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Induced matter theory and embeddings in Riemann flat
space—times

G. Abolghasem, A. A. Coley, and D. J. Mc Manus®
Department of Mathematics, Statistics and Computing Science, Dalhousie University,
Halifax, Nova Scotia, B3H 3J5, Canada

(Received 17 July 1995; accepted for publication 1 August 1995

A class of five-dimensional space-times that contain four-dimensional hypersur-
faces whose intrinsic metrics are of cosmological interest is investigated. First, the
five-dimensional space—time is assumed to be Riemann flat—the problem of deter-
mining the intrinsic metrics of the four-dimensional hypersurfaces then becomes a
problem of embedding in flat space—time. Second, the Riemann flat solutions are
used as a starting point to find solutions to Einstein’s vacuum field equations in five
dimensions that are not Riemann flat. In particular, a new general class of five-
dimensional vacuum solutions is found. 896 American Institute of Physics.
[S0022-24886)04201-9

I. INTRODUCTION

Recently, several authors have been interested in Einstein’s theory of general relativity in five
dimension§™’ (higher-dimensional theories have also been consiféreth these studies the
higher-dimensional field equations were taken to be the vacuum Einstein field equations, and the
primary goal in sever&>®7 of these studies was to determine whether the four-dimensional
properties of matter could be interpreted as being purely geometrical in ‘Grigine embedding
of the four-dimensional space—time in the vacuum five-dimensional space-time was interpreted as
producing an effective four-dimensional stress—energy tensor.

Curiously, Mc Manu$recently observed that a class of five-dimensional vactien Ricci
flat) solutions of Ponce de Lebvere, in fact, completelyRiemann flat, that is to say that the
five-dimensional Riemann tensor associated with these metrics was identically zero. Thus, one is
immediately prompted to ask the following question: are any of the other known five-dimensional
Ricci flat solutions also Riemann flat? Of course, it is not very instructive to just simply system-
atically calculate the Riemann tensor for the known five-dimensional vacuum solutions to deter-
mine if the Riemann tensor vanishes. It would be far more beneficial if we could find some general
results. Consequently, we now pose the following question: what is the class of Lorentzian four-
metrics that can be embedded in five-dimensional Minkowski space-time? In theory, the general
solution to this problem is knowH. For example, consider the following class of Riemann flat
five-metrics:

ds’=g,5(x7,y)dx* dx’+ $%(x7,y)dy?. )

where the intrinsic metricgaﬁ(xy,y)lyzconst, of the four-dimensional hypersurfacgs constant is
Lorentzian in signature. The fact that the full five-dimensional metric is flat imposes necessary and
sufficient conditions on the Riemann tensB,s,5, of the intrinsic metric and on the extrinsic
curvature K .4, of the hypersurfacg=const, namely that

Ra,B'yﬁzKayKBS_KaﬁKﬁyv (2)

aCurrent address: Finance Division, Faculty of Commerce & Business Administration. University of British Columbia,
Vancouver, British Columbia, V6T 172, Canada.
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362 Abolghasem, Coley, and Mc Manus: Induced matter theory and embeddings

Kagiy=Kays: 3

where here “;" denotes covariant differentiation with respect to the intrinsic mefgic. (In
generall’ the four-metric “ds’=g,4(x”)dx* dx? can be embedded in a five-dimensional
Riemann flat space-time if and only if there exists a symmetric tefikgr that satisfies
4R“ﬁ75;29“[795]ﬁ and{,4.,,=0.) Furthermore, the extrinsic curvature of the surfgeeconst is
given by

19
Kaﬁ_g W (gaﬁ)! (4)

for the above metric. Unfortunately, the above equations are too complex for an explicit coordinate
representation for the metric functiogg,; and ¢ to be found, in general.
In this paper, we consider the following class of metrics:

dSZZ _eZF(t,r,y) dt2+e26(t,r,y)(dr2+r2 d92)+62K(t,r,y) dyZ’ (5)

wheredQ2=d#?+sir?(#)d¢?. Various forms of the metri¢5) have been extensively investigated
in the literaturé>®—the vacuum Einstein field equatiorR;; =0, have been solved for certain
subclasses of the metri®). Although several metrics of the foritb) have been noted to be
Riemann flaf;*® most notably the Ponce de Leon solutiériee general form of the Riemann flat
solutions has not been found.

Therefore, we wish to determine all metrics of the fof) that are Riemann flat. In other
words, we want to find all solutions of the equatid®ig, =0 where the metric is given bp). In
principle, the problem is trivial since locally all solutions are Minkowski space-time; however, one
has to implement various nontrivial diffeomorphisms to get the solution into this form. However,
we shall only permit diffeomorphisms of the fomf— x“(x?) andy—y(y). Thus, by restricting
the permissible diffeomorphisms we ensure that the four-dimensional intrinsic melsfcs
= gaﬁ(xy,y)|y:constdx“ dx? are not necessarily Riemann flat, even though the five-dimensional
metrics are Riemann flat. In technical language, we confine our analysis to four-dimensional
metrics of embedding clags=1 (see Refs. 8 and 12 for further discussions on the embedding
problem).

If we calculate the extrinsic curvaturk,,s, for the metric(5) using (4), then we find that it
has the form

KaBZAUaU,B+Bga,Bv (6)

whereg,, v *yP=—1. Equation(2) can then be employed to show that the stress—energy tensor
associated with the intrinsic metrig,; has the form of a perfect fluid, namely
T.s=(u+P)v,vs+Pd,s. Now, standard results of embedding thedry*°tell us about the
allowable perfect fluid solutions. In the cage-P+#0, the solution belongs to either the class of
generalized interior Schwarzschild solutions if the expansion of the fluid velagjtyis zero, or

the class of generalized Friedmann cosmological models if the fluid expansion is nonzero. In the
case thatu+P=0, the solutions are de Sitter space—tin{d#sat is, space—times of constant
curvature. All of these spherically symmetric solutions are conformally flat.

The purpose of our paper is twofold; not only do we wish to find the explicit form for all the
Riemann flat solutions of the forrtb), but we also wish to find new Ricci flat solutions. In
particular, we wish to employ our knowledge of the Riemann flat solutions as an aid to construct
new Ricci flat solutions.

The paper is organized as follows: In Sec. Il, we analyze the Riemann flat equations for the
metric (5), and both classify and find all the five-dimensional solutions explicitly. In Sec. Ill, we
discuss the solutions found in Sec. Il, paying particular attention to their interpretation in the
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Abolghasem, Coley, and Mc Manus: Induced matter theory and embeddings 363

context of induced matter theory. Finally, in Sec. 1V, we use the Riemann flat solutions as an aid
to construct some Ricci flat solutions of the meifi¢ that are not Riemann flat.

Il. FIELD EQUATIONS

We shall now proceed to solve the equatidg, =0 for the metric(5). However, we will
restrict the allowable diffeomorphisms to diffeomorphisms of the fafm x*(x?), y—y(y). We
start our analysis by noting that the pivotal equationsRfte,=0 andRary9=O, which yield

G =GiF,. (7
Gy=G,K,, (8)

respectively(The complete set of the components of the Riemann tensor are listed in the Appen-
dix.) Thus, we immediately observe that we can divide the solutions into four clagBbes:
G=G(r); (2) G=G(r,y) with G,#0 and expK)=G,/a; (3) G=G(r,t) with G;#0 and
exp(F)=G,/B; and (4 G=G(t,r,y) with G;G,#0, and expK)=G,/a and expf)=G/B,
where botha and 8 are nonzero functions dfandy only.

A. G=G(r)
The equatiorR?, ,=0 yields the differential equation
rG,,+G,=0, 9)
which can easily be solved to get
G=c, In(r)+c,, (10
wherec, andc, are arbitrary constants. The field equatl@ﬁﬁafo now reduces to
c1(cr,+2)=0. (11

We can takec; = c,=0 without loss of generalityThe solution<,;=0 andc,=—2 are related by
the transformatiom— 1/r.) EquationsR?,,=0 andR”yy0=0 imply that the function§ andK are
both independent of the variabte Thus, the metric may be written as

ds?=—A?(t,y)dt?+dr?+r? dQ2+B2(t,y)dy?, (12

where the metric function8 andB must satisfy the following equation:
d [10A 12
W gw (13

9 (1B
Tt A et
Equation(13) follows directly from the equatio®R",,,=0. (The remaining equatiorﬁijk|=0 are
trivially satisfied)

yty

B. G;=0, G,#0

For this class of solutions, we have that the metric funcKosatisfies
e“=G,/a(t,y), 14

where a#0. The equatiorthyrzo implies thata=(y). The equatiorR’,, ,=0 then yields the
following differential equation folG:

J. Math. Phys., Vol. 37, No. 1, January 1996
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1
Grt G, + a?e?¢=0, (15

which can easily be solved to obtain the solution

a2b ra—2

aZ (1+Dbr¢)?

1
G==1In

- , (16)

wherea andb are arbitrary functions of only. Furthermore, the equatid?n‘%w:o reduces to
2 2 2,2G
Gr+FGr+0[e =0. a7
Inserting the solutior{16) for G into (17) implies thata®=4 (we can takea=2 without loss of

generality. Thus, the solution fofs is

1 [4b(y) 1

6=2 M@y arby)r?)

(18

Note that we can write the solution f@ in the above form, since the equati®{,, ,=0 implies
that G, #0 if G;=0 andG,+0.
For simplicity, we introduce the functioA defined by

A=¢eF. (19

The equation',,, =0 andR’,,=0 now reduce to

1 2G
s Gy(Ar—G/A/)+Ae*=0. (20
1 1 2G
p G| G+ " A +Ae =0. (21
respectively. Subtractin@1) from (20) yields
1
A= 2A.G— = A=0, (22
which can be integrated to obtain
A =re®l(t,y), (23

wherel(t,y) is an arbitrary function. Furthermore, E@1) implies that
A | G,(1+rG 24
y ? y( +r r)- ( )

With the aid of Eq.(18), Eq. (23) can now be integrated to yield

21
A=— ?W—i—m(t,y). (25)

wherem(t,y) is an arbitrary function. In addition, the equatia‘hyzo reduces to
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G/Ay—GA —A,Gy =0, (26)

which can be integrated to obtain

Ay
G—y—A+n(t,y), (27

wheren(t,y) is an arbitrary function. If we divide Eq24) by G, and compare the result {@7),
then we find thatA must be of the form

A———zm—n. (28)

If we combine Eqgs(25) and(28), then we obtain that the functioh may be written as

_p(t,y) +b(y)q(t,y)r?
B 1+b(y)r?

(29

wherep=n-—1/a? andgq=n+1/a?. In addition, the above solution must also satisfy E2fl).
Inserting the above solution into E@4), we find that Eq(24) becomes a power seriesfinThus,
equating the various coefficients ofto zero, we find the following equations:

(by ay)—4 30

(p—q) D 25T 4Py (30)

(p—a)by=2(ay+py), (31)
by @y

(p—Qq) b 2574 (32

Equation(31) is redundant since it can be obtained by adding E8®. and (32) together. Sub-
tracting Eq.(32) from Eg. (30), we find that

2(p,— i) +(p—0) X =0, 33

which can be integrated to yield the solutions

2 dy b

p=u(t) ;"‘f ;ygy +o(t), (34)
2 dy b

a=u(t) —;+f ;ygy +o(t), (35)

whereu andv are arbitrary functions. The remaining equaticﬁiﬁdzo are trivially satisfied.
Thus, if we make the coordinate transformatiér 2n b(y) and introduce the functioa=
—In «, then the metric can be written as

2(a+Y) 2a

€
ds?=—A? dt’+ m (dr2+r2 sz)'i‘ (]_-l—e—ZYI’Z)Z [(ay+ 1)+(aY—1)e2Yr2]2 dy?,
(36)
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wherea=a(Y) is an arbitrary function ané can be set to

1 [if u(t)=0],
_ 2Yr2

W”f e*dY [if u(t)#0], 37

A=V (1) + 202

wherev(t) is an arbitrary function.

C. G,=0, G,#0

This class is very similar to the previous class. Thus, we forgo writing down the steps of the
calculation since they are, in essence, the same as those employed in the derivation of {Bg class
solutions. We merely quote the results: there exist coordinates such that the8gkslations may
be written as

2a 4e2(a+T)
ds?=— m [(at+1)—(aT— 1)e2Tr2]2 dT2+ (]__e—2-|—r2)2 (dr2+r2 dQZ)‘f‘BZ dyz,
(38)
wherea=a(T) is an arbitrary function an& can be set equal to
1 (if B,=0),
_ 1+e2Ty2
v(y)+2e2am+ZJ e?dT (if Br¢0), (39)
wherev(y) is an arbitrary function.
D. G,G,#0
In this case, the functions andK satisfy the relationships
e“=Gy/al(t)y), (40
eF=G,/B(t,y). (41
Now, the equation®’, ,=0 andR?;,,=0 yield
1
Gt — G,+ae’®=0, (42
2 2 G
Gr+FGr+ae2 =0, (43
respectively, where
a=a’— B2 (44)
The above equations can be solved to obtain the solution
G= ! I ab? 45
=2 "M@y 49

whereb=Dhb(t,y) is an arbitrary function. Furthermore, the equatanyzo reduces to
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B
B
Using the solutior{(45), we can expand the above equation in a power seriesWe find that the
following two equations must be satisfied:

o
Gyi=GG,+ ;y G+ — Gy. (46)

byy= (¢ In B)by+(dy In a)by, (47
ay) 1
o F +E [@(d; In b)(dy In b)—ayd; In b—a;dy In b]
(B 1
=dy ~ + - [B(d; In b)(dy In b)—Byd; In b— By In b].

(48)

(Actually, there is a third equation, but it is automatically satisfied on account of the first two
equations. _

The remaining equationR';,,=0 can all be shown to be trivially satisfied. First, using Eq.
(46) we find that the equatiol?{rtr =0 can be written as

P
- [2G,,—G?+ae?®]=0, (49)

which is trivially satisfied due t¢45). Similarly, the equatiorR‘yyrzo reduces to

d
Y [2G,, — G?+ae?®]=0. (50)

Both the equation&',,,=0 and RYy =0 reduce to

rty

J ay Bt

which is trivially satisfied because of E@6). Furthermore, using E46), the equation&’,,,=0
andRY,,=0 can be shown to reduce to

G, =Gn(1+2rG,), (52
rGry, =G (1+2rG,), (53

respectively, which again are trivially satisfied on account of (Bg). Finally, after a long calcu-
lation employing Eqs(42)—(48), the equatiorRtytyZO can be shown to be trivially satisfied.
In summary, the metric is given by

2
i) dy2, (54)

G, \?
dszz—( t ) dt?+e?8(dr2+r2 d0?)+
a(ty)

B(ty)

where

4b(t,y)?
(a?— B2+Db(t,y)%r?)?’

2G

e (59

and «, B andb satisfy (47)—(48).
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lll. DISCUSSION

We should, of course, determine where the known Riemann flat solutions of theg3pfin
into the above classification scheme. As was noted by Mc Matiis following three Ponce de
Leon metric§ are all Riemann flat:

2
ds?=—y? di2+ 27y 20V dr2 412 d02 )+ —yz 1) 2 dy?, (56)
ds?=—y? dt?+y2e?[dr?+r? dQ?]+dy?, (57)
ds?= — dt?+t2e2[dr2+r2 dQ2] +12 dy?, (59)

where »(#0,1) is an arbitrary constant. Clearly, all the above metrics belong to ¢Bssince
G=G(t,y) with G;G,#0. In particular, the above solutions belong to the special aas@|[that
is, a=p—see Eqs(40)—(42)]. However, the solutiori43) appears to depend an this depen-
dency can be removed by the coordinate transformatiem =2/r. Also note that in this special
case Eq.46) is automatically satisfied. Clagd) solutions witha# 8 are known to exist. For
instance, the metric

X dr2+r2 dQ?

1
= — 2 —_ 2 y -y —
ds?=—dt*+ — t¥(e¥— ke V) 1+ (/A2

+12 dy?, (59
4
given in Ref. 7, is Riemann flat for all values of the constant

In addition, we recall that metrics of the for(B) were originally investigated in the context
of induced matter theo/In induced matter theory, the field equations are usually taken to be the
the vacuum Einstein field equations if-A-dimensional space—time® However, for our analysis
we wish to examine the consequences of taking the field equations to be the five-dimensional
Riemann flat equation$Of course, we are immediately neglecting a whole variety of well-known
solutions of Einstein’s field equations, most notably the Schwarzschild solution that can, at best,
be embedded in six-dimensional Minkowski space-tinhatter is introduced into the theory by
considering the embedding of the physical four-dimensional space—time in the full five-
dimensional space—time. Basically, the physically relevant metric is taken to be the intrinsic
metric on the four-dimensional slicgs=const.

The clasq1) and(3) solutions, namely12) and(37)—(38), induce Riemann flat four-metrics
on the slicesy=const, and are thus physically uninteresting within the context of induced matter
theory. The clas$2) solutions induce conformally flat four-metrics. The clé8p solutions with
A=1 [see Eqs(36)—(37)] represent static Friedman—Robertson—Walker metrics, such that the
three-spacé=const has positive constant curvature. The cl@ssolutions withA#1 can be
interpreted as perfect fluid models with constant density,

3
n= gz (60)

and non-constant pressure,

1 4 I & - e
—a— za|2te V(1)

TTE e o Y

where V(t)=v(t)+ 2" exp[a(y)]dy. The intrinsic metric of these clag®) solutions(on the
hypersurfacer =cons},
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2 4e2(a+Y)

dt*+ =y (dr?+r2dQ?. (62

1—g2Yy2
— 2a a
ds?=—{v(t)+2e 1JFeZYrZJrzje dy ite

belongs to the class of generalized interior Schwarzschild solutfdfi§he diffeomorphismiwith
Y =cons},

2e2aeY
RETrem 3
reduces the above metric to the standard form,
2p2\ 2 2 dR2 2 2
ds?=—{v(t)+y1—C?R?}? dt*+ ———» + R? dQ?, (64)

1-C*“R

whereC( = exd — a(Y)ly=cons) iS @n arbitrary constant. We note that a specific embedding for the
interior Schwarzschild solutiony (t) =const, into a six-dimensional Riemann flat solution is
known (see Ref. 16 However, to our knowledge, the met(ig6) with A#1 [see(37)] is the first
time that an explicit embedding for the interior Schwarzschild solution into five-dimensional
Riemann flat space—time has appeared in the literature.

The class(4) solutions also induce conformally flat four-metrics, and can be interpreted as
perfect fluid models whose associated density and pressure are

w=3a? (65
P=—3a?+2aa{d, IN[b~(a?— B%+b%?)]} L. (66)

These solutions belong to the class of generalized Friedmann soltftions.

It is clear from(2) that there exist algebraic relationships betwiep ({2,4), R,z (@and hence
T.p), and the Weyl tensoC,z,s. All the Riemann flat solutionfclasses(1)—(4)] induce four-
metrics that are conformally flaindeed, all the perfect fluid solutions of embedding class one
must necessarily be either of Petrov type(@nformally flaj or of Petrov type O Curiously,
results about the embedding of conformally flat four-dimensional metrics into Riemannian flat
five-dimensional Lorentzian space-time do not seem to appear in the literature. Results about the
embedding of conformally flat four-dimensional metrics into Riemannian flat five-dimensional
Euclidean space—timépositive definite metrigsare known(see Refs. 17 and 18For complete-
ness, we now state the following theorem without proof: If a four-dimensional conformally flat
Lorentzian metric is of embedding class one, then its Riemann tensor is giveR,pys
= 2Q 41,0 55, WhereQ 5.,,=0, and furthermoré) must be of the form

QaB=Anan5+ Bgaﬁ, (67)

wheren, is a unit space-like or time-like vectdthat is,n ,n*==*1).

IV. RICCI FLAT SOLUTIONS

All the solutions discussed in Secs. Il and 11l are Riemann flat and thus are also automatically
Ricci flat. To date, the majority of the known Ricci flat solutions where the metric has the(8rm
have been found by examining the special ansatz that the metric functions are separable in the
variablest, r, andy. In this section, our aim is to find a class of Ricci flat solutions that contain
a subclass of the Riemann flat solutions. Thus, we use the Riemann flat solutions of the previous
sections as a springboard to construct new Ricci flat solutions.
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370 Abolghasem, Coley, and Mc Manus: Induced matter theory and embeddings

We base our first ansatz on the form of the cl&ssolutions[we chose the clag®) solutions
becausdi) they are not as complicated as the cléssolutions; andii) the class(1) and (3)
solutions have an uninteresting interpretation in terms of induced matter thétence, we
consider metrics of the following form:

e A(LY)+B(t,y)r?

a2y ©9
o_2b(y)+C(y)r? 69
a(y) +b2(y)r?’
2
« D(Y)+E)r (70

® T aly) oAy

Thus, the field equatior®;; =0 will all reduce to power series in The coefficients of each of the
power series will, in general, be partial differential equation$ andy only and they must be
identically zero. After a lengthy calculatioisee Ref. 19 for full details we find the following
equation:

by
CyZC F (71)

Thus, we find that eithefi) C=0 or (ii) C=*b+#0. In case(i), the solutions can eventually be
shown to reduce to the Riemann flat cl@®ssolutions. In caséi), the metric can be shown to be
equivalent to

ds?=—y 1 dt?+y(dr?+r2 dQ?)+dy?. (72)

The above metric was discussed in Ref. 7 and belongs to the class of generalized Kasner
metrics>2021

In the process of determining the Riemann flat solutions and the above solutions, we observed
that if the metric function$, G, andK appearing in5) had a particular form, then some of the
Ricci flat field equations could be easily integrated. Thus, based upon our observations, we are led

to our second ansatz; we shall now consider metrics of the following form:
ds?=—eftrY) dt2+e26[dr2+r? dO?]+e?X"Y) dy?, (73

This ansatz includes both the clags Riemann flat solutions and the Davidson—Owen—Gross—
Perry solutiond:®

The field equationR,,=0 for metric (73) implies that G,+1/r)F,=0. Thus, either(i)
G,=—1rk or (ii) F,=0.

In case(i) we can seG=0 without loss of generality by an appropriate diffeomorphism. The
field equationsR,, =0 andR,,=0 can then be employed to show tigt=0=K, . The remaining
field equations can then be used to show that the metric reduces to theIgld&smann flat
solutions,(12)—(13), with B=1.

In case(ii) we find thatF=A(t,y) +B(r,y). The equatiorR,,=0 then yields the additional
result B+K),,=0, and thusK=—B(r,y)+C(r). Furthermore, the equatioR, =0 yields
Bry(2B,—C,)=0, which implies thatK=K(r) and F=A(t,y)+B(r). Finally, the equation
R,y =0 implies thatA, (B, — K;) =0. Thus, eithefa) A;=0 or (b) B,=K, . In case(a), we can take
A=1 without loss of generality, and the metric then reduces to the Davidson—Owen—-Gross—Perry
class of soliton solution$> namely,
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4m ar—1) 2 e a%r2—1\?/ar+1)2<k-1 22 dO21e ar+1 26d )
- lar+1 a’r? ar—1 [drtr a1 e
(74)
wheree andk are subject to the constraigt(k?—k+1)=1.
In case(b), the general form of the metric may be written as
ds?=—A%(t,y)e?K) dt2+ e[ dr2+r2 dO?]+e?X(") dy2. (75
The field equatiorR,;=0 can be employed to show that
Ayy= kA (76)
and
e’ [K,, +2K2+K,G, + (2/r)K,]+ xe*=0, (77

wherek is a constantx can always be chosen to be equal to either & ty. Finally, the equations
R, =0 andRg,=0 yield

1
Krr+Kr2_KrGr+Grr+F G,=0, (79

2 3 ,
2K,G + — K, =Gy + - G+ GF=0, (79)

respectively. We note that the above system of equatiefs-(79) only has rank 2—Eq(79) is
a first integral of(77) and(78).

If k=0, then the above system of equatiof¥s)—(79), can be solved completely to yield the
solution

ar+1\2v3 2r2_1\2[ar—1\%3
I 2 2 2 2 2
ds® ar—l) [a()y+B(1)]? d*+| —z7—| | 7] [dri+r2 d0?]
ar+1\2v3
ar—l) dy?, (80)

wherea is an arbitrary constant, andand 3 are arbitrary functions of. If =0 then the above
metric is a particular solution belonging to the Davidson—Owen—Gross—Perry class of s8futions
[that is, metriq74) with e=1/3 andk=—1]. If a#0, then we can always set=1: this particular
solution was originally found by Ponce de Leon and We$setthe solution is also very similar in
form to the time-dependent soliton solution found by Wesson, Liu, andLim.

If k#0, then the equationg7)—(79) are not so simple to solve. For convenience, we intro-
duce the new variable,

p=Inr. (81
Equations(77)—(79) can then be reduced to the following system of differential equations:
G,p=—G2-2K,G,—2K,—2G,,, (82

_ g2 2
Kpp=—K5+3K,G,+G;+2G,+3K,, (83

with the first integral
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2 2 2(G—-K —
4K,G,+ G2+ K>+2G,+4K ,+ ke? ¢ K P =0, (84)

Equations(82) and (83) form a two-dimensional autonomous system of differential equations. A
specific solution can be found by demanding tKat G +p; Eqgs. (82) and (84) then imply that
x=—1 and that

1
G=|—-1x—|p, (85
ﬂ)p
K== ! (86)
A p.
Thus, if we make the transformatidR=r =3, then the metric, in this special case, may be
written as
ds?=—cog(y+ a(t))R? dt?*+ 3 dR?*+ R? dO?+ R?dy?. (87)
A. Remarks

Of course, Eqs(82)—(83) can easily be analyzed as a two-dimensional dynamical systems.
It can be shown that the system has four fixed points at finite values and six fixed points at infinity
(full details are given in Ref. )9 Analysis of the finite fixed points shows that there are two
saddles, an attracting focus and a repelling focus. Both the attracting focus and the repelling focus
are described by the metri87) [for which k=—1] and are valid forR tends to infinity andR
tends to zero, respectively. The corresponding class of solutions are consequently asymptotically
flat in general, in the sense that all components of the Riemann tensor asymptotically (@anish
r—oo for the attractor and as—O0 for the repello). The corresponding four-dimensional models
have the property that asymptotically the stress-energy tensor may be interpreted as an anisotropic
fluid, with p,=0 andu=2p, , wherep, andp, are the fluid pressures parallel and perpendicular
to the fluid four-velocity, respectivelyAt the two saddles the corresponding exact solutions have
x=0 and the associated four-dimensional solutions that are alsp flat.

Analysis of the singular points at infinity shows that there are two sinks, two sources, and two
saddleqappearing in paips The asymptotic form of the solution corresponding to the sources at
infinity is given by

G(r)~(In )2 K(r)=(Inr)¥3 (89
[note thatk —=, G—0, and that detf;;) —« asr—], while for the sinks,
G(r)~(In )23, K(r)=(Inr)~ 3, (89)
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APPENDIX: THE RIEMANN TENSOR

The nonzero components of the Riemann tensor, up to the usual symmetries, for theSpetric
are

Ry =Fy +F?—F,G,—e*C P{G+ G~ F,G} +e*¢ NF G, (A1)
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Rty =Fry+FFy,—F.G,—F,K,, (A2)

R'yyr=Gy+ GG, —F,G—KG, (=R%,,=R%,,), (A3)
Rlo=Gu+ G —FG,—F(G,+ 1Ie*F ©—e2FNE G (=R%,,), (Ad)
Ratn‘}:Grt_GtFr (:Rd)tr(/))a (AS5)

RYyy=Fyy+Fo—F K +e?KOF K, — e PIK +KE-F Ky, (AB)
Ry =Ky + K K — KiF = GK, (A7)

RO, ,=G, + % G, —e?C PG+ MG (=R%,,), (A8)

Ry s=Gry—K:Gy (=R%y,), (A9)

R'yyi=Gyy+ G~ G K+ 2K K, +KZ=GK,} - e X FIGK,, (A10)
R?ps=12 Gr2+§Gr—eZ(G’F)GtZJreZ(G’K)Gi : (A11)

R%ys=Gyy+Go— G K, —e? " FIGK+e? K OK (G +1Ir) (=R%,,). (A12)
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