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Scale disparity and spectral transfer in anisotropic numerical turbulence
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To study the effects of cancellations within long-range interactions on isotropy at small scales, we cal-
culate explicitly the degree of cancellation in long-range, or "distant, " triadic interactions in the simula-

tions of Yeung and Brasseur [Phys. Fluids A 3, 884 (1991)] and Yeung, Brasseur, and Wang [J. Fluid
Mech. 283, 43 (1995)] using the single scale disparity parameter s developed by Zhou [Phys. Fluids A 5,
1092 (1993); 5, 2511 (1993)]. In the simulations initially isotropic turbulence was subjected to coherent
anisotropic forcing at the large scales and the smallest scales were found to become anisotropic as a
consequence of direct large-small scale couplings and then to return towards isotropy. We verify here
that the most nonlocal interactions do not cancel out under summation, that the observed small-scale an-

isotropy is indeed a direct result of the distant triadic group, and that the reduction of anisotropy at later
times follows from the influences towards isotropy of more local energy-cascading triadic interactions.
We And that as the scale separation s increases beyond about 10, the net energy transfer to or from high-
wave-number shells within the distant triadic group goes asymptotically to zero, while the long-range an-

isotropic inAuences increase monotonically, indicating that long-range dynamics persists to larger scale
separations and hence higher Reynolds numbers.

PACS number(s): 47.10.+g, 47.27.Gs

PRELIMINARIES

Underlying the high Reynolds number Kolmogorov
similarity theory [1] of 1941 is the implication that in-
teractions among motions at diFerent length scales are
statistically dominated by interactions that scale on a sin-
gle local length scale r, so long as r is much smaller than
the integral scale I. If this is the case, then (a) the net en-
ergy transfer from motions surrounding scale r « I
would not be directly infiuenced by integral-scale motions
and (b) the local structure of the motions at scales r ((l
would be isotropic. Correspondingly, in Fourier space
the net energy transfer to or from a spectral she11 sur-
rounding the inverse scale k —1/r would not be directly
influenced by large-scale motions, and when k ))1/l, the
distributions of the energy and phase of the Fourier
modes in shell k would be independent of the large-scale
structure.

Full knowledge of the velocity field in direct numerical
simulations of homogeneous turbulence allows the calcu-
lation of contributions to the total energy transfer be-
tween diFerent scales from predefined classes of the non-
linear triadic interactions in Fourier space [2—6]. In the
inertial range, Zhou [5,6] found that for stationary isotro-
pic turbulence, consistent with the classical Kolmogorov
hypotheses, the net energy Ilux is local (occurring be-
tween similar scale sizes), but is dominated by "local-to-
nonlocal" interactions among scales separated by a de-
cade or less (with the strongest contribution from interac-
tions separated in scale by approximately 1.8 —5). Con-

sistent with Zhou [5,6], Brasseur and Wei [7] also found
that the net energy transfer within isolated "chains" of
triads are dominated by the local-to-nonlocal triadic
group. Moreover, it was found that the distant triadic
group tends to redistribute energy among Fourier modes
within spectral shells in a manner directly related to the
structure of the more energetic large-scale motions.
Brasseur and Wei [7] argued, therefore, that, in principle,
direct long-range inertia1 couplings can lead to depar-
tures from local isotropy at the smallest dynamical scales.

To study the direct inhuence of the large scales on the
distributions of energy and phase within motions sur-
rounding inverse scale k far removed from 1/I, Yeung
and Brasseur [3] (YB) and Yeung, Brasseur, and Wang
[4] (YBW) performed numerical experiments in which
fu11y developed isotropic turbulence was subjected to sus-
tained anisotropic forcing in the energy-containing
wave-number range. In Fourier space nearly all the forc-
ing energy is added to two pairs of Fourier modes with
wave vectors kF=(+2, +2,0) with magnitude k~=2V'2
and the Fourier velocity coefficients u(k„) are in the k-
k plane. After forcing for about one initial eddy-
turnover time (Tz), the smallest scales rapidly become
anisotropic, followed by the next smallest scales and so
on. However, the structure of this small-scale anisotropy
is such that at the high wave numbers it is u 3 that has the
most energy, in contrast to u

&
and u2 in the forced low

wave-number modes. The highest wave-number shell at-
tains maximum anisotropy in the component spectra at
1.915TE after initiating forcing. The component anisot-
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time of reduced anisotropy (t*=3.83). To improve reso-
lution, s is divided into half octave bands (2
%=0,12). Except for the only s band, which contains
the forced triads (shown in the cross-hatched areas), the
net energy transfer is into shell k and is dominated by
local-to-nonlocal interactions up to scale disparity rough-
ly 10—15 (consistent with Brasseur and Wei [7]) and with
the strongest contributions from the range s -2—8 (con-
sistent with Zhou [5,6]). The modest height of the spike
in Fig. 1 indicates that the forced triadic group contrib-
utes only a relatively small proportion of the net energy
Aux into the high-wave-number shell.

We now introduce the anisotropy in T (k, s) as a
marker of anisotropy development in the high-wave-
number shell k=50, which results from the process of
both energy and phase redistribution in the shell by
long-range interactions (in contrast to classical cascade-
type arguments). For any s band we quantify amsotropy
in component energy transfer by the ratio of maximum to
minimum energy transfers among the components, in ab-
solute value (unity if the transfer is isotropic). In contrast
to energy transfer, Fig. 1 also shows the anisotropy in
component energy transfer as a function of scale separa-
tion s for shell k=50 at the same time as T(k, S) Be-.
cause of the forcing, the s band containing the forced
triads (cross-hatched areas) stands out as a spike in the
anisotropy of component energy transfer in shell k.
Around this spike, anisotropy begins to increase at scale
separation s =10 and then rapidly increases at higher s.
It is particularly interesting that the increase in anisotro-
py begins at roughly the same scale separation where the
dominance of cascading local-to-nonlocal triads in T(k, s)
ends. We conclude that the inAuences towards anisotro-
py of the large scales on smaller scales are most strongly
felt within the distant triadic group and that the more
distant the triadic group, the stronger is their inAuence
towards anisotropy. We further conclude that, with can-
cellation among triads taken into account, the strongest
long-range influences towards anisotropy (redistribution
of energy and phase in high-k shells) occur in the absence
of direct energy transfer.

As might be expected, forcing enhances the inAuence
towards anisotropy of the highly nonlocal distant group
within the forced triads. For this long-range effect to
persist to higher Reynolds numbers, net energy transfer
within the forced triads should decrease with scale sepa-
ration s while the anisotropy in component energy
transfer should increase with s. This is seen to be the case
in Figs. 2 and 3 below. The range of s for those triadic
interactions with the forced shell are given by sF, deter-
mined from
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FIG. 2. Net energy transfer T(k, s) within the forced triadic
groups as a function of scale disparity sF, at the time of peak
small scale anisotropy t*=1.915 (solid line) and at the later
time t*=3.83 (dashed line).
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that contain forced triads, using Eq. (5) for each k shell.
Consequently, each s band plotted corresponds to a
different k shell, and because the k shells are narrow
(6k=i), so are the s~ bands shown in the figure. Note
thatw, hereas the magnitude of T(k, s) is higher at the
later time due to energy input from forcing, at both
t =1.915 and 3.83 the net energy transfer within the
forced triadic groups decreases rapidly with increasing
scale separation, approaching zero asymptotically at
large s.

By contrast, Fig. 3 shows that the anisotropy within
the forced triadic group increases within scale separation.
As in Fig. 2, we plot the anisotropy measure of Fig. 1

only for the forced s bands. Because the sF bands are
narrow, the variation of this ratio with sF is very noisy,

(k+ —,
' )+k~
kF

(5)

Note that the maximum value of sF occurs when the
wave vector k in shell k (of unit thickness Ak =1) is the
intermediate mode in a triadic interaction, whereas the
minimum sF occurs when k is the highest-wave-number
mode in a triad.

In Fig. 2 we plot T(k, s) against s only for the sF bands
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FICs. 3. Same as Fig. 2, but for anisotropy in component en-
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~
T ~,„l~

T



BRIEF REPQRTS 53

particularly at t *=3.83 when the inAuence of the distant
triadic group was weakened substantially. Nevertheless,
it is apparent that the anisotropy in the component ener-

gy transfer increases overall with s~ even as the net ener-

gy transfer T(k, s) decreases. This result indicates that
the influence towards anisotropy of the forced triads on
the small scales remains strong within the distant triadic
group as the net energy transfer decreases asymptotically
to zero with increasing scale separation s. Furthermore,
although the net anisotropy in the component energy
transfer decreases with time [4,10] the inliuence towards
anisotropy of the distant group remains strong at later
times. These results suggest that the inAuences towards
anisotropy of the distant triadic group do not diminish at
higher scale separations (suggesting higher Reynolds
numbers), even as the scale separation becomes
sufficiently high to block direct energy transfer between
the forced large scales and the smallest scales.

To show the net efFects of cancellation more complete-
ly, the cumulative contributions of the dominant nonlocal
classes of T(k, s) are shown for all three velocity com-
ponents in Fig. 4 at time t *=3.83, for the range
40 ~ k & 60. Specifically, the complete component energy
transfers T (k) are compared with net contributions
from triads with scale separation s —8 —32. Note that
whereas the complete energy transfer spectrum strongly
favors the z component at t*=1.915 [10], at the later
time t *=3.83 the complete energy transfer is isotropical-
ly distributed within components. The more nonlocal
triadic interactions, on the other hand, redistribute ener-

gy anisotropically at both times, providing u 3 with more
energy than u

&
and u2 at the small scales. A reduction of

anisotropy at t * & 1.915 is a consequence of the
influences towards anisotropy of more local energy-
cascading triadic interactions [4].

In summary, the development of small-scale anisotropy
in response to large-scale forcing previously reported by
YB [3] and YBW [4] has been studied by an analysis of
triadic energy transfer using the T(k, s) formalism intro-
duced by Zhou [5,6]. This analysis shows explicitly that,
whereas highly nonlocal and distant triadic interactions
do not contribute to the net energy transfer and the for-
ward cascade (as argued by Zhou [5,6] and Brasseur and

24

22

20

16
CQ

14

10

0 I, ! I . ! i I i I i ! i I

40 42 44 46 48 50 52 54 56 58 60

FIG. 4. Component transfers T»(k, s) (A), T»(k, s) (0 ),
T33 ( k, s ) ( ), summed 8 ~ s (32 (open symbols) in the range
40~k (60 and compared with the total transfers [T»(k),
T22(k), T»(k)] (closed symbols) at t*=3.83.

Wei [7]), their dynamical e6'ects on the small scales do
not cancel out completely. These interactions, in fact,
lead directly to the anisotropic redistribution of the
small-scale energy and phase in response to large-scale
anisotropic forcing. Furthermore, we found that the
influence towards anisotropy of the distant triadic group
(under forcing) increases with scale disparity s, suggesting
that the dynamical influences of long-range interactions
would persist at higher Reynolds numbers.
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