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Abstract

The thesis is devoted to the development of certain aspects of the invariant theory of Killing
tensors (ITKT) defined on pseudo-Riemannian spaces of constant curvature. A systematic
study of ITKT began in 2001 by incorporating the underlying ideas of the classical invariant
theory (CIT) of homogeneous polynomials into the geometric study of Killing tensors.
One of the main problems in this study is the development of effective algorithms that
can be used to determine the invariants, covariants and joint invariants. The methods of
infinitesimal generators (which can be traced back to A. Cayley) and moving frames (as
recently reformulated by P. Olver and others) have proven to be most effective in tackling
this task.

We begin by presenting comprehensive reviews of pseudo-Riemannian geometry and
CIT that are blended together in ITKT. We review the notion of an isometry group invariant
of Killing tensors and then, in complete analogy with the corresponding notions in CIT,
introduce the new concepts of a covariant and a joint invariant of Killing tensors. We
use the method of moving frames, in particular the inductive technique introduced by L
Kogan and used in the study of differential invariants, to compute fundamental invariants
and covariants of certain vector spaces of Killing tensors.

Our next goal is to formulate and prove an analogue of the result known in CIT as
the 1856 lemma of Cayley. More specifically, we establish a Lie algebra representation of
the isometry group on the vector space of Killing tensors of arbitrary valence defined on
the Minkowski plane. The result is extended by solving the corresponding problem of the
determination of a set of fundamental invariants.

We apply these results to solve the problems of group invariant classification of the
orthogonal coordinate webs generated by Killing two-tensors defined on the Euclidean and
Minkowski planes. Our results compare well with the solutions obtained previously by
other methods. In addition, we study the Drach potentials and show that the ten Killing
tensors of valence three that define the corresponding first integrals cubic in the momenta

are isometrically distinct.

viii
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Chapter 1

Introduction

Classical invariant theory was conceived in the first half of the nineteenth century and
was flourishing as one of the most active areas of mathematics by the end of the century.
Many eminent mathematicians of that time contributed to its success, including Sylvester,
Cayley, Hermite, Clebsch, Gordan, Hilbert, as well as many others. The theory has been
resurrected to its present glory in the 20th century through the works of Weyl, Mumford,
Rota, Howe, Popov, Vinberg, Olver and many others (see the references in the monograph
by Olver [67]). The underlying ideas of the classical invariant theory of homogeneous
polynomials have inspired scientists working in other areas of mathematics and physics to
look for applications where the theory can form a theoretical foundation leading to fruitful

research.

Note that in the 1965 paper [87] Winternitz and Fri§ studied second order differential
operators that commute with the Schrodinger operator and derived two isometry group in-
variants of Killing two tensors on the Euclidean plane. They were then used to classify
orthogonal coordinate webs that afford separation of variables in the two-dimensional non-
relativistic equation. A systematic approach to the group invariant study of Killing tensors
was initiated independently in 2001 by McLenaghan, Smirnov and The [52] (see also [53])
by planting the underlying ideas of classical invariant theory into the field of geometric
study of Killing tensors defined on pesudo-Riemannian spaces of constant curvature. This
idea has proven its worth in various applications to the study of Hamiltonian systems, no-
tably the Hamilton-Jacobi theory of orthogonal separation of variables and superintegrabil-
ity (see Benenti (2004) [4], Kalnins (1975, 1986) [37, 38], Kalnins and Miller (1981, 1983)
[44, 45, 46], Kalnins, Kress and Miller (2005) [39, 40, 41], Kalnins, Kress, Pogosyan and
Miller (2001) [43], Miller (1977) [58], as well as the relevant references therein).

Before we proceed with a discussion of the basic details of the invariant theory of

Killing tensors (to be given in Chapter 4), we first review in Chapter 2 pseudo-Riemannian

1
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geometry and establish the requisite language to be used later on. In particular, following
the definition and basic properties of pseudo-Riemannian manifolds of constant curvature,
we define the Schouten bracket as a natural generalization of the Lie bracket of two vector
fields. In turn, the Schouten bracket is employed to define the concept of (generalized)
contravariant Killing tensors. We choose to work with contravariant Killing tensors in view
of the fact that they appear naturally in Hamiltonian mechanics in this form. The chapter
is concluded with a discussion on Killing vectors as generators of the Lie algebra of the

isometry Lie group acting on a given pseudo-Riemannian manifold of constant curvature.

Chapter 3 is devoted to a review of the underlying notions, ideas and results of the clas-
sical invariant theory of homogeneous polynomials which inspire the next chapter. Thus,
we consider the concepts of an invariant and a covariant of binary forms, and a basic tech-
nique based on infinitesimal group action that can be used to determine the fundamental
sets of invariants and covariants. These ideas come together in the result known as the
1856 lemma of Cayley. This result will inspire us in Chapter 5 to formulate and prove
its analogue in the invariant study of Killing tensors defined on two-dimensional pseudo-
Riemannian manifolds. Next, we describe the basic ideas of E. Cartan’s method of moving
frames as was generalized recently by M. Fels and P. Olver, and then further developed by
I. Kogan and others (see, [67, 22, 23, 50, 13, 79, 80, 81)).

Recall that the concept of an isometry group invariant of Killing tensors, introduced in
[52], can be employed to solve the problems of equivalence and finding canonical forms.
Systematically, it can be introduced in complete analogy with the corresponding notion in
classical invariant theory discussed in Chapter 3. However, unfortunately, 1t is not always
the case. Difficulties arising from the properties of the group action may preclude one
from solving the above problems by the invariants alone. In complete analogy with the
corresponding concept of classical invariant theory we introduce the concept of a covari-
ant. This is accomplished by considering the isometry group action on the product of two
spaces, namely the vector spaces of Killing tensors in question and the underlying pseudo-
Riemannian manifold. It is demonstrated that the invariants and covariants together form
a powerful tool to solve the equivalence type problems in the invariant theory of Killing
tensors. By considering the action of the isometry group on products of vector spaces of

Killing tensors, we proceed to introduce the concept of a joint invariant. We shall not dwell



3

on this concept in the thesis but there are promising indications that the joint invariants can
be employed in the study of superintegrable Hamiltonian systems whose integrability is as-
sured by the existence of first integrals which are polynomials in the momenta. Finally we
show how the moving frames method can be naturally incorporated into the group invariant
study of Killing tensors.

In Chapter 5 we apply the results and concepts obtained and introduced in Chapter 4 to
formulate and prove an analogue of the 1856 lemma of Cayley. The result is obtained by
means of a representation of the infinitesimal action of the isometry group of the Minkowski
plane in the vector space of Killing tensors of arbitrary valence n. Furthermore, for such
vector spaces we solve the problem of the determination of the fundamental invariants by
making use of the method of moving frames.

Chapter 6 is devoted to applications. We employ the invariants and covariants of Killing
two-tensors defined on the Euclidean and Minkowski planes to solve the problem of clas-
sification of the orthogonal coordinate webs generated by nontrivial Killing two-tensors.
The results compare well with the results obtained previously by Winternitz and Fris [87],
Kalnins [37], Rastelli [71], McLenaghan ez al [52, 54] to solve these problems. Using the
results describing invariants of Killing tensors of valence greater than two we study the so-
called Drach potentials [17]. Furthermore, we use invariant theory to complete an invariant
classification of the ten valence three Killing tensors that define the leading terms of the
first integrals isolated by Drach in 1935.

Some of the results presented in this thesis have been published in [79, 80, 89].



Chapter 2
A Review of Pseudo-Riemannian Geometry

The main goal of this chapter is to review the underlying ideas and notions of pseudo-
Riemannian geometry that are used in the following chapters. We restrict our attention
to the pseudo-Riemannian manifolds of constant curvature which provide the geometric
framework for our theory. They are described in Section 2.1. Section 2.2 investigates the
isometry groups of pseudo-Riemannian spaces of constant curvature. Then we discuss the
intimately related concepts of the Lie derivative and the Schouten bracket. The remaining
two sections deal with generalized Killing vectors fields and Killing tensors defined on
pseudo-Riemannian spaces of constant curvature, which form the main objects of the study
in this thesis.

2.1 Pseudo-Riemannian manifolds of constant curvature

The first fundamental object that we are going to discuss is that of a differentiable manifold.
Roughly speaking, a differentiable manifold is a Hausdorff topological space which locally
looks like the Euclidean m-space E™, although it may be different from E™ globally. A
curve and a surface are considered locally homeomorphic respectively to E and E? respec-
tively, where E and E? denote Euclidean one and two-space. Calculus on a manifold is
assured by the existence of smooth coordinate systems. A manifold may carry other struc-
tures that determine its geometry. For example, it can be furnished with a metric tensor,
which is a natural generalization of the usual inner product of two vectors on the Euclidean
space.

In view of the above, pseudo-Riemannian geometry is the study of a differentiable
manifold equipped with a metric tensor of arbitrary signature. The principal special case
is Riemannian geometry, in which the metric is positive-definite. Another special case is
Lorentzian geometry, which is characterized by an indefinite metric.

In what follows we elaborate on these notions.

4



5

Definition 2.1 Let M be an m-dimensional smooth manifold. A metric g is a symmetric

nondegenerate (0, 2) tensor field of constant signature (see Definition 2.3 below).

In other words, g assigns smoothly to each x € M a scalar product g, on the tangent space
T..M and the signature of gy is the same for all x € M. Let (z,...,z™) be a local coor-
dinate system, then the components of the metric tensor g area given by gi; = 9x(%i, ;)
where §; = 52—,,1’ = 1,...,m. Thus, in terms of local coordinates, ¢ = g;;dz*dz’. It
follows that for any pair of vectors U = U*8;, V = V79;

9(U, V) = g;U* V7. @2.1)

The symmetry of the metric means that the matrix g;; is symmetric, while the nondegener-

acy condition means that the matrix g;; is nonsingular. We denote its inverse by g*.

Definition 2.2 A pseudo-Riemannian manifold is a manifold M provided with a metric g.
Thus, it is an ordered pair (M, g).

Remark 2.1 For simplicity we often denote a pseudo-Riemannian manifold by M rather
than (M, g), meaning that the metric under consideration is known and there is no danger
of confusion.

Since the matrix g;; is symmetric and real, it can be diagonalized. We define the notion of

signature of a pseudo-Riemannian manifold as follows,

Definition 2.3 The signature of a manifold M is the common value v, which is the number

of negative eigenvalues of the diagonalized metric g;; for every pointx € M.

Example 2.1 The simplest example is the Euclidean m-space E™, where the metric, with
respect to the Cartesian coordinates, is given by
1, if i=7,
9ij = 03 = @2)
0, if 2#7.
The space E™ = (R™, §) is called the Euclidean m-space and the Riemannian geometry of

this space is the metric Euclidean geometry.
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Example 2.2 Consider any two tangent vectors X = X i9;, Y = Y79;, defined on (M, g).
If the inner product is defined by

I(Xe o) ==Y XYY _+ > XY, 2.3)

i=1 i=v+1

then the metric g, denoted in this case by 7, is called a Minkowski metric and we call
(R™,n,) a pseudo-Euclidean space, denoted by EJ. If m > 2, IET is called the Minkowski
m-space; if m = 2, E} is called the Minkowski plane. A considerable part of this thesis is
devoted to the study of Killing tensors defined on the Minkowski plane.

Definition 2.4 A pseudo-Riemannian manifold M is said to be of constant curvature if its

sectional curvature is constant.

A pseudo-Riemannian manifold for which the curvature tensor vanishes is called flat. Sim-

ple examples are the Euclidean plane E? and the Minkowski plane Ef.

Example 2.3 [68] For m > 2,0 < v < m, the pseudo-sphere of radius r > 0 in the
pseudo-Euclidean space ET"*! is the hyperquadric

S™(r) = {x € E™*|g(x,x) = r*}. (2.4)

For v = 0, S7*(r) is the standard sphere S™(r) in E™. Note the pseudo-sphere S (r) is of

positive constant curvature K = .

Example 2.4 [68] Form > 2, 0 < v < m, the pseudo-hyperbolic space of radius > 0

in pseudo-Euclidean space E7it is the hyperquadric

H?(r) = {x € E7}g(x,x) = —r?}. 2.5)

Also, the pseudo-hyperbolic space HT(r) is of negative constant curvature K = -

1-2
2.2 The Lie derivative and the Schouten bracket

Recall, the set of all isometries of a pseudo-Riemannian manifold M forms a subgroup of
the group of all diffeomorphisms of M and carries the natural open topology. Furthermore,
it may be shown that this group has the structure of a Lie group (A brief description of Lie
group theory will be given in Chapter 2) with respect to the above topology and acts as a

Lie transformation group on M.
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Definition 2.5 Let (M, g) be a pseudo-Riemannian manifold, a diffeomorphism ¢: M —
M is an isometry if it preserves the metric

¢*gd>(x) = 9x, (2.6)

where ¢* is the pull-back map induced by @. That is, go(x) (P«2, ¢+¥) = gx(u,v) for any
u,v € ToM.

In components this can be given by the following formula

oy" oy°
Bz @grs (¢(X)) = gij (X), (27)
where z!,...,z™ and 3%, ...,y™ are the coordinates of x and ¢(x) respectively. We say

that a mapping ¢: M — M is a local isometry at a point x € M if there is a neighborhood
U C M of x such that ¢: U — @(U) is a diffeomorphism that satisfies (2.7).

It is easy to see that the identity map, the compositions of isometries and the inverse of
an isometry are also isometries. Therefore the isometries form a group, called the isometry
group of the manifold, denoted throughout this thesis by I(M). Since an isometry preserves
the length of a vector, and in particular that of an infinitesimal displacement vector, it can
be regarded as a rigid motion. For instance, the Euclidean group I(E™), which is the set of

the mappings of the form
p: x> Ax+t, AeSO(n), teE™,

is the isometry group of E™.
Let X be a vector field on M, X* the components of the vector field with respect to a
local coordinate system zt, . ..,z™. The flow generated by X is denoted by o4(x), which

isamap o: R x M — M, satisfying the following three axioms.
e 0p(x) =x,

e the map t ~ 0;(x) is a solution to differential equations determined by the vector
field,

* 01, (01, (X)) = 01y, (%)



Example 2.5 Let X = —yd; + z0,. Then the flow generated by X is given by
0:(x) = (zcost — ysint,zsint + ycost), x=(z,y). (2.8
Example 2.6 Let X = yd, + z0,. In this case the corresponding flow is
0:(x) = (zcosht + ysinht,zsinht +ycosht), x=(z,y). 29)

With the notion of the flow of vector fields, one can define the concept of the Lie
derivative, which evaluates the change of a vector field with respect to another vector field.

LetX,Y € X(M). Let X (M) denote the set of vector fields on M and F(M) the setof
smooth functions defined on M. Denote by o;(x) the flow corresponding to X, y = 0:(x).
We will compare the change of Y from x to y. Note that we can not simply take the
difference of these two vectors, because they belong to different tangent spaces. We need
to employ the push-forward map (o_.). to map Y|, € Ty M back to (o—¢)«(Y,) € TuM,
now the latter belongs to the same tangent space as Y|, we can make the difference of

these two and then take the limit of quotient of this quantity with ?.

Definition 2.6 The Lie derivative of a vector field Y with respect to a vector X is defined
by
.1
Lx Y], =lim =((0-2)«(Yly) = Y, (2.10)

where y = 03(x).
Remark 2.2 One can immediately verify that the following formulas hold true

1
LxY|, = P_I}&;(le—(ot)*(le))

1
= lim-
t—0 t

(Y‘y - (at)*(le))7

where y = 03(x) and z = o_:(x).
Definition 2.7 Let X, Y € X(M) and f € F(M), we define Lie bracket as follows.

(X, Y](f) = X(Y(£)) - Y(X(f)- (2.11)



It is straightforward to show that
LxY =[X,Y]. (2.12)

The Lie bracket or Lie derivative operator has the following important properties, which

are widely used in differential geometry and mathematical physics.

Proposition 2.1 Suppose X,Y,Z,X;1,X2,Y1,Y2 € X(M), ki,ko € R, and ¢ : M —
N is a diffeomorphism from M to a manifold N. Then the following properties hold true.

e bilinearity
(X, 5 Y1+ kYo = k[X, Y]+ kX, Yy,
1 Xy + koXo, Y] = ku[Xy, Y]+ ko[Xs, Y],
e skew-symmetry
X, Y] = -[Y, X],
e Jacobi identity

X, Y], 2] +[[ZX], Y] + [Y, 2], X] = 0.
Also one can prove directly the following useful formulas:
LxY = fIX,Y]-Y(H)X,
Lx(fY) = fIX,Y]+X(f)Y, (2.13)
(X, Y] [6.X, . Y].

Now one can extend the definition of the Lie derivative to general tensor fields. This

operator satisfy the following properties.
Proposition 2.2
Lx(t1+t2) = Lxti+ Lxto,
Lx(t1 ®t:) = (Lxt1) @ t2 +1t; @ (Lxta),

,C[X,Y]t = LxLvyt— LyLxt.
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In components one can write

Lxf = X*fr, feFM), (2.14)

k. _ vk ]
X, Y[ = XIvk-viXk (2.15)

To derive a formula for Lxt one needs to use the Leibniz rule and the following fundamen-

tal formulas,

L5(8;) =0, Ls(dz?)=0, Lx(da?)=X%dz*. (2.16)
where
_ 0 _of _
61_ 63:17 f,‘l._ axit 17 -m.
Therefore

(ﬁxt)i-l"'i-r _ tu g ka

J1-e2Js 'J1eeJas
kizodr yriy _ ., _ 11.dpm1k vip
tJl Js 'X tJI Js X
1101 k 1. z k
et XE gt X 2.17)

Definition 2.8 Let X € X(M). If an infinitesimal displacement given by €X, (e being
infinitesimal) generates an isometry, the vector field is called a Killing vector field. Thus,
X is a Killing vector field if and only if

Lxg=0. (2.18)

Now using Lie derivative formulas

Lxg (Lxgi;)dz* ® d? + gi(Lxds’) ® do? + gijda’ ® (Lxdz’)

= XFgyrds' @ do? + g;Xide* @ do? + gijda* @ XY ® do”

= (XFgijr + g X5 + g X%) do* © do. (2.19)
Since Lx g is a symmetric tensor field (see (2.19)) of type (0, 2), X is a Killing vector field
if and only if the following system of PDEs hold.

X*giip + g X5+ X5 =0, i,5,k=1,...,m. (2-20)
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A natural generalization of Killing vector fields is the notion of Killing tensor fields, which
turn out to be very important in problems arising in mathematical physics, including the
problem of integrable and superintegrable Hamiltonian systems and the problem of orthog-
onal separability in the Hamilton-Jacobi theory of separation of variables (see for example
[62, 4, 14, 18, 19, 44, 46, 34, 46, 39, 40, 41, 43, 52, 53, 54, 55, 56, 59,79, 80] as well as the
relevant references therein). Killing tensor fields can be defined via the Schouten bracket

[76]), which, we describe as follows.

Definition 2.9 [76] Let P and Q be two contravariant tensors of valence p+ 1and ¢ + 1,
then the Schouten bracket [P, Q] is a contravariant a + b — 1-tensor whose components are

specified in terms of local coordinates as follows.

p
[P’ Q]il‘“"p-l-q-l — (Z P(ir"ik-xl#lik"'i(p-l)) a”QiP"'i(p'.‘q-l)) +

k=1

p
(Z(_]_)kp[il"-ik-l]#Ifk"'i(p-n) 5#Qip---i(p+q_1)] _

k=1

g
(Z Q(ir"ij-llﬂlij-"i(q-x)) 0, Plaip+e-1) —

j=1

(Xp:(—l)f"“*’*q*"cz[ﬁ""'f—1'“lif"'i<«-1>) 8, P+, (221)

j=1

where (, ) and [, ] are the symmetrizer and skew symmetrizer respectively, and the notation

|| means that the signature y is excluded from the symmetrization or skew symmetrization.
Thus, if P, Q are symmetric, the second and last terms of (2.21 ) vanish, while if P, Q

are skew symmetric, then the first and third terms of (2.21 ) vanish.

Example 2.7 The Schouten bracket of two symmetric contravariant tensors P, Q of va-

lence two is given by (assume m = 2,z = z,2° = y.)

[P, Q]abc P,EiabQC)d _ Qf;lb pod

szch)l + Rglach)2 _ Qfngc)l _ Qfngcﬁ.
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Thus, for example

1

[P’Q]uz — 3

( P’Ede + P,}iszl + dele1 _ Q’ldl pd2 Q}dz pdt _ Q’Zdl Py
- %(13’121Q12 + 13’;16222 . P,1z2Q11 + 1”;2@21 + P,zlen + P,?Qm
—Q}j pl2 _ Qlyl p22 _ lez plt _ Q,ly2 p2t _ sz1 pll _ Qz; P2
— %(P};le - Pszz + 2P’1,_.2Qu + 213,;2@12
__Q’I;.Plz _ Q’lyIP22 _ 2Q,1;,,2Pu _ 2ny2P12).

We remark that (2.21) for the case p = ¢ = 0 is equivalent to (2.15).

2.3 Generalized Killing tensor fields
Let (M, g) be an m-dimensional pseudo-Riemannian manifold of constant curvature.

Definition 2.10 A symmetric contravariant tensor K of valence n defined in (M, g) is said
to be a generalized Killing tensor (GKT) of order p if and only if

[..-K,4l,g],--.,9] =0 (p+1brackets), 2.

o
[
N
—

where [, | denotes the Schouten bracket (2.21).

It follows immediately from the R-bilinear properties of Schouten bracket that GKTs
of the same valence and order constitute a vector space. Note that GKTs of order zero are

the standard Killing tensors defined by the system of over-determined PDEs
K, g]l=0. (2.23)

The concept of a generalized Killing tensor defined on the Minkowski space ET* was in-
troduced by Nikitin and Prilipko [62] as a generalized symmetry of Klein-Gordon-Fock
equation. The authors also derived the formulas for the dimensions of the vector spaces
that GKTs constitute. More recently, these differential geometric objects were indepen-
dently re-introduced in a more general setting by Eastwood [18, 19] within the framework
of the study of over-determined systems of PDEs by the methods of representation theory.
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More specifically, it has been shown that the vector space of the soluticns of the over-
determined system of PDEs (2.22) is preserved by the action induced by SL(m + 1,R).
From this perspective the author defines such a vector space as an irreducible representa-
tion of si(m + 1, R) (see also [51]), and then derives the formula for the dimension of the
vector space Ko (M) of the generalized Killing tensors of valence n and order p defined
on (M, g). The dimension d of the vector space K3 (M),n > 0,p > 1 is determined by
Nikitin-Prilipko-Eastwood (NPE) formula:

d=dim K3() = 222 (n o 1) (p ;"_“le) , (224)
where m = dim M. We immediately recognize that for p = 0 the formula (2.24) reduces
to the Delong-Takeuchi-Thompson (DIT) formula (see [51] and [54] as well as the relevant
references therein for more details). Moreover the elements of X7 (M) are specified by d

arbitrary parameters ay, . . ., a4, Where d is given by (2.24), with respect to a given basis.

Example 2.8 Consider the contravariant Killing tensors of valence two on the Euclidean

plane E2, the equation (2.23) with respect to the Cartesian coordinates (z, y) amounts to
Ki+KF+K¥=0, ot=z,2=y, (2.25)
which is a system of over-determined PDEs

8,K2 =0, 8,K2+20,K"? =0,

(2.26)
0K =0, 9,K"™+20, K" =0.
Solving (2.26), we obtain the following general formula
a1 + 2a4y + asy® az — 4T — a5y — A6TY
K= . 2.27)
Q3 — Q4T — G5y — GgTY Qo + 2a5T + agT>

Note that the parameters a;, 7 = 1,...,6, appear as constants of integration. The
number of these constants represents the dimension of the vector space of Killing tensors

of valence two defined on the Euclidean plane.

If n = 1,p = 0, the equation (2.22) reduces to Lxg = 0, i.e. (2.18). The solutions are
Killing vector fields, which will be the subjects of the following section.
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2.4 Killing vector fields

Recall Killing vector fields (see Example 2.8) are the vector fields whose infinitesimal
displacements generate isometries, that is, the metric remains constant with respect the
flow generated by the vector field. Thus, the local geometry does not change as one moves
along the flow generated by a Killing vector field. In this sense, the Killing vector fields
represent the direction of the symmetry of a manifold.

There may be more independent Killing vector fields than the dimension of the man-
ifold. Note that the number of independent symmetries has no direct connection with the
dimension of M, the maximum number, however, does. Indeed, when M is of constant

curvature, we know that this number is §m(m + 1), where m = dimM.

Example 2.9 Consider Killing vector fields on the Euclidean plane E2. The Killing equa-

tion (2.20) reads, with respect to the Cartesian coordinates (z, y)
Xi=0, X3=0, X3+X3=0, z'=z,2=y. (2.28)
Solving (2.28), one arrives at the general solution
X = (a1 + a3y)0: + (a2 — a3z)0,. (2.29)
‘We note that there are three independent Killing vectors
X=0;, Y=0, R=-y0;+z0, (2.30)

corresponding to the translations and the rotations respectively. Their commutator relations
are given by
X, Y]=0, X,R]=Y, [Y,R]=-X (2.31)

Note also that these basic Killing vector fields generate the Lie algebra i(E2) of the isometry
group I(E?).

Proposition 2.3 [69] A vector field X defined on a manifold M is a Killing vector field if
and only if the mapping Y — 7vX, (Y € X(M)) is a skew-symmetric tensor of type

(1,1).
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Proof Using the properties of Lie derivative (see Proposition 2.1) and covariant differen-

tiation, one can write

(Lx9)(Y,Z) = (vx9)(Y,Z)+ (Vvy¥X,Z)+ (Y, VzX)

Therefore Lxg = 0 if and only if (VvX, Z) = —(Y, vzX) forall Y, Z. This means that
the mapping Y — vy X, (Y € X(M)) is a skew-symmetric tensor of type (1,1). n

Example 2.10 [60] Consider the Killing vectors defined on the Minkowski space-time E4,
the Killing equation reads (with respect to the pseudo-Cartesian coordinates)

Xi+ X, =0, (2:33)
solving which one sees that X* is at most the first order in z, with the constant solutions

X, =6, 0<igs, (2.34)

which correspond to space-time translations. Now let X; = a,-ja:j , where a;; is constant. It
follows from (2.33) that a;; is skew-symmetric with respect to z, J. Since (‘;) = 6, there are
6 independent solutions of this form, three of which are given by

Xao =0, X@m = €mnz",  1<4,mn<3 (2.35)
corresponding to spatial rotations about the z*-axis, while the others are
Xgp =2, Xgp=—0xz", 1<5,k<3. (2.36)

which correspond to Lorentz boosts along the z7-axis.

On the m-dimensional (m > 2) Minkowski space-time, there are —5— m("‘"'l)

independent
Killing vector fields, m of which correspond to translations, m—1 to boosts and (1‘—?1—)2(’";2)
generate space rotations. This is an example of a maximally symmetric space in the sense

m(m+1)

that an m-dimensional space admits at most =5— independent Killing vectors.

Proposition 2.4 [69] The set of Killing vector fields forms a Lie algebra i(M) of dimension
< im(m +1).
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Let us look at another example.

Example 2.11 [60] Let S? be the unit sphere in the Euclidean 3-space with the metric given
by g = df ® df + sin? § dp ® df. Then the Killing equations are

03Xy =0,
204X + 2sinf cos X4 = 0, 2.37)
39X¢ + 3¢Xg —2cotfXy =0.

Solving the system of PDEs (2.37), one arrives at the following general formula for a
Killing vector field

X = X8, +X%9,
= a;(sin ¢ dy + cos @ cot 0 8,) + a20,

a3(cos ¢ 5 — sin ¢ cot 8 0,). (2.38)
The three basic Killing vectors,
K: = —cos¢dy+ cotf sing0y,
K, = singd +cotf cos @y, (2.39)
K. = 0

generate rotations round the z, y and z axes, respectively. Also notice that these Killing
vectors generate the Lie algebra so(3), which reflects the fact that S? is the homogeneous
space SO (3)/SO(2) and the metric on S? retains this SO (3) symmetry. In general we
have S™=S0 (m + 1)/SO (m), which, with respect to the usual metric, has $m(m + 1)
independent Killing vectors. They, in turn, generate the Lie algebra so(m + 1).



Chapter 3

Classical Invariant Theory

In this chapter we briefly review the basic ideas of the classical invariant theory (CIT) of
homogeneous polynomials. Ultimately, this will establish a prerequisite language to be
used later in the invariant theory of Killing tensors (ITKT) defined on pseudo-Riemannian
spaces of constant curvature. In particular, in Section 3.1 we describe the notion of a vector
space of binary forms, as well as the corresponding notions of an invariant and covariant of
binary forms that form the back bone of CIT. The concept of an invariant is also extended
to general Lie group actions. In the next section we proceed to introduce the method of in-
finitesimal generators and the method of moving frames in its modern formulation and show
how they can be effectively employed to compute invariants, covariants and joint invariants.
As an illustration of the method of infinitesimal generators, we review the classical result
known as the 1856 lemma of Cayley. It concerns the problem of the determination of the
infinitesimal action of the special linear group SL(2, R) on the vector space of binary forms
of arbitrary degree. An analogue of this classical result in ITKT has been obtained in [39]
and will be presented in Chapter 5.

As is well-known, CIT studies intrinsic properties of polynomials, that is, those proper-
ties that remain fixed with respect to changes of coordinates. A number of eminent math-
ematicians, including Gauss, Hilbert, Cayley, Gordan, Sylvester and others worked in this
area and made significant contributions that shaped CIT. In recent years CIT has reinvented
itself once again through new aspects of Lie group theory (notably, the generalizations of
the moving frames method due to Fels and Olver [22, 23] and Kogan [50], see also the rele-
vant references therein), the rise of modern computer algebra and new applications in other
areas of mathematics (see Hilbert [31] and Olver [67] for a complete review and related

references).

17
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3.1 Binary forms, invariants and covariants

Ore of the main goals of CIT is to solve the problem of the determination of complete
sets of the invariants and covariants of the vector spaces of homogeneous polynomials.
These sets can be used to solve the intimately related problems of equivalences and canon-
ical forms. They, in turn, can in principle completely characterize the underlying intrinsic
properties of a given polynomial. Of particular importance are the vector spaces of homo-
geneous polynomials of arbitrary degree in two variables, called binary forms (referred to

by Cayley [10] as quantics).

Definition 3.1 A binary form of degree n defined over reals is given by

P(z,y) = Z (n) az'y", T,y eR (3.1)
=0 t

The set of all binary forms of degree n constitutes a vector space, denoted by P™ (R?). To

consider the intrinsic properties of forms, one introduces a change of variables given by a

(real) general linear transformation:

a B
Z=ox+ By, §=vr+dy, € GL(2,R). (3.2)
v 6
Define
P(%,9) = P(az + By, vz + §y) = P(z,y). (33)

This means that P(z,y) is mapped into P(Z, 7) under the linear transformation (3.2). In
this case the transformation (3.2) induces the corresponding change for the coefficients of
the binary forms. The general formula is presented in [67] as follows.

n mingi,k} N\ fn—i
a; = Za’k Z ( ) ( ) of BEIgimigntizick - i=0,...,n. (3.4

k=0  j=max{oi+k-n} k—J
Denote by & the parameter space of the vector space P"(R?) spanned by ag, - - -, @,
then dim P*(R?) = n + 1. We define now the concepts of an invariant and a covariant of

binary forms.
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Definition 3.2 [67] A GL(2, R)-invariant I of weight k of P™(R?) is a function ¥ — R
that satisfies
I(ag, ..., a,) = (@b — B7)*I(Go, - ., @n) (3.5)

under the transformation (3.4).

More generally, we can consider the action of a Lie group G on an m-dimensional manifold
M. We first briefly review the fundamental notations regarding Lie group, Lie transforma-
tion groups and Lie group actions. More details can be found in the Monograph by Olver
[67].

Definition 3.3 An analytic Lie group G is a group which carries the structure of an analytic
manifold in such a way that the group multiplication (@, ) — a-b, a,b € G and inversion

a— a~t,a € G define analytic maps.

Definition 3.4 A Lie transformation group is a Lie group G which acts on an m-dimensional
vector space X analytically. This means that the group action w(g,X) = g - x defines an
analyticmap G x X — X.

A Lie group of dimension m is often referred to as an m-parameter group. The param-

eters here are the local coordinates that the group elements depend on.

Example 3.1 The simplest example of an m-parameter Lie group is the Euclidean m-space
E™, one system of coordinates is the usual Cartesian coordinates (z?,...,z™) € E™. It
is trivial to see that the group operations, namely vector addition x + y and inversion —x,

depend analytically on the coordinates.
Example 3.2 [67] The general linear group GL(2,R) that consists of all 2 x 2 matrices
of nonzero determinant forms an analytic 4-parameter Lie group. The (global) parame-

ters are the entries ¢, 3,7, 6 of the general nonsingular matrix A = ( « ? ) . We can
Y

identify GL(2,R) = {A = ( * /; ) , ad — By # 0} C R* as an open subset of a four-
Y

dimensional manifold. Clearly matrix multiplication and inversion are analytic functions

in the entries.
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We remark that GL(2, R) consists of two connected open subsets of R*, distinguished
by the sign of the determinant. The subset GL(2,R)™ = {4 € GL(2,R), detA > 0}

forms a 4-parameter subgroup: the group of orientation-preserving planar linear maps.

Example 3.3 [67] The special linear group SL(2,R) forms a three-dimensional subman-
ifold of R*, defined by the condition ad — By = 1, which is a regular level set of the
determinant function. Since the group operations of matrix multiplication and inversion
are still analytic when restricted to SL(2, R), it is a three-parameter analytic Lie group.
Note there is no convenient global parametrization, one can introduce local parameters on
specific open subsets. For instance, on the subset where @ # 0, the matrix can take the
o B

v a1+ 67)
group. Similarly, if v # 0, one can use the same condition to solve for 8 = v~ *(ad — 1)

following form A = ( ) . Thus we use ¢, 5 and ~ to parametrize the

and therefore use «, v, d as local coordinates.

‘We now define the concept of an invariant of a Lie group action.

Definition 3.5 Let G be a Lie group acting on a vector space X. A real-valued function
I: X — RisaG-invariant if and only if I(g-x) = I(x) forallx € X and all g € G.
If the above condition holds only for all g € H, where H C G is some neighborhood near
the identity I of G, then the function I is called a local invarianz.

Example 3.4 Let X be the Euclidean plane E? and G the rotation group SO(2, R).
Z =zcost—ysint, Y =zsint+ycost, teR. (3.6)

Then the distance function r from the origin to the point (z, y) is an invariant (so is any

function F(r) thereof), since
(zcost — ysint)? + (zsint + ycost)? = z% + 2.

Thus a circle centered at the origin is a rotationally invariant subset of the Euclidean plane.
Since the circle contains no other rotationally invariant subsets, it is an orbit of SO(2, R).
Any other invariant subset of SO(2,R) must be the union of circles that are centered at

the origin. Note that the only fixed point of the rotation is the origin. Two points that
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lie in the same circle (centered at the origin) are equivalent, and the origin itself is an
equivalence class. For each equivalence class, we can, for example, choose (r,0) (r 2 0)
as its canonical form. We conclude that, by using the above invariant, the problem of
equivalences and canonical forms can be completely solved.

In CIT, sometimes it is not sufficient to solve the equivalence problem in question by
just knowing invariants. In such a case one needs to consider those functions depending on
both the parameters and the coordinate variables that remain unchanged. This leads to the

definition of a covariant of binary forms.

Definition 3.6 [67] A GL(2,R)-covariant C of weight & of P*(R?) is a function TxR? —
R that satisfies

C(ag, - - -+@n, T, y) = (a6 — B7)*C(aq, - - - , &, £, 7) 3.7
under the transformation formulas (3.3 ) and (3.4).

Remark 3.1 It is easy to see that, an invariant is necessarily a covariant - it is just a co-
variant which is independent of the coordinates. The simplest example of a covariant is the

binary form itself.

With the above notions in mind, we now recall a well-known example [67], which serves

to demonstrate the main features of CIT.
Example 3.5 The general quadratic binary form is of the form
Q(z,y) = ae7® + 2017y + agy®, T,y €R. (3.8)
The action of GL(2, R) on the parameter space & spanned by ao, a; and az is given by
a; = b+ 2ayd; + ¥3ao,
a1 = By + (ay+ B7)a1 + vddo, (39
ay = [ay+ 266G, + 6%ao.

One claims that the quantity A = agaz—a? is an GL(2, R)-invariant according to Definition

3.2. Indeed, we have the following formula

A = (ary — B6)?A. (3.10)



This can be verified as follows.

AR RO

and the quadratic forms can be represented as matrix products

Qz,y) = (:r:,y)(z2 Zl>(

QE,9) = (5,@)(?2 fl) (ﬂ?) (3.12)
ay Q Yy

Qz,y) = Q9

In view of (3.11) and (3.12) one can write

FOGIEED
ar Go B é @ G v 6

and the formula (3.10) follows easily from (3.13).

This is not surprising, since A = axaq — a3 is the discriminant of a quadratic form.
The equivalence classes and canonical forms of homogeneous quadratic binary forms are
solved in the following Table 3.1(see [67]).

[ Equivalence class | Canonical form | Invariant |
1 T* +y* A>0,Q(z,y) >0
oI Ty, Or T° —Y° A<0
v z* A=0,Q(z,y) 20
VI 0 Qz,y) 20

Table 3.1: Canonical forms for real quadratic forms

One can use the fundamental invariant A to describe the underlying geometry which is

defined by (3.8). Note that all centrally symmetric conic sections in [E? are given by
Q(z,y) = az® + 2017y + apy? = constant, (3.14)

they can be classified in the following.
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o if A, ag and Q(z, y) are of the same sign, then (3.14) defines an ellipse,
e if A -ap <0, then (3.14) defines a hyperbola,

e if A =0 and ay # 0, then (3.14) defines a pair of straight lines.

Remark 3.2 If we consider the action of the special linear group SL(2, R) on the vector
space P™(RR?), then the invariants appear to be of weight zero due to the fact aé — Sy = 1.

This is the case we will consider later in this chapter.

We observe that the above example shows that group invariants are very effective in classification-
type problems. This will be further illustrated with more advanced examples in the study
of Killing tensors.

The main problem of CIT can be summarized as follows [54].

Problem 3.1 Determine the linear action of a group G in a K-vector space V. Then in the
ring of polynomial functions K[V describe the subring K[V|° of all functions in V that

remain unchanged under the action of the group G.

To solve a more general problem of determining the space of invariants, one needs to
find a set of fundamental invariants in the sense that any other invariant can be expressed
as a function of the fundamental invariants. Thus, the fundamental invariants are neces-
sarily functionally independent. For our purposes, we concentrate on the determination of
invariants, covariants and joint invariants of Lie group actions on vector spaces. To find
a complete set of fundamental invariants, one first determines the number of fundamen-
tal invariants, which, in the case of a regular Lie group action, can be specified by the

fundamental theorem on invariants (Theorem 3.1 below).

Theorem 3.1 [67] Let G be a Lie group acting regularly on an m-dimensional manifold
M with s-dimensional orbits (see Definition 3.8 for semi regular and regular Lie group
actions). Then, in a neighborhood U of each point xg € M, there exist m — s functionally
independent G-invariants Ay, . .., Ap_s. Any other G-invariant T defined near xg can be

locally uniquely expressed as an analytic function of the fundamental invariants through

T=F(Ay..., Amcs)- (3.15)
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The fundamental invariants can be employed to distinguish between the orbits near a
point in the sense that, two points x,Xq € U are equivalent (meaning that they belong to

the same orbit) if and only if all the fundamental invariants agree:
Ai(x) = Ai(%0), t=1,...,m—s.

To determine s and the subspaces of X where the group acts with orbits of the same

dimension, one employs the following proposition [67].

Proposition 3.1 Let G be a Lie group acting on an m-dimensional manifold M, g is the
corresponding Lie algebra and let x € M. The vector space S|, = Span{V;(x)| V; €
g} spanned by all vector fields determined by the infinitesimal generators at X coincides
with the tangent space to the orbit O of G that passes through %, so S|x = TOxlx.
In particular, the dimension of O equals the dimension of S|x. Moreover, the isotropy

subgroup Gy C G has dimension dimG —dim Ox =7 — s.

There are many methods available for computing invariants. We are mainly interested in
the method of infinitesimal generators and the method of moving frames, both of which

prove potent in the invariant theory of Killing tensors.

3.2 The method of infinitesimal generators

The method of infinitesimal generators is a powerful method that can be used to compute
group invariants. In this section we briefly describe this method as applied to the 1856
lemma of Cayley in CIT.

3.2.1 One-parameter subgroups of transformations

As has been found by Sophus Lie, the most important group actions that appear in geometry

and invariant theory are those acting analytically on a manifold.
Example 3.6 The action of GL(m, R) on E™ is given by the usual matrix multiplication
w(4,x)=A-x, AeGL(m,R), xe€E™. (3.16)

Note the action of a subgroup of GL({m,R) can be considered similarly, which may act
on a smaller space. For instance, the orthogonal group O(m) acts in S™~(r), a sphere of

radius r.
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Definition 3.7 [67] An orbir of a transformation group G is a minimal nonempty G-

invariant subset. In particular, a fixed point is a G-invariant point.

In general orbits can have differing dimensions, including fixed points, which have
dimension 0.
To have a better picture of a transformation group, one needs to deal with semi-regular

and regular Lie group actions.

Definition 3.8 [67] Let G be an r-parameter Lie group acting on a manifold M. The group
action is said to semi-regular if all its orbits have the same dimension. A semi-regular
group action is regular if, in addition, each point p € M admits a system of arbitrarily
small neighborhoods NV, whose intersections with each orbit O are (pathwise) connected
subsets N, N O of the orbit.

A Lie group G C GL(m, R) that forms an analytical submanifold of the general linear
group GL(m, R) is called a matrix Lie group. Each Lie group contains different kinds of

subgroups, among which are the one-parameter subgroups.

Definition 3.9 Let G be a Lie group. A one-parameter subgroup of G is a group homo-
morphism ¢ : R — G that satisfies

a(t)(o(s)) = ot + ). (3.17)

Example 3.7 [67] Consider the one-parameter subgroups of GL(m, R). Any nonzero ma-
trix A € GL(m, R) defines a one-parameter subgroup as follows:

Hy= {4, te R} (3.18)

The matrix A is called an infinitesimal generator of the one-parameter subgroup Hy4. In-
deed, since ieaiti o= A, if we look at the one-parameter subgroup H4 as a matrix-valued
curve, say o(t), then A can be identified as the tangent to the curve at the identity I = a(0).

Thus, H 4 is the unique solution to the initial value problem
— =Ao, o(0)=1L (3.19)

Notation: Throughout the thesis, I stands for the identity element of the underlying trans-
formation group G.
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Suppose G C GL(m, R) is a matrix Lie group, then the set
g={Ale" € G} (3:20)

of all matrices such that their one-parameter subgroups are contained in G is a subspace of
gl(m, R). This matrix Lie algebra is called the space of infinitesimal generators of G and
g ~ TG|;. Taking into account the commutator relations of the infinitesimal generators,
one sees that not every subspace of the matrix Lie algebra gl(m, R) is a matrix Lie algebra.

It turns out that a subspace of gl(m, R) which is closed under the matrix commutator
[A,B]=AB~BA
is a Lie subalgebra.

Example 3.8 [67] The Lie algebra g{(2, R) of the Lie group GL(2, R) is generated by

=(20) (1 ) (23] 3o
00 0 -1 10 01

The first three, namely A~, A% and A™ span the Lie algebra s/(2, R) of the special linear
group SL(2, R), with the commutator relations:

[A=, A% = =24~ [A7,AT]=4" [AT, A" =24 (3.22)

The corresponding one-parameter subgroups are

(1t) (a o) (10)
, , . (3.23)
01 0 et t 1

3.2.2 Infinitesimal invariance criteria

If we identify the infinitesimal generators of a transformation groups with differential op-
erators, we can then employ analytical methods to compute the group invariants. Let
G C GL(m,R) be a matrix Lie group that acts on an m-dimensional manifold M, g C
gl(m,R) is the corresponding Lie algebra. Then for each infinitesimal generator A of a
one-parameter subgroup {e#}, the associated infinitesimal generator V 4 of the action G
in M can be realized as a first order differential operator such that

Vu(F(x)) = -:—t Fle %), (3.24)
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where F' € F(M). Thus, if F' is an invariant under the one-parameter group action defined
by A, it is necessarily annihilated by the vector fietld V 4. In fact, F is G-invariant if and
only if [67]

Va(F)=0, i=1,...,1 (3.25)

where V4,7 = 1,...,r are defined by (3.24) and A;,¢ = 1,...r are generators of those
one parameter subgroups of G that span g.

Thus the problem of the determination of G-invariants is now reduced to solving a
system of first order linear homogeneous PDEs (3.25). For specific group action, one can
find the infinitesimal generators by making use of formula (3.24).

This idea was first introduced and employed by Cayley [10] to compute the invariants

of binary forms. Now let us consider a simple but elucidating example.

Example 3.9 [67] Consider the action of the special linear group SL(2, R) on the vector
space Q?(R?). The three dimensional Lie group SL(2, R) acting on R? induces the corre-
sponding action on the parameters (3.9).

The three infinitesimal generators of sl(2,R) and their corresponding one-parameter
subgroups are given in Example 3.8 . Employing (3.24), one obtains the three (3.24) in-

finitesimal generators of the group action on the parameter space.
V- = 20,0, + a20,,,
VO = —2(1060,0 + 20:280,2, (3‘26)
vVt = a05a1 + 20.1842.

It is easy to very that their commutator relations are
V=,V ==2V", [V7,V¥]=V° [V¥, V=2V (3:27)

which are the same as (3.22). Thus an SL(2, R)-invariant I of Q*(R?) must satisfy simul-
taneously
V-(I)=0, V°(I)=0, V+{I)=0. (3.28)

Solving the system of PDEs (3.28) by the method of characteristics, one recovers the fun-

damental invariant A = aga; — a?.
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Remark 3.3 Looking at the three vector fields (3.26), we see that the group acts with
two-dimensional orbits, namely, the space spanned by (3.26) is two-dimensional. Thus,
according to the fundamental theorem on invariants (Theorem 3.1) the expected number of

fundamental invariantsis 3 — 2 = 1.

3.2.3 The 1856 lemma of Cayley

Arthur Cayley (1821-1895), an eminent English mathematician of the 19th century, made
many significant contributions to a number of areas of mathematics, including algebra, in-
variant theory, projective geometry and group theory. Note that Lie’s infinitesimal method
allows one to replace rather complicated nonlinear group transformations by simpler in-
finitesimal counterparts, leading to a system of linear first order homogeneous PDEs. The
key step is to identify the infinitesimal generators of the Lie group action as the form of
differential operators. A. Cayley was the first to observe the importance of these operators
in the context of binary forms, which was many years before S. Lie arrived at the same
scene. In spite of the fact that Cayley thought of this as of something pertinent only to
the general linear group and its subgroups, his results in this area may be considered as a
precursor to Sophus Lie’s theory of abstract Lie groups that was developed later in the 19th
century. In his “second memoir on quantics” [10] Cayley considers (in modern mathemat-
ical language) the problem of the determination of the action of the Lie group SL(2,R) on
the vector space P"(R?) in conjunction with the problem of computing the invariants. The

main result is the subject of the following lemma (Cayley [10], see also Olver [67)).

Lemma 3.1 (Cayley, 1856) The action of SL(2,R) on the vector space P™(R?) defined

by (3.1) has the following infinitesimal generators on the parameter space %.:
V- = 16,0, + (n—1)a2ds;, +- -+ + 26010, + @n0an_y)
V0 = —nagdy, + (2 —n)a10,, + -+ + (1 — 2)an-10a,_, +N0n0s,, (3:29)
V* = aglyy + 2018, + -+ + (1 — 1)@n-20e,_, + nan-10s,,

where



Observe that the vector fields (3.29) enjoy the following commutator relations
V-,V =-2V", [V-,Vi]=V?, [VFV)]=2V" (3.30)

which (comparing with (3.22)) confirm that the generators (3.29) represent the action of .
SL(2, R) on the parameter space £. In view of the above, solving the problem of the deter-
mination of the SL(2, R)-invariants of P™(R?) now amounts to solving the corresponding
system of PDEs determined by the vector fields (3.29):

V7(F)=0, VF)=0, V*(F)=0 (3:31)

for an analytic function F defined on .

We immediately notice that the result of Example 3.9 agrees with Cayley’s lemma, that
is, the three infinitesimal generators can also be derived by directly using Cayley’s lemma.
Furthermore, one can employ Cayley’s lemma to compute the covariants of binary forms

of degree n.

Corollary 3.1 [67] A Function C is an SL(2, R)-covariant of P™(R?) if and only if
U-(C)=0, UC)=0, U*(C)=0. (3.32)
Where

U =V~ -y, qUt =Vt —29,, U'=V'-zd,+y9, (3.33)

To solve the systems (3.31) or (3.32), one normally employs the method of characteﬁstiés.
It works in many cases, but not always, due to computational difficulties. More specifically,

for a one-parameter group action, we only need to solve a first order, linear PDE,

or oI
1— LIRS — -
vV pr +ee V" pye 0, (3.34)

where V = (V3,...,V™) is the infinitesimal generator. PDE (3.34) can be solved by

integrating the corresponding characteristic system [65]

dt _

== T (3.35)
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We thus obtain m — 1 functionally independent solutions
Il(xl’ oo 7$m) = 1,

(3.36)

In—1(z!,...,2™) = Cpme1,

where ¢y, . . ., Cm—1 are arbitrary constants. The functions I, . . ., I,—1 01 the left hand side
of (3.36) form a complete set of the fundamental G-invariants. For a multi-parameter group
action, one has to deal with a system of first order, homogeneous PDEs resulting from those
infinitesimal generators. That is, one will have to look for those functions that are annihi-
lated by all the infinitesimal generators simultaneously. This can be computationally very
challenging. One way to proceed is to solve for the invariants of one generator (a vector
field). Using these invariants as new coordinates one rewrites the remaining generators. We
continue this process until the required number of fundamental invariants are found. An
interesting and elucidating example in ITKI is Example 4.1 in Chapter 4. For more details
and other examples, see, for example, Olver [65].

Generally, computer algebra may be used to alleviate the difficulty. Indeed, in the
invariant theory of Killing tensors the combination of a computer algebra package (for
example MAPLE) with the method of undetermined coefficients has been very successful
in solving the problem of the determination of fundamental invariants (see, for example,
Horwood er al [34]).

3.3 The method of moving frames

The method of moving frames, introduced originally by Cartan [9], is 2 powerful technique
that can be employed to solve a wide range of classification-type problems. This method
was recently reformulated by Fels and Olver [22, 23, 67, 66] and has seen many appli-
cations in various areas of mathematics and mathematical physics. See also Kogan [50],
Bouten [7]. We very briefly review the basic definitions and results of the moving frames
theory in its modern formulation (see Olver [67] for a complete review).

The simplest example of a moving frame is the Frenet frame {t,n} of a regular curve
~ € E? parametrized by its arc length. In this case the equivariant map assigns to each point

on the curve v(s) the corresponding frame {t(s), n(s)}. Clearly, the moving frame along -y
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can be obtained from a fixed frame via a combination of rotations and/or translations. This
puts in evidence that there is a natural isomorphism between the moving frame and the
orientation-preserving isometry group (the Euclidean group) [ (E?). This is the essence of
the later generalizations of the moving frame method [28, 29, 30], where the moving frame
was viewed as an equivariant map from the space of submanifolds to the group itself.
In recent works [22, 23, 50] the classical moving frame method was further generalized
to completely general transformation groups, including infinite-dimensional Lie pseudo-
groups . Ultimately, the authors have succeeded in bringing the theory up to the level

where the bundle of frames is no longer needed.

Definition 3.10 Let G be a Lie group acting on a vector space X. Amapp: M —+ G is
said equivariant if p(g - x) = p(x) - g~

Definition 3.11 [67] A moving frame is a smooth, G-equivariant map p : M — G, where
G is an r-dimensional group acting smoothly on an m-dimensional underlying manifold
M.

Theorem 3.2 A moving frame exists in a neighborhood of a point x € M if and only if G

acts freely and regularly near x.
To construct a moving frame, one employs Cartan’s normalization method [9].

Theorem 3.3 [67] Let G act freely and regularly in an m-dimensional manifold M and
K C M be a (local) cross-section to the group orbits. Given x € M, let g = p(x) be the

unique group element that maps X to the cross-section:
g-x=p(x)-x€K.

Then
p:M->G

is a right moving frame.

More specifically, let x = (z!,...,z™) € M be local coordinates. Consider the explicit
formulas for the coordinate transformations induced by the action of G: w(g,x) =g - x.

=1 1 .
z - w1($7"'1xmagl:"'7g1‘)7

(3.37)
1

81
3
|

= wn(zh..., 2™ 01, 9r)-
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The right moving frame g = p(x) can be constructed by making use of a coordinate cross-

section

K={z'=¢,...,5" =},

where ¢;,i = 1,...,r are some constants and solving the corresponding normalization

equations
wl(ga X) = Cn

(3.38)

wr(g,x) = &
for the group G locally parametrized by g = (g1, ..., g-) in terms of the local coordinates
(z!,...,z™). Substituting the resulting exi:ressions for gi,...,gr in terms of the local
coordinates (z!,...z™) into the left hand side of the remaining m — r formulas of (3.37)

yields a complete set of fundamental G-invariants.

Theorem 3.4 [67]1Ifg = p(X) is the moving frame solution to the normalization equations
(3.38), then the functions

7ANY wr11(p(x), %),

(3.39)

Dmer = wm(p(x),%)

form a complete system of fundamental G-invariants.
Remark 3.4 There may be more than one way of choosing a cross-section.

Definition 3.12 Let G be a group acting on a space X . The action is called transitive if for
any two points X,y € X there is an element g € G such that g(x) = y.

Obviously, if the group action is transitive, then there is only one orbit.

Definition 3.13 Let G act on X. For a given point x € X, the symmetry group Gx = {g €
G.g(x) = x} is called its Jocal isotropy subgroup. The action is called free if all of the
local isotropy subgroups are trivial.
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Example 3.10 [67] Consider the planar Euclidean group SE(2) = SO(2) x E? acting
on the Euclidean plane E. The group action is transitive and there is only one orbit. It
follows that there is no invariant. We can, however, extend the action to find differential
invariants. Let I" be the curve denoting the graph of a function y = f(z) and letX = Rx+a
(x = (z,9),a = (a,b) € E?, R € SO(2)) be an Euclidean transformation, which is given
by
z = zcost— f(z)sint +a,
(3.40)
7 = zsint+ f(z)cost+b.
Denote the transformed curve of I' by I = RT + a, then T will be the graph of § = f(%).
The transformed function f can be derived by eliminating z from (3.40). The first pro-
longation of this group action maps the tangent line to curve I" at point x to the tangent line
to T at the corresponding point %, (that is consider the action on the space (z, f(z), f'(z)))
and the second prolongation will be defined to map the osculating circle at x to the oscu-
lating circle at X (that is consider the action on the space (z, f(z), f'(z), f"(z))) and so
on. The explicit formulas for the transformations can be obtained by using the implicit
differentiation of (3.40),

. sint + f'(z) cost
@) cost — f'(z)sint’ (3.41)
f//(j) — f”(x) .

(cost — f'(z)sint)®”

Now we can introduce new variables v = f’(z) and w = f”(z). In view of (3.40) and
(3.41) we arrive at the prolonged action of SE(2) on E*

I = zcost—ysint-+a, (3.42)
§ = xsint+ycost+b, (3.43)
o o
o = d : (3.45)

(cost — vsint)3’

where £, a, b are the coordinates that parametrize the group SE(2). The dimension of the

orbits of this group action < 3 and the action is not zransitive. According to the fundamental
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theorem on invariants of regular Lie group action (Theorem 3.1) one can expect4 — 3 =1
fundamental invariant. We can employ the method of moving frames.
Consider the cross-section K = {z = y = v = 0}, which defines the corresponding

normalization equation

zcost—ysint+a = 0,
zsint+ycost+b = 0, (3.46)
sint+wvcost 0

cost—uvsint
Solving (3.46) leads to the following moving frames map

t = —tan

a = —

it (347)

Substituting the moving frame map (3.47) into the right hand side of (3.45), we obtain the

fundamental invariant
w

ERTETDEE
We see that the above invariant is indeed the curvature function of the curve. This shows

A (3.48)

that the group action preserves the curvature, which agrees with the results in the classical
differential geometry of curves and surfaces.

This method will be employed again in the computation of isometry group invariants

of Killing tensors in the following chapters.



Chapter 4

Invariant Theory of Killing Tensors

4.1 Introduction

In this chapter, we describe in detail the invariant theory of Killing tensors (ITKT) defined
on pseudo-Riemannian spaces of constant curvature, including the introduction of the the-
ory, the concept of an invariant, the new concepts of a covariant and a joint invariant of
Killing tensors. We will also give the main problems and main methods for computing
invariants.

In Section 4.2 we incorporate the basic ideas of ITKT from CIT, and pose the main prob-
lems of ITKT. To be more specific, we deal with invariants, covariants and joint invariants.
As a new development of ITKT, we introduce the concepts of a covariant and a joint in-
variant of Killing tensors and determine the complete sets of invariants and joint invariants
for several vector spaces of Killing tensors. The method of infinitesimal generators, which
has been described in the previous chapter, will be used again here, and it works well for
vector spaces of Killing tensors of small valences and defined on constant curvature spaces
of low dimension.

Section 4.3 will be devoted to the application of the method of moving frames described
in Chapter 3 to the invariant theory of Killing tensors. It can be effectively employed to
compute the fundamental sets of invariants, covariants and joint invariants. We determine
the complete sets of covariants for two vector spaces of Killing tensors. Some of the results
presented here appeared in a paper that has been published [79]. We should mention that a
new technique of the method of moving frames developed by Kogan [50] has been incor-
porated in ITKT, several important cases have been worked out with this new technique.
One advantage of this method is, among others, that one does not need any computer alge-
bra to complete the computation. Thus, we solve the problem of the determination of the
complete sets of fundamental invariants of Killing tensors of valence three defined on the

Minkowski plane and the Euclidean plane, respectively.

35
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4.2 Invariants, covariants and joint invariants of Killing tensors

The second half of the 19th century saw the development of the post-“Theorema Egregium
of Gauss” differential geometry heading in two major directions. Bernhard Riemann [72]
generalized Gauss’ geometry of surfaces in the Euclidean 3-space by introducing the con-
cept of a differentiable manifold of arbitrary dimension and defining the metric tensor on
tangent spaces. This remarkable work has evolved into what is today’s (Riemannian) dif-
ferential geometry.

The other direction originated in the celebrated “Erlangen Program™ of Felix Klein
[47, 48], the main idea of which is that any geometry can be interpreted as an invariant
theory with respect to a specific transformation group, and the main goal of any geometry
is the determination of those properties of geometrical figures that remain unchanged under
the action of a transformation group. One of the main contributions of Elie Cartan to
differential geometry, in particular with his moving frames method [9], is the blending of
these two directions into a single theory. An excellent exposition of this fact can be found in
Sharpe [75] (see also, for example, Arvanitoyeorgos [2]). The following diagram presented

in [75] elucidates the relations among these approaches to geometry described above.

. generalization . .
Euclidean Geometry ° — Klein Geometries
1 generalization generalization J. (4.1)
. . generalization .
Riemannian Geometry ° — Cartan Geometries

As an analogue of the classical invariant theory of homogeneous polynomials, the in-
variant theory of Killing tensors defined on pseudo-Riemannian spaces of constant curva-
ture ITKT) formed recently a new area of research [88, 34, 51, 89, 90, 79, 53, 80, 13, 54,
55, 56, 52, 57], which, in view of the above, can be placed in the theory by Cartan. This is
especially evident in the study of vector spaces of Killing tensors of valence two. Indeed,
a number of vector spaces of Killing tensors have been investigated from this viewpoint by
means of determining the corresponding sets of fundamental invariants and, much like in

CIT, using them to solve the problem of equivalences and canonical forms in each case.



37

These results have been employed in applications arising in the theory of orthogonally sep-
arable coordinate webs [3, 4, 5, 12, 20, 21, 64, 4, 37, 38, 58, 52, 54, 79, 34], where Killing
tensors of valence two play a pivotal role. An orthogonal separable coordinate web which
gives rise to an orthogonally separable coordinate system is an integral part of the geometry
of the underlying pseudo-Riemannian manifold. Therefore the problem of group invariant
classification of these webs in a specific pseudo-Riemannian space of constant curvature is
a problem of F. Klein’s approach to geometry, as well as that of Riemann, both leading to
the theory due to Cartan (see the diagram (4.1)).

Let (M, g) be an m-dimensional pseudo-Riemannian manifold of constant curvature.
Recall that a standard Killing tensor K of valence n defined on M is a symmetric (n,0)
tensor satisfying the Killing tensor equation (2.23).

When n = 1, K is said to be a Killing vector (infinitesimal isometry) and the equation
(2.23) reads Lxg = 0, that is (2.18) in Chapter 1, where £ denotes the Lie derivative
operator.

The R-bilinear properties of the Schouten bracket immediately indicate that the Killing
tensors of the same valence n defined on M constitute a vector space, denoted by X™(M)
(Note here and below we only deal with standard Killing tensors, that is Killing tensors of
order 0, see Definition 2.22 in Chapter 1). The dimension d of the vector space K*(M) is
determined by the Delong-Takeuchi-Thompson (DIT) formula [14, 82, 84]
d=dimlC"(M)=%<n7z:?> (m+:_1), n>1, 4.2)
which is a special case of the NPE-formula (2.24) given in Chapter 1. Thus, a Killing
tensor of valence n > 1 defined on (M, g) can be viewed as an algebraic object. Indeed,
each Killing tensor of valence n defined on M is determined by its d arbitrary parame-
ters (o, - ., @) With respect to a given coordinate system. This approach to the study
of Killing tensors introduced in [52] differs significantly from the conventional approach
based on the property that Killing tensors defined in pseudo-Riemannian spaces of constant
curvature are sums of symmetrized tensor products of Killing vectors (see, for example,
[84]). Moreover, the idea leads to a natural link between the study of Killing tensors and
the classical invariant theory of homogeneous polynomials, which in the last decade has
become an active area of research once again (see Olver [67] and the references therein).
Thus, it has been shown in a series of recent papers [13, 52, 53, 55, 56, 57, 88, 79, &0,
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89, 90] that one can utilize the basic ideas of classical invariant theory in the study of
Killing tensors defined in pseudo-Riemannian spaces of constant curvature. The concept
of an isometry group invariant of Killing tensors was introduced in [52] in the study of
non-trivial Killing tensors of valence two that generate orthogonal coordinate webs on the

Euclidean plane.

4.2.1 Invariants

It was observed [52] that the isometry group I (M) acting on M preserves the Killing ten-
sors defined on M. Thus the isometry group also induces an action on the d-dimensional
parameter space & ~ R¢ defined by the parameters ¢, . .., cq. The corresponding trans-
formations for the parameters (¢, . . . , &) can be obtained in each case by performing the

standard tensor transformation laws:

a = &l(alv"?ad:gly' .. :gr)r

(4.3)

-~

G = &d(ala <y Qg 015 - '7g1')7

where g1, ..., g, are local coordinates on I(M).

The notion of isometry group invariant of Killing tensors was proposed in McLenaghan
et al [52]. In essence, invariants of Killing tensors are functions of the parameters that
remain unchanged under the induced action 4.3 induced by the isometry group action.

An observation is now in need. The induced action of J(M) on the vector space K™ (M)
defined by the push-forward map g. (where g € I(M)) is linear invertible transformation,
furthermore, (gh). = g«h.. Thus, the correspondence between the elements of (M) and
their induced action on X™(M) is a homomorphism and therefore defines a representation
of I(M) on K™(M) and isometry group invariants of Killing tensors can be considered as
fixed points of the induced representation of I(}) on the function space F(K"(M)). See
McLenaghan, Milson and Smirnov [51] and Horwood, McLenaghan, and Smirmov [34] for
more details.

We note that the action of (M) can be considered on the spaces M and X concurrently.

One of the main problems of invariant theory is to describe the space of invariants

(covariants, joint invariants) for a given vector space under the action of a transformation
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group. To solve this problem one has to find a set of fundamental invariants (covariants,
joint invariants) with the property that any other invariant (covariant, joint invariant) is a
(analytic) function of the fundamental invariants (covariants, joint invariants). The fun-
damental theorem on invariants of a regular Lie group action (Theorem 3.1) determines
the number of fundamental invariants that are required to describe the space of I(M)-
invariants.

We assume that J(M) acts on a subspace X, of X regularly with r-dimensional orbits,
then, according to Theorem 3.1, the number of fundamental invariants required to describe
the whole space of I(M)-invariants of K*(M) is d — r, where d is given by (4.2) (note
d > 7). This has been shown to be the case for the vector spaces K?(E?) [52], K*(E})
[53], K3(E2?) [13] and K2(E®) [34], where E?, EZ and E® denote the Euclidean plane, the
Minkowski plane and the Euclidean 3-space, respectively.

Remark 4.1 The dimension of the orbits of the isometry group I(M) acting on X is not
always the same as the dimension of the group, and the dimension of orbits can vary. For

example, this is the case for the vector space ! (E®) [13, 88].

To determine a complete set of fundamental invariants one can use the method of infinites-
imal generators.

In the following we describe a procedure that was designed to determine the infinites-
imal generators of the isometry group I(M) on . The procedure was first introduced in
McLenaghan, Smirnov and The [52] and so we call it the MST-procedure.

Let X;,...,X, € X(M) be the infinitesimal generators (Killing vector fields) of the
Lie algebra of the Lie group I(M) acting on M. Note Span {Xj,...,X,} = K}(M) =
i(M), where i(M) is the Lie algebra of the Lie group I(M). Forafixed n 2 1, consider the
corresponding vector space K*(M). The aim is to find the infinitesimal generators of (M)
on I. Consider Diff T, it defines the corresponding space Diff C®(M), whose elements are
determined by the elements of Diff ¥ in an obvious way. Let K° € Diff K*(M). Note
K? is determined by d parameters o(e, ..., q), ¢ = 1,...,d, which are functions of
o, .. ,0q - the parameters of £. Define now a map = : Diff KP(M) — X(Z), the set of

smooth vector fields defined on Z, given by

d
K’ — Z o2(ag,---, ad)-éa—; 4.4)
i=1 @
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To specify the action of (M) on I, we have to find the counterparts of the generators
Xi,..., X, on X(X).

Consider the composition 7 o £, where 7 is defined by (4.4) and £ is the Lie derivative
operator. Let K be the general element of X"(M), in other words K is the general solution

to the Killing tensor equation (2.23). Next, define
V;=molx, K, i1=1,...7. 4.5)
The composition 7 o £ : i(M) — X () maps the generators X, ..., X, t0o & (Z).

Theorem 4.1 Suppose the generators Xy, ..., X, of i(M) satisfy the following commuta-

tor relations:
[Xi, XJ] = C?ij, 7:: j: k= 1: cees Ty (4-6)

where cf]

fields V; € X(Z), defined by (4.5) satisfy the same commutator relations:

i,7,k = 1,...,r are the structural constants. Then the corresponding vector

Vo Vi]=c5Ve, 45k=1....,n @7

Therefore the map F. := wo L : i(M) — ig(M) is a Lie algebra isomorphism, where
ig (M) is the Lie algebra generated by V1, ..., Vr.

Remark 4.2 The commutator relations (4.7) can be confirmed directly on a case by case
basis, provided that the general form of a Killing tensor K € K™(M) is available. For a
proof of Theorem 4.1 see McLenaghan ez al [51]. Also See Horwood et al [34] for another

approach for determining the infinitesimal generators.

We remark that the technique of the Lie derivative deformations used here is a very power-
ful tool. It was used before, for example, in [78] to generate compatible Poisson bi-vectors

in the theory of bi-Hamiltonian systems.

Remark 4.3 Alternatively, the generators (4.5) can be obtained from the formulas for the
action of the group (4.3) in the usual way taking into account that a Lie algebra is the
tangent space at the identity of the corresponding Lie group. We note, however, that in this

way the formulas (4.3) are not easy to derive in general [89, 81].
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In view of the isomorphism exhibited in Theorem 4.1 and the fact that invariance of
a function under an entire Lie group is equivalent to the infinitesimal invariance under
the infinitesimal generators of the corresponding Lie algebra one can determine a set of

fundamental invariants by solving the system of PDEs
Vi(F)=0, i=1,...,r 4.8)

for an analytic function F : £ — R, where the vector fields V;, i = 1,...,r are the gen-
erators defined by (4.5). As is specified by Theorem 3.1, the general solution to the system
(4.8) is an analytic function F of the fundamental invariants. The number of fundamental
invariants is d — s, where d is specified by the DTT-formula (4.2) and s the dimension of
the orbits of J(M) that acts regularly on the parameter space X.

The system of PDEs (4.8) can be solved by the method of characteristics in many cases,
but not always. The determination of fundamental invariants by solving (4.8) adapting the

method of characteristics is the key idea used in [52].

Example 4.1 Consider the action of the isometry group J(E®) on the vector space K* (E?)
of Killing vectors defined on the Euclidean 3-space.

Solving the Killing vector equation (2.18) with respect to the Cartesian coordinates
(z,y, z) leads to the following general representation for Killing vectors defined on the

Euclidean 3-space.
K = (a; + asz — agy) 8z + (a2 + asT — a42) 9y + (a3 + a4y — asz) 0. 4.9)

The six generators of the Lie algebra of the Lie group I(E®) are

X, =0, Xy = yaz_zaw
Xy = 8, X5 = 20, —z0;, 4.10)
X3 = 0;, Xs

z0y — y 0.

Now we employ the MST-procedure to obtain the six infinitesimal generators that can

be used to compute the isometry group invariants.



Vl = Q¢ aa.z —das aasa
V2 = —ag 6,,1 + a4 6a3,
Vs = 050, —a40,,
4.11)
Vs = a3 842 — Q9 3.13 -+ ag 80,5 — Qs Bas,
Vs = —as 3a1 + a1 8a3 — Qg 00,4 + a4 Bae,

Ve = as 8,,1 — a1 6,,2 +as 8a4 —Qy aas.

According to the method of infinitesimal generators, any invariant  must satisfy simul-

taneously the equations
Vi(I)=0, i=1,...6. 4.12)

To find the fundamental invariants, one has to solve the over determined system of PDEs
(4.12). We employ the method of characteristics as follows. First find the invariants corre-
sponding to vector field V. Integrating the characteristic system leads to the 5 fundamental
solutions:

a1, G4, Gs, G5, T1 = 0205+ A30s. (4.13)

Thus any invariant is of the form
F = F(aly a4, 05, as, Tl)' (4°14)

Using the chain rule when differentiating we rewrite the following five vectors:

Vo = —ag0, +a4as0r,

Vi = a50, — 4050,

Vs = ag0s — a5 g, 4.15)
Vs = —a30, — g0, + as0s + (0186 + G304) Oy,

Vs = as 6,,1 +as 8,,4 — Q4 6,,5 - (0,1(15 + 6204) 6,.1.

We proceed to find the fundamental solutions corresponding to the new V,: Again
integrating the characteristic system, we arrive at the following 4 functionally independent
invariants:

a4, Qas, g, T2 =Q104 + 71 (416)
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Now use (4.16) to rewrite the remaining 4 vector fields in (4.15):

V3=07

V4 = Qs aas — a3 aas;
4.17)
V5 = —ag 8,,4 + aq 306,

Ve = a53a4—-a48,,5.

In view of (4.17), as, as, ag, T2(= a1a4+71) are also functionally independent invariants
of the new V3.

The three functionally independent invariants corresponding to the new V4 (see (4.17))
are found to be

as, T2, T3=03+a3 (4.18)
Based on (4.18), one rewrites the remaining two vectors in (4.17):

VS = —ag 80.4 -+ 26&4(16 ara: (4 19)

Vs = a3 3a4 - 2&4(15 37-3.
In view of (4.19), we expect 3 — 1 = 2 functionally independent invariants correspond-
ing to the new field Vi:

ro, T4=T3-+a. (4.20)

It remains now to deal with the last field given in (4.19). Rewriting it using (4.20) we
see

V=0, (4.21)

which means the functions 72, 74 = 73 +a§ are also killed by the new Vg, and we finally ob-
tain two fundamental isometry group invariants of Killing vectors defined on the Euclidean
3-space:

Al = @104 + Qo035 + asag,
(4.22)

Ay = ai+al+al

The above example shows how the method of characteristics can be employed to com-

pute isometry group invariants of Killing tensors. Note also that two vectors vanish in the
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process, which means that the dimension of the orbits of the group action is 4 rather than

6. Indeed, the coefficient matrix of the generators (4.11)

[0 a -as 0 0 0 )

4.23)

\az —a; 0 a5 —ay O/

is of rank 4 almost everywhere, thus according to the fundamental theorem on invariants
(Theorem 3.1) one expects exactly two fundamental invariants, which forms the following

theorem.

Theorem 4.2 Any I(E®)-invariant of Killing vectors defined on the Euclidean 3-space is
locally uniquely represented by
T =F(Ay,Ay), 4.24)

where Ay, and A, are given in (4.22).

We remark that in [13, 34] the method of undetermined coefficients was developed to
solve the over determined system of PDEs with the aid of a computer algebra package
such as MAPLE. We briefly describe the idea of the method [13, 34]. To find the solution
to the system of PDEs (4.12), one constructs a trial function as the solution to the PDEs,
which is a polynomial in the parameters as, . .., ag of some fixed order. Substituting the
trial function into the PDEs leads to a system of linear equations in the coefficients of the
polynomial and any nontrivial solution to this system leads to a solution to the system of
PDEs, and hence an invariant. We repeat this process with higher degree polynomial trial

functions until the required number of invariants are found.

Example 4.2 [79] Consider the action of the isometry group I(E?) on the vector space
K2(E2) of Killing tensors of valence two defined on the Minkowski plane E3. The general
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Killing tensor in terms of the standard pseudo-Cartesian coordinates (2, z) is given by

K = (a1 + 2047 + asx'“’) 0: © O
+(o3 + oyt + 05T + 06tz) 0; © O (4.25)

+(a2 + 2a5t + astz) 8,; @ a:1:7

or in matrix form

a1 + 2047 + asT> 03+ aut + 05T + qstz
K= (4.26)

a3 + o4t + asT + et Qs + 205t + agt?

The isometry group J(E2) acts on the Minkowski plane E} with respect to the same

coordinate system as follows

(5)=(°°Sh¢ smh¢>(t)+<“), babeR (427
z sinh¢ cosh¢ T b

The Lie algebra i(E2) of the isometry group is generated by
T = Bt, X = 8;, H=z 83 + tax (4-.28)

corresponding to the ¢- and z-translations and the hyperbolic rotations. Note the generators

(4.28) of the Lie algebra i(E2) enjoy the following commutator relations:

[T,X]=0, [T,H=X, [X,H=T. 4.29)

In view of (4.25), (4.27) the transformations (4.3) for the parameters o;, ¢ = 1,...,6
take the following form (see also [44, 56)).
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& = acosh®¢@+2c;3cosh@sinh¢+ sinh® ¢ + o b

—2(ay cosh ¢ + a5 sinh ¢) b,
&y = osinh? ¢+ 203 cosh ¢sinh @ + oz cosh® ¢ + oG a
—2(ats cosh ¢ + o sinh ) a,
&3 = og(cosh® ¢ +sinh® @) + (oq + ) cosh psinh @ (4.30)

—(aqy +bas)cosh g — (aas + boy) sinh @ + o abd,
Qg = Ot4C0$h¢+CYsSiIlh¢ —aab,
05 = oaysinh@+ ascosh¢ —osa,
6!5 = G-
We note that the corresponding transformations for the parameters obtained in [53] were
derived for covariant Killing tensors. Accordingly, they differ somewhat from (4.30) pre-
sented above (compare with (7.6) in [53]).

To determine the fundamental I (E?)-invariants, we first employ the MST-procedure to

derive the infinitesimal generators.
Vl = a4 aa3 + 2a5 aaz + as 3a5,
V2 = 0!5 aa3 + 2&4 601 + as 3&47 (4-31)

Vi = —2030a, — 050a, — (01 + 02) Oay — 203 Oy — 04 Oy
Remark 4.4 The infinitesimal generators 4.31 can be obtained directly from the transfor-
mation formulas 4.30 by differentiating with respect to the group parameters a, b, ¢ evalu-
atedata=0,b=0,90=0.

Note the vector fields — V3, ¢ = 1,2, 3 satisfy the same commutator relations as (4.28)
(see (4.29)), which confirms Theorem 4.1. Solving the system of PDEs determined by the

vector fields (4.31), we arrive at the following theorem.

Theorem 4.3 An I(E2)-invariant T of the subspace of the parameter space ¥ where the
orbits of the group action are 3-dimensional can be (locally) uniquely expressed as an
analytic function

T =F(A, A2 As), 4.32)
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where the fundamental invariants Z;, ¢ = 1,2, 3 are given by

Ay = (a2 + 0o —oglon + ) — 4(ozas — ous)?,
Ag = O (0!1 - 02) - CXZ + a§, (433)
A3 = Q.

The fact that Z; = g is a fundamental I(E?) -invariant of the vector space K?(IE3) trivially
follows from the transformation (4.30). The fundamental I (E2)-invariant Z; was derived in
[53, 57] in the study of the five-dimensional subspace of non-trivial Killing tensors defined
on the Minkowski plane.

4.2.2 Covariants

Just like the classical invariant theory, sometimes it is not enough to just know the infor-
mation about the isometry invariants of Killing tensors. We can introduce the concept of
isometry group covariants of Killing tensors.

Consider the action of the isometry group I(M) on the product space X*(M) x M.
The corresponding action on the extended parameter space & x M can be found explicitly,

where ¥ is the parameter space of K*(M).

&1 = &l(al,...,ad,gly---)g‘r)v

&d = &d(ah"':ad’gl:'“agf)’ (434)
~1 _ ~]_( 1 e .

T = zr(z°...,T ,gl,---,gr)7

m = 5m(xl)"':xmygls"'7gr)'

Observe that the transformation formulas for the Killing tensor parameters are linear in
Q1,...,0q4.

We now introduce the concept of an isometry group covariant of Killing tensors.

Definition 4.1 An I(M)-covariant of the vector space K"*(M), n > 1is a function C' :
¥ x M — R satisfying the condition

C=Flo,...,a52,...,2™) = F(&,...,84% ..., ") (4.35)
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under the transformation laws (4.34).
Theorem 4.1 entails the following corollary.

Corollary 4.1 Consider the product vector space K™(M) x M, n > 1. Define the vector
fields

V§Z=V5+Xi 1=1,...,7, (4.36)
where Vi, i = 1,...,r are described in (4.5) and X;, © = 1,...,r are the generators
of i(M). Then the vector fields V7{,..., V] enjoy the same commutator relations as the
generators Xy, ..., X!

[VLVi]=diVi, i4,k=1...,m, 4.37)

where the structural constants cfj are given in (4.6).

Therefore, an I (M)-covariants C of K™ (M) can be obtained by solving the system of PDEs
determined by the vector fields (4.36):

ViC)=0, i=1,...,m (4.38)

Remark 4.5 Alternatively, one can employ the method of moving frames, we will be using
this method to compute the isometry group-covariants of Killing tensors of valence two
defined on the Euclidean plane and the Minkowski plane, respectively. See Example 4.4
and Example 4.5 later in this Chapter.

4.2.3 Joint invariants

Consider the action of the isometry group I(M) on the product space
KAHM) x KMM) x ... x KY(M), £m,...,q>1.

Let @y,...,04 Biy.--sBe - -+ 115 - -,7s e the parameters of the vector spaces K{(M),
K*(M), ..., KI(M) respectively, where d, e, . . ., f are the corresponding dimensions de-
termined by (4.2). Then the action of the isometry group I(M) induces the corresponding

transformation laws for the parameters a;, ..., Qd, B1y.- -, Bes -+ os V1g -+ -1 Vs
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a = &1(041,. '->ad7g19'°°1gr‘)1

Gg = @01, .00 015-++,90),

,31 = ﬂl(ﬁlv”vﬂe;gl’“-:gr)’

- ~ (4.39)
.Be = ﬂe(ﬂl: .. ':ﬁmgl: L. ’gr):
;5'1 = '71(717 ey Vi 915 - 7g1‘)7
’7f = ;}.'f(’)'h ey 915 yg'r)'
Note again that the transformations are linear in the Killing tensor parameters.
We now introduce the concept of a joint I(M)-invariant.
Definition 4.2 A joint I(M)-invariant J of the product space
KAHM) x K™(M) x ... x KI(M)
isafunction J : £¢ x T™ x ... x £ — R satisfying the condition
J = F(ah"'7ad1.31"-7ﬁe7"'171---7’Yf)
_ _ (4.40)
= F(&17"'7&d7.31"'7/387'°"’71"'7’7f)
under the transformation laws (4.39) induced by the isometry group I(M).
In this case again Theorem 4.1 entails the following corollary.
Corollary 4.2 Define the vector fields
Vi=Vi+ Vi +VL i=1,...,7, (4.41)

where {V¢},{V?},...,{V?}, i = 1,...,7 are the sets of infinitesimal generators of the
Lie algebra i(M) on the parameter spaces £, £™, ..., %7 of the vector spaces KE(M),
Kr(M), ..., K9(M), respectively, obtained by the MST-procedure. Then the vector fields

V1i,...,V, enjoy the same commutator relations as the generators X, ..., X;:
[Vi’vj] = cf‘jvk’ i’j7k = 17' K (442)

where the structural constants ch are as in (4.6).
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Example 4.3 [79] Consider the product vector space K!(E?) x K?(E?). A general Killing
vector with respect to the Cartesian coordinates takes the following form.

K* = (a1 + 03Yy) 8z + (@2 — 03T) Oy, (4.43)
while with respect to the same coordinate system the elements of K?(E?) assume

K2 = (B1+2Bsy+Pey’) 0: @ O
+(Bs — Baz — Bsy — Bezy) 0z © Oy (4.44)
+(Ba + 265z + Psz”) 8y @ 8.
Here © denotes the symmetric tensor product. The formulas (4.43) and (4.44) put in ev-
idence that the corresponding parameter spaces &' and X2 are determined by the three

parameters &;, ¢ = 1,..., 3 and the six parameters Bj,j=1,...,6 respectively.

The isometry group acts on E? as follows.

Z = zcosf—ysinfd+a,
6,a,b €R. (4.45)

~

7 = zsinf+ycosf+b,
Note, the generators of i(E2) = X*(E2), which is the Lie algebra of the Lie group I(E?),
are given with respect to the Cartesian coordinates by

X=8,, Y=0, R=z8,—yb. (4.46)

The corresponding flows are translations and rotations respectively. Employing the con-
struction (4.5), we derive two triples of the vector fields representing the generators (4.46)

on !
V% = '-as 60,2,

V1 = 300, (4.47)

1
V3 -_— 0[1 aaz - 042 aal’

and (4.46) on L2
V% = _2135 3ﬁ2 - AB4 aﬂs + 186 8/357
Vg = 2.B4 aﬂ). - 135 aﬂa + :BG 8357 (4.48)

VI=-26 (a,g1 - 852> + (81 — B2) O3, + B5 Op, — Ba Ops;
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respectively. We note that in view of Conjecture 4.1 both the vector fields (4.47) and the
vector fields (4.48) satisfy the same commutator relations as the generators of i(E?) (4.46).
By Corollary 4.2 this fact entails immediately that the vector fields V;, i = 1, 2, 3 defined
by

V;=Vi+V: i=1,23 (4.49)

also enjoy the same commutator relations. Therefore we have determined the infinitesimal
action of I(E2) on the product space =* x £2. The orbits of the isometry group I(E?) acting
in 5! x 32 are three-dimensional in the subspace S; C £ x 2, where the generators (4.49)
are linearly independent. According to Theorem 3.1, the number of fundamental invariants
in S; is 9 (dimension of T x £2) - 3 (dimension of the orbits in S3) = 6. Some of these
fundamental invariants may be the fundamental invariants of the group action on the vector

spaces K'(E?) and K2(E?). Indeed, it is instructive to look at the induced transformations
of the 9 parameters (a].: Q, O3, .Bla ,327 :83: :84: .351 ,36)‘

5!1 = COS@—QQ sin9—ba3,
G = apsinf+ aycosf+ aas,
&3 = a3,

B, = Bicos? —2Bscosfsinf + Pysin®fh — 2b By cosf — 2bBssinb
+Bs b7,
Bo = Pysin®f — 2B5cosfsinf + B2 cos?d — 2a f5 cos O + 2a By sin
hea? (4.50)
Bs = (B1—PBo)sinfcosd+ Bs(cos®d — sin? 0) + (a Bs + b Bs) cos f
+(afs — bBs) sin b — B ab,
Bs = Bycosd+ Pssinf — B,
Bs = PBscos@ — Pysinb — Bsa,

Bs = Bs.

Hence, the dimension of the orbits in this subspace coincides with the dimension of the

group. We also observe that a3 and fs are fundamental joint J(E?)-invariants of Killing



tensors.

To determine the remaining four fundamental invariants we use the method of characteris-

tics to solve the system of linear PDEs
Vi(J)=0, i=1,2,3, (4.51)

where J : 3! x 2 — R and the vector fields V;, 7 = 1,2, 3 are given by (4.49).

Solving the system of PDEs (4.51), we arrive at the following result.

Theorem 4.4 Any joint I(E?)-invariant J of K*(E2) x K?(E?) where the vector fields

(4.49) are linearly independent can be locally uniquely expressed as an analytic function
J= F(II:I27I3:I47 \717 «7"2)7 (452)
where the fundamental joint I(E?)-invariants I;, J;, i = 1,...,4, j = 1,2 are given by

T = [Bs(Br — Bo) + BE — BiI* + 4(Bsfs + BaBs)?,
I, = Bs(B+B) —Fi— B

Is = Bs

Iy = o3,

Ji = (et + Bss)’ + (Bson — Pacs)?,

Jo = (Bsa+ c30s)(Bsb2 — BZ) + 2(B3Bs + Babs)(Bscu — Bacs).

(4.53)

The fundamental joint I(E?)-invariants Z;, i = 1,2, 3 are the fundamental I (E?)-invariants
of the vector space KC2(E2) (Z, was derived in [52]), while Z, is the fundamental J(E?)-
invariant of the vector space K*(E?). Note the fundamental I(E?)-invariants J; and J; are
“truly” joint I (E?)-invariants of K!(E2) x K?(E?).

Remark 4.6 It will be interesting to investigate the geometric interpretation of the joint

invariants of Killing tensors.
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4.3 The method of moving frames

It was first observed in [13] that the method of moving frames could be used to solve the
problem of the determination of fundamental invariants of vector spaces of Killing tensors
under the action of the isometry group. In some cases this method seems much more effi-
cient than the method of infinitesimal generators. Note also that recently a new technique
of the method of moving frames due to Kogan [50] has been added to the literature of ITKT
[80, 81, 90].

4.3.1 Covariants of Killing tensors of valence two

Example 4.4 [79] Consider first the extended vector space X?(E?) x E?. The correspond-
ing extended parameter space £ x E? is determined by the parameters i, - .., fs, 2, ¥»
where B;, 1 = 1,...,6 are as in (4.44) and z,y are Cartesian coordinates. The isometry
group I(E2) induces the corresponding action (4.34) on the parameter space & x E? .
B, = Bycos?f — 2B3cosfsinb + Bosin®f — 2b By cos§ — 2b Pssin b

+ﬂ6 b27

By = piysin®6 —2B3cosfsinf + By cos? — 2a Ps cos @ + 2a fysinf

+ﬁ6 0‘27
Bs = (BL— Ba)sinfcosh + Bs(cos? 6 —sin® ) + (a By + b Bs) cos @
+(a Bs — b,B4) sin 8 — S5 ab, 4.54)

Bs = PBscosf+ Pssinf — Bs b,
Bs = Pscos— fysind —fsa,
Bs = Bs

Z = zcosh—ycosl+a,

¥y = zsinf+ycosf+b.

Next, we construct a moving frame by using the cross-section (for example)

K = {83 = ps = Ps =0}, (4.55)
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which yields the normalization equations
0 = (81— fBe)sinfcosf + B3(cos®  — sin6)
+(aBs+bBs)cosf + (afs — bPs)sinf — Ps ab,
0 = Bycosf+ Pssind — Fs b,

(4.56)

0 = ,35 cosf — B4sin0 - ﬁs a.
Solving (4.56) for the parameters a, b and 8, we obtain the moving frame map provided that

Bs #0. | ,
Bscosf — Bysinf

Bs ’
b = ﬂ;cosﬁ;—ﬂssine’ @57)
6
_ 1 2(B385 + BabBs)
6 = 2mtanﬁs(ﬁ1-ﬁz)—ﬂ2+ﬂ§'

Having derived the moving frame map (4.57) and the transformation laws (4.54), we
can now make use of the result of Theorem 3.1 and determine a complete set of fundamental
I(E?)-covariants of X?(E?). Substituting (4.57) into (4.54), by Theorem 3.4 we arrive at

the following result.

Theorem 4.5 Consider the vector space K2(E?). Any algebraic I(E?)-covariant C defined
over the subspace of £ x E2 where the isometry group I(E?) acts freely and regularly with
three-dimensional orbits (provided that B # 0) can be locally uniquely expressed as an
analytic function

C = F(T1, T2, Ts, C1, Ca), 458)

where the fundamental I(E?)-covariants T, C;, i = 1,2,3, j = 1,2 are given by
L. = (Bs(Br— Ba) + B3 — BF)* +4(BsBs + Bubs)?,
I, = Be(Bi+P2)— ;- B3,
s = B,
C1 = (Box + B5)* + (Boy + Ba)?,
C: = ((Bsz + Bs)* ~ (Bey + Ba)*) (B2 — B + Bs(B1 — b))
+4(Bsx + Bs) (Bey + Ba)(BePs + Babs),

4.59)
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where % is the parameter space of K?(E2).

We immediately observe that the functions Z;,Z,Z3 constitute in fact a set of fun-
damental I(E?)-invariants of the vector space K?(E?), while the functions C; and C; are
“truly” fundamental I (E?)-covariants of the vector space K?(E?). We also observe that the

fundamental covariant C; can be expressed as
C]_ - Istl'K - Iz,

where the (1, 1)-tensor K is given by K = Kg~!. This observation immediately suggests
that trK is a fundamental J(E2?)-covariant of K2(E?). We note, however, that the function
detK is not a fundamental I (E2?)-covariant of X?(E2).

Example 4.5 [79] Let K2(E2) x E? be the extended vector space of K2(E?). The action of
the isometry group I(E2) on the Minkowski plane E} is given by (4.27), while the corre-
sponding action on the parameter space % of X?(E3) is given by (4.30). The transformation
laws (4.30) combined with the transformations (4.27) yield an analogue of (4.54). Next,
we proceed as in Example 4.4. The resulting moving frame map p : = x Ef — I(E})

(provided that ag # 0) is given by

_ oysinhg+oascoshé
= ” ,
b = a4cosh¢+assinh¢’ 4.60)
Qg
1 2(&30!5 - 01405)
= —arctanh .
¢ 23.1‘6 O!i + a§ - Ols(al + az)

Now we can continue as in the previous example to determine a set of fundamental I (E?)-
covariants of X?(E2?).

Theorem 4.6 Any algebraic I(E?)-covariant of K*(E2) C defined over the subspace of
Y x E? where the isometry group I(E2) acts freely and regularly with three-dimensional
orbits (provided that g # 0) can be locally uniquely expressed as an analytic function

C = F(11,1»,15,C1,Ca),
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where the fundamental covariants T, Cj, i = 1,2,3, j = 1,2 are given by

I, = (042 -+ a§ - as(a1 + 052))2 - 4(0&30&5 - a4a5)2,
I, = (o—a)as—0f+ad,
I3 = s,
(4.61)
G = (agt+as)?— (aez +0u)?,

Co = ((ogt+ a5)* + (6T + ou)?) (0] + o — as(ar + 02))

+4(ast + as) (T + ag)(asas — as0s).

The conclusion here is similar to that following Theorem 4.5. Thus, we observe again that
the functions Z;, Z», Ts constitute in fact a set of fundamental J (E?)-invariants of the vector
space KC2(E2), while the functions C; and C, are “truly” fundamental I (Ef)-covariants of
the vector space K2(E?).

4.3.2 Killing tensors of valence three on the Minkowski plane

As has been demonstrated above, the method of moving frames is effective in computing
isometry group of invariants. As one increases the valence of the Killing tensor under inves-
tigation, however, one will face the difficulty of finding the solutions to the normalization
equations and thus it is very difficult to proceed to determine the fundamental invariants,
see for example [83]. In [50] an inductive version of the method of moving frames is de-
veloped which can be effectively used in ITKT. To be more specific, if the action of the
group can be factorized as two subgroups and the intersection of the two is discrete, then
one can employ the moving frame method to find the fundamental invariants of the first
group action. Then, using these fundamental invariants as new coordinates, consider the
action of the second group, again employ the moving frame method to find the fundamen-
tal invariants, which will be the fundamental invariants of the total group action. We shall
make use of this technique to solve the problem of the determination of a complete set of
fundamental isometry group invariants of Killing tensors of valence three defined On the
Minkowski plane and the Euclidean plane, respectively. These will take up the following
two subsections.

Consider Killing tensors of valence three defined on the Minkowski plane. Using the
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01
null coordinates (u, v) with respect to which the metric is of the form g = ( 1 o ) . Note

here the relation between the null coordinates (u, v) and the pseudo-Cartesian coordinates

(t, z) is given by

1 1
u=—=(t+zx), v=—72=(-—-1) 4.62
\/5( ) ﬁ( ) (4.62)
Solving the corresponding Killing tensor equations, we arrive at a representation for the
Killing tensors
K1 = g, — 3asu — 3a7u? — ayoud,
K% = (a3 + agu+ agu?) +v(as + 2a7u + a1ou?),
(4.63)
K2 = (a4 — agv — a7v?) + u(as — 2agv — a19v?),

K22 = g, — 3agv + 3agv® + aipv®,

Alternatively the Killing tensor can be represented as sum of symmetrized product of
Killing vectors, see Horwood er al[34] and Horwood et al[36] for more details. The in-

finitesimal generators determined via the MST-procedure are

Ul = —305 aal + ag aas + a6 804 + 2(17 aas + 2(13 aag + alo 847,

U, —3as aaz — Qg 304 +as 6,,3 — 2ag 8a6 + 2a7 3,,9 -+ Q1o 3,,8,

(4.64)
V = —30.1 aal + 30,2 aaz - a3 aas + a4 80_4 - 2a5 acs + 2(15 aaG

—(17 aa7 + as ads’

where §,, = a%_, 1=1,...,10.

To determine a complete set of fundamental I(E?)-invariants (or covariants) of X3(EZ2) one
can attempt to solve the system of PDEs determined by the vector fields (4.64) for invariants
and covariants. Unfortunately, the method of characteristics fails in this case. Employing
the method of moving frames for the whole group I(E2) leads to equally frustrating results
(see [83] for more details) due to insurmountable computational difficulties.

We make use of the construction of moving frames introduced recently by Kogan [50]
to the theory of moving frames [22, 22] (see also the references therein), which has been
successfully applied to the theory of invariant differential forms on jet bundles. The ap-
plication of the algorithm due to Kogan for our purposes in ITKT is especially simple,
effective and greatly simplifies the procedure.
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We first observe that the rank of the system of linear PDEs (4.64) is three almost every-
where. Therefore there is an open subspace of =2 where the group acts with 3-dimensional
orbits. The latter means that in view of Theorem 3.1 we have to derive 10 (dimension of £3)
—3 (dimension of the orbits) = 7 fundamental invariants in the subspace of ¥3 where the
group acts freely and regularly with 3-dimensional orbits. Observe next that the isometry
group I(E2) is a product I(E2) = TH of the subgroup T of translations and the subgroup
H of hyperbolic rotations. Moreover, T N H is discrete. The two-parameter subgroup T acts

on E? as follows:

t=u+b UV=v+teg b,ceR. (4.65)

The action induces the action on the Killing tensors.

g, = a+3bas— 3b%ar + bday,
do = ag+3cag+ 3cag — cay,
G3 = a3 —bag— cas+ b%ag+ 2bcar — b%cayo,
Gs = aq-+cag—bag—cta; —2bcag + bctay,
s = as—2bar+ba,
(4.66)
ds = ag-+2cag— Clayg,
dr = ar—bay,
Gg = ag—Cayg,
Gy = ag— 2bag— 2car+ 2bcayp,
aip = G-

We are now using (4.66) together with the method of moving frames to find a set of funda-
mental T-invariants.
Indeed, choosing the cross-section K = {a7 = 0,as = 0} leads to the moving frame

solution to the normalization equations provided that a;¢ % 0.

b= =B (4.67)
a0 Q1o

Substituting these expressions into the remaining eight equations of (4.66), we obtain the
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following fundamental T-invariants of X*(E3) (provided that a;q 5 0):

L
I
I3
I
I5

2
= Q5019 — G7,

— 2
= aga10 + Az,

= 4ajo-

agaip — 2a70as,

alafo + 3asaraig — 2&%,

asa2, + 3agasayo + 2a3
2@10 618a10 ag,

asaz, — a - + 2a2
3070 709010 — @5G8010 azas,

2 2
(4G, + agagaro — GsA7G10 — 2a7ag,

(4.68)

Next, we determine the action of the subgroup H on the space spanned by the eight T-

invariants (4.68).

The subgroup H acts on E2 by

i = ue',

7=

ve™t

teR, (4.69)

where ¢ is the parameter of H. We derive the action of H on 3

i, = ae¥,
d; = aze,
55 = asezt,
= _ ¢
a7 = a7e,
Gy = ay,

Gz

a0

age™ % (4.70)
age ",

a0,

and hence the action on the space spanned by the T-invariants (4.68).

I1 = 63tI1,
f3 = 62tI3,
fs = e”I5,

IL = I,

e—3t Iz,
e—2t I4,

4.71)
et], 6

Is.
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We immediately observe that I7 and Is are fundamental I(E?)-invariants of X*(E?), while
I, ..., Is are conformal I(E?)-invariants of X3(E2) (see [54] for more details). Moreover,

it easily follows that
Proposition 4.1 The functions
Z;=signl;, i=1,...,6
are discrete I(E2)-invariants of KC3(E2), where I, ..., Ig are given by (4.68).

To determine the remaining five continuous invariants, we employ the method of moving
frames again, taking into account the action (4.71) of the subgroup H on Iy, ..., I3. Indeed,
we note that no cross-section of the form K = {I; = 0},7 = 1,..., 6 intersects the orbits
transversally. Hence, we choose the cross-section K = {I5 = c}, ¢ = const, ¢ # 0, leading
to the moving frames map e* = ¢/I5. Substituting the latter expression into the remaining

five formulas (4.71), after some algebra we arrive at the following resuit.

Theorem 4.7 Any I(E2)-invariant T of K*(E2) defined over the open submanifold of £
where the isometry group I(E?) acts freely and regularly with three-dimensional orbits can

be locally uniquely expressed as an analytic function provided that a;q 7 0.
T =F(Aq, Ao, Az, Ay, A5, Ng, Ag),
where the fundamental I(E2)-invariants A, j =1, ..., T are given by
A =Ly, Ay = I, Ay = Ll
Ay = LL, A; = LL, As = LI, 4.72)
Ar = LI
where I, ..., I3 are given by (4.68).

One can apply the same technique to determine the fundamental I (E2)-covariants of KC3(E2?),

the results are presented in the following theorem.

Theorem 4.8 Any I(E2)-covariant C defined over the open submanifold of £° x EZ where
the isometry group I(E?) acts freely and regularly with three-dimensional orbits can be

locally uniquely expressed as an analytic function provided that a1 7 0.

—_ c [+ c c c c c [+ Cc
C—F(AhAm 31 =4y =52 67A7’ 87A9)7
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where the fundamental I(E?)-covariants A§, 1 =1,...,9 are given by
A$ = ag+2(agu + arv + a1ouv),
A = (ay — 3asu — 3a7u® — aiu®)(as — 3agv + 3agv? + a10v?),
A = (az + agu+ asv + agu? + 2a7uv + a;0u’v)

% (ag — agv + asu — azv? — 2aguv — ayuv?),

AS = (a5 + 207u + ayu?)(as — 2a5v — azov?),
Ag = (a-; -+ amu) (as + am’U),

4.73)
A¢ = (a; — 3asu — 3a7u® — agou’)

x(—ay + agv — asu + a7v? + 203uv + ayguv?)3,
AS = (ap — 3asv + 3agv® + ayv®)
x(—a3 — agu — asv — agu® — 2a7uv — aou’v)?,

A = (as+2a:u+ a0u?)(ag + awv)?,

A§ = (as — 2agv — a1pv?)(ar + arou)*

We remark that the fundamental I (E?)-invariants of K3(E2) are syzygies for the fundamen-
tal I(E2?)-covariants (4.73). Indeed, it is easy to check that, for example,

Ag = A1AS —2A%.

The results of Theorems 6.1 and 6.2 constitute an analogue of the corresponding result
presented in [36] for the vector space X3(E2). We note, however, that the latter result was
obtained by solving a system of PDEs analogous to (4.64) by the method of undetermined
coefficients with the aid of MAPLE. In this work, based on an inductive version of the
moving frames technique we have solved a very similar problem in what appears to be a

much more efficient way, in particular, without the aid of a computer algebra system.

Following the idea exhibited in [36], we observe that the elements of X3(E3) can be
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expressed by the general formula
K3 = aij"Xi O] Xj O Xk +3bini @Xj OH+ 3c"X,- OHOH

+eHOHGOH
(4.74)

= aij"Xi@Xj@Xk-i-(Sbin¢®Xj+Ké®H)®H
= d*X,0X;0X:+KI0OH, i,j5,k=12,

where X; = 8,,Xs = 0,, and H = ud, + v8,, while K* and K? represent the elements
of the vector spaces K!(E?) and K?(E2?) respectively. Furthermore, the components of

12 221 _ 222 __
=a4, G = ag,

the tensors a*, b, ¢t and e are given by a!'! = a3, a**? = a3, a
bl = —gg, b2 = b?! = qq, b2 = —as, ¢! = —ar, ¢ = ag and e = —ay in terms of the
parameters a;,¢ = 1, ..., 10 that appear in (4.63). Taking into account the formulas (4.72),

(4.73) and (4.74), we arrive at the following two results.

Corollary 4.3 Any algebraic I(E?)-invariant I of the vector space K*(E3) defined over
the open submanifold of the corresponding parameter space T2 where the isometry group
I(E?) acts freely and regularly with three-dimensional orbits ¢an be locally uniquely ex-
pressed as an analytic function T = F(Ay, Ag, Az), where the fundamenzal I(E2)-invariants
N, 1=1,...,3 are given by the formulas (4.72).

Corollary 4.4 Any algebraic I(E?)-covariant C of K*(E?) defined over the open subman-
ifold of 2 x E? where the isometry group I(E}) acts freely and regularly with three-

dimensional orbits can be locally uniquely expressed as an analytic function
C = F(AL Af, A5, Ag, g):

where the fundamental I(E?)-covariants AS, A§, AS, A§ and A§ are given by the formulas
(4.73).

Remark 4.7 We note finally that the action of the isometry group I(E?) on XC3(E2) is not
free globally due to the existence of isotropy subgroups (see (4.74)). This is why it is very
difficult to employ only these fundamental invariants to classify the ten cases of Drach
potentials. More delicate rank analysis and group theory will be needed. This problem is

completely solved and will be presented in Section 6.4.
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4.3.3 Killing tensors of valence three on the Euclidean plane

Consider now the contravariant Killing tensors of valence three defined on the Euclidean
plane. Solving the Killing tensor equations (2.23) with respect to the Cartesian coordinates

(z,y) yields the following general formulas for the components of the Killing tensors.

KW = g, +3asy + 3agy® + aoy®,

K12 = g5+ agy — asz — 2aszy + agy? — 102y,
(4.75)

122 2 2
K as — agY — a7y — 2a9TY + asT* + a1pyYx,

K22 = g, + 3a;z + 3agz® — ayzs.

Let I(E?) denote the Lie group of isometries of E? which consists of translations and
rotations. Its corresponding Lie algebra is generated by the following three Killing vector
fields

X=8, Y=0, R=y0;—z0, (4.76)

which satisfy the commutator relations
X, Y]=0, X,Rl=-Y, [Y,R]=X. 4.77)

Our goal is to determine a complete set of fundamental I (E?)-invariants of C*(E?).
One method available is that of infinitesimal generators. We first find a representation
of the infinitesimal action of I(E?) on the parameter space X. Using the MST-procedure

one arrives at

Vi = —a50,, — ag Oy + 307 Oy — 205 Oy + 209 Oa; — Q10 Osgs
Vo = 3a50,, + as0a, — a7 Oay + 208 Oyg + 2ag Ogg + 10 Oag,
Vi = 3a30,, + (2a;3 — a1) 8, + (a4 — 202) Opy — 303 Oa,
+ag 85 — 2(as + a7) Ogg + a6 Foy + A9 Oog — G . 4.78)
Note that they satisfy the commutation relations

[V, Vo] =0, [V, V3]=-V,, [V, V3]=Vj, 4.79)
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which verify the isomorphism between the Lie algebra generated by V1,V2,V; and the one
by X,Y,R. Then any I(E?)-invariants Z of K*(E?) must satisfy the following infinitesimal

invariance criteria

ViD) =0, VaD)=0, Va(D)=0. (4.80)

In principle one can find all fundamental invariants by solving the system PDEs (4.80) via
the method of characteristics. We note, however, in this case again the method of charac-

teristics fails.

The other method one can use to achieve the goal is the method of moving frames. But
it does not work if we use the moving frame method for the whole isometry group action
[83]. Thus one can try the inductive version of the moving frame method [50], which we

mentioned earlier and applied with success in the previous section.

First the isometry group J(E?) factors as a discrete product of subgroup T of transia-
tions and R of rotations. We will proceed by first determining the T-invariants and then
using them as new coordinates, performing the tensor transformation laws for these new
coordinates under the action of the subgroup R. Thus the invariants of the latter group ac-

tion will be the invariants for the whole group action [50].

Consider first the translation-invariants (i.e. T-invariants) of XC3(E?):

Subgroup T acts on E? as follows.

I=z+a, Y=y-+b, a,b € R, (4.81)
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which induces the action on the Killing tensors.

&1 = a - 3b as + 3b2a3 - b3a10,
G, = ap+aas— bag — 2abag + b%ag + ab®ay,
a3 = a3+aa6+ba7—2abag +a2a3 —-bazaw,
Gy = Q4— 3a ar + 3@209 + a3a10,
&5 = az— 2b as + bzam,
(4.82)
Gg = as+2aag—2bag — 2abao,
5.7 = ar-— 2a Qg — azam,
ag = ag— bay,
ELg = ag+adag,
a1 = ao-

We now employ the method of moving frames to find the group invariants. Solving the

following normalization equations

ag—bayp =0, as+aap=0 (4.83)

leads to the moving frame map

a=—— = —. (4.84)

Substituting the moving frame map into the remaining transformations, one obtains the

following fundamental T-invariants:
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I, = aa% — 3asasay + 2a3,
I2 = agafo — as509Q10 — AsQgA10 + 2a§a9,
I = a3a§0 — QgGgA10 + A7agCG10 + 20803,
I4 = a4a%0 + 3a7agam -+ 2a§,
(4.85)
I; = asa10 — a3,
Is = @QsQig + ag,
I; = aga — 2asas,
Ig = aio-

Now consider the action of the subgroup R.

% =zcos(t) —ysin(t), § = zsin(t) +ycos(t), teR. (4.86)
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This leads to the following parameter transformations.

a

Qs

ay cos®(t) — 3ap sin(t) cos?(t) + 3az cos(t) sin®(t) — aysin®(t),
ay cos?(t) sin(t) + a cos(t)(cos?(£) — 2sin®(t))

~ag sin(t)(sin?(£) — 2 cos?(£)) + aq cos(t) sin?(t),

a1 sin?(t) cos(t) + ap sin(t)(2 cos?(t) — sin®(%))

+ag cos(t) (cos?(t) — 2sin®(t)) — aq sin(t) cos®(2),

a1 sin3(2) + 3a, cos(t) sin®(t) + 3aa sin(t) cos? () + as cos’(2),
a5 cos?(t) — ag cos(t) sin(t) — ar sin®(t),

2(as + az) cos(t) sin(t) + as(cos?(t) — sin(t)),

—as sin®(t) — ag cos(t) sin(t) + ar cos?(t),

ag cos(t) — agsin(t),

agsin(t) + ag cos(t),

a- (4.87)

Now we consider the actions on the fundamental T-invariants of the subgroup R.

Is.

I, cos3(t) — I sin®(t) — 31, cos®(t) sin(t) + 313 sin®(¢) cos(2),

I cos3(2) + I3 sind(t) + (I1 — 2I3) cos?(t) sin(t) + (Iy — 21) sin®(t) cos(t),
Iy cos?(t) — Lpsind(t) + (21, — I4) cos?(£) sin(t) + (I — 2I5) sin®(t) cos(t),
I cos3(t) + I sin®(t) + 315 cos?(¢) sin(t) + 3L, sin®(¢) cos(t),

I5 cos?(t) — Is sin®(t) — Ir cos(t) sin(t),

—I5sin?(t) + Is cos?(t) — Ir cos(t) sin(2),

(Is -+ Is) sin(2t) + I; COS(?.t),

(4.88)
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Again we employ the method of moving frames. Choosing the cross-section
K ={I; =0}
leads to the normalization equation
(Is + Is) sin(2t) + I7 cos(2t) = 0. (4.89)

Solving (4.89) we arrive at the moving frame map provided that I5 + Ig # 0.

t = arctan Ll (4.90)

Now substituting the moving frame map into the remaining transformations for the
T-invariants (4.88), after some algebras we arrive at a complete set of fundamental ] (E?)-

invariants.

L = I,

Dy = L—1Is,

Dy = B+ (I+L),

Ay = (205 —4I2)(LI, - L)
_L(Is + Is) {2 — 313 — 312 + I2 — 2L 15 — 2L L},

A5 = 2L D {I} - I = 3(5 — I§) — 2(L]s — L)}
+ B {(I = 3L)% = (I, — 3)%}
+2(Is + Is) {2(I1 [2 + I3 1h) D +I2(I — 303)((Is — 312)},

Ne = (Is+Is) {40 (I - I}) = B((L - 3L)° — (s - 31))}
+12I; Az (I + I31) + 213 (1, — 313) (1 — 32),

ANy = (Is+1s) {405 (B — 1) + B((I — 35)° = (I — 31)%)}
—4I; Ay (Ll + LIy — 4L 1s) — 2B3(I — 315) (I, — 3L),

where I3, ..., I3 are given by (4.85).

Remark 4.8 All of the seven fundamental invariants are homogeneous polynomials in the
ten parameters a;, %= 1,...,10, with A; of order 1, A of order 2, Njoforderd, Ay
of order 10, while As, Ag, A7 are of order 12.
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Remark 4.9 Similarly, one can employ this technique to determine a complete set funda-
mental J(E2?)-covariants of XC3(E?).

Note that recently Horwood ez al [36] employed the method of undetermined coeffi-
cients and the method of infinitesimal generators to determine a complete set of fundamen-
tal isometry group invariants of Killing three tensors defined on the Euclidean plane.

The inductive version of the method of moving frames will be applied again in Chapter
5 to the problem of the determination of a complete set of fundamental isometry group-

invariants of Killing tensors of arbitrary valence defined on the Minkowski plane [81].



Chapter 5
An Analogue of the 1856 Lemma of Cayley

5.1 Introduction

In light of the fact that “Mathematics is the study of analogies between analogies™ [73], we
wish to continue developing ITKT by establishing more analogies with CIT. In this Chap-
ter, we formulate and prove an analogue of the 1856 lemma of Cayley in CIT described in
Chapter 3. To be more specific, we completely determine the infinitesimal generators of
the action of the isometry group on the Killing tensors of arbitrary valence defined on the
Minkowski plane. Theoretically, this result allows one to determine the isometry group in-
variants and covariants of Killing tensors of high valences on the Minkowski plane, except
that one may need computer algebra together with the method of undetermined coefficients.
This is an original contribution to the invariant theory of Killing tensors and has potential
applications in Lie group theory and mathematical physics. A paper [89] based on this
result has been published.

As a second part of the Chapter, by making use of a new technique of the method of
moving frames [50], we solve the problem of the determination of a complete set of the
fundamental invariants of Killing tensors of arbitrary valence defined on the Minkowski
plane [81].

5.2 The formulation of the problem

Since Cayley’s problem concerns binary forms of arbitrary degree, it will be natural to in-
vestigate the Killing tensors of arbitrary valence defined on a pseudo-Riemannian manifold
of dimension two, for example, the Minkowski plane EZ. That is, the object of study here
is the vector space K(E?) of Killing tensors of valence n (where n is arbitrary) defined on
the Minkowski plane, while as before the group that acts on it is the isometry group of the

underlying manifold. A comparison of the two sister problems is given in Table 5.1.

70
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[ Theory | Vector Space | Group | Dimension of the Space | Dimension of the orbits |
It | P(R) |SL@R) n+ 1 <3
TTKT | K () %) m+1)(n+2)/2 <3

Table 5.1: The settings for the corresponding problems in CIT and ITKT

Having made these observations, we are now in the position to formulate the ITKT

version of the problem considered by Cayley in 1856 [10].

Problem 5.1 Consider the action of I{(E2) on K™(E?). Determine a representation of the

corresponding Lie algebra i(E2) on the parameter space T of K™(E2).

5.3 Infinitesimal generators

In this section we solve Problem 5.1 presented above. As a first step, we need to derive a
general representation for an element of the vector space €™ (E?), (i.e., an analogue of (3.1)
of CIT). As is well known, each Killing tensor of valence 7 on a 2-dimensional manifold
is determined by (n <+ 1)(n + 2)/2 parameters that appear in the n -+ 1 components, which
take the following form.

Jrpdiednep (5.1)

where

hW=...=4=1 Hh=...=jhp=2 p=01,...,n

The Killing tensor equation (2.23) with respect to the pseudo-Cartesian coordinates
(t, z) reduce to a system of PDEs:

3tKi1"‘i" — 0’ aij],...jn — 0’

(5.2)
(n -p + 1)azK‘i1...‘ipj1...jn_p — patKil...ip_ljl...jn_p.i.]_’
where 5 5
=0,1,...,n, Oi=—=, Op=—.
P R CRY oz
As a consequence of (5.2), we readily obtain the necessary differential conditions:
(az)p-b-l Kil...i,,j;...j,.-, - 0’
(5.3)

(at)n—p-{-lKi;...i,j1...j,,..p =0.
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Solving the above PDEs one arrives at the following general formulas (Note again here
the parameters in the formulas are constants of integration when solving over determined
system of PDEs)

( n—p [ ? i
Zp (n;p)tizc;)apijlj , if n2p2 [n—gl],
FCitvindidnes — | i:° - - 7= : (5.4)
Z (f) IEi Z (n J—. p) bpijtj ’ if 0 S p S [%];] ?
\ =0 L J=0 J

where the parameters a,;;, by:; are to be determined (or arranged) a little later (at this stage
they are merely inserted for our convenience). We immediately recognize that the formula
(5.4) is an ITKT analogue of the general formula (3.1) that was considered by Cayley in
CIT. The parameters a;;, byi; can be determined by following the general procedure of
solving the system of PDEs (5.2). We consider separately two cases: 7 is even and 7 1s
odd. The parameters of each of the n+ 1 components can be organized into groups in such
a way that the parameters of one group are completely determined by the parameters of the
other (see the illustrative examples below). After relabelling the parameters, we obtain the
following two schemes which will specify the arrangements of the parameters of the first
groups of the components. Once they are specified, the parameters of the other groups and

hence the formula for all of the components can be determined completely.

1. niseven.
) 1 1 1 1 1
Step1: ag ai ... Gr_o Qn_q Gp,
1 1 1 1 1
bO bl bn.-—2 bn-l an
. 2 2 2 2 1
Step2: ag aj Gi_s Gn_o by
2 2 2 2 1
bO bl bn—3 Gn—2 Qn-1
(5.5
n. Z 3 3 252 1
2
n z z n=2 1
b¢ b a3 a,® s B
2
n+2 a2  n n=2 n—4
Step T ag: bE byt b b

2
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2. nisodd.
. 1 1 1 1 1
Step1: ag ay Gp_n Qp_1 G,
1 1 1 1 1
by by v bpp bpop G
. 2 2 2 2 1
Step 2 : ag ay ... ne3 Qo_s bng
2 2 2 2 1
b5 by bz Qa2 Gny
(5.6
-1 n=1 a=1 n=1 n=1
Step——:  g° @ @° 4 ... bls
& 2
2=l a=i =l  nzl 1
b*  bP Bt gt Qi3
2
n+1 ntl ntl n=1 n=3
Step 5= % T a2 by? byt bl
2
ntl nt+l n=1 n=3 1
bo z a4 2 Qo 2 az” Qi
2
We now show by examples how these schemes work.
e we first give 2(n + 1) — 1 parameters
1 1 1 1 1 1
gy« -+ Op_1; s bgs---3bn_1,Cn;

and write down the first and the last components of K € K™(E3):

K-t = [aé + (le) aiz + (;L) a3z’ +...+ (n i 1) al_ 2"+ a};xn] ,

K#-2 = [bé + (2) bit + (g) bt + ...+ (n f 1) bL_ "+ a;t"] :

e Next, for 2(n ~— 1) — 1 new parameters

2 2 2 2 2 2
A5y - ey Orz; s b3y - -+ 053, Gnz;

we present second and penultimate components of K (see (5.4)), each of which is

the sum of two polynomials, the first having been determined by the newly specified
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parameters apd the other - by the parameters determined previously.
11..12 2 n—1\ , n—=1\ 9 a2,  n-1
K = |ag+ aiz+...+ a, T+ b, 1T
1 n—2
n—1 n-—1 — n—
+t[a}+( 1 )a%z+...+(n_2>a}‘_1x"2+a,11$ 1],
2 n—1 n—1 n-— n—
K22 = [b§+ ( ) )b§t+...+ (n_2) aZ_,t" 2 +al it 1}
1 n—=1\., n=1V1 -2 1,n-1
+$ [bl+( 1 >b2t‘1“...+(n 2)b —lt +ant :i.

e To clarify the process more, let us consider the next step (if any): given 2(n —3) —1

new parameters

3 3 3 3
ag; - ~+3Ap_5; On—ygs b = bn—sv n—43
‘one can specify the next two components:

K‘ll...l22 =

-2 n—2 _ n—2 - -
[a +( . )a§x+...+ (n_4>ai_4x" Es (n_3>bi_3x" 40 2" 2]

n
-2 n—2 n—2
+2t |a? + ( 1 )a%x +.+ (n _ 4> a2_zz" ™t + ( _ 3) a2 "3+ b},_lz"'z]

ow

n

—2 —9 —2
+22 [a% + ( 1 )aéz ...+ (Z _ 4) al ozt + (Z B 3) R x"‘ﬂ )

n—2 n—2 — n—2 n— e
[bg+< 1 )bsH +(n—4>ai'4t 4+(n-3>ai'3t Tt 2}

n—2 n—2\,, - n—2 - —

+2z [b%-&-( ] )b§t+...+ (n_ 4>b;,_3t" 4 (n_3> a2_,t" 3 +al " "’]
n— 2 2 n— n 2 n— n-—

+z° [b;+( . )bst+ +<n 4)b;_2t 4+(n 3)bl_lt 3 +alt 2].
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e We continue this process in both directions (i.e., going “downwards” and “upwards”)
until it is terminated in the middle of (5.4).

Remark 5.1 In this view, counting the steps in both cases (n is even and n is 0dd), it is
easy to see that the dimension of the space d = dim K™(E}) = ;(n+1)(n+2), n2>1

gets decomposed as follows.

{ Rn+1)-1+2r—-1)—1+...+[2x1~1] ifniseven,
d= 5.7

2(n+1)=1]+[2r-1) -1 +...+[2x2~1] ifnisodd

The auxiliary problem of finding the general form for the elements K € X" (R?) is
therefore completely solved. We immediately notice that the general solution (4.26) can be

relabeled following the scheme (5.5) as follows:

a} +2alz + alz? (a2 + biz) + t{a] + a37)
K — . G8)

(a2 + biz) + t(al + aiz) b} + 2bit + adt?

To further illustrate our results we consider the following two examples.

Example 5.1 K*(R?). Note d = dim K*(R?) = 15. Following the formula (5.4) and the
coefficient scheme (5.5).

KU = g} +dalz +6alz? + 4als® + ajz?,

K12 = (a2 + 302z + 3adz? + b}2®) + t(al + 3adz + 3ajz® + ajz®),

KY2 = (g2 + 282z + bia?) + 2t(a? + 203z + biz?) + t%(a} + 2ajz + ajz?),
Ki22

K2222

(02 + 3b2t + 3a3t? + alt®) + z(b} + 3bit + 3bjt? + ajt®),

b} -+ 4bit + 6b4t% + 4Lt + ajtt.
(5.9)
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Example 5.2 X5(R?). d = dim K°(R?) = 21. We use the scheme (5.6).

Klllll

K11112

K11122

K11222

K12222

K22222

a} + 5aiz + 10a3z? + 10aiz® + Sajz* + azz®,

(a2 + 402z + 6a2z? + 4adz® + biz*) + t(a} + 4dajz + 6ajz? + dajz® + a5zt),
(a3 + 33z + 36322 + biz®) + 2t(a? + 3a3z + 3a3z® + bjz®)

+12(ad + 3aiz + 3alz? + alz?),

(63 + 33t + 3a3t? + alt®) + 2z(b2 + 3b3t + 3a3t? + agz®)

+22(b} + 3b3t + 3b3t% + ait®),

(b2 + 452t + 6b212 + 42t + altt) + z(b} + 4bjt + 6b31% + 4bit® + astt),

b} + 5bt -+ 10b3t2 + 1063¢® + 5bjt* + ait®.
(5.10)

We see that, following the parameter schemes given above, i.e. using the formulas

(5.4), (5.5) and (5.6), one can now write down explicitly the formula for a Killing tensor of

valence n on the Minkowski plane with respect to the pseudo-Cartesian coordinates (t, z),

without any difficulty.
To solve Problem 5.1, we employ the MST-procedure [52] outlined and used in Chapter 3.
Using the formulas (4.5), (5.4), (5.5) and (5.6), we obtain two triples of the vector fields

that represent the infinitesimal action of the isometry group J(E?) on the parameter space

T of the vector space Killing tensors of valence n on the Minkowski plane.

We distinguish two cases.



1. niseven.

vi = a§8“§+a§8“¥+...+a}‘_18°ﬁ_

2

+2a';'aﬂ8 + 2a§8a§ +et 2aﬁ_38¢i .

n
+;a?8 ns2
2 ag?
n4+2 3 n -’!‘-
tg O t3er 0y
o by

+(n~ 1)528,,5 +(n - z)bgabg +.. .2bﬁ_26ba _

+nb§abs +(n— 1)b§86§ +...+ahd, iy
.

1 1
= b}abg +bzab-f +.o o+ 0548, 2,
2 2 ap2
+2blabg o+ 2b23h:1; LR -bn_sana_“

=
ag <
n+2 3 n 3
+ ~ a;8§,+:428%
2 G 2 af

+(n - 1)“¥843 +(n=—- 2)0:,_‘:8‘% +... 20.3_-,

a
n=3

1 1 1
+ﬂa,_8¢6 +(n— 1)«28“§ +... +a,,,8“;'|,‘_ ,

2 2 2 1
-”“0843 -(n— 1)a18°§ - — 2@,__28a}._2 - b"_la“}‘-l

~{(n - 1)a3 +¢(’;]8“§ —— =263 g+ “i—Slaaﬁ_z

n 3 3 1 1
~=lag +b518 naz ~...=[ap_2+b5_218,2
2 “0_!- S~

~[(n - 1)53 +b(‘,]6bg - =[23_ 5+ b}‘_alabi "

n 1
20,1 -a 8,1 .
n—-2%%. 2 n—1%%

2 2
—-nd58,1 — (n—1)638,1 — ...~ 2a
R0y = (n = 1By )
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(5.11)

(5.12)

(5.13)



2. nisodd.

Vi

Va2

78

0}803 “+ a.éaavf + i G}l—laai_

2

-

+2a§8¢3 +2030,3 +.. .+ 2a§_380i_4

n+1 n1

=
+—2—01 2] n#-l
. b . . (5.14)
n+3 2 n+l —!—"- n—1 252
+ * bx" 8 n-1 +_bl O n—1 + 2 ag * 8 n-1
by 2 by by T
—1)628,~ + (n = 2)b38,2 +...2a2 _28,2
+(ﬂ )1b°+( )-bl n -bn.—a
+nbldy +(n = 1)b38,; +... +2%_18,1 _+aeld,1
b 27 ba—2 ba—1
1 1 1
blabg +b285§ oot bn_18 2_,
263 2538, + ...+ 265 _30
+ 1abg+ R
nt+1 akl
-+ ay < 8 nan
1 % +1 1 G15)
3 2ol F1 23l n-1 2zl
+ﬂ+ @y < 8 a1 +ﬂ~'1‘ Qg ¢ 9 Al + Gq = 8 a1
ag * bl - ap =
2 2 2
+(n— 1)“15¢§ +(n - 2)a:8°% . +2“n-28¢§‘_3
+na"81+(n—l)a},81+...+241 8.1 +a‘61 y
1ag a1 nlan 27 M en
—naga“é -(n - 1)a§a°§ - ...20;’:_28“}‘_2 —b}‘_lac}'_x
3, 1 2 1
- [(n. - 1)eg +a.°] 803 - [2b,‘_3 +a,‘_3] 8“;_:_3
n4l ol a3 2gl
- by = aq = @ nat
1 21 %o
n-=1 232 2y 1 1
- C ]8°:+1 == lopog +5,-218 2, .16)
n+l Bl -1 2L
—[ a;'!— + - bo_r 9 a4
-
b0

=[tn =~ 18] +5518,3 = -+- = [Zon_3 +bn_3l0y2__

-abgabs -(n- 1)@%8,,11L - 2°§-=95g_2 - °3‘“a"3‘_;'
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We remark that the vector fields V1, V3 and V3 correspond to the generators T, X and

H given by (4.28) respectively. Moreover, it is easy to verify directly that the vector fields
—V1, =V, and — V3 satisfy the same commutator relations as T, X and H (see (4.29)).

‘We thus conclude that the vector fields V;, 7 = 1,2, 3 represent the infinitesimal action

of the isometry group I (E2) on the parameter space T defined by K™ (E?2) and we obtain an
ITKT analogue of 1856 lemma of Cayley (Lemma 3.1) [10].

Theorem 5.1 The action of the isometry group I(E?) on the vector space K™(E2) has
the infinitesimal generators (5.11),(5.12) and (5.13) when n is even and (5.14), (5.15) and

(5.16) when n is odd.

To illustrate our results, consider the following examples.

Example 5.3 K*(E2?). Using Theorem 5.1, the infinisimal generators are found to be

Vi

I

018,3 + a30;; + a30,3
+2a§6,,3

(5.17)
+3b%3bg + 20%86’%

+4b%3b‘1) + 3b§86{ + 26:133,,5 - aiab:l‘,

= bj0p + 03052 + b30,3

+2b§5ag
(5.18)
+3a30,z + 2030,z

+4a10y + 330, + 230, + ajlay,

—4a30,1 — 3030, — 2030, — b30,

—(3a3 + a§)0,z — (26% + a1)0z2

~2(a3 + b3)0,3 — (a3 + b3)0y (5.19)
(303 + B5)0sz — (203 + 1)y

—4b§3(,‘1, - 3b2{3b§ - 20,%8(,% - Géab:ls.
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Example 5.4 X5(E?2). Using again Theorem 5.1, one arrives at the following infinitesimal

generators
Vi = ai0z+ 0303 + 30,3 + 30,2

+2020,3 + 2a50,3
+3a305 (5.20)
+4b28y3 + 3030, + 2305
+5b1 By + 4b3051 + 3b305; + 2030y + a0y,
Vo = bl + bidy + 30k + bi0s3
+2b30y3 + 20303
+3a30,3 (5.21)
+4030,3 + 3a30,3 + 2030,

+5a§3a3 -+ 4@30_% ~+ 30%3@% -+ 2ai3,,§ + aéaai,

S
I

—5030,; — 403051 — 3030,y — 2030,y — 10

—(4a3 + a})8,z — (3a} + a})d,z — (263 + 03)0xz

—(3b% +203) 0

—2(62 + a2)8,3 — (a3 + 53)00z (5.22)
—(3a3 + 262) By

— (483 + b})Byz — (3a} + 1) 8y — (203 + b3)0y;

—5b30y — 4630y — 3b30y — 230y — a0}

One of the main consequences of Theorem 5.1 is that one can employ the infinitesimal

invariance criteria to determine the I(E2)-invariants of Killing tensors.

Theorem 5.2 A function I : £ — R is an I(E?)-invariant of K™(E3) if and only if it

satisfies the infinitesimal invariance criteria
Vi(I) =0, 1=1,2,3 (5.23)

where . is the parameter space and V;,i = 1,2, 3 are given in Theorem 5.1.
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Corollary 5.1 The parameter al, is a fundamental I(E3)-invariant of K™ (E3).

In view of Theorem 5.2 the problem of the determination of the space of I (Ef)-invariants
now amounts to solving a system of linear homogeneous, first order PDEs resulting from
the generators in Theorem 5.1. For large values of n the problem becomes very challenging
computationally. One may employ the method of undetermined coefficients in conjuncture
with the result of the fundamental theorem on invariants (see Theorem 3.1) of a regular Lie
group action, as well as computer algebra.

The concept of a isometry group covariant of Killing tensors has been introduced in
Definition 4.1 (see also [79, 80]). Theorem 5.1 also entails the corresponding criteria for
I(E2)-covariants (see [79] for more details) of K™(Ef).

Theorem 5.3 A function C : £ x E2 — R is an I(E?)-covariant of K*(E3) if and only if
it satisfies the infinitesimal invariance conditions
U;(C) =0, i=1,2,3,
(5.24)
Up=Vi+T, U=V+X, U3=V;+H,
where T is the parameter space, Vi, i = 1,2, 3 are specified in Theorem 5.1, T,Xand H
are given in (4.28).

5.4 Fundamental invariants

Following the ideas presented in the previous section (see also Yue [89]) we now describe
the space of isometry group invariants of Killing tensors of valence 7 on the Minkowski

plane. This will take a few steps.

5.4.1 General Killing tensors

We first work out a general Killing tensor of arbitrary valence n defined on the Minkowski
plane using again the null coordinates (u,v). Compared with the case of the pseudo-
Cartesian coordinates, the Killing tensors will have the same structure as shown in (5.4)(see
also [89]), except that

1. one has to switch ¢ to v and z to v in (5.4);
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2. the sign of the coefficients a;, byi; in the first groups (and hence the following

groups) of the components will change in a way depending on whether the valence

is even or odd.

We specify the pattern in the following.

e n iseven.

stepl

step2

step3

steps

step22

e nisodd.

stepl

step2

step3

stepZ$t

Gy’

2
o
™

[ XE]

(-
ol

2
B eofs

o
Nl

3
|
N

n-1

1
bn-—l
n—-2
n—2

2
- bn—3

—C0p_3

n—-2
Gn-3

2
bn—3

n—4

n—4

. (5.25)

(-1)*F b
P

(-1)*F ahs

2

n
(=1)zb%
2
1 1
ap—1 an
1 1
bn— 1 —a,
2 1
an—2 bn—l
2 1
—Qn—2 Qn1
2 1
bn—3 _bn—2
2 1
On—3 —0h_2



These schemes are now illustrated by several examples.
Example 5.5 Consider K*(E?), the five components are given by
KU1 = gl +4alu + 6adu® + 4ajul + agut,
KM2 = (a2 + 3a2u + 3adu? — b3u®) + v(—al — 3aju — 3aju? — aju?),

K12 = (g} — 2b%u + bju?) + 2u(—a? — 2a3u + b3u?)

(5.27)
+v2(a3 + 2alu + alu?),
K222 = (B2 + 3b%v + 3a3v® — a}v®) + u(—b} — 3bjv — 3b3v? — ajvd),
K22 = pl 4 4bly + 6b3v? + 4b3v° + agvi.
Example 5.6 Consider X°(E?), the six components are given by
KUl = gl 451y + 10aiu® + 10a}u® + Sajut + agv’,
KMW2 = (a2 + 4a?u + 6adu? + 4adu® — bjut) + v(—a] — 4aju — 6aju?
—4alud — atu?),
KW2 = (g3 4 3q3u + 3b2u? — bjul) + 2v(—a? — 3a3u — 3afu® + bju’)
+v2(a} + 3aku + 3aiu® + alu?),
(5.28)

K122 = (B3 — 3ad3v + 3a3v? — alv®) + 2u(—b? — 3b3v + 3adv® — agv?)
+u2(Bl + 3bkv + 3bjv? — alv®),
K22 = (5 4 4%y + 65307 — dau® -+ alv?) + u(—b} — 4bly — 6b}v?
—4blv® + afv?),
K222 — pl 4 5bly + 10b3v? + 1063v° + Sbjv* — afv®.
5.4.2 Fundamental invariants

With the general formulae of Killing tensors available, we now proceed to employ the in-

ductive version of the method of moving frames to determine a complete set of fundamental
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isometry group invariants (see [50, 80, 31]).
Step 1. Translation invariants
Assume the valence be even. We first consider a change of coordinates corresponding

to translations

i=u+b T=v+ec, b,ceR. (5.29)

This will induce an action on the Killing tensors.

k=0
- n
5= 2u(y)eon
k=0

(5.30)
=1 —_ 1 1
Qn1 = an—l ba’n:
1 — 1 1
b1 = bpoy —cap,
=1 — 1
an - an?
n n
n+2 a2 2. n=2k+2 (B i " — 1 n "
a02 == 002 + E bk z z: b + +c§. an-gzk kz: (_b) .
k=1 k=0

Choosing the cross-section K = {a}_, = b;_; = 0} leads to the moving frame map
(provided that a’, # 0)

al_ bL_
b all, = all. (5.31)
n n

Substituting (5.31) into the remaining equations in (5.30), we obtain the fundamental



85

translation invariants (provided that a’, # 0), denoted by

Ay Al 0 AL, AL, AL
B. B! ... B, Bl,
A2 A2 L A2, AR,
Bl B! ... B:,
(532)
A7 AR Af
BE B}
n+2
A?

Note that the number of functionally independent translation invariants is {42242) o

Step 2. Rotational invariants - fundamental invariants

Now consider the action of the subgroup of rotations, the change of coordinates is

T=ued, T=ve?, deR. (5.33)

where ) is the coordinate that parametrizes the group.

This change of coordinates induces the corresponding coefficient transformations as

follows.



a} = aje™ at = alem=1X
1 _ pl,—nA 71 — plo—(n—1)A
b} = bje bt = ble~(n—1)
a2 = adeln=2A a2 = afe(m=3N
B =ble~(DA B2 = plem(n=IA
B = (n—2) b2 = ble~(n—3)
n k3 z <3 A
ag = af e? ai =afe
-z n -n 2,
b =bie A bf =ble”
nE2 nt2
5 2 @ — 2
ag® =aq

B ol
Il

QI

LEIEE]
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—1

Gp—1 = Gp_1€
_  d=d
bL_,=0b_,e”
a2 2 A
Op—3 = Gp_3€ 52 2
=a
Gp_2 n—2

B2_,=b2_se*

In view of (5.34), we determine the action of the subgroup H on the vector space

spanned by the fundamental translation invariants 5.32.

A =™ 4] A}l = eln~1A4l

—nA B(]j —(n—1)A B]I_

Bl=e
1= o9 42

Bl=e
A2 = e(m=2A A2

B2=e(m-2Ap2 B2 = ~(n-3Ap2
AZ =P A¢ A? =e*A}
B =e B¢ B =eB?

n;—2 _+_
Ag? =47

W

an

B

Now we again employ the method of moving frames.

Choosing the cross section
K={AZ =c¢,

leads to the moving frame map

where ¢ #

-‘1};—2 = 32)“4711-2 o A};
By ,=e2B, ,
A=A, -
- A-}L—z = Arlz-z

B2 .=e¢B2_,

3

2

# 0 is a constant}
(5.36)
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Combining (5.36) and (5.35), after some algebra one arrives at the following funda-
mental invariants (provided that a}, # 0): Invariants of type I

Tg=43B5, I = 4B, vy Ina=ALLBL,,  Li=A4g

= A%Bg ) I% = A%B%: Tt 1721—3 = Ai-ng—sv 1721.—2 = A?z—m
¥ =438, If =alB}, =4,
nt2 ntl
1'0 2 — AO 2 ,
Invariants of type J

‘70:L = Aé(BF)nv \ZLI = A%.(Bl?)n-la T \711.—2 = A}z—2(BF)2’

7= A4BH F= BB, . Ta= 455D,

I3 = 43 (BY).

Remark 5.2 We remark that the number of invariants found above is exactly

(n+1(n+2)

5 3.

‘We thus obtain Theorem 5.4 which follows from Theorem 3.4.

Theorem 5.4 Assuming that a’, # 0, the type I invariants and type J invariants listed above
together form a complete set of fundamental isometry group-invariants of Killing tensors

of valence n defined on the Minkowski plane.

Remark 5.3 The case where the valence is odd is similar and we omit the process.



Chapter 6

Applications

6.1 Introduction

One of the main features of any invariant theory is that the invariants can be employed to
solve the classification problem. It is well known that the elements of the vector subspaces
of non-trivial Killing tensors of valence two generaté orthogonal coordinate webs on the
Euclidean plane E? and the Minkowski plane E? respectively, provided the Killing tensors
in question have distinct (and real) eigenvalues. From the invariant theory point of view the
problem of classification of orthogonal coordinate webs (equivalence problem) and the re-
lated canonical form problem are intimately related to the problem of the determination of
fundamental isometry group invariants (covariants, joint invariants) of Killing tensors. In
the following two sections, we present an invariant classification of orthogonal coordinate
webs on the Euclidean plane and on the Minkowski plane that are generated by non-trivial
Killing tensors of valence two. For the classification on the Euclidean plane, the problem
was frist solved by Winternitz and Fri3 in 1965 [87] and then by McLenaghan, Smirnov
and The independently in 2002 [52]. Here we resolve the problem by employing the fun-
damental covariants. For the corresponding problem on the Minkowski plane, we use the
fundamental covariants of valence two Killing tensors. We note that the complexity of the
solution is significantly reduced compared to [54].

The second part of the chapter deals with integrable and super-integrable Hamiltonian
systems, using the invariant theory of Killing tensors. We are particularly interested in the
potentials of Drach.

6.2 Orthogonal coordinate webs on the Euclidean plane

Let X2,(E2) be the vector space of non-trivial Killing two tensors of valence two defined on
nt P =]

the Euclidean plane E2. By “non-trivial” we mean that the Killing tensor in question is not

88
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a multiple of the metric. Thus such a Killing tensor will be determined by 5 independent
parameters, that is dim K'2,(E?) = 5. It is established in [55, 56, 52, 54] that the fundamen-
tal invariants Z; and Z; given by (4.73) are the fundamental J (EE?)-invariants of K, (E?).
The two fundamental invariants divide K2,(E?) into four equivalence classes and they can
be used to completely solve the problem of the classification of orthogonal coordinate webs
on the Euclidean plane. The results are summarized in Table 6.1.

We note that the same classification can be done by means of the fundamental I (E?)-
covariants C; and C; (see (4.59)). The details are given in Table 6.2. The four orthogonal
coordinate webs and given in Figure 6.1-6.4.

Without loss of generality we can assume that the general non-trivial Killing tensor of
valence two defined on the Euclidean plane with respect to the Cartesian coordinates (z,v)

takes the following form.

. Bi+2Bsy+Bey® Bz — Pax — By — Pezy
K2, = . 6.1)
Bs — Bax — Bsy — Bszy 2Bsz + Psz* .

where the parameters 3;, ¢ = 1,.. ., 6 are given in (4.44) and B = B — Pe-

The Killing tensors within each of the four equivalence class generate the same orthog-
onal coordinate web (up to the action of the isometry group I(E?)).

One can use this fact to choose appropriate canonical forms for each of the four equiv-
alence classes. We consider the Killing tensors with respect to the orthogonal coordinates
(u,v) (see [52]) and then use the standard coordinate transformations to the Cartesian co-
ordinates (z, ) in order to determine the corresponding canonical forms for EC1-4. Alter-
natively, one can proceed by using the coordinate cross-sections, which, we demonstrate in

the following.

EC1. The parameter space &' defined by the five parameters of (6.1) can be intersected by

the coordinate cross-section
K1 ={B:s=Bs=F5s =0}. 6.2)

In view of (6.1) and the formulas for Z; and Z; given by (4.59), we see that all but

one (8,) parameters vanish in this case. The parameter 8] remains arbitrary. Without
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loss of generality we can set 5] = 1, leading to the canonical form

10
K;= . (6.3)
00

Alternatively, we could have used the coordinate cross-section
K; = {6 = Bs=Bs =0}, (6.4)

which would have led to the canonical form

01
K, = . (6.5)
10

Note the canonical forms (6.3) and (6.5) are equivalent up to a rotation.

. Same argument as in EC1. Either of the coordinate cross-sections (6.2) and (6.4)

leads to the canonical form

y*  —zy
K= . (6.6)
—zy T2

First, note that the condition Z; # 0, Zs = 0 (see Table 6.1) prompts 52 + 52 # 0.

Therefore the coordinate cross-sections that can be used here are:

K3 ={f; =B =B =0} 6.7

and
K,={B; =B =B =0}, (6.8)

which lead to the canonical forms

0 -y
Kur= , (6.9)
-y 2z
2y —z
rr = , (6.10)
-z 0

Note the canonical forms (6.9) and (6.10) are equivalent up to a rotation.

respectively.
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EC4. In this case we can use either of the coordinate cross-sections (6.2) and (6.4). Inter-
secting the common level set defined by Z; # 0, Is # 0 (see Table 6.1) with (6.2)
yields the canonical form

Bi+y* —azy

K = ; (6.11)
-y  z°

while with (6.4) we arrive at the canonical form

( ¥ B—zy )
Ky = . (6.12)

Bs—zy 2P

Note the canonical forms (6.11) and (6.12) are equivalent up to a rotation and rescal-

ing.
6.3 Orthogonal coordinate webs on the Minkowski plane

The problem of classification of the ten orthogonal coordinate webs on the Minkowski
plane was initially solved by Kalnins (1975) [37]. The approach in [37] is based on the
property that the Killing tensors defined on pseudo-Riemannian spaces of constant curva-
ture are the sums of symmetrized tensor products of Killing vectors, and different com-
binations (as symmetric tensor products) of the basic Killing vectors (4.28) were analyzed
modulo the action of the eight-dimensional discrete group R of permutations of coordinates
and reflections of the signature of the Minkowski metric g = diag(1, —1) with respect to
the pseudo-Cartesian coordinates (t, z).

A different approach was used in Rastelli [71], where the ten orthogonal webs were
classified based on the algebraic properties of the non-trivial Killing tensors of valence two
defined on the Minkowki plane. More specifically, the author made use of the points where
the eigenvalues of such Killing tensors coincide (singular points). Recently, McLenaghan
et al [54) employed a set of the fundamental isometry group-invariants of Killing tensors to
classify the ten orthogonal coordinate webs defined on the Minkowski plane. The problem
appears to be much more challenging than the corresponding problem of classification on
E2 [55, 52]. The reason is simple: In both cases one has two fundamental invariants avail-

able, while the number of orthogonal coordinate webs is four on the Euclidean plane and ten
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on the Minkowski plane. In the latter case the problem was solved in [54] by introducing
the concept of a conformal I(E2)-invariant, which was used to generate additional discrete
I(E?)-invariants. The authors also investigate the effect of the eight dimensional discrete
group R on the discrete I(E2)-invariants. Unordered pairs (as the objects preserved by the
discrete group) of discrete invariants along with one of the fundamental invariants were
used to solve the problem. In the following we present a simpler solution based on the fun-
damental I (E2?)-covariants that are obtained in Chapter 3. The ten orthogonal coordinate
webs are given in Figure 5.5-5.14.

Let K2,(E?2) be the vector space of non-trivial Killing tensors of valence two defined on
the Minkowski plane. Again dim X2,(E?) = 5 and we assume without loss of generality
that in terms of the pseudo-Cartesian coordinates (t,z) the non-trivial Killing tensor of

valence two is of the form

o + 2047 + ez a3+ out + asT + etz
K= , (6.13)
a3 + st + a5z + ot 205t + agt?
where the parameters ¢;, ¢ = 1,...,6 are as in (4.25) and o] = o1 + .

Note that by Theorem 4.6 any I (E?)-covariant of K2,(E2) enjoys the form
C= F(II:I3) Cl; C2):

where 7;, Z;, C; and Cs are given by (4.61). As in the case of XC2,(E?) we can use Ty, T3,
C; and C, to classify the ten orthogonal webs. However, in view of the number of webs we
have to use these functions concurrently. Before doing so, we check the effect of R on I,
T3, C; and C,. Recall [37, 54] that the group (under composition) R =< Rj, By > consists

of eight discrete transformations generated by

R,: t=t, %= —z (spatial reflections),
(6.14)

]

Rz:

=z, =t  (permutation).

The group R (along with the isometry group I(E2?)) preserves the geometry of the
orthogonal webs defined on the Minkowski plane. Next, it is observed in [54] that R; and

R, induce the following transformations on the parameters ¢;, % =1,...,6 of KC2(E2) (see
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(4.44)):

Ri: Gy=0q, Ge=o0n, G3=—03 G4=—q4 O;=0as O05=0s
(6.15)
Ry: Gi1=o0n, Gp=a, G3=03 QG=0a; 0 =0, 0;=0s.
Tt follows immediately that the fundamental covariants Z;, Z3, C; and C, remain unchanged
under the transformations (6.15). We conclude that we can use them in the classification of
the ten orthogonal webs.
Recall that the space X2, (E2) can be divided into ten equivalence classes EC1-10 within
each of which the corresponding elements generate the same orthogonal coordinate web.
We consider next the ten canonical elements determined in [54], which represents each
class of EC1-10 by transforming them to contravariant form and making them compatible
with the general form (6.13) by adding multiples of the metric if necessary. The latter
operation does not affect the geometry of the coordinate webs generated by the canonical

elements. We arrive at the following list.

10
EC1 K;= , (6.16)
00

% tr
EC2 K,= , (6.17)
tr t
EC3 K3=( 2 ¢ 22 ) (6.18)
i- i+ ] t
0 z
EC4 K, = , (6.19)
z 2t

(6.20)

11,2 14 Lt
EC6 K5=(4 oo : (6.21)
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EC7 K EAEE A (6.22)
7= , 22
~i+itr 3P
1z? -k + 3tz
EC8 K;= , (6.23)
-k + 3tz 12
2k? + 32° iz
EC9 Ky = , (624)
r gt
2k* + 32* iz
ECI0 Ky = , (6.25)
Itz It

where the parameter & is a I(E2?)-invariant of K2,(E?). In view of Theorem 4.3 (see also
Theorem 4.6), it can be represented via the fundamental I(E})-invariants. Indeed, the

corresponding formulas were found in [54]:

EC5,EC9,EC10: k*= 'i\@ (Z; > 0),
3
(6.26)
EC8: k= —”;fl (7, < 0).

Note the canonical forms (6.16)-(6.25) are compatible with the general form given by
(6.13).

Following the procedure devised in [54], we use the canonical forms (6.16-6.25) to
evaluate the corresponding values of the fundamental I(E?)-covariants Z;, Zs, C1, C2 (see
formulae (4.61) in Chapter 3) and employ the results to distinguish the elements belonging
to different equivalence classes EC1-10. The elements of K2, (E?) must have the same
values of Ty, Zs, C, and C,. We note however that these functions do not distinguish EC1
from EC3 and EC6 from ECS. Therefore we have to derive some auxiliary J (E?)-invariants
to complete the classification scheme. Indeed, consider the vector space K?(FE2) under the
action of the isometry group I(E?). Since Z; is a fundamental I(E?)-invariant, we can
consider the level set

Sz, = {(en,...,05) €Z| T3 =0}. 6.27)

Note Sz, is an I(E?)-invariant submanifold in ¥ defined by the parameters o, =1, ..., 5.

Next we prove the following result by using the techniques exhibited in Section 2.
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Lemma 6.1 Any algebraic I(E?)-invariant I of the I(E3)-invariant submanifold Sz, de-
fined by (6.27) can be (locally) uniquely expressed as an analytic function I = F(I;, L),

where the fundamental invariants I, i = 1,2 are given by
2 _ 2 1 2 2
I, =0o; — oz, I =2a30405 — Qo0 — 0105, (6.28)
provided the group acts in Sz, with three-dimensional orbits.

We note that the fundamental I (E2)-invariants Z} and Z; still cannot be used in the problem
of classification of the elements of X2,(E2). In particular, Z} appears to be a function of a;,

o, 03, 4 and a5 (0Ot &), a3, a4, @5). However, under the additional invariant condition
I, =af-a?=0, (6.29)
it assumes the following form:
T, = 203005 — 0403, (6.30)

where o/, = a1 + . We immediately recognize the I(E2)-invariant (6.30) to be an I(E?)-
invariant of the submanifold in Sz, determined by the condition (6.29).

Thus, Z}, given by (6.30) can be used to distinguish between EC1 and EC3.

Next, in order to distinguish between the elements of EC6 and ECS8, introduce the fol-
lowing auxiliary I (E?)-invariant. Z* := k*Z; + I;, where k is given by (6.26) (the formula
for EC8). We note that Z* is an I(E2)-invariant. The values of Z; and Z3 evalufted with

respect to the parameters of the canonical form EC8 given by (6.23) are Z) = vy Iy =

%. Therefore the I (E?)-invariant Z* = 0, whenever the Killing tensor in question belongs
to EC8. The classification scheme is now complete. We summarize the results in Table 6.3.

Using the results obtained we can devise a general algorithm of classification the ele-
ments of the vector spaces X?(E?) and K2(E2?). It consists of the following two steps. Let
K € K*(E?) (K*(ER))-

(1) If K has arbitrary constants, decompose K as follows:

5
K=tyg+) tKi (6:31)

=1
where £; i = 1,...,5 are the arbitrary constants. Note 35 £K; € KZ,(E?)
(KC2,(E)). Clearly, K € K7, (E?) (KZ,(ED)) iff £ = 0.
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(ii) Each Killing tensor in the representation (6.31) represents one of the equivalence
classes (and thus, - an orthogonal coordinate web), provided it has real eigenvalues
in the case of the vector space being X?(E2). We can determine which one by eval-
uating the corresponding I(E?) and I (E2?)-invariants and covariants and then using
the information provided in Table 6.1 or Table 6.2 for the Killing tensors defined in
the Euclidean plane and Table 6.3 - the Minkowski plane.

The problem of classification is therefore solved.

Remark 6.1 We remark that EC5 and EC10 are characterized by the same values of the
fundamental I(E2)-covariants. It agrees with the geometry of the corresponding orthogonal
coordinate webs, namely they determine two distinct orthogonal coordinate systems that
cover two disjoint areas of the same space [38].

The ten webs are given in Figure 6.5-6.14.

Recently Horwood et al considered the problem of the invariant classification of the
orthogonal coordinate webs on the Euclidean 3-space E*. The problem seems more com-
plicated than the corresponding problems on the Euclidean plane or Minkowski plane. The
eleven orthogonal coordinate webs on E3 are generated by Killing 2-tensors with normal
eigenvectors, while not every Killing 2-tensors on E® with two distinct eigenvalues has nor-
mal eigenvetors (which is the case on E? or EZ). One has to verify the normality condition,

which is essentially a system of nonlinear PDEs. For more details see [34].

6.4 Drach potentials

As is well-known, Killing tensors naturally appear in the study of Hamiltonian systems.
It is established [3] that the non-orthogonal separation of variables in the Hamilton-Jacobi
equation defined by a natural Hamiltonian (see (6.32)) can be intrinsically characterized by
Killing tensors of valence two. In this section, we consider the Hamiltonian systems with
two degrees of freedom whose complete integrability is afforded by first integrals cubic in
the momenta and thus determined by Killing tensors of valence three. More specifically,

we examine from this viewpoint the potentials of Drach [17].
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Let (M, g) be an m-dimensional pseudo-Riemannian manifold of constant curvature.
Consider a Hamiltonian system defined by a natural Hamiltonian of the form (we adopt the

Einstein summation convention)

1 .. o
H=:0"(@Qpp; +V(a), &i=L...,m, (6.32)

via the canonical Poisson bi-vector Py = % A 5%, where g% are the components of the
metric tensor g and (g, p) € T*M (cotangent bundle) are the standard position-momenta
coordinates.

The Hamiltonian system with m degrees of freedom is a system of autonomous PDEs

dq* _O0H dp _ O0H .
& " op - ag i=1,...,m. (6.33)

Definition 6.1 A constant of motion of the system (6.33) is a function F in the position-

momenta coordinates (q, p) that remains constant along any trajectory on the phase space.

It follows immediately from Definition 6.1 and the formula (6.33) that

Theorem 6.1 A function F is a constant of motion of the Hamiltonian system (6.33) iff the

Poisson bracket of F and H vanishes, thatis {F,H} = Z <3F 0H OFoH >

=1

8¢ dp;  Op; O

In general the Hamiltonian system with rn-degrees of freedom defined by (6.32) may admit

constants of motion F which are polynomials in the momenta.
F= Kiliz"'i’pilpiz ceiDip e Ki‘pil +U, i1,..,0-=1,...,m. (6.34)

Definition 6.2 [43] A Hamiltonian system with m degrees of freedom defined by (6.32)
is said to be completely integrable if there are m functionally independent constants of
motion which are mutually in involution; The system is called superintegrable if there
exist more than m functionally independent constants of motion, but not necessarily in
involution. If there are exactly 2m — 1 such constants of motion, the system is called

maximally superintegrable.

Suppose a Hamiltonian system defined by a natural Hamiltonian (6.32) admits a con-
stant of motion that is cubic in the momenta F = L¥*p;p.p;. + K¥p;p; + B'p; + U, then
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the vanishing of the Poisson bracket {H, F'} = 0 takes the following equations expressed

in both component and coordinate-free forms respectively [53].

LOFg0s — gLfW 99=0 & [Lg=0, (6.35)

KU, g - KfGgY =0 & [K,g]=0, (6.36)

Blgt — —;—Bfgf} -3LV; =0 & [B,g]=3LdV, (6.37)

U gt — 2KV =0(U; =2K%V;) & dUg=2KdV, (6.38)
B'V;=0 & B(V)=0, (6.39)

where ;, (, ) and [, ] denote partial differentiation, symmetrization and the Schouten
bracket, respectively. Note [B, g] = —Lgg, where £ denotes the Lie derivative operator.
It follows immediately from (6.35) and (6.36) that L and K are Killing tensors of valence
three and two respectively, while B - in general - is not a Killing vector field.

Equation (6.39) reveals that the potential function V' is preserved by the vector field
B. Itis observed [53] next those Equations (6.35)-(6.39) separate into two groups, namely
(6.35), (6.37), (6.39) and (6.36), (6.38), involving only components of F' which are polyno-
mials of odd order and even order in the momenta respectively. That is, constant of motion

can be written as
F = Foqq + Feyen, (6.40)
where
Fusa = L9*(Q)pipspr. + B*(Q)ps,
Feven = K9 (q)pip; + U(q), (6.41)
{H,Foaa} = {H, Feven} = 0.

One immediately arrives at the following result.

Theorem 6.2 A Hamiltonian system with two degrees of freedom determined by a natural
Hamiltonian (6.32) which admits a constant of motion (6.34) of order v > 3 having both
even and odd terms in the momenta is necessarily superintegrable, provided that the odd

order term and the even order term are functionally independent.
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The above observation can be extended [53] to the case in which the constant of motion

is of the order » > 3 in the momenta.

[Kra g] =0,
[Kr—lag] = 07
[Kr—2, g] = TKrd‘/:

[Ki, g] = (i + 2)K;y2dV, (6.42)

K1, 9] = 3KsdV,
dUg = [U, g] = 2K.dV,
K]_(V) = 0,

where the tensorial quantities K, 7 > 1 are determined by the corresponding components
of (6.34). That is, the constant of motion F' can also be written as Fr. = F(odd) + Fr(even),
implying that {H, Fy(oaq)} = {H, Fr(even)} = 0.

Remark 6.2 Given a constant of motion of order r > 3 in the momenta of the type 6.34),
the only the tensorial quantities K. and K,_, that define the first two terms of (6.34) are
Killing tensors: K, € K™(M),K,-1 € K™ (M).

In the following we restrict our attention to a natural Hamiltonian defined on the Minkowski
plane EZ.

Recall that in 1935 Drach [17] listed ten completely integrable Hamiltonian systems de-
fined on the Minkowski plane E2. Their complete integrability is afforded by the existence
of an additional constant of motion which are cubic in the momenta. In recent years the ten
integrable systems of Drach have received much attention from the viewpoint of the theory
of superintegrable systems [25, 43, 42, 39, 40, 41] (see also the references therein). Thus, it
has been shown [70, 85] that seven of the ten Drach potentials are, in fact, superintegrable,

admitting in addition a constant of motion that is quadratic in the momenta.
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Drach [17] considered the above problem and posed an ansatz in which the Hamiltonian

and an additional constant of motion assume the following forms.

0H H g
H=pp+U, F= —ngm + 6w%gp2 — K¥*ppipr, ¢ =u,¢ =v. (643)

The vanishing of the Poisson bracket indicates that

[L,g] = 0, (6.44)
[B,g] = 6LdU, (6.45)
B(U) = 0. (6.46)

The solution to (6.44) is given in section 3 of Chapter 4, that is (4.63)
With the above ansatz, in 1935 Drach [17] derived ten potentials [85].

e Casel
U=—+fu™v™+yuv™, where ri+3r;+3=0,
uv (6.47)
P = (up; —vps)®, w=1u%?/2
e Case?2
-
e B - 7(v-W)27
Vur - (v—pu)? V(v — pu) (6.48)
P =3(upy — vp2)?(p1 + pp2), w =wv(v — pu),
e Case 3 5
_ v :
V=t o T e (649)
P =3(up; — vp2)2(p} — a?p3), w = (v* —a®u?)/2,
o Case 4 5
a Yu
U= + + ,
Vofu—a)  Vu(u+a) VuR—o? (6.50)
P = 3po[(up; — vp2)? — ®p3], w=—v(u® —a?),
e Case5 5
a v
U= —=+—=+—=,
Vuwr Ve (6.51)

P = 3p1po(upy — vp2), w=—2uv,
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e Case 6 02
u°+c Yu
U=oauv+fv + ,
g VZ+ce Vui+ec (6.52)
P= 3p§(up1 —ups), W= (u2 - a2)/2’
e Case7
o
U=+——+B(v—3mu) + v(v — mu)(v — 9mu),
(v + 3mu)? )+ X ) (6.53)
P = (up; + 3mup2)?(p1 — 3mp2), w = —m(v+ 3mu),
e Case 8

U = (v+mu/3)"2*a+ Bv — mu/3) + y(v? — 1dmuv/3 + m*u?/9)],

P = (p, — mpo/3)(p} + 10mp1p2/3 + m?p3/9), w=-m(v+ mu/3),

(6.54)
e Case9
U=ov™?+ uv™2 + qu,
(6.55)
P= Sp%p% w= -,
e Case 10
U = a(v— pu/3) + Bu? + yu= (v — pu),
(6.56)

P =3p?p, +pp3, w=u.

In the following we show that the Killing tensors that define the leading terms of the
first integrals above are biometrically different. For the corresponding coefficients of those
Killing tensors, see Table 6.4, we plan to employ the invariant theory of Killing tensors of
valence three defined on the Minkowski plane, including the techniques based on invariants
and covariants as well as the analysis based on the dimensions of the corresponding orbits.

We first note that in view of the ten Killing tensors (refer to (22)) corresponding to
the ten cases listed by Drach, the action of the isometry group / (E2) on the vector space
K3(E3) is not semi-regular everywhere. Indeed, using the result of Proposition 3.1, it is
easy to check the rank of the following matrix (with respect to the basis 0,,,2 = 1,...,10)
resulting from the three infinitesimal generators (4.64) at each point,

—3(15 0 ag ag 2&7 0 aio 0 2(13 0
0 —3&6 a; —ag 0 —203 0 a10 207 0 . (6~57)

-3a; 3a;, —az; a —2a5 2a —-ar ag 0 O
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As a result, we obtain the rank of each orbits containing the corresponding Killing tensors
above respectively. See Table 6.5 for more details. Thus, for example, one cannot simply
use the fundamental invariants (4.72) to solve the classification problem. A more elaborate
scheme is required.

We begin by considering Case 1 (refer to Table 6.5). Since a, is an invariant of the full
isometry group I(E2), it can be used to distinguish Case 1 from the rest. Observe next that
Case 1 and Case 5 are the only cases where the corresponding orbits of group action are
two-dimensional, this immediately distinguishes Case 5 from the remaining eight cases.
Indeed, the invariant ay) distinguishes the Killing tensor of Case 5 from that of Case 1 and
the fact that its orbit is two-dimensional shows that it is isometrically distinct from the rest.
Since Cases 2,3,4 and 6 belong to three-dimensional orbits, while Case 7-10 have one-
dimensional orbits, these two groups are immediately distinguished. It remains to distin-
guish the four cases in the first group and the four cases in the second group.

For Cases 2,3,4 and 6, one can use invariant A, = agayo — 2a7ag to distinguish Case 2
from the other three, since it does not vanish for Case 2 while it does for Case 3, 4 and 6.

Now consider the invariant submanifold defined by
S = {ar = ag = a;p = 0}.
One employs the method of infinitesimal generators to find one of the reduced invariants 1s
Ag = asas, (6.58)

which can be used to distinguish Case 3 from Case 4 and 6. To distinguish Case 4 from
Case 6, one computes the fundamental covariants (see (4.73)).

Case 4. AS =2uv(a®—v?), Af = 3?1 +?), AF =0,i#3,7,

Case6. AY =0,i=1,...,9.

This distinguishes Case 4 from Case 6.

Finally, for the last 4 cases, note the only non-vanishing generator is 'V, which means
that in the subspace where these four Killing tensors are located (i.e., the subspace char-
acterized by the condition a; = 0, ¢ # 1,2, 3,4) the subgroup of translation is in fact an
isotropy subgroup (see (4.66) in Chapter 4 for the transformation laws) at each point. The
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Figure 6.3: Euclidean plane - Parabolic coordinate web



104

Figure 6.4: Euclidean plane - Elliptic-hyperbolic coordinate web

F-S

NE

np

Figure 6.5: Minkowski plane - Orthogonal coordinate web 1

Figure 6.6: Minkowski plane - Orthogonal coordinate web 2
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Figure 6.9: Minkowski plane - Orthogonal coordinate web 5
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Figure 6.12: Minkowski plane - Orthogonal coordinate web 8
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| Equivalenceclass | Z, | Z3 | Orthogonal web
EC1 0 0 Cartesian
EC2 0 |#0 Polar
EC3 #0] O Parabolic
EC4 # 0 | # 0 | Elliptic-hyperbolic

Table 6.1: Orthogonal coordinate webs on E? by invarjants

| Equivalence class C | G Orthogonal web
EC1 0 0 Cartesian
EC2 positive-definite 0 Polar
EC3 1 1 Parabolic
EC4 positive-definite | indefinite | Elliptic-hyperbolic

Table 6.2: Orthogonal coordinate webs on E2 by covariants

only transformations that matter are the rotations (4.70). This can easily distinguish Case

7-10 from each other. The classification is now complete.

Figure 6.13: Minkowski plane - Orthogonal coordinate web 9



| Equivalenceclass | 7, | Iz | G [ L | I
EC1 0 0 0 0 0] 0
EC2 0 | # 0 | indefinite 0
EC3 0 0 0 0 0|#0
EC4 #0] 0 1 1
ECS = 0 | # 0 | indefinite | positive-definite
EC6 # 0 | # 0 | indefinite indefinite #0
EC7 0 | # 0 | indefinite | positive-definite
EC8 # 0 | # 0 | indefinite indefinite 0
EC9 # 0 | # 0 | indefinite | negative-definite
EC10 # 0 | 5% 0 | indefinite | positive-definite
Table 6.3: Orthogonal coordinate webs on E? by invarjants and covariants

-10-8 -6 —4 —297".2

2

Figure 6.14: Minkowski plane - Orthogonal coordinate web 10

108



Case # | Killing tensor | Non-vanishing coefficients |
Case 1 (upy — vpo)® ap =1
Case 2 3(upy — vpo)*(p1 + kDo) ar=1,08 = —p
Case 3 3(up; — vp2)*(pF — a*p3) as = 1,a¢ = a*
Case 4 3po[(up1 — vp2)* — a°pi as =a°,a3 = —1
Case 5 3p1p2(upy — vp2) ag = —1
Case 6 3p3 (up1 — ups) as = —1
— — 573

Case 7 (upy + 3mup2)?(py — 3mp2) ajl=——3}7,7., a;4—=2g;:2 ’
Case8 | (pr — Bp2) (72 + Bmppy + Tgd) | BT Th 2=

3 173 9 52 a3 =—m, ag=m?
Case 9 3pip2 az = —1
Case 10 3pip2 + pp5 ay = —p, a4 = —1

Table 6.4: Drach’s Killing tensors cubic in the momenta

| Case# | Rank of generators | Non-vanishing generators

Case 1 : 2 U, Ue
Case 2 3 U, 0.,V
Case 3 3 U]_, Uz, A%
Case 4 3 U, U, V
Case 5 2 U1, U,
Case 6 3 U]_, U2, VvV
Case 7 1 \%
Case 8 1 \Y%
Case 9 1 A%
Case 10 1 A%

Table 6.5: Rank analysis of the infinitesimal generators
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Chapter 7
Conclusions

In this thesis we have furthered the development of the invariant theory of Killing tensors
(ITKT) defined on pseudo-Riemannian spaces of constant curvature which originated in
Winternitz and Fri§ [87] and then systematically developed by McLenaghan et al [13, 34,
36, 51, 52, 53, 54, 55, 56, 57, 88, 79, 80, 81, 89, 90].

The fesults presented in the thesis have already been used by other researchers working
in the area. Thus, the new concepts of a covariant of Killing tensors have been employed in
Horwood et al [35] to classify orthogonal coordinate webs in the Minkowski space (see also
[36]). In addition, the concept of a joint invariant has been used by Adlam [1] in the study
of superintegrable Hamiltonian systems. Another significant and novel contribution to the
development of ITKT is the implementation of the inductive method of moving frames
developed by Kogan [50] in the theory of differential invariants. Using this version of the
moving frames method we have managed to solve a number of problems that would have
been difficult to solve with the aid of other methods.

We have also have found new solutions to the problems of group invariant classifica-
tions of the orthogonal coordinate webs defined on the Euclidean and Minkowski planes
by making use of covariants.

An analogue of the 1856 Lemma of Cayley is formulated and solved here by making
use of the method based on the Lie derivative deformations of Killing tensors introduced
in [52]. This result makes it possible to determine the complete sets of fundamental in-
variants and covariants of Killing tensors defined on the Minkowski plane via the method
of infinitesimal generators. The inductive method of moving frames has then been used to
solve the problem of finding sets of fundamental invariants and covariants for vector spaces

of Killing tensors of arbitrary valences defined on the Minkowski plane.

These results have been employed to show that the ten integrable cases of Drach [17]

are in fact distinct.
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Our next goal is to determine whether or not the Drach list is exhaustive. If not, that is
there are other integrable systems of the Drach type, we wish to determine whether or not
they are superintegrable.

We notice that recently much work has been dene to develop further the theory of su-
perintegrable Hamiltonian systems. See, for example, [39, 40, 41]. These papers lay the
ground work for a structure and classification theory of 2D or 3D second-order superinte-
grable systems, both classical and quantum defined on conformally flat spaces. In the latest
paper [41] it is proven that there exists a standard structure for the above systems, based
on the algebra of 3 x 3 symmetric matrices, and that the quadratic algebra always closes at
order six. These ideas and others might work together with the invariant theory of Killing
tensors to answer the question of whether or not the Drach list is exhaustive.

Another important and natural development of our results presented in the thesis will
be an extension to other pseudo-Riemannian spaces of constant (non-zero) curvature. The

work in this direction is underway.
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