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Abstract

This paper compares the three methods -conditional Poisson method, unconditional

Poisson method and self-controlled case series (SCCS) method, based on the retro-

spective cohort study with full cohort and case series sampling designs, with particular

emphasis on their assumptions, power, MSE, relative efficiency, and handling of con-

founding. The performance of the three methods is contrasted in a study investigating

the causality between vaccination and rare adverse events seizures. And we extend

these methods to random effect model.
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Chapter 1

Introduction

1.1 Background

Immunization is the most effective intervention in public health nowadays, especially

in child health. Reductions over recent decades in the morbidity and mortality at-

tributable to smallpox, measles, polio, diphtheria, whooping cough, and tetanus are

eloquent reminders of this fact. However, no intervention is entirely without risk,

even though an adverse event is very rare. Evaluation of vaccine safety with respect

to rare adverse events is an important issue in epidemiology and public health [3]. In

other words, we want to investigate an association between transient exposures and

acute outcome events. In this thesis, we investigate the possible causality between

vaccines and seizures (acute outcome events).

1.2 Development

Such studies have mostly used two main approaches, case-control study and cohort

study. The cohort study starts with the putative cause of disease, and observes the

occurrence of disease relative to the hypothesized causal agent, while the case-control

study proceeds from documented disease and investigates possible causes of the dis-

ease [7]. In other words, the cohort study compares the rate of events (incidence

rate) between vaccinated and unvaccinated individuals, while the case-control study

compares the rate of vaccination between individuals with and without events. How-

ever, both of their original versions contain control selection bias, because comparison

individuals cannot be chosen to be completely the same.

According to Fine and Chen [7], many potential sources of bias have been iden-

tified. One source of bias comes from the problem of ensuring that adverse events
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are ascertained independent of vaccination history. Failure to control for this factor

may lead to creation, or overestimation, of an association between a vaccine and an

adverse event. Another source of bias comes from control selection, the confounding

between the risk factor (vaccination) and outcome measure (adverse event) of interest.

Therefore, the modified methods for both cohort and case-control studies are de-

veloped which eliminate the control selection bias. As mentioned by Fine and Chen

[7], the cohort study comparing incidence rates between vaccinated and unvaccinated

individuals is equivalent to comparing between (age-specific) incidence rates in succes-

sive intervals before and after vaccination, in population with high vaccine coverage.

Later, Farrington [15] developed self-controlled case series (SCCS) method using only

data on cases. No separate controls are required as the cases act as their own con-

trols. Each case’s given observation time is divided into control and risk periods. The

method found a relative incidence, that is, the incidence in risk periods relative to

the incidence in control periods. Time-varying confounding factors such as age can

be allowed for by dividing up the observation period further into age categories. An

advantage of the method is that confounding factors that do not vary with time, such

as genetics, location, socio-economic status, are controlled implicitly, see [5]. This

kind of design combines the simplicity of cohort method and economy of case series,

while reducing confounding factors [3]. This method also yields a direct estimate of

the relative incidence of events.

The case-crossover method is the modified version of case-control study. Maclure

[11] suggested the Mantel-Haenszel estimator and gives the definition. The term

“crossover” is mainly used to describe experiments in which all subjects pass through

both the exposure and unexposure phases [11]. In these studies, each subject serves as

his or her own control— “the ultimate form of statistical adjustment” for confound-

ing by constant subject characteristics. However, “crossover” needs not to imply

randomization. It is an apt term for intermittent exposure to factors with transient

effects. Maclure [12] gave an example about car collisions and cell phone calls to

describe this method. In traditional case-control study, the control is different person

at similar time, while in case-crossover design, the control is the same person at a



3

different time [3]. This method yields an estimate of the odds ratio of an event after

vaccination. For rare events and short risk intervals, this is equivalent to the relative

incidence. Both methods are data-intensive, involving large cohorts or careful selec-

tion and matching of controls. Moreover, Vines and Farrington [14] pointed out if

the exposure distribution is stationary over time, the Mantel-Haenszel estimator for

the odds ratio would be approximately asymptotically unbiased.

Depending on different sampling designs, the studies can be categorized as full

cohort and case series or case only [6]. Full cohort includes all individuals with events

or without events while case series only includes individuals with events. The case

series sampling would be less expensive but with more restrictions and assumptions

when constructing models or likelihoods. Hence, the methodologies are categorized

by sampling and approach as cohort studies, case-cohort studies, case-control studies

and case-crossover studies, etc.

From the methods of data collection, studies can be categorized as retrospective

and prospective. In the case of a retrospective cohort study, the investigator collects

data from past records and does not follow patients unlike a prospective study. In a

nutshell, in retrospective cohort study, all the events - exposure, latent period, and

subsequent outcome like development of disease have already occurred in the past [12].

If the data collection is prospective, one can avoid recall bias and so it is suitable for

chronic disease infection. A prospective cohort study follows over time a group of

similar individuals (cohorts) who differ with respect to certain factors under study,

to determine how these factors affect rates of a certain outcome. It needs more time

for longitudinal observation experiment and hence is suitable for short time disease

or new disease infection.

1.3 Advantages and Limitations

Cohort studies involve following a sample from a population over time, either prospec-

tively or retrospectively [1]. The analysis may be carried out using log-linear modeling

after stratifying by other potential confounding factors, such as other vaccinations,
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age, sex and region. In practice, most cohort studies are retrospective rather than

prospective and they are often used with mass vaccination campaigns in order to

compare incidence rate pre- and post-vaccination. The cohort studies have the ad-

vantages of enabling direct estimation of absolute and attributable risk as well as

generally having the highest power for a given number of cases and allowing com-

parisons of background incidence between groups, such as regions, which cannot be

carried out with the SCCS method or for matched co-variate in a case-control study.

The self-controlled case series (SCCS) method was developed in early 1990s to

handle the type of data obtained from administrative databases and has since been

widely applied to vaccine safety evaluation in a variety of settings. The SCCS method

has power very similar to that of a cohort study, particularly, if the proportion of indi-

viduals vaccinated is high or if the risk period is short in comparison to the observation

period. For rare events, the SCCS method is much quicker and cheaper than cohort

method because it only requires information on cases. A further advantage of the

SCCS method is the fact that it does not require a population to be defined from

which the case arose.

In case-control studies, each case is matched with one or more controls according

to potential confounding variables, such as age and region. The number of cases and

controls with vaccination within specified intervals prior to onset are then compared

using conditional logistic regression. For rare events, the odds ratio obtained from lo-

gistic regression approximates very closely to the relative incidence rate. Case-control

studies are more proper for long-term effects, where effects of vaccination are usually

more difficult to assess. This is because long term effects can only be studied by di-

rect comparison of vaccinated and unvaccinated individuals. The problem with such

studies is that it is likely that the unvaccinated group will be very different from the

vaccinated group in many aspects, particularly, for high vaccine coverage population.

Therefore, we only choose cohort studies and SCCS method as candidate approaches

for our problem.

Methods involving only cases are attractive for three reasons, as mentioned by
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Farrington [4]. First, they can usually be implemented using data extracted from

readily available databases such as hospital admission data or other case reporting

mechanisms. Second, they can produce results quickly, for example, in response to

public concerns or media attention about vaccine methods. Third, they are usually

cheaper to carry out than methods requiring explicit denominators or separate con-

trols.

1.4 Application

As mentioned in Farrington [15], most applications of cohort studies and case se-

ries method so far are to vaccine safety and other areas of epidemiology. Navidi

[12] applied case series method in studies of air pollution which is described as a

bi-directional case-crossover method. Case-crossover analysis has been used to study

air pollution in relation to daily mortality and injuries in racehorses. A pilot study

indicated the feasibility of using the case-crossover method to investigate nonmedical

triggers of visits to general practitioners in Denmark, which suggests further applica-

tions in health services research. In theory, the method can be used to study triggers

of engineering failures and other acute events in inanimate systems.

1.5 Our problem

This thesis compares the three methods based on the retrospective cohort study with

full cohort and case series sampling designs, with particular emphasis on their as-

sumptions, relative efficiency, and handling of confounding. The performance of the

three methods is contrasted in a study of seizures after vaccination on children with

epilepsy.

We first review methods for investigating causality between vaccination and the

rare adverse event, seizures, with data collection of everybody and only of cases, and

then compare their underlying assumptions and performances. The three method-

ologies include a Poisson cohort model by conditioning on total occurrence of events,
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unconditional Poisson cohort method and self-controlled case series method (a Pois-

son cohort model by conditioning on at least one occurrence of events). Since three

methods have different likelihood and construction, the estimator of relative incidence

rate would be slightly different. Then we compare three estimators from various

perspective including power of test, asymptotic efficiency and mean square error to

investigate their advantages and limitations.

The thesis is organized as follows. In Chapter 2, we give theoretical inference

for the construction of these methodologies for fixed baseline risk, including likeli-

hood, power of the test, bias of the relative incidence [13] and variance efficiency, to

make comparisons. In Chapter 3, we carry out some simulation for these approaches

where we present their asymptotic inference and make comparison with theoretical

inference. In Chapter 4, we apply hierarchical model and Bayesian method to solve

random effect (random baseline risk) mixed Poisson processes. In Chapter 5, we dis-

cuss at some level the assumptions, advantages and limitations of the methods, as

well as areas for further research.



Chapter 2

Likelihood and Theoretical Inference

We assume that events, in our example seizures, arise according to a Poisson process,

that there are two observation intervals, a low risk interval before vaccination, and

a high risk interval after vaccination, and that the rates of the process are constant

within each of the interval. That is, within each interval the events occur according

to a homogeneous Poisson process, but the rates may differ across intervals.

To keep matters simple throughout this and the next chapter, we will be concerned

only with situations where the baseline incidence rate is constant for all individuals,

and does not vary with time or age. In this case the baseline event process is a

homogeneous Poisson process, and in the absence of exposure to vaccination, is pa-

rameterized by the rate eφ of the Poisson process. In the period after vaccination,

events are assumed to occur according to a homogenous Poisson process with rate

eφ+β. φ and β are real valued parameters to be estimated, and eβ is the relative event

rate, so that β is the parameter of interest.

For a individual i, let Ni0 denote the number of events occuring in the unexposed

interval of length t0 having rate eφ, and Ni1 denotes the number of events in the

exposed interval of length t1, with incidence rate eφeβ. Assuming that the event

process is Poisson, it follows that Ni0 and Ni1 are independent, with

Ni0 ∼ Poisson(eφt0)

Ni1 ∼ Poisson(eφeβt1)

Furthermore, Ni0 and Ni1 are jointly sufficient statistics for φ and β, so we can

focus our attention on these total numbers of events.

7
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We consider three methods for estimating the rate parameters – a conditional

method which conditions on a subject’s total number of events in the two inter-

vals, the SCCS method which conditions on a subject having at least one event over

both intervals, and an unconditional method which does not constrain the underly-

ing Poisson processes. The likelihood for the conditional and unconditional methods

are described, for example, in guttorp [8], while the SCCS likelihood is set down in

Farrington [15].

We discuss the likelihoods, estimation of relative incidence estimation, LR test,

power and efficiency of these likelihoods in the following section.

2.1 Conditional Poisson Likelihood

In the conditional Poisson model we condition on a subject’s total number of events

over the two intervals. From the Poisson assumption, it follows that the total number

of events Ni. = Ni0 + Ni1 has a Poisson distribution with mean eφeβt1 + eφt0, and

that the conditional distribution of the number of events Ni1 in the exposed interval

given the total Ni. is binomial with parameters Ni. and π =
t1e

β

t0 + t1eβ
. Note that

the baseline hazard rate parameter φ disappears from this conditional probability, so

that after conditioning, we are left with a one parameter model.

It follows that if M individuals are observed over two periods of durations t1 and

t0, then the conditional likelihood, given the observed totals ni., i = 1, 2, . . . ,M , is

given by

L(β) ∝
M∏
i=1

(
t0

t0 + t1eβ

)ni0
(

t1e
β

t0 + t1eβ

)ni1

=

(
t0

t0 + t1eβ

)n0
(

t1e
β

t0 + t1eβ

)n1

,

which is a function of the scalar parameter β. Here n0 =
∑M

i=1 ni0, n1 =
∑M

i=1 ni1,

and n = n0 + n1.
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Note that if the baseline parameter φ is replaced by subject specific parameters (φi

for subject i), this method allows for variation between individuals in their baseline

susceptibility to the events under consideration. The multiplicative effect assumption

allows the ”between individual” variation to be eliminated by conditioning, and the

vaccine effect to be estimated “within individuals”.

The log-likelihood is:

l(β) ∝ n0log

(
t0

t0 + t1eβ

)
+ n1log

(
t1e

β

t0 + t1eβ

)
∝ n1β − nlog

(
t0 + eβt1

)
.

During the risk period, the baseline incidence rate of seizure is increased by a

factor eβ, which represents the relative incidence rate. When testing, the null hy-

pothesis of interest is H0 : β = 0, with the one sided alternative β > 0 representing

an increased incidence rate, or β < 0 for an decreased incidence rate, after vaccination.

Parameterizing in terms of the relative seizure rate, λ = eβ, the conditional log

likelihood is

l(λ) ∝ n0log

(
t0

t0 + λt1

)
+ n1log

(
λt1

t0 + λt1

)
∝ n1log (λt1)− nlog (t0 + λt1) .

The maximum likelihood estimator is λ̂ =
t0n1

n0t1
, which has the natural interpreta-

tion of the number of events per unit time in the risk interval divided by the number

of events per unit time in the baseline interval. By the invariance property of the

maximum likelihood estimator, the MLE of β is log(λ̂).
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In the limiting cases where there are no events in one of the two intervals (n1 = 0

exclusive or n0 = 0) the relative incidence is estimated as 0 or ∞. The case where

no events are observed (n1 = n0 = 0) is non-informative. In this case, interpreting
0

0
= 1, the estimated relative rate is 1.

If we have full cohort sampling, we can generalize the model by adding an indicator

variable, setting zi = 1 if individual i was vaccinated prior to the risk period and

0 otherwise. In this case the conditional Poisson log likelihood has the form of a

binomial log likelihood, as:

l(β) ∝
M∑
i=1

[
ni0log

(
t0

t0 + t1eβzi

)
+ ni1log

(
t1e

βzi

t0 + t1eβzi

)]
∝
∑[

ni1βzi − ni.log
(
t0 + t1e

βzi
)]

= −
(
nvlog(t0 + t1e

β) + nulog(t0 + t1)
)
+
∑

ni1ziβ,

where nv denotes number of events in vaccinated individuals and nu denotes number

of events in unvaccinated individuals.

The first derivative of the log likelihood is:

∂l

∂β
= − nvt1e

β

t0 + t1eβ
+
∑

ni1zi

and the second derivative is:

∂2l

∂β2
= − nvt1t0e

β

(t0 + t1eβ)2

Let β̂c denote the conditional maximum likelihood estimator of β with full cohort

sampling, The asymptotic variance is

V ar(β̂c) = −E
[
∂2l

∂β2

]
=

(t0 + t1e
β)2

nvt1t0eβ
. (2.1)
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We will use the variance to compute relative efficiency later in this chapter.

2.2 Unconditional Poisson Likelihood

Unconditional Poisson likelihood would be slightly more complicated than conditional

one mentioned above, because it cannot cancel out the baseline hazard eφ. That means

we have two parameters β and φ.

A sample of M individuals are observed over two periods of durations t0 and t1.

We consider the more general scenario which allows both vaccinated and unvaccinated

individuals, again by setting zi = 1 if individual i was vaccinated prior to the risk

period, and 0 otherwise. That is, each individual is observed over a baseline period

of length t0 with hazard rate eφ, and then over an exposed period of length t1 with

hazard rate eφ if zi = 0 or hazard rate eφ+β if zi = 1.

Suppose that V individuals are vaccinated at the start of exposed period, and are

consequently at increased risk during that period. Once again, Ni0 and Ni1 denote

the number of events in the two periods.

Now consider estimation in this unconditional cohort model, with vector param-

eter θ = [φ, β]T . The parameter of primary interest is β, while φ is just a nuisance

parameter. The parameterisation is different from the conditional model, where the

nuisance parameter φ was eliminated by conditioning. For the ith individual, the

distributions are:

Ni0 ∼ Poisson(eφt0)

Ni1 ∼ Poisson(eφeβzit1).

Let α1i = eφeβzit1 and α0 = eφt0. Then the unconditional Poisson likelihood is:



12

L(φ, β) ∝
M∏
i=1

(
e−α0α0

ni0

ni0!

)(
e−α1iα1i

ni1

ni1!

)

=

(
e−

∑
(α0+α1i)α0

∑
ni0
∏M

1 α1i
ni1∏M

1 ni0!ni1!

)
.

Then log-likelihood is:

l(φ, β) ∝
M∑
i=1

[−(α0 + α1i) + ni0log(α0) + ni1log(α1i)] ,

so that

l(β, φ) ∝
∑[

−eφ(t0 + t1e
βzi) + ni0(φ+ log(t0)) + ni1(φ+ log(t1) + βzi)

]
∝
∑[

−eφ(t0 + t1e
βzi) + ni1βzi + ni.φ

]
.

If all individuals are vaccinated prior to the exposed period (zi = 1, i = 1, . . . ,M),

then the log likelihood would be:

l(β, φ) = −Meφ(t0 + t1e
β) + n1β + nφ,

where n1 is the total number of events in the risk period and n is the total number

of events over both periods, summed over all subjects. In this case, evaluating first

derivatives with respect to β and λ, the likelihood equations are

∂l

∂β
= −Meφt1e

β + n1 = 0

∂l

∂φ
= −Meφ(t0 + t1e

β) + n = 0
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=⇒ t1e
β

t0 + t1eβ
=
n1

n

=⇒ eβ̂ =
t0n1

n0t1

giving eφ̂ = n0/Mt0

The estimators again have a natural interpretation. The estimate of the baseline

rate is eφ̂, which is the average number of events per unit time in the baseline interval,

and the estimated relative incidence rate is eβ̂, which is the average number of events

per unit time in the exposed interval divided by the average number of events per

unit time in the unexposed interval.

We see that if all individuals are vaccinated, the unconditional Poisson maximum

likelihood estimator of the relative rate is the same as the binomial (or conditional

Poisson) maximum likelihood estimator.

For the generalized unconditional model with full cohort sampling, the information

matrix for the parameter θ = [φ, β]T is:

− ∂2l(θ)

∂θ∂θT
=


∑
eφ(t0 + t1e

βzi)
∑
eφt1e

βzizi

∑
eφt1e

βzizi
∑
eφt1e

βzizi



Since zi is an indicator, z2i = zi. Suppose the sample size is M and V is the number

of vaccinated individuals. Then M-V is the number of unvaccinated individuals, and

− ∂2l(θ)

∂θ∂θT
=


eφ(t0M + t1(e

βV +M − V )) eφt1e
βV

eφt1e
βV eφt1e

βV


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After simplification:

I(θ) = eφt1e
βV

[
k 1

1 1

]

where k =
t0M + t1(M − V )

t1eβV
+ 1.

Let β̂u denote the unconstrained maximum likelihood estimator of β. Its large

sample variance is given by

V ar(β̂u) =
1

eφt1eβV

(
1 +

Pt1e
β

t0 + (1− P )t1

)
, (2.2)

where P = V
M

is the proportion of individuals vaccinated.

For the unconditional model with all the individuals vaccinated. P = 1 and

V =M . The large sample variance of β is given by

V ar(β̂u) =
1

eφt1eβM

(
1 +

t1
t0
eβ
)
,

2.3 SCCS (Likelihood Conditioning on at least one event)

Self-controlled case series method has two key words. One is self-controlled which

means the vaccine effect is estimated “within individuals”. Another one is case series

which means a subject having at least one event over both intervals.

This approach described in this section is derived from a cohort study by condi-

tioning on occurrence of at least one event and on the individual’s vaccination history
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during a specified observation period. Conditioning on occurrence of at least one

event means the approach is only suitable for case series sampling. This approach

will have the most complicated construction of likelihood and non-explicit solution,

because any constant covariates cannot be eliminated and there exists nuisance pa-

rameter φ as well.

The construction of likelihood combines both truncated Poisson likelihood and

binomial likelihood. Here let ni = [ni1, ni0]
T denote the number of events in each of

the two intervals, and ni. = ni1 + ni0 denotes the total number of events for the ith

individual in the two intervals. Then

P (ni|ni. ≥ 1) =
P (ni, ni. ≥ 1)

P (ni. ≥ 1)
=

P (ni)

P (ni. ≥ 1)
. (2.3)

If we know ni = [ni1, ni0]
T , that is, the number of events happened in each interval,

we will know ni. and whether ni. ≥ 1 or not.

P (ni.|ni. ≥ 1)P (ni|ni.) =
P (ni., ni. ≥ 1)

P (ni. ≥ 1)
× P (ni, ni.)

P (ni.)
(2.4)

=
P (ni.)

P (ni. ≥ 1)
× P (ni)

P (ni.)
(2.5)

=
P (ni)

P (ni. ≥ 1)
. (2.6)

Combining (2.3) and (2.6), it follows that

P (ni|ni. ≥ 1) = P (ni.|ni. ≥ 1)P (ni|ni.),

Here P (ni.|ni. ≥ 1) is a truncated Poisson distribution with incidence rate pa-

rameter λ1 + λ0 and P (ni|ni.) is the binomial distribution with index ni.(≥ 1) and

parameter

(
λ1

λ1 + λ0

)
.

Therefore, the construction of the likelihood conditional on a subject having at

least one event is the product of a truncated Poisson probability and a binomial

probability, as follows.
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Ni1 ∼ Poisson(λ1),

Ni0 ∼ Poisson(λ0),

Ni = Ni1 +Ni0 ∼ Poisson(λ1 + λ0).

The truncated Poisson distribution is:

P (ni.|ni. ≥ 1) =
(λ1 + λ0)

ni.e−(λ1+λ0)

ni.!
/
(
1− e−(λ1+λ0)

)
, ni. = 1, 2, . . .

and the binomial distribution is:

P (ni|ni.) =

(
ni.

ni1

)(
λ1

λ1 + λ0

)ni1
(

λ0
λ1 + λ0

)ni0

, ni1 = 0, 1, . . . , ni.

so that the likelihood, conditional on at least one event, is:

P (ni|ni. ≥ 1) = P (ni.|ni. ≥ 1)P (ni|ni.)

=

(
λni1
1 e−λ1
ni1!

)(
λni0
0 e−λ0
ni0!

)
/
(
1− e−(λ1+λ0)

)
=

P (ni1)P (ni0)

1− P (ni. = 0)
,

where λ1 = eφeβt1, λ0 = eφt0 and λ1 + λ0 = eφeβt1 + eφt0,

(
λ1

λ1 + λ0

)
=

t1e
β

t0 + t1eβ
.

It is seen that the likelihood, conditional on ni. ≥ 1, is the product of two Poisson

probabilities, divided by one minus another Poisson probability. There is no explicit

solution for the maximum likelihood estimator, and so we use the general purpose

optimizer “optim” in R to approximate the MLE and the information matrix, as de-

scribed in the next chapter.
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2.4 Power

Power is the probability of correctly rejecting the null hypothesis when the alternative

hypothesis is true, that is, the ability of a test to detect an effect, if the effect actually

exists. Equivalently, the power is one minus the probability of a type II error. For

a fixed sample size, it is usually impossible to make both types of error probabil-

ities arbitrarily small. For instance, if we minimize the probability of type I error

by restricting α = 0, which means that we never reject H0 a.s.. This implies that

prob(Type II error)=1. Similarly, if we let prob(Type II error)=0, we get prob(Type

I error)=1. Therefore, in searching for a good test, it is common to control the Type

I error probability at a specified level. Within this class of tests, we then search for

tests with minimum Type II error probability, or maximum power.

Among the three models considered, it is only possible to set down an explicit

formula for the power for the conditional Poisson model, in which case, the variance

was given by (2.1). Here we use generalized model (there is indicator zi).

The regularity conditions underlying the asymptotic normality of the maximum

likelihood estimator are satisfied in this case, so that

β̂ ∼ AN

(
β,

(t0 + eβt1)
2

nvt0t1eβ

)
where the notation “AN” denotes asymptotic normality.

Under the null and alternative hypotheses:

Under H0, β̂ ∼ N
(
β0, σ

2
0

)
, → β − β0

σ0
∼ N (0, 1)

Under H1 : β̂ ∼ N
(
β1, σ

2
1

)
, → β − β1

σ1
∼ N (0, 1)

where β0 = 0, σ2
0 =

(t0 + t1)
2

t0t1nv

; β1 = β, σ2
1 =

(t0 + eβt1)
2

nvt0t1eβ

In the seizure example, the alternative hypothesis of interest is that vaccination

increases the seizure rate, or
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H0 : β = 0

H1 : β > 0

The test statistic is

Z =
β̂ − β0
σ0

and the usual test rejects H0 if Z ≥ Z1−α ⇐⇒ β̂ ≥ β0 + Z1−ασ0, where Z1−α is

the (1− α)-quantile of standard normal distribution, and α is the asymptotic signifi-

cance level of the test.

The power of this test is given by

Power(β1) = PH1(Reject H0) (2.7)

= Pβ1(T ≥ Z1−α) = Pβ1(β̂ ≥ β0 + Z1−ασ0)

= Pβ1

(
β̂ − β1
σ1

≥ β0 + Z1−ασ0 − β1
σ1

)

= P

(
Z ≤ (β1 − β0)− Z1−ασ0

σ1

)
= P (Z ≤ Zβ1)

where Z has a standard normal distribution, and Zβ1 =
(β1 − β0)− Z1−ασ0

σ1
.

For the unconditional Poisson and Self-Controlled Case Series methods, we cannot

write down an explicit form for the power calculation. In chapter 3 we use simulation

to approximate the power in those cases.

2.5 Efficiency

The variance of conditional Poisson estimate is close to that of the unconditional

Poisson estimate when the risk period is short in comparison with the observation
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period, or when the population vaccine coverage in the observation period is high.

In particular, if vaccine coverage is 100%, the full cohort sampling and case series

sampling have the same efficiency [5].

We are interested in the relative efficiency of estimate of β using the conditional

method compared with the unconditional method, when using generalized forms, and

we now derive the asymptotic relative efficiency in a simple case.

The conditional likelihood, which had a binomial form, can be thought of as a case

series (case only) Poisson likelihood, since individuals without any events contribute(
0
0

)
π0(1− π)0 = 1, and so provide no information (log(1) = 0) to the log-likelihood.

In other words, the comparison of the conditional method and unconditional method

is just the comparison of case series and cohort sampling. Therefore, as compared

with full cohort sampling, case series sampling might lose some power by conditioning

(noncases are ignored), and its asymptotic efficiency might be reduced.

For the generalized model with indicator of vaccination zi, the unvaccinated in-

dividuals are valuable because they contribute information about the baseline rate,

although they contribute nothing on the relative incidence associated with vaccina-

tion.

The variances of the conditional and unconditional MLE’s of β are given by (2.1)

and (2.2). Replacing nv by its expected value E[nv] = eφ(t0+t1e
β)V in the conditional

variance formula (2.1), the asymptotic (as M increases) relative efficiency [10] of the

conditional β̂c relative to the unconditional β̂u, when using generalized models, is

given by

ẽff =
V ar(β̂u)

Ṽ ar(β̂c)
=

(
1 +

Pt1e
β

t0 + (1− P )t1

)
/

(
1 +

t1
t0
eβ
)
.

here the hat of Ṽ ar(β̂c) means approximation, because nv was replaced by its ex-

pected value E[nv] = eφ(t0 + t1e
β)V in the conditional variance formula (2.1). Be-

cause 0 < P ≤ 1, it’s straight forward to see ẽff ≤ 1.
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When the proportion of vaccinated individuals P increases, the number of vacci-

nated individuals V becomes larger, the difference between conditional Poisson and

unconditional Poisson becomes smaller and smaller, that is, the decline in asymptotic

relative efficiency for conditional Poisson is small, as little information is lost if indi-

viduals without any events are ignored.

Therefore, this suggests that the conditional Poisson method retains high effi-

ciency relative to the unconditional Poisson analysis as well as economy in sampling,

at least in large samples, under conditions which commonly apply to studies of vac-

cine safety.

Then we consider the situation that all the individuals take vaccination, that is

P = 1. So the asymptotic relative efficiency of the conditional β̂c relative to the

unconditional β̂u

ẽff =
V ar(β̂u)

Ṽ ar(β̂c)
=

(
1 +

t1
t0
eβ
)
/

(
1 +

t1
t0
eβ
)

= 1

We see that if all individuals are vaccinated, the unconditional Poisson variance

of the relative rate is the same as the binomial (or conditional Poisson) variance.

Since the complicated likelihood of self-controlled case series, we cannot get ex-

plicit information matrix theoretically. However, we apply numerical algorithm, R

optimization, which returns the maximum likelihood estimators and hessian matrix

to approximate the information matrix.



Chapter 3

Simulation

A simulation study was conducted to examine the performance of the three estima-

tion procedures under both full cohort sampling and case series sampling, with the

focus being on the relative incidence rate parameter β.

We derived the explicit form of the MLE β̂ for conditional Poisson in Chapter

2. No explicit solution exists for the other two methods, unconditional method and

SCCS method, and so we maximized the likelihood using numerical optimization,

using the R function “optim”, which returns not only an estimate of the MLE, but

also, the sample Fisher information matrix, as the Hessian. The code is given in the

appendix.

We also obtained the power function, the bias, MSE, and relative efficiency of

different estimators, under the two different sampling scenarios. These criteria pro-

vide different perspectives, and give insight into the performance of the three methods.

When it was not possible to calculate the quantities of interest explicitly, they

were simulated using multiple simulation batches. In all cases presented we used

1000 batches.

Prior to the simulation, our expectation is that the SCCS method should have

the best behavior with case sampling, provided that the probability of a non-case is

moderately large, while the conditional and unconditional methods should perform

reasonably well even with case sampling, provided that the probability of a non-case is

close to 0. Conditioning removes the baseline parameter φ, and the simulation results

will also provide information on the advantage or disadvantage of conditioning, if any.

21
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In all simulations the number of batches was fixed at 1000, and we used a moder-

ate sample size ofM = 100 subjects. We looked at the scenario where the probability

of a non-case was non-negligible (φ = 0, β = .2, t0 = 1, t1 = .5, giving P(non-case) =

20%, relative incidence ρ = 1.22).

3.1 Estimation

To begin, we consider the scenario where non-cases are very rare, in which the data

sets from case and cohort sampling designs are very similar, often the same.

We used paramters φ = 0, β = .5, t0 = 4, and t1 = 2, P(non-case) = 0.068%,

relative incidence ρ = 1.65.

Figure 3.1 shows contours of the joint likelihood for β and φ for a single simula-

tion batch, using the unconditional Poisson method under full cohort and case series

sampling designs. The contours appear elliptically symmetric, as would be expected

from the asymptotic normal distribution of the MLE.

The contours under full cohort and case series sampling designs appear the same,

which is to be expected, as all observations are expected to be cases. The contours

are centred near β̂ = 0.5 and φ̂ = 0, and demonstrate that the unconditional method

is able to provide relatively accurate estimation.

Similarly, Figure 3.2 shows contours of the joint likelihood for β and φ for a sin-

gle simulation batch, using the SCCS method under case series sampling designs.

The contours appear elliptically symmetric, as would be expected from the asymp-

totic normal distribution of the MLE, and are centered near the true parameter (0,.5).

Figures 3.3, 3.4, 3.5 show histograms of the maximum likelihood estimators for

the three methods with case series sampling. Here in simulation, we choose β =

0.02, 0.2, 0.5 and λ = eφ = 0.2, 1 respectively, and then plot six histograms to see the

variance and accuracy of estimator β̂. When λ = 1, frequent baseline incidence, the

variance of estimation becomes small. When λ = 0.2 the baseline incidence rate is
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(a) Figure A (b) Figure B

Figure 3.1: Parameters estimation of method 2, unconditional cohort method, under
full cohort sampling (Figure A) and case series sampling (Figure B).

Figure 3.2: Parameters estimation of method 3, self-controlled case series method,
under case series sampling.
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low, resulting in a large variance of the estimators. Based on these plots we see no

obvious difference of estimation among the three methods.

3.2 Power

For the unconditional and SCCS methods, we used the likelihood ratio test to test

for β ≤ 0 against the alternative β > 0. In this case, the critical region is the upper

5% point of the χ2 distribution with one degree of freedom, and the empirical power

is the proportion of simulation batches rejecting the null hypothesis (when twice the

log likelihood ratio exceeds the critical value).

Figure 3.6 presents the power of the conditional Poisson method with sample size

100. Since this method has an explicit solution, power can be written down as a

explicit expression as proved in Section 2.4. We calculate the power function from

equation (2.7). We use β0 = 0 as null hypothesis and choose a collection of β1’s as

alternative hypothesis to see the change of power.

We observed that the power of the unconditional method under full cohort sam-

pling was very similar to the conditional Poisson method. So here we just put con-

ditional power figure in the thesis. We did not compare conditional Poisson and

unconditional Poisson under case series sampling, because they have the same power,

as noted in Section 2.2 (the same estimator) and Section 2.5 (the same variance).

Figure 3.7 presents the power of conditional Poisson under full cohort sampling

with sample size 1000. From two different sample size 100 and 1000, it demonstrates

that variance increases when sample size becomes smaller, as expected. Moreover,

when β1 increases and becomes large enough, the power will increase. Additionally,

the variance on both two extreme sides 0 and 1 are very small, because when β1 is too

small or too large, we get no power or full power, while in the middle, the variance

becomes larger.

Tables 3.1 shows the mean power from three methods with sample size 100, esti-

mated using 1000 repetitions. Since the fixed parameter in the Table is λ = 1 with
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Figure 3.3: Histogram of MLE of conditional Poisson for β under λ = 0.2 and λ = 1,
here β = 0.02, 0.2, 0.5 in three rows.
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Figure 3.4: Histogram of MLE of unconditional Poisson for β under λ = 0.2 and
λ = 1, here β = 0.02, 0.2, 0.5 in three rows.
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Figure 3.5: Histogram of MLE of SCCS method for β under λ = 0.2 and λ = 1, here
β = 0.02, 0.2, 0.5 in three rows.
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Figure 3.6: Power of the conditional Poisson method (one-side, 5% nominal type I
error risk) with sample size 100.
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Figure 3.7: Power of the conditional Poisson method (one-side, 5% nominal type I
error risk) with sample size 1000.
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P(non-case)=0.22%, we can look at them as the case series sampling. There is no

obvious difference between three methods, and the estimation of β doesn’t seem to

depend too much on the methods used, due to the high proportion of cases.

Theoretically, when β1 is close to 0, power would not be less than type I error α,

that means power ≥ α = 0.05. However, here the corresponding power of β1 = 0.01 is

0.044, which is less than 0.05. That is because we use estimated power, the proportion

π̂ of rejecting H0 of M=1000 samples. Then the confidence interval of true power π

is

π̂ ± Zα
2

√
π (1− π)

M
,

Table 3.1: Estimated different power of three methods

β 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 Methods

power 0.06 0.13 0.27 0.39 0.57 0.74 0.87 0.95 0.995 conditional Poisson

power 0.08 0.14 0.26 0.44 0.59 0.75 0.83 0.97 0.99 unconditional Poisson

power 0.08 0.12 0.26 0.42 0.57 0.81 0.84 0.96 0.99 SCCS method

3.3 Mean Square Error

Mean Square Error is another criteria to compare the performance of three methods.

The MSE of an estimator measures the average of the squares of the “errors”, that

is, the difference between the estimator and what is estimated. It is the sum of the

variance and the squared bias of the estimator or of the predictions.
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MSE(θ̂) = V ar(θ̂) + E[(θ̂ − θ)2]

Let λ denote eφ. We want to know how incidence rate (λeβt) affects the estimation

β̂. Here, the parameter is θ = [β, λ]T . We chose two different values of λ, λ = 0.2,

λ = 1, which represent low frequency of seizures in baseline and high frequency of

seizures in baseline (seizure happened 0.2 times per week and once per week). We

also choose three different values of β, β = 0.02, β = 0.2, β = 0.5. Since we again

used a sample size 100, and 1000 replications in order to estimate the bias and MSE

using simulation.

In Figure 3.8, we compare different values of β, β = 0.02, β = 0.2, β = 0.5 and

different λ’s under conditional Poisson and unconditional Poisson with full cohort

sampling. The variance is much lager when λ = 0.2 than when λ = 1 which means

that the baseline frequency of events affects the estimation. Low frequency or rare

events leads to high variance. From Figure B, we use a single data set to compare

β̂u and β̂c. Here we choose λ = 1 and this is for the case where probability of a

non-case is close to 0. It shows that the conditional and unconditional estimates of

β are virtually identical under full cohort sampling.

Figure 3.9 compares the estimation of β using three methods with fixed λ under

case series sampling. We see that as β increases, the variance β̂ decreases. If there is

high baseline risk (λ = 1), then probability of case will be close to 1 and the proba-

bility of non-case will close to 0 (φ = 0, β = .2, t0 = 4, t1 = 2, giving P(non-case) =

0.16%). If λ is low (λ = 0.2), then the probability of case will be relatively small and

the probability of non-case will be relatively high (φ = log(.2), β = .2, t0 = 4, t1 = 2,

giving P(non-case) =27.6%).

Since high baseline frequency of events like λ = 1 cannot generate case only data

with moderate sample sizes, we use baseline frequency λ = 0.2. Figure 3.10 compares
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(a) Figure A (b) Figure B

Figure 3.8: (Figure A) Compare different β̂ under conditional Poisson and uncon-

ditional Poisson with fixed λ. (Figure B) compare β̂u and β̂c using a single data
set.

full cohort and case series sampling designs with fixed β and λ (λ = 0.2).

The parameters in the Table 3.2 are for fixed β = 0.5 and λ = .5 with P(non-

case)=2.6%, and the estimation of β doesn’t seem to depend too much on the methods

used when there is a high proportion of cases.

Table 3.2: MSE and Sample Size for β = 0.5 and λ = 0.5

sample size 20 50 100 200 method

MSE

3.21× 10−2 1.11× 10−2 5.60× 10−3 2.62× 10−3 Conditional on ni.

2.90× 10−2 9.93× 10−3 5.51× 10−3 2.70× 10−3 Unconditional

2.88× 10−2 1.11× 10−2 5.70× 10−3 2.81× 10−3 Conditional on ni. ≥ 1

We tried four different sample sizes 20, 50, 100 and 200 to compare MSE of
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(a) Figure A (b) Figure B

(c) Figure C

Figure 3.9: Compare different λ values with fixed β under three methods. Figures
A, B, C represent conditional method, unconditional method and SCCS or method
of conditional on ni ≥ 1.
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Figure 3.10: Comparison of sampling designs with λ = 0.2. Particularly, SCCS
(method 3) is not applicable under full cohort sampling.
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Table 3.3: Bias and MSE comparison for β = 0.5 and λ = 0.5

sampling
design

full cohort case series

Bias MSE Bias MSE

β 5.22× 10−3 5.33× 10−2 5.22× 10−3 5.33× 10−2 Conditional on ni.

φ 1.15× 10−2 2.185× 10−2 5.88× 10−1 3.580× 10−1 Unconditional

β 1.581× 10−2 5.906× 10−2 1.582× 10−2 5.907× 10−2

φ 1.87× 10−2 4.52× 10−2 Conditional on ni. ≥ 1

β 1.12× 10−2 5.21× 10−2

estimator under fixed β = 0.5 and λ = 0.5. We did 1000 times repetition and used

full cohort sampling design for our simulation. We can get one β̂ from each sample

and β̂ ∼ AN
(
β0, I

−1
n (β̂)

)
, here “AN” represents asymptotic normality. For 1000

repetition, we got 1000 β̂. Then

1

1000

1000∑
i=1

β̂(i) =⇒ E(β̂)

2

√√√√ 1

1000

1000∑
i=1

(
β̂(i) − ¯̂

β(i)
)2

=⇒ S.E.(β̂)

can approximate expectation and variance of β̂. Therefore, we can use them to

approximate β0 and I−1n (β̂)

=⇒ β̂ ∼ AN
(
β0, I

−1
n (β̂)

)
.

And MSE and bias are:
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=⇒MSE = V ar(β̂) + bias2(β̂)

bias(β̂) = E(β̂)− β0.

From Table 3.2, for each method, when sample size increases, the MSE decreases,

as we might expect, because it would be more accurate with large sample size. How-

ever, for the same sample size, there is no obvious difference amongst these three

methods. For sample size from 20 to 100, MSE improved a lot by adding just a few

observations.

Table 3.3 compares the bias and MSE of parameters φ and β for the three estima-

tion methods. The parameters underlying this simulation were φ = 0(λ = 1), t0 = 1

for baseline interval, and β = 0.2, t1 = 0.5 for the exposed interval. The sample size

was M = 100, and the results are based on 1000 simulation batches. With these pa-

rameters the probability of a non-case is 20%, and for case series sampling, all cases

with 0 events in both the exposed and unexposed intervals were dropped.

First, φ has larger bias (5.88× 10−1) and MSE (3.580× 10−1) for case series sam-

pling under unconditional Poisson method, whereas with full cohort sampling, the

estimate φ̂ has Bias=1.15× 10−2, and MSE=2.185× 10−2. Interestingly, the estimate

β does not change much as we move from full cohort to case series sampling. The

estimation of β in either full cohort or case series sampling are almost unbiased, and

the estimator would be slightly better in full cohort for unconditional Poisson. In a

nutshell, if we choose unconditional Poisson and are only interested in relative inci-

dence β, the sampling design does not affect estimation much, while if we are also

interested in baseline risk φ, we have to use full cohort sampling to obtain correct

estimation. Second, there is no difference for conditional Poisson, because non-case

individuals contribute nothing to the likelihood.

Last but not least, SCCS is only suitable for case series sampling, but it can pro-

vide good estimators of both φ and β. In terms of estimating φ, SCCS seems not to
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do a better job than unconditional method under full cohort sampling. However, it’s

still a good estimation, because when the sample size is reduced by 20%, the MSE of

SCCS only twice those of the MSE of unconditional methods, and the MSE of SCCS

is not too far from unconditional methods under case series sampling. In terms of

estimating β, it does not change too much when sample size drops. In other words,

estimation of β does not depend too much on sample design.

Consequently, if we apply wrong model in case series sampling, it does not matter

in terms of estimating β. However, it does make difference in φ by choosing different

methods under case series sampling.

We compare different sampling design, full cohort and case series, for each method

in Figure 3.10. For Method 1, conditional Poisson method, there would be no differ-

ence between full cohort and case series theoretically, because non-case individuals

contribute nothing to the likelihood. Method 2, the unconditional Poisson method,

is nearly unbiased under full cohort sampling and shows a little bias under case series

sampling. The unconditional method uses all the information from the data, and it

is more suitable and performs well for full cohort sampling. The last method, the

self-controlled case series or conditional on ni ≥ 1 method, is only suitable for case

series sampling and performs best under this situation.



Chapter 4

Random Effect Model

We have already mentioned fixed effect model in Chapters 2 and 3, which means

each individual has the same baseline risk eφ. However, individuals are very different

from each other and it may be unreasonable to assume each individual has the same

fixed baseline risk. Then how about random effect? Cook [2] developed guidelines of

random effect models based on mixed Poisson processes and Bayesian methods.

4.1 General Unconstrained Random Effect Model

Similar to the unconditional Poisson Model in Chapter 2, Cook gave a general uncon-

strained likelihood and Bayesian model. In this model, individuals are vaccinated at

random prior to the second period with zi being the indicator of vaccination for the

ith individual. Suppose the study consists of M subjects. Let t0 denote the duration

of the period prior to randomization for all subjects and ni0 the number of events ex-

perienced for subject i, i = 1, 2, . . . ,M . Let t1 denote the duration of the observation

period after randomization with the corresponding event count ni1, i = 1, 2, . . . ,M .

Let zi = 1 if subject i is in the vaccination group and zi = 0 otherwise. To induce

an association between Ni0 and Ni1 we introduce a subject-specific random effect Ui

which will vary for different individuals. Then Ni0 and Ni1 are assumed conditionally

independent Poisson distributed with

Ni0 ∼ Poisson(uiλt0),

Ni1 ∼ Poisson(uiλe
βzit1).

Here we add a random effect ui in the relative incidence rate uiλt0 instead of λt0

or eφt0 (λ = eφ) in the previous fixed effect model. Cook assumed that the random

effects Ui, i = 1, 2, . . . ,M , are independently gamma distributed with

38
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ui ∼ Gamma(φ−1, φ−1),

P (ui) =
(φ−1)

φ−1

Γ(φ−1)
uφ

−1−1
i e−uiφ

−1

.

and where Λi1 = λt1e
βzi , the conditional p.m.f. of Ni1 is

P (ni1|ui) =
(Λi1ui)

ni1e−Λi1ui

ni1!
, ni1 = 0, 1, 2, . . .

After updating, we get the joint probability and posterior probability

P (ni1, ui) = P (ni1|ui)P (ui)

ui|ni1 ∼ Gamma(φ−1 + ni1, φ
−1 + Λi1).

Then the marginal probability of Ni1 would be a negative binomial distribution with

p.m.f.

P (ni1) =

∫ ∞
ui=0

P(ni1, ui) dui

=
Γ(φ−1 + ni1)

Γ(φ−1)ni1!

(
φ−1

φ−1 + Λi1

)φ−1 (
Λi1

φ−1 + Λi1

)ni1

=
Γ(φ−1 + ni1)

Γ(φ−1)ni1!

(
1

1 + Λi1φ

)φ−1 (
Λi1φ

1 + Λi1φ

)ni1

.

Similarly, we obtain the marginal p.m.f. of Ni0

P (ni0) =

∫ ∞
ui=0

P(ni0, ui) dui

=
Γ(φ−1 + ni0)

Γ(φ−1)ni0!

(
1

1 + Λ0φ

)φ−1 (
Λ0φ

1 + Λ0φ

)ni0

, ni1 = 0, 1, 2, . . .
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Ni0 and Ni1 are conditionally independently Poisson distributed with

P (ni0, ni1|ui) = P (ni0|ui)P (ni1|ui)

=
e−ui(Λ0+Λi1)ui

niΛ0
ni0Λi1

ni1

ni0!ni1!
,

where Λ0 = λt0.

After updating, we get joint probability and posterior probability

P (ni0, ni1, ui) = P (ni0, ni1|ui)P (ui),

ui|ni0, ni1 ∼ Γ(φ−1 + ni., φ
−1 + Λ0 + Λi1).

Therefore, the marginal joint p.m.f. of ni0 and ni1 is

P (ni0, ni1) =

∫ ∞
ui=0

P(ni0, ni1ui) dui

=
Γ(φ−1 + ni1)

Γ(φ−1)n0!ni1!

(
1

(Λ0 + Λi1)φ+ 1

)φ−1 (
Λ0φ

(Λ0 + Λi1)φ+ 1

)ni0

(
Λi1φ

(Λ0 + Λi1)φ+ 1

)ni1

=
Γ(φ−1 + ni1)

Γ(φ−1)ni0!ni1!

(Λ0φ)
ni0(Λi1φ)

ni1

((Λ0 + Λi1)φ+ 1)φ
−1+ni0+ni1

.

Then we can obtain a conditional negative binomial likelihood, to which the ith

subject contributes

P (ni1|ni0) =
P (ni0, ni1)

P (ni0)

=
Γ(φ−1 + ni1)

Γ(φ−1)ni0!ni1!

Γ(φ−1)ni0!

Γ(φ−1 + ni0)

(Λ0φ)
ni0(Λi1φ)

ni1

((Λ0 + Λi1)φ+ 1)φ
−1+ni0+ni1

(1 + Λ0φ)
φ−1+ni0

(Λ0φ)ni0

=
Γ(φ−1 + ni1)

Γ(φ−1)ni0!ni1!

(Λi1φ)
ni1(1 + Λ0φ)

φ−1+ni0

((Λ0 + Λi1)φ+ 1)φ
−1+ni0+ni1

.
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Note that the individual random effects do not appear in this conditional proba-

bility. We estimate θ = (β, ψ, φ) where ψ = Λ1φ/(1 + Λ0φ), and Λ1 = λt1. As Cook

mentioned, the conditional negative binomial model is adequate, if interest only lies

in the relative incidence rate β. Otherwise, a joint model for (Ni0, Ni1) is required

for other parameters. The log-likelihood also arises from the conditional negative

binomial distribution and the observed information matrix is obtained after twice

differentiating with θ. The inverse of the information matrix gives the covariance of

θ̂. After that we can obtain power and variance efficiency, and make comparisons.

However, It is unreasonable to assume both parameters of the gamma distribution

are the same in Cook’s assumptions. We will discuss a full hierarchical model more

reasonable below.

4.2 Random Effect for Conditional Poisson Model

For a given subject, the conditional likelihood given the total number of events can be

thought as a binomial probability that the event occurred in the exposure interval, and

the subject specific baseline risk eφi is cancelled out in the probability π =
t1e

β

t0 + t1eβ

of the binomial distribution. This means that the baseline risks do not affect the

likelihood, and the random effect is eliminated in the same way as a fixed effect for

the conditional Poisson model.

4.3 Random Effect Hierarchical Model

First we consider the unconditional Poisson model with no constraints on the num-

ber of events ni0, ni1. We can develop a fully Bayesian hierarchical model which

incorporates random subject effects, as follows. The likelihood is
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ni0, ni1|ui ∼ P (ni0, ni1|ui)

= P (ni0|ui)P (ni1|ui)

If the prior distribution for ui is

ui|α ∼ P (ui|α),

and the hyperprior is

α ∼ P (α),

then the joint posterior distribution of all parameters is

P (ui,α, β|ni0, ni1) ∝ P (ni0, ni1|ui, β)P (ui|α)P (α)P (β).

Here the likelihood is assumed to follow a joint Poisson distribution. We might

assume, for example, a Gamma distribution as a prior for the random effects, but in

general, the prior and hyperprior can be any distributions, provided they lead to a

proper posterior distribution.

Now that we have established a full probability model for the data and the pa-

rameters, and we could compute the marginal posterior density of hyperparameters

through the Metropolis–Hastings algorithm.

The Metropolis–Hastings algorithm [9] can draw samples from any probability

distribution P (ui,α, β|n0,n1), provided we can compute the value of a function

f(ui, α, β|ni0, ni1) which is proportional to the joint density P (ui,α, β,n0,n1). It

works by generating a sequence of sample values in such a way that, as more and

more sample values are produced, the empirical distribution of values approximates

more closely the desired distribution, in this case P (ui,α, β|n0,n1).
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If interest focuses on the relative incidence parameter β, the joint samples can be

marginalized to get a sample from the marginal posterior of β.

Next we consider self-controlled case series method, which has the constraint of

at least one event in observation period, ni0 + ni1 ≥ 1. The only difference to the

heirarchical model is in the likehood. As in chapter 3, under the assumption of the

conditional joint Poisson model, the contribution of the i’th subject to the conditional

likelihood is

P (ni0, ni1|ui, ni0 + ni1 ≥ 1) =
P (ni0|ui)P (ni1|ui, β)

1− P (ni0 + ni1 = 1|ui, β)
.

In principle, we can again use the Metropolis–Hastings algorithm to draw sample

points from the full conditional distribution P (ui, α, β|ni0, ni1, ni0 + ni1 ≥ 1).



Chapter 5

Discussion

We cannot apply Poisson model or self-controlled case series method to random effect

problem directly. However, Bayesian and hierarchical models combined with mixed

a Poisson model provide another way to solve random effect problem.

First, φ has larger bias and MSE of unconditional Poisson for case series sampling

than for full cohort sampling. Interestingly, the estimate β does not change much

as we move from full cohort to case series sampling. The estimation of β in either

full cohort or case series sampling are almost unbiased, and the estimator would be

slightly better in full cohort for unconditional Poisson. In a nutshell, if we choose

unconditional Poisson and are only interested in relative incidence β, the sampling

design does not affect estimation much, while if we are also interested in baseline risk

φ, we have to use full cohort sampling to obtain correct estimation. What’s more,

there is no difference for conditional Poisson, because non-case individuals contribute

nothing to the likelihood. Last but not least, SCCS is only suitable for case series

sampling, but it can obtain good estimators of both φ and β.

Consequently, if we apply wrong model in case series sampling, it does not matter

in terms of estimating β. However, it does make a difference in φ by choosing different

methods under case series sampling.

The random effect models would be more complicated and realistic than fixed

effect models. Since random effect model has more complicated posterior and likeli-

hood. it needs more work on importance sampling to make accurate approximation

in the future.

A major advantage of the SCCS method is that the analysis adjusts for fixed

44
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covariates. Thus, individual specific characteristics need not be included as main

effects in analysis. However, some time varing covariates like age may act as effect

modifiers. One example is in Farrington’s [15] ITP and MMR vaccination problem.

Therefore, it would be interesting to develop models with time varying covariates.

If we add more covariates into three models, unconditional Poisson will work worse

because of more parameters while conditional Poisson and SCCS will still works well

because they eliminate the constant covariates.

Another interesting result is that Cox proportional hazard model and homoge-

neous Poisson process have a lot of similarity. First, their expressions look the same

as follows:

λ(t,β) = λ0(t)e
βT zi ,

λ(t,β) =


λ0(t), baseline risk

λ0(t)e
βT zi , high risk

Second, we can estimate β without estimating λ(orφ). In other words, we can

estimate β correctly even we get a wrong λ estimation in Poisson process. For Cox

PH model, relative incidence β can be estimated even we do not know the baseline

rate λ. Third, We may try to rearrange inter-event time for single individual in a

Poisson process into several pseudo individuals in a Cox model.
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Appendix A

R Code

Empirical Power – The numerical algorithm based on LR test calculate empirical

power of unconditional Poisson and self-controlled case series method.

datasim←function (beta , lambda=0.5 ,M=100){
mu1=lambda∗exp(beta ) ; mu0=lambda

#r a t e f o r n1 i s mu0∗ e 1∗ exp ( b e t a ) , f o r n0 i s mu0∗ e 0 ;

e1=2; e0=4

n1=rpois (M,mu1∗e1 ) ; n0=rpois (M,mu0∗e0 )

#r e t u r n s ( n1 , n0 )

return (cbind ( n1 , n0 ) )}

power2←function (beta , n=100 , t h e t a s t a r t=c ( 0 , 0 ) ){
count ← NULL

c=qchisq ( . 9 5 , 1 )

for ( i in 1 : n ) {
data=datasim (beta )

#max im i z e u n c o n s t r a i n e d l i k e l i h o o d

optim . out=optim (par=the ta s t a r t , l o g l i kn , data=data ,

method=”BFGS” , he s s i an=F)

betahat=optim . out$par [ 2 ] ;

lambdahat=optim . out$par [ 1 ] ;

L1=l o g l i k n ( theta=c ( lambdahat , betahat ) ,data ) #n e g a t i v e l o g L u n c o n s t r a i n e d

#max im i z e c o n s t r a i n e d l i k e l i h o o d

optim . out=optim (par=the t a s t a r t [ 1 ] , l o g l i k0n , data=data , method=”BFGS” , he s s i an=F)

lambdahat=optim . out$par [ 1 ] ;

L0=l o g l i k 0 n ( lambdahat , data ) #c o n s t r a i n e d n e g a t i v e l o g L

fun=2∗ (L0−L1) #s h o u l d be > 0

i f ( fun>c ){
count=c (count , 1 )

} else {
count=c (count , 0 )

}
#p r i n t ( c ( sum ( c o u n t )/ i ) )

}
sum(count )/n #t h i s i s t h e e s t i m a t e d powe r

}

48
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Optimization – The numerical algorithm, R optimization, which return the max-

imum likelihood estimators and hessian matrix to approximate variance.

#s i m u l a t i o n f u n c t i o n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

datasim←function (beta=0.5 , lambda=1,M){
mu1=lambda∗exp(beta ) ; mu0=lambda

e1=2; e0=4

n1=rpois (M,mu1∗e1 ) ; n0=rpois (M,mu0∗e0 )

return (cbind ( n1 , n0 ) )}

#c o n d i t i o n a l on n ( b i n o m i a l )−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l o g l i k 1=function ( phi , e1 , e0 , beta , n1 , n0 ){
t2=dbinom( n0 , n1+n0 , 2/ (exp(beta )+2))

t1=dbinom( n1 , n1+n0 , exp(beta )/ (exp(beta )+2))

return ( log ( t1)+log ( t2 ) )}

#u n c o n d i t i o n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l o g l i k 2=function ( phi , e1 , e0 , beta , n1 , n0 ){
t2=dpois ( n0 , exp( phi )∗e0 )

t1=dpois ( n1 , exp( phi+beta )∗e1 )

return ( log ( t1)+log ( t2 ) )}

#c o n d i t i o n a l on n>1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l o g l i k 3=function ( phi , e1 , e0 , beta , n1 , n0 ){
t2=dpois ( n0 , exp( phi )∗e0 )

t1=dpois ( n1 , exp( phi+beta )∗e1 )

t3=1−dpois (0 ,exp( phi )∗ ( e0+e1∗exp(beta ) ) )

return ( log ( t1)+log ( t2)−log ( t3 ) )}

#l i k e l i h o o d −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l o g l i k n=function ( theta , data ){
temp=0

phi=theta [ 1 ] ; beta=theta [ 2 ] #p a r am e t e r s p h i and b e t a

for ( i in 1 : (dim(data ) [ 1 ] ) ) {
n1=data [ i , 1 ] ; n0=data [ i , 2 ]

e1=2; e0=4

temp=temp−l o g l i k 1 ( phi , e1 , e0 , beta , n1 , n0 )}
return ( temp)}

t h e t a s t a r t=c ( 0 , 0 )

#o p t i m i z a t i o n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

data=datasim (M=20)

optim . out=optim (par=the ta s t a r t , fn=l og l i kn , gr=NULL, data=data , h e s s i an=T) #ML E s t i m a t i o n
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hess=optim . out$he s s i an #i n f o r m a t i o n m a t r i x

sds=sqrt (diag ( solve ( hess ) ) )

sds=sqrt ( solve ( hess [ 2 , 2 ] ) )


