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ABSTRACT

The method of asymptotic homogenization is used to develop three comprehensive
micromechanical models pertaining to (i) thin smart composite plates reinforced with a
network of orthotropic bars that may exhibit piezoelectric behavior; (ii) prismatic smart
composite structures and (iii) three-dimensional composite structures with an embedded
periodic network of isotropic reinforcements, the spatial arrangement of which renders
the behavior of the given structures macroscopically anisotropic.

The models developed in this thesis allow the transformation of the original boundary
value problems for the regularly non-homogeneous composite structure into simpler ones
that are characterized by some effective coefficients. These coefficients are calculated
from so-called ‘unit cell’ or periodicity problems and are shown to depend solely on the
geometric and material characteristics of the unit cell and are completely independent of
the global formulation of the problem. As such, the effective elastic, piezoelectric and
thermal expansion coefficients are universal in nature and can be used to study a wide
variety of boundary value problems associated with a structure of a given geometry. The
models are illustrated by means of several examples of practical importance and it is
shown that the effective properties of a given composite structure can be tailored to meet
the requirements of a particular application by changing certain material or geometric
parameters such as the type, size and relative orientation of the reinforcements. For
models (i) and (ii), if the thermal and piezoelectric behavior of the materials is ignored
and if the orthotropic nature of the constituents is reduced to that of isotropy, then the
results converge to those of previous models obtained by either asymptotic
homogenization, or stress-strain relationships in the reinforcements. For model (iii), if the
3-D arrangement of the reinforcements is reduced to a 2-D one then the model again is
shown to converge to previous models.

xXXxi



1. INTRODUCTION

1.1. Introduction

Over the last few decades manufacturers, designers, and engineers recognized the ability
of composite materials to produce high-quality, durable, and cost-effective advanced
smart composite products. In the modern world, composites are used in many critical
industrial applications such as the aerospace and military fields where weight, strength
and durability are a big concern. Additionally, composite materials can also be found in
our day-to-day lives, from the cars we drive, to the boats, railway coach interiors, and

sporting goods.

In the present market where demands for product performance are ever increasing,
composite materials have proven to be the best choice in terms of reducing costs and
improving performance. Composites solve problems, raise performance levels, and

enable the development of many new products.

Unlike traditional materials such as steel, composite materials have different mechanical
properties in different directions, and can be custom designed to have the required
strength in a specific direction. Composite properties (e.g. stiffness, thermal expansion
etc.) can be varied to a high degree depending on the materials selected and the spatial
orientation of the reinforcing materials within the expanse of the composite. The ability
of composites to be adapted to wide range of applications often makes them the most

attractive choice.



1.2. What are Composites?

A composite material may be defined as a material composed of two or more constituents
combined on a macroscopic scale by mechanical and chemical bonds. The most
commonly used composites, the polymeric ones, consist of a controlled distribution of
reinforcing fibers in a continuous polymeric resin matrix. The fibers, by virtue of their
high strength and stiffness, are the reinforcing components of the composite and are
responsible for practically all the load-carrying characteristics of the composites. Due to
the cohesive and adhesive characteristics of the matrix, it is responsible for holding the
fibers in place and for transferring stress and strain to the reinforcing fibers. The matrix
also protects the fibers from harsh environmental conditions. The fiber orientation as

maintained by the matrix determines the properties of the composites.

Composites can be classified as fiber-reinforced, particle-reinforced, and laminated
composites. The fiber-reinforced composites may contain continuous (long) or
discontinuous (short) fibers. Composite properties such as strength and stiffness depend
on the orientation and length of the reinforcements. Short fibers or whiskers can be
embedded in a preferred orientation so that the composite behaves in an orthotropic
fashion, or they can be randomly oriented so that the composite behaves like a quasi-
isotropic material. Continuous fiber composites contain long fibers along which the stress
is distributed. The continuous fibers may be all oriented in one direction or different
families of fibers may be oriented in different directions. Depending on the spatial
orientation of the fibers, continuous fiber composites may behave in an orthotropic, or a
transversely-isotropic manner. Particle-reinforced composites consist of particles of
different shape and size (spheres, flakes, rods) randomly embedded within the matrix.
Due to the random nature of the dispersion of these particles in the matrix, the particle-
reinforced composites are macroscopically homogeneous and Quasi-isotropic. Laminated
composites are those composites made of two or more layers of the reinforcements with

each layer having two of its dimensions much larger than the third.



From a structural viewpoint, composites may also be classified as polymer matrix
composites (PMC), metal matrix composites (MMC), ceramic matrix composites (CMC),
carbon-carbon composites (CCC), intermetallic composites (IMC), or hybrid composites

[Schwartz 1997a, 1997b].

1.3. Constituents

1.3.1. Reinforcing Materials

Although whiskers and particulate reinforcements are available for the manufacture of
structural polymeric composites, the focus of attention in the recent years has been
directed towards fibrous reinforcements. Both organic and inorganic fibers are used as
reinforcements. The most common inorganic fibers include glass, and carbon, while
aramid and asbestos are examples of natural/organic fibers. The type, amount, and
orientation of fibers should be properly selected because they influence the following

characteristics of a composite structure:

e Specific gravity

e Tensile strength and modulus

e Compressive strength and modulus
e Fatigue strength

e Electric and Thermal conductivity

e Cost

1.3.1.1. Inorganic Fibers

Inorganic fibers such as glass and carbon account for over 90% of the reinforcements

used in today’s composite industry.



1.3.1.1.1. Glass Fibers

Glass fibers are the most common reinforcing fibers for polymeric composites. In the
1930’s the “Owens-Illinois Glass Company” developed a fiberglass manufacturing
facility [Schwartz, 1992]. Glass is produced from silica sand, limestone, boric acid, and
other elements. The principal advantages of glass fibers are low cost, high tensile strength,
high chemical resistance, good processability, increased design flexibility and excellent
insulating properties. Glass fibers are available in several types, the most common of
which are E-glass, and S-glass. Typical values for the tensile modulus and strength are
given in Table 1-1 [Daniel, 1994]. The main disadvantages are low tensile modulus,
relatively high specific gravity, and relatively low fatigue resistance. E-glass is the
cheapest of all commercially available reinforcing fibers. S-glass has the highest tensile
strength among all the fibers in use. However the higher manufacturing cost of S-glass
makes it unattractive for many applications and led to the manufacture of a less expensive

form, S-2 glass fiber.

1.3.1.1.2. Graphite (Carbon) Fibers

The terms carbon and graphite fibers are typically used interchangeably, although
graphite refers to fibers that have greater than 99% carbon composition. Carbon fibers,
more than all other fibrous reinforcements, have provided the basis for the development
of PMCs as advanced structural engineering materials. Carbon fibers are available with a
variety of tensile moduli ranging from 207 GPa to 1035 GPa [Mallick, 1998]. Carbon
fibers have high strength and stiffness, and a good resistance against stress rupture. As
well, they exhibit good compressive strength and corrosion resistance. Due to their low
coefficient of thermal expansion, carbon fibers are the best candidates for high
temperature applications. The major limitations of this material are high cost, high

thermal and electrical conductivities, and low impact resistance.



1.3.1.2. Organic Fibers
The most common organic fibers are Aramid, and Polyethylene. Table 1-2 [Mallick,
1988] illustrates some of the important physical and mechanical properties of various

organic fibers. The main advantages of organic fibers include high strength, stiffness, and

specific strength, excellent impact properties, and good corrosion resistance.

Table 1-1: Mechanical properties of typical fibers [Daniel, 1994]

Fiber Fiber density, Tensile Strength, Tensile Modulus,
glce GPa GPa

E-glass 2.54 3.45 72.4

S-glass 2.49 4.58 86.2
Polyethylene 0.97 2.70 87

Kevlar 49 1.44 3.62 130.0

HS Carbon, T300 | 1.76 3.53 230

Carbon, AS4 1.81 3.730 235

Carbon, HTS 1.82 2.83 248

Boron 2.60 3.44 407

Steel 3.08 0.58 207
Graphite, T-50 1.67 2.070 393

Silicon carbide 3.05 4.140 400

Silica 2.19 5.8 72.5

1.3.1.2.1. Aramid Fibers

DuPont first commercially introduced Aramid fibers in the early 1970’s [Schwartz,
1997a]. There are a number of commercially available aramid fibers, the most common

of which are Kevlar (DuPont), Twaron (Akzo) and Technora (Teijin). Among the

properties that make aramid fibers attractive for a variety of engineering applications are



high impact resistance, and low thermal and electrical conductivities. The main

disadvantage of aramid fibers is that they are sensitive to compression.
1.3.1.2.2. Polyethylene Extended-Chain Fibers

Polyethylene fibers are commercially available in many forms and trade names such as
Spectra, and Dyneema [Schwartz, 1997a]. Spectra PE fibers have the highest strength-to-
weight ratio of all commercial fibers available. However, they only exhibit average
strength and stiffness characteristics. PE has a very low melting point (135°C) and is also
susceptible to creep at temperatures above 100°C. As a consequence, PE fibers are

limited to low temperature applications.

Table 1-2: Properties of organic fibers [Mallick, 1988]

Material Specific Typical Tenstile Tensile Strain to
Gravity, diameter, pm | modulus, strength, GPa | Failure,
g/em’ GPa %

Kevlar 29 1.44 12 83 3.6 4.0

Kevlar 49 1.45 11.9 131 3.62 2.8

Kevlar 149 | 1.47 12 179 3.45 1.9

Spectra900 | 0.97 38 117 2.59 3.5

Spectral 000 | 0.97 27 172 3.0 2.7

1.3.2. Matrices

The main function of the matrix in a fiber-reinforced composite is to transfer stress to and
distribute stress between the fibers. The matrix also provides a barrier against adverse
environmental conditions and protects the fiber surface from mechanical abrasions. It
plays only a minor role in the tensile load-carrying capacity of a composite structure.

However, the shear properties of a composite are largely influenced by the selection of



the matrix. As mentioned before, matrices can be of the polymeric, metallic or ceramic

type.

1.3.2.1. Polymeric Matrix

A polymer is defined as a long-chain molecule containing one or more repeating units of
atoms joined together by physical or chemical bonds. These polymers are joined by a
process called crosslinking. Polymers are divided into two major categories,

thermoplastic and thermoset.

1.3.2.1.1. Thermoplastic Polymers

In a thermoplastic polymer, individual molecules are linear in structure with no chemical
covalent bonds between them. Instead, weak physical bonds such as Van der Waals
Forces hold them together. Thermoplastics are not crosslinked. Due to these weak bonds,
any application of heat and pressure will result in these bonds breaking and subsequent
motion of the pertinent molecules relative to each other. When a polymer cools down, the
molecules freeze in their new positions and this results in a new solid shape. Thus the
characterizing feature of a thermoplastic resin is that it can be melted and reshaped in a
reversible manner. Some common types of thermoplastics include polyetheretherketone
(PEEK), polyphenylene sulfide (PPS), polysulfone, polyetherketoneketone (PEKK), and
polyetherketone (PEK) [Matthews and Rawlings, 1994].

1.3.2.1.2. Thermoset Polymers

In a thermoset polymer, the molecules are held together by means of strong chemical
bonds, which form a cross-linked, rigid and three-dimensional network structure. Once
these cross-links are formed, any application of heat or pressure cannot melt or reshape

the thermoset polymer. The main advantage of thermosets is that they can be used at



higher temperatures than thermoplastics and have better creep properties. Table 1-3
[Schwartz, 1997] compares some of the properties of thermosets and thermoplastics. The
different types of thermoset resins available for composites include polyester, vinyl ester,

epoxy, polyurethane, acrylic, phenolic, polyimide, and bismaleimide [Kaw, 1997].
1.3.2.1.2.1. Polyester Resin

Polyester resins are the most common and least expensive resins used in polymeric
composite fabrication and when cured the resulting physical properties meet many of the
needs of the commercial composite industry. They generally have a low viscosity and
exhibit good processability. The most common applications of polyester resins are boat
hulls, shower stalls, bath tubs, car bodies, molded furniture, and pipes. Depending on the
chemical designation of the polymer backbone, polyester resins are categorized as
orthophthalic, isophthalic, dicycolentadiene, chlorendics, and bisphenol-A [American

Composite Manufacturers Association, 2006].

Orthophthalic acid based resins are also called general purpose resins. These resins are
generally used where high mechanical, temperature, and corrosion resistance are not

required. The main advantage of these resins is their low manufacturing cost.

Unlike orthophthalic acid based resins, their isophthalic counterparts have better
mechanical, thermal and corrosion-resistance properties. The main disadvantages of
isophthalic resins are that they have high styrene contents and are 10-20% costlier than

orthophthalic resins.

Dicyclopentadiene-based resins are generally used where cosmetic finishes are critical
and this is due to the low volumetric shrinkage. Like orthophthalic acid based resins these
resins exhibit good mechanical and corrosion-resistance behaviour. Their other positive

attribute is that the associated styrene content is usually in the 35-38% range. The main



disadvantages are that these resins tend to be very rigid and lack the toughness of other

resins.

1.3.2.1.2.2. Epoxy Resin

Epoxy resins are relatively expensive and take a long time to cure but exhibit low
shrinkage and have excellent resistance to chemicals and solvents. Epoxy resins have
been widely used in commercial applications such as aircraft components, pressure
vessels and car bodies. Other advantages of epoxy resin include good mechanical
properties (strength and stiffness), excellent chemical and weather resistance, and good
fatigue strength. Their less attractive attributes include poor high temperature capabilities,

the associated toxicity of the unused resin and relatively high manufacturing costs.
1.3.2.1.2.3. Vinyl Ester

Vinyl ester resins have excellent chemical resistance and tensile strength. Vinyl esters are
formulated by reacting epoxy resin with methacrylic acid, forming a polymer that has

characteristics similar to both polyester and epoxy.

Table 1-3: Properties of thermoset and thermoplastic polymers [Schwartz, 1997}

Property Thermosets Thermoplastics
Young’s modulus (GPa) 1.3-6.0 1.0-4.8

Tensile strength (MPa) 20-180 40-190
Fracture toughness

Kic (MPa m'?) 0.5-1.0 1.5-6.0

Gie (KI m?) 0.02-0.2 0.7-6.5
Maximum service temperature | 50-450 25-230

(‘0
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1.4. Composites Manufacturing Processes

A wide range of manufacturing processes are available for the fabrication of composite
structures. The examples include hand lay-up, chopped laminate process, filament
winding, compression molding, pultrusion, reinforced reaction injection molding, resin
transfer molding, vacuum bag molding, vacuum infusion processing, centrifugal casting

and continuous lamination.

These manufacturing techniques can be classified, depending on the volume of
production, as low, medium, or high volume production. The selection of manufacturing
process depends on the resin and reinforcements used, complexity of the job, volume of
production and cost. In the following section, three common manufacturing processes,

namely hand lay-up, filament winding and pultrusion are briefly explained.

14.1. Hand Lay-up

Hand lay-up is the simplest and oldest of all composite fabrication processes. Hand lay-
up method is suitable for making a wide variety of composite products including tanks,
trucks, boats, housing, bathware and many others. In the manufacturing process, the first
step is to apply a gel coat to the mold using a spray gun for a high quality finish. Once the
gel coat is cured sufficiently, the reinforcements are manually placed on the mold
followed by applying resin by pouring, brushing, spraying or using a paint roller (Figure
1-1). After removing excess resin by using FRP rollers, paint rollers, or squeegees, the
laminate is cured at room temperature or in an autoclave. The autoclave is a special
~ pressure vessel wherein complex chemical reactions take place, which in turn initiate and
complete the consolidation of the composites. Before the autoclave curing, the part
should be carefully processed and prepared. This involves the use of special equipment
such as separators, bleeders, vacuum bags and others. This process is called vacuum

bagging. A typical vacuum bag assembly is shown schematically in Figure 1-2 [Gibson,
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1994]. Instead of applying resin after the fibers are laid-up on the mold, it is sometimes

common to use prepregs.

The major advantages of hand lay-up include low-cost tooling, simple processing, and the
ability to fabricate a wide range of parts. As well, sensors or actuators can be easily
embedded into the composites to produce smart composite structures. The main
disadvantages of hand lay-up are that it is a low-volume and labor intensive fabrication

method.

Figure 1-1: Hand Lay-Up process [Design inSite, 2006]

1.42. Filament Winding

The basis of the filament winding method is the high-speed precise lay-down of
continuous reinforcements in a predescribed pattern over a rotating mandrel. Filament
winding is an automated open molding process. It is used to produce hollow cylindrical
products such as chemical and fuel storage tanks, pipes, stacks, pressure vessels, and
rocket motor cases. A continuous strand roving is pulled from a series of creels into a

liquid resin bath containing resin, catalyst, and other ingredients (Figure 1-3). Once the
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fibers exit from the bath, the resin-impregnated rovings are pulled through a wiping

device that removes excessive resin from the rovings and controls resin coating thickness

Pressure chamber
Vacuum bag
Lay-up (prepreg)

| Compressor

Vacuum pump

Figure 1-2: Autoclave molding [Gibson, 1994]

Roving

= |ENSIONEF
supply -

. Resin bath

Axle

Semifinished
component

Figure 1-3: Filament winding process [AZoM™, 2005]
around each roving. Once the rovings are thoroughly wiped, they are subsequently placed

onto a flat carrier and then positioned into a rotating mandrel. The filament is laid down

in a predefined geometric pattern to provide maximum strength in the direction required.
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The winding speed of the mandrel and transverse speed of the carriage are controlled to
create the desired winding angle pattern. After sufficient layers of fibers have been
applied, the structure is cured on the mandrel. Once the composite is cured, the structure
is stripped from the mandrel. The molds are available in different shapes and sizes
depending on the shape of the part to be build. The molds are usually made of steel or
aluminum but in some cases they are made of wax to facilitate part removal. The main
advantages of this process are that it produces high strength-to-weight ratio laminates and
provides a high degree of control over structural uniformity and fiber orientation.

Because this process is automated, it is not as labor intense as hand lay-up.

1.4.3. Pultrusion

Pultrusion is one of the fastest and most cost effective composites manufacturing
processes. It is well suited to produce prismatic products such as prestressing tendons,
reinforcing bars, structural shapes, beams, channels, pipes, tubing, and fishing rods.
Pultrusion produces structures with a high degree of axial reinforcement and this makes it
a prime candidate for manufacturing high quality low cost components for structural
engineering applications. Fiber optic and other types of sensors as well as actuators can
readily be embedded in a composite part during pultrusion and this renders the process

ideal for the fabrication of smart composites.

In a pultrusion process, the first step is to pull the fibers from a series of creels into a
resin bath containing the liquid resin together with appropriate amounts of catalyst and
promoters. These resin-impregnated fibers are subsequently guided to the pultrusion die,
which has the profile of the part to be manufactured. Strip heaters attached to the die
provide the necessary thermal zones needed to initiate and complete the consolidation
process. The product coming out of the die cools in ambient air, or forced air, as it is

continuously being pulled by a set of rollers. A schematic of the pultrusion process is
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shown in Figure 1-4 [Kalamkarov et al., 2000a]. Figure 1-5 shows the overall pultrusion
setup at Dalhousie University.
Data Acquisition & Strain

Monitoring Unit
Fabry Perot Sensor Lead

-
|
Roller Pulling ~ Dy* Ni® Fiber

Mechanism Heaters FeedCard
System

Carbon Fiber
Roving Creels

Resin Wet-Out Bath

Figure 1-4: Schematic of pultrusion line for embeddement of fiber optic sensors

[Kalamkarov et al., 2000a}

Figure 1-5: Schematic of pultrusion setup at Dalhousie University
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1.5. Advantages of Composites

Composites offer a number of advantages over traditional materials like steel. When

judiciously selected, composites usually offer one or more of the following advantages:

e  High Specific strength

e  Ability to fabricate complex profiles

e High degree of integration with other materials

e Inherent durability

e Tailorability of mechanical and physical properties
e Excellent fatigue strength

e Excellent impact resistance

e Excellent thermal resistance

e Reduced assembly time

e FEase of fabrication and shorter fabrication time

1.6. Contributions to Research

The author’s contributions to research are as follows:

e  Development of micromechanical model pertaining to prismatic smart composite
structures with orthotropic reinforcements

e  Development of micromechanical model pertaining to thin smart composite plates
reinforced with a network of orthotropic bars

e  Development of micromechanical models pertaining to general three-dimensional

composite reinforced with a network of isotropic bars



2. SMART MATERIALS

2.1. Introduction

The high maintenance cost and limited service life condition often associated with
traditional structural materials like concrete and steel can be significantly offset by the
application of composites in the areas of civil engineering, aerospace, transportation
industry, oil and gas, and marine engineering. At the same time, significant advancements
in MEMS, telecommunications, and other fields, significantly facilitates the development
of new and highly effective sensors and actuators. Their merge with the field of
composites gave birth to the so-called smart composite materials. There are many
definitions characterizing smart materials; a) adaptive structures, which incorporate
sensors and actuators, b) materials which produce multiple responses to one input in a
coordinate fashion, c) passive smart materials that provide information on their state and
integrity, and active smart materials that can perform self-adjustment or self-repair as
conditions change, d) smart materials and systems reproducing biological functions in

load bearing structural systems.

The necessary characteristics of actuators and sensors have been expressed by (Jain 94)
as follows: “Sensor materials should have the ability to feedback stimuli such as thermal,
electrical, and magnetic signals, to the motor system in response to changes in the
thermomechanical characteristics of the smart structures. On the other hand, actuator
materials should have the ability to change the shape, stiffness, position, natural
frequency, damping and/or other mechanical characteristics of the smart structures in
response to changes in temperature, electric field and/or magnetic field. The most popular

material systems being used for sensors and actuators are

16
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Piezoelectric materials

Magnetostrictive and Electrostrictive materials
Shape memory alloys

Electrorheological and Magnetorheological fluids
Carbon nanotubes

Optical fibers

Electrochromic materials

Fullerenes

o ® N S n kWD

Smart Gels

Magnetostrictive materials, shape memory alloys, and electrorheological fluids are
mostly used as actuator materials. Whereas, optical fibers are used as sensor materials.
Among all these active materials, piezoelectric materials are most widely used because of
their fast electromechanical responses, low power requirements, and relatively high

generative forces.

In the following sections an overview of some of these smart materials is presented

including definition, applications etc as reported in the literature.

2.2. Piezoelectric .

The phenomenon of piezoelectricity describes the ability of the material (crystals) to
generate electric voltage when subjected to mechanical stress or conversely, to get
deformed when an electric field is applied. In the former case they work as sensors and in
the latter case they work as actuators. Piezoelectrics have been the backbone of smart
materials research since World War II and are manufactured around the world. To better

understand the behavior of piezoelectric ceramics, a basic understanding of these
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ceramics should not be overlooked. To this end, next section gives a brief introduction of

the history, the poling process, and piezoelectric effect.
2.2.1. History of Piezoelectric ceramics

Piezoelectricity is derived from the Greek word “piezo”, meaning “pressure”. In 1880,
Jacques and Pierre Curie discovered a group of materials that exhibit unusual
characteristics: when subjected to pressure, the crystals generate an electrical charge. W.
Hankel in 1881 first suggested the term “piezoelectricity” and Lipmann deduced the
converse effect which states that when this crystal was exposed to an electric field it
lengthens or shortens according to the polarity of the fields. The major breakthrough in
this field came with the discovery of barium titanate and lead zirconate titanate (PZT) in
the 1940s and 1950s which enabled designers to employ the piezoelectric and the inverse
piezoelectric effect in many engineering applications. The main advantage of these
materials is that the composition, shape and dimensions of piezoelectric ceramics can be

tailored to meet the requirements of a specific application.
2.2.2. Poling

In the basic form, the domains within a piezoelectric material are randomly oriented and
hence the effect from individual domains cancels each other out. Consequently, they
exhibit no piezoelectric properties and are isotropic. Since the direction of polarization
among the neighboring domains is random, ceramic elements exhibit no overall

polarization characteristics. (Figure 2-1) [APC International, 1999].

Poling is the common process used to orient the domains within a piezoceramic element.
In the poling process, a strong direct electric field, usually at a temperature slightly below
the curie point is applied to rotate and orient the domains in the direction of electric field

(Figure 2-2) [APC International, 1999]. When the electric field is removed most of the
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dipoles are locked into a configuration of near alignment (Figure 2-3) [APC International,
1999] and the ceramic exhibits the piezoelectric effect. In the polarization process the
element lengthens along the poling axis and contracts in both directions perpendicular to

it, as a direct consequence of the piezoelectric effect.
2.23. Piezoelectric Effect

When mechanically stressed, poléd piezoceramic elements (Figure 2-4(a)) generate a
Voltage.: When the piezoelectric element is mechanically compressed along the direction
of polarization, or stretched in the direction perpendicular to the direction of polarization,
a voltage is developed across the electrodes that have the same polarity as the poling
voltage (Figure 2-4(b)). If the applied load causes tension along the direction of
polarization, and/or compression along the direction perpendicular to the polarization, the
resulting voltage has polarity opposite to the poling voltage (Figure 2-4(c)) and this
behavior is called direct piezoelectric effect. Conversely, the converse piezoelectric effect
defines the change in shape of the piezoelectric elements, when a voltage is applied.
When a voltage that has the same polarity as the poling voltage is applied to a
piezoelectric element, the element gets stretched in the direction of poling voltage and as
a consequence of Poisson’s effect its diameter is reduced (Figure 2-4(d)). If a voltage of
polarity opposite to that of poling voltage is applied, the piezoelectric element will
become shorter in the poling direction and wider in the perpendicular direction (Figure 2-
4(e)). If an alternating voltage is applied to the ceramic element, the element will

lengthen and shorten cyclically, at the frequency of the applied voltage.
2.2.4. Application of Piezoelectric Ceramic

The availability of piezoelectric materials in many forms such as thin films, patches and

rods, and their light weight has made them the strong candidates for smart composite
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1999]

Figure 2-3: Orientation of domains after electric field is removed [APC

International, 1999]
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applications. Their ability to be easily integrated into structures makes them very
attractive in structural control. Recent uses of piezoelectric ceramics in numerous
applications have illustrated the feasibility of these materials in improving the
performance of smart structures both as sensors and actuators. Piezoelectric ceramic
patches can be used as multiple sensors to detect damages in composite structures using a
variety of methods. Recently, piezoelectric ceramic patches have been considered for the
in-situ monitoring of strains in composite structures. Rees et al. suggested the use of
piezoelectric patches as sensors to monitor the crack growth in boron/epoxy repair sites
[Rees et al. 1992]. Adali et al. [2000] considered a beam problem where the maximum
vertical deflection of a laminated beam is to be minimized using one pair of actuators.
Bruant et al. [2001] optimized both sensor and actuator locations, but considered them
separately. Bent and Hagood [1997] have considered the use of piezoelectric fiber
composites for structural actuation applications. Stack actuators have been studied among
others, by Flint et al. [1994]. Samak and Chopra [1994], Song and Librescu [1994], Chen
and Chopra [1994], and Haverly et al. [2001], studied the active vibration control of
helicopter blades using stack actuators. Other researchers who have considered the use of
piezoelectric ceramic patches for the purpose of strain monitoring, actuation and active
vibration control include Barboni et al. [2000], Song et al. [2002], Bob et al. [2002],
Fukunaga [2002], Kevin and Liangsheng [2004], Park et al. [2005], Kim et al. [2005],
Sumant and Maiti [2006], and Seunghee [2006].

Currently, piezoceramic materials are used in military (hydrophones and sonobuoys,
depth sounders, targets, telephony, sonar pingers, and adaptive optics), commercial
(ultrasonic cleaners, welders, degreasers, thickness gauging, flaw detection, level
indicators, geophones, delay lines, ignition systems, fans, relays, ink jet printers and
strain guages), medical (ultrasonic cataract removal, ultrasonic therapy, insulin pumps,
flow meters, ultrasonic imaging, and vaporizers), automotive (knock sensors, wheel
balancers, radio filters, seat belt buzzers, thread wear indicators, air flow, fuel

atomization, tire pressure indicator, and audible alarms), and consumer (Humidifiers, gas
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grill igniters, telephones, smoke detectors, microwave ovens, sneakers, cigarette lighters,

lighting security, and ultrasonic sewing) products [Technical Insights, 1999].

Poling Axis

(a) Piezoceramic fiber after polarization

(b) Disk compressed along poling direction, (c) Disk stretched along poling
. direction, generated voltage has polarity
generated voltage has same polarity as the opposite to the poling voltage

poling voltage

- +

- + —

(d) Applied voltage has the same (e) Applied voltage has the polarity
polarity as poling voltage, disk gets  opposite to that of poling voltage, disk
lengthen in the direction of gets shortens in the direction of

polarization polarization

Figure 2-4: Piezoelectric effects in a cylinder of PZT material
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2.3. Magnetostrictives and Electrostrictives

Magnetostriction is observed in materials which experience strain under the influence of
a magnetic field, and conversely generate a magnetic field when strained. The strength of
the magnetic field is proportional to the material’s rate of strain [Shakeri et al. 2001].
Early magnetostrictive materials were studied extensively but few practical applications
existed because the force and strain they generated were much less than piezoelectric and
electrostrictive materials. This fundamental disadvantage changed drastically with the
development of Terfenol-D (an alloy of iron, terbium, and dysprosium), a so-called giant
magnetostrictor. These materials are capable of generating strains an order of magnitude
larger than conventional piezoceramics with similar force output. Unlike piezoelectric

materials, Terfenol-D has high endurance and has no time-or cycle-dependent lifetimes.

The phenomenon of magnetostriction results due to the re-orientation of small magnetic
domains as a result of application of a magnetic field. With an increase in the applied
field, more domains rotate and align until a magnetic saturation is reached. These
magnetic domain rotations caused by the application of the external field, create internal
strain in the material resulting in elongation (positive magnetostriction) or shortening
(negative magnetostriction) of the material depending on the direction of the magnetic

field.

Kannan and Dasgupta [1994] performed finite element analysis on the behavior of multi-
functional composites with embedded magnetostrictive devices. Fenn [1994] discussed
the passive damping and velocity sensing using magnetostrictive transducers. Bi and
Anjanappa [1994] examined the feasibility of implementing embedded magnetostrictive
miniactuators for smart-structures applications, such as control of beam vibrations.
Marcelo [2000] discussed the modeling of strains generated using magnetostrictive
transducers in response to an applied magnetic field. Figure 2-5 illustrates the cross-

section of a prototypical Terfenol-D magnetostrictive transducer [Marcelo, 2000]. Hao et
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al. [2006] studied the nonlinear constitutive model-based vibration control system for
giant magnetostrictive actuators (Terfenol-D). Chen and Anjanappa discussed the method
of detecting delaminations in a composite structure embedded with magnetostrictive
particulate sensors. Krishnamurthy et al. [1999] considered health-monitoring of
delaminations in composite materials using an excitation coil and a sensing coil. Other
researchers include Trovillion et al. [1999], Saidha et al. [2003], Heyliger [2004], and
Ghosh and Gopalakrishnan [2005].

Wound Wire Solenoid

Compression
Belt

Permanent Magnet

Figure 2-5: Cross section of a typical Terfenol-D magnetostrictive transducer [Marcelo,
2000]

Magnetostrictive materials like Terfenol-D can be incorporated in multifunctional
composites for controlling of mechanical deformations as well as for the sensing of
deformations and forces. When distributing the magnetostrictive particles in a composite
structure as microscale devices in a host material, they can act as distributed sensors.
Alternatively, they can act as distributed actuators that are capable of vibration
suppressions, micro positioning, damage mitigation, and shape control. Terfenol-D can
potentially replace conventional aircraft parts and reduce weight resulting in a lower

annual fuel consumption rate.
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Electrostrictives are another class of materials that are similar in function to piezoelectric
materials but generate more strain and have a nonlinear strain to field dependence
[Technical Insights, 1999]. As well, these materials also exhibit less hysteresis which
implies a more efficient actuation. The electrostrictive effect can be found in all materials
although it is usually too small (approx 10E-5 to10E-7 strain %) to utilize practically.
One class of materials known as relaxor ferroelectrics exhibits the electrostrictive effect,
and shows strains comparable to those pertinent to piezoelectrics (10E-1strain %) and has
already found applications in many commercial platforms. The main concern with
electrostrictives is that their behavior is very dependent on operating temperature and

applied stress conditions.

Electrostrictive materials produce elastic deformation or change in shape when subjected
to an electric field similar to magnetostrictives where deformation is produced due to a
magnetic field. Electrostrictive materials are dielectric and typical examples include
ceramics like lead-magnesium-niobate (PMN). Electrostrictive materials can be used as

transducers, actuators, or sensors.

2.4. Shape Memory Alloys (SMA’s)

Shape memory alloys are a unique group of inter-metallic materials that exhibit two very
interesting properties, shape memory effect and pseudo-elasticity. Commonly, these
materials are referred to as adaptive materials which can convert thermal energy directly
to mechanical work. The shape memory effect comes in two forms; in the one-way shape
memory effect the alloy is mechanically deformed at a low temperature and when heated
above a critical transition temperature, it restores the original memory shape of the
specimen. In the two-way shape memory effect, heating (even without application of

external loads) the SMA results in one “memorized” shape while cooling results in
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second different shape [Shahin et al. 1994]. The most popular and effectively used alloys
include NiT1 (Nickel - Titanium), CuZnAl, and CuAINi.

The unique properties of shape memory alloys are due to the solid state phase change that
is accompanied by a molecular rearrangement. In most shape memory alloys, a
temperature change of only about 10°C is necessary to initiate this phase change. The
SMA alloys are characterized by two distinct solid phases, a low temperature phase
(martensite) and a high temperature phase called austenite. In the martensite phase these
alloys can be easily bent into various shapes. To regain the original shape, these alloys
should be heated to about 500°C. At this high temperature the atoms rearrange
themselves into the most compact and regular pattern possible resulting in a rigid cubic
arrangement known as the austenite phase. The nature of shape memory alloy can be
better understood by considering the phase diagram shown in Figure 2-6. When heated,
martensite starts transforming into austenite at a point called Austenitic Start
Temperature (As), and completely transforms into austenite at a temperature Af, know as
Austenitic Finish Temperature. Subsequent cooling of the SMA alloy transforms
austenite to martensite. This process starts at a temperature Ms called Martensite Start
Temperature and completely reverts to martensite at a point Mf (Martensite Finish

Temperature).

Shape memory alloys have the potential to be used in a number of applications. More
recently, Nagai and Oishi [2006] investigated the use of Shape memory alloys as strain
sensors in composites and Ogisu et al. [2006] studied the damage in quasi-isotropic
CFRP laminates with embedded pre-strained SMA foils under quasi-static uniaxial
tensile loads. One of the most popular areas of application of SMA actuators is noise and
vibration control. Some examples can be found in Adachi et al. [1999], Saadat et al.

[2001], Humbeeck and Kustov [2005] and many others.
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100% Austenite

Figure 2-6: SMA behavior [AEROFITinc, 2002]

2.5. Electrorheological (ER) and Magnetorheological (MR) Fluids

Electrorheological and magnetorheological fluids are substances that contain micro
particles suspended in an inert carrier fluid that align with an applied electric or magnetic
field, respectively. When an external field is applied, these particles join to form semi-

rigid chains that can significantly alter the fluid properties.

Electrorheological (ER) fluids transform from the liquid state into the gel state (Figure 2-
7) with a yield stress of some kPa in milliseconds by applying an electric field. This
reversible change is due to the controllable interaction between micro-sized dielectric
particles within the ER suspensions. The polarization of these particles leads to
configuration changes, which in turn results in significant changes in rheological
properties. In the absence of an electric field, ER fluids behave like Newtonian fluids
with shear stress proportional to shear strain. When a field is applied and increased, ER

fluids develop a yield stress that must be overcome before there can be any motion
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between the electrodes. Because of this observed behavior, smart fluids are often
modeled as Bingham plastic with a field-dependent yield stress. The main disadvantage

of ER fluids is that they require large amount of electrical current to change state.

ER fluids applications can be categorized in two classes, controllable devices and
adaptive structures. ER fluid-based controllable devices include valves, mounts, clutches
and brakes. Adaptive structures are structures which incorporate ER fluids that have the
ability to tune structural properties. Pinkos [1994] studied the utilization of ER fluids in
car suspension systems. Wereley [1994] analyzed the feasibility of using ER fluids for
active control of flexible rotor blades. Lee and Choi [2005] studied the dynamic
properties of an ER fluid under shear and flow modes. Chen and Wei [2006] conducted
experimental work on the rheological behavior of ER fluids under a variety of electric
fields. ER fluids are mostly used in the automotive and aerospace industries for vibration
control and variable torque transmission. Nowadays many additional avenues are being
explored, for example civil engineering structures, and robotics. Other applications

include residual vibration damping, servo stiffening of DC motors etc.

Figure 2-7: Particles chaining between electrodes when subjected to electric field
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Similar to electrorheological fluids, magnetorheological fluids change viscosity and other
properties as an external magnetic field is applied. When the magnetic field is removed
they transform back to liquid. As the external magnetic field strength increases so does
the magnetorheological fluid viscosity. Magnetorheological fluids are made up of very
small iron particles (typically 3-5 um) dispersed in a low volatility carrier fluid, usually a
synthetic hydrocarbon. Oil, glycol, silicone and even water can be used as the MR fluid
medium. Table 2-1 provides typical MR fluid properties [Technical Insights, 1999].
Applications of magnetorheological fluids can be found in automotive shocks, mounts
and bushings, vibration dampers for vehicular seats and home appliances, precision lens
grinding processes, pneumatic motion control systems, and seismic dampers for buildings

and bridges.

2.6. Fiber Optic Sensors

Fiber optic sensors embedded in or attached to composites and other structures provide
structural health monitoring and detect the onset of structural degradation and damage.
Optical sensors have a number of specific advantages over other type of sensors which
include easy embedment into host structures like composite laminates and rods, immunity
to electromagnetic interference due to their dielectric nature, lightweight characteristics,
corrosion resistance, high bandwidth, an enhanced resistance to environmental conditions,
and low cost. The main disadvantages of these sensors are that their associated fiber leads
are fragile and they also have a very small diameter which makes them difficult to handle.
In addition to strain sensing, fiber optic sensors can be used to monitor a large number of
other parameters such as linear and angular position, pressure, flow, liquid-level,
temperature, strain, degree of cure etc. Measurements of such variables generally depend

on changes in the manner that light is transmitted along the optical fiber.
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Table 2-1: Typical MR Fluids Properties [Technical Insights, 1999]

Property Typical Value
Maximum Yield Strength 500-100 kPa
Maximum Field Approximately 250 kA/m
Plastic Viscosity 0.1-1.0 Pa-s
Operable Temperature Range 40-150°C (limited by carrier fluid)
Susceptibility to Contaminants Highly resistant to most impurities
Response Time A few milliseconds
Density 3-4.g/em’
Maximum Energy Density 0.1 J/em’
Power Supply 225V @ 1-2 A (2-50W)

Fiber optic sensors are categorized into (a) intrinsic sensors and (b) extrinsic sensors.
Extrinsic sensors consist of an optical fiber, which carries light to a separate device that
modulates it in response to an environmental effect. Intrinsic sensors on the other hand
monitor light modulation within the fiber itself. An example of an extrinsic type of sensor
used extensively in structural health monitoring applications is the Fabry Perot Sensor. It
works on the principle of measuring a gap shift, or cavity length, between two facing
fiber ends contained in a glass capillary. As external force (stress) is applied to the sensor,
the length of the air gap changes and so does the phase difference between the two
reflections. The change in phase between the two reflections is represented on a read-out
screen. A schematic of a Fabry Perot sensor is shown in Figure 2-8 [Kalamkarov et al.,
2000] and a photograph of an actual sensor is shown in Figure 2-9. Fabry perot sensors
are very attractive for smart composite applications because their small size allows them
to be easily embedded in composite materials, such as pultruded glass and carbon fiber

reinforced tendons [Kalamkarov et. al, 1998, 2000].
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Figure 2-8: Fabry Perot sensor [Kalamkarov et al., 2000]

Figure 2-9: Fabry Perot sensor



3. INTRODUCTION TO ASYMPTOTIC HOMOGENIZATION MODELS FOR
SMART COMPOSITE STRUCTURES

3.1. Introduction

Significant increase in the popularity of advanced composites and smart composites has
seen their incorporation in the areas of mechanical, aerospace, civil, transportation,
marine engineering, medicine, recreation and sports goods, etc. The continuous
integration of these materials into new engineering platforms largely depends on the
correct prediction of their mechanical properties and coefficients such as elastic,
actuation, thermal conductivity, hygro-thermal expansion etc., through the development
of appropriate models. The actuation coefficients characterize the intrinsic transducer
nature of active smart composites that can be used to induce strains and stresses in a
coordinated fashion. The micromechanical modeling of smart composite structures
however, can be rather convoluted because of the inherent inhomogeneity of the
composite materials themselves, and the local interaction between the different
constituents. Therefore, it is important to develop mathematical models which are neither
too complicated to be described and used, nor too simple to reflect the real properties and
characteristics of the structures. In this thesis three different models pertaining to
different structures are established and analyzed. The first model pertain to a thin smart
composite plate reinforced with orthotropic bars, the second model analyses prismatic
smart composite structures, and the third model developed is applied to three-dimensional
network reinforced composite structures. Although the three models are fundamentally
different because they deal with different structures, they all have some common features.
The following sections provide a brief explanation of these features. The detailed

modeling of the three structures is given in the subsequent chapters.

32
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3.2. Micromechanical Modeling

The mathematical modeling of composite structures made up of reinforcements
embedded in a matrix has been the focus of investigation for many years. Due to the
multi-constituent nature of the composite structure, most micromechanical models
employ some variant of an ‘averaging’ technique to determine their overall or ‘effective’
properties and predict their mechanical behavior. Hashin [1962] developed a composite
spheres model to determine the effective properties of a heterogeneous medium. In this
model, the inclusions are treated as spherical particles of radius ‘a’, and are embedded in
a spherical region of matrix of radius ‘b’ in such a manner that the ratio of the radius of
the particle to that of the encompassing matrix is constant and independent of the actual
particle size. This model was developed to analyze shear and bulk moduli of
macroscopically isotropic composites. Hashin and Rosen {1964] developed a composite
cylinder model for the analysis of microscopically anisotropic composite materials. This
model treats the reinforcing fibers as cylindrical inclusions of radius ‘a’ associated with a
region of matrix of radius ‘b’. Similar to the previous model, this model also allows the
variation of the absolute size of the reinforcements in order to cover all the available
continuous material, keeping however, the ratio a/b constant. Hill [1965] and Budiansky
[1965] extended a self-consistent scheme previously developed for modeling the
mechanical behavior of polycrystalline materials by Hershey [1954], to analyze
multiphase media. Hashin and Shtrikman [1963a, 1963b] developed micromechanical
models pertaining to multiphase materials, which exhibit macroscopically quasi-isotropic
behavior. In this model, the authors employed a variational approach to determine upper
and lower limits for the effective elastic properties as well as electric and thermal
conductivity of the multiphase materials. It was discovered that if the properties of the
different constituents were of comparable magnitude, then the upper and lower bonds are
close to one another. Other mathematical models related to composite structures can be
found in Eshelby [1957], Hill [1963], Russel [1973], Mori and Tanaka [1973], Sendeckyj
[1974], Berryman [1980], Torquato and Stell [1985], and more recently in Torquato
[1991], Tsai [1992], Jansson [1992], Vasiliev [1993], Kalamkarov and Liu [1998c],
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Zeman and Sejnoha [2001], Sevostianov et al. [2005, 2002], Sevostianov and Kachanov
[2003] and others. Christensen [1990], Milton and Kohn [1988], Vinson [1993], and
Nemat-Naser and Hori [1993] are among the researchers who employed analytical

averaging schemes.

The characteristics of adaptive smart structures of a periodic nature (see Figure 3-1) can
be described by means of partial differential equations expressed in terms of two largely
different scales; a microscopic scale (fast scale) which reflects the periodic nature of the
structure and is of same order of magnitude as the size of the “unit cell” or periodicity
unit (Figure 3-1), and a macroscopic scale (slow scale) which is a manifestation of the
global formulation of the problem. The macroscopic scale has an order of magnitude
similar to a characteristic dimension of the composite structure. The presence of two
different scales in the pertinent differential equations makes their analytic or even
numerical solution a very difficult task. So, we look for alternative approximate
techniques. One such technique is the asymptotic homogenization method. The
asymptotic homogenization decouples the microscopic and the macroscopic variations, so
that each can be solved independently or sequentially. The general mathematical
framework can be found in Bensoussan et al. [1978], Bakhvalov and Panasenko [1984],
Sanchez-Palencia, [1980], Kalamkarov [1992], Cioranescu and Donato [1999] etc. This
method is mathematically rigorous and when applied to the smart composite structures, it
enables the determination of both local and global averaged properties of the structures.
Many problems in the framework of elasticity and thermoelasticity have been solved
using such models. Kalamkarov and Georgiades [2002a, 2002b] developed general
micromechanical models pertaining to smart composite structures with homogeneous and
non-homogeneous boundary conditions as well as micromechanical model for thin smart
composite layers with wavy boundaries. Other works can be found in Adrianov et al.
[1985], Artola and Duvaut {1977], Lene and Leguillon [1982], Caillerie [1984], Kohn
and Vogelius [1984], Devries et al. [1989], Ciarlet [1990], Kolpakov and Kolpakova
[1995], and Kalamkarov and Kolpakov [1997, 2001]. The main objective of asymptotic
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homogenization technique is to transform a general anisotropic composite material made
of a periodic array of reinforcements and other inclusions such as actuators (Figure 3-1)
into a set of simpler problems, often referred to as unit cell problems. It is precisely these
unit cell problems that lead to the determination of the aforementioned effective

coefficients.

The three essential features characterizing asymptotic homogenization are asymptotic or
perturbation expansions, two-scale expansions, and the homogenization process. These

features are explained in subsequent sections.

Actuator

Unit Cell

) _ Y: .
Reinforcement : 2 Matrix

Y3 Reinforcement

Figure 3-1: Smart Composite with periodically arranged actuators and its periodicity cell

Before explaining these features it is worth explaining briefly what we mean by
asymptotic approximations. Most of the physical problems that arise in all branches of
science and engineering have some inherent characteristics associated with them that

make the exact closed-form solution an impossible or very difficult task. Some examples
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of these characteristics include, but are not limited to, non-linearity, geometric
uncertainties, rapidly oscillating coefficients, and changing boundary conditions. The
advances in computer technology helped to solve or deal with such complex problems
but strictly numerical solutions come with their share of disadvantages the most
important of which is that the insight often gained from exploring the relationships
between a solution and the various problem parameters is lost. One way of compensating
for this is to construct an approximate solution from which the analyst and designers can
assess or partly assess the significance of the various parameters. It is therefore important
to discuss what exactly we mean by an asymptotic approximation. The best way to

explain this is to consider an example as given in Holmes [1995].

Let us consider a problem given by:

fl@)=a? +a*, where u is close to zero (3.1]

In this problem we are interested in finding an approximation. To begin solving this

problem first let us approximate the above function as:

Fla)~a? [3.2]

This approximation is reasonable for a close to zero because a® << 2. On the other hand,

a lousy approximation would be

[3.3]
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We can easily observe that the above approximation is lousy even though the error

fla)- % a? goes to zero asa ¥ 0. The problem with this approximation is that the error is

of the same order of magnitude as the quantity being approximated. Thus,

“Given f(a) andg(a), we say that ¢(a) is an asymptotic approximation to f(a) as

)

a—agwhenever f=¢+0(p) asa—>a,. In this case, we write f~dasa—ay,”.

[Holmes, 1995]

In the above definition ¢(cr)serves as an approximation to f(a), for « close toa,, when
the error is of higher order than the approximating function. In particular, f~gas

a—)aoif

lim —f—@ =1 [34]
a-ay ¢(a)

It is worth mentioning that the asymptotic approximation is not unique and it does not say
much about the accuracy of the approximation. To overcome these disadvantages, we

need to introduce more structure into the problem formulation.

3.3. Asymptotic Expansion

The differential equations describing the behavior of real structures or systems are often
characterized by the presence of certain parameters, which even though small in relation
to the other parameters and variables, may have too important of an effect to be ignored.
The presence of such parameters makes the differential equations difficult to solve. A

particularly useful technique is dealing with any differential equation is to non-



38

dimensionlise the variables in a differential equation i.e. normalize them with respect to
other suitable characteristic variables so that these transformed variables are
approximately of order 1. Thus in such situations, a “small” parameter say &, implies that
¢ is much smaller than 1( e <<1). An approximate solution to the problem is then obtained
by expanding it in terms of an infinite series in powers of the small parameter and by
subsequently truncating this series after a few terms. The most common methods used to
find asymptotic expansions are (a) Taylor’s theorem, (b) L Hospital’s rule (c) Educated
guess. More information on these methods can be found in Nayfeh [1993]. Typically, but

not always, these series are in the form

[3.5]
Ysolution = Yo T €Y, + 82}’2 + 83}’3 +...

where the symbol ... stands for higher order terms. Once the series is defined it is
inserted into the governing equations and respective boundary conditions, and
coefficients of like powers of € are then grouped to obtain a series of equations for the
coefficient functions, which are then solved in a sequential manner. It must be mentioned
that the resulting series need not converge for any value of €; nevertheless, the solution

can be still useful in approximating the given function when ¢ is small.

The general features of an asymptotic expansion will be illustrated by means of a simple

example. Consider,

dy >
—_ - =g
Ix y Y

y(0)=1 [3.6]

The first step in solving this problem is to assume that the solution is expressed as:
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y=y0(x)+sy1(x)+52y2(x)+ 0(83) [3.7]

where “O” is the so called Landau symbol and means “order of”. The error incurred by

truncating the series after the &2 is of ordere®. It should also be noted in Equation [3.7]

that the y,(x) terms are all functions of the independent variable x, and do not depend on

€.

The next step in the process of solving this problem is to substitute the assumed
expression into the governing equations and boundary conditions to obtain, after

neglecting higher-order terms:

92'_()_+8_‘13_'_1__(y0 "“‘5)/1)2 =gy, +e%y, [3.82]
dx dx
, [3.8b]
¥o(0)+ ey, (0)+%y,(0)=1
Collecting the like powers of € gives two sets of questions:
Bo _2_ [3.9a]
dx
[3.9b]
yo(0)=1
d
—Zl——2}’o)’1 -~y =0 [3.10a]
dx
y,(0)=0 \ [3.10b]

From Equation [3.9]
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1 3.11
Yo=1T—_ [ ]
1-x

Substituting Equation [3.11] in [3.10a] and solving using Equations [3.10b] gives

<[ 2% [3.12]
B

Combining Equations [3.11] and [3.12] gives the total expression for the asymptotic

solution of the problem at hand as follows:

3.13
y(x):ljx+s%{ 2-X2}+O(&:2) [ ]

To assess the accuracy of the approximate solution obtained, one must compare with an
exact solution. Thus, from Equations [3.6] and after some algebraic manipulations, the

exact solution for x is given by:

Yo =—"— [3.14]

e+1-e™

As a final step let us plot the asymptotic and analytic solutions given in Equations [3.13],
[3.14] respectively. From Figure 3-2, we observe that they conform very well to one

another. The value of & = 0.01 was used for this plot.
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Analytical Solution Asymptotic Solution
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Figure 3-2: Comparison of asymptotic and analytical solutions for the example in

Equation [3.6]

3.4. Multi-Scale Expansion

The second characteristic feature of the method of asymptotic technique is the two scale
expansion. Unlike matched asymptotic expansion where the solution is constructed in
different regions that are then patched together to form a composite expansion [Nayfeh,
1973], the method of multiple-scale expansion essentially starts with a generalized
version of a composite expansion. In doing this, one introduces separate coordinates for
each region of the problem under consideration. These new variables are considered
independent of one another. The result is a transformed partial differential equation
which is, surprisingly perhaps, easier to solve rather than the problem described in the

original ordinary differential equation.
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For illustrative purposes, let us consider a weak spring-mass-damping system with a
weak damping coefficient. The problem of this nature is given by the following

differential equation and boundary conditions:

2
Py g [3.152)

[3.15b]
y(0)=1, 3(0)=0

Here ¢ is the viscous damping coefficient.

We will try to solve this problem by using a regular asymptotic expansion like the one

described in Section [3.3]. We start with:

[3.16]
y =yo(t)+ey; (1) + &y, (t)+ OE>)
Substituting Equation [3.16] into Equations [3.15a], [3.15b] gives
d*y +edzyl +g2 d’y; +e 3o +82%+y (t)+ [3.17a]
dt? dt? dt? dt i °°
ayl(t)+82y2(t)=0
[3.17b]
¥0(0)+ey,(0)=1
[3.17c]

¥0(0)+e3,(0)=0

Equating equal powers of ¢ gives the following two sets of equations
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0(0): d:tyz" +yo(t)=0 [3.18a]
00): y4(0)-1 [3.18b]

0(0): 35(0)=0 [3.18¢]
0(8)‘%+%+y1(t)=0 [3.192]
Y1(°)=‘0 [3.19b]

1(0)=0 [3.19¢]

Solving the above equations in conjunction with boundary conditions gives the solutions

for yp and y;. Combining the two solutions gives the final expression for y as:

y(t)=cos(t)+ ?lz'e(sint — tcost) [3.20]

Finally we will derive the analytical solution for the same problem and compare with the

approximate solution calculated above. The exact solution for this problem is given by:

& ) . .2 | [3.21]
y(t)=e 2 {cos[ a-e ]t— £ s1n( 4-¢ ]t}
2 4_¢g2 2

Figure 3-3 compares the approximate solution and the exact solution. For illustration

purposes we assume that ¢ (viscous-damping coefficient) = 0.05. It is observed that the
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approximate solution agrees with exact solution for times up to about 20 seconds and
then the error becomes progressively larger. The reason is that after 20 seconds the
second term in the Equation [3.20] becomes as large as first term and the approximation
collapses. In any valid asymptotic expansion, each term of the series must always be a

small correction to the previous term [Nayfeh, 1973, Holmes, 1995].

From the Figure 3-3 we observe that problems of this nature are actually characterized by
two quite different scales. The first one is the “rapid” or fast sinusoidal scale and
superimposed on that is a slow exponential scale. Thus, the actual solution decays slowly,
but the asymptotic solution can only capture the fast variation in this case. In its attempt
to correct the first term, the second term in the asymptotic expansion becomes
progressively larger and eventually even larger than the first term. The term tcost is

called a “secular” term.

Analytical Regular asymptotic expansion

MMMNWW \

e VWW a1\ e/ 1] oo

t (seconds)

o
(=]

-1.5 -

Figure 3-3: Comparison of regular asymptotic and analytical solutions for a weakly

damped spring-mass system
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The large mismatch between two different scales means that our asymptotic expansion
can only capture the slow scale and not the fast scale. One way of solving this problem is

to “speed up” the slow variation by introducing a new variablet, =¢t. Thus the two

variables are defined as:

t1=t

- [3.22]

In Equation [3.22], t; is commonly referred to as the fast variable and t; is referred as
slow variable. Subsequently, the asymptotic expansion given in Equation [3.16] can be

written as:

[3.23]
¥t ta)=yolti t2)+ ey (t,t2)+ €2y2 (t),t2) + OE?)

The introduction of new variables transforms the ordinary differential equations to partial

differential equation as

d ooy o oty [3.24]
—_—— et ——=
dt ot ot ot, ot
Substituting Equations [3.22] into Equation [3.24] gives
d o 0 [3.25]
————t—c
dt = ot, o,

and
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_d_z___a_(a]_azﬂ Y [3.26]

=—| = |=—+2¢ e
dt?  otlat atlz ot 0t 3t%

Let us now try to solve the above problem using the asymptotic expansion given by
Equation [3.23]. The procedure is similar to the one before but the only difference is that
the two variables are treated separately. The differential equation and the pertinent

boundary conditions now become:

2 2 2
62y+286y+6262y o 2—@
otq ooty oty oty oty

Wy =t,20 =1 [3.27]

It should be noted that even though Equation [3.27] is 2™ order with respect to t; and tp,
only two initial conditions are given. These can be expanded to 4 in an infinite number of
ways. To make the solution unique, one needs to impose certain restrictions so as to

avoid secular terms [Holmes, 1995].

Substituting Equation [3.23] into Equation [3.27] gives two sets of problems:

0(1): =32 +y, =
1
Yoly-gym0 =1 [3.28a]
(7] B
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2 2
0(8): o +y; =—2———a Yo —%

ot} ooty ot

o~ [3.28b]
Ko TN 7] B
atl atz t]=t2=0

Let us concentrate on first set of equations given by Equation [3.28a]. The solution can

readily be obtained to be:

Yo = A(t2 ﬁmtl + B(t2 )COStl

A(0)=0, B(0)=1 3.29]

Substituting Equation [3.29] into Equation [3.28b] leads, after some manipulations to:

1(.d dB [3.30]

. A ) 1
=D(t, Jcost, + E{t, sint; — —| 2—— + A |t;sint; ——| 2—— + B |t,cost
Y1 (2)° 1 (2)5 1 2[ dt, jl 1 2( dt, Jl 1

It is obvious that to avoid secular terms, we need to impose the following conditions on A

and B:

294 L A=0
d

t)
[3.31]

29—]—3—+B=0
d

t)
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Solving Equation [3.31] in conjunction with Equation [3.29] leads to:

t, [3.32]

Substituting values of A and B into Equation [3.28] gives the solution for yj as:

b b [3.33]
=e¢ 2cost; =e Z2cost
Yo 1

Substituting Equation [3.33] into Equation [3.23] gives the final asymptotic solution as:

[3.34]

y= e—%cost + 0(82)

Note that the procedure outlined here simply amounts to letting t, =t be a new variable

and substituting it into the model. The next term in the series will be of orderet, = 0(82 ),
which explains the form of Equation [3.34]. Figure 3-4 shows the plot of new asymptotic
solution along with the analytic solution. The two solutions are virtually

indistinguishable.

3.5. Asymptotic Homogenization Model

The physical behavior of a composite medium with a regular arrangement of fibers,
sensors and/or actuators is governed by differential equations with rapidly oscillating
coefficients. The presence of such coefficients makes the solution difficult and sometimes

even impossible to solve analytically. One approach to solve such a problem is to
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consider a “continuum approximation” concept that assumes the material to be
continuously distributed. If the characteristic dimensions of the structural elements are
small in comparison to the overall dimensions of the structure, then the original
inhomogeneous body can be replaced, in an asymptotic sense, by a homogeneous
structure with similar mechanical behavior. In other words, we can replace the
periodically varying (inhomogeneous) composite structures with a homogeneous
structure that has similar mechanical properties (to be referred to as effective properties)
as the original composite structure. The problem begins with the basic differential
equation and boundary conditions representing the inhomogeneous medium and reduces
to a simpler set of problems called the unit cell problems representing the approximately
equivalent homogeneous medium. It is precisely these unit cell problems that enable the

determination of the effective coefficients.

1- Asymptotic Analytical

0.8 -
0.6 -
0.4 4
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Figure 3-4: Comparison of two-scale asymptotic and analytical solution for a weakly

damped spring-mass system

To better understand the concepts of the method of homogenization, let us consider a

typical fiber reinforced composite that occupies a domain G with boundary
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conditions 8G . Figure 3-5 shows the cross-sectional view of such a composite structure.
From the figure, it is evident that the composite structure can be thought of as a regular
arrangement of what one might justifiably call unit cells. Let us assume that the unit cell
in this case has both length and width equal to a non-dimensional parameter &, where ¢ is
obviously a very small number. This can be justified from the fact that the magnitude of €
is of the same order as the diameter of the reinforcing fibers or the spacing between the
fibers.

A

Figure 3-5: Cross-section of a composite Structure

Assume that we are interested in finding, say, the steady state temperature distribution
due to some thermal input. During our work, we will inevitably come across material
properties like thermal conductivity. Let us plot the variation of thermal conductivity

along direction AA or BB direction (Figure 3-5). The result is shown in Figure 3-6. From
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this figure we observe that the thermal conductivity (as well as other material properties)
varies from low to high with a small period ¢ as we go from fiber to matrix. This periodic
variation of material properties is a consequence of the periodic nature of the structure as
discussed above. Hence, the differential equations characterizing heterogeneous media
(such as composite materials) with a periodic structure, have rapidly oscillating
coefficients which depend on the physical properties of the various constituents such as
reinforcing fibers, actuators and matrix. In other words, these coefficients are periodic
with an extremely small period & where ¢ is of the order of the diameter of the reinforcing
fibers. The dependent variables such as the stress and strain fields will consequently also
have a periodic component with the same period €. In addition to this periodic component
however, the dependent variables have a superimposed non-periodic component as well
because they depend not only on material properties, but also on external loads, boundary
conditions etc. which are, in general, non-periodic. To better understand this concept, let
us consider our example a little further. We assume that the upper surface of this structure
(Figure 3-5) is maintained at 0°C and the lower surface is maintained at 100°C. At steady
state it is natural to expect that the temperature near the lower side is higher than the
temperature near the upper surface and hence temperature distribution will not be

periodic. Based on these arguments, two important observations are apparent:

The material properties like thermal conductivity, elastic moduli, poisons ratios efc. are

strictly periodic with a (small) period e.

The dependent variables like stress, strain, temperature are characterized by both a

periodic and a coupled non-periodic component.
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Coefficients

0 & 2 3 4

Distance along AA or BB
Figure 3-6: Plot of variation of coefficients vs. distance

To illustrate these notations even further let us consider the example shown in Figure 3-7

[Sanchez-Palencia, 1980].

A B
aE /
Pi|e o P /

S~

Figure 3-7: A periodic medium [Sanchez-Palencia, 1980]

\
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Suppose that we are interested in finding the temperature distribution, T, in the periodic
composite structure of Figure 3-7. Because of the assumed periodicity, and because the
points Py, P,, and P4 represent corresponding points in different unit cells, the thermal
conductivity at these points will be the same. However, the thermal conductivity at point
P; will be different. Consider now points P; and P,. At steady state, both the periodic and
the non-periodic components of the temperature are same because the two points are
close to one another and macroscopically this represents a small distance. Hence the
temperature at these points will be (for a very good approximation) same. For points P;
and P4 however, the situation is different. The periodic component of the temperature at
these points will be the same, but the non-periodic component will be different because
these two points are rather far apart. Consequently, the temperature at these points is

different.

Thus, from the discussions so far, it is apparent that the problem of a periodic structure is
characterized by two vastly different scales, a microscopic or fast scale, and,
superimposed on it, a macroscopic scale. The presence of these two scales means that we
can not obtain a regular perturbation expansion to our problem, much like we could not
find a regular perturbation expansion to the weak spring-mass-damping system
considered before. In that case, the difficulty was the mismatch between a rapidly
oscillating scale and the slow exponential scale. We solved that problem by “speeding
up” the slow scale. A similar technique will be employed for the case of periodic
composite structures. Here we solve the problem by simply expanding the domain of the
unit cell so that it is now of the same order of magnitude (i.e. ~ 1) as the macroscopic
variables. Accordingly, we introduce a new set of variables called “fast” or microscopic

variables y; (in addition to the existing macroscopic variables X;), such that

3.35
Vi =X—; i=1,2,3 13.33]
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In view of the introduction of the microscopic variables, the unit-cell now gets
transformed as in Figure 3-8 and, as a consequence, the material coefficients of the
composite medium will now be periodic in y; with period 1, the size of the transformed
unit cell. This will eventually lead to the determination of effective or homogenized
coefficients which as we will see later, are independent of the macroscopic scale. Once
the effective coefficients are obtained, the global (macroscopic) problem can be solved.
More details on the applications of the method of homogenization for the case of smart
structures can be found in Kalamkarov [1992, 1997] Kalamkarov and Kolpakov [2001],
Kalamkarov and Georgiades [2002a, 2002b] Kalamkarov et al., [2003a, 2003c],
Georgiades and Kalamkarov [2004], Georgiades et al. [2003].

e —

Fiber

Figure 3-8: Introduction of fast variable

3.6. Developed Models

In the subsequent chapters, three different models will be presented. A number of
examples were used to illustrate these models. In these examples, the materials selected
are transversely isotropic simply because they are more commonly encountered. The
validity of the models however is much more general and they apply without

modification to orthotropic materials.



4. ASYMPTOTIC HOMOGENIZATION MODEL FOR NETWORK
REINFORCED SMART COMPOSITE PLATES

4.1, Introduction

Smart composites are used in the form of plates and shells in increasingly more
applications. In many cases these structures have a periodic configuration with a period
much smaller than their characteristic dimensions. Consequently, asymptotic
homogenization is the best candidate for analysis. For thin plates and shells where the
thickness of the structure is of a similar order of magnitude as the size or spacing of the
actuators/reinforcements, the modified methodology first proposed by Caillerie in his
heat conduction studies (Caillerie, 1984) should be used. In this technique, two sets of
‘fast’ variables are introduced; one for the tangential directions which exhibit periodicity
and one for the transverse direction for which periodicity do not apply. Such an approach
has been used by Kohn and Vogelius (1984, 1985) for the problem of pure bending of a
thin homogeneous plate, Kalamkarov (1992), and Kalamkarov and Kolpakov (1997) for
three-dimensional elasticity and thermoelasticity problems of thin curvilinear composite
layers, Georgiades and Kalamkarov (2003, 2004) for piezoelastic deformations of wafer-

and rib-reinforced smart composite structures and others.

In this work, a general 3-dimensional micromechanical model pertaining to smart
composite layers with wavy boundaries is applied to the case of thin smart plates
reinforced with a network of orthotropic bars that may also exhibit piezoelectric
behavior. The method used for the development of the structural model is that of
asymptotic homogenization which reduces the original boundary value problem into a set
of three decoupled problems, each problem characterized by two differential equations.
These three sets of differential equations, referred to as “unit cell problems”, deal,

independently, with the elastic, piezoelectric, and thermal expansion behavior of the

55
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network reinforced smart composite plates. The solution of the unit cell problems yields
expressions for effective elastic, piezoelectric and thermal expansion coefficients which,
as a consequence of their universal nature, can be used to study a wide variety of
boundary value problems associated with a smart structure of a given geometry. It will be
shown that these models can readily be used to tailor the effective properties of any smart
network structure, to meet the requirements of any particular application by changing
some material or geometric parameters such as the size or nature of the reinforcements.
For illustration purposes, the methodology is applied to network-reinforced smart
structures with generally orthotropic reinforcements and actuators forming spatial
rectangular, triangular, or rhombic arrangements. In the limiting case of purely elastic
behavior and isotropic reinforcements, the above general orthotropic model converges to
results that are consistent with those of Kalamkarov (1992) who also used asymptotic
homogenization and Pshenichnov (1982) who used a different approach based on stress-

strain relationships in the reinforcements.

4.2. Objective and Synopsis

The objective of this work is to determine the effective elastic, piezoelectric and thermal
expansion coefficients of thin smart composite plates with networks of bars made of
orthotropic material. A simple network consisting of only one family of
actuators/reinforcements is shown in Figure 4-1. A general form of composite plate with
networks of more than one family of actuators/reinforcements will be considered in

Section 4.5.

The micromechanical modeling of thin composite network structures begins with the
basic problem formulation and model development as presented in Section 4.3, followed
by the analysis of network reinforced smart composite plates in Section 4.4. Finally, the

effective coefficients of the homogenized structures are obtained in sections 4.4.1, 4.4.2,
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and 4.4.2. Section 4.5 considers specific examples pertaining to rectangular, triangular

and rhombic configurations.

Simple network of orthotropic
reinforcements which exhibit
piezoelectric behavior

Figure 4-1: Smart composite plate with a network of orthotropic

actuators/reinforcements

4.3. Homogenization Model for Network and Framework Reinforced Plates

4.3.1. General Problem Formulation

NN
e
L
PO
A

Unit Cell

RS
Figure 4-2: Periodic smart composite layer reinforced and its unit cell
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The micromechanical model for a network-reinforced smart composite plate will be
developed starting from a general model pertaining to a thin smart composite layer with
wavy surfaces [Kalamkarov and Georgiades, 2004]. In this section, only the salient
features of this latter model will be given in so far as they represent the starting point of

the current model.

Consider a thin smart composite layer with wavy surfaces as shown in Figure 4-2. It is
assumed that the thin smart composite layer containing a large number of periodically
arranged actuators. This periodic structure is obtained by repeating a certain small unit
cell Qs in the x;-x; plane but not in transverse direction. All three coordinates in Figure
4-2 are assumed to have been made dimensionless by dividing the unit cell by a certain
characteristic dimension of the body, L. The shape of the top and bottom surfaces of this
structure is determined by the nature of the reinforcements used (rib or stiffener). Clearly,

in the absence of any surface reinforcements, the composite layer will be flat.

The unit cell of the problem under consideration is characterized by the following

inequalities:
—§1—1—1—<x1<§ﬂ, —-—8—h——<x <-§P—2—, S”<x3 <S8}, where
2 2 2 2
4.1
st =125 i
2 h

Here, the parameters h;, and h, characterize the ratio of the tangential to thickness
dimensions of the unit cell and & represents the thickness of the plate. The functions F*
characterize the geometric profiles of the top and bottom surfaces and are assumed to be

piecewise smooth and periodic in x; and x; plane with respective periods 6h; and 6h,.
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The elastic deformation of this smart periodic structure can be represented by means of

following expressions:

00 ;:

-—U—Pi =0 where,

OX |

0 = Ciji kl—d%%Rm—afﬁ)T} and )
1{6u; Ouj [4.2]

e, =—| — 4+ ——

b2 axj 28

The first expression in Equation [4.2] represents the static equilibrium equation of a body
subjected to surface traction and body forces. The second equation is Hooke’s law which
is modified to include actuation, and thermal expansion effects. The final expression in

Equation [4.2] represents the familiar stress-strain relationships.

Ciju represents the tensor of elastic coefficients, ey is the strain tensor which is a function

of the displacement field u, df('lzn are the actuation coefficients describing the effect of a

control signal R on the stress field ojj, afg) are the thermal expansion coefficients, and T
represents change in temperature with respect to a reference state. Finally, P; represents
body forces. It is assumed in Equation [4.2] that the elastic, piezoelectric and thermal
expansion coefficients are periodic in x; and x, (with respective period’s dh; and 6h;) but
are not periodic in the transverse coordinate x3. It is further assumed that the top and
bottom surfaces of the plate S* are subjected to surface tractions p; (not to be confused
with the body force P;) which are related to stresses by Cauchy’s Law as [Holzapfel,
2000]

[4.3]
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where n is the unit vector normal to the surfaces x3 = S* (x1,x;) and is given by

[Kalamkarov, 1992]:

os*t _ast ast)’ (as*)’ 441
nf=| F - F 2] H| = +1
6x1 axz 6x1 axz

43.2. Asymptotic Analysis, Assumptions and Unit cell Problems

As explained in Chapter 3, we can not obtain a uniformly valid asymptotic expansion of
the problem in its existing form, due to the simultaneous presence of the macroscopic and
microscopic scales. Thus we need to first introduce the “fast” or “microscopic” variables

as

S, X X [4.5]
Y1 61’11’ Y2 81’12, z 5

where 6 is the thickness of the composite layer. Therefore, the unit cell Qs is now defined
by:

: . : [4.6]
——<y; =, ——<y,<—, Z <z<Z'} where
{ 5 ¥i ) Y2 2 }

Similarly, the unit normal vector from Equation [4.4] now becomes:
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3 - [4.7]
. [ 1 6Ff _1 oF* 1 (oF* 1 (oFt
n*=¥———F——,I —5 +— +1
hy dy;  h, 9y, h,* { Oy h,* |\ Oy,

We subsequently make the following asymptotic assumptions [Kalamkarov and
Georgiades, 2002a]:

[4.8a]

pi=8"1,(xy) pi=8qi(xy)
P, =8f, (x, Y, z), Py = 82g3 (x, Y, z) [4.8b]
d$) =8d; (3.2) [48¢]
ag’) =da; (v,2) [4.8d]

It should be noted that unless it is otherwise stated, Greek indices (a, B,....) in Equations
[4.8a]-[4.8¢c] and in subsequent equations, range from 1 to 2 and Latin indices (i, j,...)

will vary from 1 to 3.

As well, we assume the following through-the-thickness relationships for temperature, T

and electric field R;:

T=TOx)+ zT10(x)
R; =ROx)+ R O(x) [4.9]
The next step is to assume asymptotic expansions for the displacement in the form of:

4.10
u; :ufo)(x,y,z)+8ui(1)(x,y,z)+ 82ui(2)(x,y,z)+... [ ]
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for stress field as:

4.11
05 = (O) (X9Y7 Z)+ 80( )(Xay’ Z)+ 62 (2) (x,y,Z)+ [ ]

The solution of this problem is obtained from Equations [4.2], [4.5], [4.10], and [4.11]
and results in an equivalent smart composite plate model, see Kalamkarov and
Georgiades [2004]. The constitutive relationships of this equivalent model are obtained in
terms of the stress resultants, Ny, the moment resultants, Mqp, and the mid-surface

strains, €qg, and curvatures, Kqg. They are given as:

Nop =8(b3h Jes, +87 (b )z, —82(aly )R - 82 (g IR + [4.12]
~82(04 )T -5 (05, T

M,y = 8(zb}3 )e,, +8”(zbyy’ )1, —8%(zdf )RY - 87 (zds )RV + [4.13]
—5(20,, )T - 8*(z0,, )TV

The quantities <bl} >, <by* >, <zbj >, and <zbyy > are called the effective elastic
coefficients, < dtp >, < da'g > are the effective piezoelectric coefficients, and finally,

<@, >, <O > are the effective thermal expansion coefficients. The effective

coefficients are obtained through integration over the entire unit cell Qs (with volume

equal to |Q2| ) according to:

[4.14]
(f(yDYZ’Z) I l If(YI:Y2’Z)dYIdy2dZ
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Before expressions [4.12] and [4.13] can be used, the effective coefficients must first be

determined from the following problems [Kalamkarov and Georgiades, 2004]:

1 8 ap, 0.2 . 1 A A + [4.15a)
——bd +—bF =0with | —ngb¥ +nsbi¥ |=0atz=2
hy By, B * 5, i hy Npbig +03 13} alz
( [4.15b]
L 0 oy O _ g with | Lngb +n,b |=0atz=2
hy dy, oz h,
1 ¢ x 0 .« . 1 k Kk +
—'—'dlB +_di3 =0 with (_an'ﬁ +n3di3J=Oatz=Z [4_163]
1 0 % 0O . 1 . *
an—ﬁdié‘ +§di3k =0 with [gnﬁdié‘ +n3di3k =0atz=27% [4.16b]
i-g—@)iﬁ +2 0, =0with L ng@, +n,0, |=0atz=2* [4.172]
hg dy 0z hg
. ‘ ( . . 4.17b
—I—'”E—G)iﬁ+—‘a“®i3 =0 With lnﬁ®i5+n3®i3 ':-'Oa.tZ==Zi [ ]

The differential equations and pertinent boundary conditions in [4.15a]-[4.17b] are solved
entirely on the domain of the unit cell and are called “unit cell problems”. It is worth
noting that unlike “classical” unit cell problems [see e.g. Bakhvalov and Panasenko,
1984), those defined by Equations [4.15a]-[4.17b] do not depend on periodicity

conditions in the z-direction but rather on boundary conditions.

In actual fact, the local functions b}, b;*, df etc are not solved directly from Equation

i °

[4.15a]-[4.17b]. Instead, the following definitions
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1 aUlm aUlm
lem - hB Cl_mB ay -+ C1_|n3 + Cl_]lm [4183.]
am 1 avim ovim [4.18b]
bi™ =— h, Cijnp ——— oy, + Cijns —— + ZCijim
1 auk auk
dg Pljk hB Cx_)nB 6y cijm3 __a;fl [419&]
dij” = 2Py, ‘B‘;Cunp oy, * Cijmy 2~ [4.19b]
®; =K; ~—Cijg WUy |, Cyms Uy [4.20a]
¥ V
ok =K, —"'I_Cijn[} N, Cyms N [4.20b]
where
P1_|m - Cukldf(l?n . K Cgkla](d) [421]

are used to relate the local functions with the yet unknown functions U™ (y,,y,,2),
V"(y,,¥,,2), UL(y,,¥,,2), etc and the material coefficients Cjju, Pij, K. These
functions are periodic in y, but not in z. Thus, [4.18a]-[4.20b] are first substituted in

[4.152] to [4.17b] to obtain functions U™ (y,,y,,2), V" (y,,¥,,2), UL(y,,¥,,2), etc
and these are subsequently back substituted in [4.18a]-[4.20b] to evaluate the local
b, b;*, di etc coefficients. Finally, the effective elastic, piezoelectric, and thermal

ij

expansion coefficients are obtained from the homogenization Equation in [4.14].

When dealing with materials that are periodic in all the three coordinates, Bakhvalov and
Panasenko [1984] showed that the symmetry properties of the coefficients involved
remain the same after the homogenization process. For this model (Kalamkarov, [1992],

and Kalamkarov and Georgiades, [2002a]), there is no periodicity in the transverse
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direction and so the symmetry properties of the elastic, piezoelectric, and thermal
expansion coefficients need some consideration. Although they will not be proved here,

the following symmetry relationships are true [Kalamkarov and Georgiades, 2002a]

(o) = (bl (205" ) = (brih ) (205 ) = (223 ) [422]
8(0n) = (007" ), 8(20 1) = (P}
5<9 :rm > = <Zai(je)b gm >, 5<ZO :Tm > = <zai(j9)b tim" > [4.23]
{405, o -(025),
(02 ) (. s =) 424

Before closing this section, it is worthwhile to note that there is a direct correspondence
between the effective elastic coefficients and the extensional, Aj;, bending, By, and
coupling, Dy, used extensively in the classical composite laminate theory (see e.g.

Gibson, [1994]; Reddy, [1997]).

These can be expressed in the following manner:

5<b}}> 6<b1212> 5<b}%> ! 52<zb}}> 82<zb1212> 62<zbﬁ>
5(bi7) 8(b%) 8(b3) E 82(sb77) 8%(2b%) 62<zb1222>
s(bif) 8(bi) s(bi3) | 8%(sbi}) 82(mB) 8*(abi3)

}= ------------------ Lot L L2l [4.25]

(Wil

ST
-

82(bi1') 82(bj7?) 62<b1’12>583<zb1111> 8 (bi2) 8%(abi}?)
82(bi1?) 8%(b37%) 82<b§122>553<zbff2> 8°(b35?) 8% (2b37)
82(bi1?) 87(b37) S7(bi)! 8% (bil2) 83(ab3Y) 8°(abil?)
L 4

Similar relationships exist for the effective piezoelectric and thermal expansion

coefficients.
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4.4. Network Reinforced Smart Composite Plates

Consider a thin smart composite plate reinforced with N families of mutually parallel
reinforcements or bars which may also exhibit piezoelectric behavior, see Figure 4-3. The
members of each family are made of homogeneous orthotropic material and are oriented
at an angle @; with the y; direction. Furthermore, they are assumed to be much stiffer than
the surrounding matrix and as such we may neglect the contribution of the matrix in the
ensuing analysis. The nature of the smart structure of Figure 4-3 is such, that it would be
more efficient if we first considered a simpler type of unit cell with only a single
embedded reinforcement/actuator. Having solved this, the effective elastic, piezoelectric
and thermal expansion coefficients of more general structures with more inclusions can
readily be determined by superposition. This is the subject of discussion of the next

section.

y2 Orthotropic piezoelectric
reinforcements

yi

Figure 4-3: Smart composite layer with three families of piezoelectric reinforcements

Before proceeding, we note that the matrices (tensors) of the elastic, piezoelectric, and
thermal expansion coefficients of an orthotropic material with respect to a coordinate

system which is rotated by an angle ¢ (in the y;-y; plane) with respect to the principal
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material coordinate system coincide with those of a monoclinic material and have the

following form (Reddy, 1997):

—011 C12
Ci2 €22
Ci13 ©C23
Cl=

0 0
[ C16  C26
)
0
0

Pl=
[] P4
Pis
i 0
Kp
[K]= Kz
0

4.26
0 cy c45 O (4262l
0 c45 cs5 O
Ci6 0 0 Ce6
0 Py
0 Py
Py O [4.26b]
Py O
0 Py
Ky, 0
K22 0 [4.26C]
0 Kg;

In the following sections the effective elastic, piezoelectric, and thermal expansion

coefficients for a network reinforced smart composite plate are derived and specific

examples are considered.
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4.4.1. Effective Elastic Coefficients
4.4.1.1. Evaluation of b:}' coefficients for basic unit cell structure

We will begin our analysis with the determination of the effective elastic coefficients of a
unit cell with a single inclusion. Consider the unit cell of Figure 4-5 shown both before
and after the introduction of the microscopic variables y;, y2, and z defined by Equation
[4.5]. After this coordinate transformation, the unit cell changes shape and the angle

between the reinforcement and the y, axis changes from ¢ to ¢’ according to:

, h
¢’ = arctan itamp [4.27]

To see how Equation [4.27] is obtained we refer to Figure 4-4, which shows the unit cell

in question in both the macroscopic and microscopic variables.

X1 Y1

Figure 4-4: Unit cell in both macroscopic and microscopic variables
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From Figure 4-4:

np=X2
X1 [4.28]
tan (p’=—)—/A
Y1

[4.29]

X3

Reinforcement

Figure 4-5: Unit cell in the macroscopic and microscopic variables
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To determine the effective elastic coefficients, we first solve for the local functions b?}“

from Equation [4.18a]. Keeping Equation [4.26a] in mind, the bg’“ functions for an off-

axis orthotropic reinforcement are obtained as:

1 ., UM 1 . auk UM 1 U 1 U™
bﬁl =_C11_1+“"C12 2 +Cy3 3 +CI6 T L . +Cm,u
h, oy, h, oy, oz L h, 8y, h, 9y,
1, 8u™ 1 _ UM UM [ 18U 1 aUM
b;“;=——-—C12—1—+—C22 -4 Cp 2 +Cy | — -+ — +Cony
h, oy, h, oy, oz L h, 8y, h, 9y,
1, au™ 1 auk U 1 oU* 1 aUM
by =—Cp——+—C,, —2+Cyy ——+Cy| — 2+ —— +Cap
hl ayl h2 aYZ 62 _h! GYI h2 a}IZ [430]
1 . ou™ 1 . au™ ouM [ 18U 1 aUM™
b?;zwcne—] —Cy 2 +Cy . +Cg| — L — : +C12,1p
h, oy, h, oy, oz | h, 8y, h, oy,
1 8UM U™ ] [ 1 U™ auM]
b:‘; =C55l:_ 1 +C45 ——+— +Cmp
h, oy, oz i _hz 9y, 0z ]
1 sUM  au™ | [ 1 aU™ au™]
b§‘3‘=C45[———3+———-‘—— +Cp| -+ —2 |+Cyy,
h, oy, 0z i _hz oy, o0z |

To reduce the order of the differential equations of the associated problems, we will now

perform a coordinate transformation of the microscopic coordinates {y,,y,,z} onto
{n1,m,,n3} as defined by Figure 4-6, so that the 1; coordinate axis coincides with the
longitudinal axis of the reinforcement/actuator and the 1, coordinate axis is perpendicular

to it (in the plane).
From Figure 4-6, the relationship between the two sets of coordinates is given by:

o [4.31a]
M = ¥,€08Q" +Y,sing
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M, =—y,sing’ +y,cos¢’ [4.31b]

Figure 4-6: Coordinate transformation in the microscopic coordinates

With this choice of local coordinates, it is evident that the problem at hand is now
independent of the m; coordinate and will only depend on m, and z. Consequently, the

order of the differential equations is reduced by one, and the analysis of the problem is

simplified. Thus, the bg“ functions from Equation [4.30] can be written as:

. UM U oue
b,*{‘=—iC“sm(p’ L +—l—Clzcoscp’ h +Cpy——+
h, ; h 2 Z
Au Ap
Cie ——Lsin(p'aU—z+Lcosq>’aUl +Ciiy
hl 8‘12 h2 6112
Ap Ap A
b =——1—Clzsin(p’ U, +hLC22<:osq>’ o, +C,, 61613 +
! 2 T 2 z [4.32a]
ool ou
Cye| ——sin@' —2+—cos@p' —- |+ C,y,,,
h, on, h, on,
A A A
bl =—LC13sin(p'aU1 +——1—C23cosq>’ U, +C33?U—3
h, on, h, o, oz
Yoo ouM
Cye| ———sing' —2-+—cosp' —— [+ Cyy, ,

h, o, h on,
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xu b U
b:‘; =__1_C165in(p' oU, +LCZGCOS(P16U—2+C36 -+
h1 2 h2 2 z
1 JuM 1 ou
C. .| —-—sino'—*— +—coso' —— |+ C
66[ h, ¢ n,  h, ¢ an, ] 120 [4.32b]
[ 1 . euk ] i auM  auM’
bf? =Css "—!—'Sln(P’-—liz'—'F-a—U—l"' +C45 _LCOS(P’"”EL"'—”L +C137~#
h] al']z oz i _h2 a‘]z 0z .
A M) i U ]
b% =Cy L singr 857, 29 +C,y| = cose! 22 +25 + Con
hl anZ az | _h2 ar12 az .

We subsequently turn our attention to the unit cell problem and associated boundary

condition. Rewriting in terms of the coordinates 1, and z we obtain

05’ 0wy Opm g [4.33]

h, &, ' h, o, oz

[nz'(——-——sm‘p bl + 22 bfz")+n3'b§‘}

[4.34]
=0

3

h, h,

where n,' and n,'are the components of the unit vector normal to the lateral surface of

the reinforcement with respect to the {n;, n2, z} coordinate system, and the suffix “3J”

stands for the matrix/reinforcement interphase.

We will solve the system defined by Equation [4.33] and associated boundary condition

[4.34] by assuming that the local functions U}* and U}* are linear in m, and are

independent of z, whereas U* is linear in z and independent of n,. That is,
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lep = Al”nz
Uy =B"n, [4.35]
U} =C*z

where A™, B™, C™ are yet to be determined constants. It is easily seen that Equation
[4.35] will automatically satisfy the unit-cell problem [4.33] in view of the relationships

[4.32a] and [43.2b]. The boundary condition [4.34] will be satisfied if:

sing', , cosv(o' A

——=b} +—b¥ =0 and

R, ' p, 2 0 [4.36]
b} =0

Expanding the above equation fori =1 to 3 gives:

cos@'

sing'
P T =0
_sing b 4 cos@ b =0 [4.37]
hl h2

A g g
b3 =by3 =bsy =0

Substituting Equation [4.35] into the first, second and fourth (b}, bM b ) expressions
of Equation [4.32a] and [4.32b] and then the resulting expressions into Equation [4.37]
yields the following solution for the constants A*,BM, C™ (the procedure is

straightforward but algebraically tedious)
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A (Cmy —bxl;)% + (Cll).y ~bj¥ )15 + (szxy ~ b b
o3

Cs60,4

Cess _ CasC ) CesS _ CasC |, )
h;, h, hy, h, J°

C Cire Cies Cips Coec
36 {(Cmﬂ—ng 12¢ Cie )+(Cll}\.,u_bﬁl( 665  Cas j:l
. (céss C%c] h, h h, h,
,| =88 _ =267

h, h,

[4.38]

~AM(a;) amYCrc Cigs Cgss Casc | _
cM™ = U _lc,, —pM |28 S16S) (o ) SeeS  CaeC ||
oy I:( 120u 12 h2 hl ( 1A 11 hl h2 2

Here, we let “c” and “s” stand for cos’ and sing' respectively while the quantities a;,
a, ..., 09 are given in Appendix A. The local bg” functions are then determined from

Equations [4.32], [4.35], [4.37] and [4.38] and are:

M Cinu o407 +agas ]+ Cinglosos —agos]+ Conylogas ]+ Ciny0s

1= 2 >
LSRN S L LT AP NS
) 4 T0s 6 g3 ]~ Qo3
hlc hlzcz hlc
M Ciaulosos +ogas ]+ Ciplasas —agas]+ Cop fogas [+ Cap 0
22 7 2 2 2.2
h;c h;“c hjc h;“c [4.39]
Q7] ——0y +—"E-§‘(15 +(16 +—‘—(18(l3 “———ﬁag(l:;
th h,“s th h,“s

M Ciau o0 +agas ]+ Cring o507 —agas ]+ Conp [ogs ]+ Cinu3

12 —
hIC h25 hlc
(17 a4 +_—a5 +—0.6 +[(!3(13]—————0.9(13
hzs hIC th

Mo M
b13 —b23 "b33 =0

We will now focus on the b:j“‘ coefficients.
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4.4.1.2, Evaluation of b;'j“‘ coefficients for basic unit cell structure

From the Equation [4.18b] and the coordinate transformation [4.31a] and [4.31b], the

b;’jl” coefficients can be expressed as follows:

. A A " V¢
by =—icusm(p’ ! +LC12coscp’—a—Y3—+C,3a—3+
h, 2 by on, Oz

.oV s
Cis —ism(p’ 2 +icoscp'a —1+2Cyy,,,
h, o, hy on,

e Ap n
bt = ——l—Cusin(p’ Vi + —LCnCOS(p' A +C,, A +
h, on, h on, 0z
p A
Cy li— —Lsin(p'& + ——l—coscp'——‘—] +27Cyp,
h, on, hy on,
. . Vkp e A
byt = -LCBsm(p' AN LC23coscp’ AL C,, N,
h, on, h, on, oz [4.40]

A An
Cy [— El—sin(p’ Ny + Hl—coscp’%\;—‘——} +2Cyy,,

1 2 2 2

X ) a A a A A
bt =——1——C1651n(p’ Ad +LC26coscp' AE +Cy CAE
h, on, h, on, oz

Vkp o
Ces [— isin(p'é—z— + ——l—-coscp’ N, ] +2C,
h, o, h, on,

. K ' avxp ] ym M
bt = C,, —————sm(p’—3+al— +Cq ————cosq)'—a—vg’—+& +2Cq
h, on, 0z | b, on, oz | !

. . ov vl [ LA\l
bt = C | ——sinp'—2— +——~——aVl +Cyy Lcos<p'—a 2 +——aVZ +2Cyy
h, on, oz | b, on, oz | 8

As well, rewriting the unit cell problem and the pertinent boundary condition (Equation

[4.15b]) in terms of coordinates 1, and z gives:
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s 0y o 0y Oy g

h, on, ! h, on, "

[ sing’'. ., ~coso’. . L
l:nz [“h—lbnMl +Tbizwj+n3 bi;"”:l

[4.41]
=0

3

The presence of the z coordinate in the last term of each expression in Equation [4.40]

means that the pertinent solution will depend on the shape of the cross-section of the

reinforcing bar. This of course is expected because the b;}“‘ coefficients are associated

with out-of-plane deformations. As such, let us assume that the bars have a circular cross-
section. We also note from Equation [4.5] that the coordinate transformation from x; and
Xy to y; and y, will transform the circular cross-section into an ellipse (except in the
special case when h; = h, when the cross-section remains circular, albeit with a different
radius). The value of the eccentricity, e, of the ellipse is readily determined from

Equation [4.42] below and is (derivation of eccentricity, e’ is given in Appendix B):

: r L4 y y
o= [1 _[sin0h, + coseh,’ )} T {1 ! ] 2 [4.42]

h,*h,’? " h2sin’ + hZcos’

Furthermore, the components n,' and n,' (clearlyn,'=0) of the unit vector normal to

the bars surface are (Refer to Appendix C):

ny'= a1~

and 1= 2 [4.43]

The presence of the z coordinate in Equation [4.40] introduces another complication to

the solution of this problem. We recall that in the case of the bg" coefficients, the local
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U¥* functions depended linearly on the n, and z coordinates. In the case of the b"“1

coefficients however, a linear dependency of V* on 1, and z will not satisfy the
boundary conditions, but instead, the functions V* must have the following functional

form:

2 2
V¥ = Witn,z+ Wi % FWH [4.44]

2

Here, WijMl are constant coefficients which must be determined. To this end and keeping

Equations [4.42] and [4.43] in mind, we first substitute Equation [4.44] into Equation
[4.40] to give:

an __Cu Ciz
bli‘“ =—h—s1n(p Wl)‘l”z+ le 112]'*‘ ECOSQ [W2”2+ W22 r|2]+C13[W31 M2 + W33 ]

1

sin cos
+C15[ ? [WMZ""WM ] h(p [Wl);pz+wlz “2]:|+ZC”M
2
o, Cp A Cyy A A M A
b5, ———B:—sm(p [W1 Hz o+ W n2]+ Ecoscp '(Wotz+ W22”"2]+ Cx [W31“712 + W33”z]

sin 2 cosp’' [ 4 A
+Cog| - <p [Wz{lz““wzz ‘12] =% [W11”Z+W12“’\2] +2Cona
h, [4.452]
*) C C M
by =- h, =1 sing [Wl Ho 4 le n2]+h—223005(p Wtz + WZ)”Z“nZ]+ Cy3 [W;‘l“nz + W;g”z]
sin by cos M
+C36’: = [W fz+ Wy le] (P [W Fz+ Wit 112]}'*2(33313

), C A C o M A A
b = _h—'lésm(p [W1 Hz+ le n, ]+ —h—zf—coscp [Wz{‘z+ W2;n2]+ C36[W3,”n2 + W33“z]

sm(p A COS(P A A
+ C66[ h [WZ{[Z'f‘ W22 1]2] h [W”P' +W2pn2]i|+zclzu
1 2
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* Sln
bt = cs{ h"’ VAR +w2n2] [wlﬁ“nﬁw}z“z]}

cosp’
C45{ h(p MLZ-FWZT]z] [w;{lnz‘FWZl;Z]]
2
[4.45b]

b*l” —C45[ sing [ )‘”z+ W32 "2] [wl’i“m + ng“zﬂ+

C44[Czsz(p [w;flz + Wi ‘12] [W;{I"Z + WZ?ZU

We subsequently substitute these expressions into Equation [4.41] and after comparing

terms with different power combinations of 1, and z, we arrive at:

4.46
Wi =W = W =W = W =0 46l
The remaining four coefficients satisfy the following relationships:
—-sC C C
e SR W O W - W S W 1 Cyy =0
1 2 1 2
WMI:SZC11 _5¢Cy_5¢Cyg ¢’Cyq J ~ w[szc,(, . c’Cps  5¢Cpy scC%}+
1 21
h> hh, hph, h,’ h,’ h,” hh, hph,
[4.47a]

+

cC sC cC sC
‘Nlp 36 13 1201 11u
» l: :l

l’12 h1 h2 hl
CSS

1

[ ( )2{ £ Wslzu +C45W;lu Vv;zp +C55W1);u} =0
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WMJ' SZCIG SCC66 SCC]Z 02C26 WML 82C66 _2SCC26 C2C22
N2 hh,  hih, o nZ |2 Th2 hh,  n2 |
h, 12 13 h, h; 12 h,

cC sC cCony  SCin,
W3>~3p[ 23 36:|+ yo # o,

hy by h, h
sC cC
[1 - 2[ 45 Wt +Cys W) LR :4 W +c44w2*]“]=o [4.47b]
C 2
h h4s walzp h4s Wz;.lu +ShC255 W};,z,, _ :55 Wl}’,p hcl::s stzp ;245 Wlﬁp +
1 1 H 2

c’C,, Wi +cC44 Wi =0

h,” h,

where we recall the shorthand notations of “s” and “c” for sin@’ and cos' respectively. In

view of Equation [4.46] the functions V* in Equation [4.44] thus reduce to:

o n
Vit =Win,z

Vo' = Witn,z [4.48]

2 2
1 V4
VaM = W3)§p _;— + Wzlap EY
The solution of the four algebraic equations in [4.47] will give the four unknown
W, W WX W2 functions and then from Equations [4.40] and [4.40] the desired

b;’d coefficients will be calculated. To derive the expressions for these coefficients in a

convenient form, we proceed in the following manner. We first substitute the expressions

from Equation [4.46] into Equation [4.45] to obtain:



« sC cC sC cC
bnl# = Z|:” . Wﬁ" + = Wzlxu + C13W3x3u - = \Nz"\lp + = Wl;;u +Clll,u
h, h, h, 2
[ sC cC sC cC
b*lu =g - 12 WMI. + 22 Wl],t +C Wlp _ 26 wlp + 26 wlu +C
by h n h 21 23 Wi3 h 21 1 2
i 1 2 1 2
- _
x sC cC sC cC
bsip =z -—L Wl)ip +—= szx]ll + C33W3x3” - szlp +—% leip + Css,m
| by h, h, 2
. sC cC sC cC |
blgp = Z[" = Wl);u +—2 W27~1H "'C36vv3;~3Fl -—= vvz)‘lll +—% Wl)iu +Cmp
h, h, h, 2 i
cC sC
e 45 A A 55 hu Iy
b3 —n{ h Wiy +C s Wy — W, +C55W”":l
2 1
sC cC
), 45 <xrh A 44 7k A
b, = lel:_ h Wi +C W + h Wi +C44W21u}
1 2

The above equations can be rewritten as

o M,
b, =zBy};

o M,
b* =n,Bj;

A A,
by, =2zB%;

LY ST Ap
by =n,B3

AL A,
by" =2zB%;

where the following definitions are introduced:

o A
by," =zB};

sC cC sC cC
Blu - 11 Wlu + 12 wlu +C Wlp _ 16 Wku + 16 Wlp +C
)8 11 21 13 33 21 11 11Au
h1 h2 hl h2
sC cC sC cC
Blp - 12 WML + 22 Wlp +C Wlu _ 26 Wku + 26 Wlu +C
22 h 11 h 21 23 33 h 21 11 22u
1 2 1 2
sC cC sC cC
Blp [ 13 Wlp. + 23 Wlu +C W)Lp. _ 36 Wlp. + 36 Wlp. +C
33 11 21 33 33 21 11 330u
h h h h
1 2 1 2
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[4.49]

[4.50]

[4.51a]
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sCs cCos sCos ¢Cos

B:‘; == h1 Wl)iu +__l;_2___w§.1p "'(:36“73}‘3lLl - h1 sz)tlu + h2 Wl)ip +C12Xy
C C
B?; = Ch = stzu +C Wy - Shss stzu +C55W,;;” [4.51b]
2 1
B;‘; == Cos Wa}ﬁp + C45\Wlp + CEM W312u + (:44\7\7211u

1 2

Substitution of n,' and n,' from Equation [4.43] into [4.41] and equating equal powers

of m; and z results in the following expressions:

- Bt +-BY + 1) Bl =0
1 2
S A C o 2 ke
~-—By +—BY +[1-(') B =0
Bl B - @) B -
S C
-—B} +—Blt =0
h1 13 h2 23
B¥ =0

From Equations [4.25] and [4.50] it can be observed that we only require B*,B B in

order to calculate the effective elastic coefficients of the smart composite layer.

Proceeding in a straightforward (although algebraically tedious) manner, we isolate a
system of three equations involving only B}, B, B} from Equations [4.51] and [4.52].

In this process the four unknown W}¥, W}* WX W2 functions are given as,
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WM = A3h1h2(cc66hl —Scléhz) _
2 (SC66h2 '“CC26h1)A1 "(CC66hl "Sclshz)Az
(B?; —Cy Wt —Clzxy)’llth1
(sCgshy —cCyghy)A; — (cCeghy —sCighy)A,

(B%; ~CasWa3 ‘Cm#}‘th [l— A;(sCgsh, —cczehl)}_

Ao _
Wi =

(cCesh; —scih,) Ay
A3h1h2(sc66h2 “Sczshx)
A, [4.53]
Bﬁl —Clllp _'B?; _C12)»/1 [A ]
5
wM Cis Ci3 _
33 7 C
Cl3

A
C 3A [(Scsshz _CC26h1XCC16hI —sC,,h2)+(cC66h, ~5Cy6h; )(CCIZhl ‘Scmhz)]
1354

C
1-=X A,

C13

where A; — Asare given in Appendix D.

Finally, the solution of this system is given as:

Mo AsAs 'A2A3

A, -ALA,
BM = A3A4 _AIA6
2OOAA, —ALA, [4.54]
Bl = 1ot L
C 2sh,

The quantities A — A in Equation [4.54] depend on the geometric parameters of the

unit cell and the material properties of the orthotropic reinforcement. The explicit
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expressions for A, A,,...,A, are provided in Appendix D. It is worth reiterating that in

Equations [4.30]-[4.54], as well as in the expressions in the appendices, the elastic
coefficients Cjg are referenced to the {x;} or {yi}coordinate system, see Figure 4-5. The
relation between these coefficients and the coefficients referred to the principal material
coordinate system of the reinforcing bar is expressed by means of the familiar tensor

transformation equation for a 4™-order tensor,

[4.55]
Cijkl =a,;

®)
im@ 88 C

lg ~" mngp

where C;Pk)] represent the elastic coefficients of the reinforcements with respect to their

principal material coordinate system and the a; coefficients are the elements of the

transformation tensor T shown in Equation [4.56].

cos¢ sing O

[T]= —sing cosp O [4.56]
0 0 1
4.4.1.3. Calculation of effective elastic coefficients

The effective moduli for the reinforced composite plate of Figure 4-5 can be calculated

by means of Equations [4.39], [4.50], [4.54] and the homogenization Equation [4.14]. Let

8V be the volume of the reinforcing bar in the unit cell of Figure 4-5. Then, the effective

coefficients are (complete derivation is given in Appendix E):

(by) = 1 bidv = lbgﬂ [4.572]
!Q||n| h,h,
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<b“‘> |1| _[b“‘dv 0
|

a
<b;xp> 0 [4.57b]
. V
(#3°)= Temm, o

The corresponding results for composites reinforced by more than one family of bars can
be obtained from Equation [4.57] by superposition. In doing so, we accept the error
incurred due to stress concentrations and other complications at the regions of overlap of
the reinforcements. However, this error is small and will not contribute significantly to
the integral over the volume of the unit cell. Various examples of network reinforced

composite plates will be considered at the end of this chapter.

4.4.1.4. Convergence of model for the particular case of isotropic

reinforcements

In the case of isotropic reinforcements, the results converge to those of Kalamkarov
[1992] who used the asymptotic homogenization technique and Pshenichnov [1982] who
used a different approach based on stress-strain relationships in the reinforcements. The

non-vanishing results are:

v Esin‘p; <bﬁ>= v Ecos’osinp;
1h2 h1h2

[4.58a]

Ecosgsin’ ¢; <b12,2> <b;§>

152 2

(bl1) =

(b3 )=

Ecos‘op; <b§§> =

1772

Ecosz(p sin’ @;
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<z {i’> T6h b %cos (p[sm @ + cos’o( 1+v)]

A Ev
7b' % — cos’psin?
(i) = 16h,h, 1+v “gsin’

\Y%

E 1/., 2 2
——— COSO sin sin“@ -cos“@)+cos ofl +v
Toh b Ta v o “’[2( ¢ - cos’g) of )]

__V E
16h,h, 2(1+v)

)=
)

b"12> v
)

[4.58b]

cosQ sin(p[% (coszq) - sin 2(p)+ 2cos’psin (1 + v)

1—%—; cosQ sin(p[—;— (cosch - sinch)+ sin®o(1 + v)]

E sinz(p[cosch +sin’o(1 + v)]
v

In Equation [4.58], E and v are the Young’s modulus and Poisson’s ratio respectively of

the reinforcement.

44.2. Effective Piezoelectric Coefficients

4.4.2.1. Solution of piezoelectric (d ) coefficients for simple unit cell structures

We will continue our analysis with the determination of the effective piezoelectric
coefficients of the unit cell shown in Figure 4-5. Here we assume that the
reinforcements/actuators exhibit piezoelectric characteristics. We recall that this
coordinate transformation distorts the shape of the unit cell (since h; is not necessarily
equal to hy and both h; and h; are larger than unity) and changes the orientation of the
orthotropic inclusion from ¢ to @' according to Equation [4.27]. We also recall that we
are dealing with an off-axis orthotropic reinforcement/actuator. Accordingly, the matrix

of piezoelectric coefficients coincides with that of a monoclinic material (see [4.26b]).



Thus the d{j- coefficients from Equation [4.19a] becomes:
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1 . our 1 out U’ 1 oUF 1 aU¥
dj; =Py _—“Cll—‘l““—clz_2'_cls‘—'3_‘c16[“ E o ——
h, dy, h, oy, oz h, &y, h, 9y,
1 . au* 1 _ auk oUk 10U 1 8UX]
dlz(z =Py "_C12—1‘"'—C22—2—C23—‘i_ Y P e
h, oy, h, oy, oz _h1 oy, h, a}’2_
1 . 8Ux 1 . auk oUk [ 1 0U* 1 8U¥]
dyy =Py ——Cpy —+——Cp =2 -Cyy 2= Cy| ——F+-— |
h, dy, h, oy, 0z _h1 oy, h, oy, i [4.59]
k k k " k k
d:(z =P121< '"'I_Cls 5U1 _"LC26 aUz —C36 5U3 —C66 LaUz +L6Ul
h, oy, h, oy, oz _hl oy, h, oy, i
[ k k] B k k]
drs =Py - Cs; iaUs + %, —Cys iaU3 + Sk
|h, oy, 0z | | h, %y, Oz |
B k k] I~ k k]
d3 =Py -Cys 12 + 2 ~Cu 13 + ik
by oy, 0z b, oy, 0z ]

Similarly to the elastic coefficients, we perform the further coordinate transformation of

the microscopic coordinates {y; y», z} onto {n;,m,z} as shown in Figure 4-6, so that the
1 coordinate axis coincides with the direction of the piezoelectric reinforcement. The

relationship between the two sets of coordinates is expressed in Equation [4.31}.

The pertinent unit cell problem from Equation [4.16a] becomes:

e R ou CERLL L
1 Ony 2 Ony oz
, [4.60]
dk 4 %0 d§)+n3'd§§J ~0

| sing’
1

As well, the d:} coefficients from Equation [4.59] become:

h,

o~

-5
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k . .
dfy =Py +LC”sin¢' doh ——I—Cucos¢' U, ~-Cp, oUs _
h, on, h, on, 0z
k k
Cl{_isin(ﬂ' Uz 4 Lcosp 2 ]
, »  hy on,
k . .
dl2(2 =Py, +—C,,sin¢' o, —iczzc U, -C, U, _
1 arlZ hz 6r12 0z
k K
C,{——-—smﬂ U, +—1—cos¢>’ 1 ]
1 6‘12 h2 arlz
Kk ‘ §
d}, =P, +-—C,,sing' ou; 1 C,,c0s 90U, -C,, ouy
1 anZ 2 anz 0z
k k
CM[—Lsin(o' U, +—1—cos¢'§U—‘:l [4.61]
h, » hy on,
K ; .
di(z =Py +—C,gsing’ U, —'-I—Czé 90, ~C, U,
1 &12 h2 2 o0z
k k
Cseli_““Sin(o"*q'z‘+—C s¢' U, :I
1 2 hz 6”2
~ ) - ) k k
&5 =Py -Cyp| ~Lsing' 292  OUr | | L 0,005, 2U;
| b on, oz | h, om, oz
| Uk aUk [ k K
d3; =Py - Cy ‘iSin(l"i-F& -C, Lcos¢'aU3 Y,
3 h1 3‘12 0z ] _h2 2 oz

We will solve Equation [4.61] and associated boundary condition [4.60] by assuming that
the local functions Uy and U¥ are linear in 1, and independent of z while Utis linear in

z and independent of 1. Thus:

4.62
Uf =A*n,; US=B*n,; US=ckz [4.62]
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where A¥, B¥, C¥ are the algebraic constants to be calculated in the sequel. Substituting

Equation [4.62] into [4.61] and the resulting expressions in second of Equation [4.60]

results in three algebraic equations for these constants:

d* =P, +A* Sl;”’ C, - °‘}’ls‘p C16)+Bk _"‘;lﬂcu +§EI‘:_¢.’.CI6J-CI30“
1 2 2 1

sing' cos@' cos@' sing'
d3, =Py, + A h, Cp— h, Cze]"‘Bk - h, sz*“‘h‘}“cze)_cxck [4.63]

d5 =P +A* S‘}‘l“” Cy — C‘I’IS‘” C66)+B“ —"‘}’lﬁc26 +%‘”_c“)—c%ck
1 2 2 1

Solving for these constants and back substituting into [4.61] results in the following

expressions for the piezoelectric dg coefficients:

dk = Ppayc[407 + agog |+ Pryfesoy —agas |+ Poggfogas ]+ Pygyas

2.2

L L SN P L A

a5 h O4 +0g 72 Og h OgO1 OgO3
1€ h%c 1€

dk, = Pipesos +agos ]+ Pryyfaso; —agas ]+ Pyyfogag |+ Prgeas

2.2 2 2
a{—h—ﬁw +Bl——(—:—a5 +a6}+£—13[a8a3]—£—1—f—a9u3 [4.64]
S S

dk = Py 0407 +agas ]+ Pyfesoy —agos ]+ Py fugas ]+ Pygeas

h;c h,s h;c
aqlay +——h sa5 +—-—h Ca6 +[a8a3]———h sa9a3
2 1 2

kK ik _ 4k
dj3 =dy3=d33=0

where constants o~ 09 can be found in Appendix A.
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4.4.2.2. Solution of d};k coefficients for simple unit cell structure

On account of Equation [4.31], unit cell problem Equation [4.16b] becomes,

_sing’ 8 s« cosp’ D s D x

— 4+ dSf +=dF =
hy on, ' hy amy, oz © [4.65]
[ sing’ »  cosp’ « Lo
[nz (—‘B—(E"di{( +“’h‘$di§(J+ﬂ3 di3k} =0
1 2 5
where,
. 1 oA/ A% oAV
dlll( =zP, + ICuSln(D ]2 - ) C,cosp a‘]i -Cs 523 -
k k
Cl{— sin(o'a L ILAL }
1 6112 h2 arlz
k k k
d;l; ZP,y + Clzsm(o'a - - : Cyp Vs -Cy Vs -
1 2 h2 6‘12 62
a k k
CZGI:— sing'—2 +——cosg'— }
hl 2 2 2
k k k
d}% =zP,, +-—C,,sing' oV, ——LC23cos¢'6V2 —-C,, s _
h on, h an oz
1 2 M 2 [4.66a]
k k
C3{— sinqp'a 2 +——cosqo'aVl }
hl 2 h2 ar]2
k k k
. ov
d¥ =zP, +—C,sing'— —-l-C%co 2 C, N _
1 2 2 6‘12 az
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" k k] i k k]
dy =2zP,, -C,, ——~1—sin(p'ivi+§y-‘— ~C,s —l——cosqo‘?—Yi+éY2—
h, on, oz | b, on, oz |

" [ 1 . 8VE VK] 1 OVE vk ] [4.66b]
d,; =zP,, -C,| ——sing +——|-Cy| —cosp +—=
h, on, oz | h, on, oz |

As with the elastic coefficients, the presence of the z coordinate in Equation [4.66a] and

[4.66b] means that unlike the case of the dL‘. coefficients, the determination of their d;k

counterparts will depend on the nature of the cross-section of the piezoelectric
reinforcement. Let us now assume that the cross-section of the inclusions is circular.

Assume, next that

2 2 [4.67]
| Z
VE =wknyz+ wk —; + WK =

where constants Wj; must be determined. To this end, we substitute [4.67] into [4.65] and

compare terms with like powers of 1, and z to arrive at:

k k k k k [4.68]
Wia =Wy = W3 =Wy =W;5; =0
The remaining four coefficients satisfy:
2 2 2 2
k| S°Cy; cSCig  €SClg  CCg k| 8°cjg cCys eS¢y  CSCeg
Wll - 2 + + - 2 - W 1|~ 5 - 5 + —
h,2 hihy hhy, h, h, h,  hhy  hihy
wh | S _Sus |, cP  sPy [4.69a]
h, b h, h,

N2 | €45 v,k k SC k k
[1"(3) l:‘*"h W35 +c45 Wy, ____hss Wi "‘Csswn]:O
2 1
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k S2C16 CSCgq CSCyay C2C26 k 82066 CS5Crhg 02022
Wi|——5+ + - |~ W2 5 -2 ==
h; hih,  hihy, b, h, hih,  h,

CCy3 _SC3 | CPoo _SPia _
hy,  h h, h,

SC cC
[1 —(e')z{—-ﬂ-‘liw;‘2 +Cus W Jr--ﬂﬂwf2 +c44W§,J:O
1 2

[4.69Db]

C8C4s5 vk |, 545 kS Cs5 gk | ©855 ok | OSC4s ok CC45 ik

W3, Wi - W Wi + Wi, - Wi
h;h, h; 12 h; h;h, h,
2
C Caa \k _ CC44 Wk

W32'— W2 =O
h,? h,

h, 2 1 2

Equation [4.69a] and [4.69b] contains four linear algebraic equations in the remaining
four unknowns W, WX, W5, and W . Solving for these unknowns and substituting
back in Equation [4.67] and then in the expressions in Equation [4.66] gives the

following results for the piezoelectric d;}k coefficients,

K _ ok Lo gtk _ ook Lotk ok L %k _ ok
dif =2Dqy 5 dp =2D3;; d33 =2D33 5 dj3 =2Djp [4.70]

*K k . g%k _ k
dj3 =zPj3 —M;Dy3 5 da3 =2Py3 — Dy

where,

[4.71]
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Explicit expressions for the quantities Aj, Ay, ..., A¢ which depend on the geometric
parameters of the unit cell and the elastic and piezoelectric properties of the inclusions

can be found from Appendix D by making the following substitution

4.72
Cijla = Py [472]

We emphasize here, that the elastic and piezoelectric coefficients in [4.30]-[4.72] as well
as in the expressions in Appendices A and D, are a consequence of the basic formulation
in [4.2], i.e. are referenced with respect to the {x;} coordinate system, see Figure 4-5. As
such, they are, in general, not the principal material coefficients (except in the special
case when the actuator/reinforcement is oriented along the x; or x, directions). The
relationship between the two sets of the elastic coefficients is expressed in Equation [4.55]
and of the piezoelectric coefficients is expressed in terms of the tensor transformation

equation for 3" order cartesian tensors, i.e.,

. [4.73]

Pijk =858

where the superscript (p) denotes the principal material coefficients, and ajj are the
elements of the transformation matrix [T] (see also Figure 4-5) as given in Equation

[4.56].
4.4.2.3. Effective Piezoelectric Coefficients

The effective piezoelectric coefficients for the smart composite structure of Figure 4-5
can be calculated from [4.64], [4.71] and the homogenization procedure [4.14]. Similar to
elastic coefficients, letting the volume of the orthotropic inclusion in Figure 4-5 be §°V,

the expressions for the effective piezoelectric coefficients are given by:
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<d > |Y||Id kv —h\;lz dk

<zd;}k>=ﬁh—2~Dg

fa=(o) o

[4.74]

These results clearly pertain to thin smart composite plates with a single family of
actuators/reinforcements. For structures with more than one family, the results can easily

be deduced from Equation [4.74] by means of superposition.

4.4.3. Effective Thermal Expansion Coefficients

4.4.3.1. Solution of ®; coefficients for simple unit cell structure

We will now calculate the effective thermal expansion coefficients for the basic unit cell
of Figure 4-5. On account of the coordinate transformation [4.31], the unit cell problem

in Equation [4.17a] becomes:

Lsing! 0 o o' 0 o 0o
hy ony h, o, 0z
, [4.75]
, sin COS '
I:nz ( h(P ® b (P ®i2)+n3 @B:l =0
1 2 5

As well, the ®; coefficients from Equation [4.20a] are given by:
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. ou
®; =K; + —l—cilsm(p’-‘?g—l— ——l—cizcoscp'gj-—z— -y —
h, ony, hy ony 0z

, ho summation on i

[ 1. 80U, 1 ,aul}
-Cigl — — SmQ —= + ——COsP —
h, oy  hy ony
ou
@12 =K]2 + -—'1-—C16Sin(p'§H-l— _"L026005(p'§[—1—'2—"'036 —3 + [4.76]
h, oy hy oy oz

{ 1. 00, 1 ,0U, |
~Cgg| ——SINQ' —= + —cCcoOsQp ——

h; oy, hy oy |

1 . ,0U; &u 1 ,8U; 8U
B43 =Kj3 '013@[*E‘5m¢ #Jf'—(.);‘zl—}"czm —— oS -3-+—2}
1 2 L

Assume next that functions U; and U, depend only on 1, and U; depends only on z, i.e.

Ul ZZ‘ITIZ; U2 =/12T|2; U3 :ﬂez; [4.77]

Substitution of [4.77] into [4.76] and the resulting expressions into second expression of
Equation [4.75] will yield the results for the constants A;. Back substituting the latter into

[4.76] results in the following expressions for the ®;; coefficients:

_Kpplogog +agas ]+ Ky lase; —agos ]+ Ky, fegaq |+ Kaas

O = 2 2
hzs 2 S th
a7 —— 0y +a5 +'—‘2—i‘a6 +——-—[0.8a3]—a9a3
hic h,*c hc
©,, = Kpego +0g05]+ Kygloso; —agos ]+ Kplagas ]+ Kyso,
h,c h,“c hc h“¢c
(17 _1—(14 +1—25(1.5 +0’6 +-“1“—‘[a8(13]—“1—27(19a3 [4'78]
hZS h2 S h?_s h2 S
O, - Kpleq40 +0503]+ Kyylasas —agas ]+ Kylagas ]+ Ko,
hic hjs hic
(17 0y +“’-‘(1.5 +——(1,6 +[(18(l3]*—a9(13
hzs h]C th

013 =0,3; =033 =0

The explicit expressions for constants a;- og are given in Appendix A.
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4.4.3.2. Solution of 63 coefficients for simple unit cell structure

On account of [4.32], unit cell problem [4.17b] becomes,

_sing’ 8 .« cosp’ O .+ O

- o, +Leok=
hl 5'12 i1 h2 5 i2 i3
o, , [4.79]
{nz'(“ SIIIII(P o +C—(l)1'si@?2}+ n3'®?‘3} =0
1 2 .
3
As well, the ®;’j coefficients from Equation [4.20b] and [4.31] become:
* . ov.
®; =2K; + Lcilsm(p’%- - —Lcizcosq)'a& —cpy—+
hy ony hy oy 0z : .
, o summation on i
[ 1. ,0V, 1 ,avl]
-Cig| — —sing’ —= + —cosp’' —
hy ony hy ony
* 1 . avl 3V2 6V3
@12 =zK 12 + ""—CIGSIHCP’— ——026COS(P"—“ = C3 7 +
h ony hy oy oz [4.80]

1 . ,0V, 1 , OV
-Cg| ——sin@' —=+ —cosp’ —
hy o, hy ony

* 1 . ,0V; oV 1 ,0Vy OV
Ou3=2K 3 - cl3u3l:~—ﬁ—smq> —a——n—3— + a—zl} —cBG{E—cosq) 3 —l}
1 2 2

As in Section 4.4.2.2, we will assume a parabolic variation of the pertinent V; functions

in the variables 1; and z, i.e.

2 2

_ M2 Z
Vi =W,z + WizT+Wi3—2“ [4.81]
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We subsequently substitute [4.81] into [4.79] and compare terms with like powers of 1

and z to arrive at a set of linear algebraic equations in the constants Wj;. Solving for the

latter gives, on account of [4.80], the following expressions for the thermal expansion @}}

coefficients,
O =21}, ; Oy =2T,) ; B33 =2Ty
5 @12 = ZT12 [482]
B3 =2K 13—y 5 5 O3 =2K,; -1, Ty,
where,

1. 2 Dshe — Ay
B AN, = AgAs
1,, = Ashe = Aifg
AAg —AgAs [4.83]
Sh2 Chl
Ty =—2-T T
12 zh1 11 2sh 22

Explicit expressions for the quantities Aj, A 2,..., A ¢ which depend on the geometric
parameters of the unit cell and the elastic and thermal expansion coefficients of the
reinforcements be found directly from Appendix D by making the following

substitutions:

4.84
Cij > K [4.84]

We note again that the thermal expansion coefficients given in this chapter are referenced

with respect to the {x;} coordinate system shown in Figure 4-5, and will therefore differ
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from the principal material coefficients. The relationship between the two sets of

coefficients is expressed by the following tensor transformation law,

[4.85]

Kij = aimajnngt)l

4.4.3.3. Effective thermal expansion coefficients

Similarly to Section 4.4.2.3, the effective thermal expansion coefficients for the basic

smart structure of Figure 4-5 are given by:

1 \
<®U.> ZMI‘-L@UdV =h]—h2®ij
' . \Y
(#05)= T T [4.86]

(0,) = (o) =0

The effective thermal expansion coefficients of smart structures with more than one
family of reinforcements can be readily obtained from Equation [4.86] using

superposition.

4.5. Examples and Discussion — Thin networks with orthotropic reinforcements

For illustration purposes we will consider several examples of network reinforced
composite plates. Without loss of generality we will assume that all reinforcements have
the same (circular) cross-section area and are made of the same material. If desired

however, the model allows for each reinforcement family to have unique geometrical and
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material properties. For the ensuing examples, we will assume that the reinforcements

have properties given in Table 4-1 (Gibson, [1994]).

Table 4-1: Reinforcement Properties (Gibson, [1994])

Property Value
E; 152 GPa
Ex=E; 4.1 GPa
G12=G13 2.9 GPa
Ga3 1.5 GPa
V12 = V13 = V23 0.35

4.5.1. Example 1. Rectangular arrangement

Network-reinforced smart Unit Cell
composite structure

Figure 4-7: Thin smart composite plate with rectangular arrangement of

actuators/reinforcements (S1)
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The first example to be considered consists of two mutually perpendicular families of
orthotropic reinforcements (¢ = 0° and ¢ = 90°) forming a rectangular arrangement as
shown in Figure 4-7. The figure also shows the unit cell of the structure. For convenience,
this composite plate will be referred to in the sequel as S1. The effective elastic,
piezoelectric, thermal expansion coefficients of S1 are readily determined from Equations
[4.39], [4.54], [4.57], [4.64], [4.71], [4.74], [4.78], [4.83], and [4.86]. Although the
resulting expressions are too lengthy to be reproduced here, some of the effective

coefficients will be presented graphically in the next section.
4.5.2. Example 2. Triangular arrangement

The second example (structure S2) represents a composite plate reinforced with three
families of orthotropic bars (p = 30° ¢ = 90° ¢ = 150°) which intersect to form
equilateral triangles as shown in Figure 4-8. The effective coefficients are calculated as
for the previous example and some representative results will be shown in the following

Sections.

Network-reinforced smart
composite structure

Unit Cell

Figure 4-8: Thin smart composite plate with triangular arrangement of

actuators/reinforcements (S2)
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45.2. Example 3. Rhombic arrangement

Network-reinforced smart
composite structure

Unit Cell
Figure 4-9: Thin smart composite plate with rhombic arrangement of

actuators/reinforcements (S3)

The final example (structure S3) pertains to the reinforced plate of Figure 4-9 which
consists of two families of reinforcements (¢ = 30° ¢ = 150°). Some of the effective
coefficients will be shown in the following sections where a comparison will be made of

all three structures, S1, S2, and S3.

4.5.4. Plots of effective elastic properties

The mathematical model and methodology presented in Section 4.4 can be used in
analysis and design to tailor the effective elastic coefficients of any structure to meet the
criteria of a particular application, by selecting the type, number, orientation and size of
the reinforcements. In this section typical effective elastic properties of structures S1, S2,
and S3 will be computed and plotted. The effective coefficients will be plotted vs. the
ratio (R) of the volume of one bar within the unit cell to the volume of the unit cell itself.

This ratio equals:
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[4.87]

(b}}) MPa

0 T T T T — 1
0 0.05 0.1 0.15 0.2 0.25
R =V/h,h,

Figure 4-10: Plot of <b}}> elastic coefficient vs. V/hh, for structures S1, S2 and S3

Figure 4-10 shows the variation of <b}}> with R for S1, S2, and S3. It can be observed

that the stiffness in the y; direction is the same for S2 and S3 because of the same number,
size and arrangement of reinforcements in that direction. The presence of the extra
reinforcements in S2 does not affect the stiffness in the y; direction because these
reinforcements are oriented entirely in the y, direction as shown in Figure 4-8. Both S2
and S3 are stiffer than S1 in the y; direction because the former have more
reinforcements (even though they are oriented at an angle to y;) that affect the stiffness in
that direction than the latter which only has a single reinforcement which affects the

stiffness in the y, direction.
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Figure 4-11, which is a plot of <b§§>, shows that S2 is significantly stiffer than S3 in the

y2 direction due to the presence of the extra two reinforcements in the former. For similar

reasons, the <b§§> value for S1 is larger than that of S3 and smaller than that of S2.

40000 -

(b%) MPa 3s0gg |
30000 A

25000 1

20000 -

15000 -

10000 -

5000 -

0 0.05 0.1 0.15 022
R =V/h,h,

Figure 4-11: Plot of <b§§ > elastic coefficient vs. V/h,h, for structures S1, S2 and S3

Finally, Figure 4-12 shows the variation of the <zb;“,”> coefficient with R. We note from

Equation [4.13] that this coefficient characterizes the bending stiffness of the composite

plate in the y;-z plane. Since the reinforcing bars which are oriented entirely in the y;

direction do not affect the bending stiffness in the y;-z plane, then the value of <zb; 1“>

for structures S2 and S3 is the same. As expected, both structures have a higher bending
stiffness than S1. Similar considerations apply to the other effective coefficients. It is
evident however, that all of these trends and characteristics can easily be modified by
changing the size, type, angular orientation, etc. of the reinforcements so that the

desirable elastic coefficients are obtained.
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2500 1 S1

S2 & S3 .
<zbff'> MPa 2000 -

1500 A
1600 -

500 A

U I 1 ¥ 1
0 0.05 01 0.15 02

R =V/h,h,

Figure 4-12: Plot of <zb;’,” > elastic coefficient vs. V/h,h, for structures S1, S2 and S3

4.5.5. Plots of effective piezoelectric coefficients and discussion

We reiterate that the model derived in this paper can be used to tailor the effective
coefficients of a network-reinforced smart composite plate (to meet the particular
requirements of a given application) by changing some material or geometric parameters
of interest such as type or angular orientation of the actuators/reinforcements. For
illustration purposes, let us assume that the pertinent material properties are those given
in Table 4-2 [Cote et al. 2002]. As well, the effective coefficients will be plotted vs. the
ratio (R) of the volume of a single bar within the unit cell to the volume of the unit cell

itself as given by Equation [4.87].

Figure 4-13 shows the variation of <df,> with R for S1, S2, and S3. It can be observed

that the value of this piezoelectric coefficient is the same for S2 and S3 because they both
have the same number, size and arrangements of actuators/reinforcements in the y;
direction. The presence of the extra elements in S2 does not affect the results because

these elements are oriented entirely in the y, direction and do not affect the piezoelectric
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Table 4-2: Thermopiezoelastic properties of PZT-5A [Cote et al. 2002]

Coefficient Value
C® =C® (MPa) 119899.13
C¥ (MPa) 109892.37
C® (MPa) 74732.01
C® =C® (MPa) 74429.92
C® =C® (MPa) 21052.63
C® (MPa) 22573.36
P® =PY® (C/mm?) -5.45E-6
P® (C/mm?) 1.56E-5
P® =P® (C/mm?) 2.46E-5
ol =a@ (°C) -1.704E-10
a® (C) 3.732E-10
R =V/hh,
0 T Y T

004 006 008 01 012 814 016

{di*y x 10" cb/mm?

15 S2 & S3 "’w\
224 “\\
\\»"«
-2.5 -

Figure 4-13: Plot of <d131> piezoelectric coefficient vs. V/h h, for structures S1, S2 and

S3
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behavior in the y; direction. Both S2 and S3 have larger <df1> values than S1 because the

former have more actuators (even though they are inclined at angle) that affect the

behavior in the y1 direction than S1 which only has a single actuator in that direction.

Figure 4-14 is a plot of <d§2> vs. R for the three smart structures. It is seen that S2

exhibits the highest value because it has the largest number of actuators/reinforcements in
the y; direction. For similar considerations, the <d;2> piezoelectric coefficient is a higher

for S1 than S2.

R= V/hlh2
0 T . — . —
¢ “BHI0B4-006 008 0.1 0.2 014 016
g 05 -
E
G
p /! 4\
{;eg\ -1.5 A 9 \
S S1
T 2 \\
25

Figure 4-14: Plot of <d22> piezoelectric coefficient vs. V/hh, for structures S1, S2 and

S3

Figure 4-15 shows the variation of <zd,f> vs. R for the three structures. We recall that the

<zd|."jk> coefficients are related to out-of-plane deformations. Since the actuators oriented
in the y, direction do not contribute to the deformation in the y; direction, the value of
<zdff> for S2 is the same as that of S3 (all other parameters being the same). As expected,

both structures exhibit a higher value than S1.
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R =V/h,h,

0 , , ——— e,
= 20! . 004 006 008 0.1 012 0.14 016
E
g
N 60
» .80
o~
S | S2&S3 .
-U o,
3 120 \\\

-140 \\

-160 -

Figure 4-15: Plot of <zdff> piezoelectric coefficient vs. V/h h, for structures S1, S2

and S3

4.5.6.  Plot of effective thermal expansion coefficients

Similar considerations apply to the case of thermal expansion coefficients. Figure 4-16 is
a plot of <®“> vs. R and Figure 4-17 a plot of <z®;2> vs. R. The reasons for the trends

displayed in both figures should be apparent from the discussion above.

R =V/hh,

004 006 008 0.1 012 014 016

-0.5 5
S S1

AN

' S2 & S3 \
-2 \

{®1)) x 10 MPa/mm°C

-25 -

Figure 4-16: Plot of <®”> thermal coefficient vs. V/hh, for structures S1, S2 and S3
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R =V/h,h,

-100 A
-120 1
-148 4
-160 J

(2@ ) x 10 MPa/°’C

Figure 4-17: Plot of <z®;2> thermal coefficient vs. V/h;h, for structures S1, S2 and S3

4.6. Brief Synopsis

The method of asymptotic homogenization was used to obtain the effective coefficients
of thin smart composite plates reinforced with a network of orthotropic cylindrical bars.
The micromechanical models derived were illustrated by means of several examples
which showed that the effective properties can easily be customized to satisfy any
application requirements by changing certain geometric and/or material parameters. As

such they are useful in design and analysis of smart composite structures.



S. MODELING OF THE THERMOPIEZOELASTIC BEHAVIOR OF
PRISMATIC SMART COMPOSITE STRUCTURES MADE OF ORTHOTROPIC
MATERIALS

5.1. Introduction

The objective of this chapter is to determine the effective elastic, piezoelectric and
thermal expansion coefficients of prismatic smart composite structures with orthotropic

characteristics. Examples of structures of interest are shown in Figure 5-1.

Matrix

Reinforcement with /‘

actuating elements

Figure 5-1: Examples of prismatic smart composite structures

Following this section, the basic problem formulation is given in Section 5.2.1 and the
important features of the solution methodology are explained in Section 5.2.2. Section
5.2.3 develops the local or unit cell problems. Section 5.3 derives the general model of
interest and then uses it to analyze and discuss various practical examples and compare
the effective moduli and coefficients of the different smart structures. It is shown in this
section that the model developed can be used to tailor the effective properties of any

smart structure to meet the specific design criteria pertinent to a particular application.

108
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5.2. Asymptotic Homogenization for Smart Structures

5.2.1. General Model

The general mode] pertaining to three-dimensional smart composite structure has been
previously developed by the authors [Kalamkarov and Georgiades, 2002a]. Here, we
summarize the important features of the model in so far as they represent the starting
point for the current model. Consider a smart composite structure representing an
inhomogeneous solid occupying domain G with boundary OG that contains a large

number of periodically arranged actuators as shown in Figure 5-2.

Reinforcement with
actuating elements

Y2

Y; Unit Cell

—
€

Figure 5-2: Smart composite with periodically arranged actuators and its periodicity cell

The elastic deformation of this smart structure can be described by means of the

following system:
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oxj [5.1]

€ € € € €
ou,( x) Ou;f x [5.3]
Bx,| (x,g)+ ox, (X’EJ

Although the variables appearing in Equations [5.1]-[5.3] have been defined before, they
will also be given here for the sake of convenience. Cju, is the tensor of the elastic
coefficients, ey is the strain tensor, Pj is a tensor of actuation coefficients describing the
effect of a control signal R on the stress field o, and Kj; is the thermal expansion tensor.
Finally, ® represent changes in temperature with respect to some initial state. It is
assumed in Equation [5.2] that the Cij, Pij, and K;; coefficients are all periodic with a
unit cell Y of characteristic dimension &, the characteristic distance between the
reinforcements (or actuators) as shown in Figure 5-2. Consequently, the smart structure in
Figure 5-2 is seen to be made up of a large number of “unit cells” periodically arranged

within the domain G.

Substituting Equation [5.3] in [5.2] and interchanging the dummy variables k and 1, and
recalling the symmetry properties of the elastic coefficients gives:

% (x, 2)-cyo (g)(%) ~Py (%)Rk ®)-K, (f)@’(") [5.4]
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Let us also mention here that, if the physical dimensions of the unit cell in Figure 5-1 are,
say, 2& microns in the x; direction, & microns in the x; direction, and 3¢ microns in the x3
direction then upon introduction of the fast variable y, the dimensions of the unit cell
become 2 in the y; direction, 1 in the y; direction, and 3 in the y; direction. One may refer
to the problem as being 2-periodic in y;, 1-periodic in y, and 3-periodic in ys, or
collectively Yj-periodic in y; where it is understood that Y; may have unequal

components.

5.2.2. Two-Scale Asymptotic Expansion

As with the previous model, the nature of the smart structure in Figure 5-2 means that
any associated boundary-value problem will be characterized by two different scales, a
macroscopic (or slow) scale, x;, which depends on the global formulation of the problem,
and a microscopic (or fast) scale which depends entirely on the structure and geometry of
the unit cell. Thus, periodic smart composites of this nature are amenable to treatment by
asymptotic homogenization techniques. The first step is to define a new microscopic

(fast) variable y; according to:

X. [5.5]
Yi=—

We subsequently expand the displacement and stress fields into infinite series of powers

of the small parameter € as shown below.

w(x,y)=u®(x,y)+eu®(x,y)+*u®(x,y)+... [5.6]
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o} (xy)= o (x,y)+ecf (xy)+e* e (x,y)+... [5.7]

Similar to previous chapter, the introduction of the fast variable y necessiates the

transformation of the derivatives as follows

4,0, 2 >8]
dx;  Ox; 0y; Ox;
so that in view of Equation [5.5] we arrive at:
d 8 120 [5-9]
dx; Ox; €0y
Thus
o N do’; lacg
dx; 0Ox; & Oy;
v ! [5.10]
ouf | onf , 12uf
dx, ox, &0y
Accordingly, Equations [5.1] and [5.4] transform to:
oo oo
1,1%% ¢ inG
ox; &dy,
[5.11]

u*(x,y)=0 ondG

and
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ou ou 5.12
of(x,y)=Cyu (Y{—a‘;:- + %—5},‘]‘(‘) Py (V)R (x) - K3 (y)Ox) -12]

The substitution of Equation [5.12] into first expression of Equation [5.11] and a
consideration of Equation [5.6] reveals that the first term in the asymptotic expansion for

the displacement field is independent of y.
With this results in mind, Equation [5.6] becomes:

5.13
ué(x,y)=u@ )+ P (x,y)+*u®(x,y)+... [5.13]

Subsequently, substituting Equation [5.7] into Equation [5.11] and equating equal powers

of ¢ results in a series of expressions, the first two of which are:

oo (y)_ o
0y ;
[5.14]
2o (y) BoPmy)
0y, 0, l
where,
© m
cg’) = Cij,d(auk + ou, )-—PﬁkRk -K;®
ox, 0Oy
[5.15]

M @
o0 =Cﬁk{?_uk_+§&)
ox, oy
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52.3. Governing equations, unit-cell problems and effective coefficients

Substitution of the first expression in Equation [5.15] into the first expression of Equation

[5.14] gives:

oul(x, OPy, oK Ciu(y) 2u®
° (Cijkl o Y)J= (y)Rk(X)+-———(y)®(X)— W) ) [5.16]

oy; oy, a}'j a}’j an 0x,

The separation of variables in each term on the right-hand-side of [5.16] enables us to

write down its solution in the following form,

o [5.17]
40 5,3)= R, (N () + OGN, )+ 25 D)
where
9 N, (Y)J Py
—|c, (y)—= =
ayj ( ijml (y/ ay] ayj
P N K [5.18]
ale=0"5)5
0 oNy (Y)} 0Cy
“ic. ) =—
ayj ( ijmn (yl ayn ayj

In Equation [5.17] we ignore the homogeneous part of the solution because it does not
affect the ensuing analysis. It is observed that the differential equations in Equation

[5.18] depend entirely on the fast variable y and are thus solved on the domain Y of the

unit cell remembering at the same time that all of Cyy,, Py, , K, N& Ny, N,,, are periodic
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in y;, (with some period Y;). Thus, the differential equations in [5.18] are appropriately

referred to as unit cell problems.

Having determined the first two terms in the asymptotic expression for displacement we
will now turn our attention to determine the stress field. To this end, we substitute

Equation [5.17] into Equation [5.15] and the resulting expression into Equation [5.14] to

get:
Nm () Ry (%) , My () 20(x) |
60(1)(x,y) ()azu“’)(x) C Oyn O Oy,  Oxj
Cijly i
T T a8 ) 9%ud ()
oy, oo [5.19]
OR o0
“Pijk_&L—Kija':fi

Equation [5.19] will be used to obtain the governing equations of the problem by

averaging over the domain of the unit cell. This is the homogenization procedure and it

results in:

where
(Cipa) = l—‘}(—| L, Cia &)+ Cijmn (}’)%I\I—y%}v
(Pﬂk>=l§1{‘|L Py ()~ Cijmn (y)%l\yl—:"‘—}v [5.21]
(k)= 156)- Com ) 52
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Here <Cijk, >,<Pijk >’<Ku> denote the averaged or homogenized coefficients. Let us now

consider the first term in Equation [5.20]. By applying the divergence theorem, it can be
wriiten as:

60%” X,y)

= [ divaPdv = M i
IY 5y, \% devo dv LYG (x,y)6dA [5.22]

where n is the unit vector normal to the boundary surface 8Y of the unit cell. Owing to
the periodicity of 6 (x,y), its value at the corresponding points on opposite side of the

unit cell are the same but with opposite sign. Hence, the integral vanishies identically,

and we are left with:

820 () (b, >6Rk(x)_ <K‘J>a®(x)

C.
7 o ok, ox o, f [5.23]

Similarly, substitution of Equation [5.17] into first expression of Equation [5. 15] and then

integrating the resulting expression over the domain of the unit cell yields:

nu®
(o) = Y| .[{G(O) (v)dv =(C)y, ‘a’f - (Py )R, —(K; )0 [5.24]

Equations [5.23] and [5.24] represent the homogenized equations for the displacement

and stress fields respectively. The coefficients <Cijld >,<Pijk >,<Kij> will be referred to as

the homogenized or effective elastic, piezoelectric, and thermal expansion coefficients. It
is observed that these effective coefficients are free from the periodicity complications
that characterize the actual material coefficients, and as such, are more amenable to

analytical and numerical treatment. They are universal in nature and can be used to study
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a wide variety of boundary value problems associated with a given smart structure. It
should be mentioned at this point that the analysis applies without modification to
materials that exhibit magnetostrictive or other effects rather than piezoelectric effects. In
fact, the equations derived should be considered to hold equally well if the material in

question is associated with some general transduction characteristics that can be used to

induce strains and stresses. In that case, the coefficients <P>ijk represent the appropriate

homogenized material constants (rather than the piezoelectric constants).

In summary, Equations [5.18], [5.21] and [5.23] represent the governing equations of the
homogenized model of a smart composite structure with periodically arranged
reinforcements and actuators. Equation [5.18] represents the unit cell problems, formulae
[5.21] define the effective coefficients, and expression [5.23] provides an asymptotic

formula for the local displacement field.

5.3. Prismatic Smart Structures - Current Model

In order to calculate the effective coefficients of the smart structures, the unit cell
problems [5.18] must be solved and formulae [5.21] must be applied. We will consider

prismatic smart composite structures made of orthotropic material (see Figure 5-1).

5.3.1. Problem Formulation

We begin by introducing the following notations:
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aNkl
b};l = Cijkl ﬁ‘(ﬂ + Cijkl (Y)

ON,, (v

b:} =Py (v)- Cijm ——a_yT(—) [5.25]
ON

bij = Kij(y)_ Cijml _‘g;_](y)

With these definitions in mind the unit cell problems in Equation [5.18] become:

[5.26]

2lo 2lo 2o

The structures of interest consist of reinforcing/actuating elements embedded in a matrix.
As such, it is necessary to consider the interface conditions that exist between the
different constituents of the unit cell. In the sequel, the letters “r”, “m”, and “s” will

denote the inclusion, matrix and inclusion/matrix interface, respectively.

On account of the continuity of the functions N“(y),N¥ (y), and N, (y) one naturally

arrives at the following set of interface conditions:

N¥ (), = N3 (m)
Ni () =Ni(m) [5.27]
N,(r), =N, (m)
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As well, from continuity of the displacement field uf(o) , control signal Ry and the

temperature 6, at the interface, one readily obtains

K 1K
bin |, =bin),

K Lk
bjn|, =bjn,

[5.28]

byn|, =byny,

where n; refer to the components of the unit normal vector at the interface. We will

further assume that the structure of interest consists of high modulus reinforcements and
“soft” matrix ie Ef, Ef and E}>> E™. Also, we’ll assume that the matrix itself exhibits
negligible piezoeletric behaviour. As such b¥(m)~0, bf(m)~0 and by(m)=~0.

(Clearly, the above relationships become exact for the case of “lattice”™ structures which
do not have any matrix or binder material in the region between the reinforcements).

Thus, the interface conditions [5.28] become:

b!}lnjls =0
bin J.L =0 [5.29]
bijnils =0

In summary, the final problems that must be solved for smart structures similar to those

of Figure 5-1 are:
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it s [5.30)

5.3.2. Coordinate Transformation

In the ensuing examples, we will be primarily concerned with orthotropic materials. As
well, the problems in Equation [5.30] will be solved on each inclusion separately, and
then the results will be superimposed. Consequently, the analysis will become easier if
we define a new coordinate system, {1}, so that an arbitrary inclusion will be oriented
along one of the coordinate axes of this system. Due to the nature of the smart structures
of interest in this chapter, the pertinent rotation will be performed about the y; axis as

shown in Figure 5-3.

» 1

Figure 5-3: Original and rotated coordinate systems

The pertinent transformation matrix [T] is,
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cosp sing O

[T] =|—sing cosgp O
0 0 1 [5.31]

and the relationship between the two sets of coordinates is given by:

M) =cos@y; +singy, [5.32]

N, =-sing@y, +cos@y,
From Equation [5.32], the derivatives transform according to:

__Q_z_a_ﬁaﬂl.;.—q—-a&:cosqo—q——sin———-
Oy, Oy dy; oMy Oy, ony ony [5.33]
0 0 arl] 0 5!]2 : 0 4 .
= + =sing— + cos—
Oy, Ony Oy, Ony 8y, ony on,

5.3.3. Effective Elastic Coefficients for Prismatic Smart Structures

We are now in a position to solve for the effective elastic, piezoelectric and thermal
expansion coefficients of the structures of interest. As shown in Figure 5-1, these
structures may consist of many different families of orthotropic reinforcements/actuators,
each family oriented in a different direction. As mentioned before, for a given unit cell,
we will solve the appropriate differential equations in each reinforcement separately (see
Figure 5-4), and then superimpose the results. In doing so, stress concentrations and other
complications that arise at the joints will be ignored because they are highly localized and

do not contribute significantly to the integrals over the entire unit cell.
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Reinforcement/A ctuator

y:

Matrix

Figure 5-4: Basic unit cell with single arbitrarily-oriented orthotropic inclusion

Due to these considerations, it is prudent to first consider a simpler type of unit cell

consisting of only a single arbitrarily oriented inclusion. Referring to Figure 5-4, we

begin by rewriting first expression of Equation [5.30] (noting that%a— =0)as:
3

ﬁ + ?.ﬁ _ 0,
M %2 [5.34]

bﬁlnl +b:(2In2 =0
S

Since the inclusion is oriented along the m; direction, then the problem becomes
independent of the mjcoordinate, and the overall solution is simplified. Accordingly,

Equation [5.33] is reduced to:
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0 . 0
EE
1 2
P 5 [5.35]
—— =COoS—
P! o,
Rewriting Equation [5.34] in terms of the new coordinates 1, and z gives:
K K
~sing—L + cosp—2 =0
2 2 [5.36]

sing bl —cosg b:‘zlls =0

As well, from Equation [5.25], the elastic coefficients, b:;' , become (after coordinate

transformation):

ki K 537
—2 4+ cosp C, N Cijkl [ ]
on

b¥ = —sing C -
1y jm2
2 on,

ijml

It is worthwhile to reiterate here that as with the model presented in the previous chapter,
when an orthotropic material is not referred to its principal material coordinate system,
the number and location of the non-zero terms in the matrix of elastic coefficients
coincide with those of a monoclinic material. This matrix has the form shown in Equation

[4.30a], where C;, are the stiffness values referred to the original {y} coordinate system.

On account of Equation [4.30a], Equation [5.37] can be expanded as:
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. oNU oN i AN K AN Y
bfl = —sing Cyyyy —+ Cypgy —= p + €094 Cyppp — +Cpi;p—=+Cpyy
o2 o,

on, o,
ANk ANk aNM Nk
bX) = —sing{ Cypy) —— + Capg —2 + ¢3¢ Cop1y ——+ Copp 2. b+ Copg
on, on, on2 ony
. oK AN aNK aNK
bf, = bk =—sin@{C,yyy — +Cap —= ¢ +008p Coyg ——+Cayz 2
on, ony ony on, [5.38]
+Cou
K _ ki 5 s
by3 =bz; =—sing Cj3; +cosg Cyp3p +Ca1u
on, o,
Kl K
] ON
bX, =b¥, = —sing Cyy3) —2-+cosp C3p3p —>+Capy
2 2

We will subsequently assume a linear variation of the N}' functions in Equation [5.38],

ie.

[5.39]

where AX' are constants, which will be determined in the sequel. Thus, the elastic

coefficients in Equation [5.38] can be expressed in terms of these constants as:

by} =-sing {Cn’v{d +C Ay }+ cosp {me{" +C Ay }+ Ciiu

b¥) =-sing {Clzlid +Coe)s' }"‘ cosp {C%X{d +Cy)s }"' Caou

b =bk} = —Si“(ﬂ{Cls’v{d +Ceehs [+ COS(”{Cse’vid +Cohs' }+ Coru
b = b4} = ~sinp Cs51 ! + 0059 Cygh! +Cyyu 15401

Ko_pk Kl Kl
b3 =bz; =-sing Cysh3’ +cosp Cyyh3 +Cypy
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After introducing the following definitions,

A =-Csing + Cigcos¢, Ay =-Cigsing+Cy cos@, A3 =Cyyyy

Ay =-Cpsin@ + Cygcos¢ , As =—Cpesing +Cpcosp, Ag=Copy

A =-C¢sing + Cgseos¢, Ag =~Cggsing + Cosc080, Ag =Cyyy [5.41]
Ajg =—Cs;s sing +Cysc080, Ay =Cy3y

Ay =—Cyssing + Cyycos9, A3 =Coy
Equation [5.40] becomes:

b%({ =)\.1A1 +)\.2A2 + A3
blzdz =)\.1 A4 +)\,2 A5 +A6
42
bl =bX =2, A; +2,A5 + Ay [542]

K _ okl
bj3 =b3z1 =A3A10 + Ay

Ky ki
b3 =b3; =A3Ap + A3

Expanding the interface conditions for i = 1, 2, and 3 in second expression of Equation

[5.36], one obtains:

sing bl —cosp bl =0
sing bX —cosp b%, =0 [5.43]

sing bX —cosg bl =0

Solving Equations [5.42] and [5.43], forA", is straight forward and results in:
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(s Ciu—c¢ sz)(scC,2 +5¢C —sZC,6 - CZCZS)—
2H (Scmd _cclzkl)(zscczs "Szces —CZCZZ)

b [s“c,,c66 +52¢2C,,C,, - 25°¢C,,Cp + ¢*CCpp — 25¢°C,6Csy +2szc2C,6C26]

2
~5%C,¢" +25°cC, C,, —c*Cy¢” +25¢°C,,C 6 —57¢*C,," ~25%¢?C,Coq

(s Cian =€ Co )(ZSCCIG -s°C,, _Czces)_
Al = (sC e —Ciy )(SCCn +5¢Cq —5Cy —CZCZG) [5.44]

2 (— §*C, Cq, —57¢%C,,C,, +25°¢C,,C o —¢*CCyy +25¢°C1sCy — 2s2c2c,6c26]

+5%C,% —25°cC, C,, +¢°C,” —25¢°C,,Cy +57¢7C," +25%¢’C,Co

Ak (SCIBId - cCZSkl)
* 7 (2s¢C,y —8°Cy5 —c2Cy, )

(19 1)

Here we use the shorthand notations of “s” and “c” to denote sing and cos¢ respectively.
For an inclusion oriented in a given direction @, one calculates A}, A}, AY'. The results
are then substituted in Equation [5.40] to calculate b:}'. This is repeated for each inclusion

in the unit cell and finally the effective elastic coefficients for the entire structure are

obtained from Equation [5.21]. Some examples will be considered next.

5.3.3.1. Examples of Structures; Effective Elastic Coefficients

5.3.3.1.1. Example 1

This example pertains to the first smart structure of Figure 5-1. Isometric and top views
of this structure are shown in Figure 5-5. The unit cell for this structure is shown in
Figure 5-6. The unit cell problem will be solved approximately for each element Q; and

Q, of the unit-cell and then the results will be superimposed.
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Resin removed t Q show internal features

Figure 5-5: Isometric and top view of smart structure with orientations in 0° and 90°

y2 (@ =90°)

Unit Cell (Top View)

Figure 5-6: Smart structure with orientation of reinforcements in 0° and 90°
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(a) Region Q, (¢ =0°:

Solving for A¥ from Equation [5.44] gives,

2

A =— Crau

xz=_C22kl a __Can [5.45]
Ces

3
Cxn Cu

and then substituting the results in Equation [5.40] gives the following expressions for the

non-vanishing elastic coefficients:

I ok
(b) Region Q, (¢ =90°:
Repeating the procedure results in:
C,’ C;,C, . C,’ [5.47]

2 _
b22 - sz -

12 .12 _ _ 33 _ _X13 23
— by =Cy C ;b3 = Cys ;b =Cy
11 1 1

We are now ready to compute the effective elastic coefficients. To this end, we note from
Figure 5-6 that the volumes of elements Q;, Q; and the entire unit cell are £2F>hhs,
¢Fihohs and €?hihohs respectively, where €F, and eF, are the thicknesses of the
reinforcements Q, and Q. Thus, from Equation [5.21] the effective elastic coefficients

for this structure are computed as:
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<Cijkl> I ||J'bkld

Y|
o) =pel] Bl o
h2 Q hl Q.
1 2

Before we can express these elastic coefficients in terms of the engineering constants, we

need to make use of the familiar tensor transformation equation for a 4"™_order tensor,

[5.49a]

= (p)
Cijkl = aimajnakpalqcmnpq

where the a;; coefficients are the elements of the transformation matrix in Equation [5.31]

and Cgpq represent the elastic coefficients of the reinforcements with respect to their

principal material coordinate system. Equation [5.49b] and [5.49¢] below is the expanded

form of Equation [5.49a].

€y =C®c* —4c®c3s +2C® + 208 )czs2 ~4C®cs® + CYs*

Cpp =COc* +2(C® —cO ks +{c® +cQ —4c® F2s2 +
4
2(c§‘2—c(P’)c +C®s

Cp3 =CPc? —2CcPes +CP)s?

Cye =CPc* +(C(p) —-c® -2c® 3s+3(C(2"6) ~CP k2% + [5.49b]
(2c§2+c§") c(P))¢ _cPs!

Cpp =COc* +4CPes +2(C® +208 p2s? +4CPes’ + Vst
Cys __C(P) 2 2c(P)cs+C(p) 2

Cp =CPc* (cf';)—c“”—zcgg 35+3(C® - O k5% +
G ®)g4
(c(") 2c® —c® ks* -cOs
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Cy3=CH
Cyo=(c® -c@ bs+cRle? -?)
Cos =2(C® —CO ks +(c® +C® 208 29 k25> +2(cE -CY ks +
c@fet +s*) [5.49c]
Cys =CP? +COs? + 2C%cs
Cas=CRle? -2 )+ -cs

Css =C®c? +CPs? ~2CPes

Next, assuming (without loss of generality) that both reinforcements are made of the
same orthotropic material, the non-vanishing effective elastic coefficients for the smart

structure of Figure 5-6 are obtained from Equations [5.48] and [5.49a] and are:

P
(Cy) =2 _EY
by (1-vfo )

F{ EP
<C 22 > = 'l']'l‘ (—'1——}
1

Py, (P
1""13)"’(31)
P
(c13)=(c31)=F_2(_3§L)E_30?_]
P P) P
h, 1‘”&3)“(31)

F
Co:)=(Cyy V=L | 1 23
(Cul=(C) hl[l—us?us*?

PO - D O 1 (.-
» hy | 1-0®e® hy | 1-0®H ’
13 V31 13 V31

F
(C44>=*‘h] Gy,
1
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Here, Ei(p),ij"),vfj") represent the principal elastic moduli, shear moduli, and Poisson’s

ratios for the reinforcement. We also note that in arriving at Equation [5.50] we made use
of the well-known relationships between the Cy coefficients and the engineering

constants, see e.g. Reddy [1997].

5.3.3.1.2. Example 2

This example pertains to the second smart structure of Figure 5-1. Figure 5-7 shows the
enlarged isometric view of this structure. The unit cell for this structure is shown in
Figure 5-8. This structure is composed of three families of reinforcements, each family
oriented in a different direction. Each reinforcement can be made of a different
orthotropic material and can have a different thickness. The distance between the two

neighboring reinforcements of the same family is &a.

Figure 5-7: Isometric view of Smart structure with reinforcements at 30°, 90°, and 150°
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Following the same methodology as for the previous example, the elastic bgl constants

are readily calculated. Here, we provide the final values for A;! and b} constants.

(a) Region Q; (@ =90°:

The elastic coefficients for the region 1 are given in the Equation [5.47], and will not be

repeated.

Smart Structure (Top View)

8F1

_9=150°

Figure 5-8: Smart structure with reinforcements at 30°, 90°, and 150°

(b) Region ©, (¢ =30°:

From Equation [5.44]; A’s are calculated as:
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(0.5C,4g — 0.866C5q N— 0.25C 45 — 0.75C 5, + 0.866C 5
L 10.0625C, ,Cgg + 0.1875C,Cpp — 0.2165C,;C 6 + 0.5625C c6Cp —

0.6495C,5Cy + 0.375C;4C 6 — 0.0625C; 5> +0.2165C;4C 5
~0.5625C 5 + 0.6495C ,C — 0.1875C;,2 — 0.375C;,Ces

((0.5 C iy — 0.866 Cppq X—0.25C 6 — 0.75C 6 +0.433C, + 0.433066)-}

(0.5 Czq — 0.866 Cpppq X=0.25C;; — 0.75C ¢ + 0.866C ) —
(0.5C, 11q — 0.866C 5 N—0.25C;5 — 0.75C 55 + 0.433C, + 0.433C¢)
—0.0625C;;C g — 0.1875C;;Cpy +0.2165C;;C 6 — 0.5625C,C,

+0.6495C4Cy — 0.375C,4Cg + 0.0625C; s> — 0.2165C;,C;5 +
0.5625C 5> — 0.6495C;,C 4 + 0.1875C,,2 +0.375C;,C s

[5.51]

2=

"o (0.5C31q — 0.866C 534
3 (-0.25Cs5 — 0.75C 44 +0.866C 45

Subsequently, the elastic coefficients for the region O, are:

0.5 Cj — 0.866 Cy, Y= 0.25C; — 0.75C,4 + 0.433C,, + 0.433Cq ) -
(-0.5C;; + 0.866C15{( 16 X 16 26 12 s6) ]

(0.5C;; — 0.866C,¢ X~ 0.25C¢5 — 0.75C,; + 0.866Cy5 )
A
(0.5 Cy5 ~0.866 C;, X~ 0.25C;, - 0.75C44 + 0.866C;4 )~
(0.5C,; — 0.866C,¢ X~ 0.25C,4 — 0.75C, + 0.433C,, + 0.433C45) LC
11
A

11 _
bll"'

~(-0.5C;5 + O.866C,2{

[5.52a]

0.5 C, — 0.866 C,, (- 0.25C,, — 0.75C 0.433C 0.433C¢ ) -
(— O‘SCII + 0-866C15{( % 22)( 16 . 26F 12t 66) J

(0.5C,;, — 0.866C 54 X~ 0.25C 55 — 0.75C,, + 0.866C )
A
(0.5 C6 ~ 0.866 C5, X 0.25C,; — 0.75C ¢ + 0.866C;5) —
(0.5C,, — 0.866C 55 X~ 0.25C,5 — 0.75C ¢ + 0.433C;, + 0.433Cy5) e
A

22
bll -

—(-0.5C6 + o.sssc,z{

12
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0.5 Cy5 — 0.866 Cy3 Y~ 0.25C;¢ — 0.75C,6 + 0.433C;, +0.433C¢¢ ) -
(__ 0.5C,, +0.866C; ( 36 23)( 16 26+ 12 66)
33 (0.5C;5 — 0.866C3 X~ 0.25C¢5 — 0.75C,, +0.866C,)
1 =
A
(0.5 Cy5 ~ 0.866 Cp3 Y~ 0.25C;; —0.75C¢q + 0.866C; )~
(0.5C3 ~ 0.866C;4 N~ 0.25C; — 0.75C,6 +0.433C,, +0.433Cq6) +Cy

—(~0.5Cy¢ +0.866C;,

0.5 Cgg — 0.866 C Y 0.25C, 6 ~ 0.75C 6 +0.433C,, +0.433C¢5) —
("' O.SC” +0.866C16 ( 66 26X 16 26 12+ 66) )

(0.5C;¢ —0.866C 44 X~ 0.25C45 — 0.75C,, +0.866C 55 )
. A ’
(L0.5C,q +0.866C (0.5 Ceg ~0.866 Cyg X—0.25C;; —0.75Cq + 0.866C,5)
16 T EEETI2) (0.5C 6 — 0.866C 6 X— 0.25C 6 — 0.75C,6 + 0.433C,, +0.433C4) +Cy
A 1

12 _
byy =

(£0.5C, +0 866%{(05 Cpe — 0.866 Cp, X~ 0.25C,5 — 0.75C,4 + 0.433C;, + o.433c66)—)

(0.5C;, — 0.866C 6 Y~ 0.25Cs — 0.75C; + 0.866C,4)
A [5.52b]
(0.5 Co6 — 0.866C,, X~ 0.25C;, ~ 0.75C¢ + 0.866C;5 ) -
(0.5C;, ~ 0.866C N~ 0.25C; — 0.75C,4 +0.433C,, + 0.433c66)] +Cy
A

b3 =

—(~0.5C,5 + 0.866C,,

b% =bi3 =0

23 2
b3 =b33 =0

~0.5C,, +0.866C
( 12 26)((o.sc,s —0.866C 6 Y= 0.25C¢5 ~ 0.75C 5 + 0.866C )

A
(0.5, +0.866C (0.5 C45 —0.866 C,6 Y- 0.25C,; —0.75C + 0.866C ¢ )
a6 TEETTEA (0.5C 6 - 0.866C 6 X— 0.25C,6 — 0.75C 56 +0.433C, +0.433C4) LC
A 26

12

(0.5 Cgs — 0.866 Cyq ¥=0.25C; — 0.75C 6 +0.433C 5 + 0.433C¢q) —J
by =

0.5C,4 — 0.866 Cyy X~ 0.25C;5 — 0.75C,4 + 0.433C;, +0.433C5) -
(-0.5Cy5 +0.866C54 (0.5C 2X 16 2 12 ) ]

b%% = (0'5C12 — 0'866C26X_ 0.25C¢, —-0.7Cy, + 0.866C26)
A
( 0.5C.. + 0.866C (0'5 C26 -0.866 C22 X_' 0-25C“ - 0’75C66 + 0.866C16)—
T P A(0.5Cs, ~ 0.866C5 )~ 0.25C,s — 0.75C;6 +0.433Cy +0.433Cs))

A
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0.5 C3 — 0.866 Cas {— 0.25C, ¢ — 0.75C 55 + 0.433C,, + 0.433C¢ ) -
(_ 0.5C13 +0.866C36 ( 36 23)( 16 26 12 66)
b3 (0.5C,3 — 0.866C 55 X~ 0.25C45 — 0.75C,, + 0.866C 54)
33 =
A
(0.5 C35 — 0.866 C,3 )~ 0.25C,; —0.75C5 + 0.866Cy )~
(0.5C;5 — 0.866C;¢ X~ 0.25C;¢ — 0.75C 6 + 0.433Cy, +0.433C4) LC
33
A

—{~0.5C54 +0.866C
36 32

13 _1.33

b33 =bj3 =0
23133

b33 =by3 =0

0.5 Cg— 0.866 Cog )= 0.25C,5— 0.75C g+ 0.433C+ 0.433Cgq) -
(-0.5C;3+ 0.866Cs4 ¢ s 26X 16 26+ 12 s6) )

(0.5C4— 0.866Cg X~ 0.25C¢6— 0.75C 5+ 0.866Cy)

o - ;
(£ 0.5C,g+ 0.866C (0.5 C45— 0.866 Cy N~ 0.25C;;— 0.75C 5+ 0.866C)6) —
AT IS (0.5C16— 0.866 Cg - 0.25C; 6~ 0.75C 6+ 0.433C) 5+ 0.433Cg4)

+C
A 36

(C0.5C, +0 866C“)((o.s Ceg — 0.866 Cyg N~ 0.25C;5 — 0.75C,6 + 0.433Cy, + o.433c66)-) [5.52¢]

(0.5C;5 — 0.866Cgg X~ 0.25C¢ — 0.75C; + 0.866C55)

b2 =
12 A
0.5 Cgg — 0.866 Cyg {—0.25C; — 0.75Cg5 + 0.866Cy) —
~(-0.5Cs +0.866C54 ( 66 26X 11 66 16)
(0.5C;5 — 0.866Cg5 = 0.25C; ¢ ~ 0.75C, + 0.433C;; + 0.433C44) e

A

0.5C45 —0.866C,,)
b = {05 44 —0.5C 45 +0.866C, )+C
B (—0.25C55—0.75C44+0.866C45)( s #)*Cas

B3 (0.5Cs5 —0.866C,5)
B (-0.25C55 —0.75C , +0.866C 5)

(~0.5C 45 +0.866C 44 )+ C s

12 23
b3 =bj3 =

_ (0.5C,45 —0.866C,, )
(-0.25C55 —0.75C 4 +0.866C,5)

b3 = (~0.5C55 +0.866C 5 )+ C s

13 (0.5C55 —0.866C,s)

=- ~0.5Cs5 +0.866C,5)+C
13 (—O.25C55—0.75C44+0.866C45)( 3 )+ Css

12 _ 13 _
b13 "‘b12 -

where
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A =0.0625C;;C g5 +0.1875C;;C 2, —0.2165C;,C 56 +0.5625C ¢6C 5, —
0.6495C,cC; +0.375C,4C 6 —0.0625C 5> +0.2165C;C 1y [5.52d]
~0.5625C 552 +0.6495C 5C 6 —0.1875C;,> =0.375C 5 C g6

(c) Region Q; (¢ =150°):
Similarly the A’s for the region 3 are calculated as given below

(0.5 Cypgq +0.866 C oy N~ 0.433C, —0.433C ¢4 —0.25C;5 —0.75C 56 ) —
_{(0.5Cy 1y +0.866C 39 = 0-25Cq6 ~ 0.75C, — 0.866C )
L (0.0625C,,C g6 +0.1875C;C5, + 0.2165C,;C 4 +0.5625C6C oy +

0.6495C;¢Cy +0.375C;4Ca6 — 0.0625C;> —0.2165C,4Cy,
—0.5625C5% — 0.6495C,,C 6 —0.1875C;,% = 0.375C1,Cq

(0.5 Cyagg +0.866 Cpppq X—0.25C;; —0.75C 5 — 0.866C ) —
(0.5C, 11 + 0.866C g X~ 0.433Cy, — 0.433C 6 —0.25C 5 —0.75C 54) [5.53]
~0.0625C,,Cgs ~0.1875C;;Cp — 0.2165C;;C 6 —0.5625C6C 1y —

0.6495C 4Cy — 0.375C 4C 4 + 0.0625C,¢” +0.2165C,5Cy,
+0.5625C 52 +0.6495C5C 56 + 0.1875C;,” +0.375C ,Cys

}\.2=

o (0.5C,3q +0.866C3)
3 (-0.25C55 —0.75C 44 — 0.866C 45)

And the elastic coefficients are given as

(0.5 1 +0.866 Cy, X—0.433C;, ~ 0.433Cg5 = 0.25C;5 — 0.75C 4 )~

-(0.5C;; +0.866C
¢, 162(0.5C,; +0.866C;¢ X~ 0.25C¢5 —0.75C,; —0.866C5)

bll =
z A [5.54a]
+(0.5C;¢ +0.866C (0.5 Cy5 +0.866 C;; X~ 0.25C;; —0.75C¢5 — 0.866C;4)—
16 T RS (0.5C,, +0.866C; - 0.433C;, —0.433Cgq — 0.25C; —0.75C54) vC
* 11

A
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(0.5 C +0.866 C,, X 0.433C,, —0.433C4 —0.25C;5 — 0.75C,4 )~
(0.5C,; +0.866C 55 X 0.25C5 ~ 0.75C,; — 0.866Co4) )
N
(0.5 Cp6 +0.866C,, {— 0.25C;; — 0.75Cs — 0.866Cy )~
(0.5C;; +0.866C 55 X~ 0.433Cy, — 0.433C45 — 0.25C;5 — 0.75Cy¢ )) +Cy
N

-(0.5C,, + 0.866C16{

2 _
bij =

+(0.5C, +0.866C,,

(0.5 C3g +0.866 Cy3 X~ 0.433C;, —0.433Cg5 — 0.25C,5 —0.75C,5) -
(0.5C;5 +0.866C; X~ 0.25C5 — 0.75C,, — 0.866C ) )
N
(0.5 Cy +0.866 Cy3 = 0.25C,; —0.75C45 — 0.866C ;4 )~
(0.5C,5 +0.866C;6 X~ 0.433C,, - 0.433C — 0.25C; 4 — 0.75026)J Lo
N

—(0.5C,, + 0.866016)(

33 _
biy =

+(0.5C, +0.866C,,

13

b# =bil =0 [5.54b]

(0.5 Cgg +0.866 Cyg Y~ 0.433C;, —0.433C45 — 0.25C;5 — 0.75C56) -
(0.5C;6 +0.866Cgs X~ 0.25C¢5 — 0.75C;, —0.866C55)

A
(0.5 Cgg +0.866 Cyq Y= 0.25C;; — 0.75C45 — 0.866C;4 )

(0.5C, +0.866C45 )~ 0.433C;, ~0.433Cq5 — 0.25C; - 0.75c26)) C
¥ 16
A

-{0.5C;, + 0.866C16(

12 _
byi =

+(0.5C;¢ + 0.866C12{

0.5 Cp +0.866 Cop X~ 0.433C;5 = 0.433Cg — 0.25C; 5 ~ 0.75C4 ) —
—(0.5C,, +0.866C (05 Cyg 2X 12 66 16 %) J

(0.5C; +0.866C, Y~ 0.25C¢6 — 0.75C5; — 0.866C4)
N
(0.5C 5 +0.866 Cyy X~ 0.25C;, —0.75C¢s — 0.866C;5)— )
(0.5C, +0.866C,¢ X~ 0.433C;, — 0.433C44 — 0.25C; — 0.75C ) iC
N

b3 =

+(0.5C,6 + 0.866022{

13 _ 422
by =bjz =0

3.2
by =by =0
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(050, + 0866 (0.5 Cgg +0.866 Cpq X 0.433C;, — 0.433Cg5 ~ 0.25C;6 ~ 0.75C 6 )~
bn i) . 26 (O-SCIG + 0866C66 X— 0-25c66 - 0-75C22 - 0.866C26)
2 = y
A
(0.5C5 +0.866C (0.5 Cgs +0.866 Cy Y~ 0.25C;; - 0.75Cg5 — 0.866C;5) -
70226 TREOV2] (0,50, +0.866C 6 Y- 0.433C); — 0.433C4 —0.25C,5 — 0.75C,4) c
A*
~(0.5C,; +0.866C (0.5C,5 +0.866 Cy, - 0.433C;; - 0.433C5 — 0.25C;5 — 0.75C;5 ) -
2 D3+ U 36 (0.5C, +0.866C4 ¥=0.25C¢¢ —0.75C,, — 0.866C,)
33 = *
A
(0.5C;5 +0.866C (0.5 Cy +0.866 Cy, X~ 0.25C;; ~ 0.75C45 — 0.866C;6)~
6 TREON3) (0.5C,, +0.866C 4 X~ 0.433C,, ~ 0.433C4 ~0.25C 6 = 0.75C ) +C
At
~(0.5C;3 +0.866C (0.5 C36 +0.866 Cy3 (- 0.433C;, ~ 0.433Cq —0.25C;5 = 0.75C;5) -
b 1377300 (0.5C 5 +0.866C 36 - 0.25C6 — 0.75C,; — 0.866C )
3= N [5.54c¢]
(0.5Cs4 +0.866C (0.5 C35+0.866 Cy3 (- 0.25C;; ~0.75C5 ~ 0.866Cy5 ) -
+ {0, 36 +0. 23 (0'5C13 + 0.866C36 X-— 0.433C12 - 0433C66 - 025Cl6 - 0'75C26) +C
A* 33
13 33
b33 =bj3 =0
23 33
b33 =by3 =0
—(0.5C,5 +0.866C (0.5 Cgg +0.866C,4 (- 0.433Cy; - 0.433Cq4 —0.25C; — 0'75C26)_)
i 13 361 (0.5C, +0.866Cg5 )~ 0.25C45 ~ 0.75C,, —0.866Cy5)
At
(0.5C54 +0.866C (0.5 Cg5 +0.866 Cyg Y~ 0.25C;, —0.75Cs5 — 0.866C;5) -
36 TR0 (0.5C16 +0.866C Y- 0.433C; — 0.433Cq ~0.25C, = 0.75C;) +C
A* 36
—(0.5C;q +0.866C (0.5 Cgg +0.866 Co ~0.433C,, —0.433C44 — 0.25C;5 - 0'75C26)_)
bl - 16 862 (0.5C; 6 +0.866Cgg Y~ 0.25C¢5 — 0.75C,, — 0.866C 5 )
A*
(0.5C4 +0.866C (0.5 Cyg +0.866 Cy6 (-~ 0.25C;; —0.75C5 — 0.866Cy6)~
02866 TUEON26) (0.5C, +0.866C 5 Y- 0.433C,5 ~ 0.433C5 — 0.25C, 5 — 0.75C,) iC
A* 66
5 (0.5C45 +0.866C,,)

(0.5C45 +0.866C4 )+Coyy

2 7 (£0.25Cs5 —0.75C,, —0.866C,;5)
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3 _ (0.5C55 +0.866C,5)
B 7 (=0.25C55 —0.75C 44 —0.866C,5 )

(0.5C 45 +0.866C 44 )+ Cys

b3 =bi3 =0

2 (0.5C45 +0.866C,,) (0.5C5 +0.866C,5)+Css [5.54d]

B 7 (20.25C; ~0.75C,, —0.866C
55 44 45

b3 (0.5Cs5 +0.866C,5)

= 0.5Css +0.866C 45 )+C
13 (— 025C55 —0.75C44 —0866(:45)( 55 45) 45

b =bl3 =0
where A" is defined by

A" =0.0625C,{C g +0.1875C;;Cpp +0.2165C;;C 6 +0.5625C¢6C oy +
0.6495C 4C 5y +0.375C 4C 56 —0.0625C > —0.2165C4C 5 [5.54¢]
~0.5625C 552 —0.6495C,C 56 —0.1875C,* —0.375C 5C g

Inspection of Figure 5-8 reveals that the volume of the unit cell is (4\/5/3)8a2h and the
volumes of the reinforcements Q;, Q», and Q3 are (4\/—3_/3)82aF,h, (4J§/3)82aF2h, and

(4\/5/3)82aF3h respectively, where ¢F,, €F, and €F, are the corresponding thicknesses.

The effective elastic coefficients for this structure are calculated as:

[5.55]

E F,  u |
(Cijm):';‘bij +;2bij +_j_bij

Q Q, Q

The expressions for the elastic coefficients in terms of the engineering constants are too
lengthy to be reproduced here (although straight-forward). For illustration purposes, let

us consider a material with properties given in Table 5-1 [Daniel, 1994].
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Table 5-1: Properties of E-glass/Epoxy [Daniel, 1994]

Coefficient E-Glass/epoxy
E, (MPa) 39000
E; (MPa) 8600
G2(MPa) 3800

ar1 (10°/°C) 7.0

a2 (10°/°C) 21

33 (10°/°C) 21

The effective elastic coefficients (in GPa) are then calculated to be:

<C11>=22'3F1 223F2 3{Ci2) = 74Fl+74F2 <C13>—195-+19F
a a
<C16>=129F1 129F2 <C22)=2.5E-+2-5£2‘+39.7£3—;
a a a a
(Czs>=43F—*43F2 (%s)““Fl 11F2 H(Cs)= 06F‘+o.6-Fl+2.45—;
y a a [5.56]
(C33)=9. L 90F’-+8.8§i;<c44)=1.0-Fi+1.ofl+3.8F—3;
a a a a a a
(C45>=16F1 16F2 (C55)=2.8 +28F2 ;(Ces) = 74F1+7,4F_2;
a a

5.3.3.1.3. Example 3

Let us now consider a prismatic structure with a rhombic configuration, as shown in
Figure 5-9. The prismatic structure is composed of two families of mutually parallel
orthotropic reinforcements. The distance between the two neighboring reinforcements of
the same family is sa. The effective elastic coefficients for this structure can be easily

derived from those of the previous example and will not be repeated here.
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Rhombic Structure

(Top View) Unit Cell
\ (Top View)

8h1

Figure 5-9: Rhombic smart structure with reinforcements at 30° and 150°

5.3.3.2. Plots of Effective Properties and Discussion

The mathematical model and methodology presented in Section 5.3.3 can be used in
analysis and design to tailor the effective elastic coefficients of any structure to meet the
criteria pertaining to a particular application, by selecting the type, number, orientation
and size of the reinforcements. In this section typical elastic properties of the structures in
Section 5.3.3.1 will be computed and plotted vs. some geometrical parameters of interest.
For the sake of efficiency the structures in Figure 5-6, Figure 5-8 and Figure 5-9 will be
referred to as S1, S2 and S3 respectively. We will assume in each case that the
reinforcements have the same thickness and are made of the same material with
properties given in Table 5-1 [Daniel, 1994]. In the first case we will compare the elastic
coefficients for the three smart structures by varying the lengths of the unit cell and
keeping the thickness F of the reinforcements fixed. That is, we will take €hy = ghy =

constant value in S1, S2, and S3. Figure 5-10 and Figure 5-11 show plots of the variation

of (C”> and <C22>VS. ¢hy or ¢hy. We note again that the 1, 2, 3 indices in (Cij>refer to

the y1, y2 and y3 directions respectively, see Figure 5-2.
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001 1
0.009 4.
0.008
0.007 -
0.006 -
0.005
0.004 -
0.003 -
0.002 +
0.001 A

(C11) x 10° MPa

5 ] 7 8 9 10
Shl/ eF
Figure 5-10: Plot of the (C;,) effective coefficient vs. eh,/eF for S1, 82, S3

It can be observed in Figure 5-10 that the stiffness in the y; direction is the same for S2
and S3 because of the same number, size and arrangement of reinforcements in that
direction. The presence of the extra reinforcements in S2 does not affect the stiffness in
the y; direction because these reinforcements are oriented entirely in the y, direction.
Both S2 and S3 are a little stiffer than S1 in the y; direction because the former have
more reinforcements (even though they are oriented at an angle to y;) that affect the
stiffness in that direction than the latter which only has a single reinforcement which

affects the stiffness in the y,; direction.

Figure 5-11 shows that S2 is significantly stiffer than S3 in the y, direction due to the
presence of the extra 2 reinforcements in the former. For similar reasons, the (C 22) value
for S1 is larger than that of S3 and smaller than that of S2. Of course, all of these trends

and characteristics can easily be modified by changing the thickness, type, etc. of the

reinforcements so that the desirable elastic coefficients are obtained.
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(C) x 10° MPa

8 ] | ] 4 ¥ 1 4
3 6 7 g g 10
ghy/eF

Figure 5-11: Plot of the (Cy,) effective coefficient vs. gh;/eF for S1, S2, S3

In the second case we will vary the thickness of the inclusion keeping the length of the
unit cell constant and assume that the thickness of the all the inclusions are the same.

That is, we will take €F;= €F, = ga in S1, S3 and = 0.5¢a in S2. Figure 5-12 and Figure
5-13 show plots of the variation of (C,,) and (C,,)vs. eF/eh.

For reasons explained above, we observed in Figure 5-12 that the stiffness in the y;
direction is the same for S2 and S3 and is a little higher than S1. Figure 5-13 shows that
S2 is significantly stiffer than S3 and S1 in the y, direction due to the presence of the

extra two reinforcements in the former, than in the latter two structures.



0.005 - S1 S2& 83

0.0045 -
0.004 -
0.0035 -
0.003 -
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0.002 /
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(C11) x 10° MPa

0.1 0.12 0.14 0.16 0.18 0.2
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Figure 5-12: Plot of the (Cy;) effective coefficient vs. eF/eh for S1, S2, S3

S2 S1 S3
0.005 -

0.004 - /

0.003 -

0.002 -

(C2) x 10° MPa

0.001 -

0 H T T T 1
0.1 0.12 0.14 0.16 0.18 0.2
eF/eh

Figure 5-13: Plot of the (Cx,) effective coefficient vs. eF/eh for S1, S2, S3
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5.34. Effective Piezoelectric Coefficients for Prismatic Smart Structures

We now turn our attention to smart structures reinforced with stiffeners that also exhibit

piezoelectric behavior.

Referring to Figure 5-4, we begin by rewriting the pertinent unit cell problem given by
second expression in Equation [5.30] in terms of the new coordinates (see Figure 5-3) 1

and z as,

~ sinqyﬂ:(1 + cos¢?ﬁ2— =0
on, on, [5-57]

sing b}, —cosgp b:‘zls =0

where the piezoelectric coefficients as given by Equations [5.25] and [5.33] are:

X . aN',; :‘n
bij = Pijk +sme Cijml _al]—z— —COosQ@ Ciij -an—z [558]

We note again that the matrix of the piezoelectric coefficients of an orthotropic material
with respect to a coordinate system rotated by an arbitrary angle ¢ (in the y;-y; plane)

from the principle material system has the following form [Reddy, 1997].
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0 0 P, [0 0 P
0 0 P, 0 0 P,
0 0 Pyl |0 0 P,
P231 P232 0 - P41 P, 0 [5.59]
Py, Py 0 P, P, O
i 0 0 P123_ | 0 0 Py

Next, we assume a linear dependency of N¥ functions onn,, i.e.

5.60
Ni =pn, 560

Substituting Equation [5.58] into the three interface conditions in Equation [5.57] gives

three linear algebraic equations in the constants ¥, the solution of which is given by:

(s P,y —C Py )(SZC16 +¢*Cy —scCy, —scC“)—
Hk _ (SPuk —-cPyy, )(Szces + Czczz - 2SCC26)
‘ (ﬁc”c66 +52¢%C,,C,, — 25%¢C,,C, +¢*CgC,py —25¢°C,C, + 2s2c2clsc%]

2 2 2
-5*C," +25°cC,C,, —¢*Cy” +25¢’C,,C, —57c’C,,” —25%¢*C,,Cy,

(s P,y —¢ Py SS7C,, +¢2Cg — 250C, )— [5.61]
P : 2(sP“k —cP21k3)(SZC,6 +c2(4326 -s¢C,, —s;cC66) _
—87C,Cy —5°¢c°C,,C,, +25°¢C,Cy —c"CC,, +25¢7°CC,, —25°¢cC(Cog
L $*C, 5" = 25°cC,C,, +€*C,* —25¢°C,Cp +5%¢*C," +25%¢?C,C ]
e = . (SP311; —CP32k)
(s Cy +¢°Cy, —2scC45)

As with the elastic coefficients, for an actuator oriented in a given direction ¢, one

calculates py,pk, 5. The results are then substituted in Equation [5.58] to calculate b}; .

This is repeated for each inclusion in the unit cell and finally the effective piezoelectric
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coefficients for the entire structure are obtained from second expression of Equation

[5.21]. Some examples will be considered next.

5.34.1. Examples of Structures; Effective Piezoelectric Coefficients

5.34.1.1. Example 1

This example pertains to structure S1 in Figure 5-6. Solving for uf from Equation [5.61]
and then substituting the results in Equation [5.58] gives the following expressions for the

non-vanishing piezoelectric coefficients for actuator Q;:

p C,P 5.62
bfl =P31—ma blsl =Py, b§1 =Py, b§3 =Py -22 [ ]
22 22
Repeating the procedure for actuator Q; results in:
5.63]
C,P C,P [
bgz =P, -2, b§3 =Py ~—23L, blsz =Py, b§2 =P,

11 11

With these results, the effective piezoelectric coefficients are given from Equation [5.21]

as:

F
(Py )= Bizb;

+E‘—b};

h [5.64]

o, Q,
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In order to express these coefficients in terms of the piezoelectric constants referred to the
principal material coordinate system, (to be identified, as before, with a superscript “p”)
we need to make use of Equation [5.49a] as well as the tensor transformation law for a

3"_order tensor,

[5.65a]
Py =a;,a,3, P

im* jn mn

which when written in full has the form:

Py3 =Pc? + PR)s?
Py; =PPs? + CHc?
Py =Pc
Py =—P®sc+PBcs
Py, =PPs? 4 pB)c? [5.65b]
Py =P{Pc” + PD)s?
Ps, =—P®sc + PPcs

Pg3 =— ,(g) sc+ Pz(g)cs

Next, assuming (without loss of generality) that both actuators are made of the same
orthotropic material, the non-vanishing effective piezoelectric coefficients for the smart

structure of Figure 5-6 are obtained from Equations [5.62]-[5.65a] and are:
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)

(By)=F2|p® - bR + oo @ P o |

hy | (1 oD ®) B (")

@) (p)

Bio® ("21 +“31 V23

< h, - @) kS 5
@ ®.,® @ @ ®),.® k@)

(P33)=£2- PY - (23 02153 B3 Py +_Ifl_[P3(g)_( 23 193 "13)5 Pg)]

h, (1 "1p) (p))E(p) h, (1 _ gg) g;;))E(zp)

131 F
(P24>=h—P1('s’)s<Pns>='ﬁ—Px(§)

1 2

5.34.1.2. Example 2

We will now consider the structure S2 of Figure 5-8. Following the same methodology as

for the previous example, the piezoelectric constants in each actuator region are

determined as:

(a) Region Q;:

The piezoelectric coefficients for the region 1 (¢ = 90°) are given in Equation [5.63].

(b) Region Q;:

The piezoelectric coefficients for the reinforcement/inclusion in the ¢ = 30° direction is

given as:

[5.67a]
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0.5 Py — 0.866 Py, {0.25C + 0.75Co5 — 0.433Cy; — 0.433C ) -
(0.5C,, - 0.866Cy¢ (05 7y 2J0.25Csq 26 12 o) )

(0.5P;5 — 0.866P;4 )(0.25Cg5 + 0.75C,, — 0.866C55)

A
(0.5 P; — 0.866 Py, X0.25C,; +0.75C¢5 — 0.866C;6)—

(0.5P,; — 0.866P; X0.25C, ¢ + 0.75C,5 — 0.433C;, — 0.433C¢4 )] P,
A

3
by =

-(0.5C;4 - 0.866C,,

1
bz =b3, =0

0.5 P3¢ — 0.866 P;; J0.25C ¢ + 0.75C, — 0.433C;, — 0.433C¢ ) -
(0.5C;, — 0.866C5 (05 P 32 X0.25C;6 26 12 o) ]

0.5P,5 — 0.866P54 0.25C¢q + 0.75C,, — 0.866C
3 2

A
(0.5 Py — 0.866 Py, 0.25C;; + 0.75Cq5 — 0.866C;6)—

(0.5P,; — 0.866P; X0.25C; + 0.75C, — 0.433C;, — 0.433C¢s )) P
A

3
b22"

~(0.5C5 ~ 0.866Cy,

1
by =b3; =0

(0.5C,c 0.866Csq (0.5 Py — 0.866 Py, (0.25C;6 + 0.75Cy5 — 0.433C,; — 0.433c66)—)

(0.5P,; — 0.866P;5 {0.25C45 + 0.75C,; — 0.866C,)

bil = A
0.5 Py — 0.866 P;, 0.25C;; + 0.75C¢6 — 0.866C;¢) -

~(0.5C¢ ~ 0.866C (0.5 Py 3 11 66 16) [5_67b]
(0.5P,5 — 0.866P;4 )(0.25C; + 0.75C,¢ — 0.433C;, — 0.433C¢4) P

A

0.5P;s — 0.866P
bgl = PIS — (05(:55 - 0866C45{ 15 14 )

0.25055 + 075C44 - 0.866C45

0.5P,; — 0.866P:

0.25Cs5 +0.75C 44 —0.866C 45

b3; =0

0.5P;5 — 0.866P,
biy =Py —(0.5C,5 - 0.866c44)( 15 14 J

0.25C5 +0.75C 44 —0.866C 45

0.5P,5 — 0.866P,, )

b2, =P,, —(0.5C 45 —0.866C
3278 ( 45 44{0.25(355+0.75C44—O.866C45
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(0.5C;5 — 0.866C, {(0.5 Py — 0.866 Py, X0.25C,¢ + 0.75C,5 — 0.433C), — o.433c66)—]

(0.5P,3 — 0.866P;4 X0.25C¢ + 0.75C,, — 0.866C,)

bgs =
A [5.67¢]
—(0.5C55 -~ 0.866C;, {(0.5 Py —0.866 Py, X0.25C,; +0.75C¢4 — 0.866C;¢ )~ ]
(0.5P,5 — 0.866Py4 X0.25C;¢ +0.75C,5 — 0.433C;, — 0.433C¢s) Py

A

Where A is given by the Equation [5.52d]
(¢) Region Qj3:
Similarly the piezoelectric coefficients for reinforcements in ¢ = 150° are given by:

b}l =0
b3 =0

0.5 Py —0.866 P;, X0.25C;4 + 0.75C,5 — 0.433C,, — 0.433C4 ) —
(0.5C1,+0.866C16{( 36 32 X 16+ 26 12 o) )

(0.5P5 — 0.866P; (0.25Cq + 0.75C5, — 0.866C,5)
N
(0.5 P, — 0.866 Py, 0.25C,; + 0.75C,s — 0.866C;¢ ) —
(0.5P,; — 0.866P;5 Y0.25C, + 0.75C,¢ — 0.433C;, — 0.433C¢6 )) B,
N

3
l:)ll—

-(0.5C, + 0.866c12{

[5.682]

12
by =b3 =0

(05C,y +0 866C26{(0'5 Py — 0.866 Py, 0.25C;¢ + 0.75C, — 0.433C, — 0.433066)—)

(0.5P;5 — 0.866Py4 (0.25Cg + 0.75C,, — 0.866C )
A‘
(0.5 Py —0.866 Py, X0.25C, | + 0.75C¢4 — 0.866C;4 ) —
(0.5P,5 — 0.866P; 0.25C;¢ + 0.75C, — 0.433C,, — 0.433C¢q ) P
* 32
A

3 _
by =

~(0.5Cy + 0.866022)(

by =b3; =0
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(0.5C,, +0.866 C66{(o.s Py — 0.866 Py, J0.25C; + 0.75C,5 — 0.433Cy, — o.433c66)-)

(0.5P,; — 0.866P; }0.25C5 + 0.75C,; — 0.866Co4)
At
(0.5 Py — 0.866 P, (0.25C;; +0.75C¢ — 0.866C; )~ )
) P3g

3S =
by =

~(0.5C44 +0.866C
(0:5Ces 261 (0.5P;; — 0.866Py; }0.25C; + 0.75C, ~ 0.433C;, — 0.433C¢q

At

5P, — 0.866P
b3y =Pys ~(0.5Css +0.866c45)( 0.5P;5 — 0.866P;4 )

0.25Cs5 +0.75C 44 — 0.866C 45

5P,5 — 0.866P.
b2, =Pys —(0.5Css +0.866C45{ 0-5Pas A )

0.25Css +0.75C 44 — 0.866C 45

b3, [5.68b]

b32 = P14 (0 5C45 + O 866C44

0.5P,5 —0.866P;,
0.25Css +0.75C 44 — 0.866C 45

b2, =Py —(0.5C45 +0.866C,

{ 0.5P,5 —0.866P,, )

0.25Css +0.75C 44 — 0.866C 45

b3, =0
1 2
b3; =b3; =0
(0.5C,; +0.866Cs, (0.5 Py — 0.866 P, X0.25C;4 + 0.75Cy5 — 0.433C,, — 0.433c66)-)
b, = (0.5P,; — 0.866P;4 )(0.25‘066 +0.75C,; — 0.866C54)
A
—(0.5C,; +0.866C; (0.5 P — 0.866 P;, 0.25C;, +0.75C45 — 0.866C;6)
34 (0.5P,5 — 0.866P;5 (0.25C,5 +0.75C, — 0.433C;, - 0.433Cs4) P
33

At

where A’ is given by Equation [5.54€]. The results are finally superimposed according to

the second expression of Equation [5.21] and are:

i

<P13k> Fl bk a

F
b; +—2b;
a a

[5.69]

) Q, Q,
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Since the general expressions for the effective coefficients in terms of the principal
piezoelectric constants are too lengthy to be reproduced here, we will present them
numerically for a specific example, namely the material PZT-5A with properties shown
in Table 5-2 [Cote et al. 2002]. Assuming that all reinforcements are made of the same
orthotropic material, the effective piezoelectric coefficients (in c¢/mm?) are calculated to

be:

F
(P3)=-1 .6x10_6(—1— + El); (Py3)=-5.5x10"" (5— + F—Z) _2.1x106 53
a a a

a a
P ) =-9.4x1077 5— B . (P ) =-1.8x107 LB
3 a a
(P52> llxlO'S( ) [5.70]
(Pp)= 61x10'6( J+25 10'5 5

(Py3) = 18x10‘5(5 -F£)+19 10'5 5
a a

5.3.4.1.3. Example 3

The effective piezoelectric coefficients of the smart structure S3 of Figure 5-9 can be
derived from those of S2 and will not be given here. However, some of these coefficients
will be presented graphically in the next section when a comparison between all three

structures is made.

5.3.4.2. Plots of Effective Properties and Discussion

The mathematical models derived in Sections 5.3.3 and 5.3.4 can be used in the design of
a smart structure with a desirable combination of elastic and piezoelectric properties by

carefully selecting the type, orientation, and geometric characteristics of the
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actuators/reinforcements. In Section 5.3.3.2, some of the effective elastic coefficients
pertaining to structures S1-S3 were plotted and compared. In this section we will repeat

this for the case of the piezoelectric coefficients.

Table 5-2: Piezoelastic properties of PZT-5A [Cote et al. 2002]

Coefficient Value
C® =C® (MPa) 119899.13
C® (MPa) 109892.37
C{';) (MPa) 74732.01
C® (MPa) 74429.92
C® (MPa) 74429.92
Cf}? (MPa) 21052.63
C® (MPa) 21052.63
C® (MPa) 22573.36
P® (C/mm?) -5.45E-6
PY (C/mm?) -5.45E-6
PY (C/mm?) 1.56E-5
P® (C/mm?) 2.46E-5
P® (C/mm?) 2.46E-5
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8h1/8F
NE 5 6 7 8 9 10
S
S | }
5 S1
"
2 | ?
S2 & S3
16 -

Figure 5-14: Plot of the (P;3) effective coefficient vs. €h)/eF for S1, 82, 83

Without loss of generality we will assume that the actuators have the same thickness and
are made of the same material with properties given in Table 5-2 [Cote et al. 2002]. As in
Section 5.3.3.2, we will vary the lengths of the unit cell for all the three structures and
keep the thickness F of the reinforcements fixed. That is, we will take eh;y = ehy =
constant value in S1, S2, and S3. Figure 5-14, and Figure 5-15, show plots of the
variation of (P13), and (P51) vs. €h or ehy. Figure 5-14 shows the variation of (P,;) vs. hy.
It is observed that this coefficient has the same magnitude for S2 and S3 because of the
same number, size and arrangement of the actuators in the y; direction. As expectéd, the
presence of the extra actuators in S2 does not the affect the value of (P, 3) because these
actuators are oriented in the y, direction and do not contribute to the y; direction. The
magnitude of (PU} is larger for S2 and S3 than S1 because the former have more

actuators that affect the strain/stress in the y; direction (even though they are oriented at

an angle to y;) than the latter which only has a single actuator in the y; direction. Similar

considerations apply for the (P51 ) coefficient shown in Figure 5-15.
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S2 and S3 S1

(Ps1) x 10°° C/mm?
D

eh;/eF

Figure 5-15: Plot of the (Ps;) effective coefficient vs. eh;/eF for S1, S2, S3

As a further illustration, we will allow the thickness F of the actuators to vary but keep
the length of the unit cell fixed. This means that ¢h; = ¢h; = e in S1 and S3 = 2ea in S2

= constant. Figure 5-16 shows the variation of (P, ) vs. eF/eh. Similar to the above case,

we observe that the magnitude of the coefficients for S2 and S3 is larger than for S1.
Finally Figure 5-17 shows the variation of (Ps, ) vs. eF/eh .

eF/eh

0 T . .
-0.1011 0.12 0.14 0.16 0.18 0.2
-0.2
-0.3 -
0.4 T
-0.5 -
-0.6 -
-0.7 -
-0.8 - S1 S2 & S3

(P13) x10° C/mm?

Figure 5-16: Plot of effective elastic coefficients vs €F/eh for Structures S1, S2 and S3
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S2 and S3 S1

N
J

—

Ps1) x 10 C/mm?
o = N w
O 01 = T N O LW O,
] ] ] 1 | i 1

T T T T 1

0.12 0.14 0.16 0.18 0.2
eF/eh

©
-

Figure 5-17: Plot of effective elastic coefficients vs eF/eh for Structures S1, S2 and S3

5.3.5. Effective Thermal Expansion Coefficients for Prismatic Smart Structures

We will finally consider the thermal expansion coefficients. Referring to Figure 5-4, we
begin by rewriting the appropriate unit cell problem given Equation [5.30] in terms of the

new coordinates 1, and z as,

—sin(o%+ cosq)% =0
2 2

sing b,, —cosg bile =0

[5.71]

where the thermal expansion coefficients as given by third expression of Equation [5.25]

are:
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[5.72]
b; =K +sing C

ijml

ON ON,,
— —cos@ Cijm2 —=
on on,

2

We note that the matrix of the thermal expansion coefficients of an orthotropic material
with respect to a coordinate system rotated by an arbitrary angle ¢ in the y;-y; plane from

the principle material system has the following form [Reddy, 1997].

Kll I<1

K22 K2
Ilzll EIZ g _ K33 _ K3 [573]

SR RN

33 O 0

_Kl2 B _K6 _
Next, we assume a linear dependency of N, function onn,, i.e.

[5.74]

N; =&,

Substituting Equations [5.72] and [5.74] into the interface conditions in Equation [5.71]
gives three linear algebraic equations in the constants &;, the solution of which is given by

the following equations:
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(K, -c Kz)(szc16 +¢°C,, —scC, —scC“)—
- (sK, - cKﬁ)(SZC66 +c?C,, - ZSCCZG)
] (s“CuC66 +85%¢*C,,C,, —25°cC,,C,, +¢*C,C,, —25¢’C,C,, + 2s2c2C,6C26]

2 2 2
~5%C,¢° +25°cC,C,, —¢*C,”" +25¢’C,,Cy —5%c?C,,° —25%¢?*C,C,

(s K¢ —c K, Y$%C,, +¢?C —250C,¢ )-
E, = (SK1 —CKs)(Szcls +¢”Cy -scCyy —SCCGG) [5.75]
? (—s“c,lcf,6 —5%¢2C,,C,, +25°¢C,,C s — €' CcCyy +256°C,sCpy — 25262C, Ce

4 2 3 4 2 3 2.2 2 2.2
+8"Cs" —28°¢C(C,, +¢"Cy” —25¢°C,Cpq +5°¢°C," +25°¢“C,,Cyq

(5K, —cK,)
(sC +¢2C,, —25¢C,,)

€ =-

As with the elastic and piezoelectric coefficients, for a reinforcement/actuator oriented in

a given direction ¢, one calculates &,,£,,&,. The results are then substituted in Equation
[5.72] to calculateb. This is repeated for each inclusion in the unit cell and finally the

effective thermal expansion coefficients for the entire structure are obtained from third

expression of Equation [5.21]. Some examples will be considered next.

5.3.5.1. Examples of Structures; Effective Thermal Expansion Coefficients

5.3.5.1.1. Example 1

We will again consider structure S1 in Figure 5-6. Solving for &; from Equation [5.75]
and then substituting the results in Equation [5.72] gives the following expressions for the

non-vanishing thermal expansion coefficients for reinforcement Q,

[5.76]
CpK, iby, =K, - CxK,

b, =K, -
ey, Cy,
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Repeating the procedure for reinforcement Q; results in the following:

K
CpK, :by, =K, - CuK,

b, =K, -
n =K==~ C. [5.77]

With these results, the effective thermal expansion coefficients as given from Equation

[5.21] are:

[5.78]

We will now express these coefficients in terms of the thermal expansion constants
referred to the principal material coordinate system using the familiar tensor

transformation law:

K. —a a2 K® [5.79]
ij mn

im© jn

Assuming that both reinforcements are made of the same orthotropic material, the non-

vanishing effective thermal expansion coefficients for S1 are:

=

)
(K ) =2 KgP)_(“%"x)Hg‘?U(z%))E?’) ®
h, - oo P

(
(K,) =1 k® - b + oo kP

1
by 1-oBo R P

[5.80]

( (
(Ks) = E[Kgp) _ R + o P Kg»))
- P
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5.3.5.1.2. Example 2

Let us now consider structure S2 of Figure 5-8. Following the same methodology as
before, the effective thermal expansion coefficients in each reinforcement region are
determined and the results are finally superimposed according to third expression of

Equation [5.21]:

+flb.

F
(2a) =50 5,

a °

2 [5.81]

As for the case of the elastic and piezoelectric coefficients, the expressions for the
effective thermal expansion coefficients in terms of the material (principal) constants are
too lengthy to be conveniently shown here, and as such, we will evaluate them
numerically for a specific material. Thus, assuming all reinforcements are made of E-
glass/Epoxy with properties given in Table 5-1 [Daniel, 1994] the effective thermal

expansion coefficients (in MPa/°C) are calculated to be:

E F
B o142, (K,) —023B 0232 40332
a a a a a
[5.82]
B o0tz (K3) 0108 1019%2 40205
a a a a a

(K;)=0.14

(Kg)=0.08

5.3.5.1.3. Example 3

The effective thermal expansion coefficients of the structure S3 of Figure 5-9 can easily
be derived from those of S2. Some of these coefficients will be presented graphically in

the next section when a comparison between all three structures is made.
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5.3.5.2. Plots of Effective Properties and Discussion

As was done previously for the case of elastic and piezoelectric coefficients, we will now
compare typical effective thermal expansion coefficients for structures S1, S2 and S3. We
will assume that the reinforcements have the same thickness and are made of the same

material with properties given in Table 5-1 [Daniel, 1994].

Similar to the above examples, in the first case we will vary the length of the unit cell

keeping thickness constant. Figure 5-18 and Figure 5-19 plot the variation of (K1> and

<K2 ) vs. ehy/eF respectively. The trends in these plots should be clear on account of the

discussion in sections 5.3.3.2 and 5.4.3.2. Similarly, considerations apply to Figure 5-20

and Figure 5-21 which plot, respectively, (K1> and <K2>vs. gF/eh, respectively.

0.07 - S1 S2 & S3
0.06 -
0.05 -

0.04 -

(K1) MPa/°C

0.03 -

0.02 -

0.01 -

5 6 7 8 9 10
chy/eF
Figure 5-18: Plot of (K,) effective coefficients vs ehy/eF for Structures S1, S2 and S3
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0.18 - S2 S3 S1
0.16 -

0.14 -
0.12 -

0.1 - \
O.C;S \ \

0.06 \\\
Y

0.04 - ——

0.02 -

(K3) MPa/°C

8h1/8F

Figure 5-19: Plot of the (K,) effective coefficient vs. €h)/eF for S1, 82, §3

S1 S2 & S3
0.035 -

0.03 -
0.025 - /

S
3
Ay
S o002 //r
Z  0.015 /
N

0.01 1

0.005 -

0 T T 7 T 1
0.1 0.12 0.14 0.16 0.18 0.2

€F/eh
Figure 5-20: Plot of (K,) effective coefficients vs eF/eh for Structures S1, S2 and S3
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S2 S3 Q1

0 | T T T T 1
0.1 012 014 016  0.18 0.2

eF/eh
Figure 5-21: Plot of the (K,) effective coefficient vs. eF/eh for S1, §2, 83

5.4. Conclusions

The method of asymptotic homogenization was used to analyze a prismatic smart
composite structure with orthotropic constituents, through the development of a suitable

micromechanical model.

The derived model was applied to three different structures of practical interest (with
rectangular, hexagonal, and rhombic configurations) consisting of orthotropic
reinforcements and/or actuators. The effective elastic, piezoelectric and thermal
expansion coefficients for these structures were determined and then compared
graphically for the three structures. The usefulness of the presented methodology lies in
the fact that the derived model can be used in design and analysis to tailor the effective
coefficients of any structure to meet the engineering criteria pertaining to a particular

application, by selecting the type, number, orientation, and size of the reinforcements.



6. ASYMPTOTIC HOMOGENIZATION MODEL FOR THREE-
DIMENSIONAL NETWORK REINFORCED COMPOSITE STRUCTURES

6.1. Introduction

The present chapter develops a novel asymptotic homogenization model for three-
dimensional network reinforced composite structures (Figure 6-1). In this model, the
composite structure is made of periodically arranged families of isotropic reinforcements

and, if desired, each family may have different mechanical properties.

The rest of the chapter is organized as follows: The basic problem formulation and model
development is presented in Section 6.2. Section 6.3 derives the general model for three-
dimensional network reinforced composite structures and uses it to analyze and discuss

various examples. Finally section 6.4 gives a brief conclusion.

Figure 6-1: Three-Dimensional Network Reinforced Composite Structure
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6.2. Homogenization Model for Three-Dimensional Structures

6.2.1. General Model

The micromechanical model for a three-dimensional network reinforced composite
structure will be developed from the general model (modified slightly since no actuation
or thermal expansion effects will be considered here) presented in the previous chapter.
For the sake of convenience the main results of that model will be repeated here since

they provide the motivation for the development of the new model of interest.

Consider a general composite structure representing an inhomogeneous solid occupying
domain G with boundary &G that contains a large number of periodically arranged

reinforcements as shown in Figure 6-2.

Matrix

Reinforcement

€
Figure 6-2: Three-Dimensional composite structure with its periodicity (unit) cell

The elastic deformation of this structure can be described by means of the following set

of equations:
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daf; .
=f;in G
OX |
[6.1]
uf(x)=0 ondG

where,

Gfi (X, 'E‘) = Cijkl (-{)eil(x,—{) [6'2]
€ € 53

[6.3]

The various field variables in Equations [6.1]-[6.3] have been defined in sections 4.3.1.
and 5.2.1. The periodic composite structure in Figure 6-2 is seen to be made up of a large

number of “unit cell” periodically arranged with the domain G.

6.2.2. Asymptotic expansion, Governing equation, and unit cell problem

In view of the introduction of “fast” variable y according to,

[6.4]

>

Yi=—

the boundary value problem in Equation [6.1] transforms to:
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oo 1 0o}
b g
ut=0 ondG

The displacement and stress fields are subsequently expressed as infinite power series in

terms of the small parametere,

6.6
v (x,y)=u@x)+euV(x,y)+2u®(x,y)+... [6.6]
e © ) 2. [6.7]
Gij(x9Y)=Gij (an)+8°ij (X’Y)"‘S O (XaY)"'--'
where,
do®
ij =0
0y
[6.8]
oo 860
— L =f
ayj axj
and
0) (1
0O _c, 2K, A
Y Lok oy
[6.9]
au(l) au(Z)
0§1)=Cijk1 k', Mk
o Oy, )
while,
6u(0)(x
uﬁ”(x,y)=Vn(X)+—“—)N§'(y) [6.10]
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Functions N¥ In Equation [6.10] are periodic in y and they satisfy the following

equation:

) aNkl(y)j Cig [6.11]
—| Cin (y)—2 =1
ayj[ im0 Y dy;

It is seen that Equation [6.11] depends entirely on the fast variable y and is thus solved on

the domain Y of the unit cell remembering at the same time the periodicity of C,, Njj

in y;. Consequently, Equation [6.11] is appropriately referred to as the “unit-cell”

problem.

Finally, from Equations [6.8]-[6.11] and after averaging over the domain Y of the unit

cell with volume | Y| (homogenization process) we arrive at:

6.12
620 (x) (6-12]
i e
X
where
o K [6.13]
Cia = |‘.;| L(C ikt (V) + Cijmn (Y)“a—;l]dV

The coefficients (~3ijk, are of-course the effective elastic coefficients. We reiterate that the

effective elastic coefficients are free from the periodicity complications that characterize

their actual material counterparts, Cy, , and as such, are more amenable to analytical and

numerical treatment.
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6.3. Three-Dimensional Network Reinforced Composite Structures

For the problem at hand, we turn our attention to a general macroscopically anisotropic
three-dimensional composite structure reinforced with N families of reinforcements or
bars, see for example Figure 6-1, where a particular case of 3 families of reinforcements
is shown. The members of each family are made of generally different isotropic materials
and are oriented at angles ¢ ,p3, ¢5 (where n = 1, 2, ...., N) with the y; y» y; axes
respectively. Furthermore, they are assumed to be much stiffer than the surrounding
matrix so that we are justified in neglecting the cohtribution of the latter in the ensuing
analysis. For the particular case of framework or lattice network structures the
surroundihg matrix is absent and this is modeled by assuming zero matrix rigidity. The
nature of the network structure of Figure 6-1 is such that it would be more efficient if we
first considered a simpler type of unit cell made of only a single reinforcement as shown
in Figure 6-3. Having solved this, the effective elastic coefficients of more general
structures with several families of reinforcements can readily be determined by
superposition of solution for each family found separately. In doing so, we accept of
course the error incurred at the regions of intersection between the reinforcements, but
this error is localized and will not add significantly to the integral over the unit cell. In
order to calculate the effective coefficients for the simpler structure of Figure 6-3, one
must first solve the unit cell problem Equation [6.11] and then apply the formula in
Equation {6.13].

6.3.1. Problem Formulation

We begin the problem formulation for the structure of Figure 6-3 by introducing the

following notation:
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[6.14]
G
b§l =Cij (v) L) +Cjja
9
With this definition in mind, the unit cell problem of Equation [6.11] becomes:
0 (u }_ . [6.15]
oy
AY;

Figure 6-3: Unit cell of composite network reinforced with a single reinforcement family

Because of the multiconstituent nature of the network structures under consideration, it is
prudent to also consider the interfacial conditions that exist between the matrix and the

reinforcements. The first such condition is a direct consequence of the continuity of the

N¥(y) functions and may be stated as:

NS (], = N8 ) 1.1
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Furthermore, continuity of the displacement field leads to:

B | o pkn [6.17]

ij jlr ij jlm
In Equation [6.16] and [6.17] the suffixes “s”, “r” and “m” stand for “interface”,
“reinforcement” and “matrix” respectively. As well, n; are the components of the unit

normal vector to the interface. As mentioned earlier on, we will further assume that the

structure of interest is made of high modulus reinforcements and “soft” matrix. As such,

we may take b!;' (m) ~ 0 and thus, condition [6.17] becomes:

6.18
b¥n [6.18]

i, =0

In summary, the final problem that must be solved for the three-dimensional network

structure reinforced with a single family of isotropic bars is:

[6.19]
&by
0y j

6.20
bgnjs=o [6.20]

6.3.2. Coordinate Transformation

Before proceeding to the solution of the unit cell problem given in Equations [6.19] and
[6.20], we perform a coordinate transformation of the microscopic coordinates {yi, y2,y3}

onto {n; Mz, M3} as shown in Figure 6-4. The coordinate transformation is carried out in
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such a way that the n; coordinate axis coincides with the direction of the reinforcement

and m,, m,are perpendicular to the reinforcement (and each other).

Figure 6-4: Unit cell in original and rotated macroscopic coordinates

Thus, derivatives transform according to:

[6.21]

where q; are the components of the matrix of direction cosines characterizing the axis

rotation.

With this choice of coordinate system, it is evident that the problem [6.19]-[6.20] will be
independent of n; and will only depend on 1, and n3. Consequently, the order of the

differential equations is reduced by one, and the analysis of the problem is simplified.
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6.3.3. Determination of Elastic Coefficients

With reference to Figure 6-4, we begin by rewriting Equations [6.19] and [6.20] in terms

of the 7; coordinates to get:

kl

by =C ™+ Ciju

umnqnp
2 [6.22]

W' vk
bjjqizn2 +bjjains| =0

Here, n; represent the components of the unit normal vector expressed in terms of the
new coordinates. Expanding first expression of Equation [6.22] remembering at the same

time the independency of the problem on n; gives:

kl kl aNkl
bi_| _Cljk1+cl_|m1q21 o, +C13m2q22 - +Cl_|m3q23 3!]2 +
. oNE Na o oNY AR oNM [6.23]
M31 74 jm2432 T 3433 T4
ijm s ij s ijm s

It is possible to solve the system [6.22] by assuming a linear variation of the N¥

functions in 1, and n3, i.€.

Ny =, +4,m;

N3 =4, +A0, [6.24]

NI;l =AM, +heMs

where 1, are constants to be determined from the boundary conditions. From Equations

[6.23] and [6.24], the elasticb;' coefficients may be written as follows:
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bii =Ciya + CidaiM + Cridarhs +Crdzhs +Cradshy + Ci3d23hs +C13q332s
b% =Cau +Cr2921M +Cr231h2 + Cpdhs + Coadihg +Co3dashs +Casdazhe
b3 =Cuu + Cr3d2it + Ci3dsiha + Co3dnhs +Co3dsahg +Cazashs + Ciadazhe
b5 =Cop + Caelas)s + Caaqizhs + Cagdnds + Caadsshe

b3 =Cian +Cssd23h1 + Cssdssha +Cssqarhs +Cssqsihe

bﬂ =Cyol +Cesd22M + Ceedazhy +Cogqaihs + Ceedsihe

[6.25]

Here Cjare the elastic coefficients of the reinforcements in the contacted notation (see

e.g. Reddy, 1997). Substituting Equation [6.25] into the second expression of Equation

[6.22] and letting j take on the values 1, 2, 3 results in 6 linear algebraic equations in A;,

AMAAR, +AM +AA +AA +AMN+A, =0
Agh) +Agh, + Ak +A A, AL +AM +A, =0
Ahi + Ak, + A +AA, FA A + A+ A, =0
AL +AA, FA A +AA, FA A FAL A +HAR =0
Ay h i +A A, A A AN, +ALA A A +A =0
Agghy Ak, + Agghs + Aphy +Aphs +A M+ A, =0

[6.26]

where A, are constants which depend on the direction of the reinforcement as well as its
mechanical properties. The explicit expressions for these constants are given in Appendix

F. Once the system of Equations [6.26] is solved, the determined A; coefficients are
substituted back into Equation [6.25] to solve for the b}j-' coefficients. In turn, these are

used to calculate the effective elastic coefficients of the structure of Figure 6-3 by

integrating over the volume of the unit cell as explained below in Section 6.3.4.
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6.3.4. Effective Elastic Coefficients

The effective elastic coefficients of the network composite structure of Figure 6-3 are

obtained by means of Equation [6.13], which, on account of notation [6.14] becomes:

1 [6.27]
Cijkl =m .[Yb‘.l dv

Assuming that the length (within unit cell) and cross-sectional area of the reinforcement
in coordinates {y1, y2, y3} are L and A respectively, and that the volume of the unit cell is

V in the same coordinates {y;, ¥, y3}, then the effective elastic coefficients are,

6.28]
~ AL [
Cijt = —V—b§' = V;by'

where b};' is constant and Vi is the volume fraction of the reinforcement within the unit

cell.

For network structures with more than a single family of reinforcements, the effective
coefficients can be determined by superposition ignoring stress concentration and other
local complications at the regions of intersections. For example, for a network composite
structure with N families of isotropic reinforcements, the effective elastic coefficients

will be given by,

=N @@k 16-23]
Cijia = 2, V¢ by

n=1

where the superscript (n) represents the n'" reinforcement family.
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6.3.5. Examples of network structures

Let us now apply above developed theory to the analysis of some examples.

6.3.5.1. Example 1-Convergence of Model for the Case of 2D Composite
Network

For the purposes of the first example, we will verify the validity of our model for the case
of 2D network structures whereby the reinforcements lie entirely in the Y;-Y> plane. The

pertinent unit cell for such a structure is shown in Figure 6-5.

Solving Equation [6.26] for A, and substituting the results into Equation [6.25] gives the

following expressions for the non-zero elastic coefficients.

b!! = Ecos*0, b2 = Ecos’0sinf, b2 = b!2 = Ecos’0sin’0 [6.30]

by = Ecosfcos’®, b}, =Esin‘6, b =b},

Here, E stands for the Young’s Modulus of the reinforcing material. These results are the
same as those obtained earlier by Kalamkarov [1992] who developed an asymptotic

homogenization model for a thin flat network-reinforced composite plates.
6.3.5.2. Example 2

The second example pertains to the cubic structure of Figure 6-6. This composite
structure has three families of reinforcements, each family oriented along one of the

coordinate axes.
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e

Figure 6-5: Unit cell for (2D) structure with reinforcements in the Y;-Y> plane

Figure 6-6: Cubic network structure with reinforcements in Y), Y», Y3 directions

Noting that q; =8, , where 8; are the components of the identity tensor, the values of

i >

A; for the reinforcement in the Y; direction are readily obtained from Equation [6.26] to

be as follows:



A = "Clzkl A = “Clsm ) _— C33C22kl _C23C33kl
'Y e, T c, T c-c,C,
66 55 23 T Vv
Ay +hg = _gz3kl S = szcc3;k1 _Cczéczzkl
44 23 T Vntas

From Equation [6.25], the b¥ coefficients are given by:
ij

bkl =C + [C12C33 _C13C23 ]szkl + [C13C22 “‘C12C23 ]Csskl
11~ 2
Cza - C22C33

After substituting expressions for elastic coefficients we obtain:

1 _

b, =E

2 33 123 _ 03 12 _
by =b;; =by; =b; =b;; =0

by =by =by =bj =bj, =0
Repeating the procedure for the reinforcement in the Y, direction yields:

2 _
b2 =E
1133 _ 123 _ 03 _ 12
bzz—bzz—bzz"bzz—bzz"o

bii =b3 =by =by; =bj; =0

Finally, for the reinforcement in the Y3 direction, the results are:
bl =E
by =b3 =bj; =by =by; =0

Ko1K K Kk
bll_b22—b23—b]3"b12_0
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[6.31]

[6.32]

[6.33]

[6.34]

[6.35]
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We are now ready to compute the effective elastic coefficients of the cubic network
structures shown in Figure 6-6. Let the length (within unit cell) and cross-sectional area
of the i reinforcement in the Y; direction be L; and A respectively (in coordinates yj, y2,
y3). Also let us assume that E; is the Young’s modulus of the reinforcement in the Y;
direction. Then, for a unit cell of volume V, the corresponding volume fraction v; is given

byv; =A;L;/V. Thus, from Equations [6.29], [6.33] and [6.35] the non-zero effective

elastic coefficients for the composite network structure of Figure 6-6 are,

~ AL
Ci =—1V—1E(1) =viEqy;

~ A,L
Cp=—"22

E(Z) = V2E(2) N [6 36]
~ AL '
Cyp =27

E@) =viEg,

where E; is the young’s modulus of the i" reinforcement. In the case where the
reinforcements have the same material properties (namely Young’s modulus, E) the

expression in Equation [6.36] become,

6.37]
~ A ~ A ~ A [

Cy=—LE=vE; Cpy=—2E=v,E; C33="2E=v;E
11 v 1 22 v vy 33 v V3

6.3.5.3. Example 3

This example pertains to a composite network structure with a conical arrangement of
isotropic reinforcements. In this example (to be referred to as structure S)) the unit cell is
made of three reinforcements oriented as shown in Figure 6-7. The expressions for the

effective coefficients are readily determined from Equation [6.25], [6.26] and [6.29].
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Although the expressions are too lengthy to be reproduced here, some of these
coefficients will be presented graphically in the next section.

Spatial arrangement of reinforcements
as viewed from the top

Figure 6-7: Unit cell for composite network structure with conical arrangement of

isotropic reinforcements (Structure S;)

6.3.5.4. Example 4

In this example let us consider a general unit cell (S;) as shown in Figure 6-8. The
general unit cell consists of three reinforcements two of which span from different
corners of the unit cell to the diametrically opposite ones and the third reinforcement is
oriented from the middle of the bottom edge to the middle of the top edge on the opposite

face.

The effective coefficients for this structure are calculated in the same manner as for the
ones in the previous examples. The resulting expressions are too lengthy to be reproduced
here. However as an illustration some of the effective coefficients are plotted vs. the

height of the unit-cell in the following section.
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Figure 6-8: Structure S

6.3.6.  Plots of Effective properties and discussion

The mathematical model and methodology presented in Sections 6.3-6.3.4 can be used in
analysis and design to tailor the effective elastic coefficients of any three-dimensional
composite network structure by changing the material, number, orientation and/or cross-
sectional area and material selection of the reinforcements. In this Section typical
effective coefficients will be computed and plotted. For illustration purposes, we will
assume that the reinforcements have a Young’s Modulus and Poisson’s Ratio equal to

200 GPa and 0.3, respectively.

We will begin with the plot of some of the effective coefficients for the structure S1
shown in Figure 6-7. The effective coefficients will be plotted vs. the total volume
fraction of the reinforcements within the unit cell. As expected, the effective coefficients
increase with an increase in the overall reinforcement volume fraction, as shown in

Figure 6-9 and Figure 6-10.
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Figure 6-9: Plot of C;; vs. reinforcement volume fraction for structure S,

5.01 0.012 0.014 0.016 0.018 0.02
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Figure 6-10: Plot of Css vs. reinforcement volume fraction for structure S,
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volume fraction of reinforcements
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Angle (degrees) of inclination of reinforcements with Y3 axis

Figure 6-11: Plot of the C,; effective coefficient vs. inclination of reinforcements with

the Y3 axis pertaining to structure S; for reinforcement volume fractions equal to 0.03,
0.045, and 0.06

It would also be of interest to plot the variation of some of the effective coefficients of
structure S; with the angle of inclination of the reinforcements to the Y3 axis. As this
angle increases, the reinforcements are oriented progressively closer to the Y, and Y axis
and the stiffness in these directions is expected to increase. Indeed a reference to Figure
6-11 and Figure 6-12 shows precisely that. On the contrary, (see Figure 6-13) at the same
time as the stiffness in the Y, and Y- directions increases, the corresponding value in the
Y; direction decreases because the reinforcements are oriented further away from the Y3

axis.
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0.03 0.045 0.06

o

22 MPa

10 3 2 2 0 3%
Angle (degrees) of inclination of reinforcements with Y3 axis

Figure 6-12: Plot of the C,, effective coefficient vs. inclination of reinforcements with

the Y3 axis pertaining to structure S, for reinforcement volume fractions equal to 0.03,
0.045, and 0.06
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) L}

Figure 6-13: Plot of the Cs; effective coefficient vs. inclination of reinforcements with

the Y3 axis pertaining to structure S; for reinforcement volume fractions equal to 0.03,
0.045, and 0.06
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We now turn our attention to the S, composite structure (Figure 6-8) and plot some of the
effective coefficients by varying the height of the unit cell but keeping the other
dimensions as well as the cross-sectional area of the reinforcements constant. It is noted
that as the height of the unit cell is varied, the lengths and orientations of the

reinforcements change.

Figure 6-14 shows a plot of the effective coefficientsC,;, C,,, C,,, and C,, vs. the

height of the unit cell. As the height of the unit-cell increases, the volume fraction of the
reinforcements decreases and at the same time the reinforcements are oriented closer to

the Y3 axis and further away from Y, and Y2 axis. Both of these effects contribute to the

~

stiffness in the Y, and Y, direction decreasing. However, C,, increases because the

increase in stiffness due to a smaller angle of inclination with the Y3 axis dominates the

decrease in stiffness due to the reinforcements volume fraction decreasing.

Ciy Cyp Cy5 Css

L} L) ¥ + L *

1 15 2 25 3 35 4 45 &
Height of Unit Cell

Figure 6-14: Plot of C,,, C,,, (~333 ,andC,, effective coefficient vs. height of the unit

cell for S, structure shown in Figure 6-8
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Finally, we are interested in comparing the effective coefficients of structures S; (Figure
6-7) and S, (Figure 6-8) by varying the volume fraction. The volume fraction for
structure S; is varied by varying the reinforcement cross-sectional properties and for
structure S, by varying the height (h) of the unit cell. From the Figure 6-15 we see that

C;; for S; increases as the volume fraction increases and at the same time for S, it

decreases because the fibers in the latter are oriented progressively further away from the
Y; axis as the volume fraction increases. Beyond a certain volume fraction, S; is stiffer in
the Y; direction. Of course these trends can be easily changed. For example, if the
volume fraction of the reinforcements of S, is changed by keeping all dimensions of unit
cell constant (i.e. direction cosines pertinent to reinforcements unchanged) and changing

its cross-sectional properties then, increasing the volume fractions would increase Cj;,

and the relative stiffness between the two structures would be different than that depicted
in Figure 6-15. What’s important is to realize that the model allows for complete
flexibility in designing a structure with desirable mechanical and geometrical

characteristics.

6000 4
5000 -
4000 4

633 MPa .
3000 -

2000 -

1000 -

& ¥ L3 ¥ * 3
0.01 0.012 0.014 0.016 0.018 0.02

Total Reinforcement Volume Fraction

Figure 6-15: Plot of C;; vs. total volume fraction for structures S, (Figure 6-7) and S,
(Figure 6-8)
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6.4. Conclusions

A general three-dimensional micromechanical model pertaining to globally anisotropic
periodic composite structures reinforced with a spatial network of isotropic
reinforcements is developed. The derived model is illustrated by means of different
composite structures with cubic or conical configurations of reinforcements. The
usefulness of this work lies in the fact that the model can be used to tailor the effective
coefficients of any three-dimensional composite structure to meet the requirements of a
particular application by changing such geometric or material parameters as the type,
number, cross-sectional dimensions, and relative angular orientation of the

reinforcements.



7. CONCLUSIONS

The first mathematical model developed applied a general 3-dimensional
micromechanical model pertaining to smart composite layers with wavy boundaries to
the case of thin smart plates reinforced with a network of generally orthotropic bars that
may also exhibit piezoelectric behavior. The method used for the development of the
model is that of asymptotic homogenization which reduces the original boundary value
problem into a set of three decoupled problems each problem characterized by two
differential equations. These three sets of differential equations, referred to as “unit cell
problems”, deal, separately, with the elastic, piezoelectric, and thermal expansion
behavior of the network reinforced smart composite plates. The solution of the unit cell
problems yields expressions for effective elastic, piezoelectric and thermal expansion
coefficients. These coefficients are universal in nature and can be used to study a wide

variety of boundary value problems associated with a smart structure of a given geometry.

The developed model is illustrated by means of three different smart structures, with
orthotropic actuators/reinforcements oriented in a rectangular,v triangular or rhombic
manner. The effective coefficients pertinent to these structures were calculated and
presented graphically. It is shown in this work that the effective coefficients of any
network-reinforced smart composite plate can be customized to meet the requirements of
a particular application by changing certain material or geometric parameters of interest
such as size, type, angular orientation, etc. of the actuators/reinforcements so that the

desirable properties are obtained.

The second mathematical model developed was used to analyze a prismatic smart
composite structure with orthotropic constituents. The original boundary value problem
which is characterized by rapidly oscillating material coefficients and is therefore
difficult to solve, is transformed to a similar problem with effective coefficients which
are independent of the microscopic variables. Consequently, this problem is much more

amenable to analytical (or numerical) techniques.

189
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Once the general model is derived and the governing equations including the appropriate
interface conditions are determined, the effective elastic, actuation, and thermal
expansion coefficients can be calculated. The actuation coefficients characterize the
intrinsic transducer nature of active smart materials that can be used to induce strains and
stresses in a controlled manner. The analysis presented was applied to piezoelectric
materials, but the equations derived should be considered to hold equally well if the
material in question exhibits for example magnetostrictive characteristics, or is associated
with some general transduction characteristics that can be used to induce residual strains

and stresses.

The derived model was applied to three different structures of practical interest (with
rectangular, hexagonal, or rhombic configurations) consisting of orthotropic
reinforcements and/or actuators. The effective elastic, piezoelectric and thermal
expansion coefficients for these structures were determined and then compared
graphically for the three structures. The usefulness of the presented methodology lies in
the fact that the derived models can be used in design and analysis to tailor the effective
coefficients of any structure to meet the engineering criteria pertaining to a particular

application, by selecting the type, number, orientation, and size of the reinforcements.

The third and final mathematical model developed is used to analyze 3-D globally
anisotropic periodic composite structures reinforced with a spatial network of isotropic
reinforcements is developed. The model, which is developed using the asymptotic
homogenization technique, transforms the original boundary value problem into a simpler
one that is characterized by some effective elastic coefficients. The effective coefficients
are shown to depend only on the pertinent geometric and material characteristics of the

periodicity cell and are therefore independent of the global formulation of the problem.

The derived model is illustrated by means of different composite structures with cubic or
conical configurations of reinforcements. As with the previous model, the usefulness of
this work lies in the fact that the model can be used to tailor the effective coefficients of

any three-dimensional composite structure to meet the requirements of a particular
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application by changing such geometric or material parameters as the type, number,
cross-sectional dimensions, and relative angular orientation of the reinforcements. In the
particular case in which the reinforcements form only a two-dimensional (planar)
network, the results are shown to converge to previous models developed by Kalamkarov
(1992) who also used the asymptotic homogenization technique and Pshenichnov (1982)

who used stress-strain relationships in the reinforcements.
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APPENDIX
Appendix A. Quantities that enter Equation [4.39], [4.64], and [4.78]

We give here the expressions for the constants o;-0o that are needed to calculate the

elastic (bg“ ), piezoelectric (dﬁ) and thermal expansion coefficients (©; )for the unit cell

of Figure 4-6. They are:

2 2 2 2 2
_56CiiCys _5°CpiCe6 _¢7Ci6Ca _ 5C12Crs _ © C12Ces . $°Cis

' hyh, h,? h,? hih, h,? h,2
s
o = _°C262CHC223 + 25C11§26C23 " Ccnczscsezczz _ SC11C2622C36
Ceshihy hi"h, Ceshihy Ceshyhy
_5°C11Ce6Ca3  5C11C36C0 + s*C11C36Cag N ¢>C16°C16Cs
ch;? hy%h, ch,’ sCggh,’
_€Cy6Cr6Ca3 ¢*C16C26C36C 2 N ¢C12C16C23Ca6  C12C16Cn3
hih,? sCesh,’ Ceshihy” h*h,
L+ 5C12C16C36Cas _ ¢*C13C2Cos L C12CesCas _ cC12C36Ca6
Ceshi’hy sh,’ hih,” hih,? [A.1a]
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Appendix B. Derivation of eccentricity, e'[4.42]

X2

X1

Figure A-1: Cross-sectional view of reinforcement/actuators

From the above figure, coordinates of the radius in the x;, X», and x3 direction are:

x| =r15in¢Q',
X, =rcosg', [A.2]
X3 =Tr.

According to the microscopic scale, the above equation transforms into:

=rsin(a‘
Y1 51‘11 ’
)= rcos¢y' [A.3]
dh, ’
ry; =—
3%

and the minor radius is calculated as:

252, 2.2 [A.4]
(r-)z_r sin“g' 1 cos@

© 8% 8%h3




210

We recall that the coordinate transformation from x; and x; to y; and y» will transform

the circular cross-section into an ellipse and the minor axis to major axis is given by:

[A.5]

Y
(mxr.xor} I
major
From Equations [A.4] and [A.5] the eccentricity of an ellipse can be determined as:

[A.6]
_ (sinch'hz2 + cosz(p'hlzj %

e'=|1
hy*h,’

Appendix C. Derivation of Equation [4.43]

Equation [4.43] will be derived in a rather heuristic manner, ignoring some of the formal

mathematical details.

Figure A-2: Cross-sectional view of reinforcement/actuators after coordinate

transformation
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The equation of ellipse in terms of coordinates n;,n,,zis given by

[A.7]
Il.i.'._zi—l
2 2
N Ly)
Let
A.8
3 2 LA.8]
h="2+7
n 1))

where 1 is constant anywhere on the circumference of the ellipse. From chain rule, we

write,

[A.9]
du=az4 P g, =0
oz ony
which may be expressed as:
3 5 [A.10]
d“‘ = [a};— _é'l + a—,: _é'z ).(dﬂz_éll +dZ—é'2 ) =0
Here,
o &' +_6_u &',is a vector tangent to circumference [A-11]
3“ 2 aZ
and

dn,¢', +0z¢', is a vector normal to circumference. [A.12]



Thus, from Equation [A.12] the unit normal vector is calculated as:

o S1t5, %2 St re2
=_ Ony _ N 2

ou - on. 2 42

o+ L, Az, 427

6r|2 r14 r,
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[A.13]

[A.14]

2
Solving the above equation in accordance to the relationship (—r’—] =1-e¢'2and forr;=

rn

0.5 gives

n,'= 1’]2[1—(6')2 r ,and n,'=z

Appendix D. Quantities that enter Equation [4.54], [4.71], and [4.83]

[A.15]

We give here the expressions for the constants A, — A that are needed to calculate the

b,fj*" functions for the unit cell of Figure 4-3 They are:
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Appendix E. Derivation of Equation [4.57], [4.74], and [4.86]

The effective coefficients of the homogenized plate are obtained through the integration

over the volume of the entire unit cell Q4 (with volume equal to|Q) according to

Equation [4.14]. Let 8V be the volume of the reinforcing bar within the unit cell (Figure

4-5). The volume of the unit cell can be readily calculated from Figure 4-5 as&°hh, .

Then, the <bi7jf” > effective coefficients are calculated from:

[A.18]
<bg">=lél e

where j o

cell and reinforcing bar in the above equation gives

b{}'dv is the volume of the reinforcing bar. Substituting the volume of the unit

<b.*.“>=——\—’—b.4” [A.19]
y h1h2 y

Note that due to the symmetry of the circular cross-section with respect to the shell

middle surface, the skew-symmetrical coefficients <zbi)}“> , <b¥‘”> vanishes.
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Let us now derive the equation to find the effective coefficients for <zb;x”> problem. The

<zb;"”> effective can be calculated from

20
)yl e

First we will consider the term within the bracket of Equation [A.20]. Rewriting this term

in terms of length (L) of the fiber and area gives:

[A.21]
BI*L [ z°da, where L= hild
IT
Substituting Equation [A.21] into [A.20] results in:
ij IQI n ea”
The above equation can be rewritten using Equation [4.5] as:
| av [A.23]
)\ 2
<zb > ﬁfﬁ BlJ ('! Ir sin*6(rdrdo)
Solving Equation [A.23] gives the effective coefficients as:
[A.24]
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Appendix F. Quantities that enter Equation [6.26]

A;=q2°Cy; + 057 Ces +923°Css

Aj =q21931Cy1 + 422932C66 +923933C55
A3=02192,C12 +421922Ces
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A7 =0432033C23 +43393,C 44

Agg =q31Ca +932C 200 +933C 23

A9 =q2923Css5 +421923C13

A3 =q21933Cs5 +92393,Cy3
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A31 =0922923C 44 +922923C3

A3y =q22933C44 +d2393,C 23

Az =c1212(:55 +Q222C44 +Q232C33

A34 =921931Cs5 +422932C 44 +923933C33
A3zs =q21Cpai +422C 23 +923C 331

Aszs =q31923Cs5 +421933C3

A37 =931933Cs5 +93393,Cy3

Aszg =423932C 44 +922933C53

A3g =q32G33C 44 +q33932C 23

A4 =921931Cs5 + 422932C 44 +d23933C 33
A41=03°Css5 +q3,°Cyq +q33°Cs3

A4 =q31C 31 +932C 231 +933C 33

[A25b]



