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ABSTRACT 
 
Beamforming is a signal processing technique used in sensor arrays to direct signal 

transmission or reception. Beamformer combines input signals in the array to achieve 

constructive interference at particular angles (beams) and destructive interference for 

other angles.  

According to the following facts: 

1- Beamforming can be computationally intensive, so real-time sonar beamforming 

algorithms in sonar devices is important.  

2- Parallel computing has become a critical component of computing technology of 

the 1990s, and it is likely to have as much impact over the next 20 years as 

microprocessors have had over the past 20 [5]. 

3- The high-performance computing community has been developing parallel 

programs for decades. These programs run on large scale, expensive computers. 

Only a few elite applications can justify the use of these expensive computers [2]. 

4- GPU computing has the ability of parallel computing and it could be available on 

the personal computers. 

The objective of this thesis is to use Graphics Processing Unit (GPU) as real-time digital 

beamformer to accelerate the intensive signal processing.  
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CHAPTER 1 INTRODUCTION 

 

1.1  MOTIVATION 

 
Beamforming has many applications in radar, sonar, seismology, wireless 

communications, radio astronomy, acoustics, and biomedicine. Beamforming is used to 

detect a signal of interest coming from specific direction. A beamformer algorithm 

process sensor array signals in order to increase Signal to Noise Ratio (SNR). It 

manipulates large complex matrices and involves a large number of Fast Fourier 

Transforms (FFT) in order to perform a multi-dimensional filtering in space-time or 

wavenumber-frequency domains. 

Expensive custom hardware and software is required to process data intensive sonar 

beamforming algorithm in real-time. Real-time signal processing in sonar devices is very 

important. High-resolution sonar consists of an array of underwater sensors and a 

beamformer to determine from which direction the signal is coming. The sensor element 

outputs are filtered and combined to construct a set of beams, each beam pointing in a 

specific direction.  

To accelerate the signal processing speed we implemented parallel processing technique 

by using the Graphics Processing Unit (GPU) as a real-time digital beamformer. 

INVIDIA GeForce 690 with 4GB RAM GPU and CUDA programming language have 

been used to speed up beamforming algorithms. CUDA is a parallel computing platform 

and programming model invented by NVIDIA. It enables dramatic increases in 

computing performance by harnessing the power of the GPU. 

GPU computing or GPGPU is the use of GPU as a co-processor to speed up scientific and 

engineering computing. The GPU accelerates applications running on the CPU by 

removing some of the compute intensive and time consuming portions of the code and 

executing them separately on GPU in parallel or sequential form. However, part of the 

applications run sequentially on the CPU. The application runs faster as it is using the 

power of the GPU to process parallel processing part of the algorithm and boost 

performance. This is known as “heterogeneous” or “hybrid” computing. 
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Advantages of GPU computing: 

1- Improve performance and solve problems more quickly by implementing parallel 

processing. 

2- With CUDA, you can send C, C++ and Fortran code straight to GPU, no assembly 

language required [6]. 

3- No need to design expensive hardware.  

 

1.2  OBJECTIVE 

 
Based on the above discussion, the objective of this thesis is real-time sonar signal 

beamforming and accelerating the massive calculation by using GPU as a real-time 

beamformer. In more detail:    

1. Read data from a linear array of sensors as a 2D array in Time-Space domain. 

2. Zero padding  

3. Apply 2D FFT to bring data from Time-Space domain to Frequency- 

Wavenumber domain. 

4. Apply k-  filter 

5. Apply 1D IFFT to bring data from Frequency-Wavenumber domain to 

Frequency-Space domain. 

6. Apply time delay filter 

7. Apply 1D IFFT to bring data from Frequency-Space domain to Time-Space 

domain.  

8.  Add sensors outputs to increase the S/N ratio. 

9. Using GPU computation in steps 2-8, to accelerate the calculation. 

 

1.1  ORGANIZATION 

 
This thesis is organized as follows:  

In Chapter 2 we mainly focus on principals of conventional beamforming in time and 

frequency domain and explain the array of acoustic sensors from the point of view of 
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performing spatial filtering. In Chapter 3 the general idea of GPU computation is 

discussed. CUDA programming, kernel and threads, three important GPU computation 

subjects, are also explained. Chapter 4 describes our approach to do beamforming by 

using GPU computation and explained our beamforming algorithm. Chapter 5 compares 

the speed and accuracy of implementation of filtering beamforming algorithm for sonar 

devices using GPU with already exist sequential beamforming algorithm. 
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CHAPTER 2  FUNDAMENTAL TOPICS IN BEAMFORMING 

 

2.1  INTRODUCTION 

 
In this chapter we introduce the fundamentals of beamforming. Beamforming is the art of 

manipulating array sensor data to extract a signal of interest from noise when looking in a 

specific direction. All directions are explored simultaneously through a set of beams.  

Beamforming can be interpreted as a bandpass filter in space and time.    

The principal focus of this chapter is the digital processing of signals received by a linear 

array of spatially distributed sensors. One part of the processing of signals is to separate a 

signal from noise, interference and other undesirable signals.  

Beamforming systems are designed to detect incoming signals that have interference with 

other signals. Sometimes the desired signal and interferers have the same frequency band, 

then frequency filtering is not useful to separate desired signal from interference. 

However, if the desired signals and interfering signals come from different spatial 

locations, then the spatial separation can be used to separate signal from interference by 

applying a spatial filter [19]. 

Beamforming algorithm deals with the localization of signals in time domain, frequency 

domain, direction of propagation, or some other variable, so the signals are 

multidimensional and multidimensional digital filtering is useful to solve the problem of 

extracting information from a signals received by linear array sensors. This algorithm 

provides a processing system to separate signals with a particular set of parameters value 

from other signals. 

2.2  SENSOR ARRAY CHARACTERISTIC 

 
Towed array sonar is a sonar array that is towed behind a submarine or surface ship. It 

includes a cable and some hydrophones (sensors). The hydrophones are placed at specific 

distances along the cable. (Figure 2.1) 
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Figure 2.1: Deployment of acoustic sensor array in an ocean 

 

Active sonar transmits acoustic energy into the water and processes received echoes. The 

active sonar has a lot of common subjects with radars. However, the important difference 

between sonar and radar is that the propagation of acoustic energy in the ocean is more 

complicated than the propagation of electromagnetic energy in the air. The complication 

factors of acoustic energy propagation must be considered in the design of sonar systems. 

These factors include spreading loss, absorption, and ducting. These factors will change 

and depend on the other factors such as desired range of sonar, the depth of the water, 

and the nature of the boundaries. 

Passive sonar systems receive the incoming acoustic energy and process it to observe the 

characteristics of incoming signals. The most important application of passive sonar is 

the detection and tracking of submarines. All complication factors of acoustic energy 

propagation and noise also apply to the passive sonar case [8]. 

The advantages of a sensor line array (versus a signal hydrophone) include reduced 

response to the noise emanating from the platform and by using long arrays, relatively 

better performance at low frequency. The length of array has direct relation with 

frequency, which means, longer the array, the lower is the frequency range for which 

acceptable performance can be achieved. 

A disadvantage of sensor line array is that a source can be recognized only relative to a 

conic angle. In other words, without additional information, it is not possible to generate 

azimuth and elevation components from this conic angle. It means that without additional 
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information, we cannot specify on which side of array the source is located. We have to 

consider the fact that the linear array of sensors is never exactly horizontal or straight and 

it will cause some uncertainties in sensor positions, which degrade the beamforming 

calculation [7]. 

 

2.3  ARRAYS AND SPATIAL FILTERS 

A three dimensional system is depicted in Figure 2.2. Our three dimensional array has M 

sensors and vector ri represent the location of the ith sensor. Suppose that distance 

between the array and source of signal is large enough, so the received signal can be 

modeled as plane wave. Unit direction vector u is perpendicular to the wavefronts (points 

to the source).  is the azimuth angle and  is the elevation angle of u. The purpose of 

beamforming is maximizing the response in u0 unit-direction vector which has azimuth 

and elevation angles  and  [7]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2: A three dimensional coordinate system 
 
 
 

u 

ri 

u0 

z 

y 
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2.3.1  Time-Space signal Modeling 
 
Suppose a complex sinusoid signal with unit-direction vector u, is propagating through 

the water, so the received signal at the ith sensor is: 

xi(n) = exp[j(2 fn/fs + kri.u)],    i= 1, 2, …, M           (2.1) 

 k=2 f/c is the wavenumber 

fs is the sampling frequency 

f is the frequency and is equal to c/  

c is the speed of sound in the medium and  is the wave length 

If we add all received signal at the M sensors in the array:  

y(n) = xi(n) = exp(j2 fn/fs) exp(jkri.u)        (2.2) 

Where the factor: 

b(f, u  exp(jkri.u) 

Is complex beam pattern. The dot product in (2.2) and (2.1) is equal to: 

ri.u = rxicos cos  + ryisin cos  + rzisin  

Suppose that a linear array of sensors equally spaced along the x axis by separation of d, 

as shown in Figure 2.3. 

 
Figure 2.3: Projection of a plane wave on the linear array. 

In that case, the location vector for ith sensor is: 



 

 8 
 

ri = (i-1)d , i = 1, 2, …, M 

by considering this geometry, (2.2) could be: 

y(n) = exp(j2 fn/fs) exp(jk(i-1)d cos cos   )        (2. 3) 

The conic angle , represent the projection of the plane wave signal with direction vector 

u on the x axis and sin  = cos cos as shown in Figure 2.3. 

The magnitude of the summation (2.3) is: 

 

sin[( fMd sin )/c] 

                                   |b(f, )| =                                                    (2.4) 
sin[( fd sin )/c] 

Equation 2.4 represents the beam pattern of array. The beam power pattern is |b(f, )| 2.  

According to the numerator and denominator that are function of sin  for a given 

frequency, a plane wave with a conic angle  not equal to zero is attenuated. For conic 

angle of  = 0 degree all M sensors receive the plane wave simultaneously and the 

outputs of these sensors could add in phase.  

If we inspect the numerator of (2.4), it shows that the first zero crossings occur for ( fMd 

sin )/c = ± , or  = sin-1[c/(fMd)]. This area of the beam pattern called main lobe. 

Main lob total area is inversely proportional to frequency f, to the number of sensors M 

and to the sensor spacing d. The remaining region of the beam pattern called the side lobe 

region [7]. 

 

2.3.2 Beam Steering 
 
   
Based on the existing time delay between the arrival signals on the sensors, we apply a 

delay to the sensor outputs before performing the summation in (2.2). Without applying 

the delay the response of the beamforming operation is maximum at  = 00 and the plane 

wave is parallel to the array.  For an arbitrary direction vector, u0, if we want to add the 

sensor signals coherently/in phase we have to calculate the projection of the vector, (u – 

u0), on the ri (i = 1, 2, …, M) vectors. 
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For the three-dimensional case, (2.2) becomes: 

y(n) = xi(n) = exp(j2 fn/fs) exp(jkri. (u – u0)) 

The beam pattern for equally spaced linear array is: 

          Sin[( fMd (sin sin )/c] 

                                   |b(f, )| =                                                              (2.5) 
       Sin[( fd (sin sin )/c] 

To form or steer a beam at angle , we have to apply the correct delay to each sensor 

output. This kind of beam often called a synchronous beam. 

 

2.3.3 Beamwidth 

To calculate the required number of beams for spatial coverage, we have to determine the 

3-dB beamwidth. We are interested in values of  close to , so the equation (2.5) 

becomes: 

                    sin x 

  |b(f, )| =                     ,Where x = (fd/c) (sin sin  

                      x 
Max |b(f, )| = M for . To find the 3dB, we can divide the maximum by √2 and 

find the x: 

(Max  |b(f, )| )/√2  = M/√2   for x = ±0.44/M 

Then sin 3dB =  sin ±0.44/M and the beamwidth obtained by forming the difference of 

two 3-dB angle [7]: 

3dB ~ sin-1[sin  + 0.44c/(Mfd)] – sin-1[sin  – 0.44c/(Mfd)]           (2.6) 

2.4  ANALYSIS OF SPACE - TIME AND WAVENUMBER - FREQUENCY SIGNALS 

In this section we model the linear array output signals as a function of space and time. 

Then by applying the two dimensional Fast Fourier transform, we bring the signals from 

time-space domain to frequency-wavenumber domain. Suppose that y(t, x) represent a 

signal which is a function of time t and space x, then by the definition of the two 

dimensional Fourier transform [10] [11]:

Y(k,  exp[-j(  t – k’x)] dt dx              (2.7) 
 



 

 10 
 

 

 is the temporal frequency, and k represents the wavenumber vector which is the 

number of wave per unit distance in each of the three orthogonal spatial directions. The 

scalar term k’x is the dot product of the wavenumber vector k = (kx, ky, kz)’ and the 

position vector x. If e(t, x) represents the propagated plane waves, then: 

e(t, x) = exp [j( 0t – k’0x)]                              (2.8) 

From the inverse 2D Fourier transform: 

y(t, x   Y(k,  exp[-j(  t – k’x)] dk d                     (2.9) 

We can decomposed any signal y(t, x) into a superposition of propagated plane waves. 

Figure 2-4 shows the k-  space: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 2.4: (k, ) space. (a) signals with a common frequency 0; (b) signals with a 

common propagation speed; (c) signals with a common propagation direction. 

 

 

kx kx 

Ky Ky 

Ky 

|k| = c

kx/|k| = cos  

(a) (b) 

(c) 

kx 
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2.4.1  Filtering in Frequency-Wavenumber Domain 
 

In the beamforming algorithm, we work on signals with multivariable such as time and 

space. Extracting signal components at specific frequencies and velocities of propagation 

needs multidimensional filtering. We can separate the frequency components by applying 

the 1D Fourier transform and then using a bandpass filter. Suppose that we send the Y(k, 

 signal (Equation 2.7) through a filter with an impulse response h(t, x) and the output 

signal is f(t, x). The filter impulse response has to be designed to pass components of 

interest (specific frequencies and velocities) and to reject those, such as additive noise 

and/or propagation directions which we are not interested. The output and input of that 

filter are related as a continuous convolution integral (in Time-Space domain) [10][11]: 

 

f(t, x   h(x – , t- y( ,  d  d                                                               (2.10) 

 

In the frequency-wavenumber domain, the output spectrum is equal to the product of the 

input spectrum and the filter’s frequency-wavenumber response: 

 

F(k, ) = H(k, ) Y(k, )                                                                                            (2.11) 

 

We must design the filter’s frequency-wavenumber response H(k, ) so that it is near 

unity in the desired regions of (k, )-space and near zero in the other regions. If we want 

to pass signal components in some narrow band around the specific frequency 0 

independent of speed or direction of propagation, H(k,  should have a 1D bandpass 

frequency response which is  independent of k [9]. 
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2.4.2  Beamforming in Wavenumber – Frequency Domain 
 
Beamforming is a type of filtering that can be applied to signals carried by propagating 

waves. The objective of a beamforming system is to isolate signal components that are 

propagating in a specific direction and frequency. We assumed that the waves all 

propagate with same speed c, so that the signals of interest is on the surface of the cone 

=c|k| in (k, )-space. Ideally, the passband of the beamformer is the intersection of this 

cone with the plane containing the desired direction vector (Figure 2.4 (c) ), as shown in 

Figure 2.5. 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 2.5: Passband of an ideal beamformer. Passband of an ideal beamformer lies at 

intersection of cone  = c|k| and the plane containing the desired propagation direction 

k0. 

 

 

 

 

 

 

 

 

 

kx 

Ky 
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2.5   WEIGHTED DELAY AND SUM BEAMFORMING 

All mathematical models in the previous sections are based on weights with unity 

magnitude. Now we are going to investigate the array weighting effects on beam patterns 

(section 2.3) and DFT filter response (section 2.4.2). 

2.5.1  Time domain Beamforming 
 

In section 2.3 we calculated the complex beam pattern (Equation 2.4) for a linear array by 

considering the propagation of a sinusoidal, ej2 fn/fs, plane wave in direction sin .  

If we consider the weighting function ai, for ith sensor, then the beam pattern formula by 

varying  is [7]: 

 

b(f, ) =  aiexp[j2 f ( i – 1)d (sin  – sin  0)/c]                                                (2.11) 

 

and by replacing i with i+1: 

 

b(f, ) =  ai+1exp[j2 fid (sin  – sin  0)/c]                                                      (2.12) 

 

Equation (2.4) represents the magnitude of the beam pattern for unity weight (ai = 1).  

Let’s put Equation (2.2) which represents the output of sensors in a simple form: 

 

y(t) =  aixi(t – i)                                                                                                  (2.13) 

 

M represents the number of sensors, xi represents the sensor outputs, ai represents the 

constant gains applied to the sensor outputs and i represents the time delays required to 

point or steer the beam to the specified direction. 

Figure 2.6 shows a time domain beamformer: 
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Time delay 1 

Time delay 2 

Time delay M 

a1 

a2 

aM 

 

  x1(t)                  x 

 

 

  x2(t)                  x 

 

                                                                                              Beam Output 

 

 

  xM(t)                 x 

 

 

Figure 2.6: Time domain beamformer 

 

The i called steering delays, compensate the differences in propagation times for the 

individual array sensors. For the sources far enough away, the propagating signal is 

considered as a plane wave and i are proportional to the projection of the sensor position 

vector ri, relative to a reference point, onto a unit vector k in the direction of wave 

propagation  (refer to section 2.3). Usually the reference point has 0 = 0.  

The ai, are spatial shading or weighting coefficients and are usually applied to the 

individual sensors to adjust the spatial response or beam pattern received with the linear 

array.  

In the reference [13] and [14], some algorithms for synthesis of the weighting coefficients 

are described, which give the ability to control the mainlobe width and sidelobe level.  

The price for a reduction in the level of the sidelobes of the beam pattern is an increase in 

the width of the mainlobe [15]. 
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2.5.2 Frequency Domain Beamforming 
 

Frequency domain beamforming has some advantages and disadvantages when compared 

with time domain techniques. The most significant difference is that a time delay 

transforms to a phase shift in the frequency domain [16]. 

The time delay in time domain is equal to a multiplication of the Fourier transform by e-

j t0 [11]: 

f(t-t0)                  F( ) e-j t0    

 

Frequency domain beamforming are merely the application of a Fourier transform to the 

beamforming process. Because of the linearity of the beamforming process and properties 

of the Fourier transform, the Fourier transform of the beam output is related with Fourier 

transform of the sensor outputs as follows [15]: 

By applying the Fourier transform on Equation (2.13) 

  

Y(f, ) =  ai (f) exp(-j2 f i( ))                                                                           (2.14) 

The Fourier transform of the beam output steered in direction , Y(f, ), is the weighted 

linear combination of the Fourier transform of the received waveforms. In (2.14), the ai 

represent the shading coefficient, the i( represent the delay required to steer the beam 

in the direction , the phase shift , the 2 f i(  are the frequency domain counterpart to 

the time delays required for beam steering, and the Xi represent the Fourier transform of 

the received waveform. One advantage is that the DFT can be computed efficiently and 

fast by using a Fast Fourier Transform (FFT) algorithm [17][18]:  
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Fourier Transform 

a1 e-j 1 

Fourier Transform 

a2 e-j 2 

Fourier Transform 

aM e-j M 

Figure 2.7 depicted a simple frequency domain beamformer: 
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Figure 2.7: Frequency domain beamformer 
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CHAPTER 3 GPU COMPUTING 

 

3.1  INTRODUCTION 

 
“Computers are just as busy as the rest of us nowadays. They have a lot of tasks to do at 

once and need some cleverness to get them all done at the same time.” [1].  

GPU computing is the use of a GPU (Graphics Processing Unit) as a device together with 

a CPU as a host to speed up scientific and engineering applications. In 2007 NVIDIA 

presented GPU computing and it has quickly become an industry standard, used by 

millions of scientist and engineers and adopted by almost all computing vendors. 

GPU computing accelerates algorithms performance by executing compute-intensive part 

of the application on the GPU, while the rest of the code runs on the CPU. In that case the 

applications run faster.  

CPU and GPU together, is a powerful combination. CPUs consist of a few cores designed 

for sequential processing, and GPUs with thousands of efficient cores optimized for 

parallel processing. Serial parts of the code execute on the CPU and parallel parts execute 

on the GPU.  

Intel Pentium family and the AMD Opteron family microprocessors based on a single 

central processing unit (CPU), had significant progress by increasing the performance 

ability and cost reductions for more than two decades.  

GFLOPS (Giga FLoating-point Operations Per Second) has been brought to the desktop 

and hundreds of GFLOPS to cluster servers by these microprocessors. Most software 

developers, scientists and engineers have relied on the progress in hardware to accelerate 

the speed of their algorithms. By introducing a new generation of processors, already 

exist algorithms and applications runs faster. Due to power consumption issues, the 

improvement of application’s speed has slowed since 2003. Regarding to the power 

consumption issues, microprocessor vendors have switched to multi-core and many-core 

systems.  



 

 18 
 

Based on the human brain sequential style for solving problems and also available 

sequential microprocessors, traditionally, most of the software applications are written as   

 

sequential programs. From the other hand, computer users have the expectation that these 

programs run faster with each new generation of microprocessors. This expectation is no 

longer valid because a sequential program runs on just one of the processor cores, which 

is not faster than those in use today.  

Without using the parallel processing ability of multi cores systems, application 

developers are not able to accelerate the applications by using new generation 

microprocessors and it will reduce the growth opportunities of the entire computer 

industry.  

Instead, the parallel programmers will continue to enjoy performance improvement with 

each new generation of microprocessors, in which multiple threads of execution 

cooperate to accelerate applications.  

Parallel programming is not new style in computer programming. The high performance 

software developers have been creating parallel programs for decades. Those parallel 

programs run on large scale, expensive computers. Large scale, expensive computers are 

affordable just for limited applications and it will cause a significant limitation on the 

practice of parallel programming.  

“Now that all new microprocessors are parallel computers, the number of applications 

that need to be developed as parallel programs has increased dramatically. There is now a 

great need for software developers to learn about parallel programming” [2]. 

Since 2003, there is a race for floating-point performance between many-core processors 

GPUs and multi-core CPUs vendors. Figure 3.1 shows this phenomenon. The GPUs 

vendors continuously improve floating-point performance, while the performance 

improvement of general purpose microprocessors has slowed significantly.  

Based on the Figure 3.1 in 2009, the ratio of peak floating-point calculation throughput 

between many-core GPUs and multi-core CPUs is about 10. NVIDIA has presented G80 

Ultra to reach 518 GFLOPS, only about seven months after the original chip by 

improving software driver and clock improvements. We used NVIDIA GeForce GTX 

690 GPU (Figure 3.3) as a real-time digital beamformer, which delivers 2x2810.88 
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GFLOPS FMA (Fused Multiply-Add is an operation that performed in one step, with a 

single rounding, which means calculating a+ (b*c) and then round it to N significant 

bits). 

 
Figure 3.1 Enlarging Performance Gap between GPUs and CPUs [2]. 
 

To understand such a large performance difference between many-core GPUs and CPUs 

we have to understand the difference in fundamental design philosophy between the two 

types of processors, as illustrated in Figure 3.2. 
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Figure 3.2 Fundamentally different design philosophies between CPU and GPU  [2]. 
 
Memory bandwidth is another important subject in multi processors systems. Graphics 

chips have been operating at approximately 10 times the bandwidth of available CPU 

chips. In late 2006, G80 was capable of about 80 gigabytes per second (GB/S) into the 

main DRAM. GeForce GTX 690 has 384 GB/S memory bandwidth [24]. 

 

 
 
Figure 3.3 GeForce GTX 690 GPU card from NVIDIA 
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3.2  COMPUTER UNIFIED DEVICE ARCHITECTURE (CUDA) 

 

CUDA is a parallel computing platform and programming model invented by NVIDIA. It 

enables dramatic increases in computing performance by harnessing the power of the 

GPU. The GPU computing system consists of two parts. First part is a host which is CPU 

side, such as Intel architecture microprocessor in personal computers, and the other part 

is one or more devices which are parallel processors with a large number of Arithmetic 

Logic Units (ALU). In scientific and engineering applications, there are usually program 

sections that have rich amount of data parallelism, and it is a good opportunity to execute 

many arithmetic operations safely on the program data structures in parallel manner. The 

CUDA software accelerates the execution of these applications by using the GPU 

computation ability to perform a large amount of data parallelism on the device side. 

Since data parallelism plays such an important role in CUDA, in the next sections, we 

will discuss the concept of data parallelism and basic features in CUDA.  

 

3.2.1  CUDA Program Structure 
 
A CUDA program includes one or more phases that are executed on the host (CPU side) 

and one or more phases that are executed on the device (GPU side).  

To optimize the algorithm’s speed, we could implement the phases that have a little or no 

data parallelism in the host code and implement the phases that have rich amount of data 

parallelism in the device code.  

The program includes a single source code for both host and device code. The NVIDIA C 

Compiler nvcc separates the two source codes. The host code is ANSI C code. Host’s 

standard C compilers compile host code and runs as an ordinary process. The device code 

is written using ANSI C extended with some extra function and keywords for labeling 

data-parallel functions, called kernels, and their associated data structures. The device 

code is compiled by the nvcc and executed on a GPU device. It is possible to use the 
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emulation feature in CUDA, if there is no device available or the kernel is more 

appropriately executed on a CPU.  

The kernel functions usually generate a large number of threads to operate data 

parallelism. Suppose that we want to multiply matrix A by matrix B element by element 

and generate output matrix C (equal to “A .* B=C” operation in MATLAB), it can be 

implemented as a kernel and use threads to compute one element of the output matrix. In 

that case, the number of threads used by the kernel is equal to multiplication of the matrix 

dimensions. For a two dimensional matrix 1000 by 1000 matrix multiplication, the kernel 

that uses one thread to compute one output element would generate 1,000,000 threads. 

These threads in CUDA program take very few cycles to generate and schedule because 

of efficient GPU hardware structure while the CPU threads typically take thousands of 

clock cycles to generate and schedule [2-4]. 

 

3.2.2 Kernel Functions and Threading  
 

This section presents the CUDA kernel functions and the organizations of threads 

generated by the kernel functions. In CUDA, a kernel function represents the code to be 

executed on GPU side, by all threads in parallel. All threads of a parallel phase execute 

the same code (Single-Program), so CUDA programming is an example of the Single-

Program Multiple-Data (SPMD) parallel programming style, which is an important 

programming style in parallel computing systems.  

Figure 3.4 shows the kernel function for element by element matrix multiplication. The 

syntax is ANSI C with some extensions. There is a CUDA specific keyword 

“__global__” in front of the declaration of MatrixMulKernel(). This keyword indicates 

that the function is a kernel and that it can be called from a host and execute on the 

device.  

The second important extension to ANSI C is the keywords “threadIdx.x” and 

“threadIdx.y”. These keywords refer to the thread configuration. Note that all threads 

execute the same kernel code. We need a mechanism to allow threads to have access 

toward the particular parts of the data structure that they are designated to work on.  
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These keywords allow a thread to access the hardware registers associated with it at 

runtime, which provides the identity to the thread.  

 

 

 

3.3  CUDA THREADS 

 
Section 3.2 is another subsection at the second level for the table of contents. For some  

 

3.3.1  Thread Organization 
 
 
 

3.3.2  CUDA General Algorithm  
 
 
Figure 3.4 The element by element matrix multiplication kernel function. 

 

In Figure 3.5, by launching the Kernel 1 GPU creates Grid 1. Each CUDA thread grid 

usually includes thousands to millions of GPU threads and the number of required 

threads depends on the parallel algorithm.  

To process a large amount of data in parallel, we have to creating enough threads. For 

example, each element of a large array might be computed in a specific thread. As 

illustrated in Figure 3.5, threads in a grid are organized into a two level hierarchy. For 

simplicity, the number of threads shown in Figure 3.5 is set to be small, but in reality, a 

grid will typically consist of many more threads.  

At the first level, each grid consists of one or more thread blocks in two dimensions, x 

and y. All blocks in a grid have the same number of threads. In Figure 3.5, Grid 1 has 4 

thread blocks that are organized into a 2x2 two-dimensional array of threads. Each thread 

block has a unique three dimensional coordinate given by the CUDA specific keywords 

blockIdx.x, blockIdx.y and blockIdx.z. All thread blocks have the same number of 

threads organized in the same style. For simplicity, we assume that the kernel in Figure 

 
// Element by element Matrix multiplication kernel – thread specification 
 
__global__ void MatrixMulKernel(float *A, float *B, float *C, int dimX, int dimY) 
{ 
 

// 2D Thread ID 
 
int tx = threadIdx.x; 
int ty = threadIdx.y; 
 
int i = tx + (ty*dimX) 
 
if (i<dimX*dimY) 

C[i]=a[i] * b[i]; 
} 
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3.4 is launched with only one thread block. A practical kernel will create much large 

number of thread blocks. 

 

 
Figure 3.5 CUDA thread organization. 

Each thread block should be organized as a three dimensional array of threads with a total 

number of up to 512 threads. The coordinates of threads in a block are uniquely defined 

by three thread indices: threadIdx.x, threadIdx.y, and threadIdx.z. It depends on the 

applications to use all the three dimensions of a thread block or just two/one of them. In 

Figure 3.5, each thread block uses three dimensions and is organized into a 4x2x2 array 

of threads. This gives Grid 1 a total of 4*16=64 threads. This is obviously a simple 

example. In our beamforming algorithm, 128*32768*23=96,468,992 threads have been 

used to multiply sensors output signals in wavenumber-frequency domain by k-  filter. 

The code in Figure 3.4 can use only one thread block organized as a 2-dimensional array 

of threads in the grid. Also a thread block contains up to 512 threads and each thread is to 
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calculate one element of the product matrix, so the code can only calculate a product 

matrix of up to 512 elements. This is of course not acceptable. If the product matrix needs 

to have millions of elements to have sufficient amount of data parallelism to benefit from 

execution on a device, we need multiple blocks.  

The main steps in CUDA programming are: 

1- Allocating memory on host and device 

2- Preparing the input data and save it in allocated area on host 

3- Transferring the required data from host to device 

4- Setup the configuration of Grid and Blocks    

5- Calling the kernel by grid and block defined in step 4 

6- Transfer the result from device to host 

7- Clean up the allocated memories on the host and device 

Figure 3.6 shows a simple program to add two long vectors, element by element. Each 

vector has 4,194,304 elements. 
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Figure 3.6 Simple program to add two long vectors, element by element. 

#define dimX 4194304 
// Kernel to add vectors elements 
__global__ void add(float *aa, float *bb, float *cc ) { 
 int ii = blockIdx.x*blockDim.x + threadIdx.x;  
 if (ii < dimX) 
         cc[ii] = bb[ii] + aa[ii]; 
}  
int main(void) {    
 int i; 
// To allocate memory on host and device 
 float *a, *b, *c; 
 a=(float *)malloc(sizeof(float)*dimX); 
 b=(float *)malloc(sizeof(float)*dimX); 
 c=(float *)malloc(sizeof(float)*dimX); 
 float *dev_a, *dev_b, *dev_c; 
 cudaMalloc ((void**)&dev_a, dimX * sizeof(float)); 
 cudaMalloc ((void**)&dev_b, dimX * sizeof(float)); 
 cudaMalloc ((void**)&dev_c, dimX * sizeof(float)); 
// To create input data on host 
 for (i=0; i<dimX; i++) 
 { 
  a[i]=i; 
 } 
 for (i=0; i<dimX; i++) 
 { 
  b[i]=i; 
 } 
// To transfer input data from host to device   
 cudaMemcpy(dev_a, a, dimX * sizeof(float), cudaMemcpyHostToDevice); 
 cudaMemcpy(dev_b, b, dimX * sizeof(float), cudaMemcpyHostToDevice); 
// To setup grid and blocks dimensions 
 dim3 grids(dimX/128,1);  
 dim3 threads(128,1);  
// To call kernel to add vectors on device 
 add<<<grids,threads>>>(dev_a, dev_b, dev_c); 
// To transfer result from device to host   
 cudaMemcpy(c, dev_c, dimX * sizeof(float), cudaMemcpyDeviceToHost); 
//To clean up host and device memory ---------------------------- 
 cudaFree(dev_a); 
 cudaFree(dev_b); 
 cudaFree(dev_c); 
     free(a);  free(b);      free(c); 
 return 0; 
} 
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By using MacBook Air laptop under Mac OS X, Version 10.6.8 with NVIDIA 

GeForce 320M GPU, the add kernel in Figure 3.6 needs 0.000157 Sec. to calculate the 

result, but if we just use CPU, it needs 0.0589 Sec., which means that the GPU 

computation is faster than CPU sequential more than 402 times. Refer to Chapter 5, 

section 5.2 for more GPU computation and CPU sequential usage time and speed 

comparison.   
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CHAPTER 4 PARALLEL SONAR SIGNAL PROCESSING 

 

4.1  INTRODUCTION 

 
Sonar beamforming algorithms can require on the order of billions of multiply 

accumulates (MACs) per second and therefore have traditionally been implemented in 

custom hardware [20].  

Based on the detailed explanation of beamforming in Chapter 2, the objective of 

beamforming is to align the signals arriving at the linear array of sensors from a certain 

direction in time/phase, so that they can be added coherently. This means that signals 

coming from all other directions will be added incoherently, and as a consequence 

attenuated. The bulk of the operations required for beamforming are parallel intensive 

tasks. These include: matrix multiplication, zero padding, filtering, FFT and IFFT. In this 

thesis I described the use of GPU as a digital beamformer and compare the speed of 

calculation between two methods: 

1. Beamforming by GPU 

2. Beamforming by CPU 

Figure 4.1 depicted the main algorithm for digital beamforming by GPU computing. 
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Figure 4.1: Main algorithm for digital beamforming by GPU computing 

 

 

 

Preparing data and parameters 

Zero padding 

1D IFFT on space domain to bring data from Wavenumber-Frequency (k- ) 
domain to Space-Frequency domain (x- )  

Apply time delay mask in x-  domain 

2D (Space-Time) filtering (k-  Masking) 

End 

2D FFT to bring data from Space-Time domain (x-t) to Wavenumber-
Frequency (k- ) domain  

Add sensors output to calculate beamformer output   

1D IFFT on time domain to bring data from Space-Frequency (x- ) domain to 
Space-Time domain (x-t)  
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4.2   PREPARING DATA AND PARAMETERS 

Synthetic data has been generated to test the proposal sonar processing. This data 

simulates a plane wave insonifying a 64 sensors array in presence of white Gaussian 

Noise and array self noise (very low speed “bulge” wave propagating along the array).   

We consider the case of 64 sensors in a linear array of equally spaced along the x axis 

with a separation of d = 0.10 m as shown in Figure 4.1.  

 

 

              d=0.10m 

                                                                                                                                         x 

           0               d               2d                                                  62d            63d 

 

Array length = 6.3 m 

 

Figure 4.2: Geometry of a linear array of equally spaced sensors 

 

As shown in Figure 4.2, the array length is equal to 63 * 0.10 m = 6.3 m  

Each sensor works as an input channel (ch1 – ch64) and receives N = 10*1024=16,384 

samples per each inspection period.  

The sound speed in sea-water is taken as c = 1470 m/Sec. 

The sampling frequency Fs is 11025 Hz, with a time period between two samples of: 

 t = 1/Fs = 1/11025 = 9.0703e-05 Sec. 

By considering the number of samples, 16384, the length of inspection period is: 

Inspection period length = t * N = 9.0703e-05 Sec. * 16384 = 1.4861 Sec. 

Based on this calculation Figure 4.3 depicts the data matrix y (64 Sensors output) in 

Time-Space domain: 
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                    y1[0]        y1 [1]       y1 [2]       …      y1 [16383] 

                    y2[0]        y2 [1]       y2 [2]       …      y2 [16383] 

                    y3[0]        y3 [1]       y3 [2]       …      y3 [16383] 

      y=         .             .           .         .             .  

                    .             .           .         .             .  

                    .             .           .         .             .  

                    y64[0]     y64 [1]    y64 [2]        …   y64 [16383] 

                                                  t=9.0703e-05 Sec.        

 

Figure 4.3: Data matrix y in Space-Time (x-t) domain 

 

Synthetic data has been saved in both wav and binary files. The proposed sonar 

processing algorithm loads a processing window from the binary file and store it into a 

2D array of  size of 64X16384. 

 
Figure 4.4:  Sample data as an input for one sensor [23] 
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Figure 4.4 depicts 16384 samples as an input to 1 of 64 sensors while Figure 4.5 shows 

16384 samples data as input to all 64 sensors. These samples contain both signal and 

noise.  

 

 
Figure 4.5: Sample data as an input on 64 sensors [23] 

 

To increase array detection performance, sonar processing consist in increasing signal to 

noise ratio by manipulating sensors raw data. As the array is pulled through the water, 

noise is generated from several separate mechanical excitations. The two main sources of 

noise are (i) the turbulent boundary layer (TBL) and (ii) the Bulge Wave [22]. TBL was 

roughly modeled in the synthetic data as a white Gaussian Noise on all sensors. The 

Bulge Wave was modeled as a local oil pressure profile (raised cosine 40 cm long) 

propagating along the array at a very low speed (40 m/s). 

 

4.3  ZERO PADDING  

 

After reading the data from each sensor in a specific time frame, we then use a zero 

padding algorithm in the time and space domains. Zero padding adds zero samples in 

time and space domains and the purpose of zero padding is usually: 

Bulge Wave 
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Space  
Domain 
(128  
Samples) 

1- To increase the speed of FFT algorithm, the number of samples should be a power 

of 2:               Number of samples = 2n           n=0,1,2,3,…    

If the number of samples is not a power of 2 we add some zero to the end of array to 

make it a power of 2 

2- Increase the processing or display resolution of frequency domain after the FFT 

3- Avoid aliasing when we apply circular convolution between two signals in time 

domain which corresponds to multiplication in frequency domain. 

The main purpose of zero padding in this project was the latter, i.e to avoid aliasing. 

We carried out 2D zero padding by adding 16384 zero samples in time domain and 64 

zero samples in space domain, so the result is a 128 X 32768 two dimensional array data.   

Figure 4.6, depicted the final array data    

 

   

                    y1[0]        y1 [1]       y1 [2]       …      y1 [16383]     0     0  …  0 

                    y2[0]        y2 [1]       y2 [2]       …      y2 [16383]     0     0  …  0 

                    y3[0]        y3 [1]       y3 [2]       …      y3 [16383]     0     0  …  0  

                    .             .           .         .             .          .    .   …  . 

                    .             .           .         .             .          .    .   …  .        

       y=       y64[0]     y64 [1]    y64 [2]        …   y64 [16383]        0     0  …  0 

                       0              0            0            ...               0            0     0  …  0 

                       0              0            0            ...               0            0     0  …  0 

                       0              0            0            ...               0            0     0  …  0 

                    .            .           .           ...               .           .     .  …  . 

                    .            .           .           ...               .           .     .  …  . 

                       0              0            0            ...               0            0     0  …  0 

 

Figure 4.6: Data matrix y in Space-Time (x-t) domain 

Time Domain: 32768 Samples 
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To accelerate the speed of zero padding algorithm, we used a CUDA kernel to do zero 

padding on the GPU. Refer to Chapter 5 for a detailed explanation speed comparison 

between CPU sequential and GPU computation. 

 

4.4  2D FFT ON TIME-SPACE DOMAIN  

 

Following the method provided in section 2.4.1 “Filtering in Wavenumber - Frequency 

Domain” If we are interested in extracting signal components at specific frequencies and 

velocities of propagation, then we can separate the frequency components by applying a  

Fourier transform and then using a bandpass filter. By applying a 2D FFT on the original 

data array  X, we bring data from the Space-Time domain (x-t) to Wavenumber-

Frequency (k- ) domain and subsequently carry out a k-  analyses.  

y array data is 2D array and has 128X32768 = 4,194,304 samples.  2D FFT(X) function 

requires a lot of calculation and requires a lot of time, so it is a good opportunity to use 

CUDA functions and apply 2D FFT to increase the speed of calculation by using parallel 

processing resources on GPU.  Refer to Chapter 5 for detail explanation about speed 

comparison between CPU sequential and GPU computation. Figure 4.7 shows the raw 

data in k-  domain after 2D FFT. 

   

Figure 4.7: Raw signal in k-  domain [23] 
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4.5  SPATIAL FILTERING (K-  MASKING) 

 

The first step was to decide on the number of beams needed to satisfy the required 

resolution of the full 360o space around the linear array.  Based on the geometry of the 

linear array, we need to scan just the space between -90 o to 90 o.   

To calculate the beams, we divided the space between -90o to 90o into 23 regions 

uniformly distributed in sin ( ) space (which means dividing the space [-1, 1] to 23 equal 

subspace) with a 3dB maximum scalloping loss. For detail explanation refer to chapter 2, 

section 2.3.3. Figure 4.8 depicted the beam level between [-90o and 90o].      

 

Figure 4.8: 23 Array beams uniformly distribution on sin ( ) [23]  

 

In the second step we created a two dimensional filter (k-  Mask) for each individual 

beam and multiply it in the k-  domain by the sensors’ outputs (Equation 4.2) to reject 

unnecessary data. Based on explanation in section 2.4 and Equation (2.7):   
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Y(k,  = 2D FFT [y(x, t)]                                                                                            (4.1) 
 
 
We are looking for a filter with an impulse response h(t, x) to pass components of interest 

and to reject things like additive noise and/or propagation directions which we are not 

interested (Refer to Equation 2.10 for relation between output and input of that filter).  

So in the Wavenumber - Frequency domain, the output spectrum is equal to the product 

of the input spectrum and the filter’s Wavenumber - Frequency response: 

 

F(k, ) = H(k, ) Y(k, )                                                                                              (4.2) 

 

We used a Gaussian window (along wavenumber axis) extended along the frequency axis 

to define a 2D Beam Filter Mask. An example of such a mask is presented in Figure 4.9 

for a beam steering angle of 46.6582o.  

 

 

Figure 4.9:  k –  Filter Mask for beam angle = 46.6582o [23] 

Figure 4.10 depicted the result of multiplication of sensors’ outputs by k–  filter mask in 

Time – Space domain and Figure 4.11 depicted the result in Wavenumber - Frequency 

domain. Figure 4.12 shows the raw data and filtered data (for beam steering angle = 
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46.6582o) on one sensor. After filtering, there is no unnecessary data, so it is much easier 

to analyze.   

 

Figure 4.10: Filtered signal in Space – Time domain for beam angle = 46.6582o [23] 

 

Figure 4.11: Filtered signal in k-  domain for beam angle = 46.6582o [23] 
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Figure 4.12: Raw data and filtered data on one sensor for steering beam = 46.6582o [23] 

We need to create or read the k–  filter mask just one time and use it when we have a 

new set of data.    

Based on explanation about 23 steering beams in the beginning of this section, we have to 

multiply a 2D array with 128 x 32768 complex elements by k-w masking 2D array with 

128 x 32768 real elements, 23 times. It means 128 x 32768 x 23 = 96,468,992 

multiplications for real parts and 96,468,992 multiplications for imaginary parts, which is 

totally 192,937,984 multiplications. To accelerate the speed of k–  masking algorithm, 

we used a kernel to do k–  masking as a parallel process in GPU. Refer to Chapter 5 for 

detail explanation about speed comparison between CPU sequential and GPU 

computation.   
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4.6  TIME DELAY MASK 

 

Based on explanation in Chapter 2, Sec 2.5.2 “Frequency Domain Beamforming” and 

Figure 2.7, in the first step we have to bring data to the frequency domain and then 

multiply required coefficient to compensate the existing time delay between sensors. In 

this stage, because of 2D FFT in the last stage, our data in GPU is in the k-  domain. To 

bring the data in Space-Frequency domain (x- ), we have to apply 1D IFFT on 

wavenumber domain. Then in the second step we need to create or read the time delay 

filter mask just one time and use it when we have a new set of data. In the last step we 

have to multiply the data by time delay mask, which is a complex multiplication of two 

2D matrixes element by element. To accelerate the speed of time delay masking 

algorithm, we used 1D IFFT function in CUDA to apply 1D IFFT algorithm as a parallel 

process in GPU. Based on explanation about 23 steering beams in the beginning of 

section 4.5, we have to multiply a 2D array with 128 x 32768 x 23 complex elements by 

time delay masking 2D array with 128 x 32768 x 23 complex elements. Consider the 

following complex multiplication: 

x = a + ib 

y = c + id 

a . b = ((a * c) - (b * d)) + i((a * d) + (b * c))  

For each complex multiplication we need four multiplications and three additions.  It 

means 128 x 32768 x 23 x 4 = 385,875,968 multiplications and 128 x 32768 x 23 x 3 = 

289,406,976 additions. We used a kernel to apply the time delay mask as a parallel 

process in GPU. Refer to Chapter 5 for detail explanation about speed comparison 

between CPU sequential and GPU computation. 
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Space  
Domain 
(128 Samples) 

 

4.7  SUMMATION  

 

In this stage, there is no time delay between sensors’ outputs and the signal is in the 

Space-Frequency (x- ) domain. In first step we have to apply 1D IFFT in frequency 

domain to bring data in Space-Time domain (x-t). In the second step we have to add all 

sensors’ outputs for each individual samples in the time domain (Summation algorithm). 

Figure 4.13 shows the mathematical procedure: 

 

   

                    y1[0]        y1 [1]       y1 [2]       …      y1 [32768]   

                      +              +               +            +               + 

                    y2[0]        y2 [1]       y2 [2]       …      y2 [32768]      

                      +              +               +            +               + 

   y=            y3[0]        y3 [1]       y3 [2]       …       y3 [32768]       

                      +              +               +            +               + 

                    .             .           .            …          .        
                      +              +               +            +               + 

                  y128[0]      y128 [1]     y128 [2]     …      y128 [32768]               

                     

    y=            y[0]         y [1]          y [2]       …      y [32768]   

Figure 4.13: Summation procedure for each steering angle.  

 

To accelerate the speed of time delay masking algorithm, we used 1D IFFT function in 

CUDA to apply 1D IFFT algorithm as a parallel process in GPU. Based on explanation 

about 23 steering beams in the beginning of section 4.5, we have to add 128 1D arrays 

Time Domain: 32768 Samples 
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with 32768 elements, 23 times, which means 128 x 32768 x 23 = 96,468,992 additions.  

We used a kernel to apply summation algorithm as a parallel process in GPU. Refer to 

Chapter 5 for detail explanation about speed comparison between CPU sequential and 

GPU computation. Figure 4.14 shows the result after applying time delay masking. 

Figure 4.14: Filtered and time delayed signal in k-  domain [23] 

Figure 4.15 shows the raw data on one sensor and beamformer output (signal after 

applying summation algorithm).  

 

Figure 4.15: Raw data on one sensor and beamformer output [23] 
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CHAPTER 5 RESULTS  

 

5.1  BEAMFORMING BY CPU SEQUENTIAL AND GPU COMPUTATION  

 
In this thesis we applied beamforming algorithms by CPU sequential (MATLAB code) 

and GPU Computation (CUDA code) algorithms on the same computer and proved that, 

we could accelerate the speed of signal processing by applying parallel processing 

technique by using the GPU as digital beamformer. Based on explanation in Chapter 4 

and the flow chart depicted in Figure 4.1, our beamforming algorithm has some main 

functions which are in the first column of Table 1.  
     
Table 5.1: Time usage comparison between MATLAB code and CUDA code 

Function MATLAB Code Time 

Usage (mSec.) 

CUDA Code 

Time Usage 

(mSec.) 

CUDA is 

Faster 

(Times) 

One Steering 

Angle  

23 Steering 

Angles 

 23 Steering 

Angles 

Reading array data       12.5 12.5 2.5 5 
Zero Padding  14.3 14.3 20.03 0.71 
2D FFT   278.5 278.5 0.6 464.17 
K-  Masking 29.6 680.8 114.72 5.93 
1D IFFT on Space Domain 110 2530 1.56 1621.79 
Time Delay Masking 34.5 793.5 217.76 3.64 
1D IFFT on Time Domain 241.8 5561.4 339.56 16.38 
Summation  11.3 259.9 0.25 1039.6 
Total: 732.5 10130.9 696.98 14.54 
 

Second and third columns show the MATLAB code usage time to apply beamforming for 

one steering angle and 23 steering angles. Fourth column shows the CUDA usage time 

for 23 steering angles. Fifth column shows that, how much CUDA is faster than 

MATLAB (Dividing the MATLAB usage time by CUDA usage time for 23 steering 

angles). In MATLAB code, to complete all 23 steering angles for a set of data, we have 

to execute Reading Data, Zero Padding and 2D FFT functions, just one time and the rest 
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of functions, 23 times. But in CUDA code, based on parallel processing nature of 

algorithm we could execute all functions in the same time for all 23 steering angles. 

According to the abstract, the objective of this thesis is to use Graphics Processing Unit 

(GPU) as real-time digital beamformer to accelerate the intensive signal processing. The 

sections 5.1.2 and 5.1.3, explain the results based on the objective of this thesis. 

 
5.1.1  Using GPU As A Beamformer 
 
We used GPU computation (CPU + GPU) to process the received signal from the sensors 

as a beamformer. By this way we did not use expensive custom design beamformer.    

 

5.1.2  Real-Time Beamformer 
 

According to the Table 1, total usage time to run required beamforming algorithms by 

MATLAB code is 10.131 Sec. and by CUDA code is 0.697 Sec., which means CUDA 

code is 14.54 times faster. 

In Section 4.2 we explained that the inspection period length (Data length) is 1.4861 Sec. 

and the required time to apply beamforming algorithms by CUDA is 0.697 Sec., which 

means, after receiving the first batch of data with length of 1.4861 Sec. we could process 

it in 0.697 Sec. and beamforming algorithms are completely done before we get next 

batch of data, so it is a real-time processing and is one of the main goals of beamforming.  

 

5.1.3  Accuracy  
 
Another subject that we have to address is generated errors by algorithms. From a 

practical point of view, MATLAB code or CUDA code generates some errors, when we 

apply some algorithms (For example, FFT or IFFT), but the question is, what is the 

maximum difference between MATLAB code and CUDA code results? 

Via numerical result, after calculating the maximum difference between MATLAB code 

and CUDA code results is 3.05474e -07, which is negligible when we compare it with 

already exist noises or errors generated by the hardware. 
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By this way, we showed that GPU computing has the ability to perform the beamforming 

algorithms with enough accuracy as a real-time system and it is available on the personal 

computers, so there is no need to spend time and money for custom design beamformer 

hardware. 
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CHAPTER 6 CONCLUSION 

 
 
6.1 CPU SEQUENTIAL AND GPU COMPUTATION COMPARISON 
 
In this section we compare the CPU sequential and GPU computation usage time and 

speed for some popular functions. Before starting to explain each function, let’s have a 

closer look at execution of a kernel on GPU. Each execution has three main parts: 

1. Transfer data from CPU (Host) side to GPU (Device) side 

2. Execute the kernel on GPU 

3. Transfer the result from GPU side to CPU side  

Figure 6.1 shows the block diagram of that sequence. Total usage time to execute just one 

kernel is equal to TCToG1 + TExe1 + TGToC1. 

 

 

 

 

 

Figure 6.1: Usage time to execute just on kernel on GPU 

 
Suppose that we want to execute more than one kernel on GPU as a serial functions. In 

that case after executing the first kernel, we don’t need to transfer result from GPU side 

to CPU side and then transfer it again from CPU to GPU for next kernel execution. 

Instead of that we could keep the result in GPU and execute the next kernel and so on. By 

this way we can save a lot of time by avoiding transfer data between GPU and CPU and 

the total usage time to execute n kernel is equal to: 

Total Usage Time = TCToG1 + TExe1 + TExe2 + … + TExen + TGToCn 

So the total usage is almost the execution of kernels on GPU if we avoid transferring data 

between CPU and GPU. In our beamforming algorithms, we transfer a bath of new data 

to GPU and then we execute the Zero Padding, 2D FFT, k-w Masking, 1D IFFT, Time 

Delay Masking and Sensors’ Outputs Summation kernels. Via numerical results in Table 

1, we have to transfer data from CPU to GPU one time with usage time = 0.002397 Sec. 

Transfer data from 

CPU (Host) side to 

GPU (Device) side. 

Usage Time = TCToG1 

Execute the kernel 

on GPU. 

Usage Time = TExe1 

 

Transfer the result 

from GPU side to CPU 

side. 

Usage Time = TGToC1 
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(0.35% of total usage time) and then apply the above beamforming kernels with usage 

time = 0.6773 Sec. (99.65% of total usage time). 

Suppose that we have a 2D array with N x M samples (N columns and M rows). Table 2 

shows the CPU sequential and GPU computation usage time to apply 2D FFT, 2D IFFT, 

1D FFT, 1D IFFT, Zero Padding and Summation functions for different values of N and 

M. Based on the above explanations, all GPU usage times are the required time to 

execute kernel on GPU and transferring data (between GPU and CPU) are not included. 

Table 3 shows, how much GPU computation is faster (Times) by dividing CPU 

sequential usage time by GPU computation usage time. 

 

Table 6.1: CPU sequential and GPU computation usage times 

Function Number of Samples (N x M) 

4 k 1 M 2 M 4 M 8 M 16 M 64 M 

2D FFT CPU Seq. 0.325 51 104.5 230.4 490.9 1,053 4,462.8 

2D FFT GPU Com. 0.227 0.646 0.646 0.688 0.849 0.867 1.363 

2D IFFT CPU Seq. 0.476 68.351 145.459 305.307 625.969 1,309.4 5,633.6 

2D IFFT GPU Com. 0.232 0.605 0.689 0.676 0.851 0.863 1.341 

1D FFT CPU Seq. 0.116 19.171 24.412 68.565 190.556 436.582 1,897.3 

1D FFT GPU Com. 0.216 0.62 0.654 0.678 0.824 0.826 1.348 

1D IFFT CPU Seq. 0.212 42.248 67.671 151.787 321.431 698.744 3,143.6 

1D IFFT GPU Com. 0.219 0.636 0.662 0.680 0.850 0.856 1.357 

Zero Pad. CPU Seq. 0.029 1.697 6.471 14.402 26.940 53.242 203.51 
Zero Pad. GPU Com. 0.023 0.025 0.025 0.028 0.040 0.045 0.045 
Summation CPU Seq. 0.025 0.898 1.790 3.534 6.972 13.857 55.014 
Summation GPU Com. 0.032 0.057 0.051 0.054 0.056 0.058 0.059 
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Table 6.2: Speed comparison between CPU sequential and GPU computation 
 

Function Number of Samples (N x M) 
4 k 1 M 2 M 4 M 8 M 16 M 64 M 

1D FFT 0.54 30.92 37.85 101.13 231.26 528.55 1407.49 
1D IFFT 0.97 66.43 102.22 223.22 378.15 816.29 2316.58 
2D FFT 1.43 78.95 161.76 334.88 578.21 1214.53 3274.25 
2D IFFT 2.05 112.98 211.12 451.64 735.57 1517.27 4201.04 

Zero Padding 1.26 67.88 258.84 514.36 673.50 1183.16 4522.42 
Summation 0.78 15.75 35.10 65.44 124.50 238.91 932.44 

 

For the Zero Padding function, the original dimensions of input array is N/2 by M/2 and 

we apply zero padding to double the dimensions by adding some zeros to the end of each 

row and column (Refer to Figure 4.6 for N = 32768 and M = 128 example). 

For Summation function, input array has N x M dimensions and we have to add all 

samples in each column and save it in an array with dimension N x 1 (Refer to Figure 

4.12 for N = 32768 and M = 128 example). 

Figure 6.2 to 6.13 depicted the logarithmic graphs of the CPU sequential and GPU 

computation usage time and speed comparison for each function.   

Via the numerical data in Table 1, 2 and 3 and also the graphs, the major accomplishment 

of GPU computation is the processing of massive data. When the number of samples is 

low (for example 64 x 64), there is no significant difference between CPU sequential and 

GPU computation, but by increasing the number of data, CPU sequential requires a lot of 

usage time, however GPU computation usage time is almost flat and doesn’t change a lot. 

We believe that parallel processing plays a major role in massive data processing and in 

near future it has a significant role in scientific researches and based on the advantages of 

GPU computation, which we explained in Section 1.1, it could be a powerful and not 

expensive tool for scientists.  
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Figure 6.2: 2D FFT CPU sequential and GPU computation usage time comparison 

 

 
Figure 6.3: 2D FFT speed comparison between CPU sequential and GPU computation 
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Figure 6.4: 2D IFFT CPU sequential and GPU computation usage time comparison 

 

 
Figure 6.5: 2D IFFT speed comparison between CPU sequential and GPU computation 
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Figure 6.6: 1D FFT CPU sequential and GPU computation usage time comparison 

 

Figure 6.7: 1D FFT speed comparison between CPU sequential and GPU computation 
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Figure 6.8: 1D IFFT CPU sequential and GPU computation usage time comparison 

 

 
Figure 6.9: 1D IFFT speed comparison between CPU sequential and GPU computation 
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Figure 6.10: Zero Padding CPU sequential and GPU computation usage time comparison 

 

 
Figure 6.11: Zero Padding speed comparison between CPU sequential and GPU computation 
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Figure 6.12: Summation CPU sequential and GPU computation usage time comparison 

 

 
Figure 6.13: Summation speed comparison between CPU sequential and GPU computation 
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