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Abstract 

Decaying fossil fuel resources, international relation complexities, and the risks 
associated with nuclear power have led to an increased demand for alternative energy 
sources. Renewable energy sources offer adequate solutions to these challenges. 

Forecasting of solar energy has also increased over the past decade due to its use in 
photovoltaic (PV) system design, load balance in hybrid systems, and projected potential 
future PV system feasibility.  Artificial neural networks (ANN) have been used 
successfully for solar energy forecasting. In this work, several meteorological variables 
from Saudi Arabia as a case study will be used to determine the most effective variables 
on Global Solar Radiation (GSR) prediction. Those variables will be used as inputs 
for a proposed GSR prediction model. This model will be applicable in different locations 
and conditions. This model has a simple structure and offers better results in terms of 
error between actual and predicted solar radiation values. 
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Chapter 1:  Introduction 

Electric power consumption has significantly increased in recent decades. Traditional 

energy, such as oil, coal and nuclear, has a negative impact on the environment. For these 

reasons, researchers have turned toward renewable sources such as solar, wind and 

marine energy. Renewable energy is characterized as clean and durable energy. Scientists 

are trying to improve the efficiency of converting this energy into electricity. 

Solar energy production has dramatically increased in the past decade. The world’s 

capacity of total installed solar power generation capacity has increased from almost 2 

GW in 2002 to more than 100 GW at the end of 2012 [1]. Power fluctuation is one of the 

challenges facing the implementation of solar energy due to the intermittency and 

variability of solar radiation. Prediction using artificial intelligence (AI) techniques is 

used to overcome these challenges.  

1.1  Thesis Objective 
The objective of this research is to find a model that predicts solar radiation by building 

the appropriate ANN model using the best set of weather variables as inputs. This model 

helps to achieve better results in terms of error values, between actual and predicted data, 

and in terms of structural simplicity, the number of neurons, lyres, and inputs of the 

model. In addition, this research seeks to determine the best number of internal ANN 

units (neurons.) 
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1.2  Thesis Contribution 
In this work, the ANN model is proposed for solar radiation prediction. A thorough 

analysis and simulation are presented and discussed. A MatlabTM code is implemented to 

model the suggested structure. The author’s contribution to this work includes carrying 

out numerical simulations and comparing the results with other models in the solar 

radiation prediction field. In addition, the optimum number of neurons for each ANN 

model considered. In particular, this thesis discovered that increasing the number of 

neurons in an ANN does not necessarily improve prediction accuracy. 

1.3  Thesis Outline 

This thesis is organized as follows: 

Chapter 2 introduces a brief overview of solar energy and its development history. The 

technologies of converting solar energy into electricity are discussed. The PV system 

types, grid-connected and stand-alone (off-grid), are explained.  

Chapter 3 reviews the effect of the atmosphere on solar radiation and also introduces the 

world-wide distribution of solar radiation in the world.  Detailed information about solar 

radiation and power in Saudi Arabia are discussed in this chapter. 

Chapter 4 discusses the model that is applied in this thesis: the artificial neural network. It 

also introduces a literature review of solar radiation prediction approaches. 

Chapter 5 discusses the Global Solar Radiation (GSR) prediction models and results, and 

compare them with other models. 
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Finally, Chapter 6 presents the conclusions of the research and proposes a basis for future 

work in this field. 
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Chapter 2:  Solar Energy Technologies 

This chapter provides a brief overview of solar energy, solar energy conversion 

technologies, and typically implemented solar energy systems. 

2.1   Introduction 
Solar energy can be defined as the energy produced from the Sun's radiation.  This 

energy comes in two forms, heat and light. Since solar energy comes from the sun it is 

considered a renewable source of energy because nothing is consumed to use this energy. 

Solar energy is also a clean source of energy that does not damage the environment with 

harmful emissions or waste like other source such as nuclear and conventional energy. 

Solar energy sources can be located anywhere where there is sunlight, thus solar energy 

sites can be constructed close to where consumers are located; this could potentially 

reduce transmission and distribution costs. The availability of solar energy sources could 

also help societies achieve political and economic independence [2, 3]. 

A drawback to using solar energy is that it is dependent on weather variables such as air 

pollution, wind velocity, and cloud cover.  This weather variability makes solar energy 

potentially unreliable. Another drawback of solar energy is its high initial installation cost 

[2, 4].  

2.2  Solar Energy 
Solar energy has been used since ancient times as a source of light and heat. The 

beginning of the new age of solar energy technology started in the 18th century. In 1767, 

Horace de Saussure invented the first solar collector, which was a box surrounded by 

three layers of glass to absorb thermal energy. In 1839, Edmond Becquerel discovered 
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the photovoltaic effect, which is the conversion of solar radiation into electric current in a 

material [5]. In 1876, William Grylls Adams and Richard Evans Day proved that a solid 

material can convert light into electricity without additional heating or moving parts. In 

1891, Clarence Kemp created the first commercial solar water heater. In 1908, William J. 

Bailley, created a solar collector which was made of copper coils and an insulated box. 

His discovery is the basis for manufacturing today’s equipment. After the Second World 

War, solar powered equipment became more popular in the United States [6]. Since 1958, 

solar energy has been used in space equipment. The efficiency and cost of solar cells was 

improved in the 1970’s. The United States government along with many others have 

launched solar energy research labs and institutes [5]. In the early 1980’s, the first solar 

power aircraft and car were created [7]. In the late 1980’s, large-scale solar power plants 

were designed and built [7]. In 2013, solar power plants were capable of producing over 

200 Megawatts of power. The total installed solar power generation capacity increased to 

more than 100 GW by the end of 2012 from an almost 2.2 GW capacity in the early 

nineties [1]. Figure  2-1 shows the world total installed PV power. 
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Figure  2-1 Total World Installed PV 

This figure shows that there is a significant increase in PV power installations every year.  

Also noteworthy is how the increasing trend of installing PV systems significantly began 

in 2006. 

2.3  Solar Energy Technologies 
Solar energy can be harvested and converted into electricity through the use of two main 

technologies.  These technologies include solar-thermal power generation and 

photovoltaic (PV) power generation. 

2.3.1  Solar Thermal Technology 

Solar-thermal energy technology focuses the sun’s radiation to generate heat. This heat 

can be used directly for the following applications: agricultural drying, solar air heaters, 

solar water heaters, solar cooling systems, and solar cookers. This generated heat can also 
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be used to spin turbines on electrical generators. Figure  2-2 provides an example of what 

a solar-thermal generation site would consist of [8]. 

 

Figure  2-2 Solar Thermal Technology [8] 

2.3.2  Photovoltaic Cells 

Photovoltaic (PV) cell technology converts light incident on a material into electrical 

energy. PV cell materials are composed mainly of silicon and other semiconductor 

materials.  The incident light excites the electrons in the semiconductor, which in turn 

increases the semiconductor conductivity and produces a direct current (DC) flow [9]. 

Figure  2-3 provides an overview of this energy conversion process. 
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Figure  2-3 Photovoltaic Cell Operation 

The equivalent circuit for a PV cell can be seen in Figure  2-4 [10]. There are two main 

types of PV technology: crystalline silicon-based PV cells and thin film.  Thin film 

technology is made from various semi-conductor materials such as cadmium-telluride, 

amorphous silicon, and copper indium gallium diselenidel [10].  

 

Figure  2-4 PV Cell Equivalent Circuit [10] 

  A well-known general equation for the diode current of the PV cell is given by [10]: 
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  ( 2.1) 

where 

 is the overall diode current produced by the cell 

 is the current generated by the incident light at the cell  

 is the reverse saturation current of the diode 

 is the electron charge  

 is the ideality factor 

 is the Boltzmann constant  

 is the temperature of the PV cell measured in degrees Kelvin 

 is the voltage across the cell. 

PV systems mainly consist of PV cells which are connected in a series and/or parallel to 

form a PV module, and a PV panel consists of a group of PV modules. A group of PV 

panels are arranged to structure a PV array [10]. The second component of a PV system 

is the converter, which is used to regulate the output of PV cells and/or convert the 

generated voltage waveforms from DC to AC [11].  More components can be added to 

the system depending on the requirements and application, such as: batteries, control and 

synchronization units.  These components are added in applications such as a multi-

source or a grid-connected system. 
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2.4  PV System Classification 
PV systems can be classified into two categories: grid-connected and stand-alone (off-

grid) systems [12, 13]. These systems are further explained in the following sections.  

Figure  2-5 shows a chart outlining all of the potential PV system topologies. 

Photovoltaic (PV) system

Stand-alone systemGrid connected  system

With batteries

Without batteries

Hybrid

 

Figure  2-5 PV System Topologies 

2.4.1  PV Stand-Alone System 

The stand-alone system is divided into three categories: with batteries, without batteries, 

and a hybrid system. When the installation cannot be feasibly or practically connected to 

a grid the stand-alone system is the best option [14]. 

Batteries are added to the stand-alone system when the power demand is greater than the 

power supplied by the system. Since solar radiation is not available all the time, such as 

nighttime or cloudy days, batteries become one of the best solutions for maintaining load 

demands. Batteries store the extra-generated power when solar radiation is abundant such 

that the energy can be used when solar radiation is not available. Stand-alone systems 

with batteries are usually applied in rural areas where it is difficult to connect to the grid 

[15]. 
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The hybrid stand-alone system is more complicated and advanced than the stand-alone 

system. This system is connected to another renewable energy system or traditional 

generators. Hybrid systems mainly are connected to wind turbines, diesel generators, and 

traditional power generating units. More units, such as a converter and control unit, are 

added to the hybrid system [16, 17]. Figure  2-6 shows a general diagram of a stand-alone 

PV system. 

 

Figure  2-6 Stand-Alone PV System Topology 

2.4.2  Grid Connected System 

The grid-connected system is the PV stand-alone system connected to the utility power 

lines. This kind of system has become more popular in recent years. It is a more complex 

system than the stand-alone systems. Synchronization, control and metering units are 

added to these types of systems [18, 19]. Figure  2-7 shows a general diagram of grid-

connected PV system. 
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Figure  2-7 Grid-Connected PV System 

Grid connected systems have many advantages over the other PV systems. When the PV 

system cannot supply the load’s demand, the control unit allows for power from the grid 

to support the PV system in meeting that demand. When the PV system has more power 

than the load requires the control unit transfers the extra power to the grid, making it a 

more reliable source of energy. The ability to meet the load’s demand, economic benefits, 

and environmental considerations make the grid-connected PV system a more popular 

choice [20].  
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Chapter 3:  Distribution of Solar Energy 

This chapter provides a brief overview of solar energy throughout the world and in 

comparison to Saudi Arabia. 

3.1  Introduction 
Solar radiation is electromagnetic radiation emitted from the sun. Solar radiation can be 

defined as the total amount of quantum energy produced by incident photons per unit of 

area. Solar radiation can be expressed in Joules per square meter  or watt—hours 

per square meter . This value of incident energy on the earth’s surface 

depends on factors such as location, air pollution, and cloud cover [21]. 

Photons in solar beams interact and penetrate the atmosphere in four ways. The first kind 

of interaction is where photons are reflected back into space due to the interaction with 

the atmosphere and Earth. Second, the photons are absorbed by the Earth’s atmosphere. 

Third, photons are scattered to produce diffuse radiation, which is a significant factor in 

solar power applications and forecasting. Finally, the remaining photons unabsorbed, un-

scattered, and un-reflected are called direct radiation which is the most important factor 

in solar power applications and forecasting. Figure  3-1 displays these four cases of 

photons penetrating the atmosphere. The atmospheric losses of the extraterrestrial solar 

energy can reach 30% on a very clear day and can reach 100% on a very cloudy day [22, 

23]. 
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Figure  3-1 Solar Radiation Atmospheric Interaction [23] 

The total solar radiation incident on a horizontal surface is called a Global Horizontal 

Irradiance (GHI) and equals the sum of direct solar radiation (Direct Normal Irradiance 

(DNI)) and Diffuse Horizontal Irradiance (DHI).  GHI can be expressed as [24]:  

  ( 3.1) 

where z is the solar zenith angle. 

3.2  Solar Radiation in the World 
The Earth’s solar radiation distribution can be divided into three regions. Figure  3-2 

shows the solar radiation distribution throughout the world. Due to the variations in 

climate between regions of the world significant differences of solar radiation are 

expected.  
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Figure  3-2 World Solar Radiation Intensity [25] 

The first region, which has the highest amount of solar radiation, lies between latitudes 

15°N, and 35°N. Most of this solar radiation comes from direct radiation, as there is a 

lack of cloud cover and rainfall. The second region lies between latitude 15°N and 0°N. 

This region has the second highest level of solar radiation. This region has higher levels 

of diffuse radiation due to humidity and cloud cover. In this region, there is almost a 

constant amount of solar radiation during the year. The third region located above 35°N 

has the lowest level of solar radiation. This is due to the cloud cover. Almost half of the 

radiation in this region comes from diffusion radiation. The solar radiation is lowest at 

the Earth's poles [26].  

3.3  Solar Radiation and Power Generation in Saudi Arabia 
Saudi Arabia has a significant supply of solar radiation.  As such, it is in the country’s 

best interest to harness this renewable source of power generation.  Currently there are 

many solar generation sites under development. 
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3.3.1  Solar Radiation in Saudi Arabia 

Saudi Arabia (SA) is located in the southwest of Asia between latitudes 17.5˚N and 31˚N 

and longitudes 36.6˚E and 50˚E [27]. It has a total area of 2,250,000 km², which is about 

80% of the Arabian Peninsula [28]. As of 2012 the total population of Saudi Arabia is 

28.3M with an average annual growth rate of 1.9% [29]. 

Aridity and extreme temperatures characterize the climate in SA with the exception of the 

coastal region, which has high humidity coupled with more moderate temperatures. In the 

middle of SA, the average summer daytime temperature could reach 45°C and it is not 

unusual for temperatures to reach 54°C. However, in winter, it seldom drops freezing.  

The average amount of rainfall in SA is very low except in the southwestern region.  This 

region experiences monsoons, which can bring an average of 300 millimeters of 

precipitation between October and March [28]. 

Saudi Arabia has the largest global oil reserves in the world. This represents one-fifth of 

the global oil reserves. SA also has the world's fifth largest natural gas reserves [30]. In 

addition, as mentioned previously, Saudi Arabia is located in the most favorable region 

for incident solar radiation.  This provides Saudi Arabia with a significant source of 

renewable energy. Saudi Arabia receives a daily average 6 kWh/m² or 13.5 TWh of solar 

energy [31]. This significant amount of solar radiation makes solar energy harvesting a 

profitable and sufficient renewable energy supply. Figure  3-3 shows the average 

horizontal solar irradiation for Saudi Arabia [32]. 
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Figure  3-3 Global Solar Radiation in Saudi Arabia [32] 

3.3.2  Solar Power in Saudi Arabia 

The government of Saudi Arabia has had an interest in solar energy as an alternative 

energy source since the 1960’s. In 1960 the Saudi Arabia government established the first 

PV beacon in Al-Madinah Al-Munnawara’s airport [33]. In 1969 solar energy research 

began at the university level.  In 1977 the Energy Research Institute (ERI) at King 

Abdulaziz City for Science and Technology (KACST) began working on solar energy 

technology. In the same year, the Saudi Arabian government launched the first joint 

venture in solar energy with the U.S. government, named Solar Energy Research 

American-Saudi (SOLERAS), which lasted until 1997 [34]. In 1980, SOLERAS provided 

two Saudi Arabian villages with solar power. From 1986 to 1991 the Saudi Arabian 

government instituted a cooperative program for research and development of solar-
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hydrogen power (HYSOLAR) [35]. In 2010, the Saudi Arabian government developed 

the first solar powered water desalination plant. Recently, Saudi Aramco and King 

Abdullah University of Science and Technology (KAUST) installed solar power panels 

on the roof of the parking lot, which has a capacity of 2MW and 10MW respectively. In 

2011 Saudi Arabia had the world’s largest solar-thermal power plant, which used 36,305 

square meters of solar panels to feed solar energy into a district-heating grid at Princess 

Nora Bint Abdul Rahman University in Riyadh. In 2012, King Abdullah Petroleum 

Studies and Research Center (KAPSARC) lunched a 3.5MW solar park in Riyadh [36]. 

In terms of solar radiation measurement, ERI started the Saudi Arabia Solar Radiation 

Atlas Project in cooperation with the National Research Energy Laboratory (NREL) in 

the United States in 1994. This project analyzed twelve various locations in Saudi Arabia. 

Global horizon irradiance (GHI), direct normal irradiance (DNI), diffuse horizontal 

irradiance, air temperature, and humidity data were collected. Also, NREL and KACST 

collaborated with NASA to validate satellite solar data. King Abdullah City for Atomic 

and Renewable Energy (KA.CARE) is the responsible agency overseeing Saudi Arabia’s 

energy strategy [37]. 

Saudi Arabia is the 20th largest producer and consumer of electricity. It is facing issues 

with power generation due to population growth, a rapidly expanding industrial sector, 

and a high demand for air conditioning in the summer months. It is expected to increase 

the power capacity requirement to 120GW by 2020. This is almost double the current 

power capacity in Saudi Arabia [38]. Currently Saudi Arabia uses fossil fuels to generate 

power, however, by 2020 it is planned to have 55GW of renewable energy capacity, of 

which 41 GW will be from solar energy [30]. 
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There are several obstacles involved with the development of the solar energy industry in 

Saudi Arabia. One of these obstacles is dust. In Saudi Arabia desert covers approximately 

95% of the country [39]. Dust accumulation on PV cells in Riyadh reduces the efficiency 

by 32% within eight months [40]. Another obstacle is that the tariff on grid power from 

conventional sources is very cheap in comparison with solar energy power generation. 
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Chapter 4:  Neural Networks 

This chapter provides a brief overview of neural networks and how they can be applied to 

renewable energy generation. 

4.1  Introduction 
An artificial neural network (ANN) is a network that attempts to imitate brain functions. 

The human brain contains approximately  neurons working in perfect harmony to 

perform a task. ANN’s are designed to do a specific task through a learning process. By 

providing inputs and the desired output data, an ANN finds the relationship between the 

input and output data. Similar to a brain, where neurons are connected by synapses, the 

neurons in an ANN are connected by weighted inputs. Neurons are activated when the 

summation of these weighted inputs exceeds the neurons activation threshold [41].  

There are seven successive steps involved in the design and implementation of an ANN 

[42]: 

1. Collecting data 

2. Creating the network 

3. Configuring the network 

4. Initializing the weights and biases 

5. Training the network 

6. Validating the network 

7. Using the network 
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4.2  Artificial Neural Network Structure 
ANN’s consist of three parts: the input layer, neuron layer, and the output layer. 

Figure  4-1 shows a simple diagram of an ANN. The input vector  is multiplied by 

weight vector . This multiplication of the input vector and weight vector, ( ), is 

added to a bias,  to form a net input . The net input, , is then input to a neuron 

activation function to produce an output .  The following equation defines the output of 

this neural network [42]: 

  ( 4.1) 
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Figure  4-1 Single Neuron Network 

Another important component in the ANN structure is the activation function. The 

activation function determines, depending on the summation of the weighted input n, if 

the neuron is activated or not. The activation functions can be divided into two 

categories, continuous or discrete. These functions can be unipolar or bipolar.  

Commonly used activation functions can be seen in Figure  4-2 [43]. 
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Figure  4-2 Commonly used activation functions: (a) Continuous Bipolar, (b) Continuous 

Unipolar, (c) Discrete Bipolar, (d) Discrete Unipolar 

ANN can be divided into two main categories: single-layer and multi-layer, which will be 

explained in subsequent sections. 

4.2.1  Single Layer Neural Network 

Single-layer neural network (SLNN) is an extended case of the simple case mentioned in 

the previous section. SLNN consists of one layer of neurons as shown in Figure  4-3.  
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Figure  4-3 Single Layer Neural Network 

Each input of the SLNN, , is connected to all of the neurons in the layer by a weight 

vector, W. Every neuron adds its weight inputs  and bias to form its net input, . 

The net input vector  is used by the activation function, , to form the neuron output 

vector . The number of inputs is typically different than the number of neurons. The 

weight matrix, , is given by: 

 

 

( 4.2) 

Where R is the number of elements in the input vector and S is the number of neurons 

[42]. 
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4.2.2  Multi-layer Neural Network 

Multi-layer neural networks (MLNN’s) are used to implement complex problems that 

SLNN’s are unable to solve. It has the ability to convert non-linearly-separable objects 

into a different domain where they become linearly separable. MLNN’s include an input 

layer, output layer, and hidden layers as shown in Figure  4-4 [41]. 
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Figure  4-4 Multi-Layer Neural Network 

In multi-layer networks the output of each layer becomes the input for the subsequent 

layer. Each layer has its own weight matrix. These weight matrices are varied to achieve 

a minimum total error. The output of a MLNN is given by [42]: 

  )( 11,111 bXIWfa  ( 4.3) 

 )( 211,222 baIWfa  ( 4.4) 
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 )( 322,333 baIWfa  ( 4.5) 

 )))((( 3211,111,222,333 bbbXIWfIWfLWfa  ( 4.6) 

where, 

X = input vector 

IW = input weight matrix 

LW = hidden weight matrix 

 = bias vector 

  = layer output vector 

The hidden layer associated with multi-layer neural networks provides a powerful tool for 

performing very complex analysis. 

4.3  Artificial Neural Network Phases 
The data sets that are used in ANN’s are divided into two main groups. The first group of 

data is used in the ANN training phase. This data covers almost two thirds of the total 

data set. In general the parameters of ANN’s, weights and biases, will be modified in the 

training phase such that the ANN will model the data correctly [42]. 

In the training phase, there are two learning techniques, supervised and unsupervised. For 

the supervised learning technique, the ANN’s parameters are initialized. The input data is 

introduced to ANN and generate the output of the first iteration. The output is compared 

to the desired value and the error between the two is calculated. Depending on the error's 
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value, the weights and biases are updated using different learning algorithms. This 

process is repeated until a minimum error is achieved. Using different learning 

algorithms such as Levenberg-Marquardt (LM), Bayesian Regularization (BR), and 

Resilient Back Propagation can produce neural networks with varying degrees of 

accuracy [43]. 

The two important learning algorithms are used in this work are LM and BR. LM is a 

technique that is used to find the minimum of a nonlinear least square function. The 

weights change can be calculated by this equation: 

  ( 4.7) 

where  is the mean-squared network error and can be found by: 

  ( 4.8) 

where  is the number of examples, y  is the network output corresponding to the 

example , and  is the desired output for that example. 

The algorithm starts with random weights. Based on Equation ( 4.7), the weights are 

updated by:  

  ( 4.9) 

The error is minimized every iteration until achieving the goal or a minimum is found. 

This is one of the fastest algorithms, and is highly recommended as a first-choice 

supervised algorithm. [42, 44] 
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The other learning algorithm used in this work is the Bayesian Regularization (BR) 

which is more advanced than standard back-propagation and can overcome its 

disadvantage of over-fitting. The Weight and bias values are updated by Levenberg-

Marquardt optimization. BR finds the correct combination of squared errors and weights 

to produce a network that generalizes well. [42, 45] 

The unsupervised technique is used when the desired output is unknown. Therefore, the 

weights and biases are updated based on the response to the inputs. Table  4-1 summarizes 

commonly used learning algorithms [41]. 

Table  4-1 Summary of Neural Network Learning Algorithms 

Learning Rule Weight Adjustment 
Activation 
Function 

Learning 

Perceptron 
 

 
Discrete Supervised 

Delta 
 

 
Continuous Supervised 

Widrow-Hoff 
 

 
Discrete or 
Continuous 

Supervised 

Outstar 
 

 
For a layer of p neurons 

Continuous Supervised 

Correlation 
 

 
Discrete or 
Continuous 

Supervised 

Hebbian 
 

 
Discrete or 
Continuous 

Unsupervised 

Winner-take-all 
 

 
m is the winning neuron 

Continuous Unsupervised 
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After the training phase, the second group of data is introduced for checking the ANN 

model validity. 

4.4  Literature Review 

There are many limitations to using PV technology. Solar energy is intermittent and 

variable, resulting in power fluctuations which require precise prediction techniques. 

Many methods have been proposed to overcome these challenges such as artificial 

intelligence (AI) techniques, which include expert systems (ES), artificial neural 

networks (ANN), genetic algorithms (GA), fuzzy logic (FL), and many hybrid systems 

[46, 47]. 

ANN is the most common AI technique that has been used for the last two decades. It can 

model complex and nonlinear systems because of the network’s ability to adjust its 

weights and biases. There are many ANN structures, such as, the multilayer perceptron 

(MLP), recurrent neural network (RNN) and radial basis function network (RBF) [41].  

These various structures make ANN’s very versatile in their applications.  ANN’s can be 

used to predict solar radiation, which helps the management of power generated from a 

PV system [46, 47]. 

Numerous meteorological and geographical variables such as maximum temperature, 

relative humidity, sunshine duration, cloud cover, latitude, longitude, and altitude have 

been used to develop ANN models for solar prediction [48]. 

Significant research has been conducted regarding solar energy forecasting using ANN 

techniques. Sozen et al. (2004) [49] used latitude, longitude, altitude, months, mean 

sunshine duration, and mean temperature as inputs to an ANN model to predict the solar 
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potential in Turkey. In this model, a data set covering three years (2000-2003) and 17 

locations was used for training and testing. Various combinations of layers and neurons 

were used as well as three different learning algorithms. The maximum mean absolute 

percentage error was used to validate the model. The error was approximately 6.74% and 

the absolute fraction of variance, , values were 99.89% for the testing stations. 

Tymvios et al. (2005) [50] used the same input variables as Sozen et al. (2004) [49] to 

train seven ANN models to estimate the solar radiation on a horizontal surface. They 

used the back propagation feed forward method with tangent sigmoid as an activation 

function. The ANN models vary between one and two hidden layers and the number of 

neurons between 23 and 77. The model with two hidden layers and 23 and 46 neurons 

respectively was found to be the best. The mean biased error (MBE) and root mean 

square error (RMSE) values were 0.12% and 5.67%, respectively. This study was based 

on seven years worth of data (1986-1992) collected at Athalassa, Cyprus. 

Rehman et al. (2008) [51] used three combinations of data sets to estimate the global 

solar radiation (GSR) in Abha, Saudi Arabia. In this model, a data set of four years 

(1998-2001) had been used as training data and one year time span (2002) as testing data. 

The input combinations were: (i) day of the year and daily maximum air temperature, (ii) 

day of the year and daily mean air temperature (iii) day of the year, daily mean air 

temperature, and relative humidity. By using back propagation and a multilayered feed 

forward ANN with 24, 32 and 24 neurons for the three combinations respectively, the 

absolute mean percentage errors were 10.3%, 11.8% and 4.49, respectively. 
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Mubiru et al. (2008) [48] used latitude, longitude, altitude, sunshine hours, cloud cover, 

and maximum temperature data as inputs to an ANN model. The model was used to 

estimate the monthly average daily global solar radiation in Uganda. In this model, a 

three year time span of data (April 2003-December 2005) had been used. Various training 

algorithms and number of neurons was investigated. It was found that the best model was 

with 15 neurons and one hidden layer using the Levenberg–Marquardt training algorithm. 

This model showed and RMSE of 0.974 and 38.5% respectively. 

Zervas et al. (2008) [52] used weather conditions (cloud, rain or clear day) and each 

calendar day data as inputs to the ANN model to predict the daily global solar irradiance 

(GSI) distribution on horizontal surfaces at a particular location in Greece. In this model, 

radial basis function (RBF) ANN was used. This paper showed a coefficient of 

determination R2 of over 0.98. 

Moustris et al. (2008) [53] used latitude, longitude, altitude, sunshine hours, cloud cover, 

hourly data of air temperature, and relative humidity data as inputs to the ANN model. 

This model was used to create hourly global and diffuse solar irradiance data at seven 

locations in Greece. When training the ANN the data was divided into two sets: warm 

and cold seasons. This created an absolute maximum, average, and absolute minimum 

data of global and diffuse solar irradiance for each month. In this work, multilayer 

perceptron (MLP) ANN with a back propagation learning algorithm was used. The 

average correlation coefficient was found to be about 0.99, 0.98 and 0.7 for maximum, 

average, and minimum hourly global and diffuse solar irradiance respectively. 
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Lam et al. (2008) [54] used latitude, longitude, altitude, day number, daily mean 

temperature, and sunshine hours as input data to the ANN model.  This model was used 

to predict the daily global solar radiation for 40 different locations in China. The ANN 

model used was multi-layered with a back propagation training algorithm. The results 

showed that the coefficients of determination, , decreased from colder to warmer 

climates. Moreover, there was a strong correlation between daily solar radiation and the 

corresponding sunshine hours. The RMSE varied from 9.1% in severe cold climates to 

20.5% in cold climates. 

Alam et al. (2009)  [55] used different combinations of latitude, longitude, altitude, time, 

months of the year, air temperature, relative humidity, rainfall, wind speed, and net long 

wavelength data as inputs to ANN models. The models were used to estimate the 

monthly mean hourly and daily diffuse solar radiation for 10 different Indian stations. 

The proposed models used three layers of feed forward with back propagation algorithm. 

The high coefficient of determination R2 (higher than 0.85) indicated a strong correlation 

between the diffuse solar radiation and the input variables. The RMSE for hourly diffuse 

solar radiation and monthly mean daily diffuse solar radiation varied between 1.1% and 

8.8% and between 1.3% and 4.5% respectively. 

Ghanbrazadeh et al. (2009) [56] have used different combinations of air temperature, 

relative humidity, and sunshine hour values as inputs to ANN models.  The model was 

used to predict daily global solar radiation (GSR) for Dezful City in Iran. In this model, 

data over a four-year time span (2002-2005) was used for training the networks while 235 

days of data was used for testing it. Three feed forward back propagation ANN models 

were used with three hidden layers. Three neurons were used in the first layer and two or 
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three neurons in the second layer. The outperforming model was then used all the three 

variables as inputs. For this model, the absolute mean percentage of error was 8.84%. 

Mellit et al. (2010) [57] used huorly solar irradiance, hourly air temperature, and hours of 

the day as inputs to an ANN model.  This model was used in forecasting 24 h ahead of 

solar irradiance at Trieste in Italy. The proposed model used multilayer perceptron MLP 

feed forward with the back propagation-training algorithm. The model had four layers 

with 3, 11, 17, and 24 neurons respectively. In this model, the correlation coefficient and 

RMSE were in the range of 98–99% and 13-67% respectively for sunny days while in the 

range of 94–96% and 54-85% respectively for cloudy days. 

Deng et al. (2010) [58] used twelve different combinations of latitude, longitude, altitude, 

sunshine duration, air temperature, rainfall, relative humidity, atmospheric pressure, and 

day of year as input data to ANN models. This model was used to estimate the daily 

global solar radiation at ten different locations in China. Eight-years of data was used to 

train and test the model. The proposed ANN models used three layers of feed forward 

neural network with back propagation training algorithm. In these models, the first and 

second layers had between 4-9 and 6-25 neurons respectively, while the third layer -the 

output layer- had only one neuron. This paper concluded that the most significant 

variable was sunshine duration. In this study, it was found that the best model was the 

one that used all input variables. The best model was found when all input variables were 

used. The model, RMSE and correlation of determination, , were 1.915 MJ/m2 and 

0.932 respectively. 
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Wang et al. (2011) [59] used diffused radiation, temperature, relative humidity, and time, 

as inputs to ANN models.  The model was used for short-term solar irradiation prediction 

in Golden, CO, USA. These models used multilayered feed forward neural network with 

backward propagation (BP) training algorithm. Among different combinations of ANN 

layers and neurons, the best model had four layers with 24, 18, 13 and 24 neurons 

respectively. The RMSE and the correlation of determination, , were 0.0331 and 

0.9912 respectively. 

Angela et al. (2011) [60] have used only one variable, sunshine duration as an input to the 

ANN model.  The model was used to estimate the monthly average daily global solar 

irradiation on a horizontal surface at Kampala, Uganda. Five years of data (2003-2008) 

was used for training and testing the models. All models tested in this paper used feed 

forward back propagation neural networks. Among dozens of models using different 

numbers of neurons, the proposed model had one hidden layer with 65 neurons. It had a 

RMSE and a correlation coefficient of 0.521 and 0.963 respectively. 

Rani et al. (2012) [61] used six different combinations of temperature, humidity, date, 

and month of the year as input to an ANN model.  This model was used to predict the 

daily GSR under clear sky conditions of any location in India. Three years of data (2000-

2002) were used to train and test the back propagation feed forward neural network 

model. This model had three layers with 10 neurons in the hidden layer. The authors 

concluded that using all the above variables led to a better estimation of radiation MAPE 

as 9.1754% and RMSE as 0.9429. 
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Alharbi, M. (2013) [62] used different combinations of temperature, humidity, and daily 

date code as inputs to ANN models.  The model was used to predict the daily global solar 

radiation for a specific location in Riyadh, Saudi Arabia. Three years of data (2009-2011) 

were used to train and test the models. The models consisted of three layers with the 

number of layer neurons varying from 60 to 83 in the hidden layer. These models used 

the back propagation learning technique. This study concluded that the best prediction 

was when all of the three inputs were used. The best model had 80 neurons in the hidden 

layer. The RMSE and the Correlation Coefficient were 7.5% and 0.986 respectively. 
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Chapter 5:  Modeling, Simulation and Discussion 

This chapter presents a Global Solar Radiation (GSR) prediction model. The simulation 

results of this model are obtained by using MATLABTM and artificial neural network 

(ANN) modelling. 

The modeling and analysis were divided in general into three main steps as shown in 

Figure  5-1. In the first step, all weather variables were examined to determine which 

variables provide the best GSR prediction.  The second step constructs the proposed GSR 

model by using the weather variables that were chosen in the first step. Finally, the 

proposed model was compared with other works that have been conducted in this field.  

 

Figure  5-1 Flow Chart of GSR Prediction 

In this work, air temperature, relative humidity, pressure, cloud-cover, vapor, wind-speed 

and direction, and the day, were used as data inputs for the GSR prediction model. This 

data was collected from Solar Village in Riyadh, Saudi Arabia between 2007 and 2010. 
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5.1  Effect of Weather Variables on GSR Prediction 
The first step, for model constricting, was to determine the effect of each variable on the 

GSR predictions. Each variable was taken individually with the day as inputs for the 

neural network model to predict the daily average GSR as shown in Figure  2-1. In this 

model, three layers - input, hidden and output- with different combinations of transfer 

functions have been used.  

 

Figure  5-2 Structure of Model ANN-1 

Among sets of different combinations of transfer functions, logsig and tansig were found 

to be the best combination candidates. Logsig and tansig were used for the hidden and 

output layers respectively. Furthermore, the number of neurons was chosen to provide 

small values of Root Mean Square Error (RMSE) and Mean Absolute Percentage of Error 

(MAPE) as well as a large value of correlation coefficient  ( ) as shown in Table  5-1.  

RMSE was used to explain the model’s fit and the difference between actual and 

predicted data. MAPE was calculated to find the absolute average error between the 

actual and predicted values. Finally,  showed how strongly the relation between the 

measured and predicted value was. These values were given by [63]: 
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  ( 5.1) 

  ( 5.2) 

  ( 5.3) 

 
where,  is the predicted value,  is the actual value and  is the number of observations. 

Table  5-1 Performance Evaluation of Average Daily GSR Prediction with One Weather 
Variable plus the Day 

Model Input Output Neuron    
ANN_1.1   80 7.1956 4.3578 0.96497 
ANN_1.2   140 10.348 5.0602 0.95016 
ANN_1.3   131 11.916 6.0378 0.94944 
ANN_1.4   85 15.403 7.7645 0.93754 
ANN_1.5   160 23.172 7.9816 0.92044 
ANN_1.6   185 25.179 8.3467 0.90182 
ANN_1.7   159 27.340 8.1628 0.90840 
 
 
From Table  5-1, temperature, humidity and cloud-cover resulted in lower RMSE and 

MAPE and higher  when they were used individually with the day to predict the daily 

average G . This means that these input variables play an important role in the GSR 

prediction process.  

In the second step, two weather variables with the day were used as inputs for the daily 

average GSR prediction as shown in Figure  5-3. Table  5-2 shows the best combinations 

of inputs that resulted in lower and  and higher . 
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Figure  5-3 Structure of Model ANN-2 

 
Table  5-2 Performance Evaluation of Average Daily GSR Prediction with Two Weather 

Variables plus the Day 

Model Input Output Neuron    
ANN_2.1   159 4.0337 3.1476 0.98711 
ANN_2.2   178 4.3336 3.4697 0.98520 
ANN_2.3   75 4.7531 3.6568 0.98025 
ANN_2.4   115 5.1004 3.9068 0.98013 
 

Comparing Table  5-2 with Table  5-1, using humidity and cloud-cover, temperature and 

cloud-cover or humidity and temperature as inputs provided better prediction than using 

only one variable with the day. 

Next, more than two weather variables with the day were used as inputs for daily average 

GSR prediction as shown in Figure  5-4. Table  5-3 shows the best combination of inputs 

that provide lower and  and higher . 
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Figure  5-4 Structure of Model ANN-3 

Table  5-3 Performance Evaluation of Average Daily GSR Prediction with More Than 
Two Weather Variables plus the Day 

Model Input Output Neuron    
ANN_3.1   160 3.4764 2.2557 0.99202 
ANN_3.2   65 3.8191 2.951 0.98905 
 

Table  5-3 shows a very good result when temperature, humidity, cloud-cover and the day 

were used to predict the daily average GSR. Also, adding vapor as an input enhanced the 

prediction process. Comparing Table  5-3 with Table  5-1 and Table  5-2 shows that using 

more input weather variables increases the prediction accuracy. However, the values 

of ,  and  from Table  5-3 are slightly better than the values in Table  5-2 

and much better than the values in Table  5-1.  Therefore, the proposed model used only 

two weather variables with the day to achieve a simple model with the best prediction. 

Cloud-cover, humidity and temperature are the best candidates for GSR prediction. 

Cloud-cover has the best effect on GSR prediction; cloud-cover was excluded because it 

is difficult to be predicted. However, when the cloud-cover data is available, it can be 

used in ANN-2.1 and ANN-2.2 models for better GSR prediction. Therefore, in this 
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thesis, the proposed model used air temperature, humidity and the day as inputs for GSR 

prediction. 

5.2  GSR Prediction Modeling  

The proposed model consists of many sub-models as shown in Figure  5-5. In the first 

sub-model, the average temperature and humidity and the day were used as inputs for 

GSR prediction. In the second sub-model, air temperature was predicted by using 

previous temperature, GSR and humidity data with the day as input. The third sub-model 

predicted humidity by using previous temperature, GSR and humidity data with the day 

as input. The last sub-model used the predicted temperature and humidity from the 

second and the third sub-models for GSR prediction.  

 

Figure  5-5 General Structure of the Proposed Model 
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5.2.1  Sub-Model I: Predicting GSR Using Actual Weather Variables 

In this model, the average daily GSR for 2010 was predicted by using the daily average 

of temperature and humidity, and the day as inputs from 2007 to 2010. This model used 

feed forward ANN and was divided into three layers as shown in Figure  5-6. The hidden 

layer has  as a transfer function while the output layer has . The input data 

was divided into three sets: 70% of the data for the training phase, 15% of the data for the 

validation phase and 15% of the data for the testing phase. Using the BR algorithm in the 

training phase with 75 neurons in the hidden layer and one neuron in the output layer 

gave the best average GSR prediction. 

 

Figure  5-6 Daily Average GSR Model Structure  

The ,  and  for this model are shown in Table  5-4. From this table, the 

small value of RMSE indicates the small error between the actual and predicted GSR 

values. The high value of  shows how decent the fit is between the actual and predicted 

GSR values. In addition, the model has a small number of neurons which makes the 

model less complicated. Figure  5-7 shows the similarity between the predicted and actual 

GSR data. Figure  5-8 shows the fit between the predicted and actual data. 
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Table  5-4 Performance Evaluation of Average Daily GSR Prediction for Sub-Model I 

Model Input Output Neuron    
Training 
time (s) 

Sub-Model I   75 4.7531 3.6568 0.98025 14.58 

  

Figure  5-7 Actual and Predicted Daily Average GSR Values from 2007 to 2010 

 

Figure  5-8 The Fit between Actual and Predicted Daily Average GSR Actual 

Pr
ed
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ed
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5.2.2  Sub-Model II: Predicting the Daily Average Air Temperature 

This model predicts the daily average temperature for 2010. This model is needed when 

there is a lack of temperature data. This model used average GSR, temperature and 

humidity data for 2007 to 2009 and the day as inputs. These inputs were divided into 

three sets: 70%, 15% and 15% for training, validation and testing phase respectively. 

These inputs were introduced into a three layers feed forward ANN with  and 

 transfer function in hidden and output layer respectively as shown in Figure  5-9. 

The best result achieved was when BR algorithm was used with 151 neurons in the 

hidden layer and one neuron in the output layer. 

 

Figure  5-9 Daily Average Temperature Model Structure 

Table  5-5 shows the ,  and  for this model. From this table, the  

value is 10.7% which is considered a good performance. Also,  value is 0.963 which 

indicates a good fit between the actual and predicted temperatures. Furthermore, this 

model has four inputs and a relatively small number of neurons making the model fairly 

simple. The actual and predicted average daily temperature values are shown in 

Figure  5-10 while Figure  5-11 shows the fit between the predicted and actual data. 
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Table  5-5 Performance Evaluation of Average Daily Temperature Prediction for Sub-
Model II 

Model Input Output Neuron    
Sub-Model II   151 10.715 6.3407 0.96259 

 

  

 Figure  5-10 Actual and Predicted Daily Average Temperature Values from 2008 to 
2010 

 

Figure  5-11 The Fit between Actual and Predicted Daily Average Temperature 
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5.2.3  Sub-Model III: Predicting the Daily Average Relative Humidity 

This model predicts the daily average humidity for 2010. As the previous model, this is a 

necessary model when humidity data is unavailable. Average GSR, temperature and 

humidity data for 2007 to 2009 and the day were used as inputs. The data were divided 

70% for training, 15% for validation and 15% for testing purpose. The model used feed 

forward ANN and three layers. The transfer functions in hidden and output layers were 

 and . Figure  5-12 shows the model structure.  By using LM algorithm, the 

best number of neurons found was 135 in the hidden layer and one neuron in the output 

layer. 

  

Figure  5-12 Daily Average Humidity Model Structure 

The prediction of humidity is not easy to discern, because of its high fluctuation. 

Table  5-6 shows the performance evaluation of this model. The RMSE and MAPE are 

0.15 and 9.06 respectively. Also, the fit between the actual and predicted humidity is 0.94 

which is considered a good fit. Figure  5-13 shows the similarity between the predicted 

and actual humidity data. Figure  5-14 shows the fit between the predicted and actual data. 
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Table  5-6 Performance Evaluation of Average Daily Humidity Prediction for Sub-Model 
III 

Model Input Output Neuron    
Sub-Model III   135 15.009 9.0621 0.94436 
 

 

Figure  5-13 Actual and Predicted Daily Average Humidity Values from 2008 to 2010 

 

Figure  5-14 The Fit between Actual and Predicted Daily Average Humidity 
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5.2.4 Sub-Model IV: Predicting GSR Using Predicted Weather 
Variables 

This is an alternative model used when one or more of the input variables were predicted 

by sub-model II or III. This model predicted the average GSR in 2010 by using the model 

II and III outputs and the day of 2010. The input data were divided into three sets: 70%, 

15% and 15% for training, validation and testing phase respectively. The model has three 

layers. The transfer functions for hidden and output layer were logsig and tansig 

respectively. With BR algorithm and 115 neurons in the hidden layer and one neuron in 

the output layer, the model achieved the best prediction. 

 

Figure  5-15 Daily Average GSR Model Structure 

Table  5-7 shows the RMSE, MAPE and  for this model. The values of RMSE, MAPE 

and r are 0.07, 6.09 and 0.94 respectively. Figure  5-16 shows the similarity between the 

predicted and actual GSR data. Figure  5-17 shows the fit between the predicted and 

actual data. 

Table  5-7 Performance Evaluation of Average Daily GSR Prediction for Sub-Model IV 

Model Input Output Neuron    
Sub-Model IV   115 7.1492 6.0868 0.93887 
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Figure  5-16 Actual and Predicted Daily Average GSR Values from 2007 to 2010 

 

Figure  5-17 The Fit between Actual and Predicted Daily Average GSR 
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5.3  Effect of changing the number of neurons on RMSE, 
MAPE and r 

The highest number of neurons does not improve the accuracy of GSR predictions for 

forecasting. Figure  A-1 through to Figure  A-7 plot the RMSE (%), MAPE (%) and r 

versus the number of neurons. These show that increasing the number of neurons did not 

necessarily mean greater accuracy and better results in GSR predictions regardless of the 

combination of weather variables. Indeed, Figure  A-1 shows the optimal number of 

neurons for predicting daily GSR when cloud cover is the variable to be 80,  Figure  A-2 

shows the optimal number of neurons for predicting daily GSR when humidity is the 

variable to be 140,  Figure  A-3 shows the optimal number of neurons for predicting daily 

GSR when temperature is the variable to be around 130,  Figure  A-4 shows the optimal 

number of neurons for predicting daily GSR when vapor is the variable to be 85,  

Figure  A-5 shows the optimal number of neurons for predicting daily GSR when pressure 

is the variable to be between 160,  Figure  A-6 shows the optimal number of neurons for 

predicting daily GSR when wind direction is the variable to be between 185 and 

Figure  A-7 shows the optimal number of neurons for predicting daily GSR when wind 

speed is the variable to be around 160.  

Similar trends, where increase in number of neurons does not necessarily mean greater 

accuracy in GSR prediction as measured by r, MAPE and RMSE are seen in Figure  B-1 

through to Figure  D-4 where combinations of weather variables are included in the 

modelling.   
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5.4  Comparison with other Approaches 
It is noted that because each author presents specific to different geographic locations and 

weather conditions, comparisons are given for illustration purposes. Table  5-8 presents 

the result of the proposed model and other works conducted in GSR prediction, including 

an overview of the important variables, structural complexity and performance of different 

models. Note that Mellit et al results are not valid for GSR forecasting. 

Table  5-8 Comparative study between the developed model and other GSR ANN-models 

Inputs Layers Neurons RMSE(%)  MAPE(%) r(%) Author 
 4 69 5.67 - - Tymvios et al. (2005) 
 3 46 5.97 - - Tymvios et al. (2005) 

 3 32 - 11.80 - Rehman et al. (2008) 
 3 24 - 4.49 - Rehman et al. (2008) 

 4 55 13.14 - 99 Mellit et al. (2010)  
G,t,H,h 4 79 4.50 0.60 96.4 Wang et al. (2011) 

 3 65 52 1.97 96.3 Angela et al. (2011) 
 3 10 - 12.62  Rani et al. (2012) 
 3 10 - 13.52  Rani et al. (2012) 

 3 10 - 10.52  Rani et al. (2012) 
  3 10 - 9.18  Rani et al. (2012) 

 3 83 18.53  8.14   86.2  Alharbi, M (2013) 
 3 83 7.91  1.82  98.2 Alharbi, M (2013) 

3 75 4.75 3.66 98.02 Proposed model 
 

The proposed model has better results in terms of RMSE value in comparison with other 

models proposed in the literature. However, Wang et al. (2011) has lower RMSE value, 

but with more complicated structure.  Furthermore, comparing the model structure with 

other models that have three inputs, the proposed model has less number of neurons 

compare to Alharbi, M (2013). However, Rehman et al. (2008) and Tymvios et al. (2005) 
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models have fewer neurons, but higher RMSE. Rani et al. (2012) and Rehman et al. 

(2008) have different models with simpler structures, but, with higher MAPE.  
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Chapter 6:  Conclusions and Future work 

This chapter summarizes the results of this thesis and the contributions that were made. 

Suggestions for future work are also discussed.  

6.1  Conclusions 
A new model for predicting global solar radiation (GSR) using artificial neural networks 

(ANN) with the most effective combination of weather variables was proposed. The 

study’s objectives included identifying a structurally simple model for predicting solar 

radiation through use of an appropriate ANN to achieve better results in forecasting by 

reducing error values between predicted and actual data. The model used in this study 

combined the most effective of several weather variables in a specific location in Saudi 

Arabia. Historical data collected from the Solar Village in Riyadh, between 2007 and 

2010, was examined to determine the influence of these weather variables: cloud-cover, 

relative humidity, air temperature, wind speed, wind direction, pressure and vapor on 

forecasting solar radiation. This data was used as an example to explore the most 

effective though simple model for GSR prediction.  All these variables were tested 

through simulation and analysis using a Matlab code to model the suggested ANN 

structure. The optimum number of neurons for each ANN model was also determined. 

In a first phase, weather variables were tested and ranked in order of effectiveness in 

measuring GSR. Keeping the date the same, the best results, regardless of different 

number of neurons applied were found with cloud cover and then relative humidity and 

the least effective variable was wind direction closely followed by wind speed. To 
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improve effectiveness, for greater accuracy and to achieve even better results, 

combinations of these seven variables were also tested.  

Though cloud cover, humidity and temperature are the best combination of variables for 

predicting GSR, cloud cover is not very predictable and does not meet this study’s 

objectives of simplicity in structure along with best results. The best combination, 

meeting all requirements (simplicity, good results and better accuracy in GSR prediction) 

was identified as air temperature, humidity and the day. This combination of variables 

was then evaluated for performance displayed in plots showing the predicted versus 

actual data and then in a further step was compared to other published models for 

measuring GSR. These models use different combinations of variables or more number 

of neurons. The proposed model fared well in comparison to published models, having a 

better RMSE value than even those using the same number of layers. Two models fared 

better using fewer neurons but they had higher RMSE. The proposed model even 

performed better than two different models with simpler structures as these had higher 

MAPE. The result of this thesis have been partially reported in [64]. 

6.2  Future work 

This study identified the best combination of weather variables for use in a proposed 

model for global solar radiation (GSR) prediction that was simple in structure and used 

artificial neural networks.  The best combination of weather variables that met the 

objectivities of simplicity, optimal number of neurons and better performance (as 

determined by r, RMSE and MAPE) was date, air temperature and relative humidity. This 

model fared well even when compared to previously published models using either the 

same weather variables or the same number of neuron network layers.  
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While this model performed better than published models across r, RMSE and MAPE, 

some of the models (Tymivios et al, 2005 and Alharbi, M (2013) used fewer neurons or 

had lower RMSE or MAPE. Sunshine and its duration through the day was not used as a 

weather variable in this study, future work can include exploring sunshine as a variable 

and identifying a means to address challenges of predictability that are faced when using 

cloud cover as a variable in GSR prediction. Codes and other mends to further simplify 

structure of models for GSR prediction that combine more than two variables can also be 

considered in further studies. Moreever, the effect of time of day and the angle of the sun  

radiation will be considerd. 

Further investigation of the relationship between weather variables and solar radiation is 

recommended. Such future work could include a hybrid model for solar prediction using 

wavelet neural networks, and neural fuzzy network. 

  



55 
 

Bibliography 

[1] British Petroleum. (July 2013). BP Statistical Review of World Energy [Online]. 
Available: http://www.bp.com/content/dam/bp/excel/Statistical-
Review/statistical_review_of_world_energy_2013_workbook.xlsx. 

[2] G. R. Timilsina, L. Kurdgelashvili, and P. A. Narbel, "A review of solar energy: 
Markets, economics and policies," The World Bank, October 2013. 

[3] S. Sivanagaraju, M. R. Balasubba, and D. Srilatha, Generation and Utilization of 
Electrical Energy, India: Pearson Education, 2010. 

[4] D. Anderson. (May 2013). Solar Energy Benefits & Drawbacks [Online]. Available: 
http://homeguides.sfgate.com/solar-energy-benefits-drawbacks-79613.html. 

[5] W. T. Jewell, and R. Ramakumar, "The History of Utility-Interactive Photovoltaic 
Generation,"  IEEE Trans. on Energy Conversion, vol. 3, pp. 583-588, Sep. 1988.  

[6] M. A. Green. "Photovoltaics: Comming of age," in Proc. 21st IEEE Photov. Spec. 
Conf. Kissimmee, FL, May. 1990, pp. 1-8.  

[7] U.S. Department of Energy. (May 2012). The History of Solar [Online]. Available: 
http://www1.eere.energy.gov/solar/pdfs/solar_timeline.pdf. 

[8] United States Environmental Protection Agency. (September 2013). A Student's 
Guide to Global Climate Change - Solar Energy [Online]. Available: 
http://www.epa.gov/climatestudents/solutions/technologies/solar.html. 

[9] A. Luque, and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 
Chichester, West Sussex, U.K.: Wiley, 2011. 

[10] M. R. Pater, Wind and Solar Power System, Design, Analysis and Operations, Boca 
Raton, FL: CRC Press, 2012. 

[11] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, 
Applications and Design, John Wiley & Sons Australia, 2003. 

[12] German Solar Energy Society, Planning and Installing Photovoltaic Systems: A 
Guide for Installers, Architects and Engineers, London, UK: Earthscan, 2008. 

[13] R. A. Messenger, and J. Ventre, Photovoltaic Systems Engineering, Abingdon, UK: 
CRC Press/Taylor & Francis, 2010. 



56 
 

[14] N. A. Ahmed, and M. Miyatake. "A stand-alone hybrid generation system 
combining solar photovoltaic and wind turbine with simple maximum power point 
tracking control," in Power Electronics and Motion Control Conf. (IPEMC), Shanghai, 
China, 2006, pp. 1-7.  

[15] A. Campoccia, S. Favuzza, E. R. Sanseverino, and G. Zizzo. "Reliability analysis of 
a stand-alone PV system for the supply of a remote electric load," in Int. Symp. on Power 
Electronics Elect. Drives Automation and Motion, (SPEEDAM), Pisa, Italy, June 2010, 
pp. 158-163.  

[16] M. Musell, G. G. Notton, and A. Louche, "Design of hybrid-photovoltaic power 
generator, with optimization of energy management,"  Solar Energy, vol. 65, pp. 143-
157, Feb. 1999.  

[17] Y. Chen, C. Cheng, and H. Wu. "Grid-connected hybrid PV/wind power generation 
system with improved DC bus voltage regulation strategy," in Proc. of IEEE Appl. Power 
Electron. Conf. and Expo. (APEC 06), 2006, pp. 1089–1094.  

[18] International Electrotechnical Commission, "Photovoltaic devices - part 3: 
Measurement principles for terrestrial photovoltaic (PV) solar devices with reference 
spectral irradiance data," 2008. 

[19] A. Ruiz, "System aspects of large scale implementation of a photovoltaic power 
plant,"  M.S. thesis, School of Elect. Eng., Royal Institute of Technology, Stockholm, 
Sweden, 2011.  

[20] H. Felten, A. Kreutzmann, and P. Welter. "Increase in grid-connected pv system 
power in germany," in 4th World Conf. on Photovoltaic Energy Conversion, (WCPEC-4), 
Waikoloa, HI, May 2006, pp. 2494-2496.  

[21] P. A. Lynn, Electricity from Sunlight: An Introduction to Photovoltaics, Chichester, 
UK: Wiley, 2010. 

[22] N. K. Gautam, and N. D. Kaushika, "A Model for the Estimation of Global Solar 
Radiation Using Fuzzy Random Variables,"  J. of Appl. Meteorology, vol. 41, pp. 1267-
1276, 2002.  

[23] V. Badescu, Modeling Solar Radiation at the Earth's Surface, Berlin, Germany: 
Springer, 2008. 

[24] M. J. Reno, C. W. Hansen, and J. S. Stein, "Global horizontal irradiance clear sky 
models: Implementation and analysis," Sandia National Laboratories, Albuquerque, NM, 
Tech. Rep. SAND2012-2389, Mar. 2012. 

[25] METEOTEST. (March 2013). Yearly Sum of Global Horizontal Irradiance . 
Available: http://meteonorm.com/download/maps/. 



57 
 

[26] J. N. Black, "The distribution of solar radiation over the Earth's 
surface,"  Theoretical and Appl.   Climatology, vol. 7, pp. 165-189, 1956.  

[27] A. Hepbasli, and Z. Alsuhaibani, "A key review on present status and future 
directions of solar energy studies and applications in Saudi Arabia,"  Renewable and 
Sustainable Energy Reviews, vol. 15, pp. 5021-5050, Dec. 2011.  

[28] Federal Research Division, "Country profile: Saudi arabia," Library of Congress, 
Sep. 2006. 

[29] The world Bank. (October 2013). Saudi Arabia . Available: 
http://data.worldbank.org/country/saudi-arabia. 

[30] U.S. Energy Information Administration, "Saudi arabia," U.S Energy Information 
Administration, Feb. 2013. 

[31] F. R. Pazheri, N. H. Malik, A. A. Al-Arainy, E. A. Al-Ammar, A. Imthias, and O. K. 
Safoora. "Smart grid can make saudi arabia megawatt exporter," in Asia-Pacific Power 
and Energy Eng. Conf., (APPEEC), Wuhan, China, 2011, pp. 1-4.  

[32] GeoModel Solar. (May 2013). Average Annual Global Horizontal Solar 
Irradiation  . Available: http://solargis.info/imaps/. 

[33] F. Daghestani, "Solar energy applications proceedings: Of the international seminar 
on appropriate technology in the fields of solar and wind energy applications," Royal 
Scientific Society, Amman, Jordan, 1987. 

[34] M. Z. Lowenstein, and I. C. Smith. "The joint saudi arabia-united states solar energy 
program," in American Inst. of Aeronautics and Astronautics, Terrestrial Energy Syst. 
Conf. Orlando, Fla., June 4-6, 1979, pp. 6.  

[35] W. Grasse, F. Oster, and H. Aba-Oud, "Hysolar: an overview on the German-Saudi 
Arabian programme on solar hydrogen,"  Int. J. of Hydrogen Energy, vol. 19, pp. 683–
686, 1994.  

[36] Saudi Arabia Solar Industry Association (SASIA). (December 2012). Project 
Gallery . Available: http://saudi-sia.com/?page_id=96. 

[37] D. R. Myers, S. M. Wilcox, W. F. Marion, N. M. Al-Abbadi, M. bin Mahfoodh, and 
Z. Al-Otaibi, "Final report for annex II―Assessment of solar radiation resources in saudi 
arabia 1998–2000," Apr. 2002. 

[38] Embassy of Switzerland-OSEC Business. (September 2012). Saudi Arabia Major 
Business Sectors . Available: http://www.s-ge.com/de/filefield-
private/files/2816/field_blog_public_files/4868. 



58 
 

[39] National Geographic. (January 2014). Saudi Arabia . Available: 
http://travel.nationalgeographic.com/travel/countries/saudi-arabia-facts/. 

[40] A. Salim, F. Huraib, and N. Eugenio. "PV power-study of system options and 
optimization," in The 8th European PV SolarEnergy Conf. Florence, Italy, 1988, . 

[41] J. M. Zurada, Introduction to Artificial Neural Networks, St. Paul: West Publishing 
Company, 1992. 

[42] M. Beale, M. T. Hagan and H. B. Demuth. Neural network toolbox. The MathWorks 
pp. 5-25, 2013. Available: 
http://www.mathworks.com.au/help/pdf_doc/nnet/nnet_ug.pdf. 

[43] A. K. Jain, J. Mao and K. M. Mohiuddin. Artificial neural networks: A tutorial. 
IEEE Computer 29pp. 31-44, Mar. 1996.  

[44] G. Lera, and M. Pinzolas, "Neighborhood based Levenberg-Marquardt algorithm for 
neural network training,"  IEEE Trans.   Neural Netw., vol. 13, pp. 1200-1203, Sep. 2002.  

[45] David J Livingstone, Artificial Neural Networks : Methods and Applications, New 
York: Humana Press, vol.458, 2008. 

[46] C. Voyant, P. Randimbivololona, M. L. Nivet, C. Paoli, and M. Muselli, "Twenty 
four hours ahead global irradiation forecasting using multi-layer 
perceptron,"  Meteorological Applicat., vol. 1, Mar. 2013.  

[47] A. Mellit, S. A. Kalogirou, L. Hontoria, and S. Shaari, "Artificial intelligence 
techniques for sizing photovoltaic systems: A review,"  Renewable and Sustainable 
Energy Reviews, vol. 13, pp. 406-419, 2009.  

[48] J. Mubiru, and E. J. K. B. Banda, "Estimation of monthly average daily global solar 
irradiation using artificial neural networks,"  Solar Energy, vol. 82, pp. 181-187, 2008.  

[49] A. Sözen, E. Arcaklioğlu, and M. Özalp, "Estimation of solar potential in Turkey by 
artificial neural networks using meteorological and geographical data,"  Energy 
Conversion and Management, vol. 45, pp. 3033-3052, Nov. 2004.  

[50] F. S. Tymvios, C. P. Jacovides, S. C. Michaelides, and C. Scouteli, "Comparative 
study of Ångström’s and artificial neural networks’ methodologies in estimating global 
solar radiation,"  Solar Energy, vol. 78, pp. 752-762, Jun. 2005.  

[51] S. Rehman, and M. Mohandes, "Artificial neural network estimation of global solar 
radiation using air temperature and relative humidity,"  Energy Policy, vol. 36, pp. 571-
576, 2008.  



59 
 

[52] P. L. Zervas, H. Sarimveis, J. A. Palyvos, and N. C. G. Markatos, "Prediction of 
daily global solar irradiance on horizontal surfaces based on neural-network 
techniques,"  Renewable Energy, vol. 33, pp. 1796-1803, 2008.  

[53] K. Moustris, A. G. Paliatsos, A. Bloutsos, K. Nikolaidis, I. Koronaki, and K. 
Kavadias, "Use of neural networks for the creation of hourly global and diffuse solar 
irradiance data at representative locations in Greece,"  Renewable Energy, vol. 33, pp. 
928-932, 2008.  

[54] J. C. Lam, K. K. W. Wan, and L. Yang, "Solar radiation modelling using ANNs for 
different climates in China,"  Energy Conversion and Management, vol. 49, pp. 1080-
1090, 2008.  

[55] S. Alam, S. C. Kaushik, and S. N. Garg, "Assessment of diffuse solar energy under 
general sky condition using artificial neural network,"  Appl.  Energy, vol. 86, pp. 554-
564, 2009.  

[56] A. Ghanbarzadeh, A. R. Noghrehabadi, E. Assareh, and M. A. Behrang. "Solar 
radiation forecasting based on meteorological data using artificial neural networks," in 
7th IEEE Int. Conf. on Ind. Informatics, (INDIN 2009), 2009, pp. 227-231.  

[57] A. Mellit, and A. M. Pavan, "A 24-h forecast of solar irradiance using artificial 
neural network: Application for performance prediction of a grid-connected PV plant at 
Trieste, Italy,"  Solar Energy, vol. 84, pp. 807-821, May. 2010.  

[58] Fangping Deng, Gaoli Su, Chuang Liu, and Zhengxing Wang. "Global solar 
radiation modeling using the artificial neural network technique," in Asia-Pacific Power 
and Energy Eng. Conf. (APPEEC), 2010, pp. 1-5.  

[59] Z. Wang, F. Wang, and S. Su, "Solar Irradiance Short-Term Prediction Model Based 
on BP Neural Network,"  Energy Procedia, vol. 12, pp. 488-494, 2011.  

[60] A. Karoro, T. Ssenyonga, and J. Mubiru, "Predicting Global Solar Radiation Using 
an Artificial Neural Network Single-Parameter Model,"  Advances in Artificial Neural 
Syst., vol. 2011, pp. 1-7, 2011.  

[61] K. D. Rao, B. I. Rani, and G. S. Ilango. "Estimation of daily global solar radiation 
using temperature, relative humidity and seasons with ANN for indian stations," in Int. 
Conf. on Power, Signals, Controls and Computation (EPSCICON), 2012, pp. 1-6.  

[62] M. Alharbi, "Daily Global Solar Radiation Forecasting Using ANN and Extreme 
Learning Machine: A Case Study in Saudi Arabia,"  M.S. thesis, Elect. and Computer 
Eng., Dalhousie Univ., Halifax, NS, 2013.  



60 
 

[63] Y. Jie, Z. Mingzhan, and W. Qinglin. "Correlative analysis of measured data 
between anemometer tower and WTG," in 8th Int. Conf. on Computing and Networking 
Technology (ICCNT), Gueongju, 2012, pp. 111-115.  

 [64] B. M. Alluhaidah, S. H. Shehadeh, and M. E. El-Hawary. "Most influential 
variables for solar radiation forecasting using artificial neural networks," in 14th 
Electrical Power and Energy Conference (EPEC), 2014, pp. 1-5.  

 

  



61 
 

Appendix A. GSR Performance Evaluation with One 
Weather Variable 

A.1 Model ANN_1.1 Performance 
Table  A-1 Performance Evaluation of Average Daily GSR Prediction with Cloud-Cover 

plus the Day 

Neuron    

40 9.6940 5.7199 0.9519 
45 10.9020 6.0541 0.9451 
50 10.9730 5.9039 0.9544 
55 12.4050 6.4599 0.9512 
60 10.1100 5.7511 0.9559 
65 11.1630 5.9566 0.9509 
70 10.2430 5.4365 0.9414 
75 15.0340 5.6195 0.9560 
80 7.1956 4.3578 0.9650 
85 10.0000 5.5776 0.9444 
90 9.9650 5.1166 0.9610 
95 10.7200 5.2576 0.9537 
100 10.2060 5.2220 0.9498 
110 9.2290 4.9107 0.9630 
120 10.2880 4.8691 0.9550 
130 11.3330 5.0272 0.9506 
140 10.6600 4.7919 0.9405 
150 9.5830 4.5706 0.9501 
160 12.0690 4.6884 0.9437 
170 9.9880 4.6508 0.9488 
180 9.6980 4.3107 0.9441 
190 14.7770 5.1602 0.9198 
200 8.1960 4.7822 0.9560 
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Figure  A-1 Relationship between RMSE, MAPE and r with different number of neurons 
for Model ANN_1.1 
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A.2 Model ANN_1.2 Performance 
Table  A-2 Performance Evaluation of Average Daily GSR Prediction with Humidity plus 

the Day 

Neuron    
40 15.3828 7.1001 0.9397 
45 15.6762 7.4087 0.9344 
50 14.7294 7.1418 0.9387 
55 14.5944 7.0182 0.9377 
60 15.4755 7.1238 0.9375 
65 14.9067 6.9982 0.9397 
70 14.6232 6.5885 0.9386 
75 14.0355 6.8767 0.9423 
80 15.1704 6.8387 0.9407 
85 14.5683 6.5724 0.9386 
90 13.9383 6.6811 0.9434 
95 14.2110 6.6297 0.9403 
100 15.0255 6.7803 0.9377 
110 13.9014 5.8959 0.9495 
120 12.5865 6.0859 0.9459 
130 13.6431 6.0615 0.9336 
140 10.3480 5.0602 0.9502 
150 13.3416 5.7773 0.9456 
160 11.2482 5.3929 0.9483 
170 16.1199 5.6356 0.9464 
180 11.6190 5.3339 0.9420 
190 12.1086 5.4815 0.9254 
200 11.3949 5.2417 0.9436 
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Figure  A-2 Relationship between RMSE, MAPE and r with different number of neurons 
for Model ANN_1.2 
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A.3 Model ANN_1.3 Performance 
Table  A-3 Performance Evaluation of Average Daily GSR Prediction with Temperature 

plus the Day 

Neuron    
40 29.4736 8.9112 0.9139 
45 22.5896 8.0226 0.9298 
50 19.5744 8.1350 0.9258 
55 19.2528 7.7531 0.9295 
60 15.6016 7.1377 0.9422 
65 17.8864 7.4788 0.9265 
70 17.5384 7.4426 0.9371 
75 19.7416 8.2366 0.9245 
80 19.5232 8.1603 0.9237 
85 23.1472 7.5281 0.9294 
90 15.8752 6.9130 0.9396 
95 22.8232 7.4557 0.9291 
100 15.0352 7.0360 0.9272 
110 34.3024 8.2243 0.9020 
120 13.6224 6.5136 0.9416 
131 11.916 6.0378 0.94944 
140 14.9216 6.4399 0.9366 
150 22.2952 6.7161 0.9348 
160 17.7488 6.3364 0.9477 
170 24.2488 6.9342 0.9121 
180 15.7536 6.0174 0.9382 
190 12.7992 5.9396 0.9352 
200 13.3608 6.2299 0.9340 
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Figure  A-3 Relationship between RMSE, MAPE and r with different number of neurons 
for Model ANN_1.3 
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A.4 Model ANN_1.4 Performance 
Table  A-4 Performance Evaluation of Average Daily GSR Prediction with Vapor plus 

the Day 

Neuron    
40 21.5712 9.0876 0.9154 
45 22.0131 9.0097 0.9205 
50 22.2111 9.0594 0.9183 
55 21.2067 8.9040 0.9210 
60 19.2735 8.3836 0.9255 
65 21.0690 8.7970 0.9238 
70 19.8819 8.5529 0.9224 
75 23.8374 9.3026 0.9155 
80 20.2077 8.6643 0.9237 
85 15.4030 7.7645 0.9375 
90 19.0782 8.3730 0.9258 
95 17.5266 8.1742 0.9294 
100 18.5175 8.3191 0.9269 
110 17.6562 7.9863 0.9320 
120 17.9442 8.0803 0.9236 
130 19.2267 7.9649 0.9305 
140 20.2239 8.6488 0.9245 
150 16.8588 7.7254 0.9325 
160 18.3042 7.8810 0.9351 
170 17.2269 7.9391 0.9140 
180 19.3050 7.7664 0.9304 
190 15.8627 7.9180 0.9368 
200 18.7272 8.0274 0.9341 
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Figure  A-4 Relationship between RMSE, MAPE and r with different number of neurons 
for Model ANN_1.4 
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A.5 Model ANN_1.5 Performance 
Table  A-5 Performance Evaluation of Average Daily GSR Prediction with Pressure plus 

the Day 

Neuron    
40 29.7849 10.0770 0.9010 
45 30.1759 10.1452 0.9001 
50 28.8703 9.6945 0.9075 
55 30.5839 10.1730 0.9000 
60 29.2358 9.8618 0.9053 
65 29.6540 9.8018 0.9060 
70 28.5864 9.6188 0.9083 
75 28.2149 9.4771 0.9108 
80 28.2608 9.5419 0.9082 
85 28.3764 9.5236 0.9096 
90 27.6973 9.3290 0.9122 
95 29.3055 9.4307 0.9125 
100 27.8375 9.3548 0.9134 
110 28.2107 9.2758 0.9122 
120 27.7993 9.3604 0.9049 
130 26.1358 8.9030 0.9156 
140 26.1741 9.0101 0.9150 
150 24.4452 8.6024 0.9205 
160 23.1720 7.9816 0.9204 
170 24.5650 8.2394 0.9260 
180 25.1974 8.2943 0.9234 
190 24.1230 8.2706 0.9231 
200 24.6653 8.2921 0.9140 
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Figure  A-5 Relationship between RMSE, MAPE and r with different number of neurons 
for Model ANN_1.5 

  



71 
 

A.6 Model ANN_1.6 Performance 
Table  A-6 Performance Evaluation of Average Daily GSR Prediction with Wind-

Direction plus the Day 

Neuron    
40 34.779 10.4913 0.8938 
45 33.245 10.5159 0.8935 
50 33.739 10.5307 0.8947 
55 31.829 10.1627 0.9000 
60 30.738 10.2562 0.8980 
65 33.845 10.6935 0.8919 
70 31.366 10.181 0.9002 
75 33.145 10.2752 0.8984 
80 29.872 10.0409 0.8999 
85 30.656 10.1507 0.8986 
90 31.026 9.936 0.9014 
95 33.891 10.5778 0.8939 
100 27.179 9.3548 0.9067 
110 28.632 9.6259 0.9035 
120 29.809 9.2901 0.9109 
130 30.635 9.3617 0.8999 
140 27.203 9.0741 0.9107 
150 34.011 9.5674 0.9063 
160 27.294 8.8275 0.9124 
170 27.274 8.9895 0.9094 
185 25.179 8.3467 0.9018 
190 25.816 8.6573 0.9042 
200 30.257 9.2346 0.8821 
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Figure  A-6 Relationship between RMSE, MAPE and r with different number of neurons 
for Model ANN_1.6 
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A.7 Model ANN_1.7 Performance 
Table  A-7 Performance Evaluation of Average Daily GSR Prediction with Wind-Speed 

plus the Day 

Neuron    
40 34.7520 10.7340 0.8910 
45 32.5650 10.3339 0.8961 
50 34.3700 10.5577 0.8942 
55 32.8380 10.4033 0.8925 
60 34.1230 10.4567 0.8942 
65 32.7570 10.2357 0.8975 
70 32.5070 10.1827 0.8972 
75 33.7400 10.0425 0.8969 
80 32.3340 9.9350 0.8911 
85 31.5270 9.8924 0.9019 
90 32.2480 9.8933 0.8998 
95 32.5900 9.8188 0.8970 
100 34.0750 9.8261 0.8969 
110 31.3320 9.7481 0.8951 
120 32.8260 9.5919 0.9003 
130 31.2160 9.6989 0.9079 
140 30.5460 9.3471 0.9043 
150 29.6890 9.2785 0.9002 
159 27.340 8.1628 0.9084 
170 29.3400 8.8891 0.9047 
180 31.0820 9.6155 0.8967 
190 33.3000 9.7729 0.8895 
200 30.5940 9.3355 0.9015 
 

  



74 
 

 

Figure  A-7 Relationship between RMSE, MAPE and r with different number of neurons 
for Model ANN_1.7 
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Appendix B. GSR Performance Evaluation with Two 
Weather Variables 

B.1 Model ANN_2.1 Performance 
Table  B-1 Performance Evaluation of Average Daily GSR Prediction with Humidity and 

Cloud-Cover plus the Day 

Neuron    

40 6.0876 4.4726 0.9690 
45 5.5920 4.1714 0.9748 
50 7.4556 4.7250 0.9690 
55 5.9674 4.4774 0.9695 
60 6.2970 4.5135 0.9698 
65 6.4044 4.6091 0.9689 
70 6.8640 4.7370 0.9685 
75 7.0122 4.6573 0.9620 
80 6.6930 4.1006 0.9706 
85 4.8861 3.5358 0.9787 
90 6.2424 4.6482 0.9682 
95 5.0118 3.9514 0.9778 
100 5.0003 3.8394 0.9759 
110 5.2354 3.4717 0.9680 
120 5.8931 3.4108 0.9781 
130 6.0690 4.2502 0.9728 
140 6.0840 4.0614 0.9763 
150 5.3291 3.9857 0.9780 
159 4.0337 3.1476 0.98711 
170 5.3723 3.7670 0.9796 
180 5.9008 4.4801 0.9710 
190 5.0994 3.3726 0.9778 
200 4.3553 3.4725 0.9824 
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Figure  B-1 Relationship between RMSE, MAPE and r with different number of neurons 
for Model ANN_2.1 

 



77 
 

B.2 Model ANN_2.2 Performance  
Table  B-2 Performance Evaluation of Average Daily GSR Prediction with Temperature 

and Cloud-Cover plus the Day 

Neuron    
40 5.9493 4.2747 0.9743 
45 4.5855 3.7471 0.9811 
50 4.9865 3.9679 0.9771 
55 5.5427 3.8485 0.9800 
60 5.2187 4.0552 0.9772 
65 4.2822 3.4490 0.9837 
70 5.5962 4.2106 0.9738 
75 5.4636 4.1213 0.9755 
80 5.1339 3.9533 0.9740 
85 4.8696 3.9512 0.9792 
90 4.8140 3.8618 0.9790 
95 6.8351 4.7376 0.9635 
100 4.7403 3.8596 0.9798 
110 4.8250 3.8948 0.9787 
120 4.9330 3.9924 0.9773 
130 4.9556 4.0181 0.9764 
140 4.7987 3.7447 0.9786 
150 5.5167 3.7787 0.9801 
160 4.4427 3.6282 0.9826 
170 4.3885 3.5570 0.9849 
178 4.3336 3.4697 0.9852 
190 4.5096 3.5925 0.9760 
200 5.0139 3.5458 0.9779 
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Figure  B-2 Relationship between RMSE, MAPE and r with different number of neurons 
for Model ANN_2.2 
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B.3 Model ANN_2.3 Performance  
Table  B-3 Performance Evaluation of Average Daily GSR Prediction with Temperature 

and Humidity plus the Day 

Neuron    
40 6.6564 4.6885 0.9721 
45 6.7667 4.8844 0.9704 
50 7.1720 5.0027 0.9707 
55 5.0105 4.0550 0.9774 
60 7.0051 4.8880 0.9678 
65 4.9742 4.0010 0.9805 
70 6.5750 4.8450 0.9716 
75 4.7531 3.6568 0.9802 
80 6.2546 4.8400 0.9702 
85 6.2947 4.7550 0.9712 
90 5.6569 3.9123 0.9741 
95 5.9844 4.3647 0.9709 
100 5.8298 4.4440 0.9740 
110 5.8857 4.5474 0.9739 
120 5.7787 4.4015 0.9753 
130 5.5510 3.7878 0.9741 
140 4.9571 3.8858 0.9745 
150 5.2289 4.0272 0.9769 
160 5.8147 4.5769 0.9732 
170 5.2046 4.0330 0.9795 
180 6.4505 4.2016 0.9718 
190 5.4037 3.7016 0.9736 
200 6.1407 3.8172 0.9688 
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Figure  B-3 Relationship between RMSE, MAPE and r with different number of neurons 
for Model ANN_2.3 
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B.4 Model ANN_2.4 Performance  
Table  B-4 Performance Evaluation of Average Daily GSR Prediction with Cloud-Cover 

and Vapor plus the Day 

Neuron    
40 8.5863 5.8192 0.9535 
45 7.1557 4.9684 0.9666 
50 6.9651 5.0047 0.9692 
55 8.7412 5.8269 0.9538 
60 8.1175 5.6506 0.9573 
65 8.6536 5.3554 0.9610 
70 8.2353 5.7247 0.9546 
75 8.6536 5.3554 0.9610 
80 10.0386 5.8777 0.9543 
85 7.0864 5.1212 0.9672 
90 8.0784 5.6016 0.9591 
95 8.1477 5.7204 0.9553 
100 5.7083 4.4828 0.9748 
110 5.1025 4.1121 0.9803 
115 5.1004 3.9068 0.9801 
120 8.1294 5.6748 0.9552 
130 8.2363 5.6209 0.9573 
140 8.4685 5.7233 0.9560 
150 8.3635 5.7489 0.9552 
160 5.2173 4.0041 0.9769 
170 6.0593 4.3779 0.9786 
180 5.1450 3.8243 0.9767 
190 5.5846 3.8610 0.9719 
200 6.0365 4.7074 0.9728 
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Figure  B-4 Relationship between RMSE, MAPE and r with different number of neurons 
for Model ANN_2.4 
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Appendix C. GSR Performance Evaluation with More 
Than Two Weather Variables  

C.1 Model ANN_3.1 Performance  
Table  C-1 Performance Evaluation of Average Daily GSR Prediction with Temperature, 

Humidity, Cloud-Cover and Vapor plus the Day 

Neuron    

40 5.6287 3.9101 0.9782 
45 5.2175 3.5793 0.9817 
50 5.2951 3.6484 0.9795 
55 5.8025 3.8190 0.9802 
60 6.2202 3.9396 0.9773 
65 4.9205 3.0878 0.9818 
70 6.5664 4.2263 0.9750 
75 6.3042 3.9268 0.9776 
80 5.4828 3.5775 0.9841 
85 6.1836 4.0090 0.9794 
90 5.7491 3.8746 0.9795 
95 6.4404 4.1406 0.9767 
100 6.7194 3.1003 0.9761 
110 6.7500 4.1418 0.9770 
120 6.3426 4.0439 0.9755 
130 6.7368 4.2152 0.9768 
140 4.0943 2.7580 0.9900 
150 4.9856 3.3845 0.9837 
160 3.4764 2.2557 0.9920 
170 4.8135 2.7523 0.9876 
180 4.2650 2.7253 0.9870 
190 5.2008 3.2802 0.9845 
200 4.6799 3.0905 0.9850 
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Figure  C-1 Relationship between RMSE, MAPE and r with different number of neurons 
for Model ANN_3.1 
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C.2 Model ANN_3.2 Performance  
Table  C-2 Performance Evaluation of Average Daily GSR Prediction with Temperature, 

Humidity and Cloud-Cover plus the Day 

Neuron    
40 5.3840 3.7912 0.9764 
45 5.5154 3.9713 0.9680 
50 4.6396 3.3754 0.9814 
55 4.5186 3.4196 0.9828 
60 4.4372 3.2069 0.9852 
65 3.8191 2.9510 0.9891 
70 5.4553 3.7514 0.9769 
75 4.3403 3.2705 0.9832 
80 5.2076 3.7526 0.9776 
85 4.2964 3.0204 0.9870 
90 4.7310 3.1258 0.9828 
95 5.3308 3.7948 0.9781 
100 4.6190 3.3952 0.9829 
110 5.4226 3.8064 0.9786 
120 5.2792 3.7656 0.9792 
130 5.7536 3.8757 0.9765 
140 5.3167 3.5765 0.9816 
150 4.5958 3.0998 0.9853 
160 5.4715 3.9433 0.9745 
170 4.6555 2.9257 0.9823 
180 4.8844 2.8573 0.9879 
190 4.6862 2.7305 0.9851 
200 4.1356 3.0979 0.9871 
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Figure  C-2 Relationship between RMSE, MAPE and r with different number of neurons 
for Model ANN_3.2 
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Appendix D. Performance Evaluation of Proposed 
Model 

D.1 Sub-Model I Performance  
Table  D-1 Performance Evaluation of Average Daily GSR Prediction with Temperature 

and Humidity plus the Day 

Neuron    

40 6.6564 4.6885 0.9721 
45 6.7667 4.8844 0.9704 
50 7.1720 5.0027 0.9707 
55 5.0105 4.0550 0.9774 
60 7.0051 4.8880 0.9678 
65 4.9742 4.0010 0.9805 
70 6.5750 4.8450 0.9716 
75 4.7531 3.6568 0.9802 
80 6.2546 4.8400 0.9702 
85 6.2947 4.7550 0.9712 
90 5.6569 3.9123 0.9741 
95 5.9844 4.3647 0.9709 
100 5.8298 4.4440 0.9740 
110 5.8857 4.5474 0.9739 
120 5.7787 4.4015 0.9753 
130 5.5510 3.7878 0.9741 
140 4.9571 3.8858 0.9745 
150 5.2289 4.0272 0.9769 
160 5.8147 4.5769 0.9732 
170 5.2046 4.0330 0.9795 
180 6.4505 4.2016 0.9718 
190 5.4037 3.7016 0.9736 
200 6.1407 3.8172 0.9688 
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Figure  D-1 Relationship between RMSE, MAPE and r with different number of neurons 
for Sub-Model I. 
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D.2 Sub-Model II Performance 
Table  D-2 Performance Evaluation of Average Daily Temperature with Temperature, 

Humidity and GSR Plus the Day 

Neuron    
40 14.4094 8.8171 0.9524 
45 14.5778 8.7322 0.9583 
50 14.2513 8.6457 0.9536 
55 13.0088 7.8180 0.9562 
60 12.5411 7.4841 0.9603 
65 13.7408 8.2970 0.9559 
70 13.9054 8.4294 0.9541 
75 14.8512 8.6673 0.9582 
80 14.1081 8.3471 0.9553 
85 14.4531 8.4364 0.9570 
90 15.8519 8.8881 0.9583 
95 12.7382 7.6144 0.9596 
100 15.0809 8.7192 0.9587 
110 11.3981 6.6460 0.9492 
120 11.6036 6.5778 0.9512 
130 12.2146 7.3594 0.9559 
140 12.7587 7.1279 0.9587 
151 10.715 6.3407 0.9626 
160 12.6713 7.2430 0.9597 
170 16.2053 9.0815 0.9570 
180 16.2118 8.8874 0.9567 
190 16.6386 9.2962 0.9556 
200 15.3841 8.9339 0.9578 
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Figure  D-2 Relationship between RMSE, MAPE and r with different number of neurons 
for Sub-Model II 
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D.3 Sub-Model III Performance 
Table  D-3 Performance Evaluation of Average Daily Humidity with Temperature, 

Humidity and GSR Plus the Day 

Neuron    
40 19.7168 12.1398 0.9260 
45 20.0784 12.2881 0.9250 
50 18.8240 11.6536 0.9358 
55 20.8168 12.7585 0.9116 
60 20.8288 12.5136 0.8823 
65 21.2680 12.4275 0.8912 
70 17.9208 10.9353 0.9339 
75 19.0888 11.4853 0.9378 
80 20.7336 12.5480 0.9165 
85 17.4424 10.7503 0.9264 
90 18.7696 11.2662 0.9340 
95 19.4424 11.3288 0.9283 
100 21.8200 10.7699 0.9000 
110 19.4488 10.3625 0.9145 
120 22.1296 12.9205 0.8773 
130 20.3272 10.4948 0.9201 
135 15.0090 9.0621 0.9444 
140 16.0072 9.7435 0.9401 
150 18.7848 10.3434 0.9314 
160 19.6008 10.5858 0.9399 
170 21.1112 11.2946 0.9075 
180 21.8480 11.0830 0.9211 
190 20.9688 10.5813 0.8932 
200 20.3632 11.1242 0.9012 
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Figure  D-3 Relationship between RMSE, MAPE and r with different number of neurons 
for Sub-Model III 
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D.4 Sub-Model IV Performance 
Table  D-4 Performance Evaluation of Average Daily Humidity with Temperature, 

Humidity and GSR Plus the Day 

Neuron    
40 10.8140 8.2888 0.9084 
45 10.8234 8.3314 0.9213 
50 10.6886 7.9950 0.9263 
55 10.6035 7.7930 0.9231 
60 10.7409 7.8947 0.9301 
65 7.9714 6.5614 0.9264 
70 9.4569 7.6110 0.9140 
75 9.5401 7.2580 0.9188 
80 9.7889 6.8443 0.9178 
85 11.3784 7.2449 0.9272 
90 11.2461 7.8787 0.9088 
95 10.8392 7.1671 0.9183 
100 8.1755 6.1591 0.9207 
110 7.8416 5.8747 0.9292 
115 7.1492 6.0868 0.9389 
120 7.9078 6.1049 0.9305 
130 8.4326 6.2741 0.9211 
140 8.6379 6.7752 0.9205 
150 10.4838 5.9766 0.9290 
160 10.8896 6.7804 0.9140 
170 7.8555 6.2773 0.9148 
180 8.2366 5.8456 0.9173 
190 8.1711 6.5330 0.9234 
200 10.4769 7.9873 0.9228 
 

  



94 
 

 

Figure  D-4 Relationship between RMSE, MAPE and r with different number of neurons 
for Sub-Model IV 

 


