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Qualitative and numerical study of the matter-radiation interaction
in Kantowski-Sachs cosmologies
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We examine, from both a qualitative and a numerical point of view, the evolution of Kantowski-Sachs
cosmological models whose source is a mixture of a gas of weakly interacting massive particles~WIMP’s! and
a radiative gas made up of a ‘‘tightly coupled’’ mixture of electrons, baryons and photons. Our analysis is valid
from the end of nucleosynthesis up to the duration of radiative interactions (106 K.T.43103 K). In this
cosmic era annihilation processes are negligible, while the WIMP’s only interact gravitationally with the
radiative gas and the latter behaves as a single dissipative fluid that can be studied within a hydrodynamical
framework. Applying the full transport equations of extended irreversible thermodynamics, coupled with the
field and balance equations, we obtain a set of governing equations that becomes an autonomous system of
ordinary differential equations once the shear viscosity relaxation timet rel is specified. Assuming thatt rel is
proportional to the Hubble time, the qualitative analysis indicates that models begin in the radiation-dominated
epoch close to an isotropic equilibrium point~saddle!. We show how the form oft rel governs the relaxation
time scale of the models towards an equilibrium photon entropy, leading to ‘‘near-Eckart’’ and transient
regimes associated with ‘‘abrupt’’ and ‘‘smooth’’ relaxation processes, respectively. Assuming the WIMP
particle to be a supersymmetric neutralino with a massmw;100 GeV, the numerical analysis reveals that a
physically plausible evolution, compatible with a stable equilibrium state and with observed bounds on CMB
anisotropies and neutralino abundance, is only possible for models characterized by initial conditions associ-
ated with nearly zero spatial curvature and total initial energy density close to unity. An expression for the
relaxation time, complying with physical requirements, is obtained in terms of the dynamical equations. It is
also shown that the ‘‘truncated’’ transport equation does not give rise to acceptable physics.

DOI: 10.1103/PhysRevD.66.124001 PACS number~s!: 04.40.Nr, 05.70.Ln
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I. INTRODUCTION

The radiative era of cosmic evolution extends from t
end of cosmological nucleosynthesis to the decoupling
baryonic matter and radiation, covering the temperat
range 431032106 K ~roughly between 1 eV and 1 keV!.
During this period cosmic matter can be described@1–3# as a
mixture of two main non-interacting components: one
non-relativistic and collisionless gas of weakly interacti
massive particles~WIMP’s! @cold dark matter~CDM!#, the
other a tightly coupled mixture of non-relativistic baryon
electrons and ultra-relativistic matter~‘‘radiation,’’ i.e., pho-
tons and neutrinos!. The standard approach to the radiati
era consists of using a Friedmann-Lemaıˆtre-Robertson-
Walker ~FLRW! space-time background@1–3# whose
sources are described either by equilibrium kinetic the
@4#, gauge-invariant perturbations@5#, or by hydrodynamical
models@6–8#, which in general fail to incorporate a phys
cally plausible description of the matter-radiation interact
since they assume a full thermodynamical equilibriu
throughout the evolution. Since the tight coupling betwe
electrons, baryonic matter and radiation follows from vario
processes of radiative interaction@9–11#, mostly involving
photons and electrons, we can ignore the non-interac
0556-2821/2002/66~12!/124001~20!/$20.00 66 1240
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neutrinos and assume the baryon-electron-photon mixtur
evolve with a common temperature~local thermal equilib-
rium! and to behave as a single fluid, the ‘‘radiative fluid
This fluid must be dissipative in order to provide an adequ
macroscopic model for these interactions@9#. Ideally, all dis-
sipative fluxes~heat flux, bulk and shear viscosities! should
be taken into consideration in the study of this tight couplin
However, in order to deal with a mathematically tractab
problem, while still aiming at a physically interesting gene
alization of previous work, we shall study the case in whi
only shear viscosity is present. Bulk viscosity is not sign
cant in the temperature ranges we are considering@9#, and,
although neglecting the contribution of heat flux carri
physical limitations, this is compensated by the ensu
mathematical simplification of the field and transport equ
tions. This approach has already been tested in var
known and new exact solutions@12#.

The simplest class of metrics allowing for anisotrop
shear viscous stresses are the Kantowski-Sachs cosmol
@13,14#, characterized by a 4-dimensional isometric grou
As the source of space-time we consider a momentu
energy tensor made of CDM~the WIMP gas! and the dissi-
pative radiative fluid whose anisotropic pressure can be id
tified with shear viscous pressure. Considering the WIM
©2002 The American Physical Society01-1
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particle to be the supersymmetric lightest neutralino, w
mass 100 GeV@15–17#, we can safely assume that throug
out the radiative era these WIMP’s are non-relativistic, c
lisionless and only interact gravitationally with radiation a
baryonic matter. It is also reasonable to assume, for the
vailing temperatures of this era, that the pressure of
WIMP gas and the internal energy of the baryons and e
trons are negligible in comparison with the radiation equil
rium pressure. Although the radiative era is dominated
radiation, the rest mass-energy density of the WIMP’s is
negligible and dominates that of the baryons and electro
hence the full source, CDM plus radiative fluid, can be w
approximated by a momentum energy tensor in which CD
provides the bulk of the rest mass energy~‘‘matter,’’ which
ends up dominating the whole dynamics!, while the photons
~‘‘radiation’’ ! provide the bulk of thermal and dissipative e
fects. The shear viscosity associated with this source m
satisfy appropriate constitutive and transport equations f
irreversible thermodynamics that comply with causality a
stability @18–21#; these thermodynamical theories are kno
generically as extended irreversible thermodynamics~EIT!
@22–24#. The application of such theories to particular phy
cal systems requires phenomenological coefficients, like
coefficient of shear viscosity, to be provided by kine
theory. In particular, for the tight coupling of electrons, bar
onic matter and radiation and its associated photon-elec
interaction, the coefficients corresponding to the ‘‘radiat
gas’’ model@9,23,25–27# should be employed. The entrop
production must be positive definite and the relaxation ti
of shear viscosity must be a positive and monotonously
creasing function, somehow related to the collision times
the radiative processes associated with the radiative era
these time scales must overtake the Hubble expansion
as baryonic matter and radiation decouple.

The paper is organized as follows. Sections II to
present and discuss the field equations of Kantowski-Sa
geometry for a mixture of CDM and a radiative fluid, th
application of extended irreversible thermodynamics and
appropriate set of equations of state for the models, as
as the evolution equations for the geometric and state v
ables. The dynamical analysis is carried on in Sec. V
defining a set of normalized variables, which then leads
self-consistent and well-behaved autonomous system o
dinary differential~governing evolution! equations. From the
qualitative analysis, we identify a saddle point associa
with a radiation-dominated FLRW cosmology and contain
in the invariant setx50, associated with the flat Bianchi
model. We argue that initial conditions must be defined n
this point. In Sec. VI we discuss various assumptions on
form of the relaxation time for shear viscosity, these assum
tions lead to the identification of a ‘‘near-Eckart’’ and tra
sient regimes, respectively, associated with a swift and s
rate of transiency. The effects of using a ‘‘truncated’’ tran
port equation are discussed qualitatively in Sec. VII, wh
Sec. VIII deals with the numerical analysis of the mod
bearing in mind the qualitative results obtained in previo
sections. The main result that follows from the qualitati
and numerical analysis is the fact that a physically plaus
evolution is possible only for~a! initial conditions and evo-
12400
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lution close tox50, and~b! using the full ~not truncated!
shear viscosity transport equation of EIT. A detailed disc
sion and summary of these results is provided in Sec. IX

II. KANTOWSKI-SACHS COSMOLOGIES
WITH ANISOTROPIC STRESSES

The simplest non-FLRW cosmological metric allowin
for anisotropic pressure is that of Kantowski-Sachs~KS!
models:

ds252c2dt21A2~ t !dr21B2~ t !@du21sin2~u!df2#.
~1!

For a co-moving 4-velocityua, the expansion scalar an
shear tensor associated with the metric~1! are

Q5
Ȧ

A
1

2Ḃ

B
, sa

b5diag@0,22s,s,s#, s[
1

3
S Ḃ

B
2

Ȧ

A
D ,

~2!

where a dot denotes the derivative with respect to pro
time of fundamental observers, which for the KS metric~1!

in co-moving coordinates is given byt ~i.e., Ȧ5A,t
5uaA,a). We consider as the source of~1!, the following
stress-energy tensor:

Tab5ruaub1phab1Pab, ~3!

wherehab5c22uaub1gab and Pa
b is the anisotropic pres

sure tensor satisfyingPabu
b5Pa

a50. The most genera
form of this tensor for the metric~1! is

Pa
b5diag@0,22P,P,P#, ~4!

whereP5P(t) is an arbitrary function to be determined b
the field equations and subjected to an evolution law fo
given physical model associated with Eqs.~1! and ~3!. The
field equations then become

kr52Gt
t5

Ḃ2

B2
12

Ḃ

B

Ȧ

A
1

1

B2
, ~5!

3kp52Gu
u1Gr

r52
Ḃ2

B2
2

2Ä

A
2

4B̈

B
22

Ḃ

B

Ȧ

A
2

1

B2
, ~6!

3kP5Gu
u2Gr

r5
Ḃ2

B2
2

Ä

A
1

B̈

B
2

Ḃ

B

Ȧ

A
1

1

B2
, ~7!

wherek58pG/c2, while the energy balance is given by

ṙ1~r1p!Q16sP50. ~8!

Mixture of cold dark matter and a radiative fluid

We will assume that the stress-energy tensor~3! corre-
sponds to a mixture of a non-relativistic gas of WIMP’s a
a radiative fluid with shear viscosity corresponding to
‘‘tightly coupled’’ mixture of photons, electrons and baryon
1-2
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sharing a common temperatureT. Hence,r andp in Eq. ~3!
are the total mass-energy density and equilibrium pres
given by

r5rw1rb1re1rg , p5pw1pb1pe1pg , pg5
1

3
rg ,

~9!

with the subindicesg,w,b, andedenoting photons, WIMP’s
baryons and electrons, respectively. The three latter com
nents satisfy each the equation of state of a non-relativ
ideal gas:

rw5S mwc21
3

2
k

B
TwDnw , pw5nwk

B
Tw ,

rb5S mbc
21

3

2
k

B
TDnb , pb5nbkB

T,

re5S mec
21

3

2
k

B
TDne, pe5nekB

T, ~10!

wheremw ,mb ,me are the respective particle masses of
WIMP’s, the baryons~a proton mass! and the electrons,k

B
is

Boltzmann’s constant,Tw is the temperature of the WIMP
gas andT is the common temperature of the radiative m
ture. During the radiative era creation or annihilation p
cesses cease to be significant and so the particle num
densities,nw ,nb ,ne, satisfy conservation laws of the form

ṅ1nQ50 with n5nw ,nb ,ne ~11!

which can be integrated, leading to

n5
N

AB2
, with N5Nw ,Nb ,Ne ~12!

whereNw ,Nb ,Ne are the constant~i.e., conserved! number
of WIMP’s, baryons and electrons, respectively.

The radiation component of the radiative fluid can
given either in terms of~i! the Stefan-Boltzmann law:

rg
sb5aT4, pg

sb5
1

3
aT4, ~13!

wherea[p2k
B

4/(15\3c3) is Stefan-Boltzmann constant, o
~ii ! an ultra-relativistic ideal gas:

rg
ig53ngk

B
T, pg

ig5ngk
B
T, ~14!

whereng is the number density of ultra-relativistic particle
subjected to a balance law analogous to Eq.~11! and given
by an expression similar to Eq.~12! with the conserved pho
ton numberNg .

In order to simplify Eq.~9!, we can examine the ratios o
particle numbers and rest mass densities of the different
ticle components. Considering the currently estimated@2# ra-
tio of photons per baryon, we have
12400
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nb[
Nb

Ng
5

nb

ng
.2.6731028Vbh

2, ~15!

where Vb is the baryon abundance today~roughly 0.04
60.01) andh.0.7 is the adimensional Hubble factor@28#.
Regarding the WIMP gas, if we assume that it is made up
the lightest supersymmetric neutralinos withmw;100 GeV
@15–17#, we have that@16#

nw[
Nw

Ng
5

nw

ng
.2.8231028Vwh2, ~16!

whereVw.0.360.1 is the neutralino~CDM! abundance to-
day. Using Eqs.~10!, ~12! and~14!, we can rewrite Eq.~9! as

r5mwc2nwS 11
mbnb

mwnw
1

mene

mwnw
D

13ngk
B
TS 11

nb

2
1

ne

2
1

nwTw

2T D ,

p5ngk
B
TS 11nb1ne1nw

Tw

T D . ~17!

Bearing in mind that for electronsNe;Nb , so thatne;nb ,
while me!mb'1 GeV, nw!1, andne'nb!1, then,

mbnb

mwnw
.1022

Vb

Vw
!1,

mene

mwnw
.1025

Vb

Vw
!1,

while for the temperature range 43103 K,T,106 K, we
have

0.013&
mwc2nw

ngk
B
T

&3.25, ~18!

showing that the radiative era is initially radiation-dominat
but rest mass energy density is not negligible and ends
becoming dominant. Therefore, even ifTw /T in Eq. ~17! is
not negligible, we have

r.mwc2nw13ngk
B
T, p.ngk

B
T, ~19!

The same type of approximation can be obtained if we
the Stefan-Boltzmann law~13!, since the ratio of pressures i
Eqs.~10! and~13!: pg

sb/pb5aT3/@3nbkB
#, is proportional to

nb ~likewise for WIMP’s!. Therefore, the mixture of a gas o
WIMP’s and a radiative fluid can be accurately described
the desired temperature range by the approximated equa
of state:

r5mc2n(m)1r (r ), p5p(r )5
1

3
r (r )

with m[mw , n(m)[nw , p(r )[pg , ~20!

where r (r ) follows from either one of Eqs.~13! or ~14!,
hencen(r )5ng andr (m)5mwc2nw . For the remaining of this
paper, the superindices~r! and ~m! will refer to quantities
1-3
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associated with photons~‘‘radiation’’ ! and WIMP’s ~‘‘mat-
ter’’ !, respectively. From Eqs.~5! and ~6!, the equation of
state~20! can be given as the following constraint:

Ä

A
1

2B̈

B
1

2Ȧ

A

Ḃ

B
1

Ḃ2

B2
1

1

B2
2

1

2
kmc2n(m)50. ~21!

III. EXTENDED IRREVERSIBLE THERMODYNAMICS

If the source~3! is meant to describe a mixture of non
relativistic CDM and a radiative fluid~as argued in previous
sections!, the anisotropic pressure must be identified with
shear viscous stress of the latter fluid and must be compa
with a suitable thermodynamical formalism. We shall co
sider the so-called ‘‘extended irreversible thermodynami
~EIT! @20–23#, a theory complying with causality and stab
ity requirements@24# and supported by the kinetic theory o
gases, information theory and by the theory of hydrodyna
cal fluctuations@23#. When shear viscosity is the only diss
pative agent, the corresponding generalized entropy cur
Sa, obeying the usual balance law with non-negative div
gence, and up to second order inPab, takes the form

Sa5nSua, S5S(e)2
aPcdP

cd

2nT
, ~22!

where S is the entropy per particle,n5n(r )1n(m)5(1
1nw)n(r ) is the total particle number density ('n(r )), a is a
phenomenological coefficient to be specified later andS(e) is
defined by the equilibrium Gibbs equation:

nTṠ(e)5 ṙ2~r1p(r )!
ṅ

n
53ṗ14pQ52sabP

ab, ~23!

where we have used Eqs.~11! and ~20! to eliminateṙ. Ful-
fillment of the second law of thermodynamics requiresS;a

a

>0, which from the definition ofSa andS in Eq. ~22! leads
to

Ṡ>0, ~24!

together with

a5
t rel

2h
, ~25!

and the evolution equation of the viscous pressure, i.e.,
transport equation@24,29#:

t relṖcdha
chb

d1PabF11
1

2
e0hTS t rel

Th
ucD

;c
G12hsab

5t relṖcdha
chb

d1PabF12
1

2
e0t relS Ṫ

T
1

ḣ

h
2

ṫ rel

t rel
2Q D G

12hsab50, ~26!

whereh,T,t rel ,sab ,Pab are the coefficients of shear visco
ity, the temperature, the relaxation time, and the shear
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shear viscosity tensors, respectively. The parametere0 can
take only two values:e051 ~‘‘full’’ transport equation! and
e050 ~‘‘truncated’’ transport equation, also known as th
Israel-Stewart equation@20,21,23#!, while Eckart’s non-
causal transport equation follows by settingt rel50. The co-
efficient of shear viscosity as well as other related quanti
can be obtained by a variety of means@9# including kinetic
theory, statistical mechanics or both@25–27,30#. Unless spe-
cifically stated otherwise, we shall consider only the f
transport equatione051. We will discuss the implications o
the truncated equation (e050) in Sec. VII. EvaluatingṠ
from Eq. ~22! and using Eqs.~23!, ~25!, and~26!, we obtain

Ṡ5
PabP

ab

2hnT
5

2@S(e)2S#

t rel
>0, ~27!

where we have used Eq.~22! ande051 in Eq. ~26!. Notice
how Ṡ takes a very simple form, illustrating the role oft rel as
the reference time scale associated with the entropy cha
from S to S(e).S. Also, the second law of thermodynamic
@i.e., Eq. ~24!# is fulfilled if h>0 or, equivalently, ift rel
.0 and S(e)>S hold. Another important requirement tha
follows from the second law of thermodynamics and the s
bility of equilibrium states is thatS be a convex functional,
i.e., d2S,0. For the KS models all quantities depend on
on time and so a necessary~but not sufficient! condition is
given by S̈,0, which leads to

S 11
1

2
ṫ relDPabP

ab12hsabP
ab.0. ~28!

For the applicability of the general relations, Eqs.~22!, ~24!,
~25!, ~26!, ~27! and ~28!, to the models we are concerne
with, we must impose the equation of state~20! with either
one of the choices Eq.~13! or Eq. ~14!. As a physical refer-
ence to infer the form that the coefficientst rel ,h,a may take
for the radiative fluid, consider the‘‘radiative gas’’ model a
sociated with the photon-electron interaction@9,22,23,25#,
characterized byp,r complying with the equations of stat
discussed in Sec. III. For the radiative gas the forms ofh,a
in terms of the relaxation time of the dissipative proce
t rel , are

h (rg)5
4

5
p(r )t rel , a (rg)5

5

8p(r )
, ~29!

wherep(r ) is eitheraT4/3 or n(r )k
B
T @Eq. ~13! or ~14!, re-

spectively# and the subscript ‘‘(rg)’’ emphasizes that these
quantities are specific to the radiative gas. Applying Eq.~29!
into Eqs.~22! and ~23!, we get for the entropy per particle

S5S(e)2
15P2

8p(r )n(r )T
, ~30!

Ṡ(e)52
3sP

n(r )T
, ~31!
1-4
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where we have neglected the entropy of the non-relativi
matter, so thatn(m)1n(r )5(11nw)n(r )'n(r ), and S is ap-
proximately the photon entropy~this is justified because th
number of photons is so much larger than that of WIMP
baryons and electrons!. The transport equation~26! becomes

Ṗ1
8

5
p(r )s1S 4

3
Q1

1

t rel
D P1l

s

p(r )
P250, ~32!

wherel[111/(2l0) and l051/2 or 2 @for p(r ) given by
the Stefan-Boltzmann law~13! or the ideal gas law~14!,
respectively#; also condition~27! takes the form

Ṡ5
15P2

4p(r )n(r )Tt rel

5
2@S(e)2S#

t rel
>0. ~33!

Notice thatS,S(e) andt rel.0 must hold in order forṠ.0
to be satisfied, while Eq.~23! implies that we must have
sP,0 in order thatṠ(e).0. Regarding the interpretation o
S(e) , if we assume1 Ṡ(e).0 and the Steffan-Boltzmann law
~13!, Eq. ~23! then yields

S(e)5
4aT3

3n(r )
, ~34!

a function that is only constant~equilibrium photon entropy!
if P50. This constant is given explicitly by the black bod
formulas@28#:

n(r )uP505
30z~3!aT3

k
B
p4

⇒S(e)uP505
2p4k

B

45z~3!
'3.60k

B
,

~35!

wherez is the Riemann zeta function. However, if we cha
acterize the evolution to equilibrium asP→0, then, as this
evolution proceeds,S(e) in Eq. ~34! must tend to the constan
entropy given in Eq.~35!. Hence, we can identify Eq.~35! as
the equilibrium state associated with Eq.~27! and Eq.~33!,
attained asP→0 andS→S(e) ~i.e. as the radiation relaxes!
in the time scale provided by the relaxation timet rel . For the
ideal gas law, Eq.~23! does not yield Eq.~34!, but S(e)
}k

B
ln(T3/n(r)), an expression that coincides with Eqs.~34!

and ~35! only in equilibrium ~if Ṡ(e)50). However, since
both EIT and Eckart’s theory assume near equilibrium sta
quantities likeP2 and sP, appearing in Eqs.~30! to ~33!
must be small, hence the ratioT3/n(r ) is nearly constant and
so we can also assume thatS(e) given by Eq.~34! is approxi-
mately valid for the ideal gas law.

Conditions ~33! and d2S,0 associated with Eq.~28!
must be satisfied by any self-consistent thermodynam
system. The importance of these conditions will become e
dent when discussing the numerical integration of the evo

1Notice thatṠ(e).0 is a sufficient but not necessary condition f

Ṡ.0. Under the framework of extended irreversible thermodyna
ics, the latter is the physicaly relevant condition.
12400
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tion equations. The relaxation time,t rel , is qualitatively
analogous to and larger than the mean collision time betw
particles and it may, in principle, be estimated by collisi
integrals provided the interaction potential is known. Sin
we are concerned with mixtures of baryons, electrons
photons evolving in the temperature range 43103 K,T
,106 K ~from the end of cosmic nucleosynthesis to deco
pling!, convenient references for comparingt rel are the col-
lision times associated with Compton and Thompson sca
ings @31#:

tc5
mec

2

k
B
T

tg , ~36!

tg5
1

2cs
T
nb

F11S 11
4h3nbe

B0 /k
B
T

~2pmekB
T!3/2D 1/2G , ~37!

wheresT ,B0 ,me, andh are the Thompson scattering cro
section (6.65310225 cm2), the hydrogen atom binding en
ergy ~13.6 eV!, and the electron mass and Planck’s consta
respectively. Equation~37! is obtained from the number den
sity of free electrons provided by the Saha equation. No
that we are using the baryon number density,nb , and not the
number density of WIMPs,n(m). For higher temperatures in
the range of interest, Compton scattering is the most effic
radiative process keeping baryonic matter and radia
tightly coupled, though it is no longer effective in lower an
intermediate temperature ranges (T,104 K). The photon-
electron interaction of the radiative era requires that mic
scopic collision timestg ,tc , as well ast rel, be much smaller
than the time scale of cosmic expansion given by the Hub
time, approximatelyt

H
[3/Q. For the lower temperature

range of the radiative era, just before recombination, Tho
son scattering becomes the dominant radiative process
that the decoupling of baryonic matter and radiation can
associated with the conditiontg5t

H
, which should be ap-

proximately equivalent tot rel5t
H
.

IV. EVOLUTION EQUATIONS

Since we need to determine a self-consistent set of o
nary differential equations governing the KS models, it
convenient to express the field equations and Eq.~21! in
terms ofQ ands by eliminatingȦ,Ḃ from Eq. ~2!:

Ȧ

A
5

Q

3
22s, ~38a!

Ḃ

B
5

Q

3
1s, ~38b!

which leads to

kr5
Q2

3
23s21

1

B2
, ~39!-
1-5
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kp(r )52
Q2

3
2

2Q̇

3
23s22

1

3B2
, ~40!

kP5ṡ1sQ1
1

3B2
, ~41!

while, using Eqs.~39! and ~40!, the equation of state~21!
becomes

Q̇1
2

3
Q213s21

1

B2
2

1

2
kmc2n(m)50. ~42!

We can eliminateB from the equations above with the he
of Eq. ~39! ~which becomes a constraint! and Eq.~38b! ~the
evolution equation forB). Using Eq.~20!, Eqs.~41! and~42!
then become

ṡ1s21sQ2
Q2

9
1

k

3
mc2n(m)1kp(r )2kP50, ~43!

Q̇1
Q2

3
16s21

k

2
mc2n(m)13kp(r )50, ~44!

which are the evolution equations fors andQ. Since we are
assuming particle number conservation, an evolution eq
tion for non-relativistic particle number density~the
WIMP’s! follows from Eq.~11!:

ṅ(m)1n(m)Q50, ~45!

a conservation law satisfied also byn(r )5n(m)/nw @if using
the ideal gas law~14!#. Another evolution equation is pro
vided by Eq.~8!, which applied to the equation of state~20!
and usingsabP

ab56sP yields

ṗ(r )1
4

3
p(r )Q12sP50, ~46!

becoming the evolution equation forp(r ). The transport
equation~32! derived in the previous section, namely,

Ṗ1
8

5
p(r )s1S 4

3
Q1

1

t rel
D P1l

s

p(r )
P250, ~47!

is the evolution equation for the shear stressP. In addition to
these evolution laws, Eq.~33! can be thought of as an evo
lution equation forS, while we can transform Eq.~46! into
an evolution equation forT by using either Eq.~13! or ~14!,
leading to

Ṫ

T
1

Q

3
1

s

l0p(r )
P50. ~48!

Equations~43!, ~44!, ~45!, ~46!, and ~47! represent a self-
consistent and closed system of first order ODE’s
n(m),P,p(r ),s,Q. Notice that this set of evolution equation
is fully determined ift rel is known. In the cosmological con
12400
a-

r

text t rel might be proportional to the time scale defined
the expansion scalar~approximately the Hubble time!:

t rel}t
H
[3/Q. ~49!

Alternatively, and depending on the temperature and ene
range one is considering,t rel could be identified as propor
tional to a collision time~say, Thomson or Compton scatte
ing! given by Eq.~36! or ~37!, i.e.,

t rel}tg~n,T!, t rel}tc~n,T!. ~50!

Since we can assume in Eq.~47! two different equations of
state for the radiation component, strictly speaking, E
~43!–~47! constitute two different systems of evolution equ
tions parametrized by the two possible values ofl0 andl,
the Stefan-Boltzmann law:

3p(r )5aT4 with l052 and l55/4, ~51a!

and the ideal gas law:

p(r )5n(r )k
B
T, with l051/2 and l52. ~51b!

V. DYNAMICAL ANALYSIS

A. The governing equations

Let us define

Q[
P

p(r )
, ~52!

a ratio that is related@from Eq. ~30!# to the deviation from
equilibrium:

S(e)2S5
15

8
l0Q2, where

l05
p(r )

n(r )T
5H 3

4
S(e) , Stefan-Boltzmann law

k
B
, ideal gas law

~53!

with S(e) given by Eq.~34!. Therefore,Q must be a small
quantity for the cosmic times we are interested in. Note t
when P ~and henceQ) is zero, the shear vanishes and t
Kantowski-Sachs model reduces to an isotropic FLR
model. In principle,P ~and henceQ) can be positive or
negative, but sinceP represents a viscous pressure it sho
be negative in the expanding regime. We shall focus hen
forth on the case in whichQ is negative. The energy cond
tions imply that 21<Q<1/2. In addition, on physica
grounds we expect the second term in Eq.~8! to dominate
the third term in this equation, which is satisfied whenev
s2Q2/(Q/3)2,4. However, since physically we expectQ2

to be small, these constraints are satisfied handily.
We introduce now the new normalized variables:
1-6
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S[
s

Q/3
, V (m)[

kmc2n(m)

Q2/3
, V (r )[

kp(r )

~Q/3!2
,

~54!

a definition that is motivated by the fact thatQ/3 is approxi-
mately the Hubble expansion factorH5Q/31sabn

anb for
unit space-like vectors defined bynana51,uana50, hence
V (m) andV (r ) are approximately equivalent to the observ
tional parameters~the V ’s! for the CDM and radiation con
tents of the mixture. We also define~for Q.0) the new
independent variable:

d

dt
5

Q

3

d

dt
⇒t5E Q

3
dt, ~55!

the evolution equations~43! to ~47! become

V (m)8 52V (m)@124S22V (m)22V (r )#, ~56!

Q852
8

5
S2

1

t relQ/3
Q2~l22!SQ2. ~57!

V (r )8 52V (r )@212S~Q22S!2V (m)22V (r )#,
~58!

S85~122S!~12S2!2
V (m)

2
~22S!

2V (r )~12Q2S!, ~59!

where we have used

3Q̇

Q2
5

Q8

Q
52122S22

V (m)

2
2V (r ) , ~60!

and a prime denotes differentiation with respect tot. Note
that this last equation implies thatQ is monotonically de-
creasing. The constraint~42! becomes

x[12S22V (m)2V (r )52
3

B2Q2
. ~61!

We note that

x85x@2S~2S21!1V (m)12V (r )#.

Clearly x50 is an invariant set of the above differenti
equations, which corresponds to the Bianchi I~zero curva-
ture! sub-case.

Eventually, the models re-collapse andQ changes sign. At
the point of maximum expansion~whenQ50) the variables
above diverge and the normalized equations are no lon
valid. However, for the times we are interested in, in t
expanding phase far from re-collapse, the above varia
and equations are valid. Indeed, in principle we can use
above system to follow the evolution of the models all t
way back to the big bang. From Eq.~44! we can see that in
this regime the curvature is small and that the variab
S2,V (m) ,V (r ) are well behaved. Compact variables can
12400
-

er

es
e

s
e

defined by normalizing withQ21B22 ~instead ofQ2) that
are valid for all times@32#; however, the physical assump
tions used here are not valid at later times.

In addition to Eqs.~56! to ~59!, evolution equations for
n,T,S(e) andS follow by using the variables defined in Eq
~54! and ~55! in Eqs.~45!, ~48!, ~31! and ~33!:

n8523n,⇒n~t!5nie
23t where n5n(m) or n(r ),

~62!

T852TF11
SQ

l0
G , ~63!

S(e)8 523l0SQ, ~64!

S85
2t

H

t rel
@S(e)2S#5

15t
H

4t rel
l0Q2, ~65!

wherel0 is given by Eq.~53!, the subindexi denotes evalu-
ation at an initial timet5t i , andt

H
53/Q is approximately

the Hubble time which follows from Eq.~60! as

t
H
5

3

Q i
expH E F112S21

V (m)

2
1V (r )GdtJ , ~66!

while the relation between physical timet and t follows
from Eqs.~55! and ~60!:

t5E t
H
dt, ~67!

wheret
H

is given by Eq.~66! above.

B. Qualitative properties

Consider the dynamical implications of assuming thatt rel
is given by Eq.~49!, namely,

t rel5
g0

Q/3
5g0t

H
, ~68!

whereg0.0 is a constant. For the range we are interested
g0<1. Equation~57! becomes

Q852
8

5
S2

1

g0
Q2~l22!SQ2, ~69!

and so Eqs.~56!, ~58!, ~59! and~69! now constitute a closed
four-dimensional system of first order autonomous differe
tial equations for (V (r ) ,V (m) ,S,Q), a system that depend
on the value of the constant parameterg0 . Moreover, from
Eq. ~61! and the above discussion, in the regime we
interested inV (m) ,V (r ) , and S are bounded and physica
conditions imply that21<Q<1/2. Consequently a loca
analysis of the stability of the equilibrium points of this sy
tem will provide useful dynamical information.

Setting the right-hand side of Eq.~69! to zero we obtain

~l22!SQ21
1

g0
Q1

8

5
S50, ~70!
1-7
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which is a quadratic equation forQ if S is given andl
Þ2.

Stefan-Boltzman law(l55/4). The equilibrium points a
finite values are@note that all such points are given below
however, (V (m) ,V (r ) ,S2) are not necessarily bounded b
unity# as follows.

~i! V (m)505V (r ) , six points:
~ia! S51/2 andQ654@3g06A9g0

212/15#/(9g0
2);

~ib! S51 andQ652@3g06A9g0
218/15#/(9g0

2);
~ic! S521 andQ6522@3g06A9g0

218/15#/(9g0
2).

~ii ! V (m)50,V (r )Þ0, four points:
~iia! V (r )52(12g0117/15)/(9g0

2), and
S65Q6562A3g018/15/(3g0);

~iib! S65(413g0)/@213g0(17u)#,
V (r ) 652(1/g0)(413g0)@21g0(16u)#
/@213g0(17u)#,
andQ65(263g0u)/(413g0),
whereu52A11(8g0/5)(413g0)/(3g0);
S505Q,V (r )51 is a particular solution.

~iii ! V (r )50,V (m)Þ0, one particular solution:
S505Q, andV (m)51.

~iv! V (m)Þ0, V (r )Þ0, two points:
V (m)5(40179/g0)/(64g0),
V (r )5215(813g0)/(128g0),
S56A5(813g0)/(2g0)/8,
andQ6574A2(813g0)/(45g0).

The two equilibrium points given by~ia! can be shown to
lead to a value forQ which is unphysical in the sense that i
magnitude is much too large~in fact, when V (m)50
5V (r ) ,Q would be expected to vanish!. The equilibrium
points~iv! are also unphysical: since clearlyS2<1/4 and we
get from~iv! that S2Q251/4, this would imply thatQ2>1.
At the equilibrium points~ii ! when V (r )Þ1 we have that
S520Q/@g0(15Q2232)#, which leads to a quartic equatio
for Q; however, for physical values of the parameterg0, this
equation has no real roots and hence no solutions of phy
interest. The two equilibrium points given by the particu
solution of~ii ! and by~iii !, corresponding to FLRW models
namely (V (r ) ,V (m) ,S,Q) given by (1,0,0,0) and (0,1,0,0)
can easily be shown to be saddles. The equilibrium po
~ib! and ~ic!, namely (V (r ) ,V (m) ,S,Q)5(0,0,61,Q6),
which belong to the invariant setx50 ~i.e., correspond to a
Bianchi I model with no curvature! have eigenvalues 3
21/g013l2SQ/2,222SQ,42S. In this case, the eigen
value21/g013l2SQ/2 can only be positive if we take th
‘‘positive square root’’ of Eq.~37! ~i.e., Q5Q1). However,
for $l2,g0%<1, i.e.,l2 g0<1, it follows that the eigenvalue
222SQ1 can never be positive. Consequently, this equil
rium point cannot be a source.

We note that there are no sinks at finite values. Howe
this is to be expected since the models evolve toward m
mum expansion at which the variables become unboun
The models subsequently re-collapse.

Ideal gas case(l52). Equations~56!, ~58! and ~59! re-
main unchanged and the governing equation~69! becomes

Q852
8

5
S2

1

g0
Q. ~71!
12400
al
r

ts

-

r,
i-
d.

At an equilibrium point we immediately see that

Q52
8g0

5
S. ~72!

However, there are no major qualitative changes in
analysis. In particular, there are fewer equilibrium points.

~i! V (m)505V (r ) , three points:
~ia! S51/2 andQ524g0 /5;
~ib! S51 andQ528g0 /5;
~ic! S521 andQ58g0 /5.

~ii ! V (m)50,V (r )Þ0:
S505Q,V (r )51 is a particular solution; otherwise, it i
a quadratic equation forS which gives another two equi
librium points.
~iii ! V (r )50,V (m)Þ0, one particular solution:

S505Q andV (m)51.
~iv! V (m)Þ0,V (r )Þ0, two points that imply:

S255/(16g0)>5/16 ~for g0<1),
which leads toV (m)12V (r )5125/(4g0),0.

VI. ASSUMPTIONS ON THE RELAXATION TIME

In the general dynamical system, Eqs.~56!–~59!, the re-
laxation timet rel needs to be specified in order for the go
erning system of equations to be closed. For the qualita
dynamical analysis we have assumed~68!, so that 1/(t relQ)
is a constant, since otherwise we would either not be dea
with an autonomous system, or would be looking at an
tonomous but much more difficult dynamical system. Ho
ever, Eq.~68! is a simplifying assumption that cannot b
supported by thermodynamical arguments, perhaps a m
realistic assumption would be to consider instead:

t rel5
g~t!

Q/3
5g~t!t

H
~73!

so that Eqs.~57! and ~65! become

Q852
8

5
S2

1

g~t!
Q2~l22!SQ2, ~74!

S85
2

g~t!
@S(e)2S#, ~75!

whereg5g(t) is a function that could be suitably adjuste
so thatt rel has a form that is qualitatively analogous to th
of microscopic time scales like Eq.~36! or ~37!, time scales
that are physically relevant for the matter source under c
sideration. The ratio 3/(t relQ)5t

H
/t rel51/g should provide

a comparison of the time scale for the relaxation~transient!
effects in the radiative fluid with the time scale of cosm
expansion. Hence this ratio should approach unity as b
onic matter and radiation decouple, so thatg'1 should be a
consistent choice for near decoupling conditions, whileg
@1 or g!1 correspond to after decoupling~late times! and
much before decoupling~earlier times!. Ideally, we should
obtain t rel from collision integrals associated with each
the various radiative processes occurring in the radiative
1-8
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FIG. 1. A physically plausible evolution. These figures illustrate the fulfillment of conditions 1, 2 and 3 for a physically pla
evolution given in Sec. VIII B. The functionS(e) in ~c! is given in cgs units and is almost equal to the equilibrium photon entropy. T

figures ~as well as those of Fig. 2! were obtained using initial conditions~104!, with t rel50.7. Notice in~b! that Ṡ(e) becomes negative

~though small! near the initial time. This behavior does not denote an unphysical situation sinceṠ.0 holds throughout the evolution.
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but such an endeavor would merit a separate paper by i
and will not be attempted here. Instead, we will considert rel

as an ‘‘effective’’ relaxation time, encompassing the differe
radiative processes. We will examine the non-transient li
~or near-Eckart regime! and use the dynamical equation
themselves in order to suggest a suitable form fort rel . The
discussion of this section will be complemented and tes
numerically in Sec. VIII.

A. The ‘‘near-Eckart’’ and the transient regimes

In order to examine the relaxation process asS→S(e) , we
will assume thatg(t) in Eq. ~73! is a smooth function so tha
we can always expand it in the formg'g(0)1g8(0)t
1g9(0)t2/2. Therefore, at early timest'0 we can always
associate the constantg0 in Eq. ~68! asg05g(0), sothat the
corresponding form oft rel is approximately correct at leas
neart50. Also, at early times we must haveg(0),1, and
so 1/g0@1, while S(0) and Q(0) are necessarily sma
12400
elf

t
it

d

quantities. Hence the termsS and SQ2 in Eq. ~74! will be
much smaller thanQ(0)/g0 and so we have that neart
50,Q8'2Q/g0, so that

Q'Q~0!expS 2t

g0
D ,

S'S(e)2
15

8
l0Q2~0!expS 22t

g0
D , ~76!

wherel0 is given by Eq.~53!. Since the process of relax
ation to equilibrium can be characterized as the decay of
dissipative fluxQ→0 as S grows and asymptotically ap
proaches the equilibrium state given by Eq.~35!, the numeri-
cal value ofg0 in Eq. ~76! may be interpreted as a measu
of the ‘‘rate of transiency’’ in terms of how fast or slow th
system accomplishes this relaxation in comparison with
timescale provided byt

H
. We can then identify two possible

situations.
1-9
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The near-Eckart regime. If g0!1, then Eq.~76! indicates
a very fast relaxation with a very abrupt decay ofQ andS to
S(e) . In the very limit g0→0 ~so thatt rel→0 as well! we
haveQ→Q(0)d(t), so that the relaxation is infinitely fas
in agreement with the non-causal nature of Eckart’s class
theory. The fast relaxation associated with a very smallg0
implies a very short duration of the relaxation process~small
t rel), indicating that the approximationg5g0, as well as the
expressions in Eq.~76! for Q(t) and S(t), are approxi-
mately valid for the whole evolution time. Hence, sinceQ
practically vanishes very quickly, we have for most of t
evolution time thatS'S(e) , agreeing with the fact that in
Eckart’s theory the entropy is rigorously and unambiguou

FIG. 2. Range of validity of the models. The range 0<t<6
corresponds to the temperature range of the radiative era, bet
Ti5106 K and the baryon-radiation decoupling temperature
3103 K ~roughly att55.5). A logarithmic plot of the various time
scales used in the paper~in seconds! are depicted in Fig. 6~b!: the
Thomson and Compton scatterings (tg ,tc), the Hubble timetH and
physical timet. Notice how the decoupling temperature occurs
the samet as the conditiontg5tH , while radiation-matter equality
V (r )5V (m) ~see Fig. 1a! corresponds toT5104 K ~roughly t
54.6).
12400
al

y

given by its equilibrium form~the hypothesis of ‘‘local equi-
librium,’’ see section 1.3.1 of@23#!. The near-Eckart regime
is appropriate to describe a given radiative process for wh
microscopic time scales are much smaller than the cos
logical expansion time scalet

H
. See Sec. VIII D.

The transient regime.If g0,1 but g0'O(1021)
2O(1), thenQ andS also decay but the relaxation proce
is much slower, hence the term ‘‘transient.’’ In this case, t
expressions in Eq.~76! and the assumptiong5g0 are only
good approximations forg,Q(t) and S(t) near t50. In
general, we must use

Q'Q~0!expF2E dt

g~t!G ,
S'S(e)2

15

8
l0Q2~0!expF2E 2dt

g~t!G , ~77!

leading to Eq.~75! and to

S9'S(e)9 2
2~11g8!~S(e)2S!

g2
, ~78!

so that the fulfillment ofS8.0 andS9,0 can be examined
in terms of g(t) and S(e) . Sufficient ~but not necessary!
conditions follow by demanding thatg is a monotonically
increasing function (g8.0) and S(e)8 .0,S(e)9 ,0. Another
condition ong is furnished by Eq.~28!, which together with
Eqs.~29!, ~52!, ~54!, ~55!, ~60!, and~73! yield

21g8Q21gF16

5
SQ2S 112S21

V (m)

2
1V (r )DQ2G.0,

~79!

a condition that should be tested numerically for any giv
choice oft rel . The relaxation timet rel can be approximated
by a giveng5g0, but as the decoupling era is reached,g
must increase toO(1) allowing for t rel to overtaket

H
.

B. Dynamical relaxation times

Let us consider the following ansatz:

1

g
52

8

5

S

Q
@11z~t!#, ~80!

which provides an exact relation for the relaxation time
Eq. ~73!. In regimes in which the Eckart theory is a goo
approximation, we can assumeg'g0!1, so that Eq.~80!
implies Q}S but uS/Qu@1 andz is ‘‘small.’’ Such regimes
would correspond to a radiative process that takes plac
time scales smaller than a mean collision time, thus decay
very fast to equilibrium. In case we wish to consider pr
cesses taking place on time scales comparable and la
than main collision times, then transient effects are import
and the near-Eckart regime is no longer appropriate. In p
ticular, we can construct an expression fort rel that acts as an
‘‘effective’’ relaxation time that encompasses the relaxati
times for the main radiative processes acting in the radia

en

t
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era under consideration. Having this idea in mind, a reas
able and more general expression forz can be obtained from
the dynamical equations themselves. Consider the condit
discussed above for a near-Eckart regime, and assume

Q52m0S, ~81!

wherem0 is a non-negative constant. We obtain an expr
sion analogous to Eq.~80! by substituting Eq.~81! into the
~full EIT ! evolution equations~57! and ~59!, leading to the
consistency requirement

1

g
5

1

g0
1a0V (m)2b0S21S 12m02

1

S Dx, ~82!

where

1

g0
511m01

8

5m0
>114A2

5
.1,

a0[
1

2
2m0 , b0511~l23!m0 , ~83!

andx is the curvature termx[12V (m)2V (r )2S2 given by
Eq. ~61!, a term that is very small and can be neglected. T
is an extremely simple dynamical relation for the relaxat
time, and for a wide range of conditions it might be a ve
good approximation. In addition, it has some importa
physical properties. For early times in whic
x,x/S,V (m) ,S2 are very small, we have a near-Eckart r
gime associated withg'g0!1, as expected. This is appro
priate for the Compton scattering, the dominant radiat
process in the early part of the period under consideratio
process that quickly thermalizes and ceases to be effec
At later times, asV (m) increases toward a value of ord
unity at recombination~and to a lesser extent, the curvatu
term also grows!, the constantsg0 ,a0 ,b0 in Eq. ~83!, as well
as the initial conditions, can be selected in such a way thag,
given by Eq.~82!, increases sufficiently as to allowt rel to
overtaket

H
and to approach the characteristic timescale

Thomson scattering in Eq.~37!. We show in Sec. VIII that
adequate parameters and initial conditions can be foun
that t rel associated with Eq.~82! has the expected behavio
~see Sec. VIII E!.

VII. TRUNCATED THEORY

The discussion so far has been based on the full trans
equation. In order to appreciate the effect of considering
truncated transport equation, it is useful to rewrite Eq.~26!
with h andt rel given by Eqs.~29! and~73! in terms ofQ and
S, thus allowing the full and truncated equations to app
jointly. This yields

Q852
8

5
S2F 1

g~t!
24~12e0!GQ2~le022!SQ2,

~84!
12400
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where the full and truncated theories are, respectively, gi
by e051 ande050. Assuming a transient regime, instead
Eq. ~76! we have neart50:

Q'Q~0!expF2
t

g0
14~12e0!tG ,

S'S(e)2
15

8
l0Q2~0!

3expH 2F2
t

g0
14~12e0!tG J , ~85!

so that using the truncated transport equation (e050) intro-
duces a large linear term (}4t) that is absent in the full
theory. This linear term could change dramatically the fo
of Q and the relaxation ofS to S(e) . As we show below, the
truncated transport might lead toQS being positive~imply-
ing that Ṡ(e),0), so even at this level~early times! there
might be problems of consistency in the truncated appro
of EIT.

A comprehensive analysis in the case of the trunca
theory, similar to that presented in Sec. V, can be underta
The evolution Eqs.~56!, ~58!, and ~59! remain unchanged
while the evolution Eq.~57! for Q must be replaced by the
truncated equation that follows by settinge050 in Eq. ~84!

Q852
8

5
S2S 1

g0
24DQ12SQ2. ~86!

At an equilibrium point

2SQ22S 1

g0
24DQ2

8

5
S50. ~87!

However, we immediately note from Eq.~87! that close to an
equilibrium point for smallS andQ,

S.
5

8 S 42
1

g0
DQ, ~88!

so that forg0> 1
4 we have thatS andQ have the same sign

~unlike the non-truncated theory case!, and hence it is imme-
diately clear that there will be a different qualitative dynam
cal behavior in the truncated theory.

In particular, close to the FLRW equilibrium poin
(V (r ) ,V (m) ,S,Q)5(1,0,0,0) ~which we will use to deter-
mine the initial conditions in our numerical analysis in th
following section!, from a calculation of the correspondin
eigenvalues we have that

V (m)}et, ~12V (r )!}e2t, ~89!

S,Q}ea1t1bea2t, ~90!

from Eqs.~56!–~59! in the non-truncated case, whereb is a
constant, and
1-11
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FIG. 3. Sensitivity tox(0)50. Positive curvature. These figures displayV (m) ,V (r ) ,V (tot)5V (m)1V (r ) andS/S(e) for initial conditions
~105! with 20.01,d,0. The numerical values ofd appear next to each curve. Notice howV (m) ,V (r ) , andV (tot) branch upward andS/S(e)

downward, with the branchingt smaller for udu larger. This branching up corresponds toQ→0, marking the re-collapsing stage of th
models. Comparing~a!, ~b!, and~c! with ~d!, and with Figs. 2a and 2b, it is evident that a physically plausible evolution for the duratio
the radiative era (0,t,6) and for the appropriate temperature ranges is only possible forudu,1025.5.
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a65
1

2g0
@g0216A~g021!224g0~118g0/5!#.

~91!

For physical valuesg0<1, botha6 have negative real part
and as noted earlier, this FLRW equilibrium point is a sad
~e.g., forg051/2,a6521/26 iA67/20).

In the truncated case we have that Eqs.~89! and ~90! are
satisfied close to the FLRW equilibrium point, but now wi

a6
tr 5

1

2g0
@5g0216A~5g021!214g0~12g0/521!#.

~92!

We first note that forg0>1/5, at least one of thea tr has a
positive real part which leads to a change of stability~indeed,
for 1/5<g0<5/12, this equilibrium point is a source!. Physi-
cally, this means that in the truncated caseS and Q in Eq.
~90! have a growing mode, and hence their magnitudes
crease leading to a breakdown in the physical model~and the
12400
e

-

time period for which the assumptions are valid!. This break-
down is seen in the numerics~Sec. VIII F!. As a comparison,
for g051/2, a6. 3

2 (161.1); the growing mode which
evolves approximately ase3t, leads to a rapid increase in th
magnitudes ofS andQ and the models fail after a relativel
short cosmological time~see Sec. VIII F!.

VIII. NUMERICAL INTEGRATION

From the dynamical analysis carried out in Sec. V, th
are no sources~at finite values! in the physical regime; tha
is, during the time period for which the various physic
assumptions used here are valid there are no past attrac
It is reasonable to assume, as conditions prevailing at
beginning of the regime we are interested in, that the u
verse is approximately isotropic and spatially homogene
~e.g., almost FLRW withuQu!1 and S!1) and that the
radiation component is dominant. These assumptions
consistent with current observations, and we are also ass
ing that some mechanism~such as, for example, inflation! at
1-12
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early times has driven the universe toward this configurat
Thus the model is close to the particular solution mention
in ~ii ! with (V (r ) ,V (m) ,S,Q) given by (1,0,0,0). As noted
above, this equilibrium point is a saddle; however, it is
‘‘stronger’’ attractor than other saddles in that it has mo
positive eigenvalues. Also, this equilibrium point lies in t
invariant subspacex50, associated with the zero curvatu
Bianchi I sub-case. Since (V (r ) ,V (m) ,S,Q)5(1,0,0,0) is an
equilibrium point lying in an invariant set, if a model i
driven toward this point in phase space it can stay an a
trarily long time close to this point~i.e., the universe can
spend an extended period close to this FLRW model!. The
universe will then eventually begin to evolve away from th
configuration and from the invariant set as time evolv
Therefore, we shall assume initial conditions for our nume
cal integration based on the fact that the universe st
evolving from situations close to this equilibrium point.

A. Initial conditions

Since we must have~for physical reasons! Q,0 and
QS,0, initial conditions close to (V (r ) ,V (m) ,S,Q)
5(1,0,0,0) can be given by

V (r )~0!512e, V (m)~0!5e2d.0,

S~0!5S i.0, Q~0!5Qi,0, ~93!

wheree,d,S i ,Qi are real small constants. The initial valu
of ‘‘total omega’’: V (tot)5V (m)1V (r ) and x given by Eq.
~61! are

V (tot)~0!512d, x~0!5d2~S i !
2, ~94!

so that the value ofd reflects the deviation ofV (tot) from
unity, while the deviation from the invariant setx50 de-
pends ond and (S i)

2.
The factorg. As discussed earlier, during the interacti

range we are interested in, the various time scales must
isfy

t
H
.t rel.tc.tg , ~95!

wheret
H
53/Q,t rel follows from Eq.~73! andtc ,tg are given

by Eqs. ~36! and ~37!. Considering that (Q i /3)2

'(1/3)kaTi
4 and inserting the constants appearing in E

~36! and ~37!, we arrive at the following initial values:

log10~ t
H
!u i'8.8, log10~ tc!u i'7.6,

log10~ tg!u i'3.4, ~96!

thus suggesting the range

0.06,g i,1 ~97!

for the initial valueg(0)5g i .2 If assuming thatg5g0 for

2We distinguish between the constant initial valueg i and the case
in which g5g0 for all the evolution period.
12400
n.
d

i-

.
i-
ts

at-

.

all times, then the near-Eckart regime can be associated
g0<O(1022), while a transient regime follows by settin
g0'O(1),1.

The constantsS i and Qi . From the evaluation of Eq.~53!
at t50, the constantQi

2 is proportional to the initial devia-
tion of the photon entropy from its equilibrium value:

15l0

8S(e)
Qi

2'Qi
2'12

S~0!

S(e)~0!
, ~98!

where we have used Eqs.~34! and ~35! so that l0 /S(e)
'O(1), with l0 given by Eq.~53!. Both numbersS i ,Qi are
initial ratios of off-equilibrium and anisotropic variable
(Pab ,sab) with respect to equilibrium and isotropic var
ables (p(r ),Q/3). Since we are choosing initial condition
close to a saddle point associated with near FLRW con
tions and we must assume near thermal equilibrium, t
S i ,uQi u must necessarily be small numbers (!1). A maxi-
mal bound onuQi u and uS i u can be fixed from CMB obser
vations@33#, making it reasonable to take

uQi u,0.0120.1, uS i u,0.00120.01. ~99!

However, we will comment further ahead on the sensitiv
of the functions to these initial values.

The constantse and d. The values fore and d are re-
stricted by the ratio of photons to WIMP’s. Considering t
neutralino as the WIMP particle withm;100 GeV, using
the ideal gas law and Eq.~18! yields

e2d

12e
5

V (m)~0!

V (r )~0!
5

mc2

3k
B
Ti

nw'0.013, ~100!

leading to the following constraint:

d'1.013e20.013, ~101!

which must be satisfied by all initial conditions compatib
with Ti'106 K and with the observational constraintsVw
;0.360.1 andh.0.7. Further restrictions one and d fol-
low by demanding thatV (r ) decreases andV (m) increases at
the initial time t50. From the expressions forV (m)8 and
V (r )8 in the differential equations, these conditions imply

2124S i
2,2e2d,22S i uQi u24S i

2 ,

so thate1d.0 must hold, leading to the following minima
values ofe andd:

e.0.0064, d.20.0065. ~102!

The condition thatV (r ) decreases att50, together withQi
,0 andS i.0, imply

0,S i,
1

4
AQi

214~e1d!2
uQi u
4

. ~103!
1-13
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B. A physically plausible evolution and the range of validity of
the models

It is important to specify a criterion in order to distinguis
a physically plausible evolution for the models. We defi
such an evolution by the following conditions that must ho
all along the range of validity discussed previously:

~1! V (m) increases whileV (r ) decreases. The transitio
from a radiation- to a matter-dominated epoch occurs wit
the radiative era. However, the ratioV (m) /V (r ) must remain
finite in all the validity range.

~2! S must be an increasing and convex function, tend
asymptotically to the equilibrium photon entropy given
Eq. ~35!.

~3! Ṡ(e)}2SQ must be very small. Ideally, we shoul
haveṠ(e).0, though this condition might fail to hold as lon
as Ṡ.0 holds~see@23# for examples!.

~4! Initially, we have Eqs.~95!, ~96!, and~97!, but then at
later stagestc ~the Compton scattering time scale! is no
longer relevant, whiletg andt rel should overtaket

H
, so that

the baryon-photon decoupling is defined astg5t
H

and

should occur att5t
D

such thatT(t
D
)5T

D
.43103 K.

We will not be concerned with the evolution of the mo
els after the radiative era, since the assumptions regardi
hydrodynamic description of the radiative fluid break dow
After the baryon-photon decoupling, an appropriate tre
ment of cosmic matter requires a different theoretical fram
work based on kinetic theory@34#.

Consider a transient regime@g'g0'O(1),1#, together
with ‘‘test’’ initial conditions given by Eqs.~93! with d50,
satisfying Eqs. ~99!, ~101!, ~102!, and ~103!, hence e
50.0128. For the time being,S i will be taken to be two
orders of magnitude smaller thanQi . This yields the follow-
ing initial conditions lying very nearx(0)50:

V (m)~0!50.0128, V (r )~0!50.9872, S~0!50.001,

Q~0!520.1, ~104a!

so that

V (tot)~0!51, x~0!521026. ~104b!

In order to illustrate how the different variables should b
have in a physical evolution taking place in the appropri
time scale, we integrate the system of governing equat
~56!, ~58!, ~59!, and~69! for Eq. ~104! andg5g050.7. The
results are displayed in Figs. 1 and 2. As shown by F
1~a!, 1~b!, 1~c! and 1~d!, the functionsV (m) ,V (r ) ,S,Q,S(e)
and S comply with conditions 1, 2 and 3 of the physic
evolution mentioned above~we shall discuss condition 4 in
Sec. VIII E!. Figure 2a depicts joint logarithmic plots of th
various time scalestg ,tc ,t

H
, and physical timet, respec-

tively, given by Eqs.~36!, ~37!, ~66! and ~67!, while the
radiation temperatureT is displayed in Fig. 2b. By compar
ing Figs. 1 and 2, it is evident that the range of validity of t
models is roughly 0<t,6, corresponding to 106 K.T
.103 K, with t'105 years~the physical time for the radia
tive era!, while the transition from radiation to matter dom
12400
n

g

a
.
t-
-

-
e
ns

s.

nance taking place at aboutt54 (T'104 K). Numerical
integration of the governing equations for initial conditio
different from Eq.~104! might yield important qualitative
changes in the state variables plotted in Fig. 1, l
V (m) ,V (r ) or S, but not of those plotted in Fig. 2, such asT
or the time scales~36!, ~37!, ~66!, t rel or physical timet.
Therefore, Fig. 2 provides a general estimation of the ra
of validity of the models for a wide range of initial cond
tions. We will consider more general initial conditions in th
following section.

C. Sensitivity to deviations from xÄ0

We will test the effect of initial deviations from the in
variant setx50 on state functions obtained by numeric
integration of the governing equations. We consider init
conditions as in Eq.~93!, keepingS i , andQi fixed, but now
we takedÞ0:

V (m)~0!50.01282d, V (r )~0!50.9872,

S~0!50.001, Q~0!520.1,

V (tot)~0!512d, x~0!5d21026. ~105!

Since d can be given in terms ofe by Eq. ~101! and e
50.0128 corresponds tod50, testing values ofe near e
50.0128 determines the initial deviation fromV (tot)51 and
x50. Notice thatd can be positive or negative, respective
for e.0.0128 or e,0.0128, so thatx(0)50 if d5S i

2

51026, while x(0) is positive/negative ifd.S i
251026 or

d,S i
251026 @though, from Eq.~61!, curvature has the op

posite sign tox]. We integrate numerically the governin
equations for initial conditions~105!, g5g050.7 ~transient
regime! and for various values ofd. The resulting forms of
V (m) ,V (r ) ,V (tot) , and S are, respectively, plotted in Figs
3a–3d~for positive curvaturex,0) and in Figs. 4a–4d~for
negative curvaturex.0). These figures clearly show that
physical evolution is only possible for initial conditions th
deviate very slightly fromx(0)50 ~less than'1025.5),
leading to orbits that remain very close to the invariant
x50. If we fix e and d ~for any combination of values
compatible with Eqs.~101!, ~102! and~103!! and varyS i , so
that deviation fromx(0)50 is governed byS i , we obtain
exactly the same behavior displayed by Figs. 3 and 4, le
ing to the same conclusion: a physical evolution is only p
sible for initial conditions for whichux(0)u&1025.5.

D. The near-Eckart regime

We examine the near-Eckart regime by assumingg5g0
50.001!1, together with initial conditions~104!. As shown
in Fig. 5a, the functionsQ(t) andS(t) clearly have the form
~76!, indicating a quick relaxation in terms of an abrupt e
ponential decay~in about t'0.01). Figure 5b shows how
the equilibrium entropyS(e) tends to a constant value i
aboutt'0.02, a longer time than the relaxation ofS/S(e) ,
thus indicating that the effective relaxation time is provid
by S(e) , andS(e)8 .0 holds for all the evolution, in agreemen
1-14
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FIG. 4. Sensitivity to x(0)50, negative curvature. Analogues of Fig. 3 ford.0. A similar branching of the functions
V (m) ,V (r ) ,V (tot) ,S/S(e) is observed even though the models do not re-collapse. Again, the functionS/S(e) satisfies the conditions for a
physically plausible evolution only if initial conditions are given byd,1025.5. Notice that theV (m)(t) curves in~a! with d'1025.5 bend
downward, so that fort@6 they tend to the currently accepted values of present CDM abundance:V (m)'0.3.
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with the ‘‘local equilibrium hypothesis’’~see Sec. VI A!. Fig-
ure 5c reveals how (5/8)Q/S→g050.001, so that Eckart’s
transport equation@P12hs50 with h given by Eq.~29!# is
approximately valid once the quick relaxation is over.
good approximation to the relaxation time in a near-Eck
regime is given by the assumption~73! with g5
2(5/8)g0(Q/S) and g050.001. Figure 5d illustrates tha
this is a correct assumption, since the obtainedt rel overtakes
t

H
in the very short period that coincides with the duration

the relaxation process (t'0.02).
The plots of the functionsV (m)(t) andV (r )(t) are iden-

tical to those that would have resulted in the transient reg
had we chosen initial conditions~104! and a much larger
value ofg0. The functionS(t) is affected, becoming almos
constant for very smallg0. This is reasonable, since Eq.~56!
does not containQ, while Eqs.~58! and~59! do contain this
function, but uQ(t)u and Q8 decay very fast becoming a
most zero for most of the time range and so the differen
equations for the functionsV (m) and V (r ) ~but not S) are
12400
rt

f

e

l

practically unaffected. The effect of varyingg0 ~as long as
we have small values,,0.01) is simply to make the decay o
Q and S(e)8 slightly more or less abrupt~depending on
whetherg0 is smaller or larger than 0.001) and has no n
ticeable effect on numerical curves of other functions.

E. Testing the relaxation times numerically

The assumptiong5g0,1 leads to a reasonable rela
ation time only in the earlier stages of the evolution, while
choice g5g0.1 might work for later conditions~near
matter-radiation decoupling! but not for earlier times. This
can be appreciated in Fig. 6b, since the relaxation times
tained for different values ofg5g0 would be curves paralle
to t

H
. As we mentioned before,g0 controls the rate of decay

of Q and S, but it is still interesting to check if other func
tions are sensitive to changes in the numerical constant v
of g0. Assuming initial conditions~104! and integrating the
1-15
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dynamical system for various values ofg0.0.1 ~thus ex-
cluding the non-transient zone! shows that the other func
tions ~such asV (m) ,V (r ) or S) are essentially identical to
those shown in Figs 1 to 4, being thus unaffected by
r
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numerical value ofg0.
Since g constant is not very realistic, we test now th

expression fort rel that follows from Eqs.~82! and ~83! in
Sec. VI B. Ignoring the curvature term, we have
g5
m0

8/51m0~11m0!1m0~122m0!V (m)/22m0@11~l23!m0#S2
. ~106!
e
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e
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It is evident that choosing a sufficiently smallm0 yields g i
'5m0/8!1, an initial value characteristic of a near-Ecka
regime. As expected, numerical tests withm0!1 lead to
practically identical curves as those corresponding to
near-Eckart regime~Figs. 5a, 5b and 5c!. However, form0
.1/2, the factor multiplyingV (m) in the denominator of Eq
~106! can become negative for somet, thus opening the
possibility that the denominator might become small and
g might increase to'O(1) ast reaches later times relate
to the baryon-photon decoupling era. In order to explore
possibility, we integrated the dynamical system for init
conditions~104! and under the assumption ofg given by Eq.
~106!, with various values ofm0.1/2. As shown by Fig. 6a
the choicem0.15 leads tog diverging as~approximately!
t→7, this leads tot rel overtaking t

H
~Fig. 6b! around t

'6.8. It would have been nicer to havet rel overtakingt
H

at

an earlier time~sayt'5 –5.5) as required by condition 4 fo
a physically plausible evolution, but we feel that the form
t rel associated with Eq.~106! is a reasonable approximatio
to a physical relaxation time that acts as an ‘‘effective’’ r
laxation time for the radiative era. Finally, another con
quence of dealing with a more reasonable form fort rel is the
fact that Ṡ(e)}2SQ being positive and very small~condi-
tion 3 of a physically plausible evolution! is better satisfied
than in the case of constantg0 ~compare Figs. 1b and 6c!.

F. The truncated equation

Considering initial conditions~104! andg5g050.7, the
integration of the governing equations~56!, ~58!, ~59!, and
~86! yield the curves forQ,S,V (m) , and V (r ) depicted in
Figs. 7a, 7b and 7c. These figures reveal that a phys
evolution fails to occur, as the growing modes predicted
the qualitative analysis clearly emerge, making all the
functions to undertake an unphysical growth. We tested o
values ofg0 andg given by Eq.~106!, as well as other initial
conditions and obtained very similar curves to those of F
7a–7c, all failing to comply with the criteria for a physical
plausible evolution.

G. A baryonic scenario without CDM

If we had considered only the radiative fluid~baryons,
photons and electrons! as the matter source of the mode
then the bulk of the rest mass energy density would h
been due to the baryons, so thatn(m) would have been iden
t

e

o

is
l

f

-

al
y
e
er

s.

,
e

tified with nb instead ofnw and V (m) would correspond to
the baryonicVb . It is interesting to examine numerically th
consequences of this ‘‘baryonic scenario.’’ Considering
baryon-photon number ratio in Eq.~15!, the baryonic sce-
nario implies replacing Eqs.~100! and ~101! by

e2d

12e
5

mbc
2

3k
B
Ti

nb'0.002, d51.002e20.002, ~107!

while initial conditions are then given by Eqs.~104! and
~105!, but d50 now corresponds toe50.00199 instead of
e50.0128. Intuitively, we do not expect a major qualitativ
change in the resulting graphs, though it is reasonable
expect thatV (m) will be smaller andV (r ) larger, since bary-
ons have less rest mass density~by one or two orders of
magnitude! than WIMP’s and so it should take longer fo
baryons to dominate over radiation. The numerical cur
that result are as expected intuitively, withV (m) ,V (tot) , and
S/S(e) having very similar forms as the curves of Figs. 3 a
4, with V (r ) decreasing slightly slower than in the case w
WIMP’s. Since the obtained curves forV (m) in the baryonic
scenario are so close to those obtained in Figs. 3 and 4
the case with WIMP’s, these curves yield baryon abundan
that are clearly incompatible with the bounds placed by c
mic nucleosynthesis (Vb;1022).

IX. DISCUSSION AND CONCLUSION

We have studied a class of dissipative Kantowski-Sa
models describing the cosmological evolution during the
diative era characterized by radiative processes involv
baryons, electrons and photons, considered as a single d
pative ‘‘radiative’’ fluid. We also assumed the presence
CDM, in the form of a non-relativistic gas of WIMP’s~light-
est neutralinos!. Although this gas does not interact with th
radiative fluid, it provides the bulk of the rest mass ene
density and thus it strongly influences the dynamics of
models and the resulting values of cosmological time sca
such ast

H
. On the other hand, the radiative fluid provides t

bulk of thermal and dissipative effects, related to the rate
change and relaxation of the radiation entropy to its equi
rium value.

After defining new normalized variablesV (m) ,V (r ) ,S,Q,
a set of evolution equations has been derived based u
1-16
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FIG. 5. ‘‘Near-Eckart’’ regime. FunctionsS/S(e) , Ṡ(e) /k
B
, and 2(5/8)(Q/S) correspond to initial conditions~104! with g0

50.001.S/S(e) in ~a! relaxes much faster (t'0.002) than in Figs. 1d, 3d or 4d, associated with the transient regime. The decay ofS(e) in ~b!
takes longer (t'0.01) than that ofS, henceS(e) is an adequate entropy function in agreement with the ‘‘local equilibrium’’ hypoth

characteristic of the Eckart regime (Ṡ(e).0 holds throughout the evolution!. ~c! shows how2(5/8)(Q/S)→g050.001, indicating that
Eckart’s transport equation is approximately valid fort.0.02. In ~d! we used initial conditions~102! and g52(5/8)(Q/S)g0 with g0

50.001~instead ofg5g050.7), which yields an excellent approximation to the relaxation parameter of a near-Eckart regime, ove
t

H
at the relaxation time scalet'0.01; this time scale, however, is too short in comparison with the relaxation time scale of the Co

scattering also shown in~d!, hence this and other radiative processes must be studied within a transient regime.
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appropriate thermodynamical laws and equations of st
The qualitative and numerical study of these evolution eq
tions has clarified various aspects of the dynamical beha
of the models, their physical viability, as well as a pecul
sensitivity to certain initial conditions related to deviatio
from the invariant setx50. We discuss below the mai
features emerging from previous sections.

The definition of the phase space variab
V (r ) ,V (m) ,S,Q leads in a natural way to expressing the
laxation timet rel as proportional tot

H
53/Q @see Eqs.~68!

and~73!#. The understanding of the relaxation process can
accomplished by studying the effect of different choices
the proportionality factor,g(t).0, on the exponential deca
of the dissipative stress~related toQ) and of the photon
entropyS to its equilibrium valueS(e) . We have identified a
‘‘near-Eckart’’ regime if this decay is abrupt (g!1, and be-
coming instantaneous in the limitg→0, so thatt rel→0),
12400
e.
-

or
r

-

e
f

while a ‘‘transient regime’’@g'O(1),1# can be associated
with a slower decay. Both the near-Eckart and the trans
regimes are compatible with a physically plausible evolutio
The difference between the two regimes is the time scale
their relaxation process: for the transient regime this ti
scale can be comparable with the duration of the radia
era, for the near-Eckart regime it is much shorter~about eight
orders of magnitude in physical time!. This is well illustrated
by the differences in evolution time scales between Fig
and Figs. 1–4. Comparing Figs. 2b and 5d, it is evident t
the relaxation time scale of the near-Eckart regim
('108 sec) is much shorter than that of the Compton sc
tering ('1011 sec). Therefore the near-Eckart regime yiel
a relaxation that is too swift and so it is inadequate to exa
ine the two main radiative processes of the radiative era:
Compton scattering and~more so! the Thomson scattering. I
is important to mention this fact in view of recent claims@35#
1-17
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FIG. 6. Dynamical relaxation time.~a! displaysg obtained from
integrating the governing equations for the form given by Eq.~106!,
the numbers next to each curve correspond to the chosen num
values ofm0 ;g diverges form0.15. ~b! displays the correspondin

form for t rel which overtakest
H

for t'6.8. ~c! showsṠ(e) /k
B

for

m05200. A comparison with Fig. 1b shows that requiringṠ(e) /k
B

to be small is better satisfied withg given by Eq.~104! than with a
constant valueg50.7 ~as in Fig. 1b!.
12400
that a transient theory of irreversible thermodynamics is
really necessary~see@36# for a comprehensive discussion!. It
is evident that the cosmological study of radiative proces
in pre-decoupling times needs to be accomplished wit
transient regime.

As revealed by Figs. 1–4, a physically plausible evoluti
is possible for all the duration of the radiative era for initi
conditions given by an initial state very close tox(0)50,
hence lying very close to the invariant set of zero curv
ture x50. All models complying with a physical evolution
begin their evolution near the equilibrium poin
(V (r ) ,V (m) ,S,Q)5(1,0,0,0), a saddle with positive eigen
values~i.e., stable! associated with the FLRW sub-case of t
models, and the proceeding evolution remains very clos
the invariant setx50. This is an extremely interesting fea
ture of these models, as it relates a geometric property of
solutions with the constraints imposed by the physics and
observational evidence, since recent data from CMB ob
vations indicatesV (tot)'1. By looking at the curves ofV (m)
andV (tot) with d&1025 in Figs. 4a and 4c~negative curva-
ture!, it is evident that fort.6 these curves decrease fro
their valuesV (m);1 and V (tot);1 aroundt56. Had we
plotted these curves for larger values oft, extending to the
present era (t'15), we would have obtainedV (m);V (tot)
;0.3, in agreement with the currently accepted value
V (m) , but not ofV (tot) . Of course, the estimated contribu
tion to V (tot) , today, for non-relativistic matter~CDM plus
baryons! is only '0.3, with the remaining two-thirds of the
critical density probably related to aL-type ‘‘dark energy’’
interaction whose precise nature and properties are still
certain. However, this discrepancy with regards toV (tot) to-
day is not surprising since we did not consider anyL-type
interaction, and so it does not affect our results. Also,
models we are considering are only valid for a specific ran
of cosmological times: 103&z&106, in which this ‘‘dark en-
ergy’’ would likely not have been dominant. Still, the clos
link between a physically plausible evolution andV (tot) near
unity is remarkable.

It is interesting to compare our results to those repor
previously@37# dealing with the perfect fluid sub-case of th
KS models examined in this paper~though these models did
not consider a CDM component!. As reported in@37#, there
are numerical solutions in which both matter and radiat
normalized densities,V (m) ,V (r ) , decay to zero as the mod
els re-collapse and approach a crunch singularity. By look
at the forms ofV (m) andV (r ) in Fig. 4, it is evident that such
evolution is similar to that depicted by curves associa
with initial conditionsd*1023. However, the evolution tha
results from these initial conditions fails to comply with o
physical criteria, since the entropyS is no longer a convex
function for all of the time range~see Fig. 4d! and starts
decreasing at too early times. In the perfect fluid case, th
examples satisfy an appropriate equation of state and a
the energy conditions and also the photon entropy is sim
S(e) and is constant for all times, hence there is no phys
reason to discard these curves~other than remarking tha
such behavior ofV (m) ,V (r ) is not observed in the real uni
verse!. However, for the dissipative source under examin
tion here,SandS(e) are not constant and the conditions for

ical
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FIG. 7. The truncated transport equation. Curves obtained
integrating the governing equations with initial conditions~104! and
g050.7, but using Eq.~84! ~‘‘truncated’’ transport equation! instead
of Eq. ~57! ~full transport equation!. The exponential growth term
mentioned in Sec. VII lead to an unphysical evolution characteri

by negativeṠ(e) and Ṡ during all the evolution range.
12400
physical evolution are more stringent, hence we can ap
clear physical criteria to discard these perfect fluid ‘‘strang
cases.

For initial conditions near the equilibrium poin
(V (r ) ,V (m) ,S,Q)5(1,0,0,0) @as in Eq.~104!#, the numeri-
cal curves of the ‘‘equilibrium variables’’V (m) andV (r ) are
not affected by the choice ofg5g0, the constant proportion
ality factor betweent rel andt

H
. This is a consequence of th

fact that for these initial conditions the values ofS,Q and
S2S(e) remain small during all of the evolution. Therefor
the evolution equations forV (m) and V (r ) @Eqs. ~56! and
~58!# are practically unaffected by the presence ofS andQ,
and so are insensitive to the rate of transiency given bg
constant. SinceS and Q govern the deviation from the
FLRW equilibrium point, this decoupling ofV (m) and V (r )
from S andQ is then a consequence of the evolution of t
system always remaining close to thermal equilibrium. W
tested this behavior for a particular form ofg @Eq. ~106!,
Sec. VI B#: the curves forV (m) ,V (r ) ,S, and Q are practi-
cally identical with those that follow from choosingg50.7
in Figs. 1 to 4. However, as shown in Figs. 6a and 6b,
large values ofm0 defined by Eq.~83!, the obtained relax-
ation timet rel behaves similarly to what one would expect
a relaxation parameter for the radiative era. Although it h
become common practice to simply equatet rel with a micro-
scopic interaction time, liketg or tc , the relaxation time is
not a microscopic but a mesoscopic or even macrosco
quantity ~though it must be qualitatively analogous to inte
action times@36#!. Since it can be extremely cumbersome
evaluatet rel , it is useful to have a concrete example whe
this relaxation parameter can be adequately approximate
the same dynamical equations associated with the mode

Finally, by means of qualitative arguments supported
the numerical analysis, we have shown in Sec. VII~Fig. 7!,
that the truncated equation does not comply with a physic
plausible evolution. This is an important result, since
have found a concrete example in which a truncated tra
port equation leads to unphysical evolution of dissipat
fluxes. Although this conclusions strictly applies to the K
models under consideration, we must point out that o
should be very cautious when applying these equation
other models and other equations of state.

A possible extension of this work would be to consid
instead of CDM other forms of dark matter, such as ‘‘warm
dark matter~WDM! or axions. Another possibility is to in-
clude, together with dark matter, a scalar field associa
with ‘‘dark energy.’’ Another route to generalize the prese
work is use a class of metrics associated with a geometry
is less restrictive than KS, for example the non-static sph
cal symmetry ~perhaps under the assumption of se
similarity!. We regard the present analysis of the Kantows
Sachs models as a first step toward an understanding o
dynamics of cosmic matter in more general and physica
motivated inhomogeneous models.
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