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Abstract

In 1990, Fröberg presented a combinatorial classification of the quadratic square-free

monomial ideals with linear resolutions. He showed that the edge ideal of a graph

has a linear resolution if and only if the complement of the graph is chordal. Since

then, a generalization of Fröberg’s theorem to higher dimensions has been sought

in order to classify all square-free monomial ideals with linear resolutions. Such

a characterization would also give a description of all square-free monomial ideals

which are Cohen-Macaulay.

In this thesis we explore one method of extending Fröberg’s result. We generalize

the idea of a chordal graph to simplicial complexes and use simplicial homology as a

bridge between this combinatorial notion and the algebraic concept of a linear resolu-

tion. We are able to give a generalization of one direction of Fröberg’s theorem and,

in investigating the converse direction, find a necessary and sufficient combinatorial

condition for a square-free monomial ideal to have a linear resolution over fields of

characteristic 2.
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Chapter 1

Introduction

One common method of understanding monomial ideals in a polynomial ring is to

study their minimal free resolutions. A minimal free resolution of the monomial

ideal I in R = k[x1, . . . , xn] is an exact sequence of maps between R-modules

0 → Fm → Fm−1 → · · · → F1 → F0 → I → 0

where Fi is a free R-module for all i and m ≤ n. The resolution is called minimal

because in each map, a basis of Fi is mapped onto a minimal generating set for

the kernel of the following map. Such a resolution is unique and the ranks of the

Fi’s, called Betti numbers, provide information about the relationship between the

generators of the ideal, and also about the relations between these relationships and

so on. When the maps between the Fi’s in these resolutions are representable with

matrices whose non-zero entries are linear forms, the ideal is said to have a linear

resolution.

To determine the monomial ideals which have linear resolutions it is enough to

study square-free monomial ideals. Any monomial ideal can be turned into a square-

free monomial ideal via a process called polarization (Herzog and Hibi [21, Section

1.6]). This process transforms a monomial ideal I which is not square-free into a

square-free monomial ideal in a larger polynomial ring that has additional variables

which replace those that appear more than once within a generator of I. The resulting

square-free monomial ideal will have a linear resolution only when I has a linear

resolution (Herzog and Hibi [21, Corollary 1.6.3]).

One advantage to studying square-free monomial ideals is that they can easily be

associated to combinatorial objects and examined from a combinatorial perspective.

There are two standard methods of associating a simplicial complex to a square-free

monomial ideal I in the polynomial ring R = k[x1, . . . , xn]. The Stanley-Reisner

complex of I is the simplicial complex whose vertex set is {x1, . . . , xn} and whose

1



2

faces correspond to the square-free monomials of R not belonging to I. The ideal

I is the Stanley-Reisner ideal of this complex. We can also define the facet

complex of I to be the simplicial complex on the vertex set {x1, . . . , xn} whose

facets correspond to the unique minimal generators of I. We say that I is the facet

ideal of this complex.

When a square-free monomial ideal is generated in degree 2, it can be thought

of as the facet ideal of a 1-dimensional simplicial complex or as the edge ideal of a

graph. In this case the graph has vertices given by the variables in the polynomial

ring and the edges of the graph correspond to the minimal monomial generators of the

ideal. In 1990, Fröberg gave a combinatorial classification of the square-free monomial

ideals generated in degree 2 which have linear resolutions over any field in terms of

chordal graphs. A chordal graph is one in which every cycle of length greater than

three has a chord. The complement of a graph G is a graph on the same set of

vertices as G but whose edges correspond to the missing edges in G. In [16], Fröberg

proved the following result.

Theorem 1.0.1 (Fröberg [16]). The edge ideal of a graph G has a linear resolution

if and only if the complement of G is chordal.

One of the most interesting things about this theorem is that it provides a strong

link between two well-known mathematical properties which originate from different

mathematical disciplines and are each studied in their own right. The definition of

a chordal graph is easy to understand. It is a simple geometric idea and Fröberg’s

theorem allows us to use it to describe an algebraic property which, at least on the

surface, appears much more complicated.

The arrival of Fröberg’s result inspired a new line of research. Since the intro-

duction of his theorem there have been several attempts to generalize it in order to

characterize all square-free monomial ideals having linear resolutions using a combi-

natorial property of an associated hypergraph or simplicial complex. Unfortunately,

although possible in the 1-dimensional case, it is too much to expect that the prop-

erty of having a linear resolution can be described purely through a combinatorial

feature of an associated combinatorial structure. The existence of such a resolution

often depends on the field over which the polynomial ring is defined and since the
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combinatorial structure is independent of the field, the combinatorics is not enough

to determine whether or not such a linear resolution exists. The Stanley-Reisner ideal

of a triangulation of the real projective plane is a typical example. This ideal has a

linear resolution only when the characteristic of the field of the polynomial ring is not

equal to 2. Therefore it is clear that the characteristic of the field in question also

has a role to play in such a classification. However, it is not unreasonable to expect

that such a complete combinatorial characterization may exist for ideals having linear

resolutions over all fields.

Finding a higher-dimensional version of Fröberg’s result is inherently more diffi-

cult than the 1-dimensional case for two simple reasons. First, there is the issue of

orientability of the combinatorial structures which plays no role in the 1-dimensional

situation (see Proposition 3.2.11). Even in the 2-dimensional case this is a problem,

as illustrated by the triangulation of the real projective plane mentioned above, which

is non-orientable. In addition, there are many different ways in which two higher-

dimensional faces can intersect. This is in contrast to the graph case where there is

essentially only one way that two edges may intersect. Thus an examination of the

combinatorial objects associated to our monomial ideals is much more involved.

The general method to finding a generalization of Fröberg’s theorem has been

to extend the definition of a chordal graph to higher dimensions. There are several

different, but equivalent, ways to define the class of chordal graphs. A complete

graph is a graph having all possible edges. In [7], Dirac shows that all chordal graphs

can be constructed by successively joining complete graphs together by identifying

them along complete subgraphs. Conversely, all graphs constructed in this way are

chordal. In [12], Emtander extends this idea to higher dimensions based on ideas of

Hà and Van Tuyl presented in [18] and introduces the class of generalized chordal

hypergraphs. He uses the idea of a d-complete hypergraph, whose hyperedges

are all possible subsets of the vertex set of size d, to give a constructive definition based

on Dirac’s inductive framework. Emtander provides a generalization of one direction

of Fröberg’s theorem to higher dimensions by showing that the ideals associated to

his generalized chordal hypergraphs have linear resolutions over all fields.

Another way to define a chordal graph is by requiring all induced subcomplexes of
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the graph to contain a simplicial vertex, which is a vertex with the property that

all of its adjacent vertices are adjacent to each other. In [39], Woodroofe extends the

notion of a simplicial vertex to hypergraphs. He calls a vertex v in a hypergraph sim-

plicial if for any two hyperedges containing v there is a third hyperedge contained in

their union which excludes v. Woodroofe defines a chordal hypergraph to be one

in which all minors, which are subhypergraphs that result from deleting or contract-

ing vertices, contain a simplicial vertex. Woodroofe also generalizes one direction of

Fröberg’s theorem by showing that the “hyperedge ideals” of the complements of his

chordal hypergraphs have linear resolutions over all fields.

Unfortunately there are hyperedge ideals which have linear resolutions over all

fields, but for which the associated hypergraph has a complement which is not chordal

in either the sense of Emtander or Woodroofe. See Section 4.3 in Chapter 4 for an

example. Therefore there do not exist complete generalizations of Fröberg’s result

using either of these definitions of chordal hypergraphs.

In this thesis, the approach taken to extending Fröberg’s result is strongly moti-

vated by Fr̈oberg’s own method. Although Fröberg’s theorem is now more commonly

stated in terms of edge ideals, his theorem was originally presented using Stanley-

Reisner ideals. In the following theorem, ∆(G) is the clique complex of the graph

G. The clique complex of G is the simplicial complex that lies on the same vertex set

as G and whose faces are given by the sets of vertices that correspond to complete

subgraphs of G. By Γ[1] we mean the 1-skeleton of the simplicial complex Γ.

Theorem 1.0.2 (Fröberg [16]). If a graph G is chordal, then the Stanley-Reisner ideal

of ∆(G) has a linear resolution over any field. Conversely, if the Stanley-Reisner ideal

of a simplicial complex Γ is generated in degree 2 and has a linear resolution over some

field, then Γ = ∆(Γ[1]) and Γ[1] is chordal.

The equivalence of Theorems 1.0.1 and 1.0.2 is straightforward to prove by showing

that the edge ideal of the complement of a graph is equal to the Stanley-Reisner ideal

of its clique complex. The proof of Theorem 1.0.2 relies completely on the following

theorem proved by Fröberg in [15] which gives a homological classification of the

square-free monomial ideals which have linear resolutions.
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Theorem 1.0.3 (Fröberg [15]). A square-free monomial ideal I generated in degree

d has a linear resolution over a field k if and only if for every induced subcomplex Γ

of the Stanley-Reisner complex of I we have H̃i(Γ; k) = 0 for i 6= d− 2.

What is most interesting about this connection is that Theorem 1.0.3 is a purely

homological characterization of linear resolutions whereas Theorem 1.0.2 is wholly

combinatorial in nature. Furthermore, although Theorem 1.0.3 places homological

conditions of all dimensions on the Stanley-Reisner complex and its induced subcom-

plexes, Theorem 1.0.2 requires only a simple condition on the 1-skeleton of the whole

complex. The translation between these two frameworks is entirely reliant on the fact

that a graph cycle, the structure at the heart of chordal graphs, is exactly the right

notion to capture the idea of 1-dimensional simplicial homology. This fact and the

intricate relationship between chordal graphs and their clique complexes, which forces

all higher-dimensional homology to disappear also, makes Fröberg’s proof possible.

We discuss this in more detail in Chapter 4.

In this thesis, we attempt to generalize Fröberg’s theorem by uncovering the com-

binatorial structures central to higher-dimensional simplicial homology. The idea is

to extend the notion of chordal graphs to higher dimensions using these particular

structures as higher-level “cycles”. A higher-dimensional version of the clique com-

plex is used to replicate the relationship between the Stanley-Reisner complex of the

ideal and its 1-skeleton that we see in Fröberg’s result.

As mentioned previously, the property of having a linear resolution is highly field-

dependent. For this reason we focus much of our studies on the characteristic 2 case

specifically. For these fields, we are more easily able to establish a link between the

combinatorics of our complexes and their simplicial homology. This is due to the

fact that we may reduce our studies to the Z2 case by appealing to the Universal

Coefficient Theorem and that, over this field, the algebraic coefficients of homological

structures play a lesser role. We also examine the ways in which our results can be

generalized to the case of an arbitrary field, by including notions such as orientability.

This thesis is organized in the following way. In Chapter 2 we review definitions

and notation that we will use throughout the thesis. In Chapter 3 we introduce a

higher-dimensional notion of a graph cycle, the d-dimensional cycle. We study its
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combinatorial structure and discuss its homological properties over various fields. In

particular, we are able to prove the following theorem which identifies the specific

combinatorial properties in a simplicial complex which lead to non-zero homology

over fields of characteristic 2.

Theorem 1.0.4. Let Γ be a simplicial complex and let k be a field of characteristic

2. Then H̃d(Γ; k) 6= 0 if and only if Γ contains a d-dimensional cycle, the sum of

whose d-faces is not a d-boundary.

In Chapter 4 we generalize the definition of chordal graphs to pure simplicial

complexes in two different ways with the notions of orientably-d-cycle-complete

complexes and d-chorded complexes which both rely heavily on the concept of

a d-dimensional cycle. We provide a necessary condition for a square-free monomial

ideal to have a linear resolution over any field, which generalizes one direction of

Fröberg’s theorem, and we give a stronger necessary condition in the case that the

resolution is over a field of characteristic 2. In the following theorem the notation Γ[d]

refers to the pure d-skeleton of the complex Γ and ∆d(Γ
[d]) is the d-closure of Γ[d]

which is a generalization of the idea of the clique complex to higher dimensions.

Theorem 1.0.5. Let Γ be a simplicial complex, let k be a field and let d ≥ 1. If the

Stanley-Reisner ideal of Γ is generated in degree d+1 and has a linear resolution over

k then Γ = ∆d(Γ
[d]) and

1. Γ[d] is orientably-d-cycle-complete

2. Γ[d] is d-chorded if k has characteristic 2.

After investigating the counterexamples to the converse of Theorem 1.0.5 part

2, we are able to provide a necessary and sufficient combinatorial condition for a

square-free monomial ideal to have a linear resolution over fields of characteristic 2

using the notion of a chorded simplicial complex. This is a generalization to non-pure

complexes of the idea of a d-chorded complex.

Theorem 1.0.6. Let k be a field of characteristic 2 and let I be a square-free mono-

mial ideal in k[x1, . . . , xn] that is minimally generated in a fixed degree. Then I has

a linear resolution if and only if its Stanley-Reisner complex is chorded.
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In Chapter 5 we look more closely at a class of complexes arising from coun-

terexamples to the converse of Theorem 1.0.5 part 2. These simplicial complexes

have minimal non-faces which partition their vertex sets. We call these simplicial

complexes vertex-partition complexes and we show that they have a simple ho-

mological structure.

Theorem 1.0.7. Let Γ be a vertex-partition complex. Then Γ is a simplicial sphere

and any induced subcomplex of Γ is either a simplicial sphere or is contractible.

By exploiting the well-behaved structure of vertex-partition complexes, we are

able to give simple formulas for computing the Betti numbers and other invariants of

the Stanley-Reisner ideals of the entire class.

Finally, in Chapter 6 we discuss a few possible applications of the results of this

thesis and related lines of research.



Chapter 2

Background

In this chapter we will review basic terminology, notation and concepts that will be

used in later chapters. The approach that we will use to try and develop a general-

ization of Fröberg’s theorem draws from many different areas of mathematics. We

include here basic introductions to simplicial complexes and homology, graph theory,

Stanley-Reisner theory and monomial resolutions. For more detailed expositions on

these topics we refer the reader to books by Munkres for simplicial complexes and

homology [28], West for graph theory [38], Bruns and Herzog for Stanley-Reisner

theory [4], and Peeva for monomial resolutions [30].

2.1 Simplicial Complexes

An (abstract) simplicial complex Γ on the finite vertex set V is a set of subsets of

V such that for any F ∈ Γ if G ⊆ F then G ∈ Γ. The elements of V are vertices of Γ

and the elements of Γ are called faces or simplices of Γ. Faces of Γ that are maximal

with respect to inclusion are called facets of Γ and we use the notation Facets(Γ) for

this set of faces. We denote the vertex set of Γ by V (Γ). If Facets(Γ) = {F1, . . . , Fk}

then we write

Γ = 〈F1, . . . , Fk〉.

A simplicial complex with a single facet is called a simplex. If F is a face of Γ then

the dimension of F , denoted by dimF , is equal to |F | − 1 while the dimension of Γ

itself is

dimΓ = max{dimF : F ∈ Γ}.

By convention, the face ∅ has dimension −1. The simplicial complex {∅} is called the

empty complex and we have dim{∅} = −1. The void complex {} has no faces

and by convention dim{} = −∞.

8
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A face of the simplicial complex Γ of dimension d is called a d-face or a d-simplex.

If all facets of Γ have the same dimension then Γ is said to be pure. The f-vector

of a simplicial complex Γ is the vector f(Γ) = (f−1(Γ), f0(Γ), . . . , fdimΓ(Γ)) where

fi(Γ) is the number of faces of dimension i in Γ. The empty face is the only face of

dimension −1 and so we have f−1(Γ) = 1 unless Γ is the void complex in which case

f−1(Γ) = 0.

Often simplicial complexes are used as models for more complicated topological

spaces. A set of points x1, . . . , xn in Rd is affinely independent if, for λ1, . . . , λn ∈ R,
∑n

i=1 λixi = 0 and
∑n

i=1 λi = 0 imply that λi = 0 for all 1 ≤ i ≤ n. Let Γ be a

simplicial complex with |V (Γ)| = n and choose an embedding of the n vertices of Γ

in Rn−1 that is affinely independent. To each face of Γ we associate the geometric

simplex that is spanned by the corresponding vertices in Rn−1 and denote the union of

these simplices by |Γ|. We call the topological space |Γ| the geometric realization

of Γ. Conversely, given a topological space X , a triangulation of X is a simplicial

complex whose geometric realization is homeomorphic to X . In Figure 2.1 we give an

example of the geometric realization of a simplicial complex which is the triangulation

of a 2-dimensional sphere. Throughout this thesis, we will implicity use the idea of a

geometric realization to give visual representations of our simplicial complexes.

d

a

b

c

Figure 2.1: Geometric realization of Γ = 〈{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}〉.

The d-complement of a pure d-dimensional simplicial complex Γ, denoted Γd, is

the simplicial complex on V (Γ) whose facets are the (d+ 1)-subsets of V (Γ) that are

not faces of Γ. An example is given in Figure 2.2.

The pure d-skeleton of a simplicial complex Γ, denoted Γ[d], is the simplicial

complex on the same vertex set as Γ whose facets are the d-faces of Γ. A subcomplex

of Γ is any simplicial complex whose set of facets is a subset of the faces of Γ. Given
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c

d

a

b

(a) Γ = 〈{a, b, c}, {a, c, d}〉

c

d

a

b

(b) Γ2 = 〈{a, b, d}, {b, c, d}〉

Figure 2.2: The 2-complement of a pure 2-dimensional simplicial complex.

any W ⊆ V (Γ) the induced subcomplex of Γ on the vertex set W is the

simplicial complex

ΓW = {F ∈ Γ|F ⊆ W}.

See Figure 2.3 for an example of an induced subcomplex.

c

d

f

e

g b

a

(a) The complex Γ

cf

g

a

(b) The complex Γ{a,c,f,g}

Figure 2.3: The induced subcomplex of Γ on {a, c, f, g}.

A simplicial complex Γ is said to be d-complete if all possible subsets of V (Γ)

of size d+ 1 are faces of Γ. Note that if Γ is d-complete then it is d′-complete for all

d′ ≤ d. The d-dimensional d-complete complex on n vertices is denoted Λd
n. Notice

that Λd
n is the pure d-skeleton of the simplex on n vertices.

The join of the simplicial complexes Γ and ∆ with V (Γ) ∩ V (∆) = ∅ is the

simplicial complex denoted Γ ∗∆ on the vertex set V (Γ) ∪ V (∆) such that

Γ ∗∆ = {F ∪G | F ∈ Γ, G ∈ ∆}.

Note that dim(Γ ∗ ∆) = dimΓ + dim∆ + 1 and that the join operation is both

commutative and associative (Kozlov [26, page 12]).

In Figure 2.4 we give an example of the join of two simplicial complexes.
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x1

x0 x2

x3

(a) Two 1-faces

x1

x0 x2

x3

(b) 〈{x0, x1}〉 ∗ 〈{x2, x3}〉

Figure 2.4: The join of two 1-faces results in a solid tetrahedron.

A special case of the join operation is when one of the complexes is a single vertex.

The join of a simplicial complex Γ with a single vertex v is called the cone over Γ

with vertex v and is written Γ∗v. In Figure 2.5 we give an example of the cone over

a simplicial complex. Notice that, in this instance, the resulting complex is actually

conical in shape.

v

(a) The 1-dimensional complex Γ and
the vertex v

v

(b) Γ ∗ v

Figure 2.5: The cone over a complex Γ with the vertex v.

A facet F of a simplicial complex Γ is a leaf of Γ if either F is the only facet in

Γ or if there exists some facet G in Γ with G 6= F such that for any other facet H in

Γ we have H ∩ F ⊆ G (Faridi [13]). In graph theory, a leaf is a vertex that is only

contained in one edge, also known as a free vertex. In contrast, a leaf in a simplicial

complex is a generalization of a graph edge that contains a leaf since, for algebraic

purposes, it matters how the facet containing the free vertex connects to the rest

of the simplicial complex. A nonempty simplicial complex Γ is a simplicial cycle

if Γ has no leaves, but every subcomplex of Γ whose facets are a nonempty proper

subset of Facets(Γ) has a leaf (Caboara et al. [5]). See Figure 2.6 for an example of

a simplicial cycle.

To any d-face F in a simplicial complex we can assign an ordering to its vertices.
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Figure 2.6: A simplicial cycle.

Two orderings are said to be equivalent if one is an even permutation of the other.

Thus, when dimF > 0, there are only two equivalence classes of orderings on F . These

equivalence classes are called orientations of F . By an oriented d-face we mean

a d-face with a choice of one of these two orientations. Given the vertices v0, . . . , vd

we use the notation [v0, . . . , vd] to denote the oriented d-face on v0, . . . , vd with the

choice of orientation given by the equivalence class of the ordering v0 < · · · < vd. In

other words, [v0, . . . , vd] represents the entire equivalence class. We will also need the

concept of an induced orientation of a subface in the simplicial complex.

Definition 2.1.1 (induced orientation). Given an oriented d-face [v0, . . . , vd] in a

simplicial complex, the induced orientation of any (d− 1)-subface of [v0, . . . , vd] is

given by the following procedure, where v0 is considered to be in an even position:

• if the vertex removed to obtain the (d − 1)-face was in an even position of the

ordering then the orientation of the (d − 1)-face is given by the ordering of its

vertices in the d-face

• if the vertex removed to obtain the (d − 1)-face was in an odd position of the

ordering then the orientation of the (d−1)-face is given by any odd permutation

of the ordering of the vertices in the d-face

Example 2.1.2. Let Γ be a simplicial complex and let [a, b, c, d, e] be an oriented

4-face in Γ. The induced orientation of the 3-face {a, b, d, e} is given by a < b < d < e

and the induced orientation of the 3-face {a, c, d, e} is given by a < c < e < d.

Notice that a (d − 1)-face which belongs to more than one oriented d-face in a

simplicial complex will have an induced orientation corresponding to each oriented

d-face to which it belongs. These induced orientations may be non-equivalent.
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2.2 Simplicial Topology

An R-module F is free if there exists a set of elements y1, . . . , ym of F called a basis

such that for any non-zero element x of F there exist unique elements r1, . . . , rn of R

such that x = r1y1 + · · ·+ rmym. When R is commutative all bases of a free module

have the same cardinality (Rotman [33, Proposition 7.50]). In this case F ∼= Rm and

F is said to have dimension or rank m.

Let A be a commutative ring with identity. We define Cd(Γ) to be the free A-

module whose basis is the oriented d-faces of Γ with the relations [v0, v1, . . . , vd] =

−[v1, v0, . . . , vd] for each oriented d-face [v0, v1, . . . , vd]. The elements of Cd(Γ) are

called d-chains.

There is a boundary map homomorphism ∂d from the space of d-chains to the

space of (d− 1)-chains that is defined by setting

∂d([v0, . . . , vd]) =

d
∑

i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vd]

for each oriented d-face [v0, . . . , vd] and extending to Cd(Γ) by linearity. Notice that

the map ∂d is consistent with Definition 2.1.1 in the sense that ∂d maps an oriented

d-face to the sum of the induced orientations of its (d − 1)-faces. It is easy to show

that ∂d∂d+1 = 0 for all d. Thus this sequence of homomorphisms forms the oriented

chain complex of Γ

· · · −→ Cn+1(Γ)
∂n+1

−→ Cn(Γ)
∂n−→ Cn−1(Γ) −→ · · · −→ C1(Γ)

∂1−→ C0(Γ)
∂0−→ 0.

The kernel of the map ∂d is called the group of d-cycles and the image of ∂d is called

the group of (d−1)-boundaries. Since ∂d∂d+1 = 0 for all d, the group of d-boundaries

is contained in the group of d-cycles. The dth simplicial homology group of Γ

over A is equal to the quotient of the group of d-cycles over the group of d-boundaries

and is denoted Hd(Γ;A). Roughly speaking, a non-zero element of Hd(Γ;A) indicates

the presence of a “d-dimensional hole” in the simplicial complex. One can show that

the dimension of H0(Γ;A) corresponds to the number of connected components of

the simplicial complex.

Example 2.2.1. Consider the 2-dimensional simplicial complex Γ illustrated in Fig-

ure 2.7 where vertices with the same label are identified. This simplicial complex is
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a triangulation of a torus. We will compute the simplicial homology groups of Γ over

Z. We can see that

dimC2(Γ) = 18, dimC1(Γ) = 27, and dimC0(Γ) = 9

by counting the number of 0, 1, and 2-faces. The map ∂2 is represented by a 27× 18

matrix, ∂1 by a 9 × 27 matrix, and ∂0 by a 1 × 9 matrix. By row-reducing these

matrices we can compute that

dim ker ∂2 = 1, dim ker ∂1 = 19, and dimker ∂0 = 9.

Because im ∂i ∼= Ci(Γ)/ ker ∂i we see that

dim im ∂2 = 17, dim im ∂1 = 8, and dim im ∂0 = 0.

Therefore, since Hi(Γ;Z) = ker ∂i/ im ∂i+1, we have

H2(Γ;Z) = Z, H1(Γ;Z) = Z⊕Z, and H0(Γ;Z) = Z .

c

h i

e
b c

dd

gg

ba a

a a
f

Figure 2.7: A triangulated torus.

We can also set C−1(Γ) = A since Γ has exactly one face of dimension −1, the

empty face. We can then redefine the homomorphism ∂0 by setting ∂0 : C0(Γ) →

C−1(Γ) where ∂0(v) = 1 for each v ∈ V (Γ). In this way we obtain the augmented

oriented chain complex of Γ

· · · −→ Cn+1(Γ)
∂n+1

−→ Cn(Γ) −→ · · · −→ C1(Γ)
∂1−→ C0(Γ)

∂0−→ C−1(Γ)
∂−1

−→ 0.

We denote the homology groups of this complex by H̃i(Γ;A) and we clearly have that

H̃i(Γ;A) = Hi(Γ;A) for i > 0. We also have

H̃0(Γ;A) = ker ∂0/ im ∂1
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and

H̃−1(Γ;A) = ker ∂−1/ im ∂0.

It is the case that dim H̃0(Γ;A) = dimH0(Γ;A)−1. The group H̃i(Γ;A) is called the

reduced homology group of Γ over A in dimension i.

Remark. For the void complex we have H̃i({};A) = 0 for all i whereas for the empty

complex we have H̃−1({∅};A) = A and H̃i({∅};A) = 0 for i 6= −1.

A simplicial complex Γ is called acyclic over A if H̃i(Γ;A) = 0 for all i. It is

well-known that a simplicial complex is acyclic over Z if and only if it is acyclic over

all fields (Björner [3, page 1853]).

Throughout the thesis we will make use of the following fact, which is a conse-

quence of the Universal Coefficient Theorem for homology and basic properties of the

tensor product.

Lemma 2.2.2. Let k be a field of characteristic 2 and let Γ be a simplicial complex.

Then

dimk H̃i(Γ; k) = dimZ2
H̃i(Γ;Z2)

for all 0 ≤ i ≤ dimΓ.

Proof. By the Universal Coefficient Theorem given in [22, Theorem 2.5, page 176] we

know that H̃i(Γ;Z2)⊗Z2
k ∼= H̃i(Γ; k) since TorZ2

1 (H̃i−1(Γ;Z2), k) = 0, because k is a

Z2-vector space and hence is flat.

Furthermore, by [8, Corollary 18, page 373],

dimk(H̃i(Γ;Z2)⊗Z2
k) = dimZ2

H̃i(Γ;Z2).

Therefore

dimk H̃i(Γ; k) = dimZ2
H̃i(Γ;Z2).

A simplicial complex Γ is contractible if its geometric realization is homotopy

equivalent to the topological space having a single point. A simplex is the easiest

example of a contractible simplicial complex. It is a consequence of the definition
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that contractible simplicial complexes are acyclic over Z and therefore over all fields.

Also it is not difficult to show that the cone of a simplicial complex, introduced in

Section 2.1, is contractible (Rotman [32, Theorem 1.11]).

A d-dimensional simplicial complex Γ is called a simplicial sphere if its geo-

metric realization is homeomorphic to a d-dimensional sphere. See Figure 2.1 for an

example. A simplicial sphere is pure and has non-zero reduced homology only in

its top dimension (Munkres [28, page 230]). As discussed in (Hatcher [19, page 9]),

the d-dimensional sphere is homeomorphic to the geometric realization of the join of

d+1 two-point complexes. Since the join operation is associative, the following result

follows immediately.

Proposition 2.2.3. The join of an n-dimensional simplicial sphere with an m-

dimensional simplicial sphere is an (n+m+ 1)-dimensional simplicial sphere.

2.3 Graph Theory

A finite simple graph G consists of a finite nonempty set of vertices denoted V (G)

and a set of edges denoted E(G) where the elements of E(G) are unordered pairs

from V (G). In this thesis we will use the term graph to refer to a finite simple graph.

A subgraph H of the graphG is a graph with V (H) ⊆ V (G) and E(H) ⊆ E(G). The

induced subgraph of G on the set S ⊆ V (G) is the subgraph GS with V (GS) = S

and E(GS) = {e ∈ E(G) | e ⊆ S}.

A 1-dimensional simplicial complex can be thought of as a graph where the edges

are given by the 1-faces of the simplicial complex. The opposite is also true and we

will make use of this relationship throughout the thesis.

Two vertices u and v in a graph G are adjacent if {u, v} is an edge of G. The

degree of a vertex v is the number of vertices to which v is adjacent.

The complete graph on n vertices, denoted Kn, is the graph whose edges are

all possible pairs of these n vertices. A complete graph corresponds to a 1-complete

1-dimensional simplicial complex. See Figure 2.8 for an example of a complete graph.

A path in a graph G is a sequence of vertices v0, . . . , vn from V (G) such that

{vi−1, vi} ∈ E(G) for 1 ≤ i ≤ n. A connected graph is a graph in which every pair

of vertices is connected by a path.
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Figure 2.8: The complete graph on five vertices, K5.

A cycle in a graph G is an ordered list of distinct vertices v0, . . . , vn from V (G)

where {vi−1, vi} ∈ E(G) for 1 ≤ i ≤ n and {vn, v0} ∈ E(G). The length of a cycle is

its number of vertices. In Figure 2.9 we give an example of a graph cycle of length

six.

v0

v1

v2

v4

v3

v5

Figure 2.9: Graph cycle on six vertices.

In Chapter 3, we will make use of the following well-known lemma from graph

theory. A proof can be found in (West [38, Section 1.2]).

Lemma 2.3.1. If G is a graph in which every vertex has degree at least 2 then G

contains a cycle.

A graph G is called chordal if all cycles in G of length greater than three have

a chord, which is an edge between non-adjacent vertices of the cycle. In Figure 2.10

we give an example of a graph that is chordal and one that is not.

A graph G has a perfect elimination ordering if there is an ordering of its

vertices so that for each vertex v of G, the vertices adjacent to v that occur after v in

the ordering form a complete subgraph of G. It is well-known that a graph is chordal

exactly when it has a perfect elimination ordering (see West [38, Section 5.3] for a

proof).

Lemma 2.3.2. A graph is chordal if and only if it has a perfect elimination ordering.
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(a) A non-chordal graph (b) A chordal graph

Figure 2.10: Examples of a non-chordal and a chordal graph.

The complement of a graph G, denoted G, is the graph on the same vertex set

as G but whose edges are exactly those 2-sets that are not edges of G. When the

graph is thought of as a 1-dimensional simplicial complex, the graph complement is

equivalent to the 1-complement. See Figure 2.11 for an example of a graph and its

complement.

x1 x2 x1 x2

x3x4x3x4

Figure 2.11: A graph and its complement.

Given a graph G we can obtain a simplicial complex ∆(G), called the clique

complex of G, by taking the sets of vertices of complete subgraphs of G as the faces

of ∆(G). Figure 2.12 gives an example of a graph and its associated clique complex.

e

d

a

b

c

(a) The graph G

e

d

a

b

c

(b) ∆(G) = 〈{a, b, c}, {b, c, d, e}〉

Figure 2.12: A graph and its clique complex.
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2.4 Stanley-Reisner Ideals and Facet Ideals

Let k be a field and let R = k[x1, . . . , xn] be the polynomial ring over k in n variables.

Recall that a monomial in R is a product of variables of the form xa1
1 · · ·xan

n where

ai ∈ N for all 1 ≤ i ≤ n. The support of the monomial xa1
1 · · ·xan

n is the set

{xi | ai 6= 0}. The degree of the monomial xa1
1 · · ·xan

n is equal to
∑n

i=1 ai. A

monomial ideal is an ideal of R generated by monomials. Such an ideal is always

finitely generated since R is Noetherian. We say that a monomial ideal I is generated

in degree d if the monomial generators of I which are minimal in terms of divisibility

all have degree d. A square-free monomial is a monomial xa1
1 · · ·xan

n with 0 ≤ ai ≤ 1

for 1 ≤ i ≤ n. A square-free monomial ideal of R is an ideal of R whose unique

minimal generators are all square-free monomials.

To any simplicial complex Γ on the vertex set {x1, . . . , xn} we can associate, in

two different ways, a square-free monomial ideal in the polynomial ring R. Given a

subset F = {xi1 , xi2, . . . , xi`} of V (Γ) we define xF to be the square-free monomial

xi1xi2 · · ·xi` in R. The facet ideal of Γ (or the edge ideal if Γ is 1-dimensional and

we think of it as a graph) is the ideal

F(Γ) =
(

{xF | F ∈ Facets(Γ)}
)

.

The facet complex of the square-free monomial ideal I is the complex F(I) whose

facets are given by the minimal monomial generators of I. The Stanley-Reisner

ideal of Γ is the ideal

N (Γ) =
(

{xF | F /∈ Γ}
)

.

In other words, N (Γ) is minimally generated by the minimal non-faces of Γ which

are the minimal subsets of V (Γ) which are not faces of Γ. The Stanley-Reisner

ring of Γ is the ring k[Γ] = R/N (Γ). The Stanley-Reisner complex of the square-

free monomial ideal I is the complex N (I) whose faces are given by the square-free

monomials not in I. See Figure 2.13 for examples of these relationships.

Notice that, for a fixed set of vertices, N (I) and F(I) are uniquely determined

by the ideal I and, similarly N (Γ) and F(Γ) are uniquely determined by Γ.
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x 1
x 4

x 2

x 3

J = (          ,       ,        )
SR ideal

SR complexfacet complex

facet ideal
I = (      ,          )x2 x3x1 x4x2 x4x3

x4x1 x2x3 x4

Figure 2.13: Relationship between simplicial complexes and ideals.

2.5 Graded Free Resolutions

For a commutative monoid H , an H-graded ring is a ring R with a direct sum

decomposition as abelian groups

R =
⊕

a∈H

Ra

satisfying RaRb ⊆ Ra+b for all a, b ∈ H . A module M over an H-graded ring R having

a direct sum decomposition

M =
⊕

a∈H

Ma

that satisfies RaMb ⊆ Ma+b for all a, b ∈ H is an H-graded module. An element m

in M is homogeneous of degree a if m ∈ Ma for some a ∈ H .

For example, the polynomial ring R = k[x1, . . . , xn] over the field k is an N-graded

ring. We have

R =
⊕

a∈N

Ra

where Ra is the set of all polynomials of R whose terms are monomials of degree a

with coefficients in k. This grading is referred to as the standard grading on R.

A module homomorphism ϕ between H-graded modules M and N is homoge-

neous if we have ϕ(Ma) ⊆ Na for all a ∈ H .

A sequence of homomorphisms

· · · −→ Xn−1
αn−1

−→ Xn
αn−→ Xn+1 −→ · · ·

between the R-modules Xi is said to be exact if imαi−1 = kerαi for all i.

Definition 2.5.1 (minimal graded free resolution). A graded free resolution

of the graded R-module M is an exact sequence of R-modules

· · · −→ Fm
δm−→ Fm−1 −→ · · · −→ F1

δ1−→ F0
δ0−→ M −→ 0
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where each Fi is a graded free R-module with grading such that the maps δi are

homogeneous. This resolution is said to be minimal if, for each i, the map δi sends

a basis of Fi to a minimal homogeneous generating set for im δi.

A minimal graded free resolution of the graded R-module M provides structural

information about the module. Since each Fi is a free R-module we know that Fi
∼=

Rβi(M) for some βi(M) ∈ N \ {0}. The rank, β0(M), of the free module F0 tells us

the size of a minimal generating set of M . The rank of F1 gives the size of a minimal

generating set for ker δ0. This provides information about the number of relations

that exist between the generators of M . Similarly the rank of F2 tells us about the

relations between these relations and so on. If R is a field then M is a vector space

and we obtain the simplest resolution possible where the only non-zero map is δ0 since

no relations exist between the generators of M .

When R = k[x1, . . . , xn] for some field k, a minimal graded free resolution of a

Z-graded R-module M is unique up to isomorphism (Eisenbud [10, Theorem 1.6]).

Each free module Fi in such a resolution can be written

Fi =
⊕

j

R(−j)βi,j(M)

where R(−j) denotes the Z-graded module isomorphic to R but with R(−j)a = Ra−j

so that the degrees of R are shifted by j. This shift ensures that the maps in the

resolution are homogeneous. Since R(−j)j = R0 we have that R(−j) is generated

as a free R-module by one element of degree j. The numbers βi,j(M) are called the

graded Betti numbers of M and they are uniquely determined by the module M

due to the uniqueness of the resolution. The rank, βi(M), of Fi is called the ith total

Betti number of M and we have the relation

βi(M) =
∑

j

βi,j(M).

In this thesis we are interested in resolutions of monomial ideals in R. The mono-

mial ideal I is N-graded by Id = I ∩ Rd and has a minimal graded free resolution of

the form

0 →
⊕

j

R(−j)βm,j(I) →
⊕

j

R(−j)βm−1,j(I) → · · · →
⊕

j

R(−j)β0,j(I) → I → 0
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where m ≤ n by (Eisenbud, [10, Theorem 1.1]).

Example 2.5.2. Let R = k[x, y] and let I = (x3, xy). A minimal graded free

resolution of I is given by

0 → R(−4)









−y

x2









−−−−−−→ R(−3)⊕R(−2)

(

x3 xy
)

−−−−−−−−→ I → 0.

The first non-zero map takes an element r of R(−4) and maps it to the element

(−ry, rx2) in R(−3)⊕R(−2). The second map takes the element (r1, r2) of R(−3)⊕

R(−2) to the element r1x
3+r2xy in I. In this example we have β0,2(I) = 1, β0,3(I) = 1,

and β1,4(I) = 1 with the remaining graded Betti numbers all equal to zero.

There are certain invariants associated with a minimal graded free resolution of

the monomial ideal I. The projective dimension of I is

pd(I) := max{i | βi,j(I) 6= 0}.

The Castelnuovo-Mumford regularity of the ideal I is

reg(I) := max{j − i | βi,j(I) 6= 0}.

In Example 2.5.2 we see that pd(I) = 1 and reg(I) = 3.

Remark 2.5.3. There is a bijective correspondence between minimal graded free

resolutions of the R-module I and the R-module R/I. In particular

· · · → Fm → Fm−1 → · · · → F1 → R → R/I → 0

is a minimal graded free resolution of R/I if and only if

· · · → Fm → Fm−1 → · · · → F1 → I → 0

is a minimal graded free resolution of I. Therefore we have

βi,j(I) = βi+1,j(R/I).
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In 1977, Hochster gave a formula for the Betti numbers of the Stanley-Reisner

ideal of a simplicial complex Γ in terms of the dimensions of the homology groups of

Γ and its induced subcomplexes.

Theorem 2.5.4 (Hochster [23]). For a simplicial complex Γ, the graded Betti numbers

of the Stanley-Reisner ideal N (Γ) are given by

βi,j(N (Γ)) =
∑

W⊆V, |W |=j

dimk H̃j−i−2(ΓW ; k)

where i ≥ 0.

A monomial ideal I in R = k[x1, . . . , xn] has a d-linear resolution over k if

βi,j(I) = 0 for all j 6= i+ d. In this case, the resolution has the following simple form:

0 −→ R(−d−m)βm,d+m(I) δm−→ · · · −→ R(−d−1)β1,d+1(I) δ1−→ R(−d)β0,d(I) δ0−→ I −→ 0

We say that I has a linear resolution if it has a d-linear resolution for some d. In

a linear resolution, the non-zero entries in the matrices corresponding to all maps in

the resolution between the graded free R-modules are all linear forms in the variables

x1, . . . , xn.

Remark 2.5.5. It is not hard to see that if a monomial ideal I has a d-linear resolu-

tion then it is generated in degree d. This is because the basis elements of R(−d)β0,d(I)

have degree d and the map δ0 is homogeneous. Therefore the basis elements of

R(−d)β0,d(I) get mapped to elements of degree d in I. Since the resolution is minimal,

these elements form a minimal generating set for im δ0 = I.

Example 2.5.6. Let R = k[x, y, z] and I = (xy, yz). The following is a 2-linear

resolution of I over k.

0 → R(−3)









z

−x









−−−−−−→ R(−2)2

(

xy yz
)

−−−−−−−−→ I → 0.

We have β0,2(I) = 2 and β1,3(I) = 1 and the remaining graded Betti numbers are all

equal to zero.
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It is known that classifying monomial ideals with linear resolutions is equivalent

to classifying monomial ideals whose quotients are Cohen-Macaulay rings (Eagon and

Reiner [9]). This is a particularly nice class of commutative rings whose structure

generalizes that of polynomial rings. When characterizing monomial ideals with linear

resolutions it is sufficient to consider only square-free monomial ideals. This is due

to the technique of polarization whereby a monomial ideal I is transformed into a

square-free monomial ideal I ′ in a polynomial ring in a larger number of variables. In

particular, generators of I having variables which appear more than once are replaced

in I ′ by generators containing new variables in lieu of repeated ones. The ideal I has

a linear resolution if and only if I ′ has a linear resolution (Herzog and Hibi [21,

Corollary 1.6.3]). This transformation makes it possible to study any monomial ideal

from a combinatorial perspective by examining a simplicial complex associated to its

polarization.

For square-free monomial ideals whose generators are not all of the same degree,

there exists an analogous property to having a linear resolution. A square-free mono-

mial ideal I is called componentwise linear over the field k if I[d] has a linear

resolution over k for all d, where I[d] is the ideal generated by the square-free mono-

mials in I of degree d (Herzog and Hibi [20]).



Chapter 3

The Structure of d-Dimensional Cycles and the Vanishing of

Simplicial Homology

As discussed in Chapter 1, Fröberg classifies the monomial ideals with linear resolu-

tions through the simplicial homology of their Stanley-Reisner complexes and their

induced subcomplexes in [15]. Nevertheless a simplicial complex may be thought

of as a purely combinatorial object and so the question arises as to whether or not

one may attribute the existence of non-zero homology in a simplicial complex to a

combinatorial structure present in that complex. This is an interesting mathematical

question in its own right, but at the same time its possible solution has the potential

to enable easier translation between algebraic properties of monomial ideals and the

combinatorial framework. In this thesis we are interested in translating Fröberg’s

homological characterization from [15] into a purely combinatorial one.

Despite the substantial use of simplicial homology in classifying algebraic proper-

ties and the concrete combinatorial nature of the theory, there appears to be very little

literature on the explicit combinatorial structures necessary for a simplicial complex

to exhibit non-zero simplicial homology. However, studies have been made into the

combinatorics of acyclic simplicial complexes – those for which simplicial homology

vanishes in all dimensions. In [25], Kalai gave a characterization of the f -vectors of

such simplicial complexes. This was followed by work of Stanley in [34] on a combina-

torial decomposition of these complexes. On the other hand, the literature relating to

the combinatorial structures associated with non-zero simplicial homology is scant. In

[14], Fogelsanger studied the “rigidity” of the 1-skeletons of the underlying complexes

of minimal homological d-cycles and concluded that these 1-skeletons are rigid graphs

when embedded in Rd+1. However, the question remains as to whether or not one

may describe non-zero homology in a simplicial complex with a purely combinatorial

structure. In this chapter we answer this question fully over fields of characteristic 2.

25
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In addition we describe a combinatorial structure which results in non-zero homology

over all fields.

3.1 Motivation

We would like to turn the vanishing of simplicial homology into an explicitly combi-

natorial property and relate the concept of non-zero homology in a simplicial complex

to the existence of precise combinatorial patterns in the complex which are distinct

from the more algebraic notion of a d-cycle.

It is not difficult to show that this goal is achievable for non-zero simplicial homol-

ogy in dimension 1. In this case, the combinatorial structure associated to non-zero

homology is the graph cycle. This can be deduced from Biggs [2, Chapters 4 and 5],

but in this section we provide an explicit proof of this relationship as motivation for

the general case. The techniques used in this proof also illustrate our overall approach

to this problem.

The support complex of a homological d-chain is the simplicial complex whose

facets are the d-faces in the d-chain with non-zero coefficients.

Theorem 3.1.1 (Non-zero 1-dimensional homology corresponds to graph

cycles). For any simplicial complex Γ and any field k, H̃1(Γ; k) 6= 0 if and only if Γ

contains a graph cycle, which is not the support complex of a 1-boundary.

Proof. Suppose that H̃1(Γ; k) 6= 0. Then Γ contains a 1-cycle c that is not a 1-

boundary. We may assume that the support complex Ω of c is minimal with respect

to this property. In other words, no proper subset of the 1-faces of c is the support

complex of a 1-cycle which is not a 1-boundary. First we would like to show that Ω

is a connected graph.

The 1-cycle c is of the form

c = α1F1 + · · ·+ αnFn (3.1)

for some oriented 1-faces F1, . . . , Fn of Γ and where αi ∈ k. If Ω is not connected then

we can partition the 1-faces F1, . . . , Fn into two sets having no vertices in common.

Without loss of generality let these two sets be {F1, . . . , F`} and {F`+1, . . . , Fn}. Since

∂1(c) = ∂1(α1F1 + · · ·+ αnFn) = 0
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and since there are no vertices shared between the two sets we must have

∂1(α1F1 + · · ·+ α`F`) = 0 and ∂1(α`+1F`+1 + · · ·+ αnFn) = 0

and so α1F1+· · ·+α`F` and α`+1F`+1+· · ·+αnFn are both 1-cycles. By the assumption

of minimality of Ω we know that these 1-cycles must also be 1-boundaries. However,

since c is the sum of these two 1-chains and they are both 1-boundaries, c must be

a 1-boundary as well, which is a contradiction. Therefore Ω must be a connected

graph.

Next, note that the degree of all vertices in Ω must be at least two. This follows

since ∂1(c) = 0 and this may only be achieved if all vertices present cancel out in this

sum. Therefore each vertex must appear at least twice. Hence by Lemma 2.3.1 we

know that Ω contains a graph cycle. Let v1, . . . , vm be the vertices in this cycle where

vi is adjacent to vi+1 for 1 ≤ i ≤ m − 1 and vm is adjacent to v1. By relabeling if

necessary we may assume that F1, . . . , Fm are the oriented 1-faces corresponding to

the edges in this cycle with Fi = εi[vi, vi+1] for 1 ≤ i ≤ m − 1 and Fm = εm[vm, v1]

where εi = ±1 depending on the orientation of Fi. Suppose that m < n. We have

ε1F1 + . . .+ εmFm =
m−1
∑

i=1

[vi, vi+1] + [vm, v1]

is a 1-chain and it is straightforward to see that

∂1(ε1F1 + . . .+ εmFm) = 0.

Let b = α1ε1(ε1F1 + · · ·+ εmFm). Then

∂1(b) = α1ε1∂1(ε1F1 + . . .+ εmFm) = 0

and so b is a 1-cycle. We also have

∂1(c− b) = ∂1(c)− ∂1(b) = 0− 0 = 0

and so c− b is also a 1-cycle. Now m < n and so by our assumption of minimality of

Ω we know that b is a 1-boundary. Since

c−b = (α2−α1ε1ε2)F2+(α3−α1ε1ε3)F3+· · · (αm−α1ε1εm)Fm+αm+1Fm+1+· · ·+αnFn,
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it is supported on a proper subset of the 1-faces of Ω and so, by the assumption

of minimality, c − b is a 1-boundary also. Therefore, since both b and c − b are 1-

boundaries and c = b+ (c− b) then c is a 1-boundary. This is a contradiction and so

we must have m = n. Therefore Ω itself is a graph cycle.

Next we will show that Ω is not the support complex of a 1-boundary. First we

show that for any 1-cycle of the form

d = β1F1 + · · ·+ βnFn

for non-zero β1, . . . , βn ∈ k we have β1ε1 = · · · = βnεn with εi defined as before.

Recall that Fi = εi[vi, vi+1] for 1 ≤ i ≤ n− 1 and Fn = εn[vn, v1]. Since d is a 1-cycle

we have

0 = ∂1(d) = β1ε1(v2 − v1) + β2ε2(v3 − v2) + · · ·+ βnεn(v1 − vn). (3.2)

Therefore we have

β1ε1 = β2ε2 = · · · = βnεn

as each vertex appears exactly twice in (3.2). Since the βi’s are arbitrary we also have

α1ε1 = α2ε2 = · · · = αnεn.

Suppose that we have the 1-cycle

e = γ1F1 + · · ·+ γnFn

where γ1, . . . , γn ∈ k and suppose that e is also a 1-boundary of a 2-chain f . For any

1 ≤ j ≤ n we have

γj

(

α1

γ1

)

=

(

ε1
εj

)

α1 = αj .

since γ1ε1 = γjεj and α1ε1 = αjεj. Hence we have

(

α1

γ1

)

e = c

and so since e is the 1-boundary of f , c is the 1-boundary of
(

α1

γ1

)

f . This is a

contradiction and so Ω is a graph cycle which is not the support complex of a 1-

boundary.



29

Conversely, suppose that Γ contains a graph cycle Ω, which is not the support

complex of a 1-boundary. Let v1, . . . , vk be the vertices of Ω where vi is adjacent to

vi+1 for 1 ≤ i ≤ k − 1 and vk is adjacent to v1. Then

c =

k−1
∑

i=1

[vi, vi+1] + [vk, v1]

is a 1-chain whose support complex is Ω and it is easy to see that ∂1(c) = 0. Therefore

c is a 1-cycle, and by assumption it is not a 1-boundary. Therefore H̃1(Γ; k) 6= 0.

3.2 The d-Dimensional Cycle and its Structure

The role of the graph cycle in graph theory is substantial. The existence, frequency,

and lengths of cycles in a graph play important roles in many different areas of graph

theory such as connectivity, perfect graphs, graph colouring, and extremal graph

theory. In recent years, with the introduction of edge ideals of graphs by Villarreal

in [36], the influence of the graph cycle has extended into combinatorial commutative

algebra.

As we saw in Section 3.1, the graph cycle, when thought of as a simplicial complex,

is exactly the right structure to describe non-zero homology in dimension 1. It is

this specific property which is at the heart of Fröberg’s result. With the goal of

extending Fröberg’s classification to simplicial complexes we would like to capture

the idea of non-zero higher-dimensional simplicial homology by generalizing the idea

of a graph cycle to higher dimensions. In the past, versions of the graph cycle with

higher-dimensional faces such as the Berge cycle (Berge [1]) and the simplicial cycle

(Caboara et al. [5]) have been introduced to extend the usefulness of graph cycles to

hypergraphs or simplicial complexes. In contrast to the higher-dimensional cycle that

we will introduce in this section, these cycles in general only generate 1-dimensional

simplicial homology.

When we examine the support complexes of “minimal” homological d-cycles we

see that such complexes must be connected in a particularly strong way. We will use

the following definitions.



30

Definition 3.2.1 (d-path, d-path-connected, d-path-connected components).

A sequence F1, . . . , Fk of d-dimensional faces in a simplicial complex Γ is a d-path

between F1 and Fk if either k = 1 or |Fi∩Fi+1| = d for all 1 ≤ i ≤ k−1. If Γ is a pure

d-dimensional simplicial complex and there exists a d-path between each pair of its

d-faces or |Facets(Γ)| = 1 then Γ is d-path-connected. The maximal subcomplexes

of Γ which are d-path-connected are called the d-path-connected components of

Γ.

In Figure 3.1a we give an example of a 2-path between the 2-faces F1 and F2.

Figure 3.1b shows a pure 2-dimensional simplicial complex with two 2-path-connected

components shown by different levels of shading. Notice that the existence of a d-

path between two d-faces in a simplicial complex Γ is an equivalence relation on the

d-faces of Γ. The d-path-connected components of Γ correspond to these equivalence

classes. A d-path-connected simplicial complex is sometimes referred to as strongly

connected (see, for example, [3]). Note that this is not a generalization of the idea

in graph theory of a strongly connected directed graph.

F1

F2
(a) A 2-path between F1 and F2 (b) 2-path-connected components

Figure 3.1: Examples for path-connected complexes.

A graph cycle is characterized by two features. It is connected and each of its

vertices is of degree two. By generalizing these two properties we arrive at our com-

binatorial definition of a higher-dimensional cycle.

Definition 3.2.2 (d-dimensional cycle). A pure d-dimensional simplicial complex

Ω is a d-dimensional cycle if

1. Ω is d-path-connected, and

2. every (d− 1)-face of Ω is contained in an even number of d-faces of Ω.
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Notice that a graph cycle is a 1-dimensional cycle, but a 1-dimensional cycle

need not be a graph cycle. See Figure 3.2 for an example. This difference is due

Figure 3.2: A 1-dimensional cycle which is not a graph cycle.

to the second property in Definition 3.2.2 which requires (d − 1)-faces to belong to

an even number of d-faces rather than exactly two as in the graph cycle case. This

modification is motivated by the goal of describing the combinatorial structures that

correspond to non-zero simplicial homology over fields of characteristic 2 as we will

see in Section 3.3. A d-dimensional cycle does generalize the notion of a circuit from

graph theory, which is a sequence of vertices and edges v0, e1, v1, e2, v2, . . . , en, vn where

ei = {vi−1, vi} for 1 ≤ i ≤ n, v0 = vn and the edges e1, . . . , en are all distinct. One

can show that in a circuit each vertex belongs to an even number of edges.

Notice that a d-dimensional cycle by definition has only one d-path-connected

component. We will see in Proposition 3.2.12 that a d-dimensional cycle must contain

at least d+ 2 facets.

Examples of 2-dimensional cycles are given in Figure 3.3.

One of the properties of a d-dimensional cycle is that it contains (d−1)-dimensional

cycles as subcomplexes. As an example, in Figure 3.4 we have a 2-dimensional cycle

containing a 1-dimensional cycle within the 2-faces containing the vertex v. The

1-dimensional cycle is shown with dotted lines.

Proposition 3.2.3 (All d-dimensional cycles contain (d− 1)-dimensional cy-

cles). Let Ω be a d-dimensional cycle and let v ∈ V (Ω). If F1, . . . , Fk are the d-faces

of Ω containing v then the (d− 1)-path-connected components of the complex

〈F1 \ {v}, . . . , Fk \ {v}〉

are (d− 1)-dimensional cycles.
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(a) A hollow tetrahedron

x

y

x

y

(b) A triangulation of the sphere pinched along
a 1-face

(c) A triangulation of the sphere (d) A triangulation of the torus

(e) Two hollow tetrahedra glued along a 1-face

a

a

b

bc

c

f

ed

(f) A triangulation of the real projective plane

Figure 3.3: Examples of 2-dimensional cycles.

v

Figure 3.4: A 2-dimensional cycle containing a 1-dimensional cycle.

Proof. Let Ωv = 〈F1 \ {v}, . . . , Fk \ {v}〉 and let Ω′
v be a (d − 1)-path-connected

component of Ωv with (d − 1)-faces Fi1 \ {v}, . . . , Fi` \ {v}. To show that Ω′
v is a

(d−1)-dimensional cycle we need only show that each of its (d−2)-faces is contained

in an even number of the faces Fi1 \ {v}, . . . , Fi` \ {v}. Let f be a (d− 2)-face of Ω′
v.

Note that, for 1 ≤ r ≤ `, f is a (d − 2)-face of Fir \ {v} if and only if f ∪ {v} is a
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(d − 1)-face of Fir . The face f ∪ {v} belongs to an even number of the d-faces in Ω

since Ω is a d-dimensional cycle. Since these faces all contain v, they belong to the set

{F1, . . . , Fk} and thus f ∪ {v} belongs to an even number of the d-faces F1, . . . , Fk.

Note that, after removing v from these d-faces, they are (d−1)-path-connected in Ωv

since they all contain f . Hence, with v removed, these faces all lie in Ω′
v and so f is

contained in an even number of the faces Fi1 \ {v}, . . . , Fi` \ {v}. Therefore Ω′
v is a

(d− 1)-dimensional cycle.

In contrast to Proposition 3.2.3 it is also possible to create higher-dimensional

cycles from lower-dimensional ones under certain homological conditions over Z2 by

using the cone operation. We will see this in Proposition 3.3.2.

The notion of a d-dimensional cycle extends the classical concept of a pseudo

d-manifold that appears in algebraic topology. For example see (Munkres, [28]).

Definition 3.2.4 (pseudo d-manifold). A pure d-dimensional d-path-connected

simplicial complex Γ is a pseudo d-manifold if every (d− 1)-face of Γ is contained

in exactly two d-faces of Γ.

It is not difficult to see that the 2-dimensional cycles in Figures 3.3a, 3.3c, 3.3d,

and 3.3f are all examples of pseudo 2-manifolds. The simplicial complexes in Figures

3.3b and 3.3e are not pseudo 2-manifolds as they each have 1-faces belonging to more

than two 2-faces.

We would like to be able to describe a simplicial complex which “minimally”

generates homology in a particular dimension in the sense that no proper subcomplex

also generates homology. One can easily show that the 2-dimensional cycle given in

Figure 3.3e does not satisfy this property. With this in mind, we introduce notions

of minimality into the idea of a d-dimensional cycle.

Definition 3.2.5 (face-minimal d-dimensional cycle). A d-dimensional cycle Γ

is face-minimal when there are no d-dimensional cycles on a proper subset of the

d-faces of Γ.

One can easily show that a 1-dimensional cycle is a graph cycle if and only if it is

face-minimal.
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Definition 3.2.6 (vertex-minimal d-dimensional cycle). A d-dimensional cycle

Ω in a simplicial complex Γ is called vertex-minimal if there is no d-dimensional

cycle in Γ on a proper subset of the vertices of Ω. In other words, for all W ( V (Ω),

the induced subcomplex ΓW does not contain a d-dimensional cycle.

The 2-dimensional cycles in Figure 3.3 are all face-minimal and vertex-minimal

except for the complex in Figure 3.3e. This 2-dimensional cycle can be thought of

as the boundaries of two 3-simplices glued along a 1-face. This cycle is neither face-

minimal nor vertex-minimal because each of the two boundaries is also a 2-dimensional

cycle which consists of a proper subset of the 2-faces and vertices from the original

cycle.

Remark 3.2.7. Notice that the face-minimality of a d-dimensional cycle Ω is not af-

fected by whether or not it sits inside a larger simplicial complex. On the other hand,

a d-dimensional cycle can be vertex-minimal when considered as a stand-alone sim-

plicial complex, but not vertex-minimal when considered as a subcomplex of another

simplicial complex. As an example consider the simplicial complex in Figure 3.5.

This complex consists of an “outer” triangulated sphere and an “inner” triangulated

sphere that is suspended inside the first sphere from a proper subset of its vertices.

The outer sphere is not vertex-minimal in this complex as there exists another 2-

dimensional cycle, the inner sphere, on a proper subset of its vertices. However, when

considered as a simplicial complex on its own, the outer sphere is a vertex-minimal

2-dimensional cycle.

Figure 3.5: Triangulated sphere with suspended hollow tetrahedron.

Next we show that any d-dimensional cycle can be broken down into face-minimal

cycles. For an illustration of the idea used in the proof of the following lemma see
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Figure 3.6. The simplicial complex Ω in this figure is a 2-dimensional cycle that

consists of four hollow tetrahedra that are glued in a “chain” along shared 1-faces.

The 2-faces in these four face-minimal 2-dimensional cycles form a partition of the

2-faces of Ω.

Figure 3.6: Example of a 2-dimensional cycle Ω from the proof of Lemma 3.2.8 with
Φ1 shown in dark grey and Ω1 in light grey.

Lemma 3.2.8 (A d-dimensional cycle can be partitioned into face-minimal

cycles). Any d-dimensional cycle Ω can be written as a union of face-minimal d-

dimensional cycles Φ1, . . . ,Φn such that every d-face of Ω belongs to some Φi and

such that Φi and Φj have no d-faces in common when i 6= j.

Proof. If Ω is a face-minimal d-dimensional cycle then we are done. So suppose that

Ω is not face-minimal and let Φ1 be a face-minimal d-dimensional cycle on a proper

subset of the d-faces of Ω. Consider the d-path-connected components of the complex

Ω1 whose facets are the d-faces of Ω not belonging to Φ1. We claim that each such

component is a d-dimensional cycle. Since each component is d-path-connected by

definition, we need only show that each (d− 1)-face in the component is contained in

an even number of its d-faces.

Let Ψ be one of the d-path-connected components of Ω1 and let f be a (d−1)-face

of Ψ. Suppose first that f also belongs to one of the d-faces of Φ1. Since Φ1 is a

d-dimensional cycle f belongs to an even number of its d-faces. However Ω is also a

d-dimensional cycle and f belongs to an even number of its d-faces. Since Ω1 is the

complex whose facets are the d-faces of Ω not in Φ1, f belongs to an even number

of d-faces in Ω1. However the collection of all d-faces of Ω1 containing f is clearly

d-path-connected and so these d-faces all lie in Ψ. Hence f belongs to an even number

of d-faces of Ψ.
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If f does not belong to any d-faces of Φ1 then all of the d-faces of Ω which contain f

lie in Ω1. Since there are an even number of such faces and they are d-path-connected

they all lie in Ψ. Hence f belongs to an even number of d-faces of Ψ. Therefore each

d-path-connected component of Ω1 is a d-dimensional cycle.

Each of these components is either a face-minimal d-dimensional cycle, or contains

a face-minimal d-dimensional cycle on a proper subset of its d-faces. We may repeat

the argument above on the simplicial complex whose facets are the d-faces of Ω1 be-

longing to the components that are not face-minimal cycles. Iterating this procedure

we see that, since we have a finite number of d-faces, eventually the procedure must

terminate. We are left with face-minimal cycles Φ1, . . . ,Φn in which every d-face of Ω

belongs to some Φi and, by our construction, no two distinct cycles Φi and Φj share

a d-face.

Proposition 3.2.9. A pseudo d-manifold is a face-minimal d-dimensional cycle.

Proof. Let Ω be a pseudo d-manifold. Then Ω is d-path connected and every (d− 1)-

face in Ω belongs to exactly two d-faces. Hence Ω is a d-dimensional cycle. Suppose

that Ω is not face-minimal. By Lemma 3.2.8 we can partition Ω into face-minimal d-

dimensional cycles Φ1, . . . ,Φn where n ≥ 2. Since Ω is d-path connected by definition,

the d-faces in the distinct d-dimensional cycles Φ1, . . . ,Φn are all joined by d-paths.

In particular, there must exist (d− 1)-faces which appear in more than one of these

cycles. Therefore there exists some pair of indices i, j with i 6= j with F1 ∈ Φi and

F2 ∈ Φj where F1 ∩ F2 = f for some (d− 1)-face f of Ω. Since Φi is a d-dimensional

cycle, f belongs to an even number of d-faces of Φi and similarly f belongs to an

even number of d-faces of Φj . By Lemma 3.2.8, these d-faces are all distinct which

means that f belongs to at least four d-faces of Ω. This is a contradiction since Ω is

a pseudo d-manifold. Hence Ω is a face-minimal d-dimensional cycle.

The converse of this theorem does not hold. The simplicial complex in Figure

3.3b, a triangulated sphere pinched along a 1-dimensional face, is a counterexample.

It is a face-minimal 2-dimensional cycle, but it is not a pseudo 2-manifold as it has a

1-dimensional face, {x, y}, belonging to four distinct 2-dimensional faces.

A pseudo d-manifold can be classified as either orientable or non-orientable

and this idea can be generalized to the case of d-dimensional cycles.
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Definition 3.2.10 (orientable d-dimensional cycle). Let Ω be a d-dimensional

cycle. If it is possible to choose orientations of the d-faces of Ω such that for any (d−1)-

face of Ω its induced orientations are divided equally between the two orientation

classes then we say that Ω is orientable. Otherwise Ω is non-orientable.

Note that when we talk about the oriented d-faces of an orientable d-dimensional

cycle we are referring to any set of orientations that is consistent with Definition

3.2.10.

As mentioned previously, many of the combinatorial complexities that exist in

higher dimensions are not present in the 1-dimensional case. Non-orientable cycles

are an example of this.

Proposition 3.2.11. Any 1-dimensional cycle is orientable.

Proof. Let Ω be a 1-dimensional cycle. If Ω is face-minimal then it is a graph cycle. It

is straightforward to see that any graph cycle is orientable by choosing a “direction”

in which to traverse the cycle and orienting each face in a way that is consistent with

this direction.

If Ω is not face-minimal then by Lemma 3.2.8 we can partition the 1-faces of Ω

into face-minimal 1-dimensional cycles Φ1, . . . ,Φn where n ≥ 2. For each 1 ≤ i ≤ n,

Φi is orientable. Let v be any vertex of Ω. Then v belongs to some subset of the

cycles Φ1, . . . ,Φn. In each such cycle there are two induced orientations of v and they

are opposite to each other. Thus overall the induced orientations of v in Ω are divided

equally between the two orientation classes. Therefore Ω is orientable.

One can show that all 2-dimensional cycles given in Figures 3.3a to 3.3e are

examples of orientable 2-dimensional cycles. In contrast, it is not possible to choose

orientations of the 2-faces of the triangulation of the real projective plane given in

Figure 3.3f which are consistent with Definition 3.2.10. Thus this simplicial complex

is a non-orientable 2-dimensional cycle.

Within the class of d-dimensional d-complete complexes there are particularly

simple examples of orientable d-dimensional cycles. In fact, these are the smallest

examples of d-dimensional cycles.
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Proposition 3.2.12 (The smallest d-dimensional cycle is a complete one).

The smallest number of vertices that a d-dimensional cycle can have is d+ 2 and the

only d-dimensional cycle on d+ 2 vertices is the d-complete simplicial complex Λd
d+2.

In addition, Λd
d+2 is orientable.

Proof. It is clear that any d-dimensional cycle must have at least d+ 2 vertices since

a single d-face contains d + 1 vertices. It is easy to see that any two d-faces of Λd
d+2

have d vertices in common and so are connected by a d-path. Also, each set of d

vertices in Λd
d+2 belongs to exactly two d-faces. Hence Λd

d+2 is a d-dimensional cycle.

Conversely, let Ω be any d-dimensional cycle on d + 2 vertices. There are only

d + 2 possible d-faces on a set of d + 2 vertices and so in order to show that Ω is

d-complete we must show that it has d + 2 distinct d-faces. Let F be any d-face of

Ω and let f be one of its (d − 1)-faces. We know that f must belong to at least one

other d-face of Ω since it is a d-dimensional cycle. There is only one vertex v of Ω not

already contained in F and so f ∪ {v} must be a d-face of Ω. Since F contains d+ 1

of these distinct (d− 1)-faces which all must lie in another d-face of Ω this gives rise

to d+1 distinct d-faces of Ω which all contain v. Therefore Ω contains d+2 distinct

d-faces including F . Hence Ω is d-complete and so Ω = Λd
d+2.

We would like to show that Λd
d+2 is orientable. Each (d− 1)-face of Λd

d+2 belongs

to just two d-faces and so we need to ensure that there is a way to orient the d-faces

of Λd
d+2 so that the orientations induced on each (d − 1)-face are opposite to each

other.

We propose assigning orientations to the d-faces in the following way. Suppose

that v1, . . . , vd+2 are the vertices of Λd
d+2. Let the orientation of each d-face be the

induced orientation that results from thinking of the d-face as a subface of the oriented

simplex [v1, . . . , vd+2].

Let f be any (d− 1)-face of Λd
d+2. We know that f belongs to exactly two d-faces

of Λd
d+2 which we will call F and G. Since Λd

d+2 has d + 2 vertices then we have

V (Λd
d+2) \ f = {vs, vt} for some 1 ≤ s < t ≤ d + 2 where, without loss of generality,

we have vs ∈ F and vt ∈ G. Since s < t we know that vs appears before vt in the

ordering above. The ordering induced on f by F is achieved by first removing vt from

[v1, . . . , vd+2] to induce an ordering on F and then removing vs to induce an ordering
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on f , applying odd permutations where necessary. The ordering induced on f by G

is achieved by first removing vs from [v1, . . . , vd+2] to induce an ordering on G and

then removing vt to induce an ordering on f , again applying odd permutations where

necessary. Note that the removal of vt does not change whether or not vs is in an

even or odd position in the ordering since it appears before vt. However removing vs

before vt causes vt to move either from an even position to an odd one or from an odd

one to an even one. Consequently, the orientation of f induced by F is necessarily

an odd permutation of the orientation induced by G. Therefore the two orientations

of f are opposite. Hence Λd
d+2 is an orientable d-dimensional cycle.

Example 3.2.13. The hollow tetrahedron Λ2
4 is shown in Figure 3.3a. It is the

boundary of a 3-simplex and by Proposition 3.2.12 it is the 2-dimensional cycle on

the smallest number of vertices.

We can specialize the concepts of face-minimality and vertex-minimality to the

case of orientable cycles in the following way.

Definition 3.2.14 (orientably-face-minimal). An orientable d-dimensional cycle

is called orientably-face-minimal if there is no orientable d-dimensional cycle on a

proper subset of its d-faces.

Definition 3.2.15 (orientably-vertex-minimal). An orientable d-dimensional cy-

cle in a simplicial complex Γ is called orientably-vertex-minimal if there is no

orientable d-dimensional cycle in Γ on a proper subset of its vertices.

It is easy to see that an orientable d-dimensional cycle can be orientably-vertex-

minimal without being vertex-minimal. It is also possible to have an orientable d-

dimensional cycle which is orientably-face-minimal, but which is not face-minimal.

The 2-dimensional cycle given in Figure 3.7a is an example of such a cycle. This sim-

plicial complex is the result of gluing the two triangulated Klein bottles given in Figure

3.7b along a circle. It can be shown by careful examination that the entire complex

is an orientable 2-dimensional cycle and that there are only two other 2-dimensional

cycles on proper subsets of its 2-faces. It turns out that these 2-dimensional cycles,

which correspond to the two triangulations of the Klein bottle, are non-orientable.
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Figure 3.7: Orientably-face-minimal 2-dimensional cycle which is not face-minimal.

3.3 A Combinatorial Condition for Non-zero Homology over Fields of

Characteristic 2

In this section we will show that a d-dimensional cycle is the right combinatorial

structure to describe the idea of non-zero d-dimensional homology over a field of

characteristic 2. We begin by investigating the relationship between the combinatorial

structure of a simplicial complex and its simplicial homology over Z2. In this field

the role played by the coefficients in a d-chain is reduced to indicating whether or

not a face is present. As well, since −1 = 1 over Z2, the concept of an orientation

of a face is unnecessary as all orientations of a face are equivalent. This allows us

to more easily examine the connections between the combinatorics of the simplicial

complex and the algebraic concepts of the d-cycle and the d-boundary. In fact, over

Z2, we lose no information when we translate between the d-chain
∑m

i=1 Fi and the
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support complex 〈F1, . . . , Fm〉. This makes the field Z2 an ideal setting to investigate

the correspondence between complexes which generate non-zero simplicial homology

and their combinatorial properties.

The following proposition demonstrates the relationship between d-dimensional

cycles and homological d-cycles over Z2.

Proposition 3.3.1 (All d-dimensional cycles are homological d-cycles and

conversely). The sum of the d-faces of a d-dimensional cycle is a homological d-cycle

over Z2 and the d-path-connected components of the support complex of a homological

d-cycle are d-dimensional cycles.

Proof. Let Ω be a d-dimensional cycle with d-faces F1, . . . , Fm. Setting c =
∑m

i=1 Fi

and applying the boundary map ∂d over Z2 we have

∂d(c) =

m
∑

i=1

(ei1 + · · ·+ eid+1)

where ei1, . . . , e
i
d+1 are the d + 1 edges of dimension d − 1 belonging to Fi. Since the

faces F1, . . . , Fm form a d-dimensional cycle each (d− 1)-dimensional face appears in

an even number of the faces F1, . . . , Fm. Hence, since our coefficients belong to Z2,

we have ∂d(c) = 0 and so c is a d-cycle.

Conversely, let c = F1 + · · · + Fm be a d-cycle over Z2. Applying the boundary

map ∂d we have

0 = ∂d(F1 + · · ·+ Fm) =

m
∑

i=1

(ei1 + · · ·+ eid+1)

where ei1, . . . , e
i
d+1 are the d + 1 faces of dimension d − 1 belonging to Fi. If the

support complex of c is not d-path-connected then we can partition this complex into

d-path-connected components Φ1, . . . ,Φn where n ≥ 2. Let Pi ⊆ {1, . . . , m} be such

that Fj ∈ Φi if and only if j ∈ Pi. Note that P1, . . . , Pn form a partition of {1, . . . , m}.

Since Φ1, . . . ,Φn have no (d− 1)-faces in common, for each 1 ≤ i ≤ n we must have

∑

j∈Pi

(ej1 + · · ·+ ejd+1) = 0

and so, since our sum is over Z2, we see that each (d−1)-face occurring in Φi belongs

to an even number of the d-faces in {Fj|j ∈ Pi}. Therefore Φi is a d-dimensional
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cycle and hence the d-path-connected components of the support complex of c all

form d-dimensional cycles.

Using Proposition 3.3.1 we can construct a (d + 1)-dimensional cycle from a d-

dimensional cycle when certain homological requirements are satisfied in the complex.

For an illustration of the construction used in the proof of the following proposition

see Figure 3.8.

e

a

b

d c

(a) The 1-dimensional cycle Ω

a

d c

vbe

(b) Ω as the support complex
of the 1-boundary of [a, b, d] +
[b, c, d] + [a, d, e] and the vertex v

a

d c

vbe

(c) The 2-dimensional cycle Φ
with facets {a, b, v}, {a, e, v},
{b, c, v}, {c, d, v}, {d, e, v},
{a, b, d}, {b, c, d}, {a, d, e}

Figure 3.8: Example of construction in Proposition 3.3.2.

Proposition 3.3.2 (A cone over a d-dimensional cycle which is a d-boundary

is a (d + 1)-dimensional cycle). Let Ω = 〈F1, . . . , Fk〉 be a d-dimensional cycle

contained in a simplicial complex Γ. Suppose that there exist (d+1)-faces A1, . . . , A`

in ΓV (Ω) such that, over Z2, we have

∂d+1

(

∑̀

i=1

Ai

)

=

k
∑

j=1

Fj (3.3)

and for no proper subset of {A1, . . . , A`} does (3.3) hold. If v ∈ V (Γ) \ V (Ω) then

Φ = 〈F1 ∪ {v}, . . . , Fk ∪ {v}, A1, . . . , A`〉
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is a (d+ 1)-dimensional cycle.

Proof. We will first show that each d-face of Φ is contained in an even number of the

(d+ 1)-faces of Φ. Let f be any d-face of Φ. We have three cases to consider:

(i) First suppose that v ∈ f . In this case, f is not contained in any of the Ai’s and

so f is a subset of Fj ∪{v} for some j. So we have f \{v} ⊆ Fj and so f \{v} is

a (d− 1)-face of Ω. Since Ω is a d-dimensional cycle f \ {v} belongs to an even

number of the d-faces F1, . . . , Fk. Therefore f belongs to an even number of the

(d+ 1)-faces Fi ∪ {v} and so belongs to an even number of the (d+ 1)-faces of

Φ.

(ii) Now suppose that v /∈ f and that f belongs to at least one (d + 1)-face of the

form Fj ∪{v} for some j. In this case we must have f = Fj and so f 6⊆ Fi ∪{v}

for any i 6= j. So f belongs to exactly one (d+1)-face of the form Fi∪{v}. Thus

f appears exactly once on the right-hand-side of (3.3) and since this equation

holds over Z2, f must be contained in an odd number of the Ai’s. Hence overall

f is contained in an even number of the (d+ 1)-faces of Φ.

(iii) Finally suppose that v /∈ f and that f does not belong to any (d + 1)-faces

of the form Fj ∪ {v}. Then f is not a d-face of Ω and it does not appear in

the right-hand-side of (3.3). Again, since (3.3) holds over Z2, we know that f

belongs to an even number of the Ai’s. Thus f is contained in an even number

of the (d+ 1)-faces of Φ.

Therefore we know that the (d+ 1)-path-connected components of Φ are (d+ 1)-

dimensional cycles. Note that the (d+1)-faces Fi∪{v} all lie in the same (d+1)-path-

connected component of Φ since Ω is d-path-connected. Recall from above that, for

any j, a d-face belonging to Fj∪{v} which does not contain v is equal to Fj and must

belong to at least one of the Ai’s by (3.3). Thus at least one of the Ai’s belongs to the

(d + 1)-path-connected component of Φ which contains the Fj ∪ {v}’s. Therefore if

Φ has any other (d+1)-path-connected component then it consists solely of a proper

subset of the Ai’s. Without loss of generality let these faces be A1, . . . , Ar where r < `.
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We know that these (d + 1)-path-connected components are all (d + 1)-dimensional

cycles by what was just shown and so by Proposition 3.3.1 we have that

∂d+1

(

r
∑

j=1

Aj

)

= 0

and so

∂d+1

(

∑̀

j=1

Aj

)

= ∂d+1

(

r
∑

j=1

Aj

)

+ ∂d+1

(

∑̀

j=r+1

Aj

)

= ∂d+1

(

∑̀

j=r+1

Aj

)

.

Therefore by (3.3) we have

∂d+1

(

∑̀

j=r+1

Aj

)

=

k
∑

i=1

Fi

which contradicts the minimality of our choice of A1, ..., A`. Hence Φ has only one

(d+ 1)-path-connected component and so it is a (d+ 1)-dimensional cycle.

Due to the close association between homological d-cycles and d-dimensional cy-

cles over the field Z2 we are able to obtain a necessary and sufficient combinatorial

condition for non-zero homology over any field of characteristic 2.

Theorem 3.3.3 (Non-zero d-homology in characteristic 2 corresponds to

d-dimensional cycles). Let Γ be a simplicial complex and let k be a field of char-

acteristic 2. Then H̃d(Γ; k) 6= 0 if and only if Γ contains a d-dimensional cycle, the

sum of whose d-faces is not a d-boundary.

Proof. By Lemma 2.2.2 we know that H̃d(Γ; k) 6= 0 if and only if H̃d(Γ;Z2) 6= 0.

Therefore we need only prove the theorem in the case that k = Z2.

Suppose that H̃d(Γ;Z2) 6= 0. Then Γ contains a d-cycle c that is not a d-boundary.

We may assume that the support complex of c is minimal with respect to this property.

In other words no proper subset of the d-faces of c has a sum that is also a d-cycle

which is not a d-boundary. First we would like to show that the support complex of

c is d-path-connected.

Since we are in Z2, the d-cycle c is of the form

c = F1 + · · ·+ Fm
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for some d-faces F1, . . . , Fm of Γ. Since c is a d-cycle then applying the boundary

map ∂d we have

0 = ∂d(F1 + · · ·+ Fm) =
m
∑

i=1

(ei1 + · · ·+ eid+1)

where ei1, . . . , e
i
d+1 are the d + 1 edges of dimension d − 1 belonging to Fi. If the

support complex of c is not d-path-connected then, without loss of generality, we can

partition its set of d-faces into two sets, {F1, . . . , F`} and {F`+1, . . . , Fm} such that

these two sets have no (d− 1)-faces in common. Hence we must have

∑̀

i=1

(ei1 + · · ·+ eid+1) = 0 and

m
∑

i=`+1

(ei1 + · · ·+ eid+1) = 0.

In other words we have

∂d(F1 + · · ·+ F`) = 0 and ∂d(F`+1 + · · ·+ Fm) = 0

and so F1 + · · · + F` and F`+1 + · · · + Fm are both d-cycles. By our assumption of

minimality these d-cycles are both d-boundaries. Hence in Γ there exist (d+1)-faces

G1, . . . , Gr and H1, . . . , Ht such that

∂d+1

(

r
∑

i=1

Gi

)

= F1 + · · ·+ F` and ∂d+1

(

t
∑

i=1

Hi

)

= F`+1 + · · ·+ Fm.

But then we have

∂d+1

(

r
∑

i=1

Gi +

t
∑

i=1

Hi

)

= F1 + · · ·+ Fm

which is a contradiction since F1 + · · · + Fm is not a d-boundary. Therefore the

support complex of c must be d-path-connected. Hence, by Proposition 3.3.1 the

support complex of c is a d-dimensional cycle. Therefore Γ contains a d-dimensional

cycle the sum of whose d-faces is not a d-boundary.

Conversely, suppose that Γ contains a d-dimensional cycle with d-faces F1, . . . , Fm

such that
∑m

i=1 Fi is not a d-boundary. By Proposition 3.3.1 we know that
∑m

i=1 Fi

is a d-cycle. It follows that H̃d(Γ;Z2) 6= 0.
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Remark 3.3.4. Proposition 3.3.1 gives us the most efficient algorithm that we know

of for finding all of the d-dimensional cycles in a simplicial complex. The first step in

such an algorithm is to row reduce a matrix representation of the map ∂d over Z2 in

order to obtain a basis for its kernel. This enables us to find all of the homological

d-cycles in the set of d-chains. We can then enumerate the d-dimensional cycles by

identifying, combinatorially, the d-path-connected components of the support com-

plex of each homological d-cycle. This procedure may find a d-dimensional cycle more

than once and so a final step would be to remove the repeated cycles.

3.4 Non-zero Homology over General Fields

When we broaden the scope of our investigations to study simplicial homology over

an arbitrary field we must keep in mind examples such as the triangulation of the

real projective plane given in Figure 3.3f. The simplicial homology of this complex

changes significantly depending on the field under consideration. In particular, one

can show by computation that this complex has non-zero 2-dimensional homology

only over fields of characteristic 2. As we saw in Section 3.2, the triangulation of the

real projective plane is an example of a non-orientable 2-dimensional cycle. It is this

notion of orientability which leads us to a sufficient condition for a simplicial complex

to have non-zero homology over any field. First we see that orientable d-dimensional

cycles are homological d-cycles over any field.

Lemma 3.4.1 (Orientable d-dimensional cycles are homological d-cycles).

The sum of the oriented d-faces of an orientable d-dimensional cycle is a homological

d-cycle over any field k.

Proof. Let Ω be an orientable d-dimensional cycle with d-faces F1, . . . , Fm and let

c = F1 + · · ·+ Fm

where F1, . . . , Fm are given orientations consistent with Definition 3.2.10. For 1 ≤

i ≤ m let ei1, . . . , e
i
d+1 be the d + 1 faces of dimension d − 1 belonging to Fi with

vertices ordered as in Fi. Applying the boundary map to c we have, without loss of
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generality,

∂d(c) =

m
∑

i=1

d+1
∑

j=1

(−1)j+1eij. (3.4)

Notice that every (d − 1)-face of Ω occurs an even number of times in (3.4) since Ω

is a d-dimensional cycle. Furthermore, because Ω is orientable the number of times

that the (d−1)-face appears with a positive sign is equal to the number of times that

it appears with a negative sign. Hence we get ∂d(c) = 0 and so c is a homological

d-cycle.

Theorem 3.4.2 (Orientable d-dimensional cycles give non-zero homology

over all fields). If a simplicial complex Γ contains an orientable d-dimensional cycle,

the sum of whose oriented d-faces is not a d-boundary, then H̃d(Γ; k) 6= 0 for any field

k.

Proof. Let Ω be the orientable d-dimensional cycle in Γ given by our assumption and

with d-faces F1, . . . , Fm. By Lemma 3.4.1 we know that the d-chain c = F1+ · · ·+Fm

is a homological d-cycle where F1, . . . , Fm are oriented according to Definition 3.2.10.

By assumption, c is not a d-boundary and so H̃d(Γ; k) 6= 0.

The converse of Theorem 3.4.2 does not hold as can be seen from the example

of the triangulation of the real projective plane. As mentioned above, this simplicial

complex has non-zero 2-dimensional homology over any field of characteristic 2, but

this complex is a face-minimal non-orientable 2-dimensional cycle and so contains no

orientable 2-dimensional cycles.

A triangulation Γ of the mod 3 Moore space shown in Figure 3.9, is another

interesting counterexample to the converse of Theorem 3.4.2. First, this is an example

of a simplicial complex which has non-zero 2-dimensional homology only over fields

of characteristic 3. Second, and even more of note, is that Γ contains no orientable or

non-orientable 2-dimensional cycles. One can show that Γ is the support complex of

a minimal 2-dimensional homological cycle over fields of characteristic 3, in the sense

that removing any of its facets leaves a simplicial complex with no 2-dimensional

homology. Also, in some sense, Γ is quite close to being a 2-dimensional cycle. All

but three of its 1-faces each lie in exactly two 2-dimensional faces. The remaining



48

three 1-faces lie in three 2-dimensional faces each. These 1-faces are {x, y}, {x, z},

and {y, z}. The set {x, y, z} is not a face of Γ, but by adding this face to Γ we obtain

the 2-dimensional cycle shown in Figure 3.10.
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ae d
z

Figure 3.9: A triangulation of the mod 3 Moore space.
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x
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y z

Figure 3.10: Modification of the triangulated mod 3 Moore space.

It is clear from the example of the mod 3 Moore space that one may have non-zero

reduced d-dimensional homology over fields of finite characteristic without having d-

dimensional cycles present. In fact, it is possible to construct a mod p Moore space,

for p a prime, in any dimension d ≥ 1 (see Hatcher [19, page 143]). A triangulation

of such a space will not contain a d-dimensional cycle, but will have non-zero reduced

homology only in degree d and only over fields of characteristic p. This gives us a

family of counterexamples to the converse of Theorem 3.4.2.

The difficulty in trying to prove the converse of Theorem 3.4.2 for the general

case is in linking the algebraic notion of a homological d-cycle with general field

coefficients to the combinatorics of its underlying support complex. In particular,

when the field coefficients of a d-chain are not all equal in absolute value it is difficult
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to find a combinatorial description of the role played by the coefficients. For this

reason we had hoped to be able to prove that, over Z, all “minimal” homological

d-cycles had coefficients which were constant up to absolute value. Unfortunately,

the simplicial complex in Figure 3.10 is a counterexample to this conjecture. In this

case, as a homological 2-cycle over Z, the coefficients of all facets but {x, y, z} can

be chosen to be 1 in absolute value whereas the coefficient of {x, y, z} must be 3.

Furthermore, it is not hard to show that this 2-dimensional simplicial complex is

non-orientable. Therefore we have another, more interesting counterexample to the

converse of Theorem 3.4.2 as we have a non-orientable 2-dimensional cycle which has

non-zero homology over all fields.



Chapter 4

Generalizing Fröberg’s Theorem

As mentioned in Chapter 1, in 1990 Fröberg gave a well-known combinatorial char-

acterization of the square-free monomial ideals with 2-linear resolutions.

Theorem 4.0.1 (Fröberg [16]). If a graph G is chordal, then N (∆(G)) has a 2-linear

resolution over any field. Conversely, given a simplicial complex Γ, if N (Γ) has a

2-linear resolution over any field, then Γ = ∆(Γ[1]) and Γ[1] is chordal.

This theorem demonstrates that in order to determine whether or not a square-

free monomial ideal that is generated in degree 2 has a linear resolution one need

only examine the 1-skeleton of its Stanley-Reisner complex. This is an extremely

strong result, especially when viewed in contrast to another classification of square-

free monomial ideals with linear resolutions given by Fröberg, which is homological

in nature.

Theorem 4.0.2 (Fröberg [15]). A square-free monomial ideal I has a d-linear reso-

lution over a field k if and only if for every induced subcomplex Γ of N (I) we have

H̃i(Γ; k) = 0 for i 6= d− 2.

This theorem tells us that in order to have a linear resolution, all homology groups

of all induced subcomplexes of the Stanley-Reisner complex must vanish in all but

one dimension, and conversely. Consequently, a simple condition on the 1-skeleton

of such a complex at first glance seems inadequate for determining the existence of

a 2-linear resolution. However, there are several important connections to be made

between the graph condition of being chordal and the homological requirements for

a linear resolution in degree 2.

In the first case, when a square-free monomial ideal is generated in degree 2

it is not hard to see that its Stanley-Reisner complex is the clique complex of its

1-skeleton. This means that all complete subgraphs of this 1-skeleton, when it is

50
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viewed as a graph, correspond to faces of the Stanley-Reisner complex. In essence, it

is the 1-skeleton alone which determines which faces are present in the complex.

In addition, as we saw in Chapter 3, the graph cycle is the right combinatorial

structure to capture non-zero 1-dimensional homology. In a chordal graph the man-

ner in which a graph cycle may be present is severely restricted. In particular, all

“minimal” cycles must be triangles. In other words, these cycles must be complete

subgraphs and thus show up in the clique complex as 2-faces. This effectively removes

all 1-dimensional homology from these complexes.

The fact that all upper-dimensional homology groups of such a Stanley-Reisner

complex are also forced to vanish is impressive. In particular because such a complex

may have facets of any dimension at all, since a chordal graph may have a complete

subgraph on any number of vertices. It is the delicate interaction between the re-

strictions placed on cycles in a chordal graph and the nature of the clique complex

operation which allows this vanishing of homology to occur. We elaborate on this

relationship in Section 4.7.

In attempting to generalize Fröberg’s theorem to an arbitrary square-free mono-

mial ideal generated in degree d+ 1 we seek a similar relationship between the com-

binatorial structure of the pure d-skeleton of the Stanley-Reisner complex and the

vanishing of its homology groups. Not surprisingly, such a relationship is much harder

to pinpoint in higher dimensions. When we leave the 1-dimensional case, the way in

which our combinatorial structures may be connected becomes far more complicated

and as well we are confronted with new issues such as orientability. Recall Propo-

sition 3.2.11 for example, which states that all 1-dimensional cycles are orientable.

Hence an examination of these higher-dimensional structures from a purely combina-

torial viewpoint is considerably more involved. As a simple example, a graph edge

may be connected to other edges at exactly two places, its endpoints. Whereas, a

2-dimensional face may be connected to other 2-dimensional faces in six different

ways.

We begin this chapter with two different generalizations of chordal graphs to higher

dimensions. We use these two combinatorial notions to generalize, in two different

ways, one direction of Fröberg’s theorem over an arbitrary field and over fields of
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characteristic 2 respectively. In particular, in Theorem 4.3.1, we provide necessary

conditions for a square-free monomial ideal to have a linear resolution in these two

cases.

The converses to both parts of Theorem 4.3.1 do not hold and in Section 4.5

we examine the characteristic 2 case in more detail. As a result, in Section 4.6, we

are able to provide a necessary and sufficient combinatorial condition for a square-

free monomial ideal to have a linear resolution over any field of characteristic 2 with

Theorem 4.6.1.

Much of this chapter is based on [6].

4.1 The Classes of d-Chorded and d-Cycle-Complete Complexes

In a chordal graph any cycle can be “broken down” into a set of complete cycles, or

triangles, on the same vertex set, often in more than one way. The clique complex

of a chordal graph introduced in Section 2.3 “fills in” these cycles by turning each

such triangle into a face of the complex. See Figure 4.1 for an example. The original

(a) A chordal graph consisting of a cycle with
chords shown with dotted lines

(b) The clique complex of the chordal graph

Figure 4.1: Vanishing 1-dimensional homology in the clique complex of a chordal
graph.

cycle can be thought of as a sum of these triangles. Therefore, as we can see from

Theorem 3.1.1, all 1-dimensional homology existing in the chordal graph when it is

thought of as a simplicial complex disappears in the clique complex, as all 1-cycles

are transformed into 1-boundaries.

We would like to replicate this dismantling of a cycle into smaller complete pieces

in higher dimensions using the d-dimensional cycles introduced in Chapter 3. In

the case of chordal graphs, cycles that are not complete must have a chord. This
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chord breaks the cycle into two cycles both having fewer vertices than the original.

It is the inductive nature of this addition of chords which results in each cycle being

dismantled into complete cycles. To achieve this same goal in d-dimensional cycles

we introduce a higher-dimensional notion of a chord.

Definition 4.1.1 (chord set). Let Ω be a d-dimensional cycle in a simplicial complex

Γ. A chord set of Ω in Γ is a nonempty set C of d-faces of Γ \ Ω contained in V (Ω)

such that the simplicial complex 〈C,Facets(Ω)〉 consists of k d-dimensional cycles,

Ω1, . . . ,Ωk, where k ≥ 2 and with the following conditions:

1.
⋃k

i=1 Facets(Ωi) = Facets(Ω) ∪ C,

2. each d-face in C is contained in an even number of the cycles Ω1, . . . ,Ωk,

3. each d-face of Ω is contained in an odd number of the cycles Ω1, . . . ,Ωk,

4. |V (Ωi)| < |V (Ω)| for i = 1, . . . , k.

A chord set of a face-minimal 1-dimensional cycle corresponds to a set of chords

in a graph cycle in the traditional sense. In Figure 4.2 we have a graph cycle on six

vertices with a chord set displayed with dotted lines. This cycle is broken into four

smaller cycles by its chord set. A chord of a graph cycle is always a chord set of the

cycle as it is a 1-face of the graph which breaks the graph cycle into two graph cycles

on proper subsets of the vertices of the original graph. The edges of the original cycle

appear in exactly one of the two smaller cycles and the chord appears in both.

Figure 4.2: Example of a graph cycle with a chord set.

In the next lemma we see that, when a non-d-complete d-dimensional cycle is the

support complex of a d-boundary over Z2, it is forced to have a chord set. In Figure

4.3 we illustrate the technique used in the proof of Lemma 4.1.2.
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(a) The 1-dimensional cycle Ω (b) Ω as the 1-boundary of G1 + · · ·+G4 with
E1, . . . , E4 shown by dashed lines

Ω
Ω

Ω Ω

(c) The 1-complete 1-dimensional cycles
Ω1, . . . ,Ω4

Figure 4.3: Example of the construction in the proof of Lemma 4.1.2.

Lemma 4.1.2 (All d-dimensional cycles which are boundaries have chord

sets). Let Ω be a face-minimal d-dimensional cycle that is not d-complete in a sim-

plicial complex Γ. If, over Z2, Ω is the support complex of a d-boundary of faces of

ΓV (Ω) then Ω has a chord set in Γ.

Proof. Let the d-faces of Ω be F1, . . . , Fk. Since, in Z2, Ω forms the support complex

of a d-boundary of faces of ΓV (Ω), there exist (d + 1)-faces G1, . . . , G� of ΓV (Ω) such

that

∂d+1

(

�
∑

i=1

Gi

)

=
k

∑

i=1

Fi.

Note that � ≥ 2 since otherwise we have

∂d+1(G1) =
k

∑

i=1

Fi

and since 〈G1〉[d] = Λd
d+2 this indicates that Ω itself must be Λd

d+2 since it is face-

minimal. This can’t happen since Ω is not d-complete.

Let E1, . . . , Em be the d-faces of 〈G1, . . . , G�〉 which are not d-faces of Ω. If the set

{E1, . . . , Em} is empty then Ω contains all the d-faces belonging to the (d+ 1)-faces
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G1, . . . , G`. However, since 〈Gi〉
[d] = Λd

d+2 which is a d-complete d-dimensional cycle

and Ω is a face-minimal non-d-complete d-dimensional cycle, we have a contradiction.

Therefore the set {E1, . . . , Em} is nonempty. We claim that {E1, . . . , Em} is a chord

set of Ω in Γ.

First note that the vertices of E1, . . . , Em are contained in V (Ω) since G1, . . . , G`

are faces of ΓV (Ω). Also, by construction we have {E1, . . . , Em} ∩ {F1, . . . , Fk} = ∅.

We set Ωi = 〈Gi〉[d] for each i ∈ {1, . . . , `}.

Since each d-face of the two sets {F1, . . . , Fk} and {E1, . . . , Em} appears in at least

one of the Gi’s, we have

⋃̀

i=1

Facets(Ωi) = {F1, . . . , Fk, E1, . . . , Em}

and so property 1 of a chord set is satisfied. Over Z2 we have

∂d+1

(

∑̀

i=1

Gi

)

=
k
∑

i=1

Fi

and so we know that for each 1 ≤ i ≤ m the face Ei must be contained in an

even number of the faces G1, . . . , G` as Ei does not appear on the right-hand side

of this equation. Therefore Ei is also contained in an even number of the cycles

Ω1, . . . ,Ω`. Similarly, each d-face of Ω must be contained in an odd number of the

cycles Ω1, . . . ,Ω`. Thus properties 2 and 3 of a chord set are satisfied.

Finally since Ω is not d-complete, we know that |V (Ω)| > d + 2 by Proposition

3.2.12. Therefore since |V (Ωi)| = d + 2 for all i ∈ {1, . . . , `}, we have that |V (Ωi)| <

|V (Ω)| for all i ∈ {1, . . . , `} and so property 4 of a chord set is satisfied. Hence

{E1, . . . , Em} is a chord set of Ω in Γ.

Next we introduce a generalization to higher dimensions of the “cycles and chords”

characterization of chordal graphs.

Definition 4.1.3 (d-chorded). A pure d-dimensional simplicial complex Γ is d-

chorded if all face-minimal d-dimensional cycles in Γ that are not d-complete have

a chord set in Γ.

Since any d-dimensional cycle can be partitioned into face-minimal cycles by

Lemma 3.2.8, the requirement in Definition 4.1.3 on face-minimal cycles is sufficient
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to ensure that all d-dimensional cycles in a d-chorded simplicial complex have chord

sets.

In the 1-dimensional case, Definition 4.1.3 says that a graph is 1-chorded when

all face-minimal cycles that are not 1-complete have a chord set. In other words, a

graph is 1-chorded when all graph cycles that are not triangles have a chord set. This

agrees with the usual notion of a chordal graph.

In Figure 4.4 we give examples of simplicial complexes that are 2-chorded. The

hollow tetrahedron in Figure 4.4a is 2-chorded as it is a 2-complete face-minimal

2-dimensional cycle. The pure 2-dimensional complex in Figure 4.4b is 2-chorded

because it contains no 2-dimensional cycles. Notice, however, that this simplicial

complex is an example of a simplicial cycle. The complex in Figure 4.4c contains

three 2-dimensional cycles, the outer cycle which consists of six 2-dimensional faces

and uses all vertices, and the two hollow tetrahedra which are 2-complete face-minimal

cycles and which share the inner face shown in dark grey. All three cycles are face-

minimal. This simplicial complex is 2-chorded because its only face-minimal cycle

that is not 2-complete contains a chord set of size 1 breaking it into two 2-complete

face-minimal cycles. Similarly, the simplicial complex in Figure 4.4d consists of five

face-minimal 2-dimensional cycles, four of which are hollow tetrahedra breaking the

remaining, non-2-complete face-minimal outer cycle into four smaller 2-dimensional

cycles by a chord set of size 4 shown in dark grey.

Some of the simplest examples of d-chorded simplicial complexes are the d-complete

complexes.

Proposition 4.1.4 (d-complete ⇒ d-chorded). For n ≥ d+ 1, the d-dimensional

d-complete simplicial complex Λd
n is d-chorded.

Proof. First notice that Λd
n is the d-skeleton of the simplex on n vertices Λn−1

n . Let Ω

be a face-minimal d-dimensional cycle in Λd
n which is not d-complete. Then Ω is also

a face-minimal d-dimensional cycle in Λn−1
n . Since any simplex is acyclic over any

field, we have H̃d(Λ
n−1
n ;Z2) = 0. Hence Ω, which is the support complex of a d-cycle

by Proposition 3.3.1, is the support complex of a d-boundary. Therefore, by Lemma

4.1.2, Ω has a chord set in Λn−1
n . Since Λd

n is the d-skeleton of Λn−1
n , Ω has a chord

set in Λd
n as well. Therefore Λd

n is d-chorded.
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(a) 2-complete face-minimal 2-dimensional cy-
cle

(b) Pure 2-dimensional complex with no 2-
dimensional cycles

(c) Face-minimal 2-dimensional cycle with
chord set of size 1

(d) Octahedron with chord set of size 4

Figure 4.4: Examples of 2-chorded simplicial complexes.

Remark 4.1.5. As a consequence of Proposition 4.1.4 we see that the pure d-skeleton

of any n-simplex is d-chorded for any d < n.

We would like to make use of the homological characterization given in Theorem

4.0.2 to extend Fröberg’s theorem to higher dimensions. For this purpose, we require

the property of being d-chorded to be transferred to induced subcomplexes.

Lemma 4.1.6 (Chordedness transfers to induced subcomplexes). The pure

d-skeleton of any induced subcomplex of a d-chorded simplicial complex is d-chorded.

Proof. Let Γ be a d-chorded simplicial complex and let W ⊆ V (Γ). Let Ω be any

face-minimal d-dimensional cycle in (ΓW )[d] that is not d-complete. It is clear that Ω

is also a d-dimensional cycle in Γ. Also, Ω must be face-minimal in Γ otherwise some

proper subset of its d-faces is a d-dimensional cycle in Γ, but then also in (ΓW )[d],

which is a contradiction. Hence, since Γ is d-chorded, Ω has a chord set in Γ. Since a

chord set is a set of d-faces that lie on the same vertex set as the cycle, this chord set

exists in ΓW as well. Hence Ω has a chord set in (ΓW )[d]. Thus every face-minimal d-

dimensional cycle in (ΓW )[d] that is not d-complete has a chord set. Therefore (ΓW )[d]

is d-chorded.
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A chordal graph can also be defined without the notion of chords by requiring

that all of its “minimal” cycles be complete. We can extend this definition to higher

dimensions in the following way.

Definition 4.1.7 (orientably-d-cycle-complete, d-cycle-complete). A pure d-

dimensional simplicial complex Γ is called (orientably-) d-cycle-complete if all of

its (orientably-) vertex-minimal d-dimensional cycles are d-complete.

The examples in Figure 4.4 are all both 2-cycle-complete and orientably-2-cycle-

complete. It is not hard to see that the sets of 1-cycle-complete and orientably-1-

cycle-complete simplicial complexes correspond exactly to the set of chordal graphs.

The fact that these classes coincide in dimension 1 follows from Proposition 3.2.11.

Remark 4.1.8. It is easy to see that the property of being either d-cycle-complete or

orientably-d-cycle-complete is transferred to induced subcomplexes. This is because

any (orientably-) vertex-minimal d-dimensional cycle in an induced subcomplex is

also (orientably-) vertex-minimal in the original complex.

We have imposed structure on our classes of d-chorded and d-cycle-complete com-

plexes by restricting the way in which d-dimensional cycles may exist in these com-

plexes. A more severe restriction is to disallow d-dimensional cycles altogether.

Definition 4.1.9 (d-dimensional forest, d-dimensional tree). A d-dimensional

forest is a pure d-dimensional simplicial complex containing no d-dimensional cycles.

A d-dimensional tree Γ is a d-dimensional forest such that Γ[1] is 1-path-connected.

It is easy to see that all d-dimensional forests are d-chorded.

Notice that the notion of a graph tree agrees with that of a 1-dimensional tree.

Another higher-dimensional analogue to the graph tree is the simplicial tree which

is a connected simplicial complex with no simplicial cycles [13]. It is not difficult

to show that a pure d-dimensional simplicial tree is a d-dimensional tree as one can

show that any d-dimensional cycle contains a simplicial cycle. In particular, given any

d-dimensional cycle Ω and any (d − 2)-face f in Ω, one can show that the simplicial

complex whose facets are {F ∈ Facets(Ω) | f ∈ F} contains a simplicial cycle.
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Proposition 4.1.10 (d-chorded ⇒ d-cycle-complete ⇒

orientably-d-cycle-complete).

1. Any d-chorded simplicial complex is d-cycle-complete.

2. Any d-cycle-complete simplicial complex is orientably-d-cycle-complete.

Proof.

1. Let Γ be a d-chorded simplicial complex and let Ω be any vertex-minimal d-

dimensional cycle in Γ. Suppose that Ω is not d-complete. If Ω is face-minimal

then Γ contains a chord set for Ω which means that there exist d-dimensional

cycles on proper subsets of the vertices of Ω. If Ω is not face-minimal then it

contains a face-minimal d-dimensional cycle on its d-faces which has a chord

set. This also implies that there exist d-dimensional cycles on proper subsets of

the vertices of Ω. Either way we have a contradiction to vertex-minimality of

Ω and so Ω must be d-complete. Hence Γ is d-cycle-complete.

2. Let Γ be a d-cycle-complete simplicial complex and let Ω be any orientably-

vertex-minimal d-dimensional cycle in Γ. We know that Ω does not contain

any orientable d-dimensional cycles on a proper subset of its vertices. If it also

does not contain any non-orientable d-dimensional cycles on a proper subset

of its vertices then it is vertex-minimal and so d-complete since Γ is d-cycle

complete. Thus suppose that Ω contains a non-orientable cycle on a proper

subset of its vertices. If this non-orientable cycle is vertex-minimal then it

is d-complete which means that it contains a copy of Λd
d+2, an orientable d-

dimensional cycle on a proper subset of the vertices of Ω by Proposition 3.2.12.

This is a contradiction to the fact that Ω is orientably-vertex-minimal. If the

non-orientable cycle is not vertex-minimal then it must contain a d-dimensional

cycle on a proper subset of its vertices which is vertex-minimal. This cycle

is d-complete since Γ is d-cycle-complete and so contains a copy of Λd
d+2. As

before we have a contradiction and so Ω does not contain any non-orientable

d-dimensional cycles on its vertex set. Hence Ω is vertex-minimal and so d-

complete since Γ is d-cycle-complete. Thus Γ is orientably-d-cycle-complete.
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By Proposition 4.1.10 we can see that the four classes of simplicial complexes

defined in this section are “nested” with

{d-dimensional forests}

(

{d-chorded simplicial complexes}

(

{d-cycle-complete simplicial complexes}

(
{orientably-d-cycle-complete simplicial complexes}.

These inclusions are strict. The simplicial complex Λd
d+2 is d-chorded but not

a d-dimensional forest. An example of a 2-cycle-complete complex which is not 2-

chorded is given in Figure 3.5 in Section 3.2. This complex is not 2-chorded because

it contains a face-minimal 2-dimensional cycle, the outer triangulated sphere, which

is not 2-complete and has no chord set. The triangulation of the real projective

plane given in Figure 3.3f is an example of an orientably-2-cycle-complete complex

which is not 2-cycle-complete. It is orientably-2-cycle-complete since it contains no

orientable 2-dimensional cycles, but it is not 2-cycle-complete because it contains a

vertex-minimal 2-dimensional cycle that is not 2-complete.

4.2 The Closure of a Pure Simplicial Complex

As mentioned in Section 4.1, the clique complex of a chordal graph removes all 1-

dimensional homology from its cycles by turning these cycles into sums of 2-faces. The

idea of “filling in” complete subgraphs can easily be extended to simplicial complexes.

Definition 4.2.1 (d-closure). Let Γ be a simplicial complex with vertex set V where

either Γ = {∅} or Γ is pure of dimension d. We define ∆d(Γ) to be the simplicial

complex with vertex set V and such that
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1. Γ ⊆ ∆d(Γ),

2. for all S ⊆ V with |S| ≤ d, we have S ∈ ∆d(Γ), and

3. for any S ⊆ V with |S| > d+ 1, if all (d+ 1)-subsets of S are faces of Γ then S

is a face of ∆d(Γ).

Note that, in the case that Γ = {∅}, we have that ∆d(Γ) is the pure (d − 1)-

dimensional simplicial complex whose faces are all S ⊆ V such that |S| ≤ d. In other

words, ∆d(Γ) is the complex Λd−1
|V | .

It is not difficult to see that ∆d(Γ) is a simplicial complex. By property 2, all

subsets of V of size less than d+1 are faces of ∆d(Γ). Thus all proper subsets of the

d-faces of ∆d(Γ) belong to ∆d(Γ). For any F ∈ ∆d(Γ) with |F | > d+1 we know that

all of its subsets of size d+1 are faces of Γ by definition and so are also faces of ∆d(Γ)

by property 1. If G ⊆ F and |G| < d+ 1 then G ∈ ∆d(Γ) by property 2. Otherwise

|G| > d + 1 and G belongs to ∆d(Γ) only if all of its subsets of size d + 1 belong

to Γ. However, G ⊆ F and all subsets of F of size d + 1 are faces of Γ. Therefore

G ∈ ∆d(Γ).

Note that the pure d-skeleton of ∆d(Γ) is Γ. When Γ = {∅} the pure d-skeleton

of ∆d(Γ) is empty.

In [12], Emtander refers to ∆d(Γ) as the complex of Γ and in [27], Morales et al.

call it the clique complex of Γ. We will refer to ∆d(Γ) as the d-closure or simply

the closure of Γ when the dimension is clear. Note that when G is a graph, ∆1(G)

is equivalent to ∆(G), the clique complex of G.

The motivation for properties 2 and 3 in Definition 4.2.1 is algebraic in nature. To

generalize Theorem 4.0.1 we are interested in when the Stanley-Reisner ideals of these

d-closures have (d+1)-linear resolutions. By Remark 2.5.5 the minimal generators of

these ideals must all have size d+ 1. Thus the minimal non-faces of these complexes

must all have size d + 1. Therefore the complex must contain all faces of dimension

less than d which is ensured by property 2. As well, any non-face of size larger than

d + 2 must contain a minimal non-face of size d + 1. This follows from property

3. Therefore the minimal generators of the Stanley-Reisner ideal of the d-closure of

a simplicial complex will all have degree d + 1. This relationship is formalized in
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Proposition 4.2.4.

In Figure 4.5 we give an example of a pure 2-dimensional complex Γ and its 2-

closure ∆2(Γ). We can see that the 2-closure transforms the hollow tetrahedron on the

vertices a, b, c, d into a solid tetrahedron thus eliminating the non-zero 2-dimensional

homology in Γ. The minimal non-faces of ∆2(Γ) are {a, b, e}, {a, c, e}, {a, d, e},

{b, c, e}, and {b, d, e}.

c

d e

b

a

(a) Γ = 〈{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {c, d, e}〉

c

d e

b

a

(b) ∆2(Γ) = 〈{a, b, c, d}, {c, d, e}, {a, e}, {b, e}〉

Figure 4.5: 2-closure.

The following lemma explains the results of repeated applications of the closure

operation in different dimensions. First recall that the m-closure may only be applied

to either an empty complex or to a pure m-dimensional simplicial complex. Therefore

after taking the n-closure of a pure n-dimensional simplicial complex we must first

take its pure m-skeleton before applying the m-closure operation.

Lemma 4.2.2 (The n-closure is stronger than the m-closure when n < m).

Let Γ be either the empty complex or a pure n-dimensional simplicial complex.

1. If m < n then ∆m(∆n(Γ)
[m]) is a simplex.

2. If m = n then ∆m(∆n(Γ)
[m]) = ∆n(Γ).
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3. If m > n then ∆m(∆n(Γ)
[m])[t] = ∆n(Γ)

[t] for all t ≥ m.

Proof.

1. If m < n then ∆n(Γ)
[m] is m-complete as the n-closure adds all faces of dimen-

sion less than n. Therefore by the definition of m-closure the set of all vertices

of ∆n(Γ)
[m] is a face of ∆m(∆n(Γ)

[m]) and so ∆m(∆n(Γ)
[m]) is a simplex.

2. If m = n then by the nature of n-closure

∆m(∆n(Γ)
[m]) = ∆n(∆n(Γ)

[n]) = ∆n(Γ)

since the pure n-skeleton of ∆n(Γ) is Γ.

3. Let m > n and let F ∈ ∆n(Γ)
[t] for some t ≥ m so that |F | = t + 1. Each

subset A of F of size m + 1 ≤ t + 1 is also a face of ∆n(Γ)
[t] so A ∈ ∆n(Γ)

[m].

Therefore, by the definition of the m-closure, F ∈ ∆m(∆n(Γ)
[m])[t].

Conversely, if F ∈ ∆m(∆n(Γ)
[m])[t] then all subsets of F of size m + 1 ≤ t + 1

belong to ∆n(Γ)
[m]. Therefore (∆n(Γ)

[m])F is m-complete. Thus all subsets of

F of size n+1 < m+1 are in ∆n(Γ)
[m] which means they are n-faces of Γ since

∆n(Γ)
[n] = Γ. Hence by the definition of n-closure F ∈ ∆n(Γ)

[t].

We will see in the following lemma that the closure operation commutes with

the operation of taking induced subcomplexes. Since an induced subcomplex of a

nonempty pure d-dimensional simplicial complex may not be either empty or pure

of dimension d, we must first take the pure d-skeleton of such a subcomplex before

applying the d-closure operation.

Lemma 4.2.3 (The closure commutes with taking induced subcomplexes).

Let Γ be either the empty complex or a pure d-dimensional simplicial complex and let

W ⊆ V (Γ). Then we have ∆d(Γ)W = ∆d((ΓW )[d]).

Proof. First note that all possible faces of dimension less than d contained in W

exist in both complexes, by the nature of d-closure. No other faces of dimension less
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than d are possible as the vertex set of both complexes is W . Next consider faces

of dimension d. Any face of dimension d in ∆d(Γ)W is a face of Γ and is contained

in W . Such a face is clearly a face of (ΓW )[d] and so of ∆d((ΓW )[d]). Similarly any

face of dimension d in ∆d((ΓW )[d]) is a face of ΓW and so is a face of Γ and lies in

W . So it is a face of ∆d(Γ) and ∆d(Γ)W in particular. Next consider a face F of

dimension greater than d that lies in ∆d(Γ)W . Such a face lies in W and, by the

nature of d-closure, all possible subsets of the face of size d+1 are d-faces of Γ. Since

F ⊆ W , these d-faces are also faces of (ΓW )[d] and so F lies in ∆d((ΓW )[d]). If F is

a face of dimension larger than d in the complex ∆d((ΓW )[d]) then F lies in W and

all possible subsets of the face of size d+ 1 are d-faces of (ΓW )[d]. Since these d-faces

must be faces of Γ, F lies in ∆d(Γ)W . Therefore we have ∆d(Γ)W = ∆d(ΓW ).

In the second half of Theorem 4.0.1, Fröberg states that if the Stanley-Reisner

ideal of a simplicial complex has a 2-linear resolution then the complex is equal to

the clique complex of its 1-skeleton. We can easily extend this idea to the higher-

dimensional closure operation. In fact we only require that the generators of the ideal

have the same degree. Recently, one direction of the following proposition was also

independently given by Morales et al. in [27, Proposition 4.4].

Proposition 4.2.4 (ideal generated in fixed degree ⇐⇒ Stanley-Reisner

complex is a closure). The Stanley-Reisner ideal of a simplicial complex Γ is min-

imally generated in degree d+ 1 if and only if Γ = ∆d(Γ
[d]).

Proof. Suppose that N (Γ) is minimally generated in degree d+1. Let F be any face

of ∆d(Γ
[d]). We shall show that F ∈ Γ. We have three cases to consider.

(i) First suppose that |F | < d + 1. If F is not a face of Γ then xF ∈ N (Γ).

However, N (Γ) is minimally generated by elements of degree d + 1 and so we

have a contradiction. Therefore F ∈ Γ.

(ii) Suppose now that |F | = d + 1. By the definition of d-closure if F ∈ ∆d(Γ
[d])

then F ∈ Γ[d]. Hence we must have F ∈ Γ also.

(iii) If |F | > d+1 then by the definition of ∆d(Γ
[d]) all (d+1)-subsets of F are faces

of Γ[d] ⊆ Γ. If F is not a face of Γ then we know that xF ∈ N (Γ). Hence xF is



65

divisible by some monomial of degree d+ 1 whose elements make up a non-face

of Γ. This is not possible since all (d+1)-subsets of F are faces of Γ. Therefore

F must be a face of Γ.

We conclude that ∆d(Γ
[d]) ⊆ Γ.

Now let F be a face of Γ. If |F | < d+1 then F is automatically a face of ∆d(Γ
[d]).

If |F | = d + 1 then F is a face of Γ[d] and so a face of ∆d(Γ
[d]). If |F | > d + 1 then

all (d + 1)-subsets of F are clearly faces of Γ[d]. By the definition of d-closure we

have that F is a face of ∆d(Γ
[d]). Hence all faces of Γ are faces of ∆d(Γ

[d]). Therefore

Γ = ∆d(Γ
[d]).

Now suppose that Γ = ∆d(Γ
[d]). Then Γ contains all possible faces of dimension

less than d by definition. Also, any subset of vertices of size at least d+2, all of whose

subsets are faces of Γ, must also be a face of Γ by the definition of d-closure. Hence

all minimal non-faces of Γ must have size exactly d + 1. Thus N (Γ) is minimally

generated in degree d+ 1.

Remark 4.2.5. The clique complexes of graphs are sometimes referred to as flag

complexes. These are complexes whose minimal non-faces are all of size 2. In

[12], Emtander defines a d-flag complex to be a simplicial complex whose minimal

non-faces all have size d. By Proposition 4.2.4 it is clear that the d-flag complexes

are exactly the simplicial complexes which are the (d − 1)-closure of a simplicial

complex. The d-flag complexes have Stanley-Reisner ideals which are generated in

degree d and conversely, any square-free monomial ideal generated in degree d has a

Stanley-Reisner complex which is a d-flag complex.

By Theorem 4.0.2, in order to show that a square-free monomial ideal has a (d+1)-

linear resolution we must show that the homology of its Stanley-Reisner complex and

the homologies of all induced subcomplexes are zero in all dimensions except d − 1.

By the nature of the closure operation it is trivial to see that, for the d-closure of

a complex, all homology groups in dimension less than d − 1 are zero as all faces of

dimension less than d are added by this operation. We will show next that, when the

complex is d-chorded, the d-level homology of the closure is also zero.
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Lemma 4.2.6 (All d-dimensional cycles in a d-chorded complex are bound-

aries in the closure). Let Ω be a d-dimensional cycle in a d-chorded complex Γ.

The sum of the d-faces of Ω forms a d-boundary on V (Ω) in ∆d(Γ) over Z2.

Proof. We will use induction on the number of vertices of Ω. By Proposition 3.2.12,

the fewest number of vertices that a d-dimensional cycle can have is d + 2 and this

occurs when Ω = Λd
d+2. In this case ∆d(Γ)V (Ω) is a (d+ 1)-simplex and so the sum of

the d-faces of Ω forms the d-boundary of ∆d(Γ)V (Ω) on V (Ω).

Now suppose that the statement holds for all d-dimensional cycles with fewer than

n vertices and let Ω have n vertices. If Ω is not face-minimal then by Lemma 3.2.8 it

can be partitioned into face-minimal d-dimensional cycles. To show that the sum of

the d-faces of Ω forms a d-boundary in ∆d(Γ)V (Ω) we need only show that the sum of

the d-faces of each such face-minimal cycle forms a d-boundary in ∆d(Γ)V (Ω) since then

we may add them together to show that the original sum is a d-boundary. Therefore,

without loss of generality, we may assume that Ω is a face-minimal d-dimensional

cycle.

If Ω is d-complete then ∆d(Γ)V (Ω) is an (n− 1)-simplex in ∆d(Γ) and so the sum

of the d-faces of Ω forms a d-boundary on V (Ω). If Ω is not d-complete then, since

Γ is d-chorded, there exists a chord set C of Ω in Γ. Let the d-dimensional cycles

associated to C be Ω1, . . . ,Ωk. We know that |V (Ωi)| < |V (Ω)| for all i and so, by

induction, the sum of the d-faces of Ωi forms a d-boundary in ∆d(Γ)V (Ωi) over Z2. In

other words, for each 1 ≤ i ≤ k, there exist (d+1)-faces Gi
1, . . . , G

i
`i
in ∆d(Γ)V (Ωi) so

that, over Z2,

∂d+1

(

`i
∑

j=1

Gi
j

)

=
∑

(d-faces of Ωi).

By properties 2 and 3 of a chord set, over Z2 we have

k
∑

i=1

(

∑

(d-faces of Ωi)
)

=
∑

(d-faces of Ω).

Therefore we have

∂d+1

(

k
∑

i=1

(

`i
∑

j=1

Gi
j

))

=

k
∑

i=1

(

∑

(d-faces of Ωi)
)

=
∑

(d-faces of Ω)

and so the sum of the d-faces of Ω forms a d-boundary on V (Ω) in ∆d(Γ) over Z2.
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Proposition 4.2.7 (Certain homology groups vanish in the d-closure of a

d-chorded complex). Let Γ be a d-chorded simplicial complex. Then for any W ⊆

V (Γ) and any field k of characteristic 2 we have H̃i(∆d(Γ)W ; k) = 0 for 0 ≤ i ≤ d−2

and i = d.

Proof. By Lemma 2.2.2, it is enough to show this for the case k = Z2.

From the discussion preceding Lemma 4.2.6 and by Lemma 4.2.3 we know that

H̃i(∆d(Γ)W ;Z2) = 0 for 0 ≤ i ≤ d− 2 and any W ⊆ V (Γ). We need only show that

H̃d(∆d(Γ)W ;Z2) = 0 for any W ⊆ V (Γ). By Lemmas 4.1.6 and 4.2.3 it is enough to

show that H̃d(∆d(Γ);Z2) = 0.

If H̃d(∆d(Γ);Z2) 6= 0 then by Theorem 3.3.3 we know that ∆d(Γ) contains a

d-dimensional cycle, the sum of whose d-faces does not form a d-boundary. This

contradicts Lemma 4.2.6 as a d-dimensional cycle in ∆d(Γ) is a d-dimensional cycle

in Γ also. Therefore we must have H̃d(∆d(Γ);Z2) = 0.

We can use Proposition 4.2.7 in a homological characterization of the property of

being d-chorded.

Theorem 4.2.8 (d-chorded ⇐⇒ d-homology vanishes). The pure d-dimensional

simplicial complex Γ is d-chorded if and only if H̃d(∆d(Γ)W ;Z2) = 0 for allW ⊆ V (Γ).

Proof. If Γ is d-chorded then H̃d(∆d(Γ)W ;Z2) = 0 for all W ⊆ V (Γ) by Proposition

4.2.7.

Conversely, suppose that H̃d(∆d(Γ)W ;Z2) = 0 for all W ⊆ V (Γ). Let Ω be

any face-minimal d-dimensional cycle in Γ which is not d-complete. We know that

H̃d(∆d(Γ)V (Ω);Z2) = 0 and so by Proposition 3.3.1 and Theorem 3.3.3 the sum of

the d-faces of Ω must form a d-boundary in ∆d(Γ)V (Ω). It follows from Lemma 4.1.2

that Ω has a chord set in ∆d(Γ) and so also in Γ since ∆d(Γ)
[d] = Γ. Therefore Γ is

d-chorded.

4.3 A Necessary Condition for a Linear Resolution

Whether or not a monomial ideal has a linear resolution over a field k depends on the

characteristic of k. A typical example of this is demonstrated by the triangulation of
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the real projective plane in Figure 3.3f. The Stanley-Reisner ideal of this simplicial

complex has a linear resolution only when the characteristic of k is not 2. This

complex is an example of a non-orientable 2-dimensional cycle and it demonstrates

non-zero homology in dimension 2 only over fields with characteristic 2.

It turns out, however, that when a square-free monomial ideal has a linear reso-

lution this forces restrictions on the orientable d-dimensional cycles of the associated

simplicial complex regardless of the field in question. In the case that the field has

characteristic 2, the associated complex is even more restricted. The following theo-

rem gives us a generalization of one direction of Fröberg’s theorem over all fields and

also a generalization over fields of characteristic 2.

Theorem 4.3.1 (Fröberg’s theorem generalized). Let Γ be a simplicial complex,

let k be a field and let d ≥ 1. If the Stanley-Reisner ideal of Γ has a (d + 1)-linear

resolution over k then Γ = ∆d(Γ
[d]) and

1. Γ[d] is orientably-d-cycle-complete

2. Γ[d] is d-chorded if k has characteristic 2.

Proof. Since N (Γ) has a (d+1)-linear resolution, it is minimally generated in degree

d+ 1 by Remark 2.5.5. Therefore by Proposition 4.2.4 we have Γ = ∆d(Γ
[d]).

1. For a contradiction, let Ω be any orientably-vertex-minimal d-dimensional cycle

in Γ[d] which is not d-complete. Let the d-faces of Ω be F1, . . . , Fm and let

W =
⋃m

i=1 Fi. Since Ω is not d-complete, |W | > d + 2 by Proposition 3.2.12.

We claim that ΓW = (∆d(Γ
[d]))W has dimension d. If dimΓW > d then ΓW must

contain a face of dimension d+1. By the definition of the d-closure such a face

exists only when all of its subsets of size d+ 1 are d-faces of Γ[d]. Therefore to

show that ΓW has dimension d we must demonstrate that every (d+ 2)-subset

of W contains a (d+ 1)-subset which is not a face of Γ[d].

Suppose that there is some (d+2)-subset S of W such that all (d+1)-subsets of

S are faces of Γ[d]. Then Γ
[d]
S is d-complete and so, by Proposition 3.2.12, Γ

[d]
S is

an orientable d-dimensional cycle. This is a contradiction since Ω is orientably-

vertex-minimal and S ( W . Therefore every (d+2)-subset of W must contain a
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(d+1)-subset which is not a face of Γ[d]. Therefore by the definition of d-closure

(∆d(Γ
[d]))W = ΓW cannot contain any faces of size d + 2 or higher. Hence ΓW

has dimension d.

Since dimΓW = d, the sum of the d-faces of Ω cannot be a d-boundary. There-

fore by Theorem 3.4.2 we know that H̃d(ΓW ; k) 6= 0. This is a contradiction

to Theorem 4.0.2 since N (Γ) has a (d+ 1)-linear resolution. Therefore Γ[d] has

no orientably-vertex-minimal d-dimensional cycles which are not d-complete.

Hence Γ[d] is orientably-d-cycle-complete.

2. Since N (Γ) has a (d+ 1)-linear resolution over k and Γ = ∆d(Γ
[d]) we know by

Theorem 4.0.2 that for every W ⊆ V (∆d(Γ
[d])) we have

H̃d(∆d(Γ
[d])W ; k) = 0.

By Lemma 2.2.2 we have

H̃d(∆d(Γ
[d])W ;Z2) = 0.

Therefore by Theorem 4.2.8, Γ[d] is d-chorded.

Unfortunately the converses to parts 1 and 2 of Theorem 4.3.1 don’t hold. We

will explore this in more detail in Section 4.5.

It turns out that we can strengthen part 1 of Theorem 4.3.1 and conclude that a

linear resolution over an arbitrary field forces a more restrictive combinatorial condi-

tion on our simplicial complex.

Theorem 4.3.2 (A linear resolution over any field implies orientably-cy-

cle-complete). Let Γ be a simplicial complex, let k be a field and let d ≥ 1. If the

Stanley-Reisner ideal of Γ has a (d + 1)-linear resolution over k then Γ = ∆d(Γ
[d])

and Γ[m] is orientably-m-cycle-complete for all 1 ≤ m ≤ dimΓ.

Proof. By Theorem 4.3.1 we know that Γ = ∆d(Γ
[d]) and that Γ[d] is orientably-d-

cycle-complete. By the definition of the d-closure we know that Γ is m-complete for

all m < d. It is not hard to see, by Proposition 3.2.12, that the only orientably-

vertex-minimal m-dimensional cycles in an m-complete simplicial complex are the
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m-complete ones on m+2 vertices. Therefore Γ[m] is orientably-m-cycle-complete for

all m < d.

Now suppose that d < m ≤ dimΓ. Let Ω be an orientably-vertex-minimal m-

dimensional cycle that is not m-complete. By Lemma 3.4.1 we know that Ω is the

support complex of an m-cycle over the field k. Since N (Γ) has a linear resolution

over k then H̃m(ΓV (Ω); k) = 0 by Theorem 4.0.2. Therefore Ω must be the support

complex of an m-boundary in ΓV (Ω). In particular, ΓV (Ω) contains (m + 1)-faces.

The m-skeleton of any such face is the m-dimensional m-complete simplicial complex

Λm
m+2, which is an orientable m-dimensional cycle by Proposition 3.2.12 and which

lies on a proper subset of V (Ω). Hence we have a contradiction to the fact that Ω is

orientably-vertex-minimal. Thus Ω must be m-complete and so Γ[m] is orientably-m-

cycle-complete for all 1 ≤ m ≤ dimΓ.

The following corollary to Theorem 4.3.1 part 2 gives us a necessary condition for

a square-free monomial ideal to have a linear resolution over all fields.

Corollary 4.3.3 (A linear resolution over all fields implies d-chorded). Let I

be a square-free monomial ideal with Stanley-Reisner complex Γ. If I has a (d + 1)-

linear resolution over all fields then Γ[d] is d-chorded.

As a consequence of either Theorem 4.3.1 or Corollary 4.3.3 we see that the class

of d-chorded complexes contains the class of (d + 1)-uniform chordal hypergraphs

introduced by Woodroofe in [39] and the class of (d+ 1)-uniform generalized chordal

hypergraphs introduced by Emtander in [12] since the hypergraphs in these classes

have complements whose edge ideals have linear resolutions over all fields. This is

equivalent to the simplicial complexes whose facets correspond to the hyperedges

of these hypergraphs having closures whose Stanley-Reisner complex has a linear

resolution over all fields. However, consider the complex in Figure 4.6 which consists

of four hollow tetrahedra “glued together”. This is a 2-chorded simplicial complex,

which is not chordal in the sense of Emtander or Woodroofe when considered as a

hypergraph, and yet it can be shown that the Stanley-Reisner ideal of the 2-closure

of this complex has a 3-linear resolution over all fields. This answers, in the positive,

a question posed by Emtander in Section 5 of [12] which asks whether or not there



71

exists a hypergraph (or, equivalently, a simplicial complex) such that the Stanley-

Reisner ideal of its closure has a linear resolution over every field, but which is not a

generalized chordal hypergraph.

Figure 4.6: 2-chorded simplicial complex which is not “chordal”.

4.4 Chorded Complexes and Componentwise Linear Ideals

Recall from Chapter 2 that the property of being componentwise linear is analogous

to having a linear resolution for an ideal whose minimal generators are not all of the

same degree. The Stanley-Reisner complex of such an ideal will not be the closure of

a pure simplicial complex by Proposition 4.2.4. However, we may still observe some

combinatorial properties of this non-pure complex itself. We introduce the notion of

a chorded complex to restrict cycles on all dimensions of the simplicial complex.

Definition 4.4.1 (chorded). A simplicial complex Γ is chorded if Γ[d] is d-chorded

for all 1 ≤ d ≤ dimΓ.

Before showing that such complexes result from componentwise linear ideals, we

require the following lemma. Recall that I[d] is the ideal generated by the square-free

monomials in I of degree d.

Lemma 4.4.2. Given a simplicial complex Γ we have

Γ[d−1] = N (N (Γ)[d])
[d−1].

Proof. Let F ∈ Facets(Γ[d−1]). Then xF /∈ N (Γ). Hence xF /∈ N (Γ)[d]. Therefore F ∈

N (N (Γ)[d]), the Stanley-Reisner complex ofN (Γ)[d], and F ∈ Facets(N (N (Γ)[d]))
[d−1]

because |F | = d.



72

Conversely, let F ∈ Facets(N (N (Γ)[d])
[d−1]). Then F ∈ N (N (Γ)[d]) and so xF /∈

N (Γ)[d]. Since |F | = d, this means that xF /∈ N (Γ). Therefore F ∈ Γ and so

F ∈ Facets(Γ[d−1]).

The following theorem is an extension of Corollary 4.3.3.

Theorem 4.4.3 (Componentwise linear implies chorded). Let Γ be a simplicial

complex. If N (Γ) is componentwise linear over every field k then Γ is chorded. In

particular, if N (Γ) has a linear resolution over every field then Γ is chorded.

Proof. Since N (Γ)[d] has a linear resolution over all fields k, we have, by Theorem

4.3.1, that for all d,

N (N (Γ)[d]) = ∆d−1

(

N (N (Γ)[d])
[d−1]

)

and N (N (Γ)[d])
[d−1] is (d − 1)-chorded. Hence by Lemma 4.4.2 we know that Γ[d−1]

is (d− 1)-chorded for all d ≤ dimΓ + 1. Hence Γ is chorded.

The second statement follows since every ideal which has a linear resolution is

componentwise linear [21, Lemma 8.2.10].

The converses to the statements in Theorem 4.4.3 do not hold. We will discuss

this further in the next section.

4.5 Which Complexes Result in Ideals with Linear Resolution?

As mentioned in Section 4.3, the converses to parts 1 and 2 of Theorem 4.3.1 do not

hold. Consider the following counterexample to the converse of part 1.

Example 4.5.1. The simplicial complex Γ in Figure 3.5 is a triangulated sphere

with a hollow tetrahedron suspended within it from four pairwise non-adjacent ver-

tices. The outer sphere is not an orientably-vertex-minimal 2-dimensional cycle as

the hollow tetrahedron is an orientable 2-dimensional cycle on a proper subset of its

vertices. Thus Γ is orientably-2-cycle-complete as its only orientably-vertex-minimal

2-dimensional cycle, the tetrahedron, is 2-complete. The 2-closure adds all possible

1-faces to Γ and adds the 3-face on the four vertices of the tetrahedron. It is not hard

to see that the 2-faces of the outer sphere in ∆2(Γ) form a homological 2-cycle which
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is not a 2-boundary in ∆2(Γ) for any field k and therefore H̃2(∆2(Γ); k) 6= 0. Hence

N (∆2(Γ)) does not have a linear resolution over any field k by Theorem 4.0.2.

Now consider the following counterexamples to the converse of Theorem 4.3.1 part

2. We will see in Section 5.3 that these two examples lie in a class of counterexamples

that arise from a family of simplicial complexes which we call vertex-partition

complexes and which are the subject of Chapter 5.

Example 4.5.2. Let Γ be the pure 2-dimensional simplicial complex on the vertices

x0, . . . , x5 whose minimal non-faces are {x0, x1, x2} and {x3, x4, x5}. By a computa-

tion using Theorem 4.2.8 one can show that the complex Γ is 2-chorded.

We claim that the 2-closure of Γ, ∆2(Γ), is a 3-dimensional simplicial complex.

Clearly dim∆2(Γ) ≥ 3 as one can see that ∆2(Γ) contains the 3-dimensional face

{x0, x1, x3, x4} whose 3-subsets are 2-dimensional faces of Γ. However, any subset

of {x0, . . . , x5} of size 5 contains either {x0, x1, x2} or {x3, x4, x5} and these sets are

minimal non-faces of Γ and so don’t belong to ∆2(Γ) since ∆2(Γ)
[2] = Γ by definition.

Thus ∆2(Γ) has no 4-faces and therefore dim∆2(Γ) = 3.

One can show that the pure 3-skeleton of ∆2(Γ) is a 3-dimensional cycle, the sum

of whose 3-faces cannot be a 3-boundary as ∆2(Γ) is only 3-dimensional. Therefore

by Theorem 3.3.3 we have H̃3(∆2(Γ);Z2) 6= 0 and so the Stanley-Reisner ideal of

∆2(Γ) does not have a linear resolution over Z2 by Theorem 4.0.2.

Example 4.5.3. Let Γ be the pure 3-dimensional simplicial complex on the vertices

x0, . . . , x6 that is obtained from Λ3
7 by removing the following five facets:

{x0, x1, x5, x6} {x0, x2, x5, x6} {x0, x3, x5, x6} {x0, x4, x5, x6} {x1, x2, x3, x4}

The facets of Γ are:

{x0, x1, x2, x3} {x0, x1, x2, x4} {x0, x1, x2, x5} {x0, x1, x2, x6} {x0, x1, x3, x4}

{x0, x1, x3, x5} {x0, x1, x3, x6} {x0, x1, x4, x5} {x0, x1, x4, x6} {x0, x2, x3, x4}

{x0, x2, x3, x5} {x0, x2, x3, x6} {x0, x2, x4, x5} {x0, x2, x4, x6} {x0, x3, x4, x5}

{x0, x3, x4, x6} {x1, x2, x3, x5} {x1, x2, x3, x6} {x1, x2, x4, x5} {x1, x2, x4, x6}

{x1, x2, x5, x6} {x1, x3, x4, x5} {x1, x3, x4, x6} {x1, x3, x5, x6} {x1, x4, x5, x6}

{x2, x3, x4, x5} {x2, x3, x4, x6} {x2, x3, x5, x6} {x2, x4, x5, x6} {x3, x4, x5, x6}
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By similar arguments to those given in Example 4.5.2, the complex Γ is 3-chorded but

the Stanley-Reisner ideal of the 4-dimensional simplicial complex ∆3(Γ) does not have

a linear resolution over Z2. In fact, the pure 4-skeleton of ∆3(Γ) is a 4-dimensional

cycle and H̃4(∆3(Γ);Z2) 6= 0.

It turns out that all counterexamples to the converse of Theorem 4.3.1 part 2 share

a specific property. The d-closures of these d-chorded complexes contain face-minimal

non-n-complete n-dimensional cycles having complete 1-skeletons and having no chord

sets, where n > d. It is this feature which prevents the desired linear resolution by

introducing homology on a level higher than the dimension of the original complex.

We will prove this in Section 4.6.

Although it is not the case that the d-closures of all d-chorded complexes have

Stanley-Reisner ideals with linear resolutions over fields of characteristic 2, this does

hold for the smaller class of d-dimensional forests. As we will see in the proof of the

following theorem, the d-closures of these complexes have no n-dimensional cycles for

n ≥ d. It follows that, over fields having characteristic 2, all upper-level homologies

in the closures of these complexes are zero.

Theorem 4.5.4 (All d-dimensional forests result in ideals with linear reso-

lutions). If Γ is a d-dimensional forest then N (∆d(Γ)) has a (d+1)-linear resolution

over any field of characteristic 2.

Proof. By Theorem 4.0.2 we need to show that, for any field k of characteristic 2,

H̃i(∆d(Γ)W ; k) = 0 for all i 6= d− 1 and all W ⊆ V (Γ). However, it is not hard to see

that the pure d-skeleton of any induced subcomplex of a d-dimensional forest is also a

d-dimensional forest and so by Lemma 4.2.3 we need only show that H̃i(∆d(Γ); k) = 0

for all i 6= d− 1.

Since ∆d(Γ) has all possible faces of dimension less than d, by its definition, we

know that H̃i(∆d(Γ); k) = 0 for all i < d − 1. Since Γ has no d-dimensional cycles,

neither does ∆d(Γ) and so by Theorem 3.3.3 we must have H̃d(∆d(Γ); k) = 0.

We claim that ∆d(Γ) has no faces of dimension greater than d. If ∆d(Γ) contains a

face of dimension greater than d then it must contain a face of dimension d+1. Such

a face exists in ∆d(Γ) only when all subsets of its vertices of size d + 1 are faces of
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Γ. But these d-faces of Γ then form a d-dimensional cycle in Γ by Proposition 3.2.12.

This is a contradiction since Γ contains no d-dimensional cycles and so ∆d(Γ) contains

no faces of dimension greater than d. Hence it must be the case that H̃i(∆d(Γ); k) = 0

for all i > d.

Therefore H̃i(∆d(Γ); k) = 0 for all i 6= d− 1 and so, by Theorem 4.0.2, N (∆d(Γ))

has a (d+ 1)-linear resolution over k.

The corresponding statement to Theorem 4.5.4 for a general field does not hold.

For example, the triangulation of the mod 3 Moore space shown in Figure 3.9 in

Chapter 3 is a 2-dimensional tree, but the Stanley-Reisner ideal of its 2-closure does

not have a linear resolution over fields of characteristic 3. However, we have not found

any examples of d-dimensional forests whose d-closures have Stanley-Reisner ideals

without linear resolutions over fields of characteristic 0.

As mentioned earlier, the converses to both statements in Theorem 4.4.3 are also

not true. The following is a counterexample to both.

Example 4.5.5. Let Γ be the triangulation of the mod 3 Moore space from Figure

3.9 in Chapter 3. The pure 1-skeleton of this simplicial complex is 1-chorded because

it has a perfect elimination ordering given by f, d, e, x, y, z, a, b, c and so is chordal by

Lemma 2.3.2. The pure 2-skeleton of Γ is 2-chorded because it does not contain any

2-dimensional cycles. Therefore Γ is chorded, but N (Γ) is not componentwise linear

over every field as one can show that N (Γ)[3] does not have a 3-linear resolution over

fields of characteristic 3.

Recently, in [27], Morales et al. introduced the idea of a simplicial complex that

is minimal to linearity.

Definition 4.5.6 (Morales et al. [27]). A pure d-dimensional simplicial complex Γ

is minimal to (d+ 1)-linearity over the field k if the following conditions hold:

1. dim∆d(Γ) = d

2. N (∆d(Γ)) does not have a (d+ 1)-linear resolution over k

3. for every proper pure d-dimensional subcomplex Γ′ of Γ, N (∆d(Γ
′)) has a linear

resolution over k.



76

It is shown in [27] that (non-d-complete) orientable pseudo d-manifolds are mini-

mal to (d+1)-linearity over all fields and that (non-d-complete) non-orientable pseudo

d-manifolds are minimal to (d+ 1)-linearity only when the characteristic of the field

is equal to 2. We are able to extend this idea to d-dimensional cycles.

Proposition 4.5.7 (Face-minimal d-dimensional cycles are minimal to lin-

earity in characteristic 2). Any face-minimal d-dimensional cycle that is not d-

complete is minimal to (d+ 1)-linearity over all fields of characteristic 2.

Proof. Let k be a field of characteristic 2 and let Ω be a face-minimal d-dimensional

cycle that is not d-complete. Since Ω is face-minimal, it does not contain any d-

complete subcomplexes by Proposition 3.2.12. Therefore, by the definition of the

d-closure, we have dim∆d(Ω) = d. By Theorem 3.3.3, H̃d(∆d(Ω); k) 6= 0 and so by

Theorem 4.0.2, N (∆d(Ω)) does not have a linear resolution over k.

Let Ω′ be any proper pure d-dimensional subcomplex of Ω. Then Ω′ contains no

d-dimensional cycles since Ω is face-minimal. Hence Ω′ is a d-dimensional forest and

so, by Theorem 4.5.4, N (∆d(Ω
′)) has a linear resolution over k.

We cannot conclude, however, that non-d-complete face-minimal d-dimensional

cycles are minimal to (d + 1)-linearity over an arbitrary field k. For example, the

triangulation, Γ, of the real projective plane shown in Figure 3.3f is a face-minimal

2-dimensional cycle. However, if the field k has characteristic not equal to 2 then

N (∆2(Γ)) has a (d + 1)-linear resolution over k, as previously discussed. Thus con-

dition 2 in Definition 4.5.6 is not satisfied and so Γ is not minimal to 3-linearity over

k.

One might hope that non-d-complete, orientably-face-minimal d-dimensional cy-

cles would be minimal to (d + 1)-linearity over fields of characteristic 0, but this

remains an open question.

4.6 A Criterion for Linear Resolution in Characteristic 2

As we have seen, for a square-free monomial ideal to have a (d+1)-linear resolution its

Stanley-Reisner complex and its induced subcomplexes must have vanishing simplicial
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homology in all but dimension d− 1. Theorem 4.3.1 shows that when this holds over

fields of characteristic 2 the pure d-skeleton of the complex is d-chorded.

Conversely, in order to show that all simplicial complexes in a particular class have

Stanley-Reisner ideals with linear resolutions over fields of characteristic 2, we must

show that the simplicial homology of these complexes and their induced subcomplexes

vanishes in the right dimensions. As we can see from Examples 4.5.2 and 4.5.3 it is

not necessarily the case that the upper-level homology groups of the d-closure of a

d-chorded complex vanish. This is in contrast to the 1-dimensional case where the

condition of being chordal on the 1-skeleton of the complex forces all upper-level

homology to disappear. In these higher-dimensional examples, the d-closure of the

complex has a pure m-skeleton which is not m-chorded for some m > d. When

we require these m-skeletons to be m-chorded we obtain a necessary and sufficient

condition for linear resolution over fields of characteristic 2.

Recall from Section 2.1 that the d-complement of the pure d-dimensional simplicial

complex Γ is denoted Γd.

Theorem 4.6.1 (linear resolution in characteristic 2 ⇐⇒ chorded). Let k

be a field of characteristic 2 and let I be an ideal in k[x1, . . . , xn] that is generated by

square-free monomials of degree d+ 1. The following are equivalent:

a) I has a linear resolution.

b) N (I) is chorded.

c) N (I)[m] is m-chorded for all m ≥ d.

d) ∆d(F(I)d) is chorded.

e) ∆d(F(I)d)
[m] is m-chorded for all m ≥ d.

Proof. Let Γ = N (I) and let Υ = F(I)d. Also notice that since the existence of a

linear resolution is solely determined by the vanishing of certain homology groups, I

has a linear resolution over any field of characteristic 2 if and only if it has a linear

resolution over Z2, by Lemma 2.2.2.
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a) ⇒ b) If I has a linear resolution then by Theorem 4.3.1 we know that Γ = ∆d(Γ
[d])

and Γ[d] is d-chorded. We also know that Γ is m-complete for all m < d by the

definition of d-closure. Therefore it follows from Proposition 4.1.4 that Γ[m] is m-

chorded for all m < d.

Let m > d and let Ω be any face-minimal, non-m-complete m-dimensional cycle

in Γ[m]. By Proposition 3.3.1 we know that Ω is the support complex of a homological

m-cycle over Z2. The ideal I has a linear resolution over Z2 and so we know that

H̃m(ΓV (Ω);Z2) = 0 by Theorem 4.0.2. Thus Ω is also the support complex of an m-

boundary of faces of ΓV (Ω). Therefore by Lemma 4.1.2 we know that Ω has a chord set

in ΓV (Ω). Hence Γ
[m] is m-chorded. Therefore Γ[m] is m-chorded for all 1 ≤ m ≤ dimΓ

and so Γ is chorded.

b) ⇒ c) This follows from the definition of chorded.

c) ⇒ a) Suppose that Γ[m] is m-chorded for all m ≥ d. Since I is generated by square-

free monomials of degree d+ 1 we have Γ = ∆d(Γ
[d]) by Proposition 4.2.4. Therefore

by Proposition 4.2.7 we know that for all W ⊆ V (Γ) we have H̃i(ΓW ; k) = 0 for

0 ≤ i ≤ d− 2 and i = d.

Let m > d and let W ⊆ V (Γ). We would like to show that H̃m(ΓW ; k) = 0.

By assumption Γ[m] is m-chorded. Therefore by Proposition 4.2.7 we know that

H̃m(∆m(Γ
[m])W ; k) = 0. Furthermore, by part 3 of Lemma 4.2.2 we have

∆m(Γ
[m])[t] = ∆m(∆d(Γ

[d])[m])[t] = ∆d(Γ
[d])[t]

for all t ≥ m. Thus them-faces and them+1-faces of ∆m(Γ
[m])W and ΓW = ∆d(Γ

[d])W

are equivalent. Therefore we have

H̃m(ΓW ; k) = H̃m(∆m(Γ
[m])W ; k) = 0

for all m > d. Consequently H̃m(ΓW ; k) = 0 for all m 6= d − 1. Hence I has a

(d+ 1)-linear resolution by Theorem 4.0.2.

b) ⇔ d) It is easy to see that the d-complement of F(I) is equal to the pure d-skeleton

of N (I) = Γ. Thus Υ = Γ[d] and so ∆d(Υ) is chorded if and only ∆d(Γ
[d]) = N (I) is

chorded.
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c) ⇔ e) As before, Υ = Γ[d] and so ∆d(Υ)[m] is m-chorded for all m ≥ d if and only

∆d(Γ
[d])[m] = Γ[m] = N (I)[m] is m-chorded for all m ≥ d.

It is interesting to note that if the square-free monomial ideal I has a linear

resolution over a field of characteristic 2 and dimN (I) = n then N (I)[n] is not

only n-chorded but is, in fact, an n-dimensional forest. This follows since any n-

dimensional cycle in N (I) would lead to non-zero n-dimensional homology in N (I)

by Theorem 3.3.3 and this would contradict Theorem 4.0.2. By Theorem 4.6.1 we

can conclude that for any square-free monomial ideal I whose minimal generators

all have the same degree, if N (I) is chorded then N (I)[n] is an n-dimensional forest

where n = dimN (I). Examining this fact independently from Theorem 4.6.1 it is

not immediately obvious why this would be the case. It turns out to be due to the

intricate relationship between the d-closure operation and the definition of d-chorded

when I is minimally generated in degree d+ 1 as we see in the proof of the following

proposition.

Proposition 4.6.2 (When the closure is chorded its top dimension is a

forest). Let I be a square-free monomial ideal whose minimal generators all have

degree d + 1. If N (I) is chorded then N (I)[n] is an n-dimensional forest where n =

dimN (I)

Proof. Suppose that N (I)[n] is not an n-dimensional forest and so contains an n-

dimensional cycle Ω. Then, because N (I)[n] is n-chorded, Ω is forced, by the inductive

nature of the definition, to contain an n-complete cycle on some vertex set S ⊆ V (Ω).

Such an n-complete cycle clearly contains all possible faces of dimension d on the set

S which requires N (I)S to be a simplex as N (I) = ∆d(N (I)[d]) by Proposition 4.2.4.

This simplex has dimension greater than n by Proposition 3.2.12 and so we have a

contradiction.

The condition for (d+1)-linear resolution in Theorem 4.6.1 requires ensuring that

every non-m-complete, face-minimal m-dimensional cycle in N (I)[m] has a chord set

for all m ≥ d. However, our next result shows that in most cases assuming that

N (I)[d] is d-chorded suffices. The only possible obstruction to this implication is the

presence of an m-dimensional cycle of a very special and highly-connected form. In
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general we expect these types of cycles to occur infrequently. Thus to check for a

linear resolution we need only verify that N (I)[d] is d-chorded and that any cycles of

this special nature have chord sets. For an illustration of the technique used in the

proof of the following theorem see Figure 4.7.

v

u
(a) The 2-dimensional cycle Ω with 1-
dimensional cycles Φ1 and Φ2 shown in bold

v

(b) The 2-dimensional cycles Ω1 and Ω2 joined
by v

u
(c) The 2-dimensional cycle Ω3 = 〈H1, . . . , Hs〉

Figure 4.7: Construction used in the proof of Theorem 4.6.3.

Theorem 4.6.3 (Chordedness can be transferred upwards in the closure).

Let Γ be a d-chorded simplicial complex. Then ∆d(Γ) is chorded if and only if for all

m > d each 1-complete, face-minimal, non-m-complete m-dimensional cycle in ∆d(Γ)

has a chord set in ∆d(Γ).

Proof. If ∆d(Γ) is chorded then all face-minimal, non-m-complete m-dimensional cy-

cles in ∆d(Γ) have chord sets in ∆d(Γ) for all m by definition.

Now suppose that for all m > d each 1-complete, face-minimal, non-m-complete

m-dimensional cycle in ∆d(Γ) has a chord set in ∆d(Γ). We would like to show that

∆d(Γ) is chorded. By the nature of the d-closure we know that ∆d(Γ) is t-complete

for all t < d. Thus ∆d(Γ)
[t] is t-chorded for all t < d by Proposition 4.1.4.
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For the remaining cases we will use induction on t. When t = d we have ∆d(Γ)
[d] =

Γ. Since Γ is d-chorded by assumption this proves the base case.

Now suppose that t > d and that we know ∆d(Γ)
[n] is n-chorded for all n < t. Let

Ω be a face-minimal t-dimensional cycle that is not t-complete in ∆d(Γ)
[t]. We would

like to show that Ω has a chord set in ∆d(Γ)
[t]. If Ω is 1-complete then by assumption

Ω has a chord set in ∆d(Γ)
[t], and so we may assume that Ω is not 1-complete. Then

there exist u, v ∈ V (Ω) such that u and v are not contained in the same t-face of Ω.

Let F1, . . . , Fk be the t-faces of Ω containing v. By Proposition 3.2.3 we know that

the (t−1)-path-connected components of 〈F1\{v}, . . . , Fk\{v}〉 are (t−1)-dimensional

cycles. Call these cycles Φ1, . . . ,Φm. For each i ∈ {1, . . . , m} let Pi ⊆ {1, . . . , k} be

such that Fj \ {v} ∈ Φi if and only if j ∈ Pi. Since for each j the face Fj \ {v}

must belong to exactly one of Φ1, . . . ,Φm, the sets P1, . . . , Pm form a partition of

{1, . . . , k}.

The complex ∆d(Γ)
[t−1] is (t − 1)-chorded by assumption. Therefore, by Lemma

4.2.6, the sum of the (t− 1)-faces of Φi form a (t− 1)-boundary in ∆t−1(∆d(Γ)
[t−1])

on V (Φi) over Z2 for each i and therefore in ∆d(Γ) by Lemma 4.2.2 since t− 1 ≥ d.

Hence for each 1 ≤ i ≤ m there exist t-faces Ai
1, ..., A

i
`i
in ∆d(Γ)V (Φi) such that

∂t

(

`i
∑

j=1

Ai
j

)

=
∑

j∈Pi

Fj \ {v}. (4.1)

Without loss of generality we may assume that the choice of Ai
1, ..., A

i
`i

is minimal

in the sense that for no proper subset of Ai
1, ..., A

i
`i
is (4.1) satisfied. Let Ωi be the

simplicial complex whose facets are {Fj|j ∈ Pi} ∪ {Ai
1, ..., A

i
`i
}.

By Proposition 3.3.2 we know that for 1 ≤ i ≤ m each Ωi is a t-dimensional cycle.

As well we have V (Ωi) ( V (Ω) as u /∈ V (Ωi). Since Ω is a face-minimal t-dimensional

cycle, each Ωi must contain at least one t-face which is not in Ω. We collect all of

these t-faces in the nonempty set C:

C = {Ai
j | 1 ≤ i ≤ m, 1 ≤ j ≤ `i, Ai

j /∈ Ω}.

We would like to show that C is a chord set of Ω in ∆d(Γ)
[t].

Consider the collection of t-faces in Ω and those in Ω1, . . . ,Ωm with repeats. Let

H1, . . . , Hs be the t-faces in this collection which appear an odd number of times so



82

that over Z2 we have

∑

(t-faces of Ω) +

m
∑

i=1

∑

(t-faces of Ωi) =

s
∑

i=1

Hi. (4.2)

Since Ω and Ω1, . . . ,Ωm are all t-dimensional cycles, by Proposition 3.3.1 they

correspond to homological t-cycles over Z2. Therefore by (4.2) over Z2 we have,

∂t

(

s
∑

i=1

Hi

)

= ∂t

(

∑

(t-faces of Ω)
)

+
m
∑

i=1

∂t

(

∑

(t-faces of Ωi)
)

= 0.

Hence the t-path-connected components of the simplicial complex 〈H1, . . . , Hs〉 are

t-dimensional cycles by Proposition 3.3.1. Call these cycles Ωm+1, . . . ,ΩM . We would

like to show that our set C is a chord set that breaks Ω into the cycles Ω1, . . . ,ΩM .

By (4.2), after rearranging the sums, over Z2 we have

∑

(t-faces of Ω) =

M
∑

i=1

∑

(t-faces of Ωi).

By noticing that the set C consists of exactly those t-faces on the right-hand side of

this equation which do not belong to Ω we can see that properties 2 and 3 of a chord

set hold for C. Also, it is clear from our construction that all t-faces of both Ω and

of C appear in at least one of the Ωi’s. Therefore property 1 of a chord set holds for

the set C.

Now since none of Ω1, . . . ,Ωm contain u by construction we have |V (Ωi)| < |V (Ω)|

for all 1 ≤ i ≤ m. We would like to show that none of Ωm+1, . . . ,ΩM contain v. Recall

that Φ1, . . . ,Φm are the (t−1)-path-connected components of 〈F1 \{v}, . . . , Fk \{v}〉

and so no two such distinct components could share a face of the form Fi \ {v}. Thus

each face Fi appears in only one of the cycles Ω1, . . . ,Ωm. Each such Fi is also a face

of Ω and so by our choice of H1, . . . , Hs we know that we cannot have Fi = Hj for

any i ∈ {1, . . . , k} and j ∈ {1, . . . , s}. Therefore, by the construction of the cycles

Ωm+1, . . . ,ΩM we know that none of the Fi’s appear in any of these cycles. Recall

that F1, . . . , Fk are the only t-faces of Ω that contain v and none of the t-faces of C

contain v since they are subsets of
⋃m

i=1 V (Φi). It follows that none of Ωm+1, . . . ,ΩM

contain v. This implies that |V (Ωi)| < |V (Ω)| for all m+ 1 ≤ i ≤ M . Thus property

4 of a chord set is also satisfied by C and hence ∆d(Γ)
[t] is t-chorded. Hence ∆d(Γ)

is chorded.
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As a consequence of Theorems 4.6.1 and 4.6.3 we have the following theorem.

Theorem 4.6.4 (combinatorial criterion for a linear resolution). Let I be

generated by square-free monomials of degree d + 1. Then I has a linear resolution

over any field of characteristic 2 if and only if N (I)[d] is d-chorded and for m > d

each 1-complete, face-minimal, non-m-complete m-dimensional cycle in N (I) has a

chord set in N (I).

From Theorems 4.3.1 and 4.6.4 we conclude that for any square-free monomial

ideal I generated in degree d + 1, if I has no linear resolution then either N (I)[d]

is not d-chorded or for some m > d there exists a 1-complete face-minimal non-m-

complete m-dimensional cycle in N (I) which has no chord set. Examples 4.5.2 and

4.5.3 give instances of the complex N (I) in the latter case. In Chapter 5 we will

explore a class of examples from this case in more detail.

In the next section we prove that in the 1-dimensional case, obstructions to linear

resolution of this type do not exist. In particular if Γ[1] is 1-chorded then in ∆1(Γ
[1])

all 1-complete m-dimensional cycles lie in m-complete induced subcomplexes which

are m-chorded and consequently such cycles have chord sets. This leads us to a new,

combinatorial proof of Theorem 4.0.1 in characteristic 2.

4.7 A New Proof of Fröberg’s Theorem in Characteristic 2

As mentioned at the beginning of this chapter, in the proof of Theorem 4.0.1 in [16],

Fröberg shows that the simplicial homology of the clique complex of a chordal graph

vanishes on all levels greater than zero. He does so inductively by dismantling the

graph at a complete subgraph and then applying the Mayer-Vietoris sequence on

the resulting dismantled clique complex. This is a very clean and elegant method for

demonstrating that all upper-level homologies are zero. However, this technique gives

no intuitive sense as to why it should be the case that filling in complete subgraphs of

a chordal graph produces a simplicial complex with no homology on higher levels. A

chordal graph may contain complete subgraphs on any number of vertices and so the

clique complex may have faces of any dimension. The question is why the addition
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of these higher-dimensional faces doesn’t introduce any new homology. The following

theorem, together with Proposition 4.2.7, answers this question, from a combinatorial

point of view, in the case that the field of interest has characteristic 2.

Theorem 4.7.1 (chordal ⇐⇒ chorded clique complex). A graph G is chordal

if and only if ∆1(G) is chorded.

Proof. Since G is chordal it is 1-chorded and so ∆1(G)[1] = G is 1-chorded. Let

m > 1 and let Ω be a 1-complete, face-minimal m-dimensional cycle in ∆1(G) that

is not m-complete. Then ∆1(G)V (Ω) is a (|V (Ω)| − 1)-simplex by the definition of

the 1-closure and hence ∆1(G)
[m]
V (Ω) is m-chorded by Remark 4.1.5. Therefore Ω has a

chord set in ∆1(G) and by Theorem 4.6.3, ∆1(G) is chorded.

Conversely, ∆1(G)[1] is 1-chorded and ∆1(G)[1] = G so G is a chordal graph.

Comparing Theorem 4.7.1 to Theorem 4.6.3 we have another specific example of

how the 1-dimensional case is more straightforward than the higher-dimensional case.

Theorem 4.7.1 gives us a new proof of Fröberg’s theorem over fields of character-

istic 2 using the notion of d-chorded complexes.

Theorem 4.7.2 (Fröberg’s theorem in characteristic 2). If G is chordal then

N (∆1(G)) has a 2-linear resolution over any field of characteristic 2. Conversely, if

N (Γ) has a 2-linear resolution over a field of characteristic 2 then Γ = ∆1(Γ
[1]) and

Γ[1] is chordal.

Proof. Let G be a chordal graph and let k be a field of characteristic 2. To show that

N (∆1(G)) has a 2-linear resolution over k we need to show that H̃i(∆1(G)W ; k) = 0

for all i ≥ 1 and all W ⊆ V (G). Let d ≥ 1 and let W ⊆ V (G). We know

by Theorem 4.7.1 that ∆1(G)[d] is d-chorded. Therefore by Proposition 4.2.7 we

know that H̃d(∆d(∆1(G)[d])W ; k) = 0. By parts 2 and 3 of Lemma 4.2.2 we have

∆d(∆1(G)[d])[t] = ∆1(G)[t] for all t ≥ d. Therefore the complexes ∆1(G) and ∆d(∆1(G)[d])

have the same d-faces and the same (d+1)-faces. Since these are the only faces which

are taken into account when computing d-dimensional homology, we must have that

H̃d(∆d(∆1(G)[d])W ; k) = H̃d(∆1(G)W ; k). Hence H̃d(∆1(G)W ; k) = 0 for all d ≥ 1

and all W ⊆ V (G). Therefore N (∆1(G)) has a 2-linear resolution by Theorem 4.0.2.
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The converse follows by Theorem 4.3.1 and by the equivalence of the notions of

chordal and 1-chorded.



Chapter 5

Vertex-Partition Complexes

In Section 4.5 we discussed d-chorded simplicial complexes whose d-closure had a

Stanley-Reisner ideal without linear resolution over fields of characteristic 2. These

complexes all contain higher-dimensional cycles which have no chord sets and have

complete 1-skeletons by Theorem 4.6.4. It would be an interesting point to try and

characterize such counterexamples to the converse of Theorem 4.3.1 part 2 and to

determine what combinatorial feature on the d-dimensional level is causing such cycles

to exist in higher dimensions.

In examining such counterexamples on small sets of vertices one distinct pattern

emerges in most of the cases. The salient feature in these examples is that these

d-chorded complexes are the pure d-skeletons of a simplicial complex whose minimal

non-faces form a partition of the vertex set and for which no part in the partition is

larger than d+1. In this chapter we study this class of simplicial complexes to deter-

mine the barrier to linear resolution and to examine the features, both combinatorial

and homological, associated to this class of complexes.

Interestingly, we discover that these complexes are all simplicial spheres. This

leads us to understand why they result in ideals without linear resolution. Further-

more, these spheres are highly-connected and have relatively few vertices for their

given dimension. In addition, almost all induced subcomplexes of these spheres are

acyclic over all fields. This is in contrast to our general intuition about triangulated

spheres which we imagine to contain many lower-dimensional spheres as induced sub-

complexes. The surprisingly simple form of this class of complexes, however, allows

us to easily compute the Betti numbers, projective dimension and regularity of the

Stanley-Reisner ideal of any one of these simplicial complexes.

Definition 5.0.1 (vertex-partition complex). A vertex-partition complex is

a simplicial complex whose minimal non-faces each have at least two vertices and

86
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form a partition of its vertex set. We use the notation Ω(π1, . . . , πp) to indicate a

vertex-partition complex whose minimal non-faces are π1, . . . , πp.

Remark. Note that the requirement that |πi| ≥ 2 for all i in the previous definition is

not a real constraint as a simplicial complex with a minimal non-face of size 1 simply

excludes that vertex entirely so there is no reason to include it in the underlying

vertex set. In particular, if |π1| = 1 then Ω(π1, . . . , πp) = Ω(π2, . . . , πp).

Let Ω be the vertex-partition complex Ω(π1, . . . , πp) on the vertex set x1, . . . , xn.

The Stanley-Reisner ideal of Ω is

N (Ω) = (xπ1, . . . , xπp).

Since πi ∩ πj = ∅ for all 1 ≤ i < j ≤ p, vertex-partition complexes correspond to

Stanley-Reisner ideals whose generators have pairwise disjoint support.

In Figures 5.1 and 5.2 we give examples of all possible vertex-partition complexes

in dimensions 1 and 2 up to a relabeling of the vertices. Notice that, as mentioned

above, these complexes are all triangulations of spheres. In particular, these spheres

have relatively few faces for their dimension and, as can be easily seen, most induced

subcomplexes of these examples are acyclic.

x0

x1

x2 x3

(a) Ω({x0, x1}, {x2, x3})

x0

x2 x1

(b) Ω({x0, x1, x2})

Figure 5.1: Examples of all vertex-partition complexes in dimension 1.

Next we give a more complicated and higher-dimensional example of a vertex-

partition complex. We will return to this particular example again in Sections 5.2

and 5.3.

Example 5.0.2. The 48 facets of the pure 7-dimensional simplicial complex

Ω = Ω({x0, x1, x2}, {x3, x4, x5, x6}, {x7, x8, x9, x10}) with vertices x0, x1, . . . , x10 are
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x0

x3

x1

x2

(a) Ω({x0, x1, x2, x3})

x0

x1

x4x3 x2

(b) Ω({x0, x1, x2}, {x3, x4})

x1

x0

x4

x5x2 x3

(c) Ω({x0, x1}, {x2, x3}, {x4, x5})

Figure 5.2: Examples of all vertex-partition complexes in dimension 2.

all the maximal subsets of {x0, x1, . . . , x10} which do not contain any of the minimal

non-faces {x0, x1, x2}, {x3, x4, x5, x6}, or {x7, x8, x9, x10}. The Stanley-Reisner ideal

of Ω is

N (Ω) = (x0x1x2, x3x4x5x6, x7x8x9x10).

One can show that Ω is an example of a pseudo 7-manifold. In fact, it is a simplicial

sphere of dimension 7. We show that this is a general fact about vertex-partition

complexes in Theorem 5.1.3.

Remark 5.0.3. It is interesting to note that a subclass of vertex-partition complexes

has recently arisen in work by other researchers. In [17] and [29], Goff et al. and

Nevo show a minimality property in relation to the f -vectors of the complexes in

this subclass. More precisely, let C(i, d) be the family of d-dimensional simplicial

complexes with non-zero reduced d-dimensional homology and whose minimal non-

faces all have size less than or equal to i. Let Ω = Ω(π1, . . . , πq, πq+1) where d + 1 =

qi+ r with 1 ≤ r ≤ i, |πj | = i+1 for 1 ≤ j ≤ q and |πq+1| = r+1. In [17] and [29] it

is shown that for any Γ in C(i, d) we have fj(Γ) ≥ fj(Ω) for all j ≥ 0 where fj is the

jth entry of the f -vector of the complex.

5.1 The Simplicial Structure of Vertex-Partition Complexes

In this section we will examine the simplicial structure of vertex-partition complexes.

It turns out that this class of complexes as well as their induced subcomplexes have
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a particularly simple form. We will show that vertex-partition complexes are all

simplicial spheres and that their induced subcomplexes are either simplicial spheres

or are contractible.

Lemma 5.1.1. The simplicial complex Ω(π) is a simplicial sphere with dimension

|π| − 2.

Proof. It is easy to see that, since Ω(π) has a single minimal non-face, it is the

boundary of an (|π| − 1)-simplex. The result follows.

In the next lemma we will see that vertex-partition complexes can be built up

inductively from other vertex-partition complexes on smaller vertex sets via the join

operation.

Lemma 5.1.2. Ω(π1, . . . , πp) = Ω(π1, . . . , πp−1) ∗ Ω(πp)

Proof. Note that F ∈ Ω(π1, . . . , πp) if and only if F ⊆ π1 ∪ · · · ∪ πp and F + πi for

1 ≤ i ≤ p. Similarly F ∈ Ω(π1, . . . , πp−1) ∗ Ω(πp) if and only if F = A ∪ B where

A ⊆ π1 ∪ · · · ∪ πp−1 and A + πi for 1 ≤ i ≤ p − 1 and B ⊆ πp and B + πp. These

conditions on F are equivalent since πp ∩ πi = ∅ for all i < p and thus the two

complexes are equal.

Using these observations we are able to determine the simplicial structure of any

vertex-partition complex.

Theorem 5.1.3 (Vertex-partition complexes are spheres). The vertex-partition

complex Ω(π1, . . . , πp) with n vertices is a simplicial sphere of dimension n− p− 1.

Proof. The first part follows from Lemmas 5.1.1 and 5.1.2 and the fact that the join

of two simplicial spheres is a simplicial sphere by Proposition 2.2.3.

Since the minimal non-faces of Ω(π1, . . . , πp) are π1, . . . , πp and these faces par-

tition the vertex set, a face of highest dimension contains all vertices but one from

each of the faces π1, . . . , πp. Therefore such a face contains n − p vertices and the

dimension of Ω(π1, . . . , πp) is n− p− 1.

Since all simplicial spheres are pure it follows from Theorem 5.1.3 that all vertex-

partition complexes are pure. It is also easy to see from the argument in the proof of

Theorem 5.1.3 that all facets have n− p vertices.
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Remark 5.1.4. It is well-known that simplicial spheres have Stanley-Reisner rings

which are Cohen-Macaulay over all fields (see Stanley [35, Corollary 4.4]). Therefore

the Stanley-Reisner ring of a vertex-partition complex is Cohen-Macaulay over any

field.

It turns out that vertex-partition complexes belong to an even smaller class of

complexes than those that with Cohen-Macaulay Stanley-Reisner rings.

Definition 5.1.5 (shellable). A pure d-dimensional simplicial complex Γ is shellable

if there exists some ordering of its facets F1, . . . , Fm such that, for i = 2, . . . , m, the

intersection

Fi ∩

(

i−1
⋃

j=1

Fj

)

is a nonempty union of faces of Γ of dimension d− 1.

Theorem 5.1.6. All vertex-partition complexes are shellable.

Proof. Let Ω = Ω(π1, . . . , πp). It is easy to see that Ω(π1) is the boundary of a

(|π1| − 1)-simplex by its definition. Thus Ω(π1) is shellable by [31, Proposition 2.2

and Corollary 2.9]. Since Ω(π1, . . . , πp) = Ω(π1, . . . , πp−1)∗Ω(πp) by Lemma 5.1.2 and

the join of two shellable complexes is shellable by [31, Corollary 2.9], by induction Ω

is shellable.

Notice that there are many combinations of the parameters n and p for a vertex-

partition complex which will result in a simplicial sphere of a given dimension d.

However, the sensible requirement that |πi| ≥ 2 for all 1 ≤ i ≤ p means that n ≥ 2p.

This condition places constraints on the resulting pairs of n and p which will result

in a given d.

Proposition 5.1.7 (Vertex-partition complexes have few vertices). Given any

vertex-partition complex Ω of dimension d with n vertices we have

d+ 2 ≤ n ≤ 2(d+ 1).

Proof. Suppose that the vertex partition of Ω has p parts. By Theorem 5.1.3 we have

d = n − p − 1 and so p = n − d − 1. Therefore 2n − 2d − 2 = 2p ≤ n which means

that n ≤ 2d+ 2.
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Clearly p ≥ 1 which means that d = n−p−1 ≤ n−2 and therefore d+2 ≤ n.

In particular, vertex-partition complexes are spheres of high dimension relative

to the number of vertices in the complex. For example, when the dimension of the

complex is equal to 10 the range is between 12 and 22 vertices at most. Thus, in

some sense these spheres are very “compact” and highly-connected.

The bounds given in Proposition 5.1.7 are both achievable. The complex given

in Figure 5.2a is an example of a vertex-partition complex of dimension d on d + 2

vertices where d = 2 and the vertex-partition complex in Figure 5.2c has dimension

d and has 2d+ 2 vertices where d = 2.

Remarkably, in the case of vertex-partition complexes we can categorize not only

their global structure, but their local structure as well. In the following theorem we

see that all induced subcomplexes of a vertex-partition complex are either simplicial

spheres or are contractible. Therefore all such subcomplexes either have non-zero

homology only in the top dimension or have all homology groups equal to zero.

Theorem 5.1.8 (Induced subcomplexes of vertex-partition complexes are

spheres or contractible). Let W ⊆ V (Ω(π1, . . . , πp)).

1. If W =
⋃`

j=1 πij , 1 ≤ ` ≤ p then Ω(π1, . . . , πp)W = Ω(πi1 , . . . , πi`) is a simplicial

sphere of dimension |W | − `− 1.

2. If there exists 1 ≤ i ≤ p such that W∩πi 6= ∅ and πi\W 6= ∅ then Ω(π1, . . . , πp)W

is contractible.

Proof. Part 1 follows from Theorem 5.1.3.

For Part 2, we have W =
(

⋃`

j=1 πij

)

∪ S where S + πi for 1 ≤ i ≤ p and S 6= ∅.

Let Γ be the simplex on the vertex set S. We claim that

Ω(π1, . . . , πp)W = Ω(πi1 , . . . , πi`) ∗ Γ.

Notice that F ∈ Ω(π1, . . . , πp)W if and only if F ⊆ W and F + πij for 1 ≤ j ≤ `.

On the other hand, F ∈ Ω(πi1 , . . . , πi`) ∗ Γ if and only if F = A ∪ B such that

A ⊆ πi1 ∪ · · · ∪ πi` with A + πij for 1 ≤ j ≤ ` and B ⊆ S. These two conditions are

easily seen to be equivalent since S ∩πij = ∅ for all 1 ≤ j ≤ ` which proves the claim.
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Let S = {xα1
, . . . , xαt

}. Since Γ is a simplex with vertex set S, we can write

Γ = 〈{xα1
, . . . , xαt−1

}〉 ∗ xαt
. Therefore we have

Ω(π1, . . . , πp)W = Ω(πi1 , . . . , πi`) ∗ Γ

= Ω(πi1 , . . . , πi`) ∗
(

〈{xα1
, . . . , xαt−1

}〉 ∗ xαt

)

=
(

Ω(πi1 , . . . , πi`) ∗ 〈{xα1
, . . . , xαt−1

}〉
)

∗ xαt

and so Ω(π1, . . . , πp)W is a cone and is therefore contractible.

5.2 The Betti Numbers of Vertex-Partition Complexes

As a consequence of the structural characterization given in Theorem 5.1.8 we can

completely determine the Betti numbers of the Stanley-Reisner ideal of any vertex-

partition complex over any field k with a simple combinatorial formula.

Theorem 5.2.1 (Betti numbers of vertex-partition complexes). Let Ω =

Ω(π1, . . . , πp) be a vertex-partition complex. Then

βi,j(N (Ω)) = | {W ⊆ V (Ω) | |W | = j,

ΩW is a simplicial sphere of dimension j − i− 2} |

=

∣

∣

∣

∣

∣

{

(m1, . . . , mi+1)

∣

∣

∣

∣

∣

1 ≤ m1 < · · · < mi+1 ≤ p and

i+1
∑

`=1

|πm`
| = j

}
∣

∣

∣

∣

∣

.

(5.1)

Proof. From Theorem 2.5.4, we have

βi,j(N (Ω)) =
∑

W⊆V, |W |=j

dimk H̃j−i−2(ΩW ; k).

By Theorem 5.1.8 we get a non-zero contribution to the sum on the right-hand side

of the equation only when ΩW is a simplicial sphere of dimension j − i − 2. In this

case we have

dimk H̃j−i−2(ΩW ; k) = 1.

This gives the first equality.

The second equality then follows from Theorem 5.1.8.
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Note that it is straightforward to compute the Betti numbers of the Stanley-

Reisner ideal of a given vertex-partition complex Ω using formula (5.1). To determine

the Betti number βi,j(N (Ω)) we start by listing the ways of combining full parts of

the partition to achieve a set of vertices of size j. The number of ways to do this

with i + 1 parts gives us the number βi,j(N (Ω)). We demonstrate this technique in

Example 5.2.5.

Remark. The Betti numbers of the Stanley-Reisner ideal of a vertex-partition com-

plex can also be computed recursively by using the following formula given by Jacques

and Katzman in [24],

βi,j(N (Γ1 ∗ Γ2)) =
∑

m+n+1=i

∑

r+s=j

βm,r(N (Γ1))βn,s(N (Γ2)).

However, this essentially requires first computing the reduced homology groups for

all induced subcomplexes for both smaller simplicial complexes. The formula given

in Theorem 5.2.1 avoids this large computation by exploiting the specific simplicial

structure of vertex-partition complexes.

Recall from Section 2.5 that the projective dimension of a monomial ideal I is

given by

pd(I) = max{i | βi,j(I) 6= 0}.

As a corollary to Theorem 5.2.1 we can easily bound the projective dimension of the

Stanley-Reisner ideal of any vertex-partition complex.

Corollary 5.2.2. Let Ω = Ω(π1, . . . , πp) be a vertex-partition complex. If i ≥ p then

βi,j(N (Ω)) = 0.

Proof. From (5.1) in Theorem 5.2.1 we see that we must have i + 1 ≤ p in order to

have βi,j(N (Ω)) 6= 0.

Using Theorem 5.2.1 and Corollary 5.2.2 we can compute the projective dimension

exactly.

Theorem 5.2.3. Let Ω = Ω(π1, . . . , πp) be a vertex-partition complex. Then pd(N (Ω)) =

p− 1.
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Proof. From Corollary 5.2.2 we know that pd(N (Ω)) < p and so βi,j(N (Ω)) = 0 for

all i ≥ p. Consider the Betti numbers βp−1,j(N (Ω)). We would like to show that

there exists some j such that βp−1,j(N (Ω)) is non-zero. Considering the numbers

βp−1,j(N (Ω)) in terms of equation (5.1) in Theorem 5.2.1 we have i + 1 = p and we

are looking for some j such that

p
∑

`=1

|πm`
| = j.

However, since p is the total number of parts in the vertex partition we have

p
∑

`=1

|πm`
| = |V (Ω)|

and so βp−1,|V (Ω)|(N (Ω)) = 1. In particular βp−1,|V (Ω)|(N (Ω)) 6= 0 and so pd(N (Ω)) =

p− 1.

Recall that the Castelnuovo-Mumford regularity of the monomial ideal I is given

by

reg(I) = max{j − i | βi,j(I) 6= 0}.

It is straightforward to determine the Castelnuovo-Mumford regularity of the Stanley-

Reisner ideal of a vertex-partition complex.

Theorem 5.2.4. Suppose that Ω = Ω(π1, . . . , πp) is a vertex-partition complex on n

vertices. Then reg(N (Ω)) = n− p+ 1.

Proof. We would like to find max{j− i | βi,j(N (Ω)) 6= 0}. By Theorem 5.1.8, for any

W ⊆ V (Ω) with |W | = j we have H̃j−i−2(ΩW ; k) 6= 0 if and only ifW =
⋃i+1

`=1 πm`
. We

claim that the maximum difference between the indices i and j occurs when |W | = n.

To see this suppose that |W | < n and W =
⋃i+1

`=1 πm`
so necessarily we have i+1 < p.

Choose πr such that r 6= m` for any 1 ≤ ` ≤ i + 1 and let W ′ = W ∪ πr. Then

H̃|W ′|−(i+1)−2(ΩW ′; k) 6= 0 by Theorem 5.1.8 and

|W ′| − (i+ 1) = |W |+ |πr| − (i+ 1) > |W |+ 1− (i+ 1) = |W | − i

since |πr| ≥ 2. Therefore we can strictly increase the difference between i and j

by adding additional pieces of the partition until we have exhausted all parts of the

partition and thus the maximum occurs when j = n and i+ 1 = p.
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Example 5.2.5. We can use (5.1) from Theorem 5.2.1 to easily compute the Betti

numbers of the Stanley-Reisner ideal of the vertex-partition complex

Ω = Ω({x0, x1, x2}, {x3, x4, x5, x6}, {x7, x8, x9, x10})

introduced in Example 5.0.2. We have

N (Ω) = (x0x1x2, x3x4x5x6, x7x8x9x10)

and the only non-zero Betti numbers of N (Ω) are

β2,11(N (Ω)) = 1, β1,8(N (Ω)) = 1, β1,7(N (Ω)) = 2, β0,4(N (Ω)) = 2, β0,3(N (Ω)) = 1.

For instance, to compute βi,7(N (Ω)) we need only notice that there are only two

different induced subcomplexes of Ω on 7 vertices with non-zero homology. These

have vertex sets {x0, x1, x2} ∪ {x3, x4, x5, x6} and {x0, x1, x2} ∪ {x7, x8, x9, x10} and

so both of these use two parts of the partition. Thus, in equation (5.1) we have

i + 1 = 2 and so these subcomplexes are counted by β1,7(N (Ω)). All other induced

subcomplexes on 7 vertices are contractible by Theorem 5.1.8.

In agreement with Theorems 5.2.3 and 5.2.4 we can see that

pd(N (Ω)) = 2 and reg(N (Ω)) = 9.

5.3 Obstructions to Linear Resolution

In this section we will examine the reason that the Stanley-Reisner ideal of the d-

closure of a d-chorded pure d-skeleton of a vertex-partition complex does not have a

(d+ 1)-linear resolution over any field and in particular over a field of characteristic

2. In other words, we would like to know why these complexes are counterexamples

to the converse of Theorem 4.3.1 part 2. Throughout this section we will assume

that the complex Ω(π1, . . . , πp) has |πi| ≤ d + 1 for all 1 ≤ i ≤ p since these are the

specific vertex-partition complexes which show up as minimal counterexamples. Also

we assume that d ≤ dimΩ(π1, . . . , πp) so that we may take the pure d-skeleton of

Ω(π1, . . . , πp). Finally, we require p ≥ 2 since otherwise the d-closure of the vertex-

partition complex will be a simplex and thus will not give an obstruction to linear

resolution.
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Lemma 5.3.1 (A vertex-partition complex and its closure have the same

upper-dimensional faces). Let Γ = Ω(π1, . . . , πp)
[d]. Then for d ≤ m ≤ dim∆d(Γ)

we have

∆d(Γ)
[m] = 〈{F ⊆ V (Γ) | |F | = m+ 1 and ∀i F 6⊇ πi}〉.

Proof. Since |πi| ≥ 2 for all i, every vertex of Ω(π1, . . . , πp) is contained in a facet

of Ω(π1, . . . , πp). In addition, since d ≤ dimΩ(π1, . . . , πp) and Ω(π1, . . . , πp) is pure,

each vertex of Ω(π1, . . . , πp) is contained in a d-face of Ω(π1, . . . , πp). Therefore,

V (Γ) = V (Ω(π1, . . . , πp)) =
⋃p

i=1 πi.

When m = d we have ∆d(Γ)
[m] = Γ by the definition of the d-closure. Since the

minimal non-faces of Ω(π1, . . . , πp) are π1, . . . , πp and Γ = Ω(π1, . . . , πp)
[d], the faces

of Γ are those subsets of V (Γ) of size d + 1 which do not contain any of the subsets

π1, . . . , πp. Therefore

∆d(Γ)
[d] = 〈{F ⊆ V (Γ) | |F | = d+ 1 and ∀i F 6⊇ πi}〉.

Now let m > d. If F ∈ ∆d(Γ) and |F | = m+1 then all subsets of F of size d+1 are

faces of Γ by the nature of the d-closure. If F ⊇ πi for some i then since |πi| ≤ d+ 1

it must be that Γ contains some d-face f with f ⊇ πi. This is a contradiction since

πi is a non-face of Ω(π1, . . . , πp) and so is also a non-face of Γ. Thus if F ∈ ∆d(Γ)

then F 6⊇ πi for all i.

Conversely, suppose that F ⊆ V (Γ), |F | = m+ 1 and F 6⊇ πi for all i. Let f ⊆ F

with |f | = d + 1. Then f 6⊇ πi for any i and since π1, . . . , πp are the only minimal

non-faces of Ω(π1, . . . , πp) we must have f ∈ Γ = Ω(π1, . . . , πp)
[d]. Thus by the nature

of the d-closure we know that F ∈ ∆d(Γ).

Remark 5.3.2. Notice that Lemma 5.3.1 implies that

∆d(Ω(π1, . . . , πp)
[d])[m] = Ω(π1, . . . , πp)

[m]

for all m ≥ d by the definition of Ω(π1, . . . , πp). However, unlike Ω(π1, . . . , πp),

∆d(Ω(π1, . . . , πp)
[d]) will not be pure in general as it contains all possible faces of

dimension less than d and so likely contains a facet of dimension d− 1.

As a consequence of Lemma 5.3.1, we have the following corollary.
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Corollary 5.3.3. Let Γ = Ω(π1, . . . , πp)
[d]. Then F is a face of ∆d(Γ) of dimension

dim∆d(Γ) if and only if F = V (Γ)\A where A contains exactly one vertex from each

of π1, . . . , πp.

From Corollary 5.3.3, it is easy to determine the dimension of the d-closure of

the pure d-skeleton of a vertex-partition complex. This dimension coincides with the

dimension of the vertex-partition complex itself by Remark 5.3.2.

Corollary 5.3.4. If Γ = Ω(π1, . . . , πp)
[d] and |V (Γ)| = n then dim∆d(Γ) = n−p−1.

Proof. There are p minimal non-faces πi and a total of n vertices and so, by Corollary

5.3.3, a largest face will have n − p vertices. Thus the dimension of ∆d(Γ) will be

n− p− 1.

In the next lemma we are able to show the existence of a higher-dimensional cycle

without a chord set in the d-closure of these examples.

Lemma 5.3.5 (Closure of a vertex-partition complex is a pseudo-manifold).

If Γ = Ω(π1, . . . , πp)
[d] and |V (Γ)| = n then ∆d(Γ)

[n−p−1] is a pseudo (n − p − 1)-

manifold.

Proof. We first show that each (n−p−2)-face of ∆d(Γ)
[n−p−1] is contained in exactly

two of its (n−p−1)-faces. To this end let f be any (n−p−2)-dimensional face. Then

f has n − p − 1 vertices. Therefore by Lemma 5.3.1 it must be the case that there

exists 1 ≤ j ≤ p such that f contains all but two vertices from πj and for all i 6= j

f contains all but one vertex from πi. It is clear from Corollary 5.3.3 that there are

only two (n−p−1)-faces of ∆d(Γ)
[n−p−1] that contain f and each of these is obtained

from f by adding exactly one of the two remaining vertices from πj . Therefore each

(n− p− 2)-face of ∆d(Γ)
[n−p−1] is contained in exactly two of its (n− p− 1)-faces.

Next we would like to show that ∆d(Γ)
[n−p−1] is (n − p − 1)-path-connected. To

do this we will provide a way to travel an (n − p − 1)-path to get between any two

(n− p− 1)-faces. Let F and G be any two (n− p− 1)-faces of ∆d(Γ). By Corollary

5.3.3, F and G differ in at most p places since they each contain all vertices of Γ but

one from each πi. Our (n− p− 1)-path will have faces

F = F0, F1, . . . , Fp = G
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where, for all i ≥ 1, if πi \ F = {yi} and πi \G = {zi}, then

Fi = (Fi−1 ∪ {yi}) \ {zi}.

It is clear that if yi 6= zi then |Fi∩Fi−1| = n−p−1 and Fi = Fi−1 otherwise. Therefore,

after eliminating the repeating faces, F0, . . . , Fp form an (n− p− 1)-path between F

and G. Hence ∆d(Γ)
[n−p−1] is (n− p− 1)-path-connected and hence ∆d(Γ)

[n−p−1] is a

pseudo (n− p− 1)-manifold.

Lemma 5.3.5 can also be deduced from Theorem 5.1.3 and Remark 5.3.2, but we

include the combinatorial proof above for the sake of interest.

Example 5.3.6. Consider the 2-closure of the complex Ω({x0, x1, x2}, {x3, x4}) =

Ω({x0, x1, x2}, {x3, x4})
[2] shown in Figure 5.2b. We have

∆2(Ω({x0, x1, x2}, {x3, x4}))
[2] = Ω({x0, x1, x2}, {x3, x4}),

which is easily seen to be a pseudo 2-manifold since each 1-face is contained in exactly

two 2-faces and the whole complex is 2-path-connected.

Corollary 5.3.7 (Vertex-partition complexes produce non-zero homology).

If Γ = Ω(π1, . . . , πp)
[d] and |V (Γ)| = n then H̃n−p−1(∆d(Γ); k) 6= 0 for any field k.

Proof. By Remark 5.3.2 and Theorem 5.1.3 we know that ∆d(Γ)
[n−p−1] is a simplicial

sphere of dimension n − p − 1 and so H̃n−p−1(∆d(Γ)
[n−p−1]; k) 6= 0. However, since

∆d(Γ) has dimension n− p− 1 by Corollary 5.3.4, it contains no faces of dimension

n− p and thus H̃n−p−1(∆d(Γ); k) 6= 0 as well.

Corollary 5.3.7 allows us to conclude why this particular class of simplicial com-

plexes provides us with a collection of ideals which have no linear resolution over any

field.

Corollary 5.3.8 (Vertex-partition complexes are obstructions to linear res-

olution). If Γ = Ω(π1, . . . , πp)
[d] then N (∆d(Γ)) does not have a (d+ 1)-linear reso-

lution over any field.
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Proof. This follows by Theorem 4.0.2 and Corollary 5.3.7.

The counterexamples to the converse of Theorem 4.3.1 part 2 are d-chorded sim-

plicial complexes with d-closures whose Stanley-Reisner ideals do not have linear

resolutions in characteristic 2. We know by Corollary 5.3.8 that the pure d-skeletons

of vertex-partition complexes have d-closures whose Stanley-Reisner ideals have no

linear resolution in characteristic 2. Therefore in order to obtain a class of counterex-

amples we would like to determine when these d-skeletons are d-chorded.

Proposition 5.3.9 (The d-skeleton of a vertex-partition complex is d-chorded

iff it contains no d-spheres). If Γ = Ω(π1, . . . , πp)
[d] then Γ is d-chorded if and only

if for all i1, . . . , i` with 1 ≤ ` ≤ p and 1 ≤ i1 < · · · < i` ≤ p we have

∑̀

j=1

|πij | − `− 1 6= d.

Proof. By Theorem 4.2.8, Γ is d-chorded if and only if H̃d(∆d(Γ)W ;Z2) = 0 for all

W ⊆ V (Γ). By Remark 5.3.2 we know that

(∆d(Γ)W )[m] = (Ω(π1, . . . , πp)W )[m]

for all W ⊆ V (Γ) and all m ≥ d. In particular, the pure m-skeleton of ∆d(Γ)W is the

same as the pure m-skeleton of Ω(π1, . . . , πp)W for m = d and m = d+ 1. Therefore

H̃d(∆d(Γ)W ;Z2) = H̃d(Ω(π1, . . . , πp)W ;Z2)

for all W ⊆ V (Γ). Therefore Γ is d-chorded if and only if H̃d(Ω(π1, . . . , πp)W ;Z2) = 0

for all W ⊆ V (Γ).

Suppose that Γ is d-chorded so that H̃d(Ω(π1, . . . , πp)W ;Z2) = 0 for all W ⊆ V (Γ)

and suppose, for a contradiction, that there exist i1, . . . , i` with 1 ≤ ` ≤ p and

1 ≤ i1 < · · · < i` ≤ p such that

∑̀

j=1

|πij | − `− 1 = d.

Letting W =
⋃`

j=1 πij we have |W | − ` − 1 = d and, by Theorem 5.1.8 part 1, we

know that Ω(π1, . . . , πp)W is a d-dimensional simplicial sphere. Therefore we have
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H̃d(Ω(π1, . . . , πp)W ;Z2) 6= 0 which is a contradiction and so the condition given in the

statement of the proposition holds.

Now assume that for all i1, . . . , i` with 1 ≤ ` ≤ p and 1 ≤ i1 < · · · < i` ≤ p we

have
∑̀

j=1

|πij | − `− 1 6= d.

Suppose that H̃d(Ω(π1, . . . , πp)W ;Z2) 6= 0 for some W ⊆ V (Γ). By Theorem 5.1.8 we

must have W =
⋃`

j=1 πij for some ` and |W |−`−1 = d. However, this contradicts our

assumption and so we have H̃d(Ω(π1, . . . , πp)W ;Z2) = 0 for all W ⊆ V (Γ). Therefore

Γ must be d-chorded.

Example 5.3.10. Let Ω = Ω({x0, x1, x2}, {x3, x4, x5, x6}, {x7, x8, x9, x10}), the vertex-

partition complex given in Example 5.0.2, and let Γ = Ω[3]. Then we have

N (∆3(Γ)) = (x0x1x2x3, x0x1x2x4, x0x1x2x5, x0x1x2x6,

x0x1x2x7, x0x1x2x8, x0x1x2x9, x0x1x2x10,

x3x4x5x6, x7x8x9x10)

and by Corollary 5.3.8 we know that N (∆3(Γ)) does not have a 4-linear resolution

over any field of characteristic 2.

In addition, Γ has a complete 1-skeleton and is 3-chorded by an application of

Proposition 5.3.9. Therefore Γ is a counterexample to the converse of Theorem 4.3.1

part 2.

Definition 5.3.11. Two pure d-dimensional simplicial complexes Γ1 and Γ2 lie in

the same d-closure class if

∆d(Γ1)
[m] = ∆d(Γ2)

[m]

for all m ≥ d+ 1.

See Figure 5.3 for an example of two different 2-dimensional simplicial complexes

Γ1 and Γ2 which lie in the same 2-closure class. Both ∆2(Γ1) and ∆2(Γ2) contain the

face {a, b, c, d} and in both cases this is the only face of dimension greater than 2 in

the complex. Hence ∆2(Γ1)
[m] = ∆2(Γ2)

[m] for all m ≥ 3.
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c

d e

b

a

(a) The complex Γ1 which has
∆2(Γ1) = 〈{a, b, c, d}, {c, d, e}〉

c

d e

b

a

(b) The complex Γ2 which has
∆2(Γ2) = 〈{a, b, c, d}, {c, d, e}, {b, c, e}〉

Figure 5.3: 2-dimensional simplicial complexes in the same 2-closure class.

It is interesting to note that, due to the definition of d-closure, we have that

∆d(Γ1)
[m] = ∆d(Γ2)

[m]

for all m ≥ d+ 1 if and only if

∆d(Γ1)
[d+1] = ∆d(Γ2)

[d+1].

Notice that all d-dimensional forests lie in the same d-closure class. This is easy to see

since the d-closure of any d-dimensional forest contains no faces of dimension d+ 1.

The following lemma says that the pure d-skeleton of a vertex-partition complex

is the minimal element in its d-closure class.

Lemma 5.3.12 (Vertex-partition complexes are minimal in their d-closure

classes). Let Γ = Ω(π1, . . . , πp)
[d] where |V (Ω(π1, . . . , πp))| = n and d < n − p − 1.

If Γ′ lies in the same d-closure class as Γ then Γ ⊆ Γ′.

Proof. First we claim that Γ =
(

∆d(Γ)
[d+1]

)[d]
. It is clear, from the definition of the

d-closure, that Γ ⊇
(

∆d(Γ)
[d+1]

)[d]
. For the reverse inclusion, let F be a facet of Γ. We

need only show that there is a (d+ 1)-face of ∆d(Γ) which contains F . Since F 6⊇ πi

for all i and |F | = d+1 < n−p, there must be some 1 ≤ j ≤ p such that |πj \F | ≥ 2.

Letting x ∈ πj \F we have F ∪{x} 6⊇ πi for all i and thus F ∪{x} ∈ ∆d(Γ) by Lemma

5.3.1. Therefore Γ =
(

∆d(Γ)
[d+1]

)[d]
.

Furthermore, since Γ′ lies in the same d-closure class as Γ we have ∆d(Γ
′)[d+1] =

∆d(Γ)
[d+1] and so

Γ′ ⊇
(

∆d(Γ
′)[d+1]

)[d]
=
(

∆d(Γ)
[d+1]

)[d]
= Γ.



102

Corollary 5.3.13 (Vertex-partition complexes have minimal f-vectors in

their d-closure classes). The f -vector of the simplicial complex Γ = Ω(π1, . . . , πp)
[d]

is term-wise minimal among the f -vectors of the simplicial complexes in the d-closure

class of Γ.

Proof. Let Γ′ be a pure d-dimensional simplicial complex which lies in the same d-

closure class as Γ. By Lemma 5.3.12 we have Γ ⊆ Γ′ and so any i-dimensional face

of Γ is an i-dimensional face of Γ′. Therefore fi(Γ) ≤ fi(Γ
′) for all −1 ≤ i ≤ d.

All of the examples of d-chorded complexes Γ such that N (∆d(Γ)) has no linear

resolution over fields of characteristic 2 which were originally examined contained

a vertex-partition complex as an induced subcomplex. This led to the following

question.

Question 5.3.14. If Γ is d-chorded but N (∆d(Γ)) has no linear resolution over a

field of characteristic 2 does there exist S ⊆ V (Γ) such that ΓS lies in the same

d-closure class as the pure d-skeleton of some vertex-partition complex Ω(π1, . . . , πp)

with dimΩ(π1, . . . , πp) > d?

Unfortunately the answer to this question is “no” as can be seen from the following

counterexample.

Example 5.3.15. Let Γ be the pure 3-dimensional simplicial complex on the ver-

tices x0, . . . , x6 whose only missing 3-faces are {x0, x1, x5, x6}, {x0, x2, x5, x6} and

{x1, x2, x3, x4}. Then ∆3(Γ) is 4-dimensional and the facets of ∆3(Γ)
[4] are:

{x0, x1, x2, x3, x5} {x0, x1, x2, x3, x6} {x0, x1, x2, x4, x5}

{x0, x1, x2, x4, x6} {x0, x1, x3, x4, x5} {x0, x1, x3, x4, x6}

{x0, x2, x3, x4, x5} {x0, x2, x3, x4, x6} {x0, x3, x4, x5, x6}

{x1, x2, x3, x5, x6} {x1, x2, x4, x5, x6} {x1, x3, x4, x5, x6}

{x2, x3, x4, x5, x6}

We have

N (∆3(Γ)) = (x0x1x5x6, x0x2x5x6, x1x2x3x4).
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One can show that the simplicial complex Γ is 3-chorded by computation using The-

orem 4.2.8. By computing reduced simplicial homology of ∆3(Γ) we determine that

H̃3(∆3(Γ); k) = 0 and H̃4(∆3(Γ); k) 6= 0 for k having characteristic 2. Therefore

N (∆3(Γ)) does not have a linear resolution over fields of characteristic 2 by Theorem

4.0.2.

We claim that there is no subset S ⊆ V (Γ) so that ΓS lies in the same 3-closure

class as the pure 3-skeleton of some vertex-partition complex. To see this, first recall

from Lemma 4.2.3 that ∆3((ΓS)
[3]) = ∆3(Γ)S for any S ⊆ V (Γ). Therefore, by

Lemma 5.3.5, since dim∆3(Γ) = 4, if the conditions in Question 5.3.14 are satisfied

then there exists some S ⊆ V (Γ) so that (∆3(Γ)S)
[4] is a pseudo 4-manifold. It turns

out that the only 4-dimensional cycle in ∆3(Γ) uses all of the vertices of Γ and thus

we must have S = V (Γ). However, by examining the list of facets given above,

one can check that ∆3(Γ)
[4] is equal to a pseudo 4-manifold with the additional face

{x0, x3, x4, x5, x6}. This means that each 3-face of {x0, x3, x4, x5, x6} is contained in an

odd number of facets of ∆3(Γ)
[4] and thus ∆3(Γ)

[4] does not satisfy the definition of a

pseudo 4-manifold. Therefore we have shown that there does not exist S ⊆ V (Γ) such

that ΓS lies in the same 3-closure class as the pure 3-skeleton of some vertex-partition

complex Ω(π1, . . . , πp) with dimΩ(π1, . . . , πp) > 3.
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Conclusion

There are several questions that naturally arise from the results obtained in this

thesis. In particular, the question of whether or not there exists a generalization of

Fröberg’s theorem for ideals having linear resolutions over all fields is still open and

worth investigating. It seems to be the case that an ideal having a linear resolution

over every field is, in some sense, better behaved than one where the existence of a

resolution depends on the field in question. Thanks to Theorem 1.0.3, to examine this

problem it is possible to limit investigations to studying which simplicial complexes

have certain homology groups that vanish over the ring Z. This is because homology

vanishes over Z if and only if it vanishes over all fields. The advantage to studying this

case is that the coefficients of the homological structures under scrutiny are relatively

well-behaved. An important result to obtain here would be an analogue to Theorem

3.3.3, which would be an interesting result in its own right.

Another obvious question that emerges from Section 4.5, and is partially inves-

tigated in Chapter 5, is the question of specifically which d-chorded complexes have

d-closures whose Stanley-Reisner ideals fail to have a linear resolution over fields of

characteristic 2. These are the counterexamples to Theorem 4.3.1 part 2. We showed

in Theorem 4.6.1 that these are the d-chorded complexes whose d-closures are not

chorded. Specifically, by Theorem 4.6.3, they are those in which certain types of

specialized cycles appear. However, it would be interesting to investigate this class

further to better grasp the intricacies of the combinatorics involved. We have seen,

with the vertex-partition complexes in Chapter 5, that this class contains some easy-

to-define and well-structured complexes. In addition, as a follow-up to Remark 5.0.3

and Corollary 5.3.13, it would be interesting to study the f -vectors of vertex-partition

complexes more closely and to determine if they are minimal in some class of com-

plexes that is wider than their d-closure class.
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There is a more general property than having a linear resolution that one can

study for edge ideals. A monomial ideal I is said to satisfy property N2,p for some

p ≥ 1 if it is generated in degree 2 and its minimal graded free resolution is linear up

to step p. This means that we have βi,j(I) = 0 for all 0 ≤ i < p and j > i + 2. In

other words, an ideal has a 2-linear resolution if and only if it satisfies property N2,p

for all p ≥ 1. In [11], Eisenbud et al. give the following theorem.

Theorem 6.0.1. For a graph G, N (∆(G)) satisfies N2,p for some p ≥ 1 if and only

if every cycle in G with length at most p+ 2 has a chord.

Theorem 6.0.1 is a refinement of Fröberg’s theorem as it classifies all edge ideals

with “partially linear” resolutions. It would be an interesting line of study to try

and generalize this theorem to classify ideals generated in any fixed degree which are

linear up to the pth step in the resolution. One could attempt to use the notions of

a d-dimensional cycle given in Chapter 3 and a chord set given in Chapter 4 to try

and extend this theorem to higher dimensions, at least over fields of characteristic 2.

Another possible application of the results in Chapter 3 is graph colouring. A

graph is m-colourable if its vertices can be assigned m different colours in such

a way that no two adjacent vertices have the same colour. The neighbourhood

complex of a graph G, denoted N(G), is the simplicial complex whose faces are all

subsets S of V (G) such that the elements of S have a common neighbour in G. In

[37, Theorem 11.2], Walker proves the following theorem.

Theorem 6.0.2. If G is a graph such that H̃i(N(G);Z2) = 0 for all i ≤ m− 2 then

G is not m-colourable.

Theorem 3.3.3 given in Chapter 3 gives a purely combinatorial description of non-

zero simplicial homology over Z2. Therefore, in combination with Theorem 6.0.2 this

theorem might be useful in uncovering specific structural properties of graphs which

fail to be m-colourable through examination of the combinatorics of their neighbour-

hood complexes.

The characterization given in Theorem 4.6.1 of the existence of a linear resolution

in characteristic 2 might also shed light on a conjecture of Stanley from [35, Conjecture
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2.7]. For any two faces F and G in a simplicial complex Γ with F ⊆ G the closed

interval from F to G is given by

[F,G] = {H | F ⊆ H ⊆ G}.

A pure simplicial complex Γ is said to be partitionable if we can write

Γ =
⊔

1≤i≤k

[Fi, Gi]

where G1, . . . , Gk are the facets of Γ and
⊔

indicates a disjoint union. It is not hard

to show that all shellable complexes are partitionable [35, page 79]. The Alexander

dual of the simplicial complex Γ is the simplicial complex

Γ∨ = {F ⊆ V (Γ) | V (Γ) \ F /∈ Γ}.

Conjecture 6.0.3 (Stanley). If N (Γ) has a linear resolution then Γ∨ is partitionable.

One possible approach to this conjecture would be to try and translate the prop-

erty of a complex being chorded into some combinatorial property in the Alexander

dual of the complex. The idea would be to show that the resulting combinatorial

property implied partitionability.

Overall, we see that there are several natural directions in which the line of research

begun in this thesis could progress.
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