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The Stability of a Stripe for the Gierer–Meinhardt Model and the Effect of
Saturation∗
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Abstract. The stability of two different types of stripe solutions that occur for two different forms of the
Gierer–Meinhardt (GM) activator-inhibitor model is analyzed in a rectangular domain. For the
basic GM model with exponent set (p, q, r, s), representing the powers of certain nonlinear terms
in the reaction kinetics, a homoclinic stripe is constructed whereby the activator concentration
localizes along the midline of the rectangular domain. In the semistrong regime, characterized by
a global variation of the inhibitor concentration across the domain, instability bands with respect
to transverse zigzag instabilities and spot-generating breakup instabilities of the homoclinic stripe
are determined analytically. In the weak interaction regime, where both the inhibitor and activator
concentrations are localized, the spectrum of the linearization of the homoclinic stripe is studied
numerically with respect to both breakup and zigzag instabilities. For certain exponent sets near the
existence threshold of this homoclinic stripe, where stripe self-replicating behavior is observed, it is
shown numerically that a stripe can be stable with respect to a breakup instability but is unstable
with respect to a transverse zigzag instability. The zigzag instability is found numerically to be
the precursor to a space-filling curve. For a GM model in the semistrong regime that is modified
to include a small level of saturation of the activator production, it is shown that a homoclinic
stripe solution still exists but, in contrast to the unsaturated GM model, can be stable with respect
to breakup instabilities. For larger levels of the saturation, the homoclinic stripe ceases to exist
and is replaced by a mesa-stripe, which is composed of two front-back heteroclinic transition layers
joined together by an asymptotically flat plateau. In the near-shadow limit of an asymptotically
large inhibitor diffusivity, and in a rectangular domain, it is shown analytically that a mesa-stripe is
stable to spot-generating breakup instabilities, but can be unstable to either slow zigzag or breather-
type instabilities. Finally, the asymptotic and numerical stability results for both homoclinic and
mesa-stripes are favorably compared with results obtained from full numerical simulations of the
GM model.
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1. Introduction. In a two-dimensional domain, intricate spatially localized patterns con-
sisting of either spots, stripes, mixed spot-stripe patterns, or space-filling curves have been
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observed in numerical simulations of certain classes of singularly perturbed reaction-diffusion
systems. For activator-inhibitor systems, such as the well-known Gierer–Meinhardt (GM)
model of biological morphogenesis, spot and stripe patterns are ubiquitous (cf. [6], [13], [21],
[22], [46], [11, Chapter 5]). For the Gray–Scott (GS) model of theoretical chemistry, an even
greater diversity of spatio-temporal patterns occurs including temporally oscillating spots,
spot-replication behavior, spatio-temporal chaos of spot patterns, and labyrinthine patterns
of stripes (cf. [32], [26], [27], [44]). In other settings, localized stripe and spot patterns occur
for certain hybrid chemotaxis reaction-diffusion models of bacterial pattern formation (cf. [36],
[45], [24, Chapter 5]) and of fish skin patterns on growing domains (cf. [18], [30], [31]). Lo-
calized patterns also arise in the reaction-diffusion modeling of vegetation patterns in arid
environments (cf. [9], [12], [19]).

Most of the previous analyzes of the stability of stripe patterns have been based on a
weakly nonlinear theory, where the solution is assumed to be close to some spatially uniform
state across the cross section of the stripe. However, for singularly perturbed two-component
reaction-diffusion systems, this assumption of near-uniform spatial dependence in the stripe
cross section is generally not valid. For such systems in a two-dimensional domain, there are
two main types of spatially heterogeneous stripes: homoclinic stripes and mesa-stripes.

A homoclinic stripe results when either one or both of the two solution components be-
comes localized, or concentrates, on a planar curve in the domain. There are two distinct
parameter regimes for homoclinic stripes. The semistrong interaction regime occurs when
the ratio of the two diffusivities is asymptotically large, so that only one of the two solution
components (the fast component) is localized to form a stripe. In this case, the cross section
of the stripe is closely approximated by a homoclinic orbit of a certain scalar ODE problem
for the fast subsystem. Although the fast solution component has a negligible interaction
with the boundaries of the domain, the slow (global) solution component has a significant
interaction with the domain boundary and, possibly, with adjacent stripes. In contrast, in
the weak interaction regime, where both diffusivities are asymptotically small and of the same
order, both solution components are localized to form a stripe. In this case, the cross section
of the stripe is closely approximated by a homoclinic orbit of a coupled ODE system for the
two fast components. The term “weak” interaction here refers to the negligible interaction of
these two fast components with the boundaries of the domain and with any adjacent stripes.
Homoclinic stripes in both the weak and semi strong regimes arise in the basic GM model
(cf. [4]) and in certain parameter ranges of the GS model (cf. [15], [16], [23]).

A different type of stripe can occur for bistable singularly perturbed reaction-diffusion
systems such as the Fitzhugh–Nagumo model. For such systems, the stripe cross section typ-
ically consists of two transition layers, each closely approximated by a heteroclinic solution of
the equilibrium problem, which are joined together by an asymptotically flat plateau region.
We refer to such a stripe solution as a mesa-stripe.1 The stability of such stripe solutions was
analyzed rigorously in [34] and [35] for certain classes of bistable reaction-diffusion systems.
The analyses of [34] and [35] were based on the SLEP (singular limit eigenvalue problem)
method developed in [28] and [29] to analyze the stability of mesa-pulses in one spatial dimen-
sion. For a generalized Fitzhugh–Nagumo model, the stability and dynamics of mesa-stripes

1Mesa means table in Spanish. This term was suggested by P. Fife as referenced in [17].
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THE STABILITY OF A STRIPE FOR THE GM MODEL 315

were analyzed in [7] by a contour dynamics approach. The existence and stability of mesa-
stripes for a Brusselator model was studied in [17]. Mesa-stripe solutions can also occur for a
modification of the GM model where activator saturation effects are included.

There are two main types of linearized instabilities associated with a homoclinic stripe;
varicose (breakup) instabilities and transverse (zigzag) instabilities. For a varicose instability
of a homoclinic stripe, the eigenfunction for the perturbation of any fast component is an even
function across the stripe cross section and has a normal-mode modulation tangential to the
stripe. This has the effect of inducing a ripple on the amplitude of any fast component along
the length of the stripe. Since an instability of this type typically leads to the disintegration of
the stripe into a sequence of spots, we refer to it here as a breakup instability. Alternatively,
for a zigzag instability of a homoclinic stripe, the eigenfunction for the perturbation of any
fast component is an odd function across the stripe cross section and has a normal-mode
modulation in the direction tangent to the stripe. This has the effect of inducing a ripple on
the location of the centerline of the stripe.

For the GM and GS models in the semistrong regime, a homoclinic stripe is typically
unstable to a spot-generating breakup instability (cf. [4], [15], [16], [23]). For the GS model
in the weak interaction regime, a homoclinic stripe can be destabilized solely by a transverse
zigzag instability, which seems to be the precursor to a complicated space-filling curve (cf. [16]).
Zigzag and breakup instabilities have also been studied in [8] for a reaction-diffusion system
on an unbounded domain with piecewise linear kinetics. Breakup instabilities of localized
rings of bacteria, leading to spot formation, have been observed in numerical simulations of
certain hybrid chemotaxis reaction-diffusion systems (cf. [36], [45], [24, Chapter 5]).

Based on numerical experiments and a Turing-type linearized stability analysis, the in-
clusion of saturation effects into the basic GM model is, qualitatively, a well-known way to
obtain stable stripe patterns (cf. [13], [21], [22]). Breakup instabilities do not, in general,
occur for a mesa-stripe solution, and the instability of this solution typically occurs by two
types of transverse instabilities that develop over long time-scales; zigzag instabilities where
the edges of the mesa-stripe are in phase, and breather instabilities where these edges are 90◦

out of phase.
The primary goal of this paper is to give detailed analytical and numerical results for

breakup and transverse instability bands of homoclinic and mesa-stripes for the basic GM
model, and for the modified GM model where saturation effects are included. Our analysis
addresses several key qualitative features observed in numerical simulations of stripe behavior.
It determines explicit parameter ranges in these GM models where a homoclinic stripe exists
and is stable with respect to spot-generating breakup instabilities. It suggests a common qual-
itative mechanism responsible for the disappearance of a breakup instability band. It identifies
parameter ranges where a transverse instability is the dominant instability mechanism and
where labyrinthine patterns are likely to occur.

The basic GM model, where saturation effects are neglected, can be written in the dimen-
sionless form (cf. [10])

at = ε20Δa− a+
ap

hq
, τht = DΔh− h+

ar

ε0hs
, X = (X1, X2) ∈ Ω , t > 0 ,

∂na = ∂nh = 0 , x ∈ ∂Ω ,(1.1)
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316 T. KOLOKOLNIKOV, W. SUN, M. WARD, AND J. WEI

where the exponent set (p, q, r, s) is assumed to satisfy

(1.2) p > 1 , q > 0 , r > 1 , s ≥ 0 , with ζ ≡ qr

(p− 1)
− (s+ 1) > 0.

The classical GM model corresponds to the exponent set (2, 1, 2, 0). We consider (1.1) in the
rectangular domain

(1.3) Ω : −1 < X1 < 1 , 0 < X2 < d0 .

By rescaling a and h and introducing X = x/l, where l = 1/
√
D, (1.1) can be recast into the

equivalent form

at = ε2Δa− a+
ap

hq
, τht = Δh− h+

ar

εhs
, x = (x1, x2) ∈ Ωl , t > 0 ,

∂na = ∂nh = 0 , x ∈ ∂Ωl ,(1.4)

where

(1.5) Ωl : −l < x1 < l , 0 < x2 < d , d ≡ d0l , ε ≡ ε0l , l ≡ 1/
√
D .

In (1.1), the semistrong regime is characterized by ε0 � 1 and D = O(1), while the weak
interaction regime corresponds to ε0 � 1 and D = O(ε20) � 1. In terms of (1.4), the weak
interaction regime corresponds to the limit l → ∞ with ε = ε0l = O(1). For the basic GM
model (1.4), we will study the stability of a homoclinic stripe of zero curvature that is obtained
when a concentrates along the midline x1 = 0 of Ωl.

Alternatively, the classical GM model (1.1), which is modified to include the effect of
saturation of the activator production, can be written in the dimensionless form (cf. [13], [21],
[22])

(1.6) at = ε20Δa− a+ g(a, h) , g(a, h) ≡ a2

h (1 + κa2)
, τht = DΔh− h+ a2 .

Here κ > 0 is the saturation parameter. For the weak saturation case κ = O(ε20), (1.6) has
a homoclinic stripe solution as for the basic GM model (1.1). However, for κ = O(1), the
numerical simulations of (1.6) in [13], [21], [22], and [46] have suggested the existence of a
mesa-stripe solution for (1.6) that is stable to the formation of spots.

The stability of a homoclinic stripe for the basic GM model (1.4) was studied in [4]. In
the semistrong interaction regime, the existence of a homoclinic stripe solution for (1.4) on
the infinite strip domain R

1 × (0, d) was analyzed in [4] using geometric singular perturbation
techniques. In addition, by reducing the study of a certain nonlocal eigenvalue problem
(NLEP) to computations involving hypergeometric functions, the stability of this stripe with
respect to breakup instabilities was analyzed in [4]. In [4], explicit results for the breakup
instability bands were obtained for certain exponent sets (p, q, r, s), and it was shown that
a homoclinic stripe for (1.4) is stable to breakup instabilities only for asymptotically thin
domains of order d = O(ε0).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE STABILITY OF A STRIPE FOR THE GM MODEL 317

For the semistrong regime of (1.4), we extend this previous work of [4] on breakup in-
stabilities to the finite rectangular domain [−l, l] × [0, d], and to more general exponent sets
(p, q, r, s). Our analysis, which is related to the rigorous analysis of the NLEP in [38] and [39],
gives explicit upper and lower bounds for the breakup instability bands for various ranges of
the exponents (p, q, r, s) in (1.4). For various exponent sets and domain lengths l = 1/

√
D, the

most unstable mode from the NLEP is calculated numerically. Our main result, that breakup
instabilities always occur unless the domain is O(ε0) thin, is given in Proposition 2.3 below.
It is an extension of Theorem 4.5 of [4]. Full numerical computations of (1.4) are performed
to validate the asymptotic theory.

In the semistrong regime of (1.4), we also analyze the transverse zigzag instabilities of a
homoclinic stripe by calculating an explicit formula for the small eigenvalue of order λ = O(ε20)
in the spectrum of the linearization. In Principal Result 2.4, we show that there are no unstable
zigzag modes in the semistrong regime for exponent sets that satisfy γ ≡ q/(p− 1) ≤ 1. This
range includes the classical GM model, where (p, q, r, s) = (2, 1, 2, 0). For γ > 1, we show that
an unstable band of zigzag modes with wave number m = O(1) as ε0 → 0 exists only when
l = 1/

√
D exceeds some critical threshold lz, which depends on γ. This threshold is calculated

numerically. However, since the time-scale for the development of zigzag instabilities in the
semistrong regime is O(ε−2

0 ), they are dominated in this regime by spot-generating breakup
instabilities that occur on the more rapid O(1) time-scale.

In the weak interaction regime of (1.1), where D = ε20D0 with D0 = O(1), it was proved in
[4] that there is a minimum value of D0, labeled by D0c, for which a homoclinic stripe solution
exists. As shown in [14] (see also [4] and Remark 6.2 of [25]), this critical value D0c is a saddle-
node value of a bifurcation diagram of the norm |a|2 versus D0. In the one-dimensional case
and for values of D0 slightly below D0c, a self-replication behavior is observed, whereby a
localized initial pulse undergoes a repeated edge-splitting process due to ghost effects of the
saddle-node bifurcation point (cf. [4], [14], [25], [26]). A similar stripe self-replication behavior
was observed in [4] in the two-dimensional case. For the classical GM model with exponent
set (2, 1, 2, 0), and for D0 slightly above D0c, the full numerical computations in [4] suggested
that a stripe can be stable with respect to breakup instabilities for any domain width.

We extend this previous work by giving a detailed numerical study of the spectrum of
the homoclinic pulse in the weak interaction regime of (1.1). In terms of this eigenvalue
problem, we numerically calculate the breakup and zigzag instability bands associated with a
homoclinic stripe as a function of D0 for various exponent sets (p, q, r, s). For certain exponent
sets, which include the classical GM set (2, 1, 2, 0), we show numerically that there exists a
value D0b of D0, with D0b > D0c, for which the instability thresholds of the breakup instability
band coalesce. Therefore, there is no spot-generating breakup instability band on the range
D0c < D0 < D0b. For the classical GM set this range is 7.17 < D0 < 8.06. However, for each
of these exponent sets where the breakup band disappears, we show numerically that there is
a nontrivial zigzag instability band on this range of D0. Therefore, for these exponent sets, a
homoclinic stripe is destabilized solely by a zigzag instability when D0 is sufficiently close to
D0c. This zigzag instability is found to be the precursor to a space-filling curve. Full numerical
simulations of (1.1) are done to confirm the spectral results. Secondary instabilities, such as
self-replicating spots, which arise after a spot-generating breakup instability of the stripe, are
also illustrated.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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318 T. KOLOKOLNIKOV, W. SUN, M. WARD, AND J. WEI

For the modified classical GM model (1.6) with saturation parameter κ = O(1) and for
ε → 0, we construct a mesa-stripe equilibrium solution for (1.6) in the near-shadow limit
D 
 1, where D = D/ε0 with D = O(1). The stability of the mesa-stripe is then studied
analytically. In contrast to the spectrum for homoclinic stripe solutions of the basic GM
model (1.1), the spectrum of the linearization of an equilibrium mesa-stripe solution for (1.6)
contains only the small eigenvalues of order O(ε20) that correspond to transverse instabilities.
For D above some threshold, we show that the mesa-stripe is stable for all domain widths
and for all transverse wave numbers m. However, as D is decreased below some critical value,
it is shown analytically that an unstable zigzag instability band emerges at some critical
wave number m = O(1). Upon further decreasing D below some additional threshold, an
additional breather instability is triggered. The critical values of D and the transverse wave
number m at the onset of the zigzag and breather instability are determined explicitly as a
function of κ. The asymptotic theory is confirmed with full numerical simulations of (1.6).
Our case-study analysis of mesa-stripe stability for (1.6) with κ > 0 and κ = O(1) extends
the previous studies of [34] and [35] for generalized Fitzhugh–Nagumo models by providing
explicit instability thresholds for zigzag and breather instabilities.

Finally, we consider the modified classical GM model (1.6) with an asymptotically small
saturation κ = O(ε20) in the semistrong regime. The study of stripe stability for this problem
provides a bridge between the analysis of breakup instabilities of a homoclinic stripe for (1.4)
and the analysis of transverse instabilities of a mesa-stripe for (1.6) with κ = O(1). We show
that for any k > 0, where κ = ε20k, (1.6) admits a homoclinic stripe solution for any D > 0
with D = O(1). An NLEP governing breakup instabilities of this homoclinic stripe is then
derived analytically. From a numerical computation of the spectrum of this NLEP it is shown
that the boundaries of the breakup instability band coalesce at some k = kd, so that this
instability band disappears for all k > kd. The reason for the disappearance of this breakup
instability band for k sufficiently large is related to the ghost effect of a nearby heteroclinic
solution, which has the effect of “fattening” the cross section of the homoclinic stripe. This
suggests that such “fat” homoclinic stripes can share some of the same qualitative stability
properties as mesa-stripe solutions. We remark that a qualitatively similar “fattening” of the
homoclinic stripe is also likely responsible for the disappearance of breakup instability bands
for certain exponent sets of the basic GM model (1.1) in the weak interaction regime sufficiently
close to the existence threshold D0c of the homoclinic stripe. The “fattening” of this other
homoclinic stripe is related to the existence of nearby multibump homoclinic solutions that
must necessarily exist close to the existence threshold D0c governing self-replication (cf. [14]).

The outline of this paper is as follows. In sections 2.1 and 2.2 we analyze breakup and
zigzag instabilities, respectively, for homoclinic stripe solutions of (1.4) in the semistrong
interaction regime. In section 2.3 we show that “fat” homoclinic solutions to (1.6) with κ =
O(ε20) can be stable to breakup instabilities. In section 3 we numerically study breakup and
zigzag instabilities for (1.4) in the weak interaction regime, where both solution components
are localized. Finally, in sections 4 and 5 we analyze the existence and linearized stability,
respectively, of a mesa-stripe equilibrium solution to the GM model (1.6) when κ > 0 and
κ = O(1).

2. The GM model without saturation: Semistrong regime. In the limit ε → 0 we now
construct an equilibrium stripe solution to (1.4), where the stripe is centered on the midline

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE STABILITY OF A STRIPE FOR THE GM MODEL 319

x1 = 0 of the rectangular domain Ω := [−l, l] × [0, d], where d = ld0. Since the cross section
of the stripe is a one-dimensional pulse, this solution, with a minor change in notation, was
constructed asymptotically in [10] using the method of matched asymptotic expansions. The
result is as follows.

Principal Result 2.1 (from [10]). For ε → 0, an equilibrium stripe solution to (1.4), labeled
by ae(x1) and he(x1), is given asymptotically by

(2.1) ae(x1) ∼ Hγw
(
ε−1x1

)
, he(x1) ∼ HGl(x1)

Gl(0)
.

Here w(y) is the unique positive solution to

w
′′ − w + wp = 0 , −∞ < y < ∞ , w → 0 as |y| → ∞ ,

w
′
(0) = 0 , w(0) > 0 .(2.2)

The constants H, γ, and Gl(0) in (2.1), for which he(0) = H, are defined by

(2.3) Hζ ≡ 1
brGl(0)

, br ≡
∫ ∞

−∞
[w(y)]r dy , γ ≡ q

p− 1
, Gl(0) =

1
2

coth l ,

where ζ is defined in (1.2). The Green function Gl(x1) in (2.1) satisfies

(2.4) Glx1x1 −Gl = −δ(x1) , −l < x1 < l , Glx1(±l) = 0 , Gl(x1) =
cosh (l − |x1|)

2 sinh (l)
.

To determine the stability of the stripe solution, we introduce the perturbation

(2.5) a = ae + eλt+imx2φ , h = he + eλt+imx2η , m =
kπ

d
,

where φ = φ(x1) � 1 and η = η(x1) � 1. The relationship above between m and k results
from the Neumann conditions on x2 = 0, d of ∂Ω. In the analysis below we treat m as a
continuous variable. The band of instability with respect to m that is determined below can
be mapped to a k-band of instability using (2.5). Substituting (2.5) into (1.4), we obtain the
eigenvalue problem

ε2φx1x1 − φ+
pap−1

e

hq
e
φ− qap

e

hq+1
e

η =
(
λ+ ε2m2)φ , −l < x < l , φx(±l) = 0,(2.6a)

ηx1x1 − (1 + τλ+m2) η = −ra
r−1
e

εhs
e

φ+
sar

e

εhs+1
e

η , −l < x < l , ηx(±l) = 0.

(2.6b)

There are two classes of eigenvalues and eigenfunctions of (2.6); the large eigenvalues,
where λ = O(1) as ε → 0, and the small eigenvalues with λ = O(ε2) as ε → 0. For the large

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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320 T. KOLOKOLNIKOV, W. SUN, M. WARD, AND J. WEI

eigenvalues, which determine the stability of the stripe on an O(1) time-scale, the correspond-
ing eigenfunction has the form

(2.7) φ(x1) ∼ Φ
(
ε−1x1

)
,

where
∫∞
−∞ Φ(y)wr−1(y) dy �= 0. This stability problem, treated in section 2.1, involves the

analysis of an NLEP. Since unstable eigenfunctions of this type lead to a disintegration of
the stripe into spots, we refer to this instability as a breakup instability. Alternatively, the
eigenfunction for the small eigenvalues has the form

(2.8) φ(x1) ∼ w
′ (
ε−1x1

)
+ εφ1

(
ε−1x1

)
+ · · · .

Since the leading term in (2.8) corresponds to a translation of the spike profile w, unstable
modes for this class of eigenvalues lead to zigzag instabilities. This problem is studied below
in section 2.2.

2.1. Breakup instabilities: Semistrong regime. We now analyze the spectrum of (2.6)
corresponding to breakup instabilities, where φ(x1) ∼ Φ(y) with y = x1/ε and

∫∞
−∞ Φwr−1 dy �=

0. Since the asymptotic derivation of the NLEP for Φ(y) is similar to that given in section 2
of [38], we give only an outline of this analysis in Appendix A. The result is as follows.

Principal Result 2.2. Let ε → 0, and suppose that
∫∞
−∞ Φwr−1 dy �= 0. Then Φ(y) satisfies

the NLEP

L0Φ − χmw
p

∫∞
−∞wr−1Φ dy∫∞

−∞wr dy
= (λ+ ε2m2)Φ − ∞ < y < ∞ ; Φ → 0 as |y| → ∞ ,

(2.9a)

L0Φ ≡ Φ
′′ − Φ + pwp−1Φ , Cm(λ) ≡ 1

χm(λ)
≡ s

qr
+
θλ tanh(θλl)
qr tanh l

, θλ ≡
√

1 +m2 + τλ .

(2.9b)

The unique positive eigenvalue ν0 with eigenfunction Φl0 of the local operator L0 is (cf. [20],
[3, Proposition 5.6])

(2.10) ν0 =
1
4
(p− 1)(p+ 3) , Φl0 = [w(y)](p+1)/2 .

Equivalently, the eigenvalues of (2.9), with
∫∞
−∞wr−1Φ dy �= 0, are the roots of g(λ) = 0

defined by

(2.11) g(λ) ≡ Cm(λ) − f(λ+ ε2m2) , f(μ) ≡
∫∞
−∞wr−1ψ dy∫∞

−∞wr dy
, ψ ≡ (L0 − μ)−1wp .

To analyze the spectrum of the NLEP (2.9) for the stripe, we modify the rigorous ap-
proach developed in [38] for a related NLEP governing the stability of a pulse solution on
a finite interval. This analysis, as outlined in Appendix A, leads to the following rigorous
characterization of the instability band for (2.9).
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THE STABILITY OF A STRIPE FOR THE GM MODEL 321

Proposition 2.3. Let (p, q, r, s) satisfy (1.2), let l = 1/
√
D > 0 be fixed, and assume that

ε � 1. Let mb− be the root of the transcendental equation

(2.12) G(m) ≡
√

1 +m2

⎛
⎝tanh

[√
1 +m2l

]
tanh l

⎞
⎠ = ζ + 1 , ζ ≡ qr

p− 1
− (s+ 1) > 0 .

For the near-shadow limit l → 0 we get mb− ∼ √
ζ, and for l → ∞ we obtain mb− ∼

√
ζ2 + 2ζ.

In addition, let mb+ be given by

(2.13) mb+ =
√
ν0

ε
+O(1) , ν0 =

1
4
(p− 1)(p+ 3) .

Then, when either r = p = 2 or r = p + 1 with 1 < p ≤ 5, there is exactly one real positive
eigenvalue of (2.9) in 0 < λ < ν0 − ε2m2 for any τ ≥ 0 when m is inside the instability band
mb− < m < mb+. For r = 2, this is the only eigenvalue in Re(λ) > 0. For m > mb+, then
Re(λ) < 0 for any τ ≥ 0. For m = mb−, and if either r = p = 2, or r = p+ 1 and 1 < p ≤ 5,
then there is a unique real positive eigenvalue λ > 0 when τ > τm−, and Re(λ) ≤ 0 when
0 ≤ τ ≤ τm−. Here τm− is defined by
(2.14)

τm− =
2qr
p− 1

(
1

p− 1
− 1

2r

)
tanh l

[
tanh(θ−l)

θ−
+ lsech2(θ−l)

]−1

, θ− ≡
√

1 +m2
b− .

Finally, suppose that 0 ≤ m < mb−. Then, for either r = p = 2 or r = p+ 1 and 1 < p ≤ 5,
there are exactly two real unstable eigenvalues of (2.9) when τ is sufficiently large. In addition,
as τ is increased from zero there is a Hopf bifurcation at some point τH = τH(m) (possibly
nonunique).

Proof. The proof of this result is given in Appendix A.
To calculate an improved approximation for the upper bound mb+ of the instability band

we write m = m0/ε, for m0 = O(1), and we expand

(2.15) Φ = Φl0 + εΦ1 + · · · , m2
0 = ν0 + εm1 + · · · .

Substituting (2.15) into (2.9a) and using χ ∼ ( qr
m

)
tanh l for m 
 1, we obtain that Φ1 satisfies

(2.16) L0Φ1 − ν0Φ1 =
qr√
ν0
wp tanh l

(∫∞
−∞wr−1Φl0 dy∫∞

−∞wr dy

)
+m1Φl0 .

Since L0 is self-adjoint, m1 is determined from the solvability condition that the right-hand
side of (2.16) be orthogonal to Φl0. Then, using m0 ∼ √

ν0+ εm1
(2

√
ν0) , the upper stability bound

mb+ is given in terms of Φl0 by

(2.17) mb+ ∼
√
ν0

ε
−
(
qr tanh l

2ν0

)
β , β ≡

(∫∞
−∞wr−1Φl0 dy

)(∫∞
−∞wpΦl0 dy

)
(∫∞

−∞wr dy
)(∫∞

−∞ Φ2
l0 dy

) .
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Table 1
The lower bound mb− and the upper bound mb+ for the breakup instability band for different exponent sets

and parameters. Here mb±(n) are the full numerical results from the NLEP (2.9), mb−(a) is the asymptotic
result from (2.12), and mb+(a1) and mb+(a2) are the one- and two-term asymptotic results from (2.17).

(p, q, r, s) ε l mb−(n) mb−(a) mb+(n) mb+(a1) mb+(a2)
(2,1,2,0) 0.100 1.0 1.3241 1.3022 10.351 11.180 10.437
(2,1,2,0) 0.050 1.0 1.3073 1.3022 21.580 22.361 21.618
(2,1,2,0) 0.025 1.0 1.3033 1.3022 43.964 44.721 43.978
(2,1,2,0) 0.010 1.0 1.3022 1.3022 111.07 111.80 111.06
(2,1,2,0) 0.025 1/

√
10 1.0336 1.0332 44.425 44.721 44.423

(2,1,2,0) 0.025
√

10 1.7267 1.7238 43.721 44.721 43.749
(2,1,3,0) 0.025 1.0 2.1087 2.1029 43.517 44.721 43.560
(2,2,3,3) 0.025 1.0 2.1146 2.1029 42.337 44.721 42.399
(3,2,2,0) 0.025 1.0 1.3024 1.3022 68.589 69.282 68.578
(3,2,3,1) 0.025 1.0 1.3040 1.3022 68.146 69.282 68.139
(4,2,2,0) 0.025 1.0 0.6852 0.6858 91.265 91.652 91.208

For the classical GM model with exponent set (p, q, r, s) = (2, 1, 2, 0), we use Φl0 = sech3(y/2)
from (2.10) to calculate β in (2.17) as β = 3I5I7/[2I4I6], where In ≡ ∫∞

0 sechny dy. By
using the recursion relation In = (n− 2)In−2/(n− 1), together with I2 = 1 and I1 = π/2,
we readily calculate that β = π2

64 (45/16)2. Therefore, for the classical GM model where
(p, q, r, s) = (2, 1, 2, 0) and ν0 = 5/4, we have for ε → 0 that

(2.18) mb+ ∼
√

5
2ε

− π2 tanh l
80

(
45
16

)2

+ · · · .

For various exponent sets (p, q, r, s) and values of l and ε, in Table 1 we compare the
asymptotic results for the stability thresholds from (2.12) and (2.17) with corresponding results
computed numerically from the NLEP (2.9) using finite-difference methods and a discrete
eigenvalue solver from LAPACK (cf. [1]). The asymptotic values are found to be very close
to the corresponding full numerical results even when ε = 0.1. For l = 1, in Figure 1(a)
we compare the full numerical result for the upper threshold mb+ with the corresponding
asymptotic result (2.17) for a range of values of ε. For ε = 0.025, in Figure 1(b) we compare
the full numerical result for the lower threshold mb− with the corresponding asymptotic result
computed from (2.12) for a range of l values.

For l = 1, τ = 0, and for the classical GM exponent set (p, q, r, s) = (2, 1, 2, 0), in
Figure 2(a) we plot the unique unstable eigenvalue λ in the instability band mb− < m < mb+
computed numerically from the NLEP (2.9) for three values of ε. From Proposition 2.3, this
eigenvalue is necessarily real. In Figure 2(b) we show a similar plot of the unique unstable
eigenvalue λ for ε = 0.025 for several values of l. Finally, in Figure 3, we plot the numerically
computed unique real positive eigenvalue for τ = 0 within the instability band mb− < m <
mb+ for various exponent sets (p, q, r, s). Notice that some of these sets do not satisfy the
conditions on the exponents in Proposition 2.3. Therefore, we expect that the conclusions in
Proposition 2.3 will hold for a wider range of exponent sets than are listed there.

We now make a few remarks. In [4] breakup instabilities of a stripe for the GM model
(1.1) were analyzed using geometric singular perturbation theory for the infinite strip domain
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ε

(a) mb+ versus ε for l = 1
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���
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���

�

(b) mb− versus l for ε = 0.025

Figure 1. Instability thresholds for (p, q, r, s) = (2, 1, 2, 0). (a) plot of the upper threshold mb+ versus ε for
l = 1. The heavy solid curve is the full numerical result, and the dashed curve is the asymptotic result (2.17).
They are essentially indistinguishable in this plot. (b) plot of the lower threshold mb− versus l for ε = 0.025.
The heavy solid curve is the full numerical result, and the dashed curve is the asymptotic result from (2.12).
They are again indistinguishable.

���
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���

���

���

���
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(a) λ versus m for l = 1

���

���

���

���

���

���

� �� �� �� �� ��

�

�

(b) λ versus m for ε = 0.025

Figure 2. Unstable eigenvalue λ in the instability band when (p, q, r, s) = (2, 1, 2, 0) and τ = 0. (a) plot of
λ versus m when l = 1 for ε = 0.05 (heavy solid curve), ε = 0.025 (solid curve), and ε = 0.01 (dashed curve).
(b) λ versus m when ε = 0.025 for l =

√
10 (heavy solid curve), l = 1 (solid curve), and l = 1/

√
10 (dashed

curve).

R
1 × [0, d0]. This problem is equivalent to studying (1.4) in the limit l = 1/

√
D → ∞, but

with ε � 1. For the classical GM model with exponent set (p, q, r, s) = (2, 1, 2, 0), a detailed
stability result for a stripe in such a domain is given in Theorem 4.5 of [4]. Proposition
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Figure 3. The unique unstable eigenvalue in the instability band for different exponent sets (p, q, r, s) when
ε = 0.025, l = 1, and τ = 0. From top to bottom the curves are for (4, 2, 2, 0), (3, 2, 2, 0), (3, 2, 3, 1), (3, 1, 2, 0),
(2, 1, 3, 0), and (2, 2, 3, 3).

2.3, given above, generalizes this previous result to allow for a finite rectangular domain and
for other exponent sets (p, q, r, s). For l → ∞ and for (p, q, r, s) = (2, 1, 2, 0), the resulting
instability band

√
3 < m <

√
5/(2ε) is equivalent to that given in Theorem 4.5 of [4]. For

other exponent sets (p, q, r, s) some partial stability results for the infinite strip domain were
given in [4]. Specifically, the lower threshold mb− =

√
ζ2 + 2ζ of the breakup band for the

limit l 
 1, where ζ is defined in (1.2), is equivalent to that given in (4.17) of Corollary
4.4 of [4]. In addition, the limiting result obtained from (2.14) for τm− in the limit l → ∞
is readily seen to be equivalent to that given in the unlabeled formula above Remark 4.7 of
[4]. For the exponent set (2, 1, 2, 0), we calculate that τm− → 6 as l → ∞. An important
remark is that a stripe is stable with respect to breakup instabilities only when the inequality
m = kπ/d <

√
ν0/ε holds for all positive integers k. By using ε = ε0l and d = ld0, this

shows that a stripe for (1.1) is stable only when the domain width d0 for (1.1) is O(ε0) thin
and satisfies d0 < d0b ≡ πε0/

√
ν0. The same critical domain width was found in Corollary

5.1 of [4] for a stripe solution in the infinite strip R
1 × [0, d]. Therefore, the effect of lateral

boundaries does not influence the critical domain width. However, both the lower threshold
mb− for the breakup instability band and the unstable eigenvalue within the band do depend
on l = 1/

√
D.

We now test the theoretical predictions for breakup instabilities with full numerical sim-
ulations of (1.1) in the square domain [−1, 1] × [0, 2]. The numerical computations are done
using a finite-element method with sufficient resolution to accurately compute thin stripes or
localized spots.

Experiment 1. We take (p, q, r, s) = (2, 1, 2, 0), ε0 = 0.025, D = 1, and τ = 0.1. For τ = 0.1
there are no Hopf bifurcations for modes with m < mb−. From the solid curve in Figure 2(a)
with l = 1/

√
D = 1 the most unstable mode is m ≈ 12, where λ ≈ 1.0. In addition, λ ≥ 0.9

for 5.5 < m < 21.0. The predicted number N of spots, which corresponds to the number of
maxima of the eigenfunction cos(my) on 0 < y < d0 = 2, is N = md0/(2π) = m/π. The
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THE STABILITY OF A STRIPE FOR THE GM MODEL 325

initial condition for (1.1) is taken to be a perturbation of (2.1) of the form

(2.19) a =
3H
2

sech2
(
x1

2ε0

)
(1 + δv) , v =

20∑
k=1

cos
(
kπx2

2

)
, h =

H cosh[l(1 − |x1|)]
cosh l

,

where H = 1
3l tanh 1, l = 1, and δ = 0.001. The initial perturbation v covers the entire

unstable band in Figure 2(a). In the numerical results shown in the first row of Figure 4 the
initial stripe is seen to break up into seven spots on an O(1) time-scale. This corresponds to
m ≈ 21.5, which is near the most unstable mode.

Experiment 2. We choose the same parameter values except that D is now decreased to
D = 0.1, so that l =

√
10. From the heavy solid curve in Figure 2(b), where l =

√
10, the

most unstable mode is m ≈ 12.3 with λ = 0.96, and λ ≥ 0.9 for 8.1 < m < 18.7. The
predicted number N of spots is N = m/π ≈ 4. With the initial condition as given in (2.19)
with l =

√
10, the resulting numerical solution of (1.1) is shown in the second row of Figure 4.

The initial stripe is seen to break up into five spots (a boundary spot is counted as half of a
spot).

Experiment 3. Next, we take (p, q, r, s) = (3, 2, 2, 0), ε0 = 0.025, D = 1, and τ = 0.1. The
initial condition is

(2.20) a =
√

2Hsech
(
x1

ε0

)
(1 + δv) , v =

20∑
k=1

cos
(
kπx2

2

)
, h =

H cosh(1 − |x1|)
cosh 1

,

with H = 1
2 tanh 1 and δ = 0.001. The most unstable mode from Figure 3 is m ≈ 14.9 with

λ ≈ 2.6. Near this maximum, λ ≥ 2.3 when 6.74 < m < 29.85. We predict N = m/π spots.
In the bottom row of Figure 4 we show that the stripe breaks into nine spots at t = 1.0, which
corresponds to m ≈ 28. Since the unstable eigenvalue for the exponent set (3, 2, 2, 0) is larger
than for (2, 1, 2, 0) (see Figure 4), the time-scale for breakup is quicker than in Experiments
1 and 2.

Although the stability theory is able to predict the initial number of spots that are gener-
ated from the break-up of a stripe, it does not account for secondary instabilities relating to a
spot competition process that leads to the ultimate annihilation of some of these spots. This
secondary instability, which we do not study here, is seen in Figure 4(f) for the exponent set
(3, 2, 2, 0) with D = 1. A spot competition process (not shown) also occurs in Experiment 1
on the range t > 5, where only two spots ultimately remain. However, for the smaller value
D = 0.1, the five spots that are initially generated from the stripe in Experiment 2 are found
to persist for t 
 1. In [10] and [38] a related competition instability was studied analytically
for a k-spike solution to the one-dimensional GM model. This analysis showed that for τ � 1
there is a threshold value Dk of D for which k-spikes will be stable only when D < Dk. Similar
thresholds occur for spots, as was shown rigorously in [42].

2.2. Zigzag instabilities: Semistrong regime. Next, we analyze zigzag instabilities of a
stripe that are associated with unstable eigenfunctions of the form (2.8). Since this analysis
is similar to that for a spike given in section 4 of [10], we only outline the key steps of the
derivation in Appendix B. In this way, we obtain the following result for the critical eigenvalue
λ = O(ε2).
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(a) Experiment 1: t = 0 (b) Experiment 1: t = 9

(c) Experiment 2: t = 12 (d) Experiment 2: t = 20

(e) Experiment 3: t = 1.0 (f) Experiment 3: t = 2.4

Figure 4. Breakup instability of a stripe for (1.1) with ε0 = 0.025, τ = 0.1, and Ω = [−1, 1] × [0, 2]. Top
row: Experiment 1. (p, q, r, s) = (2, 1, 2, 0) and D = 1.0. The stripe initially breaks into seven spots, which cor-
responds to a growth rate that is near that of the most unstable mode. However, there is a secondary instability,
and eventually only two spots remain (not shown). Middle row: Experiment 2. (p, q, r, s) = (2, 1, 2, 0) and
D = 0.1. The stripe breaks up into a five-spot pattern, which corresponds closely to the most unstable mode.
There is no secondary instability. Bottom row: Experiment 3. (p, q, r, s) = (3, 2, 2, 0) and D = 1.0. The stripe
initially breaks up into a nine-spot pattern. There is a secondary instability, and only two spots remain. The
time-scale for spot formation is faster than in Experiment 1.
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Principal Result 2.4. For ε → 0 and τ � O(ε−2), the small eigenvalue governing transla-
tional instabilities satisfies

(2.21) λ ∼ ε2
[
2γθλ tanh l tanh(θλl) − 2γ −m2] , θλ ≡

√
1 +m2 + τλ , γ ≡ q

p− 1
.

Suppose that τ � O(ε−2). Then, there are no unstable zigzag modes when γ ≤ 1, which
includes the classical GM exponents (p, q, r, s) = (2, 1, 2, 0). Alternatively, when γ > 1 there is
a band mz− < m < mz+ of unstable zigzag modes only when the domain half-length l exceeds
some critical value lz or, equivalently, when D < Dz = l−2

z . For l → ∞, mz+ ∼ 2
√
γ(γ − 1)

and mz− ∼
√

8γ
γ−1e

−l � 1.
We now derive this result. In Appendix B, (2.21) for λ is obtained by modifying the

analysis in section 4 of [10]. To derive the stability result in Principal Result 2.4, we assume
τ � O(ε−2), so that θλ ∼ √

1 +m2. Then, the stability threshold λ = 0 in (2.21) corresponds
to intersection of the two functions h(θ) and g(θ) for θ ≥ 1, defined by

(2.22) g(θ) = h(θ), g(θ) = tanh(θl) tanh l, h(θ) =
θ2 + (2γ − 1)

2γθ
, θ ≡

√
1 +m2 .

Notice that λ > 0 whenever g(θ) > h(θ). Since h(1) = 1 and g(1) < 1, the stripe is
translationally stable for m ≥ 0 sufficiently small. Next, we calculate that h(θ) has a unique
minimum at θ = θz ≡ √

2γ − 1 when γ > 1/2, where h(θz) = γ−1√2γ − 1. First, suppose
that 0 < γ ≤ 1. Then, since θz ≤ 1 when 1

2 < γ ≤ 1, and θz is undefined when 0 < γ < 1
2 ,

we conclude that h
′
(θ) > 0 for all θ ≥ 1. Since h(1) = 1 and g(θ) < 1, it follows that there

are no roots to (2.22) in θ > 1 when 0 < γ ≤ 1. Therefore, there are no zigzag instabilities
when 0 < γ ≤ 1. Alternatively, for γ > 1, we obtain that θz > 1 and h(θz) < 1. Since
for each θ > 1, g(θ) is an increasing function of l, we conclude that there exists a band of
unstable zigzag modes only when l > lz, where lz is the critical value where g(θ) and h(θ)
intersect tangentially. Since l = 1/

√
D, this implies that there is an unstable band of zigzag

modes only when D < Dz = l−2
z . We illustrate this result graphically in Figure 5(a), where

we plot h(θ) for γ = 2 together with g(θ) for different values of l. For γ = 2, in Figure 5(b)
we plot the upper and lower zigzag thresholds mz+ and mz−, respectively, versus l for l > lz.
The dashed lines in this figure are the asymptotic approximations mz+ ∼ 2

√
γ(γ − 1) and

mz− ∼
√

8γ
γ−1e

−l for l 
 1, which are readily derived from (2.22). In Figure 6 we plot the
critical domain half-length lz versus γ.

Since m = kπ/d and d = ld0 with l = 1/
√
D, we conclude from the upper bound m = mz+

that a stripe for (1.1) with γ = q/(p− 1) > 1 is stable to zigzag instabilities only when the
domain width d0 for (1.1) satisfies d0 < d0z ≡ π

√
D/mz+ = O(1). For 0 < γ < 1, there are

no zigzag instabilities for any domain width.
From the results here and in section 2.1, we conclude that a stripe for (1.1) in the semi-

strong regime is stable with respect to both breakup and zigzag instabilities only for thin
domains satisfying d0 < πε0/

√
ν0, where ν0, given in (2.10), is the positive eigenvalue of L0.

Since zigzag instabilities develop on a long time O(ε−2) time-scale, they are dominated by
any breakup instability that occurs. Finally, we remark that although we have presented
only a formal derivation of (2.21), it can be derived rigorously by using a Lyapunov–Schmidt
reduction analysis similar to that in [43].
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(a) graphical determination of unstable zigzag band
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(b) zigzag stability thresholds for γ = 2

Figure 5. (a) plot of h(θ) for γ = 2 (heavy solid curve) together with g(θ) for l = 1 (widely spaced dots),
l = lz ≈ 1.37 (dashed curve), and l = 2 (solid curve). Here g(θ) and h(θ) are defined in (2.22). The unstable
zigzag modes correspond to where g(θ) > h(θ). (b) the upper and lower zigzag stability thresholds mz− (solid
curve) and mz+ (heavy solid curve) for γ = 2 as a function of l when l > lz ≈ 1.37. The band disappears when
m ≈ 1.55.
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Figure 6. Plots of the critical domain half-length lz (heavy solid curve) and the mode m where the zigzag
band disappears (solid curve) versus γ = q

p−1 for γ > 1. For l > lz, there is a band of unstable zigzag modes.

2.3. GM model with small saturation: Fat homoclinics. In the semistrong regime, where
D = O(1), we now show that the inclusion of a small amount of saturation in the activator
production for the classical GM model can lead to the disappearance of the breakup instability
band. The resulting modified classical GM model in a rectangular domain is

at = ε20Δa− a+
a2

h(1 + ka2)
, τht = DΔh− h+

a2

ε0
,(2.23)

X = (X1, X2) ∈ Ω = {−1 < X1 < 1 , 0 < X2 < d0} ,
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THE STABILITY OF A STRIPE FOR THE GM MODEL 329

with ∂na = ∂nh = 0 on ∂Ω. We refer to (2.23) as the small saturation limit of (1.6), since if
we replace a and h in (2.23) with ε0a and ε0h, we obtain (1.6) with κ = ε20k. Thus, k = O(1)
in (2.23) corresponds to κ = O(ε20) in (1.6).

For ε → 0 we now asymptotically construct an equilibrium homoclinic stripe solution. In
the inner region, we let y = X1/ε to obtain that h ∼ H and a ∼ Hw(y), where w(y) satisfies

(2.24) w
′′

+ f(w) = 0 , f(w) ≡ −w +
w2

1 + bw2 , −∞ < y < ∞ , b = kH2.

For 0 ≤ b < 1
4 it follows that w = 0 and w = w±, with 0 < w− < w+, are the rest points of

(2.24), where

(2.25) w± =
1
2

[
1 ± √

1 − 4b
]
.

Both w = 0 and w = w+ are saddle points, while w− is a center. It is readily shown that
(2.24) has a homoclinic pulse solution with w(0) > 0 and w(±∞) = 0, provided that there
exists a value wm ∈ (w−, w+) for which F(wm) = 0, where F(w) ≡ − ∫ w

0 f(s) ds. Such a value
of wm exists for 0 < b < b0 <

1
4 . However, when b = b0, then (2.24) has a heteroclinic solution

with asymptotic end-states w = 0 and w = w+. To determine this critical value b0 of b we set
F(w+) = 0. Upon integrating f(w), we find that w+ and b0 are determined uniquely by

(2.26) b0 =
w+ − 1
w2

+
, 2w+ tan−1

(√
w+ − 1

)
= (w+ + 1)

√
w+ − 1 .

By solving (2.26) numerically, we obtain

(2.27) b0 ≈ 0.211376 , w+ ≈ 3.295209 .

In summary, (2.24) has a unique homoclinic solution with w(0) > 0 and w(±∞) = 0, provided
that 0 < b < b0.

In the outer region, we calculate a2/ε0 in (2.23) in terms of a Dirac mass. In this way, we
obtain

(2.28) hX1X1 − θ2
0h = −βH2

D
δ(X1) , −1 < X1 < 1 , hX1(±1) = 0 ,

where β ≡ ∫∞
−∞w2 dy and θ0 ≡ D−1/2. We solve (2.28) in terms of a Green function, and

we impose the matching condition h(0) = H, which determines H. Finally, we recall that
b = kH2. This leads to the following formal result.

Principal Result 2.5. For ε → 0 and for any k > 0, there is a unique homoclinic stripe
solution to (2.23) given by

(2.29) ae(X1) ∼ Hw (ε−1X1
)
, he(X1) ∼ HG(X1)

G(0)
, G(X1) ≡ cosh [θ0(1 − |X1|)]

2θ0 sinh θ0
.

Here, for a fixed value of b in 0 ≤ b < b0 ≈ 0.2114, w(y) is the unique positive homoclinic
solution to (2.24). The saturation constant k and h(0) ≡ H are related to b and D by

(2.30) G(b) ≡ bβ2 = 4kD tanh2
(
1/

√
D
)
, H =

2
√
D

β
tanh

(
1/

√
D
)
, β ≡

∫ ∞

−∞
w2 dy .
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(a) w versus y for various b
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(b) b versus k

Figure 7. (a) plots of the homoclinic solution w(y) to (2.24). From top to bottom the curves are for
b = 0.211, b = 0.2034, b = 0.195, b = 0.145, and b = 0.0. (b) b versus k for D = 10 (heavy solid curve), D = 1
(solid curve), and D = 0.1 (dotted curve).

In (2.30), the integral β, which is readily computed numerically, depends only on b and
satisfies β(b) → +∞ as b → b−0 . Since β > 0 and dβ/db > 0 (see Appendix B of [41]), it
follows that G(b) is a monotone increasing in b with G(0) = 0 and G(b) → +∞ as b → b−0 .
Therefore, from (2.30), there is a unique value of k for each fixed D and b in 0 ≤ b < b0, and
that k → ∞ as b → b−0 . Therefore, as k → ∞, we have b → b−0 , and the fattened homoclinic w
approaches a mesa pattern that is comprised of a front-back heteroclinic structure connected
by an asymptotically flat plateau. In Figure 7(b) we use (2.30) to plot b versus k for several
values of D, showing that k → ∞ as b → b−0 . In Figure 7(a) we plot the solution w(y) to
(2.24) for several values of b. Notice that for b slightly below b0, w(y) becomes rather fat as
a result of the ghost effect of the heteroclinic connection that exists when b = b0.

Next, we study breakup instabilities of the homoclinic stripe by deriving an NLEP. Since
this derivation is similar to that given in Appendix A, we only highlight its key steps. We
introduce a perturbation of the form (2.5). Then, in place of (A.1) and (A.2), we obtain that
Φ(y), with y = X1/ε, satisfies
(2.31)

Φ
′′ − Φ +

2w
(1 + bw2)2

Φ − η(0)w2

1 + bw2 =
(
λ+ ε2m2)Φ , −∞ < y < ∞ , Φ → 0 as |y| → ∞ .

Assuming that
∫∞
−∞ Φw dy �= 0, then η(0) in (2.31) is to be calculated from

ηX1X1 − θ2
λη = 0 , −1 < X1 < 1 , ηX1(±1) = 0 , θλ ≡

√
m2 +

(1 + τλ)
D

,(2.32a)

[η] = 0 , [ηX1 ] = −2H
D

∫ ∞

−∞
wΦ dy .(2.32b)
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THE STABILITY OF A STRIPE FOR THE GM MODEL 331

We solve (2.32) in terms of a Green function, which yields η(0) in (2.31). This leads to the
following NLEP.

Principal Result 2.6. Let ε → 0, and suppose
∫∞
−∞ Φw dy �= 0. Then, for 0 ≤ b < b0, the

stability of the homoclinic stripe for the modified GM model (2.23) on an O(1) time-scale is
determined by the spectrum of the NLEP

L0bΦ − χmw
2

(1 + bw2)

∫∞
−∞wΦ dy∫∞
−∞w2 dy

= (λ+ ε2m2)Φ , −∞ < y < ∞ , Φ → 0 as |y| → ∞ ,

(2.33a)

L0bΦ ≡ Φ
′′ − Φ +

2w
(1 + bw2)2

Φ , χm ≡ 2θ0 tanh θ0
θλ tanh θλ

, θ0 ≡ D−1/2 , θλ ≡
√
m2 +

(1 + τλ)
D

.

(2.33b)

For ε � 1, and in the absence of saturation effects (i.e., b = 0), it was shown in section
2.1 that there is always a breakup instability band for any D > 0. We now study numerically
whether this instability band can disappear for some range of b on the homoclinic existence
interval 0 ≤ b < b0. For simplicity we will consider only the case where τ = 0. Although
we are unable to give a rigorous analysis of the spectrum of (2.33) as a function of b, we can
readily identify the mechanism for the possible coalescence of the upper and lower breakup
instability thresholds. Since χm → 0 asm → ∞ in (2.33), it follows by the same reasoning as in
section 2.1 that the upper stability boundary, mb+, satisfies mb+ ∼ √

ν0/ε0 for ε0 � 1, where
ν0 = ν0(b) > 0 is the unique positive eigenvalue of the local operator L0bΨ = νΨ. However,
ν0 must tend to zero as b → b−0 ≈ 0.2114, or equivalently as k → ∞, since we necessarily
must have ν0 = 0 for the heteroclinic orbit where b = b0. This behavior of ν0 is confirmed
in Figure 8(b), where we plot the numerically computed curve ν0 = ν0(b). Therefore, for any
fixed ε small, it follows that mb+ → 0 as b → b−0 . In addition, since a homoclinic pulse with
m = 0 for (2.33) is always stable when τ = 0 (cf. [41]), it follows that if the lower instability
boundary exists, it will satisfy mb− > 0. Hence, the instability band mb− < m <

√
ν0/ε0

must become narrower as b increases towards b0, or equivalently as k → ∞.
To numerically calculate breakup instability bands, we first solve (2.24) numerically and

then discretize (2.33) using centered differences and the trapezoidal rule. The eigenvalues of
the resulting matrix eigenvalue problem are found using LAPACK [1], and a quasi-Newton
method is used to locate the edges of any instability band. Continuation in b is then used
starting from b = 0, where the instability band is known from Proposition 2.3. Finally, the
relation (2.30) between b and k determines the instability band with respect to the saturation
parameter k in (2.23).

For D = 10 and ε0 = 0.025, in Figure 8(a) we plot the unique positive eigenvalue within
the instability band for four values of k. As k increases, the band becomes narrower, until it
finally pinches off at the critical value k ≈ 19.4. This coalescence of the edges of the breakup
instability band for k sufficiently large occurs for other values of D and ε0. In particular,
when D = 10, in Figure 9(a) we show the merging of the upper and lower thresholds mb±
at some value of k for three values of ε0. In Figure 9(b) we show a similar merging behavior
when ε0 = 0.025 for four values of D.
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Figure 8. (a) the unstable eigenvalue λ versus m within an instability band when D = 10 and ε0 = 0.025.
From top to bottom the curves are for k = 0, k = 3.663, k = 6.802, and k = 12.519. (b) the principal eigenvalue
ν0 of the local operator L0b versus b, with ν0 → 0 as b → 0.2114.
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(a) mb± versus k for D = 10
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Figure 9. (a) plots of mb± versus k when D = 10 for ε0 = 0.05 (heavy solid curve), ε0 = 0.025 (solid
curve), and ε0 = 0.01 (dotted curve). (b) plots of mb± versus k when ε0 = 0.025 for D = 100 (heavy solid
curve), D = 10 (solid curve), D = 1 (dotted curve), and D = 0.1 (widely spaced dots).

Qualitatively, these numerical results show that the breakup instability disappears on
some range k > k0d (or, equivalently, b0d < b < b0 ≈ 0.2114) when the homoclinic solution w
to (2.24) is sufficiently broad (see Figure 7(a)). This widening of the homoclinic is a result of
the ghost effect of the heteroclinic connection that exists when b = b0. Therefore, we suggest
that the stability properties of “fat” homoclinic stripes can be similar to those of mesa-stripe
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THE STABILITY OF A STRIPE FOR THE GM MODEL 333

solutions, such as those that occur for the Fitzhugh–Nagumo model (cf. [34], [35]) and the
modified GM model of sections 4–5 with large saturation, where spot-generating breakup
instabilities do not occur.

3. The GM model without saturation: Weak interaction regime. In the weak inter-
action regime we now show numerically that, depending on the exponent set (p, q, r, s), a
stripe for (1.1) can be stable with respect to breakup instabilities for any domain width d0
but is unstable to zigzag instabilities unless d0 = O(ε0) thin. As in section 2.3, this disap-
pearance of the breakup instability band is again related to the “fattening” of a homoclinic
solution as a parameter is varied. In (1.4) the weak interaction regime corresponds to the
limit l = 1/

√
D 
 1 with ε = ε0l = O(1). Equivalently, in (1.1) we write D = D0ε

2
0 for some

D0 = O(1), and we let ε0 → 0. In terms of y = x1/ε0, and upon rescaling a and h in (1.1), the
resulting equilibrium problem for (1.1) is to look for even homoclinic solutions to the coupled
system
(3.1)

ayy − a+
ap

hq
= 0 , D0hyy − h+

ar

hs
= 0 , ∞ < y < ∞ , a → 0 , hy → 0 , |y| → ∞ .

In [14] numerical solutions to (3.1) are computed by using the boundary-value solver
COLSYS [2] together with path-following in D0. As D0 is decreased from some initially large
value it was shown for various exponent sets in [14] that the bifurcation diagram of a(0) versus
D0 for (3.1) has a saddle-node bifurcation at some critical value D0c and that there are no
homoclinic solutions to (3.1) when 0 < D0 < D0c. The existence of such a fold-point value
D0c was proved in [4] using geometric singular perturbation theory. For the classical GM
model, where (p, q, r, s) = (2, 1, 2, 0), a plot of a(0) versus D0 is shown in Figure 10(a). When
viewed as a pulse solution in one dimension, the upper branch of this bifurcation diagram is
stable when τ is below some O(1) Hopf bifurcation threshold τH = τH(D0), and the lower
branch is unstable for any τ ≥ 0 (cf. [14]). The dashed portion along the lower solution branch
of Figure 10(a) is where a(y) has two distinct local maxima, with one on either side of the
symmetry point y = 0. This two-bump structure begins at the point where ay(0) = 0, which
we label by D0 = D0m.

A stripe solution ae, he for the two-dimensional GM model (1.1) is obtained by taking
the homoclinic solution of (3.1) as the cross-sectional profile of the stripe. The stripe, with a
width O(ε0), is then localized along the midline x1 = 0 of the rectangular domain. For various
exponent sets we then determine the stability of this stripe solution along each point on the
upper branch of the a(0) versus D0 bifurcation diagram by writing

(3.2) a = ae

(
ε−1
0 x1

)
+Φ
(
ε−1
0 x1

)
eλt cos(mx2) , h = he

(
ε−1
0 x1

)
+N

(
ε−1
0 x1

)
eλt cos(mx2) .

By substituting (3.2) into (1.1), we obtain the following eigenvalue problem for Φ(y) and N(y)
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(a) a(0) versus D0 for (2, 1, 2, 0)
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(b) Breakup instability band for (2, 1, 2, 0)

Figure 10. (a) bifurcation diagram of a(0) versus D0 for (3.1) for (p, q, r, s) = (2, 1, 2, 0). On the dashed
portion of the lower branch a(y) has a multibump structure. (b) the breakup instability band versus D0 for
(p, q, r, s) = (2, 1, 2, 0). For modes ε0m within the band the stripe is unstable. The band terminates before the
saddle-node value D0c = 7.17.

on 0 ≤ y < ∞:

Φyy − (1 + μ)Φ +
pap−1

e

hq
e

Φ − qap
e

hq+1
e

N = λΦ ,(3.3)

D0Nyy − (1 +D0μ)N +
rar−1

e

hs
e

Φ − sar
e

hs+1
e

N = τλN .

Here μ ≡ ε20m
2, where m is either the breakup mode or the zigzag mode transverse to the

stripe.
To study breakup instabilities we compute the spectrum of (3.3) for even eigenfunc-

tions Φ and N so that Φy(0) = Ny(0) = 0. We first compute the homoclinic solution of
(3.1) on a long interval 0 < y < L, where L 
 1. We then discretize (3.3) on the same
interval [0, L] by using centered differences, and we label Φ0 = (Φ0(y1), . . . ,Φ0(yn))t and
N0 = (N0(y1), . . . , N0(yn))t, where yj = jh for j = 0, . . . , n with h = L/n. We also impose
that Φy(L) = Ny(L) = 0. In this way, we obtain the block matrix eigenvalue problem
(3.4)( M − (1 + μ)I + Λ1 −Λ2

Λ3 D0M − (1 +D0μ)I − Λ4

)(
Φ0
N0

)
= λ

(
I 0
0 τI

)(
Φ0
N0

)
.

Here Λj for j = 1, . . . , 4 are n × n diagonal matrices, and M is a tridiagonal matrix defined
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Table 2
The second and third columns are the saddle-node bifurcation values D0c and αc ≡ a(0) for the existence

of a stripe. The fourth column gives the values D0b of D0 for the lower bound of the breakup instability band.
A stripe is stable to breakup instabilities when D0c < D0 < D0b. For (3, 2, 2, 0) and (2, 2, 3, 3) the band does not
terminate before D0c, and so D0b is undefined. The fifth column gives the values D0z of D0 for the upper bound
of the zigzag instability band in the weak-interaction regime. For (2, 2, 3, 3), where γ = q/(p − 1) = 2, the band
continues into the semistrong regime. The sixth column has the smallest values D0m of D0, where a(y) has a
multibump structure on the lower branch of the a(0) versus D0 bifurcation diagram. The seventh column gives
the saddle-node values D0s, computed in [33], representing the smallest value of D0 where a radially symmetric
spot solution exists in R

2.

(p, q, m, s) D0c αc D0b D0z D0m D0s

(2, 1, 2, 0) 7.17 1.58 8.06 24.0 8.92 9.82
(2, 1, 3, 0) 10.35 1.42 19.14 30.0 12.36 16.31
(3, 2, 2, 0) 3.91 1.62 −− 32.3 5.08 5.23
(3, 2, 3, 1) 4.41 1.53 5.13 28.0 5.36 5.97
(2, 2, 3, 3) 33.7 2.28 −− −− 41.80 85.52
(4, 2, 2, 0) 0.89 1.36 1.00 27.9 1.06 0.89

by
(3.5)

Λ1jj = pap
e(yj)

hq
e(yj)

, Λ2jj = qap
e(yj)

hq+1
e (yj)

,

Λ3jj = rar−1
e (yj)
hs

e(yj)
, Λ4jj = sar

e(yj)
hs+1

e (yj)
,

M ≡ 1
h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 2 0 · · · 0 0 0

1 −2 1
. . . . . . 0 0

0
. . . . . . . . . . . . . . . 0

...
. . . . . . . . . . . . . . .

...

0
. . . . . . . . . . . . . . . 0

0 0
. . . . . . 1 −2 1

0 0 0 · · · 0 2 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For τ = 0.01, we numerically determine the range of values of μ for which (3.4) has
unstable eigenvalues. For D0 sufficiently large, and for all of the exponent sets in Table 2,
our computational results from LAPACK [1] with n = 250 meshpoints and L = 15 show that
there are threshold values μ1 and μ2 for which there is a unique real positive eigenvalue λ0 in
the breakup instability band

√
μ1 < ε0m <

√
μ2, and that Re(λ) < 0 for 0 ≤ ε0m <

√
μ1 and

ε0m >
√
μ2. However, as D0 is decreased towards the existence threshold D0c, our results

show that the instability band disappears for some of these exponent sets at some critical value
D0b > D0c on the upper branch. Numerical values for D0b are given in Table 2. Increasing n
and L did not change the results in Table 2 significantly.

In Figure 10(b) we plot the upper and lower thresholds for the breakup instability band
for the exponent set (p, q, r, s) = (2, 1, 2, 0), showing the coalescence of the thresholds when
D0 = D0b = 8.06. This critical value compares reasonably well with the corresponding critical
value D0 ≈ 1/(.12) = 8.33 estimated in [4, see p. 99] based on full numerical computations and
on an extrapolation of stability results from the semistrong regime into the weak interaction
regime (see Figure 5.2 of [4]). Therefore, for the classical GM model, a stripe solution for
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(a) breakup bands: (4, 2, 2, 0), (3, 2, 3, 1), (2, 1, 3, 0)
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(b) breakup bands: (3, 2, 2, 0), (2, 2, 3, 3)

Figure 11. (a) breakup instability bands that terminate before the saddle-node value D0c. The heavy solid
curve is for (p, q, r, s) = (2, 1, 3, 0), the solid curve is for (3, 2, 3, 1), and the dashed curve is for (4, 2, 2, 0).
(b) breakup bands that do not terminate before D0c. The heavy solid and solid curves are for (3, 2, 2, 0) and
(2, 2, 3, 3), respectively.

(1.1) exists and is stable with respect to breakup instabilities when 7.17 < D0 < 8.06. In
Figure 11(a) we plot similar upper and lower stability thresholds of the breakup instability
band for the exponent sets (4, 2, 2, 0), (3, 2, 3, 1), and (2, 1, 3, 0). For these exponent sets the
breakup instability band disappears below some threshold value D0b larger than D0c, so that
a stripe solution for (1.1) is stable with respect to breakup on the range D0c < D0 < D0b.
For three parameter sets, in Figure 12(a) we plot the unique unstable real eigenvalue within
an instability band. As seen from this figure, the most unstable mode occurs roughly in the
middle of this band.

However, as shown in Figure 11(b), the breakup instability band does not disappear at
some D0 value greater than the existence threshold D0c for the exponent sets (3, 2, 2, 0) and
(2, 2, 3, 3). Consequently, for these exponent sets, a stripe solution to (1.1) will always be
unstable to breakup instabilities when the domain width d0 is O(1).

Next, we study zigzag instabilities by calculating the spectrum of (3.3) for odd eigenfunc-
tions Φ and N so that Φ(0) = N(0) = 0. The discrete eigenvalue problem has the same form
as in (3.4) and (3.5) except that now yj = jh for j = 1, . . . , n with h = L/n, and where
M12 = 1 replaces the corresponding entry in the matrix M in (3.5). The spectrum of the
resulting discrete eigenvalue problem is then computed numerically for τ = 0.01, L = 15, and
with n = 250. In Figure 13(a) we show the unstable zigzag band for three exponent sets for
which γ = q

p−1 = 1. Recall that for γ = 1 the theory of section 2.2 showed that there is no
unstable zigzag band in the semistrong interaction regime. Our computational results show
that as D0 is decreased towards the existence threshold D0c, an unstable zigzag band first
emerges at some critical value D0z with D0z > D0c. Numerical values for D0z are given in
Table 2. Within the zigzag band there is a unique unstable real eigenvalue when τ = 0.01.
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(a) unstable breakup eigenvalue
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(b) unstable zigzag eigenvalue

Figure 12. (a) the unstable breakup eigenvalue λ0 within an instability band. The heavy solid curve is for
(2, 1, 2, 0) with D0 = 15.0, the solid curve is for (2, 1, 2, 0) with D0 = 9.01, and the dashed curve is for (3, 2, 2, 0)
with D0 = 4.5. (b) the unstable zigzag eigenvalue λ0 within an instability band. The heavy solid curve is for
(2, 1, 2, 0) with D0 = 7.60, the solid curve is for (3, 2, 2, 0) with D0 = 4.5, and the dashed curve is for (2, 1, 3, 0)
with D0 = 14.0.
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(a) zigzag bands: (2, 1, 2, 0), (2, 1, 3, 0), (3, 2, 2, 0)
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(b) zigzag band: (2, 2, 3, 3)

Figure 13. (a) the zigzag instability band for (2, 1, 2, 0) (heavy solid curve), for (2, 1, 3, 0) (solid curve),
and for (3, 2, 2, 0) (dashed curve), plotted for D0 > D0c. For these exponent sets there is a value D0z of D0

for which there is an unstable band for D0c < D0 < D0z. Within the band there is a unique and real unstable
eigenvalue. (b) the unstable zigzag band for (2, 2, 3, 3). Since γ = q/(p − 1) = 2 > 1, this band continues into
the semistrong interaction regime and terminates there (see section 2.2).

For three parameter sets, this eigenvalue is plotted in Figure 12(b) within an instability band.
From section 2.2 we recall that there is an unstable zigzag band in the semistrong regime
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2.5
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1.5

1.0

0.5

0.0
10.08.06.04.02.00.0

a

y

Figure 14. Plots of a(y) for various D0 computed from (3.1) for the exponent set (2, 1, 2, 0). The heavy
solid, solid, dotted, and widely spaced dotted curves are for D0 = 19.6, D0 = 11.9, D0 = 7.9, and D0 = 7.2,
respectively. Notice that the homoclinic becomes broader as D0 is decreased.

D = O(1) when γ = q
p−1 > 1. For the exponent set (2, 2, 3, 3), where γ = 2, in Figure 13(b)

we show the continuation of this band into the weak interaction regime. For a domain length
L = 15, or equivalently ε0 = 1/15, we obtain from Figure 13(b) that the zigzag band exists for
D0 < D0z ≈ 107. This value corresponds to D = D0ε

2
0 ≈ 0.4755, or equivalently l = 1/

√
D =

1.45. This critical value of l for γ = 2 agrees well with the critical value lz ≈ 1.4 obtained
from Figure 6 for when the zigzag band first forms in the semistrong interaction regime.

We now qualitatively summarize our conclusions regarding the stability of the stripe. An
important conclusion is that for the exponent sets (p, q,m, s), where the breakup instability
disappears at some value above the existence threshold as D0 is decreased, the stripe will
always be unstable with respect to zigzag instabilities for domain widths d0 that are O(1) as
ε0 → 0. Since the upper zigzag threshold mz+ satisfies mz+ = O(ε−1

0 ), the zigzag instability
can only be suppressed near the existence threshold D0c by taking the domain width d0 to
be O(ε0) thin. We also observe from Figure 12 that the time-scale for breakup instabilities
is generally faster than for zigzag instabilities. However, both time-scales are independent of
ε0. By comparing Figures 10(b) and 11 with Figure 13, we observe that whenever a breakup
instability band exists the breakup and zigzag bands overlap in such a way that there are no
domain widths d0 where a zigzag instability is not accompanied by a breakup instability.

Remark 3.1. It appears to be difficult to provide a rigorous study of the eigenvalue problem
(3.3) to theoretically confirm the possible coalescence of the breakup instability band and the
emergence of the zigzag band near the existence threshold D0c. However, the shape of the
homoclinic a(y) near the existence threshold gives some indication of the reason for the change
in the dominant instability mechanism. For D near D0c, the region near the maximum of a(y)
is generally wider than it is for larger values of D0. This is shown numerically in Figure 14 for
the exponent set (2, 1, 2, 0). In fact, on the unstable branch, but near D0c, the cross section
of the “fattened” homoclinic stripe develops a multibump structure at some value D0m (see
Table 2). In addition to the general pulse-splitting criteria of [5], this multibump structure
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THE STABILITY OF A STRIPE FOR THE GM MODEL 339

also appears to be an essential factor for self-replication behavior (cf. [14]). Therefore, near
the existence threshold, the cross section of the homoclinic stripe becomes fatter in a similar
way as was studied in section 2.3 for the small-saturation GM model (2.23) in the semistrong
regime. This suggests that the stability problem near the existence threshold D0c can be
similar to that of a bistable system where zigzag instabilities are the dominant instability
mechanism (cf. [34]) and where breakup instabilities do not occur.

We now perform a few numerical experiments on (1.1) to illustrate and validate the spectral
results for breakup and zigzag instabilities. For each of the experiments below, we solve (1.1)
for τ = 0.01 in the square domain Ω = [−1, 1] × [0, 2], with an initial condition of the form

(3.6) a(x1, x2, 0) = Asech2
(
x1

ε0

)
, h(x1, x2, 0) = Hsech2

(
x1

2ε0

)
.

Whenever the equilibrium stripe exists, in the experiments below we have taken A = a(0) and
H = h(0), where a and h are the numerical solution of (3.1) for the specified value of D0.

Experiment 4. In Experiment 4 we take (p, q, r, s) = (2, 1, 2, 0), ε0 = 0.025, and D0 = 7.6.
The initial condition for (1.1) is (3.6) with A = 1.69 and H = 1.45. Since D0c < D0 < D0b

there is no breakup instability band, and we predict that the initially straight stripe will not
break up into spots. From the heavy solid curve in Figure 12(b) the most unstable zigzag
mode is ε0m ≈ 0.315 with a corresponding growth rate λ0 ≈ 0.035. Therefore, the number of
zigzag crests is theoretically predicted to be N = m

π = 0.315
πε0

≈ 4. The full numerical results
from (1.1) are shown in Figure 15. We observe that, initially, there is indeed no breakup
instability and that when t = 300 the stripe develops a noticeable zigzag instability with four
crests. However, the wriggled stripe then undergoes a breakup instability near the points of
its maximum curvature, leading to spot formation. Since D0 = 7.6 is below the existence
threshold D0s = 9.82 for a locally radially symmetric spot solution (see Table 2), these spots
then undergo a repeated self-replication process which fills the entire domain. The solution at
time t = 1000, shown in Figure 15(d), is near an equilibrium state and more closely resembles
a Turing-type pattern than a pattern with isolated spots.

Experiment 5. We take (p, q, r, s) = (2, 1, 2, 0), ε0 = 0.025, and we increase D0 to D0 =
15.0. The initial condition for (1.1) is (3.6) with A = 2.3 and H = 1.8. Since D0 > D0b = 8.06
and D0 < D0z = 24.0 the initially straight stripe is unstable to a breakup and a zigzag
instability. From the heavy solid curve in Figure 12(a) the most unstable breakup mode is
ε0m ≈ 0.623 with a growth rate of λ0 ≈ 0.186. Therefore, the theoretically predicted number
of spots is N = m

π = 0.623
πε0

≈ 8. From the full numerical results shown in Figure 16(a) it is
observed that the stripe initially breaks up into eight spots. The eight spots in Figure 16(a) are
not in perfect vertical alignment, owing to the zigzag instability of the initial stripe. Then, as
shown in Figure 16(b), the repulsive spot interactions accentuate the broken vertical symmetry.
Since D0 = 15 is well above the spot-existence threshold of D0s = 9.82 given in Table 2, there
is no spot self-replication behavior. Instead there is an exponentially slow, or metastable,
drift of the spots towards a stable hexagonal equilibrium configuration (cf. Figure 16(c) and
Figure 16(d)).

Experiment 6. Next, we take (p, q, r, s) = (2, 1, 2, 0), ε0 = 0.025, and D0 = 6.8. The initial
condition for (1.1) is (3.6) with A = 1.6 and H = 1.4. Since D0 < D0c, there is no equilibrium
stripe solution. For the related problem of a pulse on a one-dimensional interval with D0 <

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

1/
16

 to
 1

29
.1

73
.7

4.
49

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



340 T. KOLOKOLNIKOV, W. SUN, M. WARD, AND J. WEI

(a) Experiment 4: t = 200 (b) Experiment 4: t = 300

(c) Experiment 4: t = 400 (d) Experiment 4: t = 1000

Figure 15. Experiment 4. The numerical solution to (1.1) for (p, q, r, s) = (2, 1, 2, 0) with ε0 = 0.025,
D0 = 7.6, τ = 0.01, and in a square domain Ω = [−1, 1] × [0, 2]. The initially straight stripe develops a
zigzag instability. Spots are formed near the region of maximum curvature of the wriggled stripe. These spots
then undergo a repeated self-replication process leading to a Turing-type pattern. See also the accompanying
animation (63508 01.gif [650KB]).

D0c, an initial one-pulse profile undergoes an edge-splitting pulse-replication process leading
to a Turing-type pattern (cf. [4], [14], [25, Remark 6.2]). The numerical results for the two-
dimensional GM model are shown in Figure 17. We observe that the stripe first splits into
two and then develops a zigzag instability. The wriggled stripes undergo a breakup instability
near their points of maximal curvature. Since D0 < D0s the emerging spots then undergo a
spot-splitting process. For short times, stripe-replication behavior was computed in Figure 5.3
of [4] for D0 = 1/(.14) ≈ 7.14 before any zigzag instabilities occur.

Experiment 7. We now take (p, q, r, s) = (3, 2, 2, 0), ε0 = 0.025, and D0 = 4.5. The
initial condition for (1.1) is (3.6) with A = 1.82 and H = 0.74. For this exponent set, in
addition to the zigzag instability, a breakup instability is guaranteed since the breakup band
does not terminate in the weak interaction regime. From the dashed curve in Figure 12(a)
the most unstable breakup mode is ε0m ≈ 0.96 with a growth rate of λ0 ≈ 0.147. With

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(a) Experiment 5: t = 500 (b) Experiment 5: t = 800

(c) Experiment 5: t = 3000 (d) Experiment 5: t = 30000

Figure 16. Experiment 5. The numerical solution to (1.1) for (p, q, r, s) = (2, 1, 2, 0) with ε0 = 0.025,
D0 = 15.0, τ = 0.01, and in a square domain Ω = [−1, 1] × [0, 2]. The stripe initially breaks up into eight
spots that are not in perfect vertical alignment, owing to the zigzag instability of the initial stripe. There is no
self-replication behavior and there is an exponentially slow, or metastable, evolution of the eight spots towards
a stable equilibrium configuration consisting of a hexagonal structure.

this most unstable mode, we predict that the stripe will break up into N = m
π = 0.96

πε0
≈ 12

spots. Alternatively, from the solid curve in Figure 12(b), the most unstable zigzag mode is
ε0m ≈ 0.43 with a corresponding growth rate λ0 ≈ 0.051. This corresponds to a most unstable
zigzag mode with N = m

π = 0.43
πε0

≈ 5 crests. In the numerical results shown in Figure 18 we
observe that the initially straight stripe breaks up into fourteen spots (see Figure 18(a)) and
then develops a zigzag instability with six crests, which breaks the vertical symmetry of the
array of spots (see Figure 18(b)). Since D0 < D0s = 5.23 the resulting spots then undergo
a spot-splitting process (cf. Figure 18(c)) leading to a final state that closely resembles a
Turing-type pattern (cf. Figure 18(d)).

Experiment 8. Finally, we consider (p, q, r, s) = (2, 1, 3, 0), ε0 = 0.01, and D0 = 14.0. The
initial condition for (1.1) is (3.6) with A = 1.6 and H = 1.3. For this exponent set there are no
breakup instabilities on the rather wide range 10.35 < D0 < 19.14 (see Table 2). Therefore,
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(a) Experiment 6: t = 75 (b) Experiment 6: t = 175

(c) Experiment 6: t = 225 (d) Experiment 6: t = 250

Figure 17. Experiment 6. The numerical solution to (1.1) for (p, q, r, s) = (2, 1, 2, 0) with ε0 = 0.025,
D0 = 6.8, τ = 0.01, and in a square domain Ω = [−1, 1] × [0, 2]. Since D0 < D0c, the initially straight stripe
splits into two. The two stripes become wriggled as a result of a zigzag instability. Spots are formed near the
region of maximum curvature of the wriggled stripes. These spots then undergo a self-replication process. See
also the accompanying animation (63508 02.gif [512KB]).

we expect no breakup instability. From the dashed curve in Figure 12(b) the most unstable
zigzag mode is ε0m ≈ 0.23, with a corresponding growth rate λ0 ≈ 0.0131, and the expected
number of zigzag crests is N = m

π = 0.23
πε0

≈ 7. In the numerical results shown in Figure 19(b)
a zigzag instability with exactly seven crests is observed. In contrast to Experiment 4, where
D0 was only slightly below the breakup threshold D0b, for this example D0 is significantly
below the breakup threshold, and the wriggled stripe in Figure 19 is less vulnerable than in
Experiment 4 (see Figure 15) to a breakup instability occurring near a local maxima of its
curvature. The final pattern in Figure 19(d) is composed almost exclusively of stripes.

4. The GM model with saturation: A mesa-stripe solution in the near-shadow limit.
For the modified GM model (1.6) with saturation parameter κ, we now construct a different
type of equilibrium stripe solution centered along the midline of the rectangular domain Ω :=
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(a) Experiment 7: t = 100 (b) Experiment 7: t = 200

(c) Experiment 7: t = 250 (d) Experiment 7: t = 1000

Figure 18. Experiment 7. The numerical solution to (1.1) for (p, q, r, s) = (3, 2, 2, 0) with ε0 = 0.025,
D0 = 4.5, τ = 0.01, and in a square domain Ω = [−1, 1] × [0, 2]. Since the breakup instability band exists up to
D0c, the initially straight stripe breaks up into spots. It then develops a twist as a result of a zigzag instability.
Since D0 < D0s = 5.23, the spots then undergo a repeated self-replication process leading to a Turing-type
pattern.

[0, 1]× [0, d0], with ∂na = ∂nh = 0 on ∂Ω. In section 5 we analyze the stability of this solution.
For our analysis of (1.6) we assume that ε0 � 1 and κ > 0, where κ is independent of ε0.
Recall that the case κ = O(ε20) was considered in section 2.3.

Our analysis is limited to a near-shadow limit D 
 1, where D = D/ε0 with D = O(1).
A similar restriction was made in [35] in their study of interface stability for a generalized
Fitzhugh–Nagumo system. The analysis of mesa-stripes in the regime D = O(1) is not a
straightforward extension of the analysis for the near-shadow limitD = O(ε−1). ForD = O(1)
a new phenomenon related to the self-replication of mesa-stripes can occur. This behavior
is shown in Experiment 11 below. Since a detailed study of mesa-splitting for the regime
D = O(1) is expected to be rather involved, and is not related to the goal of this paper of
characterizing breakup and zigzag instabilities of a stripe, we do not attempt to study the
regime D = O(1) here.
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(a) Experiment 8: t = 1400 (b) Experiment 8: t = 1600

(c) Experiment 8: t = 1800 (d) Experiment 8: t = 4300

Figure 19. Experiment 8. The numerical solution to (1.1) for (p, q, r, s) = (2, 1, 3, 0) with ε0 = 0.01,
D0 = 14.0, τ = 0.01, and in a square domain Ω = [−1, 1]× [0, 2]. There is no breakup instability of the straight
stripe, and the wriggled stripe is less vulnerable than in Experiment 4 to a breakup instability occurring near
local maxima of the curvature. The zigzag instability of the straight stripe is seen to be the precursor to a
large-scale deformation of the stripe. See also the accompanying animation (63508 03.gif [362KB]).

In the near-shadow limit, (1.6) admits an equilibrium stripe solution in the form of a
front-back transition layer structure, where the layers are connected by an asymptotically
flat plateau. We refer to such a solution as a mesa-stripe. This type of solution is distinctly
different from the homoclinic stripe solutions of sections 2 and 3. Since D 
 O(1), then h ∼ H
uniformly on 0 ≤ x1 ≤ 1, where H is a constant. Therefore, from the inhibitor equation of
(1.6), we get

(4.1) H ∼
∫ 1

0
a2 dx1 .

The transition layer solution centered at some x1 = ξl is given by a ∼ Hw(y), with y =
ε−1
0 (x1 − ξl). From (1.6) we obtain that w satisfies (2.24) with b = κH2. It was shown in

section 2.3 that (2.24) has a heteroclinic orbit connecting w = 0 and w = w+ when b = b0.
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Here w+ and b0 are given in (2.27). For b = b0, the heteroclinic solution to (2.24) satisfies

w
′′ − w + g0(w) = 0 , −∞ < y < ∞ , g0(w) ≡ w2

1 + b0w2 , b0 = κH2 ,

(4.2a)

w(y) ∼ c− exp(y) , y → −∞ , w(y) ∼ w+ − c+ exp(−ν+y) , y → +∞ , ν+ ≡
√

1 − 2
w+

(4.2b)

for some positive constants c±. To break the translation invariance we impose the condition
w(0) = w+/2. For the stability analysis in section 5, we must evaluate β ≡ ∫∞

−∞(w
′
)2 dy. A

simple calculation gives
(4.3)

β ≡
∫ ∞

−∞
(w

′
)2 dy =

∫ w+

0

√
2F(w) dw ≈ 1.49882 , F(w) ≡ w2

2
− w

b0
+

1

b
3/2
0

tan−1
(
w
√
b0

)
.

For b = b0 and ε0 � 1, a composite expansion for the mesa-stripe solution has the form
(4.4)
a ∼ H [wl(yl) + wr(yr) − w+] , wl(yl) ≡ w

[
ε−1
0 (x1 − ξl)

]
, wr(yr) ≡ w

[
ε−1
0 (ξr − x1)

]
.

By using (4.1) and (4.4) , we obtain that H ∼ H2w2
+L+O(ε0), where L = ξr − ξl. Then, from

the relation b = H2κ of (4.2a), we obtain that

(4.5) H ∼ 1
w2

+L
+O(ε0) , L ∼

√
κ√

b0w2
+
< 1 .

In Figure 20(a) we plot the numerically computed equilibrium solution ae versus x for several
values of κ when ε0 = 0.02 and D = 10. This solution was computed using COLSYS [2].
Notice that as κ increases, the maximum value of ae decreases, while the spatial extent of the
plateau also increases. For a range of κ, in Figure 20(b) we show a very favorable comparison
between the numerically computed value for the plateau height ae(1/2) and the corresponding
asymptotic result ae(1/2) ∼ Hw+ = (w+L)−1. As a remark, the analysis of homoclinic
solutions in section 2 showed that ae (1/2) = O(ε−1

0 ) when κ = 0. In Figure 21 we plot the
relation (4.5) between the saturation parameter κ and the plateau length L. The condition
L < 1 ensures that the plateau fits within the unit length of the rectangle. Although ξl and
ξr are undetermined at this stage, we anticipate by symmetry that the plateau is centered
in the middle of the interval [0, 1] so that ξl = (1 − L)/2 = (1 − ξr). This result is derived
analytically below.

Although (4.4) and (4.5) give the leading-order solution, a higher-order construction of
the equilibrium solution is required for the stability analysis of section 5. This is done by
first considering the outer regions, comprised of the plateau region ξl < x1 < ξr together with
near-boundary regions 0 < x1 < ξl and ξr < x1 < 1. In these outer regions we expand

(4.6) h ∼ H + ε0h1 + ε20h2 + · · · .
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(a) ae versus x
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(b) am ≡ ae (1/2) versus κ

Figure 20. (a) the numerically computed equilibrium solution ae versus x for ε0 = 0.02 and D = 10 when
κ = 1 (dashed curve), κ = 2.5 (solid curve), and κ = 5.0 (heavy solid curve). The length L of the plateau
increases with increasing κ. (b) comparison of the asymptotic plateau value am ≡ ae (1/2) ∼ Hw+ (dashed
curve) versus κ with the corresponding full numerical result for ae (1/2) (heavy solid curve).
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Figure 21. The length L of the plateau of the mesa versus the saturation parameter κ of the activator
kinetics.

In the near-boundary regions a is exponentially small as ε0 → 0, while in the plateau region
a ∼ Hw+ + O(ε0). Therefore, by substituting (4.6) into the inhibitor equation of (1.6) with
D = D/ε0, we obtain that

(4.7) Dh1x1x1 =

⎧⎨
⎩

H , 0 < x1 < ξl ,
H − H2w2

+ , ξl < x1 < ξr ,
H , ξr < x1 < 1 ,

with h1x1(0) = h1x1(1) = 0. The conditions for h1 at the transition layers ξl and ξr are found
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THE STABILITY OF A STRIPE FOR THE GM MODEL 347

below upon matching h1 to appropriate inner solutions. In the plateau region we expand a as

(4.8) a ∼ Hw+ + ε0A1 + · · · , ξl < x1 < ξr .

By substituting (4.8) into the activator equation of (1.6), we obtain that A1 satisfies

(4.9) A1 = ga (Hw+,H)A1 + gh (Hw+,H)h1 , ξl < x1 < ξr .

By using ga(Hw+,H) = 2/w+ and gh(Hw+,H) = −w+, we calculate A1 from (4.9) as

(4.10) A1 =
w2

+h1

2 − w+
.

In the inner region near x1 = ξl, we let y = ε−1
0 (x1 − ξl), and we expand a(y) and h(y) as

(4.11) a = a0 + ε0a1 + ε20a2 + · · · , h = H + ε0H1 + ε20H2 + · · · .

Upon substituting (4.11) into the equilibrium problem for (1.6), and letting D = D/ε0, we
obtain that a0 = Hw and that a1 satisfies

(4.12) La1 ≡ a
′′
1 − a1 + g

′
0(w)a1 = g0(w)H1 , H′′

1 = 0 , −∞ < y < ∞ .

Here g0(w) is defined in (4.2a). This yields that H1 = H10+yH11, for some unknown constants
H10 and H11. However, since h = H + O(ε0) in the plateau and near-boundary regions, we
require that H11 = 0 in order to match the inner and outer solutions for h. Therefore,
H1 = H10. To determine H10 we use a solvability condition. Since Lw

′
= 0, the solvability

condition for (4.12) gives H10
∫∞
−∞ g0(w)w

′
dy = 0, which yields H10 = 0. Therefore, since

La1 = 0, we get a1 = c1w
′

for some constant c1. However, since a(0) = Hw+/2 defines
the transition layer location, we require that a1(0) = 0. Since w

′
(0) �= 0, this implies that

c1 = 0. Therefore, a1 = H1 ≡ 0, and we must proceed to the next order in ε0 to find the first
nonvanishing correction term.

Upon substituting (4.11) into (1.6), we obtain that a2 and H2 satisfy

(4.13) La2 ≡ a
′′
2 − a2 + g

′
0(w)a2 = g0(w)H2 , H′′

2 = 0 , −∞ < y < ∞ .

Therefore, H2 = H20 + H21y for some constants H20 and H21. The solvability condition for
(4.13) gives one relation between these two constants in the form

(4.14)
∫ ∞

−∞
(H20 + yH21) g0(w)w

′
dy = 0 .

The other relationship between these constants is determined from the matching condition
that h ∼ H + ε20H2 + · · · agrees asymptotically as y → ±∞ with the behavior of the outer
solution h ∼ H+ ε0h1(x1)+ ε20h2(x1)+ · · · as x → ξ±

l . This matching condition readily yields
that

(4.15) h1(ξ±
l ) = 0 , H21 = h1x1(ξ

−
l ) = h1x1(ξ

+
l ) ,
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348 T. KOLOKOLNIKOV, W. SUN, M. WARD, AND J. WEI

and h2(ξ±
l ) = H20. The condition h1x1(ξ

−
l ) = h1x1(ξ

+
l ) is found below to determine the

equilibrium transition layer location ξl uniquely as ξl = (1 −L)/2. The conditions (4.15) and
(4.14) determine H20 and H21 uniquely.

Finally, we derive a key identity needed in section 5. We differentiate (4.13) with respect
to y to obtain

(4.16) La
′
2 = −g′′

0 (w)w
′
a2 + g0(w)H′

2 + g
′
0(w)H2w

′
.

Since Lw
′
= 0, the solvability condition for (4.16) yields the identity

(4.17) −H′
2

∫ ∞

−∞
g0(w)w

′
dy =

∫ ∞

−∞

[
g

′
0(w)H2 − g

′′
0 (w)a2

]
(w

′
)2 dy ,

where H′
2 = h1x1(ξ

+
l ) by the matching condition (4.15).

A similar analysis can be done near the other transition layer at x1 = ξr to obtain that
h1(ξ±

r ) = 0. By solving (4.7) with h1x1(0) = h1x1(1) = 0 and h1(ξ±
l ) = h1(ξ±

r ) = 0, we obtain
that

(4.18) h1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2Dw2

+L

(
x2

1 − ξ2l
)
, 0 < x1 < ξl,

H(L−1)
2DL

[
(x1 − ξl)

2 − (ξr − ξl) (x1 − ξl)
]
, ξl < x1 < ξr,

1
2Dw2

+L

[
(1 − x1)

2 − (1 − ξr)
2 ], ξr < x1 < 1.

From this solution, we calculate the following one-sided derivatives, which are also needed in
section 5 below:
(4.19)

h1x1(ξ
+
l ) =

H(1 − L)
2D = −h1x1(ξ

−
r ) , h1x1(ξ

−
l ) =

Hξl
D , h1x1(ξ

+
r ) = −H(1 − ξr)

D .

The condition that h1x1 is continuous across x1 = ξl and x1 = ξr determines the equilibrium
layer locations uniquely in terms of the length L of the plateau as ξl = (1 − L)/2 and 1− ξr =
(1 − L)/2.

5. The GM model with saturation: Stability analysis in the near-shadow limit. We
now study the stability of the mesa-stripe equilibrium solution ae(x1), he(x1) constructed
in section 4. Since there are Neumann boundary conditions on the sides x2 = 0, d0 of the
rectangular domain, the perturbation takes the form

(5.1) a = ae + eλt+imx2φ , h = he + eλt+imx2ψ , m =
kπ

d0
, k = 1, 2, . . . ,

where φ = φ(x1) � 1 and ψ = ψ(x1) � 1. The bands of instability with respect to the
continuous variable m derived below can be mapped to integer k-bands of instability using
(5.1).

Substituting (5.1) into (1.6) and using D = D/ε0, we obtain the eigenvalue problem

Lεφ+ gh(ae, he)ψ = λ̄φ , 0 < x1 < 1 , φx1(0) = φx1(1) = 0 ,(5.2a)

ψx1x1 −m2ψ =
ε0
D (1 + τλ)ψ − 2ε0

D aeφ , 0 < x1 < 1 , ψx1(0) = ψx1(1) = 0 .(5.2b)
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THE STABILITY OF A STRIPE FOR THE GM MODEL 349

Here λ̄ and the operator Lε are defined by

(5.2c) Lεφ ≡ ε20φx1x1 − φ+ ga(ae, he)φ , λ̄ ≡ λ+ ε20m
2 .

In the analysis below we will show that λ = O(ε20) when m > 0 and m = O(1). Therefore, for
ε0 � 1, the term τλ in (5.2b) is asymptotically negligible when τ = O(1) and is consequently
neglected.

We first determine the asymptotic form of the eigenfunction φ corresponding to λ̄ � 1.
In the plateau region, where ae ∼ Hw+, ga(ae, he) ∼ 2w−1

+ , and gh(ae, he) ∼ −w+, we obtain
from (5.2a) that

(5.3) φ ∼ μψ , μ ≡ w2
+

2 − w+
, ξl < x1 < ξr .

In the near-boundary regions φ is exponentially small as ε0 → 0. Near the transition layers
at ξl and ξr, φ is proportional to the derivative w

′
of the heteroclinic orbit. Therefore, this

motivates the asymptotic form

(5.4) φ ∼
⎧⎨
⎩

cl
(
w

′
(yl) +O(ε0) + · · · ) , yl ≡ ε−1

0 (x1 − ξl) = O(1) ,
φi ≡ μψ , ξl < x1 < ξr ,

cr
(
w

′
(yr) +O(ε0) + · · · ) , yr ≡ ε−1

0 (ξr − x1) = O(1) ,

for some unknown constants cl and cr to be found. Here μ is defined in (5.3).
Since φ is localized near the transition layers, we use (5.4) to calculate in the sense of

distributions that

(5.5)
2ε0aeφ

D ∼ ε20Hw2
+

D [clδ(x1 − ξl) + crδ(x1 − ξr)] +
(

2ε0
D
)

Hw+μψχ[ξl,ξr] ,

where H ∼ 1/(w2
+L). Here χ[ξl,ξr] is the indicator function defined to be unity for ξl ≤ x1 ≤ ξr

and zero outside this plateau region. Substituting (5.5) into (5.2b), we obtain that ψ satisfies

ψx1x1 − θ2ψ = −ε
2
0Hw2

+

D [crδ(x1 − ξr) + clδ(x1 − ξl)] , 0 < x1 < 1,(5.6a)

ψx1(0) = ψx1(1) = 0 .

Here θ is the piecewise constant function

(5.6b) θ =

⎧⎨
⎩

θ− ≡ [m2 + ε0
D
]1/2

, 0 < x1 < ξl , ξr < x1 < 1 ,

θ+ ≡
[
m2 + ε0

D
(
1 + 2w+

L(w+−2)

)]1/2
, ξl < x1 < ξr .

The jump conditions for (5.6) are that

(5.6c) ψx1(x
+
l ) − ψx1(x

−
l ) = −ε

2
0Hw2

+cl
D , ψx1(x

+
r ) − ψx1(x

−
r ) = −ε

2
0Hw2

+cr
D .
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Next, we derive a matrix eigenvalue problem for λ̄. We substitute (5.4) into (5.2a) and
multiply the resulting expression by w

′
l , where w

′
l ≡ w

′
(yl). Since w

′
l is localized, we then

obtain for ε0 � 1 that

(5.7) cl

(
w

′
l , Lεw

′
l

)
+
(
w

′
l , gh(ae, he)ψ

)
∼ clλ̄

(
w

′
l , w

′
l

)
.

Here we have defined (f, g) ≡ ∫ 1
0 fg dx1. We use (4.2) to estimate the second and third terms

in (5.7) as

(
w

′
l , gh(ae, he)ψ

)
∼ −ε0ψ(ξl)

∫ ∞

−∞
w

′
g0(w) dy = −ε0ψ(ξl)

∫ ∞

−∞
(w − w

′′
)w

′
dy = −ε0ψ(ξl)

w2
+

2
,

(5.8a)

(
w

′
l , w

′
l

)
∼ ε0

∫ ∞

−∞
(w

′
)2 dy = ε0β , β ≡

∫ ∞

−∞
(w

′
)2 dy .(5.8b)

To calculate the first term in (5.7) we first use the inner solution ae ∼ Hw + ε20a2 and
he ∼ H + ε20H2 to obtain

ga(ae, he) ∼ ga (Hw,H) + ε20 [gaa (Hw,H) a2 + gah (Hw,H)H2] + · · · ,(5.9a)

ga(ae, he) ∼ g
′
0(w) +

ε20
H
[
g

′′
0 (w)a2 − g

′
0(w)H2

]
+ · · · .(5.9b)

By using (5.9b), and upon differentiating (4.2) with respect to y, we readily obtain that

(5.10) Lεw
′ ∼ ε20

H
[
g

′′
0 (w)a2 − g

′
0(w)H2

]
w

′
.

Then, using (5.10) and the identity (4.17), we derive that(
w

′
l , Lεw

′
l

)
∼ ε30

H
∫ ∞

−∞

[
g

′′
0 (w)a2 − g

′
0(w)H2

]
(w

′
)2 dy =

ε30H
′
2

H
∫ ∞

−∞
g0(w)w

′
dy(5.11a)

∼ ε30H
′
2

H
∫ ∞

−∞
(w − w

′′
)w

′
dy =

ε30H
′
2w

2
+

2H =
ε30h1x1(ξ

+
l )w2

+

2H .(5.11b)

Finally, upon substituting (5.8) and (5.11b) into (5.7), we obtain that

(5.12a) λ̄ε0clβ ∼ ε30cl
2H h1x1(ξ

+
l )w2

+ − ε0
2
ψ(ξl)w2

+ .

In a similar way, we obtain from the transition layer solution at x1 = ξr that

(5.12b) λ̄ε0crβ ∼ −ε
3
0cr
2H h1x1(ξ

−
r )w2

+ − ε0
2
ψ(ξr)w2

+ .

The next step in the analysis is to reduce (5.12) to an explicit matrix eigenvalue problem.
To do so, we first solve (5.6) for ψ in order to calculate ψ(ξl) and ψ(ξr). A simple calculation
shows that

(5.13)
(
ψ(ξl)
ψ(ξr)

)
=
ε20Hw2

+

D Gc , c ≡
(
cl
cr

)
,
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where G is the Green’s function matrix defined by
(5.14)

G ≡ 1
d2 − e2

(
d e
e d

)
, d ≡ θ+ coth(θ+L) + θ− tanh

(
θ−(1 − L)

2

)
, e ≡ θ+csch(θ+L) .

Substituting (5.13) and (4.19) into (5.12), and recalling that λ̄ = λ + ε20m
2 and Hw2

+ ∼ 1/L
from (5.2c) and (4.5), we obtain that λ is an eigenvalue of the matrix eigenvalue problem

(5.15) α(λ+ ε20m
2)c ∼ ε20

[
1
2
L(1 − L)I − G

]
c .

Here I is the identity matrix, and α ≡ 2βLD/w2
+.

The spectrum Gv = σv is readily calculated as

(5.16a) v+ =
(

1
1

)
, σ+ =

1
d− e

=
[
θ+ tanh

(
θ+L

2

)
+ θ− tanh

(
θ−(1 − L)

2

)]−1

and

(5.16b) v− =
(

1
−1

)
, σ− =

1
d+ e

=
[
θ+ coth

(
θ+L

2

)
+ θ− tanh

(
θ−(1 − L)

2

)]−1

.

Here θ± are defined in (5.6b). Combining (5.16) and (5.15), we obtain the explicit eigenvalues
(5.17)

λ± ∼ ε20
α

[
−αm2 +

L

2
(1 − L) − σ±

]
, c+ =

(
1
1

)
, c− =

(
1

−1

)
, α ≡ 2βLD

w2
+

.

The two eigenvectors c± in (5.17), which determine the eigenfunction φ in (5.4), lead to
two different types of transverse instability of the mesa-stripe. The zigzag mode, where ξl
and ξr are perturbed in the same direction, corresponds to c− = (1,−1)t because the signs
of x1 in yl and yr in (5.4) are different. Alternatively, the mode c+ = (1, 1)t corresponds
to a breather-type instability. For α sufficiently large, it is easy to see that λ± < 0 for any
m ≥ 0. Therefore, a mesa-stripe is stable when D is above some threshold. However, as D is
decreased (or equivalently as α is decreased), first the zigzag mode and then the breather mode
admits a nontrivial band of unstable wave numbers m. The fact that the zigzag mode becomes
unstable before the breather mode as D is decreased arises from the inequality σ− < σ+. Since
λ± = O(ε20) the time-scale for the development of these instabilities is O(ε−2

0 ).
We first consider zigzag and breather instabilities for a one-dimensional pulse wherem = 0.

For ε0 → 0, a simple calculation using (5.16) for m = 0 and ε0 � 1 gives

(5.18) σ− ∼ L

2
+O(ε0) , σ+ ∼ 2D

ε0

[
1 − 2w+

2 − w+

]−1

.

Then, from (5.17), we obtain for m = 0 and ε0 � 1 that
(5.19)

λ− ∼ −ε
2
0L

2

2α
= −1.8112

ε20L

D < 0 , λ+ ∼ −ε0w
2
+

βL

[
1 − 2w+

2 − w+

]−1

= −1.1899
ε0
L
< 0 .
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(a) λ− versus κ for m = 0
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(b) λ+ versus κ for m = 0

Figure 22. Comparison of asymptotic (heavy solid curves) and full numerical results (dashed curves) for
λ± versus κ for m = 0 when ε0 = 0.02 and D = 10.0. (a) the zigzag eigenvalue λ−. (b) the breather eigenvalue
λ+.

Therefore, when L > 0, we have λ± < 0 for m = 0 and ε0 � 1, with λ− = O(ε20) and
λ+ = O(ε0). This shows that a one-dimensional pulse solution is always stable under the
effect of activator saturation. For the parameter set m = 0, ε0 = 0.02, and D = 10, for which
D = 0.2, in Figure 22(a) we compare the asymptotic result for the zigzag eigenvalue λ−, given
in (5.17), with the corresponding full numerical result computed from (5.2). The numerical
result is obtained by first discretizing (5.2) using centered differences and then using LAPACK
[1] to compute the relevant eigenvalue of a matrix eigenvalue problem. For the same parameter
set m = 0, ε0 = 0.02, and D = 10, in Figure 22(b) we show a similar favorable comparison
between the asymptotic result for the breather eigenvalue λ+ of (5.2) and the corresponding
full numerical result for λ+ computed from (5.2).

A similar favorable agreement between the asymptotic and numerical results for λ± occurs
for m > 0. As a function of m, in Figures 23(a) and 23(b) we show a favorable comparison be-
tween the asymptotic results for λ− and λ+, respectively, and the corresponding full numerical
results computed from (5.2) when ε0 = 0.02 and κ = 5.0.

For both λ− and λ+ we have λ± < 0 when m = 0 and λ± < 0 for m 
 1. This latter
inequality is readily seen from the estimate σ± = O(m−1) for m 
 1 obtained from (5.16). For
α sufficiently small, or equivalently for D sufficiently small, it follows from (5.17) that there
will be a band of unstable zigzag and breather modes where m = O(1). For three values of D,
in Figure 24(a) we plot λ− versus m, computed from the asymptotic result (5.17), for κ = 2.0
and ε0 = 0.0025. A similar plot is shown in Figure 24(b) for κ = 4.0 and ε0 = 0.0025. For a
fixed value of the saturation parameter, these figures show the emergence of O(1) instability
bands as D is decreased.

For the zigzag mode a nontrivial band of unstable modes emerges at the value α = αz and
m = mz, where the tangency conditions λ− = 0 and dλ−/dm = 0 are satisfied. From these

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(a) λ− versus m
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(b) λ+ versus m

Figure 23. (a) Comparison of asymptotic (heavy solid curve) and full numerical results (dashed curve) for
λ− versus m when κ = 5.0 and ε0 = 0.02. (b) Comparison of asymptotic (heavy solid curve) and full numerical
results (dashed curve) for λ+ versus m when κ = 5.0 and ε0 = 0.02.
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(a) λ− versus m
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(b) λ+ versus m

Figure 24. (a) the asymptotic result λ− of (5.17) versus m for κ = 2.0 and ε0 = 0.0025 when D = 10.0
(heavy solid curve), D = 6.0 (solid curve), and D = 4.0 (dashed curve). An instability band exists when D = 4.0
since D = Dε0 = 0.010 < Dz. (b) the asymptotic result λ+ versus m of (5.17) for κ = 4.0 and ε = 0.0025
when D = 10.0 (heavy solid curve), D = 3.5 (solid curve), and D = 2.8 (dashed curve). An instability band
exists when D = 2.8 since D = Dε0 = 0.007 < Db.

conditions, we obtain that mz is the root of

(5.20)
m

2
dσ−
dm

= σ− − L

2
(1 − L) .

Here mz depends on the plateau length L, which depends on the saturation parameter κ
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(a) mz and mb versus L
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(b) Dz and Db versus L

Figure 25. (a) the critical modes mz and mb versus L for the emergence of a zigzag (heavy solid curve)
and a breather (dashed curve) instability band, respectively. (b) the critical diffusivities Dz (heavy solid curve)
and Db (dashed curve) at the modes mz and mb, where an unstable zigzag and breather instability respectively,
emerge. The mesa-stripe solution is stable for values of D that lie above both curves in the right figure.

from (4.5). In terms of m = mz, the critical value αz is αz = m−2
z

[
L
2 (1 − L) − σ−

]
. Since

α is related to D by (5.17), this latter formula defines a critical value Dz for the inhibitor
diffusivity as a function of either L or κ as

(5.21) Dz =
w2

+

2βLm2
z

[
L

2
(1 − L) − σ−

]
.

To compute the curve mz at each fixed L we use Newton’s method coupled to a continuation
procedure in L starting from L � 1. For L � 1, a simple calculation using (5.16b) for σ−
shows that

(5.22) σ− ∼ L

2
− mL2

4
tanh

(m
2

)
+O(L3) .

Therefore, from (5.20) we obtain for L � 1 that mz ≈ 4.5298 is the unique root of

(5.23) −m
4

tanh
(m

2

)
+
m2

8
sech2

(m
2

)
= −1 .

In Figure 25(a) we plot mz versus L, and in Figure 25(b) we plot the critical diffusivity Dz

versus L. The relation between L and κ in Figure 21 then determines these critical values
in terms of the saturation parameter. In Figure 25(b), the maximum value of the curve Dz

versus L occurs at Dz ≈ 0.0124 and mz = 4.92 when L ≈ 0.277, or equivalently κ = 1.92 from
Figure 21.

A similar calculation can be done for the breather instability corresponding to λ+. To
determine the value m = mb and D = Db where a nontrivial breather instability band first
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Figure 26. Experiment 9. The numerical solution to (1.6) in a square domain [0, 1]× [0, 1] at time t = 1000
for the parameter set ε0 = 0.03, κ = 5.0, and D = 10 Since D = Dε0 = 0.3 > Dz = .0124, the mesa-stripe
solution is stable to both zigzag and breather instabilities.

emerges, we set λ+ = dλ+/dm = 0 to obtain

(5.24)
m

2
dσ+

dm
= σ+ − L

2
(1 − L) , Db =

w2
+

2βLm2
z

[
L

2
(1 − L) − σ+

]
.

In Figure 25(a) we plot mb versus L, and in Figure 25(b) we plot the critical diffusivity
Db versus L. Notice that Dz > Db, which implies that a zigzag instability occurs before a
breather instability as D is decreased. From Figure 25(a) we also observe that mb 
 1 for
L � 1. This is readily seen by using (5.16a) for σ+ in the transcendental relation (5.24) for
mb. In Figure 25(b), the maximum value of the curve Db versus L occurs at Db ≈ 0.00798
and mb ≈ 7.09 when L ≈ 0.406, or equivalently κ = 4.11 from Figure 21.

Finally, we perform a few full numerical simulations on (1.6) to confirm the asymptotic
stability theory.

Experiment 9. Consider (1.6) in the square [0, 1] × [0, 1] for the parameter set ε0 = 0.03,
κ = 5.0, and D = 10. For these values, (4.5) yields that L ≈ 0.45 and H ≈ 0.2056. The initial
condition for (1.6) is taken to be

(5.25) a =
Hw+

2

(
tanh

[
ε−1
0 (x1 − ξl)

2

]
+ tanh

[
ε−1
0 (ξr − x1)

2

])
, h = H ,

where ξl = 0.275 and xr = 0.725. Since D = Dε0 = 0.3 > Dz = .0124, the asymptotic theory
predicts that the mesa-stripe solution is stable to both zigzag and breather instabilities. This
is confirmed in Figure 26, where we plot the numerical solution to (1.6) at time t = 1000,
showing its convergence to a stable mesa-stripe solution.

Experiment 10. Next, we consider (1.6) in the square [0, 1] × [0, 1] with ε0 = 0.01 and
κ = 1.92, and for various values of D. The initial condition for (1.6) is (5.25) with L ≈ 0.28,
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356 T. KOLOKOLNIKOV, W. SUN, M. WARD, AND J. WEI

Figure 27. Experiment 10. The numerical solution to (1.6) in a square domain [0, 1] × [0, 1] for ε0 = 0.01
and κ = 1.92. Top left: D = 0.6 at time t = 10, 000. Top right: D = 0.8 at time t = 10, 000. Bottom left:
D = 1.0 at time t = 20, 000. Bottom right: D = 1.4 at time t = 20, 000. A zigzag instability occurs in each
case, except for the value D = 1.4, which is above the zigzag instability threshold.

H = 0.33, ξl = 0.36, and ξr = 0.64. From Figure 25(b), κ = 1.92 corresponds to the
maximum point Dz ≈ 0.0124 of the curve Dz versus L. Since ε0 = 0.01 and D = D/ε0, the
asymptotic theory predicts that a zigzag instability occurs when D < Dz = 1.24. Although
this asymptotic stability result was derived in the limit D 
 1, we now show that it is in
reasonable quantitative agreement with full numerical simulations even when D ≈ 1. In
Figure 27 we plot the numerical solution to (1.6) for D = 0.6, D = 0.8, D = 1.0, and D = 1.4,
at the times shown in the figure caption. The mesa-stripe has a pronounced zigzag instability
for D = 0.6 and D = 0.8, but only a very slight instability for D = 1.0. For these parameter
values and for the domain width d0 = 1, the asymptotic theory predicts that the unstable
zigzag mode has exactly one crest. For D = 1.4, which is above the zigzag threshold D = 1.24,
the mesa-stripe is found to be stable. We believe that the saturation of the zigzag instability
leading to the apparent steady-state solution in Figure 27 is a result of the interaction of the
global inhibitor field h with the lateral boundaries of the rectangle. We remark that in order
to give a more precise test of the instability threshold, one would have to compute numerical
solutions of (1.6) with a value of ε0 that is a decade smaller than ε0 = 0.01. With such a small
value of ε0, it is challenging to obtain sufficient numerical resolution to resolve the transition
layers at the edges of the mesa-stripe.

Experiment 11. Finally, we consider (1.6) in the square [0, 1] × [0, 1] with k = 2.0. We

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Figure 28. Experiment 11. The numerical solution to (1.6) in a square domain [0, 1] × [0, 1] for k = 2.0
when ε0 and D are slowly decreasing functions of time given in (5.26). The initial condition is given in (5.25)
with H = 0.21, ξl = 0.36, and ξr = 0.64. The mesa-stripe is found to undergo a self-replication process leading
to a multistripe pattern. Top left: t = 100. Top right: t = 140. Bottom left: t = 160. Bottom right: t = 180.
See also the accompanying animation (63508 04.gif [731KB]).

take ε0 and D to be slowly decreasing functions of time given by

(5.26) ε0(t) = 0.2D(t) , D(t) = 0.2e−0.002t .

The initial condition for (1.6) is (5.25) with H = 0.21, ξl = 0.36, and ξr = 0.64. Since D
is not asymptotically large, the theory developed in sections 4 and 5 does not apply for this
example. The numerical results in Figure 28 show a new phenomenon whereby the initial
mesa-stripe splits into two, with the two daughter stripes undergoing a further splitting at
later times. Since the time-scale for splitting is much less than that for the development of
transverse instabilities, there are no zigzag instabilities observed in Figure 28. This stripe-
replication phenomenon is significantly more robust than that observed in Experiment 6 of
section 3 for the unsaturated GM model in the weak interaction regime. An analysis of this
mesa self-replication phenomena of Figure 28 is an open problem.

6. Conclusion. We have analyzed the stability of a stripe for two different forms of the
GM activator-inhibitor model in a rectangular domain. For the basic GM model, where sat-
uration effects are neglected, the stability of a homoclinic stripe was analyzed with respect
to spot-generating breakup instabilities and transverse zigzag instabilities. The wave num-
ber instability bands for each of these mechanisms were found to depend sensitively on the
asymptotic range of the inhibitor diffusivity D. In the semistrong regime, where D = O(1),
the homoclinic stripe typically disintegrates into an array of spots unless the domain width
is asymptotically small. In contrast, in the weak interaction regime, where the activator and
inhibitor diffusivities have the same asymptotic order, there are certain exponent sets asso-
ciated with the nonlinear kinetics where the homoclinic stripe can be destabilized solely by
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a transverse zigzag instability. In the semistrong regime it was also shown that a homoclinic
stripe can be stabilized with respect to breakup instabilities upon allowing for an asymptot-
ically small level of activator saturation. For larger levels of the saturation, the homoclinic
stripe ceases to exist and is replaced by a mesa-stripe, whose cross section consists of front-
back transition layers joined by an asymptotically flat plateau. For an asymptotically large
inhibitor diffusivity, it was shown that such a mesa-stripe can be stable with respect to both
zigzag and breakup instabilities.

There are some open problems suggested by this study. For homoclinic stripe solutions of
(1.4), a key open problem is to provide an analytical theory that characterizes the intricate
nature of the zigzag and breakup instability bands for a homoclinic stripe in the weak interac-
tion regime. For a mesa-stripe solution of (1.6), an interesting open problem is to rigorously
study the transition behavior in the stability properties of a stripe as the saturation parameter
κ decreases. In particular, for κ = O(ε20) in (2.23), where “fattened” homoclinic stripes occur,
it would be interesting to give a rigorous analytical confirmation of the disappearance of the
spot-generating breakup instability band shown numerically in section 2.3. Additionally, it
would be interesting to construct multiple mesa-stripe equilibria to (1.6) when D = O(1) in
order to study the global bifurcation properties of these solutions. Such a bifurcation diagram
is likely to be crucial for an analysis of the mesa-stripe self-replication behavior observed
in Experiment 11 of section 5. Other important open problems include providing a weakly
nonlinear theory for zigzag and breakup instabilities of homoclinic stripes, and studying the
stability of multistripe patterns.

Finally, it would be interesting to extend the stability analyzes given here to investigate
breakup and zigzag instabilities of stripes in the hybrid chemotaxis reaction-diffusion systems
of [36], [45], [30], and [31], and in the models of [9] and [19] for the spatial patterning of
vegetation in arid environments.

Appendix A. The nonlocal eigenvalue problem: Semistrong regime. We first outline
the derivation of the NLEP (2.9). In terms of the inner variable y = x1/ε, we use (2.1) to
calculate pap−1

e /hq
e ∼ pwp−1 and qap

e/h
q+1
e ∼ qHγp−(q+1)wp. Therefore, from (2.6a), Φ(y)

satisfies

Φ
′′ − Φ + pwp−1Φ − qHγp−(q+1)wpη(0) =

(
λ+ ε2m2)Φ , −∞ < y < ∞ ,(A.1)

Φ → 0 as |y| → ∞ .

In (2.6b), η is not singularly perturbed, and so we can determine η(0) in (A.1) from the outer
solution for η(x1). To do this, we use (2.1) and (2.3) to calculate the coefficients in (2.6b) in
terms of Dirac masses. This leads to

ηx1x1 − θ2
λη = 0 , −l < x1 < l , ηx1(±l) = 0 , θλ ≡

√
1 +m2 + τλ ,(A.2a)

[η] = 0 , [ηx1 ] =
sη(0)
Gl(0)

− rH−γ+1

Gl(0)

(∫∞
−∞wr−1Φ dy∫∞

−∞wr dy

)
.(A.2b)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

1/
16

 to
 1

29
.1

73
.7

4.
49

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



THE STABILITY OF A STRIPE FOR THE GM MODEL 359

Here [f ] ≡ f(0+) − f(0−). To solve (A.2), we introduce the Green function Gλ(x1) satisfying
(A.3)

Gλx1x1 − θ2
λGλ = −δ(x1) , |x1| < l , Gλx1(±l) = 0 , Gλ(x1) =

cosh [θλ (l − |x1|)]
2θλ sinh (θλl)

.

The solution η(x1) can be written in terms of Gλ(x1), and in this way we determine η(0) as

(A.4) η(0) = rH1−γ

[
s+

θλ tanh(θλl)
tanh l

]−1
(∫∞

−∞wr−1Φ dy∫∞
−∞wr dy

)
.

Upon substituting (A.4) into (A.1), we obtain the eigenvalue problem (2.9) in Principal Result
2.2.

In the remainder of this appendix we prove Proposition 2.3 for the spectrum of (2.9). We
begin with a key lemma, which is an extension of a result of [41].

Lemma A.1 (from [38]). Let f(μ) and Cm(λ) be as defined in (2.11) and (2.9b), and let
ν0 > 0 be the unique positive eigenvalue of the local operator L0 in (2.9). Then, when μ and
λ are real, the following properties hold:

(i) f(0) =
1

p− 1
, f

′
(0) =

1
p− 1

[
1

p− 1
− 1

2r

]
,

(A.5a)

(ii) f
′
(μ) > 0 for 0 < μ < ν0 , when either r = 2 , 1 < p ≤ 5 , or r = p+ 1 , p > 1 ,

(A.5b)

(iii) f
′′
(μ) > 0 for 0 < μ < ν0 , when either r = 2 , p = 2 , or r = p+ 1 , 1 < p ≤ 5 ,

(A.5c)

(iv) f(μ) → +∞ as μ → ν−
0 , f(μ) < 0 for μ > ν0 .

(A.5d)

In addition, C
′
m(λ) > 0, C

′′
m(λ) < 0, dCm

dm (0) > 0, and Cm(λ) = O(m) for m 
 1, where
Cm(λ) is given in (2.9b).

Proof. The proof of (A.5) is given in Proposition 3.5 of [38]. The positivity of C
′
m(λ), the

concavity of Cm(λ), and the positivity of dCm(0)
dm , all follow from a simple direct calculation

using the expression for Cm(λ) in (2.9b).
The proof of Proposition 2.3 is given in two parts. In part 1, Lemma A.1 is used to analyze

the spectrum of the NLEP (2.9) on the positive real axis. In part 2 a winding number criterion
locates any complex unstable spectrum.

We begin with part 1. By calculating Cm(0) in (2.9b) and by using dCm
dm (0) > 0, we obtain

that Cm(0) > 1/(p− 1) when m > mb−, where mb− is the unique root of the transcendental
equation (2.12) in Proposition 2.3. Then, with εm � 1, it follows from (A.5) and the condi-
tions C

′
m(λ) > 0 and C

′′
m(λ) < 0, that the curves Cm(λ) and f(λ + ε2m2) intersect exactly

once in 0 < λ < ν0 for any τ ≥ 0 when the condition (A.5c) on the exponents r and p are
satisfied. Therefore, under this condition, we conclude for m > mb− and εm � 1 that there
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is a unique real root in 0 < λ < ν0 to g(λ) = 0 defined in (2.11). Under these conditions, we
obtain a unique unstable real eigenvalue of (2.9).

Next, we consider real spectrum on the range 0 < m < mb− = O(1), for which Cm(0) <
f(ε2m2) ∼ 1

p−1 . Since Cm(λ) = O(τ1/2) for τ 
 1, it follows from (A.5) that for τ > τm
there are exactly two real roots to g(λ) = 0 in 0 < λ < ν0 when the condition (A.5c) on the
exponents holds. This yields two unstable real eigenvalues. Alternatively, for τ < τm, there
are no real roots to g(λ) = 0, and hence no unstable real eigenvalues. For m = mb− a simple
calculation shows that λ = 0 is a double zero eigenvalue when C

′
m(0) = f

′
(ε2m2). By using

(2.9b) for Cm, (A.5a) for f
′
(0), and assuming that p−1 < 2r, this condition yields the critical

value τm− > 0 of τ , defined in (2.14) of Proposition 2.3. For m = mb− and τ > τm− there is
a unique unstable real eigenvalue of (2.9).

Next, we consider real spectrum when m >
√
ν0/ε. For this range of m, (A.5d) shows that

f(λ+ ε2m2) < 0 for any λ > 0. Thus, since Cm(0) > 0 and C
′
m(λ) > 0, there are no real roots

to g(λ) = 0 in λ > 0 for any τ > 0, and consequently no unstable real eigenvalues of (2.9).
Finally, suppose that m =

√
β/ε with 0 < β < ν0, so that g(λ) = Cm(λ) − f(λ + β). Then,

since Cm(0) = O(m) for m 
 1, we get Cm(0) = O(ε−1) > f(β) for 0 < β < ν0. Therefore,
under the condition (A.5c) on the exponents r and p, there is a unique root to g(λ) = 0 in
0 < λ < ν0 − β for any τ ≥ 0, and consequently a unique unstable real eigenvalue to (2.9).

In part 2 of the proof we must count the number N of complex eigenvalues in the right
half-plane Re(λ) > 0. To do so, we proceed as in section 3 of [38] by using a winding number
criterion that determines N in terms of the change in the argument of g(iλI) along the positive
imaginary axis ΓI , denoted by [arg g]ΓI

, traversed in the downwards direction. For any τ > 0,
a slight modification of Proposition 3.3 of [38] shows that

(A.6) N =
5
4

+
1
π

[arg g]ΓI
, 0 < m <

√
ν0

ε
, N =

1
4

+
1
π

[arg g]ΓI
, m >

√
ν0

ε
.

Assume that the exponents satisfy r = 2 and p > 1. Then, by adapting the proof of Proposition
3.4 of [38], we conclude that [arg g]ΓI

= −π/4 when m > mb− and τ > 0 . This yields N = 1
when mb− < m <

√
ν0/ε and N = 0 when m >

√
ν0/ε. Therefore, the unstable eigenvalue

for mb− < m <
√
ν0/ε is the real positive eigenvalue obtained in part 1 of the proof. For the

range 0 < m < mb−, Proposition 3.4 of [38] can be applied directly, and for r = 2 and p > 1
we conclude that [arg g]ΓI

= 3π/4 when τ is sufficiently large and [arg g]ΓI
= −5π/4 when τ is

sufficiently small. For 0 < m < mb− with r = 2, this shows that N = 2 when τ is sufficiently
large and N = 0 when τ is sufficiently small. Therefore, for this range of the parameters,
there is a Hopf bifurcation as τ is increased past some critical value, which generates unstable
complex conjugate eigenvalues. Our results above for the positive real axis λ > 0 show that
these unstable complex eigenvalues must merge onto this axis when τ is sufficiently large.
This completes the proof of Proposition 3.3.

Appendix B. Zigzag eigenvalue: Semistrong regime. In this appendix we outline the
derivation of (2.21). We first write (2.6a) in terms of an operator Lε as
(B.1)

Lεφ− qap
e

hq+1
e

η = (λ+ ε2m2)φ , −l < x < l , φx(±l) = 0 , Lεφ ≡ ε2φxx − φ+
pap−1

e

hq
e
φ .
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THE STABILITY OF A STRIPE FOR THE GM MODEL 361

We differentiate the equilibrium problem for ae in (1.4) with respect to x1 to get Lεaex1 =
qap

ehex1/h
q+1
e , where Lε is defined in (B.1). Therefore, since ae ∼ Hγw, we obtain

(B.2) Lεw
′ ∼ εqHqwp

hq+1
e

hex1 .

This suggests that we expand φ and η as

(B.3) φ = w
′
+ εφ1 + · · · , η(x1) = εη0(x1) + · · · .

We substitute (B.3) into (B.1) and use (B.2) with λ = O(ε2) and m = O(1). This yields
that φ1(y) satisfies

(B.4) Lεφ1 ∼ qwpHq

hq+1
e

f(εy) , f(x1) ≡ Hγη0(x1) − hex1(x1) .

By substituting (B.3) and η = εη0 into (2.6b) and labeling θλ ≡ √
1 +m2 + τλ, we get that

η0 satisfies

(B.5) η0x1x1 − θ2
λη0 = −ra

r−1
e

ε2hs
e

(
w

′
+ εφ1

)
+

sar
e

εhs+1
e

η0 , −l < x < l , η0x1(±l) = 0 .

The term proportional to w
′

on the right-hand side of (B.5) behaves like a dipole as ε →
0. Therefore, for ε → 0, it can be represented as a multiple of δ

′
(x1), where δ(x1) is the

delta function. Thus, η0 is discontinuous across x1 = 0. However, f(x1) defined in (B.4) is
continuous across x1 = 0. To see this, we differentiate (1.4) for he with respect to x1 and then
subtract appropriate multiples of the resulting equation and (B.5) to find that the dipole term
cancels exactly. Thus, f(x1) is continuous across x1 = 0, and so 〈f〉 = f(0). Since 〈hex〉 = 0
from (2.1), we get f(0) = Hγ〈η0〉. Here and below we have defined 〈ξ〉 ≡ (ξ(0+) + ξ(0−))/2
and [ξ] ≡ ξ(0+)− ξ(0−), where ξ(0±) are the one-sided limits of ξ(x1) as x1 → 0±. Therefore,
for ε � 1, φ1 in (B.4) satisfies

(B.6) Lεφ1 ∼ qwpHγ−1〈η0〉 .

Since Lεw = (p− 1)wp +O(ε), the solution to (B.6) is simply

(B.7) φ1(y) =
q

p− 1
w(y)Hγ−1〈η0〉 +O(ε) .

Next, we use (2.1), (2.3), (B.3), and (B.7) to calculate the coefficients in (B.5) in the sense
of distributions. With η̃0 defined by η0 = H1−γ η̃0, and by using Gl(0) = 1

2 coth l as given in
(2.3), we obtain that η̃0 satisfies

η̃0x1x1 − θ2
λη̃0 = 0 , −l < x1 < l , η̃0x1(±l) = 0 , θλ ≡

√
1 +m2 + τλ ,(B.8a)

[η̃0] = − 1
Gl(0)

, [η̃0x1 ] =
(
s− qr

p− 1

) 〈η̃0〉
Gl(0)

.(B.8b)
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The remaining part of the derivation proceeds as in (4.16)–(4.23) of [10]. This leads to

(B.9)
(
λ+ ε2m2) ∼ ε2qJ

p+ 1

(
〈η̃0x1〉 − hex1x1(0)

H
)
, J ≡

∫∞
−∞wp+1 dy∫∞
−∞w′2 dy

.

From Appendix A of [37] we calculate J = 2(p+ 1)/(p− 1). Then, from (2.1), we obtain
hex1x1(0) = H. Finally, by solving (B.8) explicitly, we calculate

(B.10) 〈η̃0x1〉 = θλ tanh l tanh(θλl) .

Upon substituting these formulae into (B.9), we obtain that the small eigenvalue λ = O(ε2)
satisfies (2.21).
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