Scalable QoS and QoS Management Models for IP
Networks

El Bahlul Fgee

Submitted in partial fulfillment of the
requirement for the degree of

DOCTOR OF PHILOSPHY
Major Subject: Engineering Mathematics and Internetworking
at

DALHUSIE UNIVERSITY

Halifax, Nova Scotia November, 2005

Copyright by El Bahlul Fgee, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-13048-2
Our file Notre référence
ISBN: 0-494-13048-2
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

DALHOUSIE UNIVERSITY

To comply with the Canadian Privacy Act the National Library of Canada has requested
that the following pages be removed from this copy of the thesis:

Preliminary Pages
Examiners Signature Page
Dalhousie Library Copyright Agreement

Appendices
Copyright Releases (if applicable)

I dedicate this great
piece of work
To Suhaib, Hidaya and Alaa

In memory of my beloved parents!

iv

Contents

List of Tables

List of Figures

List of Acronyms

Acknowledgements

Abstract

1 Introduction

1.1
1.2

1.3

14

1.5

Motivation
Problem Definition
1.2.1 Definitionof QoSo
1.2.2 QoS Parameters.
1.2.3 QoS Control Mechanisms
Stateof the Art
1.3.1 QoS Approaches
1.3.2 Internet Protocol IP
The proposal L
1.4.1 Proposed end-to-end QoS Model
1.4.2 The Proposed QoS Manager
Document Organization

xii

XV

xviii

xix

O 0O O U o W

2 Related Work
2.1 An Overviewof QoS Control
2.1.1 Scheduler and Buffer Management
212 QoSModels
2.1.3 Research Efforts on QoS Model
2.2 Network Resource Management
2.2.1 Bandwidth Broker Architecture
2.2.2 Dynamic Reservation

2.2.3 Pricing-based Approaches

3 Mathematical Modeling
3.1 Imtroduction e
3.2 Definition of Basic Network Calculus Elements Used
3.2.1 Arrival and Service Curves
3.2.2 The Fundamental Bounds
3.2.3 Packetization Effects Lo
3.2.4 Calculated Delay Bounds for Some Schedulers
3.3 QoS Mathematical Service Element Model
33.1 Model Layout,
3.3.2 ThelIntServModel
3.33 TheDiffServModel
3.3.4 The Proposed Model
34 Comparisonof Models
3.4.1 Comparison e

3.4.2 Numerical Example o .

4 An end-to-end QoS Management system proposal
4.1 Introduction L e
4.2 Proposed QoS Manager e
43 IPEdgeRouter

vi

16
16
17
17
22
25
25
29
32

34
34
35
35
37
40
40
43
43
44
45
46
47
47
49

4.3.1 Architecture for the IP Edge Router Structure:- 61

4.4 Reservation Scenarios oo e e 63
441 Local Reservation 64
4.42 Domains Reservation 67

Implementation and Experiments 70

5.1 Choice of queue simulations 71
5.1.1 Simulated Results Analysis. 72

5.2 The Implementation of the IPv6 QoS management scheme: 73
5.2.1 The Model Layout 73
5.2.2 NS-2 Code Implementatidn 76
5.2.3 Simulation Setup and Results 78

5.3 Simulation of Other QoS Models 86
5.3.1 RSVP Simulation Results 86
5.3.2 MPLS Simulation Results:-- 90
5.3.3 DiffServ Simulation Results: 94
5.3.4 Simulation Results Comparison between the Proposed IPv6

QoS Manager and other QoS Techniques 100
5.3.5 Averageend-to-enddelay 100
5.3.6 Average Packet LossRate 102

5.4 Simulation of two and three QoS domains using IPv6 QoS management
models e e 106
54.1 Two Domains Simulation 106
5.4.2 Three Domains Simulation 109

Implementation of Internet billing on the IPv6 QoS manager 112

6.1 Introduction and Motivation:- 112

6.2 Review of the Internet Pricing Schemes 113
6.2.1 Flat Pricing [58] 113
6.2.2 Priority Pricing [58] L 114

vii

6.2.3 Smart-Market Pricing [82]
6.24 EdgePricing [83]o
6.2.5 Per-Packet pricing scheme [59}
6.2.6 Dynamic Pricing model[60] [61]
6.3 The Integration of the Proposed IPv6 Manager with the Dynamic Pric-
ingModel
6.3.1 Introduction:
6.3.2 Implementation and Deployment
6.3.3 Simulation Results

7 Conclusions and Future Work

7.1 Thesis Summary
7.1.1 Mathematical Modeling
7.1.2 Model Architecture oL
7.1.3 Model Implementation and Simulation
7.1.4 Integrating Dynamic Pricing with the QoS Model

7.2 Future Directions

Bibliography

A QoS Regulators and Schedulers

A.1 Traffic Regulators
A.2 Traffic Schedulers oo
A.2.1 Weighted Fair Queuing :,
A22 Class-Based Queuing :

B QoS Approaches used in Literature

B.1 Integrated Services (IntServ) and RSVP
B.1.1 QoSClassesinIntServ
B.1.2 IntServ Traffic Control Model
B.1.3 RSVP: a signaling protocol for IntServ

viii

126
126
127
127
128
129
129

131

141
141
142
143
146

B.2 Differentiated Service Architecture 154

B.2.1 DiffServ Routers 156

B.2.2 Resource allocation in DiffServ Domain using BB: 158

C Next Generation Internet Protocol IPv6 161
C.1 Imtroduction 161
C.2 Some Aspectsof IPv6 162
C.2.1 Addressing. e 162

C.22 Performance e 162

C.2.3 Networkservice, 163

C.2.4 Addressing Flexibility 163

C.2.5 Security Capabilities 164

C3 QoSinIPv6 e 164
C.31 FlowLabel 164

C.3.2 Priority Field (TrafficClass) 167

D ns-2 added code 169
D.1 the C++ Code implementation 169
D.11 QoSManager Code 169

D.1.2 IP Edge Router Code 195

D.2 TCL Code Scripets i ittt i e e 206
D.2.1 QoS Manager Simulation Code 206

D.2.2 Pricing Integration Simulation Code 213

List of Tables

1.1

3.1

5.1

5.2

5.3

5.4

5.5

2.6

5.7

5.8

5.9

5.10

5.11

Heterogeneous traffic behavior and QoS requirements of Internet ap-

plications e
End-to-end delayed calculation using the three QoS models

Average End-to-end delay during normal rates comparison
Average End-to-end delay during source 2 rate increase comparison
Packet Loss Rate comparison

End-to-end delay, packet loss rate and degradation rate comparison re-

sults for three traffic sources during violation and non-violation scenarios 81

End-to-end delay, packet loss rate results for six traffic sources simula-
tlonscenarioo e
RSVP simulation results for End-to-end delay and packet loss rate . .
MPLS simulation results for End-to-end delay and packet loss rate . .
MPLS constraint routing simulation results for End-to-end delay and
packet lossrate
DiffServ simulation results using Token Bucket policer for End-to-end
delay and packet lossrate
Jobs simulation results testing QoS parameters, End-to-end delay and
packet lossrate
Simulation results comparison between the IPv6 model and other QoS

methods L

5.12 Two domains simulation results testing QoS parameters, End-to-end

delay and packet lossrate L. 109
5.13 Three domains simulation results testing QoS parameters, End-to-end

delay and packet lossrate oL, 110
B.1 IntServ and DiffServ architecture comparison 160
C.1 The Priority Values 167

xi

List of Figures

1.1
1.2

21
2.2
2.3
24

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

4.1
4.2
43
44
4.5

QoS Management cycle Lo

Thesis Organization

Differentiated Service Domain architecture
MPLS Packet Format
MPLS architecture

BB basic componentso L oo

Leaky bucket and IETF IntServ Arrival Curves
Service Curve e e
An example of traffic flow bounded by a(¢) and 8(¢)
Delay and Backlog bounds for token bucket model
Delay and Backlog bounds for IETF IntServ model
FIFO and WFQ max delay and backlog.
Block Diagram for the Network model

DiffServ maximum delay calculation

Proposed QoS management scheme structure
Proposed IPv6 Edge router structure
Procedures for requesting QoS for a node connected to an edge router
Procedures for requesting QoS for a node connected to a leaf router .

Procedures for requesting QoS for a receiving node located at different

xii

64
67

68

5.1
5.2
5.3
5.4

NS-2 network layout used for testing IPv6 QoS. 71

Proposed IPv6 QoS management scheme implementation on ns-2 . . 74
Testing the proposed scheme by simulating a simple network 79
Sample output run showing Acceptance messages and some statistical

results showing flow ID, total packets, dropped packets and degraded
packets 80

5.5 Delay for the tested three traffic flows during Source 2 non-conformant
traffic flow packets L L 82
5.6 Delay for the tested three traffic flows when all the three flows are
conformant 83
5.7 Six sources network topology 84
5.8 End-to-end delay for Six sources simulation 85
5.9 Network topology for RSVP simulation 87
5.10 PATH and RES messages printed out during RSVP simulation 88
5.11 End-to-end delay for three traffic flows during flow ID 200 non-conformant
when RSVP QoS protocol is simulated 89
5.12 End-to-end delay for the tested three traffic flows during flow ID 200
rate increase and the involvement of MPLS 91
5.13 Printed out messages showing the explicit routes for each flow during
MPLS-constraint routing simulation 92
5.14 Delay for the tested three traffic flows when MPLS-constraint routing
issimulated Lo o oo 94
5.15 Delay for the tested three traffic flows for DiffServ simulation using
Token Bucket policer 95
5.16 Delay for the tested three traffic flows for QoSbox simulation 97
5.17 Simulation messages during jobs simulation. 98
5.18 Simulated two domain network topology 107
5.19 Delay for the tested three traffic flows for two domain simulation . . . 108
5.20 Simulated three domain network topology 111

xiii

5.21 Average delay for the three trafficflows 111

6.1
6.2
6.3
6.4
6.5
6.6

Al
A2
A3
A4

B.1
B.2
B.3
B4
B.5

General Pricing strategy 117
Flow chart for the IPv6 pricing model 121
Simulated pricing model network oL 123

Traffic flow 15 Prices during network congestion and low traffic load . 124

Traffic flow 12 Prices during high traffic and low traffic load 124
Prices for the three traffic flows FID(15) & FID(12) and FID(8) . . . 125
Leaky Bucket Model, 142
Basic structure of a QoS capablerouter 143
WFEFQ 145
CBQ . . . o e 147
IntServ Control Model 150
RSVP setup Procedures 153
Conceptual Model of a DiffServ Router 156
DiffServ core and edge routers structures 157
A generic model for Differentiated Service Domain 159

xiv

List of Acronyms

ACA
AF
ARMBB
ATM
BA

BB
CBQ
CBR
CIR
Dif fServ
DSCP
EDP
EF
FEC
FCFS
GDI
IntServ
IETF
IPv4
1Pv6
LSP

IPv6 QoS manager Admission Control Agent
Assured Forwarding

Active Resource Management BB
Asynchronous Transfer Mode
Behavior Aggregate

Bandwidth Broker

Class Based Queuing

Constant Bit Rate

Committed Information Rate
Differentiated Service
Differentiated Service Code Point
Early Packet Discard

Expedited Forwarding

Forward Equivalence Class

First Come First Serve Queue
IPv6 Global Domain Identifier
Integrated Service

Internet Engineering Task Force
Internet Protocol Version 4

Internet Protocol Version 6
Label Switching Path

XV

LSR
MRA
MPLS
NS
PHB
PPB
QoS
QoS Bozx
RB
RFA
RPA
RSVP
SLA
TC
TCDB
ToS
VLL
WFQ
WFQ -CA
Stuple

a(t)
A(t)
Topec
R(t)
R*(t)
Tiat

Label Switching Router

IPv6 QoS manager Management Reservation Agent
Multi-Protocol Label Switching

Network Simulator

DiffServ Per Hop Behavior

IPv6 Edge router Packet Processing Block

Quality of Service

QoS Box

IPv6 Edge router Routing Block

IPv6 Edge router Request Forwarding Agent

IPv6 QoS manager Request Processing Agent
Resource Reservation Protocol

Service Level Agreement

[Pv6 Traffic Class field

IPv6 QoS manager Traffic Control Data Box

IPv4 Type of Service field

Virtual Leased Line

Weighted Fair Queuing

IPv6 QoS manager WFQ Weight Calculation Agent
TCP/IP 5 tuple. IP source address, IP Destination address,
Source port number, Destination port number and Protocol ver-
sion

Arrival curve

Service Curve

IntServ traffic specification

Accumulated input traffic flow

Output traffic flow

Service curve latency delay

Token bucket arrival curve burst tolerance

Dengoend
base
Proz

Ji

Fi(t)

Token bucket arrival curve average rate.
IntServ arrival curve maximum packet size.
IntServ arrival curve peak rate

IntServ arrival curve burst tolerance.

IntServ arrival curve sustinable rate.
scheduler (node queue) maximum delay.
scheduler (node queue) rateor latency service curve rate.
Maximum packet size across a node.

Traffic flow’s maximum packet size.

WFQ or CBQ guarantted rate.

Router lookup time (packet processing time).
Flow end-to-end delay.

Class Service base price.

Class service maximum price.

Target capcity of a traffic class)
Flow maximum capacity

Class service fill factor (

Dynamic price of a service class.

xvii

Acknowledgements

Pursuing a PhD is an amazing journey. Throughout its duration one meets a lot of
interesting people that help finish this journey.

First and foremost I would like to thank my advisors, Dr. William Phillips and Dr.
William Robertson, for giving me the opportunity to set off this amazing journey.
They guided and supported me throughout the period of this journey. They always
provide me with excellent feedback that made this thesis complete and interesting.

I thank Dr. Shyamala Sivakummar for her valuable ideas and suggestions that were
used in this research.

I thank the thesis committee members: Dr. Otman Basir and Dr. Srinivas Sampalli
for their time and effort in reviewing this thesis draft, and their valuable suggestions.
Special thanks to my friend Jason Kenney for his endless time, inspiration, incredible
support and help.

Thanks to the Department of Engineering Mathematics and Internetworking Program
for their academic assistance.

Thanks to all my friends who stood by me during this challenging journey.

I thank the administration of the Gharian High Polytechnic Institute, Libya for their
support.

Above all I would like to express my deepest gratitude to people I love and to whom
I dedicate this thesis: My parents, my wife and children, my brothers and sisters. I

deeply believe that this thesis is a much theirs as it is mine.

xviii

Abstract

Significant challenge has been introduced for IP networks as new emerging applications, such as
VOIP and E-commerce, require delivery quality guarantees and IP networks supports only best
effort delivery. Three main Quality of Service (QoS) standards, Integrated Service (IntServ),
Differentiated Service (DiffServ) and Multiple Label Switching Protocol (MPLS), have been
introduced to handle QoS issues. These schemes use a management scheme to handle QoS
requests, control bandwidth and monitor traffic flows.

A new QoS mathematical model is proposed in this thesis that guarantees requested QoS in
which end-to-end delay and packet loss bounds are determined. This model is implemented at
each domain then managed by a domain QoS manager. The proposed QoS manager establishes
bandwidth reservation on intra and inters domain links for individual flows. In addition to
resource reservation, two other essential resource control tasks within the model, admission
control and traffic policing, are served. The proposed model and QoS manager retain the best
features of IntServ and DiffServ however it has low complexity and provides end-to-end QoS (or
per-flow QoS). The proposed new model has the following advantages:

e Scalable: complexity is left at the edge router and core routers forward packets only.

e Manageable: only one management system per back bone network is implemented to
process QoS requests.

¢ The combination is defined in this thesis as the Global Domain Identifier (GDI) and
used for forwarding and reservation decisions.

e No mapping either to DiffServ classes or MPLS formats.

As the next generation protocol, IPv6, is becoming important due to the growth of the Internet,
the new model was simulated based on IPv6. The simulation demonstrates the model's
performance with respect to the performance of DiffServ and IntServ, the predominate QoS
methods in use today. IPv6 is intended to support QoS with a new field the Flow ID. The
simulations implement the proposed new model using the Flow ID and traffic class fields to
manage QoS in IPv6 domains.

The simulation results and the numerical experiments of the proposed QoS model show that a
minimum end-to-end delay and minimum packet loss rate are achieved for higher priority traffic
flows. In conclusion, a dynamic pricing system is integrated with the proposed QoS management
system to test how prices can change when domain networks are congested. This pricing model
uses the flow identifier, flow ID and the application source IP address, for calculating prices
during network congestion. It also uses this identifier for charging customers. Excellent pricing
and revenues results were achieved.

- XIX

Chapter 1

Introduction

1.1 Motivation

Network multimedia applications, which form a large part of today’s Internet traffic,
present a significant challenge, as they require quality guarantees from the network.
Internet Protocol (IP) however, is best effort and does not provide any guarantee for
delivery as it has no network Quality of Service (QoS) [1]. That is, there are no mech-
anisms in IP for policing or controlling unresponsive and high bandwidth flows that
can cause congestion in the network. IP best effort allows complexity to stay at the
end hosts (sender and receiver applications control delivery) which scales well and
allows the network to expand. As a result, all QoS management is left to the applica-
| tion [2]. However, service degrades gracefully and some applications can not tolerate
such a degradation of service caused, for example, by delay and jitter. Multimedia
applications have very limited feedback control to stop them from causing congestion
in the network. Consequently, QoS management for network multimedia applications
over IP is a significant and immediate challenge. To provide adequate service, some
level of quantitative or qualitative determinism, the IP protocol’s service must be
supplemented. This requires adding some ”smarts” to the network to distinguish
traffic with strict timing requirements from those that can tolerate delay, jitter and

loss. This is what Quality of Service (QoS) protocols are designed to accomplish.

1

QoS does not create bandwidth, but manages it so it is used more effectively to meet
the wide range of application requirements. Therefore, the goal of QoS is to provide
some level of predictability and control beyond the current IP "best effort” service
[3]-

Internet Scaling Challenges

As mentioned, more intelligence is needed in the Internet infrastructure to make
it capable of providing different levels of performance assurance, e.g., guaranteed
bandwidth and packet delivery within a delay bound. Nevertheless, any research or

implementation efforts are faced with the following challenges:-

e Scale in Number
The tremendous Internet growth over the past few years makes its scalability
a crucial problem for network designers. The number of hosts in the Domain
Name Service (DNS) has doubled compared to the 1990’s. In the same time, the
number of users online worldwide has also doubled. Therefore, the feasibility
of a QoS mechanism depends on whether it can scale well under unpredictable

growth.

e Growth in Heterogeneity
The scalability concerns are multi-dimensional, not just an issue of "number”.
The Internet carries traffic generated from a variety of applications with different
traffic characteristics and performance requirements. Users are connected via
heterogeneous access networks, using devices that differ in capabilities. Table
1.1 compares the traffic behavior and QoS requirements between traditional

data applications and emerging multimedia applications.

e Distributed Internet Administration
The decentralized control of the Internet poses another technical challenge in
providing end-to-end QoS. Privataization of the Internet introduces separate
and independent administration over operational domains. These private orga-

nizations that operate the different networks and provide end users with access

Table 1.1: Heterogeneous traffic behavior and QoS requirements of Internet applica-

tions

| Applications

| Traffic Behavior

| QoS Requirements

Electronic mail(SMTP)
file transfer (FTP)
remote terminal (Telnet)

Small batch file
transfers

very tolerant of delay
Bandwidth requirements:low
Best effort -

HTML web browsing

A series of small,
bursty file transfer

Tolerant of moderate delay.
Bandwidth requirements:Varies
Best effort

Client-Server

Many small two-way

Sensitive to loss & delay

variable bit rate

transactions Bandwidth requirements:Moderate
: Must be reliable
IP-based voice (VoIP) Constant or Very sensitive to delay & jitter.

Bandwidth requirements:Low
- Required predictable delay & loss

Streaming Video

variable bit rate

Very sensitive to delay & jitter.
Bandwidth requirements:High
Required predictable delay & loss

to the Internet are referred to as Internet Service Providers (ISPs). These ISPs

were not originally designed to operate over separate domains that result in

interoperability problems. End-to-end QoS can truly be achieved only if there

is a reliable and efficient way to manage inter-domain resource allocation and

QoS negotiations.

1.2 Problem Definition

This thesis answers the following question: Is it possible to provide end-to-end Quality

of Service (QoS) in IP networks without compromising the scalability, flexibility and

bandwidth efficiency of the current Internet infrastructure?

The solution is to design a QoS method to meet the stated requirements, and to

implement a QoS manager that administrates, controls and manages all the resources
in the network domain. The remainder of the thesis will provide the details both a

suitable QoS method (Chapter 3) and a QoS manager (Chapter 4).

1.2.1 Definition of QoS

QoS in general is defined as the ability of a network element (e.g. an application, host,
router) to have some degree of assurance that its traffic and service requirements can
be defined [4]. This can be achieved by measuring and improving characteristics such
as transmission rate and error rate, that result in advanced guaranteed transmission
[5]- In other words, it is the ability of a network provider to support a user’s applica-
tion requirements with regard to service categories through QoS parameters such as
bandwidth, delay, jitter and traffic loss [defined in 1.2.2]. These parameters are used
to measure traffic flows at the end point to ensure that the users requirements are
accomplished and to make QoS model complete. In short, QoS can be defined either

at the application level or the network level:

% Application-level QoS characterizes how well the user application level is satis-

fied, and are usually subjective , e,g., clear voice, jitter free video, etc.

* Network-level QoS refers to tangible measurements such as control latency,

available bandwidth, packet loss rate, etc.

Network support of QoS has some features that provide better and more predictable

network services by [6]:-

- Supporting dedicated bandwidth.

- Improving characteristics.

- Avoiding and managing network congestion.
- Shaping network traffic.

- Setting traffic priorities across the network.

1.2.2 QoS Parameters

QoS parameters provide a means of specifying user requirements which may be sup-
ported by underlying networks. These requirements have to be agreed upon between
the network administrator and the user before real data starts flowing through the
network. For example, to support video communication high throughput is required
and high bandwidth guarantees will have to be made. End-to-end delay and delay
variations are other factors which must be taken into account for time-critical traffic.
A set of QoS parameters suitable for characterizing the quality of service of individual
connections or data flows is as follows [7] [8].

Delay

End-to-end delay is the elapsed time for a packet to be passed from a sender to a
receiver through the connecting network. This parameter is important for real time
applications that are sensitive to delay such as VOIP and video conferencing appli-
cations.

Delay variations (jitter)

The variation in end-to-end transient delay is called jitter, also often referred to as
delay variation. In packet switched networks jitter defines the distribution of the
inter-packet arrival times compared to the inter-packet times of the packet transmis-
sion.

Bandwidth

The maximum data transfer rate that can be sustained between two end points of
the same network is defined as the bandwidth of the network link. It is not limited
only to the physical infrastructure of the traffic path but also to the number of flows
sharing common resources on this end-to-end path. The term bandwidth is used as
the upper bound of the data transfer rate where throughput is used as an instanta-
neous measurement of the actual exchange data rate between two entities.

Traffic loss (Packet Loss rate)

Packet loss rate is defined as the ratio of dropped packets to the total number of sent

packets. The user has to specify the peak and average transmission rates so that

resources can be reserved as required for the user.

These parameters should be negotiated during end-to-end connection time or at data

flow establishment time.

1.2.3 QoS Control Mechanisms

Computer network traffic using the Internet protocol (IP) is based on a ”best effort”
service model. This model states that each node in the network domain will make
an attempt to deliver each packet of data to its destination within a reasonable
time, but it makes no guarantees at all. Packets may be delivered late, reordered
or dropped [9]. To introduce guarantees to the applications, QoS in today’s Internet
infrastructure, several changes have to be made to allow nodes to differentiate traffic
flows according to their QoS requirements. New QoS capable software and hardware
would be required in most cases. Therefore, each component in IP networks must be
equipped with new logical QoS supporting facilities and functionalities. According to
[10][7] [11][12] the following ordered elements are the most crucial components in an

architecture that supports QoS:

1- A QoS Specification
A QoS Specification mechanism is used by users’ applications to specify their

requirements for their traffic flows.

2- Resource Management and Admission Control
Certain control mechanisms are needed to allocate adequate resources to dif-
ferent service classes and limit the volume within each class, e.g., reservation
protocols. The admission control function determines if new applications can
be admitted into the system without affecting the QoS level of others already
admitted.

3- Service Verification and Traffic Policing
The policy control authorizes specific users to receive a particular service at

a particular time. Most of the policing/shaping mechanisms used today are

based on the leaky bucket mechanism Appendix A. At the same time, admitted
flows must comply to their allocated bandwidth share and should be penalized
otherwise. Several techniques have been proposed [11], however it is still not
clear which one will dominate. In this thesis the leaky bucket technique is used
for service verification and traffic policing, as explained in the mathematical

model presented in Chapter 3.

There are some parameters used to compare QoS models resource management
techniques such as flexibility and scalability. Flexibility is defined as the abil-
ity to implement network technologies and policies aimed at smoothing users’
demands and increase model’s domains resources. Scalability is used to mea-
sure how QoS models’ forwarding engines, core routers, are efficient and fast
since thousands of traffic flows are processed by these engines. Therefore, as
the size of theses forwarding engines overhead increases as their speed degrades
which result in higher processing delay. This results in scalability degradation

such as in the case of IntServ QoS model.

4- Packet Forwarding and scheduling mechanisms
Traffic scheduling is achieved by implementing the appropriate queue with the
right parameters and buffer sizes. Different queuing algorithms will be presented

in Appendix A.

5- QoS Routing
The basic function of the QoS routing is to find a network path which satisfies

the given QoS constrains, e.g., with sufficient bandwidth or minimal delay.

Figure 1.1 shows an implementation of the QoS management requirements mentioned
above. Once a QoS request has been generated and sent to the network, a provision
and configuration process which includes admission, reservation, scheduling and shap-
ing procedures takes place. This is the QoS capable network cycle responsibility. The
traffic is then monitored and certain policies are applied to avoid traffic violations

that affects other flows. In case of a link failure or congestion, network elements

report any of these problems that can be solved by choosing an alternative QoS path.
A signaling protocol such as resource reservation protocol (RSVP) and MPLS may
be used, or the user may be instructed to stop sending data until the local routing
algorithms find another capable route [13].

This thesis addresses the second and third components, resource management and
traffic policing, to allow proper provisioning of IP network resources so that latency
sensitive applications can deliver streams of data with predictable QoS. The proposed
architecture scales well with respect to the rate of Internet growth, large networks

and many users, since it takes the advantage of the next generation protocol, IPv6.

Figure 1. QoS Management Cycle

FIGURE 1.1: QoS Management cycle

1.3 State of the Art

1.3.1 QoS Approaches

In recent years, there has been considerable research focused on extending the Internet
architecture to provide better QoS. Three major classes of approaches that have been

proposed, for both IPv6 and IPv4, by the IEFT are: Integrated Service (IntServ) [14]),

Differentiated Services (DiffServ) [15] and Multi-Protocol Label Switching (MPLS)
[16]. The mathematical models of the first two algorithms are shown in Chapter 3.

IntServ with RSVP [17] [18] introduces end-to-end per flow reservation, such that
each flow is guaranteed a certain amount of bandwidth at each router along its path
from the source to the destination. However, this approach requires maintenance
of individual flow states in the routers, and its signaling complexity (processing and
reservation setup delays) grows with the number of users. As a result this architecture
does not scale well since each router has to store the reservation information for each
flow. In addition to the storage problem reservation messages have to be periodically
repeated for each flow which results in a large number of messages to be processed
at each node. The proposed QoS model overcomes both problems by pushing the
complexity to the edge nodes and inserting a central management that handles all
the reservations and model policies. Therefore no refershing messages are needed and
there is no need for other QoS and signaling methods involvement.

DiffServ, on the other hand, relies on packet marking and policing at the access or .
edge routers and different Per-Hop Behaviors (PHB) at core routers to provide ser-
vice differentiation to aggregate traffic. Edge routers are boundary points at which
flow enters or leaves a DiffServ domain, while core routers are internal routers within
the domain. A network that supports DiffServ provides different levels of service to
meet a client’s request for guarantees. Network resources are partitioned between
these levels of service. Packets belonging to client flows are marked with a specific
code point (DSCP) that map these packets to a particular level of service depending
on the Service Level Agreement (SLA) between the client and the network service
provider. Recent proposals [19] [20] [21] use agents known as Bandwidth Brokers
(BB) to allocate preferred services to users as requested, and to configure the net-
work routers with the correct forwarding behavior for the defined services. BBs act as
resource managers that provision resources at domain boundaries and negotiate re-
quested traffic parameters. They track available network resources and classify flows

using service polices based on client requirements and service classes offered by the

10

DiffServ network domain. This scheme is a scalable [10][13], however the mapping of
traffic flows, to either Expedited Forwarding (EF) or Assured Forwarding (AF) (de-
fined in Appendix B), is time consuming. The proposed QoS model avoids packets
mapping and achieves per-flow QoS guarantees.

MPLS [16] has been introduced by researchers as another solution for providing

QoS. MPLS [23] [24] is similar to DiffServ in some respect as it also marks traffic flows
at the MPLS domain ingress boundaries in a network and un-marks them at the egress
points of the same domain. But unlike DiffServ, which uses the marking to determine
priority within a router, MPLS markings (20 bit labels) are primarily designed to
determine the next router. It is used to establish fixed bandwidth pipes analogous
to Asynchronous Transfer Mode (ATM) or frame relay virtual circuits. It also uses a
control driven model to initiate the assignments and distribution of label bindings for
the establishment of label switching paths (LSPs) allowing different routes to be used
by different packets depending on their traffic type. Using fixed labels simplifies the
routing process by decreasing overhead to achieve high performance. It is scalable,
however it raises the complexity of each router in the network.
The three methods mentioned achieve some level of QoS by using different approaches.
However, each one of them has some drawbacks as mentioned above. Chapter 2 will
discuss in detail these methods, their approaches to achieve high QoS, and their
drawbacks.

1.3.2 Internet Protocol IP

The Internet protocol is designed for use in interconnected systems of packet-switched
data communication networks. Its function or purpose is to move datagrams through
an interconnected set of networks. This is done by passing the datagrams from one
Internet model (network element) to an other until the destination is reached. The
selection of the transmission path and the subsequent forwarding of datagrams along
this path is called routing. The datagrams are routed from one Internet domain to

another based on the interpretation of the Internet address in this datagram.

11

Two IP protocols, IPv4 and IPv6, are used in the Internet, however IPv4 is more
commonly used. IPv6 has been deployed in the Far East and will, in time, become
the protocol of choice, hence it was chosen for the simulations used in this thesis. A

detailed description of IPv6 is given in Appendix C.

1.4 The proposal

1.4.1 Proposed end-to-end QoS Model

The QoS model proposed in this thesis is presented by a mathematical model using
network calculus [26], and was studied experimently using network simulator (ns-
2 [27]). The mathematical modeling is presented in Chapter 3 and the simulation
results are presented in Chapter 5. Using these two techniques a direct comparison
between this model and the IETF standard QoS models, IntServ and DiffServ, was
made to prove that the proposed model works better than the other two schemes.
The mathematical model presented in Chapter 3 works for IP networks in general.
However, the simulation was based on IPv6 to utilize its new way for tracing, reserving
and recording reservations using only the flow label and the source IP address. The
proposed QoS model uses a per-flow QoS approach, as does IntServ, in which each
traffic flow’s packets are processed independetely. On the other hand, core nodes
are kept simple , just forward and schedule packets, as in DiffServ which results in
avoiding traffic flow mapping. QoS admissions and reservations are implemented by
a central QoS manager. The model policies are observed and deployed by the edge
router which monitors all incoming traffic flows.

The proposed model has the following advantages:

e Scalable and flexible, since classification and scheduling are kept at the edge
points and QoS guaranteed can be assured in more than one domain. Core nodes
just forward traffic flows to the next node using the GDI. Then schedule them in
the proper queues depending on their priority level, traffic class TC field. Also,

no refresh reservation messages, as in the case of IntServ, are communicated

12

between domain nodes. In addition, there is no need to decrypt packets at the

core routers since the GDI is only used for forwarding decisions.

The proposed scheme obviates the need for expensive Longest-match lookup
procedure (IP routing as used in IntServ and DiffServ) for each packet at each
router along the path by using the GDI for forwarding packets. This results in

performance enhancement and less end-to-end delay.

The hierarchy of routing when this algorithm is invoked reduces the size of the
routing table for internal routers within a domain when compared to IP routing

as used in IntServ and DiffServ.

Negotiations are done between the edge points and customers and the man-
ager communicates only with the edge routers which simplifies the negotiation

procedures and reduces the setup time when compared to DiffServ.

The GDI is the only field used for tracking reservations and QoS requests. This
simplifies the implementation of QoS management purposes when compared to

a BB in DiffServ domains.

Dropping or remarking packets, violating the QoS agreement, is done at the
edge nodes. Core nodes process packets only. This reduces the chances of

overflowing the core buffers and avoids congestion.

Mapping of incoming flows’ traffic to pre-defined classes is avoided and there
is no limitations on number of classes. All priority levels are considered and
treated differently. Also end-to-end delay is minimized as mapping each packet

to a certain class is not required.

Simplicity since most routers support IPv6 and there is no need to support
other protocols such as RSVP and MPLS. Local routing protocols are used
to configure the path to a destination. This avoids running different routing

protocols to configure paths as in the case of MPLS.

13

e Traffic flows are guaranteed end-to-end delivery as in the IntServ QoS model

with less complexity and domain core routers scale well.

e Avoids the layer violation problem that is caused by port numbers lookup pro-
cedure during packets routing. This causes encrypted packets to be decrypted
at each router to find the source and destination port numbers from the TCP
header. The proposed model uses the GDI for packet routing, so there is no need
to decrypt packets to look for the port numbers. The layer violation problem

is explained in Appendix C.

1.4.2 The Proposed QoS Manager

The IPv6 traffic class field ! is used for calculating the schedulers weights. The
usage of the flow label 2 achieves faster forwarding and processing, similar to MPLS,
since the TP address of the source node and the flow label are used for forwarding
decisions. The traffic class field will be used to differentiate traffic flows to implement
the requiring QoS at the core routers thus making routing less complex than in MPLS.
The fast forwarding is achieved by using the combination of the source IP address
and the traffic assigned flow label to find the next hop. This results in a reduction of
processing delay during the matchup procedure at each router in the network domain,
resulting in less end-to-end delay. The QoS is achieved by using the class traffic field
to identify the traffic priority to assign the proper queue. Also this manager knows
the topology of the network and keeps track of all the resources reserved, similar to a
BB and makes decisions if QoS requests have been received. The complexity is kept
at the edge points where traffic will be scheduled and classified if QoS requests have
been accepted by the manager. The proposed QoS manager receives requests from the
edge nodes, not from the source node as in DiffServ, resulting in faster processing of
requests since both end points communicate with the manager and are pre-configured.

Also there are no other protocols invoked during request processing as in MPLS. All

ITraffic class is used here as a generic term. In IPv4 the ToS may be used
2Flow label is used here as a generic term. In IPv4 a shim header may be used

14

domain core nodes have to send QoS requests to the domain edge routers, unlike to a
BB, to be forwarded to the QoS domain manager. Delay is minimized since requests
are forwarded to the manager by the edge nodes. Flows’ traffic specifications are
extracted from the QoS requests to be used for the classification and scheduling
process at the edge routers. There is no need to map traffic to a specific set of pre-
defined classes then stamp each packet with the code of the class to which it belongs

as in DiffServ.

1.5 Document Organization

Introduction. Chapter 1 Overview-
L w— ;Literature:
Chapterd | review
! e E e Mathematical
(_ ~Chapter3 ‘model
y Propased
“Ehapard: ‘model
Developmient 7
Eonclusions; < Chapter 5 “Iiplementation
' ‘L Billing system
Chapter§ application
. Chapter 7 tonclusion

FIGURE 1.2: Thesis Organization

Figure 1.2 gives a visual presentation of how the document is organized.

In this chapter, the concept of QoS was introduced by defining it then explaining its

15

importance and requirements. Also the QoS model proposed in this thesis was briefly
introduced specifying its advantages over other techniques.

Chapter 2, presents the state of the art in QoS. The standard QoS models used in
the literature are presented with their advantages and disadvantages.

In Chapter 3, a network calculus mathematical modeling using the arrival and service
curves bounds techniques to model QoS algorithms is introduced. This technique is
used to develop a mathematical model for the IP QoS management proposed in this
thesis. The model is used to find the worest case end-to-end delay bounds assuming
no packet loss. DiffServ and IntServ mathematical models are also described in this
chapter to allow direct comparison with the proposed model. In Chapter 4, the pro-
posed QoS manager is described in detail followed by different reservation scenarios.
The implementation of this model and also the simulation results is presented in
Chapter 5. In Chapter 6, an important Internet application, Internet billing, is in-
troduced and implemented with a QoS manager. This document concludes with the

conclusion and future work presentation in Chapter 7.

Chapter 2

Related Work

Providing service guarantees to multimedia applications has evoked much research
interest and many different approaches have been proposed. This chapter presents
a survey of related work that serves as background to this thesis. In particular the
survey will focus on recent development in QoS control in Section 2.1, resource pro-
visioning techniques and bandwidth brokering architecture in Section 2.2 and traffic
monitoring and policing in Section 2.3. The influence of these efforts to the this

proposed architecture is discussed.

2.1 An Overview of QoS Control

The emergence of IP telephony, video conferencing and other applications with very
different throughput, loss, and delay requirements are calling for substantial changes
in the Internet infrastructure that was originally designed to offer a single, best-effort
level of service. Providing different levels of service in the network requires new QoS
control and management capabilities, which can be classified along two major axes:
data path and control path. Data path mechanisms are responsible for classifying
and mapping user packets to their intended service class and enforcing treatment
received by each service class. Control path mechanisms allow the users and the

network to agree on service definitions. They are also needed to determine to which

16

17

user to grant service, and appropriately allocate resources to each service class. The
QoS mechanisms discussed in this thesis have largely been applied to IP layer (Layer

3).

2.1.1 Scheduler and Buffer Management

Data path mechanisms are the basic building blocks in a QoS-aware infrastructure.
They control how packets access network resources, such as buffers and bandwidth, to
provide service differentiation. The two most important mechanisms are scheduling
algorithms and buffer management schemes. Scheduling mechanisms control which
packets are selected for transmission on the link, while buffer management schemes
decide which packets can be stored or dropped as they wait for transmission. Their
importance is evident in the models of Chapter 3.

Apostolopoloulos et al. [25] review the different scheduling and buffer management
schemes in and discuss their associated trade-offs in terms of fairness, isolation, ef-
ficiency, performance and complexity. For example, Weighted Fair Queuing (WFQ)
[28] and its many variants provide rate and delay guarantees to individual flows, while
class based scheduling mechanisms, e.g. CBQ [29] provide aggregate service guaran-
tees to the set of flows mapped into same class. The buffer management method is an
input control mechanism that determines whether a packet of a flow is to be admitted
based on current buffer occupancy. The basic buffer management method allocates
a certain amount of buffer space to each flow. When packets of a flow occupy all the
space allocated, new packet arrivals of this flow will be discarded. Examples of buffer
management schemes include: First Come First Serve (FCFS), Early Packet Discard
(EPD) [7] and Random Early Detection Drop [7]. In this thesis WFQ will be used

for scheduling in simulated nodes.

2.1.2 QoS Models

IntServ, DiffServ and MPLS, the three major QoS approaches still undergoing devel-

opment, and their usage to implement QoS are discussed in this section.

18

Integrated Service (IntServ)

The philosophy behind IntServ is that routers must be able to reserve resources
for individual flows to provide QoS guarantees to end users. IntServ QoS control
framework supports two additional classes of service besides ”best effort” : (a) Guar-
anteed service [30] and (b) Controlled load service [31]. Guaranteed service provides
quantitative and hard (deterministic) guarantees, e.g., lossless transmission and up-
per bound on end-to-end delay. Controlled load service is intended to support a broad
class of applications that are highly sensitive to overload conditions. Both services
must ensure that adequate bandwidth and packet processing resources are available
to satisfy the level service requested. This must be accomplished through active
admission control. Many research contributions have been made to define IntServ
components, needed to provide end-to-end QoS, functionality and study their imple-
mentation issues.

IntServ major components are:

e A signaling protocol to set up and tear down reservations, e.g., resource Reser-
vation Protocol (RSVP) [17].

e An application level interface (API) for applications to communicate their QoS

needs.

e Per-flow scheduling in the network (e.g., WFQ or CBQ).

Unfortunately, IntServ faces the following major challenges that make intermediate

deployment in core routers infeasible.

i) The increase in per flow state maintenance at routers is proportional to the
number of flows. This incurs huge storage and processing overhead at routers,

and therefore, does not scale well in the Internet core backbone,

ii) The RSVP/IntServ model needs to work over different data links such as Ether-
net, and ATM. Therefore, mechanisms to map integrated services onto specific

shared media are needed.

19

The QoS model proposed in this thesis overcomes the shortcoming while retaining
the per-flow QoS.
Differentiated Service (DiffServ)

DiffServ, on the other hand, aggregates multiple flows with similar traffic charac-
teristics and performance into a few classes. This approach requires either end user
applications, first hop routers or Ingress routers (interface where packets enter an
administrative domain) to mark the individual packets to indicate different service
classes as discussed in Section 1.2.2. Currently this QoS information is carried in
band within the packet in the Type of Service (ToS) field in the IPv4 header or Class
of Service (CoS) field in the IPv6 header [32]. The backbone routers provide per-hop
differential treatments to different service classes as defined by the Per Hop Behav-
iors (PHBs) [33]. Two service models have been proposed: assured service [34] and
premium service [35]. Assured service is intended for customers that need reliable
services from service providers. Premium service provides low delay and low jitter
service, and is suitable for Internet telephony, video conferencing and E-commerce
applications. Figure (2.1) shows the DiffServ architectural model {36]. Therefore,
individual micro flows are classified at the edge routers into one of the classes defined
by the approach.

The DiffServ approach has several advantages over IntServ:-
e DiffServ is simpler than IntServ and does not require end-to-end signaling.

e DiffServ is more efficient for core routers since classification and PHBs are based
on a few bits rather than per-flow information. Only a limited number of
service classes indicated by ToS or CoS fields, the amount of state information
is proportional to the number of classes rather than number of flows. Therefore,

the DiffServ approach is more scalable than IntServ.

e DiffServ requires minimum changes to the network infrastructure. End hosts

(Ingress routers) mark packets while intermediate routers (core routers) can

20

Ingress Router
A 'Eg‘rgs,s Router

FIGURE 2.1: Differentiated Service Domain architecture

employ active queue management to provide service differentiation based on

the packet headers.

Although flow aggregation improves scalability in DiffServ, there is no level of sat-
isfaction guarantees provided for individual flows by DiffServ, unlike IntServ. The
model proposed in this thesis has the advantages of DiffServ and overcomes the dis-
advantages of DiffServ in which traffic flows are guaranteed resources and without

mapping traffic flows to predefined classes.
Multiprotocol Label Switching (MPLS)

In recent years, Multi-Protocol Label Switching, or MPLS, has been proposed as
the solution to overcome many of the performance and scaling problems that service
providers are experiencing in their IP (Internet Protocol) networks. MPLS networks

contain network nodes, called Label Switching Routers (LSRs), and network links

21

connecting nodes [37]. MPLS organizes the network in domains. Edge LSRs define
the boundaries of the domain and are the traffic demand ingress/egress nodes. Other
nodes, named core LSRs, can exist on the network to provide communications be-
tween edge LSRs. The forwarding of IP packets from ingress to egress LSRs is done
by means of routing paths, called Label Switched Paths (LSPs). In the ingress LSR,
incoming IP packets are labeled based on their destination and required quality of
service (QoS) and, depending on this classification, are forwarded through the ap-
propriate LSP towards an egress LSR. MPLS enables source based routing, i.e. the
forwarding path of a LSP from an ingress router to an egress router is not constrained
by the paths of other LSPs, which is the basis for more efficient traffic engineering
methods.

Each MPLS packet has a header containing a 20-bit label, a 3-bit experimental
field, a 1-bit label stack indicator and an 8-bit Time to Live (TTL) field. The MPLS
packet format is shown in Figure (2.2) [7]. At the ingress LSRs of an MPLS-capable

$261s

FIGURE 2.2: MPLS Packet Format

domain IP packets are classified into Forwarding Equivalent Classes (EFC) based on

the combination of the information carried in the IP header of the packets and the

22

local routing information maintained by the LSRs. An MPLS header is then inserted
into each packet. Within an MPLS-domain, each LSR uses the label as the index to
look up the forwarding table of the LSR. The incoming label is replaced by outgoing
label and the packet is switched to the next LSR as seen in Figure (2.3) [41]. The
model proposed in this thesis can be implemented in IPv4 using a shim. However, in

IPv6 the protocol provides the flow label which can be used to support the proposed

model.
Edge | Gore Cors Core | Edge
 Ingress labelswilch. -Egreds label séitch.
P addr |Qutlabel o o Inlebiel| Next hop
we| 5 Labelswich Label suilch. T Ay
ot 5, [Riseouel __ {inebdloulel
]| Layver ([Rssion] 7| B AT Layer2. | 1924
| transportif M el | I O ransport
T Jabel svapiy_| ellg T
e Labelswilched path > |

FIGURE 2.3: MPLS architecture

2.1.3 Research Efforts on QoS Model

Having introduced the main QoS Control schemes, a brief discussion of recent QoS

control research is presented.

Assured Service

This model, originally called Expected-Capacity framework, was introduced by David
Clark [42] [34]. The idea is to mark traffic as IN traffic if its rate is less than the
requested rate or OUT traffic if it is greater. This marking is used in case of con-
gestion in order to distinguish the treatment of IN and OUT traffic. This results in

guaranteeing of no-dropping treatment for the IN traffic so that each user will get a

23

contracted bandwidth profile. Out of profile packets are dropped.
The model proposed in this thesis monitors the incoming traffic at the edge points
and marks it. However, out of profile higher priority traffic flows are degraded to

lower priorities rather than being dropped. This avoids packet loss.

IntServ Operation over DiffServ [43] [7] [44]

In the framework presented in RFC 2998 [44], end-to-end quantitative QoS is provided
by applying the IntServ model across a network containing one or more DiffServ re-
gions. From the perspective of IntServ, DiffServ regions of the network are treated as
virtual links connecting IntServ capable routers or hosts. Within the DiffServ regions
of the network, routers implement specific PHBs (aggregate traffic model). The total
amount of traffic that is admitted into the DiffServ region that will receive a certain
PHB may be limited by policing at the network’s edge.

Requests for IntServ services must be mapped onto the underlying capabilities of the
DiffServ network region that include appropriate PHB selection, performing appro-
priate admission control and policing. Boundary routers residing at the edge of the
DiffServ region will typically police traffic submitted into the DiffServ region in order
to protect resource within the domain. DiffServ routers classify and schedule incom-
ing traffic in aggregate based on DSCP not on the per-flow classification criteria used
by standard RSVP/IntServ routers. The IntServ edge routers process PATH and
RESV messages sent from the IntServ domain to the DiffServ domain, and PATH
statistics are installed in these routers. The DiffServ domain routers ignore both
PATH and RESV messages. At the Ingress IntServ domain, that connects the host
that initiated the reservation request, the RESV message triggers admission control
processing where the resources requested in the RSVP/IntServ request are compared
to the resources available in the DiffServ region. If there are enough resources, the
RESV message is admitted and allowed to continue towards the sender.

The QoS model proposed in this thesis does not require RSVP to run over its domain.

24

The domain QoS manager decides whenever a request is received and resources are
allocated if the request is accepted. This will reduce the delay during traffic mapping
and allows all per-flow QoS instead of aggregate flows QoS.

MPLS over DiffServ [45] [46]

As explained before, DiffServ provides a scalable and operational simple QoS treat-
ment, as it does not require per-flow signaling and state, to traffic aggregates. How-
ever, DiffServ can not guarantee QoS because it has no influence on traffic flows
during congestion, no control on domain resources i.e. bandwidth, which result in
dropping high priority packets.

MPLS on the other hand, can force packets into specific paths, LSPs, that guarantee
QoS. But in its basic form MPLS does not specify class-based differentiated treatment
of flows.

Therefore, combining the DiffServ classification and PHBs with MPLS leads to true
QoS in the packet backbone. There are two defined types for LSPs: E-LSP and
L-LSP.

1. E-LSP
If a network supports up to 8 PHBs, then the EXP bits in the MPLS header
are sufficient for that network. A LSR keeps a mapping of EXP values to PHBs
and maintains a mapping of DSCPs to PHBs. In this case the label tells an
LSR where to forward a packet, and the EXP bits determine the PHB that
should be used to treat the packet. A LSR that is set up under these conditions
is referred to as E-LSP.

2. L-LSP
If a network has more than 8 PHBs, then 3 EXP bits not be able to convey all
the PHBs to LSPs. One way is to use the label itself to convey PHBs, therefore,
an LSR uses the label to determine the PHB. The EXP field is used only for
the indication of the drop priority.

25

Although the functionality of MPLS over DiffServ is the same as that of the

proposed models that latter have advantages that includes:

1- Simplicity, since no need to deploy MPLS and DiffServ on all the routers. The
proposed QoS model provides flows and keeps complexity at the edge points.

9- The proposed QoS model provides per-flow guaranteed delivery and no limitions

on classes.

3- Violated Higher priority traffic flows are degraded not dropped as in DiffServ.

2.2 Network Resource Management

The issues of resource allocation and management are not unique to the DiffServ ar-
chitecture. In late 1997, the concept of "Bandwidth Broker (BB)” was introduced
by K. Nicholas [47] as an entity in charge of resource management in administrative
domain. The Internet2 QoS working group [48] has made an attempt to harmonize
the different ideas and proposals to define a BB model to be deployed in an inter-
domain DiffServ [49]. This section discusses the prior work on DiffServ BB and other
resource management techniques and architecture relevant to this thesis, including:
dynamic allocation and pricing based approach. Next a brief explanation will be
given on BB, components and usage, and two models that are used in this thesis for

comparison with the proposed QoS management model.

2.2.1 Bandwidth Broker Architecture

A Bandwidth Broker (BB) is an agent responsible for allocating preferred service
to users as requested, and for configuring the network routers with the correct for-
warding behavior for the defined service. A BB is associated with a particular trust
region, one per domain. A BB has a policy database that keeps the information on
domain reservations which includes Tspec and DSCP for all reservations. Only a

BB can configure capable leaf routers that can deliver a particular service to traffic

26

flows. When an allocation is desired for a particular flow, a request is sent to the BB.
Requests include a service type, a target rate, a maximum burst rate, and the time
period when the service is required. The request can be made by a user or it might
come from another region’s BB. A BB first authenticates the credentials of the re-
quester, then verifies if there is sufficient unallocated bandwidth to meet the request.
If a request passes these tests, the available bandwidth is reduced by the requested
amount and the flow specification is recorded. An acceptance message is sent to the
neighbouring BBs and then a service level agreement (SLA) is reached between the
customer and the network service provider. The BB configures the appropriate leaf
router with the information about the packet flow to be given a service at the time
that the service is to commence. This configuration is a ”soft state” that the BB will
refresh periodically. The idea of a BB was introduced as part of the Differentiated
Service Architecture. The BB plays several roles in administering a differentiated

service resource management [19] [20].

Need for a Bandwidth Broker [50]:

ABB:
1. is necessary to provide reliable QoS within and across the network,
2. manages resources for a single domain,
3. allocates preferred services with policies and service agreements,
4. configures network routes with correct packet forwarding behaviors,

5. performs internal and external admission control.

Bandwidth Broker Components

The bandwidth broker consists of the basic components shown in Figure (2.4) [22]
[21] [51}:

1-

27

ntraOomaly |

Laf Rotters, st Leat Retirs
FIGURE 2.4: BB basic components

User Interface: The user/application interface provides a means for the user
to make resource requests directly, or to the network operator who enters the
users’ requests. The interface also receives messages from setup protocols (for

example RSVP messages).

Inter-domain Interactions: The interactions provide a method of allowing
peer BBs to make requests for resources and take admission control decisions

to enable flow of traffic.

Intra-domain Interactions: The interactions provide a method for the BB
to configure the edge routers within the domain to provide the required quality

of service.

Routing Table (configuration client): A routing table is maintained at the

BB to access inter-domain routing information so that a BB can determine [52]

28

the following:

e The domain Ingress/Egress routers for its domain.

e The next domains in the path of a flow towards the destination in the case

where a destination is located in an other domain.

o The first leaf router in the case where a request is generated by any host

in its own domain.

Further, additional routing paths may be maintained in the routing table for

different flows within the domain.

5- Database: A database is used to store information about all the BB parame-

ters. The information that is stored within the repository includes [53]:-

e SLA Data: Parameters of each user’s SLA such as maximum and mini-

mum data rate, and the type of data (tolerant or non-tolerant).

e Resource Allocation: The data base maps all resource allocations, user

ID, max data rate, type of data, to the user’s SLA.

e Domain Topology Data: Data for routers, switches, and data for adja-

cent domains’ BBs.

6- Simple Policy Service (BB server): It handles all communications be-
tween BB components, performs authentication, and device configuration. It
is responsible for granting /denying resources, tracking available and allocated
bandwidth resources within its domain, and negotiating QoS requests with ad-

jacent BBs. It also updates the data base when new requests arrive and are

granted.

Virtual Leased Line (VLL) Service [42]

Van Jacobson proposed the model of the VLL service, or premium service. It was the
first model which was designed in DiffServ. VLL service focuses on guaranteeing peak-

bandwidth services with marginal queuing delays and losses. Therefore, this service is

29

similar to a leased line in circuit switched networks. At the ingress router the network
controls the peak rate of the VLL traffic that is contracted between service provider
and customers using traffic shaping at the edge routers. VLL traffic should not exceed
the packet rate at the network ingress. The peak rate is provisioned, reserved and
classified with the highest priority in network cores along its path. Even though the
VLL traffic is provisioned at networks edges and core nodes, traffic burst violation
could exist somewhere in networks. The reason for this is the multiplexing of VLL
traffic from different input interfaces in core routers which makes traffic become very
bursty. This results in an increase in queuing delays and packet loss. The researchers
later solved this by inserting a BB as a centralized control point for monitoring and
control bandwidth utilization and reservations of links within a network.

Unlike VLL, the QoS management model proposed here degrades traffic. In the
proposed model presented in this thesis, traffic burst are avoided since there is a
QoS management that controls the resource and nodes schedulers. Traffic flows with

higher priorities will not be queued for long and their packets will not be dropped.

2.2.2 Dynamic Reservation

In this subsection, two examples will be given on dynamic reserveration, Active Re-
source Management (ARM) [21] [51] and QoSBox [54] [55], which uses different ap-
proaches to allocate resources and control traffic flows. These models will be used in
Chapter 5 as a basis of comparison with the QoS management model developed in

this thesis.

Active Resource Management (ARM) BB

Bandwidth broker agents are used in the DS domain to enable more intelligent al-
locations for network resources. BB agents maintain a database of parameters per-
taining to the various traffic flows. These parameters include service level agreement
(SLA), reservation/allocation, edge routers configurations, service mappings, reser-

vations and violations policy information and management information. Based on

30

these parameters, the broker agent makes a reservation for the client and assigns
a DSCP for that service. Each client is provided with a service level specification
(SLS) specifying the amount of bandwidth, duration of the connection and a few
other parameters. These parameters are mapped together to a particular DSCP that
defines the assigned level of service. Incoming client packets are then marked us-
ing this DSCP to inform the routers to forward packets with appropriate priority
level. Usually the bandwidth agreed upon will be reserved for that particular traffic
flow however, there will be waste of resources during low traffic rates. In this re-
source management scheme, traffic flows are monitored and in case of violation traffic
packets are either dropped or DSCP is lowered down to suite the current rate. The
remaining unused bandwidth is now sent to a pool of bandwidth that is maintained
for best effort services. In case of client increases its rate to the peak rate and more
bandwidth is needed, this required bandwidth to be retrieved by dipping into the
pool of bandwidth belonging to best effort services [21] [51].

ARM bandwidth broker is the latest BB implemented in ns-2 simulator for DiffServ
simulations. It was chosen for the comparison with the proposed QoS manager since
it also dynamically re-allocates resources, in which more unused resources are freed.
ARM uses five tuples for reserving, admitting and tracing QoS requests, and requests
are communicating with the customer. The proposed QoS manager uses the GDI
for the same functions, which is expected to result in less time during request pro-
cessing, and requests are forwarded from the edge router which extracts accepted
QoS request parameters for scheduling and monitoring purposes, which is expected

to reduce negotiation time.

QoSbox

The QoSbox is a configurable IP router that provides per-hop service differentiation
to classes of traffic flows with similar QoS requirements. All service guarantees are
provided over a finite length time interval whose beginning is defined as the last time

the output queue was not backlogged. Similarly, the loss rate and throughput are

31

computed over the current interval. The key difference between the QoSbox and
other QoS architectures is that the QoSbox does not rely on any external mechanism,
as does BB in DiffServ, or any component to enforce the desired service guarantees.
For instance, there is no need for BB or traffic shapers to regulate the traffic arrivals
at any given router. Instead, the QoSbox adapts packet scheduling and dropping
decisions based on a function of the instantaneous traffic arrivals.

When a packet passes to the interface governing the output link, a classifier looks up
to which class the packet belongs and places it in the appropriate per-class buffer.
The classifier does not need to identify the flow to which the incoming packets belong.
After, the incoming packets have been placed in a per-class buffer, the rate allocation
and packet dropping algorithms adjust the service rates allocated to each class of
traffic and possibly drop packets in order to enforce the desired service agreements.
The key difference between the mechanisms used in QoSbox and other mechanisms
used in other QoS architectures is that QoSbox uses a single algorithm for adapting
traffic demands such as service and loss rates. The two main parameters for this
algorithm are delay and service rate allocated. Others use different strategies to
handle this issue [54] [55].

The following are the disadvantages of using this box:

1. Manages the in traffic without QoS management consultation, therefore sending

hosts send traffic without knowing whether or not if there are enough resources.

2. Limitation of number of pre-defined classes, only four classes are recognizable
by the router. This causes different priority traffic flows packets treated the

same way.

3. No communication with other networks neighbors since the box works indepen-
dently. This causes lake of QoS assurance, no resources guarantee outside the

backbone network.

In this thesis these disadvantages are overcome by 2) no limitation on classes, and 1)

and 3) communication between the the QoS manager and the edge routers.

32

2.2.3 Pricing-based Approaches

Currently the Internet based on IP networks supports a single best-effort service.
In this scheme, all packets are queued and forwarded with the same priority. No
guarantees are made that a given packet will actually reach its destination; much less
arrive in a time [56]. However, many Electronic Commerce applications make use
of the Internet as a transport infrastructure because of its reachability, popularity
and cost efficiency. Typically, these applications are delay and loss sensitive and the
packet may be encrypted for security reasons. Challenges faced by ISPs supporting
e-commerce traffic include enhancing their traffic flow handling capabilities, speeding
the processing of these packets at core routers, and incorporating Quality of Service
(QoS) methods to differentiate between traffic flows of different classes [57]. These
schemes add to the infrastructure costs of network providers which can be recovered
by introducing extra charges for traffic requiring special handling. Many pricing
schemes have been proposed for QoS-enabled networks.

The following are some of these pricing approaches used in the literature:

1. Flat Pricing [58], where users are charged a fixed amount per unit time.

2. Priority Pricing [58], packets with the highest priority are charged the most

since resources are guaranteed for them at all network situations.

3. Per-Packet Pricing [59], customers are charged on the basis of how many
packets they sent and how many hops their traffic packets passed through.
Each hop in the path to the flow’s destination marked each individual packet
and then at the destination the cost is determined by adding the charges for all
the flow’s packets.

4. Dynamic Pricing [60] [61], packet with different priority are charged according
to their traffic contents. This charge is called the base price, which covers
equipment and maintenance/administrative costs. Packets exceed their initial
rates are charged extra and resources are guaranteed for them even during

network congestion.

33

These four schemes will be studied in detail in Sections 6.2 and 6.3.

However, integrating pricing and admission control has not been studied in detail.
In this thesis a dynamic pricing model [60] is integrated with the proposed QoS
manager [62] to study the effects of increasing traffic flows rates on the increased cost
of delivering high priority traffic flows. The pricing agent that is part of the QoS
manager assigns the prices for each traffic flow accepted by the domain manager.
These prices are dynamically calculated according to the network status. Combining
the pricing strategy with the QoS manager allows only higher priority traffic packets
that are willing to pay more to be processed during congestion. This approach is
flexible and scalable as end-to-end pricing is decoupled from the network core and
core nodes are not involved in QoS decisions and reservations. The implementation
of one of the latest pricing models with the proposed QoS manger will be described

and simulated in Chapter 6.

Chapter 3

Mathematical Modeling

3.1 Introduction

Network calculus is a collection of results based on Min-Plus algebra, which can be
applied to deterministic queuing systems found in communication networks. It is a
set of recent developments which provide a deep insight into flow problems encoun-
tered in networking [63]. The Network calculus approach is deterministic and does
not depend on probabilistic descriptions of traffic. It is used with envelope bounded
traffic models to provide a worst-case analysis on network performance. Network
calculus is based on the idea that given a regulated flow of traffic into the network,
one can quantify the characteristics of the flow as it moves from element to element
through the network [65]. This means that traffic flows are bounded at the ingress of
networks’ domains by regulators that have arrival curves then these constrained flows
are bounded again by the nodes’ schedulers that have latency service curves. The
latency service curves introduce a processing delay or rate latency which is different
from scheduler to another. The end-to-end delay will include this latency delay.

The deterministic network calculus has became a fundamental theory for QoS net-
works, and has provided powerful tools for reasoning about delay and backlog in a
network with service guarantees to individual traffic flows. Two QoS methods, IntServ

and DiffServ, have been studied recently and delay bounds have been mathematically

34

35

derived for each one of them.

Section 3.2 of this chapter defines the arrival and service curves and the three main
bounds that affect traffic flows. Then, delay bounds for three well know schedulers
to be used in modeling QoS methods are derived. Section 3.3 starts by defining a
general model for QoS then the implementation of this model on IntServ, DiffServ
and the proposed IP QoS model is shown. The end-to-end delay for each model
is derived then compared to prove that the proposed IP QoS model introduces the
lowest end-to-end delay. In the last section some numerical experiments have been

illustrated to enforce the analytical results.

3.2 Definition of Basic Network Calculus Elements

Used

This section is divided into two subsections, first subsection defines the major Network
Calculus elements used in the modeling. The second subsection discusses the major

bounds that will be later determined for each QoS mechanism.

3.2.1 Arrival and Service Curves

Deterministic bounds on quantities such as loss and delay can be expressed if there
are constraints on traffic flows and service guarantees. Therefore, traffic flows sent
by sources are regulated or smoothed at the network ingress point by arrival curve
modeling. Networks nodes are modeled by service curves. Data flows are described
by means of a cumulative function R(t) that defines the number of bits seen on the

flow in time interval [0,¢]. The arrival and service curves are defined next.

Arrival Curve

An arrival curve is a function that defines an upper bound on the arrival rate of a

flow to a particular network node.

36

Given a wide-sense increasing function [26] o defined fort > 0, a flow R is con-

strained by a if and only if for all s <t
R(t) — R(s) < ot —) (3.1)

Two standard arrival curves, token bucket and IETF IntServ models, are used in this

chapter. The token bucket is defined as:
alt)=pt+o (3.2)

where p is the average rate and o is the burst tolerance. The IETF IntServ model is
defined as:

a(t) = min{M + pt,rt + b} (3.3)
where M is the maximum packet size, p is the peak rate, b is the burst tolerance and
r is the sustainable rate. These 4 tuples are defined as the traffic specification (Tpec)

parameters. The two curves are shown in Figure (3.1) [65]

F bim jk
&
/ slope=p:
1= Leaky ‘bucketarrival:curve - TETE IntSery-arrival curve:

FIGURE 3.1: Leaky bucket and IETF IntServ Arrival Curves

Service Curve

A service curve is a function that defines a lower bound on the departure rate from

a network.

37

If a system S has an input flow R(t) and output flow R*(t), then S offers to the flow
"a service curve B(t) if and only if for all t > 0 [26].

R'(t) 2 inf(R(s) + B(t — 5)) (3.4)
A simple curve is a GPS (Generalized Processor Sharing) node [66]. A rate-latency
service curve is of the form

,B(t) — { R(t - T,lat) t2> ,Tlat } (35)

0 t<ﬂat

The traffic flow is guaranteed a service at rate R bps during a busy period. However,
there is a latency delay, Tj,:, added to the traffic end-to-end delay as shown in Figure

(3.2) . Each router scheduler allocates a service curve based on both the traffic

Dits:

FIGURE 3.2: Service Curve

specification and a local delay bound, Tj,, that includes the scheduler processing
time Tproc and the router’s lookup time 4d.

Figure(3.3) shows a cumulative traffic R(t) constrained by arrive curve a(t) which
is IntServ arrival curve. Then this flow is lower bounded and delayed by latency

service curve (G(t)). The resulted flow is R*(t). .

3.2.2 The Fundamental Bounds

Using the arrival and service curves, bounds are derived that determine the input-

output relationship for regulated traffic as it passes through basic network elements.

38

1200

1 T T
—— IntServ arrival curve
— R(t)

- Latency service curve
“ output folw (R*(t))

1000

800

400

200

1 1 1 1 1
250 300 350 400 450 500
time

1 s 1
o] 50 100 150 200

FIGURE 3.3: An example of traffic flow bounded by of(t) and A(t)

There are three fundamental bounds that are used in the theory of network calculus
for lossless system with service guarantees. [26] [67)

eBacklog

The backlog is defined as the amount of bits that are held inside the system. In
Network Calculus the backlog is the vertical deviation between the input flow R(t)
and the output flow R*. The following bound a backlog is derived in [26].

Assume a flow R(t) constrained by arrival curve o, traverses a system that offers a
service curve 3. The backlog R(t) — R*(t) for all t satisfies

R(H) — B*(2) < sup{a(s) - A(s)} (36)

e Maximum Delay
The second bound is defined as the delay experience by a bit arriving at time ¢. In [26]
it is shown that the delay is bounded by the maximum horizontal deviation between

the arrival and service curves.

Amaz < h(a, f) = stlig){inf{r >0:a) <BE+7)}} (3.7)

39

. /
iBacklog =b+rt '

Y

/ ‘Si'op,e =R

ﬁ o T ame e TS e o O e e e s e e S
i & : ¥
dmax = .Eijén"*'b[¥
| L
: 3
g (5
L 3
. £
4 Time

FIGURE 3.4: Delay and Backlog bounds for token bucket model

Figures (3.5) (3.4) shows these two bounds for the IETF IntServ and token buckets

models.

From Figure (3.4), the maximum delay and the maximum backlog are:

Aoz = Tiat + b/R
Backlog = b+rt (3.8)
The formulas for IETF IntServ are derived in [26]:
0 = b—M
p—r
Bucklog — bart0—Tu)* (tp- B —p—7)
M — R)*

Delay = x 6(11; R + Tat (3.9)

where (6 — Tia:)* equals zero if Tjp; < 6 and (p — R)" equals zero if R <p.
e Output Flow Bound
Assume a flow constrained by arrival curve o traverses a system that offers a service

curve B. The output flow is constrained by the arrival curve [26].

a’(t) = igg{a(t +u) — B(u)} (3.10)

40

&
v ¥ t:
¥ e i
ok L
M o+ -
i 2
i v
¥ x
t .
b i
¥ =
v E
B s Time

FIGURE 3.5: Delay and Backlog bounds for IETF IntServ model

3.2.3 Packetization Effects

A packetizer can be thought of as a service that collects bits until entire packets can
be delivered. Therefore, packetization introduces additional latency to the service
curve, L—'ﬁﬂ, where L., is the maximum packet size and R is the scheduler rate.
Therefore, the end-to-end delay is increased due to the added packetization factor.
Thus Packetization factor will be added to all the traffic flow path nodes, resulting

in end-to-end delay increase [68] [69].

3.2.4 Calculated Delay Bounds for Some Schedulers

Using the arrival curves, service curves and the fundamental bounds the maximum
end-to-end delay and other performance measures can be obtained for networks of
arbitrary topologies. In this section three schedulers, FIFO, WFQ and CBQ), are used
to illustrate how delay bounds can be calculated for the case of traffic regulated by
burstiness o and rate p. The worest case end-to-end delay experienced by a traffic

flow in a network of schedulers can be calculated by the sum of the latencies of the

41

traffic flow path schedulers and traffic parameters of the flow that guarantees the

packet.
o M
Dend2end < ; + Z lZ;k (311)

m=1
where T, is the latency experienced by connection k at server (m).
FIFO, WFQ and CBQ are used to illustrate how the delay bound can be calculated

using the arrival and service curves parameters such as o and p.

Guaranteed Rate Nodes:

A guaranteed service network offers delay and throughput to flows, provided that the
flows satisfy some arrival curve constraints. This requires that network nodes imple-
ment some form of packet scheduling. Packet scheduling is defined as the function
that decides, at every buffer inside a network node, the service order for different
packets. Simple forms of packet scheduling are FIFO, CBQ and WFQ in which pack-
ets are scheduled by different scheduling techniques as will be explained in Appendix
B. The scheduling delay for each one of them is derived next.

oFIFO [65]

In this case, the arrival curve a(t) = o + pt, and the service curve 3(t) = Rt are

shown in Figure (3.6). The maximum delay calculated is

(3.12)

dmam

=

where R is the link rate.

oWFQ [65] [71]
The token bucket arrival curve is used in this calculation. The service latency is given

by the following equation:

e Token Bucket:

L Lmaz
ﬂat = E + (313)

42

Adrival corve Service curve

Fy ‘
bits ‘ ope =
i slope = p bits 4 sape= k.
e | Domi d
. o e TR e
o ' /
slope=R o | /
5 t Time:
: ; Time To=L/g+ L /R+5,
I- FIFO Scheduler Model 1I- WFQ Scheduler Model

FIGURE 3.6: FIFO and WFQ max delay and backlog

where L is the maximum packet size of the flow, Lyqs (MTU) is the maximum
packet size of all flows, g is guaranteed rate for each individual flow. This rate

is calculated using the flow’s assigned weights [70] [72].
% 4R (3.14)

where ¢; are the weights of the individual flows.

e IEFT IntServ: The maximum calculated delay is

+L | Lias
_o+l

Oz = 1
Lo (3.15)

Figure (3.6) shows the WFQ model.
+«CBQ [65]
The same arrival and service curves used in WFQ are used in determining the max

delay in CBQ model.

o,+ L L
d _Y D max
maz 9 + R

where d,,4. is the maximum delay for traffic class p.

(3.16)

43

3.3 QoS Mathematical Service Element Model

In this section, a general mathematical model will be laid out, then three QoS tech-
niques, IntServ, DiffServ and the proposed model, are discussed and compared. End-

to-end delay is calculated for each QoS technique.

3.3.1 Model Layout

The mathematical model consists of three parts: regulator, delay elements and the
router’s schedulers. The regulator is located at the ingress of the network domain
and is used to regulate all the coming traffic flows. It is represented by an arrival
curve that depends on the incoming traffic parameters. Two regulators will be used
in this section, the token bucket and the IETF IntServ regulator. The delay element
causes the input traffic to be delayed by Ty, which is the propagation delay. The
last element is the router’s scheduler which use latency service curves to constrain
the incoming traffic. The last two elements will be combined and presented by a
latency service curve that has a latency Tj,; equals to the sum of the link propagation
Torop and node processing delay Tproc, and the router’s lookup time, dd. The model is
shown in Figure (3.7) [69] [67). In this chapter, an end-to-end delay bound equation
will be derived for each QoS model then compared to find out which one results in
smaller bounds.

For an a-smooth flow served by a scheduler, guaranteed node, with rate r and latency

Tiat, the delay bound for a packet is [26] [75]
a(t)

[2
dbound = SUP[_ - t] + Tiat (317)
>0 T

where T},; is the node latency that includes the scheduler latency plus the node lookup
or processing time dd.

The previous equation will be used for the end-to-end delay bounds.

44

Tratfic] Destination
Source - Node
Fe3
R _ [: I B’ R*y
T / R
) c I = R
R Upper 7
bound
ey

FIGURE 3.7: Block Diagram for the Network model

3.3.2 The IntServ Model

As shown in the previous section, the IntServ model has an arrival curve a(t) =
min{M + pt,rt + b} The delay bound for each IntServ node as derived as follows.
Figures (3.5) shows how the delay is calculated.

(b — M) +p(’;“_1‘f) +M
(p—r) R

The IntServ model for a router is that the service curve offered to a flow is always

Dmaa: = Tlat - (318)

a rate latency function with parameters related by the following relation.

gt = % + D +éd (3.19)
where C is the maximum packet size (L) of the flow and D = ﬁ—:’;ﬁ, where L, is
the maximum packet size in the router across all flows, and Ry;.x is the rate of the
scheduler link. The following equation is used to find the end-to-end delay bound
assuming all the nodes in the path are IntServ nodes [64] [65] [26].

+ Dtotal + 5dtotal (320)

—M (p—R* M+C,
end-to-end delay = b— p-R + —M

R p—r R
Ciotar a0d Dyose are the sum of the parameters C' and D of all the routers in the path.
8dsotar 1S the sum of the lookup time for all the routers in the path.

If R (service rate) is greater than or equal to the traffic peak rate (p), Equation (3.20)

45

1s rewritten as:

M + Otota,l
R

The term M—gﬂﬂ + Dyotar Tepresents the WFQ queuing delay and the term

end-to-end delay = + Diotar + 0diotal (3.21)

%("I’;—j) is the delay caused by the reservation and arrival curve. Therefore the
end-to-end delay can be rewritten as the sum of scheduling/regulating delay, Queu-
ing and link propagation delay and the processing delay which is the lookup time
needed for each router. The IntServ model lookup delay dd is high since each router
checks whether the incoming packet belongs to one of the reserved flows or not, then

check the best match up to forward it to the next hop.

3.3.3 The DiffServ Model

DiffServ micro flows are constrained by the token bucket arrival curve (p;t + o;) at
the network access. Inside the network, EF micro flows are not shaped. The DiffServ
flows traverse a maximum of 10 hops inside each DiffServ domain. Therefore, the
delay range for each flow is [0, (h — 1) D], thus the arrival curve for the EF aggregate
at this node is vry,(t + (h — 1) D)ry,7, where h is the total number of hops used by a
flow. v, is defined as the utilization factor v,, = ;‘-’i, m is on the path of the micro
flow ¢, D is a bound for the queuing delay for an EF node and 7 is the scale burstiness
factor and defined as 7,, = 7+ . The data arriving at node m has undergone a variable

delay [0, (h — 1)D] thus an arrival curve for the EF aggregate at node m is
a(t) =vrp(t+ (h—1)D) +rpT (3.22)
By applying Equation (3.17), the maximum delay at the EF node is:-

p =W _yin,

m - 1)D m
D - U (t+(hr 1)D)+r T 4T,

D = v(t—(h—=1)D)+7 —t+ Tt
D——(h—l)D = 7-+T;at

46

T+ T'la,t
_ T 3.23
b = =m—mw (3:23)

where 7 is the upper bound on all 7,,, and v is the upper bound on all vy,.
Also from Figure (3.8), the horizontal distance between the arrival curve a;(t) and
the service curve B;(t) is bounded as derived in Equation (3.23) [26] [69)].

The latency parameter T}, is the scheduler latency, in this thesis WFQ is used and

Aits |

Time

FIGURE 3.8: DiffServ maximum delay calculation

Tiat is given in Equation (3.13).
The end-to-end delay for the DiffServ model is the sum of all the EF delay nodes.

DiffServ end-to-end delay = h* D+ h*dd

T+71lat
h(l_(h_l)v)+h*6d (3.24)

where h x dd is the total lookup time for all the DiffServ nodes.

3.3.4 The Proposed Model

In this model WFQ schedulers are implemented at each router and a token bucket
regulator is used at the ingress to constrain the incoming traffic. Therefore the end-
to-end delay will be the sum of the schedulers’ latency and the the sum of the routers’

lookup time dd or time required by the router to find the next hop.

47

Using Equation (3.13), the model end-to-end delay can be written as:

D _i__Jrf:(f’_’c_F@)Jri(gdm
end2end = minm (gIT) ows) g"rcn R™ =
L Lpas
Dend2end = % + M x (g_: + R) + M x éd (325)

where L is the maximum packet size for the k** flow, Lq, is the maximum packet
size of all flows that are passing through these nodes, R is the m** latency server rate
and M is the total number of hops that a traffic flow uses to reach destination.
Equation (3.25) can be expressed as that the end-to-end delay is the sum of the time
caused by a regulator or smoother plus the total schedulers queuing delay (in this
case WFQ schedulers delay).

§d is the router lookup time which is the time needed to find the GDI match for the
packet since in this model only the GDI is needed to process each packet. This will
result in less processing time and reduce the router entry tables instead of five fields

to look at only two will be used. Therefore, the end-to-end delay is reduced.

3.4 Comparison of Models

In this section, the delay bounds for the three QoS models mentioned in the previous
section are compared to show that the proposed model results in the lowest end-to-end

delay. Then, a numerical example is presented to illustrate the comparison.

3.4.1 Comparison

In this subsection the three models’ equations are compared to find the model that
results in the lowest end-to-end delay. The comparison is based on the assumption
that the same traffic flow parameters are used by the three models and h hops will

be needed to reach the destination. Therefore Equations (3.20, 3.24, 3.25) become:

o IntServ Model

43

~M (p-R\" M Ly | Lma
end-to-end delay = b——— p- i +—+hx |2+ + h X 0d1ntSery
R p—T R gk R

o DiffServ Model

ol)

1—(h—1)

end-to-end delay = h % () + h X ddpifssers

e Thesis proposal Model

L'm,a:c
end-to-end delay = Tk 4 hx (IJ—IE +) + h xéd
Ik gk R

Relating these three equations to Equation (3.13), WFQ scheduler queuing delay,

results in:
+
IntServ delay = b_]\£ p- R + —A—J— + WFQ schedulers delay + h X ddntsery
R p—r R
i Z WFQ schedulers delay
D l = £ h Jd) erv
iffServ delay hx(l—(h—l)ﬁ) —(h—1)2 + h x ddpiffs
Proposed model delay = % + WFQ schedulers delay + h x dd

(3.26)

Assuming that the three models use WFQ which results in the same queuing delay.
dd is smaller than ddp;ffsery and ddpnssery since two fields are needed to find the next
hop comparing with the lookup for the 5 tuples to find the best match up. In addition
IntServ has to look for each packet to find if it belongs to reserved traffic flow.

In IntServ model M = L which is o, therefore, IntServ has the term % (’1’,;_?) extra
than the proposed model plus the difference between the lookup delay caused by both
models.

In DiffServ, the term % is multiplied by the number of hops which results in more
delay than the proposed model in addition to the lookup delay difference between
both models.

In conclusion, the proposed model produces lower end-to-end delay bounds than

DiffServ and IntServ.

49

3.4.2 Numerical Example

In this subsection, three traffic flows with different priority levels are tested under
each one of the QoS model. The parameters used in these calculations will be used
later for simulation purposes. For each traffic flow, average rate, packet size, queue
buffer size and the priority level are chosen. The link rate is also chosen. The packet
size is chosen to be the same as the maximum packet size since IPv6 nodes do not
fragment packets. These calculations do not include the nodes lookup time éd .

The following are the traffic parameters:

1. Traffic.1 has an average rate of 500 Kbps, packet size of 500 bytes and priority
is 15.

2. Traffic 2 has an average rate of 250 Kbps, packet size of 500 bytes and priority
is 12.

3. Traffic 3 has an average rate of 250 Kbps, packet size of 500 bytes and priority
is 8 ”Best effort”.

The link rate is chosen to be 1 Mpbs and the propagation delay is 1 msec.

Latency Calculations

The WFQ scheduler guaranteed rates for the three flows are calculated using Equa-

tions (3.14).

15
¢ =TEr1g <1 10% = 0.4286Mbps
12
=g 1575 X 1 10% = 0.3429Mbps
8
9= Te gy X 1 10° = 0.2286Mbps (3-27)

The latencies for the three flows are calculated using Equation (3.13), however,

Lpez = L since IPv6 does not support fragmentation and all the three flows packets

have the same size.

50

1. Flow 1 latency is:

Lx(gi+R) 0.5x8x103(1.4286 x 10°
g1 xR 0.4286 x 106 x 1 x 108

Tiot1 = =13.3msec (3.28)

2. Flow 2 latency is:

Lx(ga+R) _0.5x8x10%1.3429 x 10°)
ga xR 0.3429 x 108 x 1 x 108

Tiatz = =15.7msec (3.29)

3. Flow 3 latency is:

Lx(gs+R) 05 x 8x10%(1.2286 x 10°)

gs xR 02286 x 105 x1x 108 21.5msec (3.30)

ﬂat3 =

End-to-end Delay Calculations

In this subsection, the equations derived in Section 3.3 will be used to find the max-
imum end-to-end delay for the three traffic flows when the three QoS models are

involved. This allows direct comparison between the schemes.

IntServ Model

Equation (3.20) is used to calculate the end-to-end delay for the three flows. The

parameters used for the service and rate latency curves are:

e Flow 1 IETF arrival curve parameters:
M=¢=0.5 KBytes.
r=0.5Mbps
b=0.9 KBytes
p=1.5 Mbps

e Service curve parameters:

R (Flow Guaranteed rate)= 0.5 Mbps.

Riink=1 Mbps
L=L e = 0.5 KBytes
3 3
Total Tlatzﬂ_f&% + h—%ﬁ& _ 8)((0.5;-.;(3();.3&5))(10 + 10x(;.>5<>1<(2)56x10 —128 msec

51

This is the latency per node. The end-to-end delay will be the same of these laten-

cies plus 3205 (.L5=L) — (.4msec which results in total end-to-end delay equals to
=10 Tatn + 0.4 = 128.4msec

If p < R, then the end-to-end delay is the sum of the nodes latencies = 128 msec.

e Flow 2 IETF arrival curve parameters:
M=0=0.5 KBytes.
r=0.25Mbps
b=0.9 KBytes
p=1.5 Mbps
R (Flow Guaranteed rate)= 0.25 Mbps.

e Traffic 2 latency calculations :

__ M+hxL | hXLmaz _ $%(0.5+10x0.5)x10% | 10x0.5x8x10% _
Ta=""F"+ "R = 0.25x10° + e —216 msec

Flow 2 end-to-end delay is:

vosnaon (152555) T Tt Thatm = 0.64 +216 = 216.64msec

DiffServ Model

Equation (3.23) is used to find the maximum delay at the aggregation point, Ingress
point, for this model. The parameters used for the arrival and service curves, and

end-to-end delay calculations are:

e The leaky bucket arrival curve parameters:
p1=0.5 Mbps, p2=0.25 Mbps and p3=0.25 Mbps.
o1= 03= 03=0.5 KBytes.

e Service curve parameters:
R= 1 Mbps.

Tiat, =13.3 msec, Tiqt,=15.7 msec, Tjqt,=21.5 msec.

52

e Flows Guaranteed rates:
g1=0.4286 Mbps, g>=0.3429 Mbps, g3=0.2286 Mbps.

e The number of hops is 10

o The EF flows parameters are

—p1_05x10% _ -3
n=2=05X18 _ (.5 x 10

__p2__025%x10% _ -3
vp=2=028X10 — (.25 x 10
£3

—0.25x10° _ 95 « 1()—3

1x108

R
__o1__05x8x10% __ -3
TI=F="1x106 ~ — 5.0 x 10
gz 0.5x8x10% __ -3
B=" =9.0x 10

3
—o3__05x8x10° __ 5.0 X 10—3

e Flows delays calculations at the aggregate node:

Dy = T—ﬁb%ﬁéﬁ = 18.378msec
— 5 .7 —

D2 = 1—(10——+1)1>5<6W = 20.744msec

Dy = — 325 ____ — 96 5064msec

1—-(10—-1)x0.00025

e Flows end-to-end delays calculations is based on Equation (3.24):
DiffServ end-to-end delay = 10 x D
Flow1 end-to-end delay = 10 x 18.378 = 183.78msec
Flow2 end-to-end delay = 20.744 x 10 = 207.44msec
Flow1 end-to-end delay = 26.506 x 10 = 265.06msec

Proposed IP QoS Model

The end-to-end delay calculation for the proposed model is based on Equation (3.25)

and the following parameters are needed:

e The leaky bucket arrival curve parameters:
p1=0.5 Mbps, p2=0.25 Mbps and p3=0.25 Mbps.
01= g9= 03=0.5 KBytes.

53

Table 3.1: End-to-end delayed calculation using the three QoS models

| Flow No. | IntServ [DiffServ | Proposed modeﬂ
Flow 1 128.4 msec | 183.78 msec | 134.166 msec
Flow 2 216.64 msec | 207.44 msec | 158.458 msec
Flow 3 non 265.06 msec | 217.1872 msec

e Service curve parameters:
R= 1 Mbps.

Tiat, =13.3 msec, Tjq,=15.7 msec, Tjq1;=21.5 msec.

o Flows Guaranteed rates:
91=0.4286 Mbps, g»=0.3429 Mbps, g3=0.2286 Mbps.

e The number of hops is 10

¢ Flows end-to-end delays calculations
Dfiow, = o + Yor—1 Tats,,
D fiow, = 2558100 1 10 X Tiar,
Dfio; = 1.166 + 10 * 13.3 = 134.166msec
Do, = 1.458 4 10 x 15.7 = 158.458msec

Dfiow, = 2.1872 + 10 x 21.5 = 217.1872msec

Results Conclusion

Table (3.1) shows the end-to-end calculation for the three models. The IP proposed
model achieves the lowest end to end delay bounds for the three flows compared to
DiffServ and IntServ even without including the lookup delay bounds. For flow 1, the
guaranteed rate was half of the link rate which results in lower delay when IntServ
was used. This will allow other flows to have only half of the links bandwidth to
share which causes traffic congestion. However the second flow results in higher delay

bounds than the proposed model and DiffServ.

Chapter 4

An end-to-end QoS Management

system proposal

4.1 Introduction

The proposed QoS management scheme incorporates the following elements that are
commonly used to handle QoS requests. These elements will be involved in processing,
monitoring, and controlling the traffic flows.

The QoS elements are [7]:

e Admission Control: Responsible for determining access to available network
resources and keeping track of all reservations. This function is handled by the

domain QoS manager.

e Policing: Performed by a QoS manager when a flow’s actual data traffic ex-
ceeds the requested values given in the traffic specifications. In such cases the
packets are dropped or downgraded to a best effort service class or marked as

nonconforming.

e Packet classification: Identifies packets belonging to a specific flow and des-

ignates a QoS class for this flow. It is implemented at the edge points. A Packet

o4

55

scheduler ensures that the flows identified by the packet classifier receive the

requested QoS. It is also implemented at edge points.

¢ Traffic control implementation: Implements queuing methods, such as pri-
ority queuing and weighted fair queuing to control traffic at the domains’ routers

interfaces.

WFQ is used to separate the flows in which separate queues are assigned for each
traffic flow. The proposed QoS management system uses the GDI and the Type of
Service (Traffic Class (TC)) field for reserving and tracking traffic flows. This scheme
is unique in that the IP network can be managed without invoking any other QoS
protocols such as RSVP or MPLS. The QoS manager uses the GDI, that uniquely
defines domain traffic flows, to trace and reserve resources. As the backbone routers
use the GDI for forwarding decisions (MPLS label forwarding technique), the end-
to-end delay is less when compared to the longest match procedure used by current
forwarding schemes. This technique is scalable as the edge routers handle QoS re-
quests and communicate with other QoS managers. The generating nodes do not
negotiate requests with the QoS manager as in the case of the BB in the DiffServ
domain. Traffic flows are classified based on the TC field so that each priority level
is treated differently. The TC classification avoids the limitation of classes seen in
DiffServ where traffic packets are mapped to pre-defined classes which results in lim-
ited QoS handling capability. Whenever a sender wants to send real time traffic, it
sends a QoS request to the network edge router. Upon receiving requests from the
sender, the edge router communicates with its domain manager to approve or reject
these requests. The edge router forwards the manager’s responses, either positive or
negative, to the sender. When accepted, the source starts sending data packets to the
edge router where traffic flow packets are classified, scheduled and monitored. Pack-
ets are queued depending on their TC field and the policies set by the QoS manager.
The leaky bucket algorithm is implemented to police incoming traffic. The algorithm
parameters for the accepted traffic are set up according to their traffic specifications.

When a flow violates its requested specification, its priority level is degraded or its

56

packets are dropped. In the following sections, the QoS manager and the edge router

are described.

This proposed QoS management scheme has introduced two new ideas:-

1. A QoS manager that uses the GDI in its data base to trace and reserve resources
inside the domain network. Also, it is a new QoS technique that is implemented

in IP networks without invoking other QoS methods.

9. Source hosts send QoS requests directly to the edge routers instead of the BB
(as in DiffServ), and therefore the QoS managers communicate only with edge

routers.

The proposed management scheme consists of two units, a QoS manager and an
IP edge router. In the next section the proposed QoS manager is presented. This
manager is based on the ARM bandwidth broker that uses dynamic allocation for
reserving resources. A brief explanation on the ARM BB was given in Section 2.2.2.
The data base of the ARM BB, which is a part of the manager’s main units, will be
modified to use the GDI for tracing the resources through the network it is managing.
In Section 4.3, the proposed IP edge router that classifies, monitors and schedules
incoming traffic flows packets is presented. This model is based on the QoSbox which
was presented in Section 2.2.2. Fiﬁally, in Section 4.4 different reservation scenarios

are explained in details.

4.2 Proposed QoS Manager

The manger proposed in this thesis manages IP networks and uses the GDI for con-
trolling network domain resources. The following are the main model’s blocks and

their functions. Figure (4.1) shows these blocks.

1- Request Processing Agent (RPA): Receives QoS requests for edge nodes
and forwards them to the decision blocks. The requested parameters used for

reservation decisions are, GDI, destination address, class of service and traffic

37

FIGURE 4.1: Proposed QoS management scheme structure

specifications (peak rate, average rate and burst rate). These parameters are

then forwarded to the next block, admission control, for decision making.

2- Admission Control Agent (ACA): Makes decisions on the requests received
from the RPA. It starts first by checking the intended destination address to
see if it is located in its domain or not. If the destination node is located in
a different domain, it forwards the request to a neighbouring QoS manager.
Otherwise, its resource availability has to be checked to accept or deny the

request. The manger decision should not affect previous reservations.

3- Management Reservation Agent (MRA): Manages all the reservations

inside the domain by recording all the accepted requests using GDI and its

98

corresponding traffic specifications. It also sends the GDI and its corresponding
traffic class for the accepted flows to the WFQ Weight calculation agent (WFQ-
CA). Finally, this agent initiates policies to handle traffic violations that are

implemented at the domain edge routers where traffic flows are monitored.

4 Traffic Control Data Box (TCDB): Records all the QoS manager infor-
mation, domain reservations, by using the GDI for tracing resources. It also
handles the domain topology information which will be used to determine if the

destination node is located in this domain or not.

5- WFQ Weight Calculation Agent : Calculates the weights for all the ac-
cepted traffic flows and sends them to the node queues that use them for clas-

sifying packets.

The following is the pseudo code for the QoS Management model:-
Request Negotiation Agent

{
Receives QoS requests (GDI, Prio, D;p, CIR) from Edge router.
Forward QoS requests to Admission Control Agent
Forward Admission message (Answer) to the Edge router

Admission Control

{
/*Checking Priority level */

if(piro > 8 && pir < 15)
continue;

else
printf(” Wrong Priority level setup”);
/* Checking Destination IP address */
/* Destination IP address is sent to the Traffic Control Database */

if(Tableentry — Destination == Djp)

99

{

Flag, =1; /* indication of finding the IP address*/
Forward GDI, CIR, Prio to the Management Agent

}
else

{
Flag, =0;
printf(” Destination node is not found in the domain”);

Send QoS Request to neighbouring QoS manager;

}

/* Send the Traffic specification to the Management Agent */
/* Response after receiving a message from the Management Agent */
if(message =="Yes’)

{

printf(” QoS Request has been guaranteed resources”);

Answer ="YES’ /* Forward the answer to the Negotiation Agent*/
Setup the policies to monitor traffic flows

Send these policies to the Edge router where traflic flows are monitored.

}
else

{

Answer ='NO’ /* Forward the answer to the Negotiation Agent*/

}

Reservation Management

{

/*Actions after receiving traffic specification from the Admission Agent */
if(Flag; ==1)
{

60

if(Mazpw-Respw - CIR > 0)
{
Flag, =1; /* indication of enough resource available*/
database — Tableepyry — BW = CIR
database — Tableenyry — FID = GID
database — Tableensry — ToS = Prio
Send Prio and GDI to WFQ Agent;
message ='Yes’ ;
Go to the Admission Control Agent

}

else

{

Flags =0; printf(” No resources available”);
message ='No’ ;

Go to the Admission Control Agent
}

}

}
WFQ Weighted Calculation

{

/*Actions after receiving priority and GDI from Reservation Agent */
if(message=="Yes’)

{

Topeight= Prio /* Topeignt is the traffic weight that is used to schedule and

allpriorities
queue it */
Broadcast all the new GDIs and Tyeignes of all the traffic flows to all routers

located in the domain

}

61

4.3 IP Edge Router

This section shows how the IP edge router is implemented since it is the second
most important unit in this proposal. The IP edge router handles traffic monitoring,
scheduling and classifying. In Section 4.3.1 there is a detailed explanation on the

model’s main units and their functions.

4.3.1 Architecture for the IP E‘dge Router Structure:-

The proposed edge router is designed to receive QoS requests from either connected
hosts or other leaf routers. These requests are then forwarded to the domain QoS
manager for decision making. The edge router also performs routing functionality by
using the GDI to find the next hop or the intended destination node. The following
are the main blocks of the IP edge router model. Figure (4.2) shows these blocks.

1. Routing Blocks (RB): Performs routing using the GDI for matching. The
time taken to find the next hop using the GDI (flow lookup) is less than the

normal header lookup. This results in a smaller processing time.

2. Requests Forwarding Agent (RFA): Forwards and receives QoS requests
from/to the domain manager and all domain hosts. It also forwards new priority
levels for degraded traffic flows to the manager to adjust the WFQ weights. In
the case of transmission rate reduction in one of the accepted flows, the RFA
sends the new rate to its domain manager to free more resources, resulting in

dynamic adjustment of resources.

3. Packet Processing Block (PPB): Performs packet classification, scheduling
and traffic monitoring. Accepted traffic flows are classified and scheduled based

on the traffic specification of the accepted flows. The broadcast WFQ weights

62

s
Remst

FIGURE 4.2: Proposed IPv6 Edge router structure

are used by each domain router along the path to buffer and queue the incoming
packets according to the assured priority level. Traffic monitoring and condi-
tioning is implemented in this router using standard algorithms such as leaky
bucket. Packets that violate their specification are either dropped or degraded
depending on the policies set by the QoS manager.

The following is the pseudo code for the proposed model Edge router:-
Request Forwarding Agent

{

Receives QoS requests (GDI, Prio, D;p, CIR, Tiyrst) from either source nodes or
leaf routers.

Forward QoS requests to the QoS management model

63

Forward Admission message (Answer) to the nodes that generate the QoS requests
if(Answer=="Yes’) /* Positive response from the QoS manager */
{
Forward GDI, CIR, Prio, Tyurst, Drp to the packet classification.
Forward GDI, Prio, CIR, Thurst to the Traffic Condition.
{

else
Forward the response to the nodes that generate the QoS requests

}
Traffic Condition

{
if(T,q:e > CIR)

{
if(Pior > 10)
Prio=Prio-1; /* Degrade the priority to a lower level */
else
Drop packets; /* Drop packets belonging to these priority levels*/

}

else

Continue monitoring traffic flows.

4.4 Reservation Scenarios

There are two cases for QoS reservations. The first is if a request has been issued
from a local host to a destination node located in the same network domain. The

second is if the destination node is located in an other domain.

64

4.4.1 Local Reservation

There are two possibilities in this case: 1) if the sending host is connected to the edge
router, or 2) if it is connected to a leaf router. The procedures for these two cases are
shown below.

I- Source Node Connected to the Edge Router:

Figure (4.3) shows the procedures followed to generate a reservation for a QoS request

generated by a node connected directly to the edge router. The following are the

4 1Pv6008 Domain

FIGURE 4.3: Procedures for requesting QoS for a node connected to an edge router

procedures involved during granting a reservation:-

1- A sending host generates a QoS request to the edge router. The request includes
the data specification parameter such as average rate, committed information
rate (CIR), burst rate. This request should also have the GDI and TC fields
marked, and the IP address for the destination node. These will be used to
locate the user, trace the reservation, and set the edge router scheduling pa-

rameters in case of request acceptance.

65

2- The edge router forwards this request to the network QoS manager for process-

ing, and a decision is made depending on the availability of resources.

3- After taking a decision, the manager forwards this decision to the edge router

that sent the request.

4- The edge router that receives the decision forwards it to the sending host that

generated the request.

5- In the case of acceptance, the edge router extracts traffic flow parameters such
as, traffic rate, priority level (TC field) to be used for classification purpose,

and uses the GDI to schedule and to process packets that belong to this flow.

6- After receiving the acceptance message, the sending host starts sending traffic

datagrams to the edge router.

7- The edge router monitors all incoming traffic flows and either drops or lowers
the priority level of the traffic packets that violate the service parameters. The

new priority levels are sent to the manager to re-adjust the WFQ weights.

8 The QoS manager has to set up a policy for reallocating the resources in the case
of a drop in incoming traffic flow rate. The drop percentage and the watching
period have to be set by the manager. The edge router monitors the incoming
traffic flow and reports drops to the manager by sending the new rate, the GDI

and the destination IP address.

9- Core routers forward the packets to the next hop using the GDI. This avoids
more processing delay and layer violation in case of encrypted packets Appendix
C. The GDI is only used to find the hop instead of the 5-tuples which include
the port numbers. Packets are decrypted by the core routers to find the port

numbers which are needed for the longest matchup procedure.

As a result of this proposal, QoS for non tolerant traffic flows can be achieved for the

following reasons:-

66

1. Resources are reserved at the ingress point by the QoS manager.

2. Classification and scheduling are done based on the priority level (TC field)

that has been marked by the source (application generates the traffic).

3. End-to-end delay is minimized since lookup procedure or longest matchup (for-

warding packets to next hop) is done using a unique GDI.

4. DS mapping is avoided resulting in less processing time at the ingress node.
Packets are processed faster than in the DiffServ domain where packets are

processed and aggregated to pre-defined classes, and the DSCP are marked.

5. QoS request negotiations are done between the sending host and the ingress
node. Negotiation is done between the sending host and the domain manager

in the DiffServ involving a higher time cost.

1I- Source Node Connected to a Leaf Router:
The procedures of reserving a QoS request generated by a host connected to a leaf
router is shown in Figure (4.4). The procedures are similar to the previous ones

except for the following steps:-

1. The source host sends its request to the leaf router that connects it with the

network.

2. The leaf router forwards this request to the edge router which forwards it to

the domain QoS manager.

3. When the edge router receives the reply for the request from the QoS manager,
the edge router forwards this message to the leaf router. If the reply is positive,
the request is accepted, and the edge router extracts the traffic flow parameters
to be used for classification and monitoring. The leaf router forwards the reply

message to the host that generated the request.

67

. Edge
> router

SENDER
FIGURE 4.4: Procedures for requesting QoS for a node connected to a leaf router

4. Traffic data flows are sent to the leaf router first, then to the edge router for
classification and scheduling. Scheduling and classification are not done at

intermediate core routers.

4.4.2 Domains Reservation

This type of reservation is done when the destination node is located at a different
network domain.
The following are the procedures followed when a sending host requests a QoS reser-

vation for a receiving host located at a different domain. The procedures are shown

in Figure (4.5).

1. A source host sends a QoS request to the network edge router. This message
includes traffic specifications, IP address for the source and the destination

nodes, the flow label and the traffic class fields.

68

- - " 5 1
Domain 1 QoS J o] Pomain 2 Qe%
raanager - SOPY ianager
2&3 &&87

&y

1&10

S Z
/ :
Dontain 1 Ingiess N

FIGURE 4.5: Procedures for requesting QoS for a receiving node located at different
domain

2. The edge router forwards this request to the network QoS manager and waits

for a decision.

3. The manager checks for resource availability and determines if the destination

is located in its domain. This results in the following possibilities:-

a- If there are resources and the destination is located at the same domain. A

positive response is sent back to the edge node that forwarded the request.
b- If there are no resources a negative response is sent back to the edge node.

c- If there are resources and the destination is not located at the same network
domain then the manager forwards the request to its neighbouring QoS

manager.

4. The neighbouring QoS manager checks if the destination IP address is located
in its domain and if there are resources available. It then decides either to

accept, to reject, or to forward the request to the next QoS manager.

69

5. The neighbouring QoS manager, that administrates the destination host, for-
wards its decision, acceptance or rejection, to the QoS manager that initially
sent the request. The first domain manager forwards the decision back to the
edge router that initially sent it. In case of acceptance, the manager has to

update its data base.

6. The edge router extracts the traffic flow specifications and the GDI to be used

for classifying and tracing traffic flow packets.

7. The edge router forwards the decision to the node that generated the QoS
request. If a positive decision is received, the host starts sending data traffic
packets. Otherwise, the request has to be adjusted and resent again, or the

traffic flow is sent and treated as best effort.

These are the scenarios considered in this research. Other QoS schemes are imple-
mented to allow comparison with the proposed algorithm. Results are presented for

comparison.

Chapter 5
Implementation and Experiments

In this chapter, the results obtained by testing QoS management in IPv6 networks
are presented. Different scenarios are designed for testing different aspects of IPv6
QoS using the network simulator (ns-2). NS-2 is an event driven simulator that sim-
ulates a variety of IP networks. It is written in C++ and OTCL languages. It is
used in these experiments since it is a well known simulator and used by most re-
searchers. The simulation starts by simulating an IPv6 network that uses flow labels
and traffic class (TC) fields to handle non tolerant traffic flows (delay and packet
loss sensitive traffic flows). Two queuing mechanisms, WFQ and CBQ), are generally
used to schedule and process traffic flows packets. In Section 5.1 the choice of WFQ
for this research is justified by experiments. In Section 5.2, the ns-2 code has been
modified to implement the proposed IP QoS management scheme. Different simula-
tion scenarios have been run to see how this scheme reacts for different traffic flow
types under different networking conditions. Then the results obtained are compared
with IntServ, DiffServ and MPLS techniques applied for the same network topology
with the same traffic flows specifications. End-to-end delay and packet loss were used
as the main parameters for the comparison. At the end of this Chapter, multiple
domains simulation scenarios is presented to test the flexibility and scalability of the
proposed QoS management model. The topology used for the two and three domains

simulation is similar to the topology used in the single domain simulation.

70

71

The traffic flows, tested in these simulations, are real traffic flows where packets
are dropped and delayed. In contrast, traffic flows used for numerical calculation in

Chapter 3 are assumed to be lossless, no packet loss.

5.1 Choice of queue simulations

In this section, a network topology that has a sending node, 10, two receiving nodes,
n7 and n8, two edge nodes, nl and n6 and four core nodes, n2, n3, n4 and nd is

built using ns-2. The network layout is shown in Figure (5.2) [76]. The sending

core 3

\oorez

Destination Node_1 B
@ Source Node

Edge 1

DestinationfNode_2

©

ore core 1

[s] [2]

FIGURE 5.1: NS-2 network layout used for testing IPv6 QoS

node generates four traffic flows, two for each receiving node. The generation rate
set for these traffic flows is 500 kbps and the packet size is set to 500 bytes. Two
of these flows, Flow 2 and Flow 3, are non tolerant traffic type with higher priority
marked fields. The other two are data traffic flows with lower priority level. WFQ
and CBQ are used, in different simulations, as the nodes’ outgoing queues since they
are most effective [72] [73] when different traffic data flows are processed. The queues’
weights are set to 40% for the higher priority and 10% for the lower priority. The
links bandwidth and delay parameters are set to 1 Mbps and 10 msec. The exception

is the link that connects n0 and nl which is set to 1.5 Mbps. Two sets of experiments

72

Table 5.1: Average End-to-end delay during normal rates comparison

Flow No. IPv6 using WFQ IPv6 using CBQ
Average | STD Average | STD
Flow 1 71.1143 msec | 0.1945 | 70.9381 msec | 0.13858
Flow 2 70.71815 msec | 0.1378 | 71.02122 msec | .214684
Flow 3 70.7795 msec | 0.196913 | 70.7197 msec | 0.1812
Flow 4 71.02084 msec | 0.286167 | 71.04162 msec | 0.167125

Table 5.2: Average End-to-end delay during source 2 rate increase comparison

Flow No. IPv6 using WFQ IPv6 using CBQ
Average | STD Average | STD
Flow 1 93.7742 msec | 12.07764 | 71.60756 msec | 0.307918
Flow 2 71.2224 msec | 0.27702 | 93.4432 msec | 11.1128
Flow 3 71.3431 msec | 0.25670 | 71.095 msec | 0.18278
Flow 4 87.4412 msec | 13.9326 | 71.6547 msec | 0.29097

have been simulated, one when all the flows are summing up to 1 Mbps and the other

one when Source flow rate increases to 0.5 Mbps.

5.1.1 Simulated Results Analysis

Table (5.1), Table (5.2) and Table (5.3) show the average simulation results. The

following conclusions can be made:-

1- TPv6 simulation using CBQ and WFQ schemes achieved lower end-to-end delay
for all the flows during normal rates, all the rates are 0.25 Mbps.

2- WFQ simulation achieved low end-to-end delay for Flow 2 and Flow 3, non tol-
erant traffic sources, when source 2 rate increase, network congestion. However,

Flows 3 and 4 have been affected and their packets have been delayed more.

3- CBQ simulation, during source 2 rate increase, resulted in high end-to-end delay

73

Table 5.3: Packet Loss Rate comparison

Flow No. | IPv6 using WFQ | IPv6 using CBQ
Average | STD | Average | STD
Flow 1 0% 0 0% 0
Flow 2 0% 0 0% 0
Flow 3 0% 0 0% 0
Flow 4 0% 0 0% 0

for Flow 2 during its rate increase. The other flows were not affected and they

achieved low delay as the case of normal rates.
4- No packets have been dropped from all the sources during the two scenarios.

Therefore, non-conformant non-tolerant traffic flows, during network congestion, have
been delayed during CBQ simulation. These flows, non-tolerant flows, were not af-
fected during WFQ simulation by the non-conformant scenario and the other flows,

best effort were delayed more.
Based on the results, WFQ was chosen to be implemented for the proposed IPv6 QoS
management scheme since it achieves lower delay for the high priority traffic flows

during network congestion.

5.2 The Implementation of the IPv6 QoS manage-

ment scheme:

5.2.1 The Model Layout

The IPv6 QoS management scheme that was presented in Section 4.2 is implemented
using the ns-2 simulator. The implementation of this model is shown in Figure (5.2)

[62]. The following is a brief explanation of the procedures shown in Figure (5.2):

74

FIGURE 5.2: Proposed IPv6 QoS management scheme implementation on ns-2

[1] The traffic source generates a QoS request and sends it to the Requests For-

warding Agent (RFA) located at the Ingress router.

[2] The Ingress router’s RFA forwards this request to the Request Processing
Agent (RPA) at the QoS manager where a decision is to be taken after checking

resources.

[3] A Yes or No answer is sent to the edge router. In the case of a Yes answer,

traffic specifications, bandwidth requested and priority level, are recorded in

75

the data base by using the GDI. Also, the TC field is extracted to be used for
the WFQ weights calculations. These weights will be broadcasted to all WFQ

queues in the domain.

[4 | The Ingress router’s RFA forwards the QoS manager answer to the traffic
source. In the case of a Yes answer, the traffic parameters sent with the request
are extracted to be used for scheduling traffic packets entering the domain.
Also, the router queue (WFQ) is set up since its weights are calculated and

broadcasted.
[5] Upon receiving the answer to the request, the source node has two options:

I- If the answer is Yes, the source node starts sending data to the Ingress

node at the rate and specification agreed upon.

II- In the case of a No answer, the source node application either changes
the traffic specification and tries again, or sends the traffic as Best Effort

traffic.

[6] The edge router monitors the incoming traffic by adding a token bucket used
to implement the QoS manager policies. Packets that violate their traffic spec-

ifications will be punished depending of the policies set by the manger.
[7] Two actions are to be used in this model for any non-conformant traffic flow:

* Drop low priority packets.

* Reduce their priority level if they are high priority type. The new priority
levels will be sent to the manger to recalculate the WFQ weights if there
are no other flows with this priority level. Otherwise, the packets that
have this priority will be delayed more, or even dropped in the case of link

congestion.

76

5.2.2 NS-2 Code Implementation
NS-2 Implementation for IPv6 QoS Manager

The ARM bandwidth broker is the latest BB implemented in the ns-2 simulator
for DiffServ simulations. It was modified to act as an IPv6 QoS manager since it
dynamically re-allocates unused resources. The ns-2 source is shown in Appendix
D. The following are the modifications proposed to the available ARM bandwidth

broker:

I Receiving requests come from the edge routers, not from sending hosts. Re-
quests processing will be handled by the QoS manager and the edge router.
Therefore, requests are sent from the sending nodes to the edge routers. Traffic
parameters for the accepted requests will be extracted at the edge routers for
scheduling and shaping purposes instead of receiving them from the domain
BB as in the DiffServ scenario. The GDI is used for processing requests which

results in lower delay than in the DiffServ.

II The QoS manager Database uses the GDI to record and trace current reserva-
tions. The BB database uses IP address, port numbers, and protocol number

to identify traffic flow packets (Section 2.2.1).

III Changes in traffic request specifications such as average rate and maximum
burst, have to be reported to the manager by the edge routers since traffic flows

are monitored at the edge point.

IV QoS policies will use the TC (priority level) field as the main parameter for
action in case of traffic violations. For example, higher priority traffic flows will
be dropped to lower priority level and low priority traffic flows will be discarded.
This is unlike DiffServ Assured service where packets are dropped if they violate
their traffic specification, even if they contain non tolerant real time traffic with

high priority.

7

NS-2 Implementation for IPv6 Edge Router

The ns-2 simulator’s QoSbox was modified to act as IPv6 edge router. In the next
section a simulation comparison between the QoSbox originally, designed for DiffServ,
operate on traffic processing, and the proposed IPv6 management scheme will be
shown. NS-2 source code is shown in Appendix D.

The following are the major proposed modifications to QoSbox:-

1. Change the classification and shaping to have rather than four traffic classes to
allow more differentiation between traffic lows. This will achieve fairer treat-
ment for packets with different priority levels. Also, only packets with lower
priority are dropped during congestion. The number of class buffers will de-
pend on the priority level (TC field) and the demanded bandwidth. Therefore,
incoming packets are not mapped resulting in fair and fast treatment at the

Ingress domain entries.

2. The modified QoSbox router receives QoS requests from hosts connected to it,
‘or from network leaf routers, and sends the requests to the domain QoS manager
for reservation decisions. In the case of available resources, a positive response is
received from the manager. A confirmation is sent back to either the generating
node or the leaf router. The traffic specifications for the accepted requests are
extracted from them to be used for scheduling and classification procedures. If

no resources are available, a rejection response is sent back to the source node.

3. The router has to update the QoS manager with traffic flow rates. In the case
of a drop in bandwidth demand for one of the traffic flows spare bandwidth is

reallocated. The percentage of drop is a policy set by the QoS manager.

4. WFQ and Class-Based Queuing (CBQ) will be implemented and tested at the
edge router. A mapping policy is introduced to assign queue weights using the

priority level and the requested bandwidth.

78

5.2.3 Simulation Setup and Results
Three Traffic Flows Simulation
Simulation setup

This model was tested on a network topology that has different traffic sources, edge
routers to handle QoS requests with the involvement of the QoS manager. The test
network is shown in Figure (5.3). The network consists of 11 nodes. Nodes 6, 7, 8
are the sending nodes that generate traffic flows with different priority levels. Node
6, the Highest Priority node, generates CBR (Constant Bit Rate) traffic flow with
priority level set to 15 (highest priority level) and the rate (Committed Information
Rate (CIR)) is set to 0.5 Mbps. Node 7, Source 2, generates CBR traffic with priority
level set to 12 and its CIR is set to 0.25 Mbps. Node 8, Source 3, generates best effort
traffic with the lowest priority level, 8, and its CIR is set to 0.25 Mbps. Node 0 is the
edge router that connects the three traffic sources. Each traffic flow assigned a flow
ID to identify it and to be used for reservation and routing purposes. The following

are the assignments for the flow IDs for the traffic flows involved in the simulation:-

* Flow ID 15 for the Highest Priority (node 6) traffic flow packets.
* Flow ID 12 for the Source 2 (node 7) traffic flow packets.

* Flow ID 8 for the Source 3 (node 8) traffic flow packets.

Node 0, edge 1, receives the request for bandwidth (CIR rate) and priority levels
from traffic sources, Highest Priority and Source 2. Then these requests are forwarded
to the network manager. Traffic scheduling and shaping for the incoming traffic flows
are also done at this node. The links are set up for 1 Mbps throughput and 1 msec
propagation delay. The packet size for all traffic flows is set to 500 bytes. Two
simulation scenarios are presented in this section. In the first scenario, traffic flow
generated from Source 2 is set to have 30% non-conformant factor, a rate of 0.325
Mbps instead of 0.25 Mbps. This traffic flow exceeds its profile which results in

enforcement of QoS manager policies by degrading packets belonging to this flow to

79

FIGURE 5.3: Testing the proposed scheme by simulating a simple network

best effort. This results in link congestion since total traffic flow rates exceed the
link capacity causing best effort packets to be dropped at the ingress router. Some of
the degraded packets belonging to Source 2 are also dropped since they are now best
effort type.

In the simulation, the token bucket algorithm is implemented to monitor all the traffic

flows. The following policies are set for this simulation model:-
e Degrade of Highest Priority traffic source to level 12 from level 15.
e Degrade Source 2 traffic to best effort class type from level 12.
e Drop the best effort traffic in case of violation or congestion.

Figure (5.4) shows how the QoS manager degrading the traffic priority down to the
level set by the manager and enforced by the token bucket module. It also shows
how messages are created during acceptance of requests from Source 2 and Highest
Priority nodes.

The QoS manager accepting requests by comparing the remaining bandwidth and
the requested bandwidth sent initially for each QoS request independetely. It sends

acceptance messages to node 0 (edge node) if the requested bandwidth is equal or less

80

‘aceeptingt

5 "requesteni ‘bandwidths SOUUD DIJCI UDU
0,t .000.0000001

th: 0,000000, bandwidth re

.Pa.ckcts Stahsncs

‘ CP Tl:othLs Tkats ldrops dchaﬁes

FIGURE 5.4: Sample output run showing Acceptance messages and some statistical
results showing flow ID, total packets, dropped packets and degraded packets

than the remaining bandwidth. Then these messages are forwarded to the Highest
Priority source and Source 2 nodes in this simulation scenario. The manger also
calculates the WFQ weights to differentiate degraded packets during processing at
the nodes’ queues. Priority levels are used to find the weights, that represent the
percentage of time the queue processor spent processing packets. These weights are
broadcast to all backbone nodes’ queues.

The second scenario, measures QoS performance for the same topology when the
Highest Priority traffic flow increases by 30% of its rate resulting in a new rate of 0.650
Mbps. The same policies were used which means this flow’s packets were degraded to
level 12. This affected the other two flows since the number of packets that belong to

priority 12 increases and links become congested resulting in packets to be dropped.

81

Table 5.4: End-to-end delay, packet loss rate and degradation rate comparison results
for three traffic sources during violation and non-violation scenarios

Traffic Flow Ave delay P. Degraded rate loss rate

Source No. | ID conformant | non conformant | non [conformant | non |
[H. Priority [15 | 13.714ms [1460lms | 0% [1931%| 0% | 0% |
[Source 2 |12 1359ms | 53.709ms | 0% [10.75% | 0% 8.62% |
[Source 3 |38 18346 ms [102448ms| 0% [0% | 0% 8.094% |

Simulated Results Analysis

Table (5.4) shows the results obtained from simulating the proposed algorithm and
testing conformant and non-conformant scenarios for each traffic flow. Four simula-
tion scenarios are performed to test how the proposed IPv6 QoS manager acts during
conformant and non-conformant traffic flows. In addition, to test all the three flows
when they are conformant to their rates, the Highest Priority source and the Source 2
traffic flows are tested during non-conformant case. The QoS parameters, end-to-end
delay and packet loss rate, are measured for all the scenarios mentioned and the ef-
fects of rates increase to the other flows are also observed. These two QoS parameters
will be used to measure the performance of all the QoS techniques used in this thesis
allowing direct performance comparison with the proposed IPv6 QoS manager. The
percentage of degraded packets was also measured. The following conclusions are
made from simulating the proposed IPv6 QoS manager:

A- Conformant Traffic Flows

I All the traffic flows have lower end-to-end delay, since traffic rates did not exceed
their initial rates. However, flow ID 15 and 12 achieved lower end-to-end delay

than flow ID 8 since their priorities are higher.

II No packets neither dropped nor degraded for all the three traffic flows for the

same reason mentioned early.

82

vy ' ' T ' ED_{S.0"
YDA O oo
Q2 - 10 GGUT s

dael |- -

DAy (s}

b
oo

Time sy

FIGURE 5.5: Delay for the tested three traffic flows during Source 2 non-conformant
traffic flow packets

B- Non-Conformant Traffic Flows

Each traffic flow is tested when its flow rate increases by 30% of the initial rate.

I Traffic flow ID 15 achieved 14.601 msec average end-to-end delay and no packets
have been dropped. However, 19.31% of the flow’s packets have been degraded
to priority level 12.

II- Traffic flow ID 12 achieved 53.709 msec average end-to-end delay and 8.62% of
the flow’s packet have been lost. In addition, 10.75% of the total packets were
degraded to best effort.

III- Best effort traffic has been effected by both flows during non-conformant sce-
narios. In case of the flow ID 15 non conformant simulation, the best effort flow
loss rate was 93.217% and the end-to-end delay was 222.448 msec. In the case
of flow ID 12 non-conformant simulation, best effort loss rate was 8.094% and

end-to-end delay was 102.448 msec.

83

0.4 T

“FID_15.out"
“FIDT12.0ut” -
"FID_B.out" ----ee-
0.35 | e .
03 | -
0.25 | :
8
(2]
< o2} i
o
[
Q
0.15 |- -
01| i
0.05 |- -
0 " = 1 1 i 1
0 5 10 15 20 25

Time (Sec)

FIGURE 5.6: Delay for the tested three traffic flows when all the three flows are
conformant

Also, during the Highest Priority source non-conformant traffic simulation, 8.62% of
Source 2 traffic packets are dropped, however, lower end-to-end delay achieved for
Source 2’s packets.

Figure (5.6) shows the delay graph for all the traffic flows during the conformant
simulation scenario. Higher priority traffic flows, flow IDs 15 and 12 experience lower
average end-to-end delay than the flow ID 8, best effort, which experience the highest
delay.

Figure (5.5) gives a clear picture of packets end-to-end delay for all the three traffic
flows during flow ID 12 traffic rate increase. Flow ID 8 packets delayed the most.
Traffic flow ID 12 packets started with a lower delay untill it reaches non-conformant
stage, traffic rate increases, at time t=7 sec. At this time packets are dropped to best
effort resulting in a higher end-to-end delay. The QoS manager policy is set to drop
traffic flow ID 12 to best effort if the original rate is exceeded. Highest Priority traffic
flow packets, flow ID 15, are delayed the lowest since they received the highest WFQ

weight compared to the other two flows.

84

In summary, the proposed IPv6 QoS management model performed very well and
excellent results have been achieved for non-tolerant traffic flows with high priority
set up. In addition, if traffic flows exceeds their initial traffic rates, non-conformant,
their priorities are dropped to a lower level which resulted in a higher delay and a

higher loss rate.

Six Traffic Flows Simulation

@ Destination Node

@ Coret

Source 5 \ @
\ ge, . _
wr /IO ©

Hidbest Priority

FIGURE 5.7: Six sources network topology

The topology used in this simulation has six traffic sources instead of the three
traffic sources used previously to test how the proposed QoS management model reacts
when there are more traffic sources. Three priority levels are used, high, medium and

low.

* High Priority: Priority for the Highest Priority packets are set to 15 and

Source 2 packets are set to 14.

85

0.35 T T T T
“one1.out”

“two1.out”

“three1.out"

LBk X+

03

0.25

Delay (s}

01

0.05 -

25

Times (s)

FIGURE 5.8: End-to-end delay for Six sources simulation

* Medium Priority: Source 3 and Source 4 traffic flows with priority levels set

to 12 and 11 respectively.
*x Low Priority: Sources 5 and Source 5 traffic flows with priority levels set to
9 and 8 respectively.
The network topology is shown in Figure (5.7).

Table (5.5) shows the simulation results of the six sources scenario. The high
and medium priority traffic flows achieved low end-to-end delay. The low priority
traffic flows achieved higher delay than the other two levels as shown in Figure (5.8).
No packets have been dropped from all the six flows. During non-conformant tests,
packet are dropped and delayed more from the low priority traffic lows. Packets
belong to the other two classes, high and medium are degraded to lower classes only.
The simulation results proves that the proposed QoS model scales well even if the

number of traffic flows doubled. In addition, high and medium priority traffic flows

achieve lower delay and 0% loss rate during congestion, traffic non-conformant.

86

Table 5.5: End-to-end delay, packet loss rate results for six traffic sources simulation
scenario

| Traffic Source No. | Flow ID | Ave delay | Packet loss rate |

[H. Priority [15 [13.58ms [0%]
| Source 2 | 14 [15.26 ms | 0%
| Source 3 | 12 | 1515 ms | 0%
[Source 4 [11 [17.798 ms | 0%]
[Source 5 |9 21.08 ms | 0% |
[Source 6 [8 24.846 ms | 0% |

5.3 Simulation of Other QoS Models

In this section the QoS performance of the network topology used in Section 5.2 was
tested under the IntServ, the DiffServ and the MPLS QoS models. In each simulation
scenario the network components have to support different QoS algorithms depending

on the scheme used.

5.3.1 RSVP Simulation Results

Topology Setup

An RSVP contributed patch was used to implement RSVP [78] in ns-2. All the nodes
used in Section 5.2 simulation including the destination and source nodes become
RSVP agents and support RSVP. The links between nodes are set to RSVP duplex
links with Param, RSVP admission control model and NULL scheduler defined by
the simulator. The link parameters are set to 99% of the link’s utilization is set for
reserved traffic, 200 bytes for RSVP signaling messages and 5000 bytes best effort
queue size. The flow IDs assigned for the traffic flows are, 100 for Highest Priority,
200 for Source 2 and 300 for Source 3 traffic lows packets. Two sessions, A and
B are set for the two traffic flows, flow ID 100 and 200. Session A is reserved for

the Highest Priority traffic packets, flow ID 100, and is intended for Destination

87

1. Session B is reserved for Source2 traffic packets, flow ID 200, and intended to
Destination 2. Changing path messages for these two sessions are set to start at 1.0
sec for the Highest Priority source and 1.5 sec for Source 2. The first RES message
is set to be sent at 2.0 sec from Destination 1 to the Highest Priority source that
iniate the PATH message. The other RES message is set to be sent at 3.0 sec from
Destination 2 to Source 2 in response to its PATH message. The Highest Priority
source starts by sending data packets at 2.5 sec and Source 2 at 3.5 sec after receiving
the reservation messages. Change of PATH & RES messages for these two sessions is
shown in Figure (5.13). Figure (5.9) shows the simulated network topology and how

traffic packets travel from the source nodes to the destination nodes.

Highest Priority

© ®

Source 3

\ RSVPS
RSVPS
i’m @ \
. Destination 1

/ 0

FIGURE 5.9: Network topology for RSVP simulation

Simulation Results

The simulation results are summarized in Table (5.6). Two simulation scenarios are

performed to test QoS performance during conformant and non-conformant traffic

flows.

88

'@ PATH EVENT at 1.882 :.5ID: : "SGBA0E SENDER: 6
3 pnm»t EVENT at .00t CKEY : 5000066 SENDER: &
1 PATH EVEMT at 1.6 580008 SENDER: 8
o P . ot &
2 i
3. e 7
i : 7
Je s 7
28 ’aae BHCKET: 500009 SENDER:Y: &
I i 880000 ‘SENDER: 6
o =f: SOBOEH SENDER: 6
B ;. SBOOHS SENDERY &
1 56008 BUCKET ;250060 ' SENDER: 7
3 5 6008 BUCKEY « ~2sgggg SENDER: ¥
© RESV. evsm af 3,688 1-SiD: I RATE: 250008 BUCKET:: 25 SENBER: 7
7 RESV EVENT at 3.819 3 :STO: € RATE:: 250008 BUCKET: 250009 SENDER: 7

beldys whel Sourcé -2':--vj,pié‘;e§f-

FIGURE 5.10: PATH and RES messages printed out during RSVP simulation

A. Conformant Traffic Flows

% Traffic flows ID 100 and 200 achieved 0% loss rate and lower end-to-end delay
than flow ID 300.

x Traffic flow ID 300 achieves also 0% loss rate.
B. Non-Conformant Traffic Flows

x Traffic flows ID 100 and 200 achieved 0% loss rate and a very high end-to-end

delay when their rates increase.

% Traffic flow ID 300 achieves 24.17% loss rate, however, the measured end-to-
end delay was lower than flows ID 100 and 200 because the extra packets are

dropped not queued.

Path setup delay, that includes changing of PATH and RES messages during RSVP
path setup, has to be added to the average end-to-end delay shown in Table (5.6).

Table 5.6: RSVP simulation results for End-to-end delay and packet loss rate

89

Traffic Source | Priority Flow Ave delay loss rate

No. Level ID conformant | non conformant non
| Highest Priority | 15 | 100 | 15.846msec | 160.499 msec | 0% 0%
| Source 2 | 12 [200 [14.04 msec | 169.234msec | 0% | 0% |
| Source 3 l Best Effort | 300 I 17.872msec | 136.97 msec | 0% | 24.168% I

This delay was 1.5sec and is added to each recorded average delay.

Figure (5.11) shows the delay diagram for the traffic flows when Source 2 exceeds its

Tspec. As shown packets belonging to this flow are delayed the most during non-

conformant, transmission rate increase. Source 3 traffic packets recorded higher delay

before the increase and as soon as the Source 2’s traffic rate exceeds its rate, Source’s

3 packets measured lower end-to-end delay than Source 2. The reason is that Source

3’s packets are dropped if there are no resources, however the Highest Priority and

Source 2 flows are delayed more and not dropped because they reserved resources and

their priorities are high.

Delay (Sec)

0.08

0.08

0.04

0.02

FIGURE 5.11:

:
10

'
15
Time (Sec)

It
20

25

End-to-end delay for three traffic flows during flow ID 200 non-
conformant when RSVP QoS protocol is simulated

90

Table 5.7: MPLS simulation results for End-to-end delay and packet loss rate

Traffic Source | Priority Flow Ave delay loss rate

No. Level ID | conformant | non conformant | non
[Highest Priority | 15 [100 [13.87 msec [40.93 msec | 0% [29.89% |
| Source 2 | 12 [200 | 14.47 msec | 42.65msec | 0% | 7.66% |
| Source 3 | Best Effort [300 | 16.20msec | 43.40 msec | 0% [25.91% |

5.3.2 MPLS Simulation Results:-

The MPLS network simulator (MNS) [79] patch was added to ns-2. Two simulation
scenarios are tested in this section, the MPLS secnario and the constrained based
routing using MPLS secnario. In each case the QoS performances are tested to
compare them with the proposed algorithm. The same network topology setup used
for the previous simulations is used here. However all the core nodes involved in
the simulation become MPLS agents, different routing and labeling algorithms are
supported. The links between nodes are set to duplex links and the MPLS domain
queues are set to CBQ queue. At edge 1, packets are encapsulated and new MPLS
labels are added to the IP packets. Three crlsp, constant based routing with lsp,
paths have been setup for the three flows to secure resources before they start sending

packets.

MPLS Simulation

Two simulation scenarios are presented in Table (5.7), conformant and non-conformant

traffic flows.
A- Conformant Traffic Flows

* Traffic flows ID 100 and 200 achieved 0% loss rate and lower end-to-end delay.

91

% Traffic flow ID 300 achieves also 0% loss rate, however, the measured end-to-

end delay was higher than flows ID 100 and 200 since flow ID 300 is best effort
traffic type.

B Non-Conformant Traffic Flows

% All traffic flows achieve high end-to-end delay when each one of the three flow

is tested as non-conformant.

x Packets belonging to the three flows are dropped during non-conformant sce-
nario. Flow ID 100 has the highest loss rate since its rate is equal to the sum
of flows’ ID 200 and 300 rates. Flow ID 300 has a higher loss rate than flow ID
200 because it is best effort and all the packets exceed the rate are dropped.

Figure (5.12) presents the delay for the three traffic flows during flow ID 200 non-

conformant simulation.

0.045

0.04

0.035

0.03 |- -

Delay (Sec)

0.025 |- -

0.02 u

001

0.01 1 1 '
[+] 5 10 15 20 25

Time (Sec)

FIGURE 5.12: End-to-end delay for the tested three traffic flows during flow ID 200
rate increase and the involvement of MPLS

The other simulation secnario, is using MPLS constraint routing where routing

paths are set depending on the QoS requirements. This is different from the previous

92

simulation case in which crlsps are set manually. The MPLS routing algorithms are
invoked and the paths are set up accordingly. The same set up used in MPLS is
used in this scenario and the outgoing nodes’ queues are CBQ queues. Paths in this
secnario are setup automatically according to the source rates and they change from

setup to an other setup as shown in Figure (5.13).

FIGURE 5.13: Printed out messages showing the explicit routes for each flow during
MPLS-constraint routing simulation

The same simulation procedures are followed where traffic flows are conformant
at the first time then each one of the flows are set to be non-conformant separately
to observe how the QoS parameters are affected by non-conformant. Table (5.8)
summarizes the results for the MPLS simulation that includes both conformant and

non-conformant simulation scenarios.

A. Conformant Traffic Flows
% All the traffic flows achieve 0% loss rate.

% Traffic flow ID 200 achieves the highest end-to-end delay since each traffic flow

uses different path resulting in a different end-to-end delay.

93

Table 5.8: MPLS constraint routing simulation results for End-to-end delay and

packet loss rate

Traffic Source | Priority Flow Ave delay loss rate

No. Level ID conformant | non conformant | non
| Highest Priority | 15 | 100 | 31.75 msec | 209.67 msec | 0% | 22.93% |
| Source 2 | 12 [200 [37.69 msec | 205.64msec 0% [9.24% |
[Source 3 | Best Effort [300 [29.39msec | 208.46 msec 0% |18.66% |

B. Non-Conformant Traffic Flows

% All traffic flows achieved a high end-to-end delay when each one of the three

flow is tested as non-conformant.

x Packets belonging to the three flows are dropped during non-conformant sce-

nario. Flow ID 100 has the highest since its rate is equal to the double of flow
ID 200 and 300. Flow ID 300 has a higher loss rate than flow ID 200 because
it is best effort.

The average end-to-end delay for the three traffic flows for the conformant test is

shown in Figure (5.14)

94

0.095

' ' ' ' ' ' " FID_100.0ut"
"F|D.200.0ut"
0.08 - "FID{B00.out" -------- 8

0.085
0.08
0.075

0.07

0.065

Delay (Sec)

0.06

0.055

0.05

0.045

0.04

Time (Sec)

FIGURE 5.14: Delay for the tested three traffic flows when MPLS-constraint routing
is simulated

5.3.3 DiffServ Simulation Results:

In this section different simulation scenarios are designed to test the QoS performance
of a DiffServ domain using a BB and implementing a Token Bucket policy model.
The other simulation secnario is testing the implementation of the QoSbox, that
has been modified in the thesis to act as the IPv6 edge router. The same network
topology used in Section 5.2 will be used in the DiffServ simulations. This box
acts as a QoS manager, scheduler, and a policer. Traffic flows are processed at this
box before entering the network domain. However, there is no cooperation with the
other elements located in its domain or other neighbouring domains. The lack of

cooperation results in no adjustment in processing of traffic flows during congestion

or node failures.

DiffServ Simulations using Token Bucket

In this section the ARM BB is used to control the DiffServ resources and to have a
direct comparison with the proposed IPv6 QoS manager [74]. A token bucket policer

is chosen for monitoring and policing purposes since it was used to monitor traffic

95

0.034

0.033 (e ---- oo ceec oo seeeeses !

0.032

0.031

0.03 -

"flow:_1 00.out” +
"flow _200.cut” ~
"flow_300.0ut” -------- .

0.029

Delay (sec)

0.028 -

0.027 -

0.026 -

0.025

0.024
o]

5

10

15
Time (sec)

25

FIGURE 5.15: Delay for the tested three traffic flows for DiffServ simulation using
Token Bucket policer

flows during the proposed IPv6 QoS management simulations. The simulation results

are summarized in Table (5.9) which includes both conformant and non-conformant

scenarios for each one of the traffic flows.

A. Conformant Traffic Flows

* There are no packets dropped from all the three traffic flows.

Table 5.9: DiffServ simulation results using Token Bucket policer for End-to-end delay
and packet loss rate

Traffic Source | Priority Flow Ave delay loss rate

No. Level ID conformant | non conformant | non

Highest Priority | 15 [100 | 29.20 msec | 211.94 msec 0% | 14.78%
[Source 2 [12 [200 | 26.88 msec | 200.85msec | 0% | 7.40% |
Bource 3 | Best Effort | 300 | 30.88msec | 199.59msec] 0% [5.914% I

96

x Traffic flow ID 300 end-to-end delay is the highest since it is a best effort traffic
type.

B. Non-Conformant Traffic Flows

% All traffic flows achieve high end-to-end delay when each one of the three flow

is tested as non-conformant.

% Packets belonging to the three flows are dropped during non-conformant sce-
nario. Flow ID 100 has the highest loss rate since its sending rate equals to the
sum of the rates of the other two flows. In addition non conformant packets are

dropped at the ingress routers.

Figure (5.15) shows the delay digram for the DiffServ secnario secnario for the

three traffic flows during flow ID 200 non-conformant test.

QoSbox Simulations

In this section the QoSbox that has been discussed in Section 2.2.2 is simulated to
compare its QoS performance with the QoS manager proposed in this thesis. This box
uses delay and bandwidth for reserving resources and classifying traffic flows. The
traffic classification is done by mapping the flows to pre-defined classes according to
the flows specifications. In this scenario, the same topology is used and the edge
routers are QoSboxs. The three flows have assigned flow IDs for recording purposes
and they are, 100 for the Highest Priority source, 200 for Source 2 and 300 for Source
3. The pre-defined classes are set as shown in Figure (5.17) in which five jobs queues

are shown.

e RDC (relative delay constraint) has been set for the four pre-defined classes

as follows:-

a- Not concerned for class 1.

97

0.3 T . - b

0.25

02 [

Delay (sec)
(=]
o
T

01

0.05

0 5 10 15 20 25
Time (sec)

FIGURE 5.16: Delay for the tested three traffic flows for QoSbox simulation

b- Classes from two to four has a factor of 4 means that class 3 delay is 4

times class 2 and class 4 delay is 4 time class 3.

e rlcs (relative loss constraint) where class 1 is set to -1 "not concerned”,

class 3 loss rate is set to be double class 2 loss rate and also for class 4 twice

class 3 loss rate.

e alcs (absolute loss constraint) in which classl assured loss rate that does

not exceed 10%. and the other class are set to be not concerned.

¢ adcs (absolute delay constraint) as the previous queue only class 1 guaran-

teed delay does not exceed 0.001 msec.
e arcs (absolute rate constraint) and all class classes are set to not concerned.

The same simulation procedures followed in Section 5.2.2 were followed in this section.

Each traffic flow tested when its rate is conformant and non-conformant. The effect

98

Configured RDL; with:
L] Not concemed;

- (64.008000)
L £15.600008)
Class 4 {4: 689666)
Conﬁgumd RLC, m.th;
2
Class 2: {8, 090080)
Class 3: (4. 9@96&3)
Class 4% {2-600660)
Ccnf:,gured A{C_ mth'
Class 1: 6.610608
Class 2: Not concemed
Class 3: Not concerned;
Class 42 Not: concerned

Configured ATC, witix
€lass 13 6.801608 secs
Nod

o oarnes
Not-concerned

Not concernesd

Configured: RDC, with:

class 1; Not' ‘corcerned

Class 4.060608 {54.908086)
Class 3t 4.600008 (16,600008)"
CYass 4: 4. 860068 (4000600}

Configured RLC, with:
Ctass 1:

Class 2 (8, 800068)
‘Class 3¢ {4.900668)
Class %; (2,060800)
Contigured ALC, ‘with:

Tlass 1: 9.816008

Class 2 Notconcerned

Class 3: Not concerned

Class 4; Not:concernod:

FIGURE 5.17: Simulation messages during jobs simulation

on the conformant flows when one of the other flows is non-conformant was also
tested. The results are summarized in Table (5.10). As seen from this table, during
conformant traffic flows, only the Highest Priority source drops 0.954% and the other
two sources suffer no packet loss. The average end-to-end delay for all the flows were
small. Figure (5.16) shows the end-to-end delay for the three flows.

The second secnario was to test each flow independently when its rate increases, non-
conformant. The QoS parameters for non-conformant flows were observed and also
the effect on others, conformant flows was observed.

The following is the summary of the results during non-conformant traffic flows:

99

Table 5.10: Jobs simulation results testing QoS parameters, End-to-end delay and

packet loss rate

Traffic Source | Priority Flow Ave delay loss rate

No. Level ID conformant | non conformant | non
| Highest Priority | 15 [100 | 14.52 msec | 14.144 msec | 0.954% 1.81%
[Source 2 [12 [200 [13.97 msec | 227.10msec 0% [7.275% |
| Source 3 | Best Effort | 300 | 17.30msec [239.28 msec | 0% | 14.18% |

1. Non-conformant Highest Priority source traffic flow, the average end-to-end

delay is not affected however, more packets are dropped. Flows ID 200 and 300
QoS parameters suffer QoS degradation and loss rates recorded for both flows
were 17.94% and 42.779% respectively. The average delay recorded for the flows
IDs’ 200 and 300 were 319.94msec and 15.38msec respectively. Therefore, flow
ID 100 non-conformant situation has affected flow IDs 200 and 300 by both
higher end-to-end delay and higher loss rate.

. Non-conformant Source 2 traffic flow, the average delay for this traffic flow is
increased to 227.10 msec and loss rate is 7.27%. The Highest Priority source
traffic flow delay and loss rate are not affected by this rate increase. Traffic
generated by source 3, recorded 24.34 msec delay and 14.70% loss rate during
flow ID 200 non-conformant simulation. Therefore, flow ID 200 non-conformant
test has resulted in a high packet loss and a high end-to-end delay for flow ID
300 only.

. Non-conformant Source 3 traffic flow, the average delay is 239.29 msec and loss
rate is 14.18%. Source 2 traffic packets recorded 25.24 msec and 6.26% loss
rate which is indication that flow ID 200 has been effected by flow ID 300 rate

increase.

100

The Highest priority traffic packets were not affected during testing the other two
flows non-conformant rates. However the other two sources flows packets experience
more delay and more loss rate when their flows are non-conformant and also when

other flows are non-conformant.

5.3.4 Simulation Results Comparison between the Proposed

IPv6 QoS Manager and other QoS Techniques

In Sections 5.2 and 5.3, the simulation results for the proposed IPv6 QoS management
model and the IntServ [74], DiffServ [74] and MPLS models were presented. In
this section, a summary comparison of the achievements of all these schemes will be
discussed. Table (5.11) shows the comparison between the IPv6 proposed scheme
and the other QoS techniques. The flowing are the comparison comments that are

concluded:

5.3.5 Average end-to-end delay

% The proposed IPv6 model achieved lower delay during conformant and non-
conformant scenarios for the Highest Priority traffic source. The rate increase
did not causes the delay to increase. Source 2 and Source 3 achieves low delay
when their flows are conformant and high delay during non-conformant traffic

flows.

»x The IntServ model achieves low delay for all the three flows during conformant
traffic flows simulation, however, during each traffic flow rate increase the delay
increase to 160 msec for the Highest priority source and Source 2 flows that
reserve resources. Source 3 traffic flow achieved high delay when its flow flow is

non conformant.

+« During MPLS simulation, all the three traffic flows achieve low delay. On the

other hand, the delay increases for each traffic flow when its rate increase and

101

Table 5.11: Simulation results comparison between the IPv6 model and other QoS

methods
QoS Method | Traffic Ave delay loss rate
Source conformant | non-confor. | conformant non-confor.
IPv6 model H. Priority | 13.714 msec | 14.60 msec no drops 19.31% Degrad
Source 2 13.59 msec | 53.71 msec no drops 8.62% drop
Source 3 18.25 msec | 102.45 msec no drops 8.094% drop
IntServ model | H. Priority | 15.85 msec | 160.499 msec | no drops no drops
Source 2 14.04 msec | 169.234 msec no drops no drops
Source 3 17.87 msec | 136.97 msec no drops 24.168% drop
MPLS model | H. Priority | 13.87 msec | 40.93 msec no drops 29.89% drop
Source 2 14.47 msec | 42.65 msec no drops 7.66% drop
Source 3 16.20 msec | 43.40 msec no drops 25.91% drop
MPLS model | H. Priority | 31.75 msec | 209.67 msec no drops 22.93% drop
Constraint Source 2 37.69 msec | 205.64 msec no drops 18.66% drop
Routing Source 3 29.39 msec | 208.46 msec no drops 9.24% drop
DiffServ model | H. Priority | 29.20 msec | 211.94 msec no drops 14.78% drop
Source 2 26.88 msec | 200.85 msec no drops 7.40% drop
Source 3 30.88 msec | 199.59 msec no drops 5.914% drop
QoSbox model | H. Priority | 14.52 msec | 14.14 msec | 0.954% drop 1.81% drop
Source 2 13.97 msec | 227.10 msec no drops 7.275% drop
Source 3 17.30 msec | 239.28 msec no drops 14.18% drop

102

be as a non conformant traffic flow.

% The constraint MPLS routing simulation results in a high delay for the three
flows when their rates are conformant, since paths have to be set for each
individual traffic flow. The rate increase for each individual traffic flow results

in a very high end-to-end delay for packets belonging to that traffic flow.

% The DiffServ simulation using ARM BB results in a high delay for all the three
flows when their rates are conformant. This is caused by the time needed to
map each flow to a DiffServ class. The delay will be higher for each one of them

when its rate is non conformant.

x The QoSbox simulation results in a low delay for all the three flows when their
rates are conformant. During rates increase, the Highest Priority traffic flow

achieves lower delay than the other two traffic flows.

5.3.6 Average Packet Loss Rate

x No packets have been dropped during the proposed IPv6 QoS management
model simulation when all the three traffic flows are conformant. Packets be-
longing to the Highest Priority source were degraded to a lower priority during
the flow’s rate increase. The other two flows achieve less than 10% drop rate

when their rates are non-conformant.

x No packets are dropped during the IntServ model simulation for both the High-
est Priority and Source 2 flow for both conformant and non-conformant sce-
narios. Only Source 3 traffic flows packets are dropped when its rate is non

conformant.

* During the MPLS simulation, all the three traffic flows achieve 0% drop rate
during conformant test. On the other hand, during non-conformant test, 30%
of the Highest priority source packets are dropped, 8% of the Source 2 packets
are dropped and 26% of the Source 3 packets are dropped.

103

% The constraint MPLS routing simulation results in a zero drop rate for the three
flows when their rates are conformant. The rate increase for each individual flow
results in packets dropped, 23% from the Highest Priority, 19% from Source 2
and 9% from Source 3 traffic packets.

% The DiffServ simulation using ARM BB results in a 0% packet drop rate for
all the three flows when their rates are conformant. All the three flows packets

suffer loss rate when their flows are non conformant.

x The Highest Priority traffic source packet are dropped during conformant and

non-conformant scenarios, 0.954% for conformant test and 1.81% for non-conformant.

The other two flows have 0% loss rate during conformant scenario and 7% of

Source 2 packets and 14% of Source 3 packets during non-conformant scenario.

The following are performance comparison during the two tests for all the models for

the following traffic types :
1. Highest Priority traffic type and conformant test.

e IPv6 and MPLS models achieved the lowest average end-to-end delay.
¢ QoSbox and IntServ achieved also lower average end-to-end delay.

¢ DiffServ and MPLS with constrain routing achieved the highest average
end-to-end delay.

e No packets have been dropped during all the tests except the QoSbox
which dropped 0.954% of total flow packets.

2. Highest Priority traffic type and non-conformant test.

e IPv6 and QoSbox achieved the lowest average end-to-end delay.
e MPLS achieved a high average end-to-end delay.

e DiffServ and MPLS with constrain routing achieved a very high average

end-to-end delay.

104

IntServ achieved the highest average end-to-end delay.

No packets have been dropped during IPv6 model non-conformant test but

they were degraded to a lower priority.

No packet have been dropped during IntServ model non-conformant test.

QoSbox model achieved the lowest drop rate and MPLS model achieved

the highest drop rate.
3. Medium Priority traffic type and conformant test.
¢ IPv6, QoSbox, MPLS and IntServ models achieved the lowest average end-

to-end delay.

e DiffServ and MPLS with constrain routing achieved the highest average
end-to-end delay.

e No packets have been dropped during all the tests.
4. Medium Priority traffic type and non-conformant test.
e MPLS model achieved the lowest average end-to-end delay, IPv6 achieved

a higher average end-to-end delay than the MPLS model.

e QoSbox, DiffServ and MPLS with constrain routing achieved a very high
average end-to-end delay, however, IntServ achieved the highest average

end-to-end delay.
e No packets have been dropped during IntServ test.

e IPv6, QoSbox, DiffServ and MPLS achieved a low drop rate, however
MPLS with constrain routing achieved the highest drop rate during this

test scenario.
5. Best effort traffic type and conformant test.

e MPLS, IntServ, QoSbox, and IPv6 models achieved the low average end-
to-end delay.

105

e DiffServ and MPLS with constrain routing achieved the highest average
end-to-end delay.

e No packets have been dropped during all the tests.
6. Best effort traffic type and non-conformant test.
e MPLS model achieved the lowest average end-to-end delay, IPv6 achieved

a higher average end-to-end delay than the MPLS model.

e IntServ, DiffServ and MPLS with constrain routing achieved a very high
average end-to-end delay, however, QoSbox achieved the highest average

end-to-end delay.

o DiffServ model achieved the lowest drop rate.

o IPv6, QoSbox and MPLS with constrain routing achieved a high drop rate
than DiffServ, however IntServ and MPLS achieved the highest drop rate.

Therefore IPv6 simulation of the proposed model outperformed the others for the
highest priority traffic types either by achieving lower delay or 0% packets drop rate.
It also achieved good results with the two traffic types.

106

5.4 Simulation of two and three QoS domains us-

ing IPv6 QoS management models

5.4.1 Two Domains Simulation

Simulation setup

As mentioned in Chapter 4, the last simulation scenario will be to test if a destination
node is connected with an other IPv6 domain that supports QoS. Source node 12 ,
Highest Priority, sends a request for a CBR traffic flow with a rate 0.5 Mbps and has
priority level set to 15 to Destination Node(1l). Source node 13, Source 2, sends a
request for CBR traffic flow with 0.25 Mbps CIR and priority set to 12 to Destination
Node(2). Source node 14, Source 3, send a Best Effort traffic at 0.25 average rate to
Destination Node(3). All the generating sources are connected to domain 1 through
node 0, Edgel. Therefore, all QoS requests have to be sent to this node to be for-
warded to the domainl manager and all responses are also forwarded back through
this node to the nodes generated these requests. Node 2, Edge3, is the entrance node
for domain 2, which means all packets passing through this domain has to pass this
node first. The network topology is shown in Figure (5.18)

The Highest Priority source requests are processed locally inside domain 1 since the
destination node is located at the same domain. Domain 1 manager checks for re-
sources availability only since it has already confirmed that Destination Node(1) is
located at the same domain. Source 2 requests are forwarded to domain 2 QoS man-
ager since destination Node (2) is not located at the first domain. Therefore resource
are reserved in both domains allowing Source 2 data packets to receive the QoS re-
quested. Token bucket is implemented at edge 1 to monitor all the traffic flows packets
and applying domain 1 QoS manager policies concerning non-conformant cases. The
Highest Priority packets will be degraded to level 12, packet with priority 12 degraded
to best effort and finally best effort packet are dropped during congestion.

The simulation setup procedures will be the same as explained in Section 5.2.2. First

107

all the follows will not exceed their initial rates, conformant, then each traffic flow
exceeds its rate by 30% , non-conformant. Average end-to-end delay and packet loss

rate are measured in each scenario.

Figure (5.19) shows the average end-to-end delay for the three flows during non con-

L
N

g

gestion (non violation).

*:é"/ -
®

|
\5/ 2

FIGURE 5.18: Simulated two domain network topology

Sourh 3

Results Analysis:

Table (5.12) summarizes the results obtained from simulating two IPv6 domains.
Traffic flows are tested for two scenarios, during conformant and non conformant
traffic flows that caused by one of the traffic sources rate increases of 30%. Each
time a traffic flow is non-conformant, its rate increases, the delay and the loss rate
are recorded at the destinations. The following is the summary of simulation results

comiments:

I- Each time Highest Priority and Source 2 traffic flows were non-conformant, best

108

0.026 ey T T T T T T T
*non_1.out’
“non_2.0u" - -
: i "non_3.out® --------
0.022 |- 1
)
3
= 002 b
ot
[]
o
3’ s s s s
S 0018F: 4
g |
g
0.016 [b
|
0.014 f
0.012 I 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45

Simulation Time (sec)

FIGURE 5.19: Delay for the tested three traffic flows for two domain simulation

effort traffic low delayed the most and also some of its packets are dropped. For
example when the highest priority traffic rate increases, average delay for Source

2 packets is 25.800msec, however; Source 3 measured delay was 275.086msec.

ii- Source 2 average delay was higher than highest priority and best effort since it

was passing two domains.

I1I- In the case of Source 2 traffic flow was non-conformant, its flow packets were
degraded to best effort and then dropped in the case of congestion. There is no

QoS guarantee for Source 2 traffic flow where its rate increases.

109

Table 5.12: Two domains simulation results testing QoS parameters, End-to-end
delay and packet loss rate

Traffic Source | Priority Flow Ave delay loss rate

No. Level ID conformant | non conformant | non
| Highest Priority | 15 [100 [14.214 msec | 14.94 msec [00% [0.0%
| Source 2 | 12 [200 |24.218 msec | 25.66lmsec | 0% [0% |
| Source 3 | Best Effort [300 | 18.392msec | 131.374 msec | 0% [20.866% |

5.4.2 Three Domains Simulation

In this simulation scenario, three IP QoS domains are tested and three destination
nodes are attached to each one of the domains as shown in Figure (5.20). The purpose
of this simulation scenario is to test the flexibility of the proposed QoS model. The

following is the setup of the traffic flows used in this simulation:-

e Source 1 generates a traffic flow at average rate of 0.5 Mbps, priority level is
set to 15, highest priority, and intended to Destination 3, located in the third

domain.

e Source 2 generates a traffic flow at average rate of 0.25 Mbps, priority level is
set to 12, medium priority, and intended to Destination 2, located in the second

domain.

e Source 3 generates a best effort traffic flow at average rate of 0.25 Mbps and

intended to Destination 1, located in the same domain.

Therefore, Source 1 traffic packets has to traverse all the three domains to reach the
destination and QoS reservation has to be done in all the three domains. Source 2
packets has to traverses only two domains and reservation has to be done on Domain

1 and 2.

110

Table 5.13: Three domains simulation results testing QoS parameters, End-to-end
delay and packet loss rate

| Traffic Source No. [Priority Level | Flow ID | Ave delay [Packet loss rate |

[Highest Priority | 15 | 100 [35.14 msec | 0.0%
| Source 2 | 12 | 200 [25.661msec | 0%
| Source 3 [Best Effort | 300 | 18.35msec | 0% |

Results Analysis:

Table (5.13) shows the results obtained from this simulation. The three traffic flows
are tested when they are conformant and only Source 1 traffic flow tested during
non-conformant to see the effect on delay and loss rate on the other traffic flows.
The following are the summary of the comments drawn from Table (5.13) and Figure

(5.21):-

% Flow ID 100, high priority, packets have achieved low end-to-end delay dur-
ing conformant and non-conformant tests compared with the other two flows
since they traverse three domains. There are no packets dropped during both

conferment or non-conferment.

% Flow ID 200, medium priority, packets have achieved also low end-to-end delay
compared with the best effort even though it traverses two domains. No packets
have been lost. During Flow 100 non-conferment test, delay increased by 11 '

msec however no packets have been lost.

% Flow ID 300, best effort, packets have achieved the highest delay and packets
have been lost when Source 1 increases its sending , flow ID 100 non-conferment

test.

In conclusion, the proposed QoS management model proved to be flexible and scalable

since excellent results have been achieved even with two and three domains.

111

Ceth

FIGURE 5.20: Simulated three domain network topology

0.4 T T T T
"onei.out” +
“twot.out” “
"three1.out" *
0.35 —— B
*
*®
Fosd
03 | . -
) %
%
0.25 |- ¥ -
. ¥
n
= ¥
& 02 * a
D E 3
o Fod
*
0.15 3 .
¥
o
0.1 .
§
]
0.05 + ¥ .]
0 1 1 1 1
0 5 10 16 20 25

Times (s)

FIGURE 5.21: Average delay for the three traffic flows

Chapter 6

Implementation of Internet billing

on the IPv6 QoS manager

6.1 Introduction and Motivation:-

It is expected that in the very near future integrated QoS capable networks will
emerge which provides a variety of transmission services, such as telephony, video,
interactive games, teleconferencing, file transfer and all the other traditional Internet
services. Upon accepting a user connection, this system will be capable of negotiating
QoS parameters and guaranteeing the agreed quality. This differentiation of traffic
flows causes the Internet elements to process them differently according to their data
contents. Pricing, therefore, becomes an important but not critical issue in today’s
Internet, however this is changing [80]. Traditionally, the individual users have not
been charged for their use of networks resources, and have not generally been aware of
the impact of their use on network performance. As a result, the traditional Internet
pricing schemes, institutional funding or flat rate for unlimited usage, are unfair
and have no differentiation between different traffic flows that have different QoS
requirements. The achievement of QoS-enabled networks makes pricing an important

issue. Most of the proposed pricing schemes address the following categories [60]:

112

113

I- Economic Efficiency and Optimality which means achieving the optimal overall

net value of network usage.

II- Simplicity and Scalability in which designing a simple and a scalable architec-

ture/scheme.

III- Quality of Service (QoS) by allowing the service providers to provide better QoS

guarantee to the customers.

IV- Low cost in implementation and usage by keeping the implementation and usage

of a pricing scheme low for both network providers and Internet users.

Most of the previously used proposed pricing schemes [58] [81] [82] [83] [59] [60] [61]
tried to address one or more of these issues and so far there has not been a well-
accepted solution.

This Chapter uses a new dynamic pricing scheme that considers the status of the
network and the traffic type when prices are calculated and addresses the four points
shown above. This scheme when combined with the IPv6 QoS management scheme,
takes the advantage of GDI for recording and tracing customer charges. The combi-

nation is referred to as the integration pricing model in the following sections.

6.2 Review of the Internet Pricing Schemes

Recently, pricing schemes for the Internet has been an active research area. In this

section some of the known pricing approaches are reviewed.

6.2.1 Flat Pricing [58]

Under a flat pricing scheme the user is charged a fixed amount per unit time, ir-
respective of usage. This scheme has desirable advantages. First, it is simple and

convenient since no assumptions are made about the underlying deployed network,

114

and no measurements are required for billing and accounting. Secondly, the scheme
assumes that there is relatively stable demand for resources, and makes no attempt
to influence the individual traffic flows. For this reason the scheme is unsuitable for
congestion control or traffic management. All users are charged the same even if some

of them suffer packet loss while others consume all the resources.

6.2.2 Priority Pricing [58]

Priority pricing requires users to indicate their traffic value by setting the priority
field in every IP packet header. In this scheme, measurements are required for billing
and accounting to keep track of the priority level of each user transmitted packet.
During periods of congestion, traffic is transmitted by priority level, and low priority
traffic is either delayed or dropped. Priority pricing scheme, P, p, is defined by two
flags (two bits), by priority flag and by non-drop flag. This results in four service

classes:-
1. P, Base class (best-effort).
2. P;o non-drop and low priority class .
3. Py drop and high priority class.
4. P, non-drop and high priority (real time) class.

The cost relation between these classes are Py jcost = 3 x Pygcost and P gcost and
Pyicost = 2 % Pygcost (81]. Priority pricing raises the economy efficiency of the
network since only low value packets are dropped. Under this scheme, the user selects
one of the four classes to maximize the overall of satisfaction (QoS insurance). The
network processes all the incoming packets by priority, maintaining different queues
for each class. The packets are queued on an FIFO basis and transmitted by priority

level.

115

6.2.3 Smart-Market Pricing [82]

Smart-market pricing focuses on the issues of capacity expansion and costs imposed
on customers. The latter includes such as connection cost and per packet cost that
covers the incremental cost of sending a packet. Mason and Varian [82] introduced
a usage charge, during network congestion, which is determined through an auction.
The user inserts a bid price in each packet’s, carried in the packet’s header, communi-
cating the user’s willingness to pay for transmitting the packet. The network collects
and sorts all the bids, and sets a threshold value. All packets whose bid exceeds the
threshold value are transmitted. The threshold valued is determined by the network’s
capacity and represents the marginal cost of congestion. Each transmitted packet is
then charged this marginal cost. This scheme performs like a priority scheme in which
traffic-flows with low QoS demand are not guaranteed resources. Traffic packets are

transmitted according to their relative priority and bid prices during congestion.

6.2.4 Edge Pricing [83]

Edge pricing combines the approximation of congestion conditions such as time of day
and expected path, where charges depends only on the source(s) and destination(s).
Therefore, the resulting prices can be determined and charges are assessed locally
at the access point. Prices are computed at the domain providers’ edges where the
users’ packets enter the domain network rather than computing them in a distributed
fashion along the entire path. Therefore, the focus is shifted to locally computed
charges based on a simple expected values of congestion and route. Such a pricing
scheme is much simpler than the previous one, and facilitates receiver payments. Traf-
fic management can be supported when this scheme is associated with ATM /RSVP.

However, traffic measurements for billing and accounting may still be required.

116

6.2.5 Per-Packet pricing scheme [59]

In this scheme each packet carries electronic money, which is used to pay routers in

return for services. Each packet header includes the following fields:-
1. User identity header which is used to identify the user by the billing system.

2. Accumulated charge field that includes the total amount of electronic money

that the user is to be charged. It is updated by routers based on pricing scheme.

3. Money field unit is used by users to set an upper limit to the total amount

that will be charged by the network for servicing transmitted packets.

Each router in the per-packet billing domain has a field that is used to accumulate the
payments for its services. This field is incremented for each packet serviced when the
packet arrives at the last hop. Information about the user is sent to a central billing
data base. Users are charged according to the accumulated collected information for

the packets they sent.

6.2.6 Dynamic Pricing model[60] [61]

This scheme is introduced as the DiffServ end-to-end pricing scheme. In this scheme
pricing is focused on the core networks and end-to-end pricing is pushed to the access
network. It is up to the end-user access network that decide whether a flow should
enter its domain or not. Two pricing tables, domain and global tables, are defined
by this scheme. A price entry in the domain price table represents the price of a
service class from one edge node to another edge node within the same domain. A
centralized pricing station for each domain communicates with all domain elements
and collects all the price information. As a result this station maintains a price table
for each ingress-egress pair within the domain. However, a price entry in the global
price table represents the price for a service class from one domain to another.

This model is based on market model where the values for the base price Py, and

the fill factor f; is set by the network provider for each traffic type. The fill factor

117

f; is defined as the ratio between the target capacity T; and the maximum capacity
Ct .. for a class service i. This scheme starts by assuming the base price P}, which
reflects the equipment cost, maintenance/administrative costs and business revenue
considerations for a network element. Py, _, is computed offline and prices are classified
according to the traffic class QoS demand, higher prices are applied to higher QoS
traffic flows. Service providers sets different f; for each traffic class to enable service
differentiation between classes. To compute the dynamic price of a service class, the

following equation is used [84]
P(t)= Pt —-1)+a*(D; — T3)/T; (6.1)

Where P;(t) denotes the price for a class ¢ at time ¢ and D; is the demand or current

load for class 7 and «; is the convergence rate factor.

Price

i
Pbase

£ 1
Load

FIGURE 6.1: General Pricing strategy

Figure (6.1) illustrates the general pricing strategy. When the load for a particular
service class is lower than its targeted capacity, the price is the base price P, for
that particular service class. As the load exceeds its target capacity, the price will
be increased rapidly and even dramatically when the load is close to the maximum

capacity. The following equation is used to adopt the exponential growth of the

118

pricing strategy during the demand increase.

Pise ifDi < T;
P)={ ' . (6.2)
i a-[&—l] .
base€ T otherwise

A price limit, P can be set for each class service and this indicates the price

mazx?

when the demand reaches the maximum capacity. It is calculated using the following

equation

i pi almi-]
P _Pbasee * (63)

mazx

Therefore knowing P! __, Pi,.. and fill factor f; for a class service i gives the

max?

solution for the convergence factor «;.

%
P, max
%
R, base

e fifi) (6.4)

The total revenue will be the sum of all classes prices. This model is used in

a; = log(

DiffServ domain.
The dynamic pricing scheme was chosen to be integrated with the proposed IPv6 QoS

management model for the following reasons:

1. Prices are changing according to the network status which results in high prices

for the QoS guaranteed traffic flows resulting in a good profit.

2. Revenues are accumulated at the edge routers which works perfect for the pro-

posed model since all the domain’s traffic flows are monitored at this point.

3. The proposed QoS manager reserves resource dynamically and this pricing

method is charges the customers dynamically.

119

6.3 The Integration of the Proposed IPv6 Man-
ager with the Dynamic Pricing Model

6.3.1 Introduction:

It is more desirable to tie the pricing scheme with admission control in any QoS en-
vironment. This will solve the concern of users and network providers since resources
are controlled by the domain control and prices for each traffic flow are managed
by the pricing scheme. Therefore, integrating management control with the billing
system will handle all customers and providers concerns. The design of the proposed

architecture is based on the following:

1. A QoS management system that differentiates between traffic flow and secures

their requested resources in the case where resources are available.

2. The price will reflect the availability of the domain resources on which prices are
different for each traffic flow. Also, as the filling factor f; for a flow ¢ increases,
the price for that flow increases. Therefore, prices during network congestion
increase, and only traffic flows that request QoS are capable of paying higher

prices are allowed.

3. Scalability in which core routers do not perform any accounting procedure.
Billing and accounting agents are kept at the edge of the network. The edge
router receives all QoS requests and forwards them to the QoS manager where
a decision is taken, and traffic specification is sent to the pricing agent in case
of acceptance. The pricing agent calculates the price of the accepted traffic
flow by checking f; and then using formula (6.2) to find the right price for the
accepted traffic flow. The price is then sent to the edge router to be forwarded

to the customer that iniated the request.

4. Simplicity and fairness. The model charges customers according to their traffic

type and status of the network. Each traffic flow is assigned a base price different

120

than the others based on its contents. Real time traffic is charged more than
data traffic. The base price increases as the network reaches congestion, and

only traffic packets for customers who accepted the new prices are delivered

6.3.2 Implementation and Deployment
Implementation

Figure (6.2) shows the flow chart of the integrated pricing model. In this figure, each
unit function involved in the pricing and accounting process are shown. It starts at
the source which initiates the QoS request and then waits for the responses of the
acceptance messages and their associated prices. The edge router does the forwarding
for requests, and in addition monitors all traffic packets entering the domain. The
IPv6 QoS manager processes the QoS requests and then sends the network status for
each accepted traffic flow to the pricing agent. The pricing agent calculates the price
for each accepted traffic flow by first finding f; using the information received from
the domain QoS which includes the expected traffic rate (T;) and the max allowed
rate (C%,.). The pricing agent, attached to the edge router, will iniate the price
according to the network status and the defined base price (Pj,,) for each traffic
class initially accepted by the manager. All the prices are then sent to the customers
who iniated the requests together with the resources acceptance messages. Finally

each customer decides either to start sending packets or reject the price.

Pricing Strategy

Two parameters can affect any dynamic pricing model, response time and pricing
interval. The value of these two parameters affect the stability of the pricing system.
Response time is the time taken to convey the price signals back to customers plus
the time for customers to react to these signals. The pricing interval is how often a
price will be updated or recalculated. If the response time is too large, then users

may react to a signal that is no longer true and visa versa.

121

IPv6 gas Manager

- Calciﬂafé x#exgiits‘that will be used to
define flow CP=far sach flow’

s Monitor alli mcnmmg traffic packets
» Coemmunicate with the domain prlmng

agent

FIGURE 6.2: Flow chart for the IPv6 pricing model

The integrated pricing model consider these two parameters. The response time is
expected to be short since the GDI is used for tracing reservations and communicating
requests and responses between the domain QoS manager and edge routers. Also, the
QoS manager reservation procedure is fast when the GDI is involved since the GDI
combination is unique in the domain and the QoS manager uses it to trace and
reserve requests. Therefore, there is no need to find the best match by examining
the IP headers 5-tuples and using them for tracing and reservation purposes. This
results in less processing delay in both the router processing and the QoS manager,

which in fact reduces the response time that affects the dynamic pricing model.

6.3.3 Simulation Results

In order to study the robustness and behavior of the proposed pricing model, an

IPv6 QoS capable network environment using ns-2 has been setup. The ns-2 code

122

that was used to simulate the IPv6 QoS manager was modified to in-cooperate the
pricing model. The code and TCL script are shown in Appendix D. The goal of the
simulation is to evaluate the pricing model setting strategy and how it cooperates
with the QoS manager. Figure (6.3) [85] illustrates the network topology used in this
simulation which consists of 4 core routers and 2 edge routers. The Ingress router,
Edgel, acts as the pricing agent and handles QoS requests generated by source 1 and
source 2 nodes. The total capacity of each link is 1 Mpbs and the propagation delay

is 1 msec. The specification for the generated traffic flows are:
1. Source 1 traffic rate is 500 Kbps, priority is 15 and Flow ID is set to 15.

2. Source 2 traffic generation rate is 250 Kbps, priority is set to 12 and flow ID is
12.

3. Source 3 traffic generation rate is 250 Kbps, best effort type of traffic and flow
ID is 8.

for each class are set to $0.16, $0.09 and $0.04 per unit time

respectively starting from the highest priority. The prices start to increase for each

; i
The base prices P,

load according to the following percentages:
1. When the link capacity reaches 50% for FID(15)
2. 70% of the total link load for FID(12)
3. 100% of the total load for Best Effort FID(8).

Two simulation scenarios have been tested for each traffic flow, one when the total
link load is less than the percentage assigned for each flow and the other one when
the traffic exceeds these percentages. Figure (6.4) shows the change of the prices for
traffic flow FID(15). Flow15p,,. is the price which represent the load traffic (total
load less than 50%) and flow15 is the price during congestion. As shown in Figure
(6.4) the prices change rapidly as the load increases which results in more revenue,

corresponding to QoS assurance for this flow packets. Figure (6.5) shows the change

123

Destination 1

©

Core2

ot _— @ . Desinaton 2

finafion 3

FIGURE 6.3: Simulated pricing model network

of the prices for traffic low FID(12). Flow12, is the price which represent the
load traffic (total load less than 70%) and flow12 is the price during congestion. As
shown in Figure (6.5) FID(12) prices are not changing much since the percentage is
set to 70% and the packets of this flow are not as critical as the Highest Priority flow.
The increase in the revenue is small compared to Highest Priority. However, during
congestion packets belonging to this flow are degraded to best effort and dropped as
the policies set by the QoS manager indicates.

The prices for source 1 traffic flow, FID(15), have the most significant changes
since it represents the highest priority among the three, and its price starts increasing
exponentially, according to Equation 5.2, after reaching 50%. The Best effort has no

change from the base price since its its expected load is set to 100%.

Prices $

124

0.32 . . — T - - T T
1 “fow15 base-out
03 | § t I i
. !“1 1
028 F |} - i ' |
A s 0 R
0.26 —M ﬁ i | j; 1] ;] jli mﬁ‘i ﬁ 1 !i l “\f ij,’) I]
Al | / i
o2 1 | Ju H;ugi H il ll f |
022 | l f L § ‘J |
02 g | |
0.18 |
0.16 |- - - - -))))
0.14 - 5 P 15 20 25 %0 3 20 45

Simutation Time (sec)

FIGURE 6.4: Traffic flow 15 Prices during network congestion and low traffic load

Prices $

0-108 T T T T T T T T
"flow12.out”
“flow12_base.out” - - -
0.106 | .
0.104 - .
0.102 n
0.1 | i
0.098 - .
0.096 |- pt q! .
ooss | | |l | x{]
SR jk H ‘ h M z% | T
0 10 15 20 25 30 35 40 45

Simulation Time (sec)

FIGURE 6.5: Traffic flow 12 Prices during high traffic and low traffic load

Prices per unit time $

125

0.35

"flow15.0ut"
"flow12.out"
"flow8.out" --------

0.3

0.25

02| -

N o o1 o P A - =
01 F oo, Loaa Ao e B Lanid re e om e fa

0.05 - 4

] 1] 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45
Simutation Time (sec)

FIGURE 6.6: Prices for the three traffic flows FID(15) & FID(12) and FID(8)

Chapter 7
Conclusions and Future Work

This chapter concludes the thesis by summarizing the major contributions of the

thesis and suggesting some key directions for future work.

7.1 Thesis Summary

In Chapter 3, a new QoS model was introduces. This model has a lower end-to-
end delay bound than both the currently used models, DiffServ and IntServ. A
scalable IP QoS management model that guarantees network resources and achieves
low end-to-end delay was introduced in Chapter 4. The new proposed QoS model
combines some advantages from the three QoS approaches used in the literature,
IntServ, DiffServ and MPLS. It is intended to work for per-flow reservations as in
IntServ, however reservations decisions are made by a central QoS manager not by
each node independetely as in IntServ. Core nodes are kept simple, they forward and
schedule traffic flows only as in DiffServ, and the complexity is pushed to the edge
nodes. This model does not map traffic flows to pre-defined classes such as in DiffServ
and does not use the DSCP to schedule packets inside its domain. Each traffic flow’s
packets are admitted and treated independently, not in aggregates as in DiffServ. In
addition, flow labels are used inside the domain to forward and schedule packets as

in MPLS where fast forwarding can be achieved when labels are used.

126

127

The major contributions and results of this thesis have four core components:

e Mathematical modeling,

e Model Architecture,

e Model implementation and simulation,

e Integrating dynamic pricing with the QoS model

each of which is discussed in the following sub-sections.

7.1.1 Mathematical Modeling

Network calculus principles were used to develop the model proposed in this thesis,
and to find the end-to-end delay bounds of the model. Different schedulers, queues,
and regulators were discussed then a WFQ scheduler and a leaky bucket regulator
were chosen to be implemented with the QoS management model. The leaky bucket
regulator will smooth all the incoming traffic flows. It is implemented at the ingress
node. The leaky bucket is represented by an arrival curve with two main parameters,
p "average rate” and o ”burst tolerance”. The scheduler, WFQ, was implemented at
each node along the path from the source node to the destination. WFQ is repre-
sented by a latency service curve with latency Tjq, that approximates the queuing and
processing delay needed by each packet. The flow’s packet priority will be a factor in
finding Tjg.

Numerical results showed that the proposed model achieved less end-to-end delay
bounds than IntServ and DiffServ. The modeling can be to find the worst case end-
to-end delay for any network topology. These calculations can be used later by the

QoS manager to evaluate QoS requests with specific end-to-end delay.

7.1.2 Model Architecture

An IP QoS management model has been designed that facilitates per-flow resource

reservation across IP network domains. The key ideas that contribute to scalability

128

and simplicity are:

1. QoS requests are sent to ingress routers which communicates with its QoS do-

main manager.

9. Core routers forward and schedule traffic flows only, no reservation decisions

are to be made as in the IntServ case.

The second key idea that contributes to faster forwarding and reservation is the usage
of GDI to request, reserve and trace resources at the QoS manager. The third key
idea that contributes to support sensitive traffic flow’s applications is the dropping of
the high priority traffic flows to a lower priority during network congestion or traffic
bursts instead of marking them as non-conformant. This results in higher delay but

no high priority packets will be lost.

7.1.3 Model Implementation and Simulation

All the design ideas mentioned in section (7.1.2) were implemented using ns-2, a com-
monly used simulator. Additional software modules were added to the simulator to
support the model implementation. Different simulation test scenarios were imple-
mented in Chapter (5) for the [Pv6 QoS model and IntServ, DiffServ and MPLS. The
purpose of these tests was to evaluate how the IPv6 QoS management model behaves
under different network conditions, normal or congestion (traffic violation). The same
conditions were used for testing other QoS techniques for comparison purposes.

The results showed that the proposed model performed better that all other schemes
simulated under both conditions. No packets have been dropped from higher priority
traffic flows under traffic violation tests for the proposed model. These results sup-
port the numerical evaluations [Chapter 3] and prove that the IPv6 QoS management
model is a better solution than IntServ and DiffServ. At the end of Chapter (5), a
two and a three domains simulation scenarios was implemented and magnitude of the

end-to-end delay for traffic applications that request QoS in more than one domain

129

was proportional to delay over one domain. This indicates that the proposed model

is flexible and works over more than one domain as does DiffServ.

7.1.4 Integrating Dynamic Pricing with the QoS Model

Internet pricing will be a critical issue in the future since the demand for more network
resources to send and receive real time data is increasing. Therefore, IP networks have
to implement QoS tools that guarantee fast delivery for delay and loss sensitive traffic
flows. The implementation will add costs to the networks which makes billing and
pricing an important issue. In this thesis, a dynamic pricing model is integrated with
the IPv6 QoS manager to control resources and charge customers according to their
usage.

The most recent pricing strategy, dynamic pricing policy, was integrated with the
IPv6 QoS management scheme to control resources during various network loads.
Only customers willing to pay more during network congestion were allowed to send
their traffic packets. Therefore, other traffic flows were either dropped or queued.
This implemention results in more profit for the service provider since only the few
flows with the highest service rates were admitted. In addition to profit increase,
customer satisfaction is achieved as no QoS degradation occurred during network
congestion. Without such a management scheme packets from all flows would be
dropped or suffer increased delay resulting in QoS degradation for real time traffic
flows. Simulation results show higher profits and no higher priority packet loss thus
proving that the proposed QoS manager can be used to the advantage of the service

provider and customers who are prepared to pay higher costs.

7.2 Future Directions

There are a few interesting future research directions that are either extension of this

work or are motivated by using the proposed model to improve network service.

130

The following are suggestions that could extend the work done in this thesis:

e The focus in this thesis was modeling and simulation of the proposed method. A
useful extension would be implemention on a real IPv6 network. This will ensure
measuring the lookup time when only GDI is involved and allow a comparison

when the 5-tuples are involved during routing packets.

e Modify the proposed model to use a specified path between the generating node
and the destination node to guarantee both lower delay and less packet loss.
This path will satisfy two parameters, end-to-end delay and bandwidth. The
manager will keep track of all the paths and in the case of path failure another

path would be chosen.

e Modify the proposed QoS manager to use the mathematical modeling, end-to-
end delay bounds calculation, if a delay is requested. The decision on the QoS

request should include the delay parameter.

e Test how the proposed model end-to-end delay calculation changes if the IETF
IntServ arrival curve is used to regulate the incoming traffic instead of the leaky

bucket.

Bibliography

[1] X. Xiao, L.M.Ni, "Internet QoS: The Big Picture,” IEEE Network Magazine
March/April, pp. 8-18, 1999.

[2] N. Shaha, A. Dessai, and M. Parashar,” Multimedia Content Adaptation for
QoS Management over Heterogeneous Networks,” Proceedings of the Interna-
tional Conference on Internet Computing (IC 2001), Nevada, USA, pp 642 -
648, Computer Science Research, Education, and Applications (CSREA) Press,
June 2001.

[3] Stardust.com. White Paper - QoS Protocols & architectures, July 1999
http://www.qosforum. com.

[4] Fayaz A. Sekib, Stan McClellan, Manpreet Singh and Sannedhik Chakravarthy,
” End-to-End Testing of IP QoS Mechanisms”, IEEE Magazine 2002.

[5] G. Armitag, Quality of Service in IP Networks, Foundation for Multimedia Ser-
vice Internet, Macmillan Technical Publishing, April 2000.

[6] Zhansong Ma, Performance and cost Analysis of QoS routing in an Internet,
Master’s Thesis October 2000.

[7] Sanjay Jha and Mahbub Hassen, Engineering Internet QoS , Artec House Boston,
London 2002.

[8] Stephan Schemid, QoS based Real time Audio Streaming in the Internet, Master’s
Thesis 1998.

[9] Karl Ahlin, Quality of Service in IP Networks, Master’s Thesis, LITH-ISY-EX-
3323-2003, Linkoping 2003.

[10] Chen-Nee Chuah, A Scalable Framework for IP-Networks Resource Provision-
ing Through Aggregation and Hierarchical Control, PhD Dissertation, Fall 2001,
University of California at Berkeley.

131

132

[11] Roland Stader, QoS Provisioning for IP Telephony Networks by Advanced band-
width management, Master’s of Science Thesis Feb. 2001.

[12] Garcia Macias, Mobile Communication Architecture with Quality of Service,
PhD Thesis , Jose Antonio 08 January 2002.

[13] Jae-Young Kim, Edge-to-Edge Throughput Monitoring Methods to manage band-
width usage in IP Networks supporting Differentiated Services, PhD Thesis 2002.

[14] J. Wroclawski, ” The use of RSVP with IETF Integrated Services”, IETF RFC
2210, Sep 1997.

[15] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss, “An Archi-
tecture for Differentiated Services,” RFC2475, 1998.

[16] Bernet Y. et al, ” A FRame work for Differentiated Services”, Internet Draft
-ietf-diffserv-framework-02.txt. Feb 1999.

[17] R. Braden, L. Zhang, S. Herzog and S. Jamin, ”Resource ReSerVation Protocol
(RSVP)- Version 1 Functional Specification”, RFC2205, 1997.

[18] S. Shenker and J. Wroclawski, ” General characterization Parameters for In-
tegrated Service Network Elements” RFC 2215 (proposed standard) IETF Sep
1997.

[19] Ibrahim Khalil and Torsten Braun, "Implementation of a Bandwidth Broker for
Dynamic End-to-End Capacity Reservation over Multiple Di.serv Domains 67,
Springer-Verlag Berlin Heidelberg 2001.

[20] Rob Neilson, BCIT, Jeff Wheeler, Francis Reichmeyer, and Susan Hares, Merit,
A Discussion of Bandwidth Broker Requirements for Internet2 Qbone Deploy-
ment”, Internet2 Qbone BB Advisory Council, Aug 1999.

[21) Manish ~ Mahajan ~ and Manish Parashar, "Content Band-
width Broker for the Differentiated Services Environment”,
http://www.caip.rutgers.edu/manishm/cabb/cabb.htm. May, 2003.

[22] QBone Bandwidth Broker Architecture, http://qbone.internet2. edu/bb/bboutline2.html
[2000, May].

[23] E. Rosen, A. Viswanathan, and R. Callon, ”Multiprotocol Label
Switching Architecture”, April 1999 < draft.ieft-mpls-arch-02.txt >,
http://www.ietf.org/ids.by.wg/mpls.html, [2003, 20 September].

133

[24] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell and J. Manus, ”Requirments
for Trafffic Engineering over MPLS”, RFC 2702 IETF, [1999, September].

[25] G. Apostolopoulos, R. Guerins, S. Kamat, A. Orda and S.K. Tripathi, ”Intra-
Domain QoS routing in IP Networks, A Feasibility and cost /Benefit Analysis”,
IEEE Special Issue on Integrated and Differentiated Services for the Internet,
Sep. 1999.

[26] J. Boudec and P. Thiran, Network Calculus, A Theory of Deterministic Queuing
Systems for the Internet, Online version of the Book Springer Verlag-LNCS 2050,
May 10, 2004.

[27] The Network Simulator ns-2 http://www.isi.edu/nsnam/ns/, [2003, 13 De-
cember].

[28] A. Demers, S. Keshav, and Shenker, ” Analysis and Simulation of Fair Queuing
Algorithms,” Journal of Internetworking: research and Ezperience, vol. 1, pp.
3-26, Jan. 1990.

[29] S. Floyd and V. Jacobson, ” Link-Sharing and Resource Management, Model for
Packet Networks,” IEEE/ACM Truns. Networking, vol. 3, no. 4, pp. 365-413,
Aug. 1993.

[30] S. Shenker, C. Partridge and R. Guerin, ” Specification of Guaranteed Quality of
Service.” RFC 2212, Internet Engineering Task Force, Sep. 1997.

[31] J. Wroclawski, ”Specification of the Controlled-load Network Element Service,”
rfc 2211, Internet Engineering Task Force, Sep. 1997.

[32] K. Nicholas, S. Blake, F. Baker and D. Black, "Defination of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers,” RFC 2474, Internet
Engineering Task Force, Dec. 1998.

[33] S. Brim, B. Carpenter, and F. LeFaucheur, ”Per Hop Behavior Identification
Codes,” RFC 2836, Internet Engineering Task Force, May 2000.

[34] J. Heinanen, F. Baker, W. Weiss, and W. Weiss, ” Assured Forwarding PHB
Group”, RFC 2597, Internet Engineering Task Force, June 1999.

[35] V. Jacobson, K. Nichols and K. Poduri, ” An Expedited Forwardiung PHB,” RFC
2598, Internet Engineering Task Force, June 1999.

[36] Geoff Huston, Telstra, ”Quality of ServiceFact or Fiction?”, The Internet Pro-
tocol Journal, Volume 3 No. 1, March 2000.

134

[37] Multiprotocol Label Switching Architecture (MPLS) RFC3031, Jan 2001.

[38] William Stallings, "MPLS”, The Internet Protocol Journal, Voulme 4, Number
3, September 2001.

[39] Jnniper. Networks.Inc White Paper-”Multiprotocol Label Switching Enhanced
Routing in the New Public Networks”. Sep. 1999. http://www.uniper.net.

[40] Nortel Networks, "MPLS-An Introduction to multiprotocol Label Switching”,
http://wwwnortelnetworks.com/corporate/technology/mpls/collateral.,
April 2003.

[41] Callon, R. et al, ” A frame work for Multiprotocol Label Switching”. Internet
Draft, draft-ieft-mpls-framework-05.txt, Sep. 1999.

[42] Ngo Quynh, Thu, The Influence of Proportional Jitter Scheduling Algorithms
on Differentiated Services Networks, PhD Thesis 2003, Technical University of
Berlin.

[43] E. Dutkiewicz and P. Boustead, "Analysis of per-flow and aggregate QoS in
scalable QoS Networks,” ICON 99 Proceedings, IEEE International Conference
on, pp. 289-294, Oct. 1999.

[44] Y. Bernet, P. Ford, R. Yavatkar, F. Baker, L. Zhang, M. Speer, R. Braden,
B. Davie, J. Wroclawski and E. Felstaine, ” A Framework for Integrated Services
operation over DiffServ Networks,”, RFC 2998, Internet Engineering Task Force,

Nov. 2000.

[45] IP Infusion, " Quality of Service and MPLS
Methodologies” http://www.ipinfusion.com/pdf/IP_InfusionQoS_MPLS2.pdf,
[2004, April].

[46] P. Trimintzios, I. Andrikopowo, G. Pavlou and P. Flegkas, ” A management and
control architecture for providing IP Differentiated services in MPLS-based net-
work”, IEEE Communication Magazine 2001, pp. 80-88, May 2001.

[47] K. Nicholas, V. Jacobson, and L. Zhang, ” A Two-bit Differentiated Architecture
for Internet”, Internet Draft, Internet Engineering Task Force, November 1997.

[48] Internet2 QoS Working Group, http://www.internet2.edu/qos. [2005, May].

[49] Ben Teitelbaum (editor), ”QBone Architecture (v1.0),” Internet2 QoS Working
Group Draft, August 1999.

135

[50] L. Freedman, S. Ni, J. Pinkett and L. Welsh, ECPE 6504, ”Bandwidth Broker”,
March 27, 2001.

[51] A. Ramanathan, M. Parashar, "Active Resource Management for Differentiated
Services Environment”, IEEE 2002 p.p 78-86.

[52] S. Sohail and S. Jha” The Survey of Bandwidth Broker”. UNSW-CSE-TR-02
May 2002.

[53] Eusebi Calle Ortega, "MPLS dynamic multilevel protection”, Research Project
Girona University 2001.

[54] Nicolas Christin and Jorg Liebeherr, "The QoSbox: A Pc-Router for Quanti-
tative Service Differentiation in IP Networks”, Technical Report, University of
Virginia, 2001.

[55] Nicolas Christin and Jérg Liebeherr, A QoS Architecture for Quantitative Ser-
vice Differentiation”, IEEE 2003.

[56] M. Borella, V. Upadhyay and 1. Sidhu, Pricing Framework for a differential
services Internet , Communication Networks 2004.

[57] J. Walrand and P. Variya, High-Performance Communication Networks, Morgan
Kaufmann Publishers, San Francisco, California 2000.

[58] Matthias Falkner, Michael Devetsikiotis and Ioannis Lambadaris, ” An Overview
of Pricing Concepts for Broadband IP Networks”, IEEE Communication Surveys
2000, pp. 2-13, Second Quarter 2000.

[59] Y. Elovici, Y. Ben-Shimol and A. Shabtai, ”Per-Packet Pricing Scheme for IP
Networks”, 2003 IEEE, pp. 1494-1500.

[60] Tianshu Li, Yousef Iragi and Raouf Boutaba, ” Pricing and admis-
sion control for QoS-enabled Internet”, 2004 Published by Elsevier.
http://www.sciencedirect.com, [2004, December].

[61] Tianshu Li, Yousef Iragi and Raouf Boutaba, ” Traffic-Based Pricing and Admis-
sion Control for DiffServ Networks”, pp. 73-86.

[62] El-Bahlul Fgee, Jason D. Kenney, William J. Phillips, William Robertson and
S. Sivakumar, ”Implementing an IPv6 QoS management scheme using flow la-
bel & class of service fields”, Electrical and Computer Engineering, 2004. IEEE
CCECE 200/4. Canadian Conference,

136

[63] J. Boudec and P. Thiran, A short Tutorial on Network Calculus I: Funda-
mental Bounds in Communication Networks, IEEE Symposium on Circuits and
Sysytems, May 28-31, 2000, Geneva Switzerland, pp. 1V-93-IV-96.

[64] S. Terrasa, S. Saez and J. Vila, Compar-
ing the utilization bounds of IntServ and DiffServ,
www . comp.brad.ac.uk/het-net/ HET-NETs04/CameraPapers/P10.pdf, [2005,
April].

[65] T. Nyirenda-Jerre and V. Frost, Impact of Traffic Aggregation on Network Capac-
ity and Quality of Service, Techincal Report ITTC-FY2002-22730-01, Unversity
of Kansas, Nov. 2001.

[66] A. Parekh, R. Gallager, A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Networks: The Single Node Case, IEEE/ACM
Transactions on Networking, Vol. 1, No. 3 June 1993, pp. 344-357.

[67] R. Agrawal, R. Cruz, C. Okino and R. Rajan, Performance Bounds for Flow
Control Protocols, IEEE/ACM Transaction on Networking, Vol. 7 No. 3 June
1999.

[68] V. Firoiu, J. Le Boudec , D. Towsley and Z. Zhang, ” Advances in Internet
Quality of Service”, http://www.citeseer.ist.psu.edu/467645.html, [2004,
December].

[69] V. Firoiu, J. Boudec , D. Towsley and Z. Zhang, Theories of Models for Internet
Quality of Service, Proceeding of the IEEE, Vol. 90, NO. 9, Sep. 2002 pp. 1565-
1591.

[70] P. Barta, F. Németh, R. Szabé and J. Biré, End-to-end delay Calculation in
Generalized Processor Sharing Networks, /[EEE 2001 pp. 282-287.

[71] J-Y. Le Boudec and A. Charny, Packet scale rate guaran-
tee for non-FIFO nodes, Tech. Rep. DSC200138, EPFL-DSC,
http://dscuww.epfl.ch./EN/publications/documents/tr01 038.pdf,

July 2001.

[72] R. Guérin and V. Peris, Quality-of-Service in Packet Networks Basic Mechanisms
and Directions, Special issue on Internet telephony, Volume 31 , Issue 3, 1999,
pp. 169 - 189.

[73] A. Millet and Z. Mammeri, Delay bound guarantees with WFQ-based CBQ
discipline, Quality of Service, 2004, IWQOS 2004 Twelfth IEEE International
Workshop, 7-9 June 2004 pp. 106 - 113.

137

[74] Fgee, E.-B.; Kenney, J.D.; Phillips, W.J.; Robertson, W.; Sivakumar, S., ”Com-
parison of QoS Performance between IPv6 QoS Management Model and IntServ
and DiffServ QoS Models”, Communication Networks and Services Research
Conference, 2005, Proceedings of the 3rd Annual 18 May 2005 Page(s):287 - 292

[75] G. Rizzo and Le Boudec, ”’Pay bursts only once’ does not hold for non-FIFO
Guranteed rate nodes”, Technical report Jan. 13, 2005.

[76] Fgee, E.-B., Phillipsi, W.I., Robertson, W., Sivakumar, S.C., ” Implementing
QoS capabilities in IPv6 networks and comparison with MPLS and RSVP,” FElec-
trical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian Confer-
ence, vol 2, May 4-7, 2003, pp. 851 - 854.

[77] Kishor Shridharbhai and Trivedi Probability and statistics with reliability, queu-
ing, and computer science applications , Englewood Cliffs, NJ : Prentice-Hall,
1982.

[78] Marc Geris, "RSVP patch for ns-2.26”, http: //www.ncc.up.pt/“prior/nsindex-en.html,
[2004, September].

[79] Gaeil Ahn and Woojik Chun, ”Design and Implementation of MPLS Network
Simulator (MNS)” http://flower.ce.cnu.ac.kr/fogl/mns/, [2004, Octo-
ber].

[80] Safiullah Faizuullah, ” A Pricing Framework for QoS Capable Intener”, in PDCS
2000, Las Vegas Nevada, Nov. 6-9 2000, pp. 569-577.

[81] Ron Cocchi, Deborah Estrin, Scott Shenker, and Lixia Zhang, ”A study of pri-
ority pricing in multiple service class networks”, ACM SIGCOMM Computer
Communication, Volume 21, Issue 4, September 1992, pp. 123-130.

[82] J. K. Mackie-Masson and H. R. Varian, ”Pricing the Internet”, Int’l Conf.
Telecommunication Systems Modelling, Nashville, TN, USA, March 1994, avail-
able from URL http://www.spp.umich.edu/papers/listing.html, pp. 378-
93.

[83] S. Shenker et al., ”Pricing in Computer Networks: Reshaping the Research
Agenda”, ACM Computer Communication Review, 1996, pp. 19-43.

[84] X. Waog and H. Schulzrine, ” Pricing Network Resource for Adaptive Appli-
cations in a Differentiated Service Network”, In Proceding of INFOCOM 2001,
Anchorage, Alaska, April 2001.

138

[85] E. Fgee, S. Sivakumar, W. Phillips, W. Robertson and J. Kenney, ”Implementing
a Dynamic Pricing Scheme for QoS enabled IPv6 Networks”, Proceedings of the
seventh International Conference on Enterprise Information Systems, May 25-
28, 2005, Miami Florida, Vol. IV, pp. 289-292.

[86] White Paper, Bringing Comperhensive Quality of
Service Capabilities to Nezt-Generation Networks,
http://e-www.motorola.com/files/netcomm/doc/white_paper/QOSM-WP.pdf,
[2003, November].

[87] S. Bhatti & J. Crowcroft, ”QoS-Sensitive flows: Issues in IP packet handling”
IEEE/Computer Internet Computing, July/Aug. 2000 pp. 48-57.

[88] Leonardo Balliache, ” Network QoS using Cisco HOWTO?,
http://www.opalsoft.net/QoS/whyQoS.html. [2004, April].

[89] http://ipsit.bu.edu/Sc 546/spring 2003/wfq/wiq.html. [2004, January].

[90] http://www.nwfusion.com/links/Encyclopedia/c/656.htnl. [2004, Jan-
uary].

[91] P.P. White, "RSVP and Integrated Services in the Internet: A Tutorial”. IEEE
Communications Magazine, Pages 100-106 May 1997.

[92] R. Branden, D. Clark, S. Shenker “Integrated Services in the Internet Architec-
ture: an Overview,” RFC1633, 1994.

[93] Pekk Pessi, ”"RSVP and the Internet Integrated Services” 1997.
http://www.tonl.hut.fi/Opinnot/Tik-110.551/1997/rsvp.html, [2004,
December].

[94] Ray Hunt, "IP Quality of Service Architectures”, pp. 338-343 IEEE 2001.

[95] V. Jacobson and K. Nichols Cisco Systems, K. Poduri Bay Networks, “An Ex-
pedited Forwarding PHB,” RFC2598, Jnue 1999.

[96] Y. Bernet, D. Durham, and F. Reichmeyer, Requirements of Diff-serv Boundary
Routers, IETF Internet-Draft, draft-bernet-diffedge-01.txt, November 1998.

[97] Y. Bernet, A. Smith, S. Blake, and D. Grossman, "4 Conceptual Model for Diff-
serv Routers, IETF Internet-Draft, draft-ietf-diffserv-model-03.txt, May 2000.

[98] K. Nichols, S. Blake, F. Baker and D. Black, Definition of the Differentiated Ser-
vices Field (DS Field) in the IPv4 and IPv6 Headers, IETF RFC 2474, December
1998.

139

[99] C. Dovrolis and P. Ramanathan, "A case for relative Differentiated Services and
the Propertational Differentiation Model”, IEEE Network, October 1999.

[100] M. Brunner and J. Quittek, "MPLS Management using Policies”, IEEE 2001,
pp 515-528.

[101] The International Engineering Consortium-Tutorial, ” Multiprotocol Label
Switching (MPLS)”, http://www.iec.org/online/tutorial/mpls/, [2003,
March].

[102] Jerry Ryan, The Technology Guide Service, ” Multiprotocol Label Switching”.
http://www.techguide.com. Applied Technology Group 1998.

[103] David Lee, Daniel Lough, Scott Midkiff, Nathaniel Generation and Phiilip Ben-
choff, ”The Next Generation of the Internet: Aspects of the Internet Protocol
version 67, pp. 28-33 IEEE Network Jan/Feb 1998.

[104] William Stallings, ”IPv6: The New Internet Protocol”, pp. 96-108 IEEE Com-
munication Magazine, July 1996.

[105] Latif Ladid, "IPv6 on Everyting: The New Internet IPv6 helps Network Archi-
tects address the IP address shortage, security, QoS, multicast and management”,
pp. 317-322 3G Mobile Communication Technologies 26-28 March 2001.

[106] Hi Huang and Jian Ma, "IPv6-Future Approval Networking”, pp. 1734-1739
IEEE 2002.

[107] Jianbo Xue, ”Adaptive QoS-Supporting Architecture for Real-time Application
in wireless IP Network”, Master’s Thesis January 2002.

[108] Loukola, M.V. and Skyttd, J.o, ”New possibilities offered by IPv6”,
http://www.hut.fi/“mloukola/pub7/pl.pdf. , November 2003.

[109] Douglas E. Comer, Internetworking With TCP/IP Vol.1: Principles Protocols
And Architecture: Principles, Protocols, and Architecture, Volume 1, Published
by Pearson Education Canada 2000.

[110] ipinfusion. White paper, "IPv6 Network Processing”, 2001.

[111] Mark A. Miller, Implementing IPv6 migrating to the Nezt Generation Protocol,
MT&T Books 1998.

[112] Gray K. Kessler, ”IPv6: The Next Genertaion Internet Protocol”, Feb. 1997.
http://www.graykessler.net/library/ipv6-exp.html., April 2003.

140

[113] S. Deering and H. Rinden, "Internet Protocol Version 6 (IPv6)”, Dec. 1995.

[114] J. Rajahalme, A. Couta, A. Carpenter and S. Deering, *IPv6 flow lable specifi-
cation”, < draft-ietf-ipv6-flow-label-0.1.txt >, March 2003.

[115] William Stallings, High-Speed Networks TCP/IP and ATM design principles,
Prentice Hall 1999.

Appendix A

QoS Regulators and Schedulers

A.1 Traffic Regulators

Traffic regulators are used to police and to regulate traffic at the network entering
nodes. The most common regulator is the leaky bucket. To understand the leaky
bucket mechanism, imagine a bucket with a small hole at the bottom. It does not
matter at what rate the water enters the bucket, it can only leak out at the rate
determined by the hole at the bottom of the bucket. Thus a leaky bucket reshapes
the flow of water to the rate determined by the hole. For policy shaping the leaky
bucket could be implemented using a counter. The counter holds tokens where each
token may represent a cell/packet or a certain number of bytes. Tokens are added
to the counter at fixed intervals of time and decremented as the data flows through.
If there are no tokens available, or the tokens that are available do not cover the
entire length of the data, the cell/packet would be buffered and not allowed to enter
the network until sufficient tokens have accumulated. The number of tokens that
can accumulate in the counter is generally referred to as the leaky bucket depth. If
the flow is idle, then tokens may accumulate to the extent determined by the QoS
policy and the bucket depth. The amount of tokens accumulated represents the burst
size that may be admitted into the network. By controlling the depth of the bucket,

the network could regulate the permissible burst size. For example, if a flow is to

141

142

be shaped at a particular Time Division Multiplexing (TDM) type peak rate, then
the rate at which the tokens are added to the counter would specify the peak rate.
By keeping the bucket depth such that it only allows a single cell/packet worth of a
token. The network can thus shape a flow to a particular profile by adjusting the rate
at which tokens are added to the counter as well as the number of tokens that can be
accumulated. Often times it is desirable to shape to the peak as well as the average
rate. This would require the use of two buckets. One bucket regulates the peak rate
and the other one regulates the average rate. A cell/packet would enter the network
if there are enough tokens in both the buckets and would be buffered otherwise. This
arrangement is commonly referred to as the dual leaky bucket configuration as shown

in Figure ((A.1) [86].

Host | Host
camputer: Somputér

Oma tokan

is added 1 Thea bucket
to thia Bucket , OIS
every AT /t,ok,e,_n.s

DDD@DI

Netwarks: v » Naetworks'
= v RG]
(a) Before.. (b) After.

FIGURE A.1: Leaky Bucket Model

A.2 Traffic Schedulers

Traffic packets are processed by a routing engine (switch fabric) before they are shaped
and then forwarded to the next hop. Therefore, packets are stored for each interface

in output queues. Figure A.2 shows a very simple router diagram [87]. The main role

143

of the packet scheduler is to decide in what order the incoming packets are put into
the output queues and lines. In other words, packet schedulers manage the output
queues allowing resources to be allocated according to the established policies.
Several scheduling and queuing techniques have been developed to provide specific
bandwidth, delay and packet loss to particular flows in each node.

A brief review will be given for two queuing algorithms, class based queuing (CBQ)
and weighted fair queuing (WFQ), that are used in the thesis.

FIGURE A.2: Basic structure of a QoS capable router

A.2.1 Weighted Fair Queuing :

Weighted Fair Queuing WFQ [88] [89] [7] is an approximation of GPS (Generalized
Processor Sharing), which does not make the assumption of infinitesimal packet size.
GPS is the ideal method for best-effort and interactive connections but it is impossible
to implement due to its requirement of infinitesimal sized packets. WFQ is a complex
scheduler used for various size packets. It provides traffic priority management that
automatically sorts among individual traffic streams without requiring an access list.
Its basis is on fluid-flow fair queuing. WFQ uses a servicing algorithm that attempts

to provide a predictable response time and negate inconsistent packet transmission

144

timing. It does this by sorting and interleaving individual packets by flow, and
queuing each flow based on the volume of traffic in this flow. Using this approach
each queue is serviced fairly in terms of byte count creating bit-wise fairness. WFQ
is used under conditions that require consistent response time to heavy and light
network users alike without adding excessive bandwidth (BW). Two categories of
WFQ sessions are interactive traffic, low bandwidth, and best effort traffic, high
bandwidth. Low BW traffic has priority over high BW traffic. WFQ also ensures that
queues do not starve for BW, thus providing predictable service. Any bandwidth not
used by a flow will be proportionally divided up among remaining flows. In WFQ,
packets are classified by flows. Packets usually are classified based on their source IP
address, their destination Internet protocol, IP address, source Transmission Control
Protocol, TCP, or User datagram Protocol, UDP port, or the destination TCP or
UDP port numbers. The virtual finish time is defined as the time that the GPS
would have finished sending a packet. The virtual finish time of a packet that is
arriving in a WFQ, is equal to all of the finishing times of packets ahead of it in its
queue, plus all higher priority packets with higher weights plus the arriving packet’s
size (in bits). If an arriving packet of size 10 bytes reaches a queue which is occupied
by a packet with a virtual finishing time of 20 secs and these higher priority packets
with larger weights, it will have a virtual finishing time of 30 secs. WFQ helps solve
problems with round-trip delay variability. Therefore using WFQ avoids the spread
of transfer rates and inter-arrival periods when multiple high-volume flows are active.
Also when bursty traffic is added to the network, response time is still predictable.
Using WFQ increases predictability in throughput and response time and provides
predictable inter-arrival periods. Figure A.3 shows an example of interactive traffic
delay. WFQ works with both the IP precedence and Resource Reservation Protocol
(RSVP) to help provide QoS. RSVP can use WFQ to allocate buffer space, schedule
packets, and guarantee BW for a reserved flow. WFQ is also IP precedence aware,
and detects higher-priority packets marked with precedence by the IP header and

schedules them with bigger weights. The IP precedence values range from 0 to 7.

145

Incorming packets

Y
.

Carmgurabla
‘pumber of queuss
Queueing Warght datermined by:
butfer rescurces » Reguired QoS-

AP ‘Precedence, RSVP)

* Flow throughput Inversely
proportional

+ Frame Relay FECN; ‘BECN,
DE {for Frame Relay traffic}

FIGURE A.3: WFQ

More BW is allotted to a flow as its precedence value increases. This provides faster
service for the flow when congestion occurs. The following describes the effect of IP
precedence settings:

If there are eight active flows, precedence levels of 0,1,2,3,4,5,6,7, then they will get
1/36(1+2+3+4+5+6+7+8=36),2/36,3/36, and so on of the total bandwidth.

However, if there are 18 precedence 1 flows and 1 of each of the others, then the flows

will get 1/70(1 + 2(18) + 3+ 4+ 546+ 7+ 8 = 70),2/70,2/70, .,3/70, and so on.

146

A.2.2 Class-Based Queuing :

Class-Based Queuing CBQ [7] [90] is a traffic management algorithm developed by
the Network Research Group at Lawrence Berkeley National Laboratory as an alter-
native to traditional router-based technology. Now in the public domain as an open
technology, CBQ is deployed by companies at the boundary of their WANs. Network
managers can use CBQ to easily classify traffic to meet business priorities and to
ensure each traffic class has the appropriate quality of service. CBQ integrates easily
with a company’s existing network to protect its investment and to provide IT (In-
formation Technology) managers with more control over the network, thus reducing
bandwidth costs. The concept behind CBQ is simple, it divides user traffic into a
hierarchy of classes based on any combination of IP addresses, protocols and applica-
tion types. A company’s accounting department, for example may not need the same
Internet access privileges as the engineering department. Because every company is
organized differently and has different policies and business requirements, it is vital
for traffic management technology to provide flexibility and granularity in classifying
traffic lows. CBQ lets network managers classify traffic in a multilevel hierarchy.
For instance, some companies may first identify the overall needs of each department
or business group, and then define the requirements of each application or group
of applications within each department. For performance and architectural reasons,
traditional router-based queuing schemes are limited to a small number of classes
and only one-dimensional classification is allowed. By providing network managers
with better control over user traffic, CBQ lets companies meet the needs of response-
time-sensitive applications, supports service-level agreements and keeps inappropriate
traffic off the network. CBQ operates at the IP network layer which allows it to pro-
vide the same benefits across any Layer 2 technology and to be equally effective with
any IP protocol, such as TCP and UDP. It also operates with any client or server
TCP/IP stack variation, since it takes advantage of standard TCP/IP flow control
mechanisms to control end-to-end traffic. Bandwidth is the largest cost in wide-area

networking. CBQ lets network managers define bandwidth allowances in absolute

147

terms, unlike router-based schemes, which provide a rough percentage to best-effort

traffic classes. Figure (A.4) shows how packets are classified according to their prior-

ities.

FIGURE A.4: CBQ

Appendix B

QoS Approaches used in Literature

Currently, the IETF (Internet Engineering Task Force) is working on three different
approaches, Integrated Service model (IntServ), Differentiated Service model (Diff-
Serv) and Multi-protocol Label Switching Protocol (MPLS), to provide QoS for the
Internet. Two of these methods, IntServ and DiffServ will be described next in details

since they were compared with the thesis proposed model.

B.1 Integrated Services (IntServ) and RSVP

The Integrated service, IntServ, framework is aimed at providing per-flow QoS guar-
antees to individual application sessions. It is intended to provide the closest thing
. to circuit emulation on IP Networks. Also, it represents a significant departure from
the best effort service of the Internet by attempting to provide a high level of QoS in
terms of service guarantees, granularity of resource allocation, and details of feedback
[91] [92] [18]. It defines several classes of service along with the existing best effort
service. The main idea behind this framework is that applications should be able
to choose a particular class based on their QoS requirements. IntServ has classified

applications into three categories [7] as follows:

1. Elastic Applications:-

These applications are flexible in terms of their QoS requirements.

148

149

2. Tolerant real-time applications:-

Timeliness is very important for this category of applications.

3. Intolerant real-time Applications:-
Intolerant real-time applications demand more stringent QoS from the network.

These applications have precise bandwidth, delay and jitter constraints.

B.1.1 QoS Classes in IntServ

The Integrated service model defines two service classes on the top of best effort
service, namely controlled load and guaranteed services, to meet the requirement of

the applications mentioned above.

1) control load service class:- this is designed to handle tolerant real-time applica-
tions that require a sufficient amount of bandwidth and can tolerate occasional

delays and losses.

2) guaranteed service class:- The guaranteed service provides a framework for de-
livering traffic for applications with a bandwidth guarantee and a delay bound.
Service specification, a source’s traffic characteristics are provided by specifying

traffic parameters such as data rate and burst rate.

B.1.2 IntServ Traffic Control Model

Each router or a node in the IntServ model as seen in Fig (B.1) has the following

components in order to reserve resources [77] [7] [6]:-

1- Admission Control
The main purpose of admission control in a network domain is to determine
whether access to resources available at the domain elements (routers) can be
guaranteed to a new flow without affecting others. It is invoked at each router

along the path of the new flow.

2

150

P input
I Drver
i

FIGURE B.1: IntServ Control Model

Policing and shaping

Policing is a set of actions performed by a network element when a flows’ actual
data traffic characteristics exceed the negotiated values given in the flows’ traffic
specification (Tspec). Network elements mark the violated packets as non-

conformant to be dropped or delayed more.

Packet Classifier

A packet classifier on a network element is responsible for identifying packets
corresponding to a particular flow in order to provide special treatment to the
packets. Packet classification can be performed by looking at the source and

destination hosts addresses, protocol number, and port field.

151

4- Packet Scheduler
A packet scheduler is responsible for ensuring that the flows identified by a

packet classifier receive the negotiated QoS guarantees.

5- Reservation setup Agent
The reservation setup protocol is necessary to create and maintain the flow

specific state at the end point hosts and routers along the path of the flow.

B.1.3 RSVP: a signaling protocol for IntServ

RSVP is used by a host, on behalf of an application data stream, to request a specific
QoS from the network for particular data streams or flows. RSVP protocol is also

used by routers for:
1. Delivering QoS control requests to all nodes along the path(s) of the flow.

9. Establishing and maintaining a reservation state [92] at all nodes that accept

the QoS request.

3. Permitting reservation of additional resources within a current connection.
4. Freeing resources that are not required any more.

RSVP is called a ”soft state” protocol which is defined as a state in routers and end
nodes that can be updated by certain RSVP messages. Soft states are created and
periodically refreshed by path and reservation messages. A soft state is deleted if no
matching refresh messages arrive before the expiration of a cleanup timeout. Also, a
soft state can be deleted as the result of an explicit teardown message [3]. Each node
has to individually save, update and maintain all states of its flow. This is achieved
by sending PATH and RESV messages between senders and receivers.

RSVP Data Structures and Messages [11] [3]

RSVP defines the following data structures used for objects within RSVP messages:-

152

x Tspec: Describes data traffic attributes transmitted by a sender. It includes

parameters such as data transfer rate, peak rate and maximum burst size.

« Filterspec: Contains the IP address and port numbers of all permitted senders

within a session.

+ Sender Template: Contains sender’s IP address and possibly some additional

information to uniquely identify this sender.

+ Flow Sec: Describes the desired QoS parameters in a RSVP message.

RSVP Messages [11] [91] [7] [93]

RSVP has two main messages : PATH and RESV. The source and receiver nodes
transmits PATH and RESV messages every 30 seconds. RSVP messages travel hop-
by-hop and the next hop is determined by the routing table. Routers remember where
the message came from and maintain this state (route pinning). A PATH message

contains the following objects and structures:

% Sender Tspec: Traffic parameters of the flow along the network path.
% Sender Template: Identifies the sender.

% Phop - Address of the previous hop. Contains the IP address of the next
upstream RSVP node. Each node places its own address in this field.

The path messages store a path state structure in each node along the path; the state
includes all relevant data of the sender.

Reservation (RESV) messages are generated by the receiving nodes upon receiving
a PATH message. RESV messages contain a request for resources to be reserved.
The resource reservation request is expressed by filter specification (Filterspec) and
flow specification (Flow Spec). Filter specification defines the packets in the flow
that will receive a specific class of service which helps later in the packet classification
processes. Flow specification, defined by the QoS parameters requested by the sender,
is used by a packet scheduler to insert packets in the proper queues. Other RSVP

messages are as follows :

153

_ Path Teardown is initiated by senders and nodes release states upon receiving

this message.

_ Resv Teardown are initiated by receivers or any node in which time out is
occurred. Nodes delete the matching reservation state when they receive this

message.

. Path Error is generated by a node when an error occurred during processing of

a path message and was reported to the sender.

. Resv Error is generated by a node when an error occurred during processing of

a Resv message and was reported to the receiver.

. Confirmation messages are sent as acknowledgments for successful reservation

requests.

FIGURE B.2: RSVP setup Procedures

154

An application in a sending host initiates the RSVP signaling flow and the important
objects such as Sender Template and TSPEC information is placed into the PATH
message. The path is determined by the dynamic local routing algorithms, such as
OSPF, that run on each router in the network domain. Each router receives the
PATH message, installs a path state and records the IP address of the upstream
router. A receiver generates RESV message whenever it receives the PATH message.
The RESV message contains two parts, FILTERSPEC that contains the address and
port number of the sending application and Flowspec that contains the traffic and
QoS information that the receiver application is requesting. The RESV message trav-
els using the upstream route (reverse path of incoming PATH message) to the sender.
The network element (router), upon receiving a RESV message, makes a check to
find a valid installed PATH state, and performs the admission control. The result of
admission control is either to accept (install state and allocate resources) or reject
the request and generate error messages. After receiving the RESV message, the
application can perform its data transmission. The procedures are shown in Figure

B.2 [36].

B.2 Differentiated Service Architecture

The Differentiated Service , DiffServ, is a set of technologies that are used to provide
quality of service in a world of best effort service provision [51]. DiffServ is a bridge
between IntServs’ guaranteed QoS requirements and the best effort service offered
by the Internet today [15]. In this scheme, the complexity is pushed out to the
edge routers and the core routers are maintained as simple as possible. DiffServ
architecture [15] [16] is based on a simple model where the traffic entering a network is
classified and possibly conditioned at the boundaries of the network and then assigned
to different behavior aggregates. Therefore, individual micro flows are classified at

the edge routers into one of the following [11] [7] [94] classes defined by the approach

155

that have been defined by the IETF DiffServ group.

I Expedited Forward (EF) [95] : This class is referred to as the Premium
Service class. It supports low loss, low delay, low jitter and assured bandwidth
connections. Ingress routers have to ensure that EF traffic is burst free and

conforms to the specified rate.

II Assured Forwarding (AF): AF is a group of classes designed for customers
who require an improved QoS over best effort. AF is actually aims to offer
different levels of packet forwarding assurances during network congestion. It

also tries to offer a service that does not guarantee bandwidth.

The classification is done at the ingress router based on one or more bits in the
packet. Then the packet is marked, using code points, as belonging to one of the
classes and injected into the network. The core routers that forward the packet ex-
amine this marking and use it to decide how the packet should be treated. Therefore,
most of the work is done at the edge routers, especially packet classification. Packets
are classified at the edge routers using a multifield classifier and a traffic meter. The
traffic profile previously agreed upon by the network provider and the customer. The
classifier first extracts the IP header fields that contain the source and destination
addresses and port numbers to do the multifield classification. Then the ToS field
is extracted to do behavior aggregate classification. Packets are then marked with
the DiffServ code point (DSCP) which uses six bits of the IPv4 or IPv6 header to
convey the DSCP. Then one of the DiffServ pre-defined classes is selected based on
the QoS requirements for the per hop behavior (PHB) classification. Therefore, PHB
is defined as the certain behavior a packet may receive at each hop. All packets with
the same code point are grouped together and are known as a behavior aggregate
(BA).

156

B.2.1 DiffServ Routers

A DiffServ router is a fundamental DiffServ-enabled network node. The conceptual
model and requirements of the DiffServ routers are discussed in [96] [97].A DiffServ
router is considered to have a routing module, a set of Traffic Control Blocks (TCBs),

a queuing module, and a configuration and monitoring module as shown in Figure

(B.3).

FIGURE B.3: Conceptual Model of a DiffServ Router

A DiffServ-enabled network node has a cascaded set of traffic conditioning blocks
(TCB) for handling DSCP-marked network packets. A traffic conditioning block is a
minimum logical element that controls DiffServ packets passing through the DiffServ
* network node. It receives packets from the network and classifies them into a prede-
fined set of traffic aggregates by looking up the DSCP value in the packet headers.
Each traffic aggregate is metered, marked, shaped, or dropped separately. Figure
(B.4) illustrates four components of a traffic conditioning block [98] [7]. Functions of

these components are:-

e Classifier: The classifier selects packets based on the values of one or more

157

FIGURE B.4: DiffServ core and edge routers structures

packet header fields. Two types of classification are supported by DiffServ:-

o Multifield (MF) classification: Supports classification based on multi-
ple fields. It is required at the edge of IntServ router connecting DiffServ

domain. The MF flows need to be marked by the appropriate DSCP.

e Behavior aggregate (BA) classification: Sorts packets based on ToS
(type of service) or CoS (class of service) field that contains the DSCP.

e Marker: The job of the marker is to insert the appropriate DSCP value in
the DS bytes that specifies the appropriate aggregate flow and determine which
forward treatment the packet should receive allowing packets to receive the

appropriate service (PHB) needed in order to perform only BA classification.

158

e Meter: A meter is used to compare the incoming flow with the negotiated traffic
profile. It passes the violating packets to the shaper and dropper, or remarks

them with a lower grade of service using different DSCPs.

e Shaper: This module is used to introduce some delay in order to bring the flow
into compliance with the profile. It has a limited size buffer used to buffer a
burst of traffic flows before resending them at an acceptable rate to the next

hop.

e Dropper: A dropper performs a policing function by simply dropping the pack-
ets that are out of profile. Traffic metering, shaping, and dropping are collec-

tively refereed to as policing.

The combination of these components is called a traffic conditioner. It is used to
facilitate building a scalable DiffServ network. The core routers does not need to
maintain per-flow state information as the classification is performed based on BA.
Therefore, packets are scheduled and classified according to the marking of the DSCP
field.

Figure (B.5) shows a DiffServ model that contains egress and ingress nodes, core

nodes and a bandwidth broker [19].

B.2.2 Resource allocation in DiffServ Domain using BB:

1. A host application sends a request for a QoS traffic flow with its specification,
burst rate, average rate, max rate, and delay, to the bandwidth broker of its

domain.

9. The domain BB first checks if the destination node is located in its domain,
since it has a global knowledge of the domain topology. The user data unit then
verifies if there are enough resources to accept a new QoS request. This shows
that the BB control the resources and the topology of its domain, admission

control functionality.

159

FIGURE B.5: A generic model for Differentiated Service Domain

3. The BB configures the right edge router or leaf router to send the guaranteed

traffic flows specifications for classification and scheduling purposes.

4. The ingress router uses these parameters to classify and mark the traffic packets
by inserting the DSCP. It also monitors the traffic flow for any violations for
which action has to be taken. The remarked or violated packets are either
dropped or their priority degraded into lower class depending on the policy set

by the domain BB.

5. The DSCP and the traffic specification are stored in the BB database for the

purpose of monitoring the resources of the domain.

6. If the destination address is not located in the BB domain, the request is for-
warded to the neighboring BB which checks if the address is located in its

domain. It also checks resource availability before responding to the request.

160

Table B.1: IntServ and DiffServ architecture comparison

IntServ

|

DiffServ

Granularity of service
differentiation

Individual flow

Aggregates flows

State maintenance in
routers (eg. buffers,
scheduling)

Per-flow

Per-aggregate

Packet classification

Several header fields (the 5-

DS byte of IP header

tuple)
Type of service differ- Deterministic or statistical Absolute or relative assur-
entiation guarantees ances
Admission control Required Required only for absolute

differentiation

Signaling protocol

Required (RSVP)

Not required for relative
schemes. Absolute schemes
need semi-static reservations
or broker agents

Coordination ”

End-to-End

Local (per-hop) |

Scalability

Limited by number of flows

limited by number of
classes of service

Network accounting

Based on flow characteristics
and QoS requirements

Based on class usage

Network management

similar to circuit-switched
network

Similar to existing IP
networks

[inter—domain deployment “

Multilateral agreements

Bilateral agreements

Comparison between DiffServ and IntServ Table (B.1) summarizes the dif-

ferences between DiffServ and IntServ [99].

Appendix C

Next Generation Internet Protocol

IPv6

'C.1 Introduction

The rapid growth of the current Internet, which operates using the Internet Proto-
col version 4(IPv4), has created a number of problems for the administration and
operation of the global network. These problems include the decreasing number of
available IPv4 addresses for network nodes, and the rapid growth of memory and
performance requirements for network routers. While changes to IPv4 have extended
the life of the current Internet, these changes tend to create new problems and require
a significant amount of overhead for network administration. The Internet Protocol
version 6(IPv6) has been designed to support these extensions without creating ad-
ditional problems [103] [104]. There are two significant important components of the
IPv6 protocol that may be in fact provide a method to help deliver QoS. The first
component is the 8-bit priority field in the IPv6 header, which is functionaliy equiv-
alent to the IP precedence bits in the IPv4 protocol specification, with somewhat of
an expanded scope. This field can be used to identify and discriminate traffic types
based on the contents of this field. The second component is the flow label which has

been added to enable the labeling of packets that belong to particular traffic flows for

161

162

which the sender’s request may need special handling [105].

C.2 Some Aspects of IPv6

In the following subsections, some of the useful aspects of the IPv6 that gives advan-

tages in using this protocol are presented in this section.

C.2.1 Addressing

With a 32-bit address field, it is in principle possible to assign 232 different addresses,
which is over 4 billion possible addresses. This number of addresses is not adequate

for the following reasons [104]:-

e The two level structure of the IP address (network number and host number) is
convenient but wasteful of address space. Once a network number is assigned
to a network, all of the host-number addresses for that network number are

assigned to that network.

e Growth of TCP/IP usage in new areas will result in a rapid growth in the

demand for unique IP addresses.

e Typically, a single IP address is assigned to each host. A more flexible arrange-
ment is to allow multiple IP addresses per host; this increases the demand for

more [P addresses.

To meet these needs, IPv6 uses 128-bit addresses instead of 32-bit addresses of IPv4.

This is an increase of address space by a factor of 2%.

C.2.2 Performance

Both LANs and WANs have progressed to ever greater data rates pushing for giga-
bits traffic rates. Also, as more services, especially graphics based services, become

available over the Internet. This makes having routers that process and forward IP

163

packets fast enough to keep up with the traffic flow an important and urgent matter
in Inter networking.

Three aspects of IPv6 design contribute to meeting performance requirements [104]
(8]

I The number of fields in the IPv6 packet header are reduced from IPv4. A
number of IPv6 options are placed in separate optional headers located between
the IPv6 header and the transport layer header. This simplifies and speeds up
the routing of IPv6 header packets compared to IPv4 datagrams since these

optional headers are not examined or processed.

II- The IPv6 packet header is fixed length whereas the IPv4 header is variable
length (again simplifying the processing).

[1I- Packet fragmentation is not permitted by IPv6 routers , although it is in IPv4.
Fragmentation in IPv6 is performed by the source. A discovery packet is sent
to the destination node and the maximum transmission unit (MTU) is returned

back to the source node where packets are fragmented at that size.

C.2.3 Network service

In IPv6 it is possible to associate packets with particular service classes, perform
routing functions on the basis of those classes and allow the network along the route
. to make use of this class information. This means IPv6 is able to support real-time
services and to specify priority levels to determine discard strategy in the event of
congestion. IPv4 provides minimal support in this area. Also, IPv6 enables labeling
of packets belonging to a particular traffic flow when a sender requests a special

handling [104] [106].

C.2.4 Addressing Flexibility

IPv4 is best employed for unicast addressing: a single address bit pattern corresponds

to a single host. Other forms of addressing are poorly supported, partly because the

164

address size is limited to 32 bits and no provision is made for certain addressing modes.
IPv6 includes the concept of an anycast address for which a packet is delivered to
just a one node in a set of nodes. The scalability of the multicast routing is improved

by adding a scope field to multicast address [108].

C.2.5 Security Capabilities

IPv4 provides no security capabilities other than an optional security label field.
Although end-to-end security can be provided at the application level, there is support
for a standardized IP-level security service which any application can use without
providing security features in that application. IPv6 provides a range of features that

support authentication and privacy [108] [106].

C.3 QoS in IPv6

The QoS issue was introduced with the aim of supporting real-time services (e.g., [P
voice, video, etc) and providing a network client with a range of service-offering QoS
such as Integrated Services and Differentiated Service mechanisms require that dif-
ferent types of traffic flows to be treated differently by intervening routes in Internet.
To achieve this goal, IPv6 has an elusive definition of a "flow” as described in the
previous section. With this ”flow label”, the sender requests special handling, such as
non default QoS or real-time services. In addition to the flow label, IPv6 has an 8-bit
traffic class field. This field is used to identify and distinguish different classes of IPv6
packets with different priorities, providing various forms of differentiated services for
IP packets [106]. Next the advantages of using both fields to support QoS will be

discussed.

C.3.1 Flow Label

According to the IPv6 specification, the flow label might be used by the source to

label packets that require special handling by intervening IPv6 routers, such as non

165

default QoS or real-time service. In order to classify packets belonging to the same .
flow, they are labeled with the same pre-defined flow label value. As a result, network
elements are now capable of classifying packets based on IP semantics alone. This
allows efficient mapping of packets to their flows and hence to their flow specification
policy (for example, QoS requirements or class of service). Flow labels are assigned
to flows by the sources, or sending nodes, in an unique manner. A source can never
have more than one flow with the same flow label at a given time. New flow labels
must be chosen randomly {107].

The Benefits of the Flow Label [108] (8] [114]:-

The flow label properties are ideal for proper and efficient packet classification. Three
significant characteristics are introduced. First, the flow label identifies packets
requiring special treatment. A flow label of zero indicates that a particular packet
does not belong to this flow. This allows routers to immediately identify (a simple
check within the IPv6 header is sufficient) whether a packet needs a special handling
or not. Second, the flow label in conjunction with the source IP address serves as
unique identifier for flows since each source node must ensure unique local flow labels.
The great benefit for packet classification is that all information needed to uniquely
classify packets is available within the IPv6 header. Third, the flow label is chosen
randomly. The advantage to this attribute is that any set of bits within the flow
label is suitable for use as lookup-key in routers.

Another benefit that can be achieved from using the flow label is the avoidance
of extracting information from upper layers to forward or process packets. IPv4
intervening routers rely on the transport protocol or application level information
for forwarding flows’ packets. This means, instead of using the network layer only
to process packets, routers require information from either transport or application
protocol (ie socket port) to map packets to their reserved resources. This introduces
what is know as the Layer Violation Problem [8]. This problem has some serious

drawbacks with respect to the performance of packet classification such as:-

1. Accessing higher layer protocol information to distinguish different flows of the

166

same host pair is an expensive operation (especially in IPv6 networks).

2. Intérmediate nodes decrypt security packets to get the port numbers to process
packets even though, they should be hidden and only the receiver can decrypt
these packets. This makes forwarding and processing complicated and more

tirhe is added when packets are encrypted and decrypted.

To overcome this layer violation problem, flow labels and source addresses are used
as a hash key for routers during processing and forwarding packets. Therefore, there
is no need to get the port number since all packets going to the same destination have
to have the same flow label and the same source address.

Finally, utilizing the flow label for packet classification has the following advantage:-

I Use of the flow labels decreases the average processing load of the network
routers. This results in reducing the end-to-end delay of real time traffic flows

for the following two reasons:-

a) when the flow label is consistently used to indicate real time flows, routers
need to perform packet classification only for packets with non-zero flow

labels.

b) less processing time for IPv6 packets even if extension headers are used
since all packets from the same flow must have identical extension headers.
As a result, routers along the path ,source node to destination node, have
to process the headers only on a per flow basis rather than a per packet

basis.

II Flow label usage facilitates end-to-end IP level security mechanisms within re-
source reservation since packet classification does not rely on higher level infor-
mation (ports). Therefore, IP Security Protocol (IPSEC) mechanisms specif-
ically encryption can not obscure important information at the domains’ net-

works during decryption.

167

Table C.1: The Priority Values

Congestion-controlled Traffic Non-Congestion-controlled Traffic

0 un characterized traffic 8 real time traffic with lowest priority
1 filler traffic (e.g., email)

2 unattended data transfer(e.g., email)

3 (reserved)

4 attended bulk transfer (e.g., FTP, HTTP)
5 (reserved)

6 interactive traffic (e.g., telnet, X) .
7 Internet control traffic Least willing to discard
(e.g.,routing protocols, SNMP) (e.g., low-fidelity audio)

I1I The flow label has the potential to facilitate implementation of QoS based flow
routing mechanisms in which flow labels (in conjunction with the IP source
address) are used for a lookup procedure which reduces packet processing time
(end-to-end delay is reduced as a result). Also a QoS management unit can use

the flow label to process QoS requests and to keep track of reservations.

C.3.2 Priority Field (Traffic Class)

The Priority field in the IPv6 header enables a source to identify the desired priority
of its packets, relative to other packets from the same source. Values 0-7 are used
to specify the priority of traffic for which the source is providing congestion control.
Transmission control procedure for congestion-controlled traffic includes congestion
control loops identical or similar to Van Jacobsons slow start . Values 8-15 are used
to specify the priority of traffic that does not back off in response to congestion, e.g.,
real-time traffic. Priority classes can be used to complement queuing polities such
as fair queuing or class-based queuing [109] [108] [115]. Table 1. Shows the recom-
mended values for congestion-controlled traffic and for real time traffic. Congestion-

controlled traffic refers to traffic for which the source "backs off” in response to

168

congestion. An example is the TCP congestion control mechanism. The nature of
this traffic is that it is acceptable for there to be a variable amount of delay in the de-
livery of packets. IPv6 defines the following categories of congestion-controlled traffic

in order of decreasing priority:-

_ Internet control traffic This is the most important traffic to deliver, especially

in times of high congestion.

_ Interactive traffic The second most important traffic type after Internet con-
trol traffic. An On-line-to-host connection is one of the interactive traffic ex-
amples where the user efficiency depends on the rapid response time during

interactive sessions so end-to-end delay is minimized.

 Attended bulk transfer Some applications require transfer of large amount
of data. Therefore, delay is not sensitive as in the case of interactive traffic,
however, the completion of transfer is very important. Examples of this type

are FTP and HTTP.

_ Unattended data transfer This type of traffic is initiated by the user and
not expected to be delivered instantly. The user will do other tasks before the

transfer is completed. Example of this type is electronic mail.
. Uncharacterized traffic This is the lowest priority traffic (best effort).

Non-congestion-controlled traffic is traffic for which a constant data rate and
a constant delivery delay (smooth data rate and delivery delay). Examples are real
time video and audio. Eight levels of priority are allocated for this type of traffic,
from lowest priority (most willing to discard) to the highest priority 15 (least willing
to be discard).

Appendix D
ns-2 added code

In this appendix, the C++ , tcl codes which has been created to do the IPv6 simu-

lation is shown.

D.1 the C++4 Code implementation
D.1.1 QoS Manager Code

Listing D.1: fgeeManager.h

/*
#« FgeeManager IP QoS module.
*x
% Authors: El-Bahul Fgee <fgeeee@dal .ca>,
* Jason Kenney <jdkenney@dal.ca>, 2003
*/

#ifndef fgeeManager_h

#define fgeeManager_-h

#include ” dsPolicy.h”

#include ”dsred.h”

#include <string.h>

#include ”edge.h”

#include ”core.h”

class FgeeManager ;

169

170

#include "../queue/fgee —marker.h”

#include <vector>
#include <map>
#include <algorithm>

#define MAXREALLOC 40
#define SUCCESS 100

#define NOENDPOINT 101
#define NOTENOUGHBAND 102

J—

structure of reallocation table entry

struct reallocTableEntry
{
int codePt;
double initialCir;
double firstChange;

double secondChange;

b

struct nodepair
{
int nl;
int n2;

}s

class FgeeManager : public TclObject

{

private:
edgeQueuex edgePolicyObj[10];
coreQueue* corePolicyObj [10];

int numEdgePolicyObj;

int numCorePolicyObj ;

int codepointTableSize;

int reallocTableSize;

double TOTALBW_USED;

double MAXBW;

double MAXEFBW, EF BW_USED;
double MAX AFBW, AFBW_USED;

171

" double MAXBEBW, BEBW_USED;
int NumQ, cp, AF1l, AF2;
double cir, cbs, ebs, pir, pbs;

Tcl_Interp *interp;

Policy * polObj;

int allocate;

double avgRate;

policyTableEntry = tableEntry;
reallocTableEntry reallocTable [MAXREALLOC];

std :: vector<int > nodeids;

std ::map<int , double> flows; // keep track of the flows!
std : : map<int , int> ftop; // map flowid to priority
std ::map<int , double> flowprice; // map flowid to priority

std :: vector<int > classes;

std :: vector<float > weights;

std :: vector<int > beginnings; // keep track of beginning priority
std :: vector<int > ends; // keep track of end priorities

std :: vector <FgeeMarker*> markers; // keep track of the edge routers
std :: vector <FgeeManager *> managers; // keep track of the edge routers
std ::map<int , struct nodepair> npairs; // fid to nodepairs

std : :map<int , double> priotocriticalpoint;

std ::map<int , double> priotobaseprice;

Policy policy;

public:

FgeeManager ();

int command(int argc, const charxconstx* argv);

inline void addNewPolicy (nsaddr_t SNode, nsaddr-_t DNode, pollcerType policer , int cp,
double cir, double cbs, double ebs, double pir, double pbs);

inline void dynamicAllocation(nsaddr-t source, nsaddr.t dest);

// performing dynamic allocation on the policies that have been defined

inline void setMaxBw(int bw);

void addEdgePolicyObj (edgeQueuex edgePol);

void addCorePolicyObj(coreQueuex corePol);

void setNumQueues(int numQ);

void policyObjEntries (nsaddr_t SNode, nsaddr.t DNode, policerType policer,

int cp, double cir, double cbs, double ebs, double pir, double pbs);

void addNewPHB(policerType policer);
void addReallocTableEntry (int cp, double intialCir , double first , double second);

void downgradeOne(policyTableEntry * tableEntry);
void downgradeTwo(policyTableEntry * tableEntry);
void upgradeOne(policyTableEntry * tableEntry);
void upgradeTwo(policyTableEntry * tableEntry);
void endFlow (nsaddr_t SNode, nsaddr-t DNode) ;

int get_class(int prio);

void classify_flow (int fid, int prio);

int mark(Packet xp) { return policy .mark(p); }
void downgrade_flow (int fid, int after);

int add_range(int i, int j, double k);

int request(int fid, double band, int s, int d);
int release(int fid);

int push_edge(const char #s, int nl, int n2);
int push_mang(const char xs);

int besteffort (int fid);

int add_nodepair(int fid, int nl, int n2);

int check.bw(int fid, double band, int d);

int set.point(int prio, double ferit);

int set._price(int prio, double baseprice);
double get_price(double total, double used, int p):
double check_price(int fid);

}s

#endif /* fgeeManager-h */

Listing D.2: fgeeManager.cc

172

/*
» FgeeManager QoS management module
*
+ Authors: El-Bahul Fgee <fgeeee@dal.ca>,
Jason Kenney <jdkenney@dal.ca>, 2003
*

*

*/

#include <stdio .h>
#include ” fgeeManager .h”
#include <string.h>

/%
class FgeeManagerClass : public TclClass

Instantiates a FgeeManager in a new simulation.

173

static class FgeeManagerClass

public:

public TclClass {

. FgeeManagerClass () : TclClass (” FgeeManager "y {}
TclObject * create (int , const charxconst *) {

return (new FgeeManager);

}

} class_fgeemanager;

/*

Manager () constructor

FgeeManager : : FgeeManager ()

{
numEdgePolicyObj =
numCorePolicyObj =

o O ©

reallocTableSize =
codepointTableSize = 0;
TOTALBW.USED = 0;
AFBW_USED = 0;

EF BW_USED 0;
BEBW.USED = 0;

It

NumQ = 0;
AF1 = 0;
AF2 = 0;

classes.push_back (0);
weights . push_back (0.99);
beginnings.push_back (0);
ends.push_back (15);

// numPolicyObj defined to enter client requests through the BB

// calculated using CIR, so bw_used is defined in bytes per seconc
// Bandwidth reserved for assured forwarding.

// Bandwidth reserved for expedited forwarding.

// Bandwidth reserved for best effort.

/...

int FgeeManager ::command(int argc, const charxconst=* argv)

Takes care of interface with Tcl

int FgeeManager ::command(int argc, const charxconst* argv)

{

policerType policer;
nsaddr_t SNode, DNode;

174

if (strcmp (argv (1}, ”setMaxBw”) == 0)
{
setMaxBw(atoi (argv[2]));
return TCL.OK;
}

else if(strcmp(argv[1], ” setNumQueues”) == 0)
{
setNumQueues(atoi (argv [2]));
return TCL.OK;
}
else if (strcmp(argv{l], ”addPolicyEntry”) == 0) {
for (vector <FgeeMarker *>::iterator fmi = markers.begin ();
fmi != markers.end (); fmi++)
(* fmi)—>command (argc, argv);
return (TCL-OK);
}
else if (strcmp(argv(l], " addPolicerEntry”) == 0) {
for (vector <FgeeMarker * >::iterator fmi = markers.begin ();
fmi != markers.end (); fmit++)
(* fmi)—>command(argc, argv);

return (TCL.OK);

else if(strcmp(argv[1l], ” set—point”) == 0) {
if (arge !'= 4) {
printf(” FgeeManager (%s): not correct number of arguments for
set—point !\n” , name());
return (TCLERROR);

}
return set_point (atoi(argv([2]), atof(argv[3]));
}
else if(strcmp(argv[1l], ”set—price”) == 0) {
if (arge !'= 4) {
printf(” FgeeManager (%s): not correct number of arguments
for set—price!\n”, name());
return (TCLERROR);
}
return set_price(atoi(argv([2]), atof(argv{3])});
}

else if(strcmp(argv[1l], " get—price”) == 0) {

175

if (arge !'= 3) {
printf(” FgeeManager (%s): not correct number of arguments
for get—price!\n”, name());
return (TCLERROR);
}
printf ("PRICE: %d %.31f %.31f\n”, atoi(argv[2]), Scheduler:: instance ().clock (),
get_price (MAXBW, TOTALBW.USED, atoi(argv([2])));
return (TCL-OK);

}
else if(stremp (argv{l], " request”) == 0) {
if (arge != 6) {
printf (" FgeeManager (%s): not correct number of arguments
for request!\n”, name());
return (TCLERRORY};
}
return request (atoi(argv[2]), atof(argv[3])/8.0, atoi(argv[4]), atoi(argv[5]});
}
else if (stremp(argv[l], "release”) == 0) {
if (arge !'= 3) {
printf(” FgeeManager (%s): not correct number of arguments
for release!\n”, name());
return (TCLERROR);
}
return release (atoi(argv[2]));
}
else if(strcmp(argv{l], ” besteffort”) == 0) {

return besteffort (atoi(argv[2]));

else if ((arge == 4) && (stremp (argv[1], ”add-range”) == 0)) {
return add_range(atoi(argv[2]), atoi(argv[3]), atof(argv([4]});

}

else if ((argc == 5) && strcmp(argv (1], ” pushedge”) == 0) {

return push_edge(argv (2], atoi(argv([3]), atoi(argv(4])});

else if (strcmp(argv[l], ” pushmang”) == 0) {

return push_mang(argv[2]);

else if (strcmp(argv[1l], ” addnodepair”) == 0) {

return add_nodepair (atoi(argv[2]), atoi(argv[3]), atoi(argv[4]));

}

printf (? FgeeMarker (%s): Unknown function %s\n”, name (), argv([1]);

return (TCLERROR);

int FgeeManager :: add_nodepair (int fid , int nl, int

struct nodepair ntmp;
ntmp.nl = nl;

ntmp.n2 = n2;

npairs [fid] = ntmp;
return (TCLOK);

7%

int FgeeManager :: besteffort (int fid) {

//int fid = atoi (argv[2]);
ftop [fid] = 8;
flows [fid] = 1;

for (vector <FgeeMarker *>::iterator fmi = markers
fmi != markers.end (); fmi++)
(*fmi)—>set _flow (fid , 0);

return TCL.OK;

%

int FgeeManager :: push_edge (const char+ s, int nl, int n2) {

if (strlen(s) == 0) {

printf(” FgeeManager (%s):

return (TCL.ERROR);
}

n2) {

Wrong Number of arguments??”, name(});

.begin ();

176

printf (? FgeeManager (%s): Adding %s to the end of the stack\n”, name(), s);

FgeeMarker *fm = dynamic_cast <FgeeMarker*>(TclObject :: lookup(s));

if (fm != 0) {

markers . push_back (fim);
if (find (nodeids.begin(), nodeids.end (), nl) == nodeids.end)
nodeids . push_back(nl);

}

else {

printf (” FgeeManager (%s): %s is not an object of type

177

FgeeMarker *+ !\n” , name(), s);
printf(” Exiting\n”);
return (TCLERRORY);

}
return (TCLOK);
}
I/
int FgeeManager : : push_mang(const charx s) {
if (strlen(s) == 0) {
printf(” FgeeManager (%s): Wrong Number of arguments??”, name());
return (TCLERROR);
}
printf(” FgeeManager (%s): Adding %s to the end of the MANAGFR stack\n”, name(), s);
FgeeManager *fm = dynamic_cast <FgeeManager *>(TclObject ::lookup(s));
if (fm !'= 0)
managers . push_back (fm);
else {
printf (" FgeeManager (%s): %s is not an object of type FgeeManager* !\n”,
name(), S);
printf(” Exiting\n");
return (TCLERROR);
}
return (TCL.OK);
}
1/

int FgeeManager ::add_range(int i, int j, double k)
{
//int i atoi(argv[2]);
//int j atoi(argv(3]);
//float k = atof(argv[4]);
if(i > i) {
fprintf(stderr, "Whoa! I think you meant:\n”);
fprintf(stderr , ” FgeeManager add-range %d %d instead of:\n”,
J, i)
fprintf(stderr , ” FgeeManager add-range %d %d, I'11 try to fix

il

I

it for you”,

i, J)7
int tmp = 13
i=jj
j = tmp;

178

if(k < 0.0) {
fprintf(stderr , "Whoa! you can’t have a negative weight ,
I will reverse the sign”);
k = —k;
}
if(j > 15) {
printf(” FgeeManager (%s): %d is too large for the priority field!
(4 bits) Ignoring!\n”, name(), j);
return (TCLERROR);
}
if (beginnings[0] == 0 && ends[0] == 15) {
// Only best effort exists, delete it;
beginnings [0} = i;

ends[0] = j;

classes[0] = 1; // entire range is best effort, no?
. weights [0] = .99; // entire range is best effort, no?
} else {

for (unsigned int t = 0; t < ends.size (}; t+4) {
if (i >= beginnings [t] && i <= ends[t}) {
printf(” FgeeManager (%s): ERROR: I can’t overlap
priorities!\n”, name());
printf(” FgeeManager (%s): %d is between beginnings[%d] = %d
and ends[%d] = %d]\n”, name(), i, t, beginnings(t], t,
ends[t]);
abort ();
} else if(j >= beginnings[t] && j <= ends[t]) {
printf(” FgeeManager (%s): ERROR: I can’t overlap priorities!\n”,
name ());
printf(” FgeeManager (%s): %d is between beginnings[%d] = %d and
ends[%d] = %d]\n”, name(), j, t, beginnings([t], t, ends[t]);
abort ();

}
beginnings.push_back(i);
ends . push.back(j);
classes.push_back(classes.size ());
weights. push_back(k);
}
printf(” FgeeManager (%s): Setup new traffic class %d —> %d! (class %d)\n”,
name(), i, j, classes[classes.size()—1]);
for (vector <FgeeMarker #>::iterator fmi = markers.begin ();
fmi != markers.end (); fmi++) {
(*fmi)—>replicate(i, j);
}
return (TCL.OK);

179

//
double FgeeManager::check-price(int fid)
{
if (flowprice .count (fid) == 0)
¢
fprintf(stderr, ” FgeeManager (%s): No prices for fid %d
found!\n”, name(), fid);
return —1000.0;
}
else
return flowprice [fid];
}
/!
int FgeeManager :: request (int fid, double band, int s, int d)

{

//double band = atof (argv[3])/8.0;
//int fid = atoi(argv{2]);

if (npairs. find (fid) == npairs.end ()) {
printf (" FgeeManager (%s): flow id: %d not found! Well, shit!\n”,
name (), fid);
return {TCLERROR);

int shere = 0;
int dhere = 0;
for (vector<int >::iterator i = nodeids.begin (); i != nodeids.end(); i++) {
printf(*%d == %d ? and %d == %d ?\n”, *i, s, *i, d);
if (s == i)
shere = 1;
if (d == i)
dhere = 1;
}
if (shere == 0) {

printf (" FgeeManager (%s): flow id: %d nodeid: %d not originating here!\n”,
name(), fid, s);
return (TCLERROR);
-}

if ((MAXBW — TOTALBW.USED — band) < 0.0) {
printf (" FgeeManager (%s): flow id: %d requested too much bandwidth,
denying!\n” , name(), fid);

180

printf (” Math: MAXBW — TOTALBW_USED - band = 7\n”");

printf(”Math: %f — %f — %f = %f\n”, MAXBW, TOTALBWUSED, band,
MAXBW — TOTALBW.USED — band);

return TCL.OK;

}
if (dhere == 0)
{
vector <FgeeManager *>::iterator fmani;
for (fmani = managers.begin (); fmani != managers. end (); fmani++)
{
if (1(*fmani)—>check_bw(fid , band, d))
break;
}
if (fmani == managers.end ()) {
printf (? FgeeManager (%s): flow id: %d can’t find endpoint %d
in any of my other managers\n”, name(}, fid, d);
return (TCL.ERROR);
}
}

TOTALBW.USED += band;

printf (” FgeeManager (%s): flow id: %d requested bandwidth: %f , accepting!\n”,
name(), fid, band};

printf (? FgeeManager (%s): used bandwidth: %f, bandwidth remaining: % f!\n”,
name () , TOTALBW.USED, MAXBW — TOTALBWUSED);

flows [fid] = band;
ftop [fid] = —1;

for (vector <FgeeMarker *>::iterator fmi = markers . begin ();
fmi != markers.end (); fmi++)
(*fmi)—>set_flow (fid , band);

return TCLOK;
}
//
int FgeeManager :: release (int fid)

{

if (flows . find (fid) != flows.end())
TOTALBW._USED —= flows [fid |;

flows . erase(fid);

181

ftop .erase (fid);
for (vector <FgeeMarker *>::iterator fmi = markers.begin ();
fmi != markers.end (); fmi++)

(*fmi)=>unset_flow (fid);

return (TCL.OK);

int FgeeManager ::check_bw(int fid, double band, int d) {

if (npairs. find (fid) == npairs.end()) {
printf(” FgeeManager (%s): flow id: %d not found! Well !\n”, name(), fid);

return 1;
}
int dhere = 0;
for (vector<int >::iterator i = nodeids.begin (); i != nodeids.end (}; i++){
if (d == %i)
dhere = 1;
}
if (dhere == 0) {

printf(” FgeeManager (%s): flow id: %d Can’t find endpoint %d\n” , name(), fid, d);

return 1;

if ((MAXBW — TOTALBW.USED — band) < 0.0) {
printf(” FgeeManager (%s): flow id: %d requested too much bandwidth,
denying!\n”, name(), fid);
printf(”Math: MAXBW — TOTALBW.USED — band = ?\n”);
printf("Math: %f — %f — %f = %f\n", MAXBW, TOTALBWUSED, band,
MAXBW — TOTALBW.USED — band);

return 1;

TOTALBW.USED += band;

flows [fid] = band;
ftop [fid] = —-1;

for (vector <FgeeMarker *>::iterator fmi = markers. begin ();
fmi != markers.end (); fmi++)
(*fmi)—>set_flow (fid , band);

182

return O;

void FgeeManager::addNewPolicy(nsaddr-t SNode, nsaddr.t DNode, policerType policer ,
int cp, double cir, double cbs, double ebs, double pir, double pbs){

if (MAXBW > TOTALBW.USED)
{

Tcl& tcl = Tcl::instance();

switch (policer)
{
case EF:
if (pir > (MAXEFBW - EF.BW_USED))
{
printf(?ERROR: NO BANDWIDTH TO ALLOCATE\n”);
Tcl.SetVar (tcl.interp(), " allocate”, 707 ,TCL.GLOBAL.ONLY);
} else
{
Tecl_SetVar (tcl.interp(), ” allocate”, ”1”, TCL.GLOBAL.ONLY) ;
EF BW.USED 4= pir;
}
break;
default :
if (cir > (MAXAFBW — AF.BW.USED))
{
printf ("ERROR: NO BANDWIDTH TO ALLOCATE\n”);
Tcl_SetVar (tcl.interp(), " allocate”, »0” TCL.GLOBALONLY);
} else
{
Tcl_SetVar(tcl.interp (), " allocate”, »1 » TCLGLOBALONLY);
AFBW_USED += cir;
}
break;
}
TOTALBW.USED = EF BW.USED + AFBW.USED + BEBW_USED;

} else

{
printf (”NO MORE ALLOCATIONS POSSIBLE \n”);

}

return;

183

void FgeeManager ::addNewPHB(policerType policer)

{

Tcl& tcl = Tcl::instance();

if (NumQ == 4)
{
if (AF1 < AF2)
{

switch (policer)

{
case EF:

Tcl_SetVar (tcl.interp (), ”setPHB”,

break;
default :

Tcl_SetVar (tcl.interp (), ”setPHB”,

AF14++;
break;

switch (policer)

{
case EF:

Tcl_SetVar (tcl.interp(), ”setPHB”,

break;
default :

Tcl_SetVar (tcl.interp (), ”setPHB”,

AF2++;
break;

return;

70” , TCL.GLOBALONLY); .

17 | TCL.GLOBAL.ONLY);

"0” , TCL.GLOBALONLY);

»2» TCL.GLOBAL.ONLY);

184

[¥—
void FgeeManager :: addEdgePolicyOb) (edgeQueue* edgePol)
{
if (numEdgePolicyObj > 9)
{
printf ("ERROR: No more policy objects can be added\n”);
} else
{
edgePolicyObj [numEdgePolicyObj] =edgePol;
numEdgePolicyObj++;
}
return;
}
/*
void FgeeManager :: addCorePolicyObj(coreQueue * corePol)
{
if (numCorePolicyObj > 9)
{
printf("ERROR: No more policy objects can be added\n”);
} else
{
corePolicyObj [numCorePolicyObj] =corePol;
numCorePolicyObj++;
}
// printf(” Successfully added policy Objects\n”);
return;
}
#if 0
[

void FgeeManager :: addPolicyObj (edgeQueue * pol)
{
if (numPolicyObj > 9)

{

printf("ERROR: No more policy objects can be added\n”);

} else
{

policyObj [numPolicyObj} =pol;
numPolicyObj++;

185

}

return;

a method to add policys to all the policy objects

void FgeeManager :: policyObjEntries (nsaddr.t SNode, nsaddr_t DNode, policerType policer,
int cp, double cir, double cbs, double ebs, double pir, double p

int first , second, third, fourth;

for (int i=0; i<numPolicyObj; i++)
{
policyObj [i]->addNewPolicyEntry(SNode, DNode, policer, cp, cir, cbs, ebs, pir, pbs);
printf(” The policies have been added\n”);
policyObj [i]->addNewPolicer (policer , first , second , third, fourth};
printf (" The Policer has been added\n”};

return;

#endif

[—
setMaxBw() sets the maximum bandwidth available to allocate.

need to check on the sense behind converting it between bits and bytes???

void FgeeManager ::setMaxBw(int bw)
{
MAXBW = (double) bw/8.0;
MAXEFBW = MAXBW/4.0;
MAXAFBW = MAXBWx*(2.0/4.0);
MAX.BEBW = MAXBW — (MAXEFBW + MAXAFBW);
printf ("MAXBW is %f\nMAXEFBW is %f\ntMAX AFBW is % f\nMAXBEBW is %f\n”,
MAXBWx8.0, MAXEF BW8.0, MAX AFBWx*8.0, MAXBEBW*8.0);

for (vector <FgeeMarkerx>::iterator fmi = markers . begin ();

186

fmi != markers.end (); fmi+d4)
(* fmi)—>set_maxbw (MAXBW);

setNumQueues (NumQ)
sets the Number of queues in the diffserv domain.
This lets the BB decide based on the number of queues tp which queue the next

codepoint should be assigned.

void FgeeManager ::setNumQueues(int nQ)

{
NumQ = nQ;

return;

[*—

void FgeeManager :: dynamicAllocation ()

method provides for dynamic allocation. checks the meter, depending on the type of policer and the

code points , decides the new codepoint to be used .

void FgeeManager :: dynamicAllocation(nsaddr.t source, nsaddr.t dest)

{

int i;

for(i = 0; i < numEdgePolicyObj; i++) {
tableEntry = edgePolicyObj[i]—>getPolicyTableEntry (source, dest);
if (tableEntry != NULL) break;

if (i == numEdgePolicyObj) {
printf ("ERROR!!! No whatever found from source %d to destination %d\n” , source, dest);

return;

switch (tableEntry—>policer)

{
case EF:

187

if (tableEntry—avgRate <= ((tableEntry—>pir)/2) + 1000.0)

{
if (tableEntry—>cir <= ((tableEntry—>pir)*2/3 + 500.0})
{
}
else if (tableEntry—>cir <= ((tableEntry->pir)*3/4 + 500.0))
{
upgradeTwo (tableEntry);
EF.BW_USED = EF BW.USED — (tableEntry—>pir)/12;
}
else
upgradeTwo (tableEntry);
EF.BW_USED = EFBW_USED - (tableEntry->pir)/3;
}
}
else if (tableEntry—>avgRate <= ((tableEntry—>pir)*2/3) + 1000.0)
{
if (tableEntry—>cir <= ((tableEntry—>pir)*2/3 + 500.0))
{
if (MAXEFBW >= EF BW.USED + (tableEntry—>pir)/12) {
downgradeOne(tableEntry);
EF BW.USED = EF.BW.USED + (tableEntry—>pir)/12;
}
else {
}
}
else if (tableEntry—>cir <= ((tableEntry—>pir)*3/4 + 500.0))
{
}
else
{
upgradeOne(tableEntry };
EF. BW_.USED = EF BW.USED — (tableEntry—>pir)/4;
}
}
else

if (tableEntry—>cir <= ((tableEntry—>pir)*2/3 + 500.0))
{
downgradeTwo (tableEntry);
EF.BW_USED = EF.BW.USED + (tableEntry->pir)/3;

}
else if (tableEntry->cir <= ((tableEntry->pir)*3/4 + 500.0))

{

188

if (MAXEFBW >=EFBW.USED + (tableEntry—>pir)/4) {
downgradeTwo (tableEntry);
EF.BW.USED = EF BW.USED + (tableEntry—>pir)/4;

}

else {

} break;
default :
if (tableEntry—>avgRate < tableEntry—>cir)
{
AFBW.USED = AFBW.USED - (tableEntry—>cir — tableEntry—>avgRate)/2.0;
tableEntry—>cir = tableEntry—>cir — (tableEntry—>cir — tableEntry—>avgRate)/2.0;

}
else if (tableEntry—>avgRate < tableEntry—>pir)
{
if (MAXAFBW >= AFBW.USED 4 (tableEntry—>avgRate — tableEntry —>cir})
{
AF.BW.USED = AFBW.USED + (tableEntry—>avgRate — tableEntry->cir);
tableEntry—>cir = tableEntry-—>avgRate;
}
else
{
}
}
else
{
}
break;
}
TOTALBW.USED = EF BW_.USED + AFBW_USED + BEBW_USED;
return;
}
/—

void FgeeManager :: addReallocTableEntry (int cp, double cir)

This method changes the policy marked in a a pkt during runtime

to regain bw.

189

void FgeeManager :: addReallocTableEntry (int cp, double initialCir, double first , double second)
{
if (reallocTableSize == MAXREALLOC)

{

printf(”No more policies accepted\n");

}
else
reallocTable [reallocTableSize].codePt = cp;
reallocTable [reallocTableSize]. initialCir = initialCir;
reallocTable [reallocTableSize]. firstChange = first;
reallocTable [reallocTableSize].secondChange = second;
reallocTableSize++;
}
return;
}
/*

void FgeeManager :: upgradeOne()

*/
void FgeeManager :: upgradeOne(policyTableEntry tableEntry)
{
for (int i=0; i < reallocTableSize; i++)
{
if (reallocTable[i].codePt == tableEntry—>codePt)
tableEntry—>cir = reallocTable[i]. firstChange;
}
return;
}
1E
void FgeeManager :: upgradeTwo()
*/

void FgeeManager :: upgradeTwo(policyTableEntry * tableEntry)

{

for (int i=0; i < reallocTableSize; i++)

{

if (reallocTable[i].codePt == tableEntry—>codePt)

tableEntry—>cir = reallocTable[i].secondChange;
}

return;

[x—

void FgeeManager :: downgradeTwo ()

*/
void FgeeManager :: downgradeTwo (policyTableEntry = tableEntry)
{
for (int i=0; i < reallocTableSize; i++)
{
if (reallocTable[i].codePt == tableEntry—>codePt)
tableEntry—>cir = reallocTable[i].initialCir;
}
return;
}
[*
void FgeeManager :: downgradeOne()
*/

void FgeeManager :: downgradeOne(policyTableEntry * tableEntry)
{
for (int i=0; i < reallocTableSize; i++)
{
if (reallocTable[i].codePt == tableEntry—>codePt)
tableEntry—>cir = reallocTable[i]. firstChange;

}

return;

void FgeeManager :: endFlow ()

void FgeeManager :: endFlow (nsaddr_t SNode, nsaddr-t DNode)
{

190

191

double bw;
policerType policer;

for(int i = 0; i < numEdgePolicyObj; i+4) {
tableEntry = edgePolicyObj[i]—>getPolicyTableEntry(SNode, DNode);

bw = tableEntry—>cir; -

policer = tableEntry->policer;
edgePolicyObj|i]->removePolicyTableEntry (SNode, DNode);

switch (policer)

{
case EF:

EF BW._.USED = EF BW.USED - bw;
default :

AF BW_.USED = AF.BW.USED - bw;
}

TOTAL BW_USED = EF BW_.USED + AF.BW.USED + BEBW.USED;

if (tableEntry != NULL) break;

}
return;
}
int FgeeManager::get_class(int prio)
{
if (prio > 15)
{
printf(” FgeeMarker (%s): ERROR: Invalid priority field: %d !\n”, name(), prio);
abort ();
}
for (unsigned int i = 0; i < beginnings.size (); i++)
{
if (prio >= beginnings [i] && prio <= ends[i])
return classes[i];
}
return 0; // Best effort if it doesn’t fit a specified class
}

void FgeeManager:: classify_flow (int fid, int prio)
{
if (flows.count(fid) == 0) {
int ¢ = get.class(prio);

//flows [fid] = c;
for (vector<FgeeMarker*>::iterator fmi = markers . begin ();
fmi !'= markers.end (); fmi+d4)
//(x fmi)=>set _flow (fid , c);
printf(” FgeeManager (%s): Added flow id %d to class %d\n” ,

name (), fid, c);

void FgeeManager :: downgrade_flow(int fid, int after) {
for (vector <FgeeMarker=>::iterator fmi = markers. begin ();
fmi !'= markers.end (); fmit++)
(*fmi)—>downgrade_flow (fid , after);

by

int FgeeManager :: set_price(int prio, ‘double baseprice)

{

priotobaseprice[prio] = baseprice;
return (TCL.OK);

int FgeeManager :: set_point (int prio, double ferit)

{

if (ferit >= 0.0 && fcrit <= 1.0)

priotocriticalpoint [prio] = ferit;
else {
fprintf(stderr, ” FgeeManager(%s): CRITICAL POINT (% 1f) MUST BETWEEN
0.0 and 1.0\n”, name(), fcrit);
return (TCL.ERROR);
}

return (TCLOK);

}

double FgeeManager :: get_price (double total, double used, int p)
{
double fcrit = 0.0;
double baseprice = 0.0;
if (priotocriticalpoint.find(p) != priotocriticalpoint.end())
fcrit = priotocriticalpoint [p];
else
fprintf(stderr, ” FgeeManager(%s): UNABLE TO FIND PRICING POLICY

FOR PRIORITY: %d, setting critical point to 0.0!”, name(), p);

if (priotobaseprice.find(p) != priotobaseprice.end 0))

193

baseprice = priotobasepricepl;

else
fprintf(stderr , ” FgeeManager(%s): UNABLE TO FIND PRICING POLICY

FOR PRIORITY: %d, setting baseprice to 0.0!”, name (), p);

double load = used/total;
double price;
if (load <= fcrit)
price = baseprice;
else
price = (basepricex(1.0—fcrit)/(1.0—1load)};

if (isinf(price))
price = (baseprice*(1.0—fcrit)/(0.0001));

return price;

[*
int FgeeManager :: canYouAddPolicy (

work on stuff like domain numbers and stuff.

#if 0

switch (tableEntry—>policer)
{
case EF:
if (tableEntry—>avgRate > tableEntry—>pir) {
printf (" avgRate greater than EF Peak\n”);
return;

}

else if (tableEntry—>avgRate < tableEntry—>cir)
{
printf (? avgRate lesser than EF CIR\n”);
// printf ("EF.USED is %f\n”, EF BW.USED);
EF_BW_USED = EFBW.USED — (tableEntry—>cir — tableEntry —>avgRate);
//(tableEntry—>cir + (tableEntry—>cir - tableEntry—>avgRate)/2.0);

// printf ("EF_USED is now %f\n”, EFBW.USED);

// printf (" TOTALBW.USED is %f\n” , TOTALBW.USED);
TOTALBW.USED = EF BW_USED + AF.BW_.USED + BEBW.USED;

// printf (" TOTALBW_.USED is now %f\n” , TOTALBW.USED);

// tableEntry—>cir = tableEntry—>cir — (tableEntry—>cir — tableEntry—>avgRate)/2.0;
tableEntry —>cir=tableEntry—>avgRate;

194

}
else if (tableEntry—>avgRate < tableEntry—>cir)
{ .
if (MAXEFBW > EFBWUSED + (tableEntry—>avgRate — tableEntry—>cir)/1.0)
{
printf (” avgRate greater than EF CIR\n");
// printf ("EF.USED is %f\n”, EF BW.USED);
EFBW.USED = EFBW.USED + (tableEntry—>avgRate — tableEntry—>cir)/1.0;
// printf ("EF.USED is now %f\n” , EFBW.USED);
// printf(*TOTALBW.USED is %f\n” , TOTALBW.USED);
TOTALBW.USED = EF BW.USED + AFBW.USED + BEBW_USED;
// printf (" TOTALBW.USED is now %f\n”, TOTALBW_USED);
tableEntry—>cir = tableEntry—>cir + (tableEntry—>avgRate — tableEntry—>cir)/1.0;
} else return;
}
else {
printf(” avgRate is same as cir\n”);
return;
}
break;
case TSW3CM:

printf(?I am in AF\n”);
if (tableEntry—>avgRate < tableEntry—>cir)
{
printf(” avgRate less than AF CIR\n”);
// printf ("AF.USED is %f\n”, AFBW.USED);
AFBW.USED = AF BW.USED - (tableEntry->cir - tableEntry—>avgRate);
//(tableEntry—>cir + (tableEntry—>cir - tableEntry—>avgRate)/2.0);

// printf (" AF.USED is now %f\n”, AFBW.USED);

// printf (" TOTALBW.USED is %f\n” , TOTALBW.USED);
TOTALBW_USED = EF . BW.USED + AFBW_.USED + BEBW_USED;

// printf (" TOTALBW.USED is now %f\n”, TOTALBW.SED);

// tableEntry—>cir = tableEntry—>cir — (tableEntry—>cir — tableEntry—>avgRate) /2.0;
tableEntry—>cir=tableEntry—avgRate;

}
else if (tableEntry—>avgRate > tableEntry—>pir)
{
printf(” avgRate greater than AF Peak\n”);
return;
}
else if (tableEntry—>avgRate > tableEntry->cir)
{

printf(” avgRate greater than AF CIR \n”);
if (MAXAFBW > AFBW.USED + (tableEntry—>avgRate — tableEntry—>cir)/1.0)

{

195

AF BW_USED = AFBW.USED + (tableEntry—>avgRate — tableEntry—>cir)/1.0;

TOTAL.BW.USED = EF BW_USED + AFBW_.USED 4 BEBW_USED; »

tableEntry—>cir = tableEntry—>cir + (tableEntry —>avgRate — tableEntry—>cir)/1.0;
} else {

printf ("1 am somewhere here \n”);

return;

1
else {
printf (" avgRate is %f, same as AF CIR \n”, tableEntry —>avgRate);

return;
}
break;
default:
printf(” default case. value of policer = %d\n” , tableEntry—>policer);
break;

}
#endif

D.1.2 IP Edge Router Code

Listing D.3: fgee-marker.cc
/*
*x FgeeMarker module for IP Edge routers.
*
+ Authors: El—-Bahul Fgee <fgeeee@dal .ca>,
x Jason Kenney <jdkenney@dal.ca>, 2003

*/

#include <string.h>
#include <queue.h>
#include "random.h”

#include ” fgee —marker.h”

static class FgeeMarkerClass : public TclClass {

public:
FgeeMarkerClass () : TclClass (" Queue/FgeeMarker”) {}
TclObject x create (int , const charxconst*) {

return (new FgeeMarker);

}

} class_fgee_marker;

FgeeMarker : : FgeeMarker () {
q- = new WFQ;
fqueues = 0;
setqweights ();
stats .drops = 0;
stats.degrades = 0;
stats.edrops = 0;
stats.pkts = 0;

// Some initial values for the random marking fractions
marker_frc_[0}=0.0; // class —0 is not used
marker_frc_[1]=0.4;
marker_frc_[2]=0.7;
marker_frc_[3]=0.9;
marker_frc_[{4]=1.0;

// initially set up one class: best—effort
int i = 0;

classes .push_back (0);
beginnings.push_back(i);

i = 15;

ends.push_back(i);

fmanager = 0;

maxbw = 0.0;

queueprice = 0.0;

int FgeeMarker:: get_class(int prio)

{

if (prio > 15)

{

printf(” FgeeMarker (%s): ERROR: Invalid priority field: %d '\n”,

name(), prio);
abort ();

for (unsigned int i = 0; i < beginnings.size (); i++)
{
if (prio >= beginnings [i] && prio <= ends[i})

return classes[i];

return 0; // Best effort if it doesn’t fit a specified class

int FgeeMarker ::command(int argc, const charxconstx argv) {

196

197

if (stremp(argv[1l], ” report—length”) == 0) {
double t = atof(argv{2]);
fprintf(stderr, "%f %d\n”, ¢, q-—>length ());
return (TCLOK);

}

if (strcmp (argv{1], ” setqueueprice”) == 0) {
queueprice = atof (argv[2]);
return (TCL.OK);

}

if (strcmp(argv[l], ” printStats”) == 0) {

printStats ();
return (TCL-OK);

if (stremp(argv[1], " addPolicyEntry”) == 0) {
policy . addPolicyEntry (argc, argv)
return (TCL.OK});

}

if (strcmp(argv(1], ” addPolicerEntry”) == 0) {

policy .addPolicerEntry (argc, argv);
return (TCL.OK);

}
if (arge == 3) {
if (!strcmp(argv[1], ” marker_type”)) {
marker_type. = atoi(argv[2]);
if ((marker_type. != DETERM) && (marker_type. != STATIS)) {
printf(” Wrong Marker Type\n”);
abort ();
}

return (TCLOK);
}
if (!stremp(argv([1l], ” marker_class”)) {
marker_class. = atoi(argv[2]);
if (marker_class- <1 || marker_class.>NO.CLASSES) {
printf (” Wrong Marker Class:%d\n”, marker_class_);

abort ();

}
return (TCL.OK);

}

if (!stremp(argv[1l], ” init—seed”)) {
rn_seed_ = atoi(argv[2]);
Random :: seed (rn_seed_);
srand48 ((long){rn_seed.));
return (TCL.OK);

}

if (!stremp(argv([l], ” attach—manager”)) {

}

198

fmanager = dynamic.cast <FgeeManager*>(TclObject ::lookup (argv [21));
if (fmanager == 0) {
printf(” FgeeMarker (%s): %s is not an object of type
FgeeManager * n” , name(), argv[2]);
printf(” Called from: %s %s %s\n”, argv[0], argv[1], argv([2]);
return (TCLERROR);
}
printf(” FgeeMarker (%s): Attached FgeeManager %s\n”, name(), argv [2D);
return (TCL.OK});

return Queue::command{argc, argv);

void FgeeMarker:: statenque (int fid) {
if (stats.pkts.CP.size() == 0)
stats .pkts_.CP[fid] = 0;

if (stats.drops_CP.count(fid) == 0) {
stats .drops_.CP[fid] = 0;

stats . pkts++;

stats.pkts_CP [fid]J++;

void FgeeMarker ::statdrop(int fid) {

if (stats.drops-CP.size() ==
stats .drops.CP[fid] = 0;

stats.drops++;

0)

stats.drops-CP [fid]++;

void FgeeMarker :: statdegrade (int fid) {
if (stats.degrades_CP.size() == 0)
stats.degrades_.CP[fid] = 0;

stats.degrades++;
stats .degrades_CP [fid]++;

199

void FgeeMarker :: enque(Packet* p) {
hdr_tcp* tcph = hdr_tcp::access(p);
hdr_ip* iph = hdr_ip:: access(p);

hdr_cmn* cm_h = hdr.cmn:: access(p);
statenque (iph—>fid.);

if (q-—>qlen (iph—>fid.) == q.—>limit()) {
fprintf (stderr , "PKT: % f %d DROP FID:%d PRI:%d\n”,
Scheduler :: instance (). clock (), tcph—>seqno() ,iph-—>fid., iph—>prio.);
statdrop (iph—>fid.);

drop(p);
return ;
}
iph—>fgeeprice() += queueprice;
int cp;
double cur-time = Scheduler::instance().clock ();
cm_h—>ts_arr_ = cur.time;
if (fmanager == 0) {
printf(” FgeeMarker (%s): Next time try attaching a Manager first\n”, name());
abort ();
}
if (ftop [iph—>fid.] == -1) {
ftop [iph—>fid_] = iph->prio_-;
setqweights ();
}

int before = iph—>prio_;

if (fmanager != NULL) {
cp = policy .mark(p);
//int after = (hdr.ip::access(p))—>prio.;
int after = iph—>prio_;

if (after < 8) {
fmanager —>downgrade_flow (iph—>fid- , 8);
fprintf (stdout , "PKT: % f %d DROP FID:%d PRI:%d\n”,
Scheduler :: instance (). clock (), tcph—>seqno () ,iph—>fid-,
iph—>prio_);
statdrop (iph—>fid_);
drop (p);

200

fprintf(stderr, ” Dropping packet because it’'s best—effort now:
flowid: %d\n”, iph—>fid.);

return;

if (before == 8)
iph—>prio. = after = before; // don’t let best effort creep up
// tprintf (stderr, ”(%s) before:%d cp:%d bling:%d\n” , name(), before, after, ftop [ipl
if (after < before) {
] statdegrade (iph—>fid.);
}
if (before != after && ftop [iph—>fid_] != after) {
//printf(” ftop[%d] == %d != %d\n”, iph—>fid-, before , after);
if (ftop [iph—>fid_] != ~1)
fprintf(stderr, "FGEE: %{ %d MOD FID:%d PRI:%d\n”,
Scheduler :: instance (). clock (), tcph—>seqno () ,
iph—>fid_, iph—>prio_);
fmanager —>downgrade_flow (iph—>fid. , after);

q-—>enque(p);
}

void FgeeMarker :: downgrade_flow(int fid, int after) {
//if (ftop.count(fid) > 0) {
if (after > ftop[fid])
fprintf(stderr, "(%s) %f Moving priority UP (%d -> %d)\n” , name(),
Scheduler :: instance (). clock (), ftop [fid], after);
else if(after < ftop[fid]) {
fprintf(stderr, " (%s) %f Moving priority DOWN (%d —> %d)\n”,
name (), Scheduler ::instance ().clock(),ftop [fid], after);
}
ftop[fid] = after;
setqweights ();

/1}

// Nothing interesting here
Packet * FgeeMarker ::deque () {
Packet xp;
p = g-—>deque();
return p;

201

void FgeeMarker::replicate(int newb, int newe)

{

if (fmanager == 0)

printf(” PgeeMarker (%s): Replicating beginnings and ends from FgeeManager\n” , name (
else

printf(” FgeeMarker (%s): Replicating beginnings and ends from FgeeManager (%s)\n”, 1
if (beginnings[0] == 0 && ends[0] == 15) {

beginnings [0] = newb;

ends [0] = newe;

classes [0] = 1;
} else {

beginnings . push_back (newb);

ends . push_back (newe);

classes.push_back ((int) classes.size() + 1);
}

void FgeeMarker:: set_flow (int fid, double b)

{
flows [fid] = b;
if (b 1= 0)
ftop [fid] = —1;
else
ftop [fid] = 8;
q-—>set_flow (fid, ++fqueues);
for (std ::map<int , double >::iterator mi = flows.begin(); mi != flows.end (); mi++) {
//printf(” fid: %d has weight: %f\n”, (*mi). first , (*mi).second /maxbw);
//q-—>setweight ((+mi). first , (*mi). second /maxbw) ;
}
}

void FgeeMarker :: unset_flow (int fid)

{

flows . erase(fid);

ftop.erase (fid);

q-—>unset_flow (fid);

void FgeeMarker :: printStats () {

202

printf(?\nPackets Statistics\n”);

printf(’ \n”);
printf (* CP TotPkts TxPkts ldrops degrades\n”);
printf(”> —— \n");

printf (" All %81d %81d %81d %81d\n” ,stats.pkts,stats.pkts — stats. drops,
stats.drops,stats.degrades);

for (map<int , long>::iterator i = stats.drops.CP.begin (); i != stats.drops_CP.end(); i++) {
printf("%3d %81d %8ld %81d %8ld\n” ,i~>first ,stats.pkts_.CP[i—>first],
stats.pkts_.CP[i—>first] — stats.drops_CP{i—>first] ,stats.drops.CP[i—>first],
stats .degrades-CP [i—>first]);

void FgeeMarker :: setqweights () {

if (ftop .size() == 0)

return;
double total = 0.0;

for (map<int , int >::iterator i = ftop.begin(); i != ftop.end (); i++) {
if (i—>second < 8 || i—>second > 15) {
//printf(” skipping ftop([%d] —> %d\n”, i—->first , i->second});
continue;
}
//printf (" (%s) : %d\n” , name(), i—>second - 7);
total += (double) (i—>second — T7);

//printf("(%s) Total: %f\n”, name(), total);
double blam = 0.0;

for (map<int , int >::iterator i = ftop.begin(); i != ftop.end (); i++) {
if (i—>second < 8 || i—>second > 15)
continue ;
q-—>setweight (i—>first , ((double) i—>second — 7)/total);
blam += ((double) i—>second — 7)/total;
//printf (" (%s) Flowid: %d (%d) has weight %f \n”, name(), i—>first , i-—>second, ((do

}
//printf(?(%s) TOTAL: %f \n”, name(), blam);

203

Listing D.4: fgee-demarker.cc

/*

* Fgee—demarker module for IP Edge routers.

. . . .

+ Authors: El—Bahul Fgee <fgeeee@dal.ca>,

* Jason Kenney <jdkenney@dal.ca>, 2003
*/

#include <string.h>
#include <queue.h>
#include ” fgee —demarker.h”
#include ” tcp.h”

static class FgeeDemarkerClass : public TclClass {
public:
FgeeDemarkerClass () : TclClass(” Queue/FgeeDemarker”) {}
TclObject * create (int , const charxconstx) {
return (new FgeeDemarker);

}

} class_.demarker;

FgeeDemarker : : FgeeDemarker () {

q- = new PacketQueue;

f2price.clear ();
last.monitor_update.=0.0;

monitoring_-window_ = 0.1;

for (int i=0; i<=NO.CLASSES; i++) {
demarker_arrvs_[i]=0;

arrived-Bits_[i] = 0;

}
bind (* demarker_arrvsl.”, &(demarker_arrvs_[1]));
bind (” demarker_arrvs2.”, &(demarker_arrvs_[2}));
bind (” demarker_arrvs3.”, &(demarker_arrvs_{3]));
bind (" demarker_arrvs4_”, &(demarker_arrvs_[4]));

int FgeeDemarker::command(int argc, const charxconst* argv) {
if (arge == 3) {
if (strcmp(argv[1], "trace—file”) == 0) {

204

file_name_ = new(char [500]);
strepy (file_name. ,argv [2]);
if (stremp(file-name_,” null”) != 0) {
demarker_type. = VERBOSE;
for (int i=1; i<=NO.CLASSES; i++) {
char filename [500);
sprintf (filename,”%s.%d” , file.name.,i);
if ((delay.-tr.[i] = fopen(filename ,”w"))==NULL) {
printf(” Problem with opening the trace files\n”);

abort ();
}
}
} else {
demarker_type. = QUIET;
}
return (TCL.OK);
} else if (strcmp(argv([l}, ”id”) == 0) {

link.id_. = (int)atof(argv[2]);
return (TCL.OK);

}

}

if (strcmp(argv([1l], ” printPrices”) == 0) {
return printPrices();

}

return Queue::command(argec, argv);

void FgeeDemarker::enque(Packet* p) {
q-—>enque(p);
if (g-—>length() >= qlim.) {
q-—>remove(p);

drop(p);
printf(” Packet drops in. FgeeDemarker of type:%d\n” , demarker_type.);

Packet * FgeeDemarker:: deque() {
Packet * p= q-—>deque ();
if (p=NULL) return p;

hdr.ip* iph = hdr_ip::access(p);

205

hdr_cmn#* cm_h = hdr_cmn:: access (p);

double cur_time = Scheduler::instance().clock();

//printf ("PACKETPRICE: % 1f %d\n”, iph->fgeeprice., iph—>flowid ());

if (f2price.find (iph—>flowid()) == f2price.end()) {
faprice [iph—>flowid ()] = iph->fgeeprice_;
//printf ("NEW FLOW\n"”);
}

else {

f2price [iph—>flowid ()] += iph—>fgeeprice_;
//printf(?ADDING COST\n”);

int cls = iph—>prio-;
if ((cls <1) || ((cls — 8)>NOCLASSES)) {
printf(®"Wrong class type in FgeeDemarker.—deqﬁe (S=%d, D=%d, FID=%d, Class=%d)\n",
(int)(iph—>src ().addr-), (int)(iph—>dst().addr.),
iph—>fid., iph—>prio.);

fflush (stdout);

abort ();
}
return p;
}
int FgeeDemarker:: printPrices(void)
{
printf (" Flow Id: Price:\n");
printf(’ \n”);
for (std ::map<int ,double >::iterator i = f2price.begin(); i != f2price.end (); i++) {
printf(”%d $%1f\n”, i—>first , i—>second};
}

return (TCL.OK);

D.2 TCL Code Scripets

D.2.1 QoS Manager Simulation Code

Listing D.5: IPv6-Model-Simulation.tcl

Simulator instproc get—link { nodel node2 } {
$self instvar link._
set idl [$nodel id]
set id2 [$node2 id]
return $link_($id1:8id2)

Simulator instproc get—queue { nodel node2 } {
global ns
set 1 [Sns get—link $nodel $node2?]
set q [$1 queue]

return $q

main
» ”»

puts

set ns [new Simulator]

#ns—-random 3298
ns—random 4327

set nf [open outl.tr w]

set qfl [open bwl w]

set qf2 [open bw2 w]

set qf3 [open bw3 w]

set nt [open outl.nam w]

$ns trace—all $nf

$ns namtrace—all $nt

Queue/JoBS set drop-front. false
Queue/JoBS set trace_hop_. true
Queue/JoBS set adc.resolution_type. 0
Queue/JoBS set shared_buffer_ 1
Queue/JoBS set mean_pkt._size_ 4000
Queue/Demarker set demarker.arrvsl. 0
Queue/Demarker set demarker.arrvs2. 0
Queue/Demarker set demarker_arrvs3. 0

Queue/Demarker set demarker._arrvs4. 0

#

206

set mang [new FgeeManager]

puts ” \nTOPOLOGY SETUP”
set hops 2

Link latency (ms)
set DELAY 1.0
puts " Links latency: $DELAY (ms)”

links: bandwidth (kbps)
set BW 1000.0
puts ” Links capacity : $BW (kbps)”

Queue/FgeeMarker set bandwidth_ $BW
Queue/WFQ set bandwidth_ $BW

Buffer size in gateways (in packets)
set GW.BUFF 50
puts ” Gateway Buffer Size: $GWIBUFF (packs)”

Packet Size (in bytes); assume common for all sources

set PKTSZ 500
set MAXWIN 50
puts ” Packet Size: $PKTSZ (bytes)”

Number of monitored flows (equal to # of classes)

set N_CL 4
puts ” Number of classes: $N_CL”

set N_USERS 1
puts ” Number of flows: $N_USERS”

set STARTITM 0.0
puts ¥ Monitored flows start at: $START.TM

»

set max_time 20.0

puts "Max time: $max_time (sec)”

Statistics —related parameters

set STATSINTR 2; # interval between reporting statistics
set START.STATS 0; # start —time for reporting statistics

207

Marker Types
Deterministic
set DETERM 1

Demarker Types

Create a trace file for each class (for user traffic)

set VERBOSE 1
Do not create trace files
set QUIET 2

proc print_time {interval} {

global ns
puts nn
puts —nonewline stdout [format *%.2f\t” [$ns now]]

$ns at [expr [$ns now]+$interval] ” print_time $interval”

1. Core nodes ($hops nodes)

set edgel [$ns node] ;#id

o

set edge2 [$ns node] ;#id 1

set corel [3ns node] ;#id
set core2 [$ns node] ;#id
set core3 [$ns node] ;#id
set cored [$ns node] ;#id

$edgel
$edgel
$edgel
$edge2
$edge2
$edge2
$corel
$core2
$core3

$cored

(S - VU

color ” black”
shape ” square”
label Edgel
color ” black”
shape ”square”
label Edge2
label Corel
label Core2
label Core3
label Cored

2. User traffic nodes and sinks (N.USERS sources and sinks)

set sl

[$ns node] ;#id 6

$s1 color blue

set s2

[$ns node] ;#id 7

208

$s2
set
$s3
set
$s4

set

$51
$s2
$s3
$s4

color green

s3 [$ns node] ;#id 8

color red

s4 [8$ns node] ;#id 9

color orange

d [$ns node] ;#id 10
label ” Highest Priority”
label ” Source 2”

label ” Source 3”

label ” Best Effort”

puts " Created Nodes”

$ns

$ns
$ns
$ns

$ns

$ns

$ns

$ns
$ns
$ns
$ns
$ns

$ns

duplex—link

duplex—link
duplex—link
duplex—link
duplex—link

duplex—link
duplex—link

simplex—1link
simplex—link
simplex—link
simplex—link
queue—limit

queue—limit

Sedge2
$edgel $s1 [expr
$edgel $s2 [expr
$edgel $s3 {expr
$edgel $s4 [expr
$corel
$core3

$edgel $corel [expr $BWx1000.
$edgel $core3 [expr $BW=x1000.
$corel $edgel [expr $BW=x1000.
$core3 $edgel [expr $BW=x1000.

$edgel 3$corel 20
$edgel $core3 20

#3%ns trace—queue $edgel $corel $qf

#set qm [$ns monitor—queue $edgel $corel $qf]

$ns
$ns
$ns
$ns
$ns
$ns

set

simplex—link
simplex—link
simplex—link
simplex—link

queue—limit

$edge2 $core2 [expr BW=x1000.
$edge2 $cored [expr $BW=*1000.
$core2 $edge2 [expr $BWx1000.
S$core4 $edge2 [expr $BW=x1000.

$edge2 $core2 50

queue—limit $edge2 $cored 50

qE1C1 [[$ns

link $edgel $corel] queue]

puts ” Created Connections”

set udpl [new Agent/UDP]

0] [expr
0] [expr
0] [expr
0] [expr

0] [expr
0] [expr
0] [expr
0] [expr

$DELAY /1000
$DELAY /1000
$DELAY /1000
$DELAY /1000

$DELAY /1000.
$DELAY /1000.
$DELAY /1000.

$DELAY /1000

0]
0]
0]
.0]

0]
0]
0]
.0]

$d [expr $BW=x1000.0] {expr SDELAY/1000.0] DropTail

$BW=x1000.0] [expr $DELAY/1000.0] DropTail
$BWx1000.0] [expr $DELAY/1000.0] DropTail
$BW+*1000.0] [expr $DELAY/1000.0] DropTail
$8BW=x1000.0] [expr $DELAY/1000.0] DropTail

$core2 [expr $BWx1000.0] [expr $DELAY/1000.0] DropTail
$cored [expr $BW=x1000.0] [expr $DELAY/1000.0] DropTail

FgeeMarker
FgeeMarker
DropTail
DropTail

FgeeMarker
FgeeMarker
DropTail
DropTail

209

set

set

set

set

set

set

set

set
set
set

set

$ns
$ns
$ns
$ns
$ns
$ns
$ns

$ns

$ns
$ns
$ns

$ns

nulll [new Agent/LossMonitor]

udp2 [new Agent/UDP]
null2 [new Agent/LossMonitor]

udp3 [new Agent /UDP]
null3 [new Agent/LossMonitor]

udp4 [new Agent /UDP]
null4 [new Agent/LossMonitor]

cbrl [new
exp2 [new
exp3 [new

exp4 [new

Application/Traffic /CBR]
Application/Traffic /CBR]
Application/Traffic /CBR]
Application/Traffic/Exponential]

attach—agent $sl1 $udpl
attach—agent $s2 $udp2
attach—agent $s3 $udp3
attach—agent $s4 $udpd
attach—agent $d $nulll
attach—agent $d $null2
attach-—-agent $d $null3
attach—agent $d $null4

connect $udpl $nulll

connect $udp2 $null2

connect $udp3 $null3

connect $udp4 $null4

#%udpl set packetSize. $PKTSZ

$cbrl set fid.-

15

$udpl set prio_ 15

$udpl set fid_ 15

$nulll set prio_- 15
$cbrl attach-—agent $udpl

#%udp2 set packetSize. $PKTSZ
$udp2 set fid. 12
$udp2 set prio. 12

$null2 set prio. 12

$exp2 attach—agent $udp2

#%udp3 set packetSize. $PKTSZ
$udp3 set fid- 8

210

$udp3 set prio_ 8
$null3 set prio- 8
$exp3 attach—agent $udp3

#%udp4 set packetSize. $PKTSZ
$udpd4 set fid_ 8

$udp4 set prio- 8

$nulld set prio- 8

$exp4 attach—-agent $udpd

$cbrl set rate. [expr $BW=x0.5%1000.0]
$ns at 0.0 ” $cbrl start”
#%ns at 4.0 ” $cbrl set rate. [expr $BW%0.50%1.3%1000.0]”

$exp2 set rate. [expr $BW=0.25%1000.0]
$ns at 0.0 " $exp2 start”
$ns at 3.0 " $exp2 set rate. [expr $BWx0.25x1.3%1000.0]”

$exp3 set rate- [expr $BWx0.25%1000.0]
$ns at 0.0 ” $exp3 start”
#%ns at 2.0 ” $exp3 set rate. [expr $BW=x0.25x1.0%1000.0]”

#%exp4 set rate_ [expr $BW=x0.2+1000.0]
#8ns at 0.0 ” $expd start”
#%ns at 1.0 ” Sexpd set rate_ [expr $BW=x0.2%1.1x1000.0]”

#puts [format "\tCBR-1 starts at %.4fsec” $START.TM]

puts ” Created Flows”

set q [$ns get—queue $edgel $corel}]
$mang pushedge $q

$q attach —manager $mang

set q [$ns get—queue $edgel $corel] -
$mang pushedge $q

$q attach—manager $mang

set q [$ns get—queue $edge2 $core2]
$mang pushedge $q

$q attach—manager $mang

set q [$ns get—queue $edge2 $cored]
$mang pushedge $q

$q attach—manager $mang

211

$mang
$mang
$mang
$mang

$mang

$mang
$mang
$mang
$mang
$mang

$mang

#$mang addPolicyEntry
#3mang addPolicyEntry

setMaxBw 1000000
request 15 400000
request 12 200000
request 10 200000
besteffort 8

addPolicyEntry [$sl id] {$d
addPolicyEntry [$d id] [$s1
addPolicyEntry [8$s2 id] {8d
addPolicyEntry [$d id] [$s2
addPolicyEntry {$s3 id] [$8d
addPolicyEntry [$d id] [$s3

id]
id]
id]
id]
id]
id]

TokenBucket
TokenBucket
TokenBucket
TokenBucket
TokenBucket
TokenBucket

[$d id] [$s4 id] TokenBucket
[8s4 id] [$d id] TokenBucket

$mang addPolicerEntry TokenBucket 15 12
addPolicerEntry TokenBucket 12 10

$mang

puts ” Created Policies”

#

Queue Monitors

#

$ns at $STATS.INTR ” print_time $STATS.INTR”

15 [expr $BW=x0.5x1000] 1000
15 [expr $BW=x0.5%1000] 1000
12 [expr $BW=*0.25%1000] 1000
12 [expr $BW=x0.25%1000] 1000
10 [expr $BW=0.25%1000] 1000
10 [expr $BW=0.25%1000] 1000

8 200000 200

8 200000 200

$ns at [expr $max_time+.000000001] ” puts \” Finishing Simulation...\””

$ns at [expr $max.time-+1] ” finish”

proc finish {} {
global ns nf nt qfl qf2 qf3

puts "\ nSimulation End”

$ns flush—trace
close $nf

close $nt

close $qfl
close $qf2
close $qf3

exit 0

proc record {} {
global nulll null2 null3 qfl qf2 qf3 ns

set bwl [3$nulll set bytes.]
set bw2 [$null2 set bytes.]

212

set bw3 [$null3 set bytes_]

puts $qfl ”[$ns now] [expr $bwl/.01/1000000%8]”
puts $qf2 ”[$ns now] [expr $bw2/.01/1000000%8]”
puts $qf3 ”[$ns now] [expr $bw3/.01/1000000%8]”

$nulll set bytes_. O
$null2 set bytes_ O
$null3 set bytes_ 0
$ns at [expr [$ns now] + 0.01] ”record”

$ns at 0.0 ” record”

$ns at 2.0 "$qEICl printStats”
$ns at 4.0 "$gE1C1 printStats”
$ns at 6.0 "$qEIC1 printStats”
$ns at 8.0 "3$gE1C1 printStats”
$ns at 10.0 ”"$qE1C1 printStats”
$ns at 15.0 ”$qE1C1 printStats”
$ns at 20.0 ”$qE1C1 printStats”

nam stuff

$ns color 8 red

$ns color 12 green
$ns color 10 blue
$ns color 15 purple
puts "\ ngo!\n”
#%ns gen—map

$ns run

D.2.2 Pricing Integration Simulation Code

Listing D.6: IPv6-Pricing-Simulation.tcl

Simulator instproc get—link { nodel node2 } {
$self instvar link.
set idl [$nodel id]
set id2 [3%node2 id]
return $link_($id1:8id2)

Simulator instproc get—queue { nodel node2 } {
global ns
set 1 [$ns get—link $nodel $node2]
set q [3$]l queue]

213

return $q

set ns [new Simulator]

set nf [open test_all.tr wj
set nt [open test_all.nam w]
set bwl [open bwl.out w]

$ns trace—all $nf

$ns namtrace—all $nt

set rng [new RNG]

set uniform [new RandomVariable/Uniform]
$uniform use—rng $rng

$uniform set min_ 0.0

$uniform set max_ 1.0

#8$ns namtrace—all $nt

Queue/JoBS set drop-_front. false
Queue/JoBS set trace.hop.- true
Queue/JoBS set adc.resolution_type- 0
Queue/JoBS set shared_buffer. 1
Queue/JoBS set mean_pkt.size_ 4000
Queue/Demarker set demarker_arrvsl_ 0
Queue/Demarker set demarker_arrvs2. 0
Queue/Demarker set demarker.arrvs3. 0

Queue/Demarker set demarker_arrvs4. 0

set mang [new FgeeManager]

set DELAY 1.0
set BW 1000.0
set GWBUFF - 50

set PKTSZ 500

set MAXWIN 50

set N_CL 4

set N_USERS 1

set START.TM 0.0
set max_time 40.0

set STATSINTR 2; # interval between reporting statistics
set STARTSTATS 0; # start—time for reporting statistics
set DETERM 1

set VERBOSE 1

set QUIET 2

214

215

set BAND(1) 500000
set BAND(2) 250000
set BAND(3) 250000
set PRIO(1) 15

set PRIO(2) 12

set PRIO(3) 8

set FID(1) 15

set FID(2) 12

set FID(3) 8

Queue/FgeeMarker set bandwidth. $BW
Queue/WFQ set bandwidth. $BW

proc print_-time {interval} {

global ns
puts nn
puts —nonewline stdout [format ”%.2f\t” [$ns now]]

$ns at [expr [$ns now]+8interval] ” print_time S$interval”

proc print_price {} {
global ns mang
$mang get—price 12
$mang get—price 15
$mang get—price 8
$ns at [expr {$ns now]+0.01] ” print_price”

proc update_reql {} {
global uniform mang FID BAND edge ns
$mang release 3FID(1)
set b [expr [expr [$uniform value]%.20+0.80]x$BAND(1)]
$mang request $FID(1) $b [Sedge(l) id] [Sedge(2) id]
$ns at [expr [$ns now}+0.25] ” update_reql”

}

proc update_req2 {} {

216

global uniform mang FID BAND edge ns

$mang release $FID(2)

set b [expr [expr [Suniform value]*.20+0.80]*$BAND(2)]
#set b [expr {S$uniform value]*$BAND(2)]

$mang request $FID(2) $b [Sedge(1l) id] [Sedge(2) id]
$ns at [expr [$ns now]+0.25] ”"update_req2”

1. Core nodes ($hops nodes)

for {set i 1} {8i <= 2} {incr i} {
set edge($i) [$ns node] ; #id 0,1,2,3
Sedge($i) label Edge$i
$edge($i) color ” blue”
$edge($i) shape ”square”

for {set i 1} {8i <= 4} {incr i} {
set core($i) [$ns node] ; # id 4,5,6,7, 8,9,10,11
$core(8i) label Core$i
$core (8i) color ” black”

$core ($i) shape ”circle”

#2. User traffic nodes and sinks (N_USERS sources and sinks)

set s(1) [3ns node] ;#id 12
$s(1) color green

set s(2) [$ns node] ;#id 13
$s(2) color red

set s(3) [$ns node] ;#id 14
$s5(3) color blue

set d(1) [$ns node] ;#id 14
8d (1) color blue

set d(2) [$ns node] ;#id 15
$d (2) color orange

set d(3) [$ns node] ;#id 16
$d(2) color green

$s(1) label ” Source 1”
$s(2) label ” Source 2”
$s(3) label ” Source 3”
$d(1) label ” Destination 1”
$d (2) label ” Destination 2”
$d (3) label ” Destination 3”

puts ” Created Nodes”

set

btmp ” 1Mb”

set dtmp [expr $DELAY/1000.0]

#Core links
$ns duplex—link $core (1) $core(2) $btmp $dtmp DropTail
$ns duplex—link S$core(3) $core(4) $btmp $dtmp DropTail

#Left Side
simplex—link $edge (1) $core (1) $btmp $dtmp FgeeMarker
simplex—link $edge (1) $core(3) $btmp 3dtmp FgeeMarker
simplex—link $core (1) $edge (1) $btmp $dtmp DropTail
simplex—link $core (3) $edge(1) $btmp $dtmp DropTail

$ns
$ns
$ns
$ns
$ns

$ns

queue—limit

queue—limit

#Right Side
simplex—link $edge(2) $core (2) $btmp $dtmp FgeeMarker
simplex—link $edge(2) $core (4) $btmp $dtmp FgeeMarker
simplex—link $core (2) $edge(2) $btmp $dtmp DropTail
simplex—link $core (4) $edge(2) $btmp $dtmp DropTail

$ns
$ns
$ns
$ns
$ns

$ns

$ns
$ns
$ns
$ns
$ns
$ns

set

queue—limit

queue—limit

duplex—link
duplex—link
duplex—link
duplex—link
duplex—link
duplex—link
qE1C1 [[$ns

$edge (1) $core(l) 20
$edge (1) $core(3) 20

$edge (2) S$core(2) 20
$edge (2) $core(4) 20

$edge (2) $d(1) $btmp $dtmp DropTail
$edge (2) $d(2) $btmp $dtmp DropTail
$edge (2) $d(3) $btmp $dtmp DropTail
$edge (1) $s(1) $btmp $dtmp DropTail
$edge (1) $s(2) $btmp $dtmp DropTail
$edge (1) $s5(3) $btmp $dtmp DropTail
link $edge(1) $core(1)] queue]

puts ” Created Connections”

set udp (1) [new Agent/UDP]
set null (1) [new Agent/LossMonitor]

"$ns attach—agent $s(1) $udp(1)
$ns attach—agent $d4(1) $null (1)

$ns connect $udp(l) $null(1)

217

$udp (1) set fid- $FID(1)
$null (1) set prio_ $PRIO(1)

set exp (1) [new Application/Traffic/CBR]
$exp (1) set fid_ $FID(1)

$exp (1) set prio- $PRIO(1)

$exp (1) attach—agent $udp (1)

$exp (1) set rate_ $BAND(1)

$ns at 0.0 " Bexp (1) start”

set udp(2) [new Agent/UDP]
set null (2) [new Agent/LossMonitor]

$ns attach-—agent $s(2) S$udp(2)
$ns attach—agent $d(2) $null(2)

$ns connect $udp(2) $null(2)

$udp (2) set fid. $FID(2)
$null(2) set prio. $PRIO(2)

set exp(2) [new Application/Traffic/CBR]
$exp (2) set fid. SFID(2)

$exp (2) set prio. $PRIO(2)

$exp (2) attach—agent $udp(2)

$exp (2) set rate_ $BAND(2)

$ns at 0.0 " $exp(2) start”

set udp(3) [new Agent/UDP]
set null (3) [new Agent/LossMonitor]

$ns attach—agent $s(3) Sudp(3)
$ns attach—agent $d(3) $null(3)

$ns connect $udp(3) $null(3)

$udp (3) set fid. $FID(3)
$null (3) set fid_- $FID(3)
$udp (3) set prio_- $PRIO(3)
$null(3) set prio. $PRIO(3)

218

set exp(3) [new Application/Traffic/CBR]
$exp (3) set fid. SFID(3) ’
$exp (3) set prio. $PRIO(3)

$exp (3) attach—agent $udp(3)

$exp (3) set rate_ $BAND(3)

$ns at 0.0 " 3exp(3) start”

puts ” Created Flows”

$mang
$mang

$mang

$mang
$mang

$mang
$mang
$mang

$mang

$mang

$mang

$mang

$mang

set b

set q [$ns get—queue $edge (1) $core (1)]
$mang pushedge $q [$edge(l) id] [$core(l)
$q attach —manager $mang

set q [$ns get—queue $edge (1) $core (3)}]
$mang pushedge 3q [$edge (1) id] [$core(3)
$q attach -manager $mang

set q [$ns get—queue $edge(2) $core (2)]
$mang pushedge $q [$edge(2) id] [$core(2)
$q attach-manager $mang

set q [$ns get—queue $edge (2) $core (4)]
$mang pushedge $q [$edge(2) id] [8core(4)

$q attach —manager $mang

set—price 8 0.04
set —price 12 0.09
set—price 15 0.16

set—point 8 1.0
set —point 12 0.7
set —point 15 0.5

addnodepair $FID (1) [$s(1) id] [8d(1) id]
addnodepair $FID(2) [$s(2) id] [$d(2) id]
addnodepair $FID(3) [$s(3) id] [8d(3) id]

setMaxBw [expr $BWx1000.0]
besteffort 8

addPolicerEntry TokenBucket $PRIO(1) $PRIO (2

addPolicerEntry TokenBucket $PRIO(2) 8

[expr [expr [$uniform value}*.2040.80]*$BAND(1)]

$exp (1) set rate_ $BAND(1)

id]

id]

id]

id]

)

219

$mang request $FID(1) $b [3edge(1l) id]

220

[$edge(2) id]

set b [expr [expr [Suniform value]x.20+0.80]+«$BAND(2)]

$exp (2) set rate_ $BAND(2)
$mang request $FID(2) $b [Sedge (1) id]

puts " Requesting single domain path”
$mang addPolicyEntry [$s(1) id] [$d(1)
$mang addPolicyEntry {$d(1) id] [$s(1)

puts ” Should have been ok.”

puts ” Requesting multiple domain path”
$mang addPolicyEntry [3s(2) id] [$d(2)
$mang addPolicyEntry [$d(2) id] [8$s(2)

puts ” Requesting single domain path”
$mang addPolicyEntry [$s(3) id] [$d(3)
$mang addPolicyEntry [$d(3) id] [8$s(3)

puts " Hope it was ok!”

puts ” Created Policies”

[$Sedge(2) id]

id] TokenBucket $FID (1) [expr $BAND(1)] 1000
id] TokenBucket $FID (1) [expr $BAND(1)] 1000

id] TokenBucket $FID(2) $BAND(2) 1000

id] TokenBucket $FID(2) $BAND(2) 1000

id] TokenBucket $FID(3) [expr $BAND(3)] 1000
id] TokenBucket $FID(3) [expr $BAND(3)] 1000

$ns at $STATSINTR ” print_time $STATSINTR”

$ns at 2.0 {
foreach {i} {1 1} {

set a [8exp($i) set rate_]
Sexp($i) set rate. [expr $BAND(S$i)=*.50]
puts " Changing rate from: $a to [$exp($i) set rate.]”

$ns at 10.0 {
foreach {i} {1 1} {

set a [$exp($i) set rate_]
$exp($i) set rate. [expr $BAND($i)=*1.0]
puts "Now Changing rate from: $a to [3exp($i) set rate_]”

$ns
$ns
$ns
$ns

$ns

at [expr $max_time+.000000001] "puts \” Finishing Simulation...\””
at [expr $max_time+1] ” finish”

at 0.0 ” print_price”

at 1.125 " update_reql”

at 1.0 ” update_req2”

proc finish {} {

}

$ns

$ns

global ns nf nt gEIC1

$qE1C1 printStats
puts "\ nSimulation End”

$ns flush—trace

close $nf

close $nt

exit 0

color 12 green

color 15 purple

puts ”\ngo!\n”

#%ns gen—map

$ns

run

221

