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Abstract

In phylogenetic analysis, an important issue is to construct the confidence region

for gene trees from DNA sequences. Usually estimation of the trees is the initial

step. Maximum likelihood methods are widely applied but few tests are based on

distance methods. In this thesis, we propose a new test based on balanced minimum

evolution. We first examine the normality assumption of pairwise distance estimates

under various model misspecifications and also examine their variances, MSEs and

squared biases. Then we compare the BME method with the WLS method in true

tree reconstruction under different variance structures and model pairs. Finally, we

develop a new test for finding a confidence region for the tree based on the BME

method and demonstrate its effectiveness through simulation.
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Chapter 1

Introduction

Phylogeny is the science of studying evolutionary history of different organisms.

Cavalli-Sforza and Edwards (1967) indicated that the phylogeny problem was actually

a statistical inference problem. A phylogenetic tree is a tree diagram representing

phylogenetic relationships among a group of organisms. Different tree reconstruction

methods have been developed to estimate phylogenetic trees from genetic sequence

data.

Three different types of approaches to phylogeny reconstruction have been widely

used so far, namely parsimony methods, maximum likelihood (ML) methods and

distance-based methods. Each has its own strengths and weaknesses. Parsimony

methods work in the following way: given genetic sequence data, there are many

phylogenetic trees available and parsimony methods choose the most parsimonious

one, i.e the one such that fewest evolutionary changes are needed to generate the

data. Parsimony is a simple approach, however, sometimes it is not statistically

consistent such as in the long branch attraction case (Felsenstein 1978). That means

it is not guaranteed to output the correct tree even if sufficient sequence data are

given. ML methods use a stochastic model of sequence evolution that describes

the probabilities of substitutions. Given the substitution model, the ML tree is the

tree that maximizes the probability of the sequence data. This probability is called

the likelihood of the data. ML is consistent (Wald 1949; Felsenstein 1973; Yang

1994) and more powerful than parsimony because it employs an explicit model for

character evolution. The drawback of ML methods is that it is impractical when

dealing with large data sets, because the tree space, i.e. the collection of all possible

trees, grows exponentially with the number of sequences (Felsenstein 2004). Distance-

based methods were introduced by Cavalli-Sforza and Edwards (1967) and are the only

known methods that can handle the data from thousands of sequences. The general

idea is to calculate a measure of distance between each pair of species, and then

1
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form a tree that can best approximate the calculated pairwise distances. Distance-

based methods are mostly consistent and require to search the whole tree space too.

There are a varieties of distance-based methods developed, for example UPGMA and

neighbor-joining (Saitou and Nei 1987) for computation speed, and weighted least-

squares (Fitch and Margoliash 1967) for accuracy. The balanced minimum evolution

(BME) is another distance-based method that is at least as fast as neighbour-joining,

and as accurate as weighted least-squares (Desper and Gascuel 2002). BME is the

focus of this thesis.

As the basis of distance-based methods, the accuracy of pairwise distance esti-

mates is fundamental. Most often, the pairwise distance estimates are also based

on the nucleotide substitution models. There are many nucleotide substitution mod-

els developed so far; see Felsenstein (2004) for a survey of the most commonly used

models. But due to statistical uncertainty and limitations of finite data, the pairwise

distance estimates may not be accurate enough and the phylogeny reconstruction

may not always reveal the true evolutionary history.

After the introduction in this chapter, we will first examine the accuracy of pair-

wise distance estimates with model misspecification through simulations. Then we

will compare the performances of weighted least-squares (WLS) and balanced mini-

mum evolution (BME) in tree estimation. Finally, we propose a new method to build

the confidence region for phylogenetic trees based on BME and test its effectiveness.

1.1 Phylogenetic tree and DNA sequence data

1.1.1 Phylogenetic tree

A phylogenetic tree contains (inner or external) nodes and branches. An m taxa

phylogenetic tree is the representation of relationships among the m descendants

(external nodes or tips) and unknown common ancestors (inner nodes). The branches

are the connections between nodes. A topology refers to a branch order whereas a

phylogenetic tree refers to both a branching order and a set of specified branch lengths.

In general, any tree topology can be rooted or unrooted . The total number of possible

m taxa rooted tree topologies is:

1 3 5 · · · (2m− 3) = [(2m− 3)!]/[2(m−2)(m− 2)!] = (2m− 3)!!
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Thus, the total number of possible tree topologies increases exponentially as m in-

creases. For the unrooted tree topologies, the total number of possible m taxa un-

rooted tree topologies is:

(2m− 5)(2m− 7) · · · 5 3 1 = [(2m− 5)!]/[(2(m−3)(m− 3)!)] = (2m− 5)!!

1.1.2 DNA sequence data

A DNA sequence consists of 4 different nucleotide characters: adenine (A) and

guanine (G) (Purines), cytosine (C) and thymine (T) (Pyrimidines). DNA sequence

data typically consists of aligned DNA sequences. Each position of an alignment is

called a site and a site pattern is the nucleotide characters in a particular site. Table

1.1 is an example of aligned DNA sequences with four taxa a, b, c and d. The first

site pattern is ACAA, and the second site pattern is AAAA.

1 2 3 4 5 6 7 8 9 10
a A A T C G T C G T A
b C A T C G A C G G A
c A A T C G T C G T C
d A A T C G C C G T A

Table 1.1: Aligned DNA sequences with 4 taxa

The evolution of species is essentially a series of changes of nucleotides in the

DNA sequences of their ancestors. There are many substitution models to describe

the changes in DNA sequences.

1.2 Substitution models

1.2.1 Substitution matrix for evolution

For aligned DNA sequences, we assume the substitutions on each site are indepen-

dent based on the same probabilistic model. If we start with a nucleotide character,

say i, there are 4 possible changes: no change and the other three are the changes from

i to other three nucleotide characters. Since i can be one of A, C, G, T, hence, there

are 4 × 4 = 16 different possible changes in total. A change is called a transition if

it occurs within either pyrimidine (cytosine (C) and thymine (T)) or purine (adenine
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(A) and guanine (G)) categories and is called a transversion if it occurs between a

pyrimidine and a purine. Given that a change between nucleotide characters i and

j occurs in a time interval t, the sum of probabilities of all possible changes equals to 1:

∑
j∈{A,C,G,T}

pij(t) = 1 (1.1)

The substitution matrix is defined as:

T C A G
T pTT (t) pTC(t) pTA(t) pTG(t)
C pCT (t) pCC(t) pCA(t) pCG(t)
A pAT (t) pAC(t) pAA(t) pAG(t)
G pGT (t) pGC(t) pGA(t) pGG(t)

Table 1.2: Substitution matrix

Each row of above matrix sums to 1.

1.2.2 Substitution rate matrix

In distance methods the pairwise distances are sometimes calculated by maximum

likelihood (ML). Estimating pairwise distance requires a probability substitution ma-

trix, which can be determined by a rate matrix, denoted as Q (Table 1.3). Each

element of Q is considered as rate of exchange at an instant time dt between nu-

cleotide characters. The entries qij of matrix Q can be expressed as a product of

equilibrium frequency of nucleotide j, πj and exchangeability rij. Thus qij = rijπj,

for i �= j; and qii = −∑
i �=j qij.

The matrix Q of a substitution model depends on the particular assumptions of

elements in R = (rij) and π = (πC , πA, πG, πT ). Table 1.4 shows the parametrization

of Q matrix when reversibility is assumed. Five different DNA models will be applied

in this thesis: JC69, F84, HKY85, GTR and GTR + Γ, thus we review their rate

matrices and estimates of pairwise distance under each model as follows.
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T C A G
T - qTC qTA qTG

C qCT - qCA qCG

A qAT qAC - qAG

G qGT qGC qGA -

Table 1.3: A typical rate matrix Q

T C A G
T - r1πC r2πA r4πG

C r1πT - r3πA r5πG

A r2πT r3πC - r6πG

G r4πT r5πC r6πA -

Table 1.4: The GTR Q matrix used for modeling substitution

1.2.3 Substitution models

JC69 model

The JC69 (Jukes and Cantor, 1969) is the simplest substitution model in phylogeny

because it assumes the exchangeabilities and character frequencies are all constant.

Thus, the matrix Q is given by Table 1.5. The pairwise distance esitmate has a closed

form, given as −3
4
log(4

3
(p̂− 1

4
)) where p̂ is the proportion of sites with two nucleotides

the same. (Yang, 2006)

T C A G
T - λ λ λ
C λ - λ λ
A λ λ - λ
G λ λ λ -

Table 1.5: Q matrix of JC69

HKY85 model

The HKY85 (Hasegawa, Kishino and Yano, 1985) is an extension of JC69 model,

where character frequencies of A, C, G, T, (πA, πC , πG, πT ), are not restricted and the

Q matrix depends on both character frequencies and transition-transversion ratio κ.

Hence, the Q matrix is as given in Table 1.6. In PAML (Yang, 1994), under HKY85
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model, the estimate of pairwise distance is calculated according to the following for-

mulae, which is a special case of TN93 model formulae (Yang, 2006).

2πTπCκb+ 2πAπGκb+ 2πY πGb

where

κ =
a1 − πRb

πY b
,

b = − log(1− V

2πY πR

),

a1 = − log(1− πY S1

2πTπC

− V

2πY

)

V denotes the proportion of sites with transversional differences, S1 denotes the pro-

portion of sites occupied by two different pyramidines (i.e sites occupied by CT or

TC) in the two sequences; πR = πA + πG and πY = πC + πT as total frequencies of

purines and pyrimidines respectively. (Yang, 2006).

T C A G
T - κπC πA πG

C κπT - πA πG

A πT πC - κπG

G πT πC κπA -

Table 1.6: Q matrix of HKY85

F84 model

The F84 (Felsenstein 1984) model is similar to HKY85 model. It also assumes that

the character frequencies are not restricted but the transition rate ratios are assumed

to be different for purines and pyrimidines. The matrix Q has the form given in Table

1.7.

T C A G
T - (1 + κ/πY )πC πA πG

C (1 + κ/πY )πT - πA πG

A πT πC - (1 + κ/πR)πG

G πT πC (1 + κ/πR)πA -

Table 1.7: Q matrix of F84

The pairwise distance esitmate is calculated as
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2(
πTπC

πY

+
πAπG

πR

)a− 2(
πTπCπR

πY

+
πAπGπY

πR

− πY πR)b

with

κ̂ =
a

b
− 1,

where

a = − log

(
1− S

2[(πTπC/πY ) + (πAπG/πR)]
− [(πTπCπR/πY ) + (πAπGπY /πR)]V

2(πTπCπR + πAπGπY )

)
,

b = − log(1− V

2πY πR

)

S denotes the proportion of sites with transitional differences, V denotes the propor-

tion of sites with transversional differences (Yang, 2006).

GTR (Generalized time-reversible) model

The GTR model (Tavare 1986) uses the most general form of the rate matrices subject

to the reversibility condition. The reversibility condition means the evolutionary

process is the same when substution runs from past to the present or from present

back to the past i.e πiqij = πjqji (Yang 1994). The reversibility condition holds for

all of the models we consider in this thesis. In the GTR model, both π and R are

fully parametrized. The Q matrix of the GTR model is given in Table 1.4 with

exchangeability parameters (r1, r2, r3, r4, r5, r6) where r6 = 1 is fixed.

GTR + Γ model

In addition to the above models describing the rates of change between nucleotides,

some models have further assumptions for rate variation among sites in a sequence,

i.e often we do not know the rate of each site in a sequence, but we assume a dis-

tribution of rates, and each site has a rate drawn from that distribution at random

(Felsenstein 2004), take rates in table 1.4 as example, all ri are random varaibles

from a distribution. The gamma-distributed-rate model (Uzzell and Corbin 1971) is

the most used continuous model. It allows the rate variation among sites to follow

gamma distribution. The gamma density function is

f(r) =
1

Γ(α)βα
rα−1e

−r
β
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where the α and β are parameters. The mean of the distribution is αβ, and the

variance is αβ2. α is called a “shape parameter” here. If the mean is fixed, when

α increases the variance decreases, and vice versa. Thus small α values can be used

to model large rate variation among sites. The Γ distribution here is only used for

the mathematical convenience. It has no significant biological meaning (Felsenstein

2004). If the rate variation among sites in the GTR model follows the Γ distribution

then it is called GTR + Γ model. The Γ model used in practice always constrains

β = 1/α, so that the mean is 1. This allows edge-lengths to be interpreted as expected

numbers of substitutions.

1.3 Summary of the thesis

This thesis examines the pairwise distance estimates in distance methods and com-

pares the BME method with the WLS method in tree topology estimation. It further

develops a new method to construct confidence regions based on the BME method.

More specifically, Chapter 2 studies the pairwise distance estimates with model mis-

specification, investigates the bias, variance and mean square error of the pairwise

distance estimates. Chapter 3 thoroughly compares the BME and WLS methods

in estimating tree topology under different scenarios. Chapter 4 introduces a new

method to calculate the confidence regions based on BME and tests its effectiveness.

Chapter 5 concludes the thesis.



Chapter 2

The pairwise distance estimates

Distance-based methods require pairwise distances calculated between each pair of

species. We rely on evolutionary models to compute pairwise distances, but if the

model used to analyze the data is misspecified, especially when the true tree is a hard

tree with large distances between taxa, the pairwise distances may not be accurately

estimated. This may result in not finding the true tree topology (Olsen, 1987; Lock-

hart et al., 1994; Van de Peer et al., 1996; Susko et al., 2004; Sullivan and Joyce,

2005). Some distance-based methods, such as the ordinary least squares method,

implicitly assume the pairwise distance estimates are independent and normally dis-

tributed (Nei 1996). The normal distribution assumption approximately holds for the

pairwise distance estimate when the sequence length is large. For example, under the

JC69 model, the pairwise distance estimate is based on the formula −3
4
log(4

3
(p̂− 1

4
)).

When p̂ is an MLE, then the p̂ approximately follows normal distribution. Then

according to delta method, the pairwise distance esitmate should also approximately

follow the normal distribution. This is true even when JC69 model is a misspecified

model.

In this chapter, we will examine the estimates of pairwise distances with and

without model misspecifications through simulation studies. For four 5-taxon trees

with different tree branch lengths, we examine normality assumptions through Q-Q

plots of the estimated pairwise distances. We also check their mean squared errors

(MSE), variances and biases against true pairwise distances. We investigate the

relationship between the standard deviation (SD) and the mean of the estimates.

2.1 Simulation design

The purpose of simulation is to examine some aspects of pairwise distance estimates,

namely (1) the normality assumption, (2) MSEs, biases and variances of distance

estimates and how they vary against the true distance values, (3) how the SDs are

9
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related to the means of distance estimates. To achieve these goals, we use four 5-

taxon trees shown in Figures 2.1 and 2.2 as true tree topologies. The lengths of these

trees are 3.6, 4.8, 3.2 and 5.9 for tree 1, tree 2, tree 3 and tree 4 respectively.

We simulate data using the trees in Figures 2.1 and 2.2 and models JC69, GTR and

GTR+Γ; we analyze the data using models F84 and JC69 , so there are six different

“simulation-analysis” model pairs in total, i.e. GTR-F84, GTR-JC69, GTR+Γ-F84,

GTR+Γ-JC69, JC69-JC69, and JC69-F84. Except for JC69-JC69, all others are

misspecified models. We use the Indelible1.03 (Fletcher and Yang 2009) to simulate

data; the sequence length of each data set is 500, and 1000 replicates are simulated for

each case. For each scenario we use DNADIST from the phylip package (Felsenstein

1980) to analyze these simulated sequence data. The parameters used for GTRmodels

are πT = 0.1, πC = 0.2, πA = 0.3, πG = 0.4; r1 = 0.2, r2 = 0.4, r3 = 0.6, r4 = 0.8, r5 =

1.2. The α value used for the GTR+Γ model is 0.385.

2.2 Simulation results

2.2.1 Normality of the pairwise distance estimates

A standard result is that the estimated pairwise distances have large-sample nor-

mal distributions (Susko 2003). In this section, we examine the distribution of the

estimated pairwise distances to study how reasonable this approximation is. There

are 40 different distances under each of the six “simulation-analysis” model pairs and

Q-Q plots of these 40 distances all show similar patterns, so we only present Q-Q

plots for six of them. The six distances are chosen to give a full range of true pairwise

distances, and they are distance DE of tree 2 with length 0.4, CD of tree 1 with length

1.5, AB of tree 3 with length 2, BD of tree 4 with length 2, CE of tree 4 with length

2.2 and AD of tree 2 with length 3.3. The Q-Q plots are shown in the Figures 2.2-2.7.

From these Q-Q plots we find that JC69-JC69 model pairs exhibit the most serious

skewness, This is because JC69 is too simple to incorporate all the variation in data.

The distances in JC69 can be explicitly calculated as −3
4
log(4

3
(p̂− 1

4
)), where p̂ is the

proportion of sites with two nucleotides the same. Since p̂ is approximately normally

distributed, we expect the estimated pairwise distances to be normal only when p̂ is

much larger than 1
4
, where the logrithm function can be better approximated by a
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Figure 2.3: GTR-JC69 Q-Q plot
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Figure 2.4: GTR-F84 Q-Q plot
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Figure 2.5: GTR+Gamma-F84 Q-Q plot
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Figure 2.6: GTR+Gamma-JC69 Q-Q plot
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Figure 2.7: JC69-F84 Q-Q plot
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Figure 2.8: JC69-JC69 Q-Q plot
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linear function of p̂. This is possibly the case for the pairwise distance estimate AB

of tree 3 under JC69-JC69 in Figure 2.7.

JC69-F84 in Figure 2.6 also shows some skewness, but note that JC69 is a model

nested within F84, the skewness is less severe in JC69-F84 than those from JC69-

JC69. For GTR-F84 in Figure 2.3, although there is model msspecification problem

here, the pairwise distances follow normal curves very well. Some distances are not

very normal for GTR-JC69 in Figure 2.2, such as distance AD of tree 2, again this

is because JC69 is an oversimplified model. The Q-Q plots for GTR+Γ-JC69 and

GTR+Γ-F84 show that the normality assumption works reasonably well for these

model pairs.

It was found that under many model misspecification scenarios the estimated

distances satisfy the normality property. But this is not guaranteed to be true,

especially when the true pairwise distance is long. In this case the estimated pairwise

distances can sometimes diverge, and the normal approximation fails badly. The Q-Q

plot in Figure 2.8 is an example of this. It is for the model pair GTR-HKY85, where

the true pairwise distance is 1.86 but the pairwise distances are output as 9 in many

cases. The reason for this is that in some cases the sequences are divergent, meaning

the formula for the distance does not define a value. PAML indicates this situation

by outputing 9 in this case.

 

Figure 2.9: Q-Q norm plot of the longest pairwise distance in a hard tree
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2.2.2 Infinite pairwise distance estimates

Undefined pairwise distances can influence statistical analyses. For example, statis-

tics like variance, bias and mean squared errors of pairwise distance estimators are

infinite, and distance-based methods for estimating trees do not have methods to deal

with this. In practice, software packages use truncated values, and this can impair our

ability to reconstruct the tree. We study how frequently this problem arises in typical

situations. For a variety of model pairs and trees, we simulated 1000 replicates with

sequence length 500, and counted how many times all the pairwise distance estimates

were finite. The results are in Table 2.1.

Model pairs
Tree GTR-F84 GTR-JC69 GTR+Γ-F84 GTR+Γ-JC69 JC69-F84 JC69-JC69
Tree 1 998 997 993 990 645 597
Tree 2 991 989 972 964 570 325
Tree 3 1000 1000 980 989 737 694
Tree 4 964 987 942 962 342 396

Table 2.1: Number of times (out of 1000) all pairwise distance estimates are finite
(sequence length 500)

2.2.3 Bias, Variance and MSE of the pairwise distances

MSE is a good statistic to measure how much an estimate deviates from the true

value. Recall that MSE = bias2 +Variance. The previous section demonstrated that

the normal approximation of the pairwise distance estimates is valid for many model

misspecifications. In this section, we will find out how their bias, variance and MSE

change under various model misspecifications.

Figures 2.9-2.14 show the MSEs, Vars and squared biases of the estimated pairwise

distances versus the true pairwise distances for each tree under each model pair. For

all trees, the MSEs of pairwise distance estimates always increase as the true pairwise

distances increase. Under the model misspecification when the simulation models

are GTR and GTR+Γ, all of the plots show that the squared biases are larger than

the variances of the distance estimates, much larger in many cases. In some cases

the variances are too small to be displayed in the plots. Comparing GTR-F84 and

GTR-JC69 plots, we find that more serious model misspecification can lead to larger



21

1.0 1.5 2.0

0.
00

0.
04

0.
08

True pairwise distance of tree1

M
S

E
,V

ar
 a

nd
 S

qu
ar

ed
 b

ia
s

MSE
Var
Squared bias

0.5 1.5 2.5

0.
00

0.
10

0.
20

True pairwise distance of tree2

M
S

E
,V

ar
 a

nd
 S

qu
ar

ed
 b

ia
s

0.5 1.0 1.5 2.0

0.
00

0.
10

True pairwise distance of tree3

M
S

E
,V

ar
 a

nd
 S

qu
ar

ed
 b

ia
s

1.5 2.0 2.5 3.0

0.
00

0.
10

0.
20

True pairwise distance of tree4

M
S

E
,V

ar
 a

nd
 S

qu
ar

ed
 b

ia
s

Figure 2.10: MSE,Var and Squared bias of GTR-F84
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Figure 2.11: MSE,Var and Squared bias of GTR-JC69
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Figure 2.12: MSE,Var and Squared bias of GTR+Γ-F84
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Figure 2.13: MSE,Var and Squared bias of GTR+Γ-JC69
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Figure 2.14: MSE,Var and Squared bias of JC69-F84
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Figure 2.15: MSE,Var and Squared bias of JC69-JC69
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bias. For example, in tree 2 the largest MSE and squared bias are approximately 0.2

in the GTR-F84 scenario, they are around 1.5 in the GTR-JC69 scenario. On the

other hand, both JC69-JC69 and JC69-F84 plots (Figure 2.13 and 2.14) show that the

biases are smaller than the variances. JC69-JC69 is without model misspecification

and JC69-F84 is using an over-adequate model, thus the biases are smaller, but

variances are relatively much larger.

2.2.4 Relationship between standard deviations (SD) and means of

pairwise distance estimates

Some methods, such as weighted least squares (see Chapter 3), depend on variance

assumptions for the pairwise distance estimates. In this section, we study how stan-

dard deviations are related to the mean for pairwise distance estimates. The plots are

very similar under various model misspecifications, thus we only show the GTR-F84

case.
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Figure 2.16: SDs against means of pairwise distance estimates, under GTR-F84

From Figure 2.15, we can see that the points from four different trees all appear

to lie on a power curve, possibly quadratic curve. This is consistent with the weights

often used in practice for weighted least squares methods.
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2.2.5 Conclusion

When data are simulated under GTR and GTR+Γ, and the analysis model is mis-

specified, the pairwise distance estimates follow the normal distribution quite well.

However, when the data are simulated under JC69, some of estimates do not fol-

low the normal distribution. Model misspecifications lead to biased estimates for

pairwise distances, and more severe misspecification, leads to larger bias. Without

misspecification, the biases are very small, as expected. The SDs of pairwise dis-

tance estimates appear to have a power-law relationship with the means of pairwise

distances estimates. Further study may be needed to confirm this relationship.



Chapter 3

Comparison of Balanced Minimum Evolution and Weighted

Least Squares methods

Reconstructing the tree topology by distance-based methods requires the pairwise

distance estimates first. The pairwise distance estimates may not be very accurate

due to the model misspecification problems. Thus it is necessary to compare the

effectiveness of some distance-based methods in tree topology estimates under model

misspecifications. There are many distance-based methods developed so far, each

with its own merits and drawbacks. For example, Neighbor-Joining (NJ) (Saitou and

Nei 1987) method is fast at reconstructing the tree, while Weighted Least Squares

(WLS) method (Fitch and Margoliash 1967) has the advantage in accuracy. The

balanced minimum evolution (BME) method (Desper and Gascuel, 2002) is both

fast and accurate. In this chapter, we first review the WLS and BME methods, then

compare these two methods according to their tree topology estimate accuracies based

on simulations.

3.1 A review of WLS method

We start by describing the ordinary least square (OLS) method, which is the foun-

dation of the WLS method. Denote the tree being studied by T, and we have a

distance estimate matrix Δ = (δij), where Δij is the pairwise distance estimate be-

tween taxa i and j, we will call Δ the observed distances. Let the D = (dij) be the

matrix consisting of predicted distances dij’s, where the dij equals to the sum of all

branch lengths between taxa i and j under T . Let L = (lk) be a vector representing

the branch lengths of T , where lk is the length of branch k. We use matrix X = (xij,k)

to describe the topology of T : xij,k = 1 if branch k lies on the path between taxa i

and j, and xij,k = 0 otherwise. The OLS minimizes sum of the squared differences

29
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between observed and predicted distances.

n∑
i=1

n∑
j=1

(δij − dij)
2

where n is the number of taxa. In matrix notation, the above criterion can be written

as:

(XL−Δ)T (XL−Δ)

The OLS solution to the branch length estimates is

L̂ = (XTX)−1XTΔ

However, the OLS method implicitly assumes that δij’s are independent and have

the same variance, neither of which is true. The WLS method minimizes the following:

(XL−Δ)TW−1(XL−Δ),

where W is a diagonal matrix, with its element wij proportional to the variance δij. In

practice, it is often assumed to be δ2ij (Fitch and Margoliash 1967, Felsenstein 1997).

The OLS method chooses the tree with the smallest sum of squared residuals while

the WLS method prefers the tree with the smallest weighted sum of squared residuals

(WSSR). The WLS estimates for L is:

L̂ = (XTW−1X)−1XTW−1Δ,

This diagonal matrix W does not contain any covariances of δij’s.

In the generalized least squares (GLS) approach (Bulmer 1991; Susko 2003), the

full variance-covariance matrix estimate of δij’s is used. Incorporating all the covari-

ances in the matrix increases the model complexity dramatically, leading to over-

parametrized model. Susko (2011) has shown that WLS usually outperforms GLS at

tree topology estimation in a wide range of typical situations.

3.2 A review of BME method

Desper and Gascuel (2004) demonstrated that BME is essentially a weighted least

squares version of the minimum evolution (ME) method (Kidd and Sgaramella-Zonta,
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1971; Rzhetsky and Nei 1993). ME is one of the basic principles in phylogenetic

inference. ME selects the tree topology with the shortest length. The tree length is

the sum of all branch lengths, which can be calculated from the pairwise distances.

Denote the tree length of T as S(T ), S(T ) can be estimated using WLS as:

Ŝ(T ) = 1T (XTW−1X)−1XTW−1Δ

where 1 is a vector of 1’s. However, computing the tree length estimate in the above

matrix form is computationally expensive, even though Gascuel (1997) and Bryant

and Waddell (1998) have improved the computational speed for OLS, WLS and GLS

greatly.

BME (Desper and Gascuel 2002) adopts another approach to estimate the tree

length. To illustrate the idea, consider the branch configurations in Figure 3.1.

Figure 3.1: (a) for e an internal edge, (b) for e an external edge.

From Figure 3.1, when e is an internal branch, its estimate is

l̂(e) =
1

4
(δTAC + δTBD + δTAD + δTBC)−

1

2
(δTAB + δTCD)

and when e is an external branch,

l̂(e) =
1

2
(δTiA + δTiB − δTAB)

where δTAB is the average distance between two subtrees A and B. If both A and B

contain only one taxa a and b, then

δTAB = δab
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if one of them, say B, consists of two subtrees, B1 and B2, then

δTAB =
1

2
(δTAB1

+ δTAB2
)

Pauplin (2000) showed that in this framework, the tree length estimate can be

written as the following:

Ŝ(T ) =
∑
i,j

21−Bijδij

where Bij is the number of branches connecting taxa i and j.

In searching the tree topology, the principle of BME is coupled with the nearest

neighbor interchange (NNI). NNI works by picking up an internal branch then ex-

changing the two subtrees connected to that internal branch. We use Figure 3.1 to

demonstrate this. If applying the NNI to swap the subtrees B and C, we generate an

alternative tree TA, then the tree length difference between T and TA:

Ŝ(T )− Ŝ(TA) =
1

4
(δTAB + δTCD − (δTAC + δTBD))

Therefore BME circumvents the matrix manipulations involved in tree length

estimation and improves the computational speed. Desper and Gascuel (2004) further

demonstrated that BME has the following three properties:

1. Suppose the variance of δij is proportional to 2Bij then the tree length estimate

Ŝ(T ) obtained from BME is identical to that from WLS. Moreover, it is the

minimum variance tree length estimator.

2. BME is statistically consistent. Being consistent means when sequence length

tends to infinity, with probability 1 the BME estimate of the tree is the true

tree.

3. All the branch length estimates of all branches in tree T are non-negative, if T

is a tree that is local minimum for a BNNI topology search.

The fast and accurate phylogeny reconstruction software (FastME) was developed

based on the BME principle. The algorithm in FastME was refereed to as the BNNI

algorithm. Vinh and Haeseler (2005) claimed that they found that BNNI boosts the

topological accuracy of all distance-based methods.
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3.3 Comparison of BME and WLS in tree topology estimates

Since both WLS and BME perform quite well in recovering the correct tree topol-

ogy, we are curious about their performances in tree topology estimation under differ-

ent situations. This section will compare BME and WLS based on simulations. Two

kinds of simulations are designed. We firstly simulate the pairwise distances from

normal distribution with various variance structures. This simulation design gives

full advantages to the model assumptions of BME and WLS. We then simulate DNA

sequence data based on some substitution models and observe the performances of

these two methods under model misspecifcations.

We use 5-taxa trees for simulation in this section. Five-taxa trees have a simple

structure with only 15 different tree topologies, 10 pairwise distances and 7 branch

lengths in total. BME selects the tree topology with the shortest tree length and WLS

chooses the one with the smallest weighted sum of squared residuals (WSSR). It is

not hard to find the best tree for either method for a 5-taxa tree, using an exhaustive

search.

3.3.1 Simulation study based on pairwise distance simulations

We consider two tree configurations as follows: the easy tree on the top panel of

Figure 3.2, and the hard tree on the bottom panel of Figure 3.2. For the hard tree, the

shortest internal branch is 0.05 and the longest external branch is 1.1, thus the longest

branch is 22 times longer than the shortest branch. Each observed pairwise distance

was independently simulated 100 times under normal distributions with mean equal

to the true pairwise distance, and we apply three different variance structures in the

simulations, namely:

1. V ar(δij) = k2Bij .

2. V ar(δij) = klij, lij is the true pairwise distance between taxa i and j.

3. V ar(δij) = kl2ij

The variance used by the WLS method to find the tree topology is V ar(δij) = kl2ij,

where k is a positive constant. We use R to calculate both the BME tree length

estimates and WSSR of the WLS method, then count the frequencies that the BME
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and the WLS choose the true tree. Note all true pairwise distances for both easy and

hard trees happen to be greater than 1. We can sort the variance structure from large

to small as: k2Bij > kl2ij > klij.

Simulation results and analysis on the easy tree

Table 3.1 lists the frequencies that different methods recover the true tree for dif-

ferent variance structures. The frequencies of both methods finding the true tree

increase as the variance decreases. When the variance is very small, we find both

methods choose the true tree 100% of the time. Moreover, under all these conditions,

BME always performs slightly better than WLS with larger number of times selecting

the correct tree.

Variance structures used in simulation
k values Method k2Bij kl2ij klij

1/30
BME 51 84 92
WLS 45 80 89

1/300
BME 99 100 100
WLS 98 100 100

1/1000
BME 100 100 100
WLS 100 100 100

Table 3.1: Frequencies of choosing the true tree for different k values and variance
structures when the true tree is an easy tree. 100 replicates were simulated under
each scenario

Simulation results and analysis on the hard tree

Table 3.2 lists the frequencies that different methods recover the true tree for differ-

ent variance structures under another tree. Every frequency value in Table 3.2 is less

than its corresponding value in Table 3.1 due to the fact that tree B is a hard tree.

Neither method can 100% recover the true tree even when k is very small. When vari-

ance is large, both methods have difficulties in finding the true tree. Although tree

B is a hard tree, we still find that BME performs better than WLS, which confirms

the results from the simulations on the easy tree.
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Variance structures used in simulation
k values Method k2Bij kl2ij klij

1/30
BME 26 36 44
WLS 25 35 42

1/300
BME 53 56 60
WLS 52 56 59

1/1000
BME 61 71 90
WLS 58 68 88

Table 3.2: Frequencies of choosing the true tree under different k values and variance
structures when the true tree is a hard tree. 100 replicates were simulated under each
scenario

Summary

For both the easy and the hard tree, under normal distribution simulation, the BME

method is always slightly superior to the WLS method in true tree reconstruction.

These results are obtained without applying substitution models to either simula-

tions and analysis. In the next section, we will simulate data sets based on DNA

models, analyze data with possible model misspecification problems, and examine

the performances of both methods in finding the true tree.

3.3.2 Simulation study based on DNA sequence simulations

In this section, we simulate sequence data with GTR and GTR+Γ, and use F84

and JC69 models to analyze them. The trees we simulate are exactly the tree 2, tree 3

and tree 4 used in Chapter 2. The sequence lengths are 500 and 1000 respectively,

and 1000 replicates are simulated under each scenario from Indelible1.03. Recall that

the pairwise distance estimates follow a normal distribution very well in these cases.

The frequencies of choosing true tree for each method under different scenarios are

given in Tables 3.3 and 3.4.

Both methods increase their accuracy to find the true tree as the sequence length

increases. This verifies that both methods are consistent. From Table 3.3, we can

see that frequencies of finding the true tree by BME are usually larger than that by

the WLS method under almost all different model pairs. From Table 3.4, BME’s

frequencies are sometimes lower than those from WLS, especially under tree 4, but

their values are close. Thus these two methods are comparable in accuracy. Moreover,
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Model pairs
Tree Method GTR-F84 GTR-JC69 GTR+Γ-F84 GTR+Γ-JC69

Tree2
BME 943 933 918 901
WLS 809 705 919 900

Tree3
BME 900 672 755 637
WLS 889 651 733 620

Tree4
BME 876 702 869 899
WLS 865 690 857 907

Table 3.3: Frequencies of choosing the true tree with model misspecifications, se-
quence length is 500

Model pairs
Tree Method GTR-F84 GTR-JC69 GTR+Γ-F84 GTR+Γ-JC69

Tree2
BME 998 997 993 990
WLS 999 997 993 989

Tree3
BME 999 986 977 956
WLS 996 986 971 944

Tree4
BME 964 899 936 910
WLS 967 907 946 901

Table 3.4: Frequencies of choosing the true tree with model misspecifications, se-
quence length is 1000

when sequence length is 1000, both methods have over 90% probability of finding the

true tree, so there is little difference between these two methods in true tree topology

reconstruction in this case. We can conclude that with model misspecifications, BME

performs as well as or better than WLS in tree topology reconstruction.

3.4 Conclusion

BME is a powerful method in finding the true tree topology, it is fast and accu-

rate. We find that under many scenarios, BME performs slightly better than WLS.

The WLS method and some other least squares methods have been widely applied

in phylogenetic inference, for example for building confidence regions. In the next

chapter, we use BME to construct a confidence region.



Chapter 4

Constructing a confidence region using BME

We demonstrated in Chapter 3 that BME is a powerful method once reliable pair-

wise distance estimates are available, but sometimes it is difficult to determine the

true tree. That motivates us, instead of recovering a single tree estimate, to try

to determine a confidence region. Historically, construction of confidence regions is

based on tests. Many test procedures have been proposed. For ML methods; such

as the Shimodaria-Hasegawa (SH) test (Shimodaira and Hasegawa 1999), the SOWH

test (Swofford et al. 1996, Goldman Anderson and Rodrigo 2000), the approximately

unbiased (AU) test (Shimodaira 2002), the likelihood weight (LW) test (Strimmer

and Rambaut 2001) and the single distribution nonparametric bootstrap (SDNB)

test (Shi et al. 2005) etc. For distance-based methods; there are methods based on

the WLS and GLS tests (Susko 2003). In this chapter we extend the idea of the

SDNB test to the BME method to construct confidence regions. We then examine

its performance on simulated data.

4.1 A review of the SDNB test and WLS and GLS tests

Let the tree topology being tested be denoted τ0. The null hypothesis is

H0 : τ0 is the true tree topology

The branch lengths are not specified here but estimated during the test. The corre-

sponding P-value is the probability that the test statistic is no less than the value

observed. So given a significance level α, we can construct a (1 − α) × 100% confi-

dence region by testing. This confidence region is a set of topologies that we expect

the true tree topology is in with probability at least 1 − α. It includes τ0 if H0 is

not rejected with significance level α. The coverage here is defined as probability

that the confidence region contains the true tree topology. The size of the confidence

region is the number of tree topologies it contains. Both the size and coverage are
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evaluated by simulations and these two are important criteria to judge the test. In

order to generate the distribution of the test statistic, nonparametric bootstrap was

performed, since there is no closed-form for the distribution. Specifically, for DNA

sequence data, we use a nonparametric bootstrap on sites to generate replicates, and

the combinations of nucleotide types in sites are regarded as bootstrap replicates.

Most existing ML based tests apply the ML method to estimate the tree lengths.

Suppose the log likelihoods of tree τi and the ML tree are denoted as li and lML

respectively, then we have test statistics

δ1 = lML − l1, · · · , δm = lML − lm

SDNB test approximates the null distributions for all m tests by one distribution,

generated by nonparametric bootstrap. Since the ML tree of the original data set

is considered to represent the most probable evolutionary process, in the bootstrap,

the ML tree of the original data set is used to replace the tested tree to calculate

bootstrap statistics according to the bootstrap theory. The SDNB method follows

the following procedures :

1. Generate nonparametric bootstrap replicate data sets.

2. Obtain the maximum log likelihood l∗ML∗ and l∗ML by reestimation. l∗ denotes

the log likelihood for the bootstrap data set. The subscript ML and ML∗ are

used to represent the ML tree τML of the original data set and ML tree τML∗ of

the replicate respectively.

3. Construct the distribution of δi = lML− li by calculating the difference between

the ML tree of the replicate and the ML tree of the original data set, δ∗ =

l∗ML∗ − l∗ML. Compare the δ∗ from the bootstrap to the test statistics from the

original data sets.

4. For significance level α, if δi is less than the 100(1−α)%th percentile of δ∗, then

tree τi is included in the 100(1− α)% confidence region.

In this algorithm, only one bootstrap distribution is required, to test all potential

tree topologies, so this is computationally easier than calculating one distribution for

each test.
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Distance-based methods are also employed in some tests. The GLS method (Susko

2003) used the following test statistic, which is exactly the same one as the WLS

statistic described in Chapter 3.

(XL−Δ)TW−1(XL−Δ)

where X = (xij,k) is the tree topology matrix, L is the vector representing the branch

lengths of the tree, and Δ is the matrix consisting of estimated pairwise distances.

Matrix W is a full variance-covariance matrix in this case. Under the null hypoth-

esis, the test statistic above approximately follows the chi-squared distribution with

degrees of freedom equal to T (T − 1)/2− (2T − 3), where T is the number of taxa.

The WLS method (Czarna et al. 2006, Susko 2011) provides an alternative means

of constructing the confidence region of tree topologies. The test statistic is very

similar to that of GLS except that matrix W is not the full variance-covariance

matrix, but only a diagonal matrix with variances of pairwise distance estimates, i.e

WLS method ignores the covariances. The WLS method is superior to the GLS for

stability of the test statistic. It is possible that the variance-covariance matrix in the

GLS test statistic is singular, but the variances of pairwise distances are not close to

0, therefore the test statistic of the WLS method is better behaved. The real problem

for the WLS method is that under the null hypothesis, the distribution of its test

statistic is not available. Czarna et al. (2006) suggest assuming the independence of

the pairwise distances. If this is true, then the WLS’s test statistic approximately

follows the same distribution as the GLS test. However, simulations (Susko 2011)

indicate this usually is not true.

4.2 A new test for confidence region construction

The above tests have some shortcomings: it is computationally expensive to apply

ML for the large taxa trees; GLS is also inconvenient because the covariances of

pairwise distance estimates are poorly known; WLS has the disadvantage that the

distribution of the test statistic is unknown. Susko (2011) gives a fast parametric

bootstrap approach for approximating this distribution, but we do not pursue this

further here.
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In Chapter 3, we demonstrated that BME is powerful not only for its fast compu-

tation speed to calculate the tree length but also for its accuracy to find the true tree.

We now extend the idea of SDNB test to BME for constructing confidence region.

Suppose the tree length of tree τi and the best tree found under the BME method

are si and sBME respectively, their difference, denoted as di = si − sBME, is the test

statistic for testing the null hypothesis H0: τi is the true tree. The key steps of this

algorithm are:

1. Generate nonparametric bootstrap replicate data sets.

2. Reestimate the tree length s∗BME∗ and s∗BME of each replicate bootstrap data set.

s∗ denotes the tree length estimate obtained by BME method for the bootstrap

data set. BME and BME∗ denote the best trees found by BME method from

the original data set and the replicate data set, respectively.

3. Create a distribution of test statistic by calculating the differences d∗ = s∗BME−
s∗BME∗ , which is the differences of tree lengths between the best tree of the orig-

inal data set and the best tree of the replicate data sets. Then for significance

level α, obtain its 100(1− α)% percentile value, which is denoted as cα here.

4. If di is less than cα, then tree τi is included in the 100(1−α)% confidence region.

Note that the BME tree of the original data set must be in this confidence region

since dBME = sBME − sBME = 0. Therefore the size of this confidence region is

at least 1.

5. When the number of taxa is small (eg. 5), it is possible to search the whole

tree space, and construct the confidence region by testing each tree. However,

when the number of taxa is large, the tree space is too large for each tree to

be tested. We will apply NNI to construct the confidence region. We create a

list L of trees in the confidence region. As a first attempt, we start with a list

consisting of just TBME, and inductively create the full list as follows:

(a) For each tree in this list, find all trees not already considered that can be

reached from this tree by performing a single NNI operation on one (in-

ternal) branch. Calculate the lengths of each of these trees, and determine
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which should be added to L by testing whether the tree length is less than

SBME + cα

(b) Continue until step (a) does not produce new trees in the list L .

The number of trees in the list L is the size of the confidence region. The coverage

is evaluated by whether the true tree is in the confidence region. The trouble with

this approach is that if the trees near to TBME are not in the confidence region, then

the NNI search will not search many trees, and as a result we may miss the true tree.

To correct for this, we can modify the algorithm to a two-pass algorithm, where in the

first pass, we perform a broad search using the same algorithm but with a different

cut-off c∗ instead of cα. We then test each tree in this large list L compared to the

test statistic cα.

4.3 Simulation design and analysis

We consider trees with both small and large number of taxa. All the trees were

simulated and analyzed under HKY, so there is no model misspecification involved.

For the small number of taxa, the parameters of the HKY model were set as πa =

0.18, πc = 0.33, πg = 0.26, πt = 0.23 with ratio of transition/transversion set as 2.93

as in (Shi et al. 2005). For the large number of taxa, the parameters were set as

πa = 0.37, πc = 0.24, πg = 0.12, πt = 0.27 as in (Zwickl and Hillis, 2002) with the

same transition/transversion ratio used as for small number of taxa. Each data set

was simulated 100 times using Indelible1.03 and we used seqBoot from the PHYLIP

package to generate 1000 nonparametric bootstrap replicates of each original data

set. PAML (Yang 1994) was used to estimate the pairwise distances for trees of

small numbers of taxa, and we applied BME to estimate their tree lengths. For large

numbers of taxa, we directly used the FastME program to obtain their tree length

estimates. For both small and large number of taxa, we set α = 0.05, i.e we only

examine the 95% confidence region for all simulation studies. The simulated data

sets were all of length 1000 nucleotides.
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4.3.1 Small number of taxa

We tested three different trees of 5-taxa in Figure 4.1 with their branch lengths

shown below, these are from Shi et al. (2005) with all the branch lengths reduced to

half the original values. The reason for reducing the branch lengths is that estimating

large pairwise distances is not possible for reasonable sequence lengths. We used the

average size to measure the size of confidence region. The results of our simulations

are shown below

Tree Diameter Coverage Average size Standard deviation
1 0.96 100 1.2 0.4
2 0.93 100 2.8 0.79
3 0.9 98 3.4 1.62

Table 4.1: Coverage and average size of confidence region for trees with 5-taxa

In Shi et al (2005), they introduced percentage of time that the ML and the true

trees (PMLT) are the same to measure how difficult the phylogenetic analysis is. The

smaller PMLT, the harder the tree analysis. For tree 1 and tree 2, their PMLT for

trees of the original size are 100 and 97 respectively; for tree 3 it is 68, so tree 3 is a

relatively harder tree. Our goal is to construct a 95% confidence region of small size

with coverage is also at least 95 %. Our results are shown in Table 4.1. The average

size of confidence regions is around 3 in Shi et al (2005) which was calculated over all

12 model trees. Our results look comparable to theirs.

4.3.2 Large number of taxa

When the number of the taxa becomes large, we depend on the tree-searching

method to choose the candidate trees, NNI was applied both to search for the optimal

tree, and to search for candidate trees. We examine the performance of this test based

on a 15-taxa tree, also from Shi et al (2005), with its topology shown below. There

are over 7.9×1012 different tree topologies for 15-taxa tree. For this analysis, we used

c∗ = 1.5c0.05. It is important to note that our results are not comparable to (Shi et al.

2005) because our trees are shorter and they did not perform a search of tree space,

but instead tested only a set of 100 trees.

Results are: average size is 392.09 with the standard deviation 3.17 and the cov-

erage is 100%, there are 545 trees were included in the first cut on average.
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4.4 Conclusion

We proposed a new test combining with the BME method and the SDNB test.

Unlike implementations of other tests, our test searches the tree space to construct the

confidence region. For large taxa trees, since BME is very fast for estimating the tree

our method has potential to provide a fast method for constructing a good confidence

interval. The current method for computing the distribution of the test statistic is

computationally expensive, so further work is needed to find this distribution more

efficiently. This is a very feasible problem, and we are optimistic that this test can

lead to a very fast and effective method for constructing a confidence region. Further

work is also needed to find the best value for the cut-off c∗.



Chapter 5

Conclusion

Reconstructing the tree topology based on distance method needs to estimate their

pairwise distances first. Usually, without model misspecification, the pairwise dis-

tances estimates follow the normal curve well, but under the model misspecified cases,

the normality assumption can not be preserved. Also if the data is simulated under

a simple model but analyzed under a more complicated one, such as JC69-GTR, the

squared biases of pairwise distance estimates are expected to be smaller than the cor-

responding variances, and the results are opposite for “advanced-simple” model pairs.

Under various variance structures, and under different model pairs, BME performs

at least as well as WLS at choosing the tree topology. Moreover, BME computes

much faster since it avoids the matrix manipulations needed in other methods. This

motivates us to apply the BME method to construct a confidence region. We have

given a method for constructing a confidence region based on BME. This method has

shown good results in terms of both coverage and size of confidence region.

5.1 Future work

This new method for finding a confidence region is promising, but there is a lot of

fine-tuning that can be done to improve the results. Probably the most important

fine-tuning is to find a faster way to estimate the distribution of the test statistic, one

of the big advantages of BME is its speed, and the bootstrap loses this advantage.

Given the usual assumptions about the distribution of pairwise distances. it should

be feasible to estimate the distribution of the test statistics in a more computationally

efficient way.
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