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We solve the equivalence problem for vacuum pp-wave spacetimes by employing
the Karlhede algorithm. Our main result is a suite of Cartan invariants that allows
for the complete invariant classification of the vacuum pp-waves. In particular, we
derive the invariant characterization of the G2 and G3 sub-classes in terms of these
invariants. It is known [J. M. Collins, “The Karlhede classification of type N vacuum
spacetimes,” Class. Quantum Grav. 8, 1859–1869 (1991)] that the invariant classifi-
cation of vacuum pp-waves requires at most the fourth order covariant derivative of
the curvature tensor, but no specific examples requiring the fourth order were known.
Using our comprehensive classification, we prove that the q ≤ 4 bound is sharp and
explicitly describe all such maximal order solutions. C© 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4791691]

I. INTRODUCTION

In general relativity, identical spacetimes are often given in different coordinate systems, thereby
disguising the diffeomorphic equivalence of the underlying metrics. It is consequently of fundamental
importance to have an invariant procedure for deciding the question of metric equivalence. One
approach to this problem is to utilize scalar curvature invariants, obtained as full contractions of
the curvature tensor and its covariant derivatives.3 However, a particularly intriguing situation arises
when we consider pp-waves, spacetimes that admit a covariantly constant null vector field (see
Chapter 24 of Ref. 4 for a definition.) Some time ago it was observed that all curvature invariants of
a pp-wave spacetime vanish.5 Subsequently all spacetimes with the VSI property (vanishing scalar
invariants) and the more general CSI property (constant scalar invariants) were classified.6, 7 It is
now known that either a spacetime is uniquely determined by its scalar curvature invariants, or is a
degenerate Kundt spacetime;3, 8 the VSI and CSI solutions belong to this more general class.

To invariantly classify the degenerate Kundt spacetimes, and pp-waves in particular, one must
therefore use the Karlhede algorithm,9 which is the Cartan equivalence method10 adapted to the
case of four-dimensional Lorentzian manifolds. The invariant classification proceeds by reducing
the six-dimensional Lorentz frame freedom by normalizing the curvature tensor R and its covariant
derivatives, Rq. The unnormalized components of Rq are called Cartan invariants. We define the
IC (invariant classification) order of a given metric to be the highest order q required for deciding
the equivalence problem for that metric. An upper bound on the IC order is often referred to as the
Karlhede bound.

Before proceeding, let us summarize the Karlhede algorithm; for details see Chapter 9.2 of
Ref. 4. Set t− 1 = 0 and d− 1 = 6 (the dimension of the Lorentz group). At each order q ≥ 0, let
0 ≤ tq − 1 ≤ tq denote the number of functionally independent Cartan invariants, and let 6 ≥ dq − 1

≥ dq denote the dimension of the joint isotropy group of the normalized R, R1, . . . , Rq. The algorithm
terminates as soon as tq − 1 = tq and dq − 1 = dq. A value of dq = 0 means that there exists an invariant

a)Electronic mail: rmilson@dal.ca.
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TABLE I. Type (0, 2, 2) G2 solutions.

G2 f (ζ , u) Invariant condition

B22 F(u − ikζ )u − 2 B2/B1 = k, �X1 = 2X2
1, ϒ̂ = 0, AA* �= 1, B1 �= 0

C22 f (ζeiu) B1 = 0,�X2 = 0, ϒ̂ = 0, μ �= 0, AA∗ �= 1
L22 g log ζ A = 1, Y = 0
A22 f (ζ ) μ = 0, �ν = 0

tetrad. If tq < 4, then Killing vectors are present. The dimension of the isometry group is 4 − tq
+ dq. Henceforth, we will refer to the sequence (t0, t1, . . . , tq) as the invariant count.

In this paper, we focus on a particularly simple class of VSI spacetimes: the vacuum pp-waves,
whose metric has the simple form shown in Eq. (9) below. The class of pp-waves is perhaps the most
interesting case to deal with in the context of invariant classification. In this regard, one can cite
Brinkmann’s theorem and its generalizations11, 12 that characterize pp-waves as the most degenerate
class in the problem of algebraically recovering the metric from the curvature tensor.

The symmetry classes for pp-waves were initially classified by Kundt and Ehlers13 (see also
Table 24.2 of Ref. 4) for vacuum solutions, and subsequently extended by Sippel and Goenner14 to
the general case. The Karlhede bound for pp-waves was investigated in Refs. 1 and 15 where q ≤ 4
was established; however, it was not known whether this bound is sharp, or if it could be lowered
further. Despite the fact that these metrics have a very simple form, depending on just one parametric
function f (ζ , u) (see Eq. (9) below), the present paper is the first to present a complete invariant
classification for vacuum pp-waves, and to establish the sharpness of the q ≤ 4 bound.

All vacuum pp-waves have at least one Killing vector. Kundt and Ehlers identified 3 classes of
G2 solutions (Table I), 4 classes of G3 solutions (Table II), a universal form for the G5 solutions,
and two types of homogeneous G6 solutions (Table III). Below, we exhibit explicit Cartan invariants
that distinguish the various special sub-classes in an invariant fashion.

The G1, G2, G3 solutions (α �= 0) and the G5, G6 solutions (α = 0) form two distinct solution
branches; here α is a fundamental first-order invariant which will be defined precisely in Sec. II.
The classification of the α �= 0 class is summarized in Figure 1. The numbers in the solution labels
refer to the invariant count with the initial 0 and any trailing 3 omitted. Thus, solution form AP123

refers to a metric with an invariant count of (0, 1, 2, 3, 3) while AP122 refers to a G2 solution with
an invariant count of (0, 1, 2, 2). The G1 solutions have three independent invariants and thus their
label indices end with a 3. For the same reason, the indices of the G2 solutions end with a 2 while
the indices of the G3, G5 solutions end with a 1.

From the point of view of invariant classification there are 4 classes of generic G2 solutions.
We label these A22, B22, C22, L22 and summarize their invariant classification in Table I (the Cartan
invariants in the third column will be defined in Sec. III.) Kundt-Ehlers described forms B22 and
L22. Their third G2 form is

f (ζ, u) = F(ζeiku), (1)

where F is a holomorphic function and k a real constant. The k parameter is not essential, and if
k �= 0 can be normalized to k → 1 by means of a coordinate transformation. In terms of the present

TABLE II. Type (0, 1, 1) G3 solutions.

G3 f (ζ , u) Invariant condition

BL11 Cu − 2 log ζ B = 0, A = 1, �μ = μ2, Y = 0, μ �= 0
AP11 (k0ζ )2ik1 μ = 0, AA* = 1, Y = 0, A2 �= 1
AE11 exp (k0ζ ) μ = 0, A = − 1, Y = 0
AL11 eik log ζ μ = 0, A = 1, Y = 0
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TABLE III. The G5 and G6 solutions.

Label f (ζ , u) Invariant condition

A11 gζ 2 α = 0, �γ �= 0
B0 k1u2ik0−2ζ 2 α = 0, �γ = 0, Rγ �= 0
C0 exp (2ik0u)ζ 2 α = 0, �γ = 0, Rγ = 0

terminology, the Kundt-Ehlers solutions of type (1) belong to class C22 in the case of k = 1, and to
class A22 if k = 0.

One benefit of the invariant classification is a clear description of the mechanism of specialization
of the G1 → G2 → G3 solutions. In order to understand the G1 → G2 specialization one first has to
understand the invariant mechanism by which the solution forms in Table I arise.

All of the above G2 solution forms, indeed, all solutions encountered in this investigation
conform to a general ansatz,

f (ζ, u) = g1 F(g2ζ ) + g3ζ, (2)

where F is a holomorphic functions and where gi = gi(u), i = 1, 2, 3 are complex valued functions
of one variable. The invariant characterization of the general ansatz, namely, Eq. (68), is derived in
Proposition 3.3 below.

This general form, which we name A∗∗
23, bifurcates into a number of more specialized forms,

which we label by A, B, C, P, E, L and by numerical indices that describe the invariant count.
The various possibilities are displayed in Table V. In this table, an asterisk denotes a generic
precursor of a more specialized solution, while the labels P, E, L refer to, respectively, solutions of
power, exponential, and logarithmic type. Roughly speaking, the Kundt-Ehlers G2 solution forms
are appropriate specializations of the A, B, C, and L solution forms.

The G1 → G2 specialization can be understood via the notion of a “precursor solution.” This is
a G1 solution that is mild generalization of a corresponding G2 solution. For example, the precursor

CE122CP122

C22B22 L22

L122 BL122

BL11

AL122

AP11 AE11

A22

AL11

BL123AP123 AE123 AL123

A23 B23 L23C23

G3

G2

G1

BE122AE122BP122AP122

BP13 BE13 CP13 CE13AP13 AE13 AL13 BL13L13

FIG. 1. Specialization of G1 → G2 → G3 solutions in the α �= 0 class.
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of the B22 solution

f (ζ, u) = F(u−ikζ )u−2

is the B23 solution

f (ζ, u) = F(u−ikζ )u−2 + gζ, (3)

where g = g(u) is an arbitrary complex valued function of one variable. Precursors of the other G2

solutions have an analogous form. The invariant conditions that define the various precursor classes
are listed in Table VII. In each case, the specialization to a G2 involves the loss of the gζ term, or
equivalently, the vanishing of a certain higher order invariant.

As we show below, a vacuum pp-wave has no zeroth order invariants,4 and generically two
independent first order invariants, α, α*. In order to understand the G2 → G3 specialization it is
necessary to understand the sub-class of solutions for which t1 = 1, i.e., metrics for which the
invariants α and α* are functionally dependent. We refer to such solutions as belonging to the (0,1)
class and devote Sec. IV to their analysis. Thus, the specialization to the G3 solutions follows the
following path:

(0, 1, 3) → (0, 1, 2, 2) → (0, 1, 1),

where the middle step consists of type (0,1) G2 solutions, summarized in Table IX.
Another consequence of our analysis is a firm determination of the Karlhede bound for vacuum

pp-waves. It turns that q ≤ 4 is the sharp bound.

Theorem 1.1. There exist vacuum pp-wave spacetimes with an IC order q = 4. Every such
metric belongs to one of the four classes exhibited in Table IV below.

Note that metrics that require 4th order invariants for invariant classification necessarily have a
(0,1,2,3,3) as their invariant count.

The rest of the paper is organized as follows. Section II is an introductory description of the
Karlhede algorithm as it applies to the class of vacuum pp-wave metrics. In particular, this section
describes the fundamental bifurcation into the generic α �= 0 class and the specialized α = 0 subclass.
The invariant classification of the former consists of 8 sub-class types shown in Figure 2. Section III
introduces the various Cartan invariants necessary for the generic classification and derives the A,
B, C, P, E, L solution forms in an invariant manner. Section IV deals with the type (0,1) solutions in
the α �= 0 class. Section V classifies the G2-precursor solutions. Section VII derives and classifies
the G1 metrics having maximal IC order; the proof of Theorem 1.1 is given here. Sections III,
IV, V, and VII, when taken together, constitute the invariant classification of the G1 solutions; the
specialization diagram for the various G1 sub-classes is presented in Figure 4. Sections VI and VIII
deal with the invariant classification of the G2 and G3 solutions, respectively. The α = 0 branch
consists of G5 and G6 solutions. There is a generic G5 solution that specializes into two distinct
classes of homogeneous G6 solutions, as per Figure 3. This branch of the classification is discussed
in Sect. IX and summarized in Table III.

TABLE IV. Type (0, 1, 2, 3) solutions.

G1 f (ζ , u) Invariant condition

BL123 (C log ζ + keihζ )u − 2 B = 0, A = 1, �μ = μ2, �log (YY*) = 4μ, μ �= 0
AP123 (k0ζ )2ik1 + k2eih(1−2ik1)ζ μ = 0, AA* = 1, A2 �= 1

(1 − 3A)�log Y + (A − 3)�log Y* = 0
AE123 exp(k0ζ ) + eik1 ehζ μ = 0, A = − 1, �(Y/Y*) = 0
AL123 eik0 log ζ + k1eihζ μ = 0, A = 1, �(YY*) = 0
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(0,2,3)
G1

Table V

(0,1,3)
G1

Table VI

(0,2,3)
G2 Precursor

Table VII

(0,1,3)
G2 Precursor

Table VIII

(0,1,2,3)
G2 Precursor
Max IC order

Table IV

(0,2,2)
G2

Table I

(0,1,2,2)
G2

Table IX

(0,1,1)
G3

Table II

FIG. 2. The invariant classification of the α �= 0 class.

II. VACUUM PP-WAVE SPACETIMES

Throughout, we use the four-dimensional Newman-Penrose formalism16 adapted to a complex,
null-tetrad (ea) = (ma, m∗a, �a, na) = (δ, δ∗, D,�). These vectors satisfy

�ana = 1, mam∗a = 1,

with all other cross-products zero. Equivalently, letting θ1, . . . , θ4 denote the dual coframe, the
metric is given by

g = 2θ1θ2 − 2θ3θ4.

The connection 1-form and the curvature 2-form are defined, respectively, by

dθa = ωa
b ∧ θb, ω(ab) = 0, (4)

�a
b = dωa

b + ωa
c ∧ ωc

d . (5)

A*23

B22 C22

A11

B0 C0 G6

G5

G2

G1

FIG. 3. Specialization diagram for the G5, G6 solutions.
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BP13

P13E13

CE13 BE13CP13

P23E23

A*23A**23

B*23C*23

B23 A23

L23

AP13L13 AE13 AL13BL13

BL123 AP123 AE123 AL123

C23

FIG. 4. G1 solutions.

The connection components are labeled by the 12 Newman-Penrose scalars:

− ω14 = σ θ1 + ρ θ2 + τ θ3 + κ θ4, (6)

ω23 = μ θ1 + λ θ2 + ν θ3 + π θ4, (7)

− (ω12 + ω34)/2 = β θ1 + α θ2 + γ θ3 + ε θ4. (8)

The curvature components are labeled by the Ricci scalar � = �̄, traceless Ricci components
�AB = �̄B A, A, B = 0, 1, 2, and Weyl components �C, C = 0, . . . , 4:

�14 = �01(θ34 − θ12) − �02θ
13 + �00θ

24 + �0θ
14 − (�2 + 2�) θ23 + �1(θ12 + θ34),

�23 = �21(θ12 − θ34) + �22θ
13 − �20θ

24 + �4θ
23 − (�2 + 2�)θ14 − �3(θ12 + θ34),

(�12 + �34)/2 = −�12θ
13 + �10θ

24 + �1θ
14 − �3θ

23 +
+�11(θ34 − θ12) + (�2 − �)(θ12 + θ34),

where θab = θa ∧ θb.
A pp-wave is a spacetime admitting a covariantly constant null vector field. This entails

κ = σ = ρ = τ = 0.

Such spacetimes are necessarily Petrov type N or type O and belong to the Kundt class; see
Sec. 24.5 of Ref. 4. A vacuum pp-wave that is not flat-space is necessarily type N:

�AB ′ = 0, �0 = �1 = �2 = �3 = 0, �4 �= 0,

Applying a boost and a spatial rotation we normalize the tetrad by setting �4 → 1. Therefore, there
are no 0th order Cartan invariants. The remaining frame freedom consists of the 2-dimensional group
of null rotations.

As shown in Sec. 24.5 of Ref. 4, integration of the above equations yields the following metric:

ds2 = 2dζdζ̄ − 2dudv − ( f + f̄ )du2, (9)
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where f = f (ζ , u) is analytic in ζ . The above form is preserved by the following class of
transformations:

ζ̂ = eik(ζ + h(u)), (10)

v̂ = a(v + h′(u)ζ̄ + h̄′(u)ζ + g(u)), (11)

û = (u + u0)/a, (12)

f̂ = a2( f − h̄′′(u)ζ + 1/2(h′(u)h̄′(u) − g(u))). (13)

The Bianchi identities (see Eqs. (7.32c) and (7.32d) of Ref. 4) impose:

β = ε = 0. (14)

Using the notation of Ref. 1, the non-vanishing first-order components are

(D�)50′ = 4α, (D�)51′ = 4γ.

The transformation law for these components under a null rotation is (see Eq. (7.7c) of Ref. 4)

α′ = α, γ ′ = γ + zα, (15)

where z is a complex valued scalar. Therefore, α is a first-order Cartan invariant and the invariant
classification divides into two cases: α = 0 and α �= 0. In the first case, γ is an invariant, while in the
second case, we fix the tetrad by normalizing γ → 0. These two cases correspond to class IIa and
IIb of the Collins classification1 of type N, vacuum spacetimes. We consider them below in more
detail.

Proposition 2.1. Suppose that α �= 0. Then, dp = 0 for p ≥ 1. The possible values of the invariant
count sequence are

(0, 2, 3, 3), (0, 1, 3, 3), (0, 1, 2, 3, 3), (0, 2, 2), (0, 1, 2, 2), (0, 1, 1).

The first 3 possibilities describe a G1, the next 2 possibilities are a G2, and the last possibility is a
G3. The Cartan invariants are generated by

δ∗n
α, δ j�n− jμ, �nν, 0 ≤ j ≤ n, n = 0, 1, 2, . . .

and their complex conjugates, where the above spin coefficients are calculated relative to the
normalized �4 → 1, γ → 0 tetrad.

Proposition 2.2. Suppose that α = 0. Then dp = 2 for all p. The possible values of the invariant
count sequence are

(0, 1, 1), (0, 0).

The first possibility describes a G5. The second possibility describes a G6 (homogeneous space).
The Cartan invariants are generated by

�nγ, n = 0, 1, 2, . . .

and their complex conjugates, calculated relative to a tetrad normalized by �4 → 1.

In Secs. III–IX we will show that each of these cases describes a well-defined class of solutions,
and go on to derive a the canonical forms for the metric in each case. We now turn to the proof of
Proposition 2.1, which concerns the α �= 0 case. The Newman-Penrose (NP) equations (see (7.21f)
and (7.21o) of Ref. 4) imply the additional constraints:

π = λ = 0.
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The non-vanishing second-order curvature components are (see Eqs. (4.2a)– (4.2t) of Ref. 1):

(D2�)50′;00′ = 4Dα,

(D2�)50′;01′ = 4δα − 4α∗α,

(D2�)50′;10′ = 4δ∗α + 20α2,

(D2�)50′;11′ = 4�α,

(D2�)51′;10′ = −4μ∗α,

(D2�)51′;11′ = −4ν∗α.

Here we are using the notation of Ref. 2 for symmetrized dyad components. No invariants will be
missed, because it can be proved using the Bianchi and Ricci identities that at all orders of covariant
differentiation of the Weyl spinor only the symmetrized parts are algebraically independent. The
details can be found in Appendix 2 of the just cited reference.

In light of the above equations, the independent second-order Cartan invariants are μ, ν, δ*α,
and their complex conjugates. The commutator relations are

�D − D� = 0, (16)

δD − Dδ = α∗ D, (17)

δ� − �δ = −ν∗ D − α∗� + μδ, (18)

δ∗δ − δδ∗ = (μ∗ − μ)D − α∗δ∗ + αδ. (19)

The dual structure equations are

dω1 = αω1 ∧ ω2 − μω1 ∧ ω3, (20)

dω3 = (α∗ω1 + αω2) ∧ ω3, (21)

dω4 = (μ∗ − μ)ω1 ∧ ω2 + (ν∗ω1 + νω2) ∧ ω3 − (α∗ω1 + αω2) ∧ ω4. (22)

The NP-equations imply the following relations amongst the invariants:

Dα = 0, (23)

δα = αα∗, (24)

�α = −μ∗α, (25)

Dμ = 0, (26)

δ∗μ = −αμ, (27)

Dν = 0, (28)

δ∗ν = 1 − 3αν, (29)

δν = −α∗ν + �μ + μ2. (30)

Higher order relations follow in a straightforward manner from these and from the commutator
relations. Fixing �4 → 1 reduces the isotropy to null rotation. Fixing γ → 0 eliminates this frame
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TABLE V. Type (0, 2, 3) solution classes.

G1 f (ζ , u) Invariant condition

A∗∗
23 g1F(g2ζ ) + g3ζ δA* δ2M = δM δ2A*

A∗
23 F(gζ )g − 2 + g1ζ δM = 0

A23 f (ζ ) + g1ζ μ = 0
B∗

23 F(hikζ )h2 + gζ B2/B1 = k, AA* �= 1, B1 �= 0
C∗

23 F(eihζ ) + gζ B1 = 0, A �= 1
P23 (eg1 ζ )ih + g2ζ AA* = 1, A2 �= 1
E23 exp (g1ζ ) + g2ζ A = − 1
L23 g1 log ζ + g2ζ A = 1

freedom. Therefore, the isotropy is trivial. Equation (24) implies that α is not constant. All invariants
are annihilated by D. Therefore, there are either 3, 2, or 1 independent Cartan invariants. The
conclusions of Proposition 2.1 now follow directly from the Karlhede algorithm.

Next we present the proof of Proposition 2.2, which treats the α = 0 class. As was mentioned
above, the first-order Cartan invariants are generated by

(D�)51′ = 4γ.

The Newman-Penrose equations (see (7.21f), (7.21o), (7.21r) of Ref. 4) imply

Dγ = 0, δγ = 0, δ∗γ = 0. (31)

There is only one non-zero second-order curvature component, namely,

(D2�)51′;11′ = 4�γ + 20γ 2 + 4γ̄ γ,

The operator transformation law for null rotations is (see (7.7a) of Ref. 4)

D′ = D, δ′ = δ + B D, �′ = � + Bδ∗ + B̄δ + B B̄ D.

Therefore, by (31), �nγ is well-defined, despite the fact that no canonical choice of � exists and is
invariant with respect to null rotations. By Eqs. (7.6a)– (7.6d) of Ref. 4, all commutators are spanned
by δ, δ*, D. This implies that

δ�nγ = δ∗�nγ = D�nγ = 0.

Therefore, there are two possibilities. Either γ is a constant, in which case we have a homogeneous
G6; or γ is the unique independent invariant, in which case we have a G5. This concludes the proof
of Proposition 2.2.

III. THE G1 SOLUTIONS

In this section, we derive solutions for certain key G1 sub-classes. We assume that α �= 0 for the
remainder of this section. The solutions are summarized in Tables V and VI. In the tables, F = F(z)
is an analytic function; g = g(u) is complex-valued function of u; h = h(u) is a real-valued function
of u; and k is a real constant. The meanings of g1, g2, h1, h2, k1, k2 are analogous.

TABLE VI. Type (0, 1, 3) solutions.

G1 f (ζ , u) Invariant condition

P13 (k0eihζ )2ik1 + gζ B = 0, A2 �= 1, μ �= 0
E13 exp (keihζ ) + gζ B = 0, A = − 1
L13 eikh log ζ + gζ B = 0, A = 1
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Throughout, this section δ, δ*, �, D is a tetrad defined by the following normalizations:

�4 = 1, γ = 0. (32)

Let ω1, ω2, ω3, ω4 denote the dual coframe.
We now introduce the following invariants:

A := δ∗α/α2, (33)

B := μA − μ∗, B1 = Re B, B2 = Im B, (34)

M := αμ, (35)

X := B/(AA∗ − 1), X1 = Re X, X2 = Im X, AA∗ �= 1, (36)

Y := (3 − A)ν − 1/α + (�μ + μ2)/α∗, (37)

ν̂ := ν + X (μ + 2X∗)/α∗, AA∗ �= 1, (38)

ϒ̂ := �(ν̂/X∗) − 2ν̂ + 1/α − 4iX X2/α
∗, (39)

�̂ := � + ẑ∗δ + ẑδ∗ + ẑ ẑ∗ D, ẑ := X∗/α, AA∗ �= 1, (40)

X̃ := � log M∗/(1 − A∗), A �= 1, (41)

ν̃ := ν + X̃∗(X̃ + 2μ − A∗ X̃∗)/α∗, A �= 1, (42)

ϒ̃ := �(ν̃/X̃∗) − 2ν̃ + 1/α − 4iX̃ X̃2/α
∗, (43)

�̃ := � + z̃∗δ + z̃δ∗ + z̃ ẑ∗ D, z̃ := X̃∗/α. (44)

In the sequel we show that the above invariants suffice to invariantly classify the various
subclasses of G1, G2, and G3 vacuum pp-wave solutions.

The above definitions imply the following elementary identities:

A = (B + μ∗)/μ, (45)

AA∗ − 1 = A(B∗ + μ)/μ∗ − 1 = (AB∗ + B)/μ∗, (46)

X = Bμ∗

AB∗ + B
. (47)

In Proposition 3.1 below we show that �̂α = 0 in the generic case where AA* �= 1. We therefore
introduce the alternate invariant tetrad δ̂, δ̂∗, �̂, D̂ which is defined by the normalizations

�4 → 1, �̂α → 0,

and which differs from the tetrad (32) by the null rotation in (40). A Killing vector V necessarily
annihilates all invariants.17 We employ the alternate tetrad because sometimes it is convenient to
work in a frame where �̂ is a linear combination of Killing vectors.

For a given vector field V let us write

V = V 1δ + V 2δ∗ + V 3� + V 4 D,
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where V 1, V 2 are complex conjugate and V 3, V 4 are real. The following proposition shows that if
AA* �= 1, then the normalization �̂α → 0 selects a well-defined invariant tetrad.

Proposition 3.1. Suppose that AA* �= 1. Then, every vector field that satisfies

LV α = LV α∗ = 0, V 3 �= 0. (48)

has the form V = a�̂ + bD, a �= 0. If AA* = 1, but B �= 0, then (48) does not have a solution. If
AA* = 1 and B = 0, then there is a 1-parameter family of solutions to (48).

Proof. The null-rotation transformation law for � is (see (7.7 c) of Ref. 4),

�̂ = � + ẑ∗δ + ẑδ∗ + ẑ ẑ∗ D. (49)

Hence, by (23)–(25) and (33) we seek a scalar ẑ such that(
Aα α∗

α A∗α∗

)(
ẑ

ẑ∗

)
=

(
μ∗

μ

)
. (50)

If AA* �= 1, the solution is

ẑ = A∗μ∗ − μ

(AA∗ − 1)α
= X∗

α
. (51)

If AA* = 0, then the system has rank 1. In this case the system is consistent if and only if∣∣∣∣∣ Aα μ∗

α μ

∣∣∣∣∣ = αB = 0.

�
Next, we establish some key relations for these invariants and certain other scalars that will

prove useful in our calculations.

Proposition 3.2. Suppose that α �= 0. If the normalization (32) holds then

α = ea−a∗
/(Za)∗ = ea−a∗

(aζ )∗, (52)

μ = e−a−a∗
Lu, (53)

M = (e−2a/Za)∗Lu, (54)

ν = e−a−3a∗ (
Zuu + (�a/Za)∗

) = e−a−3a∗
(Zuu + ( fζ )∗), (55)

A = −1 − (La)∗, (56)

ω1 = (α∗)−1da, (57)

ω3 = ea+a∗
du, (58)

ω4 = e−a−a∗ (
( f + f ∗ + Zu Z∗

u )du + dv − Zudζ ∗ − Z∗
udζ

)
, (59)

where

a := 1

4
log fζ ζ , aζ �= 0, (60)

ζ =: Z (a, u), ζ ∗ =: Z∗(a∗, u), (61)
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L := log Za, (62)

�(a, u) := f (ζ, u). (63)

We also have

μ = X A∗ + X∗, (64)

δA = 0. (65)

Furthermore, if Q = Q(a, u) then

δQ = α∗ Qa, (66)

�Q = e−a−a∗
Qu . (67)

We begin by deriving some a key classes of G1 solutions; all the various solutions discussed in
this paper are subclasses of these general categories.

Proposition 3.3. Suppose that α �= 0. The following conditions are equivalent:

δA∗ δ2M = δM δ2A∗, (68)

f (ζ, u) = g1 F(g2ζ ) + g3ζ, (69)

where F = F(z) is an analytic function such that F′′′(z) �= 0 and where gi = gi(u), i = 1, 2, 3 are
complex-valued such that g1, g2 �= 0. Furthermore, δM = 0 if and only if g1 = g−2

2 , i.e.,

f (ζ, u) = F(gζ )g−2 + g3ζ. (70)

In addition M = 0 if and only if g1 = g2 = 1, i.e.,

f (ζ, u) = F(ζ ) + gζ. (71)

Proof. Our first claim is that (69) is equivalent to the following chain of conditions:

fζ ζ = g4 F1(g2ζ ), g4 = g1g2
2, F1(z) = F ′′(z), (72)

a = F2(g2ζ ) + g5, g5 = 1

4
log g4, F2(z) = 1

4
log F1(z), (73)

ζ = Z (a, u) = F3(a − g5)/g2, F3(F2(z)) = z, (74)

L = F4(a − g5) + g6, g6 = − log g2, F4(z) = log F ′
3(z), (75)

Lu + g7La = g8, g7 = g′
5(u), g8 = g′

6(u). (76)

Note that since α �= 0, by (52), we must have L �= 0. We now consider two cases.
First, let us consider the case of δM = 0. Note that in this case (68) holds trivially. Also, in this

case, Lua = 0, and hence without loss of generality, g5 = 0. The case of M = 0 is true if and only if
Lu = 0. Here g5 = 0 and g1 = g2 = 1.

Let us now consider the generic case where δM �= 0. In this case, (68) can be restated as

δ

(
δA∗

δM

)
= 0.
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Observe that

δ(A∗/M)

δ(1/M)
= A∗ − M

δA∗

δM
,

δ

(
δ(A∗/M)

δ(1/M)

)
= −Mδ

(
δA∗

δM

)
.

Hence, (68) is equivalent to

δ

(
δ(A∗/M)

δ(1/M)

)
= 0.

Next, we observe that

δ(A∗/M)

δ(1/M)
= −1 − La + Lu Laa

Lau
.

Hence,

δ∗
(

δ(A∗/M)

δ(1/M)

)
= 0.

Hence, by (66), condition (68) is equivalent to

δ(A∗/M)

δ(1/M)
= g, g = g(u),

δ

(
1 + A∗ − g

M

)
= δ

(−La + g

Lu

)
Z∗

a∗e2a∗ = 0.

The latter condition is equivalent to (76). �
Proposition 3.4. Suppose that B1 �= 0 and AA* �= 1. Then the following are equivalent: (i) B2/B1

= k, is a real constant and (ii) f (ζ , u) = F(hikζ )h2 + gζ .

Proof. Let C = 1 + ik so that condition (i) is equivalent to

B

B∗ = B1 + iB2

B1 − iB2
= C

C∗ , (77)

or Im(B/C) = 0. Suppose that (i) holds. By (46),

AA∗ − 1 = (B/μ∗)
(
1 + (C∗/C)A

) = (B∗/μ)
(
1 + (C/C∗)A∗) .

Hence, by (53) and (56),

e−a−a∗
(C∗/B∗)(AA∗ − 1) = e−a−a∗

(C∗ + C A∗)/μ = (−2ik − C La)/Lu . (78)

By Proposition 3.2, the above is both real and holomorphic in a, and hence independent of a. Hence,

Lu + (1 + ik)h1La = −2ikh1, (79)

where h1 = h1(u) �= 0 is real. Conversely, (79) with h1 �= 0 implies that C/B is real. The latter implies
condition (i). Furthermore, (79) is equivalent to the following chain of conditions:

L = F1(a − (1 + ik)h2) − 2ikh2, h′
2(u) = h1(u),

Z = F2(a − (1 + ik)h2)e−2ikh2 ,

a = (1 + ik)h2 + F3(e2ikh2ζ ),

fζ ζ = h2+2ik F4(hikζ ), h = e2h2 ,

f = F(hikζ )h2 + gζ.

�
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The other generic G1 solutions are derived in the following Proposition. The proofs are appro-
priate modifications of the techniques utilized for the proofs of Propositions 3.3 and 3.4 above.

Proposition 3.5. Suppose that A �= 1. Then, the following are equivalent: (i) B1 = 0
and (ii) f (ζ , u) = F(eihζ ) + gζ .

Proposition 3.6. The following are equivalent: (i) AA* = 1 and (ii) L = Pa + g, where
g = g(u) and P = P(u) such that PP* + P + P* = 0.

Proposition 3.7. Suppose that A2 �= 1. The following are equivalent: (i) AA* = 1 and
(ii) f (ζ, u) = (eg1ζ )ih + g2ζ.

Proposition 3.8. The following are equivalent: (i) A = − 1 and (ii) f (ζ , u) = exp (g1ζ ) + g2ζ .

Proposition 3.9. The following are equivalent: (i) A = 1 and (ii) f (ζ , u) = g1 log ζ + g2ζ .

Note that if A = 1, then B = μ − μ*. Hence, if A = 1, then B1 = 0 automatically.

IV. THE (0, 1) CLASS

Above we showed that α, α* generate the first-order invariants. Generically, these are indepen-
dent and hence, generically, the invariant count is (0, 2). However, an important subclass occurs
for which dα ∧ dα* = 0. We will refer to these as the (0, 1) solutions. The next two Propositions
characterize the (0,1) solutions in terms of invariants.

Proposition 4.1. If μ �= 0, then dα ∧ dα* = 0 if and only if B = 0. In this case, the condition
AA* = 1 follows automatically. If μ = 0, then dα ∧ dα* = 0 if and only if AA* = 1.

Proof. By (24) and (25),

δαδ∗α∗ − δ∗αδα∗ = α2α∗2(1 − AA∗),

δα�α∗ − δα∗�α = αα∗2 B∗.

Hence, the condition dα ∧ dα* = 0 is equivalent to the conjunction of AA* = 1 and B = 0. However,
if μ �= 0 and B = 0, then A = μ*/μ, and hence AA* = 1 automatically. Therefore, if μ �= 0, then the
condition B = 0 suffices for a (0,1) solution. On the other hand, if μ = 0, then B = 0, and therefore
the condition AA* = 1 suffices for a (0,1) solution. �

Proposition 4.2. Suppose that B = 0 and AA* = 1. Then, necessarily A is a constant and
δM = 0.

Proposition 4.3. Suppose that B = 0 and AA* = 1. If A �= 1, then

L = − A + 1

A
a + A − 1

A
(k + ih), (80)

where k is a real constant, and h = h(u) is real. If A = 1, then

L = −2a + h + ki. (81)

Proposition 4.4. A type (0, 1) solution belongs to one of the classes shown in Table VI.

Proof. By Proposition 4.1, B = 0 and AA* = 1. We proceed by cases. Suppose that A2 �= 1. By
Proposition 3.7,

f = (eg1ζ )2ih1 + g2ζ, L = Pa − (1 + P/2)g1, P = −2i/(h1 + i).
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TABLE VII. Type (0, 2, 3) G2-precursor solutions.

G1 f (ζ , u) Invariant condition

B23 F(u − ikζ )u − 2 + gζ B2/B1 = k, �X1 = 2X2
1, AA* �= 1, B1 �= 0

C23 f (ζeiu) + gζ B1 = 0, �X2 = 0, μ �= 0, AA* �= 1
L23 g1 log ζ + g2ζ A = 1
A23 f (ζ ) + g1ζ μ = 0

By Proposition 4.3, h1 = k1 a real constant. Since (1 + P/2) = (A − 1)/(2A), we must
have g1 = k2 + ih2. This gives form P13. Next, consider the case A = − 1. Here, L = k + ih.
By Proposition 3.8 we arrive at form E13. Finally, if A = 1, then (81) and Proposition 3.9 give
form L13. �

V. THE G2 PRECURSORS

As above, we assume that α �= 0 and that δ, δ*, �, D is a tetrad normalized so that �4 → 1 and
γ → 0. In this section we classify the solutions that meet the following criterion.

Definition 5.1. We say that a vacuum pp-wave metric is a G2-precursor if there exists a real
vector field V = V 1δ + V 2δ∗ + V 3� + V 4 D such that

LV ω1 = LV ω2 = LV ω3 = 0, V 1 �= 0, or V 3 �= 0. (82)

A Killing vector annihilates all invariant scalars and invariant differential forms (see Chapters 8–
10 of Ref. 17 for a proof). Thus, the “precursor” terminology reflects the fact that (82) is a necessary,
but not sufficient condition, for the existence of a Killing vector independent from D = ∂v . The
requisite propositions and proofs are presented below. The resulting classification of precursor
solutions is summarized in Tables VII and VIII.

Proposition 5.2. A vector field V = V 1δ + V 2δ∗ + V 3� + V 4 D annihilates ω1, ω2, ω3 if and
only if C = α∗V 1 is a constant, while V 3 satisfies

V 3μ∗ = C + C∗ A, (83)

δV 3 = α∗V 3, (84)

�V 3 = −C − C∗. (85)

TABLE VIII. Type (0, 1, 3) G2-precursor solutions.

G1 f (ζ , u) Invariant condition

BP13 (k0u−ik1 ζ )2ik2 + gζ B = 0, �2(1/μ) = 0, �μ �= 0, A2 �= 1
CP13 (k0eiuζ )2ik1 + gζ B = 0, �μ = 0, μ �= 0, A2 �= 1
BE13 exp(k0u−ik1 ζ ) + gζ B = 0, A = − 1, �2(1/μ) = 0, �μ �= 0
CE13 exp (k0eiuζ ) + gζ B = 0, A = − 1, �μ = 0, μ �= 0
L13 eikh log ζ + g2ζ B = 0, A = 1
BL13 Cu − 2 log ζ + gζ B = 0, A = 1, �μ = μ2, μ �= 0
AP13 (k0ζ )2ik1 + gζ μ = 0, AA* = 1, A2 �= 1
AE13 exp (kζ ) + gζ μ = 0, A = − 1
AL13 eik log ζ + gζ μ = 0, A = 1
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Proof. By (23)–(25) and (33),

LV α = α(C + C∗ A − V 3μ∗). (86)

By (57) and the definition of C,

LV (α∗ω1) = LV da = d(LV a) = d(V 	da) = dC, (87)

By (21),

LV ω3 = d(V 	ω3) + V 	dω3 (88)

= d(V 3) + (α∗V 1 + αV 2)ω3 − α∗V 3ω1 − αV 3ω2 (89)

= (δV 3 − α∗V 3)ω1 + (δ∗V 3 − αV 3)ω2 + (�V 3 + C + C∗)ω3. (90)

The desired equivalence follows immediately. �
Proposition 5.3. Suppose that B �= 0 and AA* �= 1. The following are equivalent:

(i) there exists a V such that

LV ω1 = LV ω2 = LV ω3 = 0, V 1, V 3 �= 0; (91)

(ii) the invariant B/B* is a constant, and

dα ∧ dα∗ ∧ dμ = 0; (92)

(iii) condition (91) holds with V = C X−1�̂ for some complex constant C �= 0.

Proof. Evidently, (iii) implies (i). We prove that (i) implies (ii), and then that (ii) implies (iii).
Suppose that (i) holds. If V annihilates ω1, ω2, ω3, then

LV α = LV α∗ = LV μ = 0,

because α, α*, μ are the structure functions in (20) and (21). If 3 functions on a four-dimensional
manifold are annihilated by 2 independent vector fields, then these functions are functionally depen-
dent. Therefore, (92) holds. By Proposition 3.1,

V = a�̂ + bD,

for some functions a, b. By Proposition 5.2 and (40),

C = α∗V 1 = aX, C∗ = αV 2 = aX∗

are constants. Hence, by (36),

B/B∗ = X/X∗ = C/C∗ (93)

is a constant. Therefore, (ii) holds.
Next, we show that (ii) implies (iii). By assumption, (93) holds for some complex constant

C. Set V = C X−1�̂. By construction, this is a real vector field such that LV α = LV α∗ = 0. By
(92), we also have LV μ = 0. Also, by construction, C = α∗V 1 is a constant, and hence by (87),
LV ω1 = 0. By (20) and (90),

0 = LV dω1 = −(LV μ)ω1 ∧ ω3 − μω1 ∧ LV ω3 = −μω1 ∧ LV ω3.

Since LV ω3 is real and μ �= 0 by assumption, it follows that LV ω3 = 0, as was to be shown. �
Proposition 5.4. There exists a vector field V such that

LV ω1 = LV ω3 = 0, V 1 �= 0, V 3 = 0 (94)

if and only if A = 1.
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Proof. Suppose that (94) holds. By (85), C + C* = 0, and hence C = α∗V 1 is imaginary.
Hence, by (83), C + C*A = 0, which means that A = 1. Conversely, if A = 1, then in order for
(83)–(85) to hold, it suffices to set V 1 = i/α∗, V 3 = 0. �

Proposition 5.5. There exists a vector field V such that

LV ω1 = LV ω3 = 0, V 1 = 0, V 3 �= 0 (95)

if and only if μ = 0.

Proof. Suppose that (95) holds. Hence, C = 0, and by (86),

LV α = −V 3αμ = 0.

Therefore, μ = 0. To prove the converse, it suffices to take V 3 = ea+a∗
. Relations (84) and (85)

follow (66) and (67). �
We now show that type (0, 2) precursor solutions belong to the 4 classes shown in Table VII.

Proposition 5.4 characterizes the precursor solutions for which V 3 = 0. Proposition 5.5 characterizes
precursor solutions for which V 1 = 0. This leaves the case where both V 1, V 3 are non-zero. Since
we are considering type (0, 2) solutions, we exclude the possibility that B = 0. The possibility that
B �= 0 but AA* = 1 is excluded by Proposition 3.1. The remaining possibilities can be divided into
the case B1 �= 0 and the case B1 = 0. Proposition 5.6 deals with the former and V.7 with the latter.

Proposition 5.6. Suppose B1 �= 0, AA* �= 1. The following are equivalent:

(i) there exists a V such that (82) holds;
(ii) B2/B1 = k, �X1 = 2X2

1;
(iii) f (ζ , u) = F(u− ikζ )u− 2 + gζ .

Proof. Observe that, if B1 �= 0, then

B

B∗ = B1 + iB2

B1 − iB2
= 1 + iB2/B1

1 − iB2/B1
.

Hence, the condition that B/B* is a constant can be restated as B2/B1 = k, where k is a real constant.
Furthermore, if (93) holds and if V = C X−1�̂, then without loss of generality, C = 1 + ki and
V 3 = 1/X1. Therefore, if (i) holds, then (ii) follows Propositions 5.2 and 5.3.

Next, we show that (ii) implies (iii). By Proposition 3.4, f (ζ , u) = F(hikζ )h2 + gζ belongs to
class B∗

23. In the proof of Proposition 3.4, we showed that

e−a−a∗
/X1 = 1/h1,

where h1 = h1(u) is real. Hence, by (67)

�(1/X1) = �(ea+a∗
/h1) = (1/h1)′(u),

(1/h1)′(u) + 2 = 0,

h1 = −1/(2u).

In the last step we can omit the constant of integration because of transformation freedom (12).
Therefore,

Lu −
(

1 + ik

2u

)
La = ik

u
.

Following the steps in the proof of Proposition 3.4 gives h = u− 1, which specializes solution form
B∗

23 to form B23.
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Finally we show that (iii) implies (i). It suffices to set V = X−1
1 �̂ and C = 1 + ki. Equation

(93) holds by Proposition 3.4. Hence, by construction and by (47)

α∗V 1 = C,

V 3μ∗ = Cμ∗

X
= C

(
AB∗

B
+ 1

)
= AC∗ + C,

V 3 = 1

X1
= −2uea+a∗

.

Conditions (84) and (85) follow (66) and (67). �
Proposition 5.7. Suppose that B1 = 0, μ �= 0, AA* �= 1. The following are equivalent: (i) there

exists a vector field V such that (82) holds; (ii) �X2 = 0;
(iii) f (ζ , u) = F(eiuζ ) + gζ .

The proof is similar to that of Proposition 5.6 above.
We now classify the type (0, 1) precursor solutions.

Proposition 5.8. Suppose that B = 0, A �= 1, μ �= 0. Then (82) holds if and only if

�2(1/μ) = 0. (96)

Proof. Suppose that (82) holds. By Proposition 4.2, A is a constant. Hence, (96) follows (83)
and (85). Conversely, suppose that (96) holds.

By Proposition 5.2, we seek a constant C such that

V 3 = (C∗ + C A∗)/μ = (C + C∗ A)/μ∗,

and such that the above V 3 satisfies (84) and (85). First, observe that A* = 1/A and μ* = Aμ. Hence,

C + C∗ A

μ∗ = C/A + C∗

μ
= C∗ + C A∗

μ
.

Therefore, V 3 is well-defined for any choice of C. By Proposition 4.2, δ(αμ) = 0. Hence

α(α∗μ + δμ) = 0 δ(1/μ) = −δμ/μ2 = α∗/μ.

Hence, (84) is satisfied for all choices of C. We now turn to condition (85). By (53) and (80) of
Proposition 4.3

i(A − 1)

Aμ
= i(A − 1)

A

ea+a∗

Lu
= ea+a∗

h′(u)
,

where h = h(u) is real. Hence, by (67),

i(A − 1)

A
�(1/μ) = − h′′(u)

h′(u)2
= k (97)

is a real constant. If k = 0, then condition (85) can be satisfied by taking C = i. If k �= 0, (85) is
satisfied by taking C = A/(A − 1) + i/k. With this choice,

C∗ + C A∗ = 1

1 − A
− i

k
+

(
A

A − 1
+ i

k

)
1

A
= −i(A − 1)

k A
,

�V 3 = −1,

C + C∗ = A

A − 1
+ 1

1 − A
= 1.

�
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Proposition 5.9. The type (0,1) precursor solutions belong to one of the classes shown in
Table VIII.

Proof. By Proposition 5.4 the B = 0, A = 1 solutions are automatically precursor solutions with
V 3 = 0, V 1 �= 0. We now classify all precursor solutions that admit a vector field that satisfies (82)
with V 3 �= 0. We consider two cases: μ �= 0 and μ = 0. Suppose the former. By Proposition 5.8, a
precursor solution is characterized by the condition �2(1/μ) = 0, which is equivalent to

h′′(u) + k h′(u)2 = 0. (98)

where h is the parameter in solution forms P13, E13, L13. This gives us four classes of solutions.
Class BP13 corresponds to the case A �= − 1 and k �= 0. In this case, the solution of (98), without
loss of generality, is h = 1

k log u. Class CP13 corresponds to A �= − 1 and k = 0. Here, without
loss of generality, the solution to (98) is h = u. Similarly, the condition A = − 1 gives solution
classes BE13 and CE13. Finally, consider the case of A = 1. Here μ* = μ. Hence, by Proposition 3.9
L = − 2a + ik + h, where h is real. By Proposition 5.2 we require that

V 3 = (C + C∗)/μ �= 0, �V 3 = (C + C∗)�(1/μ) = −(C + C∗).

Since δ(αμ) = 0, we automatically have δ(1/μ) = α*μ; condition (84) is automatically satisfied.
Hence, a necessary and sufficient condition for a precursor solution is �(1/μ) = − 1, or equivalently
�μ = μ2. This is equivalent to h′′(u) = h′(u)2, which, by employing the freedom (12), gives us h(u)
= − log u. Employing the integration steps in Proposition 3.9, this gives us f = Cu− 2 log ζ + gζ ,
which is solution form BL13.

Next, suppose that μ = 0, AA* = 1. Here it suffice to specialize one of the Table VI solutions.
For classes P13 and E13 we set h → 0. For the logarithmic solution L13 we set h → k, where the
latter is a constant. �

Note that the (0,1) precursor class BL13 is a specialization of the (0,1) precursor class L13.
However, we include BL13 as a distinct category because it enjoys the property of having two
distinct vectors V satisfying (82): one of these has V 3 = 0 (as a specialization of L13) and the other
V 3 �= 0 (because Eq. (98) is satisfied). The same “double precursor” property holds for classes
AP13, AE13, AL13. As consequence, it is precisely these 4 classes that specialize to a G3 solution.

VI. THE G2 SOLUTIONS

In this section we characterize and classify the vacuum pp-waves with two independent Killing
vectors. Since a Killing vector annihilates the invariant 1-forms ω1, ω2, ω3, and ω4, every G2 solution
is a specialization of the precursor metrics discussed in Sec. V.

We first present the invariant characterization of the generic, type (0, 2, 2) solutions, and then
present the characterization of the type (0, 1, 2, 2) solutions. We then pass to a detailed classification,
the results of which are displayed in Tables I and IX.

Proposition 6.1. A type (0,2,2) G2 solution is characterized by (82) and

dα ∧ dα∗ �= 0, dα ∧ dα∗ ∧ dν = 0. (99)

Proof. By Proposition 2.1, the second-order Cartan invariants are generated by A, μ, ν. Suppose
that there exists a Killing vector V independent from D. Condition (82) follows assumption. Since
Killing vectors annihilate invariants, there are at most two functionally independent invariants.
Hence, (99) must hold.

Conversely, suppose that (82) and (99) hold. Dependence of μ follows Proposition 5.3. Further-
more,

LV α = LV α∗ = 0, LV dα = dLV α = 0,
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TABLE IX. Type (0, 1, 2, 2) G2-solutions.

G2 f (ζ , u) Invariant condition

BP122 ((k0u−ik1 ζ )2ik2 + k3u−ik1 ζ )u−2 B = 0, �2(1/μ) = 0, ϒ̃ = 0, �μ �= 0, A2 �= 1
CP122 (k0eiuζ )2ik1 + k2eiuζ B = 0, �μ = 0, ϒ̃ = 0, μ �= 0, A2 �= 1
BE122 exp(k0u−ik1 ζ ) + k2u−ik1 ζ B = 0, A = −1, �2(1/μ) = 0, ϒ̃ = 0, �μ �= 0
CE122 exp (k0eiuζ ) + k1eiuζ B = 0, A = −1, �μ = 0, ϒ̃ = 0, μ �= 0
L122 eikh log ζ B = 0, A = 1, Y = 0
BL122 u − 2(C log ζ + kζ ) B = 0, A = 1, �μ = μ2, μ �= 0

�log (YY*) = 4μ, �(α�log Y) = 0

AP122 (k0ζ )2ik1 + Cu−2−ik1 ζ μ = 0, AA∗ = 1, �2Y
1−A
A−3 = 0, A2 �= 1(

k0u−i/k1 ζ + C
)2ik1 u−2

AE122 exp (k0ζ ) + Cu − 2ζ μ = 0, A = − 1, �2Y− 1/2 = 0
(exp (k0ζ ) + Cζ )u − 2

AL122 eik0 log ζ + k1eiuζ μ = 0, A = 1, �2 log Y = 0
eik0 log(eiuζ + k1)

where V is the vector field in (82). By (23)–(25) and (33),

dα = α(α∗ω1 + Aαω2 − μω3).

Hence LV A = 0. Therefore, the invariant count is (0, 2, 2). �
The type (0, 1, 2, 2) solutions split into two branches, depending on whether or not μ is

independent of α. We consider each branch in turn.

Proposition 6.2. Suppose that dα ∧ dα* = 0 but that dα ∧ dμ �= 0. Then a G2 solution is
characterized by the condition:

dα ∧ dμ ∧ dν = 0. (100)

Proof. If V is a Killing vector then LV ν = 0. In a G2 solution there are two such independent
vector fields, which means that α, μ, ν must be functionally dependent. Let us prove the converse.
We will show that the invariant count is (0, 1, 2, 2), which signifies a G2 solution by the Karlhede
algorithm. By Proposition 2.1, the second-order invariants are generated by μ, A, ν and their complex
conjugates. Suppose that

dα ∧ dμ �= 0, dα ∧ dα∗ = 0, dα ∧ dμ ∧ dν = 0.

By Propositions 4.1 and 4.2,

B = 0, AA∗ = 1, dA = 0, μ∗ = Aμ.

Hence, all second order invariants depend on α, μ. The third order invariants are generated by
δ*A, δμ, �μ, �ν, and their complex conjugates. Since A is a constant and ν is a function of α,
μ, and since relation (30) holds, it suffices to show that δμ depends on α, μ. By Proposition 4.2
and by (24),

δ(αμ) = 0, δμ + α∗μ = 0, (101)

as was to be shown. �
Proposition 6.3. Suppose that dα ∧ dα* = dα ∧ dμ = 0, but that dα ∧ dν �= 0. Then a G2

solution is characterized by the conditions:

dα ∧ dν ∧ dν∗ = 0, (102)

dα ∧ dν ∧ d�ν = 0. (103)

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.173.74.41 On: Wed, 26 Oct 2016

14:39:21



022502-21 Milson, McNutt, and Coley J. Math. Phys. 54, 022502 (2013)

Lemma 6.4. Suppose that B = 0, μ �= 0. The following are equivalent: (i) dα ∧ dμ = 0 and (ii)
A = 1, �μ = μ2.

Proof. By assumption, μ* = Aμ. By Proposition 4.2, relation (101) holds. Hence,

dμ = −μα∗ω1 − αμω2 + �μω3,

dα = α(α∗ω1 + Aαω2 − μ∗ω3),

dα ∧ dμ = (A − 1)α2α∗μω1 ∧ ω2 − αα∗(Aμ2 − �μ)ω1 ∧ ω3

− Aα2(μ2 − �μ)ω2 ∧ ω3.

�
Proof of Proposition 6.3. By Propositions 4.1 and 4.2, A is a constant. Hence, using the reasoning

in the proof of Proposition 6.2 above, ν, �μ, �ν, and their complex conjugates generate the second-
and third-order invariants. If μ �= 0, then by Lemma 6.4, �μ is a function of μ, which itself is
a function of α. If μ = 0, then a fortiori �μ = 0. Therefore, (102) and (103) suffice for a G2

solution. �
We now classify the (0, 2, 2) solutions. Throughout, V denotes the second Killing vector

independent from D. The G2 solutions can be further subdivided according to whether V 3 �= 0 or
V 3 = 0.

By Proposition 5.4, the (0,2) precursor with V 3 = 0 is of class L22. The remaining (0,2)
precursors are B23, C23, A23. As we show below, the specialization from the precursor class to the
G2 class is governed by the vanishing of the Y and ϒ invariants, which are defined in (37) and (39),
respectively.

Proposition 6.5. Suppose that f (ζ , u) = F(u− ikζ )u− 2 + gu− 2 − ikζ , k �= 0 belongs to the B23

precursor class. The following are equivalent: (i) dα ∧ dα* ∧ dν = 0, (ii) ϒ̂ = 0, and (iii) g′(u) =
0.

Proof. By Proposition 5.3, V = X−1
1 �̂ annihilates ω1, ω2, ω3, α, μ. Above, we already noted

thatLV A = 0. By (34) and (36),LV X = 0 also. Let ν̂ be the invariant defined in (38). By Proposition
5.2, and (29) and (30),

δX = −α∗ X, δ∗ X = −αX, �X = 2X X1,

δ(ν̂/X∗) = −4iX2, δ∗(ν̂/X∗) = (1 − 2ν̂α)/X∗,

�̂(ν̂/X∗) = �(ν̂/X∗) − 4iX X2/α
∗ + (1 − 2ν̂α)/α = ϒ̂,

where ν̂ is the invariant defined by (38). This proves the equivalence of (i) and (ii). A direct calculation
shows that

ϒ̂∗ = 4u
X2

1

X

g′(u)√
F ′′(u−ikζ )

.

This proves the equivalence of (ii) and (iii). �
Remark 1. If g′(u) = 0, then by (10) we can absorb the g(u)u− 2 − ikζ term into the F(u− ikζ )u− 2

term.

Remark 2. The invariant ν̂ can be calculated directly by employing the tetrad that respects the
normalization �̂α = 0. The null rotation that sends � → �̂ maps ν → ν̂.

The proof of the following 3 propositions is similar to the proof above.
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Proposition 6.6. Suppose that f (ζ , u) = F(eiuζ ) + geiuζ belongs to the C23 precursor class.
The following are equivalent: (i) dα ∧ dα* ∧ dν = 0, (ii) ϒ̂ = 0, and (iii) g′(u) = 0.

Proposition 6.7. Suppose that f (ζ , u) = g1 log ζ + g2ζ belongs to the logarithmic L23 precursor
class. The following are equivalent: (i) dα ∧ dα* ∧ dν = 0, (ii) Y = 0, and (iii) g2 = 0.

Proposition 6.8. Suppose that f (ζ , u) = f (ζ ) + gζ belongs to the A23 precursor class. The
following are equivalent: (i) dα ∧ dα* ∧ dν = 0, (ii) �ν = 0, and (iii) g′(u) = 0.

We now classify the G2 solutions of type (0, 1, 2, 2). By definition, these are specializations of
the type (0, 1) precursors. The latter solutions fall into three groups: (i) V 3 = 0, (ii) V 3 �= 0 and dα

∧ dμ = 0, and (iii) V 3 �= 0 and dα ∧ dμ �= 0, where V is the vector field that satisfies (82). Case
(i) is class L23. The specialization to a G2 solution is described, mutatis mutandi, by Proposition 6.7
above. Case (ii) consists of classes L13, AP13, AE13, and AE13. The specialization to G2 solutions
is described by Propositions 7.2, 7.4, 7.6, 7.8 of Sec. VII. Case (iii) consists of classes BP13, CP13,
BE13, CE13. By Proposition 6.2, the specialization to a G2 solution is characterized by the condition
dα ∧ dμ ∧ dν = 0. The following proposition analyzes this condition. The key invariant here is ϒ̃ ,
as defined by (43).

Lemma 6.9. Suppose that B = 0 and AA* = 1, A �= 1. Then

{dα, dα∗, dμ, dμ∗}⊥ = span{�̃, D}, (104)

with �̃ defined as in (44).

Proof. Since M = αμ, no generality is lost if replace dμ with dM. By Proposition 4.2, δM = 0.
By (27)

δ∗M = (A − 1)αM.

By (34), μ* = Aμ. Hence, by (24) and (25) we seek the kernel of the following matrix:⎛
⎜⎝

αα∗ α2 A −AM 0

α∗2 A−1 αα∗ −Mα∗α−1 0

0 (A − 1)αM �M 0

⎞
⎟⎠. (105)

By Proposition 4.1 dα ∧ dα* = 0; hence, the above matrix has rank 2. Since A* = 1/A, the kernel
is invariant under complex conjugation. Therefore, since A �= 1, a basis for the kernel is D and

�̃ = X̃/α∗ δ + X̃∗/α δ∗ + � + X̃ X̃∗/(αα∗)D, X̃∗ = �M/(M(1 − A)).

�
Proposition 6.10. Suppose that f (ζ, u) = (k0z)ik1 u−2 + gu−2z, or f (ζ , u) = exp (z) + gz,

where z = u− ikζ or z = eiuζ , i.e., f (ζ , u) belongs to one of the following classes: BP13, CP13, BE13,
and CE13. Then, the following are equivalent: (i) dα ∧ dμ ∧ dν = 0, (ii) ϒ̃ = 0, and (iii) g′(u) = 0.

Proof. By assumption, B = 0, AA* = 1, A �= 1. Hence, there exists a V such that condition (82)
holds. Since LV α = LV μ = 0, by Lemma 6.9 V is a multiple of �̃.

Hence, X̃/X̃∗ = C/C∗, where C = α∗V 1, and hence V = C/X̃�̃. In the proof of Proposition
5.8 we showed that �(1/μ) is a constant. It follows that LV �μ = 0 and hence LV X̃ = 0 also.
Therefore, the desired condition is equivalent to �̃(ν̃/X̃ ) = 0 where ν̃ is the invariant defined in
(42). By (29), (30), (84), and (85):

δ X̃ = −α∗ X̃ , δ∗ X̃ = −α X̃ , �X̃ = 2X̃ X̃1,

δ(ν̃/X̃ ) = −4iX̃2, δ∗(ν̂/X̃ ) = (1 − 2ν̂α)/X̃ ,

�̂(ν̂/X̃ ) = �(ν̂/X̃ ) − 4iX̃ X̃2/δ
∗ + (1 − 2ν̂α)/α = ϒ̃.
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This proves the equivalence of (i) and (ii). A direct calculation shows that

ϒ̃ = Cαμ2u1+ik1ζ ∗(g′
1(u))∗,

where C = C(k0, k1) is a constant. This proves the equivalence of (ii) and (iii). �
Remark 1. If g′(u) = 0, then by (10) we can absorb the second term in f (ζ , u) into the first term.

Remark 2. The invariant ν̃ can be calculated directly by employing a null-rotated tetrad that
sends � → �̃ and ν → ν̃.

VII. THE MAXIMAL IC ORDER CLASS

This section is devoted to the proof of Theorem 1.1; we exhibit and classify all vacuum pp-wave
solutions with a (0, 1, 2, 3) invariant count. The (0, 1) class is defined by the condition dα ∧ dα*
= 0. If α, μ are independent, then the (0, 1, 2) condition requires that ν, ν* be functions of α, μ.
However, by Proposition 6.2, this forces a G2 solution, and therefore can be excluded from the (0,
1, 2, 3) classification.

Thus, we have narrowed the search for (0, 1, 2, 3) solutions to the following class:

dα ∧ dα∗ = 0, dα ∧ dμ = 0, dα ∧ dν ∧ dν∗ = 0. (106)

The middle condition forces some restrictions.
By Lemma 6.4, the analysis divides into two cases: B = 0, A = 1, �μ = μ2, μ �= 0 and μ = 0,

AA* = 1. The former possibility specifies class BL13; the latter classes AP13, AE13, AL13. We begin
by describing the specialization from class BL13 to class BL123. The Y invariant employed below is
defined in (37).

Proposition 7.1. Suppose that f (ζ , u) = Cu− 2 log ζ + gζ belongs to class BL13. The following
are equivalent: (i) dα ∧ dν ∧ dν* = 0, (ii) �log (YY*) = 4μ, and (iii) g = ku− 2eih, where k is a
real constant and h = h(u) is real.

Proof. Our assumption implies

A = 1, B = 0,

δμ = −μα∗, �μ = μ2,

Y = 2ν − 1/α + 2μ2/α∗.

Hence, by (29) and (30)

δY = −Yα∗, δ∗Y = −3Yα,∣∣∣∣∣∣∣∣
δα δ∗α �α

δY δ∗Y �Y

δY ∗ δ∗Y ∗ �Y ∗

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
αα∗ α2 −αμ

−Yα∗ −3Yα �Y

−3Y ∗α∗ −αY ∗ �Y ∗

∣∣∣∣∣∣∣∣
= 2α2α∗(4Y Y ∗μ − �(Y Y ∗)).

This proves the equivalence of (i) and (ii). Writing g = eh1+ih2 , a direct calculation shows that

μ = −(CC∗)1/4(ζ ζ ∗)1/2, (107)

M = αμ = (i/2)(C∗)−1/2, (108)

Y Y ∗ = 4e2h1 u4μ4, (109)

(� log Y Y ∗)μ = −2uh′
1(u). (110)
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Therefore, (ii) is equivalent to

uh′
1(u) = −2,

which is equivalent to (iii). �
We now prove that generically the above solution is (0,1,2,3), and in the process derive the

condition for specialization to a G2 solution.

Proposition 7.2. Suppose that f (ζ , u) = u− 2(C log ζ + keihζ ) belongs to class BL123. The
following are equivalent: (i) dα ∧ dν ∧ d�ν = 0, (ii) �(α�log Y) = 0, and (iii) eih = uik1 , where
k1 is a real constant.

We now consider the case of μ = 0, AA* = 1.

Proposition 7.3. Suppose that f (ζ, u) = (k0ζ )2ik1 + gζ belongs to the AP13 class. The following
are equivalent: (i) dα ∧ dν ∧ dν* = 0, (ii)

(1 − 3A)� log Y + (A − 3)� log Y ∗ = 0, (111)

and (iii) g = k2eih(1−2ik1), where k2 is a real constant and h = h(u) is real.
We now prove that generically the above solution is (0,1,2,3), and in the process derive the

condition for specialization to a G2 solution.

Proposition 7.4. Suppose that f (ζ, u) = (k0ζ )2ik1 + k2eih(1+2ik1)ζ belongs to class AP123. The
following are equivalent: (i) dα ∧ dν ∧ d�ν = 0, (ii) �2Y

1−A
A−3 = 0, and (iii) f (ζ, u) = (k0ζ )2ik1

+ Cu−2−ik1ζ , where C is a complex constant.

Proof. All of the relations given in the proof of Proposition 7.3 hold. Furthermore, by (16)–(19),

δ�Y = −2α∗�Y, δ∗�Y = −4α�Y.

From there, a direct calculation shows that∣∣∣∣∣∣∣∣
δα δ∗α �α

δY δ∗Y �Y

δ�Y δ∗�Y �2Y

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
αα∗ Aα2 0

−Yα∗ −3Yα �Y

−2α∗�Y −4α�Y �2Y

∣∣∣∣∣∣∣∣
=

= 2α2α∗((2(2 − A)(�Y )2 + (A − 3)�2Y ) = 2αα∗Y
3A−7
A−3

(A − 3)2

1 − A
�2Y

1−A
A−3 .

This proves the equivalence of (i) and (ii). Furthermore, a direct calculation gives

Y
A−1
A−3 �2Y

1−A
A−3 = C̃ζ 1−ik1ζ 1+ik1 (k1h′

2(u)2 − h′′
2(u)),

where C̃ is a complex constant. This proves the equivalence of (ii) and (iii). �
Finally, we consider the AE and the AL classes. Propositions 7.5 and 7.7 derive the form of the

(0, 1, 2) solutions for the cases A = − 1 and A = 1, respectively. Propositions 7.6 and 7.8 prove
that these solutions are generically of type (0, 1, 2, 3) and derive the condition for the specialization
to the corresponding (0, 1, 2, 2) G2 solution. Mutatis mutandi, these Propositions are proved in the
same way as Propositions 7.3 and 7.4 above.

Proposition 7.5. Suppose that f (ζ , u) = exp (kζ ) + gζ belongs to the AE13 class. The following
are equivalent: (i) dα ∧ dν ∧ dν* = 0, (ii) �log (Y/Y*) = 0, and (iii) g = eik1 eh , where k1 is a real
constant and h = h(u) is real.
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Proposition 7.6. Suppose that f (ζ, u) = exp(k0ζ ) + eik1 ehζ belongs to the AE123 class. The
following are equivalent: (i) dα ∧ dν ∧ d�ν = 0, (ii) �2Y− 1/2 = 0, and (iii) eh = Cu− 2, where C
is a complex constant.

Proposition 7.7. Suppose that f (ζ , u) = eik log ζ + gζ belongs to the AL13 class. The following
are equivalent: (i) dα ∧ dν ∧ dν* = 0, (ii) �log (YY*) = 0, and (iii) g = k2eih, where k2 is a real
constant and h = h(u) is real.

Proposition 7.8. Suppose that f (ζ, u) = eik0 log ζ + k1eihζ belongs to the AL123 class. The
following are equivalent: (i) dα ∧ dν ∧ d�ν = 0, (ii) �2 log Y = 0, and (iii) eih = uik2 , where k2 is
a real constant.

Finally, we remark that a suitable change of variable (10) and (13) allows for two equivalent
representation for solution classes AP122, AE122, AL122:

(k0ζ )2ik1 + Cu−2−ik1ζ � (
k0u−i/k1ζ + C

)2ik1 u−2, (112)

exp(k0ζ ) + Cu−2ζ � (exp(k0ζ ) + Cζ )u−2, (113)

eik0 log ζ + k1eiuζ � eik0 log(eiuζ + k1). (114)

It follows that classes AP122, AE122 are specializations of the generic G2 solution B22, while AL122

is a specialization of C22.

VIII. THE G3 SOLUTIONS

In this section we classify the G3 solutions. The invariant count is (0, 1, 1) and hence these
solutions are characterized by α �= 0 and

dα ∧ dα∗ = dα ∧ dμ = dα ∧ dA = dα ∧ dν = 0.

The condition dα ∧ dA = 0 is redundant, because by Propositions 4.1 and 4.2, a G3 solution satisfies
B = 0, AA* = 1, dA = 0. By Lemma 6.4 there are two branches: (i) B = 0, A = 1, �μ = μ2, μ
�= 0; and (ii) μ = 0, AA* = 1. By Propositions 7.1, 7.3, 7.5, and 7.7 the condition dα ∧ dν ∧ dν*
= 0, which is weaker than dα ∧ dν = 0, specializes these two branches to (0, 1, 2, 3) solutions.
Therefore, the G3 solutions arise as the following sequence of specializations:

(0, 1, 3) → (0, 1, 2, 3) → (0, 1, 2, 2) → (0, 1, 1).

Therefore, to classify the G3 solutions it suffices to begin with the classes BL13, AP13, AE13, AL13,
and impose the specialization is dα ∧ dν = 0.

Proposition 8.1. Suppose that f (ζ , u) = Cu− 2 log ζ + gu− 2ζ belongs to class BL13. The
following are equivalent: (i) dα ∧ dν = 0, (ii) Y = 0, and (iii) g = 0.

Proof. Using the relations from the proof of Proposition 7.1, we have

δαδ∗Y − δY δ∗α = −2Yα2α∗,

δα�Y − δY�α = −2αα∗(Yμ − �Y ),

�αδ∗Y − �Y δ∗α = α2(3Yμ − �Y ).

This proves the equivalence of (i) and (ii). A direct calculation shows that

α∗Y ∗ = u2ζg/C.

This proves the equivalence of (ii) and (iii). �
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Proposition 8.2. Suppose that f (ζ, u) = (k0ζ )2ik1 + gζ belongs to the AP13 class. The following
are equivalent: (i) dα ∧ dν = 0, (ii) Y = 0, and (iii) g = 0.

Proof. Using the relations from the proof of Proposition 7.3, we have

δαδ∗Y − δY δ∗α = (A − 3)Yα2α∗,

δα�Y − δY�α = αα∗�Y,

�αδ∗Y − �Y δ∗α = Aα2�Y.

This proves the equivalence of (i) and (ii). A direct calculation shows that

α∗Y ∗ = Cζ 1−2ik1 g,

where C is a constant. This proves the equivalence of (ii) and (iii). �
The proof of the following two propositions uses the same argument as above. One merely

specializes A → − 1 and A → 1, respectively.

Proposition 8.3. Suppose that f (ζ , u) = exp (kζ ) + gζ belongs to the AE13 class. The following
are equivalent: (i) dα ∧ dν = 0, (ii) Y = 0, and (iii) g = 0.

Proposition 8.4. Suppose that f (ζ , u) = eik log ζ + gζ belongs to the AL13 class. The following
are equivalent: (i) dα ∧ dν = 0, (ii) Y = 0, and (iii) g = 0.

IX. THE G5 AND G6 SOLUTIONS

In this section we derive and classify the metric forms in the α = 0 class. By Proposition 2.2
the corresponding solutions are either G5 or G6.

Proposition 9.1. The following are equivalent: (i) α = 0 and (ii) f (ζ , u) = g2ζ
2 + g1ζ + g0,

where as usual gi = gi(u), i = 0, 1, 2 denote complex valued functions of one variable.

Proof. A direct calculation shows that

α = ea−a∗
(aζ )∗,

where

a = 1

4
fζ ζ .

�
Note that a form-preserving transformation (10)–(13) can be used to set g1, g0 → 0. Hence,

without loss of generality a solution in the α = 0 class has the form f (ζ , u) = gζ 2, where g �= 0.
It will be convenient to set g = e4A, where A = A(u) is complex valued. A direct calculation

then shows that

γ = e−2�A A∗
u√

2
, (115)

γ

γ ∗ = A∗
u

Au
. (116)

We are now in a position to derive and classify the homogeneous G6 solutions. Such solutions are
characterized by the condition �γ = 0, which ensures that the fundamental Cartan invariant γ is a
constant.

At this point the G6 classification bifurcates, depending on the value of Au. We consider the
generic case in Proposition 9.2, and the singular case in Proposition 9.3. The classification is
summarized in Table III.
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Proposition 9.2. Suppose that f (ζ , u) = e4Aζ 2, �γ = 0, and Rγ �= 0. Then, without loss of
generality,

f (ζ, u) = k1u2ik0−2ζ 2. (117)

Proof. If �γ = 0, then γ is a constant. By assumption, Au �= 0, and so γ /γ * is also a constant.
It will therefore be convenient to write

1/Au = eikh, (118)

where both k is a real constant and h = h(u) is real. A direct calculation now gives

hu = −1

2
cos k,

which implies

Au = 2e−ik

k2 − u cos k
,

f = (cos ku − k2)−2+2i tan kk1,

where k1 �= 0 is a real constant. Substituting into (115) gives

γ = eik

√
8k1

,

which means that k, k1 are essential constants, while k2 can be gauged away. Applying the change
of variables (12) gives the desired solution form. �

Proposition 9.3. Suppose that f (ζ , u) = e4Aζ 2, �γ = 0, and Rγ = 0. Then, without loss of
generality,

f (ζ, u) = e2ik0uζ 2, (119)

where k0 is a real constant.

Proof. The super-singular case of γ = 0 corresponds to Au = k = 0. From now on, we suppose
that γ is a non-zero imaginary constant. It follows that

Au = ik,

where k is some real constant. The desired conclusion follows immediately. �
X. CONCLUSIONS

In our search for those vacuum pp-wave spacetimes in which the fourth-order covariant deriva-
tives of the curvature tensor are required to classify them entirely, we have produced an approach to
invariantly classifying the vacuum pp-wave spacetimes. Our approach is based on Cartan invariants
and the Karlhede algorithm and is necessitated by the fact that a the class of vacuum pp-waves has
vanishing scalar invariants.3 Our classification is finer than the analysis of each spacetime’s isometry
group alone. The summary of this invariant approach to classification is given in Tables I and II with
specialization relations summarized in Figures 1 and 4.

For any spacetime, the classification begins with the fact that the components of the curvature
tensor and its covariant derivatives produce all of the invariants required. The Karlhede algorithm
provides an algorithmic approach to determining the lowest order, q, of covariant differentiation
needed to classify the space, canonical forms for the components of the curvature tensor and the
number of functionally independent invariants (t0, t1, . . . , tq) arising from the collection of all
components of the curvature tensor and its covariant derivatives up to order q.

For vacuum pp-waves we have demonstrated that q ≤ 4 and have classified all solutions that
attain an IC order of 4. Table IV summarizes the maximal order solutions. By characterizing the
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G2 and G3 solutions in terms of invariant conditions, the invariant approach also sheds light on the
origin of the additional Killing vectors. Another remarkable finding is the fact that the maximal order
solutions of Table IV are direct precursors of the G3 solutions first discovered by Kundt and Ehlers.
In terms of the metric form, the mechanism of specialization is the disappearance of an additive
term, e.g.,

eik0 log ζ + k1eihζ → eik log ζ.

Outside of the invariant classification of spacetimes, the study of the invariant structure of the
Riemann tensor and its covariant derivatives reveals the interconnection between spacetimes with
less symmetry and their more symmetric counterparts and how these arise as specialization of the
classifying manifold. Furthermore by imposing conditions on the Cartan invariants we produced
definite examples of spacetime with little or no symmetry. This is particularly relevant for the pp-
wave spacetimes as before our work little was known about those spacetimes admitting D = ∂v as
the sole Killing vector.

The approach used to invariantly classify the pp-waves is not limited to this class alone. One may
repeat the process for the other half of the plane-fronted waves, the Kundt waves.18 Together these
spacetimes constitute the entirety of all Petrov type N VSI spacetimes: the class of spacetimes where
all scalar curvature invariants vanish. These spacetimes are a special case of the CSI spacetimes,
where all scalar curvature invariants are constant, and so the Karlhede algorithm is the only approach
to invariantly classifying these spaces.

Similarly, it should be possible to investigate the invariant classification of other classes of
spacetimes, such as non-vacuum pp-waves19 and conformally flat radiation solutions.20 Furthermore,
as the just cited references indicate, it is sometimes possible to utilize the classifying Cartan invariants
as coordinate functions, and thereby to invariantly integrate the metrics in question. For example,
vacuum pp-waves belong to class IIa of the Collins classification.2 A complete invariant integration
should then, in principle, recover a more general solution form than considered in the present article.
However, the techniques would have to be appropriately generalized to account for the invariants
arising from the �12, �22 components of the Ricci tensor. In this regard, Held’s approach21 based
on invariants subject to involutive constraints should prove particularly useful. It is reasonable to
expect that non-vacuum exact solutions would be derived through such an approach.

Future research direction involve the extension of the invariant classification to all VSI space-
times, and even the full class of Kundt-degenerate spacetimes. The question of the physical and
phenomenological interpretation of the classifying invariants is also unresolved, although some
steps in this direction are ongoing.22
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