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Even now the world is full of enigmas, of hidden properties, of unknown forces.  
Consequently, science, far from being exhausted, invites everybody with inexhaustible 
veins of ore.  Since, fortunately, we live in the dawn of man’s knowledge of nature; since 
we are still surrounded with a dark cloud which is rent by human curiosity only here and 
there; and if, anyhow, scientific discovery is due no more to genius than to chance, then 
we can all be inventors.  To do so, it is enough to play obstinately and persistently on one 
and the same number in this lottery.  It is entirely a question of patience and 
perseverance. 

 
 

Santiago Ramón y Cajal 
1852 – 1934 
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ABSTRACT

 Butyrylcholinesterase (BuChE) is a serine hydrolase enzyme that, along with 
acetylcholinesterase (AChE), catalyzes the hydrolysis of acetylcholine.  These enzymes 
are associated with the pathology of neurologic disorders such as Alzheimer's disease 
(AD) and multiple sclerosis (MS).  In particular, AChE and BuChE accumulate in -
amyloid (A ) plaques and tau neurofibrillary tangles in the AD brain.  Thus, imaging 
cholinesterase activity associated with plaques and tangles in the brain has the potential 
to provide definitive diagnosis of AD during life.  This would be advantageous since, at 
present, confirmation of AD relies on detecting pathology through post-mortem 
examination of the brain.  In a similar respect, BuChE is associated with the characteristic 
lesions in MS brain and thus, is a promising target for diagnosis and monitoring of 
pathology in this disease.  It is hypothesized that cholinesterase-binding 
radiopharmaceuticals can be used in SPECT or PET imaging to visualize these enzymes 
associated with AD and MS pathology in the living brain. 
 Several classes of cholinesterase ligands were synthesized and exhibited potent 
binding and specificity towards AChE and BuChE using enzyme kinetic analysis.  These 
compounds were rapidly radiolabelled with 123I and purified.  Radiolabelled molecules 
accumulated in vitro in areas known to contain cholinesterase activity in transgenic AD 
mice and post-mortem human AD brain tissues, using autoradiography.  Furthermore, 
cholinesterase activity associated with A  plaques was visualized in human and 
transgenic mouse AD brain tissues. 
 An enzyme kinetic approach was employed to determine critical residues in the 
BuChE active site gorge for ligand binding.  In particular, residues pertaining to the 
peripheral site of the enzyme were identified and found to be involved in the binding of 
various ligands.  These results are crucial for optimizing the enzyme binding properties of 
cholinesterase imaging agents.  Finally, PET imaging of a transgenic mouse model of AD 
was performed as a vanguard for pre-clinical evaluation of cholinesterase imaging agents.  
PET imaging identified similar characteristics between this AD mouse model and the 
human condition.  This is a promising approach for evaluation of cholinesterase imaging 
agents. 
 Radioligands specific for cholinesterases have the potential to provide a non-
invasive means for early diagnosis of neurological diseases using brain scanning. 
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CHAPTER 1 INTRODUCTION 

1.1 PREFACE

Neurological diseases, in particular Alzheimer’s disease (AD) and multiple 

sclerosis (MS), are a central focus of this thesis.  Described in this Chapter are the clinical 

characteristics and pathogenesis of these diseases.  A particular emphasis is placed on 

neuroimaging approaches for the diagnosis of AD and MS.  The cholinergic system is 

briefly reviewed with a focus on the two acetylcholine-regulating enzymes, 

acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE).  The role of these 

enzymes in AD and MS is described and evidence presented for their potential as disease 

diagnostic targets.  Finally, the literature pertaining to AChE and BuChE imaging agents 

is reviewed to provide insight into strengths and weaknesses of these compounds.  The 

goal of this thesis was to develop cholinesterase imaging agents for the visualization of 

neurological disease pathology. 

 

1.2 ALZHEIMER’S DISEASE

1.2.1  HISTORICAL VIEW

 The recognition of dementia has its roots in the very depths of our past.  Ancient 

Egyptians in 2000 BC were aware that age could be accompanied by memory disorder 

(Signoret and Hauw, 2001).  Later, Hippocrates (460-370 BC) and Galen (129-216 AD) 

even considered the irreversible disruption of higher cognitive function to be due to 

cerebral impairment resulting from disease in other organs of the body (Boller and 

Forbes, 1998).  As the field of medicine evolved, the descriptions of anatomy and 

pathogenesis of dementia began to emerge.  Philippe Pinel, viewed as one of the founders 
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of modern psychiatry, provided one of the first complete descriptions of dementia and is 

considered, by some, to be the first to use this term in 1797 (Torack, 1983). 

The description of Alzheimer’s disease (AD), in modern times, had its beginnings 

in 1901 with the admittance and examination of Auguste D by Alois Alzheimer at the 

municipal mental asylum in Frankfurt, Germany.  Auguste D, a 51 year old woman, 

suffered from paranoia, delusions, hallucinations and impaired memory for five years 

before her death in 1906 (Maurer et al., 1997).  The brain of Auguste D was examined in 

detail by Alzheimer and the histopathological changes were presented for the first time in 

1906 at the 37th Meeting of Southwest German Psychiatrists (Alzheimer, 1906).  These 

findings were subsequently published one year later (Alzheimer, 1907).  Alzheimer had 

written “in the centre of an otherwise almost normal cell there stands out one or several 

fibrils due to their characteristic thickness and peculiar impregnability. Numerous small 

miliary foci are found in the superior layers. They are determined by the storage of a 

peculiar substance in the cerebral cortex. All in all we have to face a peculiar disease 

process”.  These early observations provided the foundation for modern AD research.  

The eponym AD was bestowed by Emil Kraepelin (Kraepelin, 1910) in recognition of the 

pioneering studies by Alzheimer.  Clinical and pathological characteristics defined by 

Alzheimer remain a focus in efforts towards definitive diagnosis and treatment of AD. 

 

1.2.2  CLINICAL DESCRIPTION 

 AD is a progressive neurodegenerative disorder and is the most common form of 

dementia in the elderly.  Currently, dementia has a prevalence of 0.02% in ages 30-39 

years and 10.8% in ages 80-90 years (Burns et al., 2002).  The estimated lifetime risk of 
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AD is nearly one in five for women and one in ten for men, however; this discrepancy is 

attributed to the longer life expectancy of women (Seshadri et al., 2006).  In the United 

States, the number of new cases of AD is expected to more than double to 959,000 by the 

year 2050 (Hebert et al., 2001). Also, in Canada 480,000 suffered from dementia in 2010 

and this number is projected to rise to 1,100,000 by 2038, in just one generation 

(Smetanin et al., 2009).  The associated Canadian economic burden for AD is projected 

to increase from 15 billion to 150 billion dollars over this same period (Smetanin et al., 

2009).  With current standards for the treatment and management of AD, this disease is 

poised to dominate health care expenditure around the world and may prove to be a 

crippling burden to economies dealing with aging populations (World Health 

Organization and Alzheimer’s Disease International, 2012). 

Recently, the clinical criteria for the diagnosis of AD has been revised and 

updated (McKhann et al., 2011) from the original which was established almost 30 years 

previously (McKhann et al., 1984).  The first aspect is the determination of dementia 

which is defined by criteria such as interference of function at work or usual activities, a 

decline from previous levels of function and performance, symptoms that are not 

explained by delirium or psychiatric disorders and that cognitive impairment is present.  

This cognitive impairment must involve two or more of memory, reasoning and 

judgment, visuospatial abilities, language function or behavioural changes.  An important 

distinction is made between dementia and mild cognitive impairment (MCI) (Albert et 

al., 2011).  MCI patients demonstrate objective evidence of cognitive impairment 

however activities of daily living are not interfered.  Despite advances to standardize this 

distinction, it remains highly influenced by the subjectivity of the clinician. 
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Assessment of AD in the dementia population has been divided into three 

categories, probable AD dementia, possible AD dementia and dementia unlikely due to 

AD (McKhann et al., 2011).  Probable AD dementia must demonstrate insidious onset, 

worsening of cognition, amnestic presentation and non-amnestic presentation (deficits in 

language, visuospatial or executive functions).  However, an extensive list of confounders 

exists that include temporally related history of stroke, severe white matter loss, other 

active neurological or non-neurological disorders, certain medications and other 

dementias.  A formidable challenge is the differential diagnosis among dementias and 

thus, disorders such as dementia with Lewy bodies, behavioural variant frontotemporal 

dementia and primary progressive aphasia can all manifest similar to that of AD.  

Possible AD dementia demonstrates the core clinical manifestations of AD; however, it 

may manifest with an atypical course (e.g. sudden onset) or be etiologically mixed with 

one or more of the above listed confounders being present.  Dementia unlikely due to AD 

can be considered in the context of three scenarios.  First, if the clinical criteria 

established above for AD is not present; second, regardless of fulfilling the clinical AD 

criteria, if there is sufficient evidence of an alternative diagnosis that does not normally 

overlap with AD; third, a lack of characteristic AD pathology at autopsy, such as A  and 

tau deposits and neuronal injury, suggests an alternative from AD. 

 

1.3 PATHOGENESIS OF ALZHEIMER’S DISEASE

The pathogenesis of AD remains unknown; however, histopathological studies 

have identified several pathologic structures associated with the disease.  Neuritic plaques 

(NP), neurofibrillary tangles (NFT) and cerebral amyloid angiopathy (CAA) are 
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hallmarks of the disease and post-mortem visualization is required for definitive 

diagnosis. 

 

1.3.1  NEURITIC PLAQUES 

 The putative predominant route for the pathogenesis of AD currently centers on 

the ‘amyloid cascade hypothesis’ (Selkoe, 1991; Hardy and Higgins, 1992).  This 

hypothesis maintains that -amyloid (A ) protein aggregation, from monomer to plaque, 

and its deposition in the brain triggers all events and features characteristic of the disease.  

The A  peptide was first sequenced from AD and Down’s syndrome tissue (Glenner and 

Wong, 1984a, b) and subsequently was recognized as the primary component of AD 

plaques (Masters et al., 1985; Selkoe et al., 1986).  A  is a protein that may contain up to  

43 amino acid residues generated by cleavage of the amyloid precursor protein (APP) 

mapped to human chromosome 21 (Goldgaber et al., 1987; Kang et al., 1987; Robakis et 

al., 1987; Tanzi et al., 1987).  APP is a transmembrane protein containing a single 

membrane-spanning domain with a large extracellular (N-terminal) and a small 

cytoplasmic (C-terminal) domain (Kang et al., 1987).  APP695 is expressed in neuronal 

populations and lacks the Kunitz-type serine protease inhibitor motif, unlike the 

ubiquitously expressed isoforms APP751 and APP770 (Kitaguchi et al., 1988; Ponte et al., 

1988; Tanzi et al., 1988).  APP is thought to function in neurite outgrowth, cell adhesion, 

synaptic functions and induction of apoptosis (Koo, 2002).  Related to neuronal 

migration, APP knockout mice exhibit early lethality with a high incidence of cortical 

dysplasia (Herms et al., 2004).  In addition, the cytosolic domain of APP is involved in a 

myriad of cell signaling (Van Gassen et al., 2000) which, when disrupted, results in 
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phenotypes such as cellular misorganization (Howell et al., 1997).  APP is transported in 

axons via fast anterograde axonal transport (Koo et al., 1990) and may function in the 

packaging of other components in this transport system (Kamal et al., 2000) including its 

own proteolytic processing enzymes (Kamal et al., 2001).  The APP gene location 

corresponds to the site of autosomal dominant mutations associated with hereditary 

cerebral hemorrhage (Levy et al., 1990) and with familial AD (St George-Hyslop et al., 

1987; Goate et al., 1991; Hendriks et al., 1992; Mullan et al., 1992).  These familial AD 

mutations primarily cluster at cleavage sites of APP that render various fragments and are 

found to increase the production of A  (Citron et al., 1992; Cai et al., 1993; Suzuki et al., 

1994).  In contrast, one APP mutation has been identified to have a protective effect 

against AD and is characterized by low levels of A  fragments (Jonsson et al., 2012).  In 

addition to AD conditions, A  is also produced from APP by cells during normal 

metabolism (Haass et al., 1992) and thus, is not specific for the disease.   

APP undergoes cleavage by a series of enzymes termed secretases which produce 

varied fragments with distinct functions.  The intracellular location of APP determines 

which of two competing proteolytic pathways are active and thus, which fragments are 

produced.  -secretase is a zinc metalloprotease (Roberts et al., 1994) that cleaves APP 

primarily at the plasma membrane (Sisodia, 1992) to produce a large, soluble N-terminal 

fragment (Weidemann et al., 1989) and a small C-terminal fragment (Selkoe et al., 1988).  

This cleavage site is within the A  sequence and thus, precludes the production of this 

protein fragment (Esch et al., 1990). The liberated soluble N-terminal fragment, sAPP  

(C83), has been generally regarded as protective for the central nervous system due to its 

roles in facilitating neuronal plasticity and survival as well as suppression of 
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neuroexcitotoxicity (Furukawa et al., 1996), among other functions (Mattson, 1997).  In 

addition, the phenotype of APP deficient mice can be rescued by expression of sAPP  

(Ring et al., 2007); thus, many of the physiological functions of APP may be mediated 

through this N-terminal fragment. The -carboxy terminal fragment ( CTF) can further 

be cleaved by another secretase, -secretase, to yield two fragments, P3 (P83) and the 

APP intracellular domain (AICD) (Haass et al., 1992; Haass et al., 1993; De Strooper et 

al., 1998).  The normal function of P3 and its potential role in AD has remained elusive.  

In contrast, AICD is involved in modulating transcription of various proteins, including 

its parent molecule, APP (Cao and Sudhof, 2001; Kimberly et al., 2001; Baek et al., 

2002; Kim et al., 2003; Cao and Sudhof, 2004; von Rotz et al., 2004; Pardossi-Piquard et 

al., 2005; Liu et al., 2007; Zhang et al., 2007b).  Cleavage by -secretase occurs in the 

transmembrane domain of APP, a previously uncharacterized site of activity, which has 

led to a particular focus on the function of this enzyme. The activity of -secretase is 

associated with a high molecular weight complex consisting of presenilin, either 

presenilin1 (PS1) or presenilin2 (PS2), nicastrin, anterior pharynx-defective-1 (APH-1) 

and presenilin enhancer-2 (PEN-2) (Kimberly et al., 2003; Takasugi et al., 2003).  

Presenilins in this complex undergo cleavage into N- and C-terminal fragments that form 

catalytically functional heterodimers (Thinakaran et al., 1996; Edbauer et al., 2003).  

Recognition of a cleavage site by -secretase is not completely determined by the 

substrate primary sequence but rather may depend on interactions and position within the 

membrane (Murphy et al., 1999).  Thus, -secretase cleavage can produce fragments of 

similar but varying residue lengths from the same protein precursor.  In addition to APP, 

-secretase has catalytic activity towards other proteins, such as Notch, which is involved 
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in cell fate decisions (Song et al., 1999).  Therefore, -secretase may modulate a variety 

of biological functions in addition to its role in APP processing. 

 A competing pathway to that described above for APP processing involves 

cleavage by both - and -secretase and produces A  as one of the byproducts.  The 

major -secretase for cleavage of APP is -site APP cleaving enzyme 1 (BACE1) (Sinha 

et al., 1999; Vassar et al., 1999; Yan et al., 1999).  BACE1 is found in various cellular 

locations including early Golgi, late Golgi/early endosomes and endosomes as well as the 

cell surface (Vassar et al., 1999; Huse et al., 2000; Walter et al., 2001).  BACE1 can 

recognize two competing cleavage sites on APP, eventually giving rise to full length or 

11 amino acid truncated forms of A  (Vassar et al., 1999; Farzan et al., 2000; Huse et al., 

2002).  Similar to -secretase, -secretase cleavage of APP first produces a soluble 

fragment, APPs (C99), and a C-terminal fragment, -carboxy terminal fragment 

( CTF).  Overexpression of CTF has led to cytotoxicity and neurodegeneration 

(Yankner et al., 1989; Oster-Granite et al., 1996).  Subsequent cleavage of CTF by -

secretase produces the A  fragment as well as the AICD fragment (Sisodia, 1992), which 

is also produced in the -secretase processing pathway.  A second member of the -

secretase family, -site APP cleaving enzyme 2 (BACE2), displays similar cleaving 

properties; however, its low concentration in the brain compared the BACE1 has limited 

its consideration as a major factor in A  production in vivo (Bennett et al., 2000).  

Nonetheless, due to its activity on APP processing BACE2 may still contribute to the 

pathogenesis of AD.  In addition to APP, BACE1 has a multitude of other substrates, 

such as voltage gated sodium channels and neuroregulins (Vassar et al., 2009), 

suggesting that this enzyme may have a role in various physiological processes. 



 

 9 
 

Mutations in presenilin genes, PS1 (Sherrington et al., 1995) and PS2 (Levy-

Lahad et al., 1995; Rogaev et al., 1995), are found in familial AD.  These mutations alter 

the APP cleavage products, in particular resulting in elevation of A 42 relative to A 40 

levels (Scheuner et al., 1996; Citron et al., 1997).  A 42 is thought to be more prone to 

aggregate and to be more toxic than A 40 (Jarrett et al., 1993); however, both of these 

species of A  are the most commonly found variants in AD plaques.  A 40 is abundantly 

produced in both healthy and AD brain while another 20 species of A  can be produced 

at lower levels (De Strooper, 2010; Benilova et al., 2012).  Early in AD progression, 

diffuse plaques contain predominantly A 42 however mature, dense plaques also contain 

A 40 (Iwatsubo et al., 1994).  The pathway from A  monomer to plaque deposition 

proceeds through various intermediate species that may have biological activities that 

contribute to the pathogenesis of AD.  In this respect, neither a universal mechanism for 

the route of aggregation nor a clear identification of the toxic A  species in AD has been 

established.  This in part may be attributed to the large variety of A  species and their 

complex interactions, differing techniques of isolation and lack of rigorous A  species 

characterization (Benilova et al., 2012).  Residues 18-42 of A  form a -strand-turn- -

strand motif containing two -sheets formed by residues 18-26 and 31-42 (Luhrs et al., 

2005).  This portion of A 42 is capable of unidirectional aggregation with other identical 

fragments.  A , in particular A 42, is found to readily aggregate into dimers, trimers and 

oligomers under physiological conditions (Podlisny et al., 1995; Walsh et al., 2000; 

Shankar et al., 2008).  Adding to the complexity of A  aggregation has been the 

identification of atypical oligomers.  For example, spherical oligomers have been isolated 

from the brains of AD patients and found to correlate with disease severity (Noguchi et 
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al., 2009; Matsumura et al., 2011).  Furthermore, these spherical A  species appear to be 

distinct from the fibrillogenesis pathway leading to plaque deposition and thus, may be a 

novel effector of A  toxicity (Matsumura et al., 2011).  Protofibrils occur as 

intermediates in A  fibrillization and are typically up to 200 nm in length and 10 nm in 

width with a large degree of -sheet and random coil structure (Harper et al., 1997; 

Walsh et al., 1997; Walsh et al., 1999; O'Nuallain et al., 2010).  Protofibrils also mark the 

first point in the A  aggregation process to which the dyes Congo Red and Thioflavin-T 

bind (Walsh et al., 1999).  Continued fibrillization of A  leads to the characteristic 

macroscopic plaques indicative of AD.  Although A  has a tendency for aggregation, it 

may exist in a dynamic equilibrium between its various states (Walsh et al., 1999) 

however, a rigorous proof for this concept has not yet been fully realized (Benilova et al., 

2012).   

The toxic effects of A  species have been demonstrated to effect many different 

systems (Cavallucci et al., 2012).  For example, A  may form an ion channel pore, in 

particular for calcium, which could disrupt normal functions in neurons (Arispe et al., 

1993; Mirzabekov et al., 1994; Kim and Weaver, 2000; Lin et al., 2001).  A  also 

interacts with various neurotransmitter systems, such as the cholinergic system.  For 

example, nicotinic acetylcholine receptors (nAChR) associate with A  plaques (Wevers 

et al., 1999) and A  can inhibit acetylcholine (ACh) release and calcium influx due to 

interactions with nAChRs in the cortex and hippocampus (Wang et al., 2000).  In 

addition, glutamatergic system dysfunction (Cavallucci et al., 2012) and mitochondrial 

dysfunction (Reddy et al., 2010), have been extensively studied in AD and appear to be 

influenced by A  species.  Despite an intense focus on the effects of specific A  species, 
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a single aggregated form has not yet been identified as the major contributor to AD.  It is 

possible that neural cell death in AD may result from the nucleation and polymerization 

process itself rather than the effects of a particular A  aggregate (Wogulis et al., 2005).  

Although certain species of A  may influence processes such as synaptic function, these 

subtle changes do not lead to overt and widespread cellular death.  Thus, it may be 

insufficient to attribute neuronal cell death in AD solely to oligomer or fibrillar A . 

Extracellular deposition of A  within the AD brain follows a defined anatomical 

pattern segregated into 5 stages (Thal et al., 2002).  A  deposition begins in the 

neocortical regions such as the frontal, parietal, temporal and occipital cortices in Stage 1.  

Stage 2 is defined by extension of deposition into the entorhinal, hippocampal and insular 

regions.  Involvement of subcortical structures such as the caudate nucleus, putamen, 

claustrum, basal forebrain, thalamus and hypothalamus are the hallmarks of progression 

to Stage 3.  Stage 4 demonstrates deposition in brainstem structures such as the colliculi, 

substantia nigra, red nucleus, central gray of the midbrain and the inferior olivary 

nucleus.  Continued extension of A  deposition into brainstem structures such as the 

pontine nuclei and the locus coeruleus as well as the cerebellum marks progression to 

Stage 5.  Interestingly, some parallels can be drawn between the route of A  progression 

and neuroanatomical connectivity (Thal et al., 2002).  For example, the hypothalamic 

nuclei, involved in Stage 3, obtain input from the amygdala and hippocampus, involved 

in Stage 2.  Despite such parallels, the mechanism(s) behind regional susceptibility to A  

deposition in the AD brain remain to be elucidated.  

A significant caveat to the ‘amyloid cascade hypothesis’ is that some elderly 

individuals, perhaps as high as 30%, without cognitive decline have widespread 
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deposition of A  pathology in the brain (Snowdon, 1997; Riley et al., 2002; Snowdon, 

2003; Mortimer, 2012).  This suggests that A  aggregation and deposition is necessary 

but not sufficient to cause AD.  It is unclear whether these individuals would eventually 

develop clinical symptoms of AD and thus, represent a prodromal or pre-clinical AD 

state.  Thus, factors such as cognitive reserve, in which brain function continues at 

normal levels despite mounting insults (Lo and Jagust, 2013), may delay the effects of 

AD pathology.  On the other hand, a crucial disease component may be lacking in these 

individuals that, when combined with NP deposition, leads to AD.  Thus, despite having 

rampant A  pathology typical of AD, these individuals would not be expected to 

experience cognitive decline.  Until this issue is resolved, the ‘amyloid cascade 

hypothesis’ occupies a precarious position as the apogee of AD. 

 

1.3.2  NEUROFIBRILLARY TANGLES 

 Much like NPs, Alzheimer also described NFTs however, the main component of 

tangles, microtubule associated protein tau (MAPT), was not discovered until 1975 

(Weingarten et al., 1975).  Within the CNS, tau is found predominantly in the axons of 

neurons and to a lesser extent cell bodies and dendrites (Binder et al., 1985; 

Papasozomenos and Binder, 1987).  The main function of tau in neurons is to associate 

with tubulin, spectin and actin  filaments (Griffith and Pollard, 1982; Selden and Pollard, 

1983; Carlier et al., 1984; Correas et al., 1990; Henriquez et al., 1995) to stabilize 

microtubules (Matus, 1994) and facilitate their interaction with cytoskeletal components 

such as neurofilament (Leterrier et al., 1982; Aamodt and Williams, 1984; Miyata et al., 

1986).  Tau can also mediate interactions with organelles, such as mitochondria (Rendon 
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et al., 1990), the plasma membrane (Brandt et al., 1995) and other proteins such as PS1 

(Takashima et al., 1998).  Microtubules bestow cellular structure as well as form 

transport networks which mediate the movement of micronutrients, neurotransmitters, 

and organelles along the axons.  Tau dysfunction has been linked to neurodegenerative 

disorders, most notably frontotemporal dementia (FTD) and Parkinsonism, through 

identification of mutations in its gene on chromosome 17 (Hutton et al., 1998; Poorkaj et 

al., 1998; Spillantini et al., 1998).  The human tau gene contains 16 exons (Andreadis et 

al., 1992; Andreadis et al., 1995) and thus, is subject to complex splicing patterns.  

Human brain specific exons 2, 3 and 10 are alternatively spliced (Andreadis et al., 1992) 

and give rise to 6 isoforms ranging from 352-441 amino acid residues (Goedert et al., 

1989b; Goedert et al., 1989a; Himmler et al., 1989).  These isoforms generally differ by 

the presence of either three (3R) or four (4R) microtubule binding domain repeats in the 

C-terminal and by the presence or absence of two inserts at the N-terminal (Goedert et 

al., 1989b; Goedert et al., 1989a; Himmler et al., 1989; Kosik et al., 1989a).  Exon 10 

encodes for one of the C-terminal repeats so that the presence of this exon produces 4R 

while its absence yields 3R tau.  Some evidence exists for the differential distribution of 

tau isoforms in neuronal subpopulations (Goedert et al., 1989b), suggesting that each 

isoform may possess a unique biochemical function.  This notion is further reinforced by 

the varied isoform expression during development (Kosik et al., 1989b; Goedert and 

Jakes, 1990).  Tau can undergo a wide variety of post translational modifications 

including phosphorylation, glycosylation, ubiquitination, glycation, polyamination, 

nitration and proteolysis (Gong et al., 2005).  Of the 79 potential Ser and Thr 

phosphorylation sites of the longest tau isoform, at least 30 have been identified as sites 
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of actual phosphorylation (Hasegawa et al., 1992; Morishima-Kawashima et al., 1995; 

Lovestone and Reynolds, 1997; Paudel and Li, 1999), with most lying outside of the 

microtubule binding domain repeats.  There are over a dozen kinases able to 

phosphorylate tau and almost all major phosphatases can dephosphorylate tau (Buee et 

al., 2000; Lau et al., 2002; Avila et al., 2004).  However, the in vivo phosphorylation 

dynamics of tau, including the identity of involved kinases and phosphatases in normal 

and diseased brain, is not fully elucidated. 

 Aggregation of tau protein, much like A , is central to the putative pathogenesis 

of AD.  An initial process involves the redistribution of tau to the cytoplasm followed by 

aggregation and can be mediated by hyperphosphorylation (Noble et al., 2003) and 

mutations (Hasegawa et al., 1998; Hong et al., 1998).  Phosphorylation levels of tau from 

AD brain are 3-4 folds higher than normal tissues (Ksiezak-Reding et al., 1992; Kenessey 

and Yen, 1993; Kopke et al., 1993); however, the particular extent and sites of tau 

phosphorylation responsible for toxicity or aggregation have not been defined.  The 

mechanism(s) by which hyperphosphorylated or mutant cytoplasmic tau form aggregates 

is also poorly understood, but may involve co-factors, such as sulphated aminoglycans, 

RNA or metals (Goedert et al., 1996; Kampers et al., 1996; Gamblin et al., 2000), or 

additional post-translational modifications.  Aggregation of tau leads to paired helical 

fragments (PHFs) and straight filaments (SFs), the major components of NFTs (Grundke-

Iqbal et al., 1986a; Ihara et al., 1986; Kosik et al., 1986; Wischik et al., 1988; Iqbal et al., 

1989; Lee et al., 1991).  In AD, all six isoforms of tau are found localized within NFTs, 

(Grundke-Iqbal et al., 1986a; Grundke-Iqbal et al., 1986b; Goedert et al., 1989b; Goedert 

et al., 1992), a characteristic that can distinguish between AD and some other 
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tauopathies.  Like AD, Down syndrome, post-encephalitic Parkinsonism, amyotrophic 

later sclerosis/parkinsonism-dementia complex of Guam (ALS/PDC), dementia 

pugilistica (DP), and some forms of FTDP-17 all contain aggregations of the 6 tau 

isoforms. In contrast, cortical-basal degeneration (CBD), progressive supranuclear palsy 

(PSP) and other forms of FTDP-17 contain only 4R isoforms while Pick’s disease 

contains only 3R isoforms (Buee et al., 2000).  Ultimately, contribution of tau to 

neurotoxicity in AD brain may be a result of a gain of function, such as aberrant protein 

interactions, loss of function, such as microtubule stabilizing function, and/or its 

aggregation into PHFs and SFs. 

 Much like for A , the chronology of the anatomical distribution of tau in the AD 

brain has been extensively mapped (Braak and Braak, 1991; 1995).  This chronological 

evaluation of NFT pathology identifies six stages of pathological deposition.  Stages I-II 

exhibits severe transentorhinal pathology and usually does not present with any cognitive 

symptoms.  Stages III-IV is the engagement of both the entorhinal and transentorhinal 

regions with severe NFT formation as well as involvement of the hippocampus.  The 

most severe deposition of NFT, stages V-VI, demonstrates profound pathology in almost 

all subdivisions of the cerebral cortex and correlates strongly with clinical symptoms of 

AD.  In advance of NFT formation, neurons in the transentorhinal region abruptly begin 

to demonstrate progressive cytoskeletal changes that ultimately result in the characteristic 

tangle pathological structure (Braak et al., 1994).  Interestingly, the progression and 

distribution of NFTs may occur in advance of widespread A  plaque deposition. 
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1.3.3  CEREBRAL AMYLOID ANGIOPATHY 

 Deposition of A  has long been described in leptomeningeal and cortical vessels 

(Benedek and McGovern, 1949; Margolis, 1959; Neumann, 1960; Schwartz et al., 1965) 

but was first attributed to a specific pathological process due to its involvement in 

intracerebral hemorrhagic stroke (Okazaki et al., 1979; Vinters, 1987).  This CAA is now 

recognized to be associated with cognitive decline (Neuropathology Group Medical 

Research Council Cognitive Function and Aging Study, 2001; Pfeifer et al., 2002) and 

intracerebral infarcts (Kimberly et al., 2009; Prabhakaran et al., 2010; Gregoire et al., 

2011).  CAA has been estimated to occur in 10-50% of the general healthy elderly 

population (Auriel and Greenberg, 2012); however, A  deposited in CAA is similar to 

that found in the plaques of AD.  Interestingly, a high level of plasma A  does not 

produce CAA in a transgenic model of AD (Fukuchi et al., 1996).  In contrast, 

inoculation of A  in an APP overexpressing mouse can give rise to CAA in addition to 

the usual cerebral amyloidosis (Eisele et al., 2010).  The likely source of A  

accumulation in CAA is from neuronal origins and may involve a clearance or drainage 

process from cellular populations (Herzig et al., 2006).  Several lines of evidence indicate 

that A 40 is the predominant species in CAA (Joachim et al., 1988; Prelli et al., 1988; 

Miller et al., 1993; Castano et al., 1996; Van Dorpe et al., 2000; Winkler et al., 2001; 

Fryer et al., 2003; Miao et al., 2005) and that increasing the brain A 40/A 42 ratio 

(Herzig et al., 2004) or the A 42/A 40 (Van Dorpe et al., 2000; Fryer et al., 2003) ratio 

can facilitate either vascular or parenchymal A  deposition, respectively. 

 Unlike distributions of NPs and NFTs, CAA accumulation has an erratic pattern 

in the human brain; however, some relationships have emerged.  Vascular A  is 
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prominent in neocortical and, in some cases, hippocampal regions of the brain (Vinters 

and Gilbert, 1983; Masuda et al., 1988; Pfeifer et al., 2002) however, deep structures such 

as the basal ganglia typically remain unaffected (Mandybur, 1986).  Interestingly, the 

most prevalent and severe CAA pathology is present in the occipital lobe (Pfeifer et al., 

2002) which is typically not involved in the clinical symptoms associated with AD.  The 

vulnerability of the occipital lobe for CAA and its potential contribution to AD remains 

unknown.  

 

1.3.4  BRAIN CLEARANCE OF B-AMYLOID AND OTHER PROTEINS 

 The mutations associated with familial AD are generally related to A  production 

through modulation of APP or the secretase enzymes, leading to elevated A  protein 

levels and subsequent aggregation.  However, a considerable emphasis has been placed 

on the elucidation of A  clearance mechanisms from the brain, as this may represent 

another prominent pathogenic process leading to the hallmark structures of AD.  Three 

mechanisms for A , and other protein, clearance from the brain have been proposed.   

 Drainage of A  with interstitial fluid has been found to occur along perivascular 

spaces leading to the cervical lymph nodes (Cserr et al., 1992; Weller et al., 1998; Weller 

et al., 2000; Preston et al., 2003; Nicoll et al., 2004).  Two consequences may arise 

related to protein drainage in AD brain.  Firstly, an altered or impaired mechanism may 

promote CAA genesis, especially in arteries and, secondly, the delivery of AD 

proteinacious species to the lymph nodes may serve as a promoter for neuroinflammation 

leading to exacerbation of pathological effects.  Another method of protein clearance 

from the brain is by direct transport across the blood-brain barrier (BBB) to the blood 
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(Ghersi-Egea et al., 1996; Ji et al., 2001).  This clearance is mediated by LDL receptor-

related protein-1 (LRP-1) which may become modified or impaired with aging or in AD 

brain (Shibata et al., 2000).  In addition to clearance either directly to the blood or to the 

lymph node, proteins such as A  are also degraded in the brain by proteolytic cleavage.  

Many peptidases, the majority being metalloproteases, have been shown to degrade A .  

These include neprilysin, insulin degrading enzyme, angiotensin-converting enzyme, 

endothelin-converting enzyme, matrix metalloproteinases, plasmin and cathepsin (De 

Strooper, 2010).  Impaired activity of these proteases may lead to increased A  levels in 

the brain, thereby facilitating aggregation.  However, genetic linkage to AD remains 

sparse for these enzymes and furthermore, their upregulation is detected in some cases of 

sporadic AD (Miners et al., 2009; Palmer et al., 2009).  Increased expression of A  

degrading enzymes may be a late stage event in AD pathogenesis and may represent a 

response to elevated A  levels in the brain.  Nonetheless, altered levels of these enzymes 

may have a prominent role in the progression and spread of pathogenesis in the AD brain. 

 The A  clearance mechanisms described above all involve the removal of A  and 

other proteins from the brain and if impaired, may lead to aggregation as is typical in AD.  

Thus, in addition to the overproduction of A , in particular documented with familial AD 

mutations, clearance of A  may represent another crucial and central pathway towards 

the pathogenesis of AD. 

 

1.3.5  APOLIPOPROTEIN-E AS A RISK FACTOR FOR ALZHEIMER’S DISEASE 

 Apolipoprotein-E (ApoE), a well-known lipid transport protein, is a genetic risk 

factor associated with sporadic AD.  ApoE alleles are localized to chromosome 19, and 
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can express 3 potential polymorphisms, 2, 3 and 4, in the brain.  ApoE 4 is associated 

with increased risk of sporadic AD (Corder et al., 1993; Saunders et al., 1993; Strittmatter 

et al., 1993) while the 2 isoform offers a protective effect (Corder et al., 1994).  In the 

brain, apoE is produced mainly by astrocytes (Pitas et al., 1987; Grehan et al., 2001) 

although under some conditions neurons can contribute to expression (Xu et al., 1996; Xu 

et al., 1999).  ApoE is a key regulator of lipid metabolism involved in their distribution 

within and between neural tissues.  In contrast to the periphery, different apoE isoforms 

do not influence cholesterol or lipid metabolism in the brain (Verghese et al., 2011).  

Thus, detrimental or protective effects for AD due to apoE isoforms may act through 

alternate pathways independent of lipid regulation.  

 The mechanism by which apoE isoforms contribute to AD pathogenesis is still not 

clear. However, apoE can be found localized to NPs, NFTs and vascular amyloid (Namba 

et al., 1991).  In an isoform-specific manner, apoE is capable of regulating the clearance 

of A  from the brain in vivo (Castellano et al., 2011) and can stabilize putative toxic 

oligomeric A  species in vitro (Cerf et al., 2011).  Thus, expression of apoE 4 may 

promote aggregation of A  in the AD brain, thereby increasing disease severity and 

lowering the age of onset (Corder et al., 1993; Craft et al., 1998).  In contrast, apoE 2 

may inhibit these processes, thus leading to a protective effect and delaying the age of 

onset of AD in these individuals (Corder et al., 1993; West et al., 1994; Craft et al., 

1998).  Although strong links exist between apoE isoforms and A  aggregation 

pathways, the full contribution of this protein to AD remains to be determined.  
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1.4 MULTIPLE SCLEROSIS

1.4.1  HISTORICAL VIEW AND CLINICAL DESCRIPTION 

 Modern clinical and pathological descriptions of a variety of neurological 

disorders emerged from the Salpêtrière hospital in Paris towards the end of the 19th 

century.  This focal and influential work principally flowed from the efforts of Jean 

Martin Charcot (1823-1893), a neurologist and anatomical pathologist.  Charcot first 

described MS in a series of lectures that included both clinical and pathological findings 

(Charcot, 1877).  This first patient of Charcot’s, in whom he described clinical symptoms 

of MS, was rumoured to be his housemaid (Poser and Brinar, 2004).  Charcot’s work 

emphasized demyelination in the brain that has since become a hallmark of the disease.  

Since that time, both the clinical diagnosis and pathogenesis of MS have been an area of 

intense interest.   

 Clinical criteria for MS are centered around the demonstration of dissemination of 

characteristic brain lesions in both time and space and the exclusion of other diagnoses 

(Polman et al., 2011).  It was not until 1954 that the first authoritative diagnostic criteria 

was established for MS, also known in Britain as disseminated sclerosis (Allison and 

Millar, 1954).  Proposed in these criteria were that clinical symptoms would vary with 

time, in particular demonstrating a relapsing-remitting quality, and furthermore, 

suggested that pathology may adhere to a similar course.  The modern landmark criteria 

for MS was established in 1965 and clearly identified that, by means of history and 

physical, multiple and separate lesions in the central nervous system must be indicated by 

signs of neurological dysfunction (Schumacker et al., 1965).  This criteria gold standard 

heralded the beginning of epidemiological studies and large organized clinical trials to 
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evaluate therapeutics for MS.  Revisions to MS diagnostic criteria continued for several 

decades until an international panel proposed updated guidelines for diagnosis that 

included the use of brain magnetic resonance imaging (MRI) techniques along with 

traditional clinical history and physical (McDonald et al., 2001).  Furthermore, these 

guidelines described the commonly recognized courses of MS.  Subsequently, these 

criteria have been updated in 2005 (Polman et al., 2005) and 2010 (Polman et al., 2011) 

in particular focusing on advances in MRI imaging in MS patients. 

 Patients with MS may present with clinically isolated syndrome (CIS) which is 

consistent with either a monofocal or multifocal central nervous system (CNS) 

inflammatory disease usually involving the optic nerve, brainstem/cerebellum, spinal 

cord or cerebral hemispheres (Polman et al., 2011).  These symptoms commonly include 

sensory disturbances, unilateral optic neuritis, diplopia, trunk and limb parathesias, limb 

weakness, clumsiness, gait ataxia, and neurogenic bladder and bowel symptoms 

(Noseworthy et al., 2000).  An attack due to MS is characterized by either patient-

reported or objective signs of acute inflammatory demyelinating event in the CNS with 

duration of 24 hours.  Multiple episodes are necessary for diagnosis and at least one must 

be corroborated with clinical findings, such as neurological exam, visual evoked 

potentials or MRI evidence of brain lesions.  The most common course of the disease, 

relapsing remitting MS (RRMS), features an attack followed by a period of recovery 

before onset of another attack.  This course typically continues until the remission period 

is no longer evident and the course becomes secondary progressive MS (SPMS).  An 

insidious course from the initial clinical presentation without evidence of distinct 

remissions is primary progressive MS (PPMS).  Other, typically rare, courses of MS have 
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been defined such as benign MS, which is characterized by more than 20 years without 

symptoms (Noseworthy et al., 2000).  However, it remains to be fully explored whether a 

variant, such as benign MS, is indeed a full remission of MS pathogenesis or whether the 

initial symptoms, originally attributed to MS, were due to an alternative and distinct 

cerebral pathological event. 

 Estimates of global and regional prevalence and incidence of MS demonstrates 

wide variability in reporting methods and a lack of standardization (Evans et al., 2013).  

Thus, rigorous and repeated estimates have not been described for many regions in the 

world.  However, in Canada, prevalence estimates range from 50-300 per 100,000 with 

approximately a 3:1 female to male ratio.  Prevalence of MS increases throughout young 

adulthood and reaches a maximum for both sexes around 30-35 years (Allison and Millar, 

1954; Alter et al., 1962; Goldberg, 1974).  Epidemiology studies on MS have described a 

distinct geographical pattern for prevalence that may be attributed either to genetic and/or 

environmental factors.  The risk of disease is greatest in areas furthest from the equator, 

such as North America and Europe (Alter et al., 1960; Goldberg, 1974).  Interestingly, 

residency in an area until the age of approximately 15 years imbues that regions risk 

factor for MS, regardless of migration patterns, later in life (Alter and Okihiro, 1971).  In 

particular, vitamin D derived from sunlight and regional diets are two theories behind this 

geographical distribution (Goldberg, 1974).  

 

1.4.2  PATHOGENESIS 

 MS in considered both a neuroinflammatory and neurodegenerative disease as 

both processes play a prominent role in the pathogenesis.  However, a causative event for 
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the initiation of MS remains to be elucidated.  The inflammatory component of MS is 

hypothesized to occur when the integrity of the BBB is disrupted allowing leukocytes 

from the periphery to enter the brain.  These leukocytes can then target an antigen 

thereby, triggering a cascade of events leading to demyelination (Raine, 1994).  An 

association between MS and major histocompatibility complex (MHC) genes (Compston 

et al., 1976; Terasaki et al., 1976) has reinforced the important contribution that immune 

function has towards the disease.  Autoreactive lymphocytes, such as CD4+ T-cells, in 

MS, are resistant to apoptosis, due to overexpression of -arrestin 1 (Shi et al., 2007) and 

thus, may promote an aberrant immune response in the MS brain.  In addition, CD8+ T-

cells in the MS brain cluster around the lateral ventricles as well as areas of white matter 

such as the corpus callosum, optic nerves, brainstem and throughout the spinal cord.  MS 

inflammation is thought to be driven by interleukin-23 (IL-23) stimulation of a class of 

CD4+ cells termed T-helper 17 cells (Th17) which secrete interleukin-17 (IL-17) 

(Langrish et al., 2005).  The result of this stimulation is increased penetration of Th17 

cells across the BBB.  Accumulation of T- and B-lymphocytes and macrophages in brain 

tissue results in concentrated cytokine signaling that further amplifies the immune 

response and recruits naïve microglia to the lesion site.  Lethal signals are delivered to 

oligodendrocytes through tumour necrosis factor  (TNF ) and phagocytosis of myelin is 

mediated through the presence of complement (Zajicek et al., 1992).  Demyelinating 

lesions expand in all directions and exhibit decreasing inflammation in their interior.  In 

addition, diffuse microglial activation occurs in the normal-appearing white matter 

(NAWM) (Kutzelnigg et al., 2005).  A molecular showdown may occur in the NAWM 

between anti-inflammatory genes of oligodendrocytes and pro-inflammatory signaling of 
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microglia (Zeis et al., 2008).  A resulting edge towards pro-inflammation may modulate 

the progression and subsequent enlargement of MS lesions in the brain.  Upon phagocytic 

removal of myelin debris, remyelination can occur in some lesions due to the recruitment 

of oligodendrocytic precursors (Scolding et al., 1998; Williams et al., 2007; Chandran et 

al., 2008).  It is estimated that 20% of MS patients have extensive lesion remyelination 

(Patrikios et al., 2006).  However, the functional recovery of a lesion area after 

remyelination has not been established.  As well, the cause of prolonged demyelination in 

the majority of lesions, whether due to a constitutive demyelinating process or disruption 

in oligodendrocyte recruitment, has not been fully elucidated.   

Characterization of lesions is not unified within the MS research community and 

various schemes exist for their classification (van der Valk and De Groot, 2000).  Most of 

these schemes rely on the extent of neuroinflammation for their classification and one of 

the most widely adopted is that proposed by Bo and Trapp (Bo et al., 1994a).  This 

classification scheme divides all MS lesions into three categories, active, chronic active 

and chronic inactive, based upon cellularity.  An active lesion possesses a hypercellular 

environment while a chronic active lesion displays a hypocellular center and a 

hypercellular rim.  This division attempts to recognize the putative spread of pathology, 

in which the neuroinflammatory response and demyelination progresses radially from the 

center of a lesion.  Finally, a chronic inactive lesion is hypocellular indicating that the 

neuroinflammatory and demyelinating events have largely already occurred and have 

subsided in this particular region.  The Bo and Trapp lesion classification scheme also 

contains an element of chronology as active lesions are thought to eventually proceed to 
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chronic active and finally chronic inactive states.  However, the in vivo duration of such a 

progression remains unknown. 

 Research on the pathogenesis of MS has long been focused on the 

neuroinflammatory events of the disease; however, interest in the neurodegenerative 

component has emerged and details for its contribution to MS continue to be elucidated.  

Despite this renewed focus, description of axonal pathology has its roots in early MS 

research (Kornek and Lassmann, 1999).  In particular, axonal transection and loss has 

been well documented (Ferguson et al., 1997; Trapp et al., 1998; Ganter et al., 1999; 

Lovas et al., 2000; Bjartmar et al., 2001) as has progressive brain atrophy (Rudick et al., 

1999b; Simon et al., 1999; Miller et al., 2002).  Correlations exist between the degree of 

inflammation in a particular lesion and the number of transected axons.  Thus, 

demyelinating neuroinflammation may drive the neurodegenerative aspect of MS early in 

the disease (Ferguson et al., 1997; Trapp et al., 1998).  Furthermore, demyelination may 

expose the axon to detrimental substances, in particular from the neuroinflammatory 

environment of the MS lesions mediated by both CD4+ and CD8+ T-cells (Babbe et al., 

2000).  Cytokines, proteolytic enzymes, free radicals and oxidative products from 

immune cells (Hohlfeld, 1997) may all contribute to the transection of axons.  In 

addition, elevated levels of nitric oxide (NO) in MS (Bo et al., 1994b; Liu et al., 2001) 

can lead to axonal death (Smith and Lassmann, 2002) through various pathways, 

including inhibition of mitochondrial respiration (Brown and Borutaite, 2002).  Another 

potential mechanism contributing to neurodegeneration in MS is glutamate excitotoxicity, 

a common mechanism attributed to other neurodegenerative processes.  Elevated 

glutamate levels are present in MS lesions and NAWM (Srinivasan et al., 2005) and 
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altered glutamate metabolism has been associated with myelin degradation and cellular 

toxicity (Li and Stys, 2000; Tekkok and Goldberg, 2001; Micu et al., 2006).  The typical 

disease course of RRMS proceeding to a progressive state may reflect pathogenesis 

driven by neuroinflammation transitioning to neurodegeneration.  Interestingly, 

neuroinflammation largely subsides once the progressive course has been established 

(Rudick et al., 1999a).  However, it cannot be ruled out that these two processes may 

proceed independently of one another and that neurodegeneration, due to its potential 

involvement through all stages of disease, may represent the principal pathological 

process contributing to MS. 

 

1.5 IMAGING IN NEUROLOGICAL DISORDERS

1.5.1  OVERVIEW OF IMAGING MODALITIES 

Several imaging modalities exist for the visualization of the CNS such as 

structural imaging using MRI and metabolic and molecular imaging using approaches 

such as functional MRI (fMRI), positron emission tomography (PET) and single photon 

emission computed tomography (SPECT).  MRI has the capability to detect structural 

changes in brain volume and thus, can measure atrophy characteristic of dementias.  

However, the non-specific aspect of this modality has limited its applicability in 

differentiating between certain dementias, especially when atypical patterns of atrophy 

may present in any given disorder.  Imaging using blood-oxygenation-level-dependent 

(BOLD) contrast with MRI (fMRI), 2-deoxy-2-(18F)fluoro-D-glucose (FDG) with PET or 

99mTc-hexamethylpropyleneamine oxime (HMPAO) with SPECT can provide regional 

measures of neural function which may be characteristic of a particular disease.  Different 
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CNS disorders have distinct patterns of progression thus, repeated analysis of brain 

regions demonstrating altered function over time may be indicative of the ongoing 

disease process.  However, this approach suffers the same caveat as structural MRI, as 

these changes can be non-specific and may be attributed to a multitude of different 

disorders with a wide variance of pathogenesis.  Molecular imaging with PET or SPECT 

can target specific proteins related to a given disease and, thus, may be the most effective 

for the definitive visualization of a specific disorder.  A critical aspect of this approach is 

the determination of an appropriate target that is unique for the disorder of interest. 

 

1.5.2  ALZHEIMER’S DISEASE 

Early and definitive diagnosis of AD is crucial for the timely clinical management 

of the disease and will have tremendous applicability for the evaluation of potential 

disease modifying therapies.  At present, providing a differential diagnosis of AD versus 

other dementia conditions is clinically challenging.  Therefore, brain imaging presents an 

opportunity for a significant advance in the early diagnosis and management of AD 

patients as well as knowledge of the pathological course of this disorder.  

Structural MRI in AD usually demonstrates atrophy in the entorhinal cortex and 

hippocampus (Scheltens et al., 1992; Jack et al., 1997; Jack et al., 2002), two areas of 

early NFT pathology.  Although cross-sectional measurement is of limited utility, 

longitudinal assessment of the rate of hippocampal atrophy can potentially distinguish 

AD from cognitively normal controls (Barnes et al., 2009).  Semi-automated methods for 

assessment of hippocampal size has improved bias introduced by visual assessment alone 

and, furthermore, provides a means for standardization across different centers (Pruessner 
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et al., 2000).  However, hippocampal and other cerebral atrophies are not specific for AD 

and can also be observed in cohorts of healthy controls (Dubois et al., 2007; Ikram et al., 

2010; Staff et al., 2010).  Thus, MRI structural imaging is limited by its non-specificity; 

however, continued improvements, such as longitudinal automated analysis of particular 

regions associated with AD, for example cortical thickness (Querbes et al., 2009), may 

improve the utility of such an approach for the diagnosis of AD. 

Neural activity, assessed by measuring brain blood flow dynamics with fMRI, 

may prove to be a powerful tool for the detection of AD throughout the disease process.  

In this context, populations considered at risk, due to the presence of apoE 4, 

demonstrate greater activity in the hippocampus (Bookheimer et al., 2000; Bondi et al., 

2005; Filippini et al., 2009).  Such increased activation may be due to neural 

compensation mechanisms that elevate activity in impaired regions in order to continue 

normal function.  On the other hand, this elevated activity may be an epiphenomenon 

associated with apoE 4 expression, and thus, could be unrelated to the pathogenesis of 

AD.  Furthermore, conflicting fMRI studies have reported altered activation of brain 

regions in at risk populations for AD which complicate robust associations of fMRI 

activity to disease pathogenesis (Machulda et al., 2003; Trivedi et al., 2006; Borghesani 

et al., 2008).  Additional undetermined risk factors for AD, experimental paradigms, 

analysis methods and subject populations may contribute to the disparity of these studies 

for AD.  In addition to regional alterations in neural activity, fMRI can detect variances 

in connectivity of neuronal networks in the brain which may be indicative of AD (Li and 

Wahlund, 2011).  In particular, the default mode network (Raichle et al., 2001), a brain 

network that is suspended during task or goal directed behavior, demonstrates alterations 
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in AD compared to cognitively healthy controls (Greicius et al., 2004; Sorg et al., 2007; 

Wang et al., 2007).  Alterations in brain connectivity, in particular resting state networks, 

may be disease specific and thus, could offer the opportunity for definitive diagnosis.  

However, much remains to be validated for this approach, such as determination of 

longitudinal changes in connectivity, specific resting state systems involved as well as 

application in a clinical setting. 

In AD, the characteristic HMPAO perfusion (Holman et al., 1992; Jagust et al., 

2001; Matsuda, 2007) and FDG metabolism patterns (Choo et al., 2007; Samuraki et al., 

2007; Langbaum et al., 2009), as visualized with SPECT or PET imaging, respectively, 

demonstrate a bilateral decrease to the posterior cingulate and parietotemporal lobes with 

some frontal cortex involvement. Unfortunately, for diagnostic purposes, atypical 

patterns may exist. For example, early in the disease there may be significant asymmetry 

in the brain (Herholz, 2003).  Nuclear imaging is relatively accurate in distinguishing AD 

from other forms of dementia; however, there are common diagnostic confounders which 

limit the specificity of this approach to 70-90%, (Devous, 2002). While brain perfusion 

and metabolism imaging with SPECT and PET, respectively, is widely available, the lack 

of sensitivity and specificity in the early AD stages (Herholz, 2003) demands that more 

accurate diagnostic imaging approaches be developed. 

In addition to the described structural and functional imaging, several potential 

disease-specific approaches have emerged for the neuroimaging of AD.  At the forefront 

of this field is development of PET or SPECT imaging of A  and tau deposits in the 

brain.  Development of A  imaging agents have centered on derivatives of conjugated 

dyes such as Congo Red and Chrysamine G, which are known to bind to -sheet 
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aggregated structures.  In addition, Thioflavin-T and –S have been employed for the 

visualization of A  aggregation due to its ability to bind these structures in a manner 

similar to the conjugated dyes.  Although these compounds possess great utility for in

vitro and ex vivo studies, their in vivo potential is mired by poor penetrance of the BBB.  

Thus, derivatives of these molecules, in particular thioflavin-T (Klunk et al., 2001; 

Mathis et al., 2002), have been developed that show greater ability to cross the BBB.  

Interestingly, numerous distinct binding sites on A  have been identified, in particular for 

the styrylbenzene and thioflavin frameworks.  However, common functional groups 

among these molecules involve either a methylamino or dimethylamino group along with 

a conjugated ring system.  Based on these principles, small molecules can be tailored to 

bind to A  aggregates for use as in vivo SPECT or PET imaging agents (Figure 1.1).   

Imidazo[1,2- ]pyridine derivatives, based on the benzothiazole ring system of 

thioflavin, are promising molecules for use as A  imaging agents.  In this respect, 

incorporation of an N,N-dimethylaminophenyl group in the benzothiazole system has 

provided the A  SPECT imaging agent, [123/125I]-2-(4'-dimethylaminophenyl)-6-

iodoimidazo[1,2-a]pyridine (IMPY) (Zhuang et al., 2003).  This imaging agent has been 

used in preclinical animal studies (Kung et al., 2004) and for assessing therapeutic 

efficacy in clinical trials (Greenberg et al., 2013).  IMPY is the leading A  aggregation 

imaging agent that utilizes SPECT.  The thioflavin-T derivative N-methyl-[11C]-2-(4’-

methylaminophenyl)-6-hydroxybenzothiazole (PIB) (Mathis et al., 2003) is the most 

studied A  imaging agent for PET analysis and has ushered in a novel field dedicated to 

the diagnosis of AD using brain imaging.  Many studies have validated the use of this 

ligand for visualizing NPs in human and transgenic rodent brain (Bacskai et al., 2003;  



 

 31 
 

 

 

 

 

 

 

 
 
Figure 1.1.  Structures of -amyloid imaging agents. Figure 1 
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Klunk et al., 2004; Klunk et al., 2005; Mintun et al., 2006; Driscoll et al., 2012; 

Niedowicz et al., 2012).  PIB imaging has revealed that the rate of A  accumulation in 

the brain may be independent of cognitive decline associated with progression of AD 

(Engler et al., 2006; Mintun et al., 2006).  In particular, A  plaque burden may reach a 

plateau despite ongoing cognitive changes (Engler et al., 2006; Villain et al., 2012; 

Villemagne et al., 2013).  This represents persuasive in vivo evidence that A  plaque load 

does not correlate with dementia severity, thus limiting the ability of such imaging for the 

diagnosis, prognosis and treatment monitoring of AD.  Furthermore, PIB-detected A  

burden is present in many atypical presentations of dementia which does not relate to the 

clinical phenotype (Wolk et al., 2012b).  It is unclear whether these atypical disorders 

will progress to the typical AD phenotype or whether they are distinct entities that share 

the phenomenon of A  pathology.  Despite the disconnection between A  plaque 

pathology and cognition in AD, in normal elderly, cognitive status does relate to A  

burden (Snitz et al., 2013).  Due to the observed plateau of A  deposition, it may be that 

only in a very early disease state, before clinical presentation, does A  burden reflect 

cognitive status.   

A practical caveat has hampered widespread adoption of PIB for AD brain 

imaging. The short half-life (t1/2) of 11C (~20 min) has limited the use of this imaging 

agent to highly specialized centers that have a capacity to produce 11C, incorporate and 

immediately utilize radiolabelled PIB.  Thus, distribution and adoption of PIB imaging is 

restricted.  On the other hand, imaging agents labeled with 18F (t1/2 = ~110 min) allow for 

distribution to multiple centers and thus, have great applicability for clinical use.  One 

agent to have emerged for A  imaging is the naphthol derivative, 2-(1-(6-((2-[18F]-
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fluoroethyl) (methyl) amino)-2-naphthyl)ethylidene) malononitrile (FDDNP) (Agdeppa 

et al., 2001).  Unlike IMPY and PIB, FDDNP binds to both A  plaques and NFTs 

(Agdeppa et al., 2001; Shoghi-Jadid et al., 2002) and thus, may possess a greater capacity 

to diagnose AD and monitor pathological changes.  However, comparison with PIB 

demonstrates that FDDNP may not be as sensitive to accumulation of pathology 

potentially due to non-specific binding (Tolboom et al., 2009b).  In addition,, FDDNP 

may suffer from similar drawbacks as PIB for the definitive diagnosis of AD.  This is 

mainly a lack of correlation between uptake and cognitive changes (Ossenkoppele et al., 

2012).  In contrast, specific focus on episodic memory has established correlation with 

FDDNP accumulation in the brain (Tolboom et al., 2009a).  The longitudinal dynamics of 

AD cognitive decline relative to FDDNP uptake require further elucidation before the 

applicability of this agent for diagnosis can be determined.  For example, the rate of NP 

and NFT deposition needs to be compared to cognitive decline throughout all stages of 

AD.  In addition, visualization of NFT pathology applies to numerous neurodegenerative 

disorders, such as chronic traumatic encephalopathy (Small et al., 2013), that are distinct 

from AD.  Thus, although NFT pathology is an integral process in AD pathogenesis, 

visualization of these structures may be confounding toward AD diagnosis due to non-

specificity. 

Developed from the styrene scaffold (Zhang et al., 2005; Zhang et al., 2007a), 

(E)-4-(2-(6-(2-(2-(2-[18F]fluoroethoxy)ethoxy)ethoxy)pyridine-3-yl)vinyl)-N-

methylbenzenamine (Florbetapir) is another fluorine radiolabelled imaging agent that 

binds to A  aggregations (Choi et al., 2009).  This imaging agent has been validated for 

the visualization of A  plaque neuropathology with minimal non-specific binding and 
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favourable safety, kinetic and metabolic profiles (Lister-James et al., 2011; Clark et al., 

2012).  Comparisons between PIB and Florbetapir have determined that the two agents 

display similar properties for the detection of aggregated A  in vivo (Wolk et al., 2012a; 

Landau et al., 2013).  Florbetapir is the sole A  imaging agent to gain approval from the 

Food and Drug Administration (FDA), United States, for use in routine clinical settings 

to assess brain amyloidosis (Yang et al., 2012).  Progression of A  brain imaging into the 

clinical setting has demanded that strict guidelines be considered for the applicability and 

conclusions drawn from such an approach (Johnson et al., 2013a; b).  However, the 

diagnostic, prognostic and treatment monitoring capability of A  imaging in the clinical 

setting remains unresolved.  Due to limitations of targeting A  deposition, such as its 

presence in cognitively normal individuals and lack of correlation with severity of 

cognitive impairment, definitive diagnosis of AD may be unattainable with such an 

approach.  Nevertheless, the development of A  brain imaging has set the stage for the 

search for imaging agents that target AD-specific pathology for the definitive diagnosis 

of this disease. 

 

1.5.3  MULTIPLE SCLEROSIS 

Brain imaging in MS, in particular MRI, has been established as a powerful 

approach for visualizing the characteristic lesion pathology.  In this respect, the recent 

guidelines for diagnosis contain a considerable emphasis on the use of structural MRI to 

detect MS lesions disseminated in time and space (Polman et al., 2011).  However, many 

advances in MS imaging are emerging that range from novel techniques, such as 
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diffusion-tensor imaging (DTI), to optimized analysis with structural imaging, such as 

detection of gray matter lesions. 

 Imaging of MS brain with MRI detects lesions frequently located asymmetrically 

in the juxtacortical white matter, periventricular white matter and corpus callosum 

(Ormerod et al., 1987) as well as the spinal cord (Bot and Barkhof, 2009).  In particular, 

spinal cord lesions, visualized as T2-hypointensities, are characterized by their cervical 

level, span of no more than two vertebral segments and occupation of half the cross 

sectional area of the cord.  The presence of spinal cord lesions in CIS populations 

predicts progression to definitive MS (Patrucco et al., 2012) and may discriminate 

disability levels (Oh et al., 2013).  MRI techniques have improved to provide accurate 

visualization of grey matter abnormalities.  In this respect, MS pathology in grey matter 

may yield valuable insights into the pathogenesis of the disease as well as afford an 

approach for diagnosis and treatment monitoring.  The development of grey matter 

pathology may result from the presence of white matter lesions (Muhlau et al., 2013).  

Both focal and diffuse grey matter damage have been chronicled in the MS brain (Geurts 

and Barkhof, 2008) and may be indicative of a more progressive disease course 

(Kutzelnigg et al., 2005; Calabrese et al., 2013).  Furthermore, cortical lesions are found 

to occur early in MS and increase in size and number with disease progression (Calabrese 

et al., 2010).  Cortical lesions have been correlated with cognitive impairment (Calabrese 

et al., 2009) but detection of these lesions suffers from poor sensitivity (Seewann et al., 

2012).  The use of higher field magnets, such as 7T, offers capabilities to improve lesion 

visualization using MRI techniques and may be especially beneficial for the visualization 

and characterization of cortical grey matter (Filippi et al., 2013).   
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 Breakdown of the BBB is a putative early event in the formation of MS lesions 

and may represent a valuable target for diagnostic imaging of this disease.  Intravenous 

administration of a gadolinium-containing MRI contrast agent provides a common 

assessment of BBB integrity. In this respect, breakdown of this barrier allows the contrast 

agent to accumulate in brain tissue and is readily visualized with T1 weighted MRI 

(Grossman et al., 1986; Hawkins et al., 1990; Kermode et al., 1990; Tas et al., 1995).  

BBB breakdown is an acute phenomenon which resolves even though lesion activity 

continues.  Therefore, contrast-enhanced MRI is one validated method to determine 

chronology of lesions and is a strategy for the diagnosis of MS (Polman et al., 2011). 

Imaging with fMRI in the MS brain has indicated that brain plasticity and 

compensation occurs throughout the disease process as evidenced by increased activation 

and recruitment of alternate areas to perform tasks (Cader et al., 2006; Levin et al., 2006; 

Mainero et al., 2006; Loitfelder et al., 2011).  This phenomenon seems to occur 

regardless of the neural system affected, whether motor or cognitive.  In addition, resting 

state networks, such as the default mode network, exhibit distinct alterations in the MS 

brain (Rocca et al., 2012).  This may be one strategy employed by the CNS to limit the 

functional consequences of MS pathology in the brain.  Reorganization of brain networks 

and compensation may also be, at least partially, a cause of the poor correlation between 

clinical symptoms and lesion burden (Barkhof, 2002).  Exhaustion of these abilities, 

especially late in disease course, may be associated with pronounced clinical progression 

leading to severe disability (Rocca et al., 2005). 

DTI is a MRI method to assess molecule movements in space and can provide 

measurements of mean diffusivity (MD) and fractional anisotropy (FA) within the brain.  
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In particular, the myelinated axon is an organized structure that restricts movement of 

molecules, such as water, to a longitudinal direction.  Therefore, breakdown of the 

myelin structure would increase movement in all other directions.  Diffusion 

abnormalities measured with DTI in the MS brain can be detected before lesions can be 

visualized with conventional MRI (Wahl et al., 2011).  In this respect, DTI may have 

applicability for prediction of disease onset and progression in both RRMS and PPMS.  

In RRMS, alterations in MD precede, by several months, breakdown of the BBB and 

subsequent lesion formation (Liu et al., 2012) providing an approach to predict relapse.  

For cortical imaging, DTI can visualize changes to normal appearing grey matter which 

may predict advancement to the progressive stage of MS (Bozzali et al., 2002). 

Optic neuritis is one of the most common (17-19%) presenting conditions 

associated with MS (Sorensen et al., 1999) and will occur at some point during the 

disease in a high number of patients (55-60%) (Cantore, 1996).  Optic neuritis leads to 

reduction of the retinal nerve fiber layer thickness (Sergott et al., 2007), suggestive of 

ongoing axonal injury and disease progression in the brain.  This phenomenon can be 

visualized using optical coherence tomography (OCT) (Huang et al., 1991; Drexler et al., 

2001; Chen et al., 2005).  An advantage of this analysis is that it is a rapid, non-invasive, 

high resolution method for detection of changes in retinal nerve fiber layer 

microstructure.  However, heterogeneity in the MS population may limit the use of this 

approach for clinical diagnosis and disease monitoring (Serbecic et al., 2010).  In 

addition, OCT is thought to reflect general axonal degeneration in the brain and, thus, 

alterations can be found in the retinal nerve fiber layer in a variety of other disorders such 

as AD and Parkinson’s disease (Greenberg and Frohman, 2010). 
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Relative to the wealth of MRI techniques for MS, approaches to visualize 

pathology associated with the disease by SPECT and PET imaging remain few.  SPECT 

perfusion has documented lesions (Pozzilli et al., 1987) and has demonstrated 

correlations with some symptoms of MS such as verbal fluency and memory (Pozzilli et 

al., 1991).  However, SPECT perfusion was found not to be sufficiently sensitive for 

reliably detecting MS pathology (Lycke et al., 1993; Assadi et al., 2010).  This is further 

complicated since lesions in SPMS are found in areas demonstrating low perfusion while 

those in RRMS are found in areas of higher perfusion (Holland et al., 2011).  Thus, 

lesions in high perfusion areas may have a greater capacity for remyelination and 

functional recovery which is characteristic of RRMS.  Accumulation of lesions in low 

perfusion areas may be one mechanism that contributes to a progressive disease course.  

This is an interesting avenue for MS perfusion imaging however, robust further 

investigation is required.  Metabolic PET imaging can visualize areas of 

neuroinflammation in the spinal cord of a MS animal model (Buck et al., 2012); however, 

this approach may also suffer from limited sensitivity (Bolcaen et al., 2012).  

Molecular imaging of peripheral benzodiazepine receptors (translocator protein 

18kDA), which are upregulated on macrophages and activated microglia, is a promising 

approach to specifically determine the extent of neuroinflammation.  SPECT ligands, 

such as 123I-6-chloro-2-(4 iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine-3-

acetamide (CLINDE, Figure 1.2), have been developed that visualize this target in a 

mouse model of experimental autoimmune encephalomyelitis (EAE) (Mattner et al., 

2005).  Also a PET agent for these receptors, 11C-1-(2-chlorophenyl)-N-methyl-N-(1-

methyl-propyl)-3-isoquinoline carboxamide (PK11195, Figure 1.2), has visualized MS  
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Figure 1.2.  Structures of peripheral benzodiazepine receptor (translocator protein 
18kDA) imaging agents. Figure 2 
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lesions (Banati et al., 2000) as well as alterations in normal appearing white matter 

(Debruyne et al., 2003) and grey matter (Banati et al., 2000; Politis et al., 2012).  Other 

SPECT/PET ligands have been developed for visualization of this translocator protein 

(Chauveau et al., 2008; Fookes et al., 2008), in efforts to overcome shortcomings of 

PK11195 such as the short half-life of 11C and high non-specific binding.   

Imaging agents towards several other targets have been developed which may 

show efficacy for the visualization of MS pathology.  Associated with MS pathology are 

matrix metalloproteinases which have been visualized with SPECT and PET molecular 

imaging (Wagner et al., 2006).  White matter integrity has been visualized with SPECT 

(Briard et al., 2011) and PET imaging (Wang et al., 2009) and may be promising for 

clinical application.  Also, BBB permeability can be assessed using PET and SPECT 

agents which may offer some advantage over Gd-enhanced MR imaging (Iannotti, 1992).  

In addition, some imaging agents developed for A  imaging, such as PIB, can also detect 

myelin changes (Stankoff et al., 2011).  This ability may be due to non-specific uptake of 

PIB in this structure and thus, is independent of A  binding properties.  Some major 

drawbacks of these imaging agents are that their targets are also involved in the 

pathology of various other disorders of the CNS and thus, are not specific for MS. 

 

1.6 CHOLINERGIC SYSTEM

1.6.1  OVERVIEW 

 The cholinergic system has an integral role in the functioning of the CNS, PNS 

and the immune system.  Several components such as the neurotransmitter ACh, its 
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receptors and hydrolyzing enzymes, acetylcholinesterase (AChE) and 

butyrylcholinesterase (BuChE) have varied but distinct roles in both health and disease. 

 

1.6.2 NEURONAL CHOLINERGIC SYSTEM

 Neurons which release the neurotransmitter ACh (Loewi, 1921; Dale et al., 1936) 

are considered cholinergic.  In the CNS, these consist of projection neurons located in the 

forebrain and upper brainstem, such as the pontine reticular formation, and interneurons 

in the caudate-putamen, nucleus accumbens, hippocampus, cerebral cortex, hypothalamus 

and spinal cord.  Motor neurons in the spinal cord as well as parasympathetic and 

preganglionic sympathetic neurons are also cholinergic (Martinez-Murillo and Rodrigo, 

1995).  The basal forebrain (BF) is considered one of the centers of cholinergic activity in 

the brain, and in addition to ACh, this area contains many other neurotransmitters such as 

-aminobutyric acid (GABA) (Fisher et al., 1988; Gritti et al., 1993), glutamate (Jones 

and Muhlethaler, 1998), and neuropeptides (Walker et al., 1989).  One of the major 

projections of the BF is to the cerebral cortex (Woolf et al., 1983; Saper, 1984; Luiten et 

al., 1987; Gritti et al., 1997) which indicates widespread influence for brain function.  

The hippocampus is another target of BF projections (Detari et al., 1999) along with 

indirect cortical connections via the thalamus (Bickford et al., 1994; Asanuma, 1997).  

Therefore, cholinergic signaling is important for functions such as memory.  Subcortical 

structures such as the olfactory bulb, amygdala, posterior hypothalamus, and 

interpeduncular nucleus (Semba and Fibiger, 1989) also receive input from the BF.  In 

addition, a discrete population of cells sends projections from the BF to the brainstem 

(Semba et al., 1989).  BF afferents originate in diverse regions including limbic, 
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diencephalic and brainstem structures (Semba and Fibiger, 1989; Zaborszky et al., 1991).  

Most of the ascending input is considered as part of an arousal and attention system.  The 

BF is therefore intricately connected with widespread efferents and afferents and, thus, 

the cholinergic system governs a complex system of neural transmission that contributes 

to multiple brain functions. 

Generally, the cholinergic system consists of the acetylcholine synthesizing 

enzyme, choline acetyl transferase (ChAT, EC 2.3.1.6), two classes of acetylcholine 

receptors, nicotinic (nAChR) and muscarinic (mAChR) receptors and two acetylcholine 

hydrolyzing enzymes, AChE and BuChE.  ChAT synthesizes ACh (Nachmansohn and 

Machado, 1943) from choline and acetyl-CoA (Malthe-Sorenssen, 1976; Kim et al., 

2006) and the expression of ChAT is a requirement for a neuron to be considered 

cholinergic.  In this respect, ChAT is the most reliable marker for the visualization of 

cholinergic structures in the brain (Kimura et al., 1980).  In contrast, neurons containing 

cholinergic system components, such as nAChRs or mAChRs, but without ChAT activity 

are considered cholinoceptive (Eckenstein and Sofroniew, 1983).  A variant of ChAT is 

present in peripheral tissues and thus, traditional immunohistochemical methods for 

visualization of this enzyme only detects its presence in the CNS (Bellier and Kimura, 

2011).  Therefore, the extent of ACh synthesis and subsequent functions in various 

tissues, in particular outside of the nervous system, remains to be fully elucidated. 

ACh signaling is mediated through two distinct receptor types, nAChR and 

mAChR, which are structurally unrelated.  nAChR belong to the family of receptor-gated 

ion channels (ionotropic) and mAChR to the G protein-coupled receptors family 

(metabotropic) (Hosey, 1992).  Five genetically defined muscarinic receptors have been 
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identified (M1-M5) (Caulfield and Birdsall, 1998) that have various expressions and 

functions.  M1, M3 and M5 are usually coupled to G q/11 protein thereby, activating 

phospholipase C while M2 and M4 are typically coupled to G i/o protein thereby, 

producing inhibitory effects on cAMP synthesis (Eglen, 2006).  In particular, M1 and M2 

are expressed in the brain (Oki et al., 2005) and are involved in learning and memory 

(Terry and Buccafusco, 2003).  Thus, alteration of expression levels or functions of these 

receptors may contribute to cognitive impairment.  nAChRs are pentameric hetero- or 

homooligomers consisting of various combinations of six  and three  subunits.  These 

receptors are responsible for regulating neurotransmitter release, cell excitability and 

modulation of circuits involved in such physiological functions as sleep, pain and 

cognition (Wevers, 2011).  Multiple methods of detection have been used to define 

distribution of nAChRs in the brain; however, these are generally subunit non-specific 

and a reliable distribution remains unclear.  Nevertheless, nAChRs are implicated in 

many CNS functions and undergo alterations in response to insult or disease. 

The brain cholinergic system is involved in cognition and cortical plasticity 

(Arendt and Bigl, 1986; Schliebs et al., 1996; Bigl and Schliebs, 1998) along with other 

functions in controlling cerebral blood flow (Biesold et al., 1989; Barbelivien et al., 1999; 

Sato et al., 2004), cortical activity (Detari et al., 1999; Lucas-Meunier et al., 2003) and 

sleep-wake cycles (Lee et al., 2005).  Modulation of central cholinergic function impacts 

cognition such as learning and memory in humans (Drachman and Leavitt, 1974; 

Drachman, 1977; Molchan et al., 1992).  Correlation of clinical dementia ratings and 

disruptions of cortical cholinergic markers such as levels of ACh, AChR binding and 

ChAT indicate that a decline in cholinergic function is associated with cognitive defects 
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(Sims et al., 1980; Bowen et al., 1981; Bierer et al., 1995; Davis et al., 1999; Gsell et al., 

2004).  This has led to the implication of the cholinergic system in memory dysfunction 

in AD (Davies and Maloney, 1976; Perry et al., 1977; Bartus et al., 1982; Coyle et al., 

1983; Bartus, 2000), in particular through the degeneration of the basal forebrain 

cholinergic cells (Whitehouse et al., 1982; Arendt et al., 1983; Arendt et al., 1985; 

Mesulam, 1986; Schliebs and Arendt, 2006).  

 

1.6.3  NON-NEURONAL CHOLINERGIC SYSTEMS

 Aspects of a cholinergic function distinct from the central and peripheral nervous 

systems emerged 50 years ago (Whittaker, 1963). The non-neuronal cholinergic system 

appears to be involved in the regulation of basal functions in nearly all mammalian cells 

(Wessler et al., 1998, 1999).  This has led to the proposal that ACh is a ‘universal 

cytotransmitter’ (Grando, 1997; Grando and Horton, 1997). 

 Immune cells are capable of synthesizing, storing, releasing and breaking down 

ACh (Kawashima and Fujii, 2004; Kawashima et al., 2012; Verbout and Jacoby, 2012).  

Lymphocytes (Fujii et al., 1996; Kawashima et al., 1998; Tayebati et al., 2002), 

monocytes (Hecker et al., 2006; Neumann et al., 2007), macrophages (Wessler and 

Kirkpatrick, 2001), neutrophils (Hagforsen et al., 2000), dendritic cells (Kawashima et 

al., 2007), mast cells (Nechushtan et al., 1996; Wessler et al., 2003) and eosinophiles 

(Hagforsen et al., 2000; Durcan et al., 2006) all express aspects of cholinergic machinery.  

Furthermore, the mechanism of release of ACh is probably distinct from the neuronal 

mechanism (Kawashima et al., 2012).  In immune cells, ACh release occurs through 

active transport directly upon synthesis and may be mediated by the organic cation 
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transporter family (Wessler et al., 2001).  Thus, the cholinergic system seems to have an 

integral and complex role in the regulation of the immune system throughout the body. 

 The cholinergic system has also been implicated in development, predominantly 

due to its presence in embryonic stem cells (Landgraf et al., 2010).  Very early in 

development non-neuronal cells express cholinergic system components (Paraoanu et al., 

2007).  In an evolutionary sense, ACh is broadly distributed throughout living organisms 

(Horiuchi et al., 2003) such as bacteria (Stephenson and Rowatt, 1947) and plants 

(Smallman and Maneckjee, 1981).  These observations also suggest a general non-neural 

function for the cholinergic system.  In particular, a proliferative effect on many different 

types of cells may be a principal role of ACh (Wessler et al., 1999).  It is not clear if 

functions of the cholinergic system are transient and varying throughout life or if early 

roles, such as stem cell proliferation, and later roles, such as nervous system function, 

involve distinctly different ACh signaling systems. 

 

1.7 ACETYLCHOLINESTERASE AND BUTYRYLCHOLINESTERASE

1.7.1  DISTRIBUTION, PROPERTIES AND FUNCTIONS

Isolations from horse serum first identified an enzyme that could hydrolyze ACh 

(Stedman and Easson, 1932).  This discovery validated previous predictions made by 

Otto Loewi and others (Loewi and Navratil, 1926) that ACh was hydrolyzed in an 

enzymatic process.  It was subsequently recognized that the hydrolysis of ACh is 

governed by two enzymes (Alles and Hawes, 1940), ‘True Cholinesterase’, acting 

specifically on esters of choline, and ‘Pseudo Cholinesterase’ that, in addition to ACh, 

hydrolyzes a variety of non-choline esters (Mendel and Rudney, 1943).  The two 
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enzymes, ‘True Cholinesterase’ and ‘Pseudo-Cholinesterase’ are now recognized as 

AChE (EC 3.1.1.7) and BuChE (EC 3.1.1.8), respectively. 

The first histochemical method for the visualization of cholinesterases was 

developed by Gomori (Gomori, 1948); however, it was not until the method of Koelle 

(Koelle, 1954) that visualization of cholinesterase activity became robustly explored.  

This method involved the application of choline thioesters which, upon hydrolysis by 

cholinesterases, would form a precipitate with copper in the staining solution.  This 

cuprous thiocholine precipitate demonstrated the location of cholinesterase activity.  

Based on their respective hydrolysis rates, acetylthiocholine and butyrylthiocholine were 

used for the visualization of AChE and BuChE, respectively.  However, this Koelle 

product of cuprous thiocholine is colourless and thus, must be subjected to additional 

steps for proper visualization.  The method of Karnovsky and Roots (Karnovsky and 

Roots, 1964) improved on these principles.  This method involved incubation of tissue 

with acetylthiocholine or butyrylthiocholine along with potassium ferricyanide, cupric 

sulfate and citrate.  The putative mechanism involves the hydrolyzed thiocholine 

reduction of ferricyanide to ferrocyanide which combines with copper(II) to produce 

insoluble and coloured cupric ferrocyanide (Hatchett’s Brown).  Citrate is thought to 

prevent formation of cuprous thiocholine, the Koelle product, in the solution.  Subsequent 

contrast enhancement of the Hatchett’s Brown precipitate is achieved with 3,3'-

diaminobenzidine (DAB) in the presence of hydrogen peroxide (Mesulam and Asuncion 

Moran, 1987).  Cobalt chloride can be applied to increase the reactivity of the DAB 

enhancement (Adams, 1977).  Based on these advances, a modified Karnovsky-Roots 

method has shown robust visualization of both AChE and BuChE in brain tissue 
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(Darvesh et al., 1998).  Although the exact structure of Hatchett’s Brown has not been 

resolved with X-ray crystallography, the chemical composition (Tewari et al., 1982) and 

a possible structure has been proposed (Darvesh et al., 2010a). 

The histochemically-detected distributions of AChE and BuChE activities 

demonstrate both overlapping and distinct patterns in the CNS.  AChE is found in all 

cortical areas in both fibers and neurons, especially in layers 3 and 5 (Mesulam et al., 

1987; Geula and Mesulam, 1989).  More specifically, AChE activity is found in limbic 

areas (Mesulam et al., 1987), such as the hippocampus (Friede, 1967), the cerebellar 

cortex, brainstem nuclei, such as the hypoglossus, and the dorsal and ventral spinal cord 

(Friede, 1967).  BuChE distribution in the brain was initially mapped for several different 

species, including human (Silver, 1974).  Very little activity for this enzyme is found in 

the neocortex except for occasionally in larger pyramidal neurons (Okinaka et al., 1961; 

Friede, 1967).  AChE and BuChE activity has been extensively described in the 

hippocampal formation and amygdala (Darvesh et al., 1998) as well as in the thalamus 

(Darvesh and Hopkins, 2003).  In particular, these regions contain some nuclei that 

express only AChE or only BuChE and some nuclei that express both cholinesterases.  

This suggests that cholinergic signaling may be unique in each nucleus, based on the 

expression levels of AChE and BuChE, and may give rise to distinct properties or 

functions.  Brainstem nuclei, such as the dorsal motor nucleus of the vagus nerve and the 

hypoglossal nucleus possess very high BuChE activity (Friede, 1967; Tago et al., 1992).  

In contrast to AChE, BuChE activity is high in the white matter (Foldes et al., 1962; 

Friede, 1967) and is found in association with myelin (State et al., 1977) and 

oligodendrocytes (Friede, 1967).  However, not all myelinated areas demonstrate glial 
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BuChE as exemplified by the pyramidal tracts (Friede, 1967).  Thus, some 

oligodendroglia may be devoid of BuChE activity potentially giving rise to distinct 

populations based on the presence of this enzyme.  Moderate BuChE activity is also 

found in blood vessels signifying expression in endothelial cells. (Friede, 1967; Tago et 

al., 1992).  Peripherally, AChE and BuChE are expressed at the neuromuscular junction 

(Feng et al., 1999; Krejci et al., 1999).  AChE is found in circulating blood associated 

with erythrocytes (Dutta-Choudhury and Rosenberry, 1984).  Interestingly, BuChE is 

present in almost every tissue except for erythrocytes and is also expressed in the serum 

(Lockridge et al., 1987).  Knock-out (KO) transgenic animals for AChE and BuChE have 

further contributed to understanding of the roles of these two enzymes.  BuChE-KO 

animals do not have an overt phenotype except for marked susceptibility to cholinesterase 

inhibition which signifies a scavenger role for BuChE (Li et al., 2006; Li et al., 2008a; 

Duysen et al., 2009).  In addition, the BuChE-KO model had reinforced the historical 

view that BuChE may play only an accessory role to AChE.  On the other hand, AChE-

KO mice are viable, albeit with some extreme phenotypes (Xie et al., 2000).  BuChE 

expression was not altered in these animals however, this enzyme activity compensated 

for AChE function (Li et al., 2000; Mesulam et al., 2002).  These studies solidified the 

notion that both AChE and BuChE have roles in cholinergic neurotransmission and that 

their functions are not completely redundant. 

AChE is encoded by a single gene on human chromosome 7 that spans ~5 kb and 

has six exons (Li et al., 1991; Getman et al., 1992).  Alternative splicing of exons 5 and 6 

leads to three different AChE isoforms that contain the same catalytic domain but differ 

in the C-terminal (Massoulie et al., 1993; Massoulie et al., 1998; Massoulie, 2002).  
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‘Readthrough’ AChE (AChER) results from a lack of splicing downstream of the catalytic 

domain exons which produces a soluble and monomeric enzyme that does not have 

features for attachment to other molecules.  AChER is found in embryonic tissues but is 

not typically expressed in the adult brain (Legay et al., 1993).  ‘Hydrophobic’ AChE 

(AChEH), possessing exon 5, exists as a glycophosphatidylinositol (GPI)-anchored dimer 

and is mainly expressed in hematopoietic cells (Legay et al., 1993; Li et al., 1993).  

‘Tailed’ AChE (AChET), possessing exon 6, is present in a variety monomers, dimer, 

tetramers and oligomers.  These oligomers can be associated with Collagen Q (ColQ), at 

the neuromuscular junction (Krejci et al., 1997), or proline rich membrane anchors 

(PRiMA), at plasma membranes in brain and muscle (Perrier et al., 2002).  

Oligomerization and anchoring of AChE does not affect catalytic activity; therefore, the 

function of ColQ and PRiMA anchors is for the proper positioning of the enzyme.  For 

example, fast and slow muscles in the rat demonstrate different compositions and 

distributions of ColQ anchored AChE (Krejci et al., 1999) which may contribute to the 

respective synaptic properties of these muscles.  Nucleotide polymorphisms are rare for 

AChE and have not been associated with alterations of protein properties.  This may 

reflect an absolute requirement for AChE function (Soreq and Seidman, 2001). 

In contrast to the complex splicing pattern of AChE, BuChE expression on 

chromosome 3 (Sparkes et al., 1984; Yang et al., 1984; Gnatt et al., 1990) only affords 

the ‘Tailed’ BuChE (BuChET) form.  The genomic region for BuChE spans ~70 kb and 

has four exons (Arpagaus et al., 1990).  The considerable genomic size difference 

between AChE (5 kb) and BuChE (70 kb) is attributed to intron lengths.  Much like 

AChET, BuChET can oligomerize as well as associate with ColQ and PRiMA anchors 
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(Massoulie, 2002).  However, in contrast to AChE, many mutations of BuChE have been 

described (Arpagaus et al., 1990; La Du et al., 1990; Darvesh et al., 2003a).  Several 

prominent BuChE variants arise from point mutations that alter the function of this 

enzyme.  Atypical BuChE is characterized by a point mutation that changes Asp70 to Gly 

that imbues resistance to dibucaine inhibition (McGuire et al., 1989).  This atypical 

variant is commonly (~90%) found in association with the BuChE K-variant, possessing 

an Ala539 to Thr mutation (Bartels et al., 1992).  The BuChE K-variant demonstrates a 

~30% reduction in activity compared to wild-type enzyme (Rubinstein et al., 1978).  A 

heterogeneous group of mutations can lead to <10% of normal BuChE activity and are 

termed silent phenotypes (Primo-Parmo et al., 1996).  These mutations produce a 

virtually catalytically inactive protein, lower expression levels or, as a result of an 

improper stop codon, produce a truncated form.  Historically, silent BuChE variants have 

been identified in individuals due to their marked sensitivity to muscle relaxants, such as 

succinylcholine, which are normally scavenged by this enzyme  (Liddell et al., 1962). 

 AChE and BuChE are serine hydrolases and are closely related in primary 

sequence (51-54% homology) (Chatonnet and Lockridge, 1989), structure and function.  

Both enzymes are glycoproteins (Lockridge et al., 1987; Millard and Broomfield, 1992) 

that catalyze the hydrolysis of esters of choline (Silver, 1974).  The X-ray crystal 

structure of AChE was obtained after isolation of the enzyme from the Torpedo

californica electric organ (Sussman et al., 1991).  The X-ray structures of human AChE 

(Kryger et al., 2000) and BuChE (Nicolet et al., 2003) were subsequently elucidated after 

much difficulty in part due to technical challenges such as glycosylation of the enzymes 

(Nachon et al., 2002).  AChE and BuChE have a central -sheet surrounded by -helices 
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(Millard and Broomfield, 1992) and, in this respect, belong to the /  fold protein 

superfamily (Ollis et al., 1992; Soreq and Seidman, 2001).  Human AChE and BuChE 

catalytic subunits have critical residues for function that were determined first through 

site directed mutagenesis (Harel et al., 1992; Neville et al., 1992; Radic et al., 1993; 

Vellom et al., 1993; Barak et al., 1994; Masson et al., 1996; Saxena et al., 1997, 1999).  

The catalytic triad of human AChE (Shafferman et al., 1992) and BuChE (Lockridge et 

al., 1987) consists of serine 203/198, histidine 447/438, and glutamic acid 334/325, 

respectively, at the bottom of a 20 Å active site gorge.  These residues are the site of 

hydrolysis for substrates, such as ACh (Figure 1.3), as well as aromatic amides (Darvesh 

et al., 2006).  The active site gorges of AChE (Sussman et al., 1991) and BuChE (Nicolet 

et al., 2003) are lined by 14 and 6 aromatic amino acid residues, respectively, that may 

facilitate guidance of substrate entry and exit of the gorge (Sussman et al., 1991).  

Despite the fact that substrates must traverse the active site gorge, the cholinesterases, in 

particular AChE, are among the catalytically fastest enzymes known (Quinn, 1987).  In 

addition to the catalytic triad, other residues are involved in the alignment of substrates 

and thus, are critical for hydrolytic efficiency.  In AChE and BuChE tryptophan 86/82 

comprises the site where the cationic quaternary nitrogen of ACh forms a -cation bond.  

The oxy-anion hole, formed by residues glycine 118/116, glycine 119/117 and alanine 

201/199, stabilizes the carbonyl oxygen of ACh thus, positions this substrate’s carbonyl 

carbon in proximity to the serine of the catalytic triad to facilitate hydrolysis.  A pocket 

accommodates the acyl CH3 portion of ACh, phe295 and phe297 in AChE (Vellom et al., 

1993) while smaller val288 and leu286 in BuChE (Nicolet et al., 2003) provide steric 

differences in this region between AChE and BuChE that account for substrate selectivity  
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Figure 1.3.  Mechanism of cholinesterase catalyzed hydrolysis of acetylcholine.  E: 
glutamate, H: histidine, S: serine. Figure 3 
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divergence between the two enzymes.  Furthermore, the active site gorge volumes for 

AChE and BuChE are approximately 300 Å3 and 500 Å3, respectively.  This allows 

BuChE to accommodate a much wider array of substrates and other molecules compared 

to AChE.   

In addition to the active site region of the cholinesterases, a peripheral site (P-site) 

has been identified on each enzyme by its interaction with substrate and inhibitor 

molecules. Influenced by the P-site ionic interactions with cationic ACh at high substrate 

concentrations, AChE undergoes inhibition (Nachmansohn and Wilson, 1951; Mallender 

et al., 2000) which is thought to occur by steric blockade of product release from the 

active site due to interactions at the P-site (Szegletes et al., 1998).  In contrast, under 

these conditions, BuChE undergoes activation, perhaps due to a conformational change 

or stabilization of the catalytic tetrahedral intermediate mediated by interaction at the P-

site (Masson et al., 1996).  Thus, the P-sites of both AChE and BuChE appear to play a 

critical role in the function of these enzymes.  The P-site of AChE has been extensively 

defined both in structure and function (Taylor and Lappi, 1975; Sussman et al., 1991; 

Radic et al., 1993; Barak et al., 1994; Harel et al., 1996; Szegletes et al., 1998; Mallender 

et al., 2000; Harel et al., 2008; Auletta et al., 2010).  Asp74 is the ‘peripheral anionic site’ 

and is joined by trp286, tyr72 and tyr124 in constituting the P-site.  This site binds 

substrates destined for the active site, such as ACh (Bourne et al., 2006), as well as 

inhibitors such as Thioflavin-T (Harel et al., 2008; Auletta et al., 2010) which do not 

reach the bottom of the gorge.  BuChE also contains a ‘peripheral anionic site’ involving 

asp70, and most likely proximal P-site residues yet to be clearly defined.  Expansion of 

our understanding of the P-sites for AChE and BuChE will further the delineation of the 
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functions of these enzymes in vivo and aid in the design and development of specific 

ligands. 

Although the catalytic function of AChE and BuChE has been a major research 

focus, other roles for these enzymes have emerged.  Both cholinesterases are implicated 

in development, such as maturation of the nervous system (Kostovic and Goldman-Rakic, 

1983; Dubovy and Haninec, 1990; Layer, 1990, 1991; Boopathy and Layer, 2004; Bytyqi 

et al., 2004; Paraoanu et al., 2006; Paraoanu and Layer, 2008; Vogel-Hopker et al., 2012).  

Furthermore, cell adhesion molecules, also members of the /  fold superfamily, share 

high structural similarities with both cholinesterases (Tsigelny et al., 2000; Koehnke et 

al., 2008; Leone et al., 2010; Falugi and Aluigi, 2012; Halliday and Greenfield, 2012).  

Thus, there is a possibility that AChE and BuChE may function in this regard.  In 

addition, BuChE has been found to modulate the activity of other proteins such as trypsin 

due to protein-protein interactions (Darvesh et al., 2001).  The extent that cholinesterases 

may interact and influence other proteins has not been adequately explored. 

 

1.7.2  ROLES IN ALZHEIMER’S DISEASE 

Almost 50 years ago it was first discovered that cholinesterases are associated 

with pathological hallmarks in AD brain (Friede, 1965; Perry et al., 1980).  It was 

subsequently determined that NPs, NFTs and CAA contain both AChE and BuChE 

(Mesulam and Asuncion Moran, 1987; Carson et al., 1991; Moran et al., 1993; Gomez-

Ramos et al., 1994).  It is noteworthy that the optimum pH for Karnovsky-Roots staining 

of NP- and NFT-associated cholinesterase was 6.8 compared to pH 8.0 used for typical 

neuronal and glial cholinesterase visualization (Geula and Mesulam, 1989).  In addition, 
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higher concentrations of inhibitors were necessary to attenuate staining of cholinesterases 

that were associated with AD pathology.  Furthermore, AChE and BuChE associated 

with AD structures may have unique susceptibility to inhibition by compounds, such as 

bacitracin, compared to neural cholinesterases (Wright et al., 1993a).  Despite these 

differences, cholinesterases isolated from AD tissue were found to be identical in 

function as those from cognitively normal adults (Darvesh et al., 2010a).  This suggests 

that the microenvironment of the NP and NFT may alter the biochemical function of 

AChE and BuChE through a currently unknown mechanism.  In addition, molecular 

forms and glycosylation of AChE and BuChE differ in AD from cognitively normal 

brain.  In particular, the levels of monomeric enzyme increase while the tetrameric form 

levels decrease.  These alterations in molecular forms are comparable to expression 

patterns during development (Atack et al., 1986; Arendt et al., 1992).  In addition, these 

molecular forms were differentially glycosylated (Saez-Valero et al., 1999).  Splice 

variations of AChE are also altered in AD and are characterized by a reduction in AChER 

(Darreh-Shori et al., 2004).  A relatively high brain abundance of AChER is 

neuroprotective in transgenic mice; however, in contrast, relative increases in other forms 

of AChE can lead to intensified neurodeterioration (Sternfeld et al., 2000).  The source of 

AChE and BuChE associated with AD pathology may be glial cells since cholinesterases 

in astrocytes and microglia demonstrate many of the same properties as the NP and NFT-

associated enzymes (Wright et al., 1993b).  For example, expression of NP-BuChE in the 

neocortex, an area normally devoid of this enzyme, may be due to glial recruitment 

associated with the pathological structure. 
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Generally, in areas implicated in AD, such as the hippocampus, levels of AChE 

decrease while BuChE levels either increase (Perry et al., 1978) or remain the same 

(Atack et al., 1987; Darvesh et al., 2010a).  Association of BuChE with AD pathological 

structures, especially in areas such as the cortex that normally express low levels of this 

enzyme, may contribute to its overall expression stability or increase.  In contrast, 

reduction in AChE is attributed to the loss of cholinergic neurons which express high 

levels of this enzyme.  This loss possibly outweighs the increase of AChE due to its 

association with AD structures.   

To date, symptomatic treatment for AD has been achieved by targeting 

cholinesterase catalytic activity with inhibitors (Birks, 2006).  The only other drug used 

for AD, memantine, is thought to show efficacy due to modulation of the glutamatergic 

system (Danysz and Parsons, 2012).  Cholinesterase inhibitors used clinically are 

donepezil, rivastigmine and galantamine (Cummings, 2000; Giacobini, 2000).  The 

hypothesis behind efficacy of cholinesterase inhibitors is that their action is capable of 

increasing ACh levels in the brain (Giacobini, 2000; Greig et al., 2005).   Such treatment 

is expected to return ACh towards normal levels and, therefore, offer relief from adverse 

cognitive and behavioural symptoms associated with AD.  Although these inhibitors are 

used for treatment of AD, they have not been found to have conclusive effects on 

duration and progression of the illness (Giacobini, 2003) and thus, are viewed solely as 

symptomatic interventions.  This suggests that AChE and BuChE involvement in AD 

pathology may be distinct from their usual catalytic activity that is targeted by 

cholinesterase inhibitors.  In this respect, AChE and BuChE have been directly 

implicated in the aggregation of A .  AChE promotes aggregation at its P-site (Inestrosa 
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et al., 1996) while, in contrast, the BuChE C-terminal region has an attenuating effect 

(Diamant et al., 2006).  What contribution these effects may have in vivo on A  

aggregation kinetics and cellular toxicity is unknown.  Although the role of 

cholinesterases in AD pathology is not fully defined, it has been suggested that the 

presence of these enzymes, in particular BuChE, may result in a NP maturation process 

culminating in neuronal toxicity (Guillozet et al., 1997).  This is supported by 

observations in an AD animal model in which BuChE is associated with a sub-population 

of NPs that were independently detected through thioflavin-S staining.  This suggests that 

the presence of BuChE may delineate only mature NPs (Darvesh et al., 2012b).  

However, the chronology of cholinesterase incorporation into AD pathology and the role 

of these enzymes in this disease requires additional investigation. 

 Further evidence for cholinesterase involvement in AD is demonstrated by genetic 

risk factors for this disorder.  As described above, individuals expressing apoE 4 are at 

greater risk for the development of AD.  In addition, expression of the K-variant of 

BuChE also results in greater risk of the disease (Lehmann et al., 1997; Lehmann et al., 

2000; Lehmann et al., 2001; Holmes et al., 2005; Ghebremedhin et al., 2007; Podoly et 

al., 2009; Darreh-Shori et al., 2011b; Darreh-Shori et al., 2011a).  Recently, BuChE was 

associated with A  pathology burden as visualized by florbetapir PET imaging (Ramanan 

et al., 2013).  However, not all studies are in agreement that BuChE K-variant associates 

with AD (Bertram et al., 2007).  In line with the hypothesis of BuChE being involved in 

maturation of AD pathology, the BuChE K-variant is associated with progression from 

MCI to AD (Lane et al., 2008).  Genetic studies have implicated BuChE in AD, just as 
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histochemical visualization before it.  However, elucidation of the role of this enzyme in 

AD still remains in infancy. 

 

1.7.3  ROLES IN MULTIPLE SCLEROSIS 

 The cholinergic system may play an integral role in the pathogenesis of MS.  In 

particular, the presence of ACh produces an anti-inflammatory state (Wang et al., 2003; 

Wang et al., 2004) and thus, depletion of this signaling agent may facilitate 

neuroinflammation (Nizri et al., 2006).  Cholinergic anti-inflammatory effects, mediated 

by 7 nAChR signalling, downregulate cytokine production by macrophages and 

suppress lymphocyte proliferation (Nizri et al., 2006).  Administration of a cholinesterase 

inhibitor, rivastigmine, to a mouse model of MS alleviated, at least in part, the 

neuroinflammatory response (Nizri et al., 2008).  A study of human MS brain lesions 

found that BuChE activity associated with myelin is lost as demyelination progresses 

(Darvesh et al., 2010b).  Furthermore, inflammatory cells expressed high levels of 

BuChE but only in active and chronic active lesions.  AChE expression was not altered in 

these lesions.  Increased concentration of BuChE, associated with neuroinflammatory 

cells, in an actively demyelinating lesion, may lead to a localized decrease in ACh.  Thus, 

cholinesterase enzyme activity in MS may serve to drive the progression of the 

neuroinflammatory response through modulation of the cholinergic system.  

Alternatively, cholinesterases, in particular BuChE, are capable of hydrolyzing 

compounds other than ACh.  Several proteins, such as myelin basic protein, proteolipid 

protein (PLP) and myelin oligodendrocyte glycoprotein are associated with the myelin 

sheath and may have roles in structural stability.  Fatty acid thioester analogues of PLP 
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can be hydrolyzed by BuChE in vitro (Pottie et al., 2011).  Thus, aberrant expression of 

BuChE, perhaps linked to neuroinflammation, can potentially facilitate decompaction of 

the myelin sheath leading to epitope spreading and thus, facilitating lesion pathogenesis 

in MS.  Furthermore, the progressive stages of MS are characterized by 

neurodegeneration through unknown mechanisms.  Because of their putative involvement 

in other neurodegenerative disorders, such as AD, it is conceivable that the 

cholinesterases may have some yet undefined role in SPMS and PPMS. 

 

1.8 IMAGING OF CHOLINESTERASES

Cholinesterase imaging with PET first relied on the radiolabelling of organic 

phosphate compounds, such as sarin, known to be irreversible cholinesterase inhibitors 

(Prenant and Crouzel, 1990).  However, the potential toxicity associated with 

organophosphate irreversible inhibitors is not favourable for the development of imaging 

agents.  Subsequently, several agents have emerged that are either non-specific for the 

cholinesterases, specific for AChE or specific for BuChE (Figure 1.4).  11C radiolabelled 

physostigmine (Bonnot-Lours et al., 1993; Planas et al., 1994), a potent pseudo-

irreversible inhibitor of both AChE and BuChE (Darvesh et al., 2003b) demonstrated 

uptake indicative of known regions of AChE activity in the rodent brain, such as 

accumulation in the AChE-rich striatum.  However, the striatum to cortex accumulation 

in humans (2:1) (Pappata et al., 1996) was lower than expected for AChE imaging 

(Finkelstein et al., 1988) and, furthermore, this agent demonstrated complex in vivo 

kinetics (Blomqvist et al., 2001).  These factors have contributed to lack of further use for 

this imaging agent.  Donepezil, a reversible cholinesterase inhibitor used to treat AD, has  
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Figure 1.4.  Structures of cholinesterase imaging agents. Figure 4  
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also been radiolabelled and assessed for imaging the brain (Okamura et al., 2008; 

Hiraoka et al., 2009; Kasuya et al., 2012).  These studies have been valuable for assessing 

the in vivo binding and AChE inhibition in response to donepezil administration.  

Interestingly, the position of the radiolabelled carbon of donepezil drastically alters its 

ability as an AChE imaging agent, potentially due to in vivo metabolism.  [5-11C-

methoxy]donepezil effectively binds AChE (Funaki et al., 2003) while [6-11C-

methoxy]donepezil demonstrates no in vivo labeling of the enzyme (De Vos et al., 2000).  

18F radiolabelled donepezil analogues have also emerged and demonstrate similar binding 

characteristics as the 11C labeled agents (Lee et al., 2000).  Another potent reversible 

cholinesterase inhibitor, tacrine, has been methylated with 11C and used for imaging; 

however, its distribution was non-specific and did not reflect AChE levels in the brain 

(Tavitian et al., 1993; Traykov et al., 1999).  Radiolabelling of the common pseudo-

irreversible cholinesterase inhibitor, rivastigmine, has to date been unsuccessful for 

imaging.  However, further analogues are being developed based on this molecular 

scaffold (Wang et al., 2008).  The failure of radiolabelled known cholinesterase inhibitors 

to accurately recapitulate the distribution of AChE has led to the synthesis and 

development of novel compounds specifically for this purpose.  A series of N-benzyl 

piperidine derivatives containing a tricycle are potent and selective reversible AChE 

inhibitors (Villalobos et al., 1995) and have been radiolabelled with 11C (Bencherif et al., 

2002; Musachio et al., 2002) and 18F (Lee et al., 2004; Ryu et al., 2005; Kim et al., 2011).  

These compounds have been used for AChE imaging and show promise for visualization 

of this enzyme activity in vivo. 
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In addition to cholinesterase inhibitors, as described above, enzyme substrates 

have also been explored as imaging agents for AChE.  A hypothesis proposes that 

substrate imaging agents will diffuse into the brain where they will be metabolized by 

AChE producing a hydrophilic metabolite that accumulates at the site of enzyme activity.  

This concept has been referred to as the ‘Metabolic Trapping Principle’ (Irie et al., 1994; 

Kikuchi et al., 2007).  Several N-[14C]methylpiperidyl ester derivatives were synthesized, 

based on their structural similarities to ACh, as potential AChE imaging agents (Figure 

1.4) (Irie et al., 1994).  These molecules, based on rodent brain tissue homogenate 

kinetics, were deemed specific for AChE and accumulated in AChE-rich areas, such as 

the striatum, in the rodent brain.  These results were further extended to the non-human 

primate where brain AChE visualization was also observed (Namba et al., 1994).  In 

attempts to afford greater AChE selectivity with the N-methyl piperidyl scaffold, 

benzoate esters were synthesized, radiolabelled and evaluated as AChE imaging agents.  

However, in vitro kinetics were not performed and these molecules were not found to be 

hydrolyzed by AChE in vivo (Bormans et al., 1996).  Based on these studies, less bulky 

substrates such as N-[11C]methylpiperidyl acetate ([11C]-AMP) and N-

[11C]methylpiperidyl propionate ([11C]-PMP) emerged as leading AChE imaging agents.  

These compounds both demonstrated favourable kinetics in non-human primate however, 

[11C]-PMP, due to its lower AChE hydrolysis rate, was considered the better agent 

(Kilbourn et al., 1996).  Parallel rodent work also identified AMP and PMP as leading 

compounds for AChE imaging (Irie et al., 1996).  Humans have lower levels of cortical 

AChE compared to mice thus, despite different hydrolysis rates, both AMP and PMP 

were considered suitable for human studies.  [11C]-AMP has high hydrolytic specificity 
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and thus, was the first of the N-methylpiperdyl ester imaging agents to advance to human 

studies.  Administration of [11C]-AMP in AD patients demonstrated distinct patterns of 

reduced AChE uptake in areas, such as the parietotemporal cortex, when compared to 

cognitively normal controls (Iyo et al., 1997; Shinotoh et al., 2000).  However, the AD 

patients of this study also demonstrated reductions in cerebral blood flow in areas with 

reduced [11C]-AMP accumulation.  Follow up studies demonstrated that in cognitively 

healthy adults, the levels of AChE remain constant in the cerebral cortex with aging even 

though some decreases in cerebral blood flow occur (Namba et al., 1998; Namba et al., 

1999).  AChE imaging with [11C]-AMP and [11C]-PMP has been applied to determine the 

extent of AChE activity in AD patients under a cholinesterase inhibitor treatment regime 

(Kuhl et al., 2000; Kaasinen et al., 2002; Bohnen et al., 2005).  Detection of AChE 

alterations in MCI and early AD populations show focal reduction in some areas, such as 

the hippocampus and temporal cortex, (Rinne et al., 2003; Herholz, 2008; Haense et al., 

2012; Marcone et al., 2012) and may be a promising approach for AD diagnosis.  AChE 

activity has been visualized in many conditions in addition to AD such as MS.  

Interestingly, in MS, there were no differences between patients with cognitive 

impairment and healthy controls (Virta et al., 2011). 

Efforts to develop an 18F labeled AChE imaging agent have produced several 

potential compounds based on the N-substituted piperidyl ester scaffold.  A derivative of 

AMP, N-[18F]fluoroethylpiperidin-4-yl acetate ([18F]-FEtP4A), demonstrates favourable 

kinetics towards AChE (Zhang et al., 2002).  However, its reduced specificity and low 

hydrolysis rate compared to PMP and AMP has limited its applicability.  Further 

optimization has afforded similar fluorinated ligands (Shao et al., 2003; Kikuchi et al., 
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2005) that are promising 18F radiolabelled AChE  imaging agents comparable to [11C]-

PMP and [11C]-AMP (Shao et al., 2005; Kikuchi et al., 2010).  

The majority of AChE imaging agents have been developed for PET; however, 

SPECT agents have recently been developed (Mejri et al., 2010) and have shown promise 

for the in vivo imaging of this enzyme activity (Mejri et al., 2013).  However, some 

tracers that have shown efficacy as PET ligands, labeled with 11C or 18F, are unsuitable 

when a SPECT radioisotope, such as 123I, is incorporated instead (Lee et al., 2007). 

BuChE imaging has been a more limited focus of study.  In addition to the non-

specific cholinesterase inhibitor imaging agents, such as tacrine, that have been 

evaluated, as described above, specific BuChE imaging agents are under development.  

N-methyl piperidyl derivatives, similar to those developed for AChE, have been the only 

imaging agents developed specifically for BuChE (Kikuchi, 2001; Snyder et al., 2001; 

Kikuchi et al., 2004).  The lead BuChE imaging agent from these studies, 1-11C-Methyl-

4-piperidinyl n-butyrate ([11C]-MP4B, Figure 1.4), demonstrated an acceptable safety 

profile (Virta et al., 2008).  Human brain imaging with [11C]-MP4B demonstrated partial 

recapitulation of known BuChE activity; however, areas such as the AChE-rich striatum 

demonstrated unexpectedly high uptake of radioactivity (Roivainen et al., 2004).  

Furthermore, [11C]-MP4B imaging of AD patients demonstrated a decrease in brain 

binding when compared to cognitively normal controls (Kuhl et al., 2006).  This result is 

in contrast to the known BuChE activity in the AD brain.  Interestingly, this decrease in 

[11C]-MP4B binding was similar to the decrease observed with the AChE agent, [11C]-

PMP, in the same AD patients.  Thus, these in vivo human studies suggest that [11C]-

MP4B is unable to accurately visualize BuChE activity in the living brain. 
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1.9 RELEVANCE AND CHAPTER OVERVIEWS

 This Chapter described characteristics of AD and MS, from clinical symptoms to 

molecular pathogenesis.  In addition, neuroimaging methods for diagnosis were described 

however, as argued, significant drawbacks exist for these current approaches.  The 

cholinergic system was described, in particular the distribution, function and structure of 

AChE and BuChE.  Evidence for the association of these enzymes with the hallmark 

pathology of AD and MS was presented.  Furthermore, the potential for targeting 

cholinesterases as a definitive diagnostic target was discussed.  Current AChE and 

BuChE imaging agents have failed to visualize these enzymes associated with AD and 

MS pathology.  AChE and, in particular, BuChE imaging agents have the potential to 

provide definitive diagnosis of AD and MS as well as treatment monitoring of these 

diseases. 

Chapter 2 describes the synthesis and evaluation of a class of ester compounds, 

modeled after the structure of acetylcholine, as BuChE imaging agents.  Chapter 3 details 

the synthesis and application of thioester compounds as a strategy towards the evaluation 

and optimization of cholinesterase imaging agents.  Chapter 4 describes the synthesis and 

evaluation of a carbamate compound as a cholinesterase imaging agent.  The capability of 

this compound for the definitive diagnosis of AD is presented.  Chapter 5 chronicles a 

kinetic approach to mapping the cholinesterase active site, in particular that of BuChE.  

Identification of critical enzyme amino acid residues that mediate ligand binding is 

presented.  This approach will be beneficial for the continued development and 

optimization of cholinesterase imaging agents.  Chapter 6 describes the relationship 

between glucose metabolism, assessed with neuroimaging, and pathology in an AD 
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mouse model.  Similar neuroimaging studies in this model will be critical for providing 

robust preclinical evaluation of developed imaging agents for their ability to visualize 

cholinesterase activity associated with disease pathological structures.  Finally, Chapter 7 

provides general discussions and conclusions based on the complete works presented in 

this thesis. 
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CHAPTER 2 ESTER DERIVATIVES AS IMAGING AGENTS 

2.1 PREFACE

 As an initial venture into the development of cholinesterase imaging agents, 

several molecules, based on the structure of acetylcholine, were investigated.  In this 

Chapter, the synthesis, enzyme kinetics, radiolabelling and evaluation of these molecules 

as specific-butyrylcholinesterase imaging agents are detailed.  The content of this Chapter 

describes work done as part of this thesis that has been published as Macdonald et al., 

Mol Imaging Biol, 2011, 13(6):1250-61. 

 

2.2 INTRODUCTION

Currently, a definitive diagnosis of Alzheimer’s disease (AD) requires the 

detection of dementia and demonstration of characteristic AD pathology, amyloid 

plaques and neurofibrillary tangles, at autopsy (Hyman and Trojanowski, 1997; Blennow 

et al., 2006).  Accurate diagnosis of AD in patients during life is imperative to initiate 

early treatment and to monitor treatment effects. 

 In AD brains, there is widespread cell loss and, in particular, loss of cholinergic 

neurons (Davies and Maloney, 1976), leading to a decrease in the enzyme choline 

acetyltransferase and its product, the neurotransmitter, acetylcholine.  This loss is 

responsible, in part, for the characteristic cholinergic dysfunction in AD (Bartus et al., 

1982; Coyle et al., 1983).  An enzyme regulating acetylcholine, acetylcholinesterase 

(AChE, EC 3.1.1.7), also shows significant loss in AD brains (Perry et al., 1978).  

However, activity of the related enzyme, butyrylcholinesterase (BuChE, EC 3.1.1.8), also 
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able to catalyze acetylcholine hydrolysis, has been observed to increase in AD (Perry et 

al., 1978). 

In the healthy brain, AChE is found in neurons and neuropil (Mesulam and Geula, 

1991) while BuChE is found in white matter, glia and specific populations of neurons 

(Friede, 1967; Darvesh et al., 1998; Darvesh and Hopkins, 2003; Darvesh et al., 2003a).  

In AD brain tissue, AChE and BuChE are also associated with amyloid plaques, 

predominantly located in the cerebral cortex (Friede, 1965; Geula and Mesulam, 1989; 

Mesulam and Geula, 1994; Geula and Mesulam, 1995; Guillozet et al., 1997; Darvesh et 

al., 2010a).  This association should allow molecular imaging of AD pathology during 

life using cholinesterase-specific radiolabelled compounds.  However, in normal and AD 

cerebral cortex, the distribution of BuChE (Figure 2.1a and d), AChE (Figure 2.1b and e) 

and -amyloid (Figure 2.1c and f) indicates that compounds specific for BuChE, rather 

than AChE, would be more suitable for imaging AD pathology.  BuChE and -amyloid 

levels are both low in normal cerebral cortex (Figure 2.1a and c) and high in AD cerebral 

cortex (Figure 2.1d and f).  However, AChE levels are comparably high in both normal 

(Figure 2.1b) and AD (Figure 2.1e) cerebral cortex and would make it difficult to 

distinguish normal from AD with AChE neuroimaging.  BuChE activity associated with 

AD pathology, in areas of the brain where this enzyme is not normally prominent, 

suggests that visualizing BuChE activity by neuroimaging could be valuable in detection 

of AD pathology in the living brain.  This could facilitate early diagnosis of AD during 

life.   

Synthesis and evaluation of BuChE-specific radiolabelled imaging agents, derived 

from N-methylpyrrolidinol and N-methylpiperidinol have been previously reported  
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Figure 2.1.  Photomicrographs of butyrylcholinesterase (BuChE), acetylcholinesterase 
(AChE) and -amyloid staining in normal (a, b, c) and Alzheimer’s disease (AD) (d, e, f) 
cerebral cortex.  Note similar plaque staining with BuChE (d), AChE (e) and -amyloid 
(f) in AD.  These structures are absent in normal brain (a, b, c).  In normal brain there is a 
low level of BuChE (a) in the cortex and no -amyloid plaques (c) while there is 
relatively intense AChE staining (b).  These differences make BuChE a suitable target 
over AChE for imaging AD pathology.  BuChE and AChE histochemistry was done as 
described previously (Darvesh et al., 2010a).  -amyloid was stained using a standard 
immunohistochemical technique. Figure 5 
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(Kikuchi, 2001; Snyder et al., 2001; Kikuchi et al., 2004).  One such molecule, predicted 

to be BuChE-specific, 1-11C-methyl-4-piperidinyl n-butyrate (11C-MP4B), was developed 

for PET imaging.  Biodistribution studies with 11C-MP4B, performed in the human brain 

(Roivainen et al., 2004) and other organs (Virta et al., 2008), indicated high initial brain 

uptake but with a rapid clearance over 30 minutes (Roivainen et al., 2004).  Most 

significant, labelling did not correlate (Kuhl et al., 2006) with the known histochemical 

localization of BuChE in normal (Friede, 1967; Darvesh et al., 1998; Darvesh and 

Hopkins, 2003; Darvesh et al., 2003a) or in AD brains (Friede, 1965; Geula and 

Mesulam, 1989; Mesulam and Geula, 1994; Geula and Mesulam, 1995; Guillozet et al., 

1997; Darvesh et al., 2010a).  A possible reason for this lack of correlation is that in 11C-

MP4B, the radioisotope is located on the part of the substrate that is the initial leaving 

group in the mechanism of BuChE catalysis.   

In an effort to prevent early loss of radiolabel from the BuChE-substrate complex, 

we incorporated a radioactive marker on the acyl moiety of the ester, the last component 

of the substrate to dissociate from the enzyme following hydrolysis.  To develop BuChE-

specific imaging agents that would have the potential to remain bound longer, 4-

iodobenzoate derivatives of N-methylpyrrolidinol and N-methylpiperidinol were prepared 

and evaluated.  The rationale for synthesizing these compounds was that the size of the 

iodobenzoate moiety should render such esters more susceptible to hydrolysis by BuChE 

over AChE.  Also, the iodo group on the acyl portion of the molecule should be 

amendable to subsequent exchange with 123I.  Lastly, previous studies have shown that 

chemical structures that contain N-methylpyrrolidinol or N-methylpiperidinol moiety 

readily enter the brain (Kikuchi et al., 2004; Roivainen et al., 2004; Kuhl et al., 2006).  
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To evaluate whether these radiolabelled compounds could be used for imaging BuChE 

activity in the brain, a normal rat model system was used in the present study to examine 

whole body biodistribution while brain autoradiograms were used to compare radiolabel 

distribution to the known histochemical distribution of BuChE in the rat brain (Darvesh 

et al., 1992; Tago et al., 1992). 

 

2.3 MATERIALS AND METHODS

2.3.1  MATERIALS 

Butyl lithium, 1-methylpiperidin-4-ol, (S)-1-methylpyrrolidin-3-ol, (R)-1-

methylpyrrolidin-3-ol, 4-iodobenzoyl chloride, hexabutylditin, 

tetrakis(triphenylphosphine)palladium and purified recombinant human 

acetylcholinesterase (AChE) were obtained from Sigma-Aldrich.  Purified human plasma 

butyrylcholinesterase (BuChE) was a gift from Dr. Oksana Lockridge.  Na123I was 

obtained from MDS Nordion in 0.1 N NaOH.  Synthetic reactions were performed under 

an argon atmosphere (99.999% purity, Air Liquide).  Male wistar rats were purchased 

from Charles River Laboratories (Canada) and aged until 3-6 months old. 

 

2.3.2  CHEMICAL ANALYSIS OF SYNTHETIC COMPOUNDS  

Melting points (MP) were determined using a Fisher-Johns Melting Point 

Apparatus.  Infrared spectra were recorded as Nujol mulls or as neat liquids between 

sodium chloride plates on a Nicolet Avatar 330 fourier transform-infrared spectroscopy 

(FT-IR) spectrometer.  Peak positions were reproducible within 1-2 cm-1.  Nuclear 

magnetic resonance (NMR) spectra were recorded at the Nuclear Magnetic Resonance 
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Research Resource (NMR-3), Dalhousie University, on a Bruker AVANCE 500, 

operating at 500.1 MHz for 1H and 125.8 MHz for 13C.  Chemical shifts are reported in 

ppm relative to Me4Si in CDCl3 or dimethyl sulfoxide (DMSO).  For Proton NMR 

experiments, the coupling constants are reported in Hz and the multiplicities are apparent.  

For Carbon NMR data, the number of attached protons for each signal, as determined by 

a Distortionless Enhancement by Polarization Transfer (DEPT) experiment, are given in 

parentheses.   Low resolution mass spectra were obtained using an Agilent 6890 N GC 

with an Agilent 6890 N Electron Impact Mass Spectrometer (Waldbronn, Germany) 

operating at 70 eV.  High resolution mass spectra were obtained with accurate mass 

positive-ion electrospray ionization measurements recorded at the Mass Spectrometry 

Laboratory at Dalhousie University using a Bruker Daltonics microTOF with a flow rate 

of 2 μL/min, spray voltage of 4500 V and tray temperature of 180 ºC or were recorded on 

a CEC 21-110B spectrometer using electron ionization at 70 volts and an appropriate 

source temperature with samples being introduced by means of a heatable port probe.  

Mass measurements were within 3 ppm of the calculated value.  Purity of all compounds 

was determined using an Agilent Technologies 1200 series high-performance liquid 

chromatography (HPLC) system with a reverse phase 18C column and methanol as the 

mobile phase. 

 

2.3.3  SYNTHESIS OF NON-RADIOACTIVE PIPERIDINOL AND PYRROLIDINOL 
IODOBENZOATE DERIVATIVES 
 

The non-radioactive 4-iodobenzoate esters of N-methylpiperidinol (1) and (S) and 

(R) N-methylpyrrolidinol (2 and 3, respectively) were synthesized according to the 

reaction scheme depicted in Figure 2.2a. 
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Figure 2.2.  Synthetic reaction scheme for the non-radioactive esters, tributyltin 
intermediates and 123I labelled esters, respectively.  For the N-methylpyrrolidinols (n = 1), 
compounds were enantiomerically pure.  (a) BuLi, THF. (b) Sn2Bu6, Pd(PPh3)4, THF. (c) 
Na123I, NCS, MeOH. Figure 6 
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 For synthesis of 1-methylpiperidin-4-yl 4-iodobenzoate (1), under an argon 

atmosphere, 1-methylpiperidin-4-ol (0.3837 g, 3.331 mmol) was dissolved in 

tetrahydrofuran (THF) (20 mL).  To this solution was added butyl lithium (BuLi) (2.10 

mL, 3.36 mmol) at -78 ºC followed by a solution of 4-iodobenzoyl chloride (0.8002 g, 

3.003 mmol) in THF (10 mL) and the mixture was stirred at room temperature for 16 

hours.  The reaction was quenched with water (20 mL) and extracted with ethyl acetate (3 

× 20 mL).  The combined organic layers were washed with brine (2 × 20 mL) and dried 

over Na2SO4.  The solvent was removed in vacuo to produce a white solid.  The product 

was purified by silica gel chromatography (30:70 MeOH/CH2Cl2) to give a white powder 

(0.5561 g, 54%).  Analytical data: MP: 128-130 ºC (Lit MP = 130 ºC (Singh et al., 

1997)).  IR (Nujol): 1711, 1585, 1283, 1268, 1118, 754 cm-1.  1H-NMR (CDCl3):  1.84-

1.91 (m, 2H), 2.01-2.08 (m, 2H), 2.31-2.39 (m, 5H), 2.67-2.73 (m, 2H), 5.02-5.08 (m, 

1H), 7.75 (d, J=8.5 Hz, 2H), 7.81 (d, J=8.5 Hz, 2H).  13C-NMR (CDCl3):  31, 46, 53, 70, 

100, 130, 131, 138, 166.  EI-MS m/z: 55, 70, 82, 97, 114, 203, 231, 345 (M+).  HRMS 

(EI): M+ found 345.0233, calcd for C13H16NO2I =345.0226. 

For synthesis of (S)-1-methylpyrrolidin-3-yl 4-iodobenzoate (2), under an argon 

atmosphere, (S)-1-methylpyrrolidin-3-ol (0.257 mL, 2.52 mmol) was dissolved in THF 

(10 mL).  To this solution was added BuLi (1.60 mL, 2.56 mmol) at -78 ºC followed by a 

solution of 4-iodobenzoyl chloride (0.5870 g, 2.203 mmol) in THF (10 mL).  The 

solution was refluxed for 3 hours and the reaction was quenched with water (15 mL).  

The aqueous layer was extracted with ethyl acetate (2 × 10 mL), washed with brine (2 × 

15 mL) and dried over MgSO4.  The solvent was removed in vacuo and the product was 

recrystallized from hexanes to yield yellow crystals (0.3053 g, 41%).  Analytical data: 
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MP(hexanes): 69-70 ºC.  IR (Nujol) 1723, 1586, 1268, 1235, 1115, 754 cm-1.  1H-NMR 

(CDCl3):  1.99-2.03 (m, 1H), 2.37-2.42 (m, 5H), 2.77-2.81 (m, 1H), 2.83 (d, J=2.6 Hz, 

1H), 2.85-2.88 (m, 1H), 5.40-5.43 (m, 1H), 7.75 (dt, J=2.0, 8.7 Hz, 2H), 7.79 (dt, J=2.0, 

8.7, 2H).  13C-NMR (CDCl3):  33 (3), 42 (1), 55 (1), 62 (2), 76 (2), 101 (0), 130 (0), 131 

(1), 138 (1), 166 (0).  EI-MS m/z: 42, 58, 74, 83, 104, 203, 231 (M+ - 101, C7H4IO).  

HRMS (ESI): M+H+ found 332.0142; calcd for C12H14NO2I = 332.0147. 

For synthesis of (R)-1-methylpyrrolidin-3-yl 4-iodobenzoate (3), under an argon 

atmosphere, (R)-1-methylpyrrolidin-3-ol (0.260 mL, 2.37 mmol) was dissolved in THF 

(10 mL).  To this solution was added BuLi (1.60 mL, 2.56 mmol) at -78 ºC followed by a 

solution of 4-iodobenzoyl chloride (0.5932 g, 2.226 mmol) in THF (10 mL).  The 

solution was refluxed for 3 hours and the reaction was quenched with water (15 mL).  

The aqueous layer was extracted with ethyl acetate (2 × 10 mL), washed with brine (2 × 

15 mL) and dried over MgSO4.  The solvent was removed in vacuo and the product was 

recrystallized from hexanes to yield light yellow crystals (0.3696 g, 51%).  Analytical 

data: MP(hexanes): 69-70 ºC.  IR (Nujol): 1724, 1586, 1268, 1235, 1115, 754 cm-1.  1H-

NMR (CDCl3):  2.00-2.03 (m, 1H), 2.37-2.42 (m, 5H), 2.77-2.81 (m, 1H), 2.83 (d, J=2.6 

Hz, 1H), 2.84-2.88 (m, 1H), 5.31-5.43 (m, 1H), 7.76 (dt, J=1.9, 8.5 Hz, 2H), 7.80 (dt, 

J=1.7, 8.6 Hz, 2H).  13C-NMR (CDCl3):  33 (2), 42 (3), 55 (2), 62 (2), 76 (1), 101 (0), 

130 (0), 131 (1), 138 (1), 166 (0).  EI-MS m/z: 42, 58, 74, 83, 104, 203, 231 (M+ - 101, 

C7H4IO).  HRMS (ESI): M+H+ found 332.0142; calcd for C12H14NO2I = 332.0147. 
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2.3.4  SYNTHESIS OF TRIBUTYLTIN INTERMEDIATES 

The synthesis of tributyltin intermediates was carried out as depicted in Figure 

2.2b.   

For synthesis of 1-methylpiperidin-4-yl 4-(tributylstannyl)benzoate intermediate, 

under argon atmosphere, 1-methylpiperidin-4-yl 4-iodobenzoate (1) (0.1660 g, 0.4810 

mmol) was dissolved in degassed toluene (40 mL).  Hexabutylditin (0.60 mL, 1.198 

mmol) was added, followed by a solution containing 

tetrakis(triphenylphosphine)palladium (0.0303 g, 0.0262 mmol), also dissolved in 

degassed toluene (15 mL).  The resulting solution was refluxed for 20 hours and the 

solvent removed in vacuo.  The product was purified by silica gel column 

chromatography (15:1 toluene/triethylamine) to yield a viscous yellow liquid (0.1795 g, 

71%).  Analytical data: IR (Neat): 1717, 1590, 1275, 1104, 752 cm-1.  1H-NMR (CDCl3): 

 0.88 (t, J=7.3 Hz, 9H), 1.08 (p, J=6.3 Hz, 6H), 1.36 (sext, J=7.4 Hz, 6H), 1.57 (p, J=7.6 

Hz, 6H), 1.89-1.94 (m, 2H), 2.03-2.08 (m, 2H), 2.36 (s, 3H), 2.37-2.39 (m, 2H), 2.69-

2.72 (m, 2H), 5.09-5.10 (m, 1H), 7.59 (d, J=8.1 Hz, 2H), 8.00 (d, J=8.1 Hz, 2H).  13C-

NMR (CDCl3):  10 (2), 13 (3), 27 (2), 29 (2), 31 (2), 46 (3), 53 (2), 70 (1), 128 (1), 130 

(0), 136 (1), 149 (0), 166 (0).  EI-MS m/z: 41, 55, 82, 96, 170, 198, 241, 340, 396, 452 

(M+ - 57, C21H34NO2Sn).  HRMS (ESI): M+H+ found 510.2389; calcd for C25H44NO2Sn = 

510.2394. 

For synthesis of (S)-1-methylpyrrolidin-3-yl 4-(tributylstannyl) benzoate 

intermediate, under argon atmosphere, (S)-1-methylpyrrolidin-3-yl 4-iodobenzoate (2) 

(0.1001 g, 0.3022 mmol) was dissolved in degassed toluene (30 mL) and hexabutylditin 

(0.355 mL, 0.709 mmol) was added.  Tetrakis(triphenylphosphine)palladium (0.0107 g, 



 

 77 
 

0.0092 mmol) also dissolved in toluene (15 mL) was added.  The resulting solution was 

refluxed for 20 hours and the solvent removed in vacuo.  The resulting crude product was 

purified by silica gel column chromatography (11:8:1, hexanes/ethyl 

acetate/triethylamine) to yield a viscous yellow liquid (0.1157 g, 78%).  Analytical data: 

IR (Neat): 1717, 1591, 1275, 1105, 752 cm-1.  1H-NMR (DMSO):  0.85 (t, J=7.5 Hz, 

9H), 1.08 (p, J=7.6, 8.2 Hz, 6H), 1.28 (sext, J=7.4 Hz, 6H), 1.51 (p, J=7.3 Hz, 6H), 1.83-

1.86 (m, 1H), 2.26 (s, 3H), 2.28-2.31 (m, 2H), 2.63-2.66 (m, 1H), 2.69-2.72 (m, 2H), 

5.25-5.27 (m, 1H), 7.56 (d, J=7.9 Hz, 2H), 7.82 (d, J=7.9 Hz, 2H).  13C-NMR (DMSO):  

9 (2), 13 (3), 27 (2), 28 (2), 32 (2), 42 (3), 54 (2), 62 (2), 75 (1), 128 (1), 129 (0), 136 (1), 

149 (0), 166 (0).  EI-MS m/z: 42, 58, 83, 105, 196, 241, 326, 382, 438 (M+ - 57, 

C20H32NO2Sn).  HRMS (ESI): M+H+ found 496.2232; calcd for C24H42NO2Sn = 

496.2238. 

For synthesis of (R)-1-methylpyrrolidin-3-yl 4-(tributylstannyl) benzoate 

intermediate, under argon atmosphere, (R)-1-methylpyrrolidin-3-yl 4-iodobenzoate (3) 

(0.1010 g, 0.3050 mmol) was dissolved in degassed toluene (30 mL) and hexabutylditin 

(0.355 mL, 0.709 mmol) was added.  Tetrakis(triphenylphosphine)palladium (0.0105 g, 

0.0091 mmol) dissolved in toluene (15 mL) was added.  The resulting solution was 

refluxed for 20 hours and the solvent removed in vacuo.  The resulting crude product was 

purified by silica gel column chromatography (11:8:1, hexanes/ethyl 

acetate/triethylamine) to yield a viscous yellow liquid (0.1150 g, 78%).  Analytical data: 

IR (Neat): 1717, 1591, 1275, 1104, 752 cm-1.  1H-NMR (CDCl3):  0.94 (t, J=7.4 Hz, 

9H), 1.13 (p, J=7.9, 8.2 Hz, 6H), 1.37 (sext, J=7.3 Hz, 6H), 1.57, (p, J=7.9, 8.2 Hz, 6H), 

2.08-2.13 (m, 1H), 2.43-2.47 (m, 2H), 2.52 (s, 3H), 2.90-2.93 (m, 2H), 5.45-5.48 (m, 
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1H), 7.54 (d, J=8 Hz, 2H), 7.96 (d, J=8 Hz, 2H).  13C-NMR (CDCl3):  10 (2), 14 (3), 28 

(2), 29 (2), 31 (2), 43 (3), 56 (2), 63 (2), 75 (1), 129 (1), 133 (0), 137 (1), 150 (0), 167 (0).  

EI-MS m/z: 42, 58, 83, 105, 196, 241, 326, 382, 438 (M+ - 57, C20H32NO2Sn).  HRMS 

(ESI): M+H+ found 496.2232; calcd for C24H42NO2Sn = 496.2238. 

 

2.3.5  IN VITRO EVALUATION OF NONRADIOACTIVE IODOBENZOATES AS 
CHOLINESTERASE LIGANDS 
 

The specificity, affinity and rate of hydrolysis of each synthetic compound was 

determined spectrophotometrically, making use of differences in the aryl chromophores 

of substrates and products.  Briefly, 15 L of AChE (9 units) or BuChE (9 units) 

dissolved in 0.1% gelatin(aq), containing 0.01% sodium azide, and 1.44 mL of 0.1 M 

phosphate buffer (pH 8.0) were placed in a quartz cuvette of 1 cm path length.  The 

reaction was commenced with the addition of 50 μL of 5 mM substrate (1, 2 or 3) in 50% 

acetonitrile(aq).  The absorbance was scanned from 200-300 nm every 2 min for a total of 

30 min using a Ultrospec 2100 pro UV/Visible Spectrophotometer (Biochrom) with Swift 

II software (Amersham).  The wavelength corresponding to the maximum absorbance 

change for each compound during hydrolysis was used for the subsequent determination 

of affinity constant (Km) and maximum velocity (Vmax), using Lineweaver-Burk double 

reciprocal plots.  This was accomplished by measuring the change in absorbance per min 

( A/min), using a fixed amount of enzyme (2.7 units) and varying amounts of 

compounds 1-3 (1.67 x 10-5-1.67 x 10-4 M), using a Spectronic 1001 (Milton Roy).  The 

plot of 1/v against 1/s gave Km as the negative reciprocal of the intercept on the 1/s-axis 

and Vmax as the reciprocal of the 1/v-axis intercept.  As defined previously, 0.1 unit is the 

amount of cholinesterase that gives a A/min of 1.0 in the presence of 1.6 x 10-4 M 
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substrate (acetylthiocholine for AChE, butyrylthiocholine for BuChE) (Darvesh et al., 

2001). 

 

2.3.6  COMPUTATION OF PREFERRED CONFORMATIONS AND LOG P VALUES 

Computational chemistry studies, to determine the most stable geometries of 

compounds 1-3, were carried out at the molecular mechanics level of theory using the 

Merck Molecular Force Field (MMFF), employing Spartan ’06 (Wavefunction, 2006).  

Log P values were calculated to assess the ability of the compound to cross the blood–

brain barrier by diffusion.  The values were obtained using ALOGPS v 2.0 system 

method that compares the structure of the molecule with a large database of known 

molecular partition coefficients (Tetko et al., 2001).   

 

2.3.7  RADIOSYNTHESIS AND PURIFICATION OF 123I LABELLED IODOBENZOATES 

Substrates labelled with 123I were prepared from tributyltin intermediates 

according to the general scheme shown in Figure 2.2c.  To a solution (8 μL) of Na123I 

(68.45 MBq) in 0.1 M NaOH(aq) (8.0 x 10-4 mol) was added NaI (3 μL, 5.5x10-9 mol) and 

0.1 M HCl (16 μL, 1.6 x 10-3 mol) to neutralize the hydroxide.  The tributyltin 

intermediate (50 μL, 4.0 x 10-7 mol) was added to this solution, followed by N-

chlorosuccinimide (NCS, 28 μL, 8.4 x 10-8 mol), both of which were dissolved in 

methanol.  The reaction proceeded for 15 min at room temperature; then 0.1 M NaHCO3 

(24 μL, 2.4 x 10-3 mol) was added to quench the reaction.  Purification was accomplished 

by HPLC, using a Waters system with a ZORBAX Eclipse XDB-C18, 4.6 x 250 mm, 

5 m column (Agilent Technologies) and 2.0 mL/min of 80% methanol(aq) eluent.  
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Fractions were collected every 20 sec for 20 min with a RediFrac fraction collector 

(Amershan Biosciences).  Retention times were determined using the corresponding cold 

iodobenzoate as a non-radioactive standard.  Collected fractions that contained purified 

product were combined and the solvent removed under a stream of N2 gas.  The product 

was redissolved either with methanol, to assess the radiochemical yield and purity, or in 

20% ethanol(aq), for animal administration. 

 

2.3.8  ANIMAL STUDIES 

Animals were cared for according to the guidelines set by the Canadian Council 

on Animal Care.  Formal approval to conduct the experiments was obtained from the 

Dalhousie University Committee on Laboratory Animals. 

 

2.3.9  BIODISTRIBUTION STUDIES OF RADIOLABELLED IODOBENZOATES 

Whole body dynamic scintigraphic imaging of male wistar rats (~500 g) were 

obtained.  The animals were anaesthetized using a constant stream of isoflurane gas and 

the tail vein was cannulated.  The animals were positioned on the head of a gamma 

camera (Millennium MG; GE Healthcare) equipped with a low-energy high-resolution 

parallel-hole collimator.  Immediately following injection of the radiolabelled compound 

(~37 MBq), counts were acquired by the gamma camera in dynamic frame mode (energy 

window centered on the 159 keV photopeak of 123I; 128 × 128 pixels frame matrix; 180 × 

5 s, and 45 × 60 s frames, for a total of 60 min).  At the end of the 1 hour imaging period, 

the animals were sacrificed with sodium pentobarbital.  Regions of interest (ROI) 

representing the head (ROI1), heart (ROI2) and bladder (ROI3) were manually defined on 
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the whole body image using the gamma camera’s workstation image edit tools (Xeleris 

version 2.1220; GE Healthcare).  Background- and radioactive decay-corrected ROI time 

activity curves were calculated and plotted, using the same tools, showing the percentage 

fraction of the injected dose as a function of time in the organ. The whole-body counting 

rate from minute 1 to minute 5 was used to estimate the total injected activity. 

 

2.3.10  BRAIN AUTORADIOGRAPHY  

Animals were prepared as described for the biodistribution studies, except that the 

body temperature was maintained on a circulating water heating pad at set at 40 ºC for 

the duration of the experiment.  The radiolabelled ligand was administered (~37 MBq) 

and after 30 min the animals were sacrificed by an injection of sodium pentobarbital (0.3 

mL).  The animals were immediately perfused transcardially with 200 mL of isotonic 

saline followed by 500 mL of 4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4.  

The brains were quickly removed and immediately frozen using dry ice.  The brains were 

sectioned in 100 μm thick coronal slices on a SM2000R Leica microtome with a freezing 

stage and BFS-30TC controller (Physitemp) and immediately mounted on glass slides.  

The slides were then placed under a phosphor imaging screen (Molecular Dynamics).  

After 36 hr, the screen was visualized using a Typhoon 9410 Phosphorimager (GE 

Healthcare) to produce the autoradiogram.  A color gradient was placed on 

autoradiograms in Adobe Photoshop 7 to highlight areas with radioactivity.  Three 

animals underwent this procedure for each of the three radiolabelled compounds.   
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2.3.11  BUTYRYLCHOLINESTERASE HISTOCHEMISTRY 

A modified Karnovsky-Roots method was used for examination of 

butyrylcholinesterase activity in brain sections, as described previously (Darvesh et al., 

2010a).  Briefly, 40 μm brain sections were rinsed in 0.1 M maleate buffer (pH 7.4) for 

30 min and reacted for 3 hr at 37 ºC in an incubation medium containing 0.5 mM sodium 

citrate, 0.47 mM cupric sulfate, 0.05 mM potassium ferricyanide, 0.8 mM 

butyrylthiocholine iodide and 0.01 mM 1,5-bis (4-allyl dimethylammonium phenyl) 

pentan-3-one dibromide (BW 284 C 51) in 0.1 M maleate buffer (pH 8.0) for BuChE 

staining.  Sections were rinsed with gentle agitation for 30 min in distilled water and 

placed in 0.1% cobalt II chloride in water for 10 min.  After a further rinse in distilled 

water, sections were placed in a solution of 1.39 mM 3,3'-diaminobenzidine 

tetrahydrochloride (DAB) in 0.1M phosphate buffer (pH 7.4).  After 5 min, a solution of 

0.3% hydrogen peroxide in distilled water was added at a ratio of 20:1 (DAB solution : 

hydrogen peroxide solution) and the reaction was carried out for approximately 4 min.  

Sections were then washed in 0.1 M acetate buffer, pH 3.3, mounted on slides, 

coverslipped and examined with brightfield microscopy. 

Sections were photographed on a Zeiss Axioplan 2 motorized microscope with a 

Zeiss Axiocam HRc digital camera and AxioVision 4.6 software.  Image levels were 

adjusted in Adobe Photoshop 7 so the background from different images matched. 

 

2.4 RESULTS

Three non-radiolabelled iodobenzoate esters were synthesized and tested in vitro 

for their ability to bind to, and be hydrolyzed by, BuChE and AChE.  Lack of AChE 
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hydrolysis for each compound confirmed specificity for BuChE.  All three BuChE-

specific substrates studied were then radiolabelled and evaluated in vivo and ex vivo using 

whole body dynamic scintigraphic imaging and brain autoradiography, respectively. 

 

2.4.1  SYNTHESIS OF NON-RADIOACTIVE IODOBENZOATE DERIVATIVES 

1-methylpiperidin-4-yl 4-iodobenzoate (1), (S)-1-methylpyrrolidin-3-yl 4-

iodobenzoate (2) and (R)-1-methylpyrrolidin-3-yl 4-iodobenzoate (3) (Table 2.1), were 

synthesized (Figure 2.2a) in moderate (41-54%) yields and were found to be 97% pure 

by HPLC analysis.  Chemical analysis of each was consistent with its structure.  All three 

derivatives synthesized had similar calculated log P values (Table 2.1), comparable to 

compounds known to cross blood-brain barrier (Darvesh et al., 2003b). 

 

2.4.2  IN VITRO EVALUATION OF NON-RADIOACTIVE IODOBENZOATES AS 
CHOLINESTERASE LIGANDS 
 

The three purified and characterized compounds (1-3) were evaluated in vitro as 

substrates for human AChE and BuChE, making use of the natural chromophores of the 

aromatic moiety of each ester.  Repetitive scan analyses detected changes in absorbance 

profile to indicate hydrolytic catalysis by the enzyme.  Each compound was found to be 

hydrolyzed by BuChE but not AChE. 

The affinity constant (Km) and maximum velocity (Vmax) for each compound (1-3) 

hydrolyzed by BuChE under the same condition were obtained from Lineweaver-Burk 

plots and are summarized in Table 2.1.  The kinetic parameters (Km and Vmax) for 

compounds 1 and 2 are similar to one another but distinctly different from those obtained 

for the (R) N-methylpyrrolidinol derivative (3).  A comparison of the most stable  
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Table 2.1.  Enzyme kinetic and log P values for synthesized iodobenzoate esters 1-3 
Table 1 
Compound Structure BuChE Km ( M) Vmax ( M min-1) Log P 

1 
 

26 ± 2 8.4 ± 0.4 3.16 

2 O

O

I

N
(S)

 
16 ± 4 6.1 ± 0.5 3.05 

3 
 

50 ± 2 33.2 ± 2.7 3.05 
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conformations of the three esters (Figure 2.3) indicated, as with the kinetic parameters, 

that the overall preferred conformations of 1 and 2 are similar to one another but distinct 

from the conformation of compound 3.  These differences in molecular geometries may 

be largely responsible for the differences in affinities and rates of hydrolysis of 

compounds 1 and 2 compared to 3. 

 

2.4.3  SYNTHESIS OF TRIBUTYLTIN INTERMEDIATES 

In order to incorporate 123I into iodobenzoate esters, a stable intermediate had to 

be developed with a functionality readily replaced by 123I.  Thus, compounds 1-3 were 

converted to their corresponding tributyltin intermediates (Figure 2.2b) in high (73-78%) 

yields.  These tributyltin intermediates were found to be stable over several months when 

stored without solvent, in the dark, at 4 ºC.  However, the ester linkage underwent 

transesterification in methanol and hydrolysis in water, over several days, when diluted in 

either solvent.  Therefore, fresh solutions of tributyltin intermediates were prepared for 

each radiolabel incorporation reaction described below. 

 

2.4.4  RADIOSYNTHESIS AND PURIFICATION OF 123I LABELLED IODOBENZOATES 

 Incorporation of 123I into the benzoate esters was achieved in a rapid, one step 

reaction (Figure 2.2c), under mild conditions (15 min, ambient temperature).  Na123I was 

obtained commercially in 0.1 N NaOH, in the minimal volume available.  The presence 

of NaOH in the reaction mixture rapidly hydrolyzed the ester of the tributyltin 

intermediate and led to lower yields.  To circumvent this, the NaOH was first neutralized 

with a slight excess of 0.1 M HCl.  Slightly acidic conditions allowed the reaction to  
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Figure 2.3.  Preferred conformations of compounds 1-3.  Note similarity in geometry 
between compounds 1 and 2 with respect to the position of nitrogen (*) containing 
alcohol moiety. Figure 7 
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proceed rapidly without ester hydrolysis.  N-chlorosuccinimide (NCS) was used to form 

N-123I-iodosuccinimide in situ.  Since the amount of 123I is limiting in the reaction, non-

radioactive NaI was added to the radioactive Na123I population in order to generate a 

greater amount of product.  Purification of the radiolabelled ligand from the reaction 

mixture was achieved using HPLC with a reverse phase column and 80% methanol(aq) as 

eluent (Figure 2.4).  Fractions were collected and those containing radiolabelled 

compound, as predetermined by elution profiles using non-radioactive esters (Figure 2.4), 

were combined and the solvent removed, using a stream of nitrogen gas and gentle 

heating.  The product was redissolved into 20% ethanol(aq).  Synthesis and purification of 

radiolabelled compounds was performed within one hour, with 63-92% radiochemical 

yield and 90-96% purity. 

 

2.4.5  BIODISTRIBUTION STUDIES 

The dynamic biodistribution of radiolabelled ligands in the rat were monitored 

over one hour (Figure 2.5).  Biodistribution was similar for the three agents.  Regions of 

interest (ROI) were head (ROI1), heart (ROI2) and bladder (ROI3).  As can be seen in the 

plot in Figure 2.5, there was rapid clearance of radioactivity from the blood pool, as 

indicated by the heart ROI, via the kidneys, as indicated by the bladder ROI.  There was 

also a rapid increase in the radioactivity in the head region (ROI1) that remained 

relatively constant throughout the duration of scanning.  Within ROI1, a number of 

structures, including the brain and salivary glands, may accumulate the radioligands.  

Since the resolution of scanning did not define regional accumulation of radioactivity  
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Figure 2.4.  Absorbance traces and radioactive counts demonstrating the separation of 
radiolabelled compound 1 from the reaction mixture using HPLC.  The desired 
radioactive product 1 has retention time between 8 and 10 min.  The lag in the peaks of 
the retention times between the absorbance and radioactivity is a consequence of 
difference in the delivery system to the two different detectors. Figure 8 
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Figure 2.5.  An example of the biodistribution of compound 1 in the rat.  Composite 
images from 60 min of scanning indicates that compounds 1-3 accumulate (image on the 
left) in the head (ROI1), heart (ROI2) and bladder (ROI3).  Activity levels (Plots on the 
right) were measured in these regions for the duration of imaging. Figure 9 
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within the brain itself, autoradiography was performed to provide details of brain 

distribution. 

 

2.4.6  COMPARISON OF BRAIN AUTORADIOGRAPHY AND BUTYRYLCHOLINESTERASE 
HISTOCHEMISTRY 
 

Autoradiography of brain sections, after injecting any of the radiolabelled 

iodobenzoates into the normal rat model, revealed that each entered the brain and had a 

regional distribution, with areas of high and low accumulation, which corresponded to 

specific neuroanatomical structures (Table 2.2). 

Experimental conditions required to produce brain autoradiograms led to the loss 

of BuChE enzymatic activity.  As a result, the same tissue could not be used for direct 

comparative BuChE histochemical staining but could be stained with thionin, to visualize 

cell bodies, for correlation between accumulation of radioactivity and neuroanatomy.  

These were compared with similar sections from other rat brain tissues, stained for 

BuChE activity.  Figures 2.6 and 2.7 provide representative levels for comparison of 

neuroanatomy, autoradiograms and BuChE distribution. 

Throughout the central nervous system, most areas with low radioactivity 

corresponded to areas of known low BuChE activity (e.g., cerebral cortex and the 

caudate-putamen) (Figure 2.6).  A number of areas with accumulation of radioactivity 

corresponded to areas with BuChE activity, as demonstrated by histochemical staining.  

These areas included certain thalamic nuclei (e.g., habenula) (Figure 2.6), pontine nuclei 

(e.g., laterodorsal, ventral and pontine tegmentum) (Figure 2.7), as well as certain nuclei 

in the medulla oblongata (e.g., hypoglossal and dorsal motor nucleus of the vagus) 

(Figure 2.7).  However, there were also areas known to have BuChE activity by  
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Table 2.2.  Distribution of BuChE and radioactivity accumulation in the rat brain Table 2 

Area BuChE activity Radioactivity
Caudate putamen - - 
Cerebral cortex + + 
Hippocampus + ++ 
Hypothalamus + ++ 
Islands of Calleja ++++ - 
Septal region ++ ++ 
   
Thalamus   
Anterior nuclear group ++++ - 
Anterior pretectal nucleus +++ ++ 
Geniculate nuclear group + - 
Habenula ++ ++ 
Lateral nuclear group +++ - 
Medial, midline, ventral and posterior nuclear groups ++ - 
Zona incerta ++ ++ 
   
Midbrain   
Inferior colliculus + + 
Interpeduncular nucleus +++ - 
Occulomotor nucleus - ++++ 
Periaqueductal gray ++ ++ 
Red nucleus ++ ++++ 
Superior colliculus ++ ++ 
   
Pons   
Facial nucleus ++ ++++ 
Lateral dorsal tegmental nucleus +++ ++ 
Locus coeruleus ++ ++ 
Motor Trigeminal nucleus - ++++ 
Pedunculopontine tegmental nucleus +++ ++ 
Pontine nuclei + + 
Ventral tegmental nucleus +++ ++ 
   
Medulla oblongata   
Dorsal motor nucleus of the vagus ++++ ++++ 
Hypoglossal nucleus ++++ ++++ 
Medullary tegmentum + ++ 
Spinal trigeminal nuclei + + 
Vestibular nuclei ++ +++ 
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Area BuChE activity Radioactivity
Cerebellum   
Cerebellar cortex ++ + 
Cerebellar nuclei + ++ 
   
White Matter    
Anterior commissure ++ - 
Corpus callosum ++ - 
External capsule + - 
Fimbria + - 
Internal capsule + - 
Pyramidal tract + - 
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Figure 2.6.  Comparison of neuroanatomy (a, e, i), radioactivity distribution (b, f, j) and 
corresponding gradient maps (c, g, k), as well as butyrylcholinesterase histochemistry (d, 
h, l) in the rostral aspect of the rat brain. ac: anterior commissure, cc: corpus callosum, 
CPu: caudate putamen, H: hippocampus, HT: hypothalamus, MTg: midbrain tegmentum, 
PAG: periaqueductal grey, R: red nucleus, SC: superior colliculus, SR: septal region, T: 
thalamus. Figure 10 
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Figure 2.7.  Comparison of neuroanatomy (a, e, i, m), radioactivity distribution (b, f, j, n) 
and corresponding gradient maps (c, g, k, o), as well as butyrylcholinesterase 
histochemistry (d, h, l, p) in the caudal aspect of the rat brain.  7N: facial nucleus, 10N: 
dorsal motor nucleus of the vagus, 12N: hypoglossal, IC: inferior colliculus, LC: locus 
coeruleus, LDTg: lateral dorsal tegmental nucleus, MeTg: medullary tegmentum, Mo5: 
motor trigeminal nucleus, PPTg: pedunculopontine tegmental nucleus, Sp5: spinal 
trigeminal nucleus, VTg: ventral tegmental nucleus, Ve: vestibular nuclei. Figure 11 
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histochemical observation that did not appear to accumulate radioactivity.  These 

structures included fiber tracts (e.g., the anterior commissure) and the anterior group of 

the thalamus (Figure 2.6).  Conversely, a few areas, such as the motor trigeminal nucleus 

(Figure 2.7), without BuChE activity in histochemical analysis, demonstrated uptake of 

radioactivity. 

 

2.5 DISCUSSIONS

BuChE activity associated with AD neuropathological structures (Friede, 1965; 

Geula and Mesulam, 1989; Mesulam and Geula, 1994; Geula and Mesulam, 1995; 

Guillozet et al., 1997; Darvesh et al., 2010a), especially in regions of the brain with 

normally low BuChE activity, makes this enzyme a suitable potential target for molecular 

neuroimaging in AD.  Previous attempts to image this enzyme have met limited success 

in that the radioimaging results (Kikuchi et al., 2004; Roivainen et al., 2004; Kuhl et al., 

2006) did not correspond to the known histochemical distribution of this enzyme in 

normal (Friede, 1967; Darvesh et al., 1998; Darvesh and Hopkins, 2003; Darvesh et al., 

2003a) or in AD brains (Friede, 1965; Geula and Mesulam, 1989; Mesulam and Geula, 

1994; Geula and Mesulam, 1995; Guillozet et al., 1997; Darvesh et al., 2010a). 

Of the three compounds synthesized and examined here, only 1-methylpiperidin-

4-yl 4-iodobenzoate (1) had been previously synthesized and studied for potential 

dopamine transporter affinity (Singh et al., 1997), as an analgesic (Cheng et al., 1982) or 

an anticonvulsant (Waters et al., 1986).  However, this compound did not display any of 

these properties (Cheng et al., 1982; Waters et al., 1986; Singh et al., 1997).  Its potential 

as a cholinesterase substrate and/or imaging agent was not previously reported. 
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The structure of the molecules synthesized and evaluated here provide some 

advantages as BuChE imaging agents.  Based on differences in the known crystal 

structures of BuChE (Nicolet et al., 2003) and AChE (Sussman et al., 1993), the  

estimated mean volume of the BuChE gorge (502 Å3) is larger than that of AChE (302 

Å3) (Saxena et al., 1997) and the BuChE acyl pocket (L286 and V288) is able to 

accommodate larger acyl moieties, such as the iodobenzoyl group.  The three 

iodobenzoate derivatives (compounds 1-3) possess a bulky aromatic ring providing  

selectivity towards BuChE over AChE.  As a result, all three iodobenzoate esters are 

selective for BuChE over AChE.  Their affinities for BuChE (Table 2.1) are comparable 

to the extensively studied substrate for the enzyme, butyrylthiocholine (30.9 M) 

(Darvesh et al., 2003b).   

Although the three compounds were specific for BuChE, compounds 1 and 2 had 

better affinity for this enzyme relative to compound 3.  In order to understand this 

difference in affinity, and to facilitate future refinement of these lead compounds, 

computational studies were undertaken.  These determinations revealed that the most 

stable conformations for compounds 1 and 2, particularly in relation to the N-methyl ring 

system were similar (Figure 2.3).  Specifically, the methyl group on the nitrogen of the 

ring in 1 and 2 point in the same direction, while in 3 this same methyl group points in 

the opposite direction.  Binding of compounds to the active site gorge of BuChE is 

facilitated by interaction of the nitrogen with W82 of the enzyme active site gorge 

(Nicolet et al., 2003).  These studies indicate that compounds with conformations similar 

to 1 and 2, with respect to the nitrogen, would be desirable to improve binding to BuChE 

for imaging since they have higher affinity and are hydrolyzed more slowly that 
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compound 3.  This would imply a longer time period for the radiolabel to be part of the 

acylated BuChE complex. 

For radiosynthesis, the replacement of non-radioactive iodine with 123I for 

imaging was found to occur efficiently through a stable tributyltin intermediate (Figure 

2.2c).  This most likely occurred through a free radical mechanism that permitted rapid 

synthesis.  In addition, efficient purification permitted subsequent timely administration 

into experimental animals.  For the present study, to allow recovery of the small 

quantities of the radiolabelled material in sufficient quantity, albeit at the expense of the 

desired higher specific radioactivity, non-radioactive iodide was added to favour higher 

product yield.  Incorporation of 123I in compounds 1-3 occurred in 15 min at ambient 

temperature and was rapidly purified using HPLC (see Figure 2.4 for compound 1 as an 

example).  Total time required for synthesis, purification, and preparation for injection 

was approximately one hour, an acceptable time when labelling with 123I. 

The 123I labelled compounds showed initial high uptake in the heart ROI, undoubtedly 

reflecting the initial blood pool (Figure 2.5). The blood pool activity diminished rapidly 

with time.  Such quick disappearance was expected since these esters are susceptible to 

hydrolysis by BuChE in the blood.  This was accompanied by a rapid increase in the 

bladder (ROI3), indicating the kidneys were the primary route of excretion (Figure 2.5).  

There was some activity in the neck centrally (Figure 2.5) which could include the 

thyroid gland.  This will require further investigations as these compounds are developed 

further. 

Importantly, for the present study, a smaller but significant amount of uptake was also 

detected in the head region (Figure 2.5).  In vivo scanning resolution was insufficient to 
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definitively establish the distribution within the head to determine whether it included the 

brain.  The rapid clearance from the blood pool indicates the relatively constant uptake in 

the head was not simply related to blood perfusion.  A metabolic trapping principle 

(Kikuchi et al., 2007) of compounds metabolized by enzymes within the brain supported 

the accumulation observed.  Also, it is possible that the limited uptake in the head region, 

and specifically in the brain, was due to metabolism of the radioligand in the blood. 

To determine whether the 123I labelled iodobenzoate esters actually accumulated in 

the brain, and in regions of known BuChE activity, detailed autoradiography of brain 

sections was carried out and compared to BuChE and thionin staining.  Data in Table 2.2 

and in Figure 2.6 and 2.7, confirm a high degree of overlap between radiolabel 

accumulation and BuChE activity.  Importantly, in a region of normally low BuChE 

activity, such as the cerebral cortex, little uptake of 123I was seen (Figure 2.6).  However, 

certain discrepancies were also observed.  For example, the motor trigeminal nucleus, 

that has low BuChE activity in histochemical analyses, displayed high radioactivity 

accumulation (Figure 2.7).  This discrepancy may be due to a number of factors, that 

could include binding of these iodobenzoate esters to other enzymes and receptors unique 

to such regions.  Conversely, some areas, such as the anterior commissure and the corpus 

callosum, that exhibit high histochemical BuChE activity (Table 2.2), little 123I 

accumulation was observed in the autoradiograms (Figure 2.6).  However, in white 

matter regions, where BuChE activity is high in histochemical analysis, low 

accumulation of radioactivity may be due to relatively less blood flow to these structures 

(Vaucher et al., 1995).  These issues will require further investigations.  Nonetheless, 

observations presented herein, in general, hold promise that these 123I iodobenzoate 
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esters, or other more refined but comparable derivatives, will be able to detect elevated 

BuChE activity in the cortex, where this enzyme is associated with the neuropathological 

structures of AD. 

 

2.6 CONCLUSIONS

A total of 3 potential imaging agents have been synthesized and enzyme kinetic 

studies have indicated that these compounds have high BuChE affinity and are specific 

for that enzyme over AChE.  Synthetic tributyltin derivatives provided a suitable 

intermediate for incorporation of 123I.  Biodistribution in the rat revealed that the injected 

radiolabelled compounds are retained in the head region and autoradiography provided a 

localized distribution of radioactivity in the brain.  Despite some differences between the 

autoradiograms and histochemical visualization, many areas that are known to contain 

BuChE corresponded to areas of radioactivity accumulation.  Importantly, the region of 

the brain where BuChE accumulates in association with AD neuropathology, the cerebral 

cortex, did not exhibit accumulation of iodobenzoate radiolabel in the normal rat brain 

examined here.  Therefore, these reported 123I iodobenzoate esters show promise in 

guiding the development of future BuChE imaging agents that can detect AD pathology 

in vivo, thus permitting early diagnosis of this disease. 
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CHAPTER 3 THIOESTERS AND THEIR USE 

3.1 PREFACE

 Rapid and efficient screening of ester compounds, such as those described in 

Chapter 2, is required for continued development and optimization of ester imaging 

agents for cholinesterases.  In this respect, this Chapter describes a kinetic method for 

determining the binding properties of a wide range of ester compounds for 

acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE).  Furthermore, a 

histochemical method is presented to screen potential imaging agents in tissues of interest 

without introduction of a radioisotope.  Several compounds were evaluated using these 

methods including literature-described AChE and BuChE imaging agents as well as 

compounds comparable to those in Chapter 2.  The content of this Chapter describes 

work done as part of this thesis that has been published as Macdonald et al., J Enzyme 

Inhib Med Chem, 2013, 28(3):447-55. 

 

3.2 INTRODUCTION

In earlier attempts to realize cholinesterase imaging, several 11C-radiolabelled 

alkyl esters of N-methylpiperidinol were synthesized as acetylcholinesterase (AChE)-

specific imaging agents.  Two such compounds, 4-(N-[11C] methyl)piperidinyl acetate 

([11C]-AMP) and 4-(N-[11C] methyl) piperidinyl propionate ([11C]-PMP), were examined 

(Irie et al., 1994; Irie et al., 1996; Kilbourn et al., 1996; Kilbourn et al., 1998; Snyder et 

al., 1998) and provided some reproduction of the known brain distributions of AChE (Irie 

et al., 1996; Kilbourn et al., 1996).  Specific butyrylcholinesterase (BuChE) visualization 

was also attempted with 4-(N-[11C] methyl) piperidinyl n-butyrate ([11C]-MP4B) (Snyder 
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et al., 2001) but was unsuccessful (Kuhl et al., 2006).  Alternate types of BuChE imaging 

ligands, derived from N-methylpiperidinol and N-methyl pyrrolidinol, were subsequently 

synthesized and tested in a normal rat model system (Macdonald et al., 2011).  Using 

autoradiographic analysis these para-[123I]-iodobenzoate esters were found to have 

entered the brain and their distribution recapitulated, for the most part, the known 

distribution of BuChE therein.  Based on these observations, N-methylpiperidinyl 

compounds remain promising agents for the imaging of cholinesterases in the living 

brain.   

In vivo testing of the N-methylpiperidinyl cholinesterase imaging agents, [11C]-

AMP, [11C]-PMP and [11C]-MP4B, has been extensive. However, methodology for 

determination of their specificity and direct measurement of their actual affinity constants 

for AChE and BuChE has been difficult due to the lack of a suitable chromophore that 

would allow the use of sensitive spectrophotometric methods.  Tracking hydrolysis by 

radiolabelling reactants and products (Kikuchi, 2001) or by employing the chromophore 

of m-nitrophenol to tag reactants in a spectrophotometric approach (Snyder et al., 2001) 

have both proved cumbersome for screening of compounds as potential imaging agents.  

Thus, a rapid in vitro evaluation method would be beneficial for the continued 

development of imaging agents derived from N-methylpiperidinol. 

The Ellman spectrophotometric method (Ellman et al., 1961), or variations 

thereof, (Pottie et al., 2011) remains the most rapid, reliable and sensitive means to 

measure AChE or BuChE activity.  The principle on which this assay is based is that, 

thioesters, such as acetylthiocholine and butyrylthiocholine, are kinetically analogous to 

their corresponding esters with respect to cholinesterase catalysis.  A kinetic analysis 
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(Masson et al., 2007) comparing benzoylcholine and benzoylthiocholine supports this 

notion.  In addition to their use in Ellman cholinesterase assays, thioesters are employed 

for in vitro histochemical detection of cholinesterase activity in tissues.  One of the 

commonly used histochemical techniques for detection of AChE and BuChE is the 

Karnovsky-Roots method (Karnovsky and Roots, 1964).  In this procedure, hydrolysis of 

acetylthiocholine and butyrylthiocholine generates a thiolate anion that leads to a 

precipitate in the area of enzyme activity. This precipitation facilitates detection of 

enzyme distribution under the microscope.  Thus, in theory, any thioester susceptible to 

cholinesterase hydrolysis could be characterized using Ellman enzyme kinetics and 

should enable histochemical visualization of areas containing enzyme activity in brain 

tissue using the Karnovsky-Roots method. 

Herein this Chapter is described the synthesis, enzyme kinetics and histochemical 

evaluation, as cholinesterase substrates, of alkyl and aryl thioesters of N-methyl-4-

piperidinethiol as an indirect means to evaluate potential cholinesterase imaging agents, 

such as the corresponding N-methyl-4-piperidinol esters. 

 

3.3 MATERIALS AND METHODS

3.3.1  MATERIALS 

Butyl lithium, triethylamine, sodium borohydride, N-methylpiperidin-4-ol, N-

methyl-4-piperidone, 4-iodobenzoyl chloride, 4-fluorobenzoyl chloride, 4-cyanobenzoyl 

chloride, acetyl chloride, propionyl chloride, butyryl chloride and purified recombinant 

human acetylcholinesterase were purchased from Sigma-Aldrich.  Hydrogen sulfide was 
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purchased from Air Liquide.  Purified human plasma butyrylcholinesterase was a gift 

from Dr. Oksana Lockridge (University of Nebraska Medical Center). 

 

3.3.2  CHARACTERIZATION OF SYNTHESIZED PRODUCTS 

Melting points were determined using a Fisher-Johns Melting Point Apparatus.  

Infrared spectra were recorded as Nujol mulls or as neat liquids between sodium chloride 

plates on a Nicolet Avatar 330 FT- IR spectrometer.  Peak positions were reproducible 

within 1–2 cm 1. Nuclear magnetic resonance spectra were recorded at the Nuclear 

Magnetic Resonance Research Resource (NMR-3), Dalhousie University (Halifax, Nova 

Scotia, Canada), on a Bruker AVANCE 500, operating at 500.1 MHz for 1H and 125.8 

MHz for 13C.  Chemical shifts are reported in parts per million relative to Me4Si in 

CDCl3.  For proton NMR experiments, the coupling constants are reported in hertz and 

the multiplicities are apparent.  For carbon NMR data, the number of attached protons for 

each signal, as determined by a DEPT experiment, are given in parentheses. Low-

resolution mass spectra were obtained using an Agilent 6890N GC with an Agilent 

6890N Electron Impact MS (Waldbronn, Germany) operating at 70 eV.  High-resolution 

mass spectra were obtained with accurate mass positive-ion electrospray ionization 

measurements recorded at the Mass Spectrometry Laboratory at Dalhousie University 

using a Bruker Daltonics microTOF with a flow rate of 2 L/min, spray voltage of 4500 

V and tray temperature of 180 °C or were recorded on a CEC 21-110B spectrometer 

using electron ionization at 70 V and an appropriate source temperature with samples 

being introduced by means of a heatable port probe. Mass measurements were within 14 

ppm of the calculated value.  Purity of all compounds was determined using an Agilent 
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Technologies 1200 series HPLC system with a reverse phase C18 column and methanol 

as the mobile phase. 

 

3.3.3  BRAIN TISSUES 

Brain tissues used in this study were provided by the Maritime Brain Tissue Bank, 

(Halifax, Nova Scotia, Canada), following approval from the Capital Health Ethics 

Board, from the brain of a 90 year old female, removed within 20 hours of death.  The 

brain was immersion fixed in 10% formalin in 0.1 M phosphate buffer (pH 7.4) for 

approximately 94 h and cut in 1-2 cm slabs. These slabs were cryoprotected by 

immersion in increasing concentrations of sucrose, ranging from 10% to 40% in 0.1 M 

phosphate buffer (pH 7.4). The brain tissue was in each concentration of sucrose solution 

for approximately 48 h and was stored in 40% buffered sucrose (pH 7.4) with 0.6% 

sodium azide until used. 

 

3.3.4  SYNTHESIS OF COMPOUNDS 

Synthesis of N-methylpiperidin-4-yl 4-cyanobenzoate (1) 

Under an argon atmosphere, N-methylpiperidin-4-ol (0.92 g, 8.00 mmol) was 

dissolved in THF (15 mL). To this solution was added 1.6 M butyl lithium in hexanes 

(5.00 mL, 8.00 mmol) at –78 °C followed by a solution of 4-cyanobenzoyl chloride (1.21 

g, 7.30 mmol) in THF (20 mL) and the mixture was stirred at –78 ºC for 16 h.  Water (20 

mL) was added to the reaction mixture and extracted with ethyl acetate (3 × 20 mL).  The 

combined organic layers were dried over Na2SO4.  The solvent was removed in vacuo to 

produce a yellow solid. The product was purified by silica gel chromatography (1:9 
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MeOH/CH2Cl2) to give a white solid (1.06 g, 59%).  The solid was recrystallized from 

hexanes to afford white crystals.  Analytical data:  MP(hexanes): 119-120 C.  IR (Nujol):  

2228, 1718, 1278, 1122, 1030 cm 1.  1H NMR (CDCl3):  1.92-2.03 (m, 2H), 2.10-2.18 

(m, 2H), 2.44-2.56 (m, 2H), 2.42 (s, 3H), 2.72-2.87 (m, 2H), 5.08-5.19 (m, 1H), 7.77- 

7.79 (m, 2H), 8.15- 8.17 (m, 2H). 13C NMR (CDCl3):  30.9 (2), 46.2 (3), 52.9 (2), 71.4 

(1), 116.4 (0), 118.0 (0), 130.1 (1), 132.2 (1), 134.5 (0), 164.3 (0).  EI-MS m/z:  244 (M+, 

44%), 130 (22%), 114 (20%), 102 (29%, 98 (80%), 97 (100%), 96 (80%), 82 (32%), 70 

(14%), 57 (10%), 55 (29%).  HRMS (EI): M+ found 244.1216, calcd for C14H16N2O2
+ = 

244.1206. 

 

Synthesis of N-methylpiperidin-4-yl 4-fluorobenzoate (2) 

Under an argon atmosphere, N-methylpiperidin-4-ol (0.94 g, 8.16 mmol) was 

dissolved in THF (15 mL). To this solution was added 1.6 M butyl lithium in hexanes 

(5.00 mL, 8.00 mmol) at 78 °C followed by a 4-fluorobenzoyl chloride (0.88 g, 7.30 

mmol) and the mixture was stirred at –78 ºC for 16 h. Water (20 mL) was added to the 

reaction mixture and extracted with ethyl acetate (3 × 20 mL).  The combined organic 

layers were dried over Na2SO4. The solvent was removed in vacuo to produce a yellow 

solid. The product was purified by silica gel chromatography (1:9 MeOH/CH2Cl2) to give 

a pale yellow solid (0.72 g, 42%).  The solid was recrystallized from hexanes to afford 

white crystals.  Analytical data:  MP(hexanes): 48-49 C.  IR (Nujol):  1726, 1274, 1114, 

852 cm 1.  1H NMR (CDCl3):  1.83-1.88 (m, 2H), 2.00-2.05 (m, 2H), 2.32 (s, 3H), 2.33-

2.40 (m, 2H), 2.63-2.77 (m, 2H), 4.96-5.10 (m, 1H), 7.08-7.13 (m, 2H), 8.04-8.08 (m, 

2H). 13C NMR (CDCl3):  30.9 (2), 46.2 (3), 52.9 (2), 70.3 (1), 115.4 (JCF=22 Hz, 1) 



 

 106 
 

126.9 (0), 132.0 (JCF= 10 Hz, 1), 164.7 (JCF=254 Hz, 0), 166.7 (0).  EI-MS m/z:  237 

(MH+, 30%), 123 (30%), 114 (15%), 98 (53%), 97 (100%), 96 (82%), 95 (31%), 82 

(35%), 75 (12%), 70 (14%), 55 (28%).  HRMS (EI): M+ found 237.1173, calcd for 

C13H16FNO2
+ = 237.1160. 

 

Synthesis of N-methylpiperidin-4-yl 4-iodobenzoate (3) 

Synthesized according to a previously described procedure (Macdonald et al., 

2011) and the analytical data was consistent and purity greater than 98%. Analytical data: 

MP: 128–130 °C (Lit MP: 130 °C (Singh et al., 1997)). IR (Nujol): 1711, 1585, 1283, 

1268, 1118, and 754 cm 1. 1H NMR (CDCl3):  1.84–1.91 (m, 2H), 2.01–2.08 (m, 2H), 

2.31–2.39 (m, 5H), 2.67–2.73 (m, 2H), 5.02–5.08 (m, 1H), 7.75 (d, J=8.5 Hz, 2H), 7.81 

(d, J=8.5 Hz, 2H). 13C NMR (CDCl3):  31 (2), 46 (3), 53 (2), 70 (1), 100 (1), 130, 131, 

138, and 166. EI-MS m/z: 345(M+, 16%), 231 (12%), 203 (9%), 114 (11%), 97 (100%), 

82 (22%), 70 (7%), 55 (14%). HRMS (EI): M+ found 345.0233, calcd for C13H16NO2I = 

345.0226. 

 

Synthesis of N-methyl-4-piperidinethiol 

N-Methyl-4-piperidone (52.92 g, 469.7 mmol) was dissolved in isopropanol (200 

mL).  Hydrogen sulfide was bubbled through the solution using a glass frit at 0 °C 

resulting in the precipitation of white solid, which was collected by suction filtration after 

1 h. The filtrate was again treated with hydrogen sulfide for an additional 30 min and all 

further white solid was collected by suction filtration for a total of 80.47 g.  Sodium 

borohydride (16.62g, 439.3 mmol) was suspended in isopropanol (150 mL) followed by 
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the slow addition of the white solid at 0 C.  The reaction mixture was returned to room 

temperature and stirred under an argon atmosphere for 16 h.  Excess solvent was 

removed under reduced pressure to produce a white paste which was partitioned between 

150 mL of both water and ether.  The aqueous layer was extracted with ether (4 x 50 mL) 

and the combined organic layers washed with brine (2 x 30 mL) and dried over 

anhydrous Na2SO4.  The solvent was removed in vacuo to yield a colourless liquid which 

was distilled (BP: 168-172 °C, lit. BP: 62 °C at 0.8mm (Barrera and Lyle, 1962); to yield 

the product as a clear colourless oil (21.22 g, 34%). IR (Neat): 3338, 2944, 1278, 1132 

cm-1.  1H NMR (CDCl3):  1.55 (d, J=7.0, 1H), 1.64-1.71 (m, 2H), 1.99-2.04 (m, 4H), 

2.26 (s, 3H), 2.67-2.80 (m, 3H).  13C NMR (CDCl3):  35.5 (1), 36.9 (2), 46.1 (3), 55.2 

(2).  EI-MS m/z:  131 (M+ 32%), 98 (100%), 96 (12%), 70 (18%), 55 (27%).  HRMS 

(ESI): MH+ found 132.0841, calcd for C6H14NS+ = 132.0841. 

 

Synthesis of (N-methylpiperidin-4-yl) 4-cyanobenzenecarbothioate (4) 

Under an argon atmosphere, triethylamine (0.53 mL, 3.80 mmol) was added to 

dichloromethane (20 mL), followed by N-methyl-4-piperidinethiol (0.45 mL, 3.80 mmol) 

and 4-cyanobenzoyl chloride (0.629 g, 3.80 mmol).  The reaction mixture was stirred for 

24 h at room temperature.  The reaction was extracted with saturated NaHCO3 (3 x 20 

mL) and the organic layer dried over Na2SO4.  The solvent was removed in vacuo to 

yield a light yellow solid which was recrystallized from hexanes to afford pale yellow 

crystals (0.24 g, 24%).  Analytical data: MP(hexanes): 152-153 ºC.  IR (Nujol): 2229, 1655, 

1208, 860 cm-1.  1H NMR (CDCl3):  1.82-1.89 (m, 2H), 2.10-2.15 (m, 2H), 2.25-2.33 

(m, 2H), 2.35 (s, 3H), 2.74-2.85 (m, 2H), 3.72-3.82 (m, 1H), 7.74-7.76 (m, 2H), 8.02-
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8.04 (m, 2H).  13C NMR (CDCl3):  32.1 (2), 40.4 (1), 46.3 (3), 55.1 (2), 116.5 (0), 117.8 

(0), 127.6 (1), 132.4 (1), 140.3 (0), 190.2 (0).  EI-MS m/z:  260 (M+, 4%), 130 (54%), 

102 (20%), 98 (100%), 97 (81%), 96 (30%), 70 (15%), 55 (22%), 44 (10%), 42 (18%).  

HRMS (ESI): MH+ found 261.1056, calcd for C14H17N2OS+ = 261.1056. 

 

Synthesis of (N-methylpiperidin-4-yl) 4-fluorobenzenecarbothioate (5) 

Under an argon atmosphere, triethylamine (0.53 mL, 3.80 mmol) was added to 

dichloromethane (20 mL), followed by N-methyl-4-piperidinethiol (0.45 mL, 3.80 mmol) 

and 4-fluorobenzoyl chloride (0.18 mL, 3.80 mmol).  The reaction mixture was stirred for 

4 days at reflux temperature.  The reaction was extracted with saturated NaHCO3 (3 x 20 

mL) and the organic layer dried over Na2SO4.  The solvent was removed in vacuo to 

yield a light yellow solid which was purified by silica gel chromatography (7% MeOH in 

CH2Cl2) and recrystallized from hexanes to afford pale yellow crystals (0.11 g, 28%).  

Analytical data: MP(hexanes): 66-68 ºC.  IR (Nujol): 1655, 1225, 1202, 1155, 916, 843 cm-1.  

1H NMR (CDCl3):  1.88-1.95 (m, 2H), 2.11-2.20 (m, 2H), 2.41 (s, 3H), 2.81- 2.94 (m, 

2H), 3.69-3.81 (m, 1H), 7.10-7.15 (m, 2H), 7.95-7.99 (m, 2H).  13C NMR (CDCl3):  32.5 

(2), 40.2 (1), 46.6 (3), 55.5 (2), 116.2 (JCF=22 Hz, 1), 130.2 (JCF=9 Hz, 1), 134.0 (0), 

166.4 (JCF=255 Hz, 0), 190.4 (0).  EI-MS m/z:  253 (M+, 3%), 130 (39%), 123 (24%), 98 

(82%), 97 (100%), 96 (36%), 95 (24%), 82 (10%), 75 (10%), 70 (17%), 55 (21%), 42 

(17%).  HRMS (ESI): MH+ found 254.1009, calcd for C13H17FNOS+ = 254.1009. 
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Synthesis of (N-methylpiperidin-4-yl) 4-iodobenzenecarbothioate (6) 

Under an argon atmosphere, triethylamine (0.53 mL, 3.80 mmol) was added to 

dichloromethane (20 mL), followed by N-methyl-4-piperidinethiol (0.45 mL, 3.80 mmol) 

and 4-iodobenzoyl chloride (1.01 g, 3.80 mmol).  The reaction mixture was stirred for 24 

h at reflux temperature.  The reaction was extracted with saturated NaHCO3 (3 x 20 mL) 

and the organic layer dried over Na2SO4.  The solvent was removed in vacuo to yield a 

light yellow solid which was recrystallized from hexanes to afford pale yellow crystals 

(0.41 g, 30%).  Analytical data: MP(hexanes): 136-137 ºC.  IR (Nujol): 1650, 1208, 824 cm-

1.  1H NMR (CDCl3):  1.80-1.87 (m, 2H), 2.09-2.14 (m, 2H), 2.25-2.32 (m, 2H), 2.34 (s, 

3H), 2.74-2.83 (m, 2H), 3.67-3.78 (m, 1H), 7.64-7.67 (m, 2H), 7.79-7.82 (m, 2H).  13C 

NMR (CDCl3):  31.9 (2), 39.6 (1), 46.0 (3), 54.9 (2), 100.8 (0), 128.2 (1), 136.2 (0), 

137.6 (1), 190.6 (0).  EI-MS m/z:  361 (M+, 1%), 230 (12%), 130 (30%), 98 (60%), 97 

(100%), 96 (22%), 76 (14%), 70 (10%), 55 (12%), 42 (10%).  HRMS (ESI): MH+ found 

362.0070, calcd for C13H17INOS+ = 362.0070. 

 

Synthesis of (N-methylpiperidin-4-yl) ethanethioate (7) 

N-Methylpiperidine-4-thiol (0.5 mL, 4.2 mmol) was dissolved in dry CH2Cl2 (5 

mL) under an argon atmosphere.  To this was added acetyl chloride (0.90 mL, 13 mmol) 

and the reaction refluxed for 1.5 h.  The solvent was removed in vacuo and the resulting 

oil dissolved in saturated NaHCO3 (20 mL).  This solution was extracted with CH2Cl2 (4 

x 20 mL), dried over Na2SO4 and the solvent removed in vacuo to produce a clear 

colourless oil.  This oil was purified by silica gel column chromatography (1:19 

MeOH/CH2Cl2) to produce a clear colourless viscous liquid (0.69 g, 96%).  Analytical 
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Data:  IR (Neat): 2941, 1686, 1448, 1219, 915 cm-1.  1H NMR (CDCl3):  1.58-1.65 (m, 

2H), 1.88-1.92 (m, 2H), 2.08-2.18 (m, 2H), 2.21 (s, 3H), 2.24 (s, 3H), 2.59- 2.70 (m, 2H), 

3.33-3.48 (m, 1H).  13C NMR (CDCl3):  30.6 (3), 31.8 (2), 39.3 (1), 46.0 (3), 54.9 (2), 

195.2 (0).  EI-MS m/z:  173(M+, 17%), 130 (52%), 98 (100%), 97 (30%), 96 (33%), 70 

(26%), 55 (45%).  HRMS (ESI): MH+ found 174.0947, calcd for C8H16NOS+ = 174.0947. 

 

Synthesis of (N-methylpiperidin-4-yl) propanethioate (8) 

N-Methylpiperidine-4-thiol (0.5 mL, 4.2 mmol) was dissolved in dry CH2Cl2 (5 

mL) under an argon atmosphere.  To this was added propionyl chloride (0.94 mL, 11 

mmol) and the reaction refluxed for 2 h.  The solvent was removed in vacuo and the 

resulting oil dissolved in saturated NaHCO3 (20 mL).  This solution was extracted with 

CH2Cl2 (4 x 20 mL), dried over Na2SO4 and the solvent removed in vacuo to produce a 

clear colourless viscous liquid.  This oil was purified by silica gel column 

chromatography (1:19 MeOH/ CH2Cl2) to produce a clear colourless viscous liquid (0.45 

g, 57%).  Analytical data:  IR (Neat): 2939, 2782, 1689, 1463, 1129, 937 cm-1.  1H NMR 

(CDCl3):  1.19 (t, J=7.5, 3H), 1.65-1.72 (m, 2H), 1.95-1.98 (m, 2H), 2.13-2.25 (m, 2H), 

2.28 (s, 3H), 2.55 (q, J=7.5, 2H), 2.63-2.83 (m, 2H), 3.41-3.54 (m, 1H).  13C NMR 

(CDCl3):  9.6 (3), 32.1 (2), 37.5 (2), 39.1 (1), 46.2 (3), 55.1 (2), 199.8 (0).  EI-MS m/z:  

187 (M+, 17%), 130 (61%), 98 (100%), 97 (27%), 96 (28%), 70 (17%), 55 (20%).  

HRMS (ESI): MH+ found 188.1104, calcd for C9H18NOS+= 188.1104. 
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Synthesis (N-methylpiperidin-4-yl) butanethioate (9) 

N-Methylpiperidine-4-thiol (0.5 mL, 4.2 mmol) was dissolved in dry CH2Cl2 (5 

mL) under an argon atmosphere.  To this was added butyryl chloride (1.3 mL, 13 mmol) 

and the reaction refluxed for 1.5 h.  The solvent was removed in vacuo and the resulting 

oil dissolved in saturated NaHCO3 (20 mL).  This solution was extracted with CH2Cl2 (4 

x 20 mL), dried over Na2SO4 and the solvent removed in vacuo to produce a clear 

colourless viscous liquid.  This oil was purified by silica gel column chromatography 

(1:19 MeOH/ CH2Cl2) to produce a clear colourless oil (0.56 g, 67%).  Analytical data:  

IR (Neat): 2938, 2782, 1686, 1447, 1129, 994 cm-1.  1H NMR (CDCl3):  0.95 (t, J=7.3, 

3H), 1.62-1.71 (m, 4H), 1.89-2.01 (m, 2H), 2.08-2.22 (m, 2H), 2.25 (s, 3H), 2.49 (t, 

J=7.3, 2H), 2.59-2.81 (m, 2H), 3.38-3.53 (m, 1H).  13C NMR (CDCl3):  13.3 (3), 19.0 

(2), 32.1 (2), 39.1 (1), 45.9 (2), 46.20 (3), 55.1 (2), 198.9 (0).  EI-MS m/z:  201 (M+, 

16%), 130 (65%), 98 (100%), 97 (28%), 96 (26%), 70 (17%), 55 (20%).  HRMS (ESI): 

MH+ found 202.1260, calcd for C10H20NOS+ = 202.1260. 

 

3.3.5  ENZYME KINETICS 

Measurement of Aryl Ester Hydrolysis 

Cholinesterase specificity and maximum absorbance change during hydrolysis for 

each benzoyl ester was determined spectrophotometrically, making use of differences in 

the aryl chromophores of substrates and products determined through repetitive 

absorbance scans. Briefly, 15 L of AChE (2.5 U) or BuChE (5.4 U) dissolved in 0.1% 

gelatin(aq), containing 0.01% sodium azide, and 1.44 mL of 0.1 M phosphate buffer (pH 

7.4) were placed in a quartz cuvette of 1 cm path length. The reaction was commenced 
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with the addition of 50 L of 5 mM ester in 50% acetonitrile(aq). The absorbance was 

scanned from 200–300 nm every 2 min for a total of 30 min using a Ultrospec 2100 pro 

UV/Visible Spectrophotometer (Biochrom) with Swift II software (Amersham). The 

wavelength corresponding to the maximum absorbance change during hydrolysis (235 

nm for compounds 1-3) was used for the subsequent determination of BuChE affinity 

constants (Km values) using Lineweaver-Burk double reciprocal plots.   

Determination of affinity constants (Km) and maximum velocity values (Vmax) 

was accomplished by measuring change in absorbance per min ( A/ min) at 235 nm, 

using a fixed amount of enzyme AChE (8.3 U) or BuChE (5.9 U) and varying amounts of 

compounds (1.67×10 4 – 1.67×10 5 M), using a Spectronic 1001 (Milton Roy) UV-

visible spectrophotometer. The plot of 1/v against 1/s gave Km as the negative reciprocal 

of the intercept on the 1/s-axis and gave Vmax as the reciprocal of the intercept of the 1/v-

axis. As defined previously (Darvesh et al., 2001), 0.1 U is the amount of cholinesterase 

that gives a A/min of 1.0 in the presence of 1.6×10 4 M substrate (acetylthiocholine for 

AChE, butyrylthiocholine for BuChE). 

 

Measurement of Thioester Hydrolysis 

The kinetics of both alkyl and aryl thioester hydrolysis by AChE or BuChE was 

determined using a modification (Pottie et al., 2011) of the method described by Ellman 

et al. (Ellman et al., 1961).  Briefly, 1.40 mL of buffered 5, 5'-dithio-bis(2-nitrobenzoic 

acid) (DTNB) solution (pH 7.4) and 0.05 mL of AChE (8.3 U) or BuChE (5.9 U), in 

0.1% aqueous gelatin, were mixed in a quartz cuvette of 1 cm path-length and zeroed at 

412 nm. The reaction was initiated by the addition of thioester in a 50% aqueous 
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acetonitrile solution to give a final substrate concentration from 1.7 x 10-4 to 3.3 x 10-6 M. 

The reactions were performed at 23 C. The rate of change of absorbance ( A/min), 

reflecting the rate of hydrolysis of the thioester, was recorded every 5 sec for 1 min, using 

a Milton-Roy 1201 UV–vis spectrophotometer. The molar extinction coefficient for the 

Ellman product, 5-thio-2-nitrobenzoic acid, used to convert the change in absorbance at  

= 412 nm to moles of product was 14,150 M-1 cm-1. These experiments were performed 

at least in triplicate and the values averaged.  

 

3.3.6  STRUCTURAL ANALYSIS 

Computational chemistry studies, to determine the most stable geometries of 

compounds, were carried out at the molecular mechanics level of theory using the Merck 

Molecular Force Field (MMFF), employing Spartan ’06 (Wavefunction, 2006).   

 

3.3.7  CHOLINESTERASE HISTOCHEMISTRY WITH THIOESTER SUBSTRATES 

Brain tissue containing the thalamus was cut on a Leica SM2000R microtome 

with a Physitemp freezing stage in 50 m thick coronal sections. Sections were stored in 

40% sucrose in 0.1 M phosphate buffer (pH 7.4) at -20 C until used.  A modified 

(Darvesh et al., 1998) Karnovsky-Roots method was employed for AChE and BuChE 

staining.  Substrates used to provide staining were synthesized thioesters and the 

standards, butyrylthiocholine and acetylthiocholine in the absence of cholinesterase 

inhibitors.  Briefly, tissue sections were rinsed in 0.1 M maleate buffer (pH 7.4) for 30 

min and then placed in 0.1 M maleate buffer, pH 7.4, containing 0.15% hydrogen 

peroxide for 30 min to quench endogenous peroxidase activity. Following a second rinse 



 

 114 
 

in 0.1 M maleate buffer, pH 7.4, for 30 min, sections were incubated for 1 h 

(acetylthiocholine, [N-methylpiperidin-4-yl] ethanethioate) (7) or 18 h 

(butyrylthiocholine, [N-methylpiperidin-4-yl] butanethioate (9) and [N-methylpiperidin-

4-yl] 4-cyanobenzenecarbothioate) (4) in a medium containing 0.5 mM sodium citrate, 

0.47 mM cupric sulfate, 0.05 mM potassium ferricyanide and thioester substrate in 0.1 M 

maleate buffer (pH 7.4).  Substrate concentrations were 4 mM for acetylthiocholine, 

butyrylthiocholine, (N-methylpiperidin-4-yl) ethanethioate, (N-methylpiperidin-4-yl) 

butanethioate and 0.5 mM for the less soluble (N-methylpiperidin-4-yl) 4-

cyanobenzenecarbothioate.  Sections were then rinsed for 30 min in distilled water and 

placed in 0.1% cobalt (II) chloride in water for 10 min. After a further rinse in distilled 

water, sections were placed in a 3, 3'-diaminobenzidine tetrahydrochloride (DAB) 

solution consisting of 1.39 mM in 0.1M phosphate buffer (pH 7.4). After 5 min, a 

solution of 0.15% hydrogen peroxide in distilled water was added at a ratio of 10:1 (DAB 

solution : hydrogen peroxide solution) and the reaction was carried out for approximately 

2 min. Sections were then washed in 0.01 M acetate buffer, pH 3.3, mounted on slides, 

coverslipped and examined with brightfield microscopy. 

Sections were photographed with an AxioCam HRc camera on a Zeiss Axioplan 

II microscope. The photographic plates were assembled using Adobe Photoshop 7.0. The 

images were color balanced, contrast enhanced and brightness adjusted to match the 

background from different images. 
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3.4 RESULTS AND DISCUSSIONS

3.4.1  ORGANIC SYNTHESIS 

To synthesize N-methyl-4-piperidinethiol, N-methyl-4-piperidone was mixed with 

hydrogen sulfide and the resulting reaction produced a dithiol.  This intermediate was 

then reduced with sodium borohydride (Figure 3.1), in a reaction adapted from an earlier 

procedure (Meanwell et al., 1993).  Thioesters were subsequently generated by 

esterification of this thiol with an acid chloride (Figure 3.1).  Benzoate esters were also  

synthesized, as previously described (Macdonald et al., 2011), (Figure 3.1, Table 3.1, 1-

3) in order to directly compare cholinesterase kinetic parameters for aryl thioesters and 

esters.  Two classes of thioesters were synthesized, those from aryl acid chlorides (Table 

3.1, 4-6), analogous to the benzoate esters, and those from alkyl acid chlorides (Table 3.1, 

7-9), analogous to previously developed alkyl ester imaging agents (Irie et al., 1994; 

Snyder et al., 2001). 

 

3.4.2  KINETIC ANALYSIS 

Thioester analogues of aryl esters such as benzoylcholine have been found 

(Masson et al., 2007) to be kinetically comparable to their ester counterparts for 

cholinesterase hydrolysis.  Therefore, thioesters can provide a rapid, indirect enzyme 

kinetic screening method for analysis of potential ester imaging agents.  All aryl and 

alkyl thioesters, producing a thiol product, upon hydrolysis, are amenable to kinetic 

analysis as cholinesterase substrates via an Ellman assay.  Furthermore, since all aryl 

esters showed distinct UV spectral differences between reactant and product (Figure 3.2),  
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Figure 3.1.  Reaction scheme for the synthesis of (a) alkyl and aryl thioesters and (b) aryl 
esters. Figure 12 



 

 117 
 

Table 3.1. Affinity constants (Km) and maximum velocity values (Vmax) for N-
methylpiperidinyl alkyl thioesters, N-methylpiperidinyl aryl esters and corresponding 
thioesters with butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE).  None of 
the aryl compounds (1-6) were hydrolyzed by AChE under the conditions used (X). Table 
3 

 Structure 
AChE BuChE 

Km  
(μM)

Vmax 
(μM min-1) 

Km  
(μM)

Vmax  
(μM min-1) 

1 
 

X X 438 ± 75 45.0 ± 6.6 

2 
 

X X 284 ± 28 24.7 ± 2.0 

3 
 

X X 123 ± 42 21.0 ± 5.1 

4 
 

X X 167 ± 17 30.7 ± 2.4 

5 
 

X X 173 ± 13 27.6 ± 1.7 

6 
 

X X 11 ± 1 9.7 ± 0.3 

7  
751 ± 26 18.3 ± 0.2 684 ± 54 16.7 ± 1.3 

8  
1108 ± 106 21.4 ± 2.2 302 ± 2 20.7 ± 0.1 

9  
X X 129 ± 12 7.0 ± 0.3 
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Figure 3.2.  Repetitive absorbance scans for N-methylpiperidin-4-yl 4- cyanobenzoate in 
the presence of butyrylcholinesterase (BuChE) or acetylcholinesterase (AChE).  Note 
change in absorbance over time when the compound was incubated with BuChE (left) 
reflecting hydrolysis of the compound by this enzyme.  No change in absorbance with 
AChE (right) indicates no hydrolysis by this enzyme.  The absorbance was measured 
every 2 min for 30 min. Figure 13 
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they could be analyzed for comparison with thioester kinetic parameters by an alternate 

method employing changes in absorbance.  Esters and thioesters of substituted benzoic 

acids gave comparable affinity constants and maximum velocity values (Table 3.1), in 

agreement with the earlier observation comparing benzoylcholine and benzoylthiocholine 

analogues (Masson et al., 2007).  In general, the thioester derivatives had a slightly 

greater affinity towards BuChE than did the esters.  In addition, none of the aryl 

thioesters, as observed earlier for aryl esters (Macdonald et al., 2011), were susceptible to 

hydrolysis by AChE (Figure 3.2). 

Although it was not possible to directly obtain affinity constants for the esters of 

N-methylpiperidinol derived from acetic acid, propionic acid and butyric acid, it is 

reasonable to expect, from comparable studies with aryl derivatives (Table 3.1;(Masson 

et al., 2007)), these values to be similar to those for the comparable thioesters (Table 3.1).  

This is supported by the observation that for AChE, like the analogous thiocholine esters, 

the acetyl ester of N-methyl-4-piperidinethiol (7, Table 3.1) had the greatest affinity, 

followed by the propionyl ester (8), while the butyryl derivative (9) was not hydrolyzed 

by AChE under these conditions.  In addition, BuChE affinity increased with longer 

substrate side chains, consistent with the known preference of this enzyme for longer acyl 

chains (Darvesh et al., 2006; Pottie et al., 2011).  The observation that the thioester 

analogue of MP4B is BuChE-specific is also in keeping with the earlier report (Kikuchi, 

2001) that the ester is only hydrolyzed by BuChE.  Of note is that the affinities of the 

acetyl (7) and propionyl (8) thioesters for BuChE are greater than for AChE.  Even 

though the corresponding radiolabelled esters, [11C]-AMP and [11C]-PMP, have been 

developed as AChE imaging agents, these kinetic results suggest that BuChE is also 
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capable of efficiently hydrolyzing these compounds and thus, both AChE and BuChE 

may be detected in molecular imaging studies with these agents, rendering them to be 

non-specific. 

 

3.4.3  STRUCTURAL ANALYSIS 

The preferred geometries of the synthetic thioesters and their ester counterparts 

were computed at the molecular mechanics level in order to further explore any subtle 

differences observed in the cholinesterase kinetic affinities.  In general, the preferred 

conformations for each oxygen and sulfur analogous pair were comparable (Figure 3.3).  

However, slight differences in molecular shape, because of the presence of the bulkier 

and electronically distinct sulfur atom, most likely contributed to observed differences in 

relative affinity constants for BuChE (Table 3.1) in each analogous pair.  The structural 

similarity further suggests that thioesters are acceptable kinetic surrogates for 

corresponding ester imaging agents. 

 

3.4.4  HISTOCHEMICAL EVALUATION OF N-METHYL PIPERIDINYL THIOESTERS 

Distribution of an imaging agent within the living brain is dependent upon a 

number of factors.  These include cerebral blood flow, penetration of the blood-brain 

barrier, interaction with the target molecules and fate of the metabolites.  Thus, 

determining the in vitro distribution of the imaging agent in brain tissues would be 

valuable before advancing to in vivo radioimaging studies.  The cholinesterases are 

commonly stained in brain tissues using thioesters such as butyrylthiocholine or 

acetylthiocholine (Karnovsky and Roots, 1964; Darvesh and Hopkins, 2003).  In order to  
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Figure 3.3.  Preferred geometries of select N-methylpiperidinyl esters (left) and the 
corresponding thioesters (right).Note similarity in geometry between ester and thioester 
pairs. Top row: acetyl N-methylpiperidinyl derivatives.  Middle row: butyryl N-
methylpiperidinyl derivatives.  Bottom row: cyano benzoate N-methylpiperidinyl 
derivatives. Figure 14 
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explore cholinesterase specificity and to determine their potential to detect the 

distribution of cholinesterases in the brain, several of the thioesters prepared in this study 

were tested as histochemical substrates and compared with choline thioesters for staining 

human thalamus brain tissue (Figure 3.4).  This region of the brain was chosen because it 

has been precisely mapped for cholinesterase activity and certain nuclei, such as the 

anteroventral (AV) nucleus (Figure 3.4A), exhibit distinct patterns of AChE and BuChE 

activity (Darvesh and Hopkins, 2003).  In the AV nucleus of the thalamus, AChE activity 

is found only in the neuropil while BuChE activity is observed only in neurons.  As can 

be seen in Figure 3.4, acetylthiocholine (Figure 3.4B) and N-methylpiperidinyl 

acetylthioester (7; Table 3.1; Figure 3.4C) show comparable neuropil staining typical of 

AChE activity in this nucleus.  That is, both the choline and N-methylpiperidinethiol 

acetyl thioester substrates provided histochemical staining consistent with the previously 

described distribution of AChE in this region of the brain (Darvesh and Hopkins, 2003).  

This observation is also in agreement with the in vitro enzyme kinetic results indicating 

that AChE is capable of efficiently hydrolyzing the N-methylpiperidinyl acetylthioester 

(Table 3.1).  N-methylpiperidinyl acetylthioester (7) is hydrolyzed by both AChE and 

BuChE (Table 3.1), similar to acetylthiocholine (Darvesh et al., 2003b), using Ellman 

method.  However, the Modified Karnovsky-Roots method for histochemical staining 

requires shorter (1 h) incubation for staining AChE and longer (18 hr) for BuChE.  Based 

on this difference in the incubation time, staining in Figure 3.4C is predominantly for 

AChE.  Similarly, to evaluate specific histochemical visualization of BuChE activity in 

the human thalamus, comparative staining with butyrylthiocholine, N-methylpiperidinyl 

butyrylthioester (9; Table 3.1) and cyanobenzoate thioester (4; Table 3.1) was carried out  



 

 123 
 

 

 

 
 
Figure 3.4.  Histochemical staining of human brain tissue at the level of the thalamus in a 
coronal plane. A.  Parcellation of the thalamus in the region used to compare 
histochemical staining by various cholinesterase substrates; B.  Acetylthiocholine. C.  (N-
methylpiperidin-4-yl) ethanethioate.  Note that both of these substrates produced a similar 
pattern of staining recapitulating the known distribution of acetylcholinesterase in this 
region.  D.  Butyrylthiocholine.  E.  (N-methylpiperidin-4-yl) butanethioate.  F.  (N-
methylpiperidin-4-yl) 4-cyanobenzenecarbothioate.  Note that these substrates produced a 
similar pattern of distribution that reflected the known distribution of 
butyrylcholinesterase in this region.  AV: anteroventral nucleus, CL: central lateral 
nucleus,  MD: mediodorsal, R: reticular nucleus, V: Ventral nuclei. Scale bar = 200 μm. 
Figure 15 
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(Figure 3.4D, E, F).  BuChE staining using butyrylthiocholine as substrate (Figure 3.4D) 

was comparable to that obtained with the butyryl (Figure 3.4E) and 4-cyanobenzoyl 

(Figure 3.4F) derivatives of N-methylpiperidinethiol.  Furthermore, the BuChE staining 

profiles (Figure 3.4D, E, F) were distinct from those for AChE observed with the acetyl 

thioesters (Figure 3.4B and C) in the same region of the brain.  High (> 1 mM) thioester 

concentrations are typically required in the staining medium to achieve adequate 

visualization of cholinesterase activity.  Because of this, solubility limitations prohibited 

use of the iodo- and fluorobenzoate thioesters in similar histochemical analysis to that 

provided by the cyanobenzoate derivative (Figure 3.4F).  However, successful 

histochemical recapitulation of enzyme activity with an aryl thioester provides a critical 

proof-of-principle that analogous radiolabelled compounds are potential imaging agents 

to be highly sensitive detectors of cholinesterase activity in brain tissue. 

 

3.5 CONCLUSIONS

This study indicates that N-methylpiperidinyl thioesters are effective surrogate 

substrates for the evaluation and development of corresponding ester compounds as 

AChE and BuChE imaging agents.  These thioester analogues have comparable affinities 

towards AChE and BuChE to their ester counterparts.  These similarities permit 

screening of corresponding ester substrates as potential radioligands for specific detection 

of AChE or BuChE activity.  These thioester compounds can also be employed for 

histochemical detection of enzyme activity in brain tissue which could then be used for 

comparison with the in vivo images generated by the analogous radiolabelled molecules.  

Development of compounds, screened in this manner, could facilitate discovery of 
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suitable molecular imaging agents for the detection of AChE and BuChE in the living 

brain for application to neurological disorders involving the cholinergic system, such as 

AD. 
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CHAPTER 4 CARBAMATE DERIVATIVES AS IMAGING 
AGENTS 

4.1 PREFACE

 Chapters 2 and 3 described the development of ester and thioester compounds as 

potential cholinesterase imaging agents.  A significant drawback to these molecules is 

that they are rapidly hydrolyzed by AChE and BuChE and thus, may be subject to 

diffusion away from in vivo sites of enzyme activity.  This may limit the utility of ester 

derivatives as imaging agents for cholinesterases.  In contrast, cholinesterase hydrolysis 

of compounds containing a carbamate functional group is much slower than esters.  

Therefore, imaging agents possessing carbamate functionality have great promise for 

visualizing cholinesterases.  This Chapter presents the synthesis, kinetic analysis, 

radiolabelling and in vitro tissue evaluation of a carbamate compound as a potential 

cholinesterase imaging agent.  The content of this Chapter describes work done as part of 

this thesis and has been the subject of US Provisional Patent Application No. 61/697,114. 

 

4.2 INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder and is the most 

common cause of dementia in older adults (Blennow et al., 2006).  The prevalence of AD 

is predicted to dramatically rise over the next few decades with concomitant increases in 

social and economic burdens related to the disease (World Health Organization and 

Alzheimer’s Disease International, 2012).  Efforts towards the development of disease-

modifying interventions for AD are hampered by the lack of an early and definitive 

diagnosis.  Currently, diagnosis of AD must be confirmed by post-mortem brain 

visualization of -amyloid (A ) plaques and tau neurofibrillary tangles, two hallmarks of 
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the disease (Hyman and Trojanowski, 1997).  Brain imaging methods have emerged for 

the visualization of A  plaques in the living human brain to aid in the diagnosis of AD.  

This approach has involved the development of imaging agents, such as 2-(4'-

dimethylaminophenyl)-6-[123I]iodo-imidazo[1,2-a]pyridine (IMPY) (Kung et al., 2004), 

[N-Methyl-[11C]2-(4'-methylaminophenyl)-6-hydroxybenzothiazole (PIB) (Klunk et al., 

2004) and (E)-4-(2-(6-(2-(2-(2-([18F]-fluoroethoxy)ethoxy)ethoxy)pyridin-3-yl)vinyl)-N-

methyl benzenamine (Florbetapir) (Clark et al., 2012) that bind to A  plaques in vivo and 

are visualized using single photon emission computed tomography (SPECT) or positron 

emission computed tomography (PET).  However, a significant number of cognitively 

normal adults have A  plaque pathology without exhibiting clinical evidence of AD 

(Mortimer, 2012).  This limits the utility of A  plaque imaging for the pre-mortem 

definitive diagnosis of AD since it has the potential to identify false positives. 

 Changes in the cholinergic system have long been associated with AD (Davies 

and Maloney, 1976; Bartus et al., 1982; Coyle et al., 1983), in particular there is loss of 

acetylcholine containing neurons in the basal forebrain and other regions.  Two enzymes, 

acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), hydrolyze acetylcholine 

and thus, co-regulate cholinergic neurotransmission in the brain (Darvesh et al., 2003a).  

These enzymes also associate with A  plaques in AD (Geula and Mesulam, 1989; Moran 

et al., 1993; Gomez-Ramos et al., 1994; Geula and Mesulam, 1995; Darvesh et al., 

2010a).  The nature of this association remains unknown but may be related to plaque 

formation and maturation (Guillozet et al., 1997).  This notion is supported by the fact 

that these enzymes, in particular BuChE, associate with a subpopulation of plaque 

pathology (Darvesh et al., 2012b).  Therefore, AChE and BuChE may be specific 
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markers for A  plaques indicative of AD.  Imaging of cholinesterases in the brain, 

because of their association with A  pathology, may provide an early and definitive 

diagnosis of AD (Darvesh, 2013). 

 Imaging agents targeting AChE (Irie et al., 1994; Irie et al., 1996; Kilbourn et al., 

1996; Snyder et al., 1998) and BuChE (Kikuchi, 2001; Snyder et al., 2001; Kikuchi et al., 

2004; Macdonald et al., 2011) have been developed for human brain imaging of AD 

pathology (Figure 4.1).  However, visualization of these enzymes associated with AD 

plaques has not been realized using these compounds.  A significant drawback to such 

imaging agents is that, being cholinesterase ester substrates, they are rapidly metabolized 

by these enzymes.  Thus, the ability to image cholinesterase activity with these agents 

relies on the ‘metabolic trapping principle’ (Irie et al., 1994; Kikuchi et al., 2007) in 

which a radiolabelled hydrophilic product of enzyme catalysis gets trapped within the 

brain following ester hydrolysis.  In contrast, compounds containing a carbamate 

functional group, which are also cholinesterase substrates, are able to form a long-lived 

intermediate with these enzymes (‘enzymatic trapping’), potentially leading to a 

prolonged association.  A radiolabelled imaging agent containing carbamate functionality 

is expected to have a longer binding duration to cholinesterases compared to ester 

substrates, thus improving visualization of cholinesterase activity associated with 

structures such as A  plaques.   

Herein, are detailed the synthesis, radiolabelling and evaluation of phenyl 4-

([123I]iodo)phenylcarbamate (123I-PIP) that exhibits affinity towards cholinesterases.  It is 

demonstrated that this compound is able to visualize cholinesterases associated with A  

plaques in human AD brain tissues using autoradiography.  In addition, this  
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Figure 4.1.  PET and SPECT ester-type brain imaging agents for acetylcholinesterase 
and butyrylcholinesterase.  N-[11C]methylpiperidyl acetate, 11C-AMP; N-
[11C]methylpiperidyl propionate, 11C-PMP;  N-[18F]fluoroethylpiperidin-4-yl acetate, 18F-
FEtP4A;  1-11C-Methyl-4-piperidinyl n-butyrate, 11C-MP4B. Figure 16 
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molecule is compared with the A  plaque imaging agent, 123I-IMPY, for the ability to 

distinguish A  plaques in AD brain tissues from those in cognitively normal brain. 

 

4.3 MATERIALS AND METHODS

4.3.1  SYNTHESIS MATERIALS 

Phenol, 4-iodophenylisocyanate, hexabutylditin, 2-amino-5-pyridine, 

tetrakis(triphenylphosphine)palladium, sodium bicarbonate, triisopropylsilyl triflate, 

triethylamine and purified recombinant human acetylcholinesterase were obtained from 

Sigma Aldrich (St. Louis, USA).  2-Bromo-1-(4-dimethylaminophenyl)ethanone was 

obtained from Santa Cruz Biotechnology (Santa Cruz, USA). Purified human plasma 

butyrylcholinesterase was a gift from Dr. Oksana Lockridge (University of Nebraska 

Medical Center).  Na123I was obtained from MDS Nordion (Vancouver, CAN) in 0.1 N 

NaOH.  Synthetic reactions were performed under an argon atmosphere (99.999% purity, 

Air Liquide).  

4.3.2  COMPOUND CHARACTERIZATION 

Melting points were determined using a Fisher-Johns melting point apparatus. 

Infrared spectra were recorded as Nujol mulls or as neat liquids between sodium chloride 

plates on a Nicolet Avatar 330 FT- IR spectrometer.  Peak positions were reproducible 

within 1–2 cm 1.  Nuclear magnetic resonance spectra were recorded at the Nuclear 

Magnetic Resonance Research Resource (NMR-3), Dalhousie University, on a Bruker 

AVANCE 500, operating at 500.1 MHz for 1H and 125.8 MHz for 13C.  Chemical shifts 

are reported in parts per million relative to Me4Si in CDCl3 or DMSO. For 1H NMR 
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experiments, the coupling constants are reported in Hertz and the multiplicities are 

apparent.  For 13C NMR data, the number of attached protons for each signal, as 

determined by a DEPT experiment, are given in parentheses.  Low-resolution mass 

spectra were obtained using an Agilent 6890N GC with an Agilent 6890N Electron 

Impact MS (Waldbronn, Germany) operating at 70 eV.  High-resolution mass spectra 

were obtained with accurate mass positive-ion electrospray ionization measurements 

recorded at the Mass Spectrometry Laboratory at Dalhousie University using a Bruker 

Daltonics microTOF with a flow rate of 2 L/min, spray voltage of 4500 V and tray 

temperature of 180 °C or were recorded on a CEC 21-110B spectrometer using electron 

ionization at 70 V and an appropriate source temperature with samples being introduced 

by means of a heatable port probe.  Mass measurements were within 3 ppm of the 

calculated value.  Purity of all compounds was determined using an Agilent Technologies 

1200 series HPLC system with a reverse phase C18 column and methanol as the mobile 

phase. 

4.3.3  SYNTHESIS AND RADIOLABELLING 

Synthesis of Phenyl 4-(iodo)phenylcarbamate (1, PIP) 

Phenol (1.021 g, 10.85 mmol) was dissolved in dry toluene (2 mL) under argon 

atmosphere and 4-iododiphenylisocyanate (2.658 g, 10.85 mmol), dissolved in dry 

toluene (13 mL), was added to the solution.  The reaction was refluxed for 5 h, hot 

gravity filtered and the resulting white crystals collected (1.983 g, 54%).  Analytical 

Data. MP(toluene): 159-161 ºC.  IR (Nujol): 3316, 1734, 1709, 1590, 1534, 1232 cm-1.  1H 

NMR (CDCl3):  6.95 (s, 1H), 7.19 (d, J = 7.3 Hz, 2H), 7.24-7.28 (m, 3H), 7.41 (t, J = 
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7.3 Hz, 2H), 7.65 (d, J = 8.6 Hz, 2H). 13C NMR (CDCl3):  87.0, 120.6, 121.6, 125.9, 

129.5, 137.2, 138.1, 150.4, 151.4.  EI-MS m/z:  90 (21), 118 (11), 217 (2), 245 (100).  

HRMS (ESI): MNa+ found 361.9648, calcd for C13H10INNaO2
+ = 361.9648. 

 

Synthesis of Phenyl 4-(tributylstannyl)phenylcarbamate (2) 

Phenyl 4-(iodo)phenylcarbamate (1, 0.200 g, 0.59 mmol) was suspended in dry 

CH2Cl2 (10 mL) under argon atmosphere.  To this was added triethylamine (0.180 mL, 

1.3 mmol) followed by triisopropyl triflate (0.32 mL, 1.2 mmol).  This solution was then 

added to tetrakistriphenylphosphate palladium (0.026 g, 0.023 mmol) and to this was 

added hexabutylditin (0.60 mL, 1.2 mmol).  The reaction was refluxed for 16 h and 

purified by silica gel flash chromatography (1:9 ethyl acetate/hexanes) to yield a white 

solid (0.147 g, 50%). Analytical Data. MP(hexanes): 53-55 ºC.  IR (Nujol): 3331, 2852, 

1719 cm-1.  1H NMR (CDCl3):  0.95 (t, J = 7.3 Hz, 9H), 1.09-1.12 (m, 6H), 1.37 (sex, J 

= 7.4 Hz, 6H), 1.55-1.60 (m, 6H), 6.90 (s, 1H), 7.19-7.25 (m, 3H), 7.39-7.44 (m, 6H). 13C 

NMR (CDCl3):  9.6, 13.7, 27.4, 29.1, 118.3, 118.4, 121.6, 125.7, 129.4, 136.7, 137.2, 

150.6, 151.5.  EI-MS m/z:  352 (100%), 296 (60%), 238 (98%), 162 (9%), 119 (9%).  

HRMS (ESI): MNa+ found 526.1738, calcd for C25H37NNaO2Sn+ = 526.1738. 

 

Synthesis of Phenyl 4-([123I]iodo)phenylcarbamate (3, 123I-PIP) 

To a solution (9 μL) of Na123I (64.42 MBq) in 0.1 M NaOH (aq) (9.0x10-7 mol) 

was added 0.1 M HCl (18 μL, 1.8x10-6 mol) to neutralize the hydroxide.  Phenyl 4-

(tributylstannyl)phenylcarbamate (2, 50 μL, 4.0x10-7 mol) was added to the solution 

followed by N-chlorosuccinimide (NCS, 28 μL, 8.4x10-8 mol), both of which were 
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dissolved in MeOH.  The reaction proceeded for 15 min at room temperature; then 0.1 M 

NaHCO3 (27 μL, 2.7x10-3 mol) was added to quench the reaction.  Purification was 

accomplished by HPLC, using an Agilent system with a Zorbax Eclipse XDB-C18, 

4.6x150 mm, 5 μm column (Agilent Technologies), and 1.0 mL/min of 80% MeOH(aq) 

eluent.  Fractions were collected every 20 sec for 15 min with a RediFrac fraction 

collector (Amershan Biosciences).  Retention times were determined using the 

corresponding cold PIP (1) as a non-radioactive standard.  Collected fractions that 

contained purified product were combined, acidified with 0.1 M HCl and the solvent 

removed under a stream of N2 gas with heating to yield the desired radiolabelled 

compound as a residue (radiochemical yield 87%, radiochemical purity >96%).  The 

residue was dissolved in 0.1 M maleate buffer pH 7.4 for incubation with tissue. 

 

Synthesis of 2-(4'-Dimethylaminophenyl)-6-iodoimidazol[1,2-a]pyridine (IMPY, 4) 

IMPY was synthesized according to a previously published procedure (Zhuang et 

al., 2003).  Briefly, 2-Bromo-1-(4-dimethylaminophenyl)ethanone (0.484 g, 2 mmol) and 

2-amino-5-pyridine (0.440 g, 2 mmol) were dissolved in ethanol (25 mL) under argon 

atmosphere.  The solution refluxed for 2 h before returning to room temperature.  

NaHCO3 (0.250 mg, 3 mmol) was added and the reaction refluxed.  After 4 h the mostly 

clear yellow solution was returned to room temperature and a yellow precipitate formed.  

The precipitate was collected and recrystallized from ethanol to produce yellow crystals 

(0.088 mg, 12%). Analytical Data was consistent with the literature (Zhuang et al., 2003). 

MP(ethanol): 234-236 ºC.  IR (Nujol): 1613, 1504, 1368, 794 cm-1.  1H NMR (CDCl3):  

3.02 (s, 6H), 6.79 (d, J = 8.9 Hz, 2H), 7.30 (dd, J = 9.5, 1.5 Hz, 1H), 7.40 (d, J = 9.6 Hz, 
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1H), 7.69 (s, 1H), 7.82 (d, J = 9.2 Hz, 2H), 8.35 (dd, J = 0.9, 0.6 Hz, 1H).  13C NMR 

(CDCl3): : 40 (3), 74 (0), 106 (1), 112 (1), 118 (1), 121 (0), 127 (1), 130 (1), 132 (1), 

144 (0), 147 (0), 151 (0).  EI-MS m/z: 363 (100), 347 (7), 235 (5), 220 (9), 181 (9).  

HRMS (ESI): MH+ found 364.0314, calcd for C15H15IN3
+ = 364.0305. 

 

Synthesis of 2-(4'-Dimethylaminophenyl)-6-tributylstannylimidazol[1,2-a]pyridine (5) 

 To tetrakistriphenylphosphate palladium (0.020 g, 0.017 mmol) was added 2-(4'-

dimethylaminophenyl)-6-iodoimidazol[1,2-a]pyridine (4, 0.201 g, 0.55 mmol) suspended 

in toluene (25 mL) followed by hexabutylditin (0.84 mL, 1.7 mmol) under argon 

atmosphere.  The reaction was refluxed for 40 h and purified using silica gel column 

chromatography (1-5% MeOH/CH2Cl2) to yield a brown oil (0.193 g, 66%). 

Analytical Data. IR (Neat): 2955, 2925, 2870, 2851, 1614, 1505, 1338, 798 cm-1.  1H 

NMR (CDCl3):  0.96 (t, J = 7.4 Hz, 9H), 1.08-1.23 (m, 6H), 1.40 (sext, J = 7.3 Hz, 6H), 

1.53-1.68 (m, 6H), 3.04 (s, 6H), 6.80 (d, J = 8.9 Hz, 2H), 7.12 (dd, J = 9.4, 0.9 Hz, 1H), 

7.57 (d, J = 8.6 Hz, 1H), 7.72 (s, 1H), 7.85 (d, J = 8.8 Hz, 2H), 8.35 (t, J = 0.9, 1H).  13C 

NMR (CDCl3): : 10 (2), 14 (3), 27 (2), 29 (2), 41 (3), 106 (1), 112 (1), 117 (1), 121 (0), 

122 (0), 127 (1), 130 (1), 131 (1), 146 (0), 146 (0), 150 (0).  EI-MS m/z: 361 (24), 269 

(100), 213 (24), 177 (25), 155 (19).  HRMS (ESI): MH+ found 528.2386, calcd for 

C27H42N3Sn+ = 528.2395. 
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Synthesis of 2-(4'-Dimethylaminophenyl)-6-[123I]iodoimidazol[1,2-a]pyridine (6, 123I-

IMPY) 

To a solution (1 μL) of Na123I (2.90 MBq) in 0.1 M NaOH(aq) (1.0x10-7 mol) was 

added 1 M HCl (50 μL, 5.0x10-5 mol), 2-(4'-Dimethylaminophenyl)-6-

tributylstannylimidazol[1,2-a]pyridine (5) dissolved in MeOH (50 μL, 3.8x10-7 mol) and 

3% H2O2 (aq) (50 μL, 4.41x10-4 mol).  After 15 min at room temperature, 1 M NaOH (100 

μL, 1x10-4 mol) was added.  Purification was accomplished by HPLC, using an Agilent 

system with a Zorbax Eclipse XDB-C18, 4.6x150 mm, 5 μm column (Agilent 

Technologies), and 1.0 mL/min of 80% MeOH(aq) eluent.  Fractions were collected every 

20 sec for 15 min with a RediFrac fraction collector (Amershan Biosciences).  Retention 

times were determined using the corresponding cold IMPY (4) as a non-radioactive 

standard.  Collected fractions that contained purified product were combined and the 

solvent removed under a stream of N2 gas with gentle heating to yield the desired 

radiolabelled compound as a residue (radiochemical yield 71%, radiochemical purity 

>99%).  Radiochemical purity was comparable to literature (Zhuang et al., 2003).  The 

residue was dissolved in 0.1% bovine serum albumin in maleate buffer pH 7.4 for 

incubation with tissue. 

 

4.3.4  ESTERASE ACTIVITY ASSAY 

The ability of the compounds to inhibit cholinesterases was evaluated by using a 

modification (Darvesh et al., 2001) of Ellman's spectrophotometric method (Ellman et al., 

1961) using human recombinant AChE and acetylthiocholine as the substrate, or human 

serum BuChE with butyrylthiocholine as the substrate.  The esterase activity of AChE 
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and BuChE was determined by adding 0.05 mL of 4.8 mM substrate (acetylthiocholine 

for AChE or butyrylthiocholine for BuChE, in 50% CH3CN(aq)) to 1.40 mL of buffered 5, 

5'-dithio-bis(2-nitrobenzoic acid) (DTNB) solution (pH 8.0) and 0.05 mL of enzyme 

(~0.04 U), to initiate the reaction. Assays were carried out at 23 °C over a 1 min period, 

taking readings every 5 s, after initial 5 s delay using a Milton-Roy 1201 UV-visible 

spectrophotometer (Milton- Roy, Ivyland, PA), set at : 412 nm.  0.1 U is the amount of 

cholinesterase that gives a A/min of 1.0 under the conditions described.  To test for 

enzyme deactivation over time, loss of enzyme activity was monitored.  Briefly, 1.35 mL 

of buffered DTNB solution (pH 8.0), 0.05 mL of enzyme (~0.04 U of BuChE or AChE in 

0.1% aqueous gelatin containing 0.01% sodium azide) and 0.05 mL of 1 mM PIP (1) 

dissolved in 50% CH3CN(aq) in a stoppered cuvette of 1 cm path length.  After mixing and 

bringing the absorbance to zero, 0.05 mL of 4.8 mM aqueous acetyl- or 

butyrylthiocholine substrate solution was added to the cuvette after incubation of the 

enzyme with PIP (1) and buffered DTNB for periods of up to 10 min. A zero- time 

sample was also obtained by adding enzyme last to initiate reaction and the second-order 

rate constants for enzyme deactivation (ka values) were determined as previously 

described (Darvesh et al., 2003b). The ka value was calculated by plotting the extent of 

inhibition, given by ln (e0/et)/[I], against time, where e0 is the enzymatic activity at time 

zero (without preincubation of enzyme and inhibitor), et is the enzymatic activity at time t 

min of preincubation, and [I] is the molar concentration of inhibitor.  The slope of this 

plot gave the second-order rate constant.  Experiments were done at least in triplicate and 

the values averaged.   

 



 

 137 
 

4.3.5  IN VITRO AUTORADIOGRAPHY WITH MOUSE AND HUMAN TISSUES 

4 Male B6SJL wild-type (WT) mice and 4 male 5XFAD (B6SJL-

Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax) mice were obtained from 

Jackson Laboratory (Bar Harbor, ME).  Animals were cared for according to the 

guidelines set by the Canadian Council on Animal Care. Formal approval to conduct the 

experiments was obtained from the Dalhousie University Committee on Laboratory 

Animals.  Mice were sacrificed by somnitol injection, perfused transcardially with saline 

(25 mL, 0.9% NaCl, 0.1% NaNO3) followed by fixative (50 mL, 4% formalin).  Brains 

were removed, post-fixed for 1 hour, frozen with dry ice and cut in 40 μm serial sections 

on a SM2000R Leica microtome with a freezing stage and BFS-30TC controller 

(Physitemp).  Human brain tissues from 4 normal and 4 AD cases used in this study were 

provided by the Maritime Brain Tissue Bank, (Dalhousie University, Department of 

Medical Neuroscience, Halifax, Nova Scotia, Canada), following approval from the 

Capital Health Ethics Board.  After removal, brains were immersion fixed in 10% 

formalin in 0.1 M phosphate buffer (pH 7.4) and cut in 1–2 cm coronal slabs.  These 

slabs were cryoprotected by immersion in increasing concentrations of sucrose, ranging 

from 10% to 40% in 0.1 M phosphate buffer (pH 7.4). Brain tissue was in each 

concentration of sucrose solution for approximately 48 h and stored in 40% 0.1 M 

phosphate buffered sucrose (pH 7.4) with 0.6% sodium azide until used.  Blocks of tissue 

from the orbitofrontal cortex, an area of high A  plaque accumulation in AD, were cut on 

a on a Leica SM2000R microtome with Physitemp freezing stage and BFS-30TC 

controller in 50 μm sections.  Sections were stored in 40% sucrose in 0.1 M phosphate 

buffer (pH 7.4) at 20 C until used.  Prior to use, sections were thawed and rinsed in 
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0.1M maleate buffer pH 7.4.  To each human tissue section in 900 μL of 0.1M maleate 

buffer pH 7.4 was added 100 μL of maleate buffer pH 7.4 containing 123I-PIP (3, 1.1 

MBq) and the tissue incubated for 3 h with gentle agitation.  The tissue was then rinsed 

twice for 1 min in distilled water, mounted, dried on a slide warmer and exposed to a 

high resolution phosphorimaging screen (GE Healthcare).  The screen was scanned with 

a typhoon 9400 imager (GE Healthcare) to produce the autoradiogram.  Images were 

saved in ImageQuant and contrast was adjusted with Adobe Photoshop CS5. 

Sections to be incubated with 123I-IMPY (6) were first thawed, washed in maleate 

buffer pH 7.4, mounted and dried.  The sections were rehydrated in maleate buffer pH 7.4 

for 3 min and incubated in 35 mL maleate buffer pH 7.4 with 560 μL of 0.1% bovine 

serum albumin in maleate buffer pH 7.4 containing 123I-IMPY (6, 1.7 MBq/per section).  

The tissue was incubated for 1 h with gentle agitation and subsequently rinsed for 2 min 

in saturated Li2CO3 in 50% EtOH(aq), 2 min in 50% EtOH(aq), and 30 sec in distilled 

water.  The sections were dried, exposed to the phosphorimaging screen and images 

generated as described above.   

 

4.3.6  BUTYRYLCHOLINESTERASE HISTOCHEMISTRY 

A modified Karnovsky-Roots method was used for examination of BuChE 

activity in brain sections, as described previously (Darvesh et al., 2012b).  Briefly, 50 μm 

brain sections, adjacent to those used for in vitro autoradiography, were rinsed in 0.1 M 

maleate buffer (pH 7.4) for 30 min.  Tissue was incubated in 0.15% H2O2 in 0.1 M 

maleate buffer pH 7.4 to quench endogenous peroxidase activity.  Tissue was reacted for 

2.5 h at room temperature in an incubation medium containing 0.5 mM sodium citrate, 
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0.47 mM cupric sulfate, 0.05 mM potassium ferricyanide, 0.8 mM butyrylthiocholine 

iodide and 0.01 mM 1,5-bis (4-allyl dimethylammonium phenyl) pentan-3-one dibromide 

(BW 284 C 51) in 0.1 M maleate buffer (pH 6.8).  Sections were rinsed with gentle 

agitation for 30 min in distilled water and placed in 0.1% cobalt II chloride in water for 

10 min.  After a further rinse in distilled water, sections were placed in a solution of 1.39 

mM 3,3'-diaminobenzidine tetrahydrochloride (DAB) in 0.1M phosphate buffer (pH 7.4).  

After 5 min, a solution of 0.3% hydrogen peroxide in distilled water was added at a ratio 

of 20:1 (DAB solution : hydrogen peroxide solution) and the reaction was carried out for 

approximately 4 min.  Sections were then washed in 0.1 M acetate buffer, pH 3.3, 

mounted on slides and coverslipped. 

4.3.7  B-AMYLOID IMMUNOHISTOCHEMISTRY OF HUMAN TISSUE 

Adjacent sections to those used for in vitro autoradiography were rinsed for 30 

min in 0.1 M phosphate buffer (pH 7.4), 5 min in 0.05 M phosphate buffer (pH 7.4) and 

15 min in distilled water.  Sections were treated with 90% formic acid with gentle 

agitation for 2 min for A  antigen retrieval (Kitamoto et al., 1987).  Sections were rinsed 

5 times in dH2O for 1 minute each and 2 times in phosphate buffer for 15 minutes.  

Sections were placed in 0.3% H2O2 in PB for 30 minutes to quench endogenous 

peroxidase activity and rinsed again for 30 minutes in PB.  Sections were then incubated 

in PB containing 0.1% Triton X-100, normal goat serum (1:100), and a polyclonal rabbit 

anti A  antibody (1:400; 71-5800, Invitrogen, Camarillo, CA), specific for the 4- to 5-

kDa amyloid peptide (Jankowsky et al., 2007) for approximately 16 h at room 

temperature.  After rinsing, sections were incubated in PB with 0.1% Triton X-100, 
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biotinylated goat anti-rabbit secondary antibody (1:500), and normal goat serum (1:1000) 

for 1 h.  After another rinse, sections were placed in PB with 0.1% Triton X-100 and 

Vectastain Elite ABC kit (1:182; PK- 6100, Vector Laboratories, Burlingame, CA), 

according to the manufacturer’s instructions for 1 h.  Sections were rinsed and developed 

in a solution of PB containing 1.39 mmol/L DAB.  After 5 min, 50 L of 0.3% H2O2 in 

dH2O was added per ml of DAB solution, and the sections were incubated for 2-3 min.  

The reaction was stopped by rinsing the sections in 0.01 M acetate buffer (pH 3.3). 

4.3.8  THIOFLAVIN-S STAINING 

Sections were mounted onto glass slides, air-dried, rehydrated in dH2O, 

dehydrated in a series of ethanol washes, cleared in xylene, and rinsed in 50% ethanol. 

Sections were then incubated for 20 h in a solution of 0.05% thioflavin-S in 50% ethanol, 

rinsed in 80% ethanol and dH2O, and coverslipped with a glycerol/gelatin mounting 

medium. 

Sections were analyzed and photographed on a Zeiss Axioplan 2 motorized 

microscope with a Zeiss Axiocam HRc digital camera and AxioVision 4.6 software.  

Image levels were adjusted in Adobe Photoshop CS5 so the background from different 

images matched. 

 

4.4 RESULTS

4.4.1  SYNTHESIS AND RADIOLABELLING 

Phenyl 4-iodophenylcarbamate (PIP, 1) was synthesized from phenol and 4-

iodophenylisocyanate as shown in Figure 4.2.  Radiolabelling proceeded by necessary 
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protection of the carbamate functionality with a triisopropylsilyl group and subsequent 

generation of a tributyltin intermediate followed by introduction of 123I.  Synthesis of 

IMPY (4) followed a previously published procedure (Zhuang et al., 2003) according to 

Figure 4.3.  The corresponding tributyl tin intermediate was generated and 123I 

introduced.  123I-PIP (3) and 123I-IMPY (6) were both purified by HPLC and recovered in 

high yield and purity (Figure 4.4). 

 

4.4.2  CHOLINESTERASE KINETICS 

PIP (1) demonstrated inhibition of both AChE and BuChE that was time 

dependent, as determined with second-order deactivation constants (ka values).  

Deactivation by PIP was more rapid towards AChE (ka: 1.56±0.18 x104 M-1 min-1) 

compared to BuChE (ka: 3.47±0.82 x102 M-1 min-1, Figure 4.5). 

 

4.4.3  MOUSE TISSUE AUTORADIOGRAPHY 

 The distribution of 123I-PIP and 123I-IMPY was determined in vitro in WT and 

5XFAD mouse brain sections (Figure 4.6).  These same sections were subsequently 

stained with thioflavin-S to visualize A  aggregations.  Both 123I-PIP and 123I-IMPY were 

found to accumulate in areas of high A  plaque burden as assessed with thioflavin-S 

staining.  In addition, 123I-PIP accumulated in the white matter in both the WT and 

5XFAD tissues, a region of high BuChE activity.  Some accumulation of 123I-IMPY was 

also observed in the white matter of the 5XFAD animals. 
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Figure 4.2.  Synthesis of phenyl 4-(iodo)phenylcarbamate (1, PIP), corresponding 
tributyltin precursor (2) and 123I radiolabelled product (3, 123I-PIP). TIPSOTf: 
Triisopropylsilyl trifluoromethanesulfonate. Et3N: Triethylamine. Sn2Bu6: 
Hexabutylditin. Pd(PPh3)4: Tetrakis(triphenylphosphine)palladium(0). NCS: N-
Chlorosuccinimide. Figure 17 
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Figure 4.3.  Synthesis of 2-(4'-dimethylaminophenyl)-6-iodoimidazol[1,2-a]pyridine (4, 
IMPY), corresponding tributyltin precursor (5) and 123I labelled product (6, 123I-IMPY).  
Sn2Bu6: Hexabutylditin. Pd(PPh3)4: Tetrakis(triphenylphosphine)palladium(0). Figure 18 
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Figure 4.4.  HPLC trace of unlabelled (“cold”) PIP (1) and IMPY (4, top) and 
corresponding radiotrace of purified 123I-PIP (3) and 123I-IMPY (6, bottom). Figure 19 
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Figure 4.5.  Plots to determine second-order rate constants (ka values) of PIP (1) with 
AChE and BuChE.  The slopes of these plots yield ka values. Figure 20 
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Figure 4.6.  In Vitro mouse brain autoradiography of the subiculum with 123I-PIP (3) and 
123I-IMPY (6) in wild-type and 5XFAD animals.  Each section was stained with 
thioflavin-S (TF-S) to visualize A  plaque deposits.  In the 5XFAD animals, 123I-PIP (3) 
and 123I-IMPY (6) accumulated in areas of dense TF-S positive A  plaques (arrows).  
Scale bar: 250 m. Figure 21 
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4.4.4 HUMAN TISSUE AUTORADIOGRAPHY

 Brains from human cases were divided into three distinct classifications, AD, 

cognitively normal with A  plaques (Normal, A +) and cognitively normal without A  

plaques (Normal, A -), based on clinical and pathological evidence (Figures 4.7-4.9).  

The distribution of 123I-IMPY in these tissues demonstrated accumulation in the cerebral 

cortex of AD and normal with A  cases (Figure 4.7).  No accumulation was found in this 

region in the normal without A  cases.  White matter uptake and retention of 123I-IMPY 

was apparent in all three cases.  Similarly, 123I-PIP also afforded accumulation of 

radiolabel in the cerebral cortex of AD cases (Figure 4.7).  However, in cognitively 

normal brains with and without A  plaques this region was devoid of 123I-PIP radiolabel 

accumulation.  In addition, white matter of all three cases demonstrated considerable 

uptake and retention of 123I-PIP. 

 Adjacent cortical tissue sections were compared from all brain cases for the 

histochemical visualization of A , thioflavin-S and cholinesterase activity relative to 123I-

IMPY (Figure 4.8) and 123I-PIP (Figure 4.9) accumulation.  In AD brain, 123I-IMPY and 

123I-PIP accumulation aligned with areas of thioflavin-S positive A  plaques that also 

exhibited cholinesterase activity, respectively (Figures 4.8 and 4.9).  In contrast, sections 

from normal brain without A  did not demonstrate any cortical accumulation of 123I-

IMPY or 123I-PIP and was devoid of thioflavin-S positive A  plaques and cholinesterase 

activity.  Normal brains with A  plaques demonstrated thioflavin-S staining of these  
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Figure 4.7.  In Vitro human brain autoradiography with 123I-PIP (3) and 123I-IMPY (6).  
Both imaging agents visualized A  plaques in the orbitofrontal cortex of AD brain 
tissues.  A  plaques in cognitively normal brains (Normal, A +) were visualized with 
123I-IMPY (6) but were not labelled with 123I-PIP (3).  The cortex of cognitively normal 
brain without A  plaques (Normal, A -) did not show accumulation of either 123I-PIP (3) 
or 123I-IMPY (6).  123I-PIP (3) demonstrates selectivity for the detection of A  plaques in 
AD brain and not those in cognitively normal brain.  Arrowhead: white matter; open 
arrowhead: cortex; arrow: A  plaque. Scale bar: 1 mm. Figure 22 
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Figure 4.8.  Orbitofrontal cortex of human brain tissues with immunohistochemical 
staining for -amyloid (A ), histochemical staining with thioflavin-S (TF-S) and 
autoradiography with 123I-IMPY (6).  Accumulation of 123I-IMPY (6) in the cortex 
corresponded to TF-S positive A  deposits in both Alzheimer’s disease (AD) and 
cognitively normal brains with plaques (Normal, A +).  Cognitively normal brains 
devoid of A  plaques (Normal, A -) did not show cortical accumulation of 123I-IMPY 
(6).  Imaging of A  deposition with 123I-IMPY is not able to distinguish AD from 
cognitively normal brains with plaques.  Scale bar: 500 m. Figure 23 
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Figure 4.9.  Orbitofrontal cortex of human brain tissues with histochemical staining for 
butyrylcholinesterase (BuChE) and thioflavin-S (TF-S) as well as autoradiography with 
123I-PIP (3).  Accumulation of 123I-PIP (3) in the cortex corresponded to BuChE and TF-S 
positive A  deposits in Alzheimer’s disease (AD) brain (arrows).  Cognitively normal 
brains with plaques (Normal, A +) were positive for TF-S however, BuChE activity was 
not associated with these structures and 123I-PIP (3) did not accumulate in the cortex.  
Cognitively normal brains (Normal, A -) were devoid of A  plaques and 123I-PIP (3) 
accumulation.  Imaging of cholinesterase-associated A  deposition with 123I-PIP (3) is 
able to distinguish AD from cognitively normal brains with plaques.  Scale bar: 500 m. 
Figure 24 
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structures which aligned with 123I-IMPY accumulation (Figure 4.8).  However, the 

plaques in these cases did not contain histochemically-detected cholinesterase activity 

and, furthermore, 123I-PIP did not show accumulation in these cortices (Figure 4.9). 

 

4.5 DISCUSSION

4.5.1  SYNTHESIS AND RADIOLABELLING 

PIP (1) synthesis was achieved in a one-step reaction (Figure 4.2).  123I-PIP (3) 

radiolabelling involved protection of PIP (1) with a triisopropylsilyl group followed by 

conversion to a tributyltin intermediate by reaction with hexabutylditin in the presence of 

a palladium catalyst.  In contrast to comparable ester tributyltin intermediate synthesis 

(Macdonald et al., 2011), attempts at conversion to the tributyltin intermediate without 

silyl protection were unsuccessful.  This suggests that the unprotected carbamate 

functional group interacts with either hexabutylditin or the palladium catalyst, thereby 

interfering with stannylation of the iodophenyl moiety of PIP (1).  The silyl protecting 

group on the carbamate was found to be readily removed after stannylation during the 

work up process.  Triisopropylsilyl protection has been reported to occur on the nitrogen 

of carbamates and normally requires concentrated acid for removal (Roby and Voyer, 

1997).  The easier removed silyl protecting group of PIP (1) reported here may be due to 

steric effects of the neighbouring phenyl rings.  After stannylation, subsequent 

incorporation of 123I occurred readily at room temperature in the presence of NCS.  An 

acidic medium was required after HPLC purification during solvent removal using N2 

gas; otherwise a breakdown of the desired radiolabelled product occurred.   



 

 152 
 

Conversion of IMPY (4) to the tributyltin intermediate (Figure 4.3) was achieved 

using a similar procedure to that employed for PIP (1) and previous ester molecules 

(Macdonald et al., 2011).  However, subsequent attempts to incorporate 123I using NCS as 

a free radical initiator, were unsuccessful.  The use of hydrogen peroxide to initiate the 

reaction, as previously described for 123I-IMPY (6) synthesis (Zhuang et al., 2003), 

yielded the desired radiolabelled product (Figure 4.4). 

 

4.5.2  CHOLINESTERASE KINETICS 

PIP (1) inhibited both AChE and BuChE and, similar to most other carbamate 

cholinesterase inhibitors (Darvesh et al., 2003b; Darvesh et al., 2008), produced a time 

dependent deactivation of the enzymes (Figure 4.5), suggesting the formation of a 

carbamoylated enzyme intermediate.  Although the rate of deactivation by PIP (1) is 

greater for AChE than BuChE, both of these rates are much slower than other known 

inhibitors of cholinesterases such as physostigmine and rivastigmine (Darvesh et al., 

2003b).  The majority of previously tested cholinesterase imaging agents act as ester 

substrates (Figure 4.1) and are hydrolyzed rapidly by AChE and BuChE.  Such rapid 

hydrolysis is expected to be detrimental for in vivo imaging this enzyme activity as it 

would permit diffusion of the product containing the radiolabel away from the target 

enzyme.  In contrast, the time dependent deactivation of these enzymes by PIP (1) 

indicates that the time radioactivity is bound with the enzyme through this compound is 

significantly longer compared with ester substrates.  This longer lived association of 

radioactive PIP (1) components with cholinesterases is expected to afford optimal 

visualization of this enzyme activity.   
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4.5.3  MOUSE TISSUE AUTORADIOGRAPHY 

Similar to what is found in human AD, cholinesterase enzymes are associated 

with A  plaques in transgenic mouse models of AD (Darvesh et al., 2012b).  The 5XFAD 

mouse used in this study is an aggressive model of brain amyloidosis characterized by 

robust A  plaque deposition beginning early in life (Oakley et al., 2006).  Thus, this is a 

promising preclinical model for assessing the binding capability of cholinesterase 

imaging agents to AD plaque pathology.  In vitro incubation resulted in 123I-PIP (3) 

accumulation in areas that also exhibited high thioflavin-S positive plaque density 

(Figure 4.6).  This distribution was similar, but not identical, to the accumulation 

observed with 123I-IMPY (6).  BuChE activity is known to be high in the brain white 

matter and it is evident that 123I-PIP (3) is concentrated in this region of the mouse brain 

(Figure 4.6).  This suggests that 123I-PIP (3) is capable of visualizing cholinesterases 

associated with plaque pathology in the 5XFAD mouse model.   

 

4.5.4  HUMAN TISSUE AUTORADIOGRAPHY 

This study utilized post-mortem brain tissue from three specific clinical and 

pathological classifications, AD, cognitively normal with A  plaques and cognitively 

normal without A  plaques (Figure 4.7).  The presence of A  plaques is a pathological 

hallmark of AD but can also be found in the brains of some cognitively normal 

individuals (Snowdon, 2003; Mortimer, 2012).  Cholinesterases associate with AD 

plaque pathology and have been suggested to contribute to maturation of these structures 

(Guillozet et al., 1997) promoting neurotoxicity.  To further explore this notion, we have 

identified cognitively normal brains with robust A  deposition that are devoid of 



 

 154 
 

associated cholinesterase activity.  This is in stark contrast to AD cases in which plaque 

pathology demonstrated high cholinesterase activity (Figure 4.9).  Autoradiography using 

these tissues demonstrated that 123I-IMPY (6) detects, without discrimination, thioflavin-

S positive deposits of A  in both AD and plaque-containing cognitively normal brains 

(Figures 4.7 and 4.8).  In contrast, 123I-PIP (3) only accumulated in regions of thioflavin-

S positive A  plaques in AD brain and not cognitively normal brains with A  plaques 

(Figures 4.7 and 4.9).  Furthermore, it was determined that these focal 123I-PIP (3) 

accumulations correspond to areas of high cholinesterase activity associated with A  

plaque pathology (Figure 4.9).  Thus, 123I-PIP (3) was capable of distinguishing AD brain 

pathology from cognitively normal brain containing A  plaques based upon the presence 

or absence of cholinesterase activity. 

 

4.6 CONCLUSIONS

The cholinesterases, AChE and BuChE, are associated with A  plaques in the AD 

brain and are therefore, potential definitive imaging targets for the diagnosis of this 

disease.  We have described the synthesis and radiolabelling of the cholinesterase ligand, 

phenyl 4-[123I]iodophenylcarbamate (123I-PIP), which binds to both enzymes.  This 

radioimaging agent visualized cholinesterases associated with A  plaques in rodent and 

human AD brain tissues.  123I-PIP is able to visualize A  plaques in AD brain due to the 

association of these structures with cholinesterases in this disease.  In contrast, this 

imaging agent does not detect A  plaques in cognitively normal brain tissue where 

plaque-associated cholinesterase activity is minimal.  This represents a critical step 
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towards the visualization of cholinesterases-associated with A  pathology for the 

definitive diagnosis of AD during life. 
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CHAPTER 5 CHOLINESTERASE ACTIVE SITES – KINETIC 
AND STRUCTURAL CONSIDERATIONS 

5.1 PREFACE

 The preceding Chapters 2-4 described the synthesis and evaluation as well as 

approaches for optimization of imaging agents for acetylcholinesterase (AChE) and 

butyrylcholinesterase (BuChE).  Previous studies have identified amino acid residues in 

the AChE active site that are critical for substrate and inhibitor binding through enzyme 

kinetic and x-ray crystallographic analyses.  In contrast, comparable details of the active 

site gorge of BuChE, especially pertaining to the peripheral binding site of this enzyme, 

have been hampered by a lack of x-ray crystallographic studies.  This Chapter describes a 

kinetic approach which identifies residues in the BuChE active site gorge that participate 

in inhibitor binding.  Designing compounds that target these residues will be crucial for 

the continued development and refinement of imaging agents for BuChE.  The content of 

this Chapter describes work done as part of this thesis that has been published as 

Macdonald et al., Biochemistry, 2012, 51(36):7046-53.  

 

5.2 INTRODUCTION

Acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BuChE, EC 

3.1.1.8) are serine hydrolase enzymes that catalyze the hydrolysis of acetylcholine 

(Silver, 1974).  X-ray crystallography analysis of these cholinesterases (Sussman et al., 

1991; Nicolet et al., 2003) have established that catalysis involves a triad of amino acid 

residues, serine, histidine and glutamate, located near the bottom of a 20 Å deep gorge 

(Figure 5.1).  This region of the gorge has been denoted the acylation site (A-site) in 

AChE. (Szegletes et al., 1998; Johnson et al., 2003).  The efficiency of this A-site in the  
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Figure 5.1.  Active site gorge with homologous residues shown for acetylcholinesterase 
(AChE) and butyrylcholinesterase (BuChE). The crystal structures of human AChE (PDB 
ID: 1B41) (Kryger et al., 2000) and BuChE (PDB ID: 1POI) (Nicolet et al., 2003) were 
obtained from the Protein Data Bank (Berman et al., 2000) and PyMol (DeLano, 2002) 
was employed to delete all amino acids save for those selected residues found in the 
active site. Figure 25 
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catalytic process has been shown to be influenced by events occurring at amino acid 

residues some distance away in the gorge.  For example, a tryptophan residue (W86 in 

AChE, W82 in BuChE) near the A-site is known to facilitate catalysis by forming -

cation interactions with substrates helping align these molecules with the catalytic serine.  

This tryptophan residue is linked through a polypeptide segment (  loop) with an anionic 

aspartate residue (D74 in AChE; D70 in BuChE) that is one of the components of a 

peripheral site (P-site) that interacts with cationic substrates.  At high substrate levels, the 

activity of AChE is decreased (Nachmansohn and Wilson, 1951; Mallender et al., 2000) 

while that of BuChE is increased (Masson et al., 1996).  This phenomenon of substrate 

inhibition of AChE is thought to occur through steric block of product release that results 

from the binding of a substrate molecule to the P-site (Szegletes et al., 1998).  Substrate 

activation of BuChE may be mediated by the binding of a second substrate molecule to a 

P-site that triggers a conformational change extending to the region near the catalytic 

triad in the active site (Masson et al., 1996).  In addition, this catalytic enhancement may 

be facilitated by stabilization of the tetrahedral intermediate (Tormos et al., 2005).  Such 

substrate activation has also been observed for certain substrates with AChE (Johnson et 

al., 2003).  Mutation of the P-site aspartate residue, D74 in AChE and D70 in BuChE, to 

an uncharged glycine residue largely eliminates substrate inhibition in AChE and 

substrate activation of BuChE (Masson et al., 1996; Mallender et al., 2000).  In addition 

to this anionic aspartate residue, other amino acid residues, especially those with aryl side 

chains in AChE, have been found to contribute to catalysis through interactions at the 

gorge periphery. 
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The P-site of AChE has been well mapped using mutant studies (Radic et al., 

1993; Barak et al., 1994) as well as by X-ray crystallography of the enzyme bound to 

inhibitors that interact with various components of this site (Sussman et al., 1991; Harel 

et al., 1996; Harel et al., 2008).  The inhibitors propidium and thioflavin T bind to the P-

site of AChE while edrophonium binds to W86 and Y337, thus, interfering with access to 

the A-site.  X-ray crystallography studies corroborate a kinetic approach that determined 

binding site competition between these inhibitors, thereby helping to define details of the 

AChE P-site (Auletta et al., 2010). 

Studies with a series of N-10-carbonyl derivatives of phenothiazine (Darvesh et 

al., 2005; Darvesh et al., 2007; Darvesh et al., 2008; Darvesh et al., 2010c) as well as N-

10-alkyl phenothiazines such as ethopropazine (Sinko et al., 2011) also indicate the 

relevance of aryl residues close to the mouth of the active site gorge of BuChE that are 

contiguous with the catalytic triad glutamate through the E-helix (Darvesh et al., 2008).  

This helix (E325-Y332) includes tyrosine and phenylalanine residues (F329, Y332 in 

BuChE) whose side chains project into the active site gorge.  The residue Y332 has been 

implicated in the binding of substrates and inhibitors to BuChE suggesting that this 

amino acid residue is part of the P-site of this enzyme (Masson et al., 1997; Nachon et al., 

1998; Masson et al., 1999b).  Inhibitors binding to this region may function by blocking 

substrate access to the active site and/or by altering hydrolytic efficiency through a 

conformational change that extends to the catalytic triad. 

The P-site of BuChE has not been explored to the extent of the comparable AChE 

site.  Although mutant studies have provided valuable insights (Saxena et al., 1997), lack 

of X-ray crystallographic data has hampered definition of BuChE P-site details.  Since 
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inhibitor binding site competition analysis and mutant studies were successful in mapping 

AChE P-site components, a similar approach was made to probe the BuChE P-site. To 

that end, studies were undertaken using wild-type and mutant BuChE species and the 

enzyme inhibitors thioflavin T, propidium, edrophonium and two synthetic phenothiazine 

derivatives. 

 

5.3 MATERIALS AND METHODS

5.3.1  MATERIALS 

Thioflavin T (1), propidium iodide (2), edrophonium chloride (3), and purified 

recombinant human AChE (~1500, units as determined by the supplier) were purchased 

from Sigma Aldrich (St. Louis, USA).  AChE concentration was calculated using the 

assumption of 450 units/nmol (4.8 A412/[min × nM])) (De Ferrari et al., 2001).  N-[2-

(N’,N’–diisopropylamino)ethyl]-10H-phenothiazine-10-carboxamide (4) and anthracen-

9-yl(10H-phenothiazine-10-yl) methanone (5) were synthesized as described previously 

(Darvesh et al., 2007; Darvesh et al., 2010c).  Purified human plasma wild-type BuChE 

and its mutants D70G, A328Y, F329A and Y332A were a gift from Dr. Oksana 

Lockridge (University of Nebraska Medical Center, USA).  BuChE concentration was 

calculated using the assumption of 62.5 Unit/nmol (0.94 A412/[min × nM]) (Darvesh et 

al., 2006).  As defined previously, 0.1 Unit is the amount of BuChE that gives a A/min 

of 1.0 in the presence of 1.6×10 4 M butyrylthiocholine in a 1.5 ml assay (Darvesh et al., 

2001). 
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5.3.2  INHIBITION CONSTANT DETERMINATION 

Inhibition constants of inhibitors for AChE or BuChE were determined using a 

modification of a described method (Auletta et al., 2010).  Briefly, varying amounts of 

inhibitor (in 50 μL of 50% CH3CN(aq)) was added to 1.60 mL of buffer (0.09 M 

phosphate buffer, pH 8.0), 5, 5 -dithio-bis(2-nitrobenzoic acid) (0.32 mM), and either 

acetylthiocholine (5 M, for AChE) or butyrylthiocholine (5 M, for BuChE) in a quartz 

cuvette of 1 cm path length, and the mixture was zeroed at 412 nm.  The reaction was 

initiated by the addition of 50 μL of AChE (to 1 nM) or BuChE (to 1 nM), in 0.1% 

aqueous gelatin.  Assays were conducted at 23 ºC.  The rate of change of absorbance 

( A/min), reflecting the rate of hydrolysis of the substrate, was recorded every 2 sec for 1 

min, using an Ultraspec 2100 pro UV-visible spectrophotometer (Fisher Scientific) 

equipped with Swift II application software. The molar extinction coefficient for the 

Ellman product, 5-thio-2-nitrobenzoic acid, used to convert the change in absorbance at  

= 412 nm to moles of product, was 14150 M 1 cm 1.  The second order hydrolysis rate 

constant (kE) was determined at low initial substrate concentration ([S]0) (i.e., [S]0  ~0.2 

Kapp (Eastman et al., 1995), where Kapp is the apparent Michaelis constant) according to 

Eq. (5.1) (Auletta et al., 2010), where [S] is the concentration of substrate remaining at 

time (t) in the presence of the enzyme ([E]tot).  Alternatively, kE can be determined 

according to Eq. (5.2) where A412 is absorbance, kobs = kE[E]tot, and where A412 = 

A412(final) – A412(t=0).  Values of kE calculated using Eq. (5.1) or Eq. (5.2) were comparable.  

The ratio of kE without and with inhibitor, described by Eq. (5.3) (Auletta et al., 2010), 

was plotted against inhibitor concentration, and the data were fitted to solve for the 

inhibition constant (KI) as well as for the ratio of the relative acylation rate constant to the 
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relative affinity of the ligands in the ternary complex ( ).  All experiments were 

performed at least in triplicate and the values averaged.  Data fitting by nonlinear 

regression was conducted with Excel Solver program and errors calculated using the 

Solver Statistics Macro (Billo, 2011). 
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5.3.3  INHIBITOR COMPETITION DETERMINATION 

 When a single inhibitor binds to cholinesterase the rate of substrate hydrolysis is 

reduced.  If a second inhibitor targets the same site as the first, competition between the 

two inhibitors will ensue and this will result in a further alteration in substrate hydrolysis 

rate.  Determining the change in the rate of substrate hydrolysis in the presence of two 

inhibitors provides information as to whether these are interacting with the same or 

different enzyme binding sites (Billo, 2011).  Based on this principle, assays were 

conducted as described above in the presence of a fixed concentration of one inhibitor 

[I1], here being one of propidium iodide (2), edrophonium chloride (3), N-[2-(N’,N’–

diisopropylamino)ethyl]-10H-phenothiazine-10-carboxamide (4) or anthracen-9-yl(10H-

phenothiazine-10-yl) methanone (5), and varying concentrations of a second inhibitor 

[I2], namely thioflavin T (1).  The ratio of kE in the presence of a fixed concentration of 

inhibitor, [I1], and varying concentrations of another inhibitor, [I2], to kE in the presence 
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of only I1 was plotted against [I2] and fitted to Eq. (5.4) with Excel Solver as described 

above.  In this equation, K1 and K2 are the known equilibrium dissociation constants for 

the inhibitors I1 and I2 with enzyme, respectively, having been determined as KI values 

with Eq. (5.3) as detailed above.  K12 is the fitted equilibrium dissociation constant for I1 

with the binary complex of enzyme and I2.  The ratio [I1]/K12 reflects whether the two 

inhibitors are interacting with the same or different enzyme binding sites.  Thus, as this 

ratio approaches zero, it signifies that the inhibitors are in competition for a common 

binding site on the enzyme.  By setting this ratio to zero, a theoretical dataset 

representing complete competition between the inhibitors was generated with Eq. (5.4).  

The curve for this theoretical dataset along with that for the fitted dataset was graphed 

using GraphPad Prism (California, USA).  A numeric value for such competition was 

calculated as the ratio of K12/K1 where a value of ~ 1 indicates no binding competition 

and values >> 1 indicate competition between the inhibitors.   
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5.3.4  BUTYRYLCHOLINESTERASE MUTANT INHIBITION STUDIES 

Inhibitor potency towards wild type BuChE and towards each of the BuChE 

mutants, D70G, A328Y, F329A and Y332A, was determined.  The esterase activity was 

determined by a modification (Darvesh et al., 2003b) of the Ellman (Ellman et al., 1961) 

spectrophotometric method.  Briefly, one of the inhibitors (compounds 1-5) or blank (in 

50 μL of 50% CH3CN(aq)) was added to 1.35 mL of buffer (0.09 M phosphate buffer, pH 

8.0), 5, 5 -dithio-bis(2-nitrobenzoic acid) (0.32 mM), and BuChE (~0.035 units) in 0.1% 
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aqueous gelatin in a stoppered cuvette of 1 cm path length.  The mixture was zeroed at 

412 nm, and the reaction was initiated by the addition of 50 μL of butyrylthiocholine in 

an aqueous solution at a final concentration of 1.6 × 10-4 M.  The reactions were 

performed at 23 ºC. The rate of change of absorbance ( A/min), reflecting the rate of 

hydrolysis of butyrylthiocholine, was recorded every 5 s for 1 min, using a Milton-Roy 

1201 UV–vis spectrophotometer (Milton-Roy, Ivyland, PA) set at  = 412 nm.  The 

amount of activity with and without inhibitor was determined for wild type BuChE and 

the BuChE mutants. 

 

5.4 RESULTS AND DISCUSSION

In AChE, in addition to the anionic residue D74, there are several amino acid 

residues that constitute the P-site (Sussman et al., 1991; Radic et al., 1993; Barak et al., 

1994; Harel et al., 1996; Harel et al., 2008).  Of the substrate and inhibitor binding sites at 

the BuChE active site gorge, D70 has previously been determined to be part of the P-site 

(Masson et al., 1996).  The present work was undertaken to determine whether, in 

addition to D70, BuChE has other amino acid residues that constitute this site.  

Determining the P-site of BuChE will facilitate elucidation of the role of these 

components in the functioning of the enzyme and aid in development of inhibitors that 

might have therapeutic value.  To that end, several compounds (1-5) (Figure 5.2) were 

evaluated using both inhibitor competition and BuChE mutant studies to identify amino 

acid residues that may contribute to P-site function in BuChE. 
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Figure 5.2.  Structures of cholinesterase inhibitors used. Figure 26 
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5.4.1  INHIBITION CONSTANTS 

 The inhibition constants (KI values) for the cholinesterase inhibitors used in this 

study are summarized in Table 5.1.  Plots of the ratio of second order hydrolysis rates (kE 

[I]=0/kE+I, Eq. [5.3]) demonstrated a linear relationship with increasing inhibitor 

concentrations, indicating that the constant  in Eq. (5.3) assumed a value close to zero as 

observed previously for rapidly hydrolyzed substrates (Auletta et al., 2010) such as 

acetylthiocholine and butyrylthiocholine.  Examples of such plots for thioflavin T (1) and 

propidium (2) are presented in Figure 5.3.  Edrophonium (3) and the phenothiazine urea 

(4) and amide (5) also showed similar linear relationships.  Thioflavin T (1), the known 

AChE P-site inhibitor (Auletta et al., 2010), was observed to also inhibit BuChE with 

comparable potency (Table 5.1).  This fluorescent inhibitor probe has been shown in 

earlier kinetic and X-ray crystallographic studies to bind to the P-site of the AChE active 

site gorge (De Ferrari et al., 2001; Harel et al., 2008). 

Another fluorescent inhibitor probe, propidium (2), also interacts with the AChE 

P-site (Taylor and Lappi, 1975), but it is thought to be able to enter the larger active site 

gorge of BuChE and bind closer to the catalytic triad (Masson et al., 1996; Saxena et al., 

1997).  In the present study, propidium (2) inhibited BuChE with about five fold higher 

potency than for AChE (Table 5.1).  Edrophonium (3), which interacts with the catalytic 

site of AChE (Taylor and Lappi, 1975), was about 200 fold weaker as an inhibitor of 

BuChE (Table 5.1), consistent with results described previously (Saxena et al., 1997).  

As observed earlier (Darvesh et al., 2010c), the phenothiazine urea derivative (4) 

was 80 fold more potent as an inhibitor of BuChE relative to AChE (Table 5.1).  

Similarly, the phenothiazine amide derivative (5) (Darvesh et al., 2007) was a robust  
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Table 5.1.  Inhibition constants (KI) for AChE and BuChE; binding site competition 
ratios (K12/K1) for AChE and BuChE for each inhibitor in the presence of thioflavin T.  A 
K12/K1 ratio of ~ 1 indicates no competition at binding sites (NC) whereas values >> 1 
denotes competition at the same binding site (C). Table 4 
 
 

Compound 
AChE BuChE 

 KI (μM) K12/K1 KI (μM) K12/K1

1 Thioflavin T 4.99 ± 0.13 - 3.62 ± 0.18 - 
2 Propidium 9.73 ± 0.04 93 (C) 2.03 ± 0.30 1.1 (NC) 
3 Edrophonium 1.01 ± 0.10 1.5 (NC) 198 ± 1 1.6 (NC) 
4 N-[2-(N',N'–

Diisopropylamino)ethyl]-10H-
phenothiazine-10-carboxamide 

1.64 ± 0.10 70 (C) 0.021 ± 0.004 72 (C) 

5 Anthracen-9-yl(10H-
phenothiazine-10-yl) methanone 

No 
Inhibition - 0.016 ± 0.006 1.1 (NC) 
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Figure 5.3.  Plots of average second-order substrate hydrolysis ratios by BuChE in the 
absence (kE[I]=0) and presence (kE+I) of thioflavin T (1) or propidium (2). These plots 
show a linear relationship between second-order hydrolysis rate and inhibitor 
concentration. Figure 27 
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inhibitor of BuChE (Table 5.1) but did not inhibit AChE under the same conditions.  

Evidence was presented earlier (Darvesh et al., 2007; Darvesh et al., 2010c) that 

phenothiazines interact with residues such as Y332 near the periphery of the BuChE  

active site gorge.  It may be significant that such aryl residues are part of a polypeptide 

segment (E-helix, Figure 5.1) that also contains the glutamate (E325) of the catalytic triad 

and thus, may influence the catalytic activity of the enzyme.  No X-ray crystallographic 

analyses are yet available to establish the peripheral binding sites of inhibitors to BuChE.  

However, indirect kinetic evidence, as with the phenothiazine derivatives cited above and 

propidium, (Masson et al., 1996; Saxena et al., 1997) provide some reference for 

determining binding site locations from inhibitor competition studies. 

Thioflavin T (1) was chosen as the reference inhibitor for competition studies 

because of its known binding to the P-site of AChE and because it also inhibits BuChE 

with comparable potency (KI, Table 5.1).  The other inhibitors (compounds 2-5, Figure 

5.2) were chosen to test for inhibitor competition with thioflavin T (1) because of their 

varied putative sites of interaction with BuChE. 

 

5.4.2  INHIBITION COMPETITION STUDIES 

The results of competition studies between thioflavin T (1) and compounds 2-5 

are summarized in Table 5.1 and related plots presented in Figure 5.4.  Competition 

between thioflavin T (1) and propidium (2) with AChE confirmed the earlier observation 

that these two compounds bind to the same site of this enzyme (Auletta et al., 2010).  In 

contrast, the lack of competition between thioflavin T (1) and propidium (2) with BuChE 

indicates that these inhibitors bind at different sites on this enzyme.  Propidium has been 
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Figure 5.4.  Plots of second-order substrate hydrolysis rates by BuChE or AChE with 
thioflavin T and in the presence (triangle) or absence (circle) of another inhibitor with 
lines fitted or calculated according to eq 4. Dotted lines represent the theoretical plot that 
denotes complete competition between the inhibitor and thioflavin T for that enzyme. For 
example, for BuChE, propidium and thioflavin T do not compete as exemplified by 
overlap in the plots with and without propidium. In contrast, for AChE, propidium 
competes with thioflavin T as indicated by absence of overlap in the plots with and 
without propidium, and overlap between the presence of propidium and complete 
competition plots. Figure 28 
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suggested to bind closer to the catalytic triad in the BuChE active site (Saxena et al., 

1997), implying that thioflavin T (1) may bind to a more peripheral region of the enzyme 

active site gorge.  Consistent with a previous observation (Auletta et al., 2010), 

competition studies between thioflavin T (1) and edrophonium (3) with AChE (Table 5.1, 

Figure 5.4) indicated different binding sites for these inhibitors.  Both observations are in 

keeping with earlier conclusions that edrophonium (3) binds at the A-site of AChE 

(Taylor and Lappi, 1975; Harel et al., 1993) while thioflavin T (1) binds at the P-site (De 

Ferrari et al., 2001).  With BuChE, competition studies between thioflavin T (1) and 

edrophonium (3) (Table 5.1, Figure 5.4) suggest that these two inhibitors bind at different 

sites on this enzyme as well.  Similar experiments using thioflavin T (1) and the cationic 

phenothiazine urea derivative (4), which is thought to interact with the E-helix and D70 

(Darvesh et al., 2010c), demonstrate overlapping binding sites.  In contrast, lack of 

competition between thioflavin T and the neutral phenothiazine amide derivative (5) with 

BuChE (Table 5.1, Figure 5.4) suggests that this phenothiazine derivative has a binding 

site distinct from that of thioflavin T (1) on this enzyme.   

In these inhibitor studies with BuChE, lack of competition between thioflavin T 

(1) and inhibitors that are thought to bind near the catalytic triad in the active site, such as 

propidium (2) and edrophonium (3), suggests that thioflavin T (1) binds to a P-site of this 

enzyme.  This conclusion is further supported by the observation that thioflavin T (1) 

competes with inhibitors such as the phenothiazine urea (4), which has multiple binding 

sites on the enzyme, but not with the phenothiazine amide (5), that is thought to bind to 

the E-helix of the active site gorge (Darvesh et al., 2007). 
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5.4.3  BUTYRYLCHOLINESTERASE MUTANT STUDIES 

The extent of inhibition by compounds 1-5 (Figure 5.2) was determined for wild 

type BuChE and BuChE mutants D70G, A328Y, F329A and Y332A (Figure 5.5).  

Although some caution is required to interpret the results from mutation studies because 

of potential complex indirect effects on the conformation of the active site gorge, such 

studies do provide insights into the importance of a particular amino acid residues in 

ligand binding (Shafferman et al., 1996; Nachon et al., 1998; Masson et al., 1999a).  For 

thioflavin T (1), replacement of the peripheral anionic site residue D70 with the neutral 

residue glycine in the BuChE D70G mutant reduced inhibition by this compound 

compared to wild type and other mutants (Figure 5.5).  The similar inhibition constants 

for AChE and BuChE and the attenuated inhibition towards BuChE D70G suggest that 

thioflavin T (1) binds to D70 in the P-site of BuChE to effect inhibition.  Although 

thioflavin T (1) inhibition of the corresponding AChE mutants has not been studied, these 

results are unexpected based on the X-ray crystal structure of the thioflavin T - AChE 

complex (Harel et al., 2008).  This structure shows no direct interaction between 

thioflavin T (1) and D74 and close contacts of this ligand with the residues corresponding 

to Y337 (A328 in BuChE) and Y341 (Y332 in BuChE).  The P-site localization of 

thioflavin T (1) in BuChE thus may differ somewhat from that of thioflavin T (1) in 

AChE. 

Propidium (2) had reduced inhibition potency for all BuChE mutants D70G, 

A328Y, F329A and Y332A compared to wild type (Figure 5.5).  This indicates that 

propidium (2) interacts with D70 and its inhibitory action is influenced by aryl residues 

on the E-helix, F329 and Y332, in BuChE.  Thus, even though this inhibitor may  
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Figure 5.5.  Enzyme activity of wild type BuChE and its mutants in the absence and 
presence of compounds 1 5. The % residual enzyme activity indicates the activity in the 
presence of inhibitor relative to the activity in the absence of inhibitor for each mutant. 
Note that D70 mediates, in part, inhibition by all cationic inhibitors (compounds 1 4). In 
addition, residues of the E-helix, F329 and Y332, are involved in ligand binding 
(compounds 2 5). Thus, D70, Y332, and F329 are components of the P-site of BuChE. 
Figure 29 
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compete with substrate at the active site (Masson et al., 1996), residues located above the 

catalytic triad towards the periphery of the active site gorge (D70, F329 and Y332) 

influence the inhibitory mechanism, perhaps through multi-pronged electrostatic and -  

interactions in the active site gorge.  The apparent disruption of the propidium (2) 

inhibition by the AChE-like mutation A328Y (Figure 5.5), also supports the notion of 

propidium (2) interaction with the E-helix. 

Edrophonium (3) is a potent inhibitor of AChE compared to its effect on BuChE 

(Table 5.1) (Saxena et al., 1997).  This has been attributed to the ability of the compound 

to interact with Y337 in AChE, which is an alanine residue (A328) in BuChE.  This was 

confirmed here (Figure 5.5) by the greatly increased inhibition of BuChE mutant A328Y 

over wild type BuChE and by the lack of competition between edrophonium (3) and 

thioflavin T (1) for both AChE and BuChE (Table 5.1).  Similar to propidium (2), the 

D70G BuChE mutant is more resistant to edrophonium (3) inhibition compared to wild 

type (Figure 5.5).  This signifies that, for cationic ligands, binding to D70 partially 

mediates inhibition potency.  Also, replacing F329 with alanine increases inhibition for 

this mutant over wild type BuChE, suggesting that this aryl residue normally interferes 

with edrophonium binding to some other residue, such as W82, that now becomes 

available. 

N-[2-(N',N'–Diisopropylamino)ethyl]-10H-phenothiazine-10-carboxamide (4) 

inhibition was decreased with the D70G, F329 and Y332A BuChE mutants compared to 

wild type BuChE, as previously reported (Darvesh et al., 2010c).  It has been suggested 

that the cationic nitrogen of this compound, present at pH 8.0, spans the gorge between 



 

 175 
 

BuChE E-helix residues and D70 and contributes to the high potency of this compound to 

disrupt substrate hydrolysis (Darvesh et al., 2010c). 

Anthracen-9-yl(10H-phenothiazine-10-yl) methanone (5) inhibition was 

significantly decreased only by the Y332A BuChE mutant.  This neutral phenothiazine 

derivative, unlike the cationic amino urea (4), would not be expected to bind to the 

anionic D70.  Thus, both these phenothiazine derivatives (4 and 5) associate with the E-

helix, contributing to their inhibitor potency. 

 

5.5 CONCLUSIONS

Determination of inhibition constants, binding site competition values and mutant 

studies suggest that D70, F329 and Y332 are amino acid residues important for binding 

inhibitors at the P-site of BuChE. 
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CHAPTER 6 PET IMAGING OF AD ANIMAL MODELS 

6.1 PREFACE

 Small animal in vivo imaging studies of cholinesterase imaging agents will be 

crucial for their advancement to clinical trial.  In this respect, Chapters 2-4 demonstrated 

the progression of cholinesterase imaging agent development which culminated in the 

identification of a promising candidate, 123I-PIP.  However, a suitable animal model and 

in vivo imaging protocol must be established before the evaluation of compounds such as 

123I-PIP can be performed.  This Chapter describes the relationship of glucose 

metabolism, assessed using small animal imaging, with brain A  plaque burden and 

neuroinflammation in an animal model of AD.  This study investigates whether human 

AD phenotypes, such as altered glucose metabolism in the brain, are recapitulated in an 

AD mouse model and establishes a neuroimaging approach that can be used to evaluate 

potential cholinesterase imaging agents. 

 

6.2 INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder and a significant barrier 

to healthy aging.  AD is characterized by specific memory and behavioural symptoms as 

well as abnormalities identified through brain imaging.  One measure of brain function is 

glucose metabolism determined with positron emission tomography (PET) scanning 

using 2-deoxy-2-(18F)fluoro-D-glucose (FDG).  In AD, abnormalities in glucose uptake 

in brain regions such as hippocampus, posterior cingulate, inferior parietal and frontal 

cortices (Li et al., 2008b), indicate dysfunction or death of neurons in these areas.  As AD 

progresses, the prominence of glucose metabolic disturbances are associated with clinical 
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severity (Silverman et al., 2001).  Importantly, evidence has pointed towards changes in 

brain glucose metabolism promptly in the disease process suggesting this as a potential 

early marker for AD (Bateman et al., 2012). 

Several pathological hallmarks have been realized for AD and these include -

amyloid (A ) plaques, tau neurofibrillary tangles and cerebral amyloid angiopathy.  

Despite significant advances in our understanding of these structures, in particular, A  

plaques, disease modifying interventions have yet to emerge for the management of AD.  

Under the amyloid cascade hypothesis (Hardy and Selkoe, 2002), the presence and 

aggregation of specific molecular forms of A  lead to events that result in neurotoxicity 

and neurodegeneration characteristic of AD.  Thus, a prominent current therapeutic 

research focus involves interference with this potential cascade process.  In light of the 

putative central role of A  in AD, animal mouse models of brain amyloidosis have 

emerged based on familial AD (FAD) mutations, which result in increased A  production 

and/or aggregation.  These FAD models have accelerated the development of therapeutics 

targeting A ; however, aspects of AD animal models common to the human disease, 

including brain glucose metabolism, have not been fully elucidated. 

FAD results from mutations in the amyloid precursor protein (APP) or proteins 

involved in its processing such as presenilin 1 (PS1).  Cleavage of APP can liberate A  

leading to characteristic plaque deposits in the AD brain.  The 5XFAD mouse model of 

AD overexpresses human APP(695) with the Swedish (K670N, M671L), Florida 

(I716V), and London (V717I) FAD mutations and human PS1 harbouring two FAD 

mutations, M146L and L286V (Oakley et al., 2006). This animal model of brain 

amyloidosis has an aggressive course of A  aggregation due to its high number of 
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familial mutations.  Thus, this model has a condensed disease course with initial plaque 

onset beginning at ~2 months.  Additionally, several similarities between this animal 

model and AD have been documented, including loss of synaptic markers and cognitive 

impairment (Oakley et al., 2006). 

Investigations of differing AD animal models have begun to chronicle the patterns 

in brain glucose metabolism associated with amyloidosis.  However, there is widespread 

variability among these AD models.  The PDAPP (APPV717F), PSAPP (APPK670N/M671L 

and PS1M146L), and 3xTG (APPK670N, M671L, PS1M146V, and TauP301L) models demonstrated 

hypometabolism in regions such as the cingulate cortex (Reiman et al., 2000; Valla et al., 

2006; Valla et al., 2008; Nicholson et al., 2010).  In contrast, studies in the Tg2576 

(APPK670N/M671L) mouse found that young animals exhibited hypermetabolism but at older 

ages there was no detectable difference when compared to control animals (Kuntner et 

al., 2009; Luo et al., 2012).  Finally, some animal models such as APP/PS1 

(APPK670N/M671L, V717I) and PS1M146L) and PLB1triple (APPK670N/M671L, V717I, PS1A246E, 

TauP301L/R406W) exhibit both hyper- and hypometabolism in different brain regions 

(Dubois et al., 2010; Platt et al., 2011; Poisnel et al., 2012).  Thus, there is no clear 

correlation between amyloidosis and glucose metabolism from these studies of AD 

animal models. 

In addition to neuronal activity, other cell types can contribute to brain glucose 

metabolism, in particular neuroinflammatory cells.  Microglia reactivity is known to 

accompany A  deposition in animal models of AD (Hillmann et al., 2012).  Therefore, a 

neuroinflammatory response may substantially alter glucose metabolism in AD animal 

models due to active microglia metabolism. 
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The current work was undertaken to evaluate changes in glucose metabolism in an 

aggressive model of amyloidosis, the 5XFAD mouse, with respect to A  burden and 

microglial activation. 

 

6.3 MATERIALS AND METHODS

6.3.1  ANIMALS 

Male B6SJL wild-type (WT) mice and male 5XFAD (B6SJL-

Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax) mice, obtained from 

Jackson Laboratory (Bar Harbor, ME), were housed with food and water ad libitum in an 

environment with 12 h light/dark cycles.  Animals were cared for according to the 

guidelines set by the Canadian Council on Animal Care.  Formal approval to conduct the 

experiments was obtained from the Dalhousie University Committee on Laboratory 

Animals.  5XFAD mice and age-matched WT counterparts at 2 (AD:7; WT:7), 5 (AD:7; 

WT:4), 8 (AD:2; WT:2) and 13 (AD:12; WT:5) months of age comprised the imaging 

groups for this study. 

6.3.2  PET-CT IMAGING 

Restrained 5XFAD mice and age matched WT controls were injected via tail vein 

with 18F-FDG (573-757 μCi, in 140-160 μL saline).  Uptake occurred in conscious mice 

over 30 min under a heat lamp in the presence of a stimulating object (Hurry Scurry 

Mouse, Toysmith), to facilitate FDG uptake in the brain.  Mice were then anaesthetized 

with 3% isoflurane (in 100% oxygen) in an induction chamber and secured in prone 

position in a custom, MR compatible animal tray with integrated nosecone and bite bar.  
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Mice were wrapped in a blanket on a heated bed and maintained under a continuous 

stream of isoflurane gas anesthetic (1.5-2%), while respiration rate was monitored for the 

duration of the scan (SA Instruments Inc. Stony Brook, NY).  The head region of the 

mouse was centered on a 37 mm axial field of view (FOV) and PET coincidence events 

were acquired in list mode over a 30 min scan interval, with a LabPET4 pre-clinical PET 

scanner (Gamma Medica Ideas, CA). 

Immediately following PET scanning, for anatomical reference, a computed 

tomography (CT) image was performed in fly mode with a 70 kVp x-ray beam energy 

(160 μA beam current), 512 projections, 4 summed frames/projection, with 2×2 binning 

and a magnification of 2.26X, providing complete whole brain coverage in 56 mm FOV.  

CT scan duration was approximately 8.5 min.  Once completed, the animal was then 

immediately transported in the MR compatible bed to the MR imaging scanner.   

 

6.3.3  MR IMAGING 

All MRI scans were performed at 3.0 T using a superconducting Magnex 

Scientific clinical MR “head only” scanner (Oxford, UK) retrofitted for small animal 

imaging (Magnex Scientific gradient coil, ID of 21 cm; maximum gradient strength of 

400 mT/m) and interfaced with a Direct Drive spectrometer (Varian Inc., Palo Alto, CA).  

A 30 mm ID “Litzcage” quadrature RF coil (Doty Scientific, Columbia, SC), tuned to 

128.8 MHz, was used as a transmit/receive volume coil for imaging.  In vivo anatomical 

images were obtained using a 3D balanced steady-state free precession, (b-SSFP) 

imaging sequence (T2/T1-weighting) acquired in a sagittal readout.  Repetition time (TR), 

echo time (TE), flip angle and bandwidth (BW) were optimized for best brain image 
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quality.  The sequence consisted of TR/TE = 9/4.5 ms, flip angle = 30°, 4 frequencies, 4 

signal averages and BW = 40.3 kHz.  A FOV of 22.1 × 22.1 × 22.1 with matrix 

dimensions 156 × 156 × 156 was used to acquire (142 m)3 isotropic resolution images 

with full brain coverage (~61 min/scan).  Respiratory rate and internal body temperature 

of the mice were monitored using an MRI compatible physiological monitoring and 

gating system (SA Instruments Inc., Stony Brook, NY).  The temperature of the mouse 

was maintained at 37±1 °C via temperature control feedback loop controlling an air 

heating system.  After MR imaging the animals were sacrificed and brains removed for 

histological processing.   

6.3.4  B-AMYLOID IMMUNOHISTOCHEMISTRY  

After a 24 h period to allow decay of radioactivity, mice were sacrificed by 

somnitol injection, perfused transcardially with saline (25 mL, 0.9% NaCl, 0.1% NaNO3) 

and 50 mL of 4% paraformaldehyde in 0.1 M phosphate buffer (PB, pH 7.4), the brains 

removed and post-fixed for 1 h.  Brains were frozen with dry ice and cut in 40 μm serial 

sections (4 series).  The sections were stained, using immunohistochemical methods for 

A .  Briefly, sections were rinsed for 30 min in PB pH 7.4, 5 min in 0.05 M PB, followed 

by distilled water (dH2O), and then gently shaken in 90% formic acid for 2 min for 

antigen retrieval.  Sections were rinsed 5 times in dH2O for 1 min each and 2 times in PB 

for 15 min.  Sections were placed in 0.3% H2O2 in PB for 30 min to quench endogenous 

peroxidase activity and rinsed again for 30 min in PB.  Sections were then incubated in 

PB containing 0.1% Triton X-100, normal goat serum (1:100), and a polyclonal rabbit 

anti-A  antibody (1:400; 71-5800, Invitrogen, Camarillo, CA), specific for the 4- to 5-
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kDa amyloid peptide (Jankowsky et al., 2007) for approximately 16 h at room 

temperature.  After rinsing, sections were incubated in PB with 0.1% Triton X-100, 

biotinylated goat anti-rabbit secondary antibody (1:500), and normal goat serum (1:1000) 

for 1 h.  After another rinse, sections were placed in PB with 0.1% Triton X-100 and 

Vectastain Elite ABC kit (1:182; PK- 6100, Vector Laboratories, Burlingame, CA), 

according to the manufacturer’s instructions, for 1 h.  Sections were rinsed and developed 

in a solution of PB containing 1.39 mM 3,3'- diaminobenzidine tetrahydrochloride 

(DAB).  After 5 min, 50 μL of 0.3% H2O2 in dH2O was added per mL of DAB solution, 

and the sections were incubated for 5 min. The reaction was stopped by rinsing the 

sections in 0.01 M acetate buffer (pH 3.3).  In control experiments, no staining was 

observed when the primary antibody was omitted.  Sections were mounted onto glass 

slides, air-dried, rehydrated in dH2O, dehydrated in a series of ethanol washes, cleared in 

xylene, and rinsed in 50% ethanol. 

6.3.5  -AMYLOID IMMUNOHISTOCHEMICAL DATA ANALYSIS 

The stained mouse brain sections were analyzed and photographed using a Zeiss 

Axioplan 2 motorized microscope with a Zeiss Axiocam HRc digital camera using 

AxioVision 4.6 software (Carl Zeiss Canada Ltd., Toronto, Ontario, Canada).  The 

photographs were assembled using Adobe Photoshop. The images were color balanced, 

contrast enhanced, and the brightness was adjusted to match the background from 

different images.  The distribution of A -positive plaques in various areas of the 5XFAD 

mouse brain was determined and; on average, 7 sections were analyzed for plaque load 

for each area studied.  Plaque loads were quantified using ImageJ (National Institutes of 
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Health) and recorded as a percentage of the total area, as described elsewhere (Shi et al., 

2009).  Gray-scale images of sections stained for A  were taken throughout the brain.  

An intensity threshold level was set such that stained plaques, but not background, was 

selected.  The areas of interest were parcellated according to the mouse atlas by Paxinos 

and Franklin (Paxinos and Franklin, 2001) and measured for the percent area covered by 

plaque staining.  The percentage of A  plaque pathology was then averaged for each area 

and compared. 

6.3.6  IBA-1 IMMUNOHISTOCHEMISTRY 

Immunohistochemical staining was performed using primary antibodies for 

ionized calcium binding adaptor molecule 1 (Iba-1; Wako Chemicals) that recognizes 

microglia.  Sections were rinsed in PB for 30 min.  Endogenous peroxidase activity was 

quenched by rinsing the tissue in 0.3% hydrogen peroxide in PB followed by a 30 min 

rinse in PB.  Antigen retrieval was done by heating the tissue to 80°C in 0.1 M citrate 

buffer (pH 6.0) for 20 min.  Sections were allowed to cool to room temperature and then 

rinsed in PB for 30 min.  Sections were incubated in PB containing 0.1% triton X-100, 

normal goat serum (1:100) and Iba-1 primary antibody (1:2000) for about 16 h at room 

temperature.  After rinsing, sections were incubated in PB with 0.1% Triton X-100, 

biotinylated goat anti-rabbit secondary antibody (1:500), and normal goat serum 

(1:1000).  After another rinse, sections were placed in PB with 0.1% Triton X-100 and 

Vectastain® Elite ABC kit (Vector) according to the manufacturer’s instructions.  After 

rinsing the section, they were developed in a solution of 0.05 M tris buffered saline (TBS 

pH 8.0) containing 0.009 mM DAB and 0.6% nickel ammonium sulfate.  After 5 min, 50 
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l 0.3% H2O2 in distilled water was added per mL of DAB staining solution and was 

incubated for 10 min.  The reaction was stopped by rinsing the sections in TBS.  Sections 

were mounted onto glass slides, air-dried, rehydrated in dH2O, dehydrated in a series of 

ethanol washes, cleared in xylene and coverslipped. 

 

6.3.7  IBA-1 IMMUNOFLUORESCENCE AND THIOFLAVIN-S HISTOCHEMISTRY DOUBLE 
LABELLING 
 
 Sections were rinsed in PB for 30 min.  Antigen retrieval was done by heating the 

tissue to 80°C in 0.1 M citrate buffer (pH 6.0) for 20 min.  Sections were allowed to cool 

to room temperature and then rinsed in PB for 30 min.  Sections were incubated in PB 

containing 0.1% triton X-100, normal donkey serum (1:100) and Iba-1 primary antibody 

(1:2000) for 16 h at room temperature.  Sections were rinsed in PB and incubated for 1 h 

in PB with 0.1% Triton X-100 donkey anti-rabbit Alexa Fluor® 555 (1:350; Molecular 

probes, A31572) secondary antibody.  Sections were rinsed in PB, mounted onto glass 

slides and air-dried overnight.  Slides were rehydrated in dH2O, dehydrated in a series of 

ethanol washes, cleared in xylene, and partially rehydrated through a graded series of 

ethanol washes to 50% ethanol.  Slides were immersed in 0.05% thioflavin-S in 50% 

ethanol for 15 min.  Slides were rinsed in 80% ethanol for 20 seconds and dH2O for 5 

min.  Slides were then coverslipped using a glycerol/gelatin mounting medium.  

Sections were analyzed and photographed on a Zeiss Axioplan 2 motorized 

microscope with a Zeiss Axiocam HRc digital camera and AxioVision 4.6 software.  

Image levels were adjusted in Adobe Photoshop CS5 so the background from different 

images matched. 
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6.3.8  IMAGE PROCESSING  

PET list-mode data were temporally histogrammed as a single timeframe and 

binned according to their line of response.  Coincidence events were rebinned over a 

maximum span field of 31 oblique planes using a single slice rebinning algorithm.  An 

iterative reconstruction approach was employed via a 2D Maximum-Likelihood 

Expectation Maximization (MLEM) algorithm, which was performed 100 times and 

constrained to a 46 mm radial FOV.  The resultant PET images yielded an effective in-

plane resolution of 1.2 mm.  Normalization correction (to account for count-rate 

variability of sensors) and quantitative calibrations were performed weekly for the 

duration of the study and these corrections were applied in the reconstruction of the data 

sets.  Recovery coefficient corrections were not applied to the PET data. 

CT images were reconstructed with a 512×512×512 image matrix over a 56 mm 

FOV using the built-in optimum noise reconstruction procedure provided with the 

Triumph XO CT acquisition software, yielding images with (102 um)3 isotropic 

resolution.   

Fusion of PET and CT images was achieved using the VividTM Image Analysis 

Platform (Gamma Medica Ideas, CA and Amira 4.1, San Diego, CA), which aligns and 

overlays the common coordinate frames of each modality.  Images were assessed by 

visual inspection by a single observer to ensure accurate fusion results.  PET data was 

then interpolated to 102 μm (resolution-matched to the CT).    

MRI images underwent 3D maximum intensity projection (MIP) processing of 4 

phase cycle frequencies, resulting reconstructed images were zero-padded (interpolated to 
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higher resolution grid to increase the effective resolution and image quality) in ImageJ 

(NIH, USA). 

 

6.3.9  WHOLE BRAIN FDG UPTAKE ANALYSIS 

Whole brain uptake was determined using Amira (Visualization Sciences Group, 

MA, USA).  Briefly, PET/CT fused images were imported into Amira, the borders 

between the brain/skull interface were manually defined on each CT image which 

permitted selection of the entire brain volume within the skull.  This generated a brain 

mask that was applied to the co-registered PET data.  FDG uptake values are reported as 

standardized uptake values (SUV). 

6.3.10  REGIONAL FDG UPTAKE ANALYSIS  

For voxel-based region of interest (ROI) analysis of regional distributions of FDG 

uptake in the brain, the use of an MR-based 3D digital mouse atlas (Ma et al., 2005; Ma 

et al., 2008) was employed and inter-modality registration between PET/CT/MRI was 

performed.  Briefly, a semi-automated skull stripping algorithm using BrainSuite 11 

(LONI UCLA) was performed on each mouse-specific MR image to remove all 

extraneous non-brain data.  A linear, 6-parameter model rigid body registration was 

performed using Automated Image Registration 5.3.0 (Woods et al., 1998) between the 

reoriented skull stripped MR and the standard brain corresponding to the digital atlas.  

Subsequently, higher order non-linear spatial transformations (warping) of the standard 

brain to the mouse-specific MR images acquired in this study were carried out to either 

the 3rd or 5th order polynomial.  This provided the necessary transformations to be applied 
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to the 3D digital mouse atlas.  Visualization of the mouse-specific MR image and 

corresponding warped atlas mask overlay was carried out in RView (Studholme et al., 

1996) to assess the goodness of fit.  PET/CT fused data, mouse-specific MR image data 

and the warped digital atlas were imported into AMIDE (Loening and Gambhir, 2003), 

and  were manually aligned to the CT and PET image.  ROI statistics were generated 

from the PET data for 8 structures defined by the warped atlas mask for each animal, 

which include amygdala, basal forebrain, basal ganglia, cerebellum, hippocampus, 

hypothalamus, neocortex and thalamus.  FDG uptake values are reported as SUVs. 

 

6.3.11  STATISTICAL ANALYSIS 

FDG uptake values are presented as mean activity values for each whole brain or 

parcellated structure, normalized to the injected dose and body weight of each individual 

animal (SUV).  Statistical comparisons of FDG uptake values in whole brain or each of 

the aforementioned structures were made via unpaired t-tests of group means (AD vs 

WT) at each age interval.  Differences were concluded at a significance level of 5% 

(p<0.05, *) or 1% (p<0.01, **).  All data are presented as group means ± standard error 

of mean. 

 

6.4 RESULTS

6.4.1  WHOLE BRAIN METABOLISM 

 CT, PET and MRI data were co-registered to provide uptake of FDG in whole 

brain and parcellated anatomical regions such as the neocortex and thalamus (Figure 6.1).  

Uptake of FDG was quantified in whole brain, as SUVs, for each animal in the age  
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Figure 6.1.  Trimodality wild-type and 5XFAD mouse imaging with CT, PET and MR.  
An example of a 5XFAD animal with overlay of CT with MR (left) demonstrates brain 
alignment between these modalities.  Parcellation of the brain into various regions was 
accomplished with MR data and aligned with the CT (middle).  FDG-PET aligned with 
the CT (right), was evaluated for whole and regional brain uptake.  The neocortex (arrow) 
and thalamus (arrowhead) are identified as examples of parcellated brain regions. Figure 
30 
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groups, 2, 5, 8 and 13 months (Figure 6.2).  A trend towards lower uptake in the 5XFAD 

animals compared to WT was observed in the 2 and 5 month animals.  The 13 month 

5XFAD animals demonstrated significantly lower SUVs compared to WT animals 

(18.8% decrease, p < 0.01). 

 

6.4.2  REGIONAL BRAIN METABOLISM 

 WT and 5XFAD brains were anatomically parcellated and FDG uptake was 

evaluated, for eight brain regions (Figure 6.3).  These regions were the amygdala, basal 

forebrain, basal ganglia, cerebellum, hippocampus, hypothalamus, neocortex and 

thalamus.  Generally, there was a trend for reduced FDG uptake in 5XFAD mice 

compared to WT mice in the various regions examined.  5XFAD animals in the 13 month 

group demonstrated significantly lower metabolism in the basal ganglia (18.5% decrease, 

p < 0.01), cerebellum (21.1% decrease, p < 0.01), hippocampus (19.4% decrease, p < 

0.01), hypothalamus (17.9% decrease, p < 0.01), neocortex (15.9% decrease, p < 0.01) 

and thalamus (24.8% decrease, p < 0.01).  

 In each of the WT and 5XFAD animals, SUVs from parcellated brain regions 

were normalized to an internal tissue reference within the same animal.  Each parcellated 

brain region was individually used as the reference tissue.  Thus, normalized SUVs were 

calculated for each brain region relative to another and differences in their average 

identified between WT and AD animals (Figure 6.4).  At 2 months of age, 5XFAD  

animals demonstrated a significantly higher ratio of FDG uptake in the amygdala (14.0% 

increase, p < 0.05), basal forebrain (13.8% increase, p < 0.01) and hypothalamus (15.1%  
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Figure 6.2.  FDG-PET whole brain uptake in wild-type (WT) and 5XFAD (AD) animals 
with respect to age.  At 13 months of age 5XFAD animals demonstrated lower uptake of 
FDG compared to WT (**, p < 0.01). Figure 31 
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Figure 6.3.  FDG-PET uptake in various brain regions in wild-type (WT) and 5XFAD 
(AD) animals.  At 13 months of age 5XFAD animals demonstrated a lower FDG uptake 
in the basal ganglia, cerebellum, hippocampus, hypothalamus, neocortex and thalamus 
compared to WT.  No other significant differences were observed between 5XFAD and 
WT animals. (**, p < 0.01). Figure 32 
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Figure 6.4.  Significant differences in FDG-PET uptake in normalized brain regions 
between wild-type (WT) and 5XFAD (AD) animals.  Higher uptake was observed in the 
5XFAD 2 month animals in the AG, BF and HT relative to the NC compared with WT.  
Lower uptake was observed in the 5XFAD 13 month animals in the HT and TL relative 
to the AG compared with WT.  AG, Amygdala; BF, basal forebrain; HT, hypothalamus; 
NC, neocortex; TL, thalamus.  (*, p < 0.05; **, p < 0.01). Figure 33 
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increase, p < 0.01) relative to the neocortex when compared to WT animals.  At 13 

months of age, 5XFAD animals demonstrated a lower ratio of FDG uptake in the 

hypothalamus (14.4% decrease, p < 0.05) and thalamus (24.6% decrease, p < 0.01) 

relative to the amygdala compared with WT animals.  Other brain regions, across all the 

age groups, did not show any significant difference in normalized SUVs between 5XFAD 

and WT animals.  

 

6.4.3  B-AMYLOID DEPOSITION  

 The degree of A  plaque deposition in 5XFAD animals was determined across the 

age groups in the 8 parcellated brain regions evaluated for FDG uptake (Figure 6.5).  

Some regions, such as the neocortex, demonstrated relatively high levels of plaque 

deposition while others, such as the cerebellum, had low plaque levels.  All brain regions 

exhibited a linear increase in the percent area covered with A  as the age of the animal 

increased as exemplified in the neocortex and hippocampus (Figure 6.6).  This continued 

deposition of A  in the 5XFAD brain with increasing age is similar to observations made 

by others (Oakley et al., 2006).  The severity of plaque deposition did not correlate with 

SUV uptake in any of the evaluated brain regions, such as the neocortex and 

hippocampus (Figure 6.6). 

 

6.4.4  MICROGLIA 

 Microglia were visualized with Iba-1 immunohistochemistry in WT and 5XFAD 

animals.  The morphology of microglia changed in 5XFAD mice as age increased.  In the 

5 month age group and older, 5XFAD brains had microglia with larger cell bodies and  
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Figure 6.5.  Quantification of -amyloid plaque burden in various 5XFAD brain regions 
with respect to age.  Levels of A  deposition varied across brain regions; however, all 
areas increased in A  burden with age. Figure 34 
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Figure 6.6.  Plots of -amyloid plaque burden with respect to age (top) and FDG-uptake 
(SUV, bottom) in the neocortex and hippocampus of 5XFAD animals.  A  deposition 
was correlated with age in the neocortex (p < 0.01) and hippocampus (p < 0.01); 
however, no significant relationship was observed in either region with FDG-uptake. 
Figure 35 
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ramified processes that were more distinct and branched (Figure 6.7A).  Double labelling 

of sections with Iba-1 and thioflavin-S, for visualization of A  plaques, demonstrated that 

many of the microglia with enlarged cell bodies and processes were associated with the 

perimeters of plaques (Figure 6.7B). 

 

6.5 DISCUSSIONS

6.5.1  WHOLE BRAIN METABOLISM 

AD is characterized by several pathological hallmarks in the brain, including the 

emergence of A  plaques.  In this respect, the 5XFAD mouse is an aggressive model of 

brain amyloidosis marked by early development of A  plaques and cognitive dysfunction 

(Oakley et al., 2006).  It is unknown whether the 5XFAD animal model recapitulates 

phenotypes of AD such as decreased brain glucose metabolism.  Thus, FDG uptake 

relative to A  pathology and neuroinflammation was determined in the 5XFAD animal 

model at different ages.  A recent study has also explored brain metabolic changes in this 

AD model (Rojas et al., 2013); however both differences and similarities exist between 

our results and that study. 

Measurement of whole brain metabolism herein relied on determining SUVs at 

each age group, 2, 5, 8 and 13 months (Figure 6.2).  In particular, at 2 and 5 months a 

non-significant trend was observed towards a lower SUV for 5XFAD animals when 

compared to WT.  Furthermore, at 8 months of age, animals exhibited no difference in 

SUVs between AD and WT animals.  The 13 month age group exhibited significantly 

lower SUVs for the 5XFAD animals compared to WT.  This suggests that insult to the 

brain may accumulate as these animals age, resulting in reduced metabolism late in the  
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Figure 6.7.  Visualization of microglia in the 5XFAD brain.  A.  Iba-1 
immunohistochemistry identified reactive microglia (arrows) which increased with age.  
Microglia in wild-type animals at all ages (not shown) were comparable to the 2 month 
5XFAD animals.  Scale bar: 50 m.  B. Co-localization of Iba-1 immunohistochemistry 
and thioflavin-S (TF-S) histochemistry, to visualize A  deposition, demonstrated the 
association of reactive microglia around the perimeter of plaques (arrows) in the 5XFAD 
brain Scale bar: 200 m. Figure 36 
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disease progress.  A similar reduction in glucose metabolism has been observed in older 

3xTG animals (Nicholson et al., 2010).  In contrast, another previous study has reported 

that, in older 5XFAD animals, the brain has increased uptake of FDG compared to WT 

animals (Rojas et al., 2013).  However, this study used an internal reference tissue, the 

cerebellum, in contrast to the SUV measurements reported here.   

 

6.5.2  REGIONAL BRAIN METABOLISM 

The brains of 5XFAD and WT animals were parcellated into 8 different regions and 

the SUV for each was determined (Figure 6.3).  Reflecting the results for whole brain 

metabolism, there was no significant difference between 5XFAD and WT SUVs for any 

of the brain regions for the 2, 5 and 8 month age groups.  However, the 2 and 5 month 

group did indicate a trend towards a lower SUV for the AD animals, again similar to 

whole brain uptake.  The 13 month age group provided significantly lower SUVs for the 

5XFAD animals in 6 of the 8 brain regions investigated.  These results suggest that the 

reduced SUV values for the 13 month 5XFAD animals represent a global decrease in 

metabolic activity across the brain. 

Brain regions were also normalized to each of the others in order to provide a 

measure of glucose uptake relative to an internal reference tissue.  An ideal internal 

reference tissue would demonstrate FDG uptake independent of A  deposition and other 

pathological processes such as neuroinflammation.  However, glucose metabolism may 

be altered in each area of the 5XFAD brain; thus, no single area was identified as an ideal 

internal reference tissue.  Therefore all regions were used individually as the reference 

tissue.  This normalized metabolic activity was compared between WT and 5XFAD 
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animals and significant differences were determined (Figure 6.4).  In 2 months of age 

animals, the FDG uptake of the amygdala, basal forebrain and hypothalamus, relative to 

the neocortex, demonstrated an increase in SUV for the 5XFAD animals.  This suggests 

that at an early stage of brain amyloidosis, such as occurs at 2 months, there may be 

deficits in neocortical function.  At 13 months of age, the hypothalamus and thalamus, 

relative to the amygdala, demonstrated reduced SUVs in 5XFAD compared to WT 

animals.  At this late disease stage, many brain areas demonstrated decreases in glucose 

metabolism (Figure 6.3).  Therefore, these results may signify that the rate of decrease in 

metabolic function of the amygdala is less than that for the hypothalamus and thalamus.  

Thus, A  deposition may impair function in some parts of the brain, such as the thalamus 

and hypothalamus, to a greater extent than others, such as the amygdala.   

 

6.5.3 B-AMYLOID DEPOSITION

Deposited brain A  protein was visualized with immunohistochemistry and 

quantified as the area covered in each parcellated brain region (Figure 6.5).  The amount 

of A  burden varied among different brain regions but was typically high in areas, such 

as the neocortex and hippocampus, traditionally affected in AD.  Mechanisms of A  

accumulation are unclear but may be influenced by connectivity with other brain regions 

or inherent susceptibility.  In this respect, areas of widespread connectivity, such as the 

neocortex, display high levels of A  deposition.  In addition, A  burden demonstrated a 

linear increase with age, signifying a constant brain deposition of the protein that did not 

reach a plateau by 13 months of age (Figure 6.6).  A correlation between A  burden and 

brain SUVs across the age groups was not found.  This reflects the disconnection 
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observed in human AD between A  plaque load and brain function (Mortimer, 2012).  

Much like the human condition, it was not until later in the 5XFAD disease stage, at 13 

months, that profound metabolic changes were observed in the brain.  These statistically 

significant changes in 5XFAD SUVs displayed at least a 13% decrease in glucose 

metabolism compared to WT.  Thus, modest changes in metabolic function in young 

5XFAD animals, as observed early in human AD (Bateman et al., 2012), may not be 

detectable in this study. 

 

6.5.4  MICROGLIA 

Brain inflammation can lead to increased FDG uptake (Radu et al., 2007) and 

thus, may contribute to metabolic activity in the AD brain.  Increasing levels of activated 

microglia were observed with increasing age of the 5XFAD animals (Figure 6.7A).  In 

contrast, age-matched WT animals did not show any differences in microglia populations 

with age.  Activated microglia in the 5XFAD animals were observed around the 

perimeter of A  deposits (Figure 6.7B), as noted previously (Hillmann et al., 2012), 

suggesting that these immune cells may contribute to deficits, such as disrupted synapse 

integrity, in these animals as has been noted in human AD (Meda et al., 1995; 

Parachikova et al., 2007).  Furthermore, their presence may increase brain FDG uptake in 

5XFAD animals, as suggested also by others (Rojas et al., 2013), and thus, may mask 

potential changes in metabolism, in particular at early ages.  This may account for the 

observations in this study that significant decreases in FDG uptake were not observed at 

2, 5 and 8 months of age, despite increasing A  burden in the brain.  This potential 

masking effect of FDG uptake by microglia may only be overcome at late stages of 
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disease where brain function is severely impaired in the 5XFAD animal, such as at 13 

months.  This would result in the observed decreased glucose metabolism in the 13 

month 5XFAD animals. 

 

6.6 CONCLUSIONS

The 5XFAD mouse develops aggressive brain amyloidosis early in life.  Similar 

to human AD, altered brain metabolism was observed in late disease stages in this mouse 

model compared to age matched controls.  However, metabolic function did not correlate 

to A  plaque burden in this animal model.  FDG uptake by reactive microglia, associated 

with A  plaques in 5XFAD animals, may contribute to this discrepancy.  This mouse 

model recapitulated aspects of human AD such as A  deposition, microglia activation 

and decreases in glucose metabolism.  Thus, the 5XFAD mouse model may be a 

powerful tool for assessing efficacy of diagnostic and therapeutic agents being developed 

for AD. 
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CHAPTER 7 CONCLUSIONS 

7.1 PREFACE

 In the following section, conclusions will be drawn from each Chapter within the 

context of the development of cholinesterase imaging agents for use in neurological 

disease.  In addition, the relevance of this thesis work to the field of cholinesterase 

imaging agents will be discussed and future endeavors towards the goal of a clinical 

cholinesterase radiopharmaceutical will be explored.   

 

7.2 GENERAL CHAPTER CONCLUSIONS

Chapter 1 described the clinical characteristics and putative pathogenesis of 

Alzheimer’s disease (AD) and multiple sclerosis (MS).  The management of both of these 

disorders suffers from the lack of a specific method for definitive diagnosis and 

monitoring of pathological progression.  Neuroimaging, in this respect, could greatly 

assist clinical diagnosis and accelerate evaluation of novel therapeutics, in particular for 

AD, in which discovery of disease-modifying therapies has remained elusive.  Due to 

their association with the characteristic pathology of AD and MS, acetylcholinesterase 

(AChE) and butyrylcholinesterase (BuChE) are potential neuroimaging targets for these 

disorders.  Several cholinesterase imaging agents have been previously developed and 

tested in neurological diseases.  However, none of these agents have visualized 

cholinesterase activity associated with the pathology of AD and MS.  Thus, the principal 

objective of this thesis was the development and evaluation of imaging agents that 

recapitulate the association of cholinesterases with AD and MS disease pathology.   
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Chapters 2-4 described the synthesis and evaluation of several classes of imaging 

agents towards AChE and BuChE.  Ester derivatives, based on the structure of 

acetylcholine, were the initial agents evaluated as described in Chapter 2.  These were 

successful in recapitulating the distribution of BuChE in the rodent brain in vivo 

(Macdonald et al., 2011).  Derivatization of the ester group to thioester functionality 

permitted the evaluation of a variety of compounds as cholinesterase imaging agents in 

Chapter 3.  This approach allowed for rapid assessment of enzyme kinetics as well as 

histochemical distribution of compounds, relative to cholinesterase activity, in tissues of 

interest (Macdonald et al., 2013).  This methodology can be employed to rapidly screen 

appropriate libraries of compounds for the optimization of cholinesterase imaging agents.  

Chapter 4 presented the synthesis and evaluation of a cholinesterase inhibitor possessing 

a carbamate functional group as an imaging agent (Darvesh et al., 2012a).  This 

compound, 123I-PIP, successfully visualized cholinesterases associated with AD 

pathology in both a mouse model of AD and human brain tissues.  Furthermore, in 

contrast to A  imaging agents, such as 123I-IMPY, 123I-PIP was able to distinguish AD 

brain tissues from those of cognitively normal with A  plaques.  This proof of principle 

is a critical first step towards the neuroimaging of cholinesterases for the definitive 

diagnosis of AD. 

The synthesis and evaluation of compounds in Chapters 2-4 identified 123I-PIP as 

a promising cholinesterase imaging agent for use in neurological disease.  Optimization 

of this agent demands an intimate knowledge of amino acid residue binding sites within 

the active site gorges of AChE and BuChE.  Crystal structures of AChE bound to a 

variety of inhibitors have identified residues important for these enzyme-inhibitor 
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interactions within the active site gorge.  However, parallel x-ray crystallography studies 

investigating the BuChE active site gorge remain limited.  In this respect, Chapter 5 

presented a kinetic approach to the identification of inhibitor and ligand binding sites for 

BuChE (Macdonald et al., 2012).  This study identified residues contributing to the P-site 

of the enzyme that are shown to greatly influence binding characteristics of inhibitors and 

substrates and, consequently, function of the enzyme.  Targeting regions of the active site 

gorge, such as the P-site, may afford optimized ligands that have great promise as 

cholinesterase imaging agents. 

In order to advance cholinesterase imaging agents into clinical trials, robust pre-

clinical testing is required.  As a harbinger for in vivo small animal evaluation of 

cholinesterase imaging agents, an initial neuroimaging study of an animal model of AD, 

the 5XFAD mouse, is described in Chapter 6.  Glucose metabolism, using FDG, was 

assessed with respect to brain amyloidosis and inflammation in this model.  This work 

identified that in late stages of brain amyloidosis in the 5XFAD mouse, a profound 

decrease in brain metabolism was observed.  This is a similar phenotype as human AD.  

Thus, this combined neuroimaging and pathological analysis method in the 5XFAD 

mouse is a promising approach for the assessment of cholinesterase imaging agents for 

the visualization of A  plaque pathology. 

 

7.3 COMMENTS ON THE FUTURE OF CHOLINESTERASE IMAGING IN 
NEUROLOGICAL DISORDERS

 A significant achievement of this thesis work has been the development of 

cholinesterase imaging agents that recapitulate the association of AChE and BuChE with 

the pathology of neurological diseases such as AD.  Nevertheless, prominent elements 
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remain to be addressed before the goal of clinical application of cholinesterase imaging in 

neurological disease is realized.   

Of principal importance is the nature of the association of AChE and BuChE with 

the pathology of AD.  To date, only subjective evidence of the role of these enzymes in 

AD pathogenesis has been provided in the literature.  In particular, a robust investigation 

into the specificity of cholinesterase-associated plaques and tangles for distinguishing AD 

relative to cognitively normal brains is required.  It is probable that this relationship is a 

spectrum and therefore, a distinct boundary between diseased and cognitively normal 

brain with respect to cholinesterase-associated pathology does not exist.  Post-mortem 

brain studies linking detailed clinical history with cholinesterase-associated pathology 

levels may provide valuable insight in this regard. 

In a similar approach to that outlined for AD, the role of cholinesterases, in 

particular BuChE, in MS requires further investigation.  It is unknown whether 

differences exist between BuChE activity associated with lesions of progressive and 

relapsing disease courses.  Furthermore, characterizing the association of BuChE with 

cortical MS lesions, an area with high activity of this enzyme in AD, may yield valuable 

insights into its role in MS.  These studies may further establish BuChE as a promising 

imaging target for the diagnosis and treatment of MS.  Work presented in this thesis 

described the visualization of cholinesterase activity associated with AD pathology using 

123I-PIP.  Similar autoradiographic studies in post mortem human MS brain tissue and 

animal models of MS may be a promising start towards cholinesterase imaging for the 

diagnosis and pathology monitoring of this disease. 
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In order to optimize the cholinesterase imaging agents described in this thesis, 

structure-activity-relationships, in particular based on PIP, will be essential.  Although 

the first leaving group of cholinesterase catalyzed hydrolysis of PIP is presumed to be the 

phenolic moiety, definitive evidence is currently lacking.  Furthermore, derivatization of 

PIP may change the chemical properties of the leaving group, between either the phenolic 

or anilinic moieties, in the first step of enzymatic catalysis.  Elucidation of the 

mechanism of cholinesterase mediated hydrolysis for PIP and its derivatives will aid in 

determining the optimal location of a radioisotope on these molecules.  Furthermore, 

synthesis and evaluation of PIP derivatives with a variety of steric and electronic 

properties may identify potent cholinesterase ligands that are promising candidates as 

imaging agents.  In addition, these structure activity relationships will potentially define 

ideal kinetic parameters for cholinesterase imaging agents possessing carbamate 

functionality.  In particular, the rate of deactivation (ka value) and subsequent reactivation 

(ka') of AChE and BuChE by these compounds may be cardinal for predicting their ability 

as imaging agents.  In addition, evaluation of thiocarbamates using a similar approach as 

described for thioesters in Chapter 3, may facilitate the kinetic characterization of 

carabamate derivatives towards AChE and BuChE. 

A multitude of ligand binding sites in the AChE and BuChE active site gorges 

have been identified previously in the literature.  Chapter 5 has extended this work for 

BuChE, in particular characterizing the P-site of this enzyme.  Further active site gorge 

characterizations of the cholinesterases using kinetic and mutant enzyme approaches, as 

well as x-ray crystallography, may further define residues pivotal for potent binding to 
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these enzymes.  Targeting the binding sites that may result from these studies will serve 

to accelerate the development of compounds as imaging agents for AChE and BuChE. 

Small animal imaging of neurological disease models will aid in the optimization 

of imaging agents and expedite clinical adoption of radiopharmaceuticals.  Assessment of 

imaging AD pathology and related processes in transgenic animals, such as the 5XFAD 

model described in Chapter 6, is one approach to validate imaging agents in an in vivo 

system.  Cholinesterase imaging of AD and MS mouse models, in conjunction with 

histological evidence, will accelerate the development of these agents.  In this respect, 

small animal in vivo imaging studies have largely been lacking for cholinesterase imaging 

agents.  However, with the increased availability of dedicated small animal scanners, 

advances in imaging methodology and histologically characterized animal models this 

approach is poised to be a major contributor to the development of imaging agents for 

neurodegenerative disorders.   

Neurological diseases, such as AD and MS, have plagued humankind for many 

years without respite.  Scientific achievement has brought us to the precipice of 

effectively treating these disorders and restoring health to those afflicted.  Imaging of the 

living brain has, and will increasingly, accelerate the discovery of pathognomic processes 

and guide therapeutic interventions.  In this respect, cholinesterase imaging may be a 

decisive contributor towards the diagnosis and pathological monitoring of neurological 

diseases, such as AD and MS.  Continued strides towards a clinical cholinesterase 

imaging agent has the potential to aid in development of disease modifying therapies, 

ameliorate patient management and, ultimately, propitiously impact the lives of those 

suffering the bane of neurological disease.  
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APPENDIX B  SYNTHETIC CHEMICAL CHARACTERIZATION DATA 
 

1-methylpiperidin-4-yl 4-iodobenzoate (1)      284 
1H NMR, 13C NMR, IR, LRMS, HRMS, HPLC 

 
 

 

(S)-1-methylpyrrolidin-3-yl 4-iodobenzoate (2)      290 
1H NMR, 13C NMR, IR, LRMS, HRMS, HPLC 

O

O

I

N  
 

 

(R)-1-methylpyrrolidin-3-yl 4- iodobenzoate (3)      296 
1H NMR, 13C NMR, IR, LRMS, HRMS, HPLC 

 
 

 

1-methylpiperidin-4-yl 4-(tributylstannyl)benzoate (4)     302 
1H NMR, 13C NMR, IR, LRMS, HRMS, HPLC 

 
 

 

 

 

 



 

 281 
 

(S)-1-methylpyrrolidin-3-yl 4-(tributylstannyl)benzoate (5)     308 
1H NMR, 13C NMR, IR, LRMS, HRMS, HPLC 

 
 

 

(R)-1-methylpyrrolidin-3-yl 4-(tributylstannyl)benzoate (6)    314 
1H NMR, 13C NMR, IR, LRMS, HRMS, HPLC 

 
 

 

N-methylpiperidin-4-yl 4-cyanobenzoate (7)      320 
1H NMR, 13C NMR, IR, LRMS, HRMS, HPLC 

 
 

 

N-methylpiperidin-4-yl 4-fluorobenzoate (8)      326 
1H NMR, 13C NMR, IR, LRMS, HRMS, HPLC 

 
 

 

N-methyl-4-piperidinethiol (9)        332 
1H NMR, 13C NMR, IR, LRMS, HRMS 

 
 



 

 282 
 

 

(N-methylpiperidin-4-yl) 4-cyanobenzenecarbothioate (10)     337 
1H NMR, 13C NMR, IR, LRMS, HRMS, HPLC 

 
 

 

(N-methylpiperidin-4-yl) 4-fluorobenzenecarbothioate (11)     343 
1H NMR, 13C NMR, IR, LRMS, HRMS, HPLC 

 
 

 

(N-methylpiperidin-4-yl) 4-iodobenzenecarbothioate (12)     349 
1H NMR, 13C NMR, IR, LRMS, HRMS, HPLC 

 
 

 

(N-methylpiperidin-4-yl) ethanethioate (13)       355 
1H NMR, 13C NMR, IR, LRMS, HRMS, HPLC 

 
 

 

(N-methylpiperidin-4-yl) propanethioate (14)      361 
1H NMR, 13C NMR, IR, LRMS, HRMS, HPLC 

 
 



 

 283 
 

(N-methylpiperidin-4-yl) butanethioate (15)       367 
1H NMR, 13C NMR, IR, LRMS, HRMS, HPLC 

 
 

Phenyl-4-iodophenylcarbamate (16)        373 
1H NMR, 13C NMR, IR, LRMS, HRMS, HPLC 

 
 

 

Phenyl 4-(tributylstannyl)phenylcarbamate (17)      379 
1H NMR, 13C NMR, IR, LRMS, HRMS, HPLC 

 
 

 

2-(4'-Dimethylaminophenyl)-6-iodoimidazol[1,2-a]pyridine (18)    385 
1H NMR, 13C NMR, IR, LRMS, HRMS, HPLC 

 
 

 

2-(4'-Dimethylaminophenyl)-6-tributylstannylimidazol[1,2-a]pyridine (19)  391 
1H NMR, 13C NMR, IR, LRMS, HRMS, HPLC 
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N

O

O

I

 
1-methylpiperidin-4-yl 4-iodobenzoate (1) 
1H NMR 
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N

O

O

I

  
1-methylpiperidin-4-yl 4-iodobenzoate (1) 
13C NMR 
 

 



 

 286 
 

N

O

O

I

  
1-methylpiperidin-4-yl 4-iodobenzoate (1) 
IR 
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N

O

O

I

  
1-methylpiperidin-4-yl 4-iodobenzoate (1) 
LRMS 
 

 
 



 

 288 
 

N

O

O

I

  
1-methylpiperidin-4-yl 4-iodobenzoate (1) 
HRMS 
 

 
 



 

 289 
 

N

O

O

I

  
1-methylpiperidin-4-yl 4-iodobenzoate (1) 
HPLC 
 

 
 



 

 290 
 

O

O

I

N
  

(S)-1-methylpyrrolidin-3-yl 4-iodobenzoate (2) 
1H NMR 
 

 



 

 291 
 

O

O

I

N
  

(S)-1-methylpyrrolidin-3-yl 4-iodobenzoate (2) 
13C NMR 
 

 



 

 292 
 

O

O

I

N
  

(S)-1-methylpyrrolidin-3-yl 4-iodobenzoate (2) 
IR 
 

 



 

 293 
 

O

O

I

N
  

(S)-1-methylpyrrolidin-3-yl 4-iodobenzoate (2) 
LRMS 
 

 



 

 294 
 

O

O

I

N
  

(S)-1-methylpyrrolidin-3-yl 4-iodobenzoate (2) 
HRMS 
 

 



 

 295 
 

O

O

I

N
  

(S)-1-methylpyrrolidin-3-yl 4-iodobenzoate (2) 
HPLC 
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O

O

I

N
  

(R)-1-methylpyrrolidin-3-yl 4-iodobenzoate (3) 
1H NMR 
 

 



 

 297 
 

O

O

I

N
  

(R)-1-methylpyrrolidin-3-yl 4-iodobenzoate (3) 
13C NMR 
 

 



 

 298 
 

O

O

I

N
  

(R)-1-methylpyrrolidin-3-yl 4-iodobenzoate (3) 
IR 
 

 



 

 299 
 

O

O

I

N
  

(R)-1-methylpyrrolidin-3-yl 4-iodobenzoate (3) 
LRMS 
 

 



 

 300 
 

O

O

I

N
  

(R)-1-methylpyrrolidin-3-yl 4-iodobenzoate (3) 
HRMS 
 

 



 

 301 
 

O

O

I

N
  

(R)-1-methylpyrrolidin-3-yl 4-iodobenzoate (3) 
HPLC 
 

 



 

 302 
 

  
1-methylpiperidin-4-yl 4-(tributylstannyl)benzoate (4) 
1H NMR 
 

 



 

 303 
 

  
1-methylpiperidin-4-yl 4-(tributylstannyl)benzoate (4) 
13C NMR 
 

 



 

 304 
 

  
1-methylpiperidin-4-yl 4-(tributylstannyl)benzoate (4) 
IR 
 

 



 

 305 
 

  
1-methylpiperidin-4-yl 4-(tributylstannyl)benzoate (4) 
LRMS 
 

 



 

 306 
 

  
1-methylpiperidin-4-yl 4-(tributylstannyl)benzoate (4) 
HRMS 
 

 



 

 307 
 

  
1-methylpiperidin-4-yl 4-(tributylstannyl)benzoate (4) 
HPLC 
 

 
 



 

 308 
 

  
(S)-1-methylpyrrolidin-3-yl 4-(tributylstannyl)benzoate (5) 
1H NMR 
 

 



 

 309 
 

  
(S)-1-methylpyrrolidin-3-yl 4-(tributylstannyl)benzoate (5) 
13C NMR 
 

 



 

 310 
 

  
(S)-1-methylpyrrolidin-3-yl 4-(tributylstannyl)benzoate (5) 
IR 
 

 



 

 311 
 

  
(S)-1-methylpyrrolidin-3-yl 4-(tributylstannyl)benzoate (5) 
LRMS 
 

 



 

 312 
 

  
(S)-1-methylpyrrolidin-3-yl 4-(tributylstannyl)benzoate (5) 
HRMS 
 

 



 

 313 
 

  
(S)-1-methylpyrrolidin-3-yl 4-(tributylstannyl)benzoate (5) 
HPLC 
 

 



 

 314 
 

  
(R)-1-methylpyrrolidin-3-yl 4-(tributylstannyl)benzoate (6) 
1H NMR 
 

 



 

 315 
 

  
(R)-1-methylpyrrolidin-3-yl 4-(tributylstannyl)benzoate (6) 
13C NMR 
 

 



 

 316 
 

  
(R)-1-methylpyrrolidin-3-yl 4-(tributylstannyl)benzoate (6) 
IR 
 

 



 

 317 
 

  
(R)-1-methylpyrrolidin-3-yl 4-(tributylstannyl)benzoate (6) 
LRMS 
 

 



 

 318 
 

  
(R)-1-methylpyrrolidin-3-yl 4-(tributylstannyl)benzoate (6) 
HRMS 
 

 



 

 319 
 

  
(R)-1-methylpyrrolidin-3-yl 4-(tributylstannyl)benzoate (6) 
HPLC 
 

 
 



 

 320 
 

  
N-methylpiperidin-4-yl 4-cyanobenzoate (7) 
1H NMR 
 

 



 

 321 
 

  
N-methylpiperidin-4-yl 4-cyanobenzoate (7) 
13C NMR 
 

 



 

 322 
 

  
N-methylpiperidin-4-yl 4-cyanobenzoate (7) 
IR 
 

 
 



 

 323 
 

  
N-methylpiperidin-4-yl 4-cyanobenzoate (7) 
LRMS 
 

 



 

 324 
 

  
N-methylpiperidin-4-yl 4-cyanobenzoate (7) 
HRMS 
 

 
 
 



 

 325 
 

  
N-methylpiperidin-4-yl 4-cyanobenzoate (7) 
HPLC 
 

 



 

 326 
 

 
N-methylpiperidin-4-yl 4-fluorobenzoate (8) 
1H NMR 
 

 



 

 327 
 

 
N-methylpiperidin-4-yl 4-fluorobenzoate (8) 
13C NMR 
 

 



 

 328 
 

 
N-methylpiperidin-4-yl 4-fluorobenzoate (8) 
IR 
 

 



 

 329 
 

 
N-methylpiperidin-4-yl 4-fluorobenzoate (8) 
LRMS 

 



 

 330 
 

 
N-methylpiperidin-4-yl 4-fluorobenzoate (8) 
HRMS 
 

 



 

 331 
 

 
N-methylpiperidin-4-yl 4-fluorobenzoate (8) 
HPLC 
 

 



 

 332 
 

N

SH

 
N-methyl-4-piperidinethiol (9) 
1H NMR 
 

 



 

 333 
 

N

SH

 
N-methyl-4-piperidinethiol (9) 
13C NMR 
 

 



 

 334 
 

N

SH

 
N-methyl-4-piperidinethiol (9) 
IR 
 

 



 

 335 
 

N

SH

 
N-methyl-4-piperidinethiol (9) 
LRMS 
 

 



 

 336 
 

N

SH

 
N-methyl-4-piperidinethiol (9) 
HRMS 
 

 



 

 337 
 

 
(N-methylpiperidin-4-yl) 4-cyanobenzenecarbothioate (10) 
1H NMR 
 

 



 

 338 
 

 
(N-methylpiperidin-4-yl) 4-cyanobenzenecarbothioate (10) 
13C NMR 
 

 



 

 339 
 

 
(N-methylpiperidin-4-yl) 4-cyanobenzenecarbothioate (10) 
IR 
 

 
 



 

 340 
 

 
(N-methylpiperidin-4-yl) 4-cyanobenzenecarbothioate (10) 
LRMS 
 

 



 

 341 
 

 
(N-methylpiperidin-4-yl) 4-cyanobenzenecarbothioate (10) 
HRMS 
 

 



 

 342 
 

 
(N-methylpiperidin-4-yl) 4-cyanobenzenecarbothioate (10) 
HPLC 
 

 



 

 343 
 

 
(N-methylpiperidin-4-yl) 4-fluorobenzenecarbothioate (11) 
1H NMR 
 

 



 

 344 
 

 
(N-methylpiperidin-4-yl) 4-fluorobenzenecarbothioate (11) 
13C NMR 
 

 



 

 345 
 

 
(N-methylpiperidin-4-yl) 4-fluorobenzenecarbothioate (11) 
IR 
 

 



 

 346 
 

 
(N-methylpiperidin-4-yl) 4-fluorobenzenecarbothioate (11) 
LRMS 
 

 



 

 347 
 

 
(N-methylpiperidin-4-yl) 4-fluorobenzenecarbothioate (11) 
HRMS 
 

 



 

 348 
 

 
(N-methylpiperidin-4-yl) 4-fluorobenzenecarbothioate (11) 
HPLC 
 

 



 

 349 
 

S

O

I

N  
(N-methylpiperidin-4-yl) 4-iodobenzenecarbothioate (12) 
1H NMR 
 



 

 350 
 

S

O

I

N  
(N-methylpiperidin-4-yl) 4-iodobenzenecarbothioate (12) 
13C NMR 
 

 



 

 351 
 

S

O

I

N  
(N-methylpiperidin-4-yl) 4-iodobenzenecarbothioate (12) 
IR 
 

 



 

 352 
 

S

O

I

N  
(N-methylpiperidin-4-yl) 4-iodobenzenecarbothioate (12) 
LRMS 
 

 



 

 353 
 

S

O

I

N  
(N-methylpiperidin-4-yl) 4-iodobenzenecarbothioate (12) 
HRMS 
 

 



 

 354 
 

S

O

I

N  
(N-methylpiperidin-4-yl) 4-iodobenzenecarbothioate (12) 
HPLC 
 

 



 

 355 
 

 
(N-methylpiperidin-4-yl) ethanethioate (13) 
1H NMR 
 

 



 

 356 
 

 
(N-methylpiperidin-4-yl) ethanethioate (13) 
13C NMR 
 

 



 

 357 
 

 
(N-methylpiperidin-4-yl) ethanethioate (13) 
IR 
 

 



 

 358 
 

 
(N-methylpiperidin-4-yl) ethanethioate (13) 
LRMS 
 

 



 

 359 
 

 
(N-methylpiperidin-4-yl) ethanethioate (13) 
HRMS 
 

 



 

 360 
 

 
(N-methylpiperidin-4-yl) ethanethioate (13) 
HPLC 
 

 



 

 361 
 

 
(N-methylpiperidin-4-yl) propanethioate (14) 
1H NMR 
 

 



 

 362 
 

 
(N-methylpiperidin-4-yl) propanethioate (14) 
13C NMR 
 

 



 

 363 
 

 
(N-methylpiperidin-4-yl) propanethioate (14) 
IR 
 

 



 

 364 
 

 
(N-methylpiperidin-4-yl) propanethioate (14) 
LRMS 
 

 



 

 365 
 

 
(N-methylpiperidin-4-yl) propanethioate (14) 
HRMS 
 

 



 

 366 
 

 
(N-methylpiperidin-4-yl) propanethioate (14) 
HPLC 
 

 



 

 367 
 

 
(N-methylpiperidin-4-yl) butanethioate (15) 
1H NMR 
 

 



 

 368 
 

 
(N-methylpiperidin-4-yl) butanethioate (15) 
13C NMR 
 

 



 

 369 
 

 
(N-methylpiperidin-4-yl) butanethioate (15) 
IR 
 

 



 

 370 
 

 
(N-methylpiperidin-4-yl) butanethioate (15) 
LRMS 
 

 



 

 371 
 

 
(N-methylpiperidin-4-yl) butanethioate (15) 
HRMS 
 

 



 

 372 
 

 
(N-methylpiperidin-4-yl) butanethioate (15) 
HPLC 
 

 



 

 373 
 

 
Phenyl-4-phenylcarbamate (16) 
1H NMR 
 

 
 



 

 374 
 

 
Phenyl-4-phenylcarbamate (16) 
13C NMR 

 



 

 375 
 

 
Phenyl-4-phenylcarbamate (16) 
IR 
 

 



 

 376 
 

 
Phenyl-4-phenylcarbamate (16) 
LRMS 
 

 



 

 377 
 

 
Phenyl-4-phenylcarbamate (16) 
HRMS 
 

 



 

 378 
 

 
Phenyl-4-phenylcarbamate (16) 
HPLC 
 

 
 
 



 

 379 
 

 
Phenyl 4-(tributylstannyl)phenylcarbamate (17) 
1H NMR 

 



 

 380 
 

 
Phenyl 4-(tributylstannyl)phenylcarbamate (17) 
13C NMR 

 



 

 381 
 

 
Phenyl 4-(tributylstannyl)phenylcarbamate (17) 
IR 

 



 

 382 
 

 
Phenyl 4-(tributylstannyl)phenylcarbamate (17) 
LRMS 
 

 



 

 383 
 

 
Phenyl 4-(tributylstannyl)phenylcarbamate (17) 
HRMS 
 

 



 

 384 
 

 
Phenyl 4-(tributylstannyl)phenylcarbamate (17) 
HPLC 
 

 



 

 385 
 

 
2-(4'-Dimethylaminophenyl)-6-iodoimidazol[1,2-a]pyridine (18) 
1H NMR 
 

 



 

 386 
 

 
2-(4'-Dimethylaminophenyl)-6-iodoimidazol[1,2-a]pyridine (18) 
13C NMR 
 

 



 

 387 
 

 
2-(4'-Dimethylaminophenyl)-6-iodoimidazol[1,2-a]pyridine (18) 
IR 
 

 



 

 388 
 

 
2-(4'-Dimethylaminophenyl)-6-iodoimidazol[1,2-a]pyridine (18) 
LRMS 
 

 
 
 



 

 389 
 

 

 
2-(4'-Dimethylaminophenyl)-6-iodoimidazol[1,2-a]pyridine (18) 
HRMS 
 

 
 



 

 390 
 

 
2-(4'-Dimethylaminophenyl)-6-iodoimidazol[1,2-a]pyridine (18) 
HPLC 
 

 



 

 391 
 

 
2-(4'-Dimethylaminophenyl)-6-tributylstannylimidazol[1,2-a]pyridine (19) 
1H NMR 
 

 
 



 

 392 
 

 
2-(4'-Dimethylaminophenyl)-6-tributylstannylimidazol[1,2-a]pyridine (19) 
13C NMR 
 

 



 

 393 
 

 
2-(4'-Dimethylaminophenyl)-6-tributylstannylimidazol[1,2-a]pyridine (19) 
IR 
 

 



 

 394 
 

 
2-(4'-Dimethylaminophenyl)-6-tributylstannylimidazol[1,2-a]pyridine (19) 
LRMS 
 

 



 

 395 
 

 
2-(4'-Dimethylaminophenyl)-6-tributylstannylimidazol[1,2-a]pyridine (19) 
HRMS 
 

 



 

 396 
 

 
2-(4'-Dimethylaminophenyl)-6-tributylstannylimidazol[1,2-a]pyridine (19) 
HPLC 
 

 


