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Induced matter theory and embeddings in Riemann flat
space–times

G. Abolghasem, A. A. Coley, and D. J. Mc Manusa)
Department of Mathematics, Statistics and Computing Science, Dalhousie University,
Halifax, Nova Scotia, B3H 3J5, Canada

~Received 17 July 1995; accepted for publication 1 August 1995!

A class of five-dimensional space-times that contain four-dimensional hypersur-
faces whose intrinsic metrics are of cosmological interest is investigated. First, the
five-dimensional space–time is assumed to be Riemann flat—the problem of deter-
mining the intrinsic metrics of the four-dimensional hypersurfaces then becomes a
problem of embedding in flat space–time. Second, the Riemann flat solutions are
used as a starting point to find solutions to Einstein’s vacuum field equations in five
dimensions that are not Riemann flat. In particular, a new general class of five-
dimensional vacuum solutions is found. ©1996 American Institute of Physics.
@S0022-2488~96!04201-8#

I. INTRODUCTION

Recently, several authors have been interested in Einstein’s theory of general relativity in five
dimensions1–7 ~higher-dimensional theories have also been considered8,9!. In these studies the
higher-dimensional field equations were taken to be the vacuum Einstein field equations, and the
primary goal in several1–3,6,7 of these studies was to determine whether the four-dimensional
properties of matter could be interpreted as being purely geometrical in origin10—the embedding
of the four-dimensional space–time in the vacuum five-dimensional space-time was interpreted as
producing an effective four-dimensional stress–energy tensor.

Curiously, Mc Manus7 recently observed that a class of five-dimensional vacuum~i.e., Ricci
flat! solutions of Ponce de Leon6 were, in fact, completely~Riemann! flat, that is to say that the
five-dimensional Riemann tensor associated with these metrics was identically zero. Thus, one is
immediately prompted to ask the following question: are any of the other known five-dimensional
Ricci flat solutions also Riemann flat? Of course, it is not very instructive to just simply system-
atically calculate the Riemann tensor for the known five-dimensional vacuum solutions to deter-
mine if the Riemann tensor vanishes. It would be far more beneficial if we could find some general
results. Consequently, we now pose the following question: what is the class of Lorentzian four-
metrics that can be embedded in five-dimensional Minkowski space-time? In theory, the general
solution to this problem is known.11 For example, consider the following class of Riemann flat
five-metrics:

ds25gab~xg,y!dxa dxb1f2~xg,y!dy2. ~1!

where the intrinsic metric,gab(x
g,y)uy5const, of the four-dimensional hypersurfacesy5constant is

Lorentzian in signature. The fact that the full five-dimensional metric is flat imposes necessary and
sufficient conditions on the Riemann tensor,Rabgd , of the intrinsic metric and on the extrinsic
curvature,Kab , of the hypersurfacey5const, namely that

Rabgd5KagKbd2KadKbg , ~2!

a!Current address: Finance Division, Faculty of Commerce & Business Administration. University of British Columbia,
Vancouver, British Columbia, V6T 1Z2, Canada.
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Kab;g5Kag;b , ~3!

where here ‘‘;’’ denotes covariant differentiation with respect to the intrinsic metricgab . ~In
general,11 the four-metric 4ds25gab(x

g)dxa dxb can be embedded in a five-dimensional
Riemann flat space–time if and only if there exists a symmetric tensorVab that satisfies
4Rabgd52Va@gVd#b andVa@b;g#50.! Furthermore, the extrinsic curvature of the surfacey5const is
given by

Kab5
1

2f

]

]y
~gab!, ~4!

for the above metric. Unfortunately, the above equations are too complex for an explicit coordinate
representation for the metric functionsgab andf to be found, in general.

In this paper, we consider the following class of metrics:

ds252e2F~ t,r ,y! dt21e2G~ t,r ,y!~dr21r 2 dV2!1e2K~ t,r ,y! dy2, ~5!

wheredV2[du21sin2~u!df2. Various forms of the metric~5! have been extensively investigated
in the literature1,2,6,7—the vacuum Einstein field equations,Ri j50, have been solved for certain
subclasses of the metric~5!. Although several metrics of the form~5! have been noted to be
Riemann flat,7,13most notably the Ponce de Leon solutions,6 the general form of the Riemann flat
solutions has not been found.

Therefore, we wish to determine all metrics of the form~5! that are Riemann flat. In other
words, we want to find all solutions of the equationsRi jkl50 where the metric is given by~5!. In
principle, the problem is trivial since locally all solutions are Minkowski space-time; however, one
has to implement various nontrivial diffeomorphisms to get the solution into this form. However,
we shall only permit diffeomorphisms of the formxa→ x̄a(xb) andy→ ȳ(y). Thus, by restricting
the permissible diffeomorphisms we ensure that the four-dimensional intrinsic metricsds2

5 gab(x
g,y)uy5constdx

a dxb are not necessarily Riemann flat, even though the five-dimensional
metrics are Riemann flat. In technical language, we confine our analysis to four-dimensional
metrics of embedding classp51 ~see Refs. 8 and 12 for further discussions on the embedding
problem!.

If we calculate the extrinsic curvature,Kab , for the metric~5! using ~4!, then we find that it
has the form

Kab5Avavb1Bgab , ~6!

wheregabv
avb521. Equation~2! can then be employed to show that the stress–energy tensor

associated with the intrinsic metricgab has the form of a perfect fluid, namely
Tab5(m1P)vavb1Pgab . Now, standard results of embedding theory12,14,15 tell us about the
allowable perfect fluid solutions. In the casem1PÞ0, the solution belongs to either the class of
generalized interior Schwarzschild solutions if the expansion of the fluid velocity,va , is zero, or
the class of generalized Friedmann cosmological models if the fluid expansion is nonzero. In the
case thatm1P50, the solutions are de Sitter space–times~that is, space–times of constant
curvature!. All of these spherically symmetric solutions are conformally flat.

The purpose of our paper is twofold; not only do we wish to find the explicit form for all the
Riemann flat solutions of the form~5!, but we also wish to find new Ricci flat solutions. In
particular, we wish to employ our knowledge of the Riemann flat solutions as an aid to construct
new Ricci flat solutions.

The paper is organized as follows: In Sec. II, we analyze the Riemann flat equations for the
metric ~5!, and both classify and find all the five-dimensional solutions explicitly. In Sec. III, we
discuss the solutions found in Sec. II, paying particular attention to their interpretation in the
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context of induced matter theory. Finally, in Sec. IV, we use the Riemann flat solutions as an aid
to construct some Ricci flat solutions of the metric~5! that are not Riemann flat.

II. FIELD EQUATIONS

We shall now proceed to solve the equationsRi jkl50 for the metric~5!. However, we will
restrict the allowable diffeomorphisms to diffeomorphisms of the formxa→ x̄a(xb), y→ ȳ(y). We
start our analysis by noting that the pivotal equations areRu

tru50 andRu
ryu50, which yield

Grt5GtFr . ~7!

Gry5GyKr , ~8!

respectively.~The complete set of the components of the Riemann tensor are listed in the Appen-
dix.! Thus, we immediately observe that we can divide the solutions into four classes:~1!
G5G(r ); ~2! G5G(r ,y) with GyÞ0 and exp(K)5Gy/a; ~3! G5G(r ,t) with GtÞ0 and
exp(F)5Gt/b; and ~4! G5G(t,r ,y) with GtGyÞ0, and exp(K)5Gy/a and exp(F)5Gt/b,
where botha andb are nonzero functions oft andy only.

A. G5G(r )

The equationRu
rr u50 yields the differential equation

rGrr1Gr50, ~9!

which can easily be solved to get

G5c1 ln~r !1c2 , ~10!

wherec1 andc2 are arbitrary constants. The field equationRf
uuf50 now reduces to

c1~c212!50. ~11!

We can takec15c250 without loss of generality.~The solutionsc150 andc2522 are related by
the transformationr→1/r .! EquationsRu

ttu50 andRu
yyu50 imply that the functionsF andK are

both independent of the variabler . Thus, the metric may be written as

ds252A2~ t,y!dt21dr21r 2 dV21B2~ t,y!dy2, ~12!

where the metric functionsA andB must satisfy the following equation:

]

]y S 1B ]A

]y D5
]

]t S 1A ]B

]t D . ~13!

Equation~13! follows directly from the equationRt
yty50. ~The remaining equationsRi

jkl50 are
trivially satisfied.!

B. Gt50, GyÞ0

For this class of solutions, we have that the metric functionK satisfies

eK5Gy /a~ t,y!, ~14!

whereaÞ0. The equationRr
tyr50 implies thata5(y). The equationRu

rr u50 then yields the
following differential equation forG:
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Grr1
1

r
Gr1a2e2G50, ~15!

which can easily be solved to obtain the solution

G5
1

2
lnFa2ba2

r a22

~11brc!2G , ~16!

wherea andb are arbitrary functions ofy only. Furthermore, the equationRf
uuf50 reduces to

Gr
21

2

r
Gr1a2e2G50. ~17!

Inserting the solution~16! for G into ~17! implies thata254 ~we can takea52 without loss of
generality!. Thus, the solution forG is

G5
1

2
lnF4b~y!

a2~y!

1

„11b~y!r 2…2G . ~18!

Note that we can write the solution forG in the above form, since the equationRu
rr u50 implies

thatGrÞ0 if Gt50 andGyÞ0.
For simplicity, we introduce the functionA defined by

A5eF. ~19!

The equationsRt
rtr50 andRu

ttu50 now reduce to

1

a2 Gy~Arr2GrAr !1Aye
2G50. ~20!

1

a2 GySGr1
1

r DAr1Aye
2G50. ~21!

respectively. Subtracting~21! from ~20! yields

Arr22ArGr2
1

r
Ar50, ~22!

which can be integrated to obtain

Ar5re2Gl ~ t,y!, ~23!

wherel (t,y) is an arbitrary function. Furthermore, Eq.~21! implies that

Ay52
l

a2 Gy~11rGr !. ~24!

With the aid of Eq.~18!, Eq. ~23! can now be integrated to yield

A52
2l

a2

1

11br2
1m~ t,y!. ~25!

wherem(t,y) is an arbitrary function. In addition, the equationRt
rty50 reduces to
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GrAry2Gy
2Ar2AyGry50, ~26!

which can be integrated to obtain

Ay

Gy
5A1n~ t,y!, ~27!

wheren(t,y) is an arbitrary function. If we divide Eq.~24! by Gy and compare the result to~27!,
then we find thatA must be of the form

A52
l

a2

12br2

11br2
2n. ~28!

If we combine Eqs.~25! and ~28!, then we obtain that the functionA may be written as

A5
p~ t,y!1b~y!q~ t,y!r 2

11b~y!r 2
. ~29!

wherep5n2 l /a2 and q5n1 l /a2. In addition, the above solution must also satisfy Eq.~24!.
Inserting the above solution into Eq.~24!, we find that Eq.~24! becomes a power series inr . Thus,
equating the various coefficients ofr to zero, we find the following equations:

~p2q!S byb 22
ay

a D54py , ~30!

~p2q!by52~qy1py!, ~31!

~p2q!S byb 12
ay

a D54qy . ~32!

Equation~31! is redundant since it can be obtained by adding Eqs.~30! and ~32! together. Sub-
tracting Eq.~32! from Eq. ~30!, we find that

2~py2qy!1~p2q!
ay

a
50, ~33!

which can be integrated to yield the solutions

p5u~ t !F 2a 1E dy

a

by
b G1v~ t !, ~34!

q5u~ t !F2
2

a
1E dy

a

by
b G1v~ t !, ~35!

whereu andv are arbitrary functions. The remaining equationsRi
jkl50 are trivially satisfied.

Thus, if we make the coordinate transformationY51
2ln b(y) and introduce the functiona5

2ln a, then the metric can be written as

ds252A2 dt21
4e2~a1Y!

~11e2Yr 2!2
~dr21r 2 dV2!1

e2a

~11e2Yr 2!2
@~aY11!1~aY21!e2Yr 2#2 dY2,

~36!
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wherea5a(Y) is an arbitrary function andA can be set to

A5H 1 @ if u~ t !50#,

v~ t !12e2a
12e2Yr 2

11e2Yr 2
12E ea dY @ if u~ t !Þ0#,

~37!

wherev(t) is an arbitrary function.

C. Gy50, GtÞ0

This class is very similar to the previous class. Thus, we forgo writing down the steps of the
calculation since they are, in essence, the same as those employed in the derivation of the class~2!
solutions. We merely quote the results: there exist coordinates such that the class~3! solutions may
be written as

ds252
e2a

~12e2Tr 2!2
@~aT11!2~aT21!e2Tr 2#2 dT21

4e2~a1T!

~12e2Tr 2!2
~dr21r 2 dV2!1B2 dy2,

~38!

wherea5a(T) is an arbitrary function andB can be set equal to

B5H 1 ~ if Br50!,

v~y!12e2a
11e2Tr 2

12e2Tr 2
12E ea dT ~ if BrÞ0!,

~39!

wherev(y) is an arbitrary function.

D. GtGyÞ0

In this case, the functionsF andK satisfy the relationships

eK5Gy /a~ t,y!, ~40!

eF5Gt /b~ t,y!. ~41!

Now, the equationsRu
rr u50 andRf

uuf50 yield

Grr1
1

r
Gr1ae2G50, ~42!

Gr
21

2

r
Gr1ae2G50, ~43!

respectively, where

a[a22b2. ~44!

The above equations can be solved to obtain the solution

G5
1

2
lnF 4b2

~a1b2r 2!2G , ~45!

whereb5b(t,y) is an arbitrary function. Furthermore, the equationRt
rty50 reduces to
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Gyt5GtGy1
ay

a
Gt1

b t

b
Gy . ~46!

Using the solution~45!, we can expand the above equation in a power series inr . We find that the
following two equations must be satisfied:

bty5~] t ln b!by1~]y ln a!bt , ~47!

] tS ay

b D1
1

b
@a~] t ln b!~]y ln b!2ay] t ln b2a t]y ln b#

5]yS b t

a D1
1

a
@b~] t ln b!~]y ln b!2by] t ln b2b t]y ln b#.

~48!

~Actually, there is a third equation, but it is automatically satisfied on account of the first two
equations.!

The remaining equationsRi
jkl50 can all be shown to be trivially satisfied. First, using Eq.

~46! we find that the equationRt
rtr50 can be written as

]

]r
@2Grr2Gr

21ae2G#50, ~49!

which is trivially satisfied due to~45!. Similarly, the equationRr
yyr50 reduces to

]

]y
@2Grr2Gr

21ae2G#50. ~50!

Both the equationsRt
rty50 andRy

try50 reduce to

]

]r FGyt2GtGy2
ay

a
Gt2

b t

b
GyG50 ~51!

which is trivially satisfied because of Eq.~46!. Furthermore, using Eq.~46!, the equationsRu
ttu50

andRy
uuy50 can be shown to reduce to

rGrtr5Grt~112rGr !, ~52!

rGryr5Gry~112rGr !, ~53!

respectively, which again are trivially satisfied on account of Eq.~45!. Finally, after a long calcu-
lation employing Eqs.~42!–~48!, the equationRt

yty50 can be shown to be trivially satisfied.
In summary, the metric is given by

ds252S Gt

b~ t,y! D
2

dt21e2G~dr21r 2 dV2!1S Gy

a~ t,y! D
2

dy2, ~54!

where

e2G[
4b~ t,y!2

„a22b21b~ t,y!2r 2…2
, ~55!

anda, b andb satisfy ~47!–~48!.
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III. DISCUSSION

We should, of course, determine where the known Riemann flat solutions of the form~5! fit
into the above classification scheme. As was noted by Mc Manus,7 the following three Ponce de
Leon metrics6 are all Riemann flat:

ds252y2 dt21t2/gy2/~12g!@dr21r2 dV2#1S g

g21D
2

t2 dy2, ~56!

ds252y2 dt21y2e2t@dr21r 2 dV2#1dy2, ~57!

ds252dt21t2e2y@dr21r 2 dV2#1t2 dy2, ~58!

whereg~Þ0,1! is an arbitrary constant. Clearly, all the above metrics belong to class~4!, since
G5G(t,y) with GtGyÞ0. In particular, the above solutions belong to the special casea50 @that
is, a5b—see Eqs.~40!–~42!#. However, the solution~43! appears to depend onr ; this depen-
dency can be removed by the coordinate transformationr→ r̄52/r . Also note that in this special
case Eq.~46! is automatically satisfied. Class~4! solutions withaÞb are known to exist. For
instance, the metric

ds252dt21
1

4
t2~ey2ke2y!2

dr21r 2 dV2

@11~k/4!r 2#2
1t2 dy2, ~59!

given in Ref. 7, is Riemann flat for all values of the constantk.
In addition, we recall that metrics of the form~5! were originally investigated in the context

of induced matter theory.2 In induced matter theory, the field equations are usually taken to be the
the vacuum Einstein field equations in 41n-dimensional space–time.1–3However, for our analysis
we wish to examine the consequences of taking the field equations to be the five-dimensional
Riemann flat equations.~Of course, we are immediately neglecting a whole variety of well-known
solutions of Einstein’s field equations, most notably the Schwarzschild solution that can, at best,
be embedded in six-dimensional Minkowski space-time.! Matter is introduced into the theory by
considering the embedding of the physical four-dimensional space–time in the full five-
dimensional space–time. Basically, the physically relevant metric is taken to be the intrinsic
metric on the four-dimensional slicesy5const.

The class~1! and~3! solutions, namely~12! and~37!–~38!, induce Riemann flat four-metrics
on the slicesy5const, and are thus physically uninteresting within the context of induced matter
theory. The class~2! solutions induce conformally flat four-metrics. The class~2! solutions with
A51 @see Eqs.~36!–~37!# represent static Friedman–Robertson–Walker metrics, such that the
three-spacet5const has positive constant curvature. The class~2! solutions withAÞ1 can be
interpreted as perfect fluid models with constant density,

m5
3

e2a
, ~60!

and non-constant pressure,

P52
1

e2a
2

4

e2a F21e22aV~ t !
11e2yr 2

12e2yr 2G
21

, ~61!

whereV(t)[v(t)12* t exp[a(y)]dy. The intrinsic metric of these class~2! solutions ~on the
hypersurfaceY5const!,
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ds252H v~ t !12e2a
12e2Yr 2

11e2Yr 2
12E ea dYJ 2dt21 4e2~a1Y!

~11e2Yr 2!2
~dr21r 2 dV2!. ~62!

belongs to the class of generalized interior Schwarzschild solutions.12,14The diffeomorphism~with
Y5const!,

R5
2e2aeY

11e2Yr 2
, ~63!

reduces the above metric to the standard form,

ds252$v~ t !1A12C2R2%2 dt21
dR2

12C2R2 1R2 dV2, ~64!

whereC( 5 exp@ 2 a(Y)#Y5const) is an arbitrary constant. We note that a specific embedding for the
interior Schwarzschild solution,v(t)5const, into a six-dimensional Riemann flat solution is
known ~see Ref. 16!. However, to our knowledge, the metric~36! with AÞ1 @see~37!# is the first
time that an explicit embedding for the interior Schwarzschild solution into five-dimensional
Riemann flat space–time has appeared in the literature.

The class~4! solutions also induce conformally flat four-metrics, and can be interpreted as
perfect fluid models whose associated density and pressure are

m53a2, ~65!

P523a212aa t$] t ln@b21~a22b21b2r 2!#%21. ~66!

These solutions belong to the class of generalized Friedmann solutions.14

It is clear from~2! that there exist algebraic relationships betweenKab ~Vab!, Rab ~and hence
Tab!, and the Weyl tensorCabgd . All the Riemann flat solutions@classes~1!–~4!# induce four-
metrics that are conformally flat. Indeed, all the perfect fluid solutions of embedding class one
must necessarily be either of Petrov type O~conformally flat! or of Petrov type D.12 Curiously,
results about the embedding of conformally flat four-dimensional metrics into Riemannian flat
five-dimensional Lorentzian space-time do not seem to appear in the literature. Results about the
embedding of conformally flat four-dimensional metrics into Riemannian flat five-dimensional
Euclidean space–times~positive definite metrics! are known~see Refs. 17 and 18!. For complete-
ness, we now state the following theorem without proof: If a four-dimensional conformally flat
Lorentzian metric is of embedding class one, then its Riemann tensor is given byRabgd

5 2Va[gVd]b , whereVa@b;g#50, and furthermoreV must be of the form

Vab5Ananb1Bgab , ~67!

wherena is a unit space-like or time-like vector~that is,nan
a561!.

IV. RICCI FLAT SOLUTIONS

All the solutions discussed in Secs. II and III are Riemann flat and thus are also automatically
Ricci flat. To date, the majority of the known Ricci flat solutions where the metric has the form~5!
have been found by examining the special ansatz that the metric functions are separable in the
variablest, r , andy. In this section, our aim is to find a class of Ricci flat solutions that contain
a subclass of the Riemann flat solutions. Thus, we use the Riemann flat solutions of the previous
sections as a springboard to construct new Ricci flat solutions.
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We base our first ansatz on the form of the class~2! solutions@we chose the class~2! solutions
because~i! they are not as complicated as the class~4! solutions; and~ii ! the class~1! and ~3!
solutions have an uninteresting interpretation in terms of induced matter theory#. Hence, we
consider metrics of the following form:

eF5
A~ t,y!1B~ t,y!r 2

a~y!1b2~y!r 2
, ~68!

eG5
2b~y!1C~y!r 2

a~y!1b2~y!r 2
, ~69!

eK5
D~y!1E~y!r 2

a~y!1b2~y!r 2
. ~70!

Thus, the field equationsRi j50 will all reduce to power series inr . The coefficients of each of the
power series will, in general, be partial differential equations int and y only and they must be
identically zero. After a lengthy calculation~see Ref. 19 for full details!, we find the following
equation:

Cy5C
by
b
. ~71!

Thus, we find that either~i! C50 or ~ii ! C56bÞ0. In case~i!, the solutions can eventually be
shown to reduce to the Riemann flat class~2! solutions. In case~ii !, the metric can be shown to be
equivalent to

ds252y21 dt21y~dr21r 2 dV2!1dy2. ~72!

The above metric was discussed in Ref. 7 and belongs to the class of generalized Kasner
metrics.9,20,21

In the process of determining the Riemann flat solutions and the above solutions, we observed
that if the metric functionsF, G, andK appearing in~5! had a particular form, then some of the
Ricci flat field equations could be easily integrated. Thus, based upon our observations, we are led
to our second ansatz; we shall now consider metrics of the following form:

ds252eF~ t,r ,y! dt21e2G~r !@dr21r 2 dV2#1e2K~r ,y! dy2. ~73!

This ansatz includes both the class~1! Riemann flat solutions and the Davidson–Owen–Gross–
Perry solutions.4,5

The field equationRuu50 for metric ~73! implies that (Gr11/r )Ftr50. Thus, either~i!
Gr521/r or ~ii ! Ftr50.

In case~i! we can setG50 without loss of generality by an appropriate diffeomorphism. The
field equationsRrr50 andRuu50 can then be employed to show thatFr505Kr . The remaining
field equations can then be used to show that the metric reduces to the class~1! Riemann flat
solutions,~12!–~13!, with B51.

In case~ii ! we find thatF5A(t,y)1B(r ,y). The equationRuu50 then yields the additional
result (B1K) ry50, and thusK52B(r ,y)1C(r ). Furthermore, the equationRrr50 yields
Bry(2Br2Cr)50, which implies thatK5K(r ) and F5A(t,y)1B(r ). Finally, the equation
Rry50 implies thatAy(Br2Kr)50. Thus, either~a! Ay50 or ~b! Br5Kr . In case~a!, we can take
A51 without loss of generality, and the metric then reduces to the Davidson–Owen–Gross–Perry
class of soliton solutions,4,5 namely,
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ds252S ar21

ar11D
2ek

dt21S a2r 221

a2r 2 D 2S ar11

ar21D
2e~k21!

@dr21r 2 dV2#1S ar11

ar21D
2e

dy2,

~74!

wheree andk are subject to the constrainte2~k22k11!51.
In case~b!, the general form of the metric may be written as

ds252A2~ t,y!e2K~r ! dt21e2G~r !@dr21r 2 dV2#1e2K~r ! dy2. ~75!

The field equationRtt50 can be employed to show that

Ayy5kA ~76!

and

e2K@Krr12Kr
21KrGr1~2/r !Kr #1ke2G50, ~77!

wherek is a constant~k can always be chosen to be equal to either 0 or61!. Finally, the equations
Rrr50 andRuu50 yield

Krr1Kr
22KrGr1Grr1

1

r
Gr50, ~78!

2KrGr1
2

r
Kr2Grr1

3

r
Gr1Gr

250, ~79!

respectively. We note that the above system of equations~77!–~79! only has rank 2—Eq.~79! is
a first integral of~77! and ~78!.

If k50, then the above system of equations,~77!–~79!, can be solved completely to yield the
solution

ds252S ar11

ar21D
2/)

@a~ t !y1b~ t !#2 dt21S a2r 221

a2r 2 D 2S ar21

ar11D
4/)

@dr21r 2 dV2#

1S ar11

ar21D
2/)

dy2, ~80!

wherea is an arbitrary constant, anda andb are arbitrary functions oft. If a50 then the above
metric is a particular solution belonging to the Davidson–Owen–Gross–Perry class of solutions4,5

@that is, metric~74! with e51/) andk521#. If aÞ0, then we can always seta51: this particular
solution was originally found by Ponce de Leon and Wesson22—the solution is also very similar in
form to the time-dependent soliton solution found by Wesson, Liu, and Lim.3

If kÞ0, then the equations~77!–~79! are not so simple to solve. For convenience, we intro-
duce the new variable,

r5 ln r . ~81!

Equations~77!–~79! can then be reduced to the following system of differential equations:

Grr52Gr
222KrGr22Kr22Gr , ~82!

Krr52Kr
213KrGr1Gr

212Gr13Kr , ~83!

with the first integral
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4KrGr1Gr
21Kr

212Gr14Kr1ke2~G2K1r!50. ~84!

Equations~82! and ~83! form a two-dimensional autonomous system of differential equations. A
specific solution can be found by demanding thatK5G1r; Eqs. ~82! and ~84! then imply that
k521 and that

G5S 216
1

)

D r, ~85!

K56
1

)

r. ~86!

Thus, if we make the transformationR5r61/), then the metric, in this special case, may be
written as

ds252cos2„y1a~ t !…R2 dt213 dR21R2 dV21R2dy2. ~87!

A. Remarks

Of course, Eqs.~82!–~83! can easily be analyzed as a two-dimensional dynamical systems.19

It can be shown that the system has four fixed points at finite values and six fixed points at infinity
~full details are given in Ref. 19!. Analysis of the finite fixed points shows that there are two
saddles, an attracting focus and a repelling focus. Both the attracting focus and the repelling focus
are described by the metric~87! @for which k521# and are valid forR tends to infinity andR
tends to zero, respectively. The corresponding class of solutions are consequently asymptotically
flat in general, in the sense that all components of the Riemann tensor asymptotically vanish~as
r→` for the attractor and asr→0 for the repellor!. The corresponding four-dimensional models
have the property that asymptotically the stress-energy tensor may be interpreted as an anisotropic
fluid, with pi50 andm52p' , wherepi andp' are the fluid pressures parallel and perpendicular
to the fluid four-velocity, respectively.~At the two saddles the corresponding exact solutions have
k50 and the associated four-dimensional solutions that are also flat.!

Analysis of the singular points at infinity shows that there are two sinks, two sources, and two
saddles~appearing in pairs!. The asymptotic form of the solution corresponding to the sources at
infinity is given by

G~r !'~ ln r !122/), K~r !'~ ln r !1/) ~88!

@note thatK→`, G→0, and that det(gi j )→` as r→`#, while for the sinks,

G~r !'~ ln r !112/), K~r !'~ ln r !21/). ~89!
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APPENDIX: THE RIEMANN TENSOR

The nonzero components of the Riemann tensor, up to the usual symmetries, for the metric~5!
are

Rt
rtr5Frr1Fr

22FrGr2e2~G2F !$Gtt1Gt
22FtGt%1e2~G2K !FyGy , ~A1!
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Rt
rty5Fry1FrFy2FrGy2FyKr , ~A2!

Rr
tyr5Gty1GtGy2FyGt2KtGy ~5Ru

tyu5Rf
tyf!, ~A3!

Ru
ttu5Gtt1Gt

22FtGt2Fr~Gr11/r !e2~F2G!2e2~F2K !FyGy ~5Rf
ttf!, ~A4!

Ru
tru5Grt2GtFr ~5Rf

trf!, ~A5!

Rt
yty5Fyy1Fy

22FyKy1e2~K2G!FrKr2e2~K2F !$Ktt1Kt
22FtKt%, ~A6!

Ry
try5Krt1KrKt2KtFr2GtKr , ~A7!

Ru
rr u5Grr1

1

r
Gr2e2~G2F !Gt

21e2~G2K !Gy
2 ~5Rf

rrf!, ~A8!

Ru
ryu5Gry2KrGy ~5Rf

ryf!, ~A9!

Rr
yyr5Gyy1Gy

22GyKy1e2~K2G!$Krr1Kr
22GrKr%2e2~K2F !GtKt , ~A10!

Rf
uuf5r 2HGr

21
2

r
Gr2e2~G2F !Gt

21e2~G2K !Gy
2J , ~A11!

Ru
yyu5Gyy1Gy

22GyKy2e2~K2F !GtKt1e2~K2G!Kr~Gr11/r ! ~5Rf
yyf! . ~A12!
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