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We investigate Lorentzian space–times where all zeroth and first order curvature
invariants vanish and discuss how this class differs from the one where all curva-
ture invariants vanishsVSId. We show that for VSI space–times all components of
the Riemann tensor and its derivatives up to some fixed order can be made arbi-
trarily small. We discuss this in more detail by way of examples. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1904707g

I. INTRODUCTION

Recently it was proven that in four-dimensional Lorentzian space–times all of the scalar
invariants constructed from the Riemann tensor and its covariant derivatives are zero if and only
if the space–time is of PetrovsPd-type III, N or O, all eigenvalues of the Ricci tensor are zero and
hence of Plebański–PetrovsPPd-type N or OsRef. 1d and the common multiple null eigenvector of
the Weyl and Ricci tensors is geodesic, shear-free, expansion-free, and twist-free; let us refer to
these space–times as vanishing scalar invariantsVSId space–times. VSI space–times include the
well-known pp-wave space–times.2

Since all of the scalar curvature invariants vanish, all VSI space–times are exact solutions of
higher-order Lagrangian based theoriessin which the action is given by higher order scalar cor-
rections to the usual general relativistic action based on the Ricci scalard. It has subsequently been
argued that, as in the case ofpp-waves, VSI space–times are exact solutions in string theory,3–5

when supported by appropriate bosonic massless fields of the stringssuch as, for example, a
dilaton and an antisymmetric massless fieldd. Solutions of classical field equations for which the
counter terms required to regularize quantum fluctuations vanishsi.e., they suffer no quantum
corrections to all loop ordersd are also of importance because they offer insights into the behavior
of the full quantum theory.6

In particular fundamental field theories only certain specific types of higher order corrections
occur scf. Refs. 7–9d, and so for a space–time to be a solution of a particular field theory to all
orders, with a specific effective action containing only certain higher order correction terms, it
may not be necessary forall curvature invariants to vanish. Consequently it is also of interest to
determine the set of spacetimes for whichsonlyd the zeroth order curvature invariants vanishsi.e.,
algebraic scalar invariants constructed from the Riemann tensord, denoted VSI0, those space–times
for which sonlyd the zerothand first order curvature invariants vanishsi.e., scalar invariants
constructed from the Riemann tensor and its first covariant derivatived, denoted VSI1, and so on.
In fact, it was proven in Ref. 1 that if all of the zeroth, first, and second order curvature invariants
vanish, then necessarily all scalar curvature invariants vanish; so that VSI2 is equivalent to the set
of VSI space–times.

Let us first recall some properties of VSI space–times. Utilizing a complex null tetrad in the
Newman–PenrosesNPd formalism it was shown that for P-types III and N the repeated null vector
of the Weyl tensor,a is geodesic, shear-free, expansion-free, and twist-freesand the NP coeffi-
cientsk ,s, andr are consequently zerod, and the Ricci tensor has the form
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Rab = − 2F22,a,b + 4F21,sambd + 4F12,sam̄bd, s1d

in terms of the nonzero Ricci componentsFi j . For P-type O, the Weyl tensor vanishes and so it
suffices that the Ricci tensor has the forms1d. All of these space–times belong to Kundt’s class,10

and the metrics for all VSI space–times are displayed in Ref. 1. The generalizedpp-wave solutions
are of P-type N, PP-type Osso that the Ricci tensor has the form of null radiationd with t=0, and
admit a covariantly constant null vector field.2 The Ricci tensors1d has four vanishing eigenvalues,
and the PP-type is N forF12Þ0 or O for F12=0. It is known that the energy conditions are
violated in the PP-type N models11 and hence attention is usually concentrated on the more
physically interesting PP-type O case, which in the nonvacuum case corresponds to pure radiation.

It is well known that the necessary and sufficient conditions for space–times for which the
zeroth order algebraic scalar curvature invariants vanishsVSI0d are of P-type III, N or O and
PP-type N or O. Moreover, the repeated principal null direction of Weyl must be aligned with an
eigenvector of the Ricci tensor. The last condition follows from the vanishing of the mixed
invariantsssee Sec. 3.1 of Ref. 1d. Next we determine the VSI1 space–times.

II. VSI1

We begin by assuming VSI0 and determine the conditions which imply VSI1. From the
Bianchi identities it follows for VSI0 that k=0. The invariants used here are all constructed from
spinors that are symmetrized before and after contractions. Since contractions are always per-
formed with symmetrized spinors we need only give the number of indices contracted between

any two spinors. In particular, we shall make use of the following invariant,I1;s¹Cd2s¹C̄d2.
Heres¹Cd2 is used to indicate the contraction over four indices of two copies of¹sAȦ

CsBCDEd. The

result is then symmetrized and contracted with its conjugate to giveI1.

A. Petrov-type III

Using C3Þ0 with PP-type N or O, we have from the Bianchi identities thatsC3=rF12 and
k=0. Applying k=0 throughout, we find that two of the Bianchi identities yield the following
relation:

DC3 = rF21 + s̄F12 + 2sr − «dC3. s2d

ComputingI1 and usings2d, we obtain

I1 = 576
625f81sss̄C3C̄3d2 + ss̄C3C̄3XX̄+ sXX̄d2g, s3d

whereX=rF21+s̄F12+5rC3.
The vanishing ofI1 necessarily implies thats=0, thus from the Bianchi identitiesrF12=0. If

r=0 we get VSI. IfF12=0 thens3d becomesI1=576srr̄C3C̄3d2 which vanishes whenr=0, giving
VSI with PP-type Osnull radiationd.

B. Petrov-type N

Using k=0 in the Bianchi identities we find thatrF21=−s̄F12 and rF12=0. Therefore if
F12Þ0 thenr=0 implies thats=0, hence we recover VSI. IfF12=0 then two of the Bianchi
identities combine to yieldsC4=rF22. The conditionsk=F12=0 andsC4=rF22 are necessary to
characterize the VSI1 PP-O null radiation models. Suppose thats=0; then eitherr=0 and we have
VSI, or rÞ0 andF22=0 which necessarily characterizes the vacuum VSI1 models.sSee Ref. 12.d

To show sufficiency, we assumek=F12=0 and then note that the remaining curvature com-
ponents,C4 and F22, both have boost weight −2. In the compactedsGHPd formalism13 the
relevant operators have boost weight 0 or 1 and the only spin coefficients with positive boost
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weight ares and r with weights 1; it follows that the covariant derivative of eitherCABCD or
FABȦḂ will have components with only negative boost weight. Therefore, all zeroth and first order
curvature invariants vanish, implying VSI1.

C. Petrov-type O

The freedom in the frame can be used here to consider PP-type N and PP-type O null radiation
separately, and it follows trivially from the Bianchi identities thatk=s=r=0, so that we obtain
VSI. Therefore all Petrov type O VSI0 are VSI from the Bianchi identities.

In summary, the only space–times in the class VSI1 that are not VSI are of P-type N and all
havek=F12=0. The first of these VSI1 models havesC4=rF22; exact solutions were found by
Plebański.11 The second of the VSI1 models haves=F22=0, and these are the vacuum Petrov-
type N solutions withr=U+ ivÞ0. If v=0 these solutions belong to the Robinson–Trautman
class and all are known.11 If vÞ0 then the only twisting, vacuum, P-type N solution known is that
of Hauser.11

There are other cases that may also be of interest. Notice the example in Ref. 14 in which
there are scalar curvature invariants that are nonzerosconstant, depending on a cosmological
constantd while all higher order scalar curvature invariants are zero.

III. «-PROPERTY

A scalar invariant for a matrix is a polynomial of the matrix entries that is invariant with
respect to all changes of basis. It is easy to characterize all such invariants. LetM be annÃn
matrix. The characteristic polynomial ofM is given by

pMsxd = detsxI − Md = xn + o
j=1

n

s− 1d js jsMdxn−j .

The expressionss jsMd are called the elementary symmetric polynomials ofM and are the scalar
invariants ofM fs1sMd is just the trace ofM and snsMd is the determinantg. All other scalar
invariants can be given as polynomials ofs1sMd ,s2sMd ,… ,snsMd. A matrix M for which the
characteristic polynomial is justxn is nilpotent. Now a matrix with the«-property, i.e., the property
that all entries can be made smaller than every given« by a change of basis, must be nilpotent.15

The converse is also true, that is, every nilpotent matrix necessarily possesses the«-property.
Therefore, a matrix is VSI0 if and only if it is nilpotent. Hence we anticipate that VSI space–times
will have the«-property, and this is what we prove next.

Theorem: For and only for VSI space–timessin arbitrary dimensionD and C` metricd one
can find, for arbitrarily largeN and for arbitrarily small«, a tetrad in which all components of the
Riemann tensor and its derivatives up to orderN are smaller than«.

Proof: For non-VSI space–times there always exist a nonvanishing curvature invariant. Its
value of course does not depend on the choice of the tetrad and thus there does not exist a tetrad
with the desired property. It was proven in Ref. 1 that in four-dimensional VSI space–times the
boost weight of all components of the Riemann tensor and its derivatives is negative. Thus with an
appropriate boost we can make all components of the Riemann tensor and its derivatives up to a
desired orderN arbitrarily small.16,17

h

It was pointed out by Penrose in Ref. 18 that P-types III and N have “the property that
gravitational density can be made as small as we please by a suitable choice of time axissfollow-
ing the waved.” It turns out that for VSI0 space–times, not only the gravity density but the
energy-momentum tensor can be made arbitrarily small by an appropriate boosting of the frame.
In the case of VSI1 space–times we can also make the first derivatives of the Riemann tensor
essentially undetectable, and for VSI space–times it is possible to do this for arbitrarily large
derivatives as well. Since experiments measure tetrad components of the Riemann tensor and as
every experiment has some sensitivity limit, we can effectively, by an appropriate boost, “locally
transform away” the Riemann tensor and its derivatives.
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It is of interest to consider if any of the VSI space–times satisfy the following stronger
«-property. We shall say that the Riemann tensor has the uniform«-property if, given an arbitrarily
small «, there exists a tetrad in which the components of the Riemann tensor and all of its
derivatives are smaller than«. Not all VSI space–times satisfy the uniform«-property; this is
shown by considering P-type N vacuum VSI space–times withtÞ0. Let us denote

Xk = Cabcd;e1¯ek
nam̄bncm̄dme1

¯ mek, Yk = Cabcd;e1¯ek
dsnam̄bncm̄dme1

¯ mekd. s4d

By induction onk we shall show that the componentC2424;3̄ 3=Xk=−k! tkC4 for all ordersk.
From Ref. 1 we have the following relations:

k = s = r = e = 0, t = p = 2b = 2a, l = m = s2/3dg, s5d

where all of these spin coefficients are real, andn is nonzero and complex as well. The Bianchi
identities and NP equations then give

dC4 = − tC4, DC4 = 0, dt = t2, Dt = 0. s6d

It can be shown directly thatX1=C2424;3=−tC4, and using strong induction we assume thatXk has
the required form. In general, the following recursive relation holdsXk=dXk−1−Yk−1, consequently
this implies thatYk−1=2sk−1d ! tkC4. Similarly, Xk+1=dXk−Yk, and on expandingYk we observe
that it is composed of terms with boost weight −2 and −1, but the boost weight −1 terms vanish
as a result of a similar proof found in Ref. 1. To show this we note that in this case we have

þC4 = 0, þt = 0, þr8 = − 2t2 = þs8, þk8 = 6tr8 s7d

with commutators19

þ]̆ − ]̆þ = tþ, þþ8 − þ8þ = 2ts]̆ + ]̆8d − sp + qdt2.

Assuming thath is a tetrad component of the Weyl tensor of arbitrary orderk with boost weight
−2 such thatþh=0, it is straightforward to show that the following boost weight −1 scalars,

þ3sk8hd, þ2ss8hd, þ2sr8hd, þsthd, þst8hd, þ]̆h, þ]̆8h, þ2þ8h

all vanish. ThereforeYk consists of only the boost weight −2 term, hence we have thatYk=
−2tXk and thusXk+1=−sk+1d ! tk+1C4. Since the componentC2424;3̄ 3 can be made arbitrarily
large by increasing the order, in this case the Riemann tensor cannot therefore satisfy the uniform
«-property.

A subclass of the VSI space–times for which the uniform«-property is satisfied are those in
which ¹sNdRabcd=0, wheresNd denotesN covariant derivatives. Since only a finite set of compo-
nents of the Riemann tensor and its derivatives are nonzero, then by an appropriate boost all
components of the Riemann tensor and its derivatives can be made smaller than«. In the case of
N=1 we have the VSI symmetric spaces in which¹eRabcd=0 scases in whichN.1 will be
referred to as higher order symmetric spacesd; we shall show that this class is nonempty. We
consider the following line-element:

ds2 = 2h du2 + 2 du dv − dx2 − dy2 s8d

and solve¹eRabcd=0, assuming thath=hsu,x,yd. After an appropriate coordinate transformation,
which preserves the form of the metric, we find thath=ksx2+y2d+c2sx2−y2d wherek and c are
arbitrary constants. Using the NP tetrad,a=dv

a,na=du
a−hdv

a andma=sidx
a−dy

ad /Î2 it follows that
the only nonvanishing spin coefficient isn with F22 andC4 being constants. Ifk=0 andcÞ0 we
recover the P-type N vacuum symmetric space,11 if kÞ0 andc=0 we obtain the P-type O, PP-type
O null radiation symmetric space.11 These VSI symmetric spaces clearly satisfy the uniform
«-property. In P-type III it is known that no symmetric spaces exist;11 however, the possibility

063501-4 Pelavas et al. J. Math. Phys. 46, 063501 ~2005!

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.173.74.41 On: Wed, 26 Oct 2016

14:47:04



remains that P-type III VSI space–times satisfying the uniform«-property may existsfor example,
if ¹sNdRabcd=0 for N.1d.

To illustrate a higher order symmetric space, considers8d with h=gsudsx2−y2d, a subclass of
the P-type N vacuum VSI space–times witht=0. Next, apply a boost so thatl8=Al and n8
=A−1n where the boost parameterA=Cg8sud with C constant. Dropping the primes and working in
the boosted frame we have the following nonvanishing scalars,n=−Î2gsy+ ixd /A2,g=A8 / s2A2d,
andC4=−2g/A2. It follows that the Weyl tensor has the form20

Cabcd= 1
2C2i2jh,amb

sid,cmd
s jdj, s9d

where i , j =3,4,ms3d=m̄, and ms4d=m, the only nonvanishing Weyl tetrad components areC2i2i

=2g/A2. Let X0=C2i2i, thens9d is Cabcd=
1
2X0h,amb

sid,cmd
sidj and

¹eCabcd= 1
2X1,eh,amb

sid,cmd
sidj, s10d

whereX1=DX0+4gX0. It can be shown that thenth order covariant derivative of the Weyl tensor
has the following simple form:

¹en
¯ ¹e1

Cabcd= 1
2Xn,en

¯ ,e1
h,amb

sid,cmd
sidj. s11d

Proceeding inductively, we obtain the following recurrence relationXn=DXn−1+2sn+1dgXn−1.
Froms11d we have that the only nonvanishingnth order tetrad components of the Weyl tensor will
be C2i2i;2¯2. Again, by induction, one can show thatXn=2Asn−1d / sCAn+2d for all nù1 sdenoting
the n−1 derivative of A asAsn−1d andAs0d=Ad.

We now have an expression for thenth order derivatives of the tetrad components of the Weyl
tensor

C2i2i;2¯2 =
2gsnd

sCg8dn+2 , s12d

where it is assumed thatg8Þ0, otherwise the boost is degenerate. Therefore, for anynù2 we can
obtain annth order symmetric space simply by settinggsud to be any polynomial inu of degree
n−1. All of these VSI space–times will satisfy the uniform«-property; more generally this is also
satisfied if there exists a constantM such thatugsnduøM for all n andg8Þ0. On the other hand, we
can uses12d to find examples of VSI space–times that do not satisfy the uniform«-property. It is
known 21 that every geodesic ofs8d is either of type 1 or type 2, where type 1 refers to geodesics
in the 2-surfaceu andn constant and type 2 refers to geodesics in the 2-surfacex andy constant.
Let us consider type 2 geodesics, and setx=x0, y=y0. We find that the tangent vectors are given
by wa=sa,b/ s2ad−agsudsx0

2−y0
2d ,0 ,0d and parametrized byu. Here,u̇=a is a constant andb=1 or

0 for timelike or null geodesics, respectively. The NP tetrad defined above is parallel propagated
along such geodesics, hence froms12d if the uniform «-property is not satisfied at some orderk
then we obtain a parallel propagated curvature singularity of orderk. That is, the curvature
components of orderk in a parallel propagated frame become unbounded along the geodesic;
whenk=0 we recover the definition22 of a parallel propagated curvature singularity. In Ref. 23,
geodesic motion in vacuum Kundt-type N solutions withtÞ0 have revealed the existence of
parallel propagated curvature singularities of order 0.

IV. CONCLUSION

We have determined the necessary and sufficient conditions that characterize VSI1 space–
times. Assuming VSI0, we have shown that in P-type III, VSI1 implies VSI and in P-type O, VSI0

implies VSI. The only proper VSI1 space–times occur in P-type N and PP-type O withk=F12

=0. In addition, the nonvacuum VSI1 space–times are further characterized bysC4=rF22, and
the vacuum space–times haves=F22=0. It has been shown that the«-property offers an alterna-
tive characterization of the VSI space–times, in the sense that only for VSI space–times can a
tetrad be found in which the Riemann tensor and its derivatives up to any fixed order can be made

063501-5 VSIi space–times and the e-property J. Math. Phys. 46, 063501 ~2005!

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.173.74.41 On: Wed, 26 Oct 2016

14:47:04



arbitrarily small. A strengthening of the«-property leads us to define the uniform«-property; this
condition determines a subclass of the VSI space–times where there exists a tetrad in which the
components of the Riemann tensor and all of its derivatives can be made arbitrarily small. Some
examples of VSI space–times satisfying the uniform«-property have been presented.
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