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Abstract

A method for compiling programs for adiabatic quantum computers is described, and

the resulting programs evaluated on a physically implemented adiabatic quantum

machine. These results are used to characterize the performance of the machine. The

AQC machine is found to perform well on some problems with linear scaling with

problem size for some instances, but it performs poorly on others and is unable to

solve a 6-variable satisfiability problem at all.
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Chapter 1

Introduction

Quantum computing is the study of computers which operate according to the laws

of quantum mechanics rather than the laws of classical physics. Quantum computers

are theorized to be more efficient than classical computers because quantum algo-

rithms for integer factorization[30] and global search[13] have been found that are

asymptotically more efficient than the best known classical algorithms, although it is

not proven that there are no equivalent classical algorithms.

Unlike classical computers, which operate on bits, quantum computers operate on

quantum bits or qubits. While classical information must take on a definite value

(i.e. 0 or 1), quantum information can take on superpositions (the familiar quantum

mechanics: 1√
2
[|0⟩+ |1⟩]), as well as become entangled. The laws of quantum mechan-

ics, specifically the way in which Hilbert spaces behave for multiple particles, require

that in order to fully describe a quantum system consisting of n two-level particles

we must record 2n complex numbers. Classical systems require only O(n) numbers

to be recorded to fully describe a system of n particles. This means that quantum

systems require exponentially more computational resources than classical systems

do, or alternatively that the computational power of the actual, quantum, universe is

much larger than that of the apparent classical universe.

1.1 Computational Complexity

Computational Complexity theory is the branch of computer science dealing with the

study of computational difficulty, and of classifying different computational problems

according to their difficulty. The problem of distinguishing the performance of a

particular method of computation from the process of computation in the abstract is

done via Turing machines.[33] A Turing machine is a hypothetical computing device

that is extremely simple to reason about; it consists only of a tape containing a grid of

symbols, and a read head able to read and write symbols to the tape. The machine’s
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behaviour is controlled entirely by the symbol under the read head; based on the

symbol the machine may write a new symbol in place, or move somewhere else on the

tape. The usefulness of Turing machines for understanding computation is encoded

in the Church-Turing thesis:

A function is efficiently calculable only if it is computable by a Turing machine

Informally, this assertion means that we only need concern ourselves with Turing

machines, since other modes of computation are equivalent.

The computational resources a problem takes to solve is generally described using

Big-O notation.[25] For a given problem, we say that it is of order O(g) if the number

of steps a Turing machine must take to solve as a function of the input size is bounded

from above by g. For example, if a function f takes 3T 2−T steps for T input then f

is O(T 2) (dropping constant factors and trailing terms). Equivalently we may say a

Turing machine takes an amount of time proportional to T 2 to solve the problem by

assuming each instruction carried out by the Turing machine takes a constant amount

of time.

Computational problems are divided into complexity classes. Problems considered

easy to solve are those which fall into class P (for Polynomial): those problems which

are O(nd) for input sized n and some constant d; that is, problems which require a

polynomial number of steps. Problems are considered hard to solve if they require an

exponential number of steps, e.g. O(2n).

A special group of problems are those that fall into the NP class: these are decision

problems (that is, problems whose output is either yes or no) for which verifying

whether or not a candidate solution is correct is in P. Clearly, problems in P must

also be in NP; if we can construct a solution in a polynomial amount of time then

the time to verify is constant, which is in P. It is one of the greatest open questions

of the modern era whether P = NP, or if there exist problems for which verifying the

solution is easy (i.e. in P) but solving is hard (not in P).

It was shown in 1971 by Cook[7] that there are problems in NP which any other

problem in NP can be reduced to with only at most a polynomial overhead in difficulty.

As a result if such a problem were efficiently solvable then all NP problems would be

(and thus P would equal NP). These are known as NP-Complete problems. Twenty-

one such were famously demonstrated by Karp in 1972.[19]
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Many problems of practical interest are known to be NP or NP-Complete. As

such, methods to solve them quickly are of much use. The initial idea of using

quantum mechanics to carry out computation is usually attributed to Feynman.[11]

He noticed the difficulty in simulating quantum mechanics on classical computers

due to the exponential resources required, and proposed using quantum mechanics

to build a computer that could simulate physics. This lead to the development of

quantum computing.

1.2 Quantum Computing

Quantum computing is usually described using the so-called gate model.[21] Some

initial register of qubits is prepared, and then acted on sequentially by unitary oper-

ators known as quantum gates. This sequence of quantum gates results in the input

register of qubits being put into some sort of quantum state, generally a mixture

of superposition and entanglement. Finally the qubits are measured, resulting in a

classical vector of information as output depending on which wave-function compo-

nent is picked out by the measurement. The number of gates required to go from

the specified input to the desired output maps analogously to the number of classical

gates required for a classical digital computation, and in the same way that counting

classical gates allows us to form big-O asymptotic bounds on computation time we

can asymptotically bound the running time of a quantum algorithm by counting the

number of unitary gates it requires.

Interest in quantum computers expanded with the discovery of an algorithm that

was provably asymptotically faster than any classical algorithm: the Deutsch-Josza

algorithm.[8] The Deutsch-Jozsa algorithm solves a highly contrived problem: given

n input bits that are guaranteed to be one of

1) equally partitioned between n/2 zeros and n/2 ones (balanced)

2) contain all zeros (constant)

3) contain all ones (constant)

determine whether the input is balanced or constant. The fastest classical algorithm

is to simply inspect half of the elements plus one, n/2+1 operations; meanwhile, the

Deutsch-Josza algorithm can determine whether the input is balanced or constant in
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only a constant number of operations. This problem is not very interesting on its

own, but what is of interest is that a computer that can take advantage of quantum

operations can solve it faster than a purely classical computer.

The discovery of a quantum algorithm asymptotically faster than the best classical

one led to a surge of research, resulting in the discoveries of the Quantum Fourier

Transform (QFT)[25], Shor’s Algorithm[30] and Grover’s Algorithm[13].

Building a quantum computer is a difficult task;[21][25] in order for the com-

puter to remain well described by quantum mechanics, interaction with the outside

world must be minimized otherwise the computational elements will become thermally

mixed and no longer behave quantum mechanically. However, a computer must inter-

act with the outside world to receive input and return output. This means that the

computational section of a quantum computer cannot be too isolated. There exist

quantum circuit elements that do quantum error-correction,[29] which can counteract

the deleterious effect of thermal noise or other sources of decoherence. Unfortunately

the larger a quantum circuit grows the more vulnerable to decoherence it becomes,

and quantum error correcting schemes add qubits to the circuits which they error

correct. These extra qubits bring in more decoherence; at present, more decoherence

than the error-correcting codes fix.[25]

1.3 Outline

One proposed method for solving this runaway decoherence problem is adiabatic quan-

tum computing (AQC).[10] AQC is essentially a form of analog computing, where a

physical system is set up in such a way that as it evolves according to the laws

of physics it naturally computes the solution to a problem. This dissertation will

cover the background of AQC as well as explore the process of computing on an ac-

tual adiabatic quantum computer, the “D-Wave Two”, including the requirements of

compiling problems into a specific machine solvable form. We will also look at the

experimental results of solving some actual problems on the D-Wave Two.



Chapter 2

Adiabatic Quantum Computing

In this chapter we will explore the development of AQC as well as the physics of the

adiabatic theorem. We then discuss how adiabatic quantum computing works, and

conduct a numerical simulation of an adiabatic quantum computation.

2.1 A Brief History of AQC

The idea of expanding simulated annealing to include quantum effects to solve prob-

lems was initially introduced by Kadowaki and Nishimori.[18] The linking of quantum

annealing to quantum computation was done slightly later by Farhi et. al in 2000.[10]

The structure of AQC appears here entirely intact: evolving from easily prepared ini-

tial Hamiltonians into problem Hamiltonians via the adiabatic theorem. Farhi et.

al.[10] lacks any experimental or theoretical arguments for the speed of AQC, or com-

parison to gate model quantum computing. Farhi et. al. followed up with another

paper[9] with some preliminary simulations of AQC carried out by numerically inte-

grating Schrödinger’s Equation. These results seemed to indicate exponential speedup

over classical algorithms for an NP-Complete problem, but due to the difficulty of sim-

ulating quantum mechanics on a classical computer the maximum problem size they

could experiment with was quite small so they could not draw very broad conclusions.

After this encouraging initial result it was shown by van Dam et. al.[34] that, at

least in principle, AQC is equivalent to gate model quantum computing. Specifically

they showed that adiabatic evolution taking time T may be approximated by O(T 2)

unitary transformations of n qubits. However, van Dam et. al. also designed a

class of minimization problems for which AQC has an exponential lower bound. This

was one of the earliest results in a controversy which continues to this day: how

powerful are adiabatic quantum computers? Proposed answers have included: being

more powerful than gate-model quantum computers, being able to solve NP-Complete

problems efficiently;[28][24] as powerful as gate-model quantum computers;[34] or no

5
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more powerful than classical computers.[27] Care must be taken to distinguish the

questions of how powerful adiabatic quantum computing is, and how powerful a given

adiabatic quantum computer is.

More papers on this topic followed, including several from A. P. Young with

others.[16][37][36] Using Quantum Monte Carlo techniques, they were able to increase

the size of analyzable Hamiltonians from 24 spins to 256 spins.[36] Their results

seemed to indicate an exponential slowdown when solving a particular NP-Complete

problem (Locked 1 in 3-SAT).[37] This would suggest that an adiabatic quantum

computer would not be more powerful than a classical computer.

Concurrent with this effort to characterize adiabatic quantum computers theo-

retically was a commercial effort by D-Wave Systems to build one. Beginning with

a single qubit[14], scaling to eight[15] and then 128[4] and 512.[26] While entangle-

ment has been demonstrated to occur inside of this machine[22], the evidence for a

quantum speedup is mixed,[26][3][31] with a very recent paper by Rønnow et. al.

suggesting that the D-Wave Two (the 512 spin machine) is not asymptotically faster

than a classical computer.[27]

In this work we carried out a variety of benchmarking on the D-Wave Two machine

both to hopefully shed some light on the question of the speedup particular to this

individual machine, and to validate our approach to problem compilation for AQC.

2.2 The Adiabatic Theorem

The central idea of Adiabatic Quantum Computation is solving problems by finding

the ground states of specially constructed Hamiltonians.[10] Ground state relaxation

is a form of analog computing where we rely on physics to do the calculating for us:

we set up a physical system so that the ground state is the solution to our problem

and let the system evolve. Generally speaking, we expect that classical or quantum

systems will still take exponentially long to reach this desired ground state for NP-

hard problems.[1] By starting the system in an easy to prepare state (for example, if

your system was composed of spins then an easy to prepare state would be all spins

ferromagnetically aligned) and then evolving adiabatically into our prepared problem

state AQC uses the adiabatic theorem to (hopefully) avoid this exponential delay.

The adiabatic theorem states that if a system is initially prepared in the ith energy
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level |ψi⟩, and the Hamiltonian is evolved according to the adiabatic condition, the

system will remain in the ith state after the evolution. The adiabatic condition is:

h̄ ∂∂t ⟨ψf |V̂ (t)|ψi⟩
 << ∆2 (2.1)

where the energy gap between states |ψi⟩ and |ψf⟩ is ∆ = |Ef − Ei| and V̂ (t)

is the time dependant part of the Hamiltonian. For a derivation of the adiabatic

theorem see Appendix A. When the adiabatic condition is satisfied the probability of

transition from state i to state f is zero, that is

| ⟨ψf |ψi⟩ |2 → 1 (2.2)

So if the speed at which the Hamiltonian changes (the derivative term) is slow

enough, and the gap ∆ between the initial state and the other states is large enough,

then the system won’t transition into a new state.

2.3 Finding a Problem Hamiltonian

While in principle there are an unlimited number of ways to construct a Hamiltonian

whose ground state encodes the solution to a computation, our method is to use N

2-spin particles with a Hamiltonian:

Hf =

i

hiσ
Z
i +


i<j

Jijσ
Z
i σ

Z
j (2.3)

where σZ
i is the z-pauli matrix of the ith particle and hi and Jij are the parameters of

the Hamiltonian; using spin as our computational basis we choose logical 1 (true) to

be represented by spin up |↑⟩ (or s = +1) and logical 0 (false) by spin down |↓⟩ (or
s = −1). We call the hi parameters fields and the Jij’s couplings. The parameters hi

control the tendency of the ith particle to point up or down, while the Jij’s control

the tendency of the ith and jth particles to align or anti-align.

We can find the energy of a state by multiplying each hi by the corresponding

spin si = ±1 and each J by the corresponding pair of spins si and sj. Choosing a

problem Hamiltonian is then the problem of finding the hs and Js so that the ground

state corresponds to the problem we are trying to solve. For example, we can encode
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A B C
0 0 1
0 1 1
1 0 1
1 1 0

Fields Couplings
hA = −1 JAB = 1
hB = −1 JAC = 2
hC = −2 JBC = 2

A B C Energy
↓ ↓ ↓ 9
↓ ↓ ↑ -3
↓ ↑ ↓ 1
↓ ↑ ↑ -3
↑ ↓ ↓ 1
↑ ↓ ↑ -3
↑ ↑ ↓ -3
↑ ↑ ↑ 1

Table 2.1: From left to right the truth table of the logical NAND; the fields and couplings
that result in a Hamiltonian satisfying that truth table; the complete energy structure
of that Hamiltonian. Each state of the spins (↑ / ↓) whose logical equivalent appears
in the truth table is part of the degenerate ground state of the final system.

Figure 2.1: Graphical representation of the Hamiltonian implementing the logic of
a NAND gate. Each of the vertices is a spin and the number inside is the field value
on that spin; each edge is the coupling value between the respective vertices. Each
ground state of this Hamiltonian enforces the logic C = ¬(A ∧B).

the logic of a digital NAND gate using the collection of hi’s and Jij’s shown in Table

2.1 (the procedure for generating this Hamiltonian is described in Section 4.2). There

are four degenerate ground states of this Hamiltonian, each corresponding to one of

the entries in the logic table for a NAND gate.

Most of the time we don’t want to calculate the whole truth table of a circuit,

merely a subsection of it with some variables fixed. To do this we fix the variables

we don’t wish to solve for and adjust each of their neighbour’s fields by the amount

contributed by the couplings shared with the fixed variables. For example, if we had

a Hamiltonian
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Clamping Hamiltonian

Fields Couplings

A 1.0 A,B -1.0

B 1.0

and we wanted to clamp B to -1, we would remove B from the Hamiltonian and

the final result would be a field on A with magnitude 2.

2.4 Adiabatic Evolution

Once we have a Hamiltonian whose ground state encodes the problem we would like to

solve, we need to set up the evolution. The Adiabatic Theorem lets us transition from

the ground state of one Hamiltonian to another, so we need an initial Hamiltonian.

In general almost any Hamiltonian of which we know the ground state will work. For

simplicity we use the following initial Hamiltonian:

Hi =
N
i

Bσx
i (2.4)

where B is some large constant. This Hamiltonian has as it’s ground state all the

spins pointed along the (negative) x-axis (or equivalently, an equal superposition of

|±z⟩). This is easy to prepare by applying a large magnetic field along the negative

x direction. Once we’ve assembled both our initial and final Hamiltonians, we can

conduct the evolution. We call the total Hamiltonian Htot, and it is simply the sum

of the initial and final Hamiltonian:

Htot = A(t)Hi +B(t)Hf (2.5)

where A(t) and B(t) are dimensionless functions of time such that A(0) = B(T ) =

1 and A(T ) = B(0) = 0 where T is the final annealing time; this ensures that at t = 0

the Hamiltonian is equal to Hi and at t = T the Hamiltonian is equal to Hf . Then

the functions A and B describe the evolution path. Combining the evolution path

with the speed at which the Hamiltonian is changing (or just the speed), that is ∂A
∂t

and ∂B
∂t
, gives us the evolution trajectory.
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Given a ground state |psigs⟩ ofHtot, the fidelity (F) is the probability of measuring

(after an anneal time T ) ψgs, or | ⟨ψ(T )|ψgs⟩ |2. If there are N correct answer to our

computation, and thus |ψN⟩ degenerate ground states, the fidelity is defined as

F =
N
i=0

|⟨ψ(T )|ψi⟩|2 (2.6)

For a perfectly annealed system, the fidelity should go to one as the annealing

time increases. Since any real annealing will not be in the infinite anneal time limit,

in practice our fidelity values are restricted to be ≤ 1. Hence AQC is fundamentally a

probabilistic process. The closer the fidelity is to 1, the more likely our computation

is to succeed. We will use the fidelity later in the experimental results section to

evaluate how close we get to ideal AQC.

For a purely quantum mechanical system described by the Hamiltonian Htot, the

evolution trajectory completely determines the fidelity. The simplest and most obvi-

ous trajectory is A(t) = 1 − t/T and B(t) = t/T at a constant speed, or a straight

line path through Hamiltonian space. There is no particular reason that a straight

line from (A = 1, B = 0) to (A = 0, B = 1) should maximize the fidelity; indeed,

because moving away from the origin in Hamiltonian space scales the Hamiltonian

and its derived quantities up (including the energy gap), and the adiabatic condition

is stated in terms of the energy gap, we expect that some more complicated curve

through Hamiltonian space, potentially including changing the evolution speed, will

give the best results.

However, in this work we restrict ourselves to evaluating straight line paths through

Hamiltonian space due to the D-Wave Two being limited in this manner (see Chapter

3).

2.5 Simulating AQC

For small Hamiltonian we can simulate directly the process of quantum annealing by

integrating the Schrödinger equation. For time dependent Hamiltonians such as ours,

the general form of the Schrödinger equation is

ih̄
∂

∂t
|ψ(t)⟩ = H(t) |ψ(t)⟩ (2.7)
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this is a system of linear ordinary differential equations which can be solved by

numerical methods. Using a fourth order Runge-Kutta method[12] we can find the

overlap between the ground state |ψf⟩ and the current state |ψ(t)⟩ and plot this

as a function of the annealing parameter. We anneal an eight spin Hamiltonian

(“k44 and”, see Table 6.2) with linear control parameters A(t) = 1− t/T and B(t) =

t/T . The state vector |ψ(t)⟩ is written as a superposition over all the possible states

|ψ(t)⟩ =
28−1
i=0

ci(t) |i⟩ (2.8)

where |i⟩ is a shorthand for

|0⟩ = |↑↑↑↑↑↑↑↑⟩

|1⟩ = |↑↑↑↑↑↑↑↓⟩
...

|255⟩ = |↓↓↓↓↓↓↓↓⟩ (2.9)

where each ci(0) = 1/16 (that is, an equal superposition) and we solve for all of

the ci(t)s using Equation 2.7 to generate each time step ci(t+∆t)

Figure 2.2 shows the results of this simulation. The features correspond to what

we expect from the adiabatic theorem: the fidelity starts low and climbs as the system

evolves. It does not reach one as we are not in the adiabatic limit because we are

annealing for only a finite time. We expect to see similar results to the one shown

here from experimental data; deviations will show us how far our experiments depart

from the assumptions of AQC.
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Figure 2.2: Numerical simulation of adiabatic evolution by integrating the
Schrödinger equation.



Chapter 3

The D-Wave Two Machine

3.1 Machine Description

The D-Wave Two machine on which our experiments were conducted is composed

of 512 rf-SQUID superconducting qubits of the type described in [14] [17]. It is the

same physical machine as the larger of the two machines described in [26].

Each qubit consists of a super-conducting Josephson junction, with left and right

circulating currents serving the roles of ↑/↓ or logical 1/0. A super-conducting flux

qubit is essentially a LC oscillator circuit (the flux Φ and the charge Q have the

commutator [Φ, Q] = ih̄ leading to harmonic oscillator behaviour) with an additional

thin insulating layer inserted into the circuit; cooper pairs can tunnel through the

insulating layer. In general, Josephson-junction qubit circuits have contributions

from inductance, capacitance and current, with the following potential:[21]

U(Φ) = EJ


1− cos


2π

Φex − Φ

Φ0


+

Φ2

2L
(3.1)

where Φ0 is the flux quantum (h/2e), EJ is the Josephson energy, L is the inductance

of the loop, and Φex is the bias flux. In our case the D-Wave Two machine uses flux

qubits, where the bias flux is roughly equal to the flux quantum: Φex ≈ Φ0/2. This

causes two wells of equal energy, as seen in Figure 3.1.

Figure 3.1 shows both a diagram of a qubit and a corresponding coupler, and

also the energy structure of the Josephson junction. Each well of the double well

potential corresponds to one of left or right circulating current. This can be modelled

as a two-level system, although in reality there are multiple other energy levels both

in the wells and above them and above the wells themselves. Qubits occupying

higher energy levels within the wells is generally not a problem, because the machine

measures magnetization at the end and measuring a state higher in a well will produce

the same net result.[14] Qubits occupying even higher energy states (delocalized across

13
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both wells) will result in incorrect results, and the method for dealing with this is to

run the machine as cold as possible to reduce the likelihood of thermal excitation to

those states. Because AQC is statistical even in the absence of machine failures of

this kind (because we never reach the adiabatic limit), these higher excited states are

not a major weakness.

3.2 Programming the D-Wave Two

Each qubit and coupler is attached to another SQUID called a Φ-DAC which al-

lows them to be programmed. The Φ-DACs are controlled by classical circuitry and

according to the binary input they are given induce a flux quantum in their super-

conducting loops. A Φ-DAC attached to a qubit controls the field term hi on the

qubit by modifying the bias flux Φex, while a Φ-DAC attached to a coupler controls

the coupling between two qubits by scaling the strength of the qubit-coupler-qubit

interaction according to the number of flux quanta in the Φ-DAC. The Φ-DACs on

the D-Wave Two are capable of containing between zero and seven flux quanta of

either polarization, giving 4-bit precision for both the fields and couplings. For more

detail about the design of the programming hardware see Bunyk et. al.[5]

3.3 Resolution

As discussed in Section 3.2, the D-Wave Two machine cannot implement arbitrary

physical Hamiltonians. The machine can only implement fields and couplings as one

of 15 distinct values: −7/7,−6/7 . . . 5/7, 6/7, 7/7 corresponding to the number of flux

quanta inside each Φ-DAC. Call the largest coupling present in the problem Hamil-

tonian Cmax, and the smallest magnitude coupling Cmin. As our Hamiltonians don’t

generally have a Cmax to Cmin distance of exactly 7, the machine must manipulate

them to fit in this range. First all the field and coupling values are normalized into

the range [−1..1], and then each coupling is coerced to the nearest machine imple-

mented value. Unfortunately we don’t know exactly how the coercion is done, because

D-Wave has not released much information about the classical software side of the

D-Wave Two . It seems reasonable that each normalized coupling would be rounded
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Figure 3.1: Inset a) shows the structure of a single qubit Josephson Junction along
with an inductive coupler. Inset b) shows the energy of one of these qubits as a
function of the internal flux φ1; each of the double wells is a computational basis
state. Figure taken from [14]
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Figure 3.2: This figure illustrates the difference between ideal and physically im-
plemented couplings; the blue δ-function like peaks are what ideal couplings would
behave as, and the Gaussians what a real machine must implement. The amount
of overlap between the tails of the real couplings is dependent on the magnitude of
the programming noise in the machine; the actual amount of overlap present in the
D-Wave Two machine is unknown.

to the nearest machine implemented coupling, but other schemes such as rounding to-

ward or away from zero are possible. The linear spacing of the machine implemented

couplings implies that Hamiltonians with couplings that linearly fill the range from

−Cmax to Cmax will be least affected by the coercing issue, while those Hamiltonians

which have gaps between coupling values or other spacings will be most impacted by

the effects of finite machine resolution.

3.4 Annealing Schedule

As previously stated in Chapter 2 the form of the Hamiltonian we use for AQC is

Htot = A(t)Hi +B(t)Hf (3.2)
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Figure 3.3: Plot of the two control parameters A(t) and B(t) for the D-Wave Two
machine as a function of the annealing time, as well as the temperature energy scale.
Figure from [26]

and in our case the experiments were carried out with a transverse field of A(0) ≈
33.8 GHz and a maximum normalized coupling value of B(T ) ≈ 20.5 GHz, and an

annealing temperature of 17 mK. These correspond to energies of 140 µeV and 85

µeV for the Hamiltonian components respectively and a thermal energy of 1.5 µeV.

The particular values of A and B as a function of time are shown in Figure 3.3.

3.5 Programming Noise

The resolution issue is exacerbated by the fact that there is some error in the pro-

gramming of each coupling (or field). Ideally one could imagine the physical coupling

values implemented by the machine as a series of δ-functions from −Cmax to Cmax;

however, because the couplings are non-ideal, the actual structure of the couplings

looks more like Figure 3.2. These errors arise because each of the SQUID elements

making up the machine are subject to physical flaws; the qubits, the couplers and

the programming elements (Φ-DACs). In addition there are errors that occur each

time the machine is programmed, coming from stray inductance or thermal noise or
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and other things. The magnitude of the resulting programming error is uncertain;

efforts are underway to quantify how much error is consistent with results from the

machine [35]. If the overlap between adjacent programmable coupling values is large

enough, then the Hamiltonian which is actually implemented during a particular run

may have a different ground state than what we wished to program in; the larger

the overlap, the more likely to get incorrect ground states. The preliminary results

in Chapter 6.1 suggest that the programming noise is in the neighbourhood of the

machine coupling spacing, or large enough that it is possible for the programming

noise to cause incorrect ground states.

3.6 Inoperable Qubits

Not every qubit on the D-Wave Two machine is functional all of the time. As the

machine is cooled to super-conducting temperatures, lines of magnetic flux can be-

come trapped inside. As some parts cool past the critical temperature before others,

the Meissner effect forces magnetic flux out of the super-conducting regions into the

regions which are still above the critical temperature. If the regions of trapped flux

are surrounded by super-conducting regions, there is no way for the trapped flux to

escape and so it remains inside the machine, hindering the operation of whichever

qubits it intersects. As in the normal course of operation the machine is brought

above super-conducting temperatures only for maintenance, the pattern of broken

qubits can remain stable for long periods of time. Figure 3.4 shows the layout of the

D-Wave Two machine, with the qubits that were inoperable for the duration of this

study marked in red.

The presence of such inoperable qubits lowers the size of the Hamiltonians we can

embed more than is at first obvious. Even though the number of inoperable qubits is

fairly small, the embedding algorithm (see Chapter 4) requires many qubits to embed

the connections in a given Hamiltonian. As a result, in the case where there are 9

disabled qubits the largest embeddable complete graph shrinks from 32 spins to 29,

a 10% decrease in size for losing only 2% of the spins. This demonstrates how reliant

on the connectivity of the hardware graph the embedding process is.
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Figure 3.4: Diagram of the connectivity of the D-Wave Two machine showing the
Chimera graph structure, with the qubits which were inoperable during the duration
of this study marked in red.



Chapter 4

Embedding

In this chapter we will cover the various processes by which we go from general

Hamiltonians like the ones from Chapter 2 to Hamiltonians which will fit on the

D-Wave Two as described in Chapter 3.

4.1 Creating Problem Hamiltonians

Embedding is the name we give to the general process of translating a computational

problem into something which is ready for an adiabatic quantum computer to evalu-

ate. As mentioned in Section 2.3, the first step is to generate a problem Hamiltonian.

We employ two methods for finding suitable problem Hamiltonians. The first, using

linear programming, is suitable for small Hamiltonians (generally only a few variables

in size). The second is to use the software QCC which takes advantage of the gluing

theorem to stitch together a problem Hamiltonian out of smaller sub-Hamiltonians.

The second step in the embedding process is to translate our problem Hamiltonians,

which generally may have arbitrary topologies, coupling values, number of variables

etc. into Hamiltonians which the D-Wave Two is capable of physically implementing.

These are not the only methods of generating problem Hamiltonians. The pro-

grammatic style described above seems natural for solving actual computational prob-

lems, but e.g. if one wanted to go a more academic computer science route one could

reduce one’s problems to known NP-Complete problems and evaluate those. Lu-

cas [23] handily provides a compilation of ising formulations of a variety of different

NP-Complete suitable for such an approach.

4.2 Linear Programming

The requirements we have for a problem Hamiltonian can be described using a system

of constraints, and solved using the techniques of linear programming (LP). Briefly,

20
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LP is a method to optimize some objective function subject to linear equality and

linear inequality constraints. There are three standard parts that describe a linear

programming problem:

• A linear function to be maximized or minimized

f(x0, x1) = c0x0 + c1x1

• Constraint Matrix A:

Ax⃗ ≤ b⃗

• Non-negative variables

xi ≥ 0 ∀i

(thus the name linear programming). There are many software packages that

implement LP solving, both Free Software and proprietary. This makes it an easily

accessible technique.

To use linear programming to create a problem Hamiltonian with N spins we first

assign a variable xi for each field and each coupling that could be in the end result;

this is N(N − 1)/2 +N or N(N + 1)/2 (N choose 2 +N variables). Then we add a

constraint for each possible assignment of the spins, making 2N constraints. In these

constraints we have every sign combination of the variables that correspond to fields,

e.g.

c0 = x0 + x1 + x2

c1 = x0 + x1 − x2

c2 = x0 − x1 + x2

c3 = x0 − x2 − x2 (4.1)

etc.

In each constraint we also add the variables representing couplings; the sign of

each coupling variable should be the product of the two variables that represent the

two spins the coupling connects. Now for each state which we want to be part of

the ground state we set the value of the constraint equal to k; for each state that is
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not part of the ground state, we enforce that the corresponding constraint is strictly

greater than k.

For example, if we know the truth table for a NAND gate and want to find a set of

fields and couplings that create a matching Hamiltonian, the constraints would be

c0 = −x0 − x1 − x2 + x3 + x4 + x5 + k ≥ 1

c1 = −x0 − x1 + x2 + x3 − x4 − x5 + k = 0

c2 = −x0 + x1 − x2 − x3 + x4 − x5 + k ≥ 1

c3 = −x0 + x1 + x2 − x3 − x4 + x5 + k = 0

c4 = x0 − x1 − x2 − x3 − x4 + x5 + k ≥ 1

c5 = x0 − x1 + x2 − x3 + x4 − x5 + k = 0

c6 = x0 + x1 − x2 + x3 − x4 − x5 + k = 0

c7 = x0 + x1 + x2 + x3 + x4 + x5 + k ≥ 1 (4.2)

For all three spin gates the constraints would be identical except for which states

are k = 0 and which are k ≥ 1. This particular set of constraints will produce a NAND

gate; each of the variables x0, x1, x2 in the constraint equal to zero matches the truth

table (see Table 2.1) for AND with input variables x0, x1 and output variable x2.

The combined effect of all of these constraints is that when we solve the system

for the set of variables xi which minimize the objective function, states which encode

the desired logic will have an energy of −k and states which do not encode the

desired logic will have an energy greater than −k. This is a slightly unusual use

for LP; normally finding the set of xi’s that optimize the objective function is the

goal, but for us finding the xi’s which satisfy the constraints if the central objective.

Minimizing the sum of the coupling values simply helps to keep the number of different

coupling values small and the spread between them down. This will be important

because physical adiabatic quantum computers can only implement a finite number

of different coupling values in finite ranges.

Unfortunately while this method allows us to find a set of couplings to encode

the logic of any circuit, we require a constraint for each possible state of each of the

variables. For a binary circuit with n variables, there are 2n states. The above process

for creating problem Hamiltonians is thus clearly exponentially hard, and becomes
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extremely computationally inefficient for larger circuit sizes. That said, this method

retains utility for finding small sub-Hamiltonians to use as building blocks for larger

problem Hamiltonians using QCC as described in the next section.

4.3 QCC

QCC is a collection of programs and libraries designed to produce problem Hamilto-

nians. The core of QCC are two pieces: the QSM language and interpreter, and the

embedding algorithm. The QSM language is a programming language designed to sim-

plify the connecting of sub-Hamiltonians. It is both human writable and serves as a

compilation target for more complicated or high level languages. One can write a QSM

file describing a circuit composed of multiple sub-Hamiltonians, and the QSM inter-

preter will construct the appropriate problem Hamiltonian, including any auxiliary

spins that the sub-Hamiltonians need. Once the problem Hamiltonian has been gen-

erated, a Hamiltonian with equivalent ground states that is isomorphic to a sub-graph

of a particular hardware implementation must be created in order for the problem

Hamiltonian to be solved; this is the job of the embedding algorithm.

4.4 QSM Language

The QSM language is a simple language designed to be readable and writable by both

humans and machines. A QSM file consists of one or more QSM statements; each QSM

statement is enclosed by parentheses and consists of a whitespace separated list of

the statement components. If a component has multiple sub-parts then they are also

enclosed in parentheses. There are two kinds of QSM statements, gate statements and

clamp statements.

A typical QSM gate statement consists of three components: first the name of the

gate or sub-Hamiltonian to be included, then a parenthesis-enclosed list of the input

spins for the gate, and third a parenthesis-enclosed list of the output spins for the

gate. An example QSM gate statement is:

(and (a b) (c))

This QSM statement encodes the logic A ∧ B = C. A variable name may be prefixed

by a ∼, in which case the logic of that variable is negated. The other type of QSM
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Figure 4.1: The shape of an example Hamiltonian as would be created by QCC. This
graph will not fit on the D-Wave Two , so in the next section we will demonstrate
the embedding algorithm on it.

statement besides a gate statement is the clamp statement; this statement consists

of two components. First the keyword clamp, followed by a list of variables and the

values that they are to be clamped to. A clamp statement looks like

(clamp ((a +1) (b -1)))

The above clamp statement sets the value of the variables a and b to +1 and -1,

respectively.

A complete QSM file might then look like

(and (A ∼B) (C))

(or (X Y) (B))

(clamp ((C +1)))

which would compile to a Hamiltonian which encodes the logic A∧¬B = C,X ∨Y =

B,C = TRUE and the resulting ground states will be those states for which the logic

is satisfied.

Figure 4.1 shows the shape of the resulting graph. The node for C is greyed

out to represent the fact that it is clamped. Each of the input sub-Hamiltonians

(and and or) connect each of the spins they’re given, and the resulting shape has

node B connected to every other node, X and Y connected to each other, and A

only connected to B. This Hamiltonian graph does not have the same shape as the

D-Wave Two graph, and so will have to be embedded in the following section.
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4.5 Embedding algorithm

Once we have our problem Hamiltonians we need to convert them into Hamiltonians

which have the same shape as the graph that the D-Wave Two machine has. This is

done by adding clone spins into the graph: each clone spin has the same value in the

ground state as one of the logical spins in the input graph. This allows us to decrease

the connectivity of the problem Hamiltonian until it is sparse enough to be the same

shape as the physical machine. The following algorithm is essentially equivalent to

one presented in [6]. We expect that translating complete graphs onto graphs with

constant connectivity to require roughly a quadratic size penalty in the number of

clone spins (as the number of connections in a complete graph is ∼ n2). Ideally,

to ensure that each clone spin’s ground state is the same as it’s parent we would

have Jij << Jclone∀i, j. Because of physical limits of the machine (especially the

resolution mentioned in Section 3.3) large values of Jclone may not maximize fidelity:

for a machine with finite resolution, having a large Jclone may compress other coupling

values together such that the ground state starts to overlap with higher energy state.

On the other hand a too small value of Jclone may result in ground states in which

the clones are not aligned, which will almost certainly also produce incorrect ground

states. Thus we have to find an empirical value of Jclone that maximizes the fidelity

while preserving the ground states.

Figure 4.2 shows a demonstration of the embedding algorithm. The main idea is

to assign nodes from the Hamiltonian you are trying to embed along the diagonal of

the D-Wave Two graph. Then link up connected nodes by cloning right and up from

the nodes that need to be connected.

The embedding algorithm is as follows:

Definitions:

Designate the input Hamiltonian graph V and the output graph G. Label the

spins in V and G as Vi and Gi respectively. We define the clone map Ci as the set of

spins [i, j . . .] which have the same logical value as their parent spin: so for example

the clone map of spin 5, C5, might be [2, 3, 13] which would mean that spins 2, 3, 5

and 13 all share the same logical value. We define a mappingM between logical spins

in graph V and computation spins in graph G. For example, spin V12 representing

the 12th variable in a problem might be mapped to G187, the 187th machine spin.
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Figure 4.2: This figure shows two steps in the embedding process. On the left is the
first step, assigning elements of the input graph (Figure 4.1) along the diagonal of
the D-Wave Two graph. On the right is the connection step; nodes with the same
colour share logical values. Coloured lines represent the clone couplings, while black
lines represent the computational couplings.

We also define a clone coupling value which is as large as possible and ferromag-

netic; this attempts to ensure that all the members of a clone map are aligned in

the ground state. In the final G, each member of a clone map should have a clone

coupling connecting it to at least one other member of the clone map.

Procedure:

1. Populate M by mapping each Vi to one of the spins Gj on the left side of a unit

cell that lies along the diagonal of G

2. For each field term in V , add a field to G on the corresponding spin

3. For each Jij in V , conduct the following operation:

• Scan through both of Ci and Cj to find the pair which are nearest to each

other in G; call these x and y

• Get a list of each spin that lies along the path between x and y

• Assign half of these spins to Ci and half to Cj; add the appropriate clone

coupling into G for each spin in the path to ensure that the clone map is

properly connected
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• Finally, at the interface between the two new clone map members, add a

coupling into G with the same value as Jij

Each term in V , both fields and couplings, should now have a corresponding term

in G. G should also contain many coupling terms that group the necessary clone

maps.

This algorithm is tailored to AQC machines whose qubits are arranged in a square

shape (specifically the shape of the D-Wave Two ), however, the principle should

be generalizable: as mentioned above any reasonably compact graph with constant

connectivity should be able to embed a complete graph with an n2 overhead by

allocating the input graph spins along the diagonal.



Chapter 5

Boolean Satisfiability

In this chapter we describe the NP-Complete problem boolean satisfiability (SAT)

and the techniques needed to use it as a problem for D-Wave Two benchmarking.

We then build on the previous chapters and take a SAT problem from conception to

embedded Hamiltonian ready for evaluation on the D-Wave Two .

5.1 Satisfiability Problems

Boolean satisfiability is the problem of determining if there exists an assignment of

boolean variables to satisfy a given boolean formula. A boolean formula is satis-

fiable if there is some assignment of the variables within it that causes the whole

expression to evaluate to true, and is unsatisfiable if there is no such assignment. A

boolean expression in conjunctive normal form consists of the conjunction of a set

of clauses, each clause consisting of the disjunction of some number of variables (or

their negations). When each clause has k variables, then the problem of finding a

satisfying assignment is called k-SAT. An example 3-SAT expression might look like

the following

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3) (5.1)

which has five satisfying assignments:

Assignments

x1 T T T F F

x2 F F T T F

x3 F T F T F

k-SAT is NP-Complete[7] for k > 2, and is interesting because it was the first

and is one of the most general NP-Complete problems; it is generally very easy to

28
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find reductions from other problems into boolean satisfiability. For this reason we use

boolean satisfiability (specifically 3-SAT) for the testing of the D-Wave Two machine.

5.2 Randomly Generating 3-SAT Problems

We can build 3-SAT instances with N variables and M clauses by randomly selecting

three elements from the set of N variables and their negations M times. Care must

be taken when choosing N and M however; while 3-SAT is NP-Complete in general,

the difficulty of any particular instance depends strongly on the ratio α = M/N [20].

In the small α regime there are many satisfying assignments, and any algorithm to

find a solution will likely stumble on one by chance. Meanwhile in the large α regime

there are likely to be no satisfying assignments.

As discussed in Kirkpatrick and Selman[20], there is a phase transition between

the many solution and zero solution regimes, which occurs around the value of α for

which there is likely to be one solution. This is the region where finding a satisfying

assignment (or proving there is none) is the hardest, and helps to keep us from falsely

believing our algorithm is better than it is due to too easy SATs. This transition is

sharper for larger values of N or M , and broader for smaller values. As the value of

N and M that will fit onto the D-Wave Two machine are very small, we don’t expect

to see a very sharp difference for different values of α. Kirkpatrick and Selman report

that for 3-SAT, the transition occurs at α ∼ 4.17. Therefore we shall attempt to

generate SATS which lie as close to this transition as possible; in practice this usually

means around 4.25 ± 0.25 due to the fact that N and M must be integers and the

size of our hardware graph restricts us to small values of N and M .

5.3 Embedding 3-SAT

Embedding 3-SAT problems requires two different uses for the qubits: each variable

in the SAT requires a qubit, and each clause also requires a qubit. This is because

we embed each clause as a 3OR gate, a 4 spin gate where the fourth spin’s logical

value is the disjunction of the three input spins. This gate requires an auxiliary

spin beyond the computational spins to encode its logic. Because we know that for

a satisfying statement each clause must be satisfied, clamping each clause’s output



30

Example SAT Hamiltonian
Fields Couplings

x1 -1.0 x1,x2 -1.0
x2 1.0 x1,aux -2.0
x3 -3.0 x2,aux 2.0
aux -1.0 x3,aux 1.0

Table 5.1: The fields and couplings for the example Hamiltonian we are creating to
solve the SAT problem in Equation 5.2.

variable completes the 3-SAT QSM construction. As we have roughly four times as

many clauses as variables, each clause shares its variables with many other clauses.

This means that the resulting graph is reasonably close to being a complete graph,

so we embed them as if they were and tolerate some inefficiency.

Since the largest complete graph the hardware graph can embed is 32 spins, the

largest SAT problem we could embed at an α close to the phase transition is 6

variables and 25 clauses for an alpha of 4.17; however, as discussed in Section 3.6,

the capability of the D-Wave Two machine during our experiments was actually 29

spins, which is too small for 6 SAT variables plus 25 clauses. The actual largest SAT

embedded was thus 6 SAT variables and 21 clauses.

5.4 Example SAT embedding

Take a simple single clause 3-SAT problem:

(x1 ∧ ¬x2 ∧ x3) (5.2)

for which we want to find a satisfying assignment. We can translate this SAT

problem into a QCC program:

(3and (x1 ∼x2 x3) (output))

(clamp ((output +1)))

compiling this program with QCC yields the Hamiltonian described in Table 5.1. This

Hamiltonian requires an extra qubit which we label ’aux’ beyond the three SAT

variables.
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Example SAT Hamiltonian
Fields Couplings
0 -1.0 0,4 -3.0
1 -1.0 1,4 -2.0
2 1.0 1,5 -3.0
3 -3.0 2,4 2.0
4 0.0 2,5 -1.0
5 0.0 2,6 -3.0
6 0.0 3,4 1.0
7 0.0 3,7 -3.0

Table 5.2: The fields and couplings for the embedded version of the example Hamil-
tonian 5.1. Where aux is mapped to 0, x1 → 1, x2 → 2, x3 → 3 and the variables
4..7 are clones.

The shape of this Hamiltonian is the same as the one shown in Figure 4.1, so it

will not fit on the machine without being embedded. We call the embedding routine

in QCC and get the resulting Hamiltonian shown in Table 5.2. The Hamiltonian now

takes up 8 qubits due to the embedding process trading connectivity for space.

If we upload this Hamiltonian into the D-Wave Two , we would find that there is

a single ground state

0 ↑
1 ↑
2 ↓
3 ↑
4 ↑
5 ↑
6 ↓
7 ↑

which we translate into the variables x1 = true, x2 = false, x3 = true, which

satisfies the original SAT problem.



Chapter 6

Results and Discussion

6.1 Running procedure

The D-Wave Two features a classical software interface which takes text files con-

taining the information of a Hamiltonian like Table 5.2. After this is uploaded the

machine anneals the Hamiltonian as described in Chapter 3 and returns the values

of the spins it found after annealing.

Each time the machine loads a Hamiltonian it programs in the fields and couplings

as described in Section 3.2, it can evaluate the Hamiltonian many times. Each time

the D-Wave Two loads in a Hamiltonian we call a run, while each repetition of the

same Hamiltonian without loading we call a read. Any programming error (see 3.5)

in the Hamiltonian should be the same between reads and differ between runs.

The state read out after each read is either the ground state, or some other

higher energy (and incorrect) state. The successes and failures thus follow a binomial

distribution; there is some probability p of getting the ground state, and probability

1− p of getting a different state. Our best estimate of the fidelity from a single run

is thus the fraction of successes, or p = gs
n

for gs reads of the ground state and n

total reads. We can also estimate the error in our estimate of the fidelity, because

the variance of a binomial distribution is σ2 = np(1− p).

6.2 Single Qubyte Hamiltonian

The first Hamiltonian evaluated was very similar to the Hamiltonian described in

Table 5.2 to encode a single clause SAT problem. The Hamiltonian “k44” is shown

in table 6.1, consisting of a single qubyte of spins and encoding the logic of a single

SAT clause was evaluated in with runs at anneal times from 20 µs to 500 µs with

1000 reads per run. One thousand repetitions at a given anneal time will give us good

statistics to estimate the fidelity.
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k44 Hamiltonian
Fields Couplings
A 1.0 A,B 1.0
B 1.0 A,D -2.0
C -1.0 B,D -2.0
D -3.0 C,D 1.0

Table 6.1: The fields and couplings making up the Hamiltonian “k44”.

k44 and Hamiltonian
Fields Couplings
A 1.0 A,B 1.0
B -1.0 A,D -2.0
C 3.0 B,D -2.0
D -1.0 C,D -1.0

Table 6.2: The fields and couplings that make up the Hamiltonian “k44 and”. This
single qubyte Hamiltonian has a single non-degenerate ground state: |↑↑↓↑⟩

Figure 6.1 shows the results of two such sweeps. The fidelity was estimated as

described in Section 6.1. First, contrary to our expectations, the fidelity decreases as

the anneal time increases. We would expect that longer anneal times bring us closer

to adiabatic evolution and thus remaining in the ground state. This result suggests to

us that adiabaticity (or lack thereof) is not dominating the fidelity for long annealing

times. Second, there is significant change in the fidelity over very small changes in

anneal time for less than ∼ 300 µs, well outside what we would statistically expect

based on the number of reads conducted if the cause is simple statistical noise. This

suggests that there is something going on besides the annealing time that determines

the fidelity when the anneal time is short. This factor disappears for longer anneal

times, when whatever is damping the fidelity also seems to dampen the short time

oscillations.

6.3 Non-degenerate Single Qubyte Hamiltonian

It was thought initially that the reason for the variability of the fidelity at short

anneal times was due to the degeneracy of the “k44” Hamiltonian ground states. The

Hamiltonian “k44 and” was created to be similar in form (same number of qubits)
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Figure 6.1: Fidelity as a function of anneal time for the Hamiltonian “k44” which
consists of a single SAT clause embedded into a single qubyte. The error bars are
estimated from the standard deviation of a binomial distribution of the reads.
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Figure 6.2: Fidelity vs anneal time with each data point averaged over four different
runs for the single qubyte “k44 and” with a clone coupling value of -9. Each run
was used to estimate the fidelity independently, with the final estimate the weighted
average of each run. The errorbars reflect the standard deviation of the distribution
of estimates of the runs.

but having only a single ground state. This Hamiltonian was evaluated for times

ranging from 20 µs to 20 ms, with 4 runs taken at each time point and 100 reads

per run. Figure 6.2 shows these results. Each run produced as estimated fidelity as

in Section 6.1, and the results shown here were synthesized by making a weighted

average of each of the individual run’s estimated fidelities. The error bars shown here

are the standard deviations of the means of the weighted averages, so small when the

four runs produced nearly the same result and large when there was a large spread.

The weighting for each run is wi =
1
σ2 where σ is the standard deviation of each run.

The short time oscillations are not entirely removed, although our estimates of the

standard deviation matches up to the observed data much better; the trend of the

data points falls almost entirely within the error bars.
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Figure 6.3: Heat map of the fidelity as a function of anneal time and clone coupling
value for the single qubyte “k44 and”. The measured fidelity drops of rapidly with
increasing clone coupling, but low clone coupling values do not preserve the ground
state intact. The sudden drop in fidelity at the smallest clone coupling value is caused
by incorrect states with the same energy as the ground state.

6.4 Clone coupling value

As discussed in Sections 4.5 and 3.3, while for an ideal machine maximizing the clone

coupling value would ensure that adding clones did not alter the ground states of our

problem Hamiltonians, the D-Wave Two machine can only implement 15 different

clone coupling values. In addition, these values must be evenly spaced. If we were to

use a clone coupling value of −14 in a problem Hamiltonian which natively had cou-

pling values of −2,−1, 1, 2, this would result in compressing each of the positive and

negative couplings into one machine value. The machine only implements couplings

of the form

± x

7
, 1 ≤ x ≤ 7 (6.1)

so the above example would result in a physically implemented Hamiltonian of -1/7,

-1/7, 1/7, 1/7 in addition to the clone coupling of −1. Most of the time this will
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result in a malformed Hamiltonian with incorrect ground states.

In addition to incorrect ground states, it is possible that the programming error

in the machine is large enough to make the couplings 1/7 and 2/7 close enough to be

likely to collide, whereas 1/7 and 3/7 could be far enough apart to be programmed

correctly every time. This could mean that even in scenarios where D-Wave Two has

enough range to encode the problem Hamiltonian couplings correctly with a large

clone coupling value we still don’t want to do so.

This means that when selecting a clone coupling value we must balance these

two competing factors, the desire to make the clone coupling as large as possible

from a Hamiltonian correctness standpoint, and the desire to make it as small as

possible from a machine resolution viewpoint. The Hamiltonian correctness issue

is correctness and knowable at the time the Hamiltonian is constructed; however

in general to know whether a given clone coupling is large enough or not requires

diagonalizing the Hamiltonian, and if this were possible then that would enable us

to solve the initial computational problem directly. The machine resolution problem

is not necessarily the same from run to run; it could be that the compression of the

problem Hamiltonian caused by the clone coupling value only makes it more likely

for the machine to end up in an excited state.

To empirically examine the impact of the value of the clone coupling, the “k44 and”

Hamiltonian was embedded multiple different times with a clone coupling value rang-

ing from -1 to -14 (from the smallest coupling in the problem Hamiltonian to twice

the native resolution of the machine). Figure 6.3 shows a heat map of the results of

annealing these Hamiltonians from 20 µs to 20 ms. Not only does fidelity increase as

the clone coupling value is decreased, the short-time oscillations that we saw in the

earlier results of “k44” in Figure 6.1 are removed. This is shown very clearly in Figure

6.4, which displays the standard deviation of the estimated fidelity as a function of

anneal time and clone coupling value.

At longer anneal times the difference in fidelity is reduced, and the same long-time

drop in fidelities that was observed in other Hamiltonians continues. This means that

the mechanism for the long-time fidelity drop is not strongly impacted by the clone

coupling value.

The fidelity drops off strongly from its peak at a clone coupling value of -3. Each
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Figure 6.4: Heat map of the standard deviation of the estimated fidelity as a function
of clone coupling value and annealing time for the single qubyte “k44 and”. After ∼
1000 µs the error drops down as we enter the long-time regime and the short-time
oscillations die off. The spread of the fidelity is also much lower for a clone coupling
value of -3, which corresponds to the higher fidelities.
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of the higher clone coupling values corresponds to more and more compression of

the computational couplings into fewer physical couplings. This pattern does not

continue to the -1 coupling, because that clone coupling value results in a malformed

Hamiltonian where a domain wall forms in the ferromagnetic couplings, leading to

what should be an excited state having the same energy as the ground state. The

“k44 and” Hamiltonian’s largest coupling value is |3.0|, which suggests that a clone

coupling value of -3 performs well because it does not compress any couplings together.

6.5 Size scaling

The size scaling behaviour of “k44 and” was also studied. This was done by copy and

pasting the fields and couplings over to new unit cells. The resulting Hamiltonian

still encodes the same SAT problem as the original “k44 and”, and still only has

one ground state, but is able to be scaled from 1 to 55 qubytes, a range of 8 to 440

spins. Figure 6.5 shows the fidelity plotted against anneal time and number of spins,

for the clone coupling value which maximizes fidelity (-3). The same plot for other

clone couplings looks similar but with lower fidelity values across the board. Larger

Hamiltonians show similar behaviour to the original one qubyte “k44 and”, but fall

off even faster with increased anneal time.

Figure 6.6 shows the fidelity for annealing for 20 µs with a clone coupling value of

-3 (that is, the values which maximize fidelity) as a function of number of spins. The

result is very close to a straight line; a linear regression is shown against the data.

This result would seem to indicate that for this particular set of parameters (anneal

time of 20 µs, clone coupling value of -3) the D-Wave Two machine scales linearly.

This is what we would expect if there was a some success probability for a given single

“k44 and” unit cell, where the total success probability being the product of each one

succeeding individually.

6.6 Boolean SAT Hamiltonian

The last investigation was conducted on a six variable, 21 clause 3-SAT Hamiltonian

with two satisfying assignments, (ttftft,ttttft). When embedded this Hamil-

tonian filled essentially the entire hardware graph. Figure 6.7 shows the estimated
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Figure 6.5: Heat map of the estimated fidelity as a function of annealing time and
number of spins in the Hamiltonian, with a clone coupling value of -3.
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Figure 6.6: Fidelity as a function of number of qubits for an anneal time of 20 µs and
a clone coupling value of -3 as well as line of best fit.
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Figure 6.7: This figure shows the estimated fidelity as a function of annealing time for
a six variable, 21 clause 3-SAT instance. The fidelity is essentially zero throughout
the time range.

fidelity from anneal times ranging from 20 µs to 500 µs, estimated from 1000 reads

and single runs at each anneal time. The fidelity is close to zero throughout the

time range. In contrast to our previously observed Hamiltonians, the D-Wave Two

machine seems unable to successfully solve this particular problem instance.

Figure 6.8 is a pair of histograms showing all 1000 results of annealing at 20

µs for both the “6 018” Hamiltonian and the 3-SAT Hamiltonian. The peak of the

distribution for “6 018” is near the ground state, while the peak of the distribution for

the 3-SAT Hamiltonian is in the neighbourhood of the 10th excited state. Presumably

this is due to the energy levels of the 3-SAT Hamiltonian closing together where the

“6 018” levels do not. The distribution of the results for the 3-SAT Hamiltonian is

also broader, for reasons which are not clear. Both of these Hamiltonians are much

too large to be simulated classically, so we cannot predict how the energy levels change

over the annealing to explain the distribution differences directly.
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Figure 6.8: Histograms showing all 1000 states found after 20 µs of annealing for
both “6 018” on the left and the 6 variable 3-SAT on the right. The fidelity is clearly
much higher on the left. While the distribution of the “6 018” results peaks near the
ground state and decays exponentially, the 3-SAT results are peaked in the vicinity
of the 10th excited state.



Chapter 7

Conclusion

A variety of Hamiltonians were constructed and evaluated on the D-Wave Two hard-

ware. We have seen several general methods for embedding problems into a form

suitable for evaluation on an adiabatic quantum computer at a modest overhead,

although even that overhead is a stiff price to pay on the current generation of adia-

batic hardware. While the machine is able to solve single clause SAT problems and

other small (8 qubit) problems, a real (still small) problem of 6 SAT variables was too

difficult. The machine was able to solve a similar number of qubits when the SAT

was simple (the “k44 and” case), so the difficulty of the 6 variable SAT must not be

purely based on the number of qubits.

In the process of solving these problems we discovered several factors important for

using the D-Wave family of adiabatic machines. Among them the fact that contrary

to expectations shorter anneal times give better results, and that the limited number

of built in machine couplings requires careful thought when embedding to ensure that

coupling collisions do not occur.
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Appendix A

The Adiabatic Theorem

We derive a perturbative version of the adiabatic theorem here following Zettili[38].

For more on the validity of the adiabatic theorem including its use outside of the

perturbative regime see Amin[2].

Using time dependent perturbation theory, we find the transition probability Pif (t)

from state |ψi⟩ to state |ψf⟩ is (to first order)[32]

Pif (t) =

− i

h̄

 t

0

⟨ψf |V̂ (t′)|ψf⟩ eiωfit
′
dt′

2 (A.1)

where V̂ (t) is the time dependent perturbative part of the Hamiltonian, ωfi =
Ef−Ei

h̄
. We can recast this into a form with explicit dependence on the time derivative

of V̂ (t) using the fact that eiωfit = (1/iωfi)∂e
iωfit/∂t, and then integrating by parts

to get

Pif (t) = − 1

h̄ωfi
⟨ψf |V̂ (t)|ψi⟩ eiωfit

t
t=0

+
1

h̄ωfi

 t

0

eiωfit
′

∂

∂t′
⟨ψf |V̂ (t′)|ψi⟩


dt′

=
1

h̄ωfi

 t

0

eiωfit
′

∂

∂t′
⟨ψf |V̂ (t′)|ψi⟩


dt′ (A.2)

where we assume V̂ is turned on and then off again and thus vanishes at the limits.

If we assume that the speed at which V̂ is changing is very small, then the deriva-

tive term ∂ ⟨ψf |V̂ (t′)|ψi⟩ /∂dt′ will be almost constant over the integral, and we can

pull it out giving a transition probability of

Pif (t) ≈
1

h̄2ω2
fi

 ∂∂t ⟨ψf |V̂ (t)|psii⟩
2  t

0

eiωfit
′
dt′

2
≈ 4

h̄2ω4
fi

 ∂∂t ⟨ψf |V̂ (t)|ψi⟩
2 sin2


ωfit

2


(A.3)
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In the adiabatic limit this transition probability goes to zero (or alternatively, the

adiabatic limit is defined as when this transition probability goes to zero). In that

case we have sin2(x) << 1 and we arrive at the adiabatic condition:

h̄ ∂∂t ⟨ψf |V̂ (t)|ψi⟩
 << ∆2 (A.4)

where ∆, the energy gap, is defined as ∆ = |Ef − Ei|.
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