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ABSTRACT 

For both buildings and bridges where slab-on-girder construction is used, maintaining the 

lateral torsional stability of girders during the construction stage is a critical issue.  The 

current industry practice is to use both lateral and torsional bracing to ensure girder 

stability.  However, lateral bracing becomes redundant and ineffective once the concrete 

deck has hardened and acts as lateral bracing instead.  In addition, commonly placed on 

the underside of the slab, the installed lateral bracing may present a long-term 

maintenance liability.  The current Design of Steel Structures Code CSA S16 (2010) and 

Canadian Highway Bridge Design Code CSA S6 (2006) do not provide adequate 

guidelines addressing the design of lateral stability of a girder system where the girders 

are braced solely with torsional bracing.  Although a simplified method is recommended 

for strength design in the standards, it does not provide an explicit stiffness requirement 

for the torsional bracing system.  

  

This study is motivated to investigate the behaviour and strength of beams with only 

discrete torsional bracing.  The experimental program of a scaled twin-girder system with 

different arrangements of lateral and torsional bracing was conducted.  Concurrently, a 

finite element model was developed and verified with the test results.  A parametric study 

using the finite element model was conducted to study further the effect of girder 

spacing, cross-frame stiffness, and number of cross-frames on the lateral torsional 

stability of the twin-girder system.  Results showed that the girder spacing and number of 

cross-frames had the most significant effects on the critical moment of girders braced 

with only torsional braces.  Changing the cross-frame member stiffness did not result in 

any marked change in the critical moment.  The comparison of numerical results with 

design equations contained in the current CSA S16 (2010) and S6 (2006) standards 

showed that a stiffness requirement for the torsional brace should be implemented. A 

relationship between the design critical moment and the ratio of provided-to-required 

torsional stiffness was discussed. 
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CHAPTER 1        INTRODUCTION 

1.1 BACKGROUND OF RESEARCH 

Slab-on-girder bridges are commonly used in bridge construction.  A typical slab-on-

girder bridge is composed of two or more evenly spaced steel plate girders that are 

interconnected by a concrete deck slab.  For the design check of the girders at the 

ultimate limit state, the girder is reasonably considered to be fully supported by the deck 

slab for its lateral torsional buckling capacity.  However, during construction of the 

concrete deck and prior to its hardening, the girders are most susceptible to lateral 

torsional buckling failure since the deck slab is not composite with the steel plate girders.  

Figure 1.1 plots the critical moment (Mcr) versus beam length.  As shown in the figure, 

lateral torsional buckling governs the flexural capacity of slender and intermediate beams 

and is a phenomenon that occurs when beams in flexure undergo out-of-plane buckling 

and twisting when a critical load is reached.   

 

Figure 1.1 Beam failure modes (adapted from Galambos, 1998). 

For plate girders fully braced by a concrete slab, the moment resistance is dependent on 

cross-sectional strength.  In comparison, plate girders braced at discrete locations along 

the compression flange, have a moment resistance dependent on an unbraced length of 
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Torsional Buckling 

Elastic Lateral-

Torsional Buckling 
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girder (Timoshenko & Gere 1961).  To prevent lateral torsional buckling failure, beams 

must be properly braced against lateral deflection and twisting.   

Since the girder is most susceptible to buckling during the construction stage, the 

Canadian Highway and Bridge Design Code (CHBDC) CSA S6 (2006) suggests that 

bracing be provided.  In current practice, two types of bracings are often used in 

combination to satisfy this requirement, namely lateral and torsional bracing.  The lateral 

bracing is implemented in the plane of the compression flange between two girders, 

usually one exterior and the adjacent girder as shown in Figure 1.2.  This type of bracing, 

also referred to as plan bracing, is used to provide the lateral restraint for compressive 

flanges of the girder systems.  In a multi-girder system, no additional lateral bracing is 

provided since the remaining girders are considered to “lean-on” the two braced girders.  

In addition to plan bracing between a pair of girders, the discrete torsional restraints, 

often referred as cross-frames, are also required at certain brace points over the girder 

span connecting all girders.  The torsional braces are often in the form of X bracing or K 

bracing, but for shallower girders single horizontal channels connecting the girder at mid-

height is an economic, but less rigid alternative.  A typical cross-frame X bracing is 

shown in Figure 1.3. When lateral and torsional bracing types are present, the unbraced 

length of the girder is normally taken as the cross-frame spacing, Lb, shown in Figure 1.2.  

For plate girders, the combined lateral and torsional bracing has shown to produce 

satisfactory results in terms of buckling capacity.  

However, plan bracing is not always a popular choice with contractors.  If the bracing is 

placed above the top flange for incorporation within the slab, it interferes with the 

installment of reinforcement and formwork.  If it is placed below the underside of the top 

flange, it presents a long-term maintenance liability.  The plan bracing becomes 

redundant when the concrete deck attains 75% of its compressive strength allowing the 

deck to behave as a lateral diaphragm due to the composite action developed between the 

girder and deck. 
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Figure 1.2 Plan view of twin girder system braced with combination of cross-

frames and lateral bracing. 

 

Figure 1.3 Typical cross-frame X-bracing arrangement. 

Lateral torsional buckling of a single girder is a well understood phenomenon and its 

design is well anchored in both the Design of Steel Structures Code CSA S16 (2010) and 

CHBDC CSA S6 (2006).  However, there is little technical information in either standard 

addressing the lateral stability of a girder system with only cross-frame bracing without 

the added lateral plan bracing.  The question of interest is whether or not the unbraced 

length, can still be considered as Lb as shown in Figure 1.4, if only cross-frames are 

provided as bracing. 
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Figure 1.4 Plan view of twin girder system braced with only cross-frames. 

1.2 OBJECTIVES AND SCOPE 

This study is therefore motivated to investigate the efficiency of torsional braces provided 

by cross-frames for lateral torsional stability of plate girders.  Both experimental and 

numerical analyses are included in the study.  A parametric study using the verified 

numerical model is also conducted to investigate the additional parameters beyond the 

scope of the experimental program on the lateral torsional buckling capacity.  The 

ultimate goal of this study is to provide some scientific information on the effective 

unbraced length of girder that can be used with the current design procedure CSA S6 

(2006) for the lateral torsional buckling stability check when only cross-frames are used 

as bracing.  

 

The detailed objectives of this research are: 

1. To conduct a comprehensive literature review on research relevant to the lateral 

buckling of plate girders braced using cross-frames and a combination of cross-

frames with lateral bracing. 

2. To develop an experimental testing program to study the behaviour of twin beams 

braced using cross-frames and a combination of cross-frames and lateral bracing. 

3. To develop a finite element model for the analysis of lateral torsional buckling of 

twin beams. 

4. To validate the finite element results using experimental results and other results from 

available literature. 
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5. To conduct a parametric study to investigate the effect of parameters that include 

girder spacing, brace stiffness, and number of braces on the lateral torsional buckling 

capacity of twin girders. 

6. To examine the current design standards, both CSA S16 (2010) and CSA S6 (2006), 

on the applicability of using the effective unbraced length in the girder stability 

consideration for girders with torsional braces only. 

1.3 OUTLINE OF RESEARCH 

This research commenced with a comprehensive literature review provided in Chapter 

Two.  The experimental work conducted on twin beam systems is described in Chapter 

Three and the experimental results are presented in Chapter Four along with analytical 

results reported by others in literature.  Chapter Five presents the development of the 

finite element model and its verification using the experimental results.  The parametric 

study using the finite element model is presented in Chapter Six.  Chapter Seven provides 

the summary, conclusions and recommendations from this research. 
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CHAPTER 2        LITERATURE SURVEY 

2.1 BEAM BRACING 

Beam bracing requirements were adapted and modified from research conducted on 

lateral bracing requirements for column buckling. The early research on lateral bracing 

requirements to prevent column buckling was conducted by Winter (1960).  Winter 

showed that to effectively resist buckling a brace requires adequate strength and 

sufficient stiffness. In column buckling, the brace stiffness required to allow the column 

to achieve a load corresponding to Euler buckling between brace points is referred to as 

the ideal brace stiffness.  A brace system that only provides a minimum stiffness 

equivalent to the ideal stiffness is not practical since the brace forces that are developed 

during buckling become infinitely large.  To maintain the brace force in the range of 1% 

of the column axial force, the brace stiffness provided commonly exceeds the ideal brace 

stiffness by a factor of two.  This theory has been verified for column buckling by Roddis 

et al. (2008) using finite element analysis.  The bracing requirements developed by 

Winter (1960) also apply for both elastic and inelastic braced members.  Gil and Yura 

(1999) verified the bracing method developed by Winter (1960) was applicable to 

inelastic members because the bracing requirements were independent of the material 

state.  

 

Beam bracing, however, is a much more complex topic than column bracing due to the 

fact that beam buckling involves both flexure and torsion.  In general, beam bracing is 

classified into two categories known as lateral and torsional bracing.  Lateral bracing 

minimizes the amount of twist of the cross-section by restraining the beam’s ability to 

displace laterally, while torsional bracing resists twisting of the cross-section directly by 

the use of a cross frame or diaphragm between adjacent beams (Yura, 2001). 

2.1.1 Lateral Bracing 
 

There are four categories of lateral bracing known as relative, discrete, continuous, and 

lean-on braces.  Relative bracing systems are normally in the form of a truss situated on 

the compression flange of a beam as shown in Figure 2.1.  This system is also referred to 
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as plan bracing which is studied in this research.  The purpose of a relative brace system 

is to control relative lateral displacements between brace points.  When a beam buckles, 

lateral displacements are prevented at the brace points resulting in sinusoidal buckling of 

the girder between the laterally braced locations.  Discrete bracing systems provide 

lateral spring support at individual positions along the span of a beam.  Lean-on brace 

systems rely on adjacent beams for lateral support during lateral buckling resulting in all 

beams buckling simultaneously.  Continuous bracing systems have no unbraced length 

and provide full lateral support to the compression flange (Yura, 2001).  The description 

of other bracing configurations can be found in Galambos (1998). 

 

 

Figure 2.1 Plan view of relative brace system. 

 

Yura (2001) showed that lateral bracing systems were most efficient to resist top flange 

loading effects when the bracing system was situated on the top (compression) flange.  It 

was observed that the beam capacity increased linearly with a corresponding increase in 

bracing stiffness.  He modified the Winter (1960) model to propose an equation for the 

calculation of the ideal lateral bracing stiffness.  It was concluded that a beam will buckle 

in a global mode shape if the ideal brace stiffness was not provided.  
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2.1.2 Torsional Bracing  

Torsional bracing systems can be described as either discrete or continuous systems. 

Diaphragms and cross frames are the two main types of discrete torsional bracing used in 

bridge construction, while a solidified concrete deck after construction is considered a 

continuous torsional brace.  The effectiveness of using a torsional bracing system as a 

method of lateral support has been questioned by some engineers since both girders can 

still displace laterally under load.  Yura et al. (1992) have proven theoretically and 

experimentally that girders may be treated as braced if twisting of the section is prevented 

(Galambos, 1998).  Similar to lateral bracing, effective torsional bracing must have 

sufficient strength and stiffness (Helwig et al., 1993).  Yura et al. (1992) showed that 

unlike the case for lateral braces, top flange loading, the position of the brace on the cross 

section and the number of braces does not significantly affect the effectiveness of a 

torsional brace.  A torsional brace has the same effectiveness whether it was situated on 

the tension flange or the compression flange of a beam.  

 

Milner (1977) determined that the stiffness of a torsional brace is a function of the brace 

member stiffness, the beam web stiffness, and the beam to brace connection stiffness.  

Yura et al. (1992) modified the Milner (1977) expression to consider the effects of the 

girder cross-sectional distortion, as expressed in Equation [2.1].  It was found that the 

distortion could be minimized by installing web stiffeners at the brace locations or by 

installing torsional braces on both girder flanges (Yura, 2001).  Helwig et. al. (1993) 

indicated the magnitude of the torsional brace system stiffness was governed by the 

component with the smallest stiffness. 

 

 

 
t

 
 

 
b

 
 

 
sec

 
 

 
g

 [2.1] 

 

where, 

  t is the resultant torsional stiffness of a single cross-frame, 

 b is the stiffness of the brace member expressed in Eq. [2.2], 

 sec is the stiffness due to cross-sectional distortion expressed in Eq. [2.3], 
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 g is the girder web stiffness expressed in Eq. [2.4]. 

 

Yura et al. (1992) derived brace member stiffness expressions,  b, for various cross-

frame systems using elastic truss analyses.  The tension cross frame system shown in 

Figure 2.2 requires both top and bottom chords along with a diagonal strut to link 

adjacent girders.  This cross-frame stiffness calculation was adopted for the experimental 

program described in Chapter Three and the parametric study in Chapter Five.  The brace 

stiffness for the tension cross-frame system is expressed in Equation [2.2].   
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[2.2] 

where,  

Ah is the area of horizontal cross-frame members, 

Ac is the area of diagonal cross-frame members, 

E is the modulus of elasticity, 

Lc is the length of diagonal cross-frame member, 

S is the spacing between adjacent girders, 

hb is the height of cross frame. 

 

 

 

Figure 2.2 Tension cross-frame system (adapted from Yura, 2001). 
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The web stiffener arrangement displayed in Figure 2.3 can result in a torsional stiffness 

component due to cross-sectional distortion of the girder web which can be approximated 

using Equation [2.3].  This equation considers the potential reduction or increase in the 

cross-frame system stiffness due to web flexibility by means of a web stiffener.  If full 

depth stiffeners were welded to the beam flanges in the cross-frame system, then the 

cross-sectional distortion component of the resultant torsional stiffness can be taken to be 

infinitely stiff (Yura, 2001). 

 

 
sec
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where,  

tw is the beam web thickness, 

ho is the distance between beam flange centroids, 

ts is the stiffener thickness, 

bs is the stiffener width. 

 

 

Figure 2.3 Typical full depth web stiffener at torsional brace location (adapted 

from Yura, 2001). 
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Helwig et al. (1993) developed a girder web stiffness approximation shown in Equation 

[2.4] for twin girders with one or multiple torsional braces along the span. The equation 

was verified using FEM for a twin girder system that was simply supported and free to 

warp with an applied uniform moment.  The results of the study indicated that it was 

unconservative to neglect the girder web stiffness when evaluating the torsional brace 

system stiffness. 

 

 g 
   

 
  x

  
 [2.4] 

 

where,  

L is the beam length, 

Ix is the beam strong axis moment of inertia. 

 

Phillips (1990) found that initial imperfections such as out of straightness had a 

significant effect on the torsional brace stiffness and that increasing the initial 

imperfections resulted in a decrease in the critical buckling load.  It was proposed that the 

stiffness of the brace member component in Equation [2.2] be modified to account for 

initial imperfections to the form shown in Equation [2.5]. 
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where, 

 ct is the reduction factor for imperfections in torsional brace stiffness, 

 Δo is the initial out of straightness of the girder. 
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Yura (2001) provided the ideal torsional stiffness expressed in Equation [2.7] and stated 

that at least twice the ideal stiffness is required in practice to account for initial 

imperfections and to control anticipated torsional displacements and bracing forces. 

 

    
       

 

      
  [2.7] 

 

where,  

     is the ideal stiffness of the torsional brace system, 

Mcr is beam buckling moment, 

 n is number of intermediate torsional braces along the beam length, 

 Iy is moment of inertia about y-axis for doubly symmetric section, 

 Cb is the factor accounting for moment gradient. 

 

The brace force expressed in Equation [2.8] is represented by a moment developed in the 

brace based on the assumption of a one degree initial imperfection in the girder and a 

brace stiffness that is at least twice the ideal brace stiffness (Helwig et al., 1993).  Finite 

element studies conducted by Wang and Helwig (2005) showed that the main factors 

which affect the magnitude of the brace force are the size and distribution of the initial 

imperfections. 

 

          
        

 

      
  

[2.8] 

 

where,  

Mbr is the brace moment, 

Fbr is the brace force.  

2.2 LATERAL TORSIONAL BUCKLING OF A BEAM 

Timoshenko and Gere (1961) developed a general equation presented in Equation [2.9] to 

calculate the elastic critical buckling moment for a simply supported doubly symmetric 

beam with an applied uniform moment. 
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where, 

 Mo is the elastic critical buckling moment, 

Lb is the unbraced girder length, 

G is the shear modulus of elasticity,  

J is the St.-Venant torsion constant, 

Cw is the warping torsion constant. 

 

Salvadori (1955) further proposed the use of a factor to account for the effects of moment 

gradient along the length of the beam using various loading conditions as shown in 

Equation [2.10].  

 

             [2.10] 

 

For the case of a simply supported beam subjected to uneven end moments, the most 

commonly accepted formula by various design standards for Cb is: 

 

                        [2.11] 

 

where, 

   is the ratio of the smaller to larger end moment, M1/M2; ± depending on 

single or double curvature.  

 

The Cb expression was further modified to account for location of the applied load with 

respect to the centroid of the beam.  Galambos (1998) provided approximate solutions 

shown in Figure 2.4 based on conclusions from Nethercot and Rockey (1972).  For top 

flange loading, Cb = A/B; Cb = A for centroidal loading and Cb = AB for bottom flange 

loading.  In 2010, Ziemian published an updated version of the Guide to Stability 
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previously written by Galambos (1998) in which the same references are utilized for 

determining the Cb factor for a simply supported beam subject to varying load heights.   

 

 

 

Figure 2.4 Equivalent moment factor for concentrated and distributed loads 

(Galambos, 1998). 

 

where, 

W is the warping constant calculated in Equation [2.12]. 
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Wong and Driver (2010) observed that Equation [2.12] produced very conservative 

results in the calculation of the moment gradient factor for unbraced simply supported 

beams subjected to a point loading.  However, the quarter point moment method 

proposed by Kirby and Nethercot (1979) had shown better results. Therefore, Wong and 

Driver (2010) adopted and modified the quarter point method expressed in Equation 

[2.13] to provide more accurate moment gradient values which represented the trends of 

various experimental data.  
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where,  

Mmax is the maximum bending moment of unbraced segment, 

 Ma is bending moment at one-quarter point of unbraced segment, 

 Mb is bending moment at midpoint of unbraced segment, 

 Mc is bending moment at three-quarter point of unbraced segment. 

2.3 LATERAL TORSIONAL BUCKLING OF BEAMS WITH TORSIONAL BRACES 

Taylor and Ojalvo (1966) developed a closed form solution to calculate the critical 

moment of a doubly symmetric beam subjected to a uniform moment with continuous 

torsional bracing.  Equation [2.14] shows an expanded version of the equation with the 

known substitutions provided in detail in the paper.  This expression expanded on a 

graphical solution previously developed that was limited to only a few bracing scenarios. 

In the case of discrete braces, an equivalent continuous torsional brace stiffness is 

required. 
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where, 

   
   

 
 [2.15] 

 

   is the continuous torsional brace stiffness described in Equation [2.15]. 

   is the stiffness of a single torsional cross-frame calculated using Equation 

[2.1]. 

 

Phillips (1990) simplified Equation [2.14] to the form shown in Equation [2.16]. 
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    √  
        [2.16] 

where,  

Mo is the critical elastic buckling moment calculated using Equation [2.9] 

with the warping component (Cw) ignored in the calculation, 

   is the continuous torsional cross-frame stiffness expressed in Equation 

[2.14] which accounts for initial out of straightness as expressed in 

Equation [2.5]. 

 

Yura (2001) modified Equation [2.16] to consider the effects of cross-section distortion, 

moment gradient, and loading height on the critical buckling strength shown in Equation 

[2.17].  To accommodate the effects of imperfections, the factor to account for loading 

height was doubled.  The effects of cross-sectional distortion were accounted for by using 

the continuous torsional cross-frame stiffness expressed in Equation [2.15]. 
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where, 

Cbu is the moment gradient factor for a beam with an unbraced length of L, 

Cbb is the moment gradient factor for a braced beam with an unbraced length 

of Lb, 

CT is a variable to account for loading height; CT = 1.2, 

Ieff is the effective moment of inertia about the beam’s y-axis which is equal 

to Iy for a doubly symmetric beam, 

My is the yield moment, 

 Mp is the plastic moment. 

 

Roddis et al. (2008) conducted a case study on the South Snyder River Bridge in 

Nebraska where excessive deflections were observed in twin plate girders during 

placement of the concrete bridge deck.  The girders had a span of 45.7 m and were 



17 

 

interconnected using cross-frames at a spacing of 7.7 m.  It was concluded the cross-

frame stiffness was insufficient and that a cross-frame stiffness of three times the 

provided brace stiffness was required to achieve buckling between torsional braces.  

Therefore, the excessive deflections were a result of girder instability due to inadequate 

bracing stiffness.  Finite element analysis of a single girder from the Snyder River Bridge 

indicated that using the unbraced length of beam as the distance between the torsional 

braces can only be achieved when the cross-frames act as stiff braces (Roddis et al., 

2008). 

 

Nguyen et al. (2010) developed an analytical method using the energy method for 

strength and stiffness requirements of I-girders with discrete torsional braces.  It was 

reported that the method compared well with finite element results presented by Yura 

(2001) and Trahair (1993).  However, the method involved solving a series of differential 

equations and was considered cumbersome to use for design. 

2.4 BEAMS WITH COMBINED LATERAL AND TORSIONAL BRACING 

Phillips (1990) proposed an approximation (Equation [2.18]) to calculate the critical 

buckling moment of a beam braced with both lateral and torsional bracing.  This 

combined the contributions of both the continuous lateral and torsional brace stiffness 

with the elastic critical buckling moment presented in Equation [2.9].  Phillips (1990) 

verified this equation using finite element analysis. 
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where,  

Mo is the critical elastic buckling moment calculated using Equation [2.9] 

with the warping component (Cw) ignored in the calculation, 

Py is the axial force in the beam due to flexure, 

A is a value calculated in Equation [2.19], 
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   is a reduction factor for imperfections in lateral brace stiffness (Equation 

[2.20]), 

   is the continuous lateral brace stiffness (Equation [2.21]), 

Abr is the cross-sectional area of the lateral brace, 

Lbr is the length of the lateral brace.  
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2.5 GLOBAL LATERAL BUCKLING OF A GIRDER SYSTEM 

Kozy and Tunstall (2007) conducted an investigation regarding a twin girder bridge that 

showed large amounts of lateral displacement during the installation of the deck 

formwork.  It was indicated the girders were susceptible to lateral torsional buckling 

failure with a global or system buckling mode.  Finite element method was used to 

analyze various bracing methods and it was observed that the brace forces were in excess 

of the suggested 1% or 2% of the beam compressive flange force by AISC for the design 

of bracing members.   

 

Yura et al. (2008) also acknowledged that the global buckling mode may occur when 

torsional bracing systems are solely used to restrain twist and lateral movement of the 

compression flanges of twin beams.  The global buckling of the system was found to be 

entirely dependent on the geometry of the twin beams.  Yura et al. (2008) conducted a 

finite element study of a doubly symmetric twin girder system that was subjected to 

uniform moment with the girders braced using cross-frames.  The lateral bending rigidity 

of the twin girder system was expressed as 2EIyGJ.  The torsional rigidity of the system 
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contained three components referred to as the St. Venant shear stresses of the individual 

flanges, warping stresses that are a result of lateral bending of the flanges and warping 

stresses developed from the vertical bending about the strong axis of the twin girder 

system which is also known as system warping.  The torsional rigidity is expressed in 

Equation [2.22]. 

 

      
 

 
 

     
 

 
 

[2.22] 

 

Yura et al. (2008) presented a closed form solution to calculate the elastic global lateral 

buckling moment of a twin girder system shown in Equation [2.23].  This closed form 

solution represents a maximum global buckling moment of a twin-girder system. To 

ensure adequate cross-frame stiffness, it was recommended that twice the ideal torsional 

brace stiffness be provided.  
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where, 

Lg is girder length, 

 Mg is the global buckling moment of twin girder system. 

 

All section properties from Equation [2.23] are based on a single girder.  The global 

critical buckling moment per girder would be one half of the value calculated for Mg.  

Additional investigations concluded the moment gradient factor for a single girder was 

applicable to the twin girder setup while the top flange loading effects were negligible.  It 

was also identified that cross-frame stiffness can influence the buckled shape of the 

girders by allowing the girders to buckle globally or by forcing the girders to buckle 

between the torsional brace locations as shown in Figure 2.5.  When twin girder 

specimens fail in global buckling, the cross frame size and spacing provide minimal 

effect.  The theories presented by Yura et al. (2008) were developed without the use of an 
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experimental testing program to verify the closed formed solution and the finite element 

results.  

 

 

Figure 2.5 Buckling modes of twin girders with discrete torsional braces (Yura et 

al., 2008). 

Zhao et al. (2010) verified work presented by Yura et al. (2008) using a finite element 

method with a variety of girder arrangements.  The investigation focused on deep plate 

girders which included parameters such as span length, girder spacing, girder section 

properties, cross-frame size, and cross-frame spacing.  The finite element results were in 

good correlation with the previous results presented using Equation [2.23].  Zhao et al. 

(2010) suggested that the capacity of a twin girder system is governed by the maximum 

allowable girder span, minimum number of cross-frames along the span, and the 

minimum cross-frame stiffness.  

 

Coffelt (2010) investigated the behavior of twin girder systems that were subjected to 

both dead and winds loads. Buckling analyses were conducted using finite element 

method to determine if buckling of cross-frames could occur prior to buckling of the 

girder system if lateral loads were applied to the girder.  It was found that the primary 
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buckling mode for simply supported beams with a depth-to-girder spacing ratio less than 

0.5 was global buckling of the girder system. When applying a lateral load to the 

windward girder of a twin girder system, the lateral stiffness of a twin girder system was 

determined approximately to be 2EIy as suggested by Yura et al. (2008).  Coffelt (2010) 

also acknowledged that buckling of the braces was highly unlikely prior to girder 

buckling, but twin girders with large spacing between girders have the highest risk of 

buckling the brace members. 

2.6 CODES AND STANDARDS 

2.4.1 CSA S16 (2010) 
 

The Design of Steel Structures Code, CSA S16 (2010), adopts Equation [2.9] to 

determine the elastic critical moment of a simply supported beam subjected to strong axis 

bending without continuous lateral support to the compression flange.  A moment 

gradient factor, ω2, expressed in Equation [2.24] was applied to the critical elastic 

moment.  Wong and Driver (2010) suggested that the moment gradient factor can be 

calculated using the quarter point method in Equation [2.13].   
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To achieve stability in the plane of buckling for a member, CSA S16 (2010) suggests that 

braces supporting members against buckling be designed to resist 2% of the compressive 

force at each brace point.  An additional stipulation indicates this method is only effective 

when the displacement of the brace does not exceed the initial misalignment of the beam.  

No explicit provisions are provided for the stiffness requirement of a lateral brace unless 

a detailed analysis of a beam system is conducted to compare the lateral displacement of 

the brace with respect to the initial imperfection of the beam. 

 

CSA S16 (2010) also suggests that torsional brace systems should be proportioned for 

beams that are required to resist torsional forces.  However, it is not directly indicated 
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whether the 2% rule is applicable for the design of the members which compose the 

torsional bracing system, such as a cross-frame, although it does indicate the brace 

member must be sufficient to transfer the forces that are developed in the braces.  It has 

become a custom in standard practice to provide web stiffeners at the locations of 

torsional and lateral bracing as a means to limit web distortion.  Clause 14.5 details the 

design considerations of web stiffeners, namely sufficient width-to-thickness ratios, 

moment of inertia, gross area, and the connection to the web and compression flange to 

transfer forces to the braces. 

2.4.2 CSA S6 (2006) 
 

CHBDC CSA S6 (2006) provides the same design guidelines for simply supported 

doubly symmetric beams subjected to flexure as the Design of Steel Structures Code 

CSA S16 (2010).  

 

For the design of intermediate cross-frames and lateral bracing, CHBDC CSA S6 (2006) 

adopts the Winter (1960) model where both the cross-frames and lateral bracing must be 

designed to resist only 1% of the compression flange force of the beam at the braced 

location in addition to lateral loads they attract.  Again, no stiffness requirement is clearly 

provided. 

2.4.3 AISC 360 (2010) 
 

AISC 360 Specification for Structural Steel Buildings (2010) provides an equation for the 

calculation of the elastic critical buckling stress as shown in Equation [2.25].  AISC 

presents the critical buckling resistance in the form of a critical stress instead of the 

critical moment as previously described for CSA S16 (2010).  Although expressed in 

terms of stress, AISC Equation [2.25] in essence produces nearly identical critical 

moment values as CSA S16 (2010) and S6 (2006) Equation [2.24] with moment gradient 

considered. 
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where,  

Fcr is the critical plate buckling stress, 

Lb is the distance between lateral braces, 

ho is the distance between flange centroids, 

J is the St. Venant torsion constant,  

 rts is the effective radius of gyration calculated in Equation [2.26], 

c is a coefficient equal to 1.0 for doubly symmetric I-shapes,  

Cb is a lateral torsional buckling modification factor for non-uniform 

moments diagrams expressed in Equation [2.27], 
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 [2.27] 

 

AISC indicates that beam bracing requires sufficient strength and stiffness if it is to be 

used to define the unbraced length of a member.  Table 2.1 presents the beam brace 

requirements for lateral and torsional braces from Appendix 6 of AISC 360 (2010). 
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Table 2.1 AISC Bracing Requirements (2010). 

Brace Type Strength Requirement Stiffness Requirement Equation 

Lateral Brace     
       

  
   

 

 
(
   

    
) [2.28] 

Torsional Brace     
        

     
    

 

 
(
      

 

      
 ) [2.29] 

 

where,  

Mr is the flexural strength of the beam, 

 Cb is the equivalent moment factor expressed in Equation [2.27], 

 Prb is the axial strength of brace, 

 Mrb is the flexural strength of the torsional brace, 

 ho is the distance between flange centroids, 

   is the material resistance factor (1.0 for this research).  
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CHAPTER 3        EXPERIMENTAL PROGRAM 

3.1 GENERAL 

The experimental program was designed to study the lateral torsional stability of twin 

beams with different arrangements of lateral and torsional bracing systems. Due to time 

constraints, only two specimen configurations were considered: 1) two beams tied with 

only cross-frames; and 2) two beams tied with both cross-frames and plan bracing. The 

test results are analyzed and discussed in the context of the bracing effect on the critical 

buckling moment and are also used to validate the numerical model that was developed 

concurrently with the experimental program.  

 

3.2 TEST SPECIMEN 

The test specimen used in the experimental program was scaled down by a factor of four 

to have similar geometric characteristics to a twin-girder bridge that would be 

encountered in practice.  The practical plate girders considered in this study were simply 

supported with a span of 40 meters.  The overall depth of the girder was 1500 mm with 

450 mm wide flanges that had a thickness of 40 mm.  The girders were spaced at 3.4 

meters with cross frames spaced every 8 meters.  The cross-frames were composed of 

L102×102×13 bracing that were bolted to web stiffeners.  The web stiffeners were 200 

mm wide plates that extended full depth of the girder with a thickness of 16 mm.  The 

stiffeners were welded to the girder flanges and web.  The plan bracing was WT155×26 

members that were bolted to gusset plates located 100 mm below the beam top flange.  

 

The test specimen consisted of two beams simply supported with a span of 11 meters.  

An overall view of the specimen is shown in Figure 3.1.  A W360×33 section (Figure 

3.2) was selected rather than a fabricated I-beam to reduce the associated fabrication 

costs.  Table 3.1 compares the geometric properties of the real girder and the scaled beam 

which shows that the slenderness ratio and the span-to-depth ratio of both beams were 

comparable.  The W360×33 section was also a Class 1 section that would prevent the test 

specimen from failing prematurely by local buckling of the flanges or web.  The spacing 
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of the two beams was determined to be 800 mm to maintain the girder spacing to girder 

depth ratio provided in Table 3.1. 

 

 

Figure 3.1 Overall view of the test specimen. 

349 mm 5.6 mm

450 mm

1500 mm 14 mm

40 mm

40 mm450 mm

8.5 mm

FULL SCALE GIRDER SCALED GIRDER - W360x33

8.5 mm

127 mm

127 mm

 
 

Figure 3.2 Practical and scaled specimen beam. 

 

B1 B2 
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Table 3.1 Geometric configuration comparison. 

 Full Scale Design Scaled Test Specimen 

Slenderness of 

beam’s weak axis, 

λy 

410 416 

Span-to-depth, L/d 26.7 31.5 

Spacing-to-depth, 

S/d 
2.27 2.29 

 

The cross-frame members were scaled to be proportionate with the W360×33 beams 

while maintaining adequate strength to resist buckling forces as per CSA S6 (2006).  The 

spacing of the cross-frame systems were selected to achieve buckling of the specimen 

beams within the desired elastic stress range.  As shown in Figure 3.3, the cross-frame 

system was composed of 60 mm wide full depth stiffeners that were 8 mm thick and 

welded to the beam flanges and webs.  By providing full depth stiffeners that were 

welded to the beams, it was believed that cross-section distortion is prevented at the 

cross-frame locations.  The cross-frame members were designed to resist both tension 

and compression during beam buckling.  With the scale of the cross-frames in the 

specimen, it was not practical to achieve bolted connections.  Therefore, 5mm fillet welds 

were used to attach the bracing members to the stiffeners.  

 

 
 

Figure 3.3 Typical cross-frame system. 
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The plan bracing system consisted of L64×64×4.8 angles which were installed in a 

Chevron (V-shape) arrangement between the cross-frame braces as displayed in Figure 

3.4.  Due to the scale of the specimen, the angles were welded to the top surface of the 

compression flanges.   

 
Figure 3.4 Typical compression flange bracing detail. 

3.3 TEST SCHEME 

Two specimen configurations were considered in the experimental testing program as 

described in Table 3.2.  

 

Table 3.2 Specimen configurations. 

Specimen Configuration 

C1-1 Twin beams with only cross-frame bracing 

C1-2 Twin beams with only cross-frame bracing 

C2 Twin beams with cross-frame bracing and plan bracing 

 

Specimen C1 refers to the configuration where two beams are connected using only 

cross-frames as shown in Figure 3.5, whereas specimen C2 refers to the case where two 

beams are connected with both cross-frames and plan bracing as shown in Figure 3.6.  

For test C1, the specimen was expected to reach its buckling load while remaining in the 

elastic stress range which would allow the specimen to be reused for test C2 where 

yielding of the material is expected.  However, during the test of specimen C1, the 

specimen buckled in the inelastic range and significant plastic deformation was observed.  

The higher than anticipated buckling load value was attributed to frictional forces that 

developed in the midspan loading system.  The frictional force behaved as a lateral 
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restraint at the beam midspan which caused beam 2 (Figure 3.5) to buckle inelastically.  

A close physical inspection and strain readings indicated that beam 1 was still in the 

elastic range after the removal of the applied load.  It was decided that beam 2 be 

replaced with a new beam and that test C1 be repeated again with specimen C1-2.  In the 

test of C1-2, the loading setup at the interface of the load distribution beam and the top 

flange of the test beam was modified to reduce the friction.  The detailed discussion of 

this modification is provided in Section 3.4.  

 

 

Figure 3.5 Plan view of specimen C1 with vertical cross-frames. 

 

Figure 3.6 Plan view of specimen C2 with cross-frames and plan bracing. 

3.4 TEST SETUP 

The schematic test setup for the loading of the twin beam system is shown in Figure 3.7.  

The downward vertical load was applied through a load distribution beam to the 

specimen at its midspan.  A 500 kN hydraulic ram acting against an existing loading 

frame was used to apply the load.  The load distribution beam was a stiffened W360×79 

that was braced against potential lateral movement during testing using steel knife edges.  

The knife edges were welded to the existing loading frame. The crosshead beam 

(W621x241) of the existing frame was simply connected to the columns (W360x51) with 
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two sets of three 40 mm A325 bolts at each end.  The columns of the frame were welded 

to 35 mm thick baseplates that were in turn anchored to the concrete floor with four 50 

mm diameter bolts.  The ram was mounted to the underside of the crosshead beam 

through a 25 mm thick plate.  The applied load from the hydraulic ram was distributed 

through the load distribution beam and transferred to the top flange of each test specimen 

beam through a roller and pivot assembly as shown in Figure 3.7. 

 

 

Figure 3.7 Schematic test setup. 

 

The roller and pivot assemblies were designed to allow the beam top flange to translate 

and rotate freely during testing.  To achieve the desired movements, the roller and pivot 

assemblies were required to have minimal friction between the rollers and the plate of the 

pivot assembly.  Any appreciable friction between these surfaces would result in lateral 

restraint for the beams. 
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The initial roller assembly used in the testing program is shown in Figure 3.8.  The roller 

assembly consisted of five 25 mm diameter rollers connected together through a 

rectangular cage made of steel flat bars.  The rollers were high strength steel with a 

polished surface.  However, this assembly still showed appreciable friction when 

subjected to compression which resulted in a critical buckling load of the specimen that 

was higher than the analytical value.  After several modifications, it was determined that 

commercial Hilman rollers were best suited for the roller assembly.  The modified system 

is shown in Figure 3.9.  The Hilman roller assembly was suspended in a track that could 

rotate around bearings to minimize frictional forces while maintaining the compression 

forces exerted on the rollers.  The bearing plate in the pivot assembly was surface grinded 

to provide a smooth flat finish.  A lubricant was applied between the surface of the 

Hilman rollers and the pivot plate and on the surface of pivot roller to further reduce 

friction during testing.  

 

  

(a) (b) 

Figure 3.8 Specimen C1-1 (a) Pivot assembly; and (b) roller assembly. 
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Figure 3.9 Specimen C1-2, C2 roller and pivot assemblies. 

The beam ends were supported on bearing assemblies situated on concrete blocks.  The 

bearing assembly simulated the simple support conditions.  The requirement for 

translation in the longitudinal and transverse directions for each support is illustrated in 

Figure 3.10. The translational requirements were achieved by constructing roller 

assemblies similar to the one in Figure 3.8(b).  To achieve translation in the longitudinal 

direction, transverse direction or both directions simultaneously, uni-directional and 

multi-directional bearing assemblies were fabricated.  The uni-directional bearings shown 

in Figure 3.11 had a single roller assembly while the multi-directional bearings shown in 

Figure 3.12 had a roller assembly for each direction of translation.  The test specimen 

was kept at the same elevation at all four bearing supports by maintaining the total height 

of the bearing assemblies. 
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Figure 3.10 Bearing assembly movements. 
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Figure 3.11 Uni-directional bearing assembly. 

  

Figure 3.12 Multi-directional bearing assembly. 

  

Figure 3.13 Pinned bearing assembly. 

The beam rotation at bearing locations was achieved using ball bearings as shown in 

Figure 3.13.  The ball rested in spherical grooves that were machined into both the beam 

sole plate and the bearing plate.   

Sole 

Plate 

Ball 

Bearing  

Bearing 

Plate 
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3.5 INSTRUMENTATION AND DATA ACQUISITION 

The load applied to the specimen was recorded using a 200 kN load cell that was attached 

to the hydraulic ram.  The distribution of the applied load from the distribution beam to 

the specimen was monitored using electrical strain gages.  The webs of both beams were 

instrumented with the electrical strain gages at the supports shown in Figure 3.14.  The 

readings from these strain gages were used to verify equal load distribution between the 

beams and all four supports.  The strain gages had micro-measurement precision. 

 

 

 
 

Figure 3.14 Strain gages instrumented at beam supports. 

 

At midspan, six strain gages were installed on the top and bottom flanges of both beams 

to record the normal strains in the flanges.  A single strain gage was installed at the center 

of the bottom flange while two strain gages were installed on the top flange at either side 

of the beam web.    typical midspan instrumentation for strain gages labelled as “ ” is 

provided Figure 3.15.  Strain gages were installed on the underside of the top flange to 

accommodate installation of the pivot assembly from the loading setup.  The strain 

readings will indicate whether the beams have buckled elastically or inelastically.  Since 

the top flange strain gages were installed on the underside of flange, the recorded top 

flange strain values would then be interpolated to the section’s extreme compression 
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fibre.  Two additional strain gages were also installed on the top and bottom flanges at 

the quarter point of a single beam to supplement the midspan strain readings.  

 

 
 

Figure 3.15 Typical midspan instrumentation schematic. 
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Figure 3.16 Plan view of experimental specimen showing LVDT locations on 

specimen. 

Lateral and vertical displacements were recorded for both beams using Linear Variable 

Differential Transducers (LVDTs) as shown in Figure 3.15 labelled as “ ” and “V” 

respectively.  The midspan vertical displacements were measured on the underside of 

each beam (Figure 3.17a).  The lateral displacements were recorded at the midspan and 

quarter point locations (Figure 3.17b).  The LVDTs were instrumented on the top and 

bottom flanges of beam 1 and only on the top flange of beam 2 as displayed in Figure 

3.16.  The top and bottom flange displacement readings provided a method to monitor the 

twist of the section at various locations.  Inclinometers were also installed on the top and 

bottom flanges of both beams at midspan.  The inclinometers were used to verify the 

amount of beam twist which was calculated using the LVDTs.  A typical inclinometer 

can be observed in Figure 3.18.  The load, deflections and strain readings were recorded 

using an electronic data acquisition system throughout the loading history of each test.  
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(a) (b) 

Figure 3.17 (a) Vertical displacement; and (b) lateral displacement. 

 
 

Figure 3.18 Midspan inclinometer. 

3.6 TEST PROCEDURE 

The specimen was aligned over the end supports and under the loading beam such that 

the load would be applied at midspan of both beams.  The support bearing assemblies at 



38 

 

the beam ends were shimmed to ensure the specimen had the same top flange elevation at 

each beam end.  The load distribution beam was aligned and the roller assemblies were 

aligned above the center of the beam webs.  Any initial eccentricities between the center 

of the roller assemblies and the centers of the beam webs were corrected.  

 

After the alignment of the load distribution beam, the initial imperfections such as out-of-

straightness of the beam web and lateral sweep of the beams were measured and 

recorded.  The initial out-of-straightness of the beam web was measured by dropping a 

plumb-bob from the edge of the beam top flange to bottom flange.  A 3 mm differential 

in flange location was recorded for both beams as shown in Figure 3.19.   

 

 

Figure 3.19 Initial out-of-straightness of beam webs. 

The lateral sweep of the beams was measured by running a string along the edge of the 

beam flange from one end to the other.  The distance between the string line and beam 

flange at one meter station intervals was measured using a set of Vernier calipers.  This 

process was repeated for both the flanges and web of each beam.  A maximum lateral 

sweep of 9 mm was recorded at the midspan of each beam as shown in Figure 3.20.  The 

measured initial imperfections fall within the allowable limits provided by CSA S16 

3 mm 

127 mm 

349 mm 
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(2010), where the maximum allowable sweep was calculated to be 22 mm for the beam 

span and a web out-of-straightness of 5 mm. 

 

 

 

 

 

 

Figure 3.20 Initial lateral sweep of beams. 

The initial location of the support bearing assembly rollers were recorded with respect to 

the top and bottom bearing plates to determine the global translation of the test specimen 

at the buckling load.  Prior to actual testing, a preloading procedure was conducted where 

20% of the predicted elastic critical buckling load was applied to the test specimen and 

then removed.  This process was repeated twice to ensure that the specimen was “settled 

in” and all instrumentation devices functioned properly before testing.  During testing, 

the specimen was loaded at a rate of 2.4 kN/min and the data was recorded at a scan rate 

of 1 hertz. The applied load was removed from the specimen when visible signs of 

buckling or yielding were observed. 

3.7 TENSION TEST 

Eight steel coupons were cut from a single beam of Specimen C1-1 since both beams 

were fabricated from the same mill stock.  Additional eight coupons were cut from the 

replacement beam used in Specimen C1-2 and C2.  For each beam, coupons consisted of 

2 from each flange and 4 coupons from the web as shown in Figure 3.21.  

 

Δ = 9 mm 
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                         Coupons Cutting Area

 

Figure 3.21 Tension coupon cutting scheme. 

The coupons were milled in accordance with the ASTM Standard A370 (2012) for 

specimens with a gauge length of 50 mm as shown in Figure 3.22.  The coupons were 

tested using an Instron universal testing machine with a capacity of 2000 kN as shown in 

Figure 3.23.  The coupons were loaded at a constant rate of 3 mm/min and the elongation 

of each coupon was measured using a digital extensometer with a 50 mm nominal gauge 

length.  
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G – Gauge Length, mm 

W – Width, mm 

T – Thickness, mm 

R – Radius of fillet, mm 

L – Overall length, mm 

A – Length of reduced section, mm 

B – Length of grip section, mm 

C – Width of grip section, mm 

Figure 3.22 Tensile coupon dimensions. 
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Figure 3.23 Tension coupon test setup.  
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CHAPTER 4        EXPERIMENTAL RESULTS 

4.1 MATERIAL PROPERTIES 

The first beam stock consisted of beams from specimen C1-1whereas the second beam 

stock consisted of the replacement beam for specimens C1-2 and C2.  A summary of the 

material properties, including the modulus of elasticity E, yield stress fy, and ultimate 

stress fu, is provided for each coupon in Table 4.1.  A typical stress-strain curve for a 

coupon that was removed from the flange of beam stock one is shown in Figure 4.1.  The 

stress-strain curve did not show a pronounced yielding plateau; therefore, the yield 

strength was determined using the 0.2% offset method specified by the ASTM A370 

Specifications (2012).  Additional coupon stress-strain plots can be observed in Appendix 

A. 

 

 

Figure 4.1 Coupon OF 2 stress-strain curve. 
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fy = 378 MPa 
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Table 4.1 Material properties. 

Coupon No. Beam Stock Location E (MPa) fy (MPa) fu (MPa) 

OF 1 1 Flange 198684 378 503 

OF 2 1 Flange 204293 378 524 

OF 3 1 Flange 279434 396 525 

OF 4 1 Flange 120631 386 528 

mean   200761 385 520 

OW 1 1 Web 197475 417 530 

OW 2 1 Web 213306 421 530 

OW 3 1 Web 192101 415 539 

OW 4 1 Web - - - 

mean   200961 418 533 

NF 1 2 Flange 240629 383 536 

NF 2 2 Flange 234982 382 533 

NF 3 2 Flange 202123 387 540 

NF 4 2 Flange - - - 

mean   225911 384 536 

NW 1 2 Web 207303 445 - 

NW 2 2 Web 218417 454 550 

NW 3 2 Web 202280 432 531 

NW 4 2 Web 218564 444 544 

mean   211641 444 542 

 

The modulus of elasticity used in the later calculation for each specimen is listed in Table 

4.2.  The listed value for each beam is the average value of both the beam flange and web 

modulus results presented in Table 4.1. 

Table 4.2 Specimen modulus of elasticity.  

Specimen 
Modulus of Elasticity (MPa) 

Beam 1 Beam 2 

C1-1 200861 200861 

C1-2 200861 218776 

C2 200861 218776 

 

 



44 

 

4.2 RESIDUAL STRESS 

The residual stress distribution for the specimen beams was not experimentally obtained 

in this study.  A commonly accepted residual stress distribution presented by Galambos 

and described in Figure 4.2 was assumed instead.  

 

The peak residual stresses were calculated to be 115 MPa in compression at the flange 

tips and 43 MPa in tension at the flange to web junction.  A yield stress of 385 MPa 

determined from the tension coupon tests for flanges was used to calculate these peak 

residual stress values.  These values were used to monitor whether the specimen had 

reached the inelastic stress range.   

 

 

Figure 4.2 Simplified Residual Stress Pattern (Trahair et al., 1972). 

4.3 BUCKLING CAPACITY 

Table 4.3 summarizes the results of specimens including the critical buckling load, mid-

span top flange lateral displacement, ΔL, mid-span vertical displacement, ΔV, all taken at 

the buckling load, and the failure mode for each specimen.  The critical buckling load, Pcr 

was defined as the load at which point the lateral displacement of compression flanges at 

midspan showed a rapid increase while the applied load remained roughly unchanged.  
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Table 4.3 Experimental results for test specimens. 

Test 

Specimen 

Pcr 

(kN) 

ΔL,B1 

(mm) 

ΔL,B2 

(mm) 

ΔV,B1 

(mm) 

ΔV,B2 

(mm) 
Failure Type 

C1-1 99.5 3.0 2.0 79.1 78.2 Inelastic Buckling 

C1-2 72.2 8.6 2.0 62.2 56.8 Elastic Buckling 

C2 145.3 1.6 1.8 133.0 127.9 
Yielding/Web 

Buckling 

The load versus midspan lateral displacement response for each specimen is presented in 

Figure 4.3 to 4.5 whereas the load vs. midspan vertical displacement response is 

presented in Figure 4.6 to 4.8.  The respective buckling load of each specimen is also 

identified in the lateral displacement plots.  The load vs. lateral displacement response of 

specimens C1-1 and C1-2 showed a rapid increase in displacement at the buckling load.  

At this point it is considered the beam has lost stability.  However, the corresponding 

load versus vertical displacement responses remained almost linear up to the buckling 

load.  This indicates that the failure of these two specimens was by buckling.  On the 

other hand, the load versus vertical displacement response of specimen C-2 exhibited 

signs of non-linearity at the buckling load, indicating that yielding has occurred before 

the web buckled.  A yielding load of 119 kN was defined using experimental strain data 

and vertical displacement readings.  It is noted that specimens C1-2 and C2 exhibited 

slightly different load vs. vertical displacement responses.  The vertical displacements 

recorded for each beam of specimen C1-2 deviated as loading increased whereas the 

beams of specimen C2 experienced nearly identical vertical displacements.  It is believed 

that the presence of plan bracing resulted in a beam system that behaved as a unit 

vertically.  
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Figure 4.3 Specimen C1-1 load vs. midspan lateral displacement response.  

 

 

 

Figure 4.4 Specimen C1-2 load vs. midspan lateral displacement response. 
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Figure 4.5 Specimen C2 load vs. midspan lateral displacement response. 

 

 

 
Figure 4.6 Specimen C1-1 load vs. midspan vertical displacement response. 
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Figure 4.7 Specimen C1-2 load vs. midspan vertical displacement response. 

 

 
Figure 4.8 Specimen C2 load vs. midspan vertical displacement response. 

Specimens C1-1 and C1-2 attained different buckling loads even though both specimens 

were tested with identical cross-frame bracing configuration.  Specimen C1-1 attained 

37.8% higher buckling load than specimen C1-2.  As discussed in Chapter 3, the 

difference between these two specimens was the roller assembly that supports the load 

distribution beam.  Also shown in Figure 4.3, little lateral displacement was recorded 

prior to buckling for both beams for specimen C1-1.  It was believed the roller assembly 

used during testing of specimen C1-1 had exerted frictional forces that attributed to little 
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lateral movement of both beams prior to buckling.  These frictional forces also 

contributed to a higher buckling load than specimen C1-2.  The Hilman roller system 

used in specimen C1-2 is designed to generate minimal friction during movements of 

heavy loads.  As shown in Figure 4.4, beam 1 showed a pronounced lateral displacement 

at buckling which indicates that a reduction in friction from the Hilman roller system was 

present.  As a result of the reduced friction, the buckling load was within the anticipated 

range obtained from a finite element analysis.  Specimen C2 shown in Figure 4.5 had 

little lateral displacement for both beams.  This behaviour was anticipated since the plan 

bracing stabilizes the compression flanges.  The addition of plan bracing to the cross-

frame bracing (Specimen C2) provided a significant increase in the buckling capacity of 

the specimen.  This increase in capacity is 101% when compared to specimen C1-2 

which has only cross-frame bracing. 

4.4 FAILURE MODES 

The schematic views of the buckled shapes are shown in Figure 4.9 for all three 

specimens. 

 

 

 

(a) 

(b) 

Δbrace = 0 mm 

Δbrace > 0 mm 
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Figure 4.9 Buckled shape of specimen: (a) C1-1, (b) C1-2 and (c) C2. 

For specimen C1-1 (Figure 4.9a), beam 2 (B2) showed an evident sinusoidal buckled 

shape during experimental testing while beam 1 did not exhibit any evident signs of 

buckling.  Therefore, load vs. lateral displacement responses were relied upon to verify 

the buckled shape of beam 1.  A photograph of the failure mode is shown in Figure 4.10.  

The frictional forces exerted by the roller assembly at the loading point on the flanges are 

believed to attribute to this failure mode.  The frictional force behaved as a lateral 

restraint at midspan of each compression flange causing the specimen to buckle at a 

higher mode resulting in a higher buckling capacity.  The buckling of the beam 2 was in 

the inelastic range where yield lines were visible on the inside portion of the compression 

flange of the midspan segment situated between cross-frames as shown in Figure 4.11.  

The inclinometer readings indicate there was 0.5 degrees of rotation recorded about the 

longitudinal axis of the specimen at the top flange when buckling occurred.  It was also 

noted that a 10 mm longitudinal translation was measured in the free end support bearing 

assemblies.  

(c) 

Δbrace = 0 mm 
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Figure 4.10 Deformed shape with sinusoidal buckling of specimen C1-1 post 

failure. 

 
 

Figure 4.11 Yielding of specimen C1-1 beam 2 compression flange. 

 

An expected global elastic lateral torsional buckling failure was achieved for specimen 

C1-2 after modifications were incorporated to reduce the frictional restraint in the roller 

assembly.  The buckled shape of the test specimen was not visible due to the small lateral 

displacements of the compression flanges.  The load vs. displacement responses were 

Beam 2 
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relied upon to signify when the specimen had a sudden change in lateral stiffness as a 

result of lateral torsional buckling.  Once buckling was thought to have occurred, the 

applied load was removed from the specimen to prevent the material from undergoing 

strain-hardening and failing from inelastic buckling.  An inclinometer reading of 0.3 

degrees was recorded for the top flange rotation when buckling occurred and an 8 mm 

longitudinal movement was measured in the free end support bearing assemblies.   

 

Specimen C2 showed no apparent yield lines on the compression flange prior to failing 

by web buckling of the midspan region at the ultimate load.  The specimen buckled 

between torsional cross frames in the segment of beam that was unbraced at midspan 

shown in Figure 4.12.  This failure was catastrophic resulting in lateral buckling of both 

the girder flange and the web shown in Figure 4.13 with visible yield marks in the web 

and permanent deformations to both the compression flange and web.  An inclinometer 

reading of 1.0 degrees was recorded for the top flange rotation when buckling occurred.  

No longitudinal movements were recorded for specimen C2 as a result of the specimen 

leaving the end support bearing assemblies when buckling occurred. 

 

  

(a) (b) 

Figure 4.12 (a) Inelastic buckling of specimen C2; and (b) magnified view of 

inelastic buckling failure. 
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Figure 4.13 Local buckling of specimen C2 compression flange and web. 

4.5 VERIFICATION OF TEST SETUPS AND INSTRUMENTATION 

In this section, vertical displacement readings are verified with the calculated values, and 

strain gauge readings are used to verify the stresses developed in the specimen.  The 

midspan vertical displacement results were verified by calculating the midspan 

displacement for a simply supported beam with a concentrated load at the beam midspan 

using Equation [4.1]. 

   
   

     
 [4.1] 

where, 

Δv is maximum midspan vertical displacement (mm), 

 P is the load applied to the beam (N), 

 L is the beam length (mm), 

 E is the modulus of elasticity tabulated from Table 4.2 (MPa), 

 Ix is the beam’s strong axis moment of inertia (mm
4
). 

The calculated vertical displacements are shown with the experimental results in Figures 

4.14 to 4.16.  It shows that the calculated vertical displacements are in good agreement 

with experimentally measured values when using the experimentally obtained modulus.  

Even for specimen C2, although the curve began to show nonlinearity due to yielding, the 
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calculated vertical displacement compared well with experimental values for a major 

portion of the curve. 

 

 

Figure 4.14 Specimen C1-1 comparison of calculated and experimental vertical 

displacements. 

 

Figure 4.15 Specimen C1-2 comparison of calculated and experimental vertical 

displacements. 
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Figure 4.16 Specimen C2 comparison of calculated and experimental vertical 

displacements. 

The distribution of the applied load to the two beams was also verified using vertical 

strains mounted in the beam webs at the end supports.  As shown in Figure 4.17, the 

recorded vertical strains for Specimen C1-1 were within 5 microstrains at the beam ends 

under an applied load of 99.5 kN which is acceptable from a practical viewpoint.  Similar 

strain readings were obtained for specimens C1-2 and C2.  

 

 

Figure 4.17 Specimen C1-1 vertical strains in webs of beam ends. 
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Strain readings were also obtained to monitor flexural stress at various locations along 

the length of the specimen as shown in Figure 4.18.  The location 1 was situated 3 meters 

from the end of beam 2.  

 

Figure 4.18 Location of longitudinal strain gages along specimen. 

Figure 4.19 shows the neutral axis plot for specimen C1-2 obtained at location 1 using 

strain readings S7 and S8.  The experimental neutral axis was measured at 175.2 mm 

from the bottom flange.  This was in compliance with the theoretical neutral axis 

elevation of 174.5 mm calculated using the section properties of the beam.  

S8 

S7 

5.5m 

3m 

B1 

B2 

Legend: 

Location 1 

Midspan 

Location 1 Strain 

Gages 

S3 

Midspan Strain 

Gages 

S1 S2 

S6 

S4 S5 

Beam 1 Beam 2 
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Figure 4.19 Specimen C1-2 experimental neutral axis plot at location 1.  

For midspan location, the normal strains from the flanges of both beams were plotted for 

all three specimens in Figure 4.20 to 4.22.  Since gages were mounted on either side of 

the beam web, the average of these strain readings was used in plotting the midspan 

neutral axis.  The figures show that the neutral axis locations for specimens C1-2 and C-2 

are similar. However, the neutral axis for the two specimens was determined to be 

approximately 22 mm (196-174 = 22 mm) higher than that determined for location 1.  

This discrepancy is believed to be attributed to the plate (part of the pivot assembly) 

welded on the top flange of the two beams at midspan as shown in Figure 4.23.  The weld 

may have engaged a portion of the plate resulting in an increase in the elevation of the 

experimental neutral axis.  The engaged portion of the pivot assembly base was roughly 

13 mm high by 50 mm wide.  The average neutral axis location for two beams in 

specimen C1-1 (Figure 4.20) was about 192 mm which was similar to the other two 

specimens but the strain readings for two beams had more pronounced variation.  This 

variation was believed to attribute to the failure mode of specimen C1-1 where one beam 

(beam 2) buckled inelastically and the other beam (beam 1) buckled elastically.  The 

normal strain distribution of beam 2 was affected by warping of the flange causing the 

strains to be magnified at the S4 gage location when buckling had occurred.   
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Figure 4.20 Specimen C1-1 midspan experimental neutral axis plot.  

 

Figure 4.21 Specimen C1-2 midspan experimental neutral axis plot. 
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Figure 4.22 Specimen C2 midspan neutral axis plot. 

 

 

Figure 4.23 Engaged portion of pivot assembly base. 

The stresses calculated using experimental load and section modulus are compared with 

experimental normal stresses obtained from strain readings and the comparison is 

presented in Table 4.4.  Each beam had to be analyzed individually due to varying 

elevations of the beams’ neutral axis resulting in each beam having slight variance in 

their section properties. The theoretical yield stress was also presented in the table.  These 

y = -0.184x + 197.5 

y = -0.193x + 197.3 

0

50

100

150

200

250

300

350

400

-1500 -1000 -500 0 500 1000 1500

B
ea

m
 E

le
v

a
ti

o
n

 (
m

m
) 

Microstrain (μmm/μmm) 

Beam 1

Beam 2

Linear (Beam 1)

Linear (Beam 2)

13 

mm 

50 

mm 



60 

 

stresses were determined incorporating the residual stress from Section 4.2.  It is noted 

that the stresses for specimen C2 were calculated at load of 119 kN when yielding had 

occurred whereas the stresses for specimens C1-1 and C1-2 were calculated at the 

buckling load.  A comparison between the experimental stresses and theoretical yield 

stress shows that specimen C1-2 remained elastic while specimens C1-1 and C2 

developed yielding in beam 2.  This is consistent with the experimental observation.  

 

Table 4.4 Comparison of experimental and calculated flexural stress. 

Test 

Specimen 

Experimental Normal 

Stress (MPa) 

Calculated Normal Stress 

(MPa) 

Theoretical Yield 

Stress (MPa) 

Beam 1 Beam 2 Beam 1 Beam 2 Beam 1 and 2 

σtop / σbottom σtop / σbottom σtop / σbottom σtop / σbottom σtop / σbottom 

C1-1 -208 / 294 -283 / 308 -188 / 267 -259 / 281 

-270 / 342 C1-2 -171 / 226 -181 / 227 -147 / 195 -151 / 195 

C2 -289 / 328 -310 / 385 -211 / 281 -228 / 302 

 

The results of Table 4.4 indicate the stresses calculated using the experimental strain 

values were 10 – 20% greater than the stresses calculated using the applied load for all 

specimens.  This error was suspected to be from two sources: one of which was from 

strain gauge transverse sensitivity and the other was a result of cross-section warping and 

twisting at lateral buckling.  A publication by the strain gage manufacturer, Vishay 

Precision Group, states that the error due to transverse sensitivity ranges between 0.9 - 

2.0% of the axial strain reading (Vishay Precision Group, 2011).  The warping of the 

cross-section will result in additional axial strains either added or subtracted from the 

flange strain of the test specimen and these strains were not included in the calculated 

stresses.  Elsayed (2000) observed that I-girders without web stiffeners displayed web 

distortion which resulted in an increase of the compression flange stresses. These 

observations indicate that cross-section warping may have resulted in the experimental 

flange stresses to be magnified in Table 4.4 since no web stiffeners were provided 

beneath the midspan loading arrangement. 
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4.6 COMPARISON TO ANALYTICAL RESULTS 

In this section, the experimental results are compared to the analytical values obtained 

using methods presented in Chapter 2.  The experimental results of Specimen C1-1 were 

not included in the comparison since the analytical methods do not account for the lateral 

restraint developed at the midspan loading points.  

 

The experimental critical moment was calculated using Equation [4.2] which takes into 

account the moment developed from specimen self-weight that had been previously 

neglected in the load vs. displacement responses.  

 

       
       

 
 

     
 

 
 

 

[4.2] 

 

where, 

        is the experimental critical buckling load of the specimen (kN), 

      is the uniformly distributed selfweight of the specimen (kN/m). 

4.6.1 Specimen C1 Comparison 
 

The results comparison of Specimen C1-2 where beams are braced using only torsional 

bracing is presented in Table 4.5.  The analytical solutions for the buckling moment were 

calculated from research by Taylor and Ojalvo (1966), Phillips (1990), Yura (2001), and 

Yura et al. (2008).  The provided torsional cross-frame system stiffness of a single cross-

frame and the continuous torsional cross-frame stiffness were calculated in accordance 

with Equation [2.1] and Equation [2.15] respectively.  Since the intermediate web 

stiffeners at the torsional brace locations were welded to the beam flanges, the stiffness 

reduction due to cross-sectional distortion was neglected in Equation [2.1].  All critical 

moment calculations are presented in Appendix B.  
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Table 4.5 Specimen C1 Mcr results comparison. 

Specimen Experimental 

Taylor and 

Ojalvo (1966), 

Eqn. [2.14] 

Phillips 

(1990), 

Eqn. [2.16] 

Yura 

 (2001), 

Eqn. [2.17] 

Yura et al. 

(2008), 

Eqn. [2.23] 

C1-2 209 kN·m 212 kN·m 200 kN·m 229 kN·m 292 kN·m 

 

The calculated critical moment using a continuous torsional brace stiffness presented by 

Taylor and Ojalvo (1966) overestimated the experimental moment by 1.4%.  This 

solution appeared to be quite accurate but the analytical value does not account for the 

effects of moment gradient.  If a moment gradient factor calculated using Equation [2.16] 

was applied to this solution based on the length of the unbraced segment, the critical 

moment would be overestimated by 10%.  

 

The numerical solution presented in Equation [2.16] by Phillips (1990) underestimates 

the experimental moment by 4.5%.  This solution does not account for the effects of 

moment gradient or loading height, but considers the reduction in torsional brace stiffness 

caused by initial imperfections shown in Equation [2.5]. 

 

Yura (2001) modified the solution for the critical moment from previous work by Phillips 

(1990) to account for load height and moment gradient.  The analytical value 

approximated the experimental critical moment to within 10%.  This method is simple to 

use yet provides an approximate solution that is quite accurate and accounts for various 

loading scenarios.  A loading height factor Ct = 1.0 was used in the analysis since Yura 

suggested that loading height effect was negligible for twin girder systems with only 

torsional braces. A moment gradient factor was calculated using Equation [2.13]. 

 

The calculated critical moment using the closed form solution presented by Yura et al. 

(2008) overestimated the experimental moment by 40%.  Yura et al. (2008) applied a 

moment gradient factor of 1.35 for a beam subjected to a midspan point load based on 

recommendations provided in Galambos (1998).  Yura et al. also indicates the top flange 

loading effects are negligible for twin girder systems and that a 30% reduction in critical 
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moment should be applied for twin girders braced with only two intermediate torsional 

cross-frames (2008). 

4.6.2 Specimen C2 Critical Moment Comparison 
 

The comparison of results of Specimen C2 where beams are braced using a combination 

of lateral and torsional bracing is presented in Table 4.6.  The analytical value was 

calculated using Equation [2.18] (Phillips, 1990).  The torsional brace stiffness was 

calculated using the same methodology as for Specimen C1.  The stiffness of the top 

flange bracing was calculated using Equation [2.21].  The angular component of the 

calculated member stiffness was required to determine the lateral stiffness provided to the 

top flange at the brace point.  An initial imperfection of 9 mm was used to calculate the 

reduction factor for imperfections cL.  Equation [2.18] does not consider the effects of 

moment gradient.  

Table 4.6 Specimen C2 Mcr results comparison. 

Specimen Experimental 
Phillips (1990) 

Eqn. [2.18] 

C2 364 kN·m 364 kN·m 

 

The critical moment value of Equation [2.18] was governed by yielding of the section, 

My.  Utilizing the yield stress presented in Table 4.1 a yield moment was calculate to be 

within 1% of the experimental moment.  The critical moment resistance with 

combination of lateral and torsional bracing significantly increases the critical moment.  

In comparison to Specimen C1-2, the addition of lateral bracing to force yielding of the 

test specimen (Specimen C2) results in an increase of critical moment by a factor of 1.73. 

4.7 COMPARISON TO DESIGN STANDARDS 

Table 4.7 compares the experimental critical moment for a single beam of specimen C1-2 

with the analytical critical moment using CSA S6 (2006). The moment magnifier 

developed by Wong and Driver (2010) was adopted to account for effects of moment 

gradient and the loading height effect was considered by implementing an ω2 value of 1.0 
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with an effective length of 1.2Lu, where Lu is the distance between intermediate cross-

frames. Sample critical moment calculations based on CSA S6 (2006) are included in 

Appendix C.  

 

A 33% reduction in the experimental critical moment was observed when top flange 

loading effect was considered.  As discussed in Chapter 2, Yura et al. (2008) indicated 

that top flange loading was negligible for twin girder specimens.  When top flange 

loading was neglected in the CSA S6 (2006) calculation, the calculated critical moment 

was within 3% of the experimental critical moment. If top flange loading is considered in 

design as per CSA S6 (2006) then an effective unbraced length of beam (distance 

between intermediate cross-frames) of 2864 mm is required to achieve a moment 

equivalent to the critical moment of specimen C1-2 provided in Table 4.7. 

 

Table 4.7 Specimen C1-2 Mcr Comparison to CSA S6 (2006) (per beam). 

 Experimental Top Flange Loading No Top Flange Loading 

Mcr (kN·m) 104.5 kN·m 69.8 kN·m 101.8 kN·m 

 

This suggests that top flange loading does not have a significant effect on the critical 

moment of twin girder specimens.  This observation has also been suggested by Helwig 

et al. (1993), Yura (2001), Yura et al. (2008) as described in Chapter 2.  

 

Specimen C2 critical moment is compared to the critical moment calculated in 

accordance with CSA S6 (2006) in Table 4.8.  Values in the second and third columns of 

the table are the calculated critical moments using Equation [2.24] for the unsupported 

length of beam between cross-frames (3.667 m) and the unbraced length of beam 

measured between in plan brace points (1.838 m) respectively. In the former case, the 

CSA S6 (2006) equation markedly underestimated the experimental critical moment 

regardless whether the top flange loading effect was considered. In the latter case,  the 

CSA S6 (2006) critical moment with top flange loading only underestimated the 

experimental results by a factor of 1.02 resulting in a calculated critical moment of 178.8 
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kN·m per beam. When top flange loading was neglected, CSA S6 (2006) overestimated 

the experimental results by a factor of 1.10. 

 

Table 4.8 Specimen C2 Mcr comparison to CSA S6 (2006) (per beam). 

Specimen C2 
Mcr (kN·m) – Lu between 

cross-frames 

Mcr (kN·m) – Lu between 

lateral braces 

Experimental 182.0 

Top Flange Loading 69.8 178.8 

No Top Flange Loading 101.8 200.0 

 

For beams braced using a combination of lateral and torsional bracing, the CSA S6 

(2006)  equation is accurate when the distance between lateral brace points is considered 

as the unbraced length and top flange loading effect is considered.  It suggests that the 

loading position effect should be included in the critical moment calculation when the 

lateral braces are present. Research conducted by Yura (2001) also indicated that unlike 

the torsionally braced beams, loading height has a significant effect on the critical 

moment of laterally braced beams.   
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CHAPTER 5        FINITE ELEMENT ANALYSIS 

5.1 GENERAL 

A finite element study was conducted to supplement the experimental results while 

providing an alternate method to investigate additional parameters that may influence the 

lateral stability of the twin girder specimen.  

 

The modeling was conducted using Lusas Bridge Plus 14.7 finite element software


, 

which is developed for the analysis, design, and assessment of all types of bridge 

structures (Lusas, 2013).  This software provided the capability of incorporating 

geometric and material nonlinearity in the buckling analysis. 

5.2 FINITE ELEMENT ANALYSIS 

5.2.1 Description of Elements 
 

The finite element model was developed using QTS4 and BTS3 elements available in 

Lusas.  The beam flanges, web and stiffener plates were all modeled using the QTS4 

element which is a 3D, 4-node quadrilateral thick shell element.  This element is suitable 

for analyzing thick shell geometries that are susceptible to material and geometric non-

linearity such as large displacements, rotations, and strains.  The lateral and torsional 

bracing members between beams were modeled using BTS3 elements which are 3D, 2- 

node thick beam elements.  These elements are also capable of accounting for geometric 

and material non-linearities.  A summary of the degrees of freedom for each element used 

in the finite element model is presented in Table 5.1. 

 

Table 5.1 Element summary. 

Element Name Number of Nodes Degrees of Freedom 

QTS4 4 ux, uy, uz, θx, θy, θz 

BTS3 2 ux, uy, uz, θx, θy, θz 
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5.2.2 Material Non-Linearity and Stress-Strain Relationship 
 

Two types of material models were used to represent the behaviour of steel.  The first 

material model used to define the material behaviour in the parametric study was an 

elastic perfectly plastic model shown in Figure 5.1.  The standard material properties 

were used for steel where an elastic modulus E, of 200,000 MPa and a yield stress Fy, of 

350 MPa were assumed.  The second material model shown in Figure 5.2 was 

implemented to validate the results of the experimental program by implementing a 

multi-linear material model developed from coupon testing.  A detailed description of the 

material model can be found in Appendix D. 

 

Figure 5.1 Elasto-plastic material model. 
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Figure 5.2 Test specimen material model applied to finite element. 

5.2.3 Finite Element Mesh  
 

The specimen was meshed using thick shell elements for the girder flanges, webs, and 

stiffeners whereas all bracing members between girders were meshed using thick non-

linear beam elements.  All shell elements were meshed in the middle plane of each 

component. The nodes at the flange to web junctions and stiffener to web/flange 

junctions were made coincidental to allow the nodes to be easily merged.  To simplify the 

model, the fillet developed from the hot rolling process at the web to flange junction was 

ignored while the distance between the bottom and top flange centroids of the girder was 

maintained.  This resulted in a small area of overlap from the web element being 

extended half the thickness of flange at the web to flange junction as shown in Figure 5.3.  

The overlap at the web to flange junction is negligible in comparison to the remaining 

area of the girder and was thus ignored in the analysis.  
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Figure 5.3 Cross-section of finite element mesh.  

A convergence study was conducted to determine an efficient mesh density for the finite 

element model.  Four different element sizes with edge lengths of 60 mm, 30 mm, 20 mm 

and 15 mm were analyzed using a non-linear buckling analysis.  The results of the 

convergence study shown in Table 5.2 indicated that a mesh with a 20 mm edge length 

provides sufficient accuracy and computational efficiency. 

 

Table 5.2 Mesh convergence study results. 

Maximum Edge Length 

(mm) 

Pcr  

(kN) 

Difference 

(%) 

Computational Time 

(hrs) 

60 76.24 - 0.15 

30 74.16 1.028 0.37 

20 71.92 1.060 1.10 

15 71.92 1.060 8.00 

 

The flanges of the W360x33 section were meshed using six elements across the flange 

width. Each element was 21 mm x 20 mm with a corresponding thickness of 8.5 mm.  

Flange/Web 

Overlap 

Flange/Web 

Overlap 

127 mm 

8.5 mm 

5.6 mm 

349 mm 
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The webs had a similar element size that had dimensions of 20 mm x 20 mm with a 

corresponding thickness of 5.6 mm.  The lateral bracing members that compose the cross-

frame system shown in Figure 5.4 were meshed with member lengths of roughly 115 mm 

resulting in the member being subdivided into 6 divisions between flange tips.  As shown 

in Figure 5.4, the cross-frame members were connected to both girders at the web to 

flange junctions.  

 

 

Figure 5.4 Typical cross-frame mesh. 

5.2.4 Initial Imperfections 
 

The initial out-of-straightness of the specimen was incorporated directly into the finite 

element model geometry.  This was achieved by plotting the nodes of the girder cross-

section based on the sweep measurements recorded at one meter intervals along the 

girder length.  The coordinates of these nodes were input in the model forming the curved 

geometry of the specimen.  An alternative method to consider the initial out-of-

straightness of the specimen is to scale the deformed shape of the eigenvalue buckling 

analysis.  However, it was thought that modeling the out-of-straightness using laboratory 

measurements would achieve a more accurate solution.  

5.2.5 Boundary Conditions 
 

Boundary conditions were applied to the model to simulate a twin-girder system that was 

simply supported in bending and torsion.  Transverse and longitudinal translations were 

restrained at the end supports based on the support conditions provided in Figure 3.10.  

Brace Members Connected to 

W360x33 Beam at Web to 

Flange Junction (Typical at all 

Cross-Frame Locations) 
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The restraints shown in Figure 5.5 were situated at the web to bottom flange junction at 

all end supports. 

 

    

(a) Brg 1 (b) Brg 2 (c) Brg 3 (d) Brg 4 

Figure 5.5 Finite element model end support conditions. 

5.2.6 Residual Stresses 
 

The residual stress profile shown in Figure 4.2 was implemented into the finite element 

analysis.  The triangular distribution was simplified using a series of uniform stresses that 

were applied to each element through the cross-section as shown in Figure 5.6.  The 

residual stresses were applied to the finite element model using the residual stress loading 

application provided in Lusas (2013).  The residual stress distribution was applied to the 

model during the first load increment of the non-linear analysis. 

 

 

Figure 5.6 Residual stress pattern applied to finite element model. 

-88 MPa 

-15 MPa 

17 MPa 
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5.2.7 Load Application 
 

The location of the applied load in the finite element analysis was developed to simulate 

the loading transferred from the spreader beam to the specimen in the experimental setup.  

A uniformly distributed load shown in Figure 5.7 was applied at the top flange to web 

junction at the beam midspan.  The length of the uniformly distributed load was 

equivalent to the length of the pivot assembly used in the experimental program.  A 

uniformly distributed load was applied to the model to prevent potential local buckling 

failure which may occur if a single point load was applied at an infinitesimal point on the 

beam midspan. 

 

 

Figure 5.7 Typical midspan load application at top flange to web junction. 

5.2.8 Non-Linear Buckling Analysis 
 

The critical buckling load was determined using a non-linear analysis.  The midspan load 

presented in Figure 5.7 was applied to the model in a number of load increments.  For 
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each load increment, iterations are conducted in order for the structure to converge to an 

equilibrium state with the balanced forces.  Lusas uses the Newton-Raphson procedure 

for this incremental-iterative method (Lusas, 2013). 

 

In the sub step of the first load increment, the residual stresses and the specimen self-

weight were applied to the finite element model using an initial input file.  The following 

loading increments were applied up to a limit that exceeded the anticipated buckling load.  

To ensure that convergence of the load increments was achieved, a value of twenty 

iterations per increment was selected.  The time history utility available in Lusas (2013) 

provided the ability to plot the applied load versus the structural deformation for each 

load increment.  These time history plots formed the basis of the load versus 

displacement responses that were utilized to determine the critical buckling load.  

 

5.3 FINITE ELEMENT RESULTS 

For each test specimen, the load versus lateral displacement and load versus vertical 

displacement responses were obtained.  The finite element critical buckling load was 

defined from the load versus lateral displacement diagram in which the specimen 

displayed a loss of lateral stiffness that was indicated by a sudden increase in lateral 

displacement while the load remained constant.  The buckling modes for each test setup 

were also determined by plotting the deflected shape of the specimen at the critical 

buckling load.  The numerical results are provided in Table 5.3 along with the 

experimental results of the three test specimens. 

 

Table 5.3 Summary of finite element and test results for three specimens. 

Test 

Spec. 

Finite Element Study Experimental Study 

Pcr 

(kN) 

ΔL,B1 

(mm) 

ΔL,B2 

(mm) 

ΔV,B1 

(mm) 

ΔV,B2 

(mm) 

Pcr 

(kN) 

ΔL,B1 

(mm) 

ΔL,B2 

(mm) 

ΔV,B1 

(mm) 

ΔV,B2 

(mm) 

C1-1 105.0 4.1 3.4 84.0 79.7 99.5 0.3 1.2 79.1 78.2 

C1-2 70.0 11.5 9.5 69.8 58.0 72.2 8.6 2.0 62.2 56.8 

C2 142.6 1.5 26.1 126.4 110.0 145.3 1.6 1.8 133.0 127.9 
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Specimen C1-1 was modelled with the assumption that the friction developed in the roller 

assembly provided lateral restraint to the top flange of each girder.  To verify this 

assumption, lateral springs situated at the roller location on the top flange of each beam 

were implemented in the specimen C1-1 model to simulate the effect of this friction.  A 

small experimental procedure shown in Figure 5.8 was developed to determine the spring 

stiffness required in the finite element model.  The experiment consisted of a small 

column that was loaded axially under a constant load with roller assemblies mounted at 

either end of the column.  The constant axial load was applied at a level equivalent to the 

buckling load of the C1-1 specimen while a lateral load was exerted at the column mid 

height.  The lateral movement of the roller assembly was monitored using LVDTs while 

the applied lateral load was recorded using a 200 kN load cell.  A plot of the lateral load 

versus lateral displacement curve is shown in Figure 5.9.  A spring constant of 128 N/mm 

was determined by calculating the slope of a linear segment of data around a 

displacement of 0.4 mm.  The initial displacement readings (< 0.4 mm) from Figure 5.9 

were ignored for the calculation of the spring stiffness since minimal movement was 

recorded over a large increase in lateral load.  This indicated the column and rollers in the 

experiment were still stationary.  The final displacement readings from Figure 5.9 were 

also omitted from the spring stiffness calculation due to the increase in lateral 

displacement over a constant load.  This indicated the rollers were in motion and the 

lateral load had overcome the frictional resistance of the assembly.  The springs were 

applied at the top flange to web junction for each beam.  
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Figure 5.8 Specimen C1-1 roller friction experiment. 

 

 

Figure 5.9 Lateral load vs. lateral displacement of specimen C1-1 roller 

assembly. 

Figure 5.10 compares the lateral displacement profile obtained from the finite element 

model and the experiment for C1-1 specimen.  The figure shows that FE results are in 
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good correlation with the test results.  This also confirms that the restraint existed at the 

compression flanges from the roller assemblies during the experimental testing and 130 

N/mm is a reasonable estimate of this restraint. 

 

 

Figure 5.10 Finite element load vs. midspan lateral deflection response for 

specimen C1-1. 

 

The buckling mode of the finite element model is shown in Figure 5.11 where a 

pronounced sinusoidal mode referred to as beam buckling occurred in the midspan region 

and much shallower sinusoidal shapes in the opposite direction on the two side spans.  

This buckled shape is in reasonably good agreement with the experimental buckling 

mode shape shown in Figure 4.9a. 

 

 

Figure 5.11 Specimen C1-1 sinusoidal buckling mode shape between cross-braces. 
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and by providing smoother rolling surfaces.  Therefore Specimen C1-2 was initially 

modelled with no lateral springs present at the roller locations.  The lateral displacement 

at the buckling load shown in Figure 5.13 appeared to be quite significant in comparison 

to the experimental results. This indicates that some friction still exists in the Hilman 

roller assembly.  A similar spring stiffness test procedure previously conducted for 

specimen C1-1 to determine the lateral spring stiffness to be applied in the finite element 

model was conducted for specimen C1-2.  The data presented in Figure 5.12 provides a 

spring stiffness of 43 N/mm.  This value was calculated using the same methodology 

previously described for the spring stiffness of specimen C1-1.  

 

 

Figure 5.12 Lateral load vs. lateral displacement of specimen C1-2 roller 

assembly. 

 

The application of a 43 N/mm lateral spring resulted in a lateral deflection response 

shown in Figure 5.13 that was similar to the Specimen C1-2 experimental response.  This 

suggests the roller assembly continued to induce friction on the experimental behaviour 

of specimen C1-2, but the friction was not as excessive as the friction induced in 

Specimen C1-1.  Global buckling of the finite element specimen was evident by 

observing the buckling mode shape shown in Figure 5.14, this mode shape is the same as 

the buckling mode observed in the experimental test. 
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Figure 5.13 Finite element load vs. midspan lateral deflection response for 

specimen C1-2. 

 

 

Figure 5.14 Specimen C1-2 global buckling mode shape. 

In the case of specimen C2, the model was implemented using top flange lateral springs 

with a corresponding stiffness of 240 kN/m applied at the loading point of both beams.  

The spring stiffness of specimen C2 displayed in Figure 5.15 was determined using the 
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Figure 5.15 Lateral load vs. lateral displacement of specimen C2 roller assembly. 

Figure 5.16 shows good agreement for the lateral displacement response of B1 with the 

experimental data when the lateral springs were modelled to account for the experimental 

roller friction.  The lateral displacement response of B2 showed a difference with the 

experimental data when the applied load reached higher than 100 kN.  The difference was 

thought to be a result of how the spring stiffness was applied to the compression flange of 

each beam in the finite element model.  

 

The lateral springs were situated at the midspan of each girder in the finite element model 

and thus they behaved independently of one another in the model.  The rollers in the 

experimental program shown in Figure 5.17 were connected to a load distribution beam 

which prevented differential lateral displacement between adjacent rollers.  This provided 

the loading assembly with the ability to provide additional lateral stiffness to the weaker 

beam (B2) in the system by transferring frictional restraint through the load distribution 

beam to the roller assembly.  In order to develop buckling of the specimen, the global 

frictional restraint of the system had to be overcome.  It is believed that B2 of Specimen 

C2 in Figure 5.16 was dependent on B1 causing the specimen to behave as a lean-on 

bracing system. 

 

y = 239.58x + 108.33 

R² = 0.961 

0

50

100

150

200

250

300

350

400

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

A
p

p
li

ed
 L

a
te

r
a

l 
L

o
a

d
 (

N
) 

Lateral Displacement (mm) 



80 

 

 

Figure 5.16 Finite element load vs. midspan lateral deflection response for 

specimen C2 roller assembly. 
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Figure 5.17 Connection of roller assembly to load distribution beam. 

The buckled shape of specimen C2 in Figure 5.18 was in good agreement with the 

experimental results for beam buckling.  Beam 1 did not display significant lateral 

buckling due to the in-plan bracing at the beam midspan preventing relative lateral 

displacement between brace points.  Beam 2 exhibited lateral buckling at the beam 

midspan since the top flange of this span was not laterally braced. 
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Figure 5.18 Specimen C2 buckled shape between lateral brace points. 

Figure 5.19 to Figure 5.21 plot the load versus midspan vertical displacement response 

for each specimen.  The numerical vertical displacement curves are in good agreement 

with the experimental results for Specimen C1-1.  A small discrepancy in the vertical 

displacement plot was observed for specimen C1-2.  As previously discussed in Chapter 

4, the variation between experimental vertical displacements for beams 1 and 2 was due 

to each beam having a different modulus.  This trend was still visible when comparing 

the experimental results to the FE results.  Up to a vertical load of 63 kN, the numerical 

and experimental vertical displacement responses are in good correlation.  However, the 

FE model exhibited a slightly larger vertical displacement for both beams at the ultimate 

load.  Note that Figure 5.13 shows that the FE model had a larger lateral displacement 

than the experimental results, indicating that the spring stiffness implemented in the 

model is less than the restraint provided by the roller assembly in the experiment.  The 

lateral displacement would result in bracing forces to be developed in the bracing system.  

The brace forces developed in the diagonal strut would distribute some magnitude of 

vertical load from beam 2 to beam 1.  The larger the bracing force, the larger this 

distribution, which in turn results in larger vertical displacement.  This may explain the 

discrepancy between the numerical and experimental vertical displacement at the 

ultimate.  Specimen C2 shown in Figure 5.21 was also in good agreement with the 

experimental results for the displacement profile.  It appears the experimental response 

showed more nonlinearity towards the ultimate load than the finite element response but 

the difference between the two was considered to be insignificant since the specimen had 

already failed by yielding of the material prior to buckling.   
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Figure 5.19 Midspan vertical displacement comparison of specimen C1-1. 

 

 

Figure 5.20 Midspan vertical displacement comparison of specimen C1-2. 
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Figure 5.21 Midspan vertical displacement comparison of specimen C2. 
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CHAPTER 6        PARAMETRIC STUDY 

6.1 GENERAL 

Parametric studies were conducted to study the effect of additional parameters on the 

lateral stability of twin-girder systems with torsional bracing beyond the scope of the 

experimental program. The finite element model developed and validated in Chapter 5 

was used in this study. The parameters investigated were girder spacing, cross-frame 

stiffness, and number of interior cross-frames installed between girders. The finite 

element model was simplified for the parametric study by removing the initial 

imperfections and residual stresses. As shown in Figure 5.1, an elastic perfectly plastic 

material model was used for steel with a yield strength Fy = 350 MPa and an elastic 

modulus E = 200 000 MPa. The reference model is a twin-girder system consisting of 

two W360×33 beams simply supported with a span of 11 m. The W360x33 section is a 

Class 1 section. Unless otherwise specified, three interior cross-frames are incorporated 

and they are equally spaced along the beam span. The configuration of the cross-frame 

used in Chapter 4 is maintained in the parametric study. Concentrated loads were applied 

to the top flange of each beam at midspan. 

6.2 GIRDER SPACING 

In this section, the effect of girder spacing ranging from 0.5 to 1.0 m is studied. These 

spacing values correspond to girder spacing of 2.15 to 4.3 m for the large scale specimen 

as described in Chapter 3 if a constant girder spacing to girder depth ratio is maintained. 

This girder spacing range covers the majority of cases that would be encountered in 

practice. The critical elastic moment solution for a twin-girder system presented by Yura 

et al. (2008) as in Equation [2.23] is also calculated for comparison. The finite element 

critical moments are compared in Table 6.1 with moment values calculated using 

Equation [2.23]. It is noted that the critical moment resistance in the equation was 

developed for twin girder systems that failed in global buckling in elastic range. This 

resistance is dependent on the girder spacing, S, but independent of the torsional cross-

frame stiffness. However, using a torsional brace stiffness equal to twice the ideal 
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stiffness is suggested to prevent twisting of the system as well as controlling the forces 

generated in the braces. The FE critical moment was obtained from the load versus top 

flange lateral displacement response of a girder. A typical response curve is shown in 

Figure 6.1. The critical buckling load is deemed to have occurred where the response 

curve begins to display non-linearity as represented by the red dot in the figure. 

 

Table 6.1 Critical moment comparison between finite element results and 

Equation [2.23] with varying girder spacing. 

 

Girder spacing 

(mm) 

FE Pcr 

(kN) 

FE Mcr (kN·m) 

    (
    

 
  ) 

Equation [2.23] 

(kN·m) 

% Difference 

Moment 

500 60.0 83.0 89.0 6.7 

650 78.0 107.0 114.0 6.1 

800 95.0 130.6 139.0 6.0 

1000 120.0 165.0 173.0 4.6 

 

Table 6.1 shows that for a given number of interior cross-frames (3 cross-frames), as the 

girder spacing increases, the critical moment also increases. This increase in moment 

capacity is believed to be due to an increase in torsional stiffness as a result of the 

increase in moment arm between girders. 
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Figure 6.1 Load versus top flange lateral displacement response of a girder. 

Figure 6.2 plots the finite element load versus top flange lateral displacement curves for 

varying girder spacing. It shows that as the girder spacing increases, the critical global 

buckling load increases. The initial portion of the curves is practically identical with 

almost zero lateral displacement prior to buckling. The comparison between the FE and 

the calculated critical moment values (Table 6.1) show that they are in reasonably good 

agreement with a maximum difference less than 7%. The FE values are in general, lower 

than the equation values. The listed FE critical moment values are determined as 

(PcrL/4)/2 for one girder where the critical load Pcr was determined using the load versus 

lateral displacement curves in Figure 6.2. A sample calculation using Equation [2.23] is 

presented in Appendix E. 
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Figure 6.2 Load versus lateral displacement response of 3 interior cross-frame 

specimen with varying girder spacing. 

 

The effect of varying girder spacing on the critical moment values is illustrated in Figure 

6.3. The increase in the critical moment displays a linear relationship with the increase in 

the girder spacing. Although a limitation on girder spacing was not explicitly specified in 

Equation [2.23], the maximum moment cannot exceed the yield moment capacity of the 

cross-section, My, which is 165.9 kN·m for W360x33.  In addition, the practical 

slenderness ratio of bracing members will restrict the girder spacing to a realistic range. 

The maximum permissible slenderness ratios according to CSA S6 (2006) and S16 

(2010) for the cross-frame diagonal tension member are 200 and 300 respectively, while 

the horizontal cross-frame compression members cannot have a slenderness ratio in 

excess of 160 and 200 respectively. 
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Figure 6.3 Critical moment vs girder spacing for FE and Eqn. [2.23]. 

6.3 CROSS-FRAME STIFFNESS 

As mentioned earlier, twin-girder systems that utilize torsional bracing as the sole method 

for girder stability require bracing with sufficient stiffness. The numerical stiffness value 

of the cross-frame system considered in this study was a combination of the brace and the 

girder stiffness. The effect of cross-sectional distortion of the web was ignored since the 

stiffener was assumed to be welded to the compression flange therefore web distortion is 

prevented. In this study, the variation in torsional stiffness was achieved by changing the 

cross-sectional area of the bracing members while maintaining the girder size. Table 6.2 

lists four models with varying cross-frame brace stiffness.  All models had a constant 

girder spacing of 0.8 m with girders braced using three cross-frames. The calculation of 

the brace stiffness is based on Equation [2.1] and a sample calculation is presented in 

Appendix E. 
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Table 6.2 Calculated torsional stiffness for varying cross-frame member sizes. 

Member  b (N·mm/rad)  g (N·mm/rad)  t (N·mm/rad) 

L19×19×3.2 8.92E+08 9.54E+07 8.62E+07 

L38×38×4.8 2.73E+09 9.54E+07 9.22E+07 

L102×102×13 1.95E+10 9.54E+07 9.50E+07 

C250×30 3.04E+10 9.54E+07 9.51E+07 

   

Table 6.2 displays the brace member stiffness for a single cross-frame ( b), girder web 

stiffness ( g) and the resultant torsional stiffness of an intermediate cross-frame ( t). A 

significant increase in the brace member stiffness  b (34 times) is achieved when the 

braces are varied from an L19×19×3.2 to a C250×30. However, the system stiffness does 

not vary in the same magnitude. The much smaller variation of the latter is due to the fact 

that the system stiffness is governed by the girder web stiffness (Equation [2.1]) and the 

resultant torsional stiffness is significantly influenced by the bracing component with the 

smallest stiffness. 

 

Figure 6.4 shows the load versus top flange lateral displacement of the girder for a twin-

girder system with varying cross-frame member stiffness and a three cross-frame 

arrangement. As it can be seen, before the buckling occurred, the variation in the bracing 

stiffness does not result in any marked variation in the behaviour. The increase in the 

bracing member stiffness only results in minimal increase in the post buckling capacity. 

This suggests that, for a given girder size, the use of different cross-sections for bracing 

members does not significantly affect the critical load for global buckling since the girder 

stiffness is the dominant component for the cross-frame system stiffness. Also noted is 

that the system torsional stiffness is not explicitly reflected in Equation [2.23] and thus no 

comparison between results is presented. 
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Figure 6.4 Effect of varying cross-frame stiffness on the load vs. top flange 

lateral displacement curves of girders. 

 

Table 6.3 presents the FE critical moment results for cross-frames with varying member 

sizes. The critical moment versus cross-frame member stiffness relationship is further 

shown in Figure 6.5. Both the table and figure show that a variation in the brace member 

stiffness presents minimal change in the critical moment. 

 

Table 6.3 FE critical moment results of three cross frames with variation in 

brace stiffness.  

Member  t (N·mm/rad) Mcr (kN·m) %Difference Mcr 

L19×19×3.2 8.62E+07 125.1 4.2 

L38×38×4.8 9.22E+07 130.6 - 

L102×102×13 9.50E+07 134.8 3.2 

C250×30 9.51E+07 134.8 3.2 
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Figure 6.5 Effect of torsional cross-frame system stiffness on critical moment for 

varying cross-frame brace members. 

 

6.4 NUMBER OF INTERIOR CROSS-FRAMES 

The twin-girder system braced with two, three, and five interior cross-frames is studied in 

combination with girder spacing in this section. Table 6.4 summarizes the finite element 

and Equation [2.23] results.  It is noted that Equation [2.23] does not account for the 

number of interior cross-frames in the critical moment calculation, therefore the 

calculated critical moment presented in Table 6.4 remains constant between varying 

numbers of cross-frames. The FE critical moment values are determined in the same 

manner as described previously.  The load versus top flange lateral displacement 

responses for the two and five interior cross-frame arrangements are presented in Figures 

6.6 and 6.7 respectively. Refer to Figure 6.2 for the critical load of the three interior 

cross-frame arrangements.  
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Table 6.4 Global elastic critical moment (kN·m) comparison with varying 

number of interior cross-frames.  

 

 Two Cross-Frames Three Cross-Frames Five Cross-Frames 

Girder 

Spacing 

(mm) 

FE 

Calc. 

(Eqn. 

[2.23]) 

%Δ 

Mcr 
FE 

Calc. 

(Eqn. 

[2.23]) 

%Δ 

Mcr 
FE 

Calc. 

(Eqn. 

[2.23]) 

%Δ 

Mcr 

500 66.0 89.0 25.8 83.0 89.0 6.7 90.8 89.0 2.0 

650 88.0 114.0 22.8 107.0 114.0 6.1 115.5 114.0 1.3 

800 102.0 139.0 26.6 130.6 139.0 6.0 141.6 139.0 1.9 

1000 124.0 173.0 28.3 165.0 173.0 4.6 176.0 173.0 1.7 

 

 

 

Figure 6.6 Load versus lateral displacement response of 2 interior cross-frame 

specimen with variable girder spacing. 
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Figure 6.7 Load versus lateral displacement response of 5 interior cross-frame 

specimen with variable girder spacing. 

 

Table 6.4 is graphically illustrated in Figure 6.8. As seen in both the figure and table, the 

effect of girder spacing as discussed previously for the three interior cross-frame 

arrangement is also true for two and five interior cross-frame arrangements. An increase 

in the girder spacing results in an increase in the critical load for all three interior cross-

frame arrangements and this increase seems to be in a linear relationship with the 

increase in spacing. For twin girder systems with three and five interior cross-frames, the 

FE critical moment values are in good agreement with Equation [2.23] values with a 

maximum difference of 6.7% and 2.0% respectively. However, for twin-girder system 

with two interior cross-frames, both the table and the figure show that a significantly 

higher critical load in the order of 30% is provided by the equation. Equation [2.23] 

seems to converge with the finite element results when at least three interior cross-frames 

are implemented within the span but overestimate the girder capacity when only two 

cross-frames are present. This observation is in line with work conducted by Zhao et al. 

(2010). A modified curve reflecting a 30% reduction is seen to be in good agreement with 

the finite element results (Figure 6.8). This indicates that Equation [2.23] can be used to 
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calculate the global elastic critical buckling moment of a twin-girder system provided that 

it is modified for the two interior cross-frame system. 

 

 
Figure 6.8 Comparison of FE and Equation [2.23] results for the number of 

cross-frames. 

6.5 CONTINUOUS TORSIONAL BRACING STIFFNESS 

As presented in Chapter 2, the critical moment of a single beam braced with only 

torsional braces can be determined using Equation [2.17].  In this equation, the torsional 

brace stiffness is explicitly accounted for providing the additional lateral stiffness to the 

weak axis of the girder.  The effects of moment gradient and loading height are also 

included.  The torsional brace stiffness used in the equation is in the form of continuous 

torsional brace stiffness as defined in Equation [2.15]. To assess the validity of Equation 

[2.17], the continuous torsional brace stiffness for two, three, and five interior cross-

frame arrangements was calculated for a cross-frame system composed of L38×38×4.8 

members and the results are listed in Table 6.5.  The continuous torsional brace stiffness 

shows a significant increase in stiffness between two, three, and five interior cross-frames 

in Table 6.5.  Comparing with the discrete torsional stiffness used in the previous section, 

the equivalent continuous torsional stiffness is a more direct indicator of the twin-girder 

torsional stiffness.  
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Table 6.5 Continuous torsional brace stiffness. 

   (N·mm/rad/mm) 

Member Two Cross-Frames Three Cross-Frames Five Cross-Frames 

L38×38×4.8 1.68E+04 2.52E+04 4.20E+04 

 

The analytical and FE critical moment values are compared in Table 6.6. The analytical 

values for an individual girder braced with continuous torsional bracing were based on 

Equation [2.17] (Yura 2001). A sample calculation is provided in Appendix E. It is noted 

that the FE critical moment determined in this section was obtained using the buckling 

load represented by the plateau after the commencement of buckling in the load versus 

top flange lateral displacement response. The curves for two, three, and five interior 

cross-frame arrangements are shown in Figure 6.9. The moment presented in Table 6.6 

for one girder is determined using (PcrL/4)/2.  The rationale for using the load at buckling 

for this comparison is due to the fact that the torsional braces are only engaged after 

buckling has occurred. The table shows that Equation [2.17] yields values in good 

agreement with FE results with the maximum percentage difference between these two 

methods being around 11% for the two interior cross-frame arrangement. It also seems 

that the Equation [2.17] converge to FE results with more cross-frames implemented. 

Note that the analytical value in parenthesis for five cross-frame case is the yield moment 

capacity My of the cross-section. This value will govern the moment in design rather than 

186.0 kN·m calculated using the equation. This indicates that the cross-section will yield 

prior to buckling. The finite element results also showed evident yielding at buckling as 

seen in Figure 6.10.  
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Table 6.6 Comparison of FE critical moment and Equation [2.17] values 

(kN·m). 

Member 
Two Cross-Frames Three Cross-Frames Five Cross-Frames 

Ana. FE % Δ Ana. FE % Δ Ana. FE % Δ 

L38×38×4.8 109.8 125.0 10.8 158.2 167.0 3.0 
186.0 

(165.9)  
185.6 2.6 

 

 
Figure 6.9 Determination of critical load from load versus top flange lateral 

displacement response of a girder. 

 

 

 

 

Figure 6.10 Von Mises stress at buckling for five cross-frame arrangement. 
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6.6 CSA S6 (2006) CRITICAL MOMENT 

In this section, the validity of lateral torsional buckling design provisions specified in the 

current CHBDC CSA S6 (2006) standard is assessed using FE results.  CSA S16 (2010) 

prescribes the same design equation (see Chapter 2).  The elastic critical moment Mu 

values are calculated for a single girder with the unsupported length of beam taken as the 

distance between cross-frames.  CSA S6 (2006) adopts the moment magnifier developed 

by Wong and Driver (2010) to account for effects of moment gradient in the critical 

moment calculation. Loading height is considered by implementing an ω2 value of 1.0 

with an effective length of 1.2Lu, where Lu is the distance between intermediate cross-

frames. Sample critical moment calculations based on CSA S6 (2006) are included in 

Appendix E.   

 

The calculated critical moment values using CSA S6 (2006) including loading height 

effect are compared to FE values in Table 6.7.  Also included in the table are FE provided 

torsional brace stiffness for the given cross-frame member sizes and the ideal torsional 

brace stiffness based on the CSA S6 (2006) critical moment using Equation [2.24].  

Again, the CSA S6 (2006) value reported in parenthesis for five cross-frame case is the 

yield moment capacity My of the cross-section. The finite element moments were the 

same as previously presented in Table 6.6 for two, three, and five cross-frame systems.  

 

Table 6.7 shows that the calculated critical moment from CSA S6 (2006) underestimates 

the two and three cross-frame cases but overestimates the five cross-frame case.  This 

discrepancy in critical moment values is attributed to the variation between the FE 

provided and CSA required torsional stiffness.  As shown in Table 6.7, the FE provided 

torsional stiffness is higher than the CSA S6 (2006) required stiffness in the case of two 

and three cross-frame arrangement and lower than the CSA S6 (2006) required stiffness 

in the case of the five cross-frame arrangement.  The associated FE critical moments are 

then higher and lower than the corresponding CSA S6 (2006) values.  This suggests the 

provided brace stiffness in relation to the ideal stiffness affects the magnitude of the 

critical moment. It should be pointed out that this stiffness requirement is not explicitly 
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specified in the current CSA S6 (2006) or S16 (2010) standard.  Results herein indicate 

that if only torsional braces are present, using the unsupported length as the distance 

between the brace points may be unconservative as in the case of five cross-frame 

arrangement.  If the provided stiffness of the cross-frame is less than the ideal stiffness, 

increasing the number of cross-frames does not increase the critical moment in proportion 

to the CSA S6 (2006) calculated design moment.  CSA S6 (2006) gives an unrealistically 

high critical moment value thus resulting in an unsafe design. On the other hand, if the 

provided torsional bracing stiffness is equal to or greater than the required ideal stiffness, 

the critical moment determined using the CSA S6 (2006) procedure may be realized.  

 

Table 6.7 Critical moment comparison between FE and CSA S6 (2006) results. 

 
              

(N·mm/rad) 

FE 

 (kN·m) 

CSA S6 (2006) 

Mcr  (kN·m) 

(Eqn. [2.24]) 

              

(N·mm/rad) 
 prov'd/ ideal 

2 Cross-

Frames 
9.22E + 07 125.0 67.2 4.26E + 07 2.16 

3 Cross-

Frames 
9.22E + 07 167.0 107.5 7.28E + 07 1.27 

5 Cross-

Frames 
9.22E + 07 185.6 220.6 (165.9) 1.84E + 08 0.50 

 

Assuming FE values as the critical moments, an effective unbraced beam length can be 

calculated based on the CSA S6 (2006) procedure and the results are presented in Table 

6.8.  An effective length multiplier, k, is calculated using the ratio of the provided and 

required unbraced length of beam.  As the cross-frame number increases from 2 to 3 and 

to 5, the k values increase from below unity to above unity. It might be reasonable to 

assume that when the provided torsional brace stiffness equals to the ideal torsional brace 

stiffness, the k value is 1.0.  If the torsional brace stiffness is either less or more than the 

ideal brace stiffness, the k value is either less than or greater than 1.0.  The relationship 

between the unbraced length modifier k and the ratio of provided torsional stiffness to 
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required torsional stiffness is shown in Figure 6.11 with the available results.  The trend 

is not linear. It seems to suggest that the variation in k is more pronounced when 

 prov'd/ ideal ratio is less than 1.2 and as the ratio increases above 1.2, the variation in k is 

not significant.  More data points are needed to define the exact relationship between the 

torsional stiffness and the unbraced length that can be used in combination with CSA S6 

(2006) procedure.  Before this relationship is scientifically verified, it is recommended 

that design requirements for torsional stiffness be implemented to prevent an 

overestimation of the critical moment when the distance between cross-frames is used as 

the unbraced length of beam.  

 

Table 6.8 Effective length factor to achieve FE results using CSA S6 (2006). 

  prov'd/ ideal 
Lb, prov’d 

(mm) 
Lb, ideal (mm)    

       

        

 

2 Cross-Frames 2.17 3667 2517 0.68 

3 Cross-Frames 1.27 2750 2137 0.78 

5 Cross-Frames 0.50 1833 2015 1.10 

 

 

 
Figure 6.11 Relationship between unbraced length modifier k and ratio of 

provided torsional stiffness to ideal torsional stiffness. 
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In light of previous discussion which indicates that the loading height effect is not 

significant for twin girder systems with torsional braces only, the CSA S6 (2006) critical 

moment values are also calculated without considering the loading height effect and 

compared with the FE results in Table 6.9.  It can be seen that the critical moment 

calculated without considering loading height effect for two cross-frame case is a lot 

closer to the FE result.  For 3 and 5 cross-frames, the critical moment is over estimated 

resulting in the yielding strength of the cross-section governing the critical moment.  It 

confirms that in the case of twin girder systems with torsional braces, the loading height 

effect may be ignored when using CSA S6 (2006) critical moment equations.  

 

Table 6.9 Comparison with CSA S6 (2006) without loading height effect. 

 
FE 

(kN·m) 

CSA S6 (2006) (kN·m) 

Top Flange Loading 

CSA S6 (2006) (kN·m)  

No Top Flange Loading 

2 Cross-Frames 125.0 67.2 96.3 

3 Cross-Frames 167.0 107.5 190.7 (165.9) 

5 Cross-Frames 185.6 220.6 (165.9) 365.7 (165.9) 

 

6.7 BRACE FORCE 

This section studies the forces developed in the torsional braces at buckling. As 

mentioned in Chapter 2, CSA S16 (2010) and S6 (2006) provide different requirements 

for design brace forces.  CSA S16 (2010) suggests that a lateral or torsional brace which 

supports a member against buckling should be designed to resist 2% of the compressive 

force in the braced member at the location of the brace point.  However, CSA S6 (2006) 

indicates that a 1% compressive force is required to provide an adequate brace point.  

This discrepancy between codes is believed to be attributed to the different tolerances for 

the maximum initial out-of-straightness that was considered in the derivation of the brace 

force requirement.  Both standards refer to Winter (1960) where a percentage of the 

member’s compressive force was used as a reasonable estimate for the design of a lateral 

brace to resist buckling of a member.  
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The brace forces developed at the critical moment from the FE analysis for all three 

cross-frame arrangements are compared to the theoretical brace force of CSA S6 (2006). 

The geometry of the cross-frame system from the FE analysis used in the brace force 

calculation is provided in Figure 6.12a.  The calculation of the CSA S6 (2006) diagonal 

brace force was calculated in accordance with Figure 6.12b where Lc is the length of the 

diagonal member.  In this case, F is 1% of the flange compressive force at the buckling 

load and the hb and S are 340 and 800 mm respectively. 

 

  

 

 
(a) (b) 

Figure 6.12 Schematic for: (a) cross-frame geometry; and (b) brace force 

diagram. 

 

The brace force comparison between the finite element results and CSA S6 (2006) code 

values is presented in Table 6.10.  The horizontal and diagonal brace forces are presented 

in the brace force versus vertical load curves for the two, three, and five interior cross-

frame arrangements in Figure 6.13.  For example, the brace forces for the three cross-

frame arrangement presented in the table are identified in the figure with respect to the 

critical load.  It is observed that up to the commencement of buckling, the brace force is 

practically zero.  The brace forces increase significantly after buckling occurs.  The table 

shows that brace forces developed in cross-frame members are dependent on the ratio of 

provided to ideal torsional stiffness.  In the case of two cross-frame arrangement where 

the ratio of the provided-to-ideal torsional stiffness is greater than 2, the finite element 

brace forces are lower but close to the CSA S6 (2006) specified values.  In the case of 

three cross-frame arrangement where the ratio of the provided-to-ideal torsional stiffness 
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is greater than 1 but less than 2, the finite element brace forces are more than 2 times the 

CSA S6 (2006) specified values.  In the case of five cross-frame arrangement where the 

ratio of the provided-to-ideal torsional stiffness is 0.5, the finite element brace forces are 

about 6 times the CSA S6 (2006) specified values.  This indicates that the 1% 

compressive force as brace force rule is only valid if the provided torsional stiffness is at 

least twice the ideal stiffness.   

 

Table 6.10 Cross-frame bracing forces. 

 FE  

 (kN) 

CSA S6 (2006) 

 (kN)  prov'd/ ideal 

FHor. FDia. FHor. FDia. 

2 Cross-Frames 3.5 6.0 4.9 10.7 2.17 

3 Cross-Frames 24.3 40.1 9.8 21.4 1.27 

5 Cross-Frames 63.5 91.3 10.9 23.8 0.50 

 

 
Figure 6.13 Applied load vs. brace force response of cross-frame member. 

6.8 FAILURE MODES 

All the FE specimens investigated in the parametric study failed by global buckling.  The 

buckled shape presented in Figure 6.14 for all cross-frame configurations is in the form 
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stiffness of the cross-frame, the buckled shape for beams that are braced with only 

torsional braces seems to remain in a half sine wave. 

 

 
(a) Two intermediate cross-frame specimen 

 

 
(b) Three intermediate cross-frame specimen 

 

(c) Five intermediate cross-frame specimen 

Figure 6.14 FE buckled shape. 
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CHAPTER 7       CONCLUSIONS AND RECOMMENDATIONS 

7.1 SUMMARY 

This study was conducted to investigate the efficiency of torsional braces provided by 

cross-frames for lateral torsional stability of twin plate girders.  The applicability of 

lateral torsional stability design procedures contained in the current Canadian Highway 

Bridge Design Code CSA S6 (2006) is also examined.  Both experimentation and 

numerical analyses were undertaken.  

 

In the experimental portion, three twin-girder specimens were tested subjected to a 

midspan loading where two specimens were implemented with only torsional braces in 

the form of cross-frames and one specimen with a combination of torsional and lateral 

braces.  The buckling loads and the load versus deflections responses were presented and 

discussed in graph and tabular formats.  The experimental results were compared with 

values obtained from several analytical methods and CSA S6 (2006) code.  The 

observations and implications were noted and discussed.  

 

The numerical portion of the research included the development of a finite element model 

and a subsequent study to investigate the effects of several parameters on the lateral 

torsional stability of the twin-girder systems.  The finite element model was verified 

using the test results. The parameters considered in the numerical study included girder 

spacing, brace stiffness, and number of braces.  The numerical results were used to assess 

the accuracy of the current design equations and to provide information on the stiffness 

and force requirement for torsional braces in twin-girder lateral torsional buckling check.  

7.2 CONCLUSIONS 

The following conclusions are derived from both the experimental and numerical study of 

this research: 
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 The experimental results demonstrated that a combination of lateral and torsional 

bracing (specimen C2) increased the critical moment of the specimen by a factor 

of 1.75 in comparison to a specimen braced with only torsional braces.  

Incorporating lateral and torsional bracing also allows for beams to be designed to 

fail by yielding of the section rather than buckling. 

 

 The finite element results compared well with experimental results, suggesting 

that the finite element modeling is a good alternative for further studies to predict 

the behavior of twin girder specimens. 

 

 It is found that increasing the girder spacing linearly increases the global elastic 

critical moment of the twin girder system. An increase in the number of torsional 

braces results in an increase in critical moment of a twin-girder specimen.  

However, this increase is much more significant when the number of interior 

torsional braces increases from 2 to 3.  The critical moment value seems to 

converge when the interior torsional braces are greater than 3.   Changing the 

brace member size, even to a large degree, does not show any significant effect on 

the critical moment of the girder system.  However, the torsional stiffness is 

dependent on the girder cross-section. 

 

 The comparison between the numerical results and those obtained from existing 

analytical methods provided by Yura (2001) and Yura et al. (2008) showed that 

the analytical methods are reasonably accurate in providing the elastic critical 

moment values.  One exception is when there are only two interior cross-frames 

present, which results in an 11% (Yura, 2001) or 30% (Yura et al., 2008) 

difference in critical moment values..  

 

 The comparison from the parametric study between the numerical and code 

values obtained from CSA S6 (2006) showed that the critical moment value is 

related to the ratio of provided-to-ideal torsional stiffness.  When the ratio is 

greater than unity, the current lateral torsional buckling equation in the code 

provides conservative values; when the ratio is less than unity, the code provides 
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overestimation of the critical moment.  The application of an effective length 

modifier further showed that an effective unbraced length can be implemented in 

the code equation for evaluation of critical moment for girder systems with 

torsional braces only.  A relationship between this effective length modifier and 

the ratio of provided-to-ideal torsional stiffness is proposed. 

 

 The brace force study confirmed that for twin-girder systems with only torsional 

braces, a stiffness equal to twice the ideal stiffness needs to be provided in order 

for the “ % compressive force rule”  for brace force design to be valid. 

 

 The failure mode of all finite element model specimens is by global buckling 

regardless of the magnitude of the torsional stiffness. Although further study is 

needed, it seems that the global buckling is the governing failure and buckling 

between brace points is only theoretical but cannot be achieved physically. 

 

7.3 RECOMMENDATIONS 

The following recommendations are developed from observations during the 

experimental and numerical study: 

 

 Implement two point loading system to achieve constant moment region at girder 

midspan.  This would enable the moment magnifier (Cb or ω2) to be considered as 

1.0 eliminating some uncertainties in the calculation of the critical moment. 

 

 Install lateral restraints on either side of the test specimen to prevent excessive 

lateral displacements during buckling.  Implementing a system that will prevent 

the specimen from leaving its bearings will maintain a safe environment during 

testing. 

 

 Install web stiffeners beneath the loading points to minimize the possibility of 

web distortion which can contribute to increased normal stresses in the 

compression flange. 
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 Modify the loading system to be essentially frictionless.  This could be achieved 

in a variety of ways: implementation of high molecular Teflon on the roller 

surface of the pivot assembly; or construction of a pinned sway frame attached to 

a jack secured beneath the specimen with the capability to load by pulling the 

frame towards the floor.  

 

 Install rosette strain gauges at girder midspan to determine the magnitude of the 

strong axis warping stresses and the weak axis normal stresses that occur during 

buckling. 

 

 Residual stresses should be considered in finite element modelling. 

 

 Torsional braces should be modelled with twice the ideal stiffness to verify that 

providing twice the ideal stiffness does minimize the out-of plane deformations 

along with the brace force as studied in the parametric study. 

 

 Finite element modelling of full scale bridge girders should be conducted to 

determine the effects of loading height, torsional brace stiffness, material or 

geometric imperfections, and unbraced length of girder between torsional braces. 

It is suggested that loading conditions similar to those of construction loading be 

applied to the finite element model based on non-composite behaviour. 
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APPENDIX A 

 

 

Figure A.1 Coupon OF 1 stress-strain curve. 

 

  

Figure A.2 Coupon OF 2 stress-strain curve. 
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Figure A.3 Coupon OF 3 stress-strain curve. 

 

 

Figure A.4 Coupon OF 4 stress-strain curve. 
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Figure A.5 Coupon OW 1 stress-strain curve. 

 

 

Figure A.6 Coupon OW 2 stress-strain curve. 
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Figure A.7 Coupon OW 3 stress-strain curve. 

 

 

 

Figure A.8 Coupon NF 1 stress-strain curve. 
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Figure A.9 Coupon NF 2 stress-strain curve. 

 

 

Figure A.10 Coupon NF 3 stress-strain curve. 
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Figure A.11 Coupon NW 1 stress-strain curve. 

 

 

Figure A.12 Coupon NW 2 stress-strain curve. 
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Figure A.13 Coupon NW 3 stress-strain curve. 

 

 

Figure A.14 Coupon NW 4 stress-strain curve. 
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APPENDIX B 

Table B.1 Critical moment calculation of specimen C1-2 calculated using 

continuous torsional brace stiffness (for Table 4.5; Taylor and Ojalvo, 

1966). 

 
 

Critical Moment Capacity:

L = 11000 mm

E = 209819 Mpa

Iy = 2.91E+06 mm4

G = 77000 Mpa

J = 8.59E+04 mm4

h = 349 mm

βt = 9.70E+07 N mm

βT = 1.76E+04 (N mm/rad)/mm

n = 2

1/βt = 1.03E-08 rad / N mm

Torsional stiffness of single brace: βb = 3.07E+09 N mm / rad

S = 760 mm

hb = 330 mm

Lc = 800 mm

AC/H = 340 mm2

Torsional Stiffness of girder: βg = 1.00E+08 N mm / rad

S = 800 mm

Ix = 8.27E+07 mm4

L = 11000 mm

Torsional Stiffness of web stiffener: βsec = N/A N mm / rad

Mcr = 106 kN m         Single Beam < My = 182 kN m     Adequate

Mcr = 212

versus

Mcr-EXP = 209

%Δ  -1.44 % 

Table 4.5 Critical Moment Calculation of Specimen C1-2 Calculated using Continuous Torsional Brace 

Stiffness (Taylor and Ojalvo, 1966)

Section Properties

 Web distortion at cross-frame is 

prevented since web stiffener is welded 

to top and bottom flanges. Therefore 

web distortion is prevented.

kN m         Two Beams

Torsional stiffness of single cross-frame:

See below for calculations of 

cross-frame torsional stiffness

kN m      Specimen C1-2

1

β 
 
1

β 
 

1

β   
 
1

β 

β  
     

 

   
 

  
 
  

  

β       
 

 

  1     
 

1 
 
    

 

1 

   
1      

  

𝑀𝑐𝑟 =
𝜋

𝐿
√𝐸𝐼𝑦𝐺𝐽 +

𝜋2𝐸2𝐼𝑦2ℎ2

4𝐿2
+

𝛽 𝑇𝐿2𝐸𝐼𝑦
𝜋2

 𝑀𝑦  

𝛽𝑇 =
𝛽𝑡𝑛

𝐿
 

MPa 

MPa 
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Table B.2 Simplified critical moment calculation of specimen C1-2 calculated 

using continuous torsional brace stiffness (for Table 4.5; Phillips, 

1990). 

 

L = 11000 mm

E = 209819 Mpa

Iy = 2.91E+06 mm4

G = 77000 Mpa

J = 8.59E+04 mm4

Cw = 8.43E+10 mm6

Mo = 18.15 kN m without warping

βt = 89976515.5 N mm / rad

βT = 16359.4 (N mm / rad)/mm

1/βt = 1.11E-08 rad / N mm

Torsional stiffness of brace member: βb = 3.07E+09 N mm / rad

S = 760 mm

hb = 330 mm

Lc = 800 mm

AC/H = 340 mm2

Calculation of Ct:

Δ  9 mm

Ct = 0.289474

Torsional Stiffness of girder: βg = 1.00E+08 N mm / rad

S = 800 mm

Ix = 8.27E+07 mm4

L = 11000 mm

Torsional Stiffness of web stiffener: βsec = N/A N mm / rad

Mcr = 99.9 kN m 182 kN m     Adequate

Mcr = 200 kN m  Two Beams

versus

Mcr-EXP = 209 kN m

%Δ  4.36 % 

Table 4.5 Simplified  Critical Moment Calculation of Specimen C1-2 (Phillips and Yura, 1990)

Section Properties

Single Beam < My =

Specimen C1-2

Torsional stiffness of single cross-frame:

 Web distortion at cross-frame is 

prevented since web stiffener is welded 

to top and bottom flanges. Therefore 

web distortion is prevented.

See below for calculations of 

cross-frame torsional stiffness

   
 

      
  

𝐿

 

𝛽 
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𝑀   𝑀 
  𝐸𝐼 𝛽 

β  
     

 

   
 

  
 
  

  

β       
 

 

  1     
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1 

   
1      

  

𝛽𝑇 =
𝛽𝑡𝑛

𝐿
 

MPa 

MPa 
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Table B.3 Simplified critical moment calculation of specimen C1-2 calculated 

using continuous torsional brace stiffness (for Table 4.5; Yura, 2001). 

 

L = 11000 mm

E = 209819 Mpa

Iy = 2.91E+06 mm4

G = 77000 Mpa

J = 8.59E+04 mm4

Cw = 8.43E+10 mm6

Mo = 18.15 kN m

n = 2

βt = 96807664 N mm

βT = 17601 N mm

Cbu = 1.26

Cbb = 1.08

CT = 1

Torsional stiffness of single cross-frame system:

1/βt = 1.03E-08 rad / N mm

Torsional stiffness of brace member: βb = 2.92E+09 N mm / rad

S = 760 mm

hb = 330 mm

Lc = 800 mm

AC/H = 340 mm2

E = 200000 MPa

Torsional Stiffness of girder:

βg = 1.00E+08 N mm / rad

S = 800 mm

Ix = 8.27E+07 mm4

L = 11000 mm

Torsional Stiffness of web stiffener: βsec = N/A N mm / rad

Mcr = 114 kN m 182 kN m     Adequate

Mcr = 229 kN m  Two Beams

versus

Mcr-EXP = 209 kN m

%Δ  -9.35 % 

Specimen C1-2

See below for calculations of 

cross-frame torsional stiffness

Section Properties

 Web distortion at cross-frame is 

prevented since web stiffener is welded 

to top and bottom flanges. Therefore 

web distortion is prevented.

Single Beam < My =

1

β 
 
1

β 
 
1

β 

β  
     

 

   
 

  
 
  

  

   
1      

  

β       
 

 

  1     
 

1 
 
    

 

1 

𝛽𝑇 =
𝛽𝑡𝑛

𝐿
 

MPa 

MPa 
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Table B.4 Global elastic buckling moment of specimen C1-2 (for Table 4.5; Yura 

et al., 2008). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.5 Global Elastic Buckling Moment of Specimen C1-2 (Yura et al., 2008)

Lg = 11000 mm

E = 209819 Mpa

Iy = 2.91E+06 mm
4

G = 77000 Mpa

J = 8.59E+04 mm
4

Ix = 8.27E+07 mm
4

ho = 349 mm

S = 800 mm

Cb = 1.35

Mg = 292 kN m moment resistance of the system

0.7Mg = 204 kN m 70% of Yura Global Buckling Resistance

versus

Mcr-EXP = 209 kN m

%Δ  2.26 % 

Girder Section Properties

Top Flange loading was not considered in 

critical moment calculation based on 

previous observations observed by Yura et 

al.  (2008)

    
 

  
      

      

   
     

     
 MPa 

MPa 
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Table B.5 Critical moment calculation of specimen C2 (for Table 4.6; Phillips, 

1990). 

 

L = 11000 mm

E = 209819 MPa

Iy = 2.91E+06 mm4

G = 77000 MPa

J = 8.59E+04 mm4

Cw = 8.43E+10 mm6

h = 3.30E+02 mm

Sx = 4.74E+05 mm4

Fy = 384 MPa

Lateral Brace Member Stiffness:

Abr = 582 mm2

E = 200000 N/mm2

Lbr = 3667 mm

θ  66.4 °

βL = 5088 N/mm

n = 6

2.78 N/mm

ΔO = 9 mm

cL = 0.449

A = 45.04

Py = 448224 N Py is the compressive force in the beam expressed as ( 
2
EIy/Lb

2
)

1/βt = 1.12E-08 rad / N mm

Torsional stiffness of brace member:

βb = 2.92E+09 N mm / rad

S = 760 mm

hb = 330 mm

Lc = 800 mm

AC/H = 340 mm2

Calculation of Ct:

Δ  9 mm

Ct = 0.28947368

Torsional Stiffness of girder:

βg = 1.00E+08 N mm / rad

S = 800 mm

Ix = 8.27E+07 mm4

L = 11000 mm

Torsional Stiffness of web stiffener:

βsec = N/A N mm / rad

n = 2

βt = 89531075 N mm / rad

βT = 16278 N mm / rad / mm

Mo = 1.81E+07 N mm

Mcr = 3371 kNm (single beam)

6743 kNm (twin beam specimen)

My = 182 kNm (single beam) * Specimen fails by yielding of the material

364 kNm (twin beam specimen)

versus

Mcr-EXP = 364 kN m

%Δ  0.0 % 

Continuous Torsional Cross-Frame Stiffness:

Specimen C1-2

Section Properties

Torsional stiffness of single cross-frame:

 Web distortion at cross-frame is prevented 

since web stiffener is welded to top and 

bottom flanges. Therefore web distortion 

is prevented.

𝐴 =  
𝐿2

𝜋
√

. 67𝑐𝐿𝛽 𝐿
𝐸𝐼𝑦

 

𝑐𝐿 =
1

1 + 1500
 𝑜

𝐿

 

𝛽 𝐿 =
𝛽𝐿𝑛

𝐿
 

𝛽𝐿 =
𝐴𝑏𝑟𝐸𝑐𝑜𝑠2𝜃

𝐿𝑏𝑟
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APPENDIX C 

Table C.1 CSA S6 (2006) moment calculation for beam braced with torsional 

cross-frames (top flange loading not considered; for Table 4.7). 

 

E = 209819 MPa

Iy = 2.91E+06 mm
4

G = 77000 MPa

J = 8.59E+04 mm
4

Cw = 8.43E+10 mm
6

L = 11000 mm

n = 2 cross-frames

Lu = 3667 mm

Mmax = 104.5 kN m

Ma = 87.1 kN m

Mb = 104.5 kN m

Mc = 87.1 kN m

ω2 = 1.086

Mu = 101.8 kN m

Zx = 5.42E+05 mm
3

Fy = 384 MPa

Mp = 208 kN m

0.67Mp = 139 kN m

Calculated Moment Resistance:

φ  1.0

Mr = 101.8

versus

Mcr-EXP = 104.5 kN m

%Δ  2.57 % 

Section Properties of W360x33:

Unsupported length of beam:

Calculation of ω2:

(Specimen C1-2)

Determine Elastic or Inelastic  Range:

𝑀𝑢 =
𝜔2𝜋

𝐿𝑢

√𝐸𝐼𝑦𝐺𝐽 + (
𝜋𝐸

𝐿𝑢
)

2

𝐼𝑦 𝑤  

 2=
4Mmax

√Mmax
2 + 4Ma

2+7Mb
2+4Mc

2

     

𝐿𝑢 =
𝐿

𝑛 + 1
 

𝑀𝑟 = ∅𝑀𝑢  

𝑀𝑢   0.67𝑀𝑝 
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Table C.2 CSA S6 (2006) moment calculation for beam braced with torsional 

cross-frames (top flange loading considered; for Table 4.7). 

 
 

 

 

E = 209819 MPa

Iy = 2.91E+06 mm
4

G = 77000 MPa

J = 8.59E+04 mm
4

Cw = 8.43E+10 mm
6

L = 11000 mm

n = 2 cross-frames

Lu = 3667 mm

Mmax = 104.5 kN m

Ma = 87.1 kN m

Mb = 104.5 kN m

Mc = 87.1 kN m

ω2 = 1.086

ω2 = 1.0 (when top flange loading is considered)

Mu = 69.8 kN m

Zx = 5.42E+05 mm
3

Fy = 384 MPa

Mp = 208 kN m

0.67Mp = 139 kN m

Calculated Moment Resistance:

φ  1.0

Mr = 69.8

versus

Mcr-EXP = 104.5 kN m

%Δ  33.25 % 

Section Properties of W360x33:

Unsupported length of beam:

Calculation of ω2:

Determine Elastic or Inelastic  Range:

(Specimen C1-2)

 2=
4Mmax

√Mmax
2 + 4Ma

2+7Mb
2+4Mc

2

     

𝐿𝑢 =
𝐿

𝑛 + 1
 

𝑀𝑟 = ∅𝑀𝑢  

𝑀𝑢 =
𝜔2𝜋

1.2𝐿𝑢

√𝐸𝐼𝑦𝐺𝐽 + (
𝜋𝐸

1.2𝐿𝑢
)

2

𝐼𝑦 𝑤  

𝑀𝑢   0.67𝑀𝑝 
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Table C.3 CSA S6 (2006) moment calculation for beam braced with torsional 

cross-frames and lateral in plan bracing (top flange loading not 

considered; for Table 4.8). 

 
 

 

 

 

E = 209819 MPa

Iy = 2.91E+06 mm
4

G = 77000 MPa

J = 8.59E+04 mm
4

Cw = 8.43E+10 mm
6

L = 11000 mm

n = 5 Brace Points on B1

Lu = 1833 mm

Mmax = 184.0 kN m

Ma = 138 kN m

Mb = 153.3 kN m

Mc = 168.7 kN m

ω2 = 1.181

Mu = 382.7 kN m

Zx = 5.42E+05 mm
3

Fy = 384 MPa

Mp = 208 kN m

0.67Mp = 139 kN m

Calculated Moment Resistance:

φ  1.0

Mr = 202.9

versus

Mcr-EXP = 182 kN m

%Δ  -11.48 % 

Section Properties of W360x33:

Unsupported length of beam:

Determine Elastic or Inelastic  Range:

(Specimen C2)

Calculation of ω2:

𝑀𝑢 =
𝜔2𝜋

𝐿𝑢

√𝐸𝐼𝑦𝐺𝐽 + (
𝜋𝐸

𝐿𝑢
)

2

𝐼𝑦 𝑤  

 2=
4Mmax

√Mmax
2 + 4Ma

2+7Mb
2+4Mc

2

     

𝐿𝑢 =
𝐿

𝑛 + 1
 

𝑀𝑢 > 0.67𝑀𝑝  

𝑀𝑟 = 1.  ∅𝑀𝑝  1 −
0.28𝑀𝑝

𝑀𝑢
  ∅𝑀𝑝  
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Table C.4 CSA S6 (2006) moment calculation for beam braced with torsional 

cross-frames and lateral in plan bracing (top flange loading 

considered; for Table 4.8). 

 

E = 209819 MPa

Iy = 2.91E+06 mm
4

G = 77000 MPa

J = 8.59E+04 mm
4

Cw = 8.43E+10 mm
6

L = 11000 mm

n = 5 Brace Points on B1

Lu = 1833 mm

Mmax = 104.5 kN m

Ma = 87.1 kN m

Mb = 104.5 kN m

Mc = 87.1 kN m

ω2 = 1.086

ω2 = 1.0 (when top flange loading is considered)

Mu = 230.5 kN m

Zx = 5.42E+05 mm
3

Fy = 384 MPa

Mp = 208 kN m

0.67Mp = 139 kN m

Calculated Moment Resistance:

φ  1.0

Mr = 178.8

versus

Mcr-EXP = 182 kN m

%Δ  1.74 % 

(Specimen C2)

Section Properties of W360x33:

Unsupported length of beam:

Determine Elastic or Inelastic  Range:

Calculation of ω2:

 2=
4Mmax

√Mmax
2 + 4Ma

2+7Mb
2+4Mc

2

     

𝐿𝑢 =
𝐿

𝑛 + 1
 

𝑀𝑢 =
𝜔2𝜋

1.2𝐿𝑢

√𝐸𝐼𝑦𝐺𝐽 + (
𝜋𝐸

1.2𝐿𝑢
)

2

𝐼𝑦 𝑤  

𝑀𝑢 > 0.67𝑀𝑝  

𝑀𝑟 = 1.  ∅𝑀𝑝  1 −
0.28𝑀𝑝

𝑀𝑢
  ∅𝑀𝑝  
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Figure C.1 Diagram for calculation of moment gradient (ω2) for cross-frame only 

condition (for Table 4.7). 

 
Figure C.2 Diagram for calculation of moment gradient (ω2) for combination 

cross-frame and in plan bracing condition (for Table 4.8). 

 

 

 

Diagram for Calculation of  oment  radient (ω2) for Cross-Frame Only Condition:

Moment Diagram
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Table C.5 Calculated torsional brace stiffness (for Table 4.7). 

 

L = 11000 mm

n = 2 cross-frames

E = 209819 MPa

Iy = 2.91E+06 mm
4

Torsional Stiffness of Experimental Critical Moment:

Cb = 1.086

Mcr = 104.5 kN m

 t i = 1.00E+08 N mm/rad vs.  t-provided = 9.70E+07 N mm/rad

%Δ  3.18 %

Torsional Stiffness of S6 Critical Moment (top flange loading ignored):

Cb = 1.086

Mcr = 101.8 kN m

 t i = 9.50E+07 N mm/rad vs.  t-provided = 9.70E+07 N mm/rad

%Δ  -2.08 %

Torsional Stiffness of S6 Critical Moment (top flange loading considered):

Cb = 1.086

Mcr = 69.8 kN m

 t i = 4.47E+07 N mm/rad vs.  t-provided = 9.70E+07 N mm/rad

%Δ  -53.97 %

Calculated Torsional Brace Stiffness

𝛽𝑡𝑖 =
1.2𝐿𝑀𝑐𝑟

2

𝑛𝐸𝐼𝑦 𝑏
2  
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APPENDIX D 

 
Figure D.1 Stress vs strain diagram for beam 1 web. 
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Figure D.2 Stress vs strain diagram for beam 1 flange. 
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Figure D.3 Stress vs strain diagram for beam 2 web. 
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Figure D.4 Stress vs strain diagram for beam 2 flange. 
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APPENDIX E 

Table E.1 Sample calculation of Equation [2.23] critical moment calculation 

presented in Table 6.1. 

 

 

 

 

 

 

 

 

 

 

 

Lg = 11000 mm

E = 200000 MPa

Iy = 2.91E+06 mm
4

G = 77000 MPa

J = 8.59E+04 mm
4

Ix = 8.27E+07 mm
4

ho = 349 mm

Cb = 1.35

For     S = 500 mm Mg = 179 kN m moment resistance of the system

Mg = 89 kN m moment resistance of single beam

For     S = 650 mm Mg = 228 kN m moment resistance of the system

Mg = 114 kN m moment resistance of single beam

For     S = 800 mm Mg = 278 kN m moment resistance of the system

Mg = 139 kN m moment resistance of single beam

For     S = 1000 mm Mg = 346 kN m moment resistance of the system

Mg = 173 kN m moment resistance of single beam

For     S = 1200 mm Mg = 413 kN m moment resistance of the system

Mg = 207 kN m moment resistance of single beam

Section Properties of Single Beam

    
 

  
      

      

   
     

     
 



134 

 

Table E.2 Cross-frame torsional stiffness calculation presented in Table 6.2. 

 
 

 

 

 

 

 

 

 

 

L = 11000 mm  g = 9.54E+07 N·mm

E = 200000 Mpa

Ix = 8.27E+07 mm
4

S = 800 mm

E S hb Lc Ab  b 

L19x19x3.2 200000 800 340 869 111 9.00E+08

L38x38x4.8 200000 800 340 869 340 2.76E+09

L102x102x13 200000 800 340 869 2430 1.97E+10

C250x30 200000 800 340 869 3780 3.06E+10

Torsional  ystem  tiffness of the Cross-frame  t (N·mm/rad)

 / t  t

L19x19x3.2 1.16E-08 8.63E+07

L38x38x4.8 1.08E-08 9.22E+07

L102x102x131.05E-08 9.50E+07

C250x30 1.05E-08 9.51E+07

Girder Stiffness Component (N·mm/rad)

W360x33 Section Properties

Torsional Brace  ember  tiffness Component  b (N·mm/rad)

β  
     

 

   
 

  
 
  

  

   
1      

  

1

β 
 
1

β 
 
1

β 
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Table E.3 Equation [2.23] critical moment calculations presented in Table 6.4. 

 
 

 

 

 

 

 

 

 

 

 

Lg = 11000 mm

E = 200000 MPa

Iy = 2.91E+06 mm
4

G = 77000 MPa

J = 8.59E+04 mm
4

Ix = 8.27E+07 mm
4

ho = 349 mm

Cb = 1.35

For     S = 500 mm Mg = 179 kN m moment resistance of the system

Mg = 89 kN m moment resistance of single beam

0.7Mg = 63 kN m moment resistance of single beam

For     S = 650 mm Mg = 228 kN m moment resistance of the system

Mg = 114 kN m moment resistance of single beam

0.7Mg = 80 kN m moment resistance of single beam

For     S = 800 mm Mg = 278 kN m moment resistance of the system

Mg = 139 kN m moment resistance of single beam

0.7Mg = 97 kN m moment resistance of single beam

For     S = 1000 mm Mg = 346 kN m moment resistance of the system

Mg = 173 kN m moment resistance of single beam

0.7Mg = 121 kN m moment resistance of single beam

Section Properties of Single Beam
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Table E.4 Calculation of critical moment presented in Table 6.6 using Equation 

[2.17]. 

 
 

 

 

 

 

 

 

 

 

 

 

L = 11000 mm

E = 200000 MPa

Iy = 2.91E+06 mm4

G = 77000 MPa

J = 8.59E+04 mm4

CT = 1

* CT considered as 1.0 since top loading results are considered to be negligible for twin girder specimen.

Mmax Ma Mb Mc Cbu 

Two Cross-Frames 125.1 62.55 125.1 62.55 1.26491106

Three Cross-Frames 165.0 82.5 165 82.5 1.26491106

Five Cross-Frames 185.6 92.8 185.6 92.8 1.26491106

Mmax Ma Mb Mc Cbb

Two Cross-Frames 125.1 104.15 125.1 104.15 1.08685611

Three Cross-Frames 165 103.13 123.75 144.38 1.29352333

Five Cross-Frames 185.6 139.20 154.7 170.10 1.18092272

βT = 2.55E+04 N·mm/mm βT = 3.82E+04 N·mm/mm βT = 6.37E+04 N·mm/mm

Mo = 17719874 N·mm Mo = 17719874 N·mm Mo = 17719874 N·mm

Cbu = 1.265 Cbu = 1.265 Cbu = 1.265

Cbb = 1.087 Cbb = 1.294 Cbb = 1.181

Mcr = 134.3 kN·m Mcr = 194.2 kN·m Mcr = 228.5 kN·m

My = 165.9 kN·m My = 165.9 kN·m My = 165.9 kN·m

Section Properties of Single Beam

Moment Gradient Factor For Each Cross-Frame Using Equation [2.16] Based on 

Max Moment Equivalent to Critical Moment of FEA

Unsupported

* Moment Gradient Factor was 

calculated using the moment 

diagram from the FE Analysis.

Moment Gradient Factor For Each Cross-Frame Using Equation [2.16] Based on 

Max Moment Equivalent to Critical Moment of FEA

Supported

Two Cross-Frames Three Cross-Frames Five Cross-Frames

Mcr Governs Failure Mode Mcr Governs Failure Mode My Governs Failure Mode

𝑀𝑐𝑟 = √ 𝑏𝑢
2 𝑀𝑜

2 +
 𝑏𝑏

2 𝛽 𝑇𝐸𝐼𝑦
 𝑇

 𝑀𝑦  

Cb=
4Mmax

√Mmax
2 + 4Ma

2+7Mb
2+4Mc

2

     

Mo =
 

L
√EIyGJ 
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Table E.5 Calculation of critical moment using CSA S6 (2006) for two 

intermediate cross-frames presented in Table 6.7. 

 
 

 

 

 

 

E = 200000 MPa

Iy = 2.91E+06 mm
4

G = 77000 MPa

J = 8.59E+04 mm
4

Cw = 8.43E+10 mm
6

L = 11000 mm

n = 2 cross-frames

Lu = 3667 mm

Mmax = 104.5 kN m

Ma = 87.1 kN m

Mb = 104.5 kN m

Mc = 87.1 kN m

ω2 = 1.086

ω2 = 1.0 (when top flange loading is considered)

Mu = 67.2 kN m

Zx = 5.42E+05 mm
3

Fy = 350 MPa

Mp = 190 kN m

0.67Mp = 127 kN m

Calculated Moment Resistance:

φ  1.0

Mr = 67.2

versus

Mcr-FE = 125.1 kN m (FE Results)

%Δ  46.30 % 

Section Properties of W360x33:

Unsupported length of beam:

Calculation of ω2:

Determine Elastic or Inelastic  Range:

 2=
4Mmax

√Mmax
2 + 4Ma

2+7Mb
2+4Mc

2

     

𝐿𝑢 =
𝐿

𝑛 + 1
 

𝑀𝑟 = ∅𝑀𝑢  

𝑀𝑢 =
𝜔2𝜋

1.2𝐿𝑢

√𝐸𝐼𝑦𝐺𝐽 + (
𝜋𝐸

1.2𝐿𝑢
)

2

𝐼𝑦 𝑤  

𝑀𝑢   0.67𝑀𝑝 



138 

 

Table E.6 Calculation of critical moment using CSA S6 (2006) for three 

intermediate cross-frames presented in Table 6.7. 

 

 
 

 

 

 

E = 200000 MPa

Iy = 2.91E+06 mm
4

G = 77000 MPa

J = 8.59E+04 mm
4

Cw = 8.43E+10 mm
6

L = 11000 mm

n = 3 cross-frames

Lu = 2750 mm

Mmax = 167.0 kN m

Ma = 104.4 kN m

Mb = 125.3 kN m

Mc = 146.1 kN m

ω2 = 1.293

ω2 = 1.0 (when top flange loading is considered)

Mu = 107.5 kN m

Zx = 5.42E+05 mm
3

Fy = 350 MPa

Mp = 190 kN m

0.67Mp = 127 kN m

Calculated Moment Resistance:

φ  1.0

Mr = 107.5

versus

Mcr-FE = 167 kN m (FE Results)

%Δ  35.65 % 

Unsupported length of beam:

Calculation of ω2:

Determine Elastic or Inelastic  Range:

Section Properties of W360x33:

 2=
4Mmax

√Mmax
2 + 4Ma

2+7Mb
2+4Mc

2

     

𝐿𝑢 =
𝐿

𝑛 + 1
 

𝑀𝑟 = ∅𝑀𝑢  

𝑀𝑢 =
𝜔2𝜋

1.2𝐿𝑢

√𝐸𝐼𝑦𝐺𝐽 + (
𝜋𝐸

1.2𝐿𝑢
)

2

𝐼𝑦 𝑤  

𝑀𝑢   0.67𝑀𝑝 
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Table E.7 Calculation of critical moment using CSA S6 (2006) for five 

intermediate cross-frames presented in Table 6.7. 

 

 
 

 

 

 

E = 200000 MPa

Iy = 2.91E+06 mm
4

G = 77000 MPa

J = 8.59E+04 mm
4

Cw = 8.43E+10 mm
6

L = 11000 mm

n = 5 cross-frames

Lu = 1833 mm

Mmax = 185.6 kN m

Ma = 139.2 kN m

Mb = 154.7 kN m

Mc = 170.1 kN m

ω2 = 1.181

ω2 = 1.0 (when top flange loading is considered)

Mu = 220.6 kN m

Zx = 5.42E+05 mm
3

Fy = 350 MPa

Mp = 190 kN m  

0.67Mp = 127 kN m

Calculated Moment Resistance:

φ  1.0

Mr = 165.9

versus

Mcr-FE = 185.6 kN m (FE Results)

%Δ  10.61 % 

Section Properties of W360x33:

Unsupported length of beam:

Calculation of ω2:

Determine Elastic or Inelastic  Range:

 2=
4Mmax

√Mmax
2 + 4Ma

2+7Mb
2+4Mc

2

     

𝐿𝑢 =
𝐿

𝑛 + 1
 

𝑀𝑢 =
𝜔2𝜋

1.2𝐿𝑢

√𝐸𝐼𝑦𝐺𝐽 + (
𝜋𝐸

1.2𝐿𝑢
)

2

𝐼𝑦 𝑤  
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Table E.8 Calculation of torsional cross-frame stiffness using CSA S6 (2006) 

critical moment presented in Table 6.7. 

 

 
  

Calculated Torsional Brace Stiffness (Top Flange Loading Not Considered)

L = 11000 mm

E = 200000 MPa

Iy = 2.91E+06 mm
4

Torsional Stiffness of Two Cross-Frame Specimen:

Cb = 1

n = 2 cross-frames

Mcr = 67.2 kN m

 t i = 4.26E+07 N mm/rad vs.  t-provided = 9.22E+07 N mm/rad

%Δ  -53.75 %

Torsional Stiffness of Three Cross-Frame Specimen:

Cb = 1

n = 3 cross-frames

Mcr = 107.5 kN m

 t i = 7.28E+07 N mm/rad vs.  t-provided = 9.22E+07 N mm/rad

%Δ  -21.09 %

Torsional Stiffness of Five Cross-Frame Specimen:

Cb = 1

n = 5 cross-frames

Mcr = 220.6 kN m

 t i = 1.84E+08 N mm/rad vs.  t-provided = 9.22E+07 N mm/rad

%Δ  99.47 %

*1.2 factor in equation neglected in calculation of βt i since 

top flange loading was already considered in the 

determination of the critical moment calculation.

𝛽𝑡𝑖 =
1.2𝐿𝑀𝑐𝑟

2

𝑛𝐸𝐼𝑦 𝑏
2  
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Table E.9 Calculation of effective length using CSA S6 (2006) critical moment 

calculation for two intermediate cross-frames presented in Table 6.7. 

 

 
 

 

 

 

E = 200000 MPa

Iy = 2.91E+06 mm
4

G = 77000 MPa

J = 8.59E+04 mm
4

Cw = 8.43E+10 mm
6

L = 7551 mm

n = 2 cross-frames

Lu = 2517 mm

Mmax = 104.5 kN m

Ma = 87.1 kN m

Mb = 104.5 kN m

Mc = 87.1 kN m

ω2 = 1.086

ω2 = 1.0 (when top flange loading is considered)

Mu = 125.1 kN m

Zx = 5.42E+05 mm
3

Fy = 350 MPa

Mp = 190 kN m

0.67Mp = 127 kN m

Calculated Moment Resistance:

φ  1.0

Mr = 125.1

versus

Mcr-FE = 125.1 kN m (FE Results)

%Δ  0.00 % 

Section Properties of W360x33:

Unsupported length of beam:

Calculation of ω2:

Determine Elastic or Inelastic  Range:

 2=
4Mmax

√Mmax
2 + 4Ma

2+7Mb
2+4Mc

2

     

𝐿𝑢 =
𝐿

𝑛 + 1
 

𝑀𝑟 = ∅𝑀𝑢  

𝑀𝑢 =
𝜔2𝜋

1.2𝐿𝑢

√𝐸𝐼𝑦𝐺𝐽 + (
𝜋𝐸

1.2𝐿𝑢
)

2

𝐼𝑦 𝑤  

𝑀𝑢   0.67𝑀𝑝 
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Table E.10 Calculation of effective length using CSA S6 (2006) critical moment 

calculation for three intermediate cross-frames presented in Table 6.7. 

 

 
 

 

 

 

E = 200000 MPa

Iy = 2.91E+06 mm
4

G = 77000 MPa

J = 8.59E+04 mm
4

Cw = 8.43E+10 mm
6

L = 8547 mm

n = 3 cross-frames

Lu = 2137 mm

Mmax = 167.0 kN m

Ma = 104.4 kN m

Mb = 125.3 kN m

Mc = 146.1 kN m

ω2 = 1.293

ω2 = 1.0 (when top flange loading is considered)

Mu = 167.0 kN m

Zx = 5.42E+05 mm
3

Fy = 350 MPa

Mp = 190 kN m

0.67Mp = 127 kN m

Calculated Moment Resistance:

φ  1.0

Mr = 167.0

versus

Mcr-FE = 167 kN m (FE Results)

%Δ  0.00 % 

Section Properties of W360x33:

Unsupported length of beam:

Calculation of ω2:

Determine Elastic or Inelastic  Range:

 2=
4Mmax

√Mmax
2 + 4Ma

2+7Mb
2+4Mc

2

     

𝐿𝑢 =
𝐿

𝑛 + 1
 

𝑀𝑟 = ∅𝑀𝑢  

𝑀𝑢 =
𝜔2𝜋

1.2𝐿𝑢

√𝐸𝐼𝑦𝐺𝐽 + (
𝜋𝐸

1.2𝐿𝑢
)

2

𝐼𝑦 𝑤  

𝑀𝑢   0.67𝑀𝑝 
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Table E.11 Calculation of effective length using CSA S6 (2006) critical moment 

calculation for five intermediate cross-frames presented in Table 6.7. 

 

 

 

 

 

E = 200000 MPa

Iy = 2.91E+06 mm
4

G = 77000 MPa

J = 8.59E+04 mm
4

Cw = 8.43E+10 mm
6

L = 12091 mm

n = 5 cross-frames

Lu = 2015 mm

Mmax = 185.6 kN m

Ma = 139.2 kN m

Mb = 154.7 kN m

Mc = 170.1 kN m

ω2 = 1.181

ω2 = 1.0 (when top flange loading is considered)

Mu = 185.6 kN m

Zx = 5.42E+05 mm
3

Fy = 350 MPa

Mp = 190 kN m  

0.67Mp = 127 kN m

Calculated Moment Resistance:

φ  1.0

Mr = 155.7

versus

Mcr-FE = 185.6 kN m (FE Results)

%Δ  16.10 % 

Unsupported length of beam:

Section Properties of W360x33:

Determine Elastic or Inelastic  Range:

Calculation of ω2:

 2=
4Mmax

√Mmax
2 + 4Ma

2+7Mb
2+4Mc

2

     

𝐿𝑢 =
𝐿

𝑛 + 1
 

𝑀𝑢 =
𝜔2𝜋

1.2𝐿𝑢

√𝐸𝐼𝑦𝐺𝐽 + (
𝜋𝐸

1.2𝐿𝑢
)

2

𝐼𝑦 𝑤  
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Table E.12 CSA S6 (2006) critical moment calculation with two cross-frames 

loaded through shear center (for Table 6.9). 

 

 

 

 

 

 

E = 200000 MPa

Iy = 2.91E+06 mm
4

G = 77000 MPa

J = 8.59E+04 mm
4

Cw = 8.43E+10 mm
6

L = 11000 mm

n = 2 cross-frames

Lu = 3667 mm

Mmax = 125.1 kN m

Ma = 108.4 kN m

Mb = 125.1 kN m

Mc = 108.4 kN m

ω2 = 1.069

Mu = 96.3 kN m

Zx = 5.42E+05 mm
3

Fy = 350 MPa

Mp = 190 kN m

0.67Mp = 127 kN m

Calculated Moment Resistance:

φ  1.0

Mr = 96.3

versus

Mcr-FE = 125.1 kN m (FE Results)

%Δ  23.04 % 

Section Properties of W360x33:

Unsupported length of beam:

Calculation of ω2:

Determine Elastic or Inelastic  Range:

𝑀𝑢 =
𝜔2𝜋

𝐿𝑢

√𝐸𝐼𝑦𝐺𝐽 + (
𝜋𝐸

𝐿𝑢
)

2

𝐼𝑦 𝑤  

 2=
4Mmax

√Mmax
2 + 4Ma

2+7Mb
2+4Mc

2

     

𝐿𝑢 =
𝐿

𝑛 + 1
 

𝑀𝑟 = ∅𝑀𝑢  

𝑀𝑢   0.67𝑀𝑝 
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Table E.13 CSA S6 (2006) critical moment calculation with three cross-frames 

loaded through shear center (for Table 6.9). 

 
 

 

 

 

E = 200000 MPa

Iy = 2.91E+06 mm
4

G = 77000 MPa

J = 8.59E+04 mm
4

Cw = 8.43E+10 mm
6

L = 11000 mm

n = 3 cross-frames

Lu = 2750 mm

Mmax = 167.0 kN m

Ma = 104.4 kN m

Mb = 125.3 kN m

Mc = 146.1 kN m

ω2 = 1.293

Mu = 190.7 kN m

Zx = 5.42E+05 mm
3

Fy = 350 MPa

Mp = 190 kN m

0.67Mp = 127 kN m

Calculated Moment Resistance:

φ  1.0

Mr = 157.4

versus

Mcr-FE = 167 kN m (FE Results)

%Δ  5.76 % 

Unsupported length of beam:

Calculation of ω2:

Determine Elastic or Inelastic  Range:

Section Properties of W360x33:

𝑀𝑢 =
𝜔2𝜋

𝐿𝑢

√𝐸𝐼𝑦𝐺𝐽 + (
𝜋𝐸

𝐿𝑢
)

2

𝐼𝑦 𝑤  

 2=
4Mmax

√Mmax
2 + 4Ma

2+7Mb
2+4Mc

2

     

𝐿𝑢 =
𝐿

𝑛 + 1
 

𝑀𝑟 = 1.  ∅𝑀𝑝  1 −
0.28𝑀𝑝

𝑀𝑢
  ∅𝑀𝑝  
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Table E.14 CSA S6 (2006) critical moment calculation with five cross-frames 

loaded through shear center (for Table 6.9). 

 

 
 

 

E = 200000 MPa

Iy = 2.91E+06 mm
4

G = 77000 MPa

J = 8.59E+04 mm
4

Cw = 8.43E+10 mm
6

L = 11000 mm

n = 5 cross-frames

Lu = 1833 mm

Mmax = 185.6 kN m

Ma = 139.2 kN m

Mb = 154.7 kN m

Mc = 170.1 kN m

ω2 = 1.181

Mu = 365.7 kN m

Zx = 5.42E+05 mm
3

Fy = 350 MPa

Mp = 190 kN m

0.67Mp = 127 kN m

Calculated Moment Resistance:

φ  1.0

Mr = 186.5

versus

Mcr-FE = 185.6 kN m (FE Results)

%Δ  -0.47 % 

Section Properties of W360x33:

Unsupported length of beam:

Calculation of ω2:

Determine Elastic or Inelastic  Range:

𝑀𝑢 =
𝜔2𝜋

𝐿𝑢

√𝐸𝐼𝑦𝐺𝐽 + (
𝜋𝐸

𝐿𝑢
)

2

𝐼𝑦 𝑤  

 2=
4Mmax

√Mmax
2 + 4Ma

2+7Mb
2+4Mc

2

     

𝐿𝑢 =
𝐿

𝑛 + 1
 

𝑀𝑟 = 1.  ∅𝑀𝑝  1 −
0.28𝑀𝑝

𝑀𝑢
  ∅𝑀𝑝  
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Table E.15 AISC 360 (2010) critical moment calculation with two cross-frames 

loaded through shear center (for Table 6.9). 

 

 

 

 

 

  

W360x33 Section Properties

E = 200000 Mpa

Iy = 2.91E+06 mm
4

Sx = 4.74E+05 Mpa

J = 8.59E+04 mm
4

Cw = 8.43E+10 mm
6

c = 1

ho = 340.5 mm

rts
2 = 1044.92

rts = 32.33

L = 11000 mm

n = 2 cross-frames

Lb = 3667 mm

Mmax = 125.1 kN m

Ma = 108.4 kN m

Mb = 125.1 kN m

Mc = 108.4 kN m

Cb = 1.068

Fcr = 203 MPa (critical buckling stress in accordance with AISC)

Mcr = 96.2 kN m (critical moment in accordance with AISC)

versus

Mcr-S6 = 96.2 kN m (CSA-S6-06 Critical Elastic Moment; top flange load height neglected)

%Δ  -0.04 % 

Unsupported length of beam:

Calculation of Cb:

𝐹𝑐𝑟 =
 𝑏𝜋

2𝐸

(
𝐿𝑏

𝑟𝑡𝑠
)

2
√1 + 0.078

𝐽𝑐

𝑆𝑥ℎ𝑜
(
𝐿𝑏

𝑟𝑡𝑠
)

2

 

𝑟𝑡𝑠
2 =

√𝐼𝑦 𝑤

𝑆𝑥
 

𝐿𝑏 =
𝐿

𝑛 + 1
 

 𝑏 =
12.5𝑀𝑚𝑎𝑥

2.5𝑀𝑚𝑎𝑥 + 3𝑀𝑎 + 4𝑀𝑏 + 3𝑀𝑐
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Table E.16 AISC 360 (2010) critical moment calculation with three cross-frames 

loaded through shear center. 

 

 

 

 

 

 

W360x33 Section Properties

E = 200000 Mpa

Iy = 2.91E+06 mm
4

Sx = 4.74E+05 Mpa

J = 8.59E+04 mm
4

Cw = 8.43E+10 mm
6

c = 1

ho = 340.5 mm

rts
2 = 1044.92

rts = 32.33

L = 11000 mm

n = 3 cross-frames

Lb = 2750 mm

Mmax = 167.0 kN m

Ma = 104.4 kN m

Mb = 125.3 kN m

Mc = 146.1 kN m

Cb = 1.250

Fcr = 389 MPa (critical buckling stress in accordance with AISC)

Mcr = 184.3 kN m (critical moment in accordance with AISC)

versus

Mcr-S6 = 190.7 kN m (CSA-S6-06 Critical Elastic Moment; top flange load height neglected)

%Δ  3.38 % 

My = 165.9 kN m Material will yield prior to buckling; Therfore yielding governs design

Unsupported length of beam:

Calculation of Cb:

𝐹𝑐𝑟 =
 𝑏𝜋

2𝐸

(
𝐿𝑏

𝑟𝑡𝑠
)

2
√1 + 0.078

𝐽𝑐

𝑆𝑥ℎ𝑜
(
𝐿𝑏

𝑟𝑡𝑠
)

2

 

𝑟𝑡𝑠
2 =

√𝐼𝑦 𝑤

𝑆𝑥
 

𝐿𝑏 =
𝐿

𝑛 + 1
 

 𝑏 =
12.5𝑀𝑚𝑎𝑥

2.5𝑀𝑚𝑎𝑥 + 3𝑀𝑎 + 4𝑀𝑏 + 3𝑀𝑐
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Table E.17 AISC 360 (2010) critical moment calculation with five cross-frames 

loaded through shear center (for Table 6.9). 

 

 

 

 

 

 

W360x33 Section Properties

E = 200000 Mpa

Iy = 2.91E+06 mm
4

Sx = 4.74E+05 Mpa

J = 8.59E+04 mm
4

Cw = 8.43E+10 mm
6

c = 1

ho = 340.5 mm

rts
2 = 1044.92

rts = 32.33

L = 11000 mm

n = 5 cross-frames

Lb = 1833 mm

Mmax = 185.6 kN m

Ma = 139.2 kN m

Mb = 154.7 kN m

Mc = 170.1 kN m

Cb = 1.154

Fcr = 754 MPa (critical buckling stress in accordance with AISC)

Mcr = 357.3 kN m (critical moment in accordance with AISC)

versus

Mcr-S6 = 365.7 kN m (CSA-S6-06 Critical Elastic Moment; top flange load height neglected)

%Δ  2.29 % 

My = 165.9 kN m Material will yield prior to buckling; Therfore yielding governs design

Unsupported length of beam:

Calculation of Cb:

𝐹𝑐𝑟 =
 𝑏𝜋

2𝐸

(
𝐿𝑏

𝑟𝑡𝑠
)

2
√1 + 0.078

𝐽𝑐

𝑆𝑥ℎ𝑜
(
𝐿𝑏

𝑟𝑡𝑠
)

2

 

𝑟𝑡𝑠
2 =

√𝐼𝑦 𝑤

𝑆𝑥
 

𝐿𝑏 =
𝐿

𝑛 + 1
 

 𝑏 =
12.5𝑀𝑚𝑎𝑥

2.5𝑀𝑚𝑎𝑥 + 3𝑀𝑎 + 4𝑀𝑏 + 3𝑀𝑐
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Table E.18 CSA S6 (2006) brace force calculation for two intermediate cross-

frames (for Table 6.10). 

 

 
 

 

 

 

 

 

 

 

 

83.4 kN·m/beam

Fhorizontal:

hb = 340 mm

# beams = 2

Fhorizontal = 4.9 kN

FDiagonal:

Lc = 872.8 mm

S = 800 mm

Fhorizontal = 10.7 kN

Two Cross-Frames:

Mcr @ Cross-Frame Locations: 125.1 kN·m × 3.667 m / 5.5 m =


CF 1 CF 2

Mcr = 125.1 kN·m/beam

𝐹           
𝑀     

ℎ 
       𝑏 𝑎𝑚𝑠

𝐹         
   𝐹           𝐿 

𝑆
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Table E.19 CSA S6 (2006) brace force calculation for three intermediate cross-

frames (for Table 6.10). 

 
 

 

 

 

 

 

 

 

 

 

167.0 kN·m/beam

Fhorizontal:

hb = 340 mm

# beams = 2

Fhorizontal = 9.8 kN

FDiagonal:

Lc = 872.8 mm

S = 800 mm

Fhorizontal = 21.4 kN

Three Cross-Frames:

Mcr @ Cross-Frame Location CF2:

CF 1 CF 3

Mcr = 167.0 kN·m/beam

𝐹           
𝑀     

ℎ 
       𝑏 𝑎𝑚𝑠

𝐹         
   𝐹           𝐿 

𝑆

CF 2
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Table E.20 CSA S6 (2006) brace force calculation for five intermediate cross-

frames (for Table 6.10). 

 

 

 

 

 

185.6 kN·m/beam

Fhorizontal:

hb = 340 mm

# beams = 2

Fhorizontal = 10.9 kN

FDiagonal:

Lc = 872.8 mm

S = 800 mm

Fhorizontal = 23.8 kN

Five Cross-Frames:

Mcr @ Cross-Frame Location CF3:

CF 1 CF 5

Mcr = 185.6 kN·m/beam

𝐹           
𝑀     

ℎ 
       𝑏 𝑎𝑚𝑠

𝐹         
   𝐹           𝐿 

𝑆

CF 3 CF 4CF 2


