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Abstract

As China has become the biggest emitter of greenhouse gas in the world, it is impor-

tant to investigate factors affecting CO2 emissions and how these vary with growth

in China. A Tier 1 IPCC method is used to estimate CO2 emissions from cement

production and fossil fuel combustion in China to construct a panel data set with 27

provinces over 15 years. The results suggest a global cubic relationship between per

capita CO2 emissions and per capita real GDP. Based on extrapolation, we expect a

presence of the environmental Kuznets curve in the future of China. A model predicts

that per capita CO2 emissions will fall when per capita real GDP exceeds 60972.06

RMB (1995 currency). Then, separate estimation on three regions with different lev-

els of economic development suggests that economic growth significantly affects per

capita CO2 emissions in the Eastern and Middle regions but not the Western region.

Key Words: Environmental Kuznets Curve; per capita CO2 emissions; per capita real

GDP; fixed-effects panel model
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Chapter 1

Introduction

Human economic activities are causing greenhouse gas (GHG) emissions that are re-

sulting in global warming and ocean acidification. According to the Intergovernmental

Panel on Climate Change (IPCC), Fifth Assessment Report (Stocker, 2013)[37], the

temperature of the atmosphere and oceans have increased and the sea level has risen.

In addition, the amounts of ice and snow have fallen and the concentrations of GHGs

have increased. Many of these observed changes are unprecedented over decades to

thousand years. In terms of carbon dioxide (CO2), the concentrations of CO2 have

increased by 40% since pre-industrial times. The main anthropogenic sources of CO2

are fossil fuel and land use emissions. The IPCC 2013 Fifth Assessment Report re-

ported that the average global surface temperature has increased by 0.9◦C relative

to pre-industrial times. Taking China as an example, the average temperature has

increased by 0.4◦C to 0.5◦C over the past century, especially in winter.

The global warming will not only cause the temperature to rise, but will also melt

glaciers, and cause the sea levels to rise. The Stern review explained that due to

the global warming, people will increasingly suffer from hunger, flooding and water

shortages. It is also reported to lead to a spread of infectious diseases.

Stern (2007)[36] concluded that the benefits of strong and early action far outweigh

the economic costs of not acting. In order to mitigate global warming and avoid

catastrophic effects on humans, the World Meteorological Organization (WMO) and

United Nations Environment Programme (UNEP) established the IPCC to provide

scientific and technological advice for problems caused by GHGs. As GHGs are global

pollutants, damages are independent of the location of the source such that interna-

tional cooperation is required to reduce emissions. As such, in June 1992, parties

1
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from each country in the United Nations put together the United Nations Frame-

work Convention on Climate Change (UNFCCC) due to the need for international

cooperation given that the GHGs are global pollutants. In December 11th, 1997,

Committees of Parties (COPs) from each nation jointly signed the Kyoto Protocol,

which came into effect on February 16th, 2005. Under the Protocol, the Early Indus-

trialized Countries and Economies in Transition (EITs) set targets to jointly reduce

GHG emissions, but other lower income and newly industrialized countries such as

China were not required a target in the first commitment period under Kyoto Pro-

tocol (5% below 1990 level from 2008 to 2012). China has not agreed to abate GHG

emissions in the second commitment period (18% below 1990 level from 2013 to 2020)

under Copenhagen Accord.

However, by 2007, China had overtaken the United States as the biggest emitter of

GHGs. As the largest emitter of GHGs and second nationally largest economy, China

is facing increasing international pressure to reduce its GHG emissions and is respon-

sible for GHGs reduction. Therefore, a most urgent task for Chinese government is to

fully understand drivers and characteristics of Chinese CO2 emissions such that they

can formulate effective carbon reduction policies. China has set both a short-term

goal for to reduce energy intensity from 2006 to 2010 and a longer-term goal for to

reduce carbon intensity by 2020 (Zhou et al, 2011)[44]. Hence, it is important to

study the drivers of per capita CO2 emissions in order to not only help the Chinese

government to participate in international climate negotiations, but also help the

government develop realistic per capita CO2 reduction policies.

CO2 is the type of GHG responsible for most warming. According to the IPCC Forth

Assessment Report (2007)[4], CO2 emissions accounted for 76.6% of total global GHG

emissions, and CO2 emitted from the consumption of fossil energy accounted for 56.6%

of total global GHG emissions. Moreover, fossil fuel combustion, cement, lime, cal-

cium carbide, and steel production, and other industrial processes discharge CO2 due

to physical and chemical reactions. For CO2 emissions created by industrial processes,

cement accounts for 56.8%, lime for 33.7%, and the proportion of calcium carbide,

steel production for less than 10%. Due to the rapid development of industrialization
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and urbanization in China in recent years, large amounts of roads, buildings, side-

walks and energy are required. Moreover, because China has the highest population

in the world, dividing total GHG emissions by total population eliminates effects of

population on total GHG emissions.

Therefore, to research the relationship between per capita GHG emissions and per

capita income, this paper researches impacts of per capita real GDP, industrial struc-

ture, urbanization and technology on per capita CO2 emissions from cement pro-

duction and fossil fuel combustion. As a result, this paper estimates relationships

between per capita CO2 emissions from cement production and fossil fuel combustion

and per capita real GDP in China as a whole, and three separate regions of China

which differ relative to measures of economic development. This paper uses a panel

data model with 27 provinces of China from 1995 to 2009, and uses Driscoll-Kraay[9]

standard errors to account for the presence of heteroskedasticity and cross sectional

dependence in a fixed-effects model for a sample of China as a whole. In addition,

three regional panel-data models are estimated using clustered robust standard errors

to accommodate heteroskedasticity and serial autocorrelation.

According to the research, there exists an inverted N-shaped curve in China, the

Eastern and Middle regions. This suggests that per capit CO2 emissions fall as per

capita real GDP increases from low levels but then rises to fall again at higher levels of

income. However, for the Western region, we find no relationship between per capita

CO2 emissions and per capita real GDP. In the future of China, we predict an EKC,

and a turning point is 60972.06 RMB (1995 currency). Based on our extrapolation,

we predict that when per capita real GDP exceeds 60972.06 RMB (1995 currency),

per capita CO2 emissions will decrease.

The paper is organized as follows. Chapter 2 is literature review on the EKC hypoth-

esis and environmental and empirical models. Chapter 3 introduces features of CO2

emissions in China compared with world levels. Chapter 4 is data description. Chap-

ter 5 explains a method computing CO2 emissions from cement production and fossil

fuel combustion, and description of panel data models. Chapter 6 is an empirical
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analysis. And, Chapter 7 provides a conclusion and discussion for a future research.



Chapter 2

Literature Review

In this chapter, we review the Environmental Kuznets Curve (EKC) hypothesis. The

EKC hypothesis predicts that GHG emissions are related to output due to a scale

effect, composition effect and abatement effect. These can generate an inverted U-

shaped relationship between CO2 emissions and economic growth, which is referred

to as the EKC. In addition, energy intensity and urbanization under the abatement

effect may affect CO2 emissions when income level is high. Although some empirical

studies support the EKC hypothesis for a variety of pollutants including CO2, others

have questioned the existence of the EKC arguing that results have depended on poor

econometric methods.

2.1 Environmental Kuznets Curve (EKC)

In 1955, the Nobel laureate Simon Kuznets firstly used the Kuznets curve to study a

relationship between income distribution of inequality and economic growth. Because

of the economic growth, income inequality may increase. After the per capita income

reaches a certain level, the income inequality will decrease with the economic growth.

Therefore, the Kuznets curve is an inverted U shape (Kuznets, 1955)[16]. Recently,

the relationship between economic growth and environmental pollution has been paid

much attention by environmental economists. Grossman and Kruger (1991)[12], in

the study of potential impacts of North American Free Trade Agreement (NAFTA)

on the environment, hypothesized and found empirical support for an inverted U-

shaped curve between per capita GDP and a variety of environmental pollutants. In

the early 1990s, the inverted U-shaped curve had become to be referred to as the

EKC originally hypothesized by Kuznets.

The inverted U-shaped curve is derived from three effects, which are the scale effect,

composition effect and abatement effect. The three effects were hypothesized to

5
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explain impacts of economic development on environmental quality (Pannayotou,

2003)[20].

2.1.1 Scale Effect

Income growth increases pollution monotonically because a larger scale of economic

activities causes worse environmental quality. Friedl and Getzner (2003)[10] sug-

gested that the relationship between CO2 emissions and average income was positive.

Therefore, the scale effect on CO2 emissions, holding the composition and abatement

effects constant, is a monotonically increasing function of the income. The larger

scale of economic activities causes energy consumption to increase and, in turn, CO2

emissions increase (Shi, 2003)[30].

2.1.2 Composition Effect

The composition effect refers to an inverted U-shaped curve between income and

environmental pollution. When the income starts to increase from low levels, the

share of GHGs emitted from an industrial sector rises. This composition effect causes

CO2 emissions to increase. However, as the income increases further, the shift from

the industrial sector to the service sector causes a reduction in pollution intensity.

This composition effect can potentially cause a reduction of CO2 emissions if the

composition effect outweighs the scale effect. Thereby, changing the share of GDP in

the industrial sector, a representative of the structural changes, can potentially lead

to an inverted U-shaped relationship between pollution and output (Pannayotou,

2003)[20].

The dynamic evolution of the industrial structure is dependent on a speed of economic

growth. Panayotou (1993)[19] analyzed that if changes in the industrial structure went

from labour-intensive, through capital (energy) intensive, and then on to technology

intensive. Early industrialized regions are becoming more diversified with a larger

share of GDP in the service sector, which reduces per capita GHG emissions per unit

of GDP. Also, manufactures may be moving to cheaper areas. Parts of China may be
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Table 2.1: Changes in Industrial Structure

Year Industry sector ( % of GDP) Service sector (% of GDP)

1995 47.18 32.86
1996 47.54 32.77
1997 47.54 34.17
1998 46.21 36.23
1999 45.76 37.77
2000 45.92 39.02
2001 45.15 40.45
2002 44.79 41.47
2003 45.97 41.23
2004 46.23 40.38
2005 47.37 40.51
2006 47.95 40.49
2007 47.34 41.89
2008 47.44 41.82
2009 46.24 43.43

Data source: World Development Indicators Online Database, World Databank

experiencing what already happened in the USA. As a result, we can take a look at

how the China’s industrial structure has changed in recent years.

Since the reform and open policy, China has had stable economic growth, which has

constantly improved its national economy, based on a variety of indicators including

GDP. As shown in Table 2.1, the share of GDP in the industrial sector went upward

after a fall from 1995 to 2009. It decreased from 47.18% in 1995 to 44.79% in 2002,

to around 47% in recent years and fluctuated slightly around this number. The share

of GDP in the service sector had an upward trend, which rose from 32.86% in 1995

to 43.42% in 2009. The industrial sector had a larger proportion of GDP. Although

the share of GDP in the service sector were rising, the share of GDP in the service

sector in 2009, 43.43%, was still far below the level of developed countries.

In general, it is assumed that the industrial sector emits more CO2 than the agri-

cultural and service sectors respectively. Because the dependence of the industrial

sector on raw materials and energy is relatively high, the production process gener-

ates a large amount of CO2. However, the dependence of the agricultural and service
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sectors is relatively low so that the two sectors produce less CO2.
1 In contrast, the

industrial sector, such as steel, cement and other raw materials production, consumes

more energy and emits more CO2, soot, sludge and waste water than that emitted

from the service sector. The service sector includes information production, financial

services and bio-pharmaceutical production. Given the lower GHG intensity of the

service sector, an adjustment in the national structure towards a larger share of GDP

in the service sector can reduce CO2 emissions effectively and sustainably (Li et al,

2010)[17].

2.1.3 Abatement Effect

The abatement effect is due to demand for environmental quality depending on levels

of per capita income. On the demand side, as income increases at low-income levels,

this is not hypothesized to cause a large effect on the demand for environmental

quality since income increases directly raise demand for food and shelters. However,

at higher levels of income, income increases may raise the demand for environmental

quality. At high levels of income, people are willing to spend more on pollution

abatement and stricter environmental regulations leading to an increase in supply. As

a result, the abatement effect is expected to be a monotonically decreasing function

of income (Pannayotou, 2003)[20].

These three effects combined can result in the EKC relationship if the latter two

effects come to dominate the scale effect at some income level. Also, there may be

other factors affecting CO2 emissions. Energy intensity and urbanization are the two

factors, which have effects on CO2 emissions when the income level is high.

2.2 Energy Intensity

Energy intensity is a component of the abatement effect. The energy intensity reflects

1If large-scale agriculture is more energy intensive than small scale agriculture, as GDP increases,
agriculture can become more GHG intensive.
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a degree of economic dependence on energy, and it is mainly affected by the nature

of technology (Wei et.al, 2011)[40].

With an improvement of technology based on the high income levels, energy efficiency

greatly improves such that less energy is used to make each unit of output causing

CO2 emissions to decrease, all else equal. In addition, due to the substitution of lower

GHG technology, such as from coal, oil and other carbon fuels, to less GHG intensive

energy (ex. hydrogen, renewable energy and nuclear), these two factors cause the

GHG intensity to fall, which drives GHG emissions down all else equal. Although

total GHGs can still rise due to the scale effect, whether the total GHG emissions

rise or fall depends upon which effect dominates.

Table 2.2 shows that energy intensity of China was significantly higher than the

world average level from 1995 to 2009. In 1995, energy intensity of China was 2.1

times higher than the world level and the USA, and was 2.9 times higher than in

the EU, and 2.6 times higher than in OECD countries. However, by 2009, energy

intensity of China has fallen to 1.5 times higher than the world average level, 1.75

times higher than in the USA, and 2.3 times higher than in the EU, and 2 times

higher than in OECD countries. It was even 1.74 times higher in 1995 than in middle

income countries but decreased to 1.27 times higher in 2009. As we can see, there

exists a gap between energy intensity of China and the energy intensity of the world

and developed countries’ levels, but the gap has been greatly reduced. However, from

2002 to 2004, energy intensity of China increased, probably because China has entered

into a new round of growing cycle and there exists a rapid growth of investment in

fixed assets. There was a rapid expansion in production of iron, steel, cement and

aluminium, that is to say high “energy-consuming” industries. After 2004, the energy

intensity of China declined again because of economic development of China, inherent

laws and strong governmental policies.
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Table 2.2: International Comparison of Energy Intensity (kg oil equivalent per dollar,
constant 2005 PPP)

Year China USA EU World OECD Middle-income

1995 0.47 0.22 0.16 0.22 0.18 0.27
1996 0.44 0.22 0.16 0.22 0.18 0.26
1997 0.40 0.21 0.15 0.21 0.17 0.26
1998 0.37 0.20 0.15 0.21 0.17 0.25
1999 0.35 0.20 0.15 0.21 0.17 0.25
2000 0.34 0.20 0.14 0.20 0.16 0.24
2001 0.33 0.19 0.14 0.20 0.16 0.24
2002 0.32 0.19 0.14 0.20 0.16 0.24
2003 0.33 0.19 0.14 0.20 0.16 0.24
2004 0.34 0.18 0.14 0.20 0.16 0.24
2005 0.33 0.18 0.13 0.19 0.15 0.24
2006 0.32 0.17 0.13 0.19 0.15 0.23
2007 0.30 0.17 0.12 0.18 0.15 0.22
2008 0.28 0.17 0.12 0.18 0.14 0.22
2009 0.28 0.16 0.12 0.18 0.14 0.22

Data source: World Development Indicators Online Database, World
Databank[5]

2.3 Urbanization

As countries industrialize, people move from the country side to urban areas, which

may lead to changes of GHG emissions. However, the relationship between urbaniza-

tion and CO2 emissions does not have an unanimous conclusion.

As shown in Figure 2.1, the urbanization rate of China, that is the proportion of

urban population, increased from 29.04% in 1995 to 46.59% in 2009. It increased

by 17.55 percentage points and the urbanization rate increased by 1.17 percentage

points annually.

Table 2.3 shows that the current rate of urbanization and economic development

in China is similar to that of middle-income countries. When a state’s economic

development is high, the urbanization rate is also relatively high. In 2008, the world

average urbanization rate was 49.9%. The high-income countries had an average of
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Figure 2.1: Changes in the Level of Urbanization

Table 2.3: Major Proportion of Urban Population and Per Capita GDP in 2008

Category Proportion of urban population Per capita GDP ($ U.S)

The World average 49.9 9054
High-income countries 77.7 40420
Middle-income countries 48.1 3618
Low-income countries 28.7 584
United States 81.7 46716
Japan 86.3 38443
China 45.7 3263

Japan’s urbanization rate data from the Japan Statistical Yearbook[2]; Chinese data from China
Statistical Yearbook[24]. Other countries’ urbanization rate and per capita GDP data are from the
World Bank database.
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77.7%, middle-income countries were at 48.1%, and low-income countries were at

28.7%. In 2008, China’s per capita GDP of 3,263 dollars was well below the world

average of 9,054 dollars and relatively below the middle-income countries’ average

level of 3,618 dollars. The urbanization rate was correspondingly 4.3 percentage

points lower than the world average level.

Urbanization can lead to economies of scale. For example, as the urban population

becomes bigger, it may become cost effective to build roads, sidewalks or schools. In

addition, economies of scale may lead to a shift in the mode of production and lifestyle.

For instance, the household consumption of electric appliances may increase rapidly

and automobiles may become more affordable for households (Wei et al, 2011)[40]. As

urban centres grow, the scale can allow the development of the service and transport

sectors as more banks, restaurants, roads and highways are required. Urbanization

also impacts the energy demand, thereby affecting CO2 emissions.

From the point of view of space, production activities move from rural areas to cities

as people move to urban areas, such that the energy consumption is concentrated in

the city as well. This leads to an increase in CO2 emissions due to transformation

from the agricultural sector to the industrial sector (Wei et al, 2011)[40].

According to Wei et al (2011)[40], the main factors due to urbanization, which affect

lifestyle and CO2 emissions are: 1) people migrate from rural to urban areas; 2)

the share of household energy consumption in cities increases; 3) the agricultural

population decreases; 4) the high demand for agricultural products requires increased

agricultural productivity leading to the development of farming mechanization; in

turn, causing more energy consumption to increase in the agricultural sector. This

large scale of industrialized agriculture causes more CO2 emissions along with other

GHG emissions such as nitrous oxide from fertilizer and methane.

During the urbanization process, the impacts of industrial restructuring on CO2 emis-

sions are mainly from the industrial sector to the service sector (Wei et al, 2011)[40].

The impact of the industrial sector on CO2 emissions is the largest, and the service
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sector has the second largest impact. In the early stage of urban development, a lead-

ing industry is a light industry, such as a manufacturing of shoes, clothing, furniture

and home appliances. As the economy continues to develop, in the middle stage of

urbanization, the industry gradually shifts from the light to heavy industries, such

as steel making and energy production. With the development of urbanization, the

share of GDP in the agricultural sector becomes smaller. The share of GDP in the

industrial sector increases firstly but decreases later, and the share of GDP in the

service sector rises steadily (Wei et al, 2011)[40].

Urbanization tends to decrease birth rates caused by delayed childbearing because

people living in urban environments may give birth at older ages and they tend to

be more receptive to governmental efforts to further childbearing (Yi and Vaupel,

1989)[42]. As a result, urbanization may lead to the reduction of population causing

CO2 emissions to decrease.

The above effects suggest that during the initial period of urbanization, energy con-

sumption increases, but that later, net energy consumption declines with the devel-

opment of urbanization as advanced technology promotes energy efficiency. With

increases in the levels of urbanization, CO2 emissions are expected to rise through

changing lifestyles and consumption patterns. If further economic growth occurs, the

high demand for environmental quality may then push the government to generate

policies in some sectors to reduce CO2 emissions.

In addition to CO2 emissions, this paper predicts that the development of urbanization

increases cement production because large amount of roads, buildings, sidewalks are

required. Moreover, the cement production is an important source of global CO2

emissions, and CO2 emissions from the cement production account for about 2.4%

of global CO2 emissions from industrial and energy consumption (Marland et al,

1989)[18]. As such, in addition to considering CO2 emissions from energy products,

due to fossil fuel burning, this paper considers CO2 emissions from cement production

and fossil fuel combustion as a major indicator.
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2.4 Environmental Models

In terms of the impacts of anthropogenic activities on climate change, York et al

(2003)[43] pointed out two identities, the IPAT identity and ImPACT identity.

Analyzing the impacts of human activities on the environment widely uses the IPAT

identity. This identity is a formula explained as I = PAT . On the formula’s left-hand

side, I refers to environmental impacts. On the right-hand side, P is population; A

is affluence (per capita GDP); T is technology (impact per unit of GDP). According

to this identity, environmental impacts are a multiplicative output of the three major

driving forces (population, affluence and technology).

Waggoner and Ausbel (2002)[38] generated the ImPACT identity. They conceptu-

alized the IPAT by decomposing T (technology) into C (consumption per unit of

GDP) and T (impact per unit of consumption). I = PACT (ImPACT ) is a model fo-

cusing on estimating factors that can be altered to decrease impacts. Compared with

IPAT , ImPACT identity states that overall emissions equal products of population

(P ), per capita GDP (A), energy consumption per unit of GDP (C) and emissions

per unit of energy consumption (T ).

Based on IPAT identity and ImPACT identity, Dietz and Rosa (1994)[6] devel-

oped a STIRPAT model as IPAT and ImPACT are limited for testing hypothesis

given that the two accounting equations assume proportional relationship in a func-

tion between factors. Grossman and Krueger (1995)[13] explained that IPAT and

ImPACT were not useful for testing the EKC hypothesis because affluence as mea-

sured by per capita GDP under the EKC hypothesis might have both non-monotonic

and non-proportional environmental impacts.

The STIRPAT model was introduced in order to investigate stochastic impacts by

regression on population, affluence and technology (Dietz and Rosa, 1994)[6]. By

reformulating I = PAT , Dietz and Rosa (1997)[7] added the subscript i referring to

varying quantities of different observations. In the STIRPAT model, technology (T )

is considered as an error term (e). The technology term not only includes technology
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but also social organizations, institutions, culture and other factors affecting the

environment except for population and affluence. So, the STIRPAT model is shown

as follows:

Ii = a× P b
i × Ac

i × ei (2.1)

where, i represents individuals, b and c are coefficients of population and affluence,

a represents constants that determines scale of the model, and e represents the tech-

nology error term (Dietz and Rosa, 1997)[7]. Standard statistical techniques can be

applied to estimate a, b, c and e.

Raupach et al (2007)[28] used the Kaya identity, a special case of the ImPACT iden-

tity, to estimate CO2 emissions from energy consumption at the global and regional

levels. The Kaya identity is:

F ≡ P ×
(
G

P

)
×
(
E

G

)
×
(
F

E

)
(2.2)

in which, F refers to global CO2 emissions; G is global GDP and E represents global

energy consumption. To simplify the identity,
(
G
P

)
is replaced by g meaning per capita

GDP.
(
E
G

)
is energy intensity of GDP that is changed to e, and

(
F
E

)
indicates carbon

intensity of energy, which is replaced by f . The simplified formula is:

F ≡ P × g × e× f (2.3)

In terms of regional CO2 emissions, subscript i represents different regions. Hence,

the Kaya identity for regional CO2 emissions is:

Fi ≡ Pi × gi × ei × fi (2.4)

By summing up CO2 emissions in each region over all regions (n), we obtain global

CO2 emissions.

F =
n∑

i=1

Fi (2.5)

Both the STIRPAT model and the Kaya identity can be used to estimate the rela-

tionship between environmental impacts and anthropogenic activities. The STIRPAT
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and Kaya identity both account for impacts of population (P ) and per capita GDP,

with g in the Kaya identity corresponding to affluence (A) in the ImPACT model.

Even if the STIRPAT does not include the energy intensity of GDP as in the Kaya

identity, ImPACT is the extended identity of IPAT due to including the energy in-

tensity of GDP and carbon intensity of energy consumption (technology term). The

energy intensity in the Kaya identity corresponds to technology (e). The technology

(e) is an error term in the STIRPAT model. Even though energy intensity is not

included in the STIRPAT model, energy intensity should be considered because it

impacts CO2 emissions in terms of the Kaya identity.

2.5 Empirical Analysis on EKC

Some economists have tested the EKC hypothesis using econometric methods. Stern

(2004)[33] showed that a standard EKC regression model fitted a quadratic form using

a panel data model.

ln(E/P )it = αi + γt + β1ln(GDP/P )it + β2[ln(GDP/P )]2it + εit (2.6)

E is emissions; P is population; αi and γt are intercept parameters that respectively

vary across countries or regions i and years t. In this model, it is assumed that the

income elasticity of per capita emissions is the same in all regions at a given level of

per capita income. This model can be estimated by a fixed-effects or random-effects

model. The αi and γt represent regression parameters in a fixed-effects model, and

represent components of disturbances in a random-effects model. If the individual ef-

fects represented by αi are correlated with independent variables, only parameters and

statistical inferences in a fixed-effects model can be estimated consistently because a

fixed-effects model allows independent variables to be correlated with time-invariant

component of the error αi. Independent variables have to be uncorrelated with εit.

Therefore, a fixed-effects model can obtain consistent estimates of marginal effects

of independent variables even if the independent variables are endogenous. Stern

(2004)[33] explained that people could use a Hausman test to verify that random-

effects specification was consistent by comparing coefficients between a fixed-effects
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and random-effects model. A significant difference indicates that random-effects esti-

mates are inconsistent because independent variables are correlated to time-invariant

components of residuals.

Model selection depends on properties of data because estimators are inconsistent and

statistical inferences are invalid when a selected model does not fit the data properties.

For instance, Perman and Stern (2003)[21] stated that a static EKC regression could

be spurious if variables were integrated. Perman and Stern (2003)[21] found a U-

shaped or monotonically increasing relationship between sulphur emissions and per

capita income in a largish minority of 74 countries. This finding is against the EKC

hypothesis.

An issue of heteroskedasticity may be important for regressions of grouped data

(Stern et al, 1996)[35] because OLS estimation is inefficient even if it is consistent

and unbiased. A GLS estimation, which adjusts for heteroskedasticity, can signifi-

cantly improve goodness of fit (Stern, 2002)[31]. Moreover, using a heteroskedasticity-

covariance matrix estimator introduced by White (1980)[41] can allow for the attain-

ment of consistent and efficient parameter estimates in the presence of heteroskedas-

ticity.

Stern and Common (2001)[34] estimated a logarithmic quadratic EKC for the world

sample and subsamples of OECD and non-OECD. A turning point of income can be

calculated by the formula

τ = exp(−β1/(2β2)). (2.7)

Their random-effects and fixed-effects estimations found statistical support for a

monotonic relationship between per capita sulphur emissions and per capita income

in the global sample. The random-effects model could not be estimated consistently

as the Hausman test indicated correlation between time-invariant effects and inde-

pendent variables. However, the random-effects estimators in 23 OECD countries

were consistent because the individual effects were not correlated with independent

variables. The EKC was an inverted U shape in the OECD sample. In the case of

non-OECD countries, the random-effects model could not be estimated consistently.
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The EKC was monotonically increasing in income. The Hausman test showed signifi-

cant differences between the parameters of the random-effects and fixed-effects model

for both global and non-OECD samples, and the independent variables of the two

samples were correlated with specific effects.

Stern and Common (2001)[34] also estimated the first difference model for the World,

OECD and non-OECD separately by using OLS and fixed-effects estimations. The

EKC was monotonic in each sample. The first differences reduced the serial correlation

and eliminated the between effects, which were related to specification problem for

level models. Stern and Common (2001)[34] realized that the relationship between

sulphur emissions and income was monotonically increasing in income for both OECD

and non-OECD countries. As a result, the reduction in sulphur emissions was time-

related instead of income-related. This result is against the EKC hypothesis.

Friedl and Getzner (2003)[10] suggested that the EKC hypothesis was not reason-

able. They found a cubic relationship between per capita real GDP and total CO2

emissions. Dinda (2004)[8] provided an overview of literature on the EKC up to 2004

and existence of EKC is questioned from several dimensions. They suggested that

different stages of economic growth had different relationships between pollutants

and income, and that environmental pollution was a multifaceted problem. Dinda

(2004)[8] used a reduced form model to test various relationships between pollution

and income by using panel data.

yit = αi + β1xit + β2[xit]
2 + β3[xit]

3 + β4zit + εit (2.8)

y represents environmental indicators, x represents income, z represents other vari-

ables of influence on environmental degradation. i represents a country and t is time.

In terms of a peak point of the EKC, there is a misinterpretation on the EKC hy-

pothesis that policies increasing GDP lead a country to peak on the curve as soon as

possible. Panayotou (1993)[19] proposed that a deep and upward sloping part of the

EKC indicated that quick economic development could lead to irreversible damages

during early periods of development. Examples include tropical deforestation, and
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loss of biodiversity. To prevent this, developing countries may be able to flatten the

EKC out by eliminating policy distortions. These are early ideas about the research

of the EKC relationship between environmental quality and economic development.

There are several situations as follows:

1. β1 = β2 = β3 = 0 There is no relationship between environmental pollution and

economic development.

2. β1 > 0 and β2 = β3 = 0 A monotonic increasing relationship between x and y.

3. β1 < 0 and β2 = β3 = 0 A monotonic decreasing relationship between x and y.

4. β1 > 0, β2 < 0 and β3 = 0 An inverted U-shaped relationship, such as EKC.

5. β1 < 0, β2 > 0 and β3 = 0 A U-shaped relationship between x and y.

6. β1 > 0, β2 < 0 and β3 > 0 A cubic polynomial or N-shaped figure.

7. β1 < 0, β2 > 0 and β3 < 0 Opposite to the N-shaped curve.

Results from many studies cast doubt on the EKC hypothesis of inverted U-shaped

curve. Researchers have found different relationships between environmental pollution

and per capita income depending on different samples, different estimation methods

and different properties of data. As a result, even though the EKC hypothesis is

supported for some pollutants in developed countries, it need not indicate that the

EKC hypothesis will occur in developing countries. Whether the EKC hypothesis

holds is conditional upon many factors.

Based on the above review on the EKC hypothesis and factors affecting CO2 emis-

sions, many factors have an impact on CO2 emissions and the results from some

studies provide statistical evidence which do not support the EKC hypothesis. Dif-

ferent countries, different estimation methods and different properties of data may

lead to different relationships between CO2 emissions and economic growth. As such,

this paper analyzes features of CO2 emissions in China in order to determine factors

which may affect CO2 emissions in China. Also, specification analysis is necessary to

select an appropriate model and to obtain consistent and valid estimates.
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Features of CO2 Emissions in China

3.1 The Impacts of Economic Development on CO2 Emissions

Chinese CO2 emissions are mainly due to combustion of solid fuels (coal and wood),

liquid fuels (gasoline, diesel and kerosene), gaseous fuels (methane) and cement pro-

duction. As Figure 3.1 shows, share of CO2 emissions from solid fuel combustion was

dominant in 1995, 2005 and 2009. The share of CO2 emissions from gaseous fuel com-

bustion was lowest in 1995, 2005 and 2009. The share of CO2 emissions from gaseous

fuels in 1995 was lower than that in 2009. And the share of CO2 emissions from solid

fuels consumption decreased from 1995 to 2009. The Figure 3.1 shows that the CO2

emissions from “other sources” increased steadily from 7.1% in 1995 to 10.7% in 2009.

Cement production is an important component of the other categories. 1

Figure 3.1: Share of CO2 Emissions from Solid, Gaseous and Liquid Fuels in China

1World Development Indicators Online Database, World Databank.

20
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As can been seen from Figure 3.2, the proportion of China’s CO2 emissions from

cement production out of global CO2 emissions from cement production has increased

year by year. In 2008, it was 48.92% due to the rapid growth of China’s cement

production. Since 1990, it has been among the first in the world. And China’s CO2

emissions per unit of the cement production were significantly higher than the major

developed countries if we used data (CDIAC) about CO2 emissions to be divided by

cement production. Therefore, CO2 emissions from cement production may be an

important contributor driving the total CO2 emissions of China up. 2

Figure 3.2: Ratio of China’s to Global CO2 Emissions from Cement Production

3.2 Rapid CO2 Emissions Growth but Low Per Capita Emissions and

Cumulative Emissions

Economic levels and energy consumption in China are growing rapidly. At the same

time, the growth of CO2 emissions from cement production and fossil fuel combustion

has also accelerated (shown in Figure 3.3) and, overall, CO2 emissions of China have

2Data resource: Carbon Dioxide Information Analysis Centre, CDIAC.
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increased rapidly, growing from 3.35 to 7.55 billion tonnes between 1995 to 2008, an

increase of 125%.

Figure 3.3: Changes in CO2 Emissions from Cement Production and Fossil Fuel
Combustion

In contrast to these yearly emissions, cumulative CO2 emissions of China compared

with industrialized countries are not high. From 1990 to 2004, cumulative CO2 emis-

sions of China accounted for only about 7.96% of the world cumulative emissions.

The proportion was significantly lower than that of the USA, Western Europe and

Central Europe. Cumulative emissions in the USA were the largest proportion at

28.02%; Central Europe at 17.01%; and Western Europe at 13.94%. Cumulative CO2

emissions of China between 1999 and 2004 were only equivalent to 28.39% of the

cumulative CO2 emissions of the USA over the same period. 3

Per capita CO2 emissions in China are significantly lower than those in the major

developed countries and also the world average level. Although total CO2 emissions

of China are large, the value becomes lower than the world average level when it is

divided by population. In 2000, per capita mass CO2 emissions of China were 2.7

metric tonnes that were equivalent to 65.85% of the world average level that was 4.1

3Data source: CO2 Emissions from Fuel Combustion, 2010 edition, IEA, Paris
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metric tonnes per capita. Moreover, it was equal to 13.37% of the USA’s 20.2 metric

tonnes CO2e per capita, and was equal to 27.59% of Japan’s 9.6 metric tonnes CO2e

per capita. In 2006, per capita CO2 emissions of China first passed the average world

level. Per capita CO2 emissions of China were 4.9 metric tonnes, which was 104%

of the world level (4.7 metric tonnes CO2e per capita). By 2009, per capita CO2

emissions of China had increased to 5.8 metric tonnes (123.4% of the world average

level), which was 4.7 metric tonnes CO2e per capita, and it was equivalent to 26.71%

of the USA’s 17.6 metric tonnes CO2e per capita and 54.77% of Japan’s 9.2 metric

tonnes CO2e per capita. 4

3.3 Large Regional Differences in CO2 Emissions of China

Figure 3.4 shows that during the period between 1995 and 2000, growth rates of

CO2 emissions in the Eastern, Central and Western regions were relatively low. The

reasons may be because the levels of economic development and industrialization were

relatively low. China also has mainly relied on labour intensive industries such that

energy consumption and CO2 emissions levels grew slowly. However, after 2000, with

the development of industrialization, the CO2 emissions of the three areas have grown

rapidly.

Based on the above literature review and the features of CO2 emissions in China, the

EKC studies are discordant because there are many indicators affecting the environ-

ment. Most studies focus on estimating relationships between CO2 emissions and the

economic growth in developed countries. As CO2 emitted from cement production

is a major contributor of “other” category, the sum of CO2 emissions from energy

combustion and cement production would be pretty close to the mass CO2 emissions

in China excluding LULUCF. So this paper will use CO2 emissions from cement pro-

duction and fossil fuel combustion as total CO2 emissions not including LULUCF.

Also, the different features of regional CO2 emissions make it necessary to estimate

different relationships between per capita CO2 emissions from cement production and

fossil fuel combustion respectively in the Eastern, Middle and Western regions. But

the EKC is a questionable hypothesis.

4Data source: World Development Indicators Online Database, World Databank
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Figure 3.4: Comparison of CO2 Emissions for the Three Regions in China

Therefore, this paper estimates whether there exits the EKC relationship between

per capita CO2 emissions from cement production and fossil fuel combustion and

per capita real GDP in China. Other factors, such as urbanization represented by

proportion of urban population, shares of GDP from the industrial and service sectors,

and energy intensity of GDP also need to be considered in order to avoid an omitted-

variable problem. Due to the required variables, the raw data required to calculate

these variables are CO2 emissions from cement production and fossil fuel combustion,

real GDP, urban population, total population, GDP from the industrial sector, GDP

from the service sector. The data description is shown in the next part.



Chapter 4

Data

Per capita real GDP is used as a proxy measure for economic development of various

provinces. In order to eliminate the impact of price factors, researchers should cal-

culate the per capita GDP of each province adjusted by GDP deflators of different

provinces. We use the GDP deflator to convert the nominal GDP into constant prices

in 1995 currency.

Data for GDP, total population and urban population in 27 provinces are from the

China Population Statistics Yearbook[23] from 1996 to 2008 and the China Population

and Employment Statistics Yearbook during 2009 and 2010[22].

Industrial structure is represented with the share of total GDP in the industrial sector

and the share of total GDP in the service sector. The share of GDP in the industrial

sector is GDP from the industrial sector over the total GDP times 100. The share of

GDP in the service sector is GDP from the service sector over the total GDP times

100. Data for GDP from the industrial and service sectors are derived from the online

database of National Bureau of Statistics of China and the New China Six Decades

Statistical Information Yearbook[27].

Data about the total energy consumption and energy intensity of GDP (metric tonnes

of coal equivalent/10000 RMB) are from the China Energy Statistical Yearbook[26].

Data for cement production are from China Cement Almanac[25].

Using this Data from 27 provinces over 1995 to 2009, we can calculate per capita

CO2 emissions from cement production and fossil fuel combustion (metric tonnes)

by dividing total provincial CO2 emissions from cement production and fossil fuel

combustion (10000 metric tonnes) by the population. Similarly, per capita real GDP

25
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(RMB per person) is found by dividing real GDP (10000 RMB) in each province by

total population (10000 heads). We calculate the proportion of urban population (%)

by urban population (10000 heads) over total population (10000 heads) times 100.

And energy intensity of GDP (metric tonnes of coal equivalent/10000 RMB) is found

by dividing energy consumption (metric tonnes of coal equivalent) by the total GDP

(10000 RMB) in each province.

Details of the calculation of CO2 emissions from cement production and fossil fuel

combustion are explained in the first section of chapter on methodology. Also, the

model description and specification tests for deciding panel data models are in the

second section.



Chapter 5

Methodology

As the amount of CO2 emissions in each of the provinces is not reported directly by the

Chinese government, methods for computing CO2 emissions from cement production

and fossil fuel combustion are required. This paper estimates CO2 emissions primarily

based on 2006 IPCC Guidelines for National Greenhouse Gas Inventory[3]. These

guidelines provide a standardized methodology for estimating GHG emissions.

5.1 CO2 Emissions from Cement Production and Fossil Fuel

Combustion Estimates

The 2006 IPCC Guidelines[3] provide three tiers for estimating emissions from cement

production and fossil fuel combustion. Methodological complexity is ranked by a tier.

Tier 1 is a basic method, Tier 2 is intermediate, and Tier 3 is the most demanding in

terms of complexity with the highest data requirements. Tier 1 methods should be

feasible for all countries as they are designed for all categories to use readily available

national or international statistics combined with provided default emission factors

and additional parameters.

A reference approach in the 2006 IPCC Guidelines[3] can be used as an independent

check of the sectoral approach in order to compute a “first order” estimate of national

GHG emissions when the inventory compiler has limited availability on sources and

data structures. During the combustion process, most of carbon is emitted immedi-

ately as CO2. Even though some of carbon is emitted as “non-CO2” gases, such as

carbon monoxide (CO), methane (CH4) and so on, these eventually oxidize to CO2 in

the atmosphere. The amount of carbon in “non-CO2-gas” emissions is much smaller

than that of carbon in CO2 emissions. Therefore, Tier 1 is sufficiently accurate to

estimate CO2 emissions from the carbon in a combusted fossil fuel.

27
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The Tier 1 method explains that the carbon content of a fuel is a key determinant of

a factor of CO2 emissions. CO2 emissions can be estimated based on the total amount

of fuels combusted and the carbon content of fuels on average because combustion

conditions (combustion efficiency, carbon retained in ashes and slashes etc.) are

relatively insignificant. In addition, factors of CO2 emissions only depend on carbon

content of a fuel because efficient fuel combustion leads to maximum oxidation rate

of carbon in the fuel, which means that the factors are relatively insensitive to the

combustion process. As a result, the Tier 1 method based on fuel carbon content and

fuel amount is sufficient to estimate CO2 emissions from fossil fuel combustion.

The 2006 IPCC Guidelines point out that conversion of energy units is required be-

cause energy statistics and other data compilations report production and consump-

tion of solid, liquid and gaseous fuels in physical units such as metric tonnes or cubic

meters. Therefore, net calorific values (NCVs) are necessary to convert these data to

common energy units. The NCV, alternatively, is called the ”lower heating value”,

which is a useful calorific value in a boiler plant.

The CO2 produced by burning fossil fuel is calculated by the following formula:

• CO2 emissions = fossil fuel consumption × NCV× CO2 emissions factor

• CO2 emission factor=default carbon content× carbon oxidation factor× (44/12)

The formula is

CO2ff =
n∑

i=1

ffPV
i ×NCVi × CCi ×Oi × (44/12) (5.1)

CO2ff represents CO2 emissions from fossil fuel in units of metric tonnes; i refers to

different fuel types; ffPV refers a mass or physical volume of fossil fuel consumption

(metric tonnes or cubic meters); NCV refers to the net calorific value of each fuel

measured as terajoule/metric tonne (TJ/t) or TJ/m3; CC refers to the carbon content

of fuels (metric tonnes C/TJ or kg/GJ); O refers to a oxidation rate predicted as 100%

oxidation, which is a IPCC default value; 44/12 is a molecular weight ratio of carbon
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Table 5.1: Net Calorific Value and Carbon Defaults of Different Fuels

Fuel type NCV(TJ/Gg) Carbon content(metric tonne/TJ)

Anthracite 20.9 26.8
Coking Coal 26.3 25.8
Coke 28.4 29.2
Coke Oven Gas 18 12.1
Gas Work Gas 15.9 12.1
Petroleum Coke 32.7 26.6
Crude Oil 41.8 20
Gasoline 43.1 19.5
Kerosene 43.1 19.5
Diesel Oil 42.7 20.2
Residual Fuel Oil 41.8 21.1
Liquefied Petroleum Oil 50.2 17.2

Net calorific value taken from China Energy Statistical Yearbook 2010; carbon content,
oxidation rate of reference values using the IPCC 2006

to CO2. Table 5.1 shows the NCV s and default values of carbon content of different

fuels. Based on the above information and equations, we are able to compute total

CO2 emissions from fossil fuel combustion.

Basically, there is no CO2 emissions from cement production. The 1996 IPCC Guide-

lines recommend clinker data to estimate CO2 emissions because clinker production

emits CO2 as a by-product. In the production of clinker, a component of cement,

calcium carbonate (CaCO3) is calcined and converted to lime (CaO). CaO is also

a primary component of cement. As a result, CO2 is an intermediate product in a

cement production. This process can be described as a chemical equation.

CaCO3 + heat −→ CaO + CO2 (5.2)

In addition, since fossil fuel combustion is the primary energy source during cement

production and this causes CO2 emissions, these should be added to the CO2 emissions

from clinker production, and is included in the above calculation of CO2 emissions

from fossil fuel combustion. Therefore, we are not required to recalculate it.

Even though clinker data is recommended by 1996 IPCC Guidelines, clinker statistics
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are not readily available in China. Fortunately, the Tier 1 method provides another

way to estimate CO2 emissions from cement production. This paper uses cement

production data from China Cement Almanac to estimate clinker production. Gibbs

et al (1997)[11] stated that Portland and masonry cement are the two most com-

mon types of cement. Moreover, as lime (CaO) is required more by masonry cement

than by Portland cement, masonry cement creates additional CO2 emissions. Un-

fortunately, data about cement production from China Cement Almanac does not

separate cement production by types. In absence of this information, it is reasonable

to assume that both masonry cement and Portland cement are produced. According

to the 1996 IPCC Guidlines, assuming a clinker fraction of 75% is a good practice.

To estimate CO2 emissions from cement production, an emission factor for clinker is

required. To find this, we multiply CaO by 0.785 and by 0.646. 0.785 refers to the

molecular weight ratio of CO2 to CaO in the raw material mineral calcite (CaCO3),

from which most or all of the CaO in clinker is derived. The Tier 1 method uses

64.6% that is the IPCC default value for the fraction CaO in clinker. Therefore, the

clinker emission factor is 0.507 metric tonnes CO2 per tonne of clinker.

Now, we are ready to estimate CO2 emissions from cement production. Firstly, mul-

tiply the mass of cement production by the clinker fraction (0.75), in order to get

the mass of clinker production. Then multiply the mass of clinker production times

clinker emissions, in order to obtain the mass of CO2 emissions from clinker produc-

tion. Finally, add the CO2 emissions from clinker production to the CO2 emissions

from fossil fuel combustion to obtain the total emissions from cement production and

fossil fuel combustion.

CO2 emissions from the clinker production is calculated according to the following

formula:

CO2clc = Mc×K × EFclc = Mc× 0.75× 0.507 (5.3)

CO2e = CO2ff + CO2clc (5.4)
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where CO2e is the mass CO2 emissions from cement production and fossil fuel com-

bustion. CO2clc represents mass CO2 emissions from cement production. K is the

default clinker content of 75%. EFclc represents the value of the clinker emissions

factor of 0.507, and Mc represents the mass of produced cement. Then CO2e divided

by total population of each province is per capita CO2 emissions from cement pro-

duction and fossil fuel combustion. Hereafter, we will say per capita CO2 emissions

in short instead of per capita CO2 emissions from cement production and fossil fuel

combustion.

5.2 Model

In this section, the econometric equation is constructed. Then, tests for selection of

panel data model will be explained.

This paper generates a panel regression model to test the EKC hypothesis. We use a

panel data set for 27 provinces of China from 1995 to 2009. A quadratic term of log

of per capita real GDP is added to test the inverted U-shape relationship between

per capita real GDP and per capita CO2 emissions (Andreoni and Levinson, 2001)[1],

and cubic term of log of per capita real GDP is used for empirically testing a cubic

relationship due to findings of a cubic relationship between per capita real GDP and

per capita CO2 emissions by Friedl and Getzner (2003)[10]. This model, moreover,

estimates effects of urbanization and industrial structure on per capita CO2 emissions.

Therefore, the model includes log of per capita CO2 emissions (lnCO2e/pit) on the

left-hand side, and log of per capita real GDP (lnyit), quadratic term of log of per

capita real GDP ((lnyit)
2), cubic term of log of per capita real GDP ((lnyit)

3), pro-

portion of urban population (PURBit), share of GDP from industrial sector (INDit),

the share of GDP from service sector (SCit), and log of energy intensity (lnEIit).

Due to the panel data set with 27 provinces of China over 15 years, we need to de-

termine whether a fixed-effects or a random-effects model is appropriate. First of

all, we take a look at within and between variation of the panel summary statistics.

Time-invariant regressors have zero within variation and individual-invariant regres-

sors have zero between variation. Therefore, in Table 5.2, the province has zero within
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variation and the between variation of the year is zero.

For all other variables, even though the variation across individual provinces (between

variation) is more than over time (within variation), there is sufficient variation in

both dimensions. As a result, the Hausman test is required to decide whether a

random-effects model is appropriate or not.
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Table 5.2: Panel Summary Statistics

Variables Mean Std.Dev. Min Max Obsrvations

Province Overall 14.00 7.80 1.00 27.00 N=405.00
Between 7.90 1.00 27.00 n=27.00

Within 0 14.00 14.00 T=15.00

Year Overall 8.00 4.33 1.00 15.00 N=405.00
Between 0 8.00 8.00 n=27.00

Within 4.33 1.00 15.00 T=15.00

Log of per capita
CO2 emissions (met-
ric tonnes)

Overall 1.73 0.67 -0.92 3.49 N=405.00

Between 0.57 0.72 3.03 n=27.00
Within 0.36 -0.61 2.73 T=15.00

Log of per capita
GDP (RMB)

Overall 9.04 0.71 7.50 10.99 N=405.00

Between 0.58 0.72 3.03 n=27.00
Within 0.43 8.19 10.30 T=15.00

Quadratic term of
log of per capita
GDP (RMB)

Overall 82.25 13.07 56.30 120.84 N=405.00

Between 10.65 65.32 108.30 n=27.00
Within 7.83 67.21 102.29 T=15.00

Cubic term of log of
per capita of GDP
(RMB)

Overall 752.92 181.27 422.39 1,328.41 N=405.00

Between 148.15 529.88 1129.14 n=27.00
Within 108.04 542.23 1037.36 T=15.00

Percentage of urban
population (%)

Overall 46.72 17.95 1.83 95.32 N=405.00

Between 17.51 24.69 86.07 n=27.00
Within 5.14 23.86 64.04 T=15.00

Share of GDP from
Industrial sector (%)

Overall 45.34 6.97 23.50 61.50 N=405.00

Between 5.83 32.15 53.55 n=27.00
Within 3.97 36.70 57.70 T=15.00

Share of GDP from
Service sector (%)

Overall 38.91 7.08 27.67 75.53 N=405.00

Between 6.42 30.34 65.51 n=27.00
Within 3.21 25.78 50.48 T=15.00

Log of Energy
Intensity (met-
ric tonnes of coal
equivalent/10000
RMB)

Overall 0.62 0.46 -0.21 2.06 N=405.00

Between 0.43 -0.76 1.47 n=27.00
Within 0.18 0.18 1.21 T=15
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A null hypothesis of Hausman test is that a random-effects model is appropriate and

an alternative hypothesis is that a fixed-effects model is appropriate. As the p-value

is zero, the null hypothesis should be rejected. Therefore, the fixed-effects model

is appropriate for the panel data. Furthermore, we are going to test cross sectional

dependence, which is also called spatial dependence, in the fixed-effects model. A null

hypothesis of Pesaran’s test of cross sectional independence is that there is no cross

sectional dependence, and an alternative hypothesis is that there is cross sectional

dependence. Due to a zero p-value, we reject the null hypothesis so the cross sectional

dependence exists in the fixed-effects model.

Next, we test for heteroskedasticity and serial autocorrelation in the fixed-effects

model. A modified Wald test for groupwise heteroskedasticity in the fixed-effects

regression model rejects the null hypothesis that there is no heteroskedasticity; as a

result, heteroskedasticity exists in the fixed-effects model. In addition, a Wooldridge

test for autocorrelation in panel data does not reject the null hypothesis that there

is no first order autocorrelation. Therefore, this result suggests that there does not

exist serial autocorrelation in the fixed-effects model.

A general form of a fixed-effects model is

yit = αi + x′itβ + εit (5.5)

uit = αi + εit (5.6)

The error term including time-invariant component of error (αi) and idiosyncratic

error (εit) in the fixed-effects model is shown in (5.6). αi in the fixed-effects model

represents individual-level effects. The fixed-effects model permits endogeneity that

regressors can be correlated with αi. However, the regressors have to be uncorrelated

with εit.

The estimators of the parameters β in the fixed-effects model must remove the indi-

vidual effects αi in order to obtain consistent estimators. The individual effects αi
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can be eliminated as follows:

(yit − ȳi) = (xit − x̄i)′β + (εit − ε̄i) (5.7)

where, for example, x̄i = T−1i

∑Ti

t=1 xit. This leads to the within model and the

within estimators perform OLS on the mean-differenced data. In the within model,

OLS leads to consistent estimates of β as a result of eliminating αi, even though αi

is correlated with xit.

Thereby, we know how a fixed-effects model generates consistent parameter estimates,

and we are able to construct the fixed-effects model with heteroskedasticity and cross

sectional dependence.

lnCO2e/pit = αi + β1lnyit + β2(lnyit)
2 + β3(lnyit)

3 + β4PURBit + β5INDit

+ β6SVit + β7lnEIit + εit (5.8)

Because the Modified Wald test shows that heteroskedastic disturbances exist in the

fixed-effects model, which means that the error term is not identically distributed, we

need heteroskedasticity-robust estimates of standard errors that are consistent. White

(1980)[41] demonstrated that heteroskedastic covariance matrix estimator, which is

consistent even when the disturbances are heteroskedastic, allowed correct inferences

and confidence intervals to be obtained even though the heteroskedasticity was not

completely eliminated. However, the covariance matrix estimator only can solve het-

eroskedasticity of the error term instead of the cross sectional dependence.

This paper introduces another robust standard error for panel regressions with cross

sectional dependence; these are the Driscoll-Kraay standard errors (Hoechle, 2007)[14].

The Driscoll-Kraay standard errors are used because the cross sectional dependence

of regression residuals can lead to biased statistical inference. Therefore, an assump-

tion of spatially independent disturbances is inappropriate. Also, robust standard

errors from covariance matrix estimation, such as White, OLS, or clustered standard

errors, are biased and statistical inferences on such standard errors are invalid. The
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Driscoll-Kraay standard errors are much better than those covariance matrix esti-

mator when cross sectional dependence exists because the Driscoll-Kraay standard

errors allow cross sectional dimensions greater than temporal dimensions. Therefore,

statistical inferences with cross sectional dependence in disturbances should be based

on the Driscoll-Kraay covariance matrix estimator (Hoechle, 2007)[14].

This paper divides a global sample of China into three regional subsamples, East,

Middle and West as levels of economic development in the three regions are highly

different. We run the same set of tests on each of the three respective regions

data as has been done for the global sample of China. The results show that data

from three regions have heteroskedasticity, but exhibit serial autocorrelation (tem-

poral dependency) instead of cross sectional dependence. Based on this situation,

Roger (1994)[29] suggested clustered standard errors, which are consistent with het-

eroskedasticity and serial autocorrelation.

As a result, our fixed-effects model in China has heteroskedasticity and cross sec-

tional dependence, which lead to inconsistent estimates and statistical inferences.

When we study a relationship between per capita CO2 emissions and per capita real

GDP, the fixed-effects models of the three regions have heteroskedasticity and serial

autocorrelation. In next chapter, we will compare different regression results from

both heteroskedasticity-covariance estimation and Driscoll-Kraay covariance estima-

tion. In addition, regression results of three regions of China will be demonstrated.

The next chapter explains how these special estimations solve these problems for

fixed-effects panel model in detail.



Chapter 6

Empirical Analysis

Due to the possibility of heteroskedasticity, cross sectional dependence and serial

autocorrelation among the fixed-effects model, this chapter demonstrates specification

analysis in order to obtain consistent estimators and valid statistical inferences.

In fact, the usual covariance matrix estimators equal the heteroskedasticity-robust

covariance matrix estimators in the absence of heteroskedasticity. If there exists het-

eroskedasticty in disturbances in a model, the usual covariance matrix estimates are

inconsistent and statistical inferences are invalid. Parameter estimates are consistent

but inefficient. White (1980)[41] introduced a heteroskedasticity covariance matrix es-

timator that is consistent in the presence of heteroskedasticity. The heteroskedasticity-

consistent covariance estimator allows us to make valid inferences and construct ap-

propriate confidence intervals.

Model 1 shown in Table 6.1 is a fixed-effects model with robust standard errors. A

heteroskedasticity-consistent covariance matrix estimator allows parameter estimates

to be consistent and efficient if and only if the heteroskedasticity in disturbances is

a single problem in this model. However, the fixed-effects model also displays cross

sectional dependence in residuals. The presence of the cross sectional dependence in

the fixed-effects model will cause the estimated standard errors of parameters to be

inconsistent (Driscoll and Kraay, 1998)[9]. As a result, incorrectly ignoring the spatial

(cross sectional) and temporal dependence in residuals can lead to biased statistical

results and assumptions of cross sectional independence are inappropriate.

37
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Table 6.1: Comparison of Fixed-Effects Models with Heteroskedasticity-Robust Stan-
dard Errors and with Driscoll-Kraay Standard Errors

(1) (2)
Robust SE D-K SE

Log of GDP per capita (RMB) -16.40∗∗ -16.40∗∗∗

(6.826) (3.158)

Quadratic term of log of GDP per capita (RMB) 1.929∗∗ 1.929∗∗∗

(0.732) (0.348)

Cubic term of log of GDP per capita (RMB) -0.0717∗∗ -0.0717∗∗∗

(0.0261) (0.0127)

Proportion of urban population (%) 0.00544 0.00544
(0.00405) (0.00500)

Share of GDP from industrial sector (%) 0.0104 0.0104∗∗∗

(0.00744) (0.00196)

Share of GDP from service sector (%) -0.00109 -0.00109
(0.00473) (0.00280)

Log of energy intensity of GDP (metric tonnes
of coal equivalent/10000 RMB)

0.613∗∗∗ 0.613∗∗∗

(0.161) (0.0959)

Constants 44.25∗∗ 44.25∗∗∗

(21.23) (9.517)
N 405 405

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Currently, in panel data models, a Driscoll-Kraay consistent covariance matrix esti-

mation is the method which accounts for both heteroskedasticity and cross sectional

dependence in disturbances at the same time. Driscoll and Kraay (1998)[9] demon-

strated that the Driscoll-Kraay consistent covariance matrix estimator is a modifica-

tion of the standard nonparametric time series covariance matrix estimator.

“In this paper we propose a simple modification of the standard nonparametric time

series covariance matrix estimator which remedies the deficiencies of techniques which
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rely on large T asymptotics. In particular, we show that a simple transformation of

the orthogonality conditions which identify the parameters of the model permits us

to construct a covariance matrix estimator which is robust to very general forms of

spatial and temporal dependence as the time dimension becomes large. The consis-

tency result holds for any value of N including the limiting case in which N →∞ at

any rate relative to T . By relying on nonparametric techniques, we avoid the difficul-

ties associated with misspecified parametric estimators. Moreover, since we do not

place any restrictions on the limiting behaviour of N , the size of the cross-sectional

dimension in finite samples is no longer a constraint on feasibility, and we can be

confident of the quality of the asymptotic approximation in finite samples in which

N and T are of comparable size, or even if N is much larger than T , provided that T

is sufficiently large.” (Driscoll and Kraay, 1998)[9].

As shown in Table 6.1, Model 2 is a fixed-effects model with Driscall-Kraay standard

errors. Parameter estimates of both two models give same results but the values

of Driscoll-Kraay standard errors are much smaller than that of heteroskedasticity-

robust standard errors, with the exception of the proportion of urban population.

Because the Driscoll-Kraay consistent covariance matrix estimator allows the fixed-

effects panel model to make valid statistical inferences in the presence of heteroskedas-

ticity and cross sectional dependence in disturbances, regression results in Model 2

using Driscoll-Kraay consistent matrix estimation technique will be used to analyze

the relationship between per capita CO2 emissions and per capita GDP in the global

sample of China.

As can be seen from the results of model 2 with Driscoll-Kraay standard errors, all

coefficients of log of per capita real GDP, quadratic term of log of per capita real

GDP and cubic term of log of per capita real GDP are statistically significant at

1% level. The signs of the linear term and cubic term are negative, and the sign

on the quadratic term is positive. These results provide statistical support that is

in line with the hypothesis of an inverted N-shaped curve for China. This supports

the hypothesis that when economic development was in the first stage in China,

per capita CO2 emissions fell as the economic growth was based on agriculture and
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labour intensive industries. In the next stage, when the income levels increase to a

certain level, per capita CO2 emissions increase because a large part of the national

GDP is contributed by energy based industries that consume large amount of fossil

fuels. However, when the income levels become really high, per capita CO2 emissions

decrease. The results suggest that it may be possible for China to achieve a decoupling

of per capita real GDP from per capita CO2 emissions.

The coefficient of proportion of urban population is positive but statistically insignif-

icant. This suggests that urbanization does not impact per capita CO2 emissions in

China.

The results of Model 2 show that the parameter estimate (β5) on share of GDP

from industrial sector is statistically significant at a 1% level. This suggests that

industrialization plays a key role in increasing per capita CO2 emissions because

most of industries in China are still fossil fuel based including electricity, coal, steel,

textiles industries. Thereby, energy saving, emission abatement and governmental

policies to restrict increasing number of energy-intensive industries are significant

ways to reduce per capita CO2 emissions.

The energy intensity of GDP exhibits positive effects on per capita CO2 emissions.

As energy intensity reflects both energy efficiency and technological levels, a smaller

coefficient suggests a higher level of energy efficiency and technology, and a lower

level of energy consumption per unit output, thereby reducing per capita CO2 emis-

sions. There is a big gap between energy intensity of China and that of developed

countries such that there is much room for energy saving. However, China is not

able to completely change the coal-dominated energy structure in the short term,

so we should focus on application of “low-carbon”, “energy-saving”, and “emission-

reduction” technologies to reduce excessive dependence on fossil fuels, and improve

the overall efficiency of energy use.

Figure 6.1 is a scatter plot of per capita CO2 emissions against per capita real GDP.

In Figure 6.1, Shanghai has the highest per capita real GDP, 59448.85 (1995 currency)
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in 2009, but per capita CO2 emissions is 14.04 metric tonnes. In Shanxi province,

which is the biggest “coal-mining” province, it achieves the highest per capita CO2

emissions in 2007, which is 32.94 metric tonnes, but per capita real GDP, 11947.1

RMB (in 1995 currency) which is much lower than per capita real GDP in Shanghai.

Figure 6.1: Per capita CO2 emissions vs. Per capita real GDP

In addition, they have totally different industrial structures. In Shanghai, the share

of GDP in the industrial sector is 39.89% and the share of GDP in the service sector is

59.36%. In Shanxi province, the share of GDP in the industrial sector is 60% and the

share of GDP in the service sector is 35.32%. As a result, when GDP is dominated

by the service sector, per capita real GDP is higher but per capita CO2 emissions

are lower than somewhere when GDP is dominated by the industrial sector. When

we take a look at Beijing, the share of GDP in the industrial sector is 23.5% but

the share of GDP in the service sector is 75%. Beijing has 9 metric tonnes CO2e

per capita and per capita real GDP is 37612.9 RMB (1995 currency). Province-level

scatter plot can be found as Figure B.2 in the appendix B.
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Figure 6.1 shows a trend of an inverted U shape. At some levels of per capita province-

level real GDP, per capita province-level CO2 emissions peak. But when per capita

province-level real GDP exceeds these levels, per capita CO2 emissions may decrease.

This may be because the share of GDP from the service sector is higher than that

from the industrial sector.

Based on the above regression results, we can predict values of log of per capita CO2

emissions holding other variables constant at average levels except of linear term,

quadratic term and cubic term of log of per capita real GDP.

̂lnCO2e/pit = β̂1lnyit + β̂2(lny)2it + β̂3(lny)3it + constants+X itβ̂ (6.1)

in which, X it represents a variable vector including average levels of proportion of

urban population, share of GDP from industrial sector, share of GDP from service

sector and log of energy intensity. As a result, the real function with estimated

parameters are shown as following:

̂lnCO2e/pit = −16.40lnyit + 1.929(lnyit)
2 − 0.072(lnyit)

3 + 45.317 (6.2)

An inverted N-shape curve can be constructed demonstrating a cubic relationship

between log of per capita real GDP and log of per capita CO2 emissions.

A lower and a higher turning point on the log of per capita real GDP can be found

in Figure 6.2 up to Equation 6.2 by taking first order condition. The lower point

is 6.92 and the higher point is 11.01. As a result, we can predict the per capita

province-level real GDP because the exponential of the log of per capita real GDP

is per capita province-level real GDP. The exponential of the lower point is 1013.45

RMB (1995 currency) and that of higher point is 60972.06 RMB (1995 currency).

The two turning points mean that the model predicts that when the per capita real

GDP reaches 1013.45 RMB (1995 currency), the increase in per capita real GDP

may increase per capita CO2 emissions. And when the real income level increases to

60972.06 RMB (1995 currency), the increase of the real income will lead to reduction
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Figure 6.2: Log of per capita CO2 emissions vs.log of per cpaita real GDP

of CO2 emissions per capita.

When we take a look at the statistic summary of the panel data, the minimum log of

GDP per capita is 7.5 and the maximum level is 10.99. As we can see in Figure 6.2,

the range of log of per capita real GDP is on the upward sloping part. Therefore, we

can say that per capita CO2 emissions increases with the economic growth in China

during 1995 and 2009. The model predicts that there will be an inverted U-shape

curve that will lead per capita CO2 emissions of China to decrease in the future at an

income level of 60972.06 RMB (1995 currency). However, there exists an inverted N

curve in China as a whole. It is necessary to note that the actual levels of per capita

real GDP in logarithm from the panel data set correspond to the upward sloping part

in Figure 6.2. The two turning points are predicted up to a cubic specification.

The exponential of log of per capita real GDP and log of per capita CO2 emissions

allows us to plot the relationship between CO2 emissions per capita and GDP per

capita. The graph is shown below:

In Figure 6.3, the lower point is 1013.45 RMB (1995 currency) and the higher point
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Figure 6.3: Per capita CO2 emissions vs. Per capita real GDP

is 60972.06 RMB (1995 currency), which is same results obtained by Figure 6.2.

The minimum GDP per capita is 1813.6 RMB (1995 currency) and the maximum is

59448.85 RMB (1995 currency) in the panel data of China as a whole. The range of

per capita province-level real GDP is upward sloping part and suggesting that there

may exist an inverted U-shape curve in the future of China. Therefore, if the model

is specified correctly, the statistical results predict that the province-level per capita

CO2 emissions will reduce when province-level per capita real GDP obtains 60972.06

RMB (1995 currency) in the future.

In terms of the downward part at lower income levels in Figure 6.3, increases in the

province-level per capita GDP reduce the province-level per capita CO2 emissions

when the province-level per capita real GDP is lower than 1013.45 (1995 currency).

Data about energy consumption from World Bank databank show that the share

of consumption on solid fuels decreases and the share of consumption on gaseous

fuels increases overtime in China. As a result, a shift from solid fuels to gaseous

fuels reduces per capita CO2 emissions with growth of per capita real GDP. This is

because technology has been improved with economic growth and gaseous fuels are
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cleaner than solid fuels. This provides a possible hypothesis for the reason behind

early decrease in emissions per capita as incomes rise from low to high levels.

Table 6.2 shows three fixed-effects models with clustered standard errors in the East-

ern, Middle and Western regions. Clustered standard errors were used because each

regional panel model demonstrates heteroskedasticity and serial autocorrelation in

disturbances.
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Table 6.2: Regression Results in Fixed-Effects Models with Clustered Robust Stan-
dard Errors in Three Regions

(1) (2) (3)
Eastern Region Middle Region Western Region

Log of GDP per capita
(RMB)

-38.79∗∗∗ -27.73∗∗ -14.87

(7.185) (11.14) (17.62)

Quadratic term of log of
GDP per capita (RMB)

4.289∗∗∗ 3.152∗∗ 1.746

(0.731) (1.235) (1.992)

Cubic term of log of GDP
per capita (RMB)

-0.154∗∗∗ -0.115∗∗ -0.0659

(0.0247) (0.0456) (0.0747)

Proportion of urban popu-
lation (%)

0.00128 0.000990 0.0320∗∗

(0.00245) (0.00256) (0.0114)

Share of GDP from indus-
trial sector (%)

-0.00314 -0.000297 0.00851

(0.00974) (0.00231) (0.0146)

Share of GDP from service
sector (%)

-0.0116∗ -0.00568 -0.000950

(0.00600) (0.00298) (0.0109)

Log of energy intensity of
GDP (metric tonnes of coal
equivalent/10000 RMB)

0.813∗∗∗ 0.716∗∗∗ -0.00215

(0.0621) (0.0662) (0.519)

N 150 120 135
adj. R2 0.955 0.976 0.814

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Using clustered standard errors relaxes assumptions of independently distributed error

terms and independent observations. The clustered standard errors are consistent

even though the error terms are correlated within but uncorrelated between clusters.

As a result, parameter estimates and statistical inferences from the fixed-effects mod-

els with clustered standard errors in the three regions are consistent and valid (Rogers,

1994)[29].

A cubic relationship between per capita CO2 emissions and per capita real GDP is

statistically significant at 1% level in the Eastern region and at 5% level in the Middle

region. However, the cubic relationship is not statistically significant in the Western

region. In addition, for the Western region, we found no statistical support for the

EKC or the monotonic relationship. The model suggests that economic growth, as

measured by the GDP proxy, does not significantly affect per capita CO2 emissions

in the Western region.

Urbanization in the Eastern and Middle regions does not have significant impact on

per capita CO2 emissions. In the Eastern region, urbanization in most areas has

developed to a very high level and then slowed between 1995 and 2009. As a result,

there are other factors affecting per capita CO2 emissions. In the Middle region,

because large amounts of rural labour forces migrated to the Eastern region, the

inadequate urban population has resulted in slow urbanization (Hu, 2008)[15].

However, the estimated parameter of the proportion of the urban population in the

Western region is statistically significant at 5% level. This may be because urban-

ization affects per capita CO2 emissions in the following ways. Urbanization, in-

dustrialization and production require a huge amount of energy, while urbanization

accompanied by rising personal income levels and more urban residents boosts energy

consumption and increases number of private cars that produce more CO2.

The share of GDP from the industrial sector was not found to affect per capita CO2
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emissions in the Eastern region. A hypothesis as to why is because some of “energy-

based” and “high-GHG-emission” industries have been moved out of developed areas

in the Eastern region, such as Beijing and Shanghai, and the share of GDP from the

industrial sector has been decreasing. However, the model for the Middle region does

not provide reasons that estimated parameter of industrial sector is not statistically

significant, even though the main source of GDP in the Middle region is from the

industrial sector.

The estimated parameter of the share of GDP from the service sector is statistically

significant at 10% level only in the Eastern region. This increase in the share of

GDP from the service sector could potentially reduce per capita CO2 emissions in the

Eastern region according to the composition effect because the service sector, such

as telecommunication services, finance and insurance services, and education, is less

energy intensive. Insignificant coefficients for the service sector in the Middle and the

Western regions suggest that the service sector has not developed enough to affect

per capita CO2 emissions. Hence, our results suggest that in order to stop increasing

per capita CO2 emissions, it is important to develop the service sector in the Middle

and Western region. When the main contribution of GDP is from the service sector,

economic growth by the service sector may decrease per capita CO2 emissions in the

Middle and Western regions in the future.

The coefficients of energy intensity in the Eastern and Middle region are statistically

significant at 1% level, but they are not statistically significant in the Western region.

Energy intensity reflects the energy utilization efficiency in regional economies, and

its changes are summarized as technical and structural factors. As a result, energy

intensity does not significantly affect per capita CO2 emissions in the Western region.

This chapter explains how the fixed-effects model of China with heteroskedasticity

and cross sectional dependence obtains consistent coefficients and valid statistical

inferences by using the Driscoll-Kraay consistent covariance estimator. The cubic

relationship in China suggests that economic development has impacts on per capita
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CO2 emissions. Using clustered standard errors in the three regional models with het-

eroskedasticity and serial autocorrelation allows for consistent parameter estimators.

The results suggest a cubic relationship in the Eastern and Middle regions rather than

in the Western region, which suggests that economic development in the Western re-

gion cannot significantly affect per capita CO2 emissions. Given our estimation from

the Chinese sample, we predict that there exists an inverted U-shaped curve in the

future of China. When per capita real GDP obtains 60972.06 RMB (1995 currency),

per capita CO2 emissions are predicted to decrease with economic growth.



Chapter 7

Conclusion

This paper describes characteristics and drivers of per capita CO2 emissions from

cement production and fossil fuel combustion in China from 1995 to 2009. We use

a fixed-effects panel data model derived from STIRPAT model and Kaya identity,

and implement Driscoll-Kraay consistent covariance matrix estimation in the global

sample of China. Clustered standard errors are used in the three regional panel mod-

els with heteroskedasticity and serial autocorrelation to obtain consistent parameter

estimates and valid statistical inferences. We predict an inverted N curve as a global

curve for China as a whole with an inverted U curve in the future of China. Our

results suggest that China’s provincial per capita CO2 emissions decreases with eco-

nomic growth when China’s provincial per capita real GDP obtains 60972.06 RMB

(1995 currency).

A summary of our key results is as follows:

First of all, the data suggests that China has a cubic relationship between per capita

CO2 emissions and per capita real GDP at the provincial level. Due to the cubic

relationship, we reject the EKC hypothesis for China’s economic development over

all, but the analysis suggests that there exists an expected EKC in China in a future

period at the level of provinces. The Eastern and Middle region demonstrate a cubic

relationship, but there does not exist effects of per capita real GDP on per capita

CO2 emissions in the Western region.

Secondly, the share of GDP from service sector affects per capita CO2 emissions

significantly only in the Eastern region. This suggests that increases in the “service-

sector” share of GDP can reduce province-level per capita CO2 emissions in the

Eastern region.

50
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Third, the higher “energy-use” efficiency is an important task for the Chinese gov-

ernment because there exists a big gap between energy intensity of China and the

energy intensity of developed countries. Also, China is not able to completely change

the “coal-dominated” energy structure in the short term, so we should focus on low-

carbon, energy-saving, and “emission-reduction” technologies to reduce excessive de-

pendence on fossil fuels, and improve the overall efficiency of energy use.

Based on the above research of China’s drivers of per capita CO2 emissions in the

three regions, it is possible that “pollution-intensive” industries may be moving to

the Western region for reasons such as lower wages and/or lower pollution regulation.

This also provides a possible explanation as to why urbanization significantly increases

provincial per capita CO2 emissions in the Western region.

A contribution of this paper is that we use chemical conversion theory to estimate

provincial CO2 emissions from cement production and fossil fuel combustion in China.

It is an important data support for researchers who are going to provincially research

CO2 emissions in China. In addition, the Eastern and Middle region exhibit an in-

verted N curve separately, but the Western region did not. This paper uses a Driscoll-

Kraay consistent covariance matrix estimator which accounts for heteroskedasticity

and cross sectional dependence in a fixed-effects model, and uses clustered standard

errors to accommodate heteroskedasticity and serial autocorrelation.

Empirical analysis of this paper finds a cubic relationship between province-level

per capita CO2 emissions and province-level per capita real GDP in China. Some

of recent researches have criticized empirical work which found support for the EKC

hypothesis. Stern (2003)[32] pointed out that there was weak statistical evidence that

countries followed an inverted U-shaped pathway as people became richer and richer.

Therefore, Stern (2003) considered that the EKC model was unlikely a complete

model. Wang (2013)[39] also criticized the EKC estimates as being due to a spurious

relationship between pollutants and income levels because of the inadequacy of the

quadratic EKC regression. This spurious relationship is the reason of failure of the
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conventional EKC regression. The quadratic form included in the dynamic panel data

model needs to be reconsidered in the future.

We consider these critiques of the EKC as being too extreme because we cannot reject

the EKC hypothesis based on our research on the Chinese sample. There exists an

expected EKC at the level of provinces in the future of China up to the panel data

from 1995 to 2009, even though there is an inverted N curve overall China. In other

words, the EKC is a part of the inverted N curve in overall China. Therefore, our

research suggests that given current trends, China’s province-level per capita CO2

emissions will reduce in the future of China along with economic growth if China’s

per capita real GDP achieves 60972.06 RMB (1995 currency).

This paper explains the factors affecting per capita CO2 emissions. However, findings

of this paper are not able to predict how these factors can stabilize the total CO2

emissions because the fast growth of population may increase the total CO2 emissions

even though per capita CO2 emissions may decrease. Therefore, in order to stabilize

the total CO2 emissions, a further research on the Kaya identity is required because

this identity explains relationships between the total CO2 emissions, population, GDP

per capita, energy intensity and carbon intensity. Figure B.1 in Appendix B shows

scatter plots in 27 provinces of China in which total province-level real GDP in 1995

currency against total provincial CO2 emissions, which may be helpful for the future

research.



Appendix A

Glossary

2006 IPCC Guidelines for National Greenhouse Gas Inventory

The 2006 IPCC Guidelines were prepared in response to an invitation by the Parties

to the UNFCCC. 2006 IPCC Guidelines provide methodologies for estimating GHGs

emissions from cement production and fossil fuel combustion.

CO2 Emission Factors

CO2 emission factors are default carbon content, default carbon oxidation factor and

44/12 (molecular weight ratio of CO2 to C).

Default Carbon Content

Default Carbon Content refers to carbon content of fuels from which emission factors

on a full molecular weight basis can be calculated. The 2006 IPCC Guidlines provide

default values of the carbon content.

Default Carbon Oxidation Factor

Oxidation factor is the fraction of carbon in fossil fuel, which is oxidized to become

CO2. The default carbon oxidation factor is assumed to be 100% oxidation because

a small part of the fuel carbon entering the combustion process escapes oxidation.

Net Calorific Values (NCVs, TJ/Gg)

Net Calorific Values (NCVs) or ‘lower heating value’ (LHV) is the useful calorific

value in boiler plant. The difference is essentially the latent heat of the water vapour

produced.
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Good Practice

Good Practice is a set of procedures intended to ensure that greenhouse gas inven-

tories are accurate in the sense that they are systematically neither over- nor under-

estimate emissions so far as can be judged. Also, uncertainties are reduced so far as

possible. Good Practice covers choices of estimation methods appropriate to national

circumstances, quality assurance and quality control at national levels, quantification

of uncertainties and data archiving and reporting to promote transparency.

Tier 1

The Tier 1 method of estimating GHG emissions is fuel-based, since emissions from

all sources of combustion can be estimated on the basis of the quantities of fuel

combusted (usually from national energy statistics) and average emission factors.

Tier 1 emission factors are available for all relevant direct GHGs.

Tier 2

In the Tier 2 method of estimating energy, emissions from combustion uses similar fuel

statistics, as used in the Tier 1 method, but country-specific emission factors are used

in place of the Tier 1 defaults. Since available country-specific emission factors might

differ for different specific fuels, combustion technologies or even individual plants,

activity data could be further disaggregated to properly reflect such disaggregated

sources.

Tier 3

In the Tier 3 method for energy emissions estimation, either detailed emission mod-

els or measurements and data at individual plant levels are used where appropriate.

Properly applied, these models and measurements should provide better estimates

primarily for non-CO2 greenhouse gases, though at the cost of more detailed infor-

mation and effort.

Reference Approach

The reference approach is designed to calculate CO2 emissions from fuel combustion,
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from 2006 IPCC Guidelines.



Appendix B

Figure B.1: Total real GDP in 1995 currency vs. Total CO2 emissions in each of 27
provinces of China
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