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ABSTRACT

This dissertation consists of two parts. In the first part, the desingularized Cauchy’s
formula is derived to solve the two-dimensional potential flow problem in an infinite
domain. The Gaussian quadrature is applied to discretize the desingularized Cauchy’s
formula. An efficient method for implementation of Kutta condition is developed.
Finally, formulations of fully nonlinear free surface flow past a two-dimensional body
are also developed.

In the second part, the desingularized formulation of the problem of a ship ad-
vancing through regular waves is presented. Traditionally, ship motion problems are
investigated by using either two-dimensional strip theory or three-dimensional panel
method. In the desingularized formulation, the singularity involved in the Rankine
source of the integral equation is removed by using the “adding and subtracting back”
technique. The Gaussian quadrature is applied to distribute the source on the body
surface. In general, the body surface of a ship has no mathematical description. There-
fore, the Non-Uniform Rational B-Spline (NURBS) surface is employed to model the
body surface.

The influence of the desingularized formulation is demonstrated by computing hy-
drodynamic coefficients and wave exciting forces of several mathematically defined
bodies and some ship hulls. The comparisons between the present numerical solutions
and existing analytical results demonstrate the superiority of the desingularized method
compared to the panel method. A series of computations are carried out and compared

with the experimental results and numerical results published in the literature.

Xix



PART ONE:

THE NUMERICAL SOLUTION OF TWO-DIMENSIONAL WATER-WAVE

PROBLEMS USING CAUCHY’S FORMULA



Chapter 1

Introduction

1.1 Wave-Body Interactions

Potential flow methods are widely used to analyze two- and three-dimensional wave-
body interaction. Common applications of two-dimensional potential flow problems
are to study the hydrodynamic properties of arbitrary bodies or lifting surfaces, such
as, hydrofoils, rudder and keels. Two-dimensional solutions of potential flow problems
can be extended by means of strip theories to solve three-dimensional wave-body inter-
action. Study of ship behavior in water waves, sea-keeping and manoeuvring are the
area of interest for potential flow applications.

Many theories and methods have been developed to predict the behavior of a ship
advancing with constant steady forward speed in water waves. The problem can be
solved by experimental observations of a ship model or by developing hydrodynamic

theories to predict ship behavior in waves. Theoretical approaches are often adopted in
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the early stages of ship design, due to the fact that they are less costly than experimen-
tal approaches and also they provide a comprehensive explanation for ship behaviors in
a particular wave. In developing a theoretical model of ship motion in water waves, the
spectral representation of sea waves is commonly used. This method was introduced by
St. Denis and Pierson [66] in their spectral representation of sea waves. They assumed
that the water motion could be described as the sum of many simple sinusoidal waves.
The response of the ship to each sinusoidal wave can be obtained by classical formulas
of water waves. The response of the ship is then the sum of its response to the various
components which can be found by the spectrum method.

The potential flow theory has been widely employed by researchers to analyze two-
and three-dimensional wave-body interactions. Analytical solutions of potential flow
problems can be obtained for few simple three-dimensional geometries through the
application of the theory of multi-pole expansion. The multi-pole expansion theory
was developed by Ursell [70]. Newman [48], Wu [75], Hulme [20] and Rahman [54,55]
successfully applied it to various geometries, including submerged or floating sphere,
spheroid and circular cylinder. Kokkinowrachos et al [31] also applied the method to
the analysis of hydrodynamics of arbitrary shaped bodies of revolution with vertical
axis of revolution in which the velocity potential is expressed by Jacobis’s expansion.

In the theory of multi-pole expansion, velocity potentials are expressed in terms
of an infinite series of polynomials with unknown coeflicients. The unknown coefli-
cients are obtained by imposing the body surface conditions. Due to complexity of the

ship body geometry, this method is rarely used for computation of ship hydrodynamic



characteristics.

For the general body shapes, such as the shapes of ships, submarines, and offshore
structures, the numerical methods are commonly adopted. Different numerical ap-
proaches, namely, finite element, finite difference, and boundary element methods are
developed to solve the potential flow problems. For the exterior domain, the boundary
element methods are usually preferred because these methods decrease the dimension-
ality of the problems and, therefore, decrease the computational effort. Moreover, com-
putation based on the finite difference and finite element can become more costly since
the exterior domain of the computation extends to infinity. However, the boundary in-
tegral method, only requires the discretization of the boundary surface and, therefore,
needs a smaller computational effort.

Linear and nonlinear theories have been developed to solve the ship motion prob-
lems. The measured and computed free-surface elevation along the hull for the Wigley
hull at Froude numbers between 0.26 and 0.32 obtained by several researchers such
as Kime and Locase [29], Kim [28] and Maruo and Song [43]. Hendrix [14] compared
these elevations and showed that the results of nonlinear methods are not generally in
better agreement with the experimental measurements than the linear solutions. The
comparison of differences among linear predictions and nonlinear predictions suggests
that the errors due to numerical computation or discretization are more important
than the nonlinearities of the problem as discussed by Hendrix [14]. In spite of this
fact, the linear theory has limitations when considering the extreme motions. For in-

stance, according to Inglis [23], the roll motion of a ship may be quite nonlinear and



the nonlinearity must be considered particularly in prediction of roll amplitude near
resonance.

In general, two different theories, the strip theory and the three-dimensional theory
have been developed to solve ship motion problems. The strip theory is based upon
the slender theory in which the beam and draught of the ship are assumed to be
small compared to the length of the ship. In the strip theory, each cross-section of
the ship is considered to be a part of an infinitely long cylinder. By solving two-
dimensional potential flow problem for each cross-section and integrating the two-
dimensional solutions over the length of the ship, the three-dimensional solutions are
obtained as described by Journee [24]. Since each cross-section is considered separately,
some effects which can significantly influence the results, are lost. For example, the
interaction between one part of the ship hull and another part or the flow at the bow
and the stern of the ship which cannot be adequately treated. The strip theories are
usually validated through calibrating the theoretical results with model experiments.
In general, it has been found that, the results obtained by most theories agree quite
well with each other and with experiments at zero forward speed, but the differences
occur at higher speeds as indicated by Journee [24] and Inglis [23].

The varieties of three-dimensional formulation have been developed without any
restriction on the body geometry. Most of these formulations used the boundary in-
tegral methods, to solve the potential flow around ships moving in water waves. For
numerical solutions of integral equations different panel methods have been commonly

used. The panel method was originally presented by Hess and Smith [16].



In the panel method, the body surface is divided into a number of panels. Each
panel can be defined as a plane or a quadratically curved surface. Constant or linear
function source density values are distributed over each panel. The strength of the
sources which are primary unknown are then calculated from the boundary condition
on the body surface. In the plane panel method, by locating a singularity with an
unknown constant strength on the centroid of each panel, a system of linear equations
can be obtained from the integral equations for solving the unknown strength. The ac-
curacy of the solutions depend directly, on the number of panels, on the body surface,
and a large number of panels are required to obtain the accurate solutions for hydro-
dynamic problems especially for complex geometries. Although the implementation of
constant panel method is simple, the computational effort increases when large num-
ber of panel are taken into consideration and sometimes the difficulty in convergence of
the solution also occur. Hess and Smith [16], Webster [71]and S6ding [65] used plane
panels. In a different numerical scheme used by Kehr and Chou [26], the panels are
defined quadratically which are better for representing curved surfaces. Comprehensive
reviews of panel methods have been made by Atkinson [1] and Hunt [21]

All above panel methods use an approximation of the body surface and the errors
are produced due to this approximation. An additional error is also introduced by
assuming a simple source density distribution over each panel. If the geometrical data
used for the numerical computation are taken to be as accurate as possible and if
the number of collocation points on each panel can be chosen to be adjustable to the

curvature of each panel, then the accuracy of the computation can be improved.



The idea of developing the higher-order panel methods is to increase the accuracy
of the solution of integral equations. In other word, in the higher-order panel methods,
the equivalent accuracy of constant panel methods can be obtained by less number of
panels. The body surface is approximated by a number of panels where the panel can
be defined by interpolating polynomials through a mesh of points located on the surface
of the body. A higher-order panel method based on source distribution and Gaussian
quadrature to solve potential flow problem was presented by Kouh et al [32]. They used
Gaussian quadrature to discretize the integral equation over the body surface. These
Gaussian points were calculated from the mathematical surface definition of the body
surface and the source densities were determined at these points. The high order panel
method based on interpolation of triangular and rectangular panels with quadratic
polynomials have also been used by Atkinson [1| and Xii [76].

The higher-order panel method based on the B-spline to solve the potential flow
problems have been developed and used by several researchers. For example, Maniar
[40] presented a three-dimensional higher-order panel method based on B-spline and
investigated the accuracy of different panel method. The same approach was used by
Lee et al [38]. It was shown that the method is very accurate and efficient for solving
a variety of potential problems.

Generally, in the boundary integral equation method ( also known as surface source
distribution method or Green function method), the numerical models are based on the
distribution of source on the submerged portion of the body surface. Green’s theorem

is applied to derive the integral equations in the domain of the body surface.



Three distinct numerical problems must be overcome to implement this approach
and to obtain accurate solutions of hydrodynamic problems for three-dimensional bod-
ies. First, the body surface which in general has no mathematical description must be
described with a reasonable accuracy so that the collocation points can be placed pre-
cisely on the body surface. In the panel method, the body surface is approximated by
the panels and a large number of panels are utilized to carry out a good approximation.

The second numerical problem is the evaluation of the source potential and its
derivatives in performing hydrodynamic computation for three-dimensional bodies.
Wehausen and Laitone [72] , Newman [49] and Telste and Noblesse [68] gave the math-
ematical expression for the oscillatory source potential for finite and infinite depth of
the fluid.

The third numerical difficulty in solving the boundary integral equations for po-
tential flow arising from the singular’ behavior of the kernel functions involved in the
equations. Different methods have been developed in the past to deal with the singu-
lar behavior of the kernel functions for easing the computation of boundary integral
equations. However, the most commonly-used desingularization scheme in potential
problem is the “subtracting and adding back” technique. In this technique, a function
is subtracted from the integrand so that the resultant kernel becomes non singular and

then the integration function is added to the equation.



1.2 Objectives and Scope of the Present Work

The two main objectives of this work are:

o To formulate a consistent fully nonlinear method for potential flow of two-dimensional
body moving beneath the free surface using desingularized Cauchy’s formula and

to investigate the accuracy of this method.

The accurate numerical solutions can be obtained by using the desingularized
Cauchy’s formula. The Gaussian quadrature can be applied to discretize the
integral equations. Since there is no assumption for linearization of the problem
in developing the Cauchy’s formula, the fully nonlinear solutions for free surface

problems can be investigated.

e To formulate a higher precision technique, for numerical modelling of ship motion,
with steady forward speed in regular waves and to investigate the accuracy of

this technique.

Two types of Green’s functions can be used to develop three-dimensional theories for
computation of wave body interactions, the forward-speed Green’s function and zero-
speed Green’s function. The main difficulty in applying the forward-speed Green’s
function is due to the oscillatory part of integral in the Green’s function, which requires
very long computing time in order to obtain an accurate result. Since, the intervals
of the discretized integral have to be very small. Also, it is mentioned by Hsiung and
Huang [18] that the accurate and converged solutions were more difficult to obtain with

Green’s function of forward-speed than in the case of zero-speed Green’s function.
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The formulation of wave-body interactions can be further developed by using desin-
gularization technique for more accurate results of the problem. This study follows first
by presenting the desingularized formulation for numerical solutions of potential flow
in infinite domain. Hence, the desingularized formula is applied for computation of the
disturbance and total velocity potential. The Gaussian quadrature is used to discretize
the integral equations. In order to implement the Kutta condition for a hydrofoil,
the iteration method is employed by setting the pressure differences between closed
neighboring collocation points to the trailing edge in the upper and lower parts of the
hydrofoil. The pressure difference has to be very small (close to zero).

Further, the formulation of fully nonlinear free surface flow past a two-dimensional
hydrofoil using desingularized Cauchy’s formula is derived. Then, the numerical simu-
lation of ellipses and hydrofoils in infinite domain as well as numerical simulation of a
hydrofoil shaped body traveling beneath the free surface are carried out and the result
are given in Chapter 3.

In Chapter 4, the linear formulation for a ship advancing with steady forward speed
in water waves is presented. This formulation is based on the usage of zero-speed
Green’ s function and forward speed correction. Then, the radiation and diffraction
of a submerged or floating body with zero speed in regular waves is formulated. The
singularities in the integral equations are removed using desingularized technique to
obtain a desingularized form of the integral equations. The advantage of desingular-
ization of the integral equations before the discretization is that, the integrals can be

directly applied to the exact boundary geometry. The desingularized integral equa-
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tions are discretized using proper Gaussian quadrature in which the Gaussian points
are selected as the collocation points.

To obtain the parameters, i.e., coordinates and normal at the collocation points,
an accurate description of the body surface is required. Non Uniform Rational B-
Spline (NURBS) surface representation is employed to describe the three-dimensional
arbitrary body shape.

In Chapter 5, the discretized integral equations are applied to compute the hydro-
dynamic coefficients of mathematically defined body with zero forward speed for which
the analytical solution are available. Simulation studies are carried out for motion of
a Wigley hull and a series 60 container ship at different Froude numbers. The results
are compared with the results published in the literature. Conclusions based on the

numerical simulation studies are given in Chapter 6.



Chapter 2

Cauchy Formula for Two-Dimensional

Potential Flow

This chapter is concerned with the flow of a potential flow about a hydrofoil immersed
beneath the free surface. The study of potential flow about a two-dimensional body
has a history of more than a century. A linearized solution of a dipole moves with
constant speed beneath the free surface presented by Havelock [13]|. Since then, linear
and nonlinear solutions for two-dimensional potential problems have been investigated
by various researchers and many theories and methods to solve the problems have
been developed using different levels of approximations. Detailed solutions for a point
source, a point vortex and a dipole are given by Kochin et al [30], Wehausen and
Laiton [72] and Lamb [34].

Nonlinear solutions of a two-dimensional free surface problem have been studied

by many authors, for example; Campana el al [3], Chen and Hafezi [4] , Thiart and
12
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Bertram [69]. The Cauchy’s formula is also used to solve potential flow problems
in the hydrodynamics field, by many authors such as Yiikselen [78] , Schwarts [61]
and Forbes [8-11]. The application of Cauchy’s formula was mostly based on the
traditional boundary element method and local shape function. Chuang [6] developed
a desingularized procedure for Cauchy’s formula where a global Gaussian quadrature
technique was used to solve an interior potential problem.

In this chapter, the desingularized Cauchy’s formulas for exterior infinite domain
with and without free surface are derived and discretized with global Gaussian quadra-
ture. For an infinite domain, the integral equations for disturbance potential, distur-
bance velocity and total potential are presented. To solve the free surface problem,
two integral equations are obtained by setting the sources to be located either at the

free surface or on the body surface.

2.1 Formulation of Desingularized Cauchy’s Formula

for an Infinite Domain

Consider a two-dimensional body in an infinite domain R, subject to a uniform flow U
as shown in Figure 2.1. A complex analytic function X(z) in the domain R in terms

of its boundary value can be expressed using Cauchy’s formula.



U ¥
s
P
-
S ]
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Figure 2.1: Domain R and Boundary S,

20

Figure 2.2: Semicircle with radius of €

X (20)

X X X
dzg + (z0) dzg + (z0) dzo + (z0) dzp
Sp 20— % AB 20 — %2 BC %0 — % CD ”0 — %
X X X X
+ / (20) dzy +/ (20 dzo +/ —(LO)dZo + w(z_O)dZO =0(2.1)
DE %0 — % EF %0 — % FG 20— % GH %0 — %

Let z be a field point inside the domain or on the body surface S, and let zy be a

source point in the contour as shown in Figure 2.1. For point z; on the contour DE of
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a semi-circle with the radius of €, we have
20 =z + €€, dzo = ice?df (0 <6< 2m) (2.2)

and hence there follows

0 i0
X(=0) dzg = Xz +ee”) ido (2.3)

DE %0~ 2 o  €€°

for all positive value of €. Equation (2.3) must remain true in the limit as ¢ — 0,

therefore Equation (2.3) is written as

- %(f—oi dzyg = i(a — 2m) X(2) (2.4)

For point z on the body surface, the contoﬁrs CD and EF are vanished from Equa-
tion (2.1) and the value of « is equal to 7. Contours AB and G H have the same length
but opposite direction, therefore their corresponding integrals are canceled out form
Equation (2.1). For point z on Sg, we have (z — z5) — oo and the first integral in
Equation (2.1) is equal to zero. Thus, for the exterior domain R , the Cauchy’s formula

1s written as

2ni[2ﬁ-1]2€(z)= /S =) 40 (2.5)

e bZO—Z
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where

0 for z€R

o for 2 €8

and « is the angle between two tangents to the contour S, at the point z which is
equal to 7 for continuous surface. Fundamental properties for Cauchy integrals and
the singular integral with Cauchy type kernels are given by Muskhelishevili [45]. Based
on the “subtracting and adding back” technique, the Cauchy’s formula can be written

in the following form

k X —
27ri[— - 1]X(z) - / o) = X 44 x(2) / dzo (2.6)
27 S, 20— 2 S, %0 — %
Now, using
1 .
/ dzy = ki for 2 €S, (2.7)
S zZy) — %

Equation (2.6) reduces to Equation (2.8) which is valid at any point inside the domain

R, on the smooth boundary S, and even at the corner point on the boundary:

Xz) = X()

—2miX (z) =
Sp Zp — 2

for 20 € S (2.8)
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On the boundary, we assume that the function X(z) satisfies the Hélder’s condition so

that the integrand in Equation (2.8) has a finite value when 2, approaches z. Hence,

lim X(z) — X(z) _ dX (z)
Z0>2 20— 2 dzg

= X'(2) (2.9)

2p=%

The integral in Equation (2.8) is a non singular integral and can be carried out using
an arbitrary Gaussian quadrature with N Gaussian points.
Let field point 2 be located on the boundary S,. The integral Equation (2.8) can

be expressed in terms of the arc length of S as

—2wiX(z(s)) = Hz(s)) = X(=(s)) iio s or Z,z
2 X( ()) /Sb{ ZO(S)-—Z(S) }dsd f ) 0€Sb (210)

When z, approaches to z, the limit on the boundary can be written as

lim
z0—2

{X(zo(s)) . X(z(s))}g_z_g dXdzn  dX

20(8) — z(s) ds  dz ds  ds (2.11)

To carry out the integral Equation (2.10), Gaussian quadrature with N Gaussian
points is applied. Hence, the discretized form of Equation (2.10) can be written as a
system of complex equations

X(z) = X(z) dzo

Zj — % ds

dx

W
J ’ dzy

dZQ
ds |

k3 K

W i=1,..,N (212)

—omiX (z) = Y

j=LjAi

If the values of the function X'(z) is known on the boundary, then the function may be
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easily and accurately computed at any point inside the domain.

2.1.1 Disturbance and Total Velocity Formulation

Let X(z) be the complex disturbance potential of a uniform flow past a body which is

given in the z-plane in terms of the arc length as

X(z(s)) = dals) +1(s) (2.13)

where ¢4(s) and 1(s) are the disturbance potential and stream function in terms of the
arc length of S. The position vector of the point is written in terms of the arc length

as

z(s) = z(s) + iy(s) (2.14)

where x(s) and y(s) are the coordinates of the point in z and y directions, respectively.
The derivatives of Equations (2.13) and (2.14) with respect to the arc length are found

to be

dX déa | .dy

at oY o .y
ds gs T igs TPt

dz dr .dy ;e

- = 7 = 2.15
ds ds +lds Ty ( )

where the real and imaginary parts of dz/ds represent the components of the tangent

vector § along the boundary curve Sj.
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Substituting Equations (2.13), (2.14) and (2.15) into Equation (2.12) gives

- { (b = du) + 00,99 }(x;. i)

2 U= o) iy -

where subscriptions ¢ and j are pointed to the field point 2; and source point z;, respec-
tively. Separating the real and the imaginary parts of Equations (2.16) through (2.18),

one obtains the following matrix form:

2

Mz

(Ayty) = > (Bijog) +widy;  for  i=1,...,N (2.17)

]:1 ]:1

2

> (Agog) = Z(B”w, wap,  for  i=1,...,N (2.18)

j=1
where

4

L= ”a 7 ] ;
A= T W; jF#i
{
o _ N r,] 7y
\Am =27 Zj.—.l,j;éz Tz Wy
4
7" . .
= T, iF
N Ti —
o= Tij-55
kBZJ - Z] 1,544 |'r'2| Wi

7ij = (z;— ;) i+ (yi—vi) 7 is the distance vector between the source point and the field
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point. 7; and §; are the unit normal and tangential vectors at point 7, respectively.
To derive the formulation of the total velocity potential, the exterior incident flow
potential ¢; can be extended into the interior region; then, the interior region becomes
the domain [22]. Using the Cauchy’s formula for interior domain [6] and adding the
incident potential to the disturbance potential, Equations (2.17) and (2.18) reduce to

a versatile form for total complex potential as shown in:

> (By®;) = —wi®; — 2mp;  for  i=1,...,N (2.19)

N
=1

N
> (Ay®)=2m¢y  for  i=1,...,N (2.20)
j=1

where ®; = ¢y; + ¢; is the total potential at the ith node , ¢;; and 1;; are the incident

velocity potential and stream function at the ith node respectively.

2.1.2 Complex Velocity Formulation

If the complex disturbance velocity of a uniform flow past a body is given by w(z) = %

in the z-plane, the desingularized Cauchy integral equation for complex velocity can

be written as

—2miw(z) = / w(zo) = w(z) dzy Z, 29 € Sp (2.21)
S 20 — %
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Using the same procedure as for Equation 2.12, the discretized form of Equation (2.21)

18 obtained as

B dw
wj+;i;

dz

N
. w(zj) —w(z;) dz ~
-9 ;) = s AT —| w;
miw(z;) E pr .w

zj—2 dslj
p=vg T !

Additionally, the complex velocity w(z) may be expressed as

ax dX/ds
dz  dz/ds

w(z) = (2.23)

Substituting Equation (2.15) into Equation (2.23) gives

iy o — iy

' + iy/ z — iy/

(g +i¢') - (' — iy/)
.’1?/2 + y/2

= (¢pz' +4'y) —i(dy' — ¥'a’)

= u(z,y) — (z,y) (2:24)

w(z) =

and

dw du dv
— —i—=u - 2.25
ds  ds ds = i ( )

u(s) and v(s) are the z and y components of the velocity along the boundary S,

respectively, and can be written

u(s) = 'y and v(s) = ¢y — 'x’ (2.26)
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We denote the unit tangential vector by i,

dﬁU—:) dy_,
ds' s

I

i (2.27)

I

Since along the boundary curve 4 - 7 = 0, the unit normal vector is obtained to be

dy—,» d.’l?—;»
= —"f — — 2.28
" clsZ ds ( )
. . . . .  dy;
Using Equation (2.26) and the boundary conditions; v; = —y; and v¢; = —Z£, the
kinematic boundary condition along the boundary S, might be specified as
Vi(s)i(s) = [u(s)?%— ’U(S)j} . [y’(s){— x'(s)j}
= u(s)y'(s) — v(s)z'(s)
= (g2’ + 9"y — (¢ — ¢'z')a’
= Y+ =g = (2.29)

ds

Thus, the relation between velocity components along the boundary is obtained as:

/

o(s) = S(uls) + 1) (2.30)

P
Ty —rY (2.31)
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Substituting Equations (2.23) and (2.25) into Equation (2.22) gives

N

b {(UJ:_Ui)~§(vj )}(rc + iy )0

+(u; — W))w; = —2mi (u; — ivy) for 1=1,...,N (2.32)

Separating the real part and imaginary part of Equation (2.32), two sets of real equa-

tions are obtained

N N
- Z(Aijvj) = Z(BUU]) -+ ’LD@’U,; for 1= 1, ceey N (233)
=1 j=1

N N
z AZ]’U/]) = Z B”’UJ) + U_JZ’U: for 1= ]., ce ,N (234)
j=1 j=1

Substituting v and v’ from Equations (2.30) and (2.31) into Equations (2.33) and (2.34)

2N equations with 2N unknowns, namely, u; and «} are obtained

[Cii{u;} = Di + wiu; for i=1,...,N (2.35)

where

y Y,
Ci; = —Aijx_i — By and Di= Ay 5
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J

Y% . .
Ajj — Bijz—i JF

A _ |yl ==y . .
Az’j"Bz‘jz—?_wi{ﬁz‘“ j=1

7 i
/ 1,01 "ot /

!L‘j ZT; X;

A;; and B;; are the same as in Equations (2.17) and (2.18).

2.1.3 Implementation of Kutta Condition

In order to implement the Kutta condition, the hydrofoil is split into upper and lower

parts as shown in Figure 2.3. The Cauchy’s formula, Equation (2.8), for the field point

Figure 2.3: Points on the upper and lower part of an airfoil

located on the upper part of the body can be written as

—2miX (2¥) =

L X (28) — X(z“)dzg N /ZT X(z0) = X(=") (2.37)

n u I __ ~u 0
zZp Zy T X zr, 20 z
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adding and subtracting an integral of the lower part to the integral equation, the

following integral is obtained

zr u\ U T Iy X(2¢
—27T1X(Zu) — / X(zO) X(Z )dzg, +/ X(z()? (Z )dz(l)
2T z

2y — 24 25 — &Y
LR =X G -
; zbh — zu ) 2 — v
) - X)L [T =X
_ / 0) dzt + / 20 T gt
2 Zy — 2 2L zy — 2%

Hae-aen} [1 B
[ XE) - XE LT RE) - X

2y — !

!
- dz,

dzy +

T ZL
2r — ¢

2 — 2%

+{X(zl) — X(z“)} log (2.38)

Similarly, the integral equation for the field point located at the lower part of the body

is written as

X (2¥) — X (2" L X () — X(&
—2miX (2 = <z0z?)‘ — zl(z )dsz —|—/ _7(222 1 (z )dz(l)
2y, zZT
u I L — 2
+4 X(=z5) — X(2') ¢ log R (2.39)

Two system of equations are obtained from Equations (2.38) and (2.39) which can be

written in matrix form as

[Aij]{%} = [B,-A{@} + {u‘na%} i,j=12 . N, N+1,.., 2N (2.40)
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and

[Alj]{qs } = —[BU]{ } + {wizp;} i,j=1,2..,NN+1,..,2N  (241)

Here, N is the number of points in upper or lower part of the body and

{
) 45 = gt j#i
_ N g Ry
\Aii = 27 — Zj:l,j#z |7' t U)] + a;
4
By = [, j#i
ij
N I
\Bii - ZJ Ly !:23]“’1 +b;
where
a; = tan ' ILTY g I TV g i=1,..,N
Tr — 24 Tp — X4
4 = —tan TV Lt YTV g = N+ 1,..,2N
T"’xz L — 4
1 ) - Yi .
by = —log(xT z:) 5 + (yr — w)” for i=1,..,.N
2 7 (zr -2+ (Yo — wi)?
1 — — Y _
b, = —log(xL )" + (i y)2 for i =N+1,...,2N
2 7 (xr— )+ (yr — i)

(2.42)

Following Choi and Kinnas [5], a vortex with unknown strength is added to the trailing

edge, which induces the potential at the collocation points. This potential is written
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as

¢ = tan~ LLTYL (2.43)
Ti —Xr

The circulation around the body can be approximated as ®; — ®yx assuming that the
first and the last collocation points are close to the trailing edge. Then, the integral

equation for total potential is written as

[Aij]{q)j} = —[Bij]{z/)j} + {wiwg} i,j=1,2,.,NyN+1,..,2N  (2.44)

where coefficient matrices Ay; and Bj; are the same as for Equation (2.41) except that ¢
is added to A;; fori=1,...,2N, j = 1 and —qb; isadded to A;; for¢ =1,...,2N, j = 2N.
By assuming a initial value for vortex strength, the total potential on the collocation

points can be obtained. The pressure coeflicient at the collocation points is computed

form [15]

G (4) o9

where V; is the total velocity. The differences of the pressure coefficients below and
above the trailing edge is written

AC, =C,, —C

p2N

(2.46)
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By small increment on the strength of vortex and using the iteration method, the

convergent solution can be obtained in the following form:

™ GAC}gn)

rn+H —
ACin) — ACIn +1)

(2.47)

where € is the increment of the vortex strength on each iteration.

2.2 Formulation of Desingularized Cauchy’s Formula

for Free Surface

Consider a fluid of infinite depth flowing with a speed U from left to right. An airfoil is
placed with the origin located on the distance H beneath the free surface. The Froude
number based on the submergence depth is defined as F,, = U/+\/gH, where g is the
acceleration due to gravity. Assuming that the fluid is ideal and the flow is irrotational,
the velocity potential ¢ satisfies following conditions:

e Laplace’s equation

Vi =0 in the fluid domain. (2.48)

eBody boundary condition

9¢

U-@i  on S (2.49)
on
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e Far upstream, the fluid velocity satisfies the radiation condition

0¢ 0¢
e 1, and a—y—»O as & — —o0 (2.50)

e On the free surface the kinematic and Bernoulli equations are imposed
Lo 2, 2 1 /
iFn(u +0f) +y= EF" and un'(z)=v on y=n(z) (2.51)

where v and v are the components of velocity in  and y directions, respectively, and
7 is the wave elevation. Two different integral equations can be obtained by assuming

the sources on the free surface and on the body surface. Suppose that a fixed point at

Figure 2.4: Source point at the free surface

the free surface is zp(s) and the moving point is z(s), and the integral over the body is

taken counterclockwise as shown in Figure 2.4. The Cauchy’s integral formula can be
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- _ S(20(8)) | d2 f(z(0) | dz
= /{—W}d—d/{m}d—d

for 2,20 € (Sp+ Sr), 26 € Sp

where

30

(2.52)

(2.53)

Here, the analytic function x(z) = ¢ + i and z = z + iy. Using the “subtracting and

adding back” technique for outer boundary Equation (2.52) can be written as:

. _ Flao(s)) = F(=() | dao
ri f(x(s)) = /{ S } d

s o(s) — z(s) ds
1 dZ()
e [\ e

R CORUN
s, | 2(b) — z(s) | ds

for Z,29 € (SF ~+ SR),Zb €5

since

1 dZ() .
—————— ¢—ds=mi for 2z, zy€ (SF+ Sgr)
Lo, {zo<s> = } s :

(2.54)

(2.55)
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Equation (2.54) can be written:

_ F(zo(s) = f(2(s)) {dzo Je®) \da, oo
/SF+SR { z0(s) — 2(s) } ds d /Sb {z(b) — z(s)} ds ds = 2mif(z(s))

for 2,20 € (Sp + Sgr), 2o € Si(2.56)

Equation (2.56) for the source point z(s) located at the free surface can be written as

follows:

Sole) = Sl [ fet) - Feo)  deo
/SF { — z(s) } ds d /SR { z0(s) — z(s) } ds d

f(Z b)) dzb = 2mif(z(s
-/, { } = 2rif (a(s))
for z(s) € Sk, 20(s) € (Sr+ Sgr), 2 € Sp (2.57)

from Equation (2.53)

f(20(5))sp—00 = 0

therefore Equation (2.57) becomes

- f(20(5)) = f(2(s)) | dzo , FE®) \do, o oo
/SF{ 20(s) — 2(s) }dsd /,,{Z(b)—z(s)}dsd 2mif(z(s))

for z(s), zo(s) € Sk, 2 € Sp (2.58)
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Discretizing the integral Equation (2.58) and separating it into two real equations, the

real part of Equation (2.58) is obtained as:

w;

N - — -
> {45}(%' —x) — $i(x5 — :)8:8; — G (y; — vi)5iTl; }
2
J=1,5# 'TU
gl — qs;{x;'(mf o 2x;y;y;'}wi
+ ul (b;n(xm - 1’1) - ﬁmgm
|75

}wm =2mgyy;  for  i=1,...,N (2.59)

m=1
and the imaginary part is obtained

N

S {¢}(yj — ¥i) + 93 — ) 8ii; — Gi(y; — vi)5i8; }
=L
gy, ¢;{y;-'<w;2 - 2x;y;y;'}wz~

M — —
_ {¢;n(ym - yz) + TimNm
‘ Irim

}wm =2n¢ial —2r  for  i=1,...,12.60)

m=

Here, M and N are the numbers of collocation points on the body surface and the free
surface, respectively. The terms ¢’ and ¢” represent the first and second derivatives of

¢ with respect to arc length s.

Multiplying the real part by %} and the imaginary part by z; and adding two equa-
ymg p Y Y i

tions yields
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N I )= =
—qurijni + ¢irijnj _ NN, "o o=
Z { 2 Wj + G (Tiyy — T Y)W +
J=1j#1 K
M )] = — M ] - — 7= —
~ QO Tim Tl T TimMm + Y;Tim S
+Z {___¢m2m Z}wm—l—Z{( L Y im m)}wm—27r¢3-+27rx; =0
m=1 l’rzm| m=1 |rim

N (2.61)
Equation (2.61) can be written in a matrix form as

Asl{ s} Bl } + Ol waf + D0} =0 o)

here

—Tiny

Az‘j = 5 ’le 1 7é i
‘rij
N R
ron "o E : iy
j=lj#i ¥
_ﬁmﬁi
Bim = 2 W
|Tim
;= — ] = —
C o zirimnm + yirimsm
im 5
'rz’m
x
Dyj =2m—
wj

—

7o = (x5 — mz);+ (Y5 — v:)J

e -

7t = yii — 2], §i=ai+yl (2.63)
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2.2.1 Source Point on the Body Surface

Figure 2.5: Source point on the body surface

Now, suppose that a fixed point on the body is z(k) and the moving point is z(m),
and the integral over the body is taken counterclockwise. The Cauchy’s integral formula

can be written as:

) — Jee) \det)), [ [ _fGeom) \don,
i (2(k)) = /WR{Z@)_Z(@} 0, /Sb{z(m)_z(k)}dsd

for  2(t) € (Sp+ Sgr),2(k), z(m) € S, (2.64)

Applying the “subtracting and adding back” technique and some manipulation, Equa-

tion (2.64) can be written in the following form

: _ * ) _fGE®) | dx@) f(z(m)) — f(2(k)) | dzm
2mif(z(k)) = —/ {z(t)—z(k)} T ds~/5b{ ) = 2(0) }ds ds

for 2(t) € (Sp) and z(k),z(m) € S, (2.65)
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The real part of Equation (2.65) is:

j=1 kj
M - — — -
Z {dﬂn(ﬁﬁm — %) — O (Tm — Ti)5kSm — O (Ym — Yk) SkTlm }w
2 m
m=1,m#k |Tkj|

— la + as;{w;;(x;“‘ _y+ 2x;y;y;;}wk = oy,

for k=1,....M (2.66)

and the imaginary part of Equation (2.65) is

i {‘b}(yj — Yk) + Thjfl; }u_)j

j=1 |Ir%])

M - = — =
3 {¢:n<ym =) 0 = 5 = 0~ )55 }wm
m=1,m#k ‘Tkml
e + ¢;{y;;(w;2 - 2x;y;yz}wk — 2n(dlal - 1)

for i=1,...,N (2.67)

Multiplying the real part by y;, and the imaginary part by z and adding two equations

yield

N[ TR e [ Va2 |
) —r Wi+ Y w; +

j=1 |7‘£] j=1 IT%J|
M ;o P
{ — @ Tem Tk + PpThkmTm }
Z 5 Wy, +
m:l;ék l,rk:m|

+@ (ypxh, — ypwh) — 2w + 27z, =0  for  k=1,...,M  (2.68)
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again, M and N are the numbers of collocation points on the body surface and the

free surface, respectively. Above equation can be written in a matrix form

o} + e} + G} 100w} =0 o9

where

Ty Tk
A = T
J
—Tkm ik
Bi =~ k#m
m

M
B/:k =27 + (ygx;c - y;cxllgl)wk + Z kaﬁm

m=1#k
« _ YeThiSj + TpThyTh
ij - |T2
k3|
2rx!
Dy, = My, (2.70)

Wy

Matrix system (2.62) gives N equations for N points at the free surface with N + M

unknowns. Matrix (2.69) also gives M equations for M points on the body surface

with the same N + M unknowns. By combining of these two system of equations a

(N + M) x (N + M) system of equations with N + M unknowns can be obtained
Aij Bim ¢;~ D;; Clim w;j

Ay B, o Cr; Dinm Wy,



Chapter 3

Two-Dimensional Numerical Results

The discretized form of the desingularized Cauchy formula is solved and simulated for
two kinds of body geometry. The one is an elliptical cylinder and the other, Joukowski

airfoil. The discussion of simulation results are followed in next sections.

3.1 Uniform Flow Past an Elliptical Cylinder

The boundary of the elliptical cylinder is computed from a conformal mapping given
by [44]

() = € + 5 0<0<or (3.1)

and the complex potential €({(#)) on the body of the elliptical cylinder is given by
1
o) =U{¢O) + 75 (3.2)

37
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In the computational procedure, the Gaussian points are used as the collocation points,
and the corresponding parameter 6 of the collocation points are computed using the

Newton Raphson iteration technique.

w _ U6")

) = ; (3.3)
j j (n) :
0 (6;")
where (n) and (n + 1) denotes the nth and the (n + 1)th iterations respectively.
The boundary conditions which are 1; = —y; and Y= — [%L are imposed at the

collocation points. The complex disturbance velocity, wj, at collocation point s;, for

J=1,2,..N can be written as

A ¢ + i)

s — v = — | =TT 34
Wi = Uj — 10 &l W Ty (3.4)
and the pressure coefficient C’ at collocation point s;, for j =1..., N is [15]:
P J J
. [u? + 7]
CISJ) — 11 7_____U2 (3.5)

where U is the velocity of the uniform flow.

Based on this procedure, five different elliptical cylinders are chosen, corresponding
toc=0,c=0.3,0.5, 0.7 and ¢ = 0.99. Each elliptical cylinder has the major semi-axis
and the minor semi-axis of 1+4-c and 1— ¢, respectively. Moreover, the boundary of each
elliptical cylinder is divided into four equal parts on which 4, 8, 12, 16 and 30-points

Gaussian quadratures are applied. In addition, the root mean square error for pressure
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for pressure coefficient, RMS, are calculated as follows;

N () G )2
1 Cpanalytic - Cpnum
RMS = |+ ; { 0 (3.6)

Panalytic

where, the pressure coefficient, Chpanaiyric> @t the Gaussian points is computed based

on the above procedure and C. is computed using proposed complex potential for-

mulation and complex velocity formulation. N is the number of Gaussian points in
the entire length of the body surface. Figure 3.1 shows the distribution of pressure
coeflicient on the surface of an ellipse with varying c¢. The pressure coefficients for
a circle which is an ellipse with equal semi-axis (¢ = 0), and for a very thin ellipse
(¢ =0.99) are shown in Figures 3.2 and 3.3, respectively. Figure 3.4 shows the results
of simulations carried out for ellipses with major semi-axis in y direction and minor
semi-axis in x direction. They indicate that even with a few number of Gaussian points,
the results obtained from the proposed methods are very accurate when the ellipse is
not very thin. For a thin ellipse (¢ > 0.95), the differences between numerical and
analytical results are noticeable. Root mean square error of pressure coefficient is de-
picted in Figure 3.5. It is indicated that the velocity formulation gives more accurate
results than the potential formulation. However, these results show that increasing the
number of collocation points beyond a certain threshold does not significantly improve
the accuracy of computation. Figure 3.5 also shows that the RMS error of pressure

coefficients increase by increasing the value of ¢ for an elliptical cylinder.
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Figure 3.1: Pressure coefficient vs. non-dimensional length, x/L,
for ellipse with different c.
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Figure 3.2: Pressure coefficient vs. non-dimensional length, /L,
for a circle (¢ = 0).
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Figure 3.3: Pressure coefficient vs. non-dimensional length, z/L,
for a thin ellipse (¢ = 0.99).

3.2 Uniform Flow Past a Joukowski Airfoil

The mapping function which maps a unit circle to a Joukowski airfoil is given by [44]

((0) = e’ + e —e’ + (3.7)

c
el + \/c — eif

where 3 = 0 is the angle of attack.

The complex potential on the boundary of the airfoil and the computational pro-
cedure in this example is the same as that of the elliptical cylinder in the previous
section.

In the numerical simulation, three different Joukowski airfoils are computed, cor-

responding to ¢ = 0.3, 0.5 and 0.7. The total arc length of the airfoil is divided into



42

-50 I T T T T
Analytic Sol. (c=0.3)
m Numer. Sol.(¢=0.3 .
-40 |- i Analytic Sol. (c¢=0.5) ----- _
o Numer. Sol. (c=0.5) x
'+ Analytic Sol. (¢=0.7) ------
230 '+ Numer. Sol. (¢=0.7) © |
<) ma
-20 - . -
-10 -
0 L
20.3 03 04

Figure 3.4: Pressure coefficient vs. non-dimensional length, z/L,
for a circle (¢ = 0).

two equal parts on which 4, 8, 12, 16, 30 and 50-points Gaussian quadratures are again
applied. The pressure coefficient for a Joukowski airfoil is plotted in Figure 3.7. It is
shown that the numericalal solutions are in good agreement with the analytic solution.

However, since the thickness at the trailing edge of the Joukowski airfoil is zero, all

boundary element method codes encounter numerical difficulties in the computation.
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Figure 3.6 shows the RMS error of pressure coefficient for Joukowski airfoil. It
indicates that the velocity formulation gives more accurate results than that of complex
potential formulation. It also indicates that increasing the number of collocation points

beyond a certain threshold does not significantly improve the accuracy of computation.

-3
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c=.3 Numer, Sqgl. e
2+ Analytic Sol. ----- .
Numer. Sol. =
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& 1k Numer. Sol. = |
0 ) -
1 . —e3
-0.8 -0.4 0 0.4 0.8

Figure 3.7: Pressure coefficient, C,, for Joukowski airfoil with different c.

3.3 Hydrofoil Beneath the Free Surface

The desingularized Cauchy’s formula is applied for a symmetric foil beneath the free

surface. The foil is described by

v () =—1ﬂ:%b<1— %) %(Hf) (3.8)

here a is the half length and b is the half breadth of the foil. This foil is the same

foil used by Forbes [11]| for computation of nonlinear free surface flow. To obtain
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numerical values for the unknowns at the free surface and at the body surface, the
Gaussian points are distributed on the body surface and the points on the surface are
chosen to be equally spaced in the truncated domain. The truncated free surface is
from —15/2 to I;/2, where I, is the length of truncated free surface and is set to be
equal to 20.The radiation condition, Equation (2.50), is imposed at the first surface

point, i.e. —I;/2. At this point the Bernoulli’s equation also must be satisfied. Hence,

n=y, =y =0, ) =¢) =1, T1 = ¢1 =8 (3.9)

where s; is the arc length corresponding to the first point at the free surface. Since
the free surface is unknown, all the variables on the free surface are also unknown and
determination of these variables are also a part of the solution. The 7N + M unknown
variables are considered in the formulation where 7N unknowns are corresponding to
free surface and M unknowns are corresponding to the body. The free surface variables
are x;, T, T, Yi, ¥i, yi, and ¢, for ¢ = 1,2...; N and the variables on the body surface
are ¢, form = 1,2..., M. To obtain sufficient equations for determination of dependent
functions, the following equations can be written using Equation (2.51), definition of

arc length and trapezoidal rule integration.
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7= (1-9?)

N o

zi = o1+ (@ +aig)As
_ 1 / ’

Yi = yi—1+§(yi+%’—1)A5

1
T o= @it 5] +al)As

2
! ! 1 " "
Yo = Yt 5(% + yi—1>AS
2y;
4= (- %)
1
¢ = ¢+ §(¢; + ¢ 1)As for i=2,..,N (3.10)

the prime and double prime superscripts in the formula represents the first and second
derivatives of the function with respect to the arc length. The algorithm is prepared
based on the above procedure and tested for several Froude numbers, various dimen-
sions of the foil and various criteria for implementation of Kutta condition. It was
found that no converging solution can be obtained for the problem when the desin-
gularized formulations for free surface and the body are used. However, the modified
algorithm prepared in which, the desingularization technique only applied to the body
surface part of the integral equation. To obtain the numerical solution the estimate

has been made for y; and improved using Newton’s method. The estimate y;(k) at the
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kth iteration is updated according to formula

k+1 k k
y;( ) _ y;( ) _{_A§_ ) (3'11)

where A; is a correction vector. Equation (2.52) at the free surface provides a system

of N equations of the form

Ey oy yy) =0 for i=1,. N 3.12
2 N

and the correction vector is computed from the matrix equation

N
3 OF; _ —E; for i=1,.,N (3.13)
=1 %

[y

If at any iteration in the Newton process, a worse estimate than before is obtained,
then the correction vector Agk) is halved and the iteration is repeated. For this foil the
converged solution was obtained after 23 iteration. The criterion for implementation of
Kutta condition, AC), is set to be less than 0.002. Figure 3.8 compares the wave profile
obtained by the present method and obtained by nonlinear formulation of Forbes [11].
There are slight errors in the wave profile due to truncation of the free surface in the
upstream and downstream. This error seems to be less for the present method than the
results obtained by Forbes. A substantial rise can be seen at the free surface obtained
by Forbes which does not occur with the present method. The wave height in the

present method is less and there is no significant differences between the height of first
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wave in the downstream with other wave as can be seen in Forbes results. Figure 3.9
shows the converged solution for various Froude numbers. There is also slight rise in
the first wave for different Froude numbers. Numerical simulation studies were carried
out to investigate the nonlinear solutions of the foil with an angle of attack, and no
converged solutions were obtained. The simulation was also carried out for an ellipse
with major semi-axis @ = 1. and minor semi-axis b = 0.25 moving in the depth of
h = 1.7a. Fiqure 3.10 shows the wave pattern obtained by the present method and the
results of linear and nonlinear solutions given by Campana et al[3] and the experimental
results given in reference [42]. It is shown that there are differences between the results
obtained by the present method and the experimental results, also between the present
method and both linear and nonlinear results given by Campana et al [3].

The simulation was also carried out for a Joukowski hydrofoil. For the cases of zero
angle of attack, the program converged but the results were not as expected. Instead
of initial periodic motion, governed by a single frequency, an aperiodic (or perhaps
chaotic) wave was observed. However, the amplitude of the wave, gradually declined

to eventually reach the convergence criterion.
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PART TWO:

THE NUMERICAL SOLUTION OF THREE-DIMENSIONAL WAVE-BODY

INTERACTIONS



Chapter 4

Formulation of the Ship Motion

Problems

The boundary value problem for analyzing the linear interaction between surface reg-
ular waves and a ship moving with steady forward speed is described in this chapter.
Assumptions of small waves amplitude and small waves slope and neglecting the vis-
cous effect and the nonlinearities due to free surface and wave-body dynamics allow us
to apply the potential theory in this kind of boundary value problem.

The flow potential around a ship is considered to be the sum of the steady flow
potential and the unsteady flow potential. The steady flow potential is associated
with the forward motion of the ship and the unsteady flow potential is associated with
oscillatory motion of the ship. To compute the steady flow potential, the discretized
form of the Green’s function of double body is derived and used. The unsteady flow

potential is obtained using the discretized form of the Green’s function of pulsating

93
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Figure 4.1: Coordinate systems for ship motion.

4.1 Mathematical Formulation for Ship with Steady

Forward Speed

The ship advancing at constant steady forward speed in regular waves is considered as
shown in Figure 4.1. Three Cartesian coordinate systems are employed to formulate the
problem. The space-fixed coordinate system 6Z3z with 6Zy plane on the undisturbed
free surface and the positive 6z axis in upward direction. The coordinate system ozxyz is
a steady moving system which moves with the mean velocity of the body U with respect
to the 0xyZ coordinate system, with the origin o located at the point of intersection of
vertical line through center of gravity and undisturbed water surface and the ox axis is

in the same direction as the 6% axis. The coordinate OXY Z is fixed in the body with
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OX on the direction of ox and OZ pointing upward. The ship has three translational
and three rotational motions. Three components of translations are surge, parallel to
the longitudinal axis oz, sway in the directional orthogonal to the or axis and heave in
the vertical direction. Three components of rotational motions are roll, pitch and yaw
about oz, oy and oz respectively. It is assumed that the fluid is inviscid, homogeneous
and incompressible and the flow is irrotational so that the flow around the ship can
be described by the potential theory. A linearized analysis of ship motion in incident
waves is given by Newman [47].

The fluid velocity vector, V(Z, 7, Z, t), in 0ZyZz frame of reference can be represented

by

V(z,9,2,t) = VO(Z,7, z,t) in the fluid domain. (4.1)
where the velocity potential, ®(Z, 7, 2, t) satisfies Laplace’s equation
VZ® =0  in the fluid domain. (4.2)
The fluid pressure is given by Bernoulli’s equation
o = 1 o
p(:E,y, 2y t) = _p(q)t+ §V +gz)+pa (43)

where p is the fluid density, ¢ is the gravitational acceleration, and p, is the atmo-
spheric pressure, which is assumed to be constant. Appearance of independent vari-

ables %, 7, Z, t as subscript indicates partial differentiation i.e. ®; = %. To define the
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problem, boundary conditions are imposed on the immersed body surface, on the free
surface and at the infinity.
e The local velocity V, on the body surface and the velocity of the adjacent fluid V

match at their interface, thus

(Ve—=V)-n=0 on S (4.4)

where the unit normal n is defined to point out of the fluid domain.
e If the free surface is given by z = ((Z, 7, t), the kinematic boundary condition on the

free surface can be expressed by

D
E<C_Z): ()ng:c (45)
where % is the material derivative given by % = (—% +Ve.-V

Since the position of the free surface is unknown, by letting the pressure on the free
surface to be equal to atmospheric pressure, additional boundary condition is obtained.

Thus, Bernoulli’s equation gives
— 1 5 _ _
<I>t+§V +9z2=0 on z=( (4.6)

Equation (4.6) holds on the free surface for all times, therefore, a single boundary

condition for the velocity potential can be obtained by setting the material derivative
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of Equation (4.6) equal to zero [47]

Dl 1,_—p o
E[®t+§|vfb| +gz} =0 onz=¢( (4.7)

D¢

D~ 1. - - )

Since 2 C a
r4

ot Dt

19, ~ _~ B\ 4 o
@tt+§5—t(w-v¢)+vq>-wt+§V<I>-(V<I>-V<I>)+g<1>z=

By + 2V - VO, + %V?{S- V(V® - V®)+gP;=0 onz=( (4.9)

(a + V- V) {@ﬁ (V- V(I))} P

Equations (4.4) and (4.9) are the principal boundary conditions for the body surface
and the free surface respectively. Following conditions are also imposed to define the

problem.

e Bottom boundary condition, that there is no fluid motion at the sea bed
V-0 as z — —o00 (4.10)

e Radiation condition which states that the energy flux associated with the disturbance

of ship is required to be directed away from the body at infinity.
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4.1.1 Linearization of the Problem

Simplifications are needed to solve the problem, because the nonlinear boundary condi-
tion, Equation (4.9) preclude any solution of unsteady motion problem. Assuming the
amplitude of the oscillatory wave motion is small comparing to the wave length, the
body motion and the resulting fluid disturbance is assumed to be small. The second
order terms in Equation (4.9) can then be neglected and the linearized free surface
boundary condition is obtained

e 0

W'Fgg =0 on z=10 (4.11)

I

This condition can be applied on the undisturbed free surface because the difference
between the value of ® or its derivatives on Z = ¢ and Z = 0 is a second order quantity.

In the steady moving frame of reference oxyz, the velocity potential can be expressed
as

®(z,7,2;t) = &5(36 + Ut,y, 2) = Or(z,y, 2;t) (4.12)

where the total velocity potential ®1 describes the time independent flow due to the
forward motion of the ship and time dependent flow due to oscillatory motion of the

ship. The total potential can be written as

Or(z,y,z5t) = Ud(z,y,z)+ P(z,y,2t)

= [-Uz+ ¢s(z,y,2)] + O(z,9, 2;1) (4.13)
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where Uz is the velocity potential of the uniform flow and ¢, is the steady disturbance
potential. The sum of velocity potential of uniform flow and the steady disturbance
potential (—Uzx + ¢) is called the steady flow potential.

The boundary condition on the hull surface can be written as
W-n=0 on S, (4.14)

where W = UV(¢ — ) is the velocity vector of the steady flow relative to the moving
frame of reference. By using Taylor series expansion, Newman [47] showed that the
unsteady velocity potential is governed by the following first order free surface condition
on the steady state free surface z = ¢

(g +W- Wz)

+W~V(W-V¢)+%V¢)~V(W2)+g¢z =0 on z=_ (4.15)

+ ¢y + 2W - Vi,

Neglecting the perturbation of the flow due to steady forward motion of the ship

(¢ =0), ie. W = —Ui, Equation (4.15) reduced to

2 2 2
T9 oy L0 200, 00

oz " Vosor TV o2 95,70 om0 (4.16)

which is the linear free surface condition in the moving frame of reference.



For a body with steady forward motion, Equation (4.16) becomes

Po 09

2—— panend
v or? +gaz

0 on z=20

and for a body with no forward speed (U = 0), Equation (4.16) reduces to

99 _

5, 0 onz=0

4.2 Steady Flow Potential
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(4.17)

(4.18)

The steady forward motion of a ship will affect the radiated waves and therefore the

radiated forces on the ship. In general, the steady potential due to steady forward

motion of a ship can not be regarded as a small quantity as described by Wu [74]. The

effect of steady flow on the radiated wave is called the steady flow effect which can be

represented by well known m; terms given by Newman [47] as

(my,ma,m3) = —(n- V)W

(my, ms,mg) = —(n- V)(X x W)

(4.19)

where n is the outward normal of the body surfaces and X is the position vector in the

steady moving frame of reference oxyz.

The steady potential ¢, must satisfy the following conditions
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eGoverning equation:

Vigs=0 for 2<0 (4.20)
eBody boundary condition

8 S 7 -

ai =U-7 on S (4.21)

eLinearized free surface condition

P¢s 0
2 s s
v 022 + Oz

=0 on z=0 (4.22)

¢ Radiation condition that the fluid is undisturbed very far from the body

Vo, =0  at infinity (4.23)

For low forward speed the first term in the free surface condition Equation (4.22) can

be heglected and the condition is reduced to

0¢ps
0z

0 on z=0 (4.24)

This is the rigid wall boundary condition and is satisfied by double body potential.

Applying the Green’s function method, ¢, can be represented as

o) = [ {02000 - Gy fas,care a2
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where G g (p, q) is the Green’s function of double body potential described by

1

1
Ga(p,q) = - + " (4.26)

and p and q are the source and field points, respectively, and

ro= \/(Ip —2g)? + (Yp — Yo)* + (2 — 2,)?)

no= @ =2+ G~ 10 + (5 + 7))

The desingularized form of integral equation for steady potential is derived in Ap-

pendix A and can be written as

2m®,(p) = / <I>q6GL(p’q)dSq+4vr¢f (4.27)
Sh 8nq

where @, denotes the total potential of steady flow. When the potential is found, the
m; terms can be obtained from Equation (4.19) which can be used in determination of

oscillatory potential components.

4.3 Unsteady Flow Potential

To formulate the unsteady potential function, the idea of Salvesen et al [58] is adopted
in this work. They used two-dimensional Green function associated with the strip

theory formulation to compute ship motions and sea loads. Here, three-dimensional
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zero speed Green function is used associated with desingularized formulation instead
of two-dimensional Green function. The idea presented by Salvesen et al [58] was also
used by Inglis [23], Beck and Loken [2] and Hsiung and Huang [19] in computation of
ship motion by panel methods and better results are obtained comparing to nonzero
speed Green function.

The unsteady potential function for a ship moving in regular wave can be decom-
posed as suggested by Haskind [12]. Tt means that the hydrodynamic forces on an
oscillating ship in the smooth water and the hydrodynamic forces of a fixed body in

water waves can be computed separately.

6
P = §R{ (Z'I]j(gj + éD + ¢]> e_iwct} (428)
j=1

where ¢; is the oscillatory potential, n; is the amplitude of the jth mode of motion of
the body (surge, sway, heave, roll, pitch and yaw, respectively), ¢p is the diffraction

potential, ¢y is the incident wave potential and w, is the frequency of encounter defined

by
- Uw?
We =w — ——cos 3 (4.29)
‘ g
Here, w is the wave frequency, 3 is the angle of propagating wave relative to positive

x-axis and g is the gravitational acceleration.

The incident wave potential is given in the following form

¢] _ 1!Z7a eyz—iu(wCoS,@+ySiﬂﬁ) (430)
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where 7}, is the wave amplitude and v = w?/g is the wave number. The potentials ¢p

and ¢; satisfy Laplace’s equation and the appropriate conditions at infinity

V3¢, d1) =0 in the fluid domain. (4.31)

The incident wave potential ¢, and the diffraction wave potential ¢p, must satisfy

d¢p 01
e (4.32)
we - U2 243 + 9 o on z=0 (4.33)
e or) PTI98, T N '
iw—U—é—)— 2¢5+ %:0 on z=10 (4.34)
¢ oz ) 1%, '

and

the radiation condition.

The oscillatory potential components ¢; (j = 1,...,6) in the steady moving frame

of reference also satisfy the following conditions

V24; =0  in the fluid domain. (4.35)

(lwe — U%)zq_ﬁj + g%éz =0 on z=10 (4.36)
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99,

o —iwen; +Um;  on S, (4.37)

and

the radiation condition,

where n;, 7 = 1,2,3 are the components of a unit vector on the body surface, directed
into the body and n; = (z,y, 2) x (n1,n2,n3) for j = 4,5,6. m; depends on the steady
motion potential.

The diffraction potential ¢p can be expressed in term of zero speed potential ¢p [19]

$p = ¢p (4.38)

and the oscillatory potential can be divided into two parts

¢; = d; + v o7 (4.39)

W,

where ¢; is the speed independent and gb? is speed dependent potentials. Substituting

Equation (4.39) into Equation (4.37), two body conditions are obtained

9¢;

5 = —iWen; on Sy (4.40)

ol
ﬁ = W on S, (4.41)

on
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Both ¢; and ¢§] satisfy the Laplace’s equation, the free surface condition and the

infinity conditions.

4.3.1 Hydrodynamic Coefficients

The hydrodynamic pressure p, due to the radiated wave can be written as

. 9\
pr=pliwe = U-) Y i (4.42)
k=1

The hydrodynamic forces due to the radiated waves on the ship body can be written

as

F; = _/ prn;dS 7=12..6 on Sy (4.43)
Sp

where n; is the generalized unit normal of the ship

St

it j=1,2,3

Fx@oif j=4,5,6

Substituting p, from Equation (4.42) gives

. A -
Sp z k=1 k=1
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for

. 0
T’jlc = —p/Sb {nj <lwe - U%)gbk}dS

= ngjk - iwijk (445)

Ty, denotes the hydrodynamic force and moment in the jth direction per unit oscillatory
displacement in the kth mode. The terms A;; and By, are the added-mass and damping

coefficient, respectively. Using Stokes theorem, T}; can be written in the following form

Tjk - —piwe/ nj(]ﬁde—FpU/ mjgbde - pU/ njqbkdl (4.46)
Sb Sb Cw

Cy represents the ship’s water line on the free surface. When the body is long and
thin the line integral becomes very small and may be neglected [47]. If the body has
no forward speed or is completely submerged the line integral disappears. Hence, Tjy

can be written as
Tjk = —piwe/ nj¢kd5' + pU m]qbde (4.47)
Sp

Sb

4.3.2 Wave Exciting Forces and Moments

The hydrodynamic pressure due to diffracted and incident waves is

Py = (iwe - U“é%) (¢D + ¢I) (4'48)
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The wave exciting forces and moments acting on the ship can be expressed as

. 0
Foj = —piv. [ (¢p+0nmsdS+oU | 200+ s
Sb Sb €

D I s
= FP+F!  for j=1,2,.6 (4.49)

where FP and F! are diffracted wave force and incident wave force respectively.

4.3.2.1 Diffracted Wave Force

The diffracted wave on the ship hull for jth mode of motion can be written as

FP = —pi, [ dom;dS+pU [ L gpndS  for j=1,2,..6 (4.50)
J Sp S 8$

using the Stokes theorem Equation (4.50) can be expressed in the following form

FP = —piwe | ¢pnidS+pU | mi¢pdS  for j=1,2,..6 (4.51)
Sb Sb

4.3.2.2 Incident Wave Force

Considering the contribution of incident potential and neglecting the contribution of
radiated wave and diffracted wave on the ship hull, the wave force is the so called

Froude-Krylov forces and moments or incident wave force expressed by

FjI = —piwe [ ¢m;dS + pU igbmde
S S 8x

for j=1,2,..6 (4.52)
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Substituting w. and ®; from Equation 4.29 and Equation 4.30 into Equation 4.53 yield

U 2
FJ-I = —pi (w ~ZY cos ﬁ) ¢rn;dS + pU/ (—ivcos B)prn;dS
g ) Sp 52b
U
= —pi (w 7Y os ﬁ) ¢rn;dS — piUl cos B | ¢m;dS
g Sb g Sb
= —piw/ ¢rn;dS for j=1,2,..6 (4.53)
Sp

Equation (4.53) states that the Froude-Krylov forces and moments are independent
of forward speed. This implies that, if the steady perturbation potential is small and
negligible then, the wave exciting forces and moments for motions which have speed
independent velocity potential , i.e. surge, sway, heave and roll motions (corresponding
tom; = 1,2,3,4, in Equation (4.51), respectively) are independent of the velocity of

the ship and are determined by wave heading, wave frequency and wave amplitude.

4.3.3 Equation of Motions

The equation of motions of a ship advancing with constant speed in water waves can

be written in the form

6
Z [ — W (M + Ajy) — iwe By, + Cii |k = Fu for j=1,2,...,6 (4.54)
k=1

where My, is the generalized mass matrix of the ship, A;x and B are the added-mass
and damping coefficients matrix, respectively. C}y, is restoring force coefficient of the

ship.
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In order to solve the equations of motion, one need first to compute the wave

exciting forces and moments, added-mass and damping coefficients, mass matrix and

restoring coeflicients of the ship.The wave exciting forces and moments can be obtained

from Equation (4.49). The added-mass and damping coefficients are computed from

Equation (4.45). These components are expressed in terms of radiation and diffraction

of a body with zero speed in regular waves. Therefore by solving the radiation and

diffraction problem of a ship with zero forward speed in regular waves the equation of

motions of a ship advancing with constant speed in water wave can be solved.

For a body with lateral symmetry the generalized mass matrix, M may be writ-

ten [58]
M 0
0 M
_ 0 0
M, =
0 —Mz
Mz, 0
0 0

0

M

0

0
— Mz,
0

I

—’164

Mz,
0
0
0
15

0

0

0

0
— I

0

Ig

(4.55)

where M is the mass of the ship, 2, is the position of center of gravity, I; is the moment

of inertia in the jth mode and [Ij; is the cross product of inertia.



Cjx, is the restoring force coeflicient matrix of the ship defined by [58]

00 0
00 0
_ 0 0 pgAw
Cir =
00 0
0 0 —pgMwp
0

0 0

0 0
—pgMwp 0O
0 0
pglwp 0
0 0

(4.

71

56)

where Awp, Myp and Iy p are the area, moment and moment of inertia of water

plane, respectively.

For ships with lateral symmetry the added-mass (or damping) coefficients are 58]

A]‘k (OTEJk) =

4.4 Roll Motion Correction

0

AGZ

A53 0

0 As

A55

0

(4.

Linear potential flow theory cannot give satisfactory roll motion results, when compared

with the experimental results [58]. This is due to the significant effect of viscosity in
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roll damping coefficient. A correction factor is obtained based on the method proposed

by Schmitke [60] and adopted to calculate the viscous roll damping of the body.
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4.5 Linearized Motion of a Body with Zero Forward

Speed in Waves

Considering a body with no forward speed is moving in regular waves in water of

infinite depth. The boundary conditions described for a body with forward speed are

simplified and the boundary conditions, which the linearized velocity potential must

satisfies can be written as [46]

oThe free surface boundary condition

9¢

— —vp=0 on z=0

0z

oThe sea bed condition

_8_@5:0 on z=-—o

0z
eThe radiation condition
. op
}%gr;o \/E(ﬁ —ivg) =0

eThe body boundary condition

d¢p  O¢r

o - Ton MO
0¢; .

57:5 = iwny 7=12,..,6

on S

where R = \/(z — ,)? + (y — 4,)? and v is the wave number.

(4.58)

(4.59)

(4.60)

(4.61)

Wehausen and Laiton |72] gave the Green function for Laplace’s equation satisfying
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the boundary conditions for a source of unit strength situated at (zo, yo, z0) in water

of infinite depth as

1 oo
G(p,q) = ;T PV/ E‘V—Oey(wzo)«fo(VOR) dyy — 2mive’F120) Jy (v R) (4.62)

o V=W

where

R=\/(z = 2,)? + (y — 90)?

r=/(2 =22+ (y— 4o)? + (2 — 2)°

p and q denote the field point and source point, respectively, and J; is the first kind
Bessel function of zero order. PV indicates that the integral is to be interpreted in the
Cauchy principal value sense.

In another form, the Green function can be expressed as the summation of three

terms

G(p,q) = Gs(p,q) + G1(p,q) + Gu(p, q) (4.63)

where G4(p, q) = % is the part of Green function corresponding to the simple singularity,

G(p,q) is due to the image of the singularity

1 1
Gi(p,q) = —

= 4.64
T (@ = 20)2+ (Y = o) + (2 + 20)2 (4.64)

and Gy (p,q) is the wave part of the Green function. Another useful form of Green



75

function can be written as

G(p7 Q> = ; -+ ’r— + 2v PV/ _V___Veu(z+z0)J0(VR) dv — 27T’iV€V(z+z0)J0(yR)
1 0 — 1
1 *
= ~+G®a) (465)
Image of V(@ —20)2 + (y — go)? = _;5

Source Point

s

z-}—zo:—fi

Field Point

Source @
Point

Figure 4.2: Definition of points (adopted from Ref. [68])

An efficient and accurate form of the Green function for numerical computation of
wave diffraction and radiation problem given in Equation (4.65) has been developed
by Talste and Noblesse [68]. This form of Green function is adopted throughout this

study. A definition sketch is depicted in Figure 4.2. Here, r and r; are the distance of



76

field point to source point and the image of source point, respectively, and

P
g

o>
I

kh
by

(4.66)

4.6 Desigularization of Boundary Integral Equation

The desigularization technique in the boundary integral equation of potential flow
problems has been used by several researchers. Maniar [40] used this technique in three-
dimensional higher order panel method for potential problems. Kouh and Suen [33]
also adopted the method to deal with the potential flow problem. An extensive review
on the desigularization methods is presented by Yang [77]. The Green’s formula for
solving three-dimensional exterior potential problem which represents the Laplace’s

equation is written as [39]

0 p € §Q; interior

oG 93
fsb {%57;; - Ga—:i}dsq =S omg, peSy (4.67)

4mpy, p € (), exterior
\
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where 0/0n, denotes the differential in normal direction at the source point (o, Yo, 20)
and the field point p(z,y,z). Substituting Equation (4.63) into Equation (4.67), one

obtains the integral equation for the point on the body surface in the following form

G, 6 0G 6<z5
e T A A LT

5
/ {¢q 5ot - af }ds — b, pES (4.68)

The single and and double-layer kernel involved in the first integral of Equation (4.68)
appear to be singular as the field point approaches source point, » — 0. While no
singularity involves in the kernel of second and third integral of Equation (4.68).

The singular integral in the boundary integral Equation (4.68) can be desingularized
and the desingularized form of the integral equation based on the procedure proposed

by Landweber and Macagno [36] can be written as

(¢q Qsp) dS + ¢p 8G dS / <’““‘ - %ﬁ>dsq
Sb

_%i/ Gsaqu +/ {¢q8G’ —G186¢ }dSq
Sb

ony, op Nq

3¢

According to the Gauss flux theorem, the flux through a closed surface due to a
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unit source on the same surface is 2r. Hence,

oG
—2dS, = 27 4.70
S, anq q ( )

where, o is a source distribution on the body surface which makes the body surface an
equipotential defined by

pe = — | Gs0,dS, (4.71)
Sp

Making use of Equations (4.70) and (4.71), Equation (4.69) can be re-written as

8G, 8 0¢ o,
J o= o0 gmesi [ e s
+@-% Gs0,dS, +/ {qbanI 18¢ }dsq

3np Op Sb 8nq

¢
/ {qsq o e anq}ds =47, (4.72)

The corresponding integral equation to solve source function o on the body surface can

be expressed as

0G5

Sh anq

210, = — 4 (4.73)

Using the “subtracting and adding back” technique, Equation (4.73) can be written as

2no, = —/ { oG, _ %}dS’q— %dSq (4.74)
Sp

o o o
q P P
ony Ong Ong
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Applying the Gauss flux theorem, Equation (4.73) is reduced to

oG, 3G, ..
/Sb {O'qa—np‘ — O'pa—nq}dsq =0 (475)

Equation (4.75) implies that o is an eigenvector of the normal derivative of the single-
layer operator [77]. By specifying a given value for ¢ at some point on the surface
and making use of an iteration method, a unique solution for Equation 4.75 can be

obtained

oG oG oG
(mt1) _ (m) (m)Zs _ G(m)ZTs — 0p—2d 4.
Ip Op + /S ) {0‘1 anp Tp 3nq }dSq T 8nq Sq ( 76)

The equipotential function ¢, can be obtained by locating p on the origin inside the
boundary surface

e=— [ —————=dS, 4.77
i /s,, T2+ y2 + 22 477)

where superscript m refers to mth iteration. By locating p at the origin inside the

body ¢, is obtained.

4.6.1 Radiation Problem

The associated boundary integral equation for a radiation problem is given as follows:

aG*(p, ¢,
2w, - [ 050" G0 Las, ~ [

S 3nq

G(p, q)dS, (4.78)
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Using the desingularized technique, Equation (4.78) can be written in the following

form

{60 - 8,0 } 250D, - [ 4,92 20,

q

o) — [

0p; 0¢p; 0Odjo
G*(p,q)=2dS, — | G.(p, <—J - —]——q>dS
S5¢ (1]7 )anq q s (p q) anq anp Up q
_Z¥ 2
o (4.79)

4.6.2 Diffraction Problem

For the wave diffraction problem, the associated boundary integral equation is written
as
9G(p,q)

2malp) - | dal0) =5, 2dS; = 4761(p) (4.80)
b q

and the desingularized form of Equation (4.80) can be written as

min(s) — [ {oat@) - oatp) | 2252 s, - [ gt 20

= 4n¢i(p) (4.81)

where ¢4 = ¢p + ¢r.
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4.7 Geometry Description of the Body by NURBS

A surface, over which the integral equation is to be solved, is generally given by a set
of data points. In order to evaluate the desingularized boundary integral equation, a
parametric description of the body geometry is required to distribute the collocation
points over the body surface. B-splines and Non-Uniform Rational B-splines (NURBS)
are the powerful methods for generating a curve or surface through a set of given data
points to describe the geometry of the body. In hydrodynamic computation, the B-
splines was used for two-dimensional potential flow by Okan and Umpleby [50,51] and
Landrini et al [35]. A B-spline based panel method is also presented by Maniar [40].
Scalvounos and Nakos [59] applied the spline element to express the velocity potential
distribution on the free surface for rankine panel method. Kouh and Suen [33], Lee |38],
Sheng [62] and Qiu [53] applied the NURBS to model the geometry of the body for
potential flow computation. In this study, the NURBS surface is used to describe the
body geometry. The reason of choosing the NURBS surface to describe the geometry
is that NURBS offers curve and surface fitting with very small curvature. It also offers
one common mathematical form for representation of standard analytic shape (conic,
circle,...) as well as free form shape. The NURBS representation of the geometry can
also be used in other ship design applications. The flexibility to design a large variety

of shapes as well as numerically stable and accurate algorithms are also provided by
NURBS. Moreover, the NURBS description of the body also facilitates to modify the

body if the satisfactory requirements of the hydrodynamic characteristic of the body are
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not achieved. A brief description of of NURBS surface and generation of an arbitrary

body surface by NURBS is given in Appendix B.



Chapter 5

Three-Dimensional Numerical Results

and Discussions

This chapter provides validation of numerical simulations using the proposed method
with analytical results, or available experimental data, or published numerical results in
the literatures. First, the steady flow potentials are computed and compared with the
analytical results for a sphere and an ellipsoid. Then, the hydrodynamic characteristics
of a spheroid are computed and compared with the numerical results obtained by
panel method and the published analytical results. Finally, the numerical solutions
of ship motion characteristics obtained by desingularized method for a Wigley hull
and a Container ship compared with experimental data and other available numerical

solutions. The computational procedure is shown in Appendix C.

83



84

5.1 Numerical Results for Steady Flow Potential

Different numerical simulation runs were carried out for sphere and ellipsoid to demon-
strate the accuracy of the desingularized method in potential flow computation. In
the first example, a sphere with radius of one is floating in a uniform flow. The fluid
flow is from left to right with the speed of U = 1. It is worth mentioning that the
NURBS surface representation of sphere can be obtained by the revolution of a circle
or by surface interpolating through a set of data points. However, since an arbitrary
body has no mathematical description and cannot be dealt as the ruled surface, the
NURBS surfaces of the sphere and ellipsoid are generated using data points. The basis
orders of the NURBS surface are p x q and the Gaussian orders of the body surface are
Ny and N; in the u and v-directions, respectively. For the sphere, four equal-spaced
stations are selected in the z-direction and five points on each station are selected
so that the distances between them are equal. The coordinates of these points are
calculated from the mathematical description of the sphere. The NURBS surface is
fitted to these points. Then, the coordinates and other parameters of the Gaussian
points on the NURBS surface are computed. The results of total potential for different
order of Gaussian points, depicted in Figure 5.1, show a reasonable agreement with
the analytical solution. The analytical solution can be found in the hydrodynamic
book [44]. Term 6 is the angle in the zy-plane from the negative direction of z-axis
with 0 < 6 < 7. Figure 5.2 shows the analytical solution and the numerical results

of pressure coefficient, C),, for a sphere with different number of Gaussian points. The
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root mean square error of total potential for the sphere defined by

1 N (I)qnalytic _ rum. 2
RMS = N ; { ? (p;znalytic } | (51)

where N is the total number of Gaussian points on the body surface.
The root mean square error for potential is plotted in Figure 5.3 for different order

of basis function in NURBS surface.

2.0 I I
Analytic Solution
—  Gaussian Points: 6 X6 e
Gaussian Points: 8§ x 8 &
1.0 —

0.0

Total Potential ®

]
it 3
2

Angle, 6 (Radian)

]
0 i

Figure 5.1: Total potential for a sphere

Figure 5.3 indicates that increasing the Gaussian order and the number of Gaussian
points in the body surface increases the accuracy of computation. However, it is shown
that with a few number of Gaussian points and low order of Gaussian quadrature,

accurate result can be obtained.
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In order to simulate potential flow for a semi-ellipsoid moving in the calm water,
a semi ellipsoid with semi axis a = 4,b = 1 and ¢ = 2 is chosen. The NURBS
surface of the ellipsoid is generated for three cases, for which 256, 192 and 128 Gaussian
points are distributed on the body surface. The basis order of the NURBS surfaces
for the three cases are 3 x 3. The NURBS surface with different number of Gaussian
points are depicted on Figure 5.5. Table 5.1 shows the analytical solutions and the
numerical results of velocity potential for the ellipsoid. The results for three cases
show good agreement with the analytical results. The relative error, RE, which is

analytic _ gnum.
[ [
q)analytic

defined byRE = is shown in Figure 5.4. It is indicated that the relative

error is less than 0.1 percent for the points located on the middle part of the surface but

the error is greater for the points located on both end parts of the surface of ellipsoid.

0.4
' ' ' ' "16% 16 points |

16x12 points -----
16x8 points oo

Figure 5.4: Relative error of potential for an ellipsoid



Table 5.1: Velocity potential for an ellipsoid (a =4,b=1,c

Numerical
X Analytical* 16x16 16x12 16x8
3.9959 4.5017 4.4868 4.4862 4.4843
3.9078 4.4024 4.3905 4.3883 4.3883
3.6382 4.0987 4.0959 4.0937 4.0926
3.2031 3.6085 3.6124 3.6101 3.6101
2.6338 2.9672 2.9741 2.9718 2.9726
1.9588 2.2067 2.2136 2.2115 2.2126
1.2067 1.3594 1.3642 1.3628 1.3636
0.4075 0.4591 0.4608 0.4603 0.4606
-0.4075 -0.4591 -0.4608  -0.4603  -0.4606
-1.2067 -1.3594 -1.3642  -1.3628  -1.3636
-1.9588 -2.2067 -2.2136  -2.2115  -2.2126
-2.6338 -2.9672 -2.9741  -2.9718  -2.9726
-3.2031 -3.6085 -3.6124  -3.6101 -3.6101
-3.6382 -4.0987 -4.0959  -4.0937  -4.0926
-3.9078 -4.4024 -4.3905  -4.3883  -4.3883
-3.9959 -4.5017 -4.4868  -4.4862  -4.4843

* Analytical solution is obtained from Ref. [44].
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5.2 Numerical Results for Unsteady Flow Potential

5.2.1 Radiation of a Floating Hemisphere

To investigate the accuracy of the proposed method, simulation studies were performed
for the motion of a floating sphere with radius a. The discretized form of the integral
equation for radiation problem of a floating sphere, Equation (4.79), can be written in

the following matrix form for each mode of motions

0
[Aijl{#;} = [Bij]{gg} (5.2)
J
where
Aij:{—ﬂ%Jr‘%}wj j#i and  4,j=1,..,N
rij-n; oGy | -
and

By={-A+Gy}a,  i#i ed  ij=l..N

T’L]
o (Vs — Pe N 1 %55,
By = Gyw; o T Zj:l,j;éi re; o1 Wi
These complex system of linear integral equations are solved by using a complex

matrix inversion subroutine inversion LAPACK. Tables 5.2 through 5.5 display the

added-mass and damping coeflicients, respectively, for various wave number, v for both
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surge and heave motions. Computations using the panel method are performed by di-
viding the body surface into 1024 triangular panels. Simulation studies are performed
to compute the added-mass and damping coefficients of a hemisphere with desingular-
ized method for different number of collocation points. The results are compared with
the analytical results of Hulme [20]. Non-dimensional added-mass p; and damping \;

coeflicients for surge (i = 1) and heave (i = 3) are defined as

B
Hiz = ) Aii = ;

avs P~ V9/L

(5.3)

where v/ stands for volume of the fluid displaced by the body. The total execution
time for the panel method with 1024 panels was 1469.73 seconds. The total execution
time for desingularized method are 4.25 seconds for 8 x 8 collocation points distributed
on the body surface and 20.74 and 69.33 seconds for 12 x 12 and 16 x 16 collocation
points, respectively.

Comparison of the results for surge and heave added-mass and damping coefficients
show that the numerical results agree with the analytical results of Hulme [20]. For
16 x 16 points, the difference occurs at most in the fourth decimal point. For 12 x 12
and 8 x 8, points the differences also occur at some third decimal points. The results
obtained by desingularized method with 16 X 16 points are more accurate than the
results of panel method for many wave numbers while its required executing time is
approximately 2—10 executing time of the panel method. However, it is indicated that

the desingularized method with a few number of collocation points gives satisfactory



results, in terms of accuracy.

Table 5.2: Surge added-mass for a floating hemisphere

Present method

va Hulme P.M.(1024)* 8x8 12x12  16x16
0.0 0.5000 0.4971 0.5019  0.5006 0.5002
0.1 0.5223 0.5192 0.5242  0.5229 0.5226
0.2 0.5515 0.5481 0.5534  0.5521 0.5518
0.3 0.5848 0.5811 0.5867  0.5854 0.5851
0.4 0.6175 0.6135 0.6194 0.6181 0.6178
0.5 0.6439 0.6397 0.6458  0.6445 0.6442
0.6 0.6586 0.6546 0.6605 0.6592 0.6589
0.7 0.6582 0.6544 0.6601  0.6588 0.6585
0.8 0.6421 0.6388 0.6441  0.6427 0.6424
0.9 0.6127 0.6098 0.6146  0.6133 0.6129
1.0 0.5740 0.5716 0.5759  0.5746 0.5742
1.2 0.4860 0.4844 0.4879  0.4866 0.4862
1.4 0.4038 0.4026 0.4056 0.4043 0.4040
1.6 0.3371 0.3361 0.3390  0.3377 0.3373
1.8 0.2865 0.2856 0.2883  0.2871 0.2868
2.0 0.2493 0.2484 0.2510  0.2498 0.2495
2.5 0.1951 0.1940 0.1966  0.1955 0.1953
3.0 0.1720 0.1706 0.1731  0.1723 0.1721
3.5 0.1634 0.1610 0.1630  0.1633 0.1634
4.0 0.1620 0.1717 0.1795 0.1674 0.1643
4.5 0.1641 0.1643 0.1690  0.1655 0.1647
5.0 0.1679 0.1674 0.1720  0.1690 0.1684
6.0 0.1772 0.1757 0.1810  0.1781 0.1775
7.0 0.1865 0.1749 0.1640 0.1815 0.1844
8.0 0.1949 0.1948 0.2012 0.1965 0.1955
9.0 0.2022 0.2010 0.2110  0.2037 0.2027
10.0  0.2085 0.2042 0.2220  0.2090 0.2085

* Panel method with 1024 panels.
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Table 5.3: Surge damping coefficients for a floating hemisphere

Present method
va Hulme P.M.(1024) 8x 8 12x12 16x16

0.0 0.0000 0.0000 0.0000  0.0000 0.0000
0.1 0.0011 0.0011 0.0011  0.0011 0.0011
0.2 0.0082 0.0080 0.0082  0.0082 0.0082
0.3 0.0255 0.0252 0.0255  0.0255 0.0255
0.4 0.0557 0.0549 0.0557  0.0557 0.0557
0.5 0.0987 0.0974 0.0986  0.0987 0.0987
0.6 0.1516 0.1497 0.1515 0.1515 0.1516
0.7 0.2092 0.2068 0.2091  0.2092 0.2092
0.8 0.2653 0.2625 0.2652 0.2653 0.2653
0.9 03145 0.3116 0.3145 0.3145 0.3145
1.0 0.3535 0.3505 0.3534 0.3535 0.3535
1.2 0.3978 0.3950 0.3977  0.3978 0.3978
1.4 0.4061 0.4037 0.4059 0.4060 0.4061
1.6 0.3929 0.3909 0.3926  0.3928 0.3929
1.8  0.3695 0.3678 0.3691  0.3693 0.3694
2.0 0.3424 0.3410 0.3418 0.3422 0.3423
2.5 0.2769 0.2759 0.2757  0.2765 0.2767
3.0 0.2237 0.2230 0.2212  0.2229 0.2233
3.5 0.1826 0.1825 0.1764  0.1808 0.1818
4.0 0.1511 0.1459 0.1844 0.1608 0.1552
4.5 0.1266 0.1256 0.1306 0.1277 0.1271
5.0 0.1073 0.1066 0.1084 0.1076 0.1074
6.0 0.0794 0.0788 0.0763  0.0786 0.0791
7.0 0.0608 0.0569 -0.0365 0.0367 0.0509
8.0 0.0479 0.0476 0.0539 0.0489 0.0483
9.0 0.0386 0.0380 0.0396  0.0377 0.0382
10.0 0.0317 0.0292 -0.0165 0.0209 0.0276




Table 5.4: Heave added-mass for a floating hemisphere

Present method

va Hulme P.M.(1024) 8x8 12x12  16x16

0.0 0.8310 0.8248 0.8314 0.8311 0.8310
0.1 0.8627 0.8565 0.8632 0.8629 0.8628
0.2 0.7938 0.7885 0.7943  0.7940 0.7939
0.3 0.7157 0.7112 0.7161  0.7158 0.7157
0.4 0.6452 0.6414 0.6457 0.6453 0.6452
0.5 0.5861 0.5828 0.5865 0.5862 0.5861
0.6 0.5381 0.5352 0.5386  0.5382 0.5382
0.7 0.4999 0.4972 0.5003  0.5000 0.4999
0.8 0.4698 0.4673 0.4702  0.4699 0.4698
0.9 0.4464 0.4441 0.4469 0.4465 0.4465
1.0 0.4284 0.4261 0.4289  0.4286 0.4285
1.2 0.4047 0.4025 0.4052  0.4048 0.4048
1.4 0.3924 0.3900 0.3928  0.3925 0.3924
1.6 0.3871 0.3847 0.3875 0.3872  0.3872
1.8  0.3864 0.3838 0.3868  0.3865 0.3864
2.0 0.3884 0.3856 0.3887  0.3885 0.3884
2.5 0.3988 0.3941 0.3987  0.3988 0.3988
3.0 04111 0.4085 0.4115 04112 0.4111
4.0 0.4322 0.4291 0.4325 0.4323 0.4322
5.0  0.4471 0.4438 0.4474  0.4472 0.4471
6.0 0.4574 0.4543 0.4578  0.4575 0.4574
7.0 0.4647 0.4614 0.4651  0.4648 0.4647
8.0 0.4700 0.4666 0.4705 0.4701 0.4700
9.0 04740 0.4709 0.4741 0.4741 0.4740
10.0 04771 0.4738 04775  0.4772 04771
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Table 5.5: Heave damping coefficients for a floating hemisphere

Present method
va Hulme P.M.(1024) 8x8  12x12 16x16

0.0 0.0000 0.0000 0.0000  0.0000 0.0000
0.1 0.1816 0.1797 0.1816  0.1816 0.1816
0.2 0.2793 0.2766 0.2793  0.2793 0.2793
0.3 0.3254 0.3224 0.3254 0.3254 0.3254
04 0.3410 0.3381 0.3410  0.3410 0.3410
0.5 0.3391 0.3363 0.3391  0.3391 0.3391
0.6 0.3271 0.3247 0.3271  0.3271 0.3271
0.7 0.3098 0.3076 0.3098  0.3098 0.3098
0.8 0.2899 0.2880 0.2899  0.2899 0.2899
0.9 0.2691 0.2674 0.2691 0.2691 0.2691
1.0 0.2484 0.2470 0.2485 0.2484 0.2484
1.2 0.2096 0.2085 0.2096  0.2096 0.2096
1.4 0.1756 0.1749 0.1757  0.1756  0.1756
1.6 0.1469 0.1463 0.1469  0.1469 0.1469
1.8 0.1229 0.1225 0.1229 0.1229 0.1229
2.0 0.1031 0.1027 0.1031  0.1031 0.1031
25 0.0674 0.0656 0.0665 0.0671 0.0673
3.0 0.0452 0.0456 0.0453  0.0452 0.0452
4.0 0.0219 0.0222 0.0219  0.0219 0.0219
5.0 0.0116 0.0118 0.0114 0.0116 0.0116
6.0 0.0066 0.0068 0.0070  0.0067 0.0066
7.0 0.0040 0.0041 0.0041  0.0040 0.0040
8.0 0.0026 0.0026 0.0023 0.0025 0.0025
9.0 0.0017 0.0019 0.0025 0.0018 0.0017
10.0 0.0012 0.0012 0.0014 0.0012 0.0012
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5.2.2 Irregular Frequencies

In the numerical simulation of boundary integral equations, spurious solutions emerged
for a certain range of wave numbers. These solutions exhibit very sharp peaks in the
solution and are considered to be a phenomenal. The frequencies in which these spu-
rious solutions appear are known to be irregular frequencies. Significant errors appear
near the irregular frequencies in the numerical solution of the boundary integral equa-
tion. Several methods have been proposed by the researchers to remove the irregular
frequencies. However, the removal of irregular frequencies is beyond the scope of this
study.

By linear composition of the potential formulation and its derivative, the modified
integral equation can be obtained. Lee and Sclavounos [37] adopted this method to
wave-body interaction problems and demonstrated that the irregular frequencies can be
removed from potential flow computation for three-dimensional problems. This method
was also adopted by Yang [77] and the effectiveness of the method was demonstrated by
proper composition of the integral equations. Zhu [79] removed the irregular frequencies
for the bodies with two plane of symmetry by adding wave sources or dipoles on the
interior free surface to the free surface Green’s function.

Figures 5.6 and 5.7 display the added-mass and damping coefficients for a floating
hemisphere, respectively. It is shown that the effect of the irregularity near the irregular
frequency can be considerably decreased by increasing the number of collocation points

on the body surface.
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5.2.3 Diffraction of a Submerged Spheroid

The discretized form of the integral equation for diffraction problem, Equation (4.81)

can be written in the following form

[Ail{8;} =C; (5.4)

where A;; is the same matrix, as defined in Equation (5.2) and C; = 47 ¢y;. The mo-
tions of a spheroid with semi axis of a = 6 and b = 1 in x and y directions, respectively,
are computed. The spheroid is submerged in a water of infinite depth. The computa-
tion is performed for three different submergence cases. The study of submerged body
is important on hydrodynamic computation of submerged structure and submarines.
The surface of the ellipsoid is generated by two methods. In the first method, Method
I, the NURBS surface is obtained by revolution of a curve about z-axis. This method
gives a very accurate surface. In the second method, Method II, the surface is gen-
erated using a table of offsets for the ellipsoid. The table of offsets is obtained from
mathematical description of the ellipsoid. Since the ship body cannot be dealt as the
ruled surface, Method II is more practical in ship hydrodynamic computations. Real
and imaginary parts of surge exciting force on a submerged spheroid in regular waves
with the depth of submergence h = 2 are given in Tables 5.6 and 5.7. The numerical
solutions are obtained for four different cases. In Method I, the body surface is gener-
ated by rotating a curve and 512 collocation points, 16 points in v and 32 points in v

direction, are distributed on the surface. For Method II, in which the body surface is
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generated using table of offsets of the spheroid different number of collocation points,
namely, 512,288 and 128 are distributed on the body surface. The real and imaginary
parts of the surge exciting force for different values of va in Method I are the same
as the analytical solutions given by Wu and Taylor [73] for four decimal digits when
va < 1. For va > 1, the accuracy of numerical solutions comparing to the analytical
one are up to three decimal digits. When NURBS description of the body surface is
obtained from the table of offsets the accuracy of the numerical solutions is less than
those computed in Method 1.

Tables 5.8 and 5.9 show the convergence of heave forces for different numbers of
collocation points. Again the results show good agreement with the analytical solutions.
However, the results obtained by Method I are more accurate than those of Method II.

Several other cases for different submergence and aspect ratios are investigated and
the results are given in Figures D.1-D.4. This figures indicate that in general, the non-
dimensional forces are reduced by increasing the submergence, for va approximately
less than 4.5. It is also indicated that for a given length of minor axis, by increasing
the length of the major axis, the non-dimensional forces coefficients are reduced for a
certain value of va, but for va greater than a certain value, the non-dimensional forces
are increased.

More results for added-mass and damping coefficients of the spheroid with dif-
ferent aspect ratios submerging in various depth of water are given in Appendix D.
The comparisons are also given for the present computations and the panel method

computations.
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Table 5.6: Real part of surge exciting force [-R(f,)] on a submerged spheroid in regular
waves(h=2b, a=6D)

Method 1 Method II
va Wu &Taylor 16 x 32* 16 x32 12x24 8x16

0.1 0.0000 0.0000 0.0000 0.0000 0.0000
0.2 0.0002 0.0002 0.0002 0.0002 0.0002
0.3 0.0007 0.0007 0.0007 0.0007  0.0007
0.4 0.0017 0.0016 0.0016 0.0016 0.0016
0.5 0.0031 0.0032 0.0031 0.0031 0.0029
0.6 0.0051 0.0051 0.0051 0.0051 0.0048
0.7 0.0077 0.0077 0.0077 0.0077 0.0073
0.8 0.0110 0.0110 0.0111 0.0111 0.0105
0.9 0.0151 0.0151 0.0151 0.0151 0.0144
1.0 0.0198 0.0198 0.0199 0.0199 0.0190
2.0 0.0903 0.0904 0.0910 0.0910 0.0896
3.0 0.1045 0.1046 0.1053 0.1053 0.1058
4.0 0.0486 0.0488 0.0490 0.0490 0.0507
5.0 0.0010 0.0010 0.0010 0.0010 0.0028

* Number of Gaussian points on the body surface
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Table 5.7: Imaginary part of surge exciting force [-3(f;)] on a submerged spheroid in
regular waves(h=2b, a=6b)

Method 1 Method 11
va Wu &Taylor 16 x 32* 16 x32 12x24 8% 16
0.1 1.0542 1.0542 1.0532 1.0532 1.0196
0.2 1.0536 1.0536 1.0526 1.0526 1.0191
0.3 1.0514 1.0514 1.0504 1.0504 1.0171
0.4 1.0475 1.0475 1.0466 1.0466 1.0136
0.5 1.0420 1.0420 1.0411 1.0411 1.0086
0.6 1.0348 1.0348 1.0339 1.0339 1.0020
0.7 1.0258 1.0258 1.0250 1.0249 0.9937
0.8 1.0151 1.0150 1.0142 1.0142 0.9838
0.9 1.0022 1.0022 1.0015 1.0015 0.9720
1.0 0.9875 0.9876 0.9869 0.9869 0.9585
2.0 0.7267 0.7267 0.7265 0.7265 0.7138
3.0 0.3367 0.3366 0.3361 0.3361 0.3384
4.0 0.0356 0.0357 0.0353 0.0354 0.0447

=4

5.0 -0.0995 -0.0995 -0.0997  -0.0996  -0.0926
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Table 5.8: Real part of heave exciting force [R(f,)] on a submerged spheroid in regular

waves(h=2b, a=6b)

Method I Method II
va Wu &Taylor 16 x 32* 16 x32 12x24 8x16
0.1 2.0256 2.0285 2.0524 2.0503 2.0846
0.2 2.0344 2.0374 2.0614 2.0593 2.0887
0.3 2.0416 2.0446 2.0688 2.0668 2.0950
04 2.0466 2.0497 2.0741 2.0720 2.1001
0.5 2.0487 2.0518 2.0764 2.0743 2.1027
0.6 2.0471 2.0502 2.0750 2.0729 2.1017
0.7 2.0408 2.0439 2.0689 2.0667 2.0962
0.8 2.0301 2.0324 2.0573 2.0552 2.0851
0.9 2.0116 2.0146 2.0395 2.0373 2.0678
1.0 1.9871 1.9902 2.0148 2.0126 2.0435
2.0 1.3913 1.3933 1.4086 1.4072 1.4355
3.0 0.6034 0.6039 0.6086 0.6082 0.6301
4.0 0.0453 0.0457 0.0444 0.0445 0.0541
5.0 -0.1904 -0.1909 -0.1938  -0.1935  -0.1976
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Table 5.9: Image part of heave exciting force [-3(f,)] on a submerged spheroid in reg-
ular waves(h=2b, a=6b)

Method I Method II
va Wu &Taylor 16 x 32* 16 x32 12x24 8x16
0.1 0.0002 0.0002 0.0002 0.0002 0.0002
0.2 0.0017 0.0017 0.0017 0.0017 0.0018
0.3 0.0054 0.0054 0.0055 0.0055 0.0057
0.4 0.0121 0.0121 0.0124 0.0124 0.0128
0.5 0.0222 0.0223 0.0228 0.0228 0.0236
0.6 0.0361 0.0362 0.0371 0.0370 0.0383
0.7 0.0538 0.0540 0.0553 0.0552 0.0572
0.8 0.0752 0.0753 0.0772 0.0770 0.0797
0.9 0.0995 0.0998 0.1023 0.1020 0.1057
1.0 0.1265 0.1268 0.1299 0.1297 0.1343
2.0 0.3553 0.3563 0.3642 0.3634 0.3747
3.0 0.3043 0.3051 0.3108 0.3101 0.3202
4.0 0.1397 0.1405 0.1427 0.1424 0.1494
5.0 0.0139 0.0138 0.0138 0.0138 0.0156
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Figure 5.8: Non-dimensional surge force on a spheroid (a = 6b) at different submer-

gence; (a) Real part, (b) Imaginary part.
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Figure 5.9: Non-dimensional heave force on a spheroid (a = 6b) at different submer-
gence; (a) Real part, (b) Imaginary part.
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5.2.4 Comparing Run Times and Relative Error

The comparison of various computational efforts and relative errors is presented in
Table 5.10. The comparison is made for added-mass and damping coefficients of an
spheroid with semi axis a = 6 and b = 1 submerging at depth A = 3. Computations
are performed using panel methods and the desingularized method presented in this
study. The results, shown in Table 5.10, are computed for the frequency va = 0.2.

For the panel method computation, the body is panelized by triangular panels and
the collocation points are chosen to be located on the center of each panel. Three
cases corresponding to three different number of panels, namely, 128, 256 and 512
panels are compared with three cases with the same number of Gaussian points. In the
desingularized method, the same number of collocation points as for panel methods
are distributed on the body surface. The Gaussian points are obtained using Legendre
polynomials. The order of Gaussian points are chosen to be 16 x 8,16 x 16 and 16 x 32
for three cases, respectively.

Table 5.10 shows that the required execution time ! of computation with the present
method is approximately 70% of that of the panel method when the number of Gaussian
points are equal to the number of panels. However, for the same numbers, the relative
errors, RE, for the added-mass and damping coefficients computed by present method
are much less that those of the panel method. It is indicated that the relative error of

added-mass for the case of 128 Gaussian points is 1.07%, which is less than half of the

IThe CPU time of execution on computer Pentium4, 2.4GHz, 512MB
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the relative error of added-mass computed by the panel method with 512 panels. The
relative error of damping coefficient obtained by present method with 128 Gaussian
points is less than half of the relative error computed by the panel method with 512
panels.

It is also indicated that in the present desingularized method, the increase of number
of Gaussian points beyond certain number of points does not necessarily increase the
accuracy of computation. This may be due to the distances between two successive
points, rpq, appearing in the formulation. In the numerical simulation, the minimum
values of 7,4 for the case of 16 x8 and 16 x 16 and Gaussian points are greater than 0.008
and 0.002, respectively, while for the case of 16 x 32 Gaussian points, it is less than
0.001. It is believed that in order to obtain accurate results such a number of Gaussian
points or arrangement of the distribution of points is needed to have appropriate value
for minimum distance of two successive points. From different numerical experiments,

the minimum value of 7,4 is found to be greater than 0.001.

Table 5.10: Comparison of run times and relative error (RE) for added-mass and damp-
ing coefficients of an submerged ellipsoid (a =6.,b=1.,h =3.)
Nomber of points | CPU time RE of RE of
or panels [seconds| | Added-mass | Damping Coef.

Panel method 128 1.39 9.3% 19.9 %
Present method 16x8 0.9 1.07 % 2.28%
Panel method 256 4.91 3.45 % 8.4 %
Present method 16x16 3.69 0.53 % 0.77%
Panel method 512 19.87 2.86 % 6.4 %
Present method 16x32 15.3 0.63 % 0.81%
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5.2.5 Significance of Element Surface

The element surface is defined by the area of each panel in the panel method or the
area surrounding each point in the desingularized method. Since the surface area of
each element appears in the integral equations, the accuracy of the element surface
significantly influences on the numerical computation of the integral equations.

Table 5.11 shows the relative errors of surface of the spheroid for ‘different cases.
When the surface is panelized by 64 triangular panels, the relative error of surface
area is 17.75%. By increasing the number of panels, the error decreases and more
accurate results from computations can be anticipated. When the Gaussian points are
distributed on the surface using Legendre polynomials or Chebyshev polynomials, and
the surface is computed by summation of the weighting factors of these polynomials,
the relative errors for surface area are much less than those of panelized surface. How-
ever, the Legendre polynomial gives more accurate results for surface elements than
Chebyshev polynomials as indicated in Table 5.11. Thus, throughout of this study the

sources are distribution on the body surface using Legendre polynomials.

5.3 Numerical Results for Ship Motion in Water Waves

Figures 5.12 and 5.13 are the comparisons of added-mass and damping coeflicients
for a. Wigley model for different Froude number. The main dimensions of the Wigley
model are given in Table 5.12. This model is the same as the model that was used by

Journee [24]. The 3D-WAMIT results shown in the figures are the three-dimensional
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Table 5.11: Comparison of area surface of an ellipsoid (a = 6.,b = 1.)

Nomber of points | Relative
or panels error

Panel method 64 17.75%
Legendre 8x8 0.67%
Chebyshev 8x8 2.53%
Panel method 128 6.99%
Legendre 8x16 0.03%
Chebyshev 8% 16 2.51%
Panel method 192 3.91%

Legendre 12x16 0.003%
Chebyshev 12x 16 2.48%
Panel method 256 3.53%

Legendre 16x16 0.003%
Chebyshev 16x16 2.46%
Panel method 576 1.74%

Legendre 24x24 0.0001%
Chebyshev 24x24 2.41%

numerical solution based on the WAMIT computer program, developed at the Mas-
sachusetts Institute of Technology and the strip theory results are obtained from the
computer program developed at Delft University of Technology based on the strip the-
ory. The experimental measurements were carried out on the Ship Hydrodynamics
Laboratory, Delft University of Technology. The 3D-WAMIT, strip theory and experi-
mental data are taken from Reference [24]. It is shown that reasonable agreement with
experimental data can be obtained by the desingularized method for various frequency
of encounter. The main particulars of the Wigley model and the Container ship are

given in Table 5.12 and Table 5.13, respectively.



112

Table 5.12: The main particulars of the Wigley model (from Ref. [24])

Amidship section coefficients, C,, (-) 0.6667

Length to breadth ratio, L/B (-) 10

Length, L (m) 3.0000
Breadth, B (m) 0.3000
Draught, d (m) 0.1875
Trim, t (m) 0.0000
Volume of displacement, V (m?) 0.0780

Center of rotation above base, KR (m) | 0.1875
Center of gravity above base, KG (m) | 0.1700
Radius of inertia for pitch, k,, (m) 0.7500

Table 5.13: The main particulars of the Container ship (from Ref. [7])

Length between perpendiculas, L (m) 270
Breadth, B (m) 32.2
Draught even keel, d (m) 10.85
Volume of displacement, V (m3) 560970
Block coefficient, Cp (-) 0.598
Waterplane coefficient, Cy (-) 0.757
Waterplane coefficient, Cys (-) 0.950
L. C. G. aft of station 10 AG (m) 10.12
Center of gravity above base, KG (m) | 13.49
Metacentric heightGM (m) 1.15
Radius of inertia for pitch, ky, (%LpP) | 24.8
Radius of inertia for roll, k., (%B) 37.5
Natural roll period T}, (second) 24.9
Natural pitch period Ty (second) 8.6
Natural heave period T, (second) 8.7
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Here, the non-dimensional parameters for the ship motions are defined as follows:

For added-masses:

Aji

Hig = i=1,2,3)
P% (

Hii = oo L2 (i=4,5,6)

For damping coefficients:

B.:
P9/
e o= —Di (=456

P L2\/g/L

For ship motion:

G = o8 (=123

L
Il

(7’ = 47 57 6)

For wave exiting force:
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Figure 5.12: Comparisons of measured and calculated of added-mass coefficients for
heave motions of a Wigley hull; (a): Fn=0.2, (b): Fn=0.3, (c): Fn=0.4.
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Figure 5.14 is the heave motion of a container ship at various Froude numbers. The
main particulars of the ship is given in Table 5.13. The experimental data and strip
theory results are taken from Reference [7] and the panel method solutions are taken
from Reference [19]. The same hull offsets are used in the strip theory and the panel
method. For the heave motion, strip theory and present method have no significant
difference in the short wave range. For the long wave range, both method over predict
at all three Froude numbers. However, the present method gives results closer to the

experimental data.



117

1.2 I I T T T T
Present method --—- :
(a) 1H Strip theory ——— |-t -
Experiment .

0.8
13
1.2 I I | | | I
Present method --—-- : : E :
(b) 1H Strip theory ——— {-ooio iz b —
Panel method ----- : 2 By
0.8 H Experiment e | LTRSS SRR T _
T ] S e B aTel MR S -
] T R s .
0.2 e gl R RITITN SRS -
0 _e _j | i i
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
AL
1.2 I I | T T T
Present method --—-
(c) 1H Strip theory O LT R, -
Experlment . g D T T -
R e A B U . -
1R 0.6 | -
QA EEnnt R T T e e T S e e SRR EE I —
0.2 |rrrmmmmm e bizre g e —
0 O .~ | |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 5.14: Heave motion for the container ship; 8 = 180°, (a): Fn=0.220, (b):
Fn=0.245, (c): Fn=0.270.
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Figure 5.15 shows the non-dimensional added-mass coefficients for the container
ship in head sea for three different Froude numbers. For a zero Froude number, the
added-mass coefficients of motions, except for the roll motion, increase as the wave
length to ship length ratio is incresed. At Froude number, F,, = 0.15, again the added-
mass coefficients increases by increasing the wave length to ship length ratio. In high
Froude number, F'n = 0.30, the added-mass coeflicients increase with increasing the
wave length to ship length ratio beyond certain value of this ratio (approximately 0.6).
The non-dimensional added-mass coefficients for the motions of the container ship for
(3 = 150° are also depicted in Figure 5.16. It is shown that for zero Froude number, the
added-mass coefficients of motions increase as the wave length to ship length ratio is
increased (except for roll motion). At Froude number, F,, = 0.15, for the wave length
to ship length ratio greater than 0.5, the added mass coefficients increase as the wave
length to ship length ratio is increased.

Figure 5.17 and Figure 5.18 show the non-dimensional damping coefficients of the
container ship in head sea and 3 = 150°, respectively. For both headings, the damping
coefficients of surge and pitch motions in the case of zero Froude number decreases
when the wave length to ship length ratio is approximately greater than 0.8. This is
not occur for the cases with F,, = 0.15 or F,, = 0.30. In the heave motion, the damping
coefficients for all three cases, in general, increased with increasing wave length to
ship length ratio. The non-dimensional damping coefficients of roll motion for some
wave length to ship length ratios in head seas are found to be approximately 0.001,

(Figure 5.17). However, for a symmetrical body, these coefficients should theoretically
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be equal to zero. This error is believed to be due to the numerical computation and
the generation of the body surface.

Non-dimensional wave exciting forces for various Froude numbers are given in Fig-
ures 5.19 and 5.20 for head sea and heading 8 = 150°, respectively. It is indicated that
for both headings, the wave exciting force becomes greater when the Froude number
is increased. The non-dimensional amplitude for various Froude numbers in head sea
and heading 8 = 150° are also presented in Figure 5.21 and Figure 5.22. For surge
motion, the smaller Froude number gives the greater non-dimensional amplitude for
both headings. For heave and pitch motions, the smaller Froude number has smaller
non-dimensional motion amplitude specially for long wave lengths. For sway, roll and
yaw motions, which exist in heading § = 150°, the non-dimensional motion amplitude
is increased by increasing the Froude number for almost all range of wave length to

ship length ratio.
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Figure 5.19: Non-dimensional wave exciting force of the container ship for 3 = 180;
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Chapter 6

Conclusions and Recommendations

Nonlinear solutions of two-dimensional free surface flow is investigated using Cauchy’s
formula in the first part of this dissertation. The desingularized Cauchy’s formula for
infinite domain as well as for a body moving beneath the free surface are developed. Nu-
merical solutions of potentials and pressure coefficients for the elliptical cylinder with
different dimensions and for Joukowsli airfoil of various size are obtained. Compar-
isons between numerical simulation and analytical results indicate that desingularized
Cauchy’s formula give very accurate solutions for potential flow problems in infinite
domain. It is indicated that the formulation for complex potential gives more accurate
results. For a body moving beneath the free surface, the simulations has been carried
out for different bodies. It was found that the converged solution for the problem using
Cauchy’s formula cannot be obtained for many cases.

However, the results obtained for two-dimensional body moving beneath the free

surface indicate that the desingularized Cauchy’s formula is not sufficiently accurate,
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and hence, not appropriate for fully nonlinear free surface computation. This may be
due to highly nonlinearity of the problem and the error due to implementation of Kutta
condition.

The main objective of the second part of the dissertation is to develop an algorithm
in which the behavior of a ship advancing with constant speed in water waves can be
accurately predicted.

The non-singular forms of Green’s formula for three-dimensional potential problem
are presented. The main advantage of desingularized formulations is that the prob-
lem can be solved directly by quadrature formula. Thus, there is no need to locally
regularize the singularities in each element as usually is done by conventional panel
method. The desingularized formulation has been applied to analyze the radiation and
diffraction problems of the floating and submerged three-dimensional bodies with zero
forward speed in regular waves.

The analysis of ship motions with forward speed is more difficult due to complexity
of the interaction of the steady wave system associated with the forward motion of the
ship and the unsteady wave system associated with the oscillatory motion of the ship.
In order to predict the ship motion, the forward speed correction theory is used. The
speed dependence of the hydrodynamic coefficients are obtained by solving the double
body potential of a moving floating body with simplifying the free surface boundary
condition as the rigid wall condition.

To properly distribute the collocation points over the body surface, analytical defi-

nition or parametric representation of the body surface is required. NURBS surface is
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adopted to represent the body surface for its unique capability to describe the complex
geometry. Moreover, the coordinates of the points on the body surface can be accu-
rately obtained by NURBS surface. It also enables one to modify the body surface if
the required hydrodynamic characteristics for the body are not achieved.

The effectiveness of the present method is demonstrated by computation of the hy-
drodynamic coefficients of the floating and submerged bodies. The converged solutions
for a wide range of wave numbers are obtained. It is shown that the results obtained
by this method are more accurate than those obtained by the panel method while the
number of points used in the desingularized computation is equal to the number of
panels in panel method. If the coordinates of the collocation points used in the compu-
tation is obtained from the mathematical description of the body surface, the accuracy
of results is up to four decimal digit comparing to the analytical solution.

The hydrodynamic characteristics of a Wigley model and a container ship for various
number of Froude number are also presented. Closed agreement between the results
obtained by the present method and other existing methods, as well as experimental
results shows that satisfactory results for forward-speed ship motion characteristics can
be obtained with the present method.

For further work, it is recommended that the algorithm be applied for computation
of wave-body interaction in finite-depth by replacing of Green function of infinite depth
by finite depth Green functions with some modification in the program. Also, the
method should be applied to different types of ships, specially to ships with sharp

edges, for further validation and improvements. The usage of Green’s function for
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steady potential instead of double body potential is also recommended for further

development of the algorithm.
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Appendix A

Steady Flow Computation

A.1 Steady Flow Formulation

Consider a body moving with a constant velocity in semi infinite ideal fluid with a
free surface without surface tension. Assume that the flow is irrotational. The steady

three-dimensional flow is described by a total velocity potential, ®

P =1+ ¢a (A1)

where ¢y is the velocity potential of the uniform flow Uz, and ¢4 is the disturbance

velocity potential which must satisfy the following conditions:

Vg =0 in the fluid domain (A.2)
%?ﬂ = —U.@  on the body surface (A.3)
n
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Opa _
Vg =0 at infinity (A.5)

where 77 is the outward normal on the body surface.
The associated boundary integral equation for the total velocity potential is given

by Hwang and Huang [22]

oG (p, q)

o dsa = 161(p) (A.6)

@@@%%S{N@~¢@H

which is the nonsingular form of the boundary integral equation.

The green function of image is applied to solve the boundary integral equation

1

1
G(p,q) = —+

pa  Tpq

(A7)

7

where p and q are the field and source points on the body surface and ¢’ is the image

of ¢ with respect to z = 0. Consequently rp, = /(24 — 2p)% + (Yq — ¥p)? + (24 — 2p)?

and ¢ = \/(2q — 2p)% + (yg — Yp)? + (2, + 2p)%. By substituting the green function,

Equation (A.6) can be expressed as:

arop) — [ {o(g) — o) {2 T s 2 agip) (A)

Sp pg Tpg'

Gaussian quadrature of arbitrary order K; and K are used to discretize the integral
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equation. The discretized equation is written as:

K

iy T
4, — Y {—#—J + —j;g—ﬂ}(cbj — @) Jw; = 4¢r, (A.9)
J=lg#i = Y o’

where J and w are the scaling factor and weights of the Gaussian quadrature. K is
the total number of Gaussian points on the free surface, K = K; x K5. Equation (A.9)

can be written in matrix form

[Ai]®; = 4¢1 (A.10)

where

Aig = Y1 {13" o }Jf“’j J# (A.11)

. K Figity | Tty
ij

-3
T3 ;



Appendix B

Description of the Body suirface by

NURBS

B.1 Curve Representation with NURBS

The geometry of a two- or three-dimensional body can be modeled by NURBS in a ()
or (4, ¥) parametric space respectively. A curve in a parametric space can be defined

by [52]
_ i Nip (@) P

Q@ = (@), y(@) = S=pE

(B.1)

where z and y are the position of the points on the curve, @ is the parametric value
of the NURBS curve, n + 1 is the number of control point in the u direction, F; are

the control points and the ; are the weights. N, are the pth-degree B-spline basis
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function defined as

1 if U L u < Uiyt
M’p
0 otherwise
U— Uy Ujtpt1 — U
Nip = ———Njp1 + ——Nij1p1
P B +1,p
Uitp — Uy Uitp+1 — Uit

Using normalized cord length 4 can be described

@k — Q|

ﬂ0=0,ﬂn:1 andﬁk=uk,1+ d = 1,...

where d in the total cord length

n
—

d= |Gy — Qi1

k=1
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(B.2)

(B.3)

(B.4)

After 1y, is is defined for given data points Qr, the technique of averaging can be used

to compute the components u;’s of the nonuniform knot vector U/

U = {0,...,0,up+1,...,um_p_l,l,...,l}

ptl p+1

where
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1J'+p—1
Ujpp = ’ Z U; for 7=1,.,n—p (B.5)
=

Using Equations (B.3), (B.4) and (B.5), the basis function can be computed from
Euations (B.2). By setting the weight factor equal to one for each control points, a

system of linear equation with n+ 1 unknown, P;, can be formed from Equation (B.1)

Wip(@{ £} = {Q:} (B.6)

B.2 Surface Representation by NURBS

The Non Uniform Rational B-Spline (NURBS) method can be used to model the
geometry of an arbitrary body. The NURBS surface is given by Piegl and Tiller [52]

as

L 2im1 2 Nip(@N (0) Py iy
ZLZLM@(@)/\G,«;(@)@J

(B.7)

where, z, y and z represent the position of the points in the NURBS surface. Also, u
and v are the parametric values of the NURBS surface and n and m are the number
of control points in the @ and v directions, 0 < u,v < 1. P;; and w;; are the control
points and weighted functions respectively. N; (@) and N, ,(7) are basis functions with
degrees of p and ¢ in 4 and ¥ directions, respectively.

With unit weighting factors, a non rational B-spline surface interpolating a set of
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n X m given data points X}, can be written as:

Xk,l = ﬂ 1_) ZZNW Jq(’U (BS)

=1 j=1

Equation (B.8) represents n x m linear equations in the unknown P, ;. The P, ; can be

obtained as a sequence of curve interpolations.

% =30 SR | =S MR 9

where

Rit=> Ny (0)Pi (B.10)
=1

Equation (B.9) is a curve interpolation through the points &y, &k = 1, ...,n and fixed [.
The R;; obtained in Equation (B.9) are the control points of the curve on the surface
at fixed ;. Equation (B.10) is again a curve interpolation through the points R, for
fixed 7 and varying [. Letting ¢ vary, all the F;; can be obtained.

One of the common methods of computing reasonable values for the %, and 7 is to
use the total cord length as used in curve interpolation through a set of data points .
Parameters i, ..., 4!, are computed for each [, and then each 1, is obtained by averaging
across all @

gt — a4 KX — X1y
k — “Yk-1 T
> i1 Xt — X1

for l=1,..,n (B.11)
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1 m
Ty, = EZ@Q for m=1,...n (B.12)
=1

%y = 0 and %4 = 1. The procedure of obtadining 7, is analogous to .

The NURBS provides construction of a very accurate surface for ruled surface. In
fact, for the ruled surface in parametric space (i, ©), which is constructed by rotation
of a curve about an axis, one of the parameters % or v is constant. NURBS surface
description of some three-dimensional bodies can also be obtained by scaling of another
curve or surface. For instance, a sphere surface can be obtained by rotating a circle
through its center. By scaling a sphere in different axis, the spheroid and ellipsoid with
different dimensions can be obtained.

To demonstrate the technique, two different surface, one for ellipsoid and the other
for the Wigley hull are generated. It is obvious that the NURBS surface representation
of ellipsoid can be obtained by the scaling of a circle or by surface interpolating through
a set of data points. However, since an arbitrary body has no mathematical description
and cannot be dealt as the ruled surface, generating of the body surface through a set
of given data points is more practical in hydrodynamic applications.

Figure B.1 shows an ellipsoid obtained by scaling a sphere with semi axis of 6,2, 1
in z,y and z direction respectively. The sphere is obtained from rotation of a circle

about its center. The knots, weights and control points used to generate the circle are
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V2 V2
711’

{w;} = {1,7,1, g,l,?,l}
{Pz} = {(170)7 (17 1)7 (07 1)7 (_17 ]-)7 (—1,0), (—‘17 _1)7(07 __]-)7 (17 _1)7 (170)}

In this case the root mean square error of normals (RM.S,)is less than 10~7. The

Root Mean Square of normals is defined as

k

1 T I Ny — iy \
RM,n: - Ti ZTi Yi Ui Z4 Zi B
s = 8] (o) ()« ()}

where n and 7 denote the normals on the exact geometry and the NURBS description of
the body surface, respectively. An ellipsoid with the same dimensions is also generated
using the data points of the surface. Seven equal-spaced stations are selected in the
z-direction and seven equal-spaced water lines in the z-direction. The coordinates
of these points are obtained from the mathematical description of the ellipsoid. The
NURBS surface is fitted to these points and the coordinates and other parameters of
the Gaussian points on the NURBS surface are computed. The root mean square error
of normals and coordinates for NURBS surface of an ellipsoid with different numbers
of Gaussian points are depicted in Figure B.2. It is shown that the error for normals
and coordinates are almost independent of the number of Gaussian points. However,
the error of normals is much less than the error of coordinates.

Figure B.3 shows the body surface of a Wigley hull. This Wigley hull is mathemat-
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ically described by [24]

@G e

where L, B and D are the length, breadth and depth of the hull, respectively. The off-
sets for ten sections and six water lines are calculated from the mathematical description
of the hull. The NURBS surface is then fitted to these points and the coordinates and
other parameters of the Gaussian points on the NURBS surface are computed. The
root mean square error of normals are depicted on Figure B.4. Again, more accurate

results are obtained by increasing the number of Gaussian points.

Figure B.1: NURBS description of an ellipsoid obtained by scaling a sphere
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Appendix C

Numerical Procedure

The procedure for numerical computation of ship motions described in Part Two of

this study is given in Figure C.1.
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START

Input:

Ship’s principal characteristics, table of offsets

ship’s speed, weight distribution and

wave parameters

\

~
Select orders and numbers of Gaussian quadrature in
1 and v direction
J
4 Y
Comput coordinates and normals of collocation points
and Jacobians
S/
Comput steady flow potential and m-terms }

\

N
Comput influence matrices of Green’s function and its derivatives
J

A

Comput added masses, damping coefficients and
wave exciting forces

~

[ Comput motions, potential and pressure distribution and forces
/

y

Output:

Information of Gaussian (collocation) points, added masses,

damping coefficients, forces and motions

END

Figure C.1: Flow chart of numerical procedure.
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Appendix D

Exciting Forces for a Spheroid

The numerical simulation results for surge and heave motions of a spheroid with dif-
ferent aspect ratio, a/b, are given in this Appendix. Figures D.1 through D.4 show
the converge solutions for surge and heave exiting forces for different submergence and
wave numbers. The converged results for different aspect ratio are also given in Fig-
ures D.3 and D.4. Added-mass and damping coefficients for surge and heave motions
of a spheroid with the depth of submergence, h = 3, are given in Figures D.5 and
D.6. These results are obtained based on the desingularized method developed in this
dissertation and the panel method which also developed for comparison purpose. The
results of the present method are in good agreement with the analytical results given
by Wu and Taylor [73]. As it is shown, the present method with 512 points gives more

accurate results than the panel method with 1280 panels.
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Figure D.1: Numerical results of non-dimensional surge force on a spheroid (a = 6b)
with 16 x 32 Gaussian points; (a) Real part, (b) Imaginary part.
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Figure D.2: Numerical results of non-dimensional heave force on a spheroid (a = 6b)
with 32 x 32 Gaussian points; (a) Real part, (b) Imaginary part.
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Figure D.3: Numerical results of non-dimensional surge force on spheroid of different
aspect ratio a/b and h = 2b; (a) Real part, (b) Imaginary part.
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Figure D.4: Numerical results of non-dimensional heave force on spheroid of different
aspect ratio a/b and h = 2b; (a) Real part, (b) Imaginary part.
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Figure D.5: Surge (a) and heave (b) added-mass of a spheroid; a = 6b and h = 3b.
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Figure D.6: Surge (a) and heave (b) damping coeflicient of a spheroid; a = 6b and
h = 3b.



