelet
transformation methodologies with the aim of offering the reader a better perspective
of the work carried out in this paper.

Transformation of a signal is just another form of representing a signal; such a
transformation, however, would not alter the content of a given signal. In the context
of the work presented here, the Wavelet Transform (WT) provides a time-frequency
representation of a signal. It was developed to overcome the limitations of the Short
Time Fourier Transform (STFT), which is commonly used to analyze non-stationary
signals. While STFT provides a constant resolution at all frequencies, WT uses a
multi-resolution technique by which different frequencies are analyzed with different
resolutions.

While a wave is an oscillating function of time or space and is periodic,
wavelets are localized waves. They have their energies concentrated in time or space
and are suited for analysis of transient signals. The Fourier Transform and STFT use
waves of regular shapes to analyze signals, while the Wavelet Transform uses
wavelets of finite energy to do the same. Figure 8.1 schematically illustrates typical
FFT and Wavelet waves.

A wavelet analysis is very similar to a STFT analysis. In STFT analysis the
signal to be analyzed is multiplied by a window function, while in wavelet analysis
the function is multiplied with a wavelet function. However, as shown in the above
figure, unlike the STFT, in WT, the width of the wavelet function changes with each
spectral component. As a rule of thumb, the WT provides good time resolution but

relatively poor frequency resolution at high frequencies; however, when used at low
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frequencies, it provides good frequency resolution, but relatively poor time

resolution.

8.5.2 WAVELET-BASED DAMAGE DETECTION METHOD
Wavelet packets consist of a set of linearly combined usual wavelet functions. A
wavelet packet function has three indices, (//j.,k (t) , where integers i , j and & are the

modulation, the scale and translation parameters, respectively,

(a) (b)
1.0
0.5 |
0.0 0.0
0.5 |
-1.0
| 1 |
0 0.5 1.0 -8 -40 00 40 80
(©)

Figure 8.1. Schematics of (a) a typical FFT function; (b) a typical wavelet
function; (¢) Two different mother wavelet functions: (a) Haar and (b) Morlet

Wavelet.

v (=2"y'(2't-k) (8.8)

The wavelets ' are obtained from the following recursive relationships,
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VO =2 Y hkw @2~

- (8.9)
v () =2 Y gy’ (2t - k)

k=0
Note that the first wavelet is the so-called mother wavelet function,

v ()=o), ¥' () =y(t) (8.10)

The discrete filters A(k)and g(k)are the quadrature mirror filters associated
with the scaling function ¢(#) and the mother wavelet functioni(¢) . Any measurable

and square-integratable function can be decomposed into wavelet packet component

functions. The decomposition process is a recursive filter-decimation operation. The

decomposed wavelet packet component signals fj’ (t) can be expressed by a linear

combination of wavelet packet functions ;k (t) as follows,

fi@= ic},kw},k(t) (8.11)

=—a0

The wavelet packet coefficients cj.,k (f) can be obtained from,

Chu =[OV, () (8.12)

Each component in the wavelet packet decomposition (WPD) tree can be viewed as
the output of a filter tuned to a particular basis function, thus the whole tree can be
regarded as a filter bank. At the top of the WPD tree (lower decomposition level), the
WPD yields a good resolution in time domain but a poor resolution in the frequency
domain. On the other hand, at the bottom of the WPD tree (higher decomposition
level), the WPD results in a good resolution in the frequency domain yet a poor
resolution in the time domain. For the purpose of structural health monitoring,
frequency domain information tends to be more important and thus a high level of the
WPD is often required to detect the minute changes in the signals.

After understanding the basis of WPD, the methodologies used to utilize these

signals for structural condition assessment are briefly summarized.
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Sun and Chang (2002a) demonstrated numerically, using a three-span bridge,
that wavelet packet component energies were sensitive parameters and could be used

as structural condition signatures. These component energies were defined as,

E = Eof;(t)zdt (8.13)

It can be shown that, when the mother wavelet is semi-orthogonal or
orthogonal, the signal energy E,would be the summation of the jth level component

energies as follows:
2 < j
E = [ frydi= E, (8.14)
i=1

Since each wavelet packet component contains information of the signal in a
specific time-frequency window, the magnitude of the component energy could

therefore vary quite significantly.

8.6 Mathematical Description of Hilbert-Huang Transform
(HHT)

The Hilbert transform, Y (¢), of an arbitrary function, X(¢), in Lp-class
(Titchmarsh et al.,1948), is defined by:

vy =Lp[ X (8.15)
T T*r-t

where P indicates the Cauchy principal value. Consequently an analytic signal, Z(¢),
can be produced by:

Z(t)= X(O)+iY(®) = a(®)e”" (8.16)
where

2y 4 72 (T Y ()
al) =[X"@®O)+Y ()], (1) = arctan(X—(t) 8.17)

are the instantaneous amplitude and phase angle of X(7).

Since Hilbert transform Y (¢) is defined as the convolution of X(¥) and 1/¢ by
Eq. (8.15), it emphasizes the local properties of X{(f), even though the transform is
global. In Eq. (8.16), the polar coordinate expression further clarifies the local nature
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of this representation. With Eq. (8.16), the instantaneous frequency of X{(¥) can be
defined by:

de)
dt

The method of EMD was recently proposed by Huang (1998b) to decompose a

o(f) = (8.18)

measured response signal x(f) into “intrinsic mode functions” (IMFs) that would
admit well-behaved Hilbert transforms. The procedure of EMD is to construct the
upper and lower envelopes of the signal by spline-fitting and the average (mean) of
both envelopes are computed. Then the signal is subtracted from the mean (the
process is referred to as the sifting process). By repeating the sifting process until the
resulting signal becomes a monocomponent (i.e., one up-crossing or down-crossing)
of zero, it will result in one local peak or (trough), indicating that the number of up-
crossings (or down-crossings) of zero is equal to the number of peaks (or troughs).
Such a monocomponent signal would then admit a well-behaved Hilbert transform
and is referred to as an “IMF”. The original signal is then subtracted from the IMF
and the repeated sifting process is applied to the remaining signal to obtain another

IMF. The process is repeated to obtain n IMFs, that is:
x()=Dc;(t)+r,() (8.19)
Jj=1

in which cj(f) (= 1,2, . . . ,n) are the IMFs of the measured signal x(f), and r,(f) are the
residues that could be viewed as the mean trend of the signal or a constant.

The above set of operations is referred to as the EMD method, which has been
patented by Huang and his co-workers (1998b, 1999). It has been shown by Huang et
al. (1998b, 1999) that the characteristics of the signal could be extracted through the
behavior of the IMFs, and that the EMD is applicable to nonstationary or nonlinear
signals. Based on the EMD approach described above, the first IMF has the highest
frequency contents of the signal. During the EMD process, a specified frequency is

referred to as the intermittency frequency o,

int °

which can be imposed so that the

resulting IMF will have frequencies higher than o, see Huang (1998a). This is

int



188

accomplished by removing the data that have frequencies lower than @,, from the

IMFs by a straightforward counting process.

The Hilbert-Huang Transform (HHT) method was also proposed by Huang
(1998a). It consists of two parts: (i) an Empirical Mode Decomposition (EMD), and
(ii) a Hilbert Spectral Analysis. The method is based on decomposing a signal into
intrinsic mode functions (IMFs) using the described empirical mode decomposition
(EMD) method, with the condition that each IMF admits a well-behaved Hilbert
transform. Then, the Hilbert transform is applied to each intrinsic mode function to
obtain a decomposition of the signal in the frequency-time domain. This approach is
also referred to as the Hilbert-Huang spectral analysis (HHSA) and it is applicable to
a non-stationary signal (Huang (1998b), Huang et al. (1999)).

In this paper, the EMD method proposed by Huang (1998a) will be used to
decompose the measured response signal (output voltage of the piezoelectric sensors)
into IMFs that would admit a well-behaved Hilbert transform. Based on the EMD,
the modal response of each mode can then be extracted from the output voltage of a
piezoelectric sensor (or any other similar sensors). The key advantage of using the
Hilbert Transform with Empirical Mode decomposition (EMD), rather than FFT or
wavelet methodologies is that one is enabled to use the instantaneous frequency to
display the data in a “time-frequency-energy” format. This would produce a more
accurate “real-life” representation of the data, thereby eliminating the artifacts
associated with the non-local and adaptive limitations imposed by the FFT or wavelet
methodologies. Moreover, the conventional Fourier-based methods are designed to
work with linear data or linear representations of nonlinear data; therefore, they are
not efficient for studying nonlinear waves and other nonlinear phenomena.

In this paper, a damage index is also introduced that is based on the first (IMFs)
of the output voltages obtained through piezoelectric sensors, which are passed
through the band pass filter to ensure that they only contain the first natural frequency
of the system. The energy of the first (IMFs) is defined as:

E = ﬂ (IMF) dt (8.20)

The damage index is therefore defined as:
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Healthy Damaged
E mn -E mn

DI, =’ x100 (8.21)

Healthy
E mn |

In the above equation, m is the sensor’s number or the considered degree of
freedom of structure, n is the mode shape and (IMF) is the first calculated intrinsic

mode function of the signal which has been passed through the band-pass criterion.

8.6.1 Band-pass filtering and EMD
The isolation of the modal responses using the EMD method presented above

has an advantage in that the frequency content of the signal at each time instant can
be effectively obtained. However, the associated computation could be quite
involved, in particular when the modal frequencies are high, and/or when the signal is
polluted by an elevated noise level. In these cases, in order to obtain accurate modal
responses, one should increase the number of siftings in the EMD procedure.
Therefore, in order to simplify and decrease the computational efforts, an alternative
approach based on the band-pass filter was proposed by Yang et al. (2003). With
their proposed method, one could determine the approximate frequency range for
each natural frequency from the Fourier spectrum of the output voltage. For example,
if one looks at the power spectrum analysis of sensor 3, as illustrated in Figure 8.3,
one would see that the first mode is between 60 to 65 Hz. Each signal is then
processed through the band-pass filters with a set frequency band. The time history
obtained from the jth band-pass filter (jth natural frequency) is then processed
through EMD. In this way, the first resulting IMF would be quite close to the jth
modal response. By repeating the above procedure for the other natural frequencies,
one could then obtain » modal responses. In Table 8.2 the result of calculating natural
frequency based on EMD method is tabulated. Here we pass all of the output signals
of piezoelectric sensors through band pass filter which only has a first natural

frequency because our damage index is based on first IMFs of first natural frequency.

8.7 Examples

To investigate the effectiveness of the proposed piezoelectric-based vibrational
sensing damage detection methodology for assessing the health of pipeline systems,

we investigate the response of aluminum pipes bearing various levels of damage. In
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each analysis, the pipe hosts nine piezoelectric patches bonded onto it. The physical
and material properties of the pipes, which are made of aluminum, are provided in
Table 8.1. Nine PZT BMS500 patches with dimensions of 50 mm long, 50 mm wide
and 1 mm thick, with mass density of 7650 kg/m> were used in this analysis. The
material properties of PZT BM500 piezoceramic provided by Sensor Technology
Limited of Collingswood, Ontario (2001), are given as:

(121 754 752 0 0 O
754 121 752 0 0 0

[CE]= 752 752 11.1 0O 0 0
0 0 0 211 O 0

0

2

<10° [N/m?]  (8.22)

0 0 0 0 226
0 0 0 0 0 226

0 0 0 0 0 123

Ll=] o o o o 123 0 | [c/n] (8.23)
~54 -54 151 0 0 0

811 0 0
[°]=| 0 811 0 |x107[F/m] (8.24)
0 0 7349

where [C] is the elasticity matrix, [e] is the piezoelectric matrix and [¢] is the
dielectric matrix. The commercial finite element program ANSYS was employed for
modeling the response of pipes and the piezoelectric sensors. The three-dimensional
coupled element (SOLIDS) of ANSYS was used for modeling. The pipes were
cantilevered (fully supported in one end, and free at the other end). The mesh density
had 40 rows of element along the axial direction, 18 elements along the pipe’s
circumference, in each row, and two layers through the thickness, as shown in Figure
(8.2a). The pipe was assumed to have been impacted at its free end by pendulum,
which is simulated by applying a concentrated load with magnitude of 1000N applied
in a time interval of 2.5us. Figure (2d) shows the schematic plot of applied load.
Different damage locations, sizes and stiffness reductions (as a damage form) were

considered, which will be described in the following sections.



Table 8.1. Geometry and material properties of the pipe.
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Outside diameter 273.5 mm
Wall thickness 9.3 mm
Length 2000 mm
Young’s modulus 67x10° N/mm>
Poisson ratio v=0.33

Mass density 2730 kg/m’

Table 8.2. Comparison of the computed natural frequencies

Pipe Modes | FE (eigenvalue) | FRF solution | EMD solution

Condition solution (Hz) (Hz)

1 62.4 63.8 62.45
Healthy pipe 2 339.1 332.1 332.28

3 379.2 380.1 379.04

1 62.3 63.7 62.41
Damaged pipe 2 333.1 326.6 326.91
(DL2) 3 3771 376.3 376.59
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8.7.1 Case 1: Dynamical response of piezoelectric sensors for different

damage locations

To evaluate the integrity of the proposed methodologies, three different cantilevered
aluminum pipes, each having a damage at different locations along their length, were considered.
This form of damage is assumed to result from corrosion, and the subsequent reduction of
material at that location. This is simulated by removing one layer (interior layers) element
within two rows (i.e., a 100 mm width) off the mesh forming the pipe. The defects are assumed
to be located in mid-distance between sensors 2 and 3, sensors 4 and 5, and sensors 7 and 8.
These damage locations are referenced as DL1, DL2 and DL3, hereafter. The comparison of the
natural frequencies obtained by the FEM (eigenvalue) analysis with those obtained from the
frequency response function (FRF) and Empirical Mode decomposition analysis of the sensors
for the healthy and damaged pipes (DL2) are tabulated in Table 8.2. Moreover, the first and
second mode shapes for the healthy pipe are shown in Figures 8.2(b) and (c). As indicated in
Table 8.2, a relatively close agreement among the results obtained from the three approaches is
attained, indicating that the sensors’ response from a modal analysis could be effectively used to
evaluate the dynamic behavior of the system, since there are distinct differences between the two
signals. Typical FRF response curves of one of the sensors (sensor 5) for the healthy and
damaged pipes are also shown in Figure 8.3. Figure 8.4 illustrates the FRF response curves of
sensor 5 for the pipes having damage at three locations (DL1, DL2 and DL3). The response of
sensors 2, 4 and 7 when damage located in location 2 (DL2) is illustrated in Figure 8.5. A careful
examination of the FRF responses shown in Figures 8.4 and 8.5 indicates that identical
piezoelectric sensors, mounted under a similar condition on a pipe, would respond differently
depending on the presence and location of damage in the substrate. Figure 8.6 shows calculation
of the first and second natural frequencies based on EMD calculations for sensor 6 for the case of
DL2. This is a significant observation, in that health monitoring of pipeline systems could be
effectively achieved by using an array of piezoelectric transducers. The following section will

provide justification for this statement.
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Furthermore, wavelet analysis was also applied to the three cases. Specifically, the db4
wavelet and wavelet packet were used to conduct the analyses. Detailed wavelet responses
obtained through the analysis of sensor 4 for the healthy and DL2 damaged pipeline cases are
shown in Figures 8.7(a) and 8.7(b), respectively; similarly, the information obtained for the
wavelet packet analysis is shown in Figures 8.8(a) and 8.8(b). The Empirical Mode
Decomposition (EMD) was also applied to the all cases. Detailed results of EMD for calculation
of IMFs of sensor 3 for healthy pipe and sensor 6 for DL1 are shown in Figures 8.9(a) and (b).
Notice that the wavelet methodology adopted here involves a multi-resolution analysis for a
piece of data windowed by shifted and scaled wavelets generated from the so-called “mother
wavelet” (Wickerhauser, 1994). Only the higher-resolution details were used to make the above
observation. Therefore, to detect a potential damage at a particular point in time would only
require a small portion of data neighboring that particular time. This is an attractive feature of
this approach and an effective means for on-line heath monitoring of pipelines.

As seen from Figures 8.8 and 8.9, the initial signal has been decomposed to its IMFs and
baby wavelets. One could reach the original signal by inversing the process.

The energies components obtained by the FFT, EMD, WT and WPT and EMD are
tabulated in Table 8.3. In this table, the WT and WPT energy components are evaluated based

on the db3 wavelet at the 4™ level decomposition. In the case of the WT approach, the d L) and
d? (t) component of energies shows sensitivity to damage. However, in the case of the WPT
approach, the d,(¢) component of energy exhibits more sensitivity to damage.

Figure 8.10 illustrates the damage signatures (damage energy indices evaluated based on
the EMD, FFT integration, WT and WPT methodologies at the damage locations) as a function
of the sensor number mounted along the axial direction of the pipe for the case where the
damage is located in location 2 (DL2). It is observed that all four approaches could detect the
defect locations within a range of a pair of sensors. However, it is noted that the WT, WPT and
EMD methodologies could predict the damage location more accurately than the FFT methods

(i.e. the differences in the energy indices from the sensors have much larger margin in WT and
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WPT than in the other methods). The results also confirm the suitability of PZT sensors and their
sensitivity in detecting damage in pipelines.

Figure 8.11 (a) illustrates the damage indices based on EMD, WT and WPT as a function
of sensor number for the case where the damage is located in location (DL1). Figure 8.11(b)

shows the damage indices based on EMD and WPT for the case where the damage is located in
location (DL2).

Table 8.3. Comparison of the computed energies for FFT, WT and WPT for the damage
case DL2.

Method Components | Eheaithy (0-0.25 5) | Egamagea (0-0.25 s) | Change ( %)
FFT — 394.2 2426.2 515.5
d: () 1.2687x107 3.9225x107 30816.7
di() 8.6086x107 2.5979x10° 2917.8
WT di () 6.0146x10” 1.5819x10™ 163.0
di () 5.0762x10° 8.3846x107 65.2
di (t) 7.2237x10° 1.2242x10™ 69.5
dl(®) 8.6086x10°7 2.5979x10” 2917.8
d: () 4.6565x107 5.9677x107 28.2
d: (1) 1.3367x107 9.8914x107 640.0
WPT d;(t) 8.7762x10° 1.6786x107 91.3
d; (1) 6.8594x10°® 1.3166x107 91.9
ds () 1.7970x107 1.7382x10° 3.3
dl () 1.6655%107 3.6173x107 117.2
di 2.8572x107 3.6739x107 28.6
EMD . 0.0115 1.0039 8629.56
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8.7.2 Case 2: Detection of damage due to reduction in flexural
rigidity

To further examine the integrity and sensitivity of the selected methodologies,
this case study examines a pipe having reduced flexural rigidity in its mid-span,
between sensors 4 and 5. This effect was simulated by reducing the Young’s
modulus of the two rows of elements at the pipe’s mid-span. The reduction in flexural
rigidity ranges from 10% to 50%, representing different intensities of damage. The
comparison of FRF response for the cases of 10%, 30% and 50% reduction in rigidity
is plotted in Figure 8.12. The comparison of the damage indices evaluated by EMIj,
WT and WPT methodologies are illustrated in Figure 8.13. The damage indices are
clearly increased near the location where the pipe’s rigidity is decreased. As it is
clear seen from Figure 8.13, EMD method shows approximately linear function for
damage index compare as WT and WPT method.

To summarize, as it is seen from the results of the case studies, the Fourier
Transform method and the associated FFTs carry strong a-priori assumptions about
the source data, such as the linearity and stationariness of the data. Signals associated
to natural phenomena are essentially nonlinear and non-stationary. The
accommodation of this fact in FFT-based analysis often involves using more data
samples to assure acceptable convergence and non-algorithmic procedural steps for
the interpretation of FFT results. Wavelet-based analysis may yield some
improvement over the FFT because it can handle non-stationary data; however, it
retains the limitation of requiring the data set to be linear. Wavelet methods may also
prove inadequate, because notwithstanding the fact that wavelet is well-suited for
analyzing data with gradual frequency changes, its non-locally adaptive approach
causes “leakage”. This leakage can spread frequency energy over a wider range,
removing definition from data and giving it an overly smooth appearance. Only
recently has an alternative view for mechanics, the Hilbert view, and the associated

processing tool, the Empirical Mode Decomposition, been proposed.
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The HHT, however, allows direct algorithmic analysis of nonlinear and non-
stationary data functions by using an engineering and aposteriori data processing
method, namely an Empirical Mode Decomposition (EMD). This method enables one
to perform unconstrained decomposition of the source data function into a finite set of
Intrinsic Mode Functions (IMFs) that can be effectively analyzed by the classical
Hilbert Transform, thus making the HHT devoid of the FFT limitations.

8.8 Conclusions

Access to an effective health monitoring system is an important aspect of
pipeline maintenance. The availability of an accurate and reliable damage detection
system can significantly reduce the life-cycle cost of a pipeline system. This research
introduced a new health monitoring approach based on sensing of vibration response
of a pipe using smart piezoelectric transducers, and then evaluating the vibration
response of the pipe using the data obtained by the transducers. In conjunction with
the use of three-dimensional piezoelectric FE analysis, a novel approach was
proposed for evaluating the “damage energy indices” established based on the Fast
Fourier transform, Empirical Mode Decomposition (EMD) and have been compared
with wavelet transform methodologies. The damage indices proposed in this paper
can reveal the location of the defect. Case studies were considered to evaluate the
integrity of the proposed methodologies. For this, cantilevered pipes, having various
forms of defects, were considered. The defects were assumed to be at various
locations, having different intensities (i.e., in the form of reduction of wall thickness
to simulate a reduction in stiffness due to presence of corrosion). The numerical
results confirm that the proposed approaches could effectively identify the existence
and intensity of defects in the pipes. Among the FFT energy, FFT integration,
Empirical Mode decomposition (EMD), wavelet energy and wavelet packet energy
methodologies, the EMD and wavelet transform proved to be the most sensitive and
effective methods in detecting the location and EMD is to be the intensity of the best

method for finding the severity of damage.
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Chapter 9

A NOVEL APPROACH FOR DETECTION OF
DAMAGE IN ADHESIVELY BONDED JOINTS IN
PLASTIC PIPES BASED ON VIBRATION METHOD
USING PIEZOELECTRIC SENSORS

N. Cheraghi, M. Riley and F. Taheri
Publication Status: Submitted to publish at Journal of strain Analysis, May 2006

9.1 ABSTRACT

The use of dynamic response to identify damage and its location in civil
engineering structures has been an increasing research focus in the recent years. Most
of the available vibration-based damage assessment methods developed till now
require modal properties that are obtained via the traditional Fourier Transform.
Unfortunately, the Fourier-based modal properties, such as the natural frequencies,
mode shapes, etc., have been reported to be insensitive to structural damage and

hence are not regarded as suitable damage indicators.

This paper discusses the application of piezoelectric sensors used for evaluation
of the integrity of adhesive bonded joints in PVC plastic pipes. A systematic
experimental investigation was carried out to demonstrate the integrity of the

proposed method in detecting damage in the adhesively bonded joints.

Besides the commonly used methods, a newly emerging time-frequency
method, namely the Empirical Mode decomposition (EMD), was also employed. Two
Novel “Damage indices” were developed based on the evaluation of vibration signal
through piezoelectric sensors with the use of the Empirical Mode decomposition and
Fast Fourier integration induced energies. The results have been compared to the
available damage index method based on the wavelet packet transformation (WPT),

which will be used in the literature review.
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As it will be seen, the damage indices could effectively detect the integrity of
adhesively bonded joints. Moreover, the energy indices could distinguish the

differences among various loads of debonding in the joints.

9.2 Introduction

Adhesively bonded joints, as a primary structural joining method, could be a
very efficient method in producing a light weight alternative for joining structural
components. There are several advantages in using adhesively bonded joints over the
conventional mechanically fastened joints. These include: the involvement of fewer
parts; achievement of full load transfer can readily be achieved; the joint would be
more fatigue resilient; a complete sealed joint can be obtained as well as a stiffer
connection; the joint would be lighter weight with a smoother contour; and, the
resulting joint would also be corrosion resistance with minimal stress concentration,
since no holes would be present.

However, such joints also have their own disadvantages, such as: the
environmental effects can adversely affect the adhesive; limited joint thickness can be
achieved; only shear loading is acceptable; the joint cannot be readily disassembled;
and, unwanted thermal residual stresses could be generated. As a result, new and
improved design methods are needed to account for all influencing parameters.
Adhesively bonded joints are also quite susceptible to the surface preparation, which
in turn could directly influence the bond integrity. This has required changes in
engineering and trade skills for producing quality joints, particularly in regards to
surface preparation. Surface preparation is the key for obtaining a high quality
adhesively bonded joints. It should be noted that one of the primary problems is that
the inspection of the bondline integrity is not a trivial task.

The bondline integrity issue has been a significant “Achilles heel" in the
outright acceptance of adhesively bonded joints in most industries. Therefore, the
manufacturing processes have been refined to ensure the joint quality. Nevertheless,
long-term joint degradation cannot be satisfactorily guaranteed following a damage
(i.e. damage resulting impact or corrosion). The two questions to be asked are: how

can the quality of the bondline be assessed non-destructively after years of service?
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and, does the bondline properties change significantly with time?'. Unfortunately, the
currently available Nondestructive Inspection (NDI) techniques do not provide the
answers.

A brief discussion of the various NDI techniques available for defect detection
in adhesively bonded joints will therefore be first presented to provide the reader with

a background to some of the issues involved.

Visual Inspection

Apart from unaided visual inspection, which could only identify some obvious
defects, simple magnification can identify quite small surface defects. A dye
penetrant can be used to enhance the visualization of adhesive free edge crack. Visual
inspection of bondline in free edges would also provide some assessment of the resin
flow characteristics. The basic visual inspection method is inexpensive and simple,
requiring relatively low skill, but it necessitates access to a clean surface, and the
method is only suitable for detecting surface damages. The dye penetrant
enhancement technique does, however, contaminate the surface to be inspected, so
the component will require both pre- and post-cleaning.

Another visually enhanced inspection technique is that used to check for leaks
in sealed structure like pipes, pressure vessels and honeycomb/skin composite panels.
The technique is also known as the hot water leak test However, after using the hot
water leak test the component requires radiography inspection to disclose any trapped

water.

Impedance method

The impedance technique measures the response of the surface of a component
to a low-frequency vibration, and is good at detecting debonds. However, a couplant
may be required to ensure surface contact. The Fokker Bondtester Guyott et al (1990)

is a well-known example of impedance NDI.
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Ultrasonic

The implementation of ultrasonic inspection can range from inexpensive
(~$3000) to quite costly ($300,000) in terms of the required equipment. The method
can provide details of depth and size of the damage, or full details of the topography
of sub-surface defects. There are two principal techniques: (i) the pulse-echo (A-scan)
and (ii) the through transmission (C-scan); either one is commonly used (B-scan is
also another variation of the C-scan ultrasonic scanning technique). Both A- and C-
scan techniques measure changes in sound attenuation (amplitude or energy loss) of a
reflected or transmitted sound wave. This energy loss is due to the mechanical
vibration of the damaged region, and thus, the resulting changes in the attenuation of

the transmission.

Acoustic emission

Acoustic emission techniques are based on the operator or an automated
equipment detecting changes in sound from a light impact or elastic wave energy
disturbances due to crack growth in the component. The component is generally
loaded in some manner to initiate damage or grow an existing damage. This loading
produces the internal sound from the local adhesive fracture. These emitted sound
waves are frequently termed “stress waves”. If the damage does not grow, then it
cannot be detected. Detection of disbonds in metallic adherend bonded joints is also

difficult due to the poor stress wave attenuation in the metal.

Acoustic/sonic (acoustic transmission)

The acoustic transmission technique was developed from a combination of the
ultrasonic and acoustic methods to study subtle defects in composite structures, in
particular, the strength loss due to moisture absorption and fatigue. It has been used to
determine the bondline strength of adhesively bonded joints [Wegmna et al, 1992].
However, this and its indirect measurement of the interlaminar shear strength of
composite are still under development. The technique requires an ultrasonic pulse be

induced as a stress wave.



216

This stress wave would then produce acoustic emissions if under the stress the

material forms micro cracks.

Microwave

Microwave NDI can be used mainly on non-metallic materials to determine the
degree of moisture content through the measurement of microwave absorption. The
technique requires two-sided access to the component and the shielding of the metal
parts. Operator safety is also a concern, and the component must be cleaned prior to
inspection. The application of microwave NDI techniques to adhesively bonded joints

has had a very limited success.

Thermography

Thermography is an NDI technique that is used to essentially measure the
infrared radiation response of a structure. Thermal energy dissipation (infrared
radiation) produces a thermograph. A thermograph is a series of isothermal contour
lines that maps the surface temperature, and this information can then be related to
the in-plane stress field. When defects are present in the form of traction-free
surfaces, then the rate at which thermal energy dissipates is reduced. The methods of
applying the heat to the structure are: (i) passive, which uses a heat gun, and (ii)
active, that resulting from vibration, which is produced due to the internal friction at
the damage site. The resulting heat pattern can be measured in real time with an
infrared camera and computer system. These results are in a far-field form and can be

related directly to the component stress state [Bakis et al, 1989].

Interferometry

The use of light and its reflective properties to identify defects is the basis of
interferometry. There are three basic techniques: Moire, holography and
shearography.
Interferometric techniques provide a record of the defects, but are generally not
portable. They are very sensitive techniques and show how the structure reacts under

loading. However, they do require expensive equipment and need skilled operators
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and interpreters. Moire interferometry is used to measure both in-plane and out-of
plane displacement (shadow Moire), holographic interferometry measures purely out-
of-plane displacement, and shearography measures the first derivative of the out-of-
plane displacement, or the slope of the deformation.

Leaky lamb wave

Obliquely orientated acoustic waves have shown a mode change at ply
interfaces and adhesive bondlines. These modified acoustic waves travel parallel to
the ply interface and bondline. Their properties are affected by the resin-rich layer
between plies and the adhesive layer properties. Delaminations and debonds have
been easily identified as a result of interrogating the transmitted acoustic wave. Small
changes in the adhesive properties (weak bonds) are not presently detectable in a
reliable manner. However, the so-called “kissing bond delaminations” or debonds that
have intimate contact between the two free surfaces) can be reliably detected using
this leaky lamb wave technique [Bakis et al, 1989].

In this research a vibration based method for evaluation of adhesively bonded
joints is proposed. Signals collected from any kind of sensors mounted on a structure
(from piezoelectric sensors, in our study) cannot be directly analyzed to provide
useful conclusions about the damage, unless the damage intensity is very high. The
signal should be processed in order to extract useful information about the structural
parameters and damage. The signal is often transformed to different domains in order
to better interpret the physical characteristics inherent in the original signal. The
original signal can be reconstructed by performing inverse operation on the
transformed signal without any loss of data. The popular methods in signal processing
for SHM applications include the Fourier, Wavelet and Hilbert-Huang Analyses.
Each of these methods can be distinguished from each other by the method of
mapping the signal and each has its own advantages in terms of applicability for
analyzing specific data type.

This paper presents the application of piezoelectric sensors used for the
evaluation of the integrity of adhesively bonded joints in PVC plastic pipes based on
the analysis of the output voltage of piezoelectric sensors resulting from a vibration

excitation.
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9.3 FFT-BASED DAMAGE DETECTION METHOD

The Fourier Transform (FFT) based methodology relies on vibration data
obtained through various sensors located on various locations of a structure. If there is
more than one defect located in between two sensors, the methodologies, at its
present status, cannot distinguish one defect from the other one. However, the
methodologies can detect muti-defects, as long as each defect is located in between a
pair of sensors. This may be considered as a serious drawback in some cases.

It is proposed that the integral of the amplitude of the FRF evaluated over
various frequency ranges could be used as a critical quantity, hereafter referred to as,
the “damage index”. The selected frequency intervals should be such that their limits
bound the natural frequencies of the original undamaged system, because these are
the regions most sensitive to the changes in response to the damage.

It should be noted that there is no mathematical reasoning as to why the
integration of the Fourier term at the location of damage produces a large value.
Indeed, if one looks at the time-domain data, there would not be any noticeable
change in the signal (with the exception of a minor shift in the signal at the damage
location). Nevertheless, the observation of the behaviour of this integration quantity

would enable one to detect damage in a system. This integral is defined by:
I = | |X(@)do ©.1)

Where X(w) is the Fourier response of the piezoelectric output sensor (voltage) in

the time domain. The damage index of integration is defined as

]xDamaged _ I:{ealthy|

‘x100 (9.2)

FRF I, -|

Healthy
I,

where 177" and I are the integrals of pipe’s signals at the damaged and

undamaged (healthy) state, respectively.
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9.4 WAVELET-BASED DAMAGE DETECTION METHOD

The wavelet packets consist of a set of linearly combined wavelet functions. A
wavelet packet function is identified by three indices, (//j.’k (t) , where integers i , j and

k are the modulation, scale and translation parameter, respectively, such that:

v, (=2"y'(2/t-k) 9.3)
where t is time.

The wavelets ' are obtained from the following recursive relationships,

W) =2 Y hkw' @t -k

= (9.4)
v () =2 Y gy’ (2t k)
k=-c0
Note that the first wavelet is identified as the mother wavelet function,
represented by:
v ()=o), v' () =y(t) 9.5)

where h(k)and )g(k [Sun et al, 2002] are the discrete filters quadrature, or the mirror

filters associated with the scaling function @(¢) and the mother wavelet function

W),
It should be noted that any measurable and square-integratable function can be
decomposed into wavelet packet component functions. The decomposition process is

a recursive filter-decimation operation. The decomposed wavelet packet component

signal, f f (t), can be expressed by a linear combination of wavelet packet functions

', (t) as follows,
VHOED NN (9-6)
k=—x

where ¢/, is the wavelet packet coefficients and can be obtained by:

ciu = [F OV, @) 9.7)
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In above f(¢)is the original time domain signal, which in our case is the output
voltage of piezoelectric sensors. Each component in the wavelet packet
decomposition (WPD) tree can be viewed as the output of a filter tuned to a particular
basis function, thus the whole tree can be regarded as a filter bank. At the top of the
WPD tree (the lower decomposition level), the WPD would yield a good resolution in
time domain, but a poor resolution in the frequency domain. On the other hand, at the
bottom of the WPD tree (higher decomposition level), the WPD would yield a good
resolution in the frequency domain, but a poor resolution in the time domain. For the
purpose of structural health monitoring, frequency domain information tends to be
more important and thus a high level of the WPD is often required to detect the
minute changes in the signals.

After the identification of WPD, the task would be the determination of the
decomposed signals, to be used for the structural condition assessment. By
numerically analyzing a three-span bridge [Sun and Chang 2002] demonstrated, that
wavelet packet component energies were the parameters sensitive to changes in the
structure, and that they could be used as structural condition signatures. These

component energies were defined as,

El = J:, VHOX: (9.8)

It can be shown that, when the mother wavelet is semi-orthogonal or
orthogonal, the signal energy, E ;, would be the summation of the jth level component

energies, as follows:
2) ]
E, = [‘; fiwd =Y E! (9.9)
i=1

Since each wavelet packet component contains information of the signal in a
specific time-frequency window, hence the magnitude of the component energy could

vary quite significantly.
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9.5 Mathematical Description of Hilbert Huang Transform
(HHT)

The Hilbert-Huang Transform (HHT) method was proposed by [Huang et al,
1998]. It consists of two procedures: (1) an Empirical Mode Decomposition (EMD),
and (ii) a Hilbert Spectral Analysis. With EMD, any complicated data set can be
decomposed into a finite and often a smaller number of intrinsic mode functions.

In this method the signal is decomposed into intrinsic mode functions (IMFs)
using the empirical mode decomposition (EMD) method, such that each IMF admits a
well-behaved Hilbert transform. The Hilbert transform is applied to each intrinsic
mode function in order to produce decomposition of the signal in the frequency-time
domain. This approach is also referred to as the Hilbert-Huang spectral analysis
(HHSA) and it is applicable to any non-stationary signal [Huang et al 1998 and
1999]. In this paper, the EMD method proposed by [Huang et al, 1998 and 1999] is
used to decompose the measured response signal (in the case of our investigation, the
output voltage of the piezoelectric sensors), into IMFs that would admit a well-
behaved Hilbert transform. Based on the EMD, the modal response of each mode can
be extracted from output voltage of a piezoelectric sensor.

The procedure of EMD starts with constructing the upper and lower envelopes
of the signal by spline-fitting and then the averages (mean) of both envelopes are
computed. The signal is then subtracted from the mean; this process is referred to as
the sifting process. By repeating the sifting process until the resulting signal becomes
a monocomponent; that is, the up-crossing or (down-crossing) of zero would result in
one local peak or trough, this indicating that the number of up-crossings, or down-
crossings of zero is equal to the number of peaks or troughs. The resulting
monocomponent signal admits a well-behaved Hilbert transform and it is referred to

as an IMF. The original signal is then subtracted from the IMF and the repeated
sifting process is applied to the remaining signal to obtain another IMF. The process

is repeated to obtain n IMFs, i.e.
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() = Z ¢, (D) +r,(t) (9.10)

in which ¢(f) = 1,2, . . . ,n) are the IMFs of the measured signal, x(), and r,(f)
is the residue, that can be the mean trend of the signal or a constant. Such a process is
referred to as the EMD method [Huang et al,1998]. It has been shown by [Huang et
al, 1998 and 1999] that the characteristics of the signal can be extracted through the
behavior of the IMFs, and the EMD is applicable to non-stationary or nonlinear
signals. Based on the EMD approach described above, the first IMF would contain
the highest frequency contents of the signal. During the EMD process, a specified

frequency, referred to as the intermittency frequency @, , , can be prescribed, such that

int »

the resulting IMF will have frequencies higher thanw, , as demonstrated by Huang

int 2
[5]. This is accomplished by removing the data that have frequencies lower thanaw, ,
from the IMFs, by a straightforward counting process.

At this juncture, a new damage index is proposed, which is based on the first
(IMFs) of the EMD procedures, which is obtained by decomposing a measured time
domain transform function of the output voltage obtained through piezoelectric

sensors, in response to the impact load applied to the structure by a hammer. The

energy of first (IMFs) and the proposed damage index is defined by:

E = f’(lMF) 24t (9.11)
E’:Iealthy _ E rln):maged
DI, = |~ ‘XIOO 9.12)

In the above equation, m is the sensor’s number or the considered degree of
freedom of the structure, n is the mode shape number and (IMF) is the first calculated

intrinsic mode function of the signal which has been passed through band-pass

criterion.

9.6 Experimental Set-up and Instrumentation

There were three different test specimens that were used to evaluate the

integrity of the proposed approach in condition assessment of an the adhesively
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bonded joint in the PVC pipes. The pipes were IPEX 6” dia PVC sewer pipes, with
the section properties reported in Table 9.1. The procedure used to prepare the
bonded joints was as follows:
¢ The pipe sections were cut to the appropriate length using a band saw.
¢ The surface of the bonding regions was cleaned with isopropy! alcohol
to remove dirt.
¢ IPEX XIRTEC 7 primer was applied to the bonding regions.
¢ [IPEX XIRTEC 11 PVC cement was then applied to the bonding
regions.
¢ The two sections of pipe were slid into one another.

o For fully bonded pipe the pipe were continuously rotated for
approximately 40-60 sec. to ensure that the adhesive was distributed
uniformly.

o For the partially debonded pipe joints, the two pipe sections
were carefully inserted into one another to ensure the debonded section
(the portions with no adhesive), would not touch one another.

¢ The pipes were stood up vertically to cure, for a period of 2 hours, to
ensure the cement did not run into the unbonded section.
Using the above procedure, three test specimens containing different levels of

damage were manufactured. The damage (debond) extents are tabulated in Table 9.1.

Table 9.1: level of Damage in Test Specimens

Test Damage
Specimen Present
1 No Damage
(Fully Bonded)

2 % Circumference
Bonded

3 Y2 Circumference
Bonded

The piezoelectric patches implemented in this investigation were QP15N PZT
QuickPack strain sensors available from Mide Technology Corporation (Medford,
MA). These patches were bonded to the surface of the pipe at the joint region, using
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the West System’s two-part epoxy. The rationale for the positioning will be explained
in the following section. Once the patches were positioned, they were cured for
approximately 12 hours under a vacuum, at 20in Hg, to remove air voids and ensure a
strong bond. On the test specimens containing damage, piezoelectric sensors were
positioned at the center of the damaged section of the joint and at 180° around the
circumference from that sensor. For the fully bonded pipe, there was only one sensor

bonded at the center of the joint.

9.6.1 Preliminary Investigation

Once the bonded joint was cured, a preliminary study was conducted to
determine the optimal placement of the piezoelectric sensors. The preliminary study
involved monitoring the pipe response with accelerometers for the varying degrees of
damage, as noted in Table 9.1, as well as a joint that was just tightly fit, but with no
adhesive applied. From the recorded data of the sensors, the natural frequencies were
determined and quick modal analysis were performed. It was found that when the
sensor was positioned near the joint, minor changes in the natural frequencies were
observed (even for the unbonded joint). However, considerable variation in the
frequencies (especially in the circumferential mode were observed, when the sensor

was positioned on the joint.

9.6.2 Experimental Apparatus and Equipment

To detect the presence of a damage in the adhesively bonded PVC pipe joints,

the dynamic response of the pipes were monitored at the joint location using a simply

supported beam set-up, as shown in Figure 9.1. The supports of the pipes were setup
using 6 cast iron flanges that were fastened to a massive steel platform. In order to
fit the pipe section to the supports, a larger IPEX 6” PVC Blue Brute water pipes
were milled out to fit tightly over the ends of the pipes. Once the Blue Brute piping
sections were fitted to the ends of the pipes, they were clamped into the flanges, as
shown in Figure 9.2.

The responses of the piezoelectric sensors were continuously monitored with a

multipurpose PCI DT3010 data acquisition card, manufactured by Data Translation
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(MA, USA), using a differential channel configuration. The data acquisition
programs used to monitor the piezoelectric responses was developed in VEE Pro,
which is a visual programming software. 40,000 data points were monitored for each
test at a rate of 10 kHz. The computer was equipped with the use of a power
conditioner, which helps remove the excessive noise from the system.

The loading of the specimens was applied with a PCB Piezotronics 086B01
impulse hammer. The impulse hammer response was monitored continuously using a
DT-24EZ data acquisition card, also manufactured by Data Translation (MA, USA),
with a single ended channel configuration. The data acquisition programs used to
monitor the impulse hammer response was developed in LabVIEW, with the use of
DT-LV Link, which is a software that allows LabVIEW to communicate with the
Data Translation products. The signal of the impact hammer was monitored at the
rate of 20,000 data at 10Hz. The response of the impulse hammer (being in mV), was
amplified with the use of a PCB Piezotronics Inc. series 790 power amplifier. The
power amplifier also eliminated most of the noise from the impulse hammer response

signal.

9.6.3 Experimental Procedure

Every experiment was conducted by starting the data acquisition systems, then
impacting the desired location with the impulse hammer. Three tests were performed
for each experimental set-up, to ensure consistency and reproducibility of the results.
To ensure all test results were processed in the same time scale, the time lag between
the time of impact and the piezoelectric response was measured. The method used to
determine the time lag was to monitor both signals with a differential channel set-up,
which was performed using a single data acquisition computer. Continuously
monitoring the piezoelectric sensor and the impulse hammer responses allowed for
the two signals to be monitored simultaneously. It was determined that with this set-
up the magnitude of the impulse load would be acquired incorrectly, and as a result
this method was not implemented in the full experimental investigation.

To determine the parametric effects of the system, a total of 24 tests were

conducted on each specimen. The test parameters that were varied through the
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Figure 9.1: Experimental Test Set-up for Adhesively Bonded Pipe Joints (a)
Fully Bonded Joint, (b) % Bonded Joint, (c) 2 Bonded Joint

Figure 9.2: Support System for the Adhesively Bonded Pipe Joints
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experiments included the load location, support tightness, and debond location.
The influence of the loading location on the results were verified by impacting the
pipes at six different locations along the length and three locations on each side of

the joint as shown in Table 9.2.

Table 9.2: Impulse Hammer Impact Locations (The numbers are in reference to

Figure 9.1)

Impact Location | Impacted Side Distance
Number From Joint Center
1 Bottom Side 300 mm

2 Bottom Side 500 mm

3 Bottom Side 700 mm

4 Top Side 300 mm

5 Top Side 500 mm

6 Top Side 700 mm

The fixture tightness was adjusted by varying the torque of the bolts clamping
the flange to the pipe section. The two torques used in tightening the supports are
shown in Table 9.3.

Table 9.3: Support Fixture Tightness

Fixture Tightness | Fixture Bolt
Number Torque

1 84 N.m

2 43.4 N.m

The debonded section of the damaged pipes, or the sensor was located on the
fully bonded pipe, was placed in two different positions to determine if the location of
the damage affected the damage index (see Table 9.4).

An overview of the various set-up configurations considered is shown in Table
9.5.

9.6.4 Data Processing Methods

Once all tests were completed the results were processed using the MATLAB

software. The following procedures were followed:
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Table 9.4: Sensor/Debond Experimental Locations

Debond Location "
; . Position of
Identification .
Disbond
Number
1 Top
2 Bottom

Table 9.5: Test Set-up Configurations (The Numbers are with reference to
Tables 9.2 through 9.4)

Test Pailrameters (Fixture | Test Pgrameters (FixFure
Number Tlghtx.less, Sepsor Number Tightness, Sensor Location,
Location, Impact Location) Impact Location)
1 1,1,1 13 1,2,1
2 1,12 14 1,2,2
3 1,1,3 15 1,2,3
4 1,1,4 16 1,2,4
5 1,1,5 17 1,2,5
6 1,1,6 18 1,2,6
7 2,1,1 19 2,2,1
8 2,1,2 20 2,2,2
9 2,13 21 2,23
10 2,14 22 2,24
11 2,1,5 23 2,2,5
12 2,1,6 24 2,2,6

9.6.4.1 Removal of Non-Response Data

Due to the experimental procedure, the reduced data had to be filtered and all
non-response data removed. Appropriate MATLAB codes were written to remove
the non-response data of the piezoelectric sensors for the fully bonded joint and the
damaged joints, respectively. Note that, the only difference in the files was the
presence of the additional data from the extra sensor used in the damaged pipe joints.
The first step in removing the non-response data was to read the experimental
response file into the MATLAB programs. The first value greater then the noise level
was then located and a set number of data points prior to this value were kept, where
the number of points retained was dependent on the time lag. The rest of the data
prior to this point, which were considered as non response data (those between time

of test initiate and the onset of the actual impact), was removed.
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The final step was to remove the non-response data at the end of the file,
which was determined visually, having known of the free vibration period of the

system.

9.6.4.2 Response of Piezoelectric Sensors for Fully Bonded Pipe

Due to the fully bonded pipe containing only a single piezoelectric sensor, tests
were conducted with the sensor located on the top and bottom of the joint. This
allowed for the full comparison of all test results since the damaged pipes had two
piezoelectric sensors. To save on the preceding computational efforts, the test results
for the fully bonded joints were merged according to similar data structure, that is
load location and support tightness. This was performed by the MATLAB code,
which stored the test results for test set-up 1 and 13, 2 and 14, etc. in the same
variables. This stored the response files for the fully bonded pipe in the same format
as the damaged pipes, which had the results for sensors on the top and bottom of the

joint.

9.6.4.3 Impulse Hammer Response Processing

The removal of the zero state data included removing all the non-response data
at the start and end of the test. The start of the test was determined by finding the
position where the impulse hammer voltage surpassed a set value, (in these cases, 0.1
volts). The test was then deemed to have started 2 points in time before this value
was surpassed, which was found by visually inspecting the results. The actual
loading response of the impulse hammer was found to last for approximately 1.5

msec, with the vibration response lasting for approximately 20 msec.

9.6.4.4 Evaluation of Frequency Response Functions (FRF’s)

In order to properly analyze the data, the frequency response functions for each
individual test is required. For this investigation the frequency response functions
were the ratio of the piezoelectric sensors Fourier spectrum divided by the impulse

hammer Fourier spectrum.

A MATLAB code was developed to filter the piezoelectric sensor responses,

using the Butterworth band pass filter and convert time domain data to frequency
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domain. The program is based on the 8192-point fast Fourier transform (FFT) of the

piezoelectric sensors, as well as the impulse load function.

The last stage of the process was to calculate the transform matrix, which
computed the FRF of the responses. This program normalized the piezoelectric FFT

with respect to the impulse load FFT, as described earlier.

9.7 Experimental Results

The frequency response functions, wavelet and EMD analyses of all tests were
carried out determined using a MATLAB code that was developed for this research.
For all cases, the damage indices were evaluated relative to the undamaged state, as

well as to the proceeding state.

9.7.1 Typical Responses

A typical time-history response and corresponding Fourier spectrum for a top

surface bonded piezoelectric sensor are shown in Figures 9.3 and 9.4, respectively.
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Figure 9.3: Typical Top Surface Bonded Piezoelectric Sensor Time History Response
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Figure 9.5 shows comparison of the frequency response function for the three

different degrees of damage.
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Figure 9.5: Typical Frequency Response Function for Varying Degrees of
Damage in Adhesively Bonded PVC Pipe Joint for Top Sensor

Visual inspection of Figure 9.5 reveals that damage is present in the quarter-
and half-debonded joint by noticing the significant frequency shifts in most of the
natural frequencies. This, however, would not give any indication of the degree of

damage within the system.

9.7.2 Influence of Sensor Location

An efficient SHM system is the one with minimum the requirement for
complicated and expensive equipment. It would be more desirable to have a robust
system that would use as few sensors as possible. It would be most desirable if only
one sensor could be used to detect the presence of damage. The best system would
then be the one that would use only one sensor, and that one would not have to locate

the sensor on the damage region.

The FFT, Wavelet, and EMD damage indices are shown in Figure 9.6 for the
two sensors on the half-bonded pipe joint for tests 1-6, respectively. These results are
for the case when sensor 1 is located on the disbond section of the joint, and sensor 2

on the bonded section of the joint.
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As can be seen from Figure 9.6, the sensor location relative to the damage
location does not significantly affect the capability of the system to detect the
damage. However, depending on the location of the excitation, varying index
magnitudes were observed, as will be discussed in a later section. Also of note is the
consistency of the results among the individual sensors for the two conditions
monitored. In general, sensors which are located in the inner side (see Figure 9.1)

produces more consistent index values.

9.7.3 Degree of Damage

In general, in adhesively bonded joints, damage initiation becomes more likely
as the bonded system ages. Therefore, it is of paramount importance, not only to
have the capability to determine the presence of damage, but also be able to monitor
its growth. In order to verify the integrity and extent of capabilities of the proposed
methods, specimens with varying degrees of damage were tested and compared.
Figure 9.7 shows the results of the damage indices produced by the three approaches

for varying degrees of damage, relative to the zero state damage.

9.7.3.1 Comparison of Damage Indices

Figure 9.8 shows comparison of damage indices for damage in adhesively bonded
joints. The Figure shows the indices obtained for the sensors placed on the bonded
and debonded regions. It can be seen that the EMD method produced damage indices

with larger magnitude than the other two approaches.
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Figure 9.6: Comparison of Damage Indices for Sensors 1 and 2 of the % bonded
Joint (a) FFT Index, (b) EMD Index, and (c) Wavelet Index
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9.7.4 Influence of Support Condition

During the service life of structures, their boundary conditions may change due
to various circumstances. Therefore, it is of great importance to determine whether
the proposed methodology could detect the potential changes in the piping system’s
boundary condition. To determine this influence, two different clamping pressures
were applied to the supports as reported earlier in Table 9.3. Figure 9.9 shows the
results for sensor 1, data recorded by for the quarter-disbonded joint, for the two

different support conditions considered in this investigation.

As the results in Figure 9.9 indicate, the support condition has minor influence
on the resulting damage indices. Nonetheless, it further illustrates the robustness of
the proposed damage detection system. It is observed that the stiffer the support
condition, the more pronounced the damage indices; however, the patterns observed
for both support conditions are more or less the same, especially when the wavelet

method is employed.

9.8 Conclusions

Access to an effective health monitoring system is an important issue when
adhesive bonded joints are used in piping systems. The availability of an accurate
and reliable damage detection system can significantly reduce the life-cycle cost of a

bonded joint system, especially in piping systems.

This paper introduced a new health monitoring approach based on sensing of
the vibration response of bonded joints in PVC pipes using smart piezoelectric
transducers. Two novel approaches were proposed for evaluating the “damage energy
indices”. One was established based on the Fast Fourier transform and the other one
based on the Empirical Mode Decompositions (EMD). The results were also
compared with a wavelet damage index. The damage indices could distinguish the
perfect bonded joint versus the variably disbonded joints. For this, simply supported
pipes, having a joint with varying degree of disbond (half and quarter disbond), were
constructed. The comparison of the experimental results with those produced by the

proposed approaches confirmed the capability of the approaches. An important aspect
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of the proposed approach is its robustness, in that if requires the vibration signals
from only one sensor. Moreover, it was shown that the sensors located on the
debonded section was more sensitive to the disband, hence produced more discrete

damage indices, thus more accurate predictions.
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Chapter 10

Conclusions

10.1 Conclusions

This dissertation presented a set of new methodologies and approaches for
damage detection and structural health monitoring. The procedure is based on
recording the vibration response of the healthy structure, and the structure in its
damage state, through piezoelectric sensors, followed by evaluating the so called

“damage energy indices” through various signal analysis applications.

The application of the proposed methodology applied to various PVC pipe

structures, revealed the following:

1) The Empirical Mode Decomposition (EMD) in conjunction with the Hilbert-

Huang transform proved to be an effective tool for system identification.

2 (a) The proposed approach for calculating the damping of PVC pipes based on
empirical mode decomposition was found to be very efficient in conjunction with the
output voltage of piezoelectric sensors. It was noticed that although both pure time-
domain method (i.e., LDA) and pure frequency-domain method (i.e., HPB) could
produce consistent and acceptable results, the mixed time-frequency methods (i.e.,
HTA, EMD and MBA) produced more acceptable results. Therefore, the time-
frequency domain approaches summarized above are recommended for evaluating the

damping property of such highly damped materials.

(b) The Hilbert-Huang spectral analysis method could be effectively used for
the identification of the dynamic characteristics of multi-DOF structural systems. A

formulation was developed for evaluating the stiffness, and mass matrices of the
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systems, as well as the mode shapes, and damping matrices were developed based on
the measured free vibration-time histories of displacements of all degrees of freedom.

(c) Based on the Hilbert-Huang spectral analysis, the natural frequencies and
damping ratios of the system could be effectively calculated based on the data
collected through only one single sensor used for measuring the free vibration-time

history of the system (conversely, only at one single location).

3) One can effectively establish the presence of damage and its location by
using the proposed damage index based on the empirical mode decomposition and

first intrinsic mode function.

4) The proposed approaches for damage detection based on wavelet, wavelet
packet, FFT energy and FFT integration were found to be accurate enough to locate
damage location and its intensity. Among the mentioned methodologies, the wavelet
transform proved to be the most sensitive methods in detecting the location of the

damage.

5) In comparing the above proposed damage indices with that based on EMD,
the EMD and wavelet transform proved to be the most sensitive and effective
methods in detecting damage location, and EMD proved to be the most effective

method for finding the severity of damage.

6 (a) The proposed approaches for damage detection in pipe joints were found
to be a very economical, efficient, and user-friendly capable of producing excellent
results. The proposed approach used the time history response captured by
piezoelectric sensors and the Fourier analysis, as well as the energy-based damage

indices to identify the degradation of an adhesively bonded joint.

b) In the adhesively bonded pipe joints, the optimal location for the
piezoelectric sensor was found to be situated directly on the joint. The proposed

damage detection system, could effectively determine the presence of damage, as
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well as a quantitative measure of its severity. It was also found that the sensor could
be located anywhere on the joint and good result could still be obtained. Moreover,
the ability of this method to detecting damage was not influenced by the location of
the excitation force, damage location, or the support conditions. More pronounce, it
was found that for the given set-up a more pronounced damage index was found
when the following conditions hold:

a) More rigid support conditions

b) And the sensor was located in the vicinity of the damage. The later one

would however be impractical in real applications.

(c) With the proposed damage detection method, it was found that only a single
sensor would be all that is required to produce practical results. In the case of the
adhesively bonded joints, a single sensor could be located on the joint to produce

good results even though it may not be located directly on the damaged section.

10.2 Recommendations for Future Work

The work performed in this thesis produced a methodology for health
monitoring of structures based on the proposed damage indices based on vibration
signals obtained through piezoelectric sensor. The damage detection method that was
implemented in this thesis showed excellent results for the condition considered
within laboratory scaling. However, this applicability of the proposed method should
be verified when applied to real structures, so that the influence of loading under

natural conditions, as well as the environmental effects could be verified.

Today, the biggest challenge in structural health monitoring is to find a way to
monitor the structures without instrumenting and interfering with the structure.
Therefore, application of such instruments like the laser Doppler vibrometer should

be explored in the future.
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