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Tilt and phantom cosmology
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Abstract

We show that in tilting perfect fluid cosmological models with an ultra-radiative equation of state, generically the tilt becomes extreme at late
times and, as the tilt instability sets in, observers moving with the tilting fluid will experience singular behaviour in which infinite expansion is
reached within a finite proper time, similar to that of phantom cosmology (but without the need for exotic forms of matter).
© 2006 Elsevier B.V.
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Cosmological data, including galaxy, CMB and supernovae
observations [1], seem to be consistent with a cosmological
constant or a dark phantom energy with effective equation of
state parameter γ < 0 [2]. We shall study cosmological mod-
els with a tilting, but otherwise conventional, perfect fluid, and
show that the models have dynamical behaviour similar to that
of phantom cosmology, but without the need for any exotic
forms of matter and consequently avoiding the pathologies in
these models, such as the existence of ghosts.

For spatially homogeneous (SH) Bianchi cosmologies mod-
els, the universe is foliated into space-like hypersurfaces [3],
and there are two naturally defined time-like vectors: the unit
vector field, na , normal to the group orbits, and the four-
velocity, ua , of the perfect fluid. If ua is not aligned with na ,
the model is called tilted (and non-tilted or orthogonal other-
wise) [4]. Usually, the kinematical quantities associated with
the normal congruence na of the spatial symmetry surfaces,
rather than the fluid flow ua , are used as variables. Follow-
ing [4], a tilt variable v is introduced, so that in an orthonormal
frame where na = (1,0,0,0), we have

(1)ua = 1√
1 − v2

(1, v,0,0).
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We will assume a perfect-fluid matter source with p = (γ −
1)μ as equation of state, where μ is the energy density, p is
the pressure, and γ is a constant. Causality then requires γ to
be in the interval 0 � γ � 2. A positive cosmological constant
may also be included in the models. Such SH tilted cosmologies
with a γ -law perfect fluid source have been studied by a number
of authors [5–11]. It is known that the tilt can become extreme
(v2 → 1) asymptotically to the future. In particular, let T be the
proper time as measured along the fluid congruence, and let us
define the quantity �T :

(2)�T ≡
∞∫

τ0

1

H

√
1 − v2 dτ,

where τ is a dynamical time variable defined in terms of the
clock time t and the Hubble scalar H by dτ

dt
= H . If �T is

finite, then the fluid congruence is future incomplete: the fluid
observers will reach infinite expansion within finite proper time.
Therefore, in spite of the fact that such a spacetime may be
future geodesically complete [12], the worldlines defined by
the fluid congruence ua may become null with respect to the
normal congruence na , sometimes so quickly that this occurs
within finite fluid proper time. We note that for a SH cosmol-
ogy for which v2 → 1 (which is a necessary condition for �T

to be finite) the Hubble parameter of the fluid congruence, Hfluid
also diverges.
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The locally rotational symmetric (LRS) Bianchi type V per-
fect fluid models were studied in [7]. The global structure of
Bianchi type V models was studied in more detail in [6]. It was
shown that for models with 4/3 < γ � 2, to the future the tilt
can become extreme (in a finite time as measured along the fluid
congruence) and, as T approaches a finite limiting value, the
fluid worldlines become null with respect to na , and its length
scale � and some of its kinematic variables (i.e., the expan-
sion, the shear, the acceleration, and the vorticity) diverge, but
its matter density and curvature scalars tend to zero. Although
this peculiarity only occurs for ultra-radiative fluids, which are
unlikely to dominate the late universe, we will show that this be-
haviour can even occur for universes where ultra-radiative fluid
is not dominant.

We shall first show that the fluid proper time is finite as the
solution approaches its asymptotic state (the extremely tilted
Milne equilibrium point M−, defined by Σ = 0, A = 1, v =
−1, Ω = 0, ΩΛ = 0, and with deceleration parameter q = 0)
for 4/3 < γ < 2 in the absence of a cosmological constant [13].
The decay rates for the Hubble scalar H = θ/3 and the quantity√

1 − v2 are H ∝ e−τ ,
√

1 − v2 ∝ exp[−(5γ − 6)τ/(2 − γ )],
whence

(3)�T ∝
∞∫

τ0

exp

(−2(3γ − 4)

2 − γ
τ

)
dτ,

which is finite for 4/3 < γ < 2.
Spatially homogeneous cosmological models with a positive

cosmological constant were investigated using dynamical sys-
tems methods in [13], extending the tilted LRS Bianchi type V
analysis of [7] to the Λ �= 0 case. A de Sitter point with extreme
tilt is the future attractor for γ > 4/3. Therefore, in general, for
Bianchi type V models with γ > 4/3, the tilt again becomes ex-
treme at late times and the fluid motion is no longer orthogonal
to the surfaces of homogeneity.

Although it is known that expanding non-type-IX Bianchi
models with a positive cosmological constant isotropize to the
future (cosmic no hair theorem) [14], and that this result applies
to tilted models, the isotropization is with respect to the con-
gruence normal to the homogeneous symmetry surfaces—not
the fluid congruence [15]. Thus in the Bianchi type V models
the spacetime generically becomes de Sitter-like, in accordance
with the cosmic no hair theorem, but since the tilt does not die
away, isotropization of the cosmology does not occur with re-
spect to the fluid congruence.

This is a generic feature of spatially homogeneous mod-
els. In general, SH models are not asymptotically isotropic.
The spatially homogeneous models do isotropize to the fu-
ture in the presence of a positive cosmological constant [14].
By investigating the asymptotic behaviour of a SH model
with a cosmological constant and a tilted perfect fluid with
p = (γ − 1)μ as the future de Sitter model (with an ex-
tremely tilted perfect fluid) attractor is approached we obtain
H ∝ H0 and: �T ∝ ∫ ∞

τ0
exp[−(3γ − 4)τ/(2 − γ )]dτ , which

is finite for 4/3 < γ < 2. In the absence of a cosmological con-
stant, in general SH models are not asymptotically isotropic.
Nevertheless, these models can spend a long time close to a
flat Friedmann model corresponding to a saddle point. Con-
sidering one non-tilting perfect fluid with p⊥ = (γ⊥ − 1)μ⊥
and one tilting fluid with p = (γ − 1)μ (with γ⊥ < γ ), as
the Friedmann equilibrium point is approached we obtain:
�T ∝ ∫ ∞

τ0
exp[−(3γ − 4 − 3

2γ⊥(2 − γ ))τ/(2 − γ )]dτ . This
means that for solutions spending a finite (but arbitrarily long)
time close to the saddle F , exhibiting quasi-isotropic behaviour
consistent with observations, the Hubble parameter as mea-
sured by the fluid, Hfluid, can become arbitrarily large.

There will be different anisotropic asymptotic end-states de-
pending on Bianchi types. In the Bianchi type VII0 model with
a tilted γ -law perfect fluid [11,16], the future asymptotic state
for γ > 4/3 was found to be anisotropic and extremely tilted
with H ∝ e−2τ and �T ∝ ∫ ∞

τ0
exp[(8 − 5γ )τ/(2 − γ )]dτ .

For models with γ > 8/5, we find that this integral is fi-
nite. The Bianchi type VIII models are asymptotically ex-
tremely tilted for 1 < γ < 2 and the asymptotic solution is
an extremely Weyl-curvature dominated model [17,18], with

H ∝ τ
1
4 exp(− 3

2τ), and �T ∝ ∫ ∞
τ0

τ
γ

4(2−γ ) exp[−3(3γ − 4)τ/

2(2 − γ )]dτ , which is finite for 4/3 < γ < 2.
It is known that for general spatially inhomogeneous perfect

fluid models with a cosmological constant, the de Sitter solution
with extreme tilt (where the tilt refers to the fluid tilt with re-
spect to a congruence with an acceleration that tends to zero) is
locally stable for 4/3 < γ < 2 [12,19]. From Equations (3.43)
and (3.28) of [19], we have that H ∝ H0 and

(4)�T ∝
∞∫

τ0

exp

(
−3γ − 4

2 − γ
τ

)
dτ,

which is finite for 4/3 < γ < 2, as required. We note that for
4/3 < γ < 2, the generic behaviour is v → 1, which implies
that inflation does not isotropize an ultra-radiative fluid. Even if
inflation is turned off after a certain number of e-foldings, Hfluid
can become arbitrary large. Nevertheless, as noted above, this
result does not contradict the cosmic no-hair theorem [14].

Therefore, we have found that, for γ > 4/3, the fluid con-
gruence becomes null with respect to the normal congruence in
finite fluid proper time, and a ‘kinematic singularity’ develops
for the fluid congruence. To fully understand the behaviour of
these models and their physical properties, the dynamics need
to be studied using a formulation adapted to the fluid (i.e., uti-
lizing a fluid-comoving frame). By using the boost formulae
relating the normal and fluid congurences this singular behav-
iour for the fluid congruence can be confirmed.

This mathematical instability might lead to some interesting
physics. Expanding universes that come to a violent end after a
finite proper time have arisen in a different context [2,20]. Mod-
els with a constant equation of state parameter γ < 0, dubbed
“phantom energy”, lead to a singularity commonly called the
big rip. In this paradigm, during the cosmic evolution the scale
factor grows more rapidly than the Hubble distance and con-
sequently blows up in a finite proper time, and is typically
characterized by a divergent pressure and acceleration. As the
big rip singularity is approached, both the strong and weak en-
ergy conditions are violated. For the so-called sudden future
singularities [20] the strong energy condition needs not be vi-
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olated, yet a future singularity forms within finite time. In our
examples, no energy conditions are violated; in fact, the energy
density in the fluid frame, μfluid, tends to zero as the singularity
is approached.

The Hubble scalar for the fluid frame can be computed
from the boost formula for H , and is of the form Hfluid =
BH/

√
1 − v2 [21]. The above examples lead to a diverging

Hfluid, with Hfluid ∝ e−(qfluid+1)τfluid , and τfluid = Bτ in the limit.
We then examine the value of the deceleration parameter qfluid
and compare with the critical value of −1. Equivalently, we can
compare with a phantom fluid in a flat, isotropic model using
the effective equation of state parameter γeff, give

(5)γeff = 2

3
(1 + qfluid),

with corresponding critical value of 0.
In the general case of inhomogeneous cosmological models

with a cosmological constant, the de Sitter model with extreme
tilt is the future asymptotic state for γ > 4/3, and we have

(6)qfluid = −3

2
(3γ − 4) − 1 < −1.

Consequently, as the de Sitter asymptotic state is approached
the dynamical effect of the ultra-radiative perfect fluid congur-
ence behaves similarly to a phantom energy in an isotropic and
spatially flat spacetime. Note that inflation does not stop the big
rip from occurring.

Let us now briefly consider the SH models discussed above.
For the LRS Bianchi type V models, on the approach to the
extremely tilted Milne solution (for γ > 4/3) we find that

qfluid = −3

2
(3γ − 4) − 1 < −1.

For the Bianchi type VIII model with γ > 4/3 we again obtain

qfluid = −3

2
(3γ − 4) − 1 < −1.

For the Bianchi type VII0 model with γ > 8/5 we obtain

qfluid = −3

2
(5γ − 8) − 1 < −1;

this difference arises due to the fact that the type VII0 models
are geometrically more special than Bianchi type VIII models.
Similarly, for the two-fluid example, we have

qfluid < −1,

for γ >
2(4+3γ⊥)
3(2+γ⊥)

. A similar behaviour also occurs for Bianchi
type VIIh models (see [21]). In the generic SH models (such
as, for example, the Bianchi type VIII model) the ultra-radiative
perfect fluid effectively behaves dynamically like a phantom en-
ergy in the sense that the length scale and the Hubble scalar di-
verges as the future asymptotic state is approached. In the more
special examples, the requirement is that the threshold equation
of state must be equal to or higher than that of radiation.

Therefore, as the future asymptotic state is approached the
ultra-radiative perfect fluid effectively behaves like a phantom
energy in an isotropic and spatially flat spacetime. It is impor-
tant to note that the energy conditions of the perfect fluid are
nowhere violated.
Let us discuss the physical consequences of this dynami-
cal behaviour in a little more detail. One can consider models
that spend a period close to isotropy (i.e., close to a Friedmann
saddle point), with a small tilt. Thereafter, the models begin
to evolve away from isotropy. Since the tilt is non-zero, for
γ > 4/3 the models generically evolve towards an asymptotic
state with extreme tilt. As the tilt instability sets in during the
transient regime, observers moving with the tilting fluid will ex-
perience a transition from a decelerating expansion to an accel-
erating expansion, and later, extremely accelerating expansion
mimicking that of a phantom cosmology. Moreover, unlike in
conventional phantom cosmology, in the models studied here
there is no need for any exotic forms of matter; conventional
matter which is tilting suffices. In a braneworld approach, ac-
celerating universes can also result without a cosmological con-
stant or other form of dark energy [22]. Indeed, other patholo-
gies, such as the existence of ghosts, are avoided in the models
described here. This is also the case in alternative models to
phantom cosmology which result from alternative theories of
gravity, theories with non-minimal couplings, and models in
which the dark energy and quintessence field interact [23]. In
addition, as noted above, due to the existence of future attrac-
tors with extreme tilt the dynamical behaviour described here is
generic.

Although the dynamics in the comoving dark energy models
and the tilting models are qualitatively similar, the actual quan-
titative (physical) predictions of the two different models may
differ (due to the different physical transient time scales in each
model). For example, the age of the universe as measured in the
two models may differ. As an example, let us calculate numeri-
cally the age in a LRS Bianchi type V model which starts near
a flat FL model at the time of decoupling. In a conventional co-
moving dust model (with no dark energy) with present energy
density Ωdust,0 ≈ 0.2, the maximum age is approximately 11.8
billion years (which, as is well known, is on the low side com-
pared with the ages of the oldest astrophysical objects in the
Universe). In a comoving dust model with present energy den-
sity Ωdust,0 ≈ 0.2 and a cosmological constant ΩΛ,0 ≈ 0.8, the
estimated age is about 15.0 billion years, which is about a 27%
increase over the age for the dust model and consistent with cur-
rent observational data. In a LRS Bianchi type V model with a
comoving dust model with Ωdust,0 ≈ 0.2 and a (second) tilting
perfect fluid with a total effective energy density Ωtilt,0 ≈ 0.8,
then according to the tilted fluid observer with present energy
density Ωdust,0,fluid frame = 0.2, the maximum age as measured
in the tilting fluid frame appears to be (depending on the initial
conditions in the various numerical experiments) about 13.2 bil-
lion years (this particular value occurs for the initial conditions:
A0 = 0.641, Σ+,0 = 0.0056, v = −0.443; Ω0 = 0.0111). This
is a 12% increase over the original age of 11.8 billion years
(and marginally consistent with observations). The situation is
expected to be similar in the more general Bianchi VIII models,
although the quantitive predictions will depend on the precise
initial conditions and it is possible more fine tuning may be nec-
essary.

Therefore, although qualitatively the calculated age of the
universe in both the dark energy models and the tilting fluid
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models are similar in that the age is greater than in the conven-
tional models (without dark energy or a second tilting fluid),
quantitatively the increased age appears to be greater in the
dark energy models. However, the tilted fluid models are still
physically viable. In future work we shall further study phys-
ical predictions of the tilting fluid models. In addition to the
age problem, it is also of interest to investigate the effect of tilt
on cosmic microwave background radiation observations and
whether these models offer a possible explanation for the var-
ious anomalies on large angular scales found in the WMAP
data [24,25].
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