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Abstract

Mathematical models for simulating the electrical propagation phenomena in the
heart can provide valuable insight into the normal and pathological process of
cardiac depolarization and repolarization. Using a model based on anisotropic
bidomain theory and a physiologically accurate transmembrane ionic current term,
we investigated action-potential propagation in one-, two-, and three-dimensional
domains representing the ventricular myocardium. The model of the current flow
in cardiac tissue consisted of two coupled partial differential equations for the
bidomain case, or a single partial differential equation for the reduced monodomain
case. Additionally coupled to this was a system of nonlinear ordinary differential
equations that determine the time-varying ionic current at each point in the domain.
The total ionic current was described by a realistic membrane model that employs
Hodgkin-Huxley formalism to reconstruct the cardiac action potential. A novel
approach for the numerical solution of these equations was developed based on
the method of lines: the partial differential equations were discretized in space and
the resultant differential-algebraic equations were then solved using the robust
numerical software package DASPK.

In a three-dimensional bidomain block of human ventricular myocardium, we
investigated the propagation of excitation under assumption of equal and unequal
anisotropy ratio—to answer the question of whether the former adequately de-
scribes physiological characteristics of ventricular myocardium. The simulations
demonstrated the sensitivity of the spread of activation and potential time courses
and distributions to the underlying electrical properties of cardiac tissue.

We explored the basis for electrocardiographic waveforms using a bidomain
model incorporating transmural electrical heterogeneity. The simulations demon-
strated that a T wave with the same polarity as the QRS complex can be generated
by a model of cardiac tissue that includes the three cell types: endocardial, M cell,
and epicardial. Of key importance in generating a “correct” T wave was the pres-
ence of a transmural dispersion of repolarization. Furthermore, it was observed that
a ] wave is produced by the heterogeneous distribution of the transient outward
current, I, across the ventricular wall.

The model has been shown to be a useful representation of human ventricu-
lar myocardium for experimental data of activation under normal conditions. A
uniqueness of this model is its ability to simulate—by virtue of having physiologi-
cally accurate description of transmembrane ionic currents—the effect of therapeu-
tic drugs.
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Chapter1

Introduction

Models of electrical propagation in the heart can yield valuable insight into normal
and pathological processes of cardiac depolarization and repolarization.! Mathe-
matical models that have been developed for simulating action-potential propaga-
tion in cardiac tissue can be divided into two broad classes. One utilizes a cellular
automaton; the other, a reaction-diffusion system. A cellular automaton simulates
the cardiac electrical activity descriptively as a series of discrete states, with each
cell beginning in some initial state, and then, according to a transition rule, being
assigned a new one based on its current state and that of its neighbours. The
primary advantage of this method is its speed and computational simplicity; one
of its serious limitations is that it cannot easily incorporate or describe the complex
physiological phenomena associated with the action potential of cardiac tissue. For
a survey of this modelling approach the reader is referred to Plonsey and Barr [57].

A reaction-diffusion system results from the theoretical consideration of the
structural properties of cardiac tissue and of the flow of electric current in excitable
cells. This method can therefore simulate the electrical activity with a high de-
gree of accuracy and realism, accounting for those physiological properties that a
cellular-automata system cannot. However, the modelling by means of this ap-
proach is typically governed by nonlinear partial differential equations (PDEs).
This makes the problem computationally complex, and until recently, simulations
were restricted to one- and two-dimensional ‘slabs’ of ventricular muscle and ran
through only one activation sequence. For examples of application of reaction-
diffusion systems in three-dimensional media, see Colli Franzone and Guerri [17]

or Vigmond and Leon [85].

1Hereafter, we will use the term excitation to refer summarily to the entire depolarization-
repolarization cycle.
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Other approaches to the mathematical modelling of propagation in excitable
media are also worth mentioning. Colli Franzone and Guerri [17] have applied
singular-perturbation techniques to a reaction-diffusion system, which yielded
eikonal equations that track the propagating wave front. Similarly, Keener [39]
has developed a hybrid model based on an eikonal-curvature equation that de-
scribes the wave-front motion. As well, Hor4cek et al [37] have developed a hybrid
model in which a cell’s transmembrane potential is governed by a single nonlinear
PDE until it reaches a threshold value; after this, the cell’s behaviour is modelled
by a cellular automaton. These methods have the advantage of describing complex
phenomena while reducing the computational complexity of the problem and so
allow one to simulate activation sequences in a large block of cardiac tissue. Advan-
tages of the various simplified methods notwithstanding, a full implementation of
the reaction-diffusion system is still highly desirable as a ‘yardstick’ against which
the other, simplified models can be tested.

1.1 Objectives

The primary goal of this thesis is to gain an improved understanding of action-
potential propagation in the ventricular myocardium. This is undertaken through
application of mathematical modelling which then allows us to simulate the process
on a computer. To meet our goal, the mathematical model and resultant simula-
tions must be as realistic as possible, and should therefore include such important

features as
(A) a three-dimensional geometry of ventricular muscle;

(B) physiologically accurate formulation of the transmembrane action potential

in terms of the ionic currents; and

(C) anatomically accurate properties of cardiac tissue such as fiber rotation and

anisotropy.

Ideally, (A) should be the actual geometry of the ventricles. However, in this study
we consider a simplified slab model of the ventricular myocardium. For (B) we
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use the Luo-Rudy phase-1 [43] and Bernus [7] models of ventricular cardiac action
potentials, which are based on Hodgkin-Huxley type formalism for describing

the gating of ionic currents [35]. Application of bidomain theory allows to us
incorporate (C).

The specific objectives of the thesis are:

(©)

(i)

(iii)

(v)

to review the current literature regarding action-potential (AP) models for cell

membrane dynamics in cardiac tissue;

to review the derivation of isolated monodomain and anisotropic bidomain
models for the propagation of excitation in cardiac tissue, as well as to derive
a new isolated bidomain model which incorporates capillary capacitance in
the extracellular cardiac domain. All of these models will include one of the

AP models reviewed in (i) to define the cardiac cell membrane dynamics.

to use an alternating-direction implicit (ADI) numerical scheme to solve the
isolated monodomain model for a rectangular slab of cardiac tissue. This will
provide a benchmark and test-bed for the more complex numerical methods
to be developed in the thesis. While extremely easy to implement and com-
putationally efficient, ADI methods are restricted in practice to rectangular
geometries and simple boundary conditions.

to develop parallelized computational software for simulating propagation
of excitation in the anisotropic bidomain models using a method-of-lines
approach and employing the computational software package DASPK. The
significant advantages of an implementation using DASPK versus the ADI
method are that it can incorporate general boundary conditions and can be
applied to irregular domains such as those required for simulations involving
a realistic heart geometry. Parallelization of the computer source code is

necessary to ensure reasonable computation times.

to explore the reduction of the isolated bidomain models to more simple
formulations and to compare simulation results for the reduced (decoupled)
models with the original bidomain models.
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(vi) to examine transmural electrical heterogeneity as the basis for electrocardio-

graphic waveforms using the computer programs developed in (iv).

1.2 Overview

In Chapter 2, we review the AP models for ventricular cells and present the deriva-
tion of a mathematical model of propagated excitation in cardiac tissue. Appli-
cation of the anisotropic bidomain theory to describe propagation, coupled with
Hodgkin-Huxley type gating equations to represent the AP, leads to the following
reaction-diffusion system:

Vm 1 1

me = ;(-V -D;VV, + ;V -D;V®, — L;on + Iapp x€H (11&)
V-(D; +D)VD, +V-DVV, =0 xeH (1.1b)
du

— = 1.1
55 = WV ) (1.10)
n-Dy(VVqy + VD) =0 x€oH (1.1d)
n-D.V®, =0 x€JH (1.1e)
Vm(x/ O) = VmO(x) (11f)
D¢ (x,0) = Deo(x) (1-1g)
u(x,0) = up(x) (1.1h)

where

® Vi = Vi(x,t) and @, = O.(x, t) are the membrane and interstitial potentials,

respectively;

e urepresents the variables of the AP model (for example, gating variables and

ionic concentrations);

¢ D represents a conductivity tensor—a matrix function of the spatial variables
that incorporates the anisotropy and realistic fiber rotation; subscripts i and

e refer to the intracellular and interstitial media, respectively;

® Lion = Lion(Vm, 1) is the total ionic current as calculated by Hodgkin-Huxley
type gating equations;



o Lpp = Lpp(x, t) is an applied current stimulus used to initiate excitation;

e H represents the ventricular heart volume, and JH is the boundary of this

region;
e nis the outward unit normal to the surface JH.

With the assumption of an equal anisotropy ratio, the coupled parabolic and elliptic
PDEs reduce to a single parabolic PDE. In Chapter 3, we develop the numerical
methods to solve this reduced monodomain model using an ADI scheme. In Chap-
ter 4, we develop the numerical methods to solve the bidomain model in its fully
coupled form using the method of lines. We present in Chapter 5, a formulation
of the monodomain model that does not depend on the assumption of an equal
anisotropy ratio, and compare the results from this new model with that of the
bidomain model. In Chapter 6, we investigate the basis of the electrocardiographic
(ECG) waveforms using the bidomain model. Finally, in Chapter 7 we give some
conclusions and directions for future work.



Chapter 2

Theory

In this chapter, we present the theory that allows us to derive a mathematical
model of the electrical activity of the heart. Simultaneously computing the electric
potentials both within the heart and outside of it (e.g., on the torso) is computation-
ally challenging. This problem is therefore split into two subproblems. The first
subproblem deals solely with the propagation of action potentials within the my-
ocardium. The second subproblem then deals with computation of the extracardiac
potential, given that the propagated behaviour is now known.

We begin in Section 2.1 with an overview of the theory of action-potential
modelling, and then move on to propagated behaviour. Before diving into the
complex 3-D case, where inclusion of anisotropy and fiber architecture (such as
curvature and rotation) complicates the picture, we consider in Section 2.2 the
simple 1-D case of a single cylindrical fiber. Application of cable theory yields
a mathematical model which describes impulse conduction along the fiber. This
model is then re-interpreted in terms of bidomain theory. With this groundwork
laid, derivation of the 3-D model from bidomain theory is presented in Section 2.3,
and can be seen as an extension of the classical cable theory. Section 2.4 deals
with the boundary and initial conditions associated with the propagation models,
and lastly, we cover the problem of determining the extracardiac potentials in
Section 2.5.

2.1 Action-Potential Models

Figure 2.1 shows the electrical circuit for a cell membrane. It is clear from the figure

that the total membrane current, I, (LA/cm?), is the sum of a capacitive current
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Figure 2.1: Simple electrical circuit model of a cell membrane.

and an ionic current, namely,

dv,
Im= m = ion 2.
C —r +1 2.1)

where Vr, is the membrane potential (mV), t is time (ms), Cy, is the specific mem-
brane capacitance (uF/cm?), and [ion represents the total ionic current crossing the
membrane per unit area (uA/cm?). Note that here we are concerned with a non-
propagated, or space-clamped action potential (AP). Therefore, at each instant in
time, the membrane potential is uniform over the entire fiber, and there is no net

membrane current, except during a stimulus. We thus have

AV

me + fion = Iapp (2.2)

where Iy, = Ipp(t) is zero for all £ except during the time of a stimulus when it
is equal to the externally applied current per unit area (LA/cm?). The membrane
capacitance is typically regarded as a “biological constant” with Cy, ~ 1 uF/cm? for
all biological membranes [15]. The total ionic current is shown as a “black box”
in Figure 2.1 because it will vary depending on what exactly is being modelled.
In the simplest case, Jo, is solely a function of membrane potential, as when con-
sidering excitation only (that is, no recovery process is involved). Equation (2.2),
with suitably chosen initial conditions, then represents the full model to be solved.
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Inclusion of a recovery process, however, means I, additionally depends on aux-
iliary variables u; i.e., lion = Lon(Vm, u). Furthermore, the auxiliary variables are
governed by a system of ordinary differential equations (ODEs)

2 = V1) 23)

for some specified function w. Typically, u represents dimensionless gating vari-
ables with Hodgkin-Huxley kinetics [35].

2.1.1 The Luo-Rudy Phase-1 Model

The Luo-Rudy phase-1 (LR1) model [43] is a mathematical reconstruction of the
ventricular cardiac action potential. It defines ., as the sum of six ionic cur-
rents: In,, a fast sodium current; I, a slow inward current carried primarily by
calcium ions; I, a time-dependent potassium current; Ix;, a time-independent
potassium current; Ixp, a time-independent plateau potassium current; and I, a
time-independent background potassium current. (See Table 1, p. 1503 in [43] for
the complete formulation.) In general, the transmembrane current per unit area
I; generated by an ionic species s as it passes through its respective channel is the
product of the conductance G, (mS/cm?) of the channel, and the difference be-
tween the transmembrane potential V,, and the reversal potential E; (mV) for the

ion species s. That is,

Is = Gs : (Vm - Es)-

The conductance of the channel varies with time and transmembrane potential,
and is typically formulated as

Gs = Gs : g(ull Up,...)
where G; is the maximum channel conductance and Ui, Ua,... represent gating

parameters. The rate of change of each gating parameter u depends upon its
steady-state value u,, and its time constant 7, (ms) as follows

du  Ue,—u
i . (2.4)




In turn, the steady-state value and time constant are defined as

&y

U = s (2.5)
1
Ty = Yy (2.6)

where a, (ms™) and B, (ms™?) are voltage-dependent rate parameters. In total
there are six gating parameters (specifically m, 1, j, d, f, and X) which govern the
opening and closing of the time-dependent currents of the LR1 model, and each
of these is governed by an ODE of the form of equation (2.4). As well, there is an
uptake mechanism for the intracellular calcium concentration [Ca®*]; (mmol); this
contributes another ODE to the model. In sum, the LR1 model is described by a
system of eight ODEs.

2.1.2 The Luo-Rudy Phase-2 and Subsequent Models

In 1994, Luo and Rudy [44] published an updated AP model, hereafter referred to
as the Luo-Rudy phase-2 (LR2) model. This model represents a significant update
of the LR1 model; we shall only highlight some of the more important changes. The
LR2 model defines eleven sarcolemmal ionic currents and an additional four ionic
currents pertaining to the sarcoplasmic reticulim (SR). As before, it includes ionic
currents through voltage-gated channels, but also provides currents due to pumps
and exchangers (for example, the Na*-Ca®* exchanger and the Na*-K* pump).

The LR2 model incorporates dynamic changes of ionic concentrations. In gen-
eral, the rate of concentration change of ion s is given by

d[S] _ I 'Acap
dat ~ V..z-F @7)

where [s] is the concentration of ion s, I; is the sum of ionic currents carrying ion s,
Acap is the capacitive membrane area, V. is the volume of the compartment where
[s] is updated, z; is the valence of ion s, and F is the Faraday constant.

Lastly, the LR2 model contains an overhaul of the calcium-handling mecha-
nisms. It models Ca** release from the SR via the Ca?*-induced Ca**-release (CICR)

process and under Ca**-overload conditions. In addition, it describes buffering of
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Ca®* via the major cytosolic (troponin and calmodulin) and SR (calsequestrin)
buffers.

As with the previous model, the LR2 model is described by a system of ODEs.
In this model, however, there is some choice in the total number of such equations.
As mentioned previously, the LR2 model incorporates dynamic ionic concentration
changes. If one allows for all ionic species to vary, then the toal number of ODEs is
17. This number can be reduced, though, by holding certain ionic species constant
when appropriate. (For example, the extracellular [Na*] usually does not change
significantly throughout the course of an AP)

Rudy and associates have continued to improve upon the AP model. The
present model is now referred to as the Luo-Rudy dynamic (LRd) model. Recent
modifications include incoporation of the T-type Ca** current and two components
of the delayed rectifier K* current [94], improvement of CICR that yields graded
Ca®* release [86], and formulation of a Na*-activated K* current to model Na* over-
load conditions [25]. While the recent additions to the model vastly improve upon
the simulated physiology, it comes at a price: a greatly increased computational
load. Simulation of a nonpropagated AP poses little problem for todays computing
resources, even when considering the most detailed AP model. However, simu-
lation of propagated activity with a comprehensive AP model, particularly 3-D
simulations, can be computationally challenging.

2.1.3 FitzHugh-Nagumo Models

Rather than display accurate guantitative properties of nerve impulses, FitzHugh [26]
developed a simpler model that exhibits qualitative physiological behaviour such
as excitability and oscillations. FitzHugh started with the van der Pol oscillator as

a prototype, then adapted it to nerve impulses to arrive at the following equations

dx X3
-&?—c[y+x—§+z(t) (2.8)
dy x-a+by
Fr &2

where x is the excitability of the system, y is the recovery variable, z(t) is an applied

stimulus, and 4, b, and ¢ are suitably-chosen constants. The variable x can be
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identified with membrane potential, while y represents the combined forces that
draw membrane to rest.

Similar work was done independently by Nagumo et al [47] and thus today
models derived from this work are referred to as a FitzZHugh-Nagumo (FN) model.
In general terms, we define an FN model as a system of two ODEs

du .

a = Iapp - Z(U, u) (2‘10)
du

E = ZU(U, u) (2.11)

where v is the excitability variable, u is the recovery variable, i(v, u) is a function
that is normally cubic in v, and w(v, u) is some specified recovery function.

Though only a caricature of the neural excitation process, the FN model has
been adapted and used extensively. Its simplicity allows it to be programmed
quickly and used successfully in 3-D simulations of propagated activity where the
CPU time for other detailed AP models would be prohibitive. In the remainder of
this section, we present some variants of the FN model that have been adapted to
cardiac cells.

Colli Franzone and Guerri [17] used the following formulation:

(V) = GOm (1 - ”—‘“) (1 - ”—’“) 2.12)

where vy, is the deviation of the membrane potential from rest, G is the maximum
membrane conductance per unit area of the surface membrane, vy, is the threshold
potential value, and v, is the plateau potential value. This model totally disregards
the recovery process—there is no recovery variable u or recovery function w. As
such this model only describes the depolarization phase, but it is still appropriate
for simulations where the effects of repolarization can be neglected or are not of
interest.

Pertsov et al [51] used the following FN variant

i(v,u) = =F(v) + u (2.13)
v—u
7(v)

w,u) = (2.14)
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where the functions F(v) and 7(v) are defined as

/

—C10 ifo<e

Fo)={c@-a) ifei<v<e (2.15)
L—c3(v -1) ifo>e

71 ifo<b

T(0) = ¢ T, fby<v<h (2.16)

T3 if?)>b2

Rogers and McCulloch [63] proposed the following model

i(v,u) = c1o(v —a)(v — 1) + coou (2.17)
w(v, u) = b(v — du) (2.18)

Note that equation (2.17) differs from the ‘standard’ FN system in that the last term
has been multiplied by v. A transient hyperpolarization during the recovery phase
is characteristic of the standard FN system; the above modification prevents this
and thereby produces a more physiological action-potential waveform [62].
Henriquez and colleagues [34, 46] have developed the following FN model

. Um Um
(V1) = 050, (1 - %) (1 - m) +0.020,u 2.19)
(U, 1) = 0.015 (0 — 0.005%) (2.20)

where v, is the deviation of the membrane potential from rest.

2.1.4 Bemnus Model

In 2002, Bernus et al [7] published a model of a human ventricular AP that empha-
sized computational efficiency and stability. It came about as a reduction of the
Priebe-Beuckelmann (PB) model [59], which itself is based on the LRd models. In
short, the Bernus model incorporates nine ionic currents, including the Na*-Ca?*
exchanger and Na™-K" pump currents, but lacks any ionic concentration handling.
It is comprised of a system of just seven ODEs; the complete equations for this
model are given in Appendix B.
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Though much less complex than the LRd-based models, the Bernus model still
retains important properties such as AP shape, restitution, and AP heterogeneity.
With regards to the last property, the model has configurations for three cell types:
endocardial, midmyocardial (M cell), and epicardial. Another important feature
of the Bernus model is its stablity. Comprehensive models like the PB model are
intrinsically unstable, exhibiting problems such as drift of ionic concentrations in

long-running simulations. The Bernus model does not suffer from these defects.

2.2 One-Dimensional Propagation Models: Cable Theory

Consider a uniform cylindrical fiber of radius 2 and length ! lying within a restricted
cylindrical volume conductor of radius b as shown in Figure 2.2(a). We assume
axial symmetry; moreover, the flow of current is assumed to be confined to the
axial direction only. The corresponding electrical circuit for this fiber is shown in
Figure 2.2(b). This is the linear core-conductor model [15, 36, 38, 58, 61].

A homogeneous conducting material (such as the intracellular or interstitial
media) may be characterized by a bulk property called the intrinsic resistivity,
denoted p (kQ - cm). The resistance per unit length, r (kQ/cm), is then defined as

.
=g 2.21)
o = Z—: 2.22)

where A is the cross-sectional area (cm?). For the present case of a cylindrical
fiber, A; = a* and A, = n(b* — a%). The subscripts i and e denote the intracellular
and interstitial regions, respectively. According to Ohm'’s law, the decrease in
intracellular potential, ®; (mV), is

29;
776— = —TiIi (223)
and similarly for the interstitial potential, ®, (mV),

0P,
ox

= —r., (2.24)
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Interstitial
space De(x) rAx  ®y(x+A%) -
lindx LG limAx
Cell 1 . L ]
membrane ~T Cmdx lionAX ——Cndx lionAX
Li(x)
—WA WA
Intracellular @;(x) riAx O;(x + Ax)
space
®)

Figure 2.2: (a) Geometry of a single cylindrical fiber of radius & and length I
immersed in a volume conductor of radius b. (b) Equivalent electrical ciruit of a
patch of the fiber. ¢ represents the potential, I the current, and r the resistance per
unit length. Subscripts e, i, and m denote interstitial, intracellular, and membrane
regions, respectively.
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where I; and I, are axial currents (1A) of the intracellular and interstitial regions,
respectively. Loss of intracellular current can only occur through current crossing
the membrane. Mathematically, this can be stated as
o _
ox

where iy, is the transmembrane current per unit length (pA/cm). The transmem-

—im (2.25)

brane current is lost to the interstitial space, resulting in a gain there, and thus we

have

%,
ox T
To be complete, current can be introduced to the intracellular region through, for

(2.26)

example, an electrode. In this case, equation (2.25) becomes

JL
ox

where ij,pp is the external current per unit length (pA/cm) applied to the intra-

= —im+ iiapp (2.27)

cellular space and taken as positive outward. An analogous modification can be
made to equation (2.26), if a stimulus is applied to the interstitial medium. We will,
however, use equations (2.25) and (2.26), and instead introduce a stimulus via an
alternate means to be discussed shortly.

Differentiating equation (2.23) it follows that

o, d( 199
il (‘z 5)
1%,

T o2

where we have assumed that 7; is constant. Combining this result with equation
(2.25) gives

1 %
- ;‘ 92 = —Im (228)
In a similar fashion, we can derive
13%®. .
P =i (2.29)
e

The membrane potential, Vi, (mV), is defined as

Vi =0 — D, (2.30)
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from which it clearly follows that
OVm _00; 0D

"o o (2.31)
PV 32<I>i 82<I>e
ox? = 2 ox2 (2.32)

Using equations (2.28) and (2.32) we obtain

1%V, 18, .
b BN (2.33)

and adding this to equation (2.29) gives (after rearranging terms)

1. 1\PP 1PV,
Gn)a=-

— + — — ——
o re) ox? r; ox?

(2.34)

The transmembrane current per unit area, I, (LA/cm?), is related to iy, as follows

im = Polm (2.35)

where Py, is the perimeter of a cross-section of fiber. (In the case of a cylindrical
fiber, P, = 2ma.) Recall from Section 2.1 that I, is the sum of a capacitive current

and the total current due to the flow of ions across the membrane:

AV
Iin
or o

In this equation, we now introduce a stimulus term so that it becomes

In = Cmaa% + lion — Iapp (2.36)

Im = Cn

where I, is the transmembrane injected current (uA/cm?). Combining equations
(2.33), (2.35) and (2.36), we obtain

Vi 1V, 158,
P (me + lion — Iapp) = ?, 92 + ;1 92 (2.37)

Equations (2.34) and (2.37), together with a formulation for I;;, and appropriate

auxiliary conditions, describe the propagation of electrical activity along a cylin-
drical fiber and are known as cable equations [32, 38, 58]. However, we will not
use this form of the equations; instead, we will convert them to a more “familiar”
form.
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2.21 Alternative Formulation: A Bidomain Approach

Bidomain theory is typically used to describe propagation of electrical activity
in two or three dimensions (see Section 2.3). However, we can still rewrite the
equations for one-dimensional propagation in terms of bidomain parameters. This
will allow for better comparison of equations in one dimension to those in two and

three dimensions.

First we define the intracellular and interstitial conductivities, ¢ (mS/ cm), to be

1
0; = — 2.38
m (238)
Oe = e (2.39)

e pe N
Recall that 7 = p/A and so we have

' AiO'i ( : )

1
Te = m (2.4:1)

Substituting this into equations (2.34) and (2.37), and dividing through by the total
cross-sectional area, Ay (cm?), gives

P 8V A:o; a2V Ao azq)
—_m m_n_‘ Ii n—1 — 1V1 m i0i e .
Atot (C ot * o : PP) Atot ox? * Atot ox? (2 42)
A;o; Aeae) az(I)e _ Aio; aZVm
(Atot ¥ At ) Ox2 —Atot ox? (2.43)

The intracellular bidomain conductivity, g; (mS/cm), is defined as the intracellular
conductivity multiplied by the ratio of the volume of the intracellular region to the
total tissue volume. Mathematically, this translates into
Ajl
7 Al

A;
= O 2.44
A (244)

O3

The interstitial bidomain conductivity, g (mS/cm), is defined in a similar manner,
and so we have

= A G (2.45)
e = Ame '
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The surface-to-volume ratio, x (cm™), is the ratio of the total membrane area to the

total tissue volume; that is,

= Dl
Aol

— Pm
Atot

(2.46)

Finally, substituting the relations in (2.44) to (2.46) into equations (2.42) and (2.43)
yields

OV *Vy PO,
X(Cm‘aT + fion — Iapp) =&i o2 +gi 2% (2.47)
D, 0*Va
@i+ 8) 37 =857 (2.48)

To complete the model we need to stipulate boundary and initial conditions; this
topic is taken up in Section 2.4.
2.2.2 Simplification to a Monodomain Formulation

Equations (2.47) and (2.48) can be reduced to just one equation in terms of Vr, (or
D, if you desire). Simply rewriting equation (2.48) gives

azfl)e _ gi azvm
ox2 ~  gi+ge Ox2 (249)
Substituting this into (2.47) and simplifying, we get!
Vm _ &i8e Vp
X (Cmﬁ" + I;on Iapp) = gi + ge axz (2-50)

Ti
ri+re

1Equation (2.50) could have been obtained much quicker. Multiplying equation (2.28) by
and equation (2.29) by ?:%J' and then adding the two gives

1 [P0 PP .
ri+re\dx2 92 ) ™
Using relations (2.32), (2.35) and (2.36), the above equation can be rewritten as

vV, 1 &V,
P (Cm_a;n + Lion — IﬂPP) = T+ Te axzm

*

One can verify that equations (+) and (2.50) are equivalent.
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2.2.3 Bidomain Formulation Incorporating Capillary Capacitance

We now derive a formulation of the bidomain equations involving a new capacitive
term. Let [x;, x2] be an arbitrary segment of a uniform cylindrical fiber of radius a
(the intracellular region, i) lying within a cylindrical volume conductor of radius
b (the interstitial region, e). Let ¢, be the interstitial capacitance per unit length
(uF/cm), which we identify with the capillary capacitance. Conservation of charge
requires that the loss in current flow between x; and x; must equal the current lost
due to the transmembrane current plus the current required to charge the section
of line between x; and x,. That is,
L(x1,t) = (32, ) = - : %dx = fz —Imdx + fx: o0 dx
T x

[
Ce—5
5 OX .ot

ox

X1

X2 Il X2 )
Li(x1,t) = Li(xp,t) = — 59— dx = f Im dx
X1

or equivalently,

=2 %2 (ol o,

L imdx = L (8—x + Ce_o'?t_) dx (2.51)

X2 X2 A
f —ipdx = %I—’ dx (2.52)

X1 X1 x

Since [x;, x;] was arbitrary, it follows that

_dl 0D,

Im = x + Ce—aT (253)
. dL

=Ilm = 5; (2.54)

Note that when the interstitial capacitance is zero, as was assumed in the previous
sections, equation (2.53) reduces to (2.26). Equation (2.54) is idential to (2.25) as no
capacitive term has been introduced into the intracellular region.

Following the procedure of Section 2.2, we can derive new equations governing
Vm and ®,:

Vm 1({*Vn b,
P, (me + Iion - Iapp) = Z (W + W) (255)
1 1180 9P _ 1PVq

(z * z) F I T (2.56)
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Now let us define

=L
Ce= P (2.57)

where C, is a capacitance per unit area (uF/ cm?). Analogous to Section 2.2.1, the

equations can be rewritten in terms of bidomain parameters as follows

X (Cm7 + Lion — Iapp) =g ('ﬁ- + 3357) (2.58)
PO, 0. PVa
&+ ge)-b;; - XCe—aT =85z (2.59)

The above equations form the basis for the one-dimensional bidomain model with

capillary capacitance.

2.3 Three-Dimensional Propagation Models: Bidomain Theory

To derive a simplified, yet realistic model of electrical wave propagation in 3-D
cardiac tissue, we apply the anisotropic bidomain theory [29, 81]. Let H represent the
ventricular heart volume consisting of cylindrical myocardial fibers. We assume
that this volume H is an anisotropic bidomain region. That is, H is composed of
two inter-penetrating media, the intracellular and extracellular (or interstitial) me-
dia, connected by a continuous cardiac cell membrane—a concept first proposed
by Schmitt [69]. Electric potentials and current densities are defined as continuous
macroscopic quantities which can be viewed as the average of the corresponding
quantity taken over many cells. Furthermore, electrical conductivities are assumed
to be anisotropic: the electrical conductivity is the same in any direction perpen-
dicular to the fiber axis (hereafter called the transverse fiber direction), but differs
from that measured along any direction parallel with the fiber axis (referred to as
the longitudinal fiber direction).

Letj. = [ji1 jiz. i 3] represent the intracellular current density (LA / cm?) and D,
the intracellular conductivity tensor (each element of which has units of mS/cm),
In the most general case, D; is a full 3 X 3 matrix and is a function of the position

x = [x1, X2, x3]7. From Ohm's law we have

ji = -DiV; (2.60)
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where @; is the intracellular potential (mV). For the interstitial domain, a corre-
sponding relationship holds

j. = ~DeV, (2.61)

Loss of intracellular current can only occur through current crossing the membrane,
and so we have

V-j = ~Iny (2.62)

where I, is the transmembrane current per unit volume (LA/cm?). The trans-

membrane current is lost to the interstitial space, resulting in a gain there:
Vejo=Iny (2.63)
Taking the divergence of both sides of equation (2.60) yields

V-j;=-V-DV®, (2.64)
and substituting this into equation (2.62) gives

-V-DiV®; = -I,,,, (2.65)
In a similar manner we can obtain

-V-D.V®, = I, (2.66)

Recall from Section 2.2 that the membrane potential is defined as V, = ®;—®, where

now Vi, = Vi(x, t), ®; = Oi(x, ), and O, = D,(x, t). Analogous to equation (2.31), it
follows that

VVm = VO; - VO, (2.67)
From this and equation (2.65) we obtain
= V-Di(VVn + V®,) = I, , (2.68)
and adding this to equation (2.66) gives
=V -Di(VVn + VO,) - V- D VD, = 0

or equivalently,
V-(D; + D)V®, = -V - D,VV, (2.69)
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The transmembrane current per unit area, I, pA/cm?, is related to I, as follows
Im,v = XIn (2.70)

where  is the surface-to-volume ratio. Recall equation (2.36) from Section 2.2

Vm

In= Cm'a_t + lion — Iapp

Substituting this and relation (2.70) into equation (2.68) gives (after some rearrang-
ing) ;
1%

X (C‘“a_tm + fion — Iapp) =V.D;VV, +V.-D;V), (2.71)
This and equation (2.69), together with appropriate initial/boundary conditions
and a suitable description for [;,n, describe the propagation of electrical activity in
the heart. Observe that (2.69) and equations (2.71) are merely extensions of the
corresponding 1-D counterparts: equations (2.47) and (2.48).

2.3.1 Assumption of an Equal Anisotropy Ratio

For reasons of computational complexity, it is convenient to assume that the ratio

of interstitial to intracellular conductivity is the same in all directions; that is,

8exi _ 8exa _ Sexs

=r (2.72)
Sim  8im  8ix
This assumption implies that
D, =rD; (2.73)
From this and equation (2.69) we get
1
V-D;V®, = ———V.D;VVp, :
D;Vo, T D;VV, (2.74)
Substituting this into equation (2.71) gives
oV r
X Cm'a_t + Iion - Iapp) - mv - DiVVm (2.75)

Thus, the assumption of an equal anisotropy ratio allows us to reduce the system
of two coupled PDEs in V, and @, to just one PDE in V,,.
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2.3.2 Bidomain Formulation Incorporating Capillary Capacitance

For the 3-D bidomain model, the formulation incorporating capillary capacitance
[76] will result in numerically stable well-posed problems for the Neumann bound-
ary conditions and is given by

Vm
X (Cm_a—t— + Iion - Iapp) =V. DiVVm +V. D,'V(Pe (276)
2P,
V(D + DV, ~ xCo 3t =~V - DiVVa 2.77)

The directional dependence of the “bulk” membrane capacitance due to the cell
membrane, gap junctions and other microstructures [75] could also be incorporated
into the model by replacing C, in (2.76) by Cuix with

GCoix = Con(Chppr Choer VVims 1)

—2
i@ - ) (s + (P for VW #0
Cix for VVp -4 =0

(2.78)

where C}, and C}, are the “bulk” membrane capacitances in the transverse and
longitudinal directions, respectively, and a; is the local (longitudinal) fiber direction.
The study of this extended model will be the focus of future work.

24 Boundary and Initial Conditions

We give the initial conditions in a general form as

Vin(x,0) = Vino(x) (2.79)
@e(x,0) = Deg(x) (2.80)
u(x,0) = up(x) (2.81)

where Vo, @eo, and ug are, as yet, unspecified functions of x. In reality these
functions are often just simply constants. For example, we usually assume that all
cells are initially at rest, which implies that Ving = Viest. (The parameter Vi is a
constant that depends on the particular AP model used: it is -84mV in the LK1
model [43], while in the Bernus model [7] itis —90.2mV.)



24

We now our attention to the boundary conditions. The bidomain myocardial
region H is surrounded by a volume conductor B. This extracardiac region repre-
sents the saline bath of an experimental setup, or the torso and intracardiac blood
masses, if modelling the human body. We assume that B is homogeneous and
isotropic with a constant conductivity of ¢,. Furthermore, we assume that the
interstitial space in the myocardium is contiguous with the extracardiac region.

Denoting the potential in B as ®@,, we thus have
. =, (2.82)

on 9H, the boundary of H. This condition specifies continuity of potential across
the interface. Likewise, we must have continuity of the current density:
n-(j+j)=n-j, (2.83)

In the above expression, j, denotes the current density in B and # is an outward
unit normal to the surface dH. Analogous to the relations for the intracellular and

interstitial current densities (see equations (2.60) and (2.61)), we have
o = =0V, (2.84)
Equation (2.83) can therefore be rewritten in terms of potential as
n - (D;V®; + D.V®,) = n-0,VP, (2.85)

A third and final boundary condition is needed; however, this condition has
been the subject of controversy and at least three alternatives have been used.
Tung [81] proposed that the intracellular current does not cross into the extracardiac
domain, namely,

n-D;iV®; =0 (2.86)

With this relation, the boundary condition in (2.85) simplifies to

n-DVP, =n-0,VO, (2.87)
On the other hand, Peskoff [53] and Plonsey [56] suggested that at the myocar-
dial surface the intracellular current density matches the transmembrane current

density
n- (—Divq)i) = Im (288)
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Adding this to equation (2.85) and using the definition of I,, we arrive at

n-DeVO, =1 - 0,VO, + Cmaa’l;n- + Lion (2.89)

In contrast, Colli Franzone and colleagues [16, 18] introduced the notion of a
bulk conductivity tensor, D = D; + D,, to describe the composite intracellular and
interstitial medium. They postulated that the current flowing in the bulk tissue is
given by —~DV®,, and that the current flux across the interface JH must match the
flux entering the extracardiac region B. Mathematically, this yields the boundary
condition

n-DVQD, =n- g, VP, (2.90)

Combining this with equation (2.85), we have a compatibility condition for V,:
n-DiVVy,=0 (2.91)

The appropriateness of the above boundary conditions has been investigated
by others [41, 64, 65]. In particular, Krassowska and Neu [41] started with a
microscopic model and then applied a homogenization process and boundary layer
analysis to arrive at effective boundary conditions for the macroscopic volume-
averaged potentials of the bidomain model. Their rigorous analysis proved, on
a theoretical basis, that the intracellular current density is zero on the interface
between a syncytial tissue and a surrounding volume conductor. In other words,
the boundary condition (2.86) proposed by Tung [81] is the correct one to use.
Krassowska and Neu further state the physiological implications of equation (2.91).
In order for this condition to hold, cells on the boundary must be cut and still
maintain normal physiological function. In lieu of this finding, equation (2.91) or
the even simpler analogue

7-VVm=0 (2.92)

is still frequently used as aboundary condition, owing to its ease of implementation.
In the present study, we consider only an isolated bidomain region H; that is,
we exclude the extracardiac volume conductor B. In so doing we assume that

n-0,V®, = 0 on JH, which is consistent with the experimental findings of Green
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etal [31]. The aforementioned boundary conditions can then be replaced with two
equations involving only Vi, and @

- Dy(VV + VO,) = 0 (2.93)
n-DV®, = 0 (2.94)

It is important to note that the interstitial potential is thus governed by an elliptic
partial differential equation (2.69) with Neumann boundary conditions. As a math-
ematical consequence, solutions for @, are not unique (or only unique up to an
additive constant) [78]. We therefore modify the boundary condition for @, so that

it includes a Dirichlet component at some region (even just one point will suffice):

n-DV®. =0 xeoH, (2.95a)
P.=0 xe0H, (2.95b)

where H = dH; U dH,. For notational convenience, we can combine the above two
equations into a single one as follows

a(x)P + B(x)n - D VO, =0 (2.96)
where
0 forxedH, 1 forxedH;
a(x) = Bx) =
1 forxeodH, 0 forxedH,

The Dirichlet condition ensures uniqueness of ®, and corresponds to having a
grounding point in an experimental setup.

2.5 Extracardiac Potential

To determine the extracardiac potential, we assume that the bidomain region H is
embedded in an isotropic and homogeneous volume conductor of infinite extent.
In this case, the conductivity of the extracardiac region is a scalar constant, which
we denote by g, (mS/cm). The electric potential, ®,, in the extracardiac region is
given by [32]

VD, =V, (2.97)
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where j, is the impressed current density. Equation (2.97) is Poisson’s equation for
which the solution is readily found to be

_ 1 Vi),
Oo(r) = rrere L T (2.98)

where r represents the position vector to the field point and * is the position vector
to the source point. The prime on the del operator indicates that the gradient is with
respect to the source point 7. The impressed current density is due to the sources

in the cardiac region, namely j, = —D;VVrn. Thus, the extracardiac potential is

1 V' -D;V'Vy
D = av’ 2.99
o) = fH s (2.99)

determined by




Chapter 3
Implementation of Monodomain Model

In this chapter, we present the numerical methods to solve the monodomain model.
The solution is obtained via an alternating-direction implicit scheme. This scheme
gives rise to sets of tridiagonal systems of equations which are easy to implement
and solve.

3.1 Introduction

To reduce the computational complexity of the problem at hand, we make the
assumption of an equal anisotropy ratio, as discussed in Section 2.3.1. Under this

assumption, the membrane potential Vi, is governed by

IV

X(Cm—aT + Iion - Iapp) = _r;v . DiVVm (31)

1+

This is a nonhomogeneous, quasi-linear, parabolic PDE and it is used in this chapter
to describe the propagation of electrical activity in the ventricular myocardium.

To complete the model, we impose initial and boundary conditions. All cells
are initially assumed to be at resting potential; therefore,

Vm(x; O) = Viest

for all x € H, where for simplicity we specify the initial time to be #® = 0. The
boundary conditions reflect the fact that there is no current flow across theboundary

of H and are given by

Ve
Tn 0

where 7 is the unit outward normal vector on JH, the boundary of H. Thus, the

n-vvp, =

28
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full mathematical model used in this chapter is

0V o
X (Cm'—at— + Iion - Iapp) = -]__:;V . DiVVm (32)
du

= f(Va) (33)

WV
e 0 (3.4)
Vin(x,0) = Viest (3.5
u(0) = ug (3.6)

The vector u = [u1,...,us]" represents the variables of the LR1 model, namely,
Ui, U, ..., g are gating parameters and u; = [Ca®*];, the intracellular calcium

concentration.

3.2 Numerical Methods

To reduce the mathematical and computational complexity of the problem, we
restrict our simulations to a parallelepipedal domain. Specifically, we define the
myocardial volume H to be a rectangular box with edges of length Ly, Ly, and Ls:

H={xy2]0<x<L;,0sy<L,0<z< L3}

Simulations of the mathematical model involve updating the seven ODEs of the
LR1 model at each point in the spatial domain, as well as integrating the parabolic
PDE in the membrane potential Vp,,. Six of the seven LR1 variables are gating
parameters, where each variable u is governed by the ODE

du _ Ue(Vm)— U

@ V) 37)

We employ the simplifying integration algorithm of Rush and Larsen [67]. Assum-
ing Vi, to be constant over the time step necessary to update u, then equation (3.7)
can be integrated explicitly to yield

u(tD) = t1go — (oo — u(t®) )"



30

and in general,
U(E™D) = thog — (1100 — u(t) )"V

where £ is the value of t at the nth time step. The intracellular calcium concentra-
tion is governed by the following ODE:

d[Ca®];

— 4 4 2+7.
= ~10°I; +0.07(10* - [Ca™"];) (3.8)

Updating this equation is done by means of a fourth-order Runge-Kutta method.
For the numerical solution of the PDE, we use the Douglas-Brian finite difference
scheme [9, 24] with modifications to incorporate the mixed and first-order spatial

derivatives of Vi, [12]. Equation (3.2) can be rewritten as
9_V —c 82V+C 82V+ 82V+ 2V iy o*v N Vv
ot ox2 T ey TOGa C48xc9y > 9x0z C68y5’z
A%

v
+ C7—a—x' + Cs—a—y‘ + C9§' +f(xryizr tr ‘//u)

where the m in Vi, has been dropped for notational clarity. The coefficients

€1,€2,.--,Co are functions of the spatial variables (ie., ¢ = ¢(x,y,z)), and f rep-

resents the current source term. Let Ax, Ay, and Az denote the spatial step sizes,
and At, the time step size. We impose a grid on the heart volume H as follows:

=i Ax, i=0,1,2,...,N,N; +1 [Ax = L/(N; +1)]
Y =j- Ay, j=0,1,2,...,Np,No +1 [Ay = Lo/(N2 +1)]
z® =m- Az, k=0,1,2,...,N5,N;+1 [Az = L3/(N5 + 1)]

Wedenote V(x®, 47,20, {my by Vikm and define the central-difference and average
operators, 6 and y, respectively, in the usual way as

S, VAR = Y112 jkn) _ yG=1/2jkn)
V@2 3kn) _ yG-112jkn)
2

Ly Ylikn) =

and similarly for &y, 0., uy, and p.. Furthermore, let p represent mesh ratios such
that p,, = At/(Ax)?, px = At/Ax and similarly for other parameters. The values of
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the membrane potential V on this grid are then approximated at time ¢V from
the values of V at time #™ according to the following finite-difference scheme

[1 - p—;fcl i] yD - [1 + E;—xcléi + pyyczé‘; + P22C302 + PryCatlzOrityOy

+ PxzCsiex0x 20 + Py:CG.uy‘Ssz(Sz + PxC7x0x

+ pyCaptydy + p:ngz(S;] Ve + At - f (39)

p n p n n
[1- Bt vierd = - Bty 4 e (3.10)
(1= B csat| ven = B2y 4 e (3.11)

where the i, j, and k subscripts have been suppressed, so that

FO = flikn = £ (0, 50,20, 10, ik, i)

Likewise, ¢; = cf’jk )= ¢ (x®,yD,2z®), and similarly for other values. To maintain

second-order accuracy in time, the set of equations (3.9)—(3.11) is actually solved
twice analogous to a predictor-corrector method. On the first pass, one replaces At
by At/2 and proceeds with the finite difference scheme, along with the appropriate
boundary-value approximations, to obtain a first estimate V@/7+1/2 Then one
uses equation (3.9) with f® replaced by

0 = f(xl®, yh, 20, 1D Ylidkne12 i)

together with equations (3.10), (3.11) and suitable boundary value approximations
to obtain V{4n+D),

We now turn our attention to the boundary-value approximations. As a direct

consequence of the boundary condition %L,;" =0, we have
oV v
g(or Y.z, t) - g(Lll Y,z, t) =0. (3.12)

Approximating 47 at x = x® = 0 by means of a centered-difference Taylor series

yields

v

YLikn) _ y(-Ljikn)
0, 0,20, 1)~

2-Ax

and at x = xV*D = [,
VN2 k) _ 17Ny jkn)
2-Ax

aa—‘x/(x(Nﬁ.l)/ y(D/ Z(k)/ t(n)) =
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Note that this introduces the two “fictitious” points xV and x*"1*?; that is, points
that are outside the domain H. To use the above approximations for 2%, one
must make the reasonable assumption that V can be extended to satisfy sufficient
continuity conditions outside of H. Substituting these results into equation (3.12)
thus gives the following order-two approximations (the common index 7 has been

omitted)

VLR = ik (3.13)
YNi+2,jk) — N1k (3.14)

In a like manner, we also obtain the following second-order approximations by

applying centered differences to g—‘y’ and ‘3;—‘_,’2
V1R — k) (3.15)
VEN28) _ N2 K (3.16)
Vi1 — b (3.17)
VEiNs+2) — 170iN3) (3.18)

Returning now to equation (3.9) and including the i, j, and k superscripts gives

[1 - %cléﬁ] ylikn - [1 + p—;x-cléi + PyyCadl + Pz=C30% + PryCafhedxityly

+ PrxC5ldxOxd=0: + Pyzcé.uyéyyzéz + PxC7xbx
+ pyCsttySy + p;Cgpzéz] Y@ikm 4 At . flikn (3.19)
If we fix the superscripts jand k—say j = Jand k = Kwith0 < J < N, +1 and

0 < K £ N3 + 1—and allow the i superscript to range from 0 to Ny + 1, then we

obtain the following system of equations:

_p_""VS—lJ,K,ml) + 1+ Pxx)VSOILKmH) P V£1,1,1<,n+1) — 4Ok
_%ixVEOJ,K,n+1) + (1 +pxx)V£l,],K,n+1) _ éVSZ,LK,n+1) — d(LLKJ‘l)
_%VEI,LK,nH) 4 (14 pe)VRIEmD % YOIk jejKn
__p2ﬁVEN1—1,I,K,n+l) B P e f;zﬁ PN 0N, K
—pTxxVEN“I’K'"“) + (14 pry) VLKD) % YN (N1 K
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where d®%m) is the right-hand side of equation (3.19). We assume that V. and V..
satisfy the boundary condition (3.12), so that the approximations for V in equa-
tions (3.13)-(3.18) also hold for V. and V... Therefore, the first and last equations in
the above system now reduce to

0,JK.n+1 1,JKn+1 _
1+ P VO g Y IKmD) = JOkm
_pxxval,],K,n*'l) + (1+ pxx)VSNHLLK,n-f-l) = ANi+1[Kn)

Hence, we have a tridiagonal system, which can be expressed in matrix notation as

AVED Z g

where
d(n) = [d(OILK/n)’ d(]-J:K:"), e, d(Nl‘*lJ»K»")]T
V£n+1) = [VEOII'K'n+1), VSl,],K,n-I-l)’ ., VSN] +1,],K,n+1)]T
and )
1+ p0  —pu 0 0 “ee 0
O —%rf 1 + pxx —'pzix' 0
A= ‘..
0 e —'% 1 + pxx '_pTXX
0 M 0 _pxx 1 + pxx ]

Thus, we compute V&*™? for i, j, and k by solving (N> +2) - (N3 +2) tridiagonal
systems of (N; + 2) equations. Similarly, if we now fix the i and k superscripts and
allow the j superscript to range from 0 to N> + 1, then equation (3.10) gives rise to
another tridiagonal system of equations

A/ V(n+l) — d/(n)
where
guikn = _P¥ ey aikm ik
2 Y )
d/(n) = [dr(I,O,K,n) d/(l,l,K,n) d/(I,N2+1,K,n)]T
14 77z

VS:1+1) — [VS{,O,KJH-I)I VS{,I,K,)H—I)’ ..., VS{,N2+1,K,n+1)]T
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and A’ is the matrix A with p,, replaced by p,,. In a similar fashion, equation (3.11)
results in the tridiagonal system

A” V(n+1) = d"(n)

where
gk = _ %—- §2 k) g YTk
du(n) = [ d/r(I,I,O,n), dn(l,],l,n), ., dn([, ],N3+1)]T
yoh [V(I,I,O,n-%-l)’ V(I,I,l,n+1)’ ..., V(I,],N3+1,n+1)]T

and A” is the matrix A with p,, replaced by p-.. Thus, we simultaneously solve for
V on the interior of H as well as along the boundary of H.

3.3 Numerical Experiments

3.3.1 Test Problem with Known Solution

To verify the accuracy of the spatial propagation component of the computer code,
we used the program to solve a problem that has a known solution. This allowed

comparison of the numerical solution with the exact value. Consider the following

problem:
v, r
m _ V.D.V ]
Cn 3 - xden D\VV,, + S(x, 1) (3.20a)
OV _
& 0 (3.20b)
3
X;
Vo, 0) = ];[ cos (T) (3.200)
where
&ix 0 0
D;=| 0 8ix: 0
0 0 8ix;
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The exact solution to this problem is given by

3
Valx, )= e [ [ cos (’2—") (3.21)
i=1 i

Note that we have maintained the same notation has used earlier in this chapter,
however, Vi, no longer corresponds to membrane potential.

We solved problem (3.20) for 0 < ¢t < 8 on the rectangular volume H =
{(x1,x2,x3) |0 < x1 08,0 <x, <080<x; < 0.4} for three uniform meshes:
(i) Ax = 0.08 corresponding to 11 x 11 X 6 grid points; (ii) Ax = 0.04 corresponding
to 21 x 21 x 11 grid points; and (iii) Ax = 0.02 corresponding to 41 x 41 x 21 grid
points. Furthermore, the problem was solved with two different time steps for each
mesh: Af = 0.1 and At = 0.05. Solution values were output at timest = 1,2,...,8,

and the root-mean-square (RMS) errors and maximum deviations were calculated
by the following formulas:

1/2
1 = "7(1 1 2
RMS error = [; Z‘ (V8 -v®) ] (3.22)
Maximum deviation = max [V — V) (3.23)

where V is the numerical solution at some “point” i and V¥ is the exact value
computed by equation (3.21).

Table 3.1 shows the RMS errors and maximum deviations for the monodomain
code when solving problem (3.20). As expected, the errors decrease as the spatial
and temporal stepsizes are decreased. Also of note, the method developed in
Section 3.2 is second-order accurate in both space and time. Therefore, reducing
both the spatial and temporal stepsizes by a factor of two should reduce the error
by at least a factor of four. One can verify that the errors listed in Table 3.1 indeed
follow this relationship, indicating that the code is working as expected.

3.3.2 Block with Rotational Anisotropy

Methods: As a further test of the code, we replicated the ‘Block Type I’ of Colli

Franzone and Guerri [17], which was also previously used by Horacek et al [37].
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Table 3.1: RMS errors and maximum deviations for the monodomain code when
solving a test problem that has a known solution.

(a) RMS Errors

(b) Maximum Deviations

At At
Ax 0.1 0.05 Ax 0.1 0.05
0.08 || 0.000260 | 0.000150 0.08 || 0.000664 | 0.000383
0.04 || 0.000162 | 0.000061 0.04 || 0.000447 | 0.000166
0.02 || 0.000129 | 0.000038 0.02 || 0.000377 | 0.000110

Theblock consists of a small myocardial volume representingalcm X 1cm X 0.3 cm
portion of the ventricular wall. The z-axis is vertical, and theplanesz = 0and z = 0.3
represent the endocardial and epicardial surfaces, respectively. The volume of
ventricular myocardium, H, is therefore defined as {(x, ¥, 2)I0 < x,y < 1,0 <z < 0.3].
We assume that the ventricular wall is composed of uniform layers of muscle fibers
parallel with the xy-plane. The curvature of the fibers isneglected and the colatitude
angle with respect to the z-axis is 6(x, y,z) = Z. On each layer, the principal fiber
direction is fixed but rotates 90° counterclockwise with depth proceeding from top
to bottom of the block.
The rotation of the muscle fibers is described by the function

66 =7 [- sin (47‘: (02—3 - 0.5)3) + 1].

This fiber rotation function, which depends on the vertical distance only, is an ide-

(3.24)

alized representation of experimental data of Streeter [79] and is the same function
used in previous simulations [17, 37]. At the epicardial surface, ¢ = 0 and so the
fiber direction is aligned with the x-axis. At the endocardial surface, ¢ = 7 and
thus the fiber direction coincides with the y-axis.

The volume of tissue in ‘Block Type I’ was represented by 51 x 51 x 19 grid
points. Excitation was initiated by applying a current stimulus at the upper layer
of the block to 3 X 3 X 2 cubic elements for vertex stimulation and 4 X 3 X 2 cubic
elements for edge stimulation. In particular, three different excitation sequences
were elicited by stimulating the right vertex, midpoint of edge, and left vertex
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Table 3.2: Propagation parameters for ‘Block Type I’ simulations. Values for equal
anisotropy ratio, membrane capacitance, and intracellular transverse and longitu-
dinal conductivities taken from Hora&ek et al [37]. Value of surface-to-volume ratio
is the same used by Colli Franzone and Guerri [17].

Equal anisotropy ratio r 1.0
Intracellular transverse conductivity o} 0.5 mS/cm
Intracellular longitudinal conductivity o 2.0 mS/cm
Membrane capacitance C,, 0.8 uF/cm?
Surface-to-volume ratio x 1000.0 cm™
Spatial steps

hx = hy 0.020 cm

hz 0.016 cm
Time step k 0.02 ms
Current stimulus Ly, 100.0 pA/cm?
Duration of stimulus £ 0.5ms

with an applied current of 100 pA/cm? and 0.5 ms duration. A fourth excitation
sequence was also initiated by delivering a current stimulus of the same magnitude
and duration to 4 X 4 X 2 cubic elements located in the center of the upper layer of
the block. The propagation parameters used in all ‘Block Type I’ simulations are
listed in Table 3.2.

To track the action potential propagation throughout the block of ventricular
myocardium, we use isochrones of activation. The activation time was defined as
the time instant at which the transmembrane potential exceeds —20 mV. Successive
isochrones were plotted at 1-ms increments.

All computer programs were written in Fortran 77. The simulations were
performed on an IBM RS/6000 model 590 with version 3.1.2 of the IBM XL Fortran
compiler.

Results: Figure 3.1 shows the excitation sequences simulated with a time step
of 0.02 ms initiated by stimulation of the right vertex (Figure 1a), midpoint of
edge (Figure 1b), and left vertex (Figure 1c). Isochrones are displayed for selected



38

horizontal cross-sections through the block. From top to bottom, the fiber directions
in the panels make angles of 0°, 42.4°, 47.6°, and 90°, respectively, relative to the
horizontal side of the figures. The block was completely excited within 23-32 ms,
and on average, the run time was approximately 90 minutes on an IBM RS/6000
model 590. Figure 3.1 clearly illustrates an asymmetric behaviour of the propagated
activation. For right vertex stimulation (column 1), the fiber rotation increases the
velocity of wave propagation with the lower left comer of the top layer being
excited within 23 ms after the onset of the applied stimulus. Compare this with left
vertex stimulation (column 3) where the wave propagation velocity is decreased
by fiber rotation, and in contrast, the lower right corner of the top layer is not
excited until 32 ms after the applied stimulus. As well, in the lower layers of the
block, the curvature of the wavefront is enhanced by fiber rotation for right vertex
stimulation which is in stark contrast to left vertex stimulation where there is a
flattening of the wavefront. This asymmetric behaviour is also clearly present in
the propagated activation for midpoint of edge stimulation where the left and right
halves of the activation isochrones approximately resemble right and left vertex
stimulations, respectively.

To illustrate the stability and efficiency of our numerical methods, we ran the
previous simulations for a time step of 0.1 ms. The results are shown in Figure 3.2.
A comparison of this figure with Figure 3.1 shows nearly identical results. The
runtime, however, on an IBM RS/6000 model 590 was reduced from 90 minutes in
the previous case to a mere 15 minutes for complete block excitation.

To see even more clearly the combined effects of anisotropy and fiber rotation,
yet another excitation sequence was initiated by applying a current stimulus to
the center of the upper face of the block of tissue. The isochrones of activation
are shown in Figure 3.3. Note that the isochrones are ellipsoidal in shape. This is
due to the anisotropy: the leading edge of the wavefront moves faster along the
fiber direction than in the transverse direction. At the upper layer of the block,
the orientation of the major axis of the ellipse coincides with the fiber direction;
similarly, the minor axis is aligned with the transverse direction. Also apparent
from Figure 3.3 is the rotation of the elliptical shape from top to bottom of the block.
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4 15

N

Figure 3.1: Isochrones of propagated excitation for right vertex, midpoint of edge
and left vertex stimulation on 51x51x19 nodes representinga 1 cm X 1 cm x 0.3 cm
block of tissue. Successive isochrones are displayed at 1 ms intervals and the
simulation was run with a time step of 0.02 ms. Layers illustrated here refer to slices
through the block parallel with the xy-plane. The top (bottom) layer corresponds
to the epi(endo)-cardial surface. From top to bottom, the fiber directions in the
panels make angles, relative to the horizontal side of the figures, of 0°, 42.4°, 47.6°,
and 90°, respectively. Compare with Figure 2 in [17] and Figure 1 in [37].
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Figure 3.3: Rotational anisotropy: the combined effects of anisotropy and fiber
rotation. Isochrones of activation have an elliptical shape due to the anisotropic
property of the cardiac tissue. Note that the elliptical shapes rotate from top to
bottom of the block, but less than that of the fiber direction.
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However, this rotation is less than that of the 90° counterclockwise rotation of fiber

direction, and is due to a phase lag in the rotational wave.

3.4 Scroll Waves in an Anisotropic Ventricular Myocardium

3.4.1 Introduction

Mathematical models for simulating the electrical propagation phenomena in the
heart can provide valuable insight into the normal and pathological process of
cardiac depolarization and repolarization. Of particular importance is the forma-
tion and termination of reentrant excitation. Reentry occurs when the propagating
wave of electrical activity re-invades previously excited tissue and excites it again.
If this happens repeatedly, it can lead to rapid, self-sustaining electrical activity in
the heart which underlies the life-threatening cardiac arrhythmias such as ventric-
ular tachycardia, and atrial and ventricular fibrillation. Spiral-wave activity has
been proposed as a mechanism for this reentrant excitation in two-dimensional
media [42, 50, 90, 88]. Recent experimental evidence [20, 21, 22, 27, 51] supports
this claim. Scroll waves, the three-dimensional analogue of spiral waves, have
similarly been proposed as a mechanism for reentry in three-dimensional tissue
[90, 88], but experimental evidence for this is still scanty [27, 91], mostly due to the
difficulty of measuring electrical activity in three-dimensional tissue.

Reentrant rotating waves in mathematical models of cardiac electrical activity
have been studied by many investigators [5, 7, 19, 20, 22, 49, 51, 52, 60, 84]. Much of
this work is restricted to two-dimensional simulations using the simple FitzHugh-
Nagumo (FN) membrane model. Some exceptions do apply. Courtemanche and
Winfree [19] showed reentrant patterns in a two-dimensional sheet of cells using
the ionic model of Beeler and Reuter [6], and Pertsov and Jalife [52] used FN
equations to demonstrate vortex-like reentry in three dimensions. The nature
of three-dimensional reentry with the LR1 ionic model has been investigated [5,
60]; however, in each case the authors used simple explicit schemes to solve the
differential equations.

The primary goal of this section is to investigate the formation of scroll waves in
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asimplified slab model of the ventricular myocardium, using the implicitnumerical
methods developed in Chapter 3. To describe the ionic currents, we shall use the
LR1 model [43].

3.4.2 Methods

A rough estimate of the wavelength, and hence the size of rotating waves for LR1
media is given by s X APD, where s is the wave speed and APD is the action po-
tential duration. For our propagation model, the wave speeds in the transverse
and longitudinal directions are approximately 0.025 cm/ms and 0.035 cm/ms, re-
spectively, and the APD of the LR1 model is 366 ms. An investigation of reentrant
rotating waves would therefore require simulations of blocks of tissue on the order
of 10cm X 10cm. To reduce this requirement, and hence the computational load,
we modified the LR1 model to produce an action potential with the same essen-
tial shape but with a reduced duration. To reduce its action potential duration to
approximately 200 ms, the time constants for calcium channel activation and inac-
tivation were replaced by Tgnew = 0.57; and 7 fnew = 0.57, respectively; the time
constant for activation of the time-dependent potassium current was changed to
Txnew = 0.47x; and the maximum conductance for the plateau potassium current
was increased to pr, new = 0.0583mS/cm?. Figure 3.4 shows the action potential
as calculated from both the modified and unmodified LR1 model.

Tissue Block for Cross-field Stimulation: We consider a 5ecm x5cm X 0.5¢cm
block that consists of homogeneous myocardial tissue with uniform anisotropy; that
is, we neglect the rotation and curvature of the fibers, and furthermore, the fibers
are assumed to run parallel with the x-axis. The z-axis is vertical, and the planes
z = 0 and z = 0.5 represent the endo- and epicardial surfaces, respectively. Using
a uniform spatial step of 0.05cm, the block was discretized by 100 x 100 x 10
nodes. To initiate rotating waves, we used the cross-field stimulation method [20].
Excitation was begun with a basic stimulus applied to the entire left lateral face of
the block of tissue. This initiated a planar wave that propagated from left to right.
A second premature stimulus was then applied to the entire front lateral face. The
propagation parameters are given in Table 3.3.
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Figure 3.4: Action potentials from the original and modified LR1 model.

Table 3.3: Propagation parameters for reentrant rotating wave simulations.

Equal anisotropy ratio r 1.0
Intracellular transverse conductivity ¢! 0.5 mS/cm
Intracellular longitudinal conductivity o 1.0 mS/em
Membrane capacitance C,y, 1.0 pF/cm?
Surface-to-volume ratio x 1000.0 cm™
Spatial step hx = hy = hz 0.05 cm
Time step k 0.2ms
Basic current stimulus Ipp 30.0 pA/cm?
Duration of basic stimulus #g 25ms
Premature current stimulus Iy, 12.0 pA/cm?
Duration of premature stimulus £ 4.0 ms
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Tissue Block for Pinwheel Stimulation: Here we used the exact same setup as
above, except the block size was increased to 5cm X 5 cm X 1cm and subsequently
discretized by 100x100X20 nodes. Rotating waves were initiated with the pinwheel
stimulation protocol as follows. As before, excitation was begun with a basic
stimulus applied to the entire left lateral face of the block, which initiated a planar
wave that propagated from left to right. However, the second premature stimulus
was applied to an area on the top face of the block just behind the propagating
refractory tail of the first wave. The propagation parameters are given in Table 3.3.

All computer programs were written in FORTRAN 77. The simulations were
performed on an IBM RS/6000 model 590 with version 3.1.2 of the IBM XL Fortran
compiler.

3.4.3 Results

Figure 3.5 shows the sequential time plots of the electrical activity resulting from
cross-field stimulation on the top face or epicardial surface ofa 5cm xX5cm 0.5 cm
block. The first panel shows the propagating refractory tail of the first wave that
propagated from left to right just before onset of the second stimulus occurred.
Panels 2 through 4 show the initiation of a second planar wave that propagated
from front to back except at the right where it encountered the refractory tail of the
first wave. In panel 5, we see the first formation of a wave break that propagated
to the right in the now recovered zone. The remaining panels show that this wave
break began to curl and led to the formation of a clockwise rotating scroll wave.
Figure 3.6 shows the sequential time plots of the electrical activity on the epicar-
dial surface resulting from the pinwheel stimulation protocol. As before, panel 1
shows the propagating refractory tail of the first wave that propagated from left
to right. Panel 2 shows the activated region resulting from the second stimulus.
This premature stimulus was applied to a rectangular patch of cells (30 X40) on the
top layer of the block of tissue. Excitation from this stimulus initially propagates
in all directions, except towards the right. In panel 6 we see the formation of two
counter-rotating waves that are subsequently terminated when they hit the left

border before curling around to complete another rotation.
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Figure 3.5: Initiation of reentrant activity in the form of a scroll wave in a 5cm X
5cm x 0.5 cm homogeneous block of myocardial tissue with uniform anisotropy.
Panels 1 through 25 show the time variation of electrical activity on the top face of
the block only. Panel 1 is a snapshot at t = 400 ms and the time interval between
subsequent panels is 50ms. Transmembrane voltage is shaded according to the
grey-scale shown in the bottom panel.
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Figure 3.6: Initiation of reentrant activity in the form of counter-rotating waves
in a 5cm X 5cm X 1cm homogeneous block of myocardial tissue with uniform
anisotropy. Other explanations as in Figure 3.5.



48

3.4.4 Conclusions

Despite the uniform anisotropy of the medium, the scroll waves werenot stationary.
In the case of the cross-field stimulation, the resulting scroll wave drifted from front
to back, and then right to left and left to right several times. At approximately
t = 2900ms, the wave front struck the left border before it could curl around.
This led to termination of the scroll wave. In addition, timing of the the second,
premature stimulus was critical in initiating the rotating waves. Applying the
second stimulus at a later time shifts the wave break seen in panel 5 of Figure 3.5,
for example, towards the right. If the stimulus was applied too late, this wave
break struck the right border and was extinguished before it could curl around. In
a similar fashion, applying the premature stimulus too soon shifted the wave break
towards the left. In this case, the wavefront did curl around, but it subsequently
struck the left border and was extinguished before it could curl around again to
complete a full cycle.

We have investigated the propagation of electrical activation in the three-
dimensional anisotropic ventricular myocardium using a mathematical model
based on bidomain theory. A key feature of the model is a physiologically accurate
formulation of the ionic currents describing the transmembrane action potential.
This feature allows for simulation of the phenomena of action-potential propaga-
tion which fully incorporates the recovery phase of the process. Many propagation
models to date often lack this feature, particularly in three-dimensional simula-
tions. Though we present only the results for the case of uniform anisotropy, the
mathematical model and corresponding numerical methods allow incorporation

of anatomically accurate properties of cardiac tissue such as fiber rotation and

curvature.

3.5 Discussion

In this chapter, we have implemented a monodomain model of the propagation
of electrical activity in the anisotropic ventricular myocardium. For the ionic

current term we utilized the LR1 model of Hodgkin-Huxley type gating equations,
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which incorporates an accurate description of the membrane action potential. In
Section 3.2 we focused on the numerical methods needed to solve such a problem.
We then employed these methods to perform numerical simulations of cardiac
action-potential propagation in a block of tissue representing a portion of the
ventricular wall. The results are presented in Section 3.3.

We have ignored the curvature of the myocardial fibers. However, since these
simulations are performed on a small block of tissue, it is reasonable to assume that
the curvature of the fibers is negligible within this block.

A comparison of our results with those of Colli Franzone and Guerri [17, see
Fig. 2] and Horétek et al [37, see Fig. 1] reveals striking qualitative similarities,
despite the fact that they have used a simplified ionic current model of the membrane
potential. Moreover, though our model assumes an equal anisotropy ratio, the
results are still similar to the model of Colli Franzone and Guerri, which does not
make this assumption.

One noticeable difference, however, occurs at the boundaries. Colli Franzone
and Guerri reported a change in the curvature of the activation wavefront along
the boundaries. We have also observed this same effect, but there appears to be
a greater degree of flattening of the wavefront in the results obtained here. This
may be an effect of the boundary conditions used in our model; Colli Franzone and
Guerri have utilized more general boundary conditions (see equation (2.4) in [17]).
Briefly, the boundary conditions of our model are

n-Vv,=0
and those of Colli Franzone and Guerri,
n- D,'VVm =0

where 7 is the unit outward normal vector. Both conditions reflect the fact that
there is no current flow across the boundary; however, the latter equation includes
the tensor D; and so incorporates the anisotropy and fiber geometry.

The boundary condition - VV,,, = 0 was used due to the limitations of the finite-
difference scheme employed. General boundary conditions destroy the tridiagonal
nature of the system of equations, and greatly reduces the efficiency of the method.
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In summary, we have established the feasibility of three-dimensional numerical
simulations of the propagated activation in cardiac tissue. Moreover, the results
obtained in this chapter show strong agreement with that of others, such as Colli
Franzone and Guerri [17].



Chapter 4

Implementation of Bidomain Model

In this chapter, we present the numerical methods to solve the bidomain model.
The solution is obtained via the method of lines approach. In short, this involves
discretizing all spatial variables, which results in a system of differential-algebraic
equations (DAEs). The system of DAEs is then handed off to a robust DAE solver,
which takes on the job of time discretization and of evolving the system in time

accurately, while maintaining stability.

4.1 Computer Implementation of the Bernus Model

The Bernus model contains dozens of parameters. Itis important to first catagorize
these parameters. The independent variable is ¢, while Vi, m, v, f, to, and X
constitute the dependent variables. All remaining parameters are either constants
(e.8., Cu, Gna, Ena) o1, in the majority of cases, functions of the other parameters
(e-8., @ms Bms Tms Mo). Therefore, the Bernus model was implemented essentially as
a collection of function definitions.

The software is written in the Fortran 90 programming language. This program-
ming language offers several advantages. First, a great deal of existing numerical
software is written in Fortran!, and it is therefore relatively easy to reuse such
software. Second, use of a feature called kind attributes allows one to easily switch
from single-precision floating-point variables to double-precision, or vice-versa.
And third, the module feature provided by Fortran 90 allows convenient packaging
and reuse of related constants, functions, subroutines, etc. For example, this feature
allows an AP model to be encapsulated in a self-contained package.

The complete implementation of the Bernus model is extensive and will not be

To a large extent though, this existing software is written in FORTRAN 77.
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given here. However, in the next few sections we discuss some specific details of
the implementation that do warrant mention. We begin with an overivew of how

one ionic current is implemented.

411 An Example: The Fast Sodium Current

Let us first familiarize ourselves with the formulation of the fast Na* current. This

current is defined as

Ina = Gna -1 - V% - (Vin — Ena) (4.1)
where
G = 16.0 nS/pF 42)
RT . (INa*l,
=2 g2 L :
O vy )

The parameters m and v are gating variables, each governed by an ODE of the form

of equation (2.4) with associated parameters

_ 0.32(Vin +47.13)

Om = 1 — g-01(Vm+47.13) (4'4)

Bm = 0.08¢™V=/11 (4.5)

Deo = 0.5{1 — tanh (7.74 + 0.12 - V)] (4.6)
_ 1-tanh(7.74 + 0.12- V)

o= 025+ 2 007 - (Vo £ 924)] (#7)

The parameters F and R are the Faraday’s and gas constants, respectively. The Na*
concentrations and the temperature T are assumed to be constant in the Bernus
model. This additionally means that Ey, is constant throughout an AP simulation.

Toimplement this current, first the constants are declared; they are later assigned
values once at the beginning of the simulation. Implementation of the gating
variable m is accomplished by the definition of five functions:

e alpha_m, the opening rate constant;
e beta_m, the closing rate constant;

e m_inf, the steady-state value;
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e tau_m, the time constant; and
¢ mdot, the rate of change of X.

All of the functions depend on Vp, but the last function additionally depends on
m. The first two functions are defined by using the formulations in equations (4.4)
and (4.5). The remaining three functions are then defined in terms of alpha_m and
beta_m. For the most part this implementation is straightforward. However, The
alpha_m function requires special attention because when V,, = —47.13 mV, the
denominator in (4.4) is zero. Details of how this is dealt with are the subject of the
next section.

4.1.2 Treatment of Singular Functions

Recall that the function a,, is defined as

_ 0.32(Ve +47.13)
™ T ] e 01(Vim+4713) (4.4)

As it stands, this function is undefined when V,, = —47.13 mV, but the limit of the
function as Vi, approaches this value exists and is finite; indeed, we have
Am(Vim) =32 (4.8)

lim
Vin——-47.13

This function thus requires special attention to implement as a Fortran proce-

dure. Aninitial attempt at implementing this function might involve the following
pseudocode:

if V,, = —-47.13 then
Set a,,, = 3.2
else

Compute a,, from equation (4.4)
endif

This method, however, is not suitable for two reasons. First, one should never
test for strict equality of floating-point variables. And second, as V, approaches

—47.13, the denominator (and numerator) involves the subtraction of two nearly



54

equal numbers; this can lead to a loss of accuracy in floating-point arithmetic and
thereby produce inaccurate values for a,, even when Vi, is not just equal to, but near
the singular point. The approach taken here is to evaluate a,, in the neighbourhood
of —47.13 using a Taylor series expansion. It is easy to verify that &, can be written

as
m =3.2-F(-0.1(Vy, +47.13)) 4.9)
where
_ 7Y
Fiy) = - (4.10)

(Observe that the lim,_. F(y) is easily found to be 1, and from this the result in
equation (4.8) follows immediately.) The Taylor series expansion of F(y) about
y=0is

1 6
720" T 300807 T
Furthermore, we will only use this Taylor series when the membrane potential is
within 0.5 mV of —47.13 mV, i.e., |Vn +47.13| < 0.5. With this restriction, a sixth

order Taylor polynomial suffices, and so we have

1
30240

_q_1 01, 1 4

101 1,
a,,,~3.2(1—§y+12 —ﬁoy +

y6), y=—0.1(V + 47.13) (4.12)
Thus, the function alpha_mis implemented as follows:

if |V, +47.13] < 0.5 then

Compute alpha_m from equation (4.12)
else

Compute alpha_m from equation (4.4)

endif

4.1.3 Table Look-up for Expensive Functions

Many of the functions in the Bernus model are expensive to evaluate in terms of
computation time, particularly those functions which call the intrinsic exponential
or logarithm functions. (This is especially a problem for propagation simulations
where more than half of the CPU time may be spent in evaluating the exponential

function rather than solving the actual system.) To circumvent this problem, costly
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functions can be replaced by table look-up routines [83, 85]. This is the general
method adopted here. For a given expensive function, say f(x), this function is
pre-computed for the set of x values {xg}fi , where X1 = Xmin, XN = Xmax, and x; — Xi—1
is constant. The tabluated values f; = f(x;) are stored in a one-dimensional array
of size N. The table look-up function, when called with some arbitrary value %,
returns the value f such that f is a linear interpolation between the values f; and
fir1 where x; £ ¥ < Xj41. (This assumes that Xmin £ ¥ < Xmax.) The table look-up
algorithm is implemented in a generic function called table_lookup as follows.
function table_lookup (value, table, min_value, max_value, &

stepinv) result (result)

real (WP), intent(in) :: value, table(:)

real (WP), intent(in) :: min_value, max_value, stepinv

real(WP) :: result

integer :: ivalue

real(WP) :: A, B

ivalue = int( (value - min_value) * stepinv ) + 1
A = table(ivalue)
B = table(ivalue + 1)

result = A + (B - A) &
* ( (value - min_value) * stepinv - real(ivalue - 1, WP) )
end function table_lookup
The argument value corresponds to x; table is the one-dimensional array of tablu-
ated values f;; min_value and max_value correspond t0 Xpin and Xmax, respectively;
and stepinv is the inverse of the step between x; values, i.e., stepinv = 1/(x; — x1).
(Note again that a constant step is assumed.) The calculation of ivalue determines
i such that x; < value < x;,;. The corresponding function values are then easily
obtained. And finally, a simple linear interpolation between the tabulated values A
and B is done. Note this function assumes that the argument value falls within the
pre-tabulated range; i.e., it assumes min_value < value < max_value and does not
perform error-checking to verify this.
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42 Numerical Methods for AP Models

We wish to solve the problem

AVm
Cm—c?t_ = app(t) = Lion(Vim, #)
du
E’ = w(Vm/ u)

subject to appropriate initial conditions. Due to the nonlinearity inherent in the
Lion term, an analytical solution of the problem is unlikely; hence, we must resort
to numerical methods. Depending on the actual AP model, the above system of
equations is often stiff and can pose challenges to solve numerically. If the nu-
merical method is not chosen carefully, instabilities or inaccuracies can arise in the
solution process. Fortunately, a lot of robust software, which is capable of solving
a problem such as ours, already exists. We will use the software package DASPK
written by Petzold and colleagues [8, 10]. All modern, professionally-written ODE
solvers—such as DASPK—perform adaptive time-stepping and reduce the step-
size in response to instability. “Thus the codes donot givea faulty solution because
of the instability for large stepsizes, but instead reduce the stepsize and become
very inefficient.” [8, p. 127] Furthermore, DASPK is capable of solving systems
of differential-algebraic equations (DAES), not just systems of ODEs. This feature

allows us to later use the same software to solve models of propagation.

4.2.1 The Jacobian Matrix

Use of the software DASPK requires that the differential-algebraic system be spec-
ified as
Ft,yy)=0 (4.13)

For our problem this is easily arrived at by simply rewriting the equations as

AVm
Cm_d"t_ + Iion - Iapp =0
du -w=0
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If we denote y; = Vi, and y;,q = u; for i = 1,7, then the above equations are
Cayy + Lion—ILopp =0
Yir —Wia =0 i=17
and this can be expressed in the form of equation (4.13) by further defining
F1 = Calfy + lion — Lipp (4.14)
Firi = Yl — Win (4.15)

The Jacobian matrix ] amd mass matrix M of the DAE system (4.13) are defined

as
JF;
Jij= 9_]/, (4.16)
JF;
M,',j = 5}7 (4.17)
]

In its solution process the DASPK software requires the iteration matrix of the DAE
system. Each element of this matrix is given by J ij + 0M; ;. The parameter d is a
scalar determined by DASPK. From equations (4.14) and (4.15), the mass matrix
is easily seen to be a constant diagonal matrix, and is therefore trivial to compute.
Hereafter, we shall thus focus our attention on the Jacobian matrix.

Applying the definition of the Jacobian to the AP model, we arrive at the
following equations

aIion
]1,1= an

&w,- .
Jia=—so-  i=1n

aIion .
J1js1= £ J=1n7

aw,' .
Jiin= ~ou 1=1,n

aw,- . .
Jirrje1= ~ou, i1=1Lm j=1n
Exceptwheni=1,j=1,0ri=j, J;; will usually be 0. However, there may be a few
nonzero elements that are not in the first column or row, nor on the main diagonal.

Examples of the structure of the Jacobian matrix are given in Figure 4.1.
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Figure 4.1: Structure of the Jacobian matrix for two AP models: (a) Bernus model;
(b) LR2 model. Nonzero elements are indicated by the shaded squares. In the
Jacobian for the Bernus model, the order of the AP variables is V., m, v, X, to, and
f. The structure of the Jacobian will be the same regardless of the ordering of the
auxiliary variables. The Jacobian for the LR2 model, however, will vary slightly in
structure for different orderings of the auxiliary variables. In the above plot, the
order of the AP variables for the LR2 model is Vi, m, b, j, 4, f, X, [Ca®*];, [Ca®*1.,
[Ca®*Tisr, [Ca®* Insw, [K'T;, [K*],, [Na*];, and [Na*],.

4.2.2 Numerical Experiments

The numerical methods were implemented and simulations were performed on
a desktop computer with two Intel Pentium III 733 MHz processors running the
Linux operating system (Redhat 7.3). None of the simulations took advantage of
the two processors; that is, the software was not parallelized. Computation time

for the simulations was insignificant: 500 ms of simulated activity took on the order
of one second.

Validation of the Implementation

The Bernus model has provisions for three cell types. Our implementation correctly
reproduces the APs of these cells, as shown in Figure 4.2 (cf. Figure 6 in [7]).
The durations, measured at 90 % repolarization, of the epicardial, M cell, and
endocardial APs were found to be 357, 396, and 359 ms, respectively. These values
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Figure 4.2: Action potentials for three different configurations of the Bernus model:
(a) an epicardial cell; (b) an endocardial cell; (c) a midmyocardial cell (M cell). The
important characteristics of the three APs are apparent: the epicardial AP has a
notch and spike-and-dome shape, the M cell AP has a prolonged APD and less

pronounced notch, and the endocardial AP is nearly triangular in shape with no
notch.
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Figure 4.3: Epicardial action potential of the Bernus model both with and with-
out table-lookup. In the table-lookup code, expressions involving the membrane
potential only were pretabulated from —300 to 300mV with a step of 2mV. The
excellent agreement of the table-lookup AP with the standard AP (without table-
lookup) is illustrated by the near-perfect coincidence of the two curves.

compare well with those given in [7]: 360, 400, and 362 ms.

Validation of the Use of Lookup Tables

The accuracy of the table-lookup code is affected by the resolution of the tables;
some experimentation is necessary to find the proper resolution. In this section, we
compare results with the use of lookup tables to results from the standard model
(i.e., without lookup tables).

Figure 4.3 shows the standard epicardial AP and the same AP computed with
the use of lookup tables. All expressions involving the membrane potential only
were pretabulated from —-300 to 300 mV with a step of 2mV. The fact that only one
curve is apparent in the figure indicates the excellent agreement of the two APs.

The previous results are from simulations of one AP initiated by a single stim-
ulus. A more stressful test of the performance of the table-lookup code is achieved
by simulated pacing. Figure 4.4(a) shows results from simulations where an ini-
tial stimulus is given at = 10ms, followed by subsequent stimuli given every
340ms. Some minor discrepancies between the standard and table-lookup APs
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Figure 4.4: Simulated pacing of the Bernus epicardial model with and without
table-lookup. In (a), the pretabulated values were computed from -300 to 300 mV

with a step of 2mV. In (b), the pretabulated values were computed on the same
range, but with a step of 0.1 mV.
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are apparent. Figure 4.4(b) shows results from the same simulations with higher-
resolution lookup tables: the voltage step for the pretabulated values was decreased
t0 0.1 mV. Once again, excellent agreement between the standard and table-lookup
APs is achieved. Further simulations revealed no appreciable difference between
the standard and table-lookup code at the 0.1 mV voltage step; a table-lookup

model employing this increment was therefore deemed acceptable.

4.3 Numerical Methods for 1-D Propagation Models

In this section we present the methods used to solve the 1-D model numerically.

For clarity, we restate the complete equations here. The mathematical model to be
solved is

Ve 1( PVq 0*D,
Cm? - ; (gl ox2 + 8i ox2 ) + S(xr t, Vm/ u) (4'18)
1 . PV
; [(gx + ge) 9 + & a2 ] =0 (4.19)
du
= = w(Ven, ) (4.20)
[Vm 9% _ 421
S\on Ton )TN (4.21)
oD
ad, + ,Bgea—n =y, (4.22)
Vin(x,0) = Vino(x) (4.23)
Dc(x,0) = Pep(x) (4.24)
u(x,0) = uy(x) (4.25)

where

S(x, t' Vm/ u) = _Iion + Iapp

To compute a numerical solution to the above model, we use the following general
approach:

o first discretize the spatial variables;

e then solve the resulting system of DAEs.

This is known as the method of lines approach [1, 45, 73].
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4.3.1 Spatial Discretization

First, some notation and definitions are in order. Let N be a positive integer and let
{xN  be a partition of [0, ] such that

0=x0 <x®<x? <... <xND < 5N =

For simplicity, we consider an equally spaced grid; i.e., x = i- Ax where Ax = I/N.
Let V(t) denote Vi(x?,1), ®P() denote ®.(x?,t), and similarly, () denotes
u(x,1). We also define uf,.‘)(t) = u;(x®, ), which is the jth element of u(x®, t).

For the discretization, we replace all of the spatial derivatives on the interior of
the domain with second-order finite-difference approximations. For example, the

PV

term S is replaced with the following

PVm| _ VEV—2vR 4 VEY
ox? x=x( AX?

fori=1,2,...,N-1 (4.26)
An analogous approximation is used for Ay

ox?
The boundary conditions involve the spatial derivatives aaL;“ and %07 Here we

have an option: we can use either first-order or second-order approximations. For
first-order finite differences, we would replace %L; with

(1) _ /0
3;2“ x Vm Ame (4.272)
X=Xp
Vi vy
— ~-2 T 4.27b
0X |yexy Ax ( )
For second-order finite differences, we would replace %L;‘ with

WVm| -3V +4avl - vY (4282)

0% lyegy 2Ax '
V| 3V —4Vi O+ VE™ (4.28b)

0% |ymry 2Ax '

Ideally, we would like to use the second-order approximations so as to maintain
an accuracy level consistent with that used at the interior grid points. However,
employing the approximations in (4.28) leads to a Jacobian matrix with a larger
bandwidth than using (4.27), and, as we will see later, this increases the amount of
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CPU time and memory required for simulations. Our software implements both
sets of approximations and allows the user to choose at compile time which set to
use. The default is the first-order approximations.

Discretization of equation (4.20) is simple: since there is no explicit spatial

dependence in the equation, we merely replace it with the following

du®

— = w(VQ,u?) (4.29)
dt
for0<i<N.
Some more notation is in order. Define:
VO] (90 4]
Vg) (D(el) u®
U= ¢ = z =
~Vt(rr:r)-‘ .Q(eN)_ -u(N)-

and let Ny represent the total number of grid points; i.e., Npis = N + 1. The

discretized equations can be written as

1.%2_7 —Lio-Lyp - f(t,v,2) = (4.30a)
Lo+Lp=0 (4.30b)
dz
7 9wz = (4.30¢)
subject to the initial conditions
V=7 b=, z =2 (4.30d)

In the above equations I is an Np X Ny matrix where if k corresponds to an interior
point, then row k is equal to €] (e is a unit vector with a 1 at position k and 0’s
elsewhere); otherwise, row k is equal to 07. Furthermore, L, is an Npts X Npts matrix
resulting from disretization of the terms g,‘W"‘ and &2V in equations (4.21) and

X 9xz
(4.18), respectively. Likewise, the matrix L, results from disretization of the terms
g ‘;an and i a;f in the same equations. The matrices Liand L, are closely related to

L; and L, as they arise from discretization of similar terms in equations (4.22) and

(4.19). Also, f is a vector of dimension Ny for which each element corresponds to
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the source term for either the boundary condition (0 in equation (4.21)) or the PDE
(S in equation (4.18)). Finally, g is a vector of dimension 77 - Nps that corresponds to

the source term, w, of equation (4.20).

4.3.2 Solution of A System of Differential-Algebraic Equations

Consider the general system of DAEs
Ft,yy)=0 (4.31)

where consistent initial conditions y(t,) and y'(fo) are assumed to be given. To
obtain a numerical solution to this problem at some time step t,, one typically
begins by replacing y/, with a finite difference approximation. One of the simplest
approximations is the difference:
b o Yn T Yna

Y ® —A—tn—
where At, = t, — t,_1. Substituting the above approximation into (4.31) gives rise
to a system of algebraic equations in y,;:

F(tny, 2222 ) =0 (4.32)

n

This system of equations is quite often nonlinear, and so Newton’s method is
applied. Starting with an initial approximation y° based on information from

previous time steps, the kth Newton iterate is given by

-1 -1 _
yﬁ = y’;'l - (91: 1 a_F_) F(fm n—ll u) (4.33)

g/ N ZXT,, y’ At,

Typically, this iteration is repeated until some preset tolerance is achieved. The
method outlined above is known as the backward Euler or implicit Euler method,
and it is a member of a larger class of methods based on backward differentiation
formulae (BDF), which was pioneered by the work of Gear [28].

Solution of DAE systems can often be done using the same numerical meth-
ods for solving stiff ODE systems, for which a great deal of software already
exists. However, DAE systems can exhibit properties very different from ODE
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systems [54]. It is therefore preferrable to use software which addresses the issues
specific to DAEs. Two such software packages written by Linda Petzold and col-
leagues are DASSL [55] and its derivative, DASPK [10]. Both packages can solve
general systems of DAEs. On each time step, they use backward differentiation for-
mulas of order one through five to reduce the DAE system to a system of nonlinear
algebraic equations. The linear systems that arise from subsequent application of
Newton’s method are solved using a direct method with either a dense or banded
Jacobian matrix. In DASPK the linear systems may also be solved with a precondi-
tioned Krylov method, which often proves beneficial for large-scale DAE systems.
As such, DASPK will be used to solve the DAE systems arising from the models
investigated in this work.

4.3.3 Use of DASPK

The software DASPK is written in FORTRAN 77. In order to use this code, the user

must provide a main program, which need not be written in FORTRAN 77, that
performs the following basic tasks:

1. Define problem parameters.

2. Allocate work storage required by DASPK.
3. Provide consistent initial conditions.

4. Call DASPK.

5. Output solution.

Step 1 involves retrieval of several model parameters from a data file (such as
the cable length, the number of grid points, the conductivity values, etc.) and
calculation of remaining parameters (such as the space step). In a FORTRAN 77
program, step 2 would be performed first and would involve allocation of work
storage for some maximum problem size. However, all programs for this study are
written in Fortran 90, which has several new features not available in FORTRAN 77.
In particular, Fortran 90 allows dynamic memory allocation, and so in step 2
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the program allocates the precise amount of memory required for the current
problem parameters. In step 3, the initial values are set according to the model (see
Section 2.4). Steps 4 and 5 are normally performed many times. In our programs,
post-processing of data is kept to a minimum; this task is usually handled off-line
in separate programs.

DASPK also requires the user to supply a subroutine RES that defines the system
of DAEs. This subroutine is called from within DASPK, often many times, as a
part of step 4 outlined above. Further routines may be required from the user
depending on the solution method selected. Recall the Newton iterate that arises
as part of the solution process of the DAE system:

-1 -1
= g (ap+ 1 ap) P(tm 2 Y yn_l)

oy At, oy’ Aty

Of special importance in this equation is the term % + A%W which is known as

the iteration matrix. Note that the iteration matrix is 1tse1f the sum of two important

matrices: the Jacobian matrix, J, and the mass matrix, M, of the DAE system (4.31)
are defined as

OF

=% (4.34)
OF

=37 (4.35)

For the DAE systems arising from the propagation models investigated in this work
(see equation (4.30)), the mass matrix is a constant matrix with a simple structure,

and is therefore easy to compute. We shall thus focus our attention on the Jacobian
matrix.

4.3.4 TheJacobian Matrix

The Jacobian matrix can either be supplied by the user or approximated internally
by DASPK. Implementing the Jacobian, particularly an analytical one, can be te-
dious and error prone. As a first step, we therefore use the approximation option
provided by DASPK. Let Negs represent the total number of equations in the DAE
system. For the discretized 1-D bidomain model (4.30), we have Negs = (1+2)- Nps.
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(Recall that 7 is the number of auxiliary variables in the AP model and N5 the
total number of grid points.) The full Jacobian matrix is thus of order Negs X Negs-
The amount of work space required by DASPK is dominated by this matrix. Fur-
thermore, the time to form this matrix and solve the associated linear system often
dominates the time involved to solve the DAE system.

The structure of the Jacobian matrix is influenced by how the variables in the
DAE system are ordered. There are two natural orderings that can be used: one
where the dominant ordering is by dependent variable and a second by grid point.
In the first scheme, the DAE system is arranged as follows:

VO, vR,00, ., o®,u0, a0, ulP (4.36)
For the grid-point ordering, we have the variables listed as:
VO,00,u0, . u®, VE,00, 4Dy, v o 0 8 (437)

Toillustrate, consider a 1-D bidomain model with 11 grid points, and with a Bernus
AP, for which n = 5. Thus, the total number of equations in the DAE system is
Negs = 77. Figure 4.5 shows the structure (i.e., the nonzero entries) of the Jacobian
for each of the two orderings. (Note that the structure of the Jacobian for the Bernus
AP model as shown in Figure 4.1(a) is repeated in these structures; it is best seen
on the interior of the grid-point ordering scheme.) Observe that the ordering by
grid point yields a more compact Jacobian, in the sense that the elements fit in a
smaller band about the main diagonal. Indeed, the upper and lower bandwidths
are equal, and are found to be 7 + 2.

In solving the linear systems, DASPK can take advantage of the bandwidth in-
formation, and it will result in a reduction of the storage needed and faster execution
of several important algorithms, such as the numerical differencing algorithm that
computes the approximate Jacobian. The grid-point ordering has therefore been
adopted as the scheme used in the programs implemented for this study.

Another important feature of the Jacobian matrix is apparent from Figure 4.5(b):
the actual matrix for our problem has many zero entries, even within the band about
the main diagonal. That is, the Jacobian is highly sparse. Table 4.1 summarizes the

information about the Jacobian. For the current problem, the total number of
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Figure 4.5: Structure of the Jacobian matrix for a 1-D bidomain cable with g
described by the Bernus AP model. Nonzero elements are indicated by the shaded
squares. In (a), the ordering is by variable, while in (b) it is by grid point. The
dashed lines indicate the bandwidths. The above plots are for a cable with 11 points;
a cable with more points will have the same basic structure.
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Table4.1: Summary of the Jacobian storage requirements for a 1-D bidomain model.

Number of grid points 11
Number of AP variables 5
Number of equations 77
Type Number of elements | Memory (kB)
Dense 5929 47.432
Banded 1309 10472
Sparse 274 3.6

equations is 77, and to store the full (dense) Jacobian requires 77% or 5929 elements.
In comparison, taking advatage of its banded structure requires only 1309 elements
of storage. However, a mere 274 elements are actually nonzero, which is less than
5% of the full Jacobian.

While the storage requirements listed in Table 4.1 are trivial compared to the
memory capacity of today’s computers (on the order of gigabytes), it is for a small
illustrative problem. Figure 4.6 shows how the storage requirements increase as
function of the number of grid points. It is easy to see how the dense scheme can
quickly become prohibitive for large problem sizes, especially those in 3-D. It is
obvious from this example that the sparse scheme is the clear winner in terms of
memory requirements.

To take advantage of the highly sparse nature of the Jacobian matrix, DASPK
was modified to allow a sparse option in the solution of the linear systems. The
Scientific Computing Software Library (SCSL) by SGI [72] was chosen to solve the
sparse systems for several reasons. First, it provides both iterative and direct sparse
solvers. Second, the linear solvers have a simple interface that allowed calls to the
library to be incorporated into DASPK with little change to the actual DASPK code.
And third, this library has both sequential and parallel versions. Furthermore, the
parallel version of the library can be used simply by relinking—no code change is
required.
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Figure 4.6: Storage requirements for the Jacobian matrix as a function of the number
of grid points for a 1-D bidomain cable.
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4.4 Numerical Methods for 3-D Propagation Models

The mathematical model to be solved is

Can 1 1

m= = }V -D\VVy + EV -D;V®, + S(x,t,Vm,u) x€H (4.38)
V-(D; + De)V®, +V-D;VV,, =0 x€H (4.39)

%—1: = w(Vin, 1) (4.40)

n-Dy(VV@+ VD) =0 xeoH (4.41)

n-D VO, =0 xedH (4.42)

Vi(x,0) = Vio(x) (4.43)

(1, 0) = Beo(x) (4.44)

u(x,0) = ug(x) (4.45)

where

S(x,t, Vi, 4) = =lion + Iapp

We use the same general approach as described in Section 4.3: first discretize the
spatial variables and then solve the resulting system of DAEs.

4.4.1 Spatial Discretization

We assume that H is a regular region, or more specifically, a rectangular paral-
lelepiped and so mathematically, H = [0,1;] X [0, ;] % [0,13]. First, some notation
and definitions are in order. Let N; fori = 1,2,3 be a positive integer and let {xﬁ’)}?ﬁo
be a partition of [0, ;] such that

0=a20 < xV <. < xMNimD L (N .

For simplicity, we consider an equally spaced grid; that is,

ng) =]'. Ax,-
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where Ax; = I;/N;. Furthermore, we adopt the following notation:
Vg;bjz'fB)(t) = Vm(xgll)’ x(zl"), ;13)’ t)
(Dglr]':r}%) (t) o (x(ll) l"), (J3) t)
u(il,j:,is)(t) u(x(h) gjz), xgja), f)
ugflfiz,b)(t) U (xgjl), g]- ,x;}:i), f)

Interior of the Domain: In the general case where D; is a full matrix, the
term V - D;VV,, will have first-order, second-order, and mixed partial derivatives.
For the spatial discretization, we replace all of these derivatives with second-order

NPT N Vm FVm PV
finite-difference approximations. For example, the terms 5=, i and j—= are

replaced with the following approximations

% _ Vl(_x1;1+1,i2,j3) _ Vg;rl,f:,js) (4.46)
921 Ly jujo) 2401, .

PV, . Vgx'*'l,iz:fs) _ 2V§,j11'j2'j3) + Vgl;l—llfz/fs) 4.47)
ax% (12.73) (Bxy)? .

PV, N VI(IJ;1+1,)'2+1J3) _ Vgﬁlli:-l,is) _ Vx(ri;1—1'iz+1,i3) + foj;x—l,iz-l;is) @48
0x10x%; (1j273) 4Ax1Ax, '

fOIlSj1$N1—1,1 szSN2—1,15j3SN3—1

Note that equation (4.47) is analogous to the 1-D case given in (4.26). Approxima-
tions for other derivatives follow directly from equations (4.46)—(4.48).

Boundary of the Domain: In the case where D; is a general matrix, the term
n - D;VV,, will involve first-order derivatives of Vi, with respect to all spatial
variables. To begin, along the plane x; = 0, the derivatives %V’" and %_‘;n; can

be replaced with approximations analogous to (4.46); for example, 5= 9V’“ = would be

replaced by
V. V(Orf2+1»j3) _ V(oer‘lljB)
WV ~ = = (4.49)
9%2 10,22 207,
For aV‘“ , however, we must use a forward finite difference, and as with the 1-D

case, we can use either first-order or second-order approximations. The first-order
approximation is
OV

Vg,]zlh) _ V,(:'jz'k)
8x1

= (4.50)
©,j2,73) Axy
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while the second-order approximation is

"’ j “,l - 21 .21 j
V., _ _3V£2,1.,13) + 4V,(,1{" j3) _ an j2.J3) @51)
9x1 (0,52.j3) 2Ax

Likewise, we use backward finite differences to approximate aa%,: along the plane
x; = ;. This same approach is applied along all other boundary regions.
In the end, the discretization process gives rise to a set of DAEs of the same

form as the 1-D case:
-dv

IE -Lio~L,p - f(t,v,z) =0 (4.52)
Lov+Lp=0 (4.53)
dz
= _ = 4.54

V=" b =9, z2=2z (4.55)

The vectors z and g are of size 1] - Ny, while the remaining vectors and matrices
in the above equations are of size Nps and Nps X Nopss, respectively, where now
Npis = (N1 +1)- (N2 +1) - (N3 +1).

4.4.2 The Jacobian Matrix

As discussed previously, the total number of equations, Negs, in the DAE system is
Negs = (1+2)-Nps, where 1 is the number of auxiliary variables in the AP model and
Ny is the total number of grid points. For a discretized 2-D bidomain model, we
have Npi = (N; +1)- (N, +1), while for a 3-D model, Nps = (N71+1)-(N2+1)-(N3+1).
Consider a 2-D sheet discretized with 8 x 8 points, and a 3-D block discretized with
4 X 4 X 4 points. The total number of grid points, and therefore the total number
of equations, is the same in each case. The structure of the corresponding Jacobian
matrix for each of these bidomain models, assuming a Bernus AP, is shown in

Figure 4.7. It is apparent from the figure.

4.5 DParallelization of the Source Code

There are several types of parallel computer architectures, as depicted in Figure 4.8.
The target architecture influences what method of parallelization we can use, or
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(@)

(b)

Figure 4.7: Structure of the Jacobian matrix for (a) 2-D and (b) 3-D bidomain models
with [i,n described by the Bernus AP model. Nonzero elements are indicated by
the shaded squares. The dashed lines indicate the bandwidths. The above plots
are for a 2-D sheet with 8 x 8 points and a 3-D block with 4 X 4 X 4 points.
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vice versa, our choice of parallelization influences what arhictecture we can run
the resultant program on. A shared memory architecture is a system in which all
CPUs have access to common memory. An example of this type is a symmetric
multiprocessor (SMP) computer with two CPUs. A distributed memory architecture
is a system in which each CPU has private memory. An example of this type
is a collection of single-CPU systems connected via a network backbone; such a
system is often referred to as a cluster. A third hybrid architecture exists, which is
a combination of the previous two. A networked collection of dual-CPU systems
is an example of this architecture; the term cluster is also applied to these types of
systems. Yet another type of parallel computers not depicted in Figure 4.8 is the
distributed shared memory architecture in which memory is physically distributed,
but through a hardware (or software) layer it is shared. To the programmer, this
type of system behaves as shared memory computer.

Parallelization of software on distributed memory systems necessarily involves
the distribution of data across the local memories. This process of data distribution
is referred to as message passing and it must be explicity coded by the programmer.
In contrast, since each CPU has direct and equal access to the memory, software
parallelization on shared memory systems does not involve such data copying.
Parallel programs are thus easier to implement on these systems.

OpenMP is an industry standard specification for multiprocessing on shared
memory systems. Message Passing Interface (MPI) is an application programming
interface targeted for multiprocessing on distributed memory systems, though it
can also be used on shared memory systems.

4.5.1 Parallelization of the Source Code for Shared Memory Systems: Use of
OpenMP

The routine that defines the system of DAEs (the RES routine that DASPK calls
many times) was identified as accounting for most of the CPU time of the sequential
program. This routine contains a do statement that loops over all grid points in
setting up the DAE system. In essence, for each grid point i the loop computes row
i of the equations (4.30a), (4.30b), and (4.30c). Using OpenMP compiler directives,
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Figure 4.8: Depiction of several types of parallel computer architectures.
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Figure 4.9: Domain decomposition of a 1-D model.

this routine was quickly and easily parallelized. No other sections of the code
were parallelizaed, at least not directly. The SCS library mentioned previously
provides BLAS, LAPACK, and FFT routines, in addition to the sparse solvers
discussed in Section 4.3.4. Parallel versions of many of these routines, particularly
the BLAS ones, are provided for shared memory systems and can be used by simply
relinking the code with the parallel version of SCS. As DASPK makes use of the
BLAS routines, this allowed an indirect parallelization of the code without making
any changes.

4.5.2 Parallelization of the Source Code for Distributed Memory Sytems: Use
of MPI

Parallelization of the code for a distributed memory system required substantial
changes. The data distribution that is inherent in this type of parallelization was
accomplished via domain decomposition. We begin by illustrating the method for a
1-D model. Consider a cable where the region of interest is H = [0, [] and assume
we wish to solve the problem at hand on a distributed memory system with m
nodes (and hence m CPUs). A grid of (N + 1) points {x?}¥  is imposed on H as
before. This set of grid points is then decomposed into m (nearly) equal subsets.
Each node solves the portion of the DAE system that corresponds to its grid points.
However, the solution of these “subproblems” can not be done independently.
Consider subdomain i illustrated in Figure 4.9. In doing the finite-differencing of
the spatial derivatives on this region, we require the values of dependent variables
at points xj_; and xj.x, which are located on the neighbouring subdomains i -1
and i+ 1. Our software solves each subproblem independently for some short time
interval Tsyn, after which the nodes exchange information with their neighbours
using MP], and then the process repeats.
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4.6 Numerical Experiments

4.6.1 Test Problem with Known Solution

To verify the accuracy of the spatial propagation component of the computer code,
we used the program to solve a problem that has a known solution. Consider the

following problem:
AL
Cm m—; =X (V-D;VVy@+ V-D;VD,) + S(x, t) (4.56a)
V-(D; + D.)V®, +V-D;VVp, =0 (4.56b)
Vi
a&’n =0 (4.56¢)
e -0 (4.56d)
23 3::,'*‘32’!, 3
TTX;
Vol ) = _Zs_g;—- H cos (T) (4.56¢)
i=1 L: i=1
2 TIX;
®,(x,0) = H cos (T) (4.56)
where
gi,:q 0 0 ge,:q 0 0
Di=}10 g 0] D.=| 0 gex, O
0 0 Six; 0 0 8exs
Z?_l gn,x,+ge,x, nz 3 3 .
S(x,t) = —-—T- —— Y St | cos (E—')
Z?:l ng?’ X ;‘ i I:Il Li
The exact solution to this problem is given by
P g.;,+gex, 3
V(%) = —————¢ ‘Hcos(nx') (4.57)
Zl—l L“, =1
2 TIX;
olx, ) = [ | cos( ) (4.58)

i=1
Note that we have maintained the same notation has used earlier in this chapter,

however, Vi, and @, no longer correspond to potentials.
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The code developed in Chapter 3 uses a constant time step to advance the
solution. In contrast, the code developed in this chapter employs the software
package DASPK, which uses adaptive time-stepping [10]. Time steps are chosen
to control the local error on each step according to tolerances provided by the user.
Briefly, if atol; and rfol; are the absolute and relative tolerances provided by the user
for variable i, then DASPK chooses the time steps so that

local error in y; < rtolilyi| + atol;

where y; is the value of variable i. As with practically all modern ODE/DAE
software packages, DASPK monitors the local error and does not attempt to control
the global or true error (see either references [4] or [8] for further discussion of this
topic). In short though, the global error in the numerical solution is comparable to
the error tolerances, and in general, reducing the tolerances will usually result in a
more accurate solution.

We solved problem (4.56) for 0 < ¢ < 8 on the rectangular volume H =
{(x1,%2,x3) | 0 < x1 £ 08,0 < x; < 08,0 < x3 < 0.4} for three uniform meshes:
(i) Ax = 0.08 corresponding to 11 X 11 X 6 grid points; (i) Ax = 0.04 corresponding
to 21 x 21 x 11 grid points; and (iii) Ax = 0.02 corresponding to 41 x 41 X 21 grid
points. Furthermore, the problem was solved with two different absolute toler-
ances for each mesh: atol = 1.0E-3 and atol = 1.0E-4. In all cases, the relative
tolerance was set to zero, thus giving pure absolute error control. Solution values
were output at times t = 1,2,...,8, and the RMS errors and maximum deviations
were calculated as before (see equations (3.22) and (3.23)).

Table 4.2 shows the RMS errors and maximum deviations for the bidomain code
when solving problem (4.56). As can be seen from the data, decreasing the absolute
tolerance results in smaller errors. Likewise, decreasing the spatial stepsize also
produces a more accurate numerical solution, indicating that the code is working

as expected.

4.6.2 Block with Rotational Anisotropy

Methods: To further test the bidomain code, we repeated the ‘Block Type I’
simulation from Chapter 3. In short, we simulated propagated electrical activity



81

Table 4.2: RMS errors and maximum deviations for the bidomain code when
solving a test problem that has a known solution.

(a) RMS Errors for Vi,

(b) Maximum Deviations for V,

atol atol
Ax 1.0E-3 1.0E-4 Ax 1.0E-3 1.0E-4
0.08 || 0.009115 | 0.008993 0.08 || 0.080717 | 0.080112
0.04 || 0.000470 | 0.000442 0.04 || 0.005838 | 0.005457
0.02 || 0.000046 | 0.000042 0.02 || 0.000608 | 0.000448
(c) RMS Errors for &, (d) Maximum Deviations for @,
atol atol
Ax 1.0E-3 1.0E-4 Ax 1.0E-3 1.0E-4
0.08 || 0.001555 | 0.001539 0.08 |} 0.013244 | 0.013160
0.04 || 0.000119 | 0.000081 0.04 || 0.001259 | 0.000980
0.02 || 0.000066 | 0.000011 0.02 || 0.000477 | 0.000049

in a 3-D block of cardiac tissue with rotational anisotropy. Description of the block
geometry is given on page 34. Unlike the previous monodomain simulation, we
make no assumption of an equal anisotropy ratio. Excitation was initiated by
applying a current stimulus to 4 X 4 X 2 points at the center of the top of the block.
The propagation parameters for the bidomain simulation are listed in Table 4.3.

Simulations were performed on the Westgrid complex of SGI computers located
at the University of Alberta. The program was compiled with version 7.4 of the
MIPSpro Fortran compiler and parallelized using OpenMP.

Results: Figure 4.10 shows the results of the bidomain ‘Block Type I’ sim-
ulation. Selected cross-sections through the block are displayed. From top to
bottom, the fiber directions in the panels make angles of 0°, 42.4°, 47.6°, and 90°

respectively, relative to the horizontal side of the figures. Column (a) shows the

7

isochrones of activation time; the block was completely activated within 22ms.
Due to the rotational anisotropy, the isochrones are elliptical in shape and rotate
counterclockwise from top to bottom with the fiber direction, though the amount
of rotation is less than that of the fibers. Columns (b) and (c) display snapshots
of the interstitial potential at 8 and 12 ms from the start of the simulation. In the
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Figure 4.10: Isochrones of propagated excitation and contour lines of interstitial
potential for the bidomain model solved via the method of lines. Stimulation was
applied at the center of the two upper planes of a block of cardiac tissue of dimen-
sion 1cm X 1cm X 0.3cm. Column (a) shows successive isochrones adisplayed at
1ms intervals with every fourth one labeled. Columns (b) and (c) show contour
lines of interstitial potential at ¢ = 8 and 12ms from the beginning of the simula-
tion. Interstitial potential lines are labeled in millivolts and traced only for values
between —10 and 10mV. Layers illustrated here refer to slices through the block
parallel with the xy-plane. The top (bottom) layer corresponds to the epi(endo)-
cardial surface. From top to bottom, the fiber directions in the panels make angles,
relative to the horizontal side of the figures, of 0°, 42.4°, 47.6°, and 90°, respectively.
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Table 4.3: Propagation parameters for bidomain ‘Block Type I’ simulation. Values
for surface-to-volume ratio and conductivities are taken from Colli Franzone and
Guerri [17].

Intracellular transverse conductivity g;: 0.417 mS/cm
Intracellular longitudinal conductivity g 2.0mS/cm
Interstitial transverse conductivity ge: 1.25 mS/cm
Interstitial longitudinal conductivity ge 2.5mS/cm
Membrane capacitance Cn, 1.0 pF/em?
Surface-to-volume ratio x 1000.0 cm™!
Spatial steps

hx = hy 0.020 cm

hz 0.016 cm
Current stimulus Lpp 200.0 pA/cm?
Duration of stimulus 0.5ms

top panel of column (b), the potential map has two maxima and two minima that
lie approximately along the major and minor axis, respectively, of the elliptical
isochrones in column (a). Proceeding through the depth of the tissue, the two
maxima and two minima rotate like the axes of the elliptical isochrones, which is
illustrated best in the second panel down in column (b) and the third panel down
in column (c). Again, this rotation is less than that of the fiber rotation. These

results agree with those of Colli Franzone and Guerri [17].



Chapter 5
Implementing Unequal Anisotropy Ratio

Bidomain models for simulating the propagation of electrical activation in the heart
treat the myocardium as an anisotropic excitable medium with conductivity coeffi-
cients gi, git, gel, and ger, Where i and e refer to intracellular and extracellular space,
and | and t indicate whether conductivity is along (1) or transverse (t) to the local
fiber direction. These models are made computationally tractable by the equal aniso-
tropy ratio assumption, which states that ge1/gi = get/git = 7, for some scalar constant
r. Although it is doubtful that this assumption is valid, it has been the only means
of reducing the complex coupled systems of nonlinear partial differential equa-
tions to a single reaction-diffusion problem. In this chapter, we introduce a simple
perturbation argument that yields an equivalent reduction—with a de-coupling
tensor expressed in terms of the harmonic means g;1g.1/(:1 + ge1) and gitget/ (it + et)
of the conductivity parameters—thus preserving the critical information conveyed
by conductivity parameters without resorting to the assumption regarding their
ratios. Numerical simulations in a realistic tissue volume were performed to assess

the consequences of this alternate formulation.

5.1 Introduction

Bidomain models of the propagation of electrical activation in the anisotropic car-
diac tissue have been developed in the form of coupled systems of ordinary and
partial differential equations [13, 18, 17,23, 29, 37]. In these models, the elliptic par-
tial differential equations arise from the laws of conservation of current, a nonlinear
parabolic equation describes propagation, and ordinary differential equations de-
scribe the transmembrane ionic currents of cardiac cells. The anisotropy in the
ventricular wall is usually defined by the transmural rotation of the myocardial
fibers.
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Recall from Chapter 2 that the bidomain model is

Vmn
Xcm% ~ VDYV =V-DV®, — glion + xlopp x€H  (5.1a)

V- (D; +D)V®.+V-D;VV,,=0 xe€H (5.1b)
n-Di(VV +V®,)=0 xe€dH (5.1¢)
n-DV®, =0 xeJH (5.1d)

Vim(x,0) = Vino(x) (5.1e)
De(x,0) = Dgp(x) (5.1f)

Solving this system is a formidable task. The problem can be made computationally
tractable by introducing the equal anisotropy ratio assumption, which states that
8el/8u1 = et/git = 1 for some scalar constant r (typically with r = 1) [18, 17, 37].
This is precisely the assumption that we made in Chapter 3, because it permits the

decoupling of (5.1a) and (5.1b) to yield the single reaction-diffusion problem for
Vmin H

)(Cm—a-;/—t"-‘- =V -DyVVyp = xLion + Xlapp x€H (5.2a)
n-DiVV,=0 xeodH (5.2b)
Vin(x,0) = Vino(x) (5.2¢)

where Dy = r/(r + 1)D; is the bulk conductivity tensor. Although there is still
some uncertainty regarding the values of g, it is generally acknowledged that they
do not satisfy the equal anisotropy ratio assumption [66, 89]. In fact, there have
been studies {34, 40] which suggest that adopting this assumption may lead to
an incorrect analysis of the propagation dynamics in the myocardium. The most
recent studies have used values close to g : gn = 25:2and get : g = 3 : 1
[17, 34]. In Section 5.2, we introduce a simple perturbation argument based on
independent analytical and experimental evidence [14, 66, 89], which permits the
decoupling of equations (5.1a) and (5.1b) and leads to a reaction-diffusion problem
where the decoupling tensor is Dy = AD;A”, with D} = diag( %o, Znfe Zafe )

8i+8et” Girtget” it+Get
given in terms of the harmonic means of the original conductivity coefficients. Dy,

reduces to Dy, in the special case of equal anisotropy ratios.
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In Section 5.3, we discuss the methods employed. In Section 5.4, the decouple
model is solved numerically for a uniformly anisotropic myocardial tissue volume,
and the propagation dynamics associated with the equal anisotropy ratio assumption
and the harmonic mean decoupling procedure are examined. The tissue volume is
of realistic size (5 cmx5 cmX1 cm) consisting of 100x100x20 excitable cells. Since the
propagation of cardiac activation is highly dependent on the excitatory mechanism
involved, one must also incorporate realistic cell-membrane dynamics in order to
obtain an accurate measure of the effect of the two decomposition approaches.
Consequently, we utilize the Bernus model of transmembrane ionic currents [7].
Finally, we compare the results of the decoupled monodomain model using the
implementation of Chapter 3 with the bidomain model and the implementation
detailed in Chapter 4.

5.2 Derivation of Decoupled Equations

We now introduce an alternative method of de-coupling, which avoids the equal
anisotropy ratio assumption and preserves much of the critical information con-
veyed by the conductivity values g in D; and D.. Recall that the intracellular and
extracellular conductivity tensors are given by D; = AD;AT = A diag(gu, Sit, git)AT
and D, = AD,AT = A diag(ge, get, get)A”, where the longitudinal fiber direction at
each point is defined by A in terms of the angles ¢ and 6 relative to the global
coordinate system. Let M be the diagonal matrix M = diag(agu, B Bgit) With
a=;%-andf = £~ ThenaddingV -AMATVV,, to both sides of the differential
equation in (5.1a) and substituting V - (D; + D.)V®, + V- D;VV,,, = 0 from (5.1b) into
the result gives

OV [ Qg1 Sufer  Sufet \ AT
Xcm at -V (A dlag(gill'gll’ gi::'g:t' gi:+get)A )VVm = —XIion * XIapp

+e{V - (Adiag(gu + ga,0,0)A7) V&, + V - (A diag(gs, 0, 0)AT) VVw} (5.3)

where the dimensionless ¢ is given by

c= Ziget — SitSel
(ga+ Ze1)(git + Get)
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and satisfies € < 1 for all possible values of the parameters g. For example, € < 0.06

for the parameter values used in the studies [17, 34], Let

=]

Vi@, 1) = ) € Vinnl(x, 1)

n=0

Then, up to the leading order term in the expansion, the differential equation in
(5.3) is satisfied with € = 0. However, there is additional evidence to support the
argument that the € term can be neglected in computing the membrane poten-
tials. It has long been known that continuous models cannot entirely explain the
propagation of excitation in myocardial tissue. For example, heart action poten-
tials have different risetimes and durations depending on direction (particularly
transversely) and this cannot be adequately simulated in a continuous model [89].
This is due to many factors, such as the shape and packing of individual heart
cells, the fact that gy is 5 to 10 times greater than g;, and the fact that there are
more intracellular gap junctions in the longitudnal direction than in the transverse
direction [74].

Thus, there is a discrete component to the overall propagationin myocardial tis-
sue, and the medium can be interpreted as behaving in part as if it were composed
of collections of one-dimensional cables. Therefore, one would expect that the con-
servation of current law in the fiber direction (i.e., V - (A diag(gs + ga1,0,0)AT)V®, +
V - (A diag(gu,0,0)AT)VVm = 0; cf. (5.1b)) would be satisfied locally, and this is
precisely the term multiplying € in (5.3). Furthermore, it is known from analyti-
cal and experimental evidence [14, 66] that the ratio of transverse to longitudinal

conduction velocities of the wave front in myocardial tissue satisfies

_e_t _ (gitget/(git + get))l/z
& \guga/(gu+ ga)

which again will be the case if € is set to zero in (5.3). Hence, there are sound
physiological as well as analytical reasons for assuming that, in the case of myocar-
dial tissue, the term e{V - (A diag(gy + ga, 0,0)AT)VD, + V - (A diag(gu,0,0)AT)V V)
will be sufficiently small to justify neglecting its influence on propagating wave
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patterns and that (5.1a) and (5.1b) can be replaced by the decoupled problem

V.
%Can _aatm -V -DpVWp = —xlon + Xlapp Xx€H (5.4a)
n-DiVV,=0 x€dH (5.4b)
Vin(x,0) = Vino(x) (5.40)

: = AD: T D: =di (Xilgel SitSet gi:gct)
with Dy, hA and h dlag Si+gel’ Sr+8et” SintSet/

5.3 Methods

Numerical Methods: Let H be represented by a uniformly anisotropic slab H =
[0,L;]x[0, L] X [0, L] in which the longitudinal fiber direction is taken to be parallel
to the x-axis at each point, so that 1 refers to the x direction and t to the y and z
directions. The decoupled problem (5.4) for the membrane potential V, is then

IV 8i1el PV Sitget 02V Sitget 0*Vi _
Ko ot {gﬂ +8a 0% T Sit + et OY* i Qi+ ge 022 | Xlion + XLapp
(5.52)
IV OV Vi
e =0 == =0, —- =0 5.5b
9% lx=o, dy y=0,L 9z |.-o1, (5.50)
V(% y,2,0) = Vimo(%, ¥, 2) (5.5¢)

We solve the above system using the numerical methods developed in Chapter 3.
For comparison purposes, we solve the corresponding bidomain model using the
methods developed in Chapter 4.

Tissue Block for Comparison of Equal and Unequal Anisotropy Ratio: We
considera 5 cm x5 cm X 1 cm block that consists of homogeneous myocardial tissue
with uniform anisotropy; that is, we neglect the rotation and curvature of the fibers.
Furthermore, the fibers are assumed to run parallel with the x-axis. The z-axis is
vertical, and the planes z = 0 and z = 1 represent the endo- and epicardial surfaces,
respectively. Using a uniform spatial step of 0.05cm, the block was discretized
by 101 x 101 X 21 nodes. To initiate wave propagation, a current stimulus was
applied to the right vertex of the top plane (the epicardial surface). With only

modification of the conductivity values, this same setup was used for both the
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Table 5.1: Simulation parameters for equal and unequal anisotropy.

Common parameters

Membrane capacitance C, 1.0 uF/cm?
Surface-to-volume ratio x 500.0 cm™
Spatial step Ax = Ay = Az 0.05 cm
Time step At 0.1ms
Current stimulus Lpp 100.0 pA/cm?
Duration of current stimulus 0.5 ms
Equal anisotropy parameters
Intracellular transverse conductivity g; 0.5 mS/cm
Intracellular longitudinal conductivity gg =~ 2.0 mS/cm
Anisotropy ratio r 1.0

Unequal anisotropy parameters
Intracellular transverse conductivity g~ 0.416 mS/cm
Intracellular longitudinal conductivity g; 2.0 mS/cm
Interstitial transverse conductivity ge: 1.25mS/cm
Interstitial longitudinal conductivity g 2.5mS/cm

equal- and unequal-anisotropy-ratio case. The propagation parameters are given
in Table 5.1.

Tissue Block for Comparison of Monodomain and Bidomain Models: We
consider a 0.8 cm X 0.8 cm X 0.2 cm block that consists of homogeneous myocardial
tissue with uniform anisotropy. As before, the fibers are assumed to run parallel
with the x-axis, and the z-axis is vertical, so that the planes z = 0 and z = 0.2
represent the endo- and epicardial surfaces, respectively. The block was discretized
into 51 x 51 X 26 points. To initiate wave propagation, a current stimulus was

applied to the center of the bottom plane (the endocardial surface). The propagation
parameters are given in Table 5.2.

5.4 Results

Figure 5.1 shows the wave fronts elicited by current stimulation applied to 3x3x 3
points at the top right corner of the block. The wave fronts are qualitatively
similar for both the equal-anisotropy case (panel A) and the unequal-anisotropy
case (panel B). However, the time required for total activation of the block is
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Table 5.2: Simulation parameters for comparison of monodomain and bidomain
models.

Common parameters

Membrane capacitance Cp, 1.0 pF/cm?
Surface-to-volume ratio 1400.0 cm™
Intracellular transverse conductivity g; 0.19 mS/cm
Intracellular longitudinal conductivity gj 1.74 mS/cm
Interstitial transverse conductivity ge: 2.36 mS/cm
Interstitial longitudinal conductivity ge 6.25 mS/cm
Spatial step Ax = Ay 0.016 cm
Spatial step Az 0.008 cm
Current stimulus L 100.0 uA/cm?
Duration of current stimulus 2.0ms
Monodomain parameters
Time step At 0.01 ms
Bidomain parameters
Time step At Adaptive

considerably different in these two cases: for the equal-anisotropy case, the bottom
left corner of the block was activated at t = 246 ms; for the unequal-anisotropy case,
activation reached this same pointat ¢ = 197 ms. Difference in total activation times
coincides with differences in propagation velocities. In the equal-anisotropy case,
the measured longitudinal and transverse velocities were 0.75m/s and 0.23m/s,
respectively, whereas these velocities in the unequal-anisotropy case were 0.80m/s
and 0.29m/s.

Figure 5.2 shows the wave fronts elicited by current stimulation applied to
3 X 3 X 2 points at the center of the endocardial surface of the block. The wave
fronts are qualitatively similar for both the monodomain model (panel (a)) and
the bidomain model (panel (b)). Moreover, the time required for total activation
of the block shows good agreement. For the monodomain model, all points were
activated within 33 ms, while all points in the bidomain model were activated
within 32ms. The root-mean-square (RMS) error between the two results was

found to be 0.550ms. Figure 5.3 shows the membrane potential from sample
points.
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Figure 5.1: Wave fronts evoked by current stimulation applied to the top right
vertex of the block. Successive isochrones (i.e., contour lines of activation time in
milliseconds) are displayed at 10 ms intervals. The block represents a 5 cm X 5 cm X
1cm homogeneous slab of myocardial tissue with uniform anisotropy. Layers
illustrated here refer to slices through the block parallel to the xy-plane, with layer
1 representing the bottom of the block. Panel A is the equal-anisotropy case, and
panel B the unequal-anisotropy case. The computational mesh is 101 x 101 x 21
points.
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Figure 5.2: Comparison of wave fronts from the monodomain model using har-
monic means with the bidomain model. The applied stimulus and conductivities
are the same in each case. Activation isochrones are displayed at 5ms intervals
with every 10 ms isochrone labelled. The block represents a 0.8 x 0.8 0.2 cm homo-
geneous slab of myocardial tissue with uniform anisotropy; i.e., the fiber direction
is constant and parallel with the horizontal side of the figure. A computational
grid of 51 x 51 x 26 points was imposed on the block of tissue. A brief 100 uA Jem?®
stimulus was applied to points (x?, y?,z%)) where 24 < i < 26,24 < j < 26, and
1 < k < 2. Layers illustrated here refer to slices through the block parallel to the
xy-plane at the indicated k value, where k = 0 is the bottom of the block. The
conductivity values (mS/cm) were gq = 1.74, gi = 0.19, g = 6.25, and gex = 2.36.
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Figure 5.3: Comparison of membrane potential from the monodomain model using
harmonic means with thebidomain model. The plot shows the membrane potential
corresponding to Figure 5.2 for a point on the 20 ms activation isochrone. For the
bottom layer (i.e., k = 0), the point is (25,40,0) for both the monodomain and
bidomain models. For the top layer (i.e., k = 25), the point is (25,37,25) for the
monodomain model and (25, 38,25) for the bidomain model. Note the excellent
agreement between the monodomain and bidomain models.
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To achieve a better agreement between the two models, the conductivity val-
ues in the monodomain model were varied and the results compared against the
‘default’ bidomain model. Figure 5.2 shows the wave fronts for the case where the
interstitial conductivity values in the monodomain model were increased by 20%.

The root-mean-square (RMS) error between the two results was determined to be
0.414ms.

5.5 Discussion

Bidomain models for simulating the propagation of electrical activation in the heart
usually adopt the equal anisotropy ratio assumption to reduce the complex coupled
systems of nonlinear partial differential equations to a single reaction-diffusion
problem for the myocardial tissue alone. We achieved an equivalent reduction
by using the decoupling tensor expressed in terms of the harmonic means of the
conductivity parameters; this approach preserves the critical information conveyed
by the conductivity parameters without making any assumption regarding their
ratios. The decoupled problem yields results that are qualitatively similar to those
produced under the assumption of an equal-anisotropy ratio. Moreover, there is
close agreement bewteen the decoupled and the original bidomain model, which

justifies use of the decoupled model when computational resources are limited.
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Figure 5.4: Comparison of wave fronts from the monodomain model using har-
monic means with the bidomain model. The applied stimulus is the same in each
case. Interstitial conductivity values for the monodomain model were increased
by 20%. The setup is the same as described in Figure 5.2.



Chapter 6

Transmural Electrical Heterogeneity as the Basis for

Electrocardiographic Waveforms

In this chapter, we investigate the relationship between ECG waveforms and cellu-
lar mechanisms from a theoretical standpoint. Electrical propagation in 2-D strips
of cardiac tissue will be simulated using the bidomain model derived in Chapter 2
and the numerical methods implemented in Chapter 4, Heterogeneity in AP shape
and duration will be introduced into the strip of tissue, and the resultant effect on
the ECG will be studied.

6.1 Introduction

Electrocardiogram recordings are used extensively as a tool for diagnosing cardiac
electrophysiological disorders. However, the relationship between ECG wave-
forms and cellular mechanisms—established on a primarily empirical basis—has
not been well understood.

Though heterogeneities in the ventricular myocardium had been observed for
some time [33, 87, 82], repolarization of the ventricles was thought to be largely
homogeneous. Recently, a distinct subpopulation of cells has been identified [71].
Substantial experimental evidence now suggests the existence of three distinct cell
types within the ventricular wall: endocardial, midmyocardial (M), and epicardial
cells (see [2] for areview). The epicardial and M cells contain a prominent transient
outward current (I;,), which produces an early repolarization in phase 1 of the AP
and gives rise to a notched appearance. In contrast, the endocardial cell contains
little or no I;, and does not exhibit a notch in phase 1 of its AP.

Further experiments have shown that the transmural ventricular heterogene-

ity is the basis of electrocardiographic waveforms. In particular, the transmural

96
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dispersion of repolarization (due to the difference in the duration of the AP of the
three cell types) inscribes the T wave of the ECG [92], while the transmural gradient
resulting from the AP notch produces the ] wave [70].

Previous simulation studies have primarily treated the ventricular myocardium
as a homogeneous medium. Such uniform models yield a T wave in the ECG that
has opposite polarity of the QRS complex, contrary to what is observed. In this
chapter, we will introduce heterogeneity in AP shape and duration into a strip of

cardiac tissue and investigate the resultant effect on the ECG.

6.2 Methods

We consider a 0.8 cm X 0.8 cm strip of cardiac tissue. To simulate the propagation
of electrical activity in this tissue, we used the following mathematical model

OV 1

C = EV -D;VVi, + )l(V -D;VO, — Lion + Iapp xeH

™ot
V-(D;+D)VP. +V-D;VV,=0 x€H

%—1; = WV, u)

#-D;(VVin + VP,) =0 x€dH
n-D.VP. =0 xedH

where for initial conditions all cells were assumed to be at rest. The model was
solved numerically by the method of lines presented in Chapter 4.

To describe the AP, we used the Bernus model [7] of human ventricular cells.
This model is less computationally demanding than other AP models, yet incor-
porates nine ionic currents and reproduces important physiological properties. In
particular, through variation in expression of the currents Ix and I,,, the Bernus
model provides configurations for endocardial, M, and epicardial APs. For a het-
erogeneous setup, these three cell types were distributed in the strip of cardiac
tissue as illustrated in Figure 6.1. The APD at 90% repolarization was measured by
using a threshold potential of -76 mV [7].

The model parameters used are summarized in Table 6.1. The ventricular

conductivities were chosen based on the values of Clerc [14]. Action-potential
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Figure 6.1: Schematic of a 2-D strip of cardiac tissue showing cell distribution and
placement of “electrodes” for recording of transmural ECG.

Table 6.1: Simulation parameters for the 0.8 cm X 0.8 cm strip of cardiac tissue.

Membrane capacitance Cp, 1.0 pF/cm®
Surface-to-volume ratio x 1400.0 cm™
Spatial step Ax = Ay 0.008 cm
Current stimulus Iy, 75.0 pA/cm?
Duration of current stimulus 2.0ms
Intracellular transverse conductivity g; 0.19 mS/cm
Intracellular longjtudinal conductivity g; 1.74 mS/cm
Interstitial transverse conductivity ge 2.36 mS/cm
Interstitial longitudinal conductivity gq 6.25 mS/cm

Extracardiac conductivity g,

6.25 mS/cm
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propagation was initiated by a current stimulus applied to 2 x 3 points at the center
of the endocardial edge.

The extracardiac potential, ®,, was determined from the membrane potential,
Vm, according to a formula derived in Chapter 2:

1 V'’ - Di V'V m 14
(I) — ’ u1
o(7) 4ng, fH llr =7l 4 1)

Unipolar extracardiac potential was thus caculated at “electrodes” located 1cm
from the center of the endocarium and epicardium along the transmural axis, as
shown in Figure 6.1. The difference in these two potential tracings constitutes the
ECG waveforms presented later. The conductivity of the extracardiac medium,
8o, was set equal to the value of the interstitial conductivity in the longitudinal
direction. The precise value of this parameter is not critical. Indeed, it is easily
seen from equation (6.1) that this parameter will affect the amplitude of the ECG,
but not the overall morphology.

Simulations were performed on an SGI Onyx 300 using version 7.4 of the
MIPSpro Fortran compiler. The program was parallelized using OpenMP. Sim-
ulation of 500ms of activity using 5 CPUs took on the order of 30 minutes of
wall-clock time.

6.3 Results

Homogeneity and Effects of the Amplitude of I,,: Figure 6.2 shows the AP
morphology and ECG waveforms for three separate homogeneous cases where all
cells are either endocardial, M, or epicardial. This figure reveals the effect on the
ECG of the amplitude of the transient outward current, I,,. In the Bernus model, the
maximum conductance for the transient outward channel, G,, (which determines
the amplitude of I,;,) is 0.13, 0.35, and 0.4 mS/ uF for endocardial, M, and epicardial
cells, respectively. The top panel in column (c) of Figure 6.2 shows AP traces for
the epicardial case, for which I, produces a distinctive notch in phase 1 of the
APs. The corresponding transmural ECG, shown in the lower panel of column

(c), exhibits a prominent ] wave. In contrast, the endocardial APs (column (a) top
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Figure 6.2: Propagated APs and ECG signal for homogeneous cell distributionina
2-D strip of cardiac tissue with one region of (a) endocardial, (b) M, or (c) epicardial
cells. The top panel shows APs from the left edge, middle, and right edge of the
strip of tissue. The bottom panel shows the corresponding transmural ECG. The
amplitude of I;, corresponds with the prominence of the ] wave. The contribution of
I; is greatest in epicardial cells, and correspondingly, the homogeneous epicardial
tissue shows a prominent ] wave in the ECG. In contrast, the ] wave is barely
discernible in the endocardial tissue, where the contribution of I, is minimal. The
T wave is inverted in all cases.
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Figure 6.3: Activation time, repolarization time, and APD as a function of trans-
mural distance for a homogeneous strip of epicardial cells. The transmural distance
is measured from the “endocardial” edge, so that a distance of 0 cm represents the
“endocardium” and 0.8 cm represents the “epicardium”.

panel) have no notched appearance, and the ] wave of the corresponding ECG is
barely discernible.

Figure 6.2 also shows the resultant T wave for these homogeneous cell distri-
butions. In each case the T wave is inverted; that is, it has opposite polarity of
the QRS complex. The inverted T wave is the result of the repolarization sequence
proceeding in the same direction as the depolarization sequence. Figure 6.3(a)
shows the activation and repolarization times as a function of the transmural dis-
tance for the homogeneous epicardial case. It is apparent from the figure that the
first area to depolarize is also the first area to repolarize. The activation times
range from 5.5 ms to 43.0 ms, while the variation in repolarization times is smaller,
ranging from 365.0ms to 388.0ms. The difference in the gradient of activation
and repolarization times is due to the transmural gradient in APD, as shown in
Figure 6.3(b). Despite uniform cellular properties across the tissue, the first cell to
be activated has the longest APD and the last activated cell has the shortest APD.
This heterogeneity is the result of electrotonic interactions and has been observed
by other investigators [11, 68, 77].
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Figure 6.4: AP morphology and ECG waveforms for heterogeneous cell distribution
ina 2-D strip of 0.8 cm x0.8 cm cardiac tissue with three regions: one of endocardial
cells (0 < x < 0.16), one of M cells (0.16 < x < 0.64), and one of epicardial cells
(0.64 < x < 0.8). The top panel shows one AP from each of the three regions. The
bottom panel shows the corresponding transmural ECG. The APs are as described
by the Bernus model with default parameters. Note that the T wave is inverted.
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Effects of Heterogeneity: Figure 6.4 shows AP traces and the transmural ECG
for a heterogeneous 2-D strip of tissue with default parameters from the Bernus
model. The T wave is still inverted. This figure reveals, and agrees with, the
important point made by Antzelevitch and colleagues [70, 92]: it is not simply a
transmural AP heterogeneity that generates the T wave, but rather the transmural
dispersion of repolarization resulting from the opposing voltage gradients on either
side of the M region. To elaborate, in our present setup the T wave begins when the
endocardial AP separates from that of the other cells. This creates a negative voltage
gradient between the endocarial and M regions, and gives rise to the descending
limb of the T wave. The voltage gradient increases until the last endocardial cell
fully repolarizes, at which time the T wave reaches a peak. As the M cells repolarize,
the voltage gradient between the endocardium and M region begin to decrease,
and this inscribes the ascending limb of the T wave. Upon full repolarization of the
last cell, the T wave is extinguished. There is little opposing voltage gradient on the
epicardial side of the M region because, as we see in the AP traces, repolarization
of the epicardial and M cells nearly coincides.

To further illustrate how transmural dispersion of repolarization gives rise to
the T wave, we performed simulations of heterogeneous tissue with different en-
docardial AP profiles. Column (a) of Figure 6.5 shows the result of a simulation
where G for the endocardial cells was reduced from 0.019 to 0.015 mS/uF. This
change of Gy has the effect of lengthening the endocardial AP to the point where
the endocardial and epicardial cells repolarize at the same time, but slightly ahead
of the M cells. As a result, there is a small negative vcltage gradient between the
endocardium and M region, which is matched by an equal and positive gradient be-
tween the epicardium and M region. Thus, no T wave is generated. Reducing Gy to
0.014 mS/uF lengthens the endocardial AP to the point where repolarization of the
endocardium and M region coincides. Hence, there is no voltage gradient between
these two regions. On the other hand, the epicardium repolarizes slightly ahead
of the M region, creating a positive voltage gradient. The end result is a positive
T wave. With a further reduction of Gy to 0.011mS/ uF, the endocardium repo-

larizes last. This produces a positive voltage gradient between the M region and
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Figure 6.5: Effects on the T wave of modifying the endocardial AP. The same geom-
etry as in Figure 6.4 was used. The top panel shows one AP from each of the three
regions. The bottom panel shows the corresponding transmural ECG. The APs are
as described by the Bernus model, with the endocardial AP modified by varying
Gx: (a) Gx = 0.015mS/uF; (b) Gx = 0.014mS/uF; and (c) Gx = 0.011mS/uF. In
(a), repolarization of the endocardial and epicardial regions are nearly coincident,
resulting in a T wave that is barely discernible. In (b), the epicardial region repo-
larizes ahead of the endocardial region, giving rise to a positive T wave. Increasing
this repolarization gradient yields a more prominent T wave as shown in (c).

endocardium, and augments the gradient between the M region and epicardium.
Consequently, a large positive T wave is formed.

To test whether a positive T wave is produced under more “realistic” condi-
tions, we modified the Bernus model so that the APDs match those reported by
Antzelevitch and colleagues [70, 92]. Note, however, that the Bernus model is a
model of the human AP, whereas the work of Antzelevitch has been performed on
canine cardiac tissue. Therefore, the matching of the APDs was done in a relative
sense. The endocardial AP was chosen as the standard. The M cell AP was then
modified so that the ratio of its duration to that of the endocardial AP matched the
ratio of the duration of the corresponding APs reported in the work of Antzelecitch



105

Table 6.2: Comparison of the APDs of the Bernus model and those reported in [70].

Bernus Model
[70] Original Modified
Endo APDg 265 357 357
M Cell APDgq 280 394 377%
Epi APDyg 223 357 299%
APDgnao/APDy 0.95 0.91 0.95
APDgnao/ APDgp; 1.19 1.00 1.19

*Gk = 0.0145mS/yF, *Gx = 0.030 mS/pF

and colleagues. The epicardial AP was similarly modified. The modifications and
APDs are summarized in Table 6.2.

Figure 6.6 shows the results of a simulation with this modified Bernus model.
The epicardium is the last to depolarize and now the first to repolarize, which
agrees with that found in [92]. This creates a positive voltage gradient between
the epicardium and M region, and inscribes the ascending limb of the T wave.
The voltage gradient continues to increase until the last epicardial cell repolarizes,
which corresponds with the peak of the T wave. At this point, the negative voltage
gradient between the M region and endocardium—arising from the repolarization
of endocardial cells ahead of M cells—takes over and thusly inscribes the descend-
ing limb of the T wave. The end of the T wave is reached when the voltage gradient
is abolished by repolarization of the last M cell.

Effects of Electrotonic Interactions: Figure 6.7 shows the transmural variation
in APD for the previous simulation (where the Bernus model was modified to match
the APD ratios reported by Antzelevitch and coworkers). The isolated endocardial
AP has a duration of 357 ms, whereas in the simulated tissue the endocardial APD
is lengthened, varying from 369.5 ms at the endocardial boundary of the tissue to
368.3ms at the border between the endocardial and M cell regions. The APD of
the M cells in the tissue varies from 368.0 ms at the border between the endocardial
and M cell regions to 335.0ms at the border between the epicardial and M cell
regions. This represents a decrease in duration compared to the isolated M cell,
which has an APD of 377 ms (see Figure 6.8). As with the endocardial cells, the APs
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Figure 6.6: AP morphology and ECG waveforms for a heterogeneous cell distribu-
tion with a modified Bernus model. The same geometry as in Figure 6.4 was used.
The top panel shows one AP from each of the three regions. The bottom panel
shows the corresponding transmural ECG. The endocardial AP was described by
the Bernus model with default parameters. The epicardial and M cell APs were
modified so that the relative APDs match those observed by Antzelevitch and
coworkers [70, 92]. Note that the T wave has the expected upright shape.



107

310 -| Endocardiai, M Cell \ Epicardial |
Region | Region ,  Region
300 7 ‘ - L
0 0.16 0.32 0.48 0.64 0.8
Transmural distance (cm)

Figure 6.7: Action-potential duration as a function of transmural distance in a
heterogeneous 2-D strip of cardiac tissue. The same geometry as in Figure 6.4
was used. The endocardial AP was described by the Bernus model with default
parameters. The Bernus epicardial and M cell APs were modified so that the
relative APDs match those observed by Antzelevitch and coworkers [70, 92].

of the epicardial cells are lengthed, but the percentage of increase is much greater.
The APD of the epicardial cells in the tissue varies from 334.0ms at the border
between the epicardial and M cell regions to 314.0 ms at the epicardial boundary of
the tissue. On the other hand, an isolated epicardial cell has an APD of just 299 ms.
In short, the electrotonic interactions smooth out the differences in APD across the
simulated ventricular wall.

6.4 Discussion

In this chapter, we have investigated the effects of transmural electrophysiological
heterogeneities on the waveforms of the ECG. Experimental evidence suggests
the existence of three distinct ventricular cells: endocardial, M, and epicardial [2];
however, this is still the subject of controversy [3]. Our results show thata T wave
with the same polarity as the QRS complex can be generated by a model of cardiac
tissue that includes the three cell types. Of key importance in generating a “correct”

T wave was the presence of a transmural dispersion of repolarization. On the other
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Figure 6.8: Effect of electrotonic interactions on the M cell AP. The figure shows a
nonpropagated or ‘isolated” M cell AP versus the APs of two M cells from a 2-D
strip of heterogeneous cardiac tissue.

hand, a ] wave was produced by the heterogeneous distribution of the transient
outward current, I,,, across the ventricular wall. The presence of a large I, in
epicardium created a notch in the AP that was not present in the endocardial AP.
This established a transmural voltage gradient that manifested as a ] wave in the
ECG.

The effect of heterogeneity has only recently been investigated in simulation
studies. Gima and Rudy [30] recently investigated the basis of ECG waveforms
in a heterogeneous model incorporating M cells. Their simulations included the
more detail LRd model of cardiac APs [25, 44, 86, 94]; however, their studies were
restricted to a 1-D monodomain fiber. Quite recently, Clayton and Holden [11]
studied the propagation of normal beats and re-entry in 2-D and 3-D models of
cardiac tissue. Their monodomain model incorporated regional differences in AP
shape and duration. For description of the AP, they used the LRd model as a
starting point and then simplified it so that all jionic concentrations, except for the
intracellular [Ca®*], were held constant.

Estimation of pseudo ECGs from propagation models is often done with the
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following formula [11, 30]:
1 1
_ _DV'V.. -Vl — ¢ dV’ 2
o) = g fH DV'V-Vir—7|d 62)
On the other hand, we have used the expression
1 V' -DV'V,
Dy(r) = —=4V’ 6.1
=g |, e e

To see how these two equations relate, we begin with the vector identity
V- (lIr = 7' D;VVi) = llr = 7'V - D;VV; + DiV Vi - Viir = 7/||”?

Using this expression in equation (6.1) we get

1
D, (r) = ing {f V’-(llr—r’ll‘lDiV’Vm)dV’—fDiV’Vm-V’Hr—r’ll'ldV’}
[¢) H H

and applying the divergence theorem [80] to the first integral gives

1 -1 f ’ -1 r}
n-{r=77"D;V'Va)dS' — | DiV' V- V|r-7]7dV
pry { fa (=7l n)dS = | DV'Va-Vir-7l

! { llr =717} (n-DiV’Vm)dS'—f
oH

- 4rg, H

Oo(r) =

DV'Vy-Vr- r'n-ldV'}

Under the assumption of the Colli Franzone boundary condition (see Section 2.4),
wehave n-D;VV,, = 0 and so the first integral drops out. In this case, equation (6.1)
reduces to equation (6.2). We, however, have used the boundary conditions pro-
posed by Tung (again refer to Section 2.4), for which n - D;(VVp, + V®,) = 0. In this
situation, equations (6.1) and (6.2) are not equivalent.

Our calculated ECGs differ from the “standard” ECG for several reasons. First,
we did not have an atrial component in our model; therefore, there was no P wave
in our simulated ECGs. Second, we initiated propagation by applying a stimulus
to just one site. This does not mimick how the Purkinje network activates the
ventricular muscle, and hence can not reproduce the true QRS complex. Finally,
the ECG was caculated from Vp,,, which was recorded in the propagation model at
1ms intervals. This interval can easily miss the true peaks in the APs. Shortening
the interval at which V, is recorded in the propagation model should likely produce
a ‘smoother’ QRS complex, but this was not investigated.
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The model used in this study has a number of limitations. We have restricted
investigations to a simple 2-D geometry, and have assumed uniform tissue conduc-
tivity across the wall. Some experimental evidence [93] has shown a conductivebar-
rier between epicardium and deep subepicardium, which coincided with a sharp
transition in cell orientation in this region. Furthermore, Zygmunt and coworkers
[96, 97] have shown that Iy, and Inaca contribute to electrical heterogeneity within
the canine ventricle. We, however, have investigated a heterogeneous expression
of only Ix and I,. Lastly, we have not included a Purkinje network and ignore
the mechanical activity of cardiac tissue. Nonetheless, these simulations provide,
on a theoretical basis, links between the morphologies of ECG waveforms and the
underlying cellular mechanisms.



Chapter 7
Conclusions

We have investigated the propagation of electrical activity in the human ventricular
myocardium. In Chapter 2, we presented the derivation of a mathematical model
that includes detailed cellular membrane electrodynamics and can incorporate
important characteristics of cardiac tissue, such as anisotropy, fiber rotation, and
transmural heterogeneity in electrophysiological properties. We have implemented
two numerical methods:

e an ADI method (Chapter 3) that can only handle a monodomain model with

restricted boundary conditions, yet is computationally efficient; and

e a method-of-lines approach (Chapter 4) that can handle the bidomain model

in its fully coupled form, but requires huge computing resources.

In Chapter 5, we described a decoupling procedure which requires no assump-
tions on the anisotropic conductivities and which yields a single reaction-diffusion
equation (or monodomain model) for simulating the propagation of activation.
Preliminary results suggest that the decoupled model may be adequate for study-
ing general properties of cardiac dynamics in isolated whole heart models. In
Chapter 6, we investigated the basis for ECG waveforms using a model that had
transmural electrical heterogeneity through incorporation of three cell types: en-
docardial, M cell, and epicardial. The simulations demonstrated that a T wave
with the same polarity as the QRS complex was generated by a transmural disper-
sion of repolarization (resulting from the heterogeneous distribution of cell types),
while a ] wave was produced by a transmural voltage gradient (resulting from the
heterogeneous distribution of the transient outward current, I,).

The numerical solution of the bidomain equations typically proceeds by solving
each subsystem — membrane potential, interstitial potential, and AP variables —
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separately through some form of equation splitting. Unless care is taken, this
limits the accuracy of the solution. A key accomplishment of this thesis was the
development and implementation of a method-of-lines approach for solving the
anisotropic bidomain model in its fully coupled form. This approach resulted in
a system of DAEs, which was solved with the well written and robust software
package DASPK. However, for 3-D models the system of DAEs was quite large.
Without further intervention, the memory requirements and CPU time would have
been prohibitive. This problem was overcome in two ways. First, the memory
requirement was reduced by taking advantage of the sparsity of the DAE system,
and second, computing time was reduced through parallelization of the code.

Limitations and Future Work

The preliminary results presented in Chapter 6 on the basis of ECG waveforms were
restricted to 2-D sheets as the turn-around time for 3-D simulations prevented the
tuning of parameters. Further investigation should be done in a 3-D wedge with
realistic fiber rotation. The model already includes all of the necessary prerequisites
to do these simulations.

The linear systems arising from the method-of-lines approach were solved by a
direct method using a sparse solver. For large-scale DAE systems, a preconditioned
Krylov subspace method for the linear-system solution may be a better choice. The
Krylov method can potentially outperform the direct method in terms of time
steps, error-test failures, and so on, thereby greatly reducing the computing time
while requiring less memory. However, the selection of a good preconditioner
largely influences the success of this method. DASPK provides the preconditioned
Krylov method has an option, and this avenue was initially investigated, but later
abandoned due to lack of a good preconditioner. Further research in this area could
yield better results.

In the method-of-lines approach, we performed the spatial discretization using
finite differences and assuming a fixed mesh. At present, the code is restricted to
regular geometries. The discretization component could be replaced by collocation

methods or finite elements, allowing easy application to irregular geometries such
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as a realistic heart shape. Another avenue of research would be to drop the fixed-
mesh constraint, thereby making the code adaptive in both time and space.

Future work should also include an analysis of the new “capillary capacitance”
bidomain model with a view of showing that this model can reproduce the same
time course of the cardiac AP foot (T¢.), which has been observed in experimental
analysis.



Appendix A

Glossary of Physiological Terms

Membrane

Cytoplasm, myoplasm, axoplasm

Axon

Resting Potential

Polarization

Local circuit currents

Cable theory

Space clamp

semipermeable structure at surface of living
cells, such as neurons and cardiac cells

the semifluid conducting medium inside a liv-
ing cell in general, and a cardiac cell and an
axon in particular

extension of a neuron, carrying nerve im-
pulses

electrical potential of the interior of a cell or
axon at rest relative to the exterior

de-and hyper-, result of current flow by which
the membrane potential is made less and more
negative

electric currents through the axon or cardiac
tissue and surrounding solution by which an
impulse at one region stimulates an adjacent
region, resulting in propagated activation

as applied to a linear axon or cardiac fibre
expresses local circuit current in terms of A
an experimental technique in which the mem-
brane potential and current are kept uniform
over a short length of axon/fibre; can be used
for either current- or voltage-clamp experi-

ments
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Activation

Strength-duration curve

Action potential

Propagation

Current clamp

Voltage clamp

Absolute refractory period

Accommodation

Active response

Conduction
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fast process by which a membrane goes
from a passive to an active state; the initial
stage of impulse production, just following a
suprathreshold stimulus

a curve showing the threshold amplitude of a
rectangular stimulating pulse plotted against
its duration

time course of a potential during activation
and recovery phases of nerve or cardiac cell
conduction process by which activity at one
point creates local circuit current to excite ad-
jacent region

an experimental technique in which the mem-
brane current is controlled and the time course
of the membrane potential recorded

an experimental technique in which the mem-
brane potential is controlled by electronic
feedback and the time course of the membrane
current recorded

the period following an impulse during which
the axon or cardiac cell is inexcitable

the decrease of excitability during a subthresh-
old constant stimulus

a response due to the nonlinear properties
of the membrane; the opposite of passive re-
sponse

the movement of activation; propagated acti-

vation



Decremental conduction

Depressed state

Enhanced state

Impulse

Latency

Local response

Membrane action potential

Nondecremental conduction

Passive response
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impulse conduction with ever-decreasing
action-potential size, eventually leading ei-
ther to an impulse of constant size or to ex-
tinction of the impulse

a state following a subthreshold stimulus in
which the threshold is greater than the resting
value

a state following a subthreshold stimulus in
which the threshold is lower than the resting
value

a sequence of electrical and chemical events in
an excitable cell, consisting of activation and
recovery

the time between the beginning of a
suprathreshold stimulus and the appearance
of the resulting impulse

a response that occurs and remains only near
the stimulating electrode

an action potential recorded from a space-
clamped cell or a small, uniformly responding
patch of cell membrane

impulse conduction with constant velocity
and action-potential size

a response that has an amplitude proportional
to the amplitude of the stimulus; a linear re-

sponse



Refractory state

Relative refractory period

Response

Resting state

Stationary action potential
Stimulus
Stimulus-response curve
Subthreshold stimulus
Suprathreshold stimulus
Threshold

Uniform conduction
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the state following activation during which
the excitable cell is first rendered inexcitable
(absolute refractory period) and then has a
threshold above the resting value (relatively
refractory period)

the period following activation during which
the threshold is greater than the resting value
an electrochemical change, either an action
potential or a subthreshold active response,
resulting from applying a stimulus to an ex-
citable cell

the stationary condition of an excitable cell
which has received no stimuli recently

an action potential that occurs locally in an
axon or fibre and is not propagated

any physical agent acting on an excitable cell
that can serve to produce an action potential
a curve of response size versus stimulus in-
tensity

a stimulus too small to elicit an action poten-
tial

a stimulus large enough to produce an action
potential

the value of stimulus just large enough to pro-
duce an action potential

nondecremental conduction



Appendix B

Bernus AP Model
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Figure B.1: Electrical circuit model of the Bernus cell membrane.
Inward Currents
Fast Na* Current
Ina = Ga -1 - U* - (Vin — Enia) (B.1)
0.32- (Vi +47.13)
= B.2
= T expl=0.1 - (Vo + 47.13)] (B2)
Bm = 0.08 - exp(—Vm/11) (B.3)
Ve = 0.5 - [1 - tanh(7.74 + 0.12 - Vi) (B.4)
- 774 +012-Vy
%=aﬁ+224(1 tanh(7.74 + 0 ) (B5)
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1 - tanh[0.07 - (Ve + 92.4)]



Slow Ca** Current

Iea = GCa Ao 'f‘fCa '(Vm_ECa)

g+ By
14.98 - exp{—0.5 - [(Ven — 22.36)/16.68]*}
&g =
16.68- V21
53 - exp|=0.5 - [(Viy - 6.27)/14.93]2
Ba = 01471 - exp{-0.5 - [( )/14.93]%}
14.93- 21
e 6.87 - 1073
S 1T+ exp[~(6.1546 — V,)/6.12]
0.069 - exp[0.11 - (Vi + 9.825)] + 0.011 B
= 5.75.1
Br 1+exp[-0278- (Vo +9825)] 0
for = 1
“ 7 1+ [Ca*1:/0.0006
Qutward Currents

Transient Outward Current

Ito = Gto ‘Yo tO- (Vm - Eto)
—_ ar
T a + B
e 0.5266 - exp[~0.0166 - (Vo — 42.2912)]
"7 1+exp[~0.0943 - (Vi —42.2912)]

~5.186-1075 - Vi +0.5149 - exp[-0.1344 - (Vyr, — 5.0027)]
B 1+ exp[-0.1348 - (Vi — 5.186 - 1075]
= 5.612-107% -V, +0.0721 - exp[~0.173 - (Vi + 34.2531)]

o 1+ exp[~0.1732 - (Vi + 34.2531)]

_ 1.215-107* - Vi +0.0767 - exp[-1.66 - 10~ - (V, +34.0235)]

Yoo

r

P 1+ exp[~0.1604 - (Vi + 34.0235)]
= —t
P, + PBro
tOw ata(Vm - Vshift)

210V — Vinitt) + Bro(Vim — Vinitr)
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(B.6)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)
(B.14)

(B.15)
(B.16)
(B.17)
(B.18)
(B.19)

(B.20)



Delayed Rectifier K* Current

For endocardial and epicardial cells
X = 0.988
® 7 1+ exp(—0.861 - 0.0620 - Vi)

Tx = 240 - exp[—(25.5 + V) /156]
+182 - [1 +tanh(0.154 + 0.0116 - V)] + 7%
7, = 40- [1 - tanh(160 + 2 - V)]

For M cells
0.972

Ao = T exp(~2.036 — 0.0834 - Vrm)
Tx = 380 - exp[—(25.5 + Vn)2/156]
+166- [1 + tanh(0.558 + 0.0169 - Viy)]

Inward Rectifier K* Current

In= GKl Kl - (Vm - EK)
oK1
axy + Pra
~ 0.1
#K1 = T ¥ expl0.06 - (Vi — Ex ~ 200]

o

3-exp[2- 10 (Vin — Ex + 100)] + exp[0.1 - (Vi — Ex — 10)]

Pra = 1+exp[~0.5- (Vi — Ex)]
Background Currents

Ca** Background Current

ICa,b = GCa,b ) (Vm - ECa)

Na* Background Current

INa,b = GNa,b : (Vm - ENa)
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(B.26)
(B.27)

(B.28)

(B.29)

(B.30)

(B.31)
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Pump and Exchanger Currents

Na*-K* Pump
INnak = Gnak * favak - flix (B.32)
1
= B.
frax 1+0.1245 - exp(—0.0037 - V) + 0.0365 - ¢ - exp(—0.037 - Vi) (B.33)
fl — 1 . [K+]O (B 34)
N T 1+ (10/[Na*])ts  [K*], + 1.5 ‘
0 =0.1428 - [exp([Na*],/67.3) — 1] (B.35)
Na*/Ca** Exchanger
INaca = Gnaca + fvaca (B.36)

fraca = (87.5% + [Na* )™ - (1.38 + [Ca*],)™!
{1+0.1-exp(~0.024 - V,,)}!
-{[Na"F? - [Ca®™], - exp(0.013 - V)
- [Na*[3 - [Ca®]; - exp(~0.024 - Vi)

(B.37)
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