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ABSTRACT 

The synthesis and characterization of the first heteroleptic pyrrolide/2,2’-bipyridyl complexes of 

ruthenium(II) are reported. Pyrroles substituted at the 2-position with X=O functionality react 

with Ru(bipy)2Cl2•2H2O to form complexes in which the pyrrolide ligands chelate to Ru(II). The 

library of pyrroles includes 2-formyl, 2-keto, 2-carboxylato, 2-sulfinyl and 2-sulfonyl 

derivatives. 
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INTRODUCTION 

The chemistry of the cyclopentadienyl unit as a ligand in transition metal chemistry is well 

established.1,2 However, the ability of isoelectronic and geometrically comparable pyrrolide 

ligands to coordinate to transition metal centres is significantly underdeveloped.3,4 It was 

frequently believed that pyrrolide metal complexes were intrinsically unstable, based on attempts 

to prepare complexes of various transition metals using sodium pyrrolide and meeting only with 

disappointment.5 Subsequently, π-cyclopentadieneyl-π-pyrrolyliron complexes (azaferrocenes) 

were discovered5,6 following the synthesis of π-pyrrolide manganese tricarbonyl, apparently the 

first example of a pyrrolide metal complex.7 Numerous pyrrole-based metal complexes have 

since been reported, but the ligands are often cyclopyrrolic8 (macrocycles containing pyrrole 

units), particularly tetrapyrrolic,9 with limited examples of simple pyrrolic systems. 

Pyrrolides may coordinate in several alternative modes: π coordination (η5) involving the 

entire π system; an N-σ mode (η1); and a C-σ mode (η1). Most pyrrolide transition metal 

complexes correspond to the N-σ η1 mode. However, there are also examples of η2 coordination 

to rhenium, tungsten and osmium,10, 11 as well as examples of η1 complexation to rhenium 

through the 2-position of pyrrole.12,13 

Although pyrrolide complexes of transition metals such as rhenium14, 15 and molybdenum16 

have been reported, there are few examples reported with ruthenium(II).17-20 For example,18 a 

pyrrolide ruthenium complex has been observed through the use of a bidentate α-substituted 

pyrrole, producing N,O-coordinated pyrrolide-ruthenium complexes as models for catalytic 

intermediates in the Murai coupling reaction (A, Figure 1). These results lead us to postulate that 

there may be increased success with pyrrolide-metal complexation using bidentate α-substituted 
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pyrroles. Furthermore, chelation facilitates the coordination of pyrrolyldipyrrinato ligands to 

tin(IV) complexes that feature a pyrrolide and a dipyrrinato unit.21 Coordination of 

pyridylpyrrolides to K, Cu, Ag, Au and Rh has recently been reported.22 Bidentate coordination 

of pyrrole to ruthenium has also been accomplished through the reaction of 

TpRu(CO)(NCMe)(Me) with pyrrole, which results in the formation of product B.19 The product 

contains an N-pyrrolide ligand with a coordinating pendant imine that arose from addition to the 

previously coordinated acetonitrile unit, presumably via metal-mediated N-H/C-H activation of 

the pyrrole, accompanied by the release of methane. Interestingly, lithium pyrrolide displaced 

triflate from TpRu(CO)(NCMe)(OTf) to give TpRu(N-pyrrolide)(CO)(NCMe), without C-H 

activation, akin to reactions previously reported for rhenium.12,13 A similar approach has been 

utilized to prepare ruthenium complexes of azoferrocenes that of course feature a pyrrolide 

ligand.18 
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Figure 1. Literature examples of bidentate pyrrolide ruthenium(II) complexes. 

Within the context of dipyrrinato complexes,23 dipyrrinato-bound ruthenium(II) complexes24 

have recently been reported, with two bipyridyl units further supporting the metal centre. 

Ruthenium complexes bearing bipyridyl ligands are very common, and are useful because of 

their photochemical and photophysical properties.25 We herein report the synthesis and properties 

of the first heteroleptic pyrrolide 2,2’-bipyridyl (bipy) complexes of ruthenium(II). 
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RESULTS AND DISCUSSION 

2-Formyl and 2-keto pyrroles 

Cognisant of the dipyrrinato scaffold, whereby anionic pyrrolide and neutral azafulvene (imine) 

units act synergistically to chelate ruthenium(II) in bis(2,2’-bipy) complexes,24 we first 

investigated 2-formyl and 2-keto pyrroles (Scheme 1) as potential sources of pyrrolide ligands. 

Pyrrole 1a, fully substituted around the pyrrole ring and bearing a formal group in the 2-position, 

served as our first candidate. Following a modified literature procedure,24 1.1 equivalents of the 

pyrrole were reacted with [Ru(bipy)2Cl2] in ethylene glycol under microwave irradiation in the 

presence of triethyl amine. The resulting reaction mixture was then added to a solution of 

NH4PF6 so that the complex could be isolated as the PF6
- salt, via precipitation. Other counterions 

were employed, including triflate, tetraphenyl borate and 3-TMS-1-propane sulfonate, but 

hexafluorophosphate provided complexes that precipitated the most readily. 
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Scheme 1. Synthetic route to 2-formyl and 2-keto pyrrolide ruthenium(II) complexes. 

Purification was achieved through dissolving the crude precipitate in dichloromethane, 

washing the solution with brine, and then drying the organic fraction over sodium sulfate. The 

solvent was removed in vacuo, and the resulting film was triturated with hexanes to give a solid 

that could be collected using a Millipore filter. Microwave irradiation was essential for the 

formation of these complexes since conventional heating methods gave no complexation 

products. The temperature and time of reaction were both optimized for the microwave system 

(Table 1), using pyrrole 1a. The literature procedure24 suggests a reaction time of 35 minutes at 

100 ºC for complexation of dipyrrinato ligands to ruthenium(II), but optimum reaction conditions 

for the formation of pyrrolide-ruthenium(II) complexes were found to be 60 minutes at 125 ºC. 
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Table 1. The optimization of time and temperature for the formation of complex 2a. 

Trial Time (min) Temperature (°C) Isolated Yield (%) 

1 30 100 20 

2 60 100 25 

3 60 125 93 

4 90 100 54 

5 90 125 45 

 

The optimized conditions were then applied to 2-formyl- (entries 1-6) and 2-keto (entries 7-9) 

pyrroles 1b-i (Table 2), with high yields achieved throughout. Various alkyl groups were used as 

substituents around the pyrrole ring, with one example containing a halogen substituent. Fully 

substituted pyrroles (1a, 1b, 1f-1g, 1i) were tolerated well by the reaction, as were pyrroles 

featuring unsubstituted positions (1c-1e, 1h). In most cases small amounts of pyrrolic starting 

material remained after the reaction, but these were easily removed upon work-up and 

purification as described above. 
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Table 2. Isolated yields of 2-formyl and 2-keto pyrrolide ruthenium(II) complexes. 

	
  

	
  

Entry 

N
H

R4

O
R1

R2 R3

	
  

 

 

Complex 

 

 

Isolated Yield (%) 

1 1a, R1 = Me, R2 = Et, R3 = Me, R4 = H 2a 93 

2 1b, R1 = Me, R2 = Me, R3 = Me, R4 = H 2b 75 

3 1c, R1 = Me, R2 = H, R3 = Me, R4 = H 2c 77 

4 1d, R1 = H, R2 = H, R3 = H, R4 = H 2d 81 

5 1e, R1 = H, R2 = Et, R3 = Me, R4 = H 2e 71 

6 1f, R1 = Me, R2 = Heptyl, R3 = Me, R4 = H 2f 74 

7 1g, R1 = Me, R2 = Et, R3 = Me, R4 = Ph 2g 80 

8 1h, R1 = Br, R2 = H, R3 = H, R4 = Ph 2h 99 

9 1i, R1 = Me, R2 = Heptyl, R3 = Me, R4 = Ph 2i 82 

2-Carboxylate pyrroles 

We then pursued complexation reactions with pyrroles containing a carboxylate functionality 

in the 2-position (Scheme 2), as the flanking chelating moiety appears to be the key to success. 

Initial attempts garnered little success (Table 3 entries 1-2), presumably via destabilization of the 

Ru-O bond courtesy of the presence of the OEt/OBn moiety: such instability has been previously 

reported in pyrrole-rhenium complexes.14 
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Scheme 2. Synthetic route to pyrrolide ester ruthenium(II) complexes. 

As such we sought to use pyrroles that featured a halide substituent, especially as complex 2h 

(within the formyl series, Table 2) had been prepared in essentially quantitative yield. Several 2-

keto functionalized pyrroles of this genre were subsequently complexed to ruthenium(II) (Table 

3, entries 3-5), albeit in yields lower than for the aldehydes and ketones. 
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Table 3. Isolated yields of various pyrrolide ester ruthenium(II) complexes. 

	
  

	
  

Entry 

N
H

O

O
R1

R2 R3

R4

	
  

 

 

Complex 

 

 

Isolated Yield (%) 

1 3a, R1 = Me, R2 = Et, R3 = Me, R4 = Et 4a 0 

2 3b, R1 = Me, R2 = Et, R3 = Me, R4 = Bn 4b 0 

3 3c, R1 = H, R2 = Br, R3 = Me, R4 = Et 4c 75 

4 3d, R1 = I, R2 = Me, R3 = Et, R4 = Et 4d 70 

5 3e, R1 = I, R2 = Me, R3 = Me, R4 = Et 4e 70 

 

2-Sulfinyl and 2-sulfonyl pyrroles 

The final set of ligands contained a sulfinyl moiety at the 2-position (Scheme 3). These 2-

(arylsulfinyl)pyrroles26 are of special interest as they contain a chiral centre at the sulfoxide. Each 

ligand was synthesized as a racemate. Various aryl groups were substituted on the sulfur centre, 

with little substitution around the pyrrole ring, and these ligands were successfully complexed 

(Table 4, entries 1-3), although in yields generally lower than those for complexes containing 

pyrrolyl ligands bearing 2-carbonyl moieties. Diastereoselectivity, within the complexation 

reaction, was not observed. 
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Scheme 3. Synthetic route to pyrrolide sulfinyl ruthenium(II) complexes. 

For pyrroles 5d and 5e a formyl group was introduced at the 5-position in order to investigate 

binding competition between the two potential coordination sites (Table 4, entries 4-5). 

Comparing the carbonyl stretching frequencies of pyrrole 5d to complex 6d reveals that the 

frequency is red-shifted from 1670 cm-1 in the free ligand to 1545 cm-1 in the complex. A similar 

result is found when comparing the carbonyl stretching frequencies of pyrrole 1a (1619 cm-1) to 

that of complex 2a (1578 cm-1). As such, coordination must occur through the formyl group in 

each case, indicating that this coordination site is more favourable than the sulfinyl group. 
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Table 4. Isolated yields of pyrrolide sulfinyl ruthenium(II) complexes. 

	
  

	
  

Entry 

N
H

S
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O
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Complex 

 

 

Isolated Yield (%) 

1 5a, R1 = H, R2 = Ph 6a 55 

2 5b, R1 = H, R2 = p-tolyl 6b 60 

3 5c, R1 = H, R2 = naphthyl 6c 70 

4 5d, R1 = CHO, R2 = Ph 6d 70 

5 5e, R1 = CHO, R2 = p-tolyl 6e 93 

6 5f, R1 = CHO, R2 = Ph (sulfenyl) 6f 75 

7 5g, R1 = H, R2 = Ph (sulfone) 6g 45 

 

Complexes 6f and 6g were synthesized using 2-(arylsulfenyl) and 2-(arylsulfonyl) pyrroles, 

respectively, in order to demonstrate that complexation can occur with pyrroles bearing 2-sulfur 

substituents at the sulfenyl, sulfinyl and sulfonyl oxidation states (Table 4, entries 6-7). 

All complexes 2, 4 and 6, are air and moisture stable. They are deep red in the solid state and 

appear dark burgundy in solution, except complexes 6d-6f which are red-orange in solution. 

Each product was fully characterized using 1H NMR, 13C NMR and UV/vis spectroscopy, as well 

as ESI-MS. Futhermore, several complexes were characterized using X-ray crystallography. 

The absorption spectra of these complexes are characterized by intense ππ* ligand 

transitions in the UV range and metal-to-ligand charge transfer (MLCT) transitions, 

dπ(Ru)π*(L), in the visible region27-29 (Figure 2). The spectrum for complex 2a shows the 

general trend of the absorption spectra for these complexes, consisting of the intense ππ* bpy-

localized transitions below 300 nm,28 as well as lower energy bands (SoS1), between 300-400 
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nm. Each complex exhibits a broad MLCT transition containing a shoulder, explained by the 

overlapping dπ(Ru)π* absorptions from the bipyridyl and pyrrolide ligands, and these bands 

area located above 450 nm. 
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Figure 2. UV/vis spectrum of 2a in DCM, with labeled transitions. 

X-ray crystallographic data was collected for several of the new complexes (2a, 2b, 2d, 2g and 

4e), with structures being obtained for pyrrolide 2-formyl, 2-keto and 2-carboxylate 

ruthenium(II) complexes. The structural details for 2b and 2d are included in the Supporting 

Information, as are those for 1a and 1d. Complex 2a (2-formyl group) crystallizes in the space 

group P-1 with one enantiomer of the complex occupying the asymmetric unit. The geometry of 

the ruthenium(II) centre was found to be distorted octahedral (Figure 3). 
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Figure 3. Thermal ellipsoid diagram (50%) of 2a•CHCl3. 

The Ru–Nbipy bond lengths are in the range of 2.029(2)-2.065(1) Å, while the Ru–Npyrrole bond 

length is 2.076(2) Å. The Ru–O bond length is longer at 2.097(2) Å. These Ru-O and Ru-N bond 

lengths are shorter than those found in similar pyrrole-ruthenium complexes.18 To enable 

comparison of the structures of the uncoordinated pyrrole with the pyrrolide ligand within the 

complex, X-ray crystallographic data was obtained for the pyrrole 1a (Figure 1). 

 

Figure 4: Thermal ellipsoid diagrams (50%) showing bond lengths of the parent pyrrole (left, 

1a) and the corresponding coordinated pyrrolide (right, partial structure of 2a); hydrogen atoms 

omitted for clarity. 
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Analysis of the structures reveals that there is a lengthening of the C–O bond in the complex 

2a (1.292(7) Å) with respect to the C–O bond of the pyrrole 1a (1.226(2) Å). Furthermore, the 

C4−C5 bond length (1.395(7) Å) in 2a, which is formally a C–C single bond from the pyrrole to 

the carbonyl carbon atom, is shorter than the corresponding bond in the parent pyrrole 1a 

(1.419(2) Å). The formal C1−C2 C=C double bond of the pyrrole ring (1.445(8) Å) is longer in 

2a than the pyrrole 1a (1.388(2)) Å). It appears that all bonds have taken on double bond 

character, as is typical for an aromatic system. However, the increased C–O and C1–C2 bond 

lengths in 2a suggest that the major resonance form of the pyrrolide ligand is the azafulvenium 

variant (Figure 5). 
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Figure 5. Resonance structures of complexed pyrrolide (pyrrole, left; azafulvenium, right). 

Complex 2g (2-keto group) crystallizes in the space group P21/n with the geometry at the 

ruthenium(II) centre again being distorted octahedral (Figure 6). The Ru-Nbipy bonds fall in the 

range of 2.035(2)-2.059(2) Å, while the Ru-Npyrrole and Ru-O bond lengths were both found to be 

2.076(2) Å. The C-O bond length of the pyrrole 1g22 (1.2434(9) Å) is shorter than the same bond 

in the complex 2g (1.284(3) Å). It appears that this ligand follows that same trend shown in 

complex 2a. The C1-C2 and C4-C5 bond lengths in the pyrrole 1g (1.397(1) and 1.441(1) Å, 

respectively for the pyrrole 1g) undergo a similar increase and decrease upon complexation 

(1.423(5) Å and 1.399(4) Å, respectively for the complex 2g). 
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Figure 6. Thermal ellipsoid diagram (50%) of 2g. 

Complex 4e (2-carboxylate) also crystallizes in the space group P21/n with distorted octahedral 

geometry at the ruthenium(II) centre (Figure 7). The Ru-Nbipy bond lengths are between 2.016(2)-

2.053(3) Å, while the Ru-Npyrrole bond lengths are found to be 2.087(2) and 2.088(3) Å, 

respectively. The Ru-O bond lengths are 2.1281(19) and 2.134(2) Å, respectively, which are 

much longer than those of the 2-formyl and 2-keto pyrrole-ruthenium complexes. 
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Figure 7. Thermal ellipsoid diagram (50%) of 4e. 

CONCLUSION 

In summary, the first heteroleptic pyrrolyl 2,2’-bipyridine complexes of ruthenium(II) are 

reported, along with a reliable route for their high-yielding syntheses. A wide variety of pyrrolyl 

ligands containing numerous functionalities have been successfully coordinated to ruthenium(II) 

producing air- and moisture-stable complexes. The general synthetic method described should 

provide a route to pyrrolide-ruthenium complexes of various bidentate pyrroles and potentially a 

pathway to alternative pyrrolide-bound transition metal complexes. 

EXPERIMENTAL SECTION 

General Experimental 

All 1H NMR (500 MHz) and 13C NMR (125 MHz) spectra were recorded on a Bruker Avance 

AV-500 spectrometer. Chemical shifts are expressed in parts per million (ppm) using the solvent 
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signals [CDCl3 (1H NMR 7.26 ppm), CD2Cl2 (1H NMR 5.26 ppm, 13C NMR 53.8 ppm), DMF-d7 

(1H NMR 2.74 ppm, 13C NMR  30.1 ppm)] as an internal reference for 1H and 13C. Splitting 

patterns are indicated as follows: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; m, 

multiplet; app, apparent. All coupling constants (J) are reported in Hertz (Hz). Mass spectra were 

obtained using ion trap (ESI) instruments operating in positive mode. All microwave reactions 

were performed using a Biotage Initiator laboratory microwave apparatus. The following 

compounds were prepared according to literature procedures: 1a30, 1b,30 1c,2 1d,30 1e,31 1g,32 1h,33 

3c,34 3d,35 3e,36 5a-5g.26 Measurements were made on a Rigaku RAXIS RAPID imaging plate 

area detector with graphite monochromated Mo-Kα radiation. The structures were solved by 

direct method37 and expanded using Fourier techniques.38 The non-hydrogen atoms were refined 

anisotropically. Hydrogen atoms were refined using the riding model. Calculations were 

performed using the CrystalStructure39,40 crystallographic software package. CCDC 846489-

846495 contain the supplementary crystallographic data for this paper. These data can be 

obtained free-of-charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

General procedure for the synthesis of ruthenium complexes (GP1) 

To a solution of the pyrrole (0.19 mmol) and Ru(bipy)2Cl2•2H2O (0.17 mmol) in ethylene glycol 

(16 mL) was added triethylamine (0.5 mL). The resulting solution was reacted in a laboratory 

microwave at a controlled temperature of 125 °C for 60 minutes and then cooled to room 

temperature with a pressurized air supply. The cooled reaction mixture was added to a solution 

of NH4PF6 (3.1 mmol) in deionised water (100 mL). The suspension was stirred overnight and 

the resulting precipitate was then collected via suction filtration. Purification was achieved by 

dissolving the precipitate in DCM (80 mL), washing with brine (80 mL), and drying the organic 
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fraction with sodium sulfate. After filtration, the solvent was removed in vacuo. The resulting 

film was triturated with hexanes and the resulting solid was collected using a Millipore filter. 

Representative synthesis 

Bis(2,2’-bipyridyl)-(4-ethyl-2-formyl-3,5-dimethyl-N-pyrrolato)ruthenium(II) 

hexafluorophosphate (2a) 

Complex 2a was synthesized using GP1 and pyrrole 1a and was isolated as a microcrystalline 

dark burgundy solid (0.115 g, 93%). Crystals suitable for X-ray diffraction analysis were grown 

via the diffusion of hexane into a concentrated chloroform solution. δH (500 MHz, CDCl3) 8.63 

(1H, d, J=4.9), 8.39 (1H, d, J=8.0), 8.36 (1H, d, J=8.2), 8.30 (1H, d, J=8.2), 8.26 (1H, d, J=8.1), 

8.21 (1H, s), 7.99-7.95 (2H, m), 7.89 (1H, d, J=5.7), 7.79-7.72 (3H, m), 7.54-7.51 (1H, m), 7.49 

(1H, d, J=5.6), 7.46-7.44 (1H, m), 7.18-7.16 (2H, m), 2.29-2.23 (5H, m, CH2 + CH3), 1.26 (3H, 

s), 0.95 (3H, t, J=7.5); δC (125 MHz, DMF-d7) 176.0, 160.0, 159.4, 158.8, 158.3, 153.9, 153.7, 

152.5, 152.5, 151.3, 142.5, 136.9, 136.7, 136.1, 135.4, 133.2, 130.5, 127.6, 127.4, 127.4, 127.1, 

124.5, 124.1, 124.1, 123.9, 18.1, 15.3, 12.3, 10.1; UV/Vis (DCM) λmax (nm): 296 ε 115 000 

Lmol-1cm-1, 375 ε 40 000 Lmol-1cm-1, 536 ε 20 000 Lmol-1cm-1; m/z [M-PF6+H+]: 564.1. Crystal 

data for complex 2a: C30H29N5OPF6RuCl3, MM = 827.99 g/mol, dark-red needle crystal 0.31 x 

0.13 x 0.06 mm; primitive triclinic, space group P-1, a = 9.8219(4) Å, b = 13.6422(5) Å, c = 

13.7188(3) Å, α = 73.941(8) β = 73.983(11) γ = 87.603(12)º, V = 1696.72(15) Å3, Z = 2, ρ = 

1.621 g/cm3, µ(MoKα) = 0.8115 mm-1, 22241 reflections (11932 unique, Rint = 0.052), R(F) = 

0.0596, Rw(F) = 0.0713, GOF = 1.120. 
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Bis(2,2’-bipyridyl)-(4-ethyl-3,5-dimethyl-2-benzoyl-N-pyrrolato)ruthenium(II) 

hexafluorophosphate (2g) 

Complex 2g was synthesized using GP1 and pyrrole 1g and was isolated as a microcrystalline 

dark burgundy solid (0.110 g, 80%). Crystals suitable for X-ray diffraction analysis were grown 

via the slow evaporation of solvent from a concentrated methanol solution. δH (500 MHz, DMF-

d7) 8.87 (1H, d, J=8.0), 8.84 (1H, d, J=8.1), 8.81 (1H, d, J=8.2), 8.79-8.76 (2H, m), 8.21-8.18 

(2H, m), 8.16-8.14 (1H, m), 8.09 (1H, d, J=5.3), 8.00-7.98 (2H, m), 7.84-7.81 (1H, m), 7.78 (1H, 

d, J=5.6), 7.73-7.70 (1H, m), 7.49-7.46 (1H, m), 7.44-7.40 (6H, m), 2.26 (2H, m, J=7.1), 1.81 

(3H, s), 1.39 (3H, s), 0.90 (3H, t, J=7.5); δC (125 MHz, CD2Cl2) 186.2, 159.3, 158.8, 158.3, 

157.8, 153.5, 152.9, 152.2, 151.6, 151.1, 138.6, 136.2, 136.0, 135.3, 134.6, 133.0, 132.0, 130.2, 

128.5 (2C), 128.3 (2C), 127.0, 126.9, 126.7, 126.6, 123.6, 123.3, 123.2, 123.0, 18.2, 15.2, 12.6, 

12.2, 1Ar-C signal missing. UV/Vis (DCM) λmax (nm): 296 ε 125 000 Lmol-1cm-1, 330 ε 35 000 

Lmol-1cm-1, 540 ε 25 000 Lmol-1cm-1; m/z [M-PF6+H]+: 640.2. Crystal data for complex 2g: 

C35H32N5OPF6Ru, MM = 784.70 g/mol, dark-red spear crystal 0.36 x 0.14 x 0.09 mm; primitive 

monoclinic, space group P21/n, a = 11.7187(11) Å, b = 14.9960(12) Å, c = 19.2788(13) Å, V = 

3366.0(5) Å3, Z = 4, ρ = 1.548 g/cm3, µ(MoKα) = 57.48 mm-1, 24900 reflections (6842 unique, 

Rint = 0.050), R = 0.0358, Rw = 0.0412, GOF = 1.080. 

Bis(2,2’-bipyridyl)-(ethyl 5-iodo-3,4-methylpyrrole-2-carboxylato-N-

pyrrolato)ruthenium(II) hexafluorophosphate (4e) 

Complex 4e was synthesized using GP1 and pyrrole 3e was isolated as a microcrystalline dark 

burgundy solid (0.104 g, 70%). Crystals suitable for X-ray diffraction analysis were grown via 

the diffusion of diethyl ether into a concentrated dichloromethane solution. δH (500 MHz, 
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CD2Cl2) 8.65 (1H, dd, J=5.6, 0.6), 8.35 (2H, dd, J=11.7, 8.1), 8.28 (1H, d, J=8.1), 8.22 (1H, d, 

J=8.0), 8.03-7.98 (3H, m), 7.84 (1H, td, J=7.9, 1.3), 7.73-7.68 (2H, m), 7.59 (1H, ddd, J=7.4, 

5.8, 1.4), 7.53 (1H, dd, J=5.6, 0.6), 7.50 (1H, ddd, J=7.4, 5.8, 1.4), 7.19 (1H, ddd, J=7.4, 5.8, 

1.4), 7.07 (1H, ddd, J=7.4, 5.9, 1.4), 4.27-4.24 (1H, m), 4.14-4.11 (1H, m), 2.24 (3H, s), 1.83 

(3H, s), 1.19 (3H, t, J=7.1); δC (125 MHz, CD2Cl2) 173.0, 160.1, 159.2, 158.3, 158.1, 154.3 (2C), 

152.3, 150.6, 136.5, 136.4, 135.8, 135.0, 129.9, 129.4, 127.3, 127.1, 126.8, 126.7, 126.3, 123.7, 

123.4, 123.2, 122.9, 97.6, 62.6, 14.5 (2C), 12.7; UV/Vis (DCM) λmax (nm): 295 ε 80 000  

Lmol-1cm-1, 345 ε 15 000 Lmol-1cm-1, 518 ε 10 000 Lmol-1cm-1. m/z [M-PF6+H]+: 706.0. 

Crystal data for complex 4e: 2(C29H27N5OPF6Ru) CH2Cl2 H2O, MM = 1803.95 g/mol, deep-red 

block crystal 0.28 x 0.17 x 0.09 mm; primitive monoclinic, space group P21/n, a = 23.1502(7) Å, 

b = 13.8523(3) Å, c = 23.3484(6) Å, β = 117.0574(10)º, V = 6668.0(3) Å3, Z = 4, ρ = 1.797 

g/cm3, µ(MoKα) = 1.5965 mm-1, 111925 reflections (26270 unique, Rint = 0.039), R(F) = 0.0325, 

Rw(F) = 0.0373, GOF = 1.058. 

Bis(2,2’-bipyridyl)-(2-(naphthylsulfinyl)-N-pyrrolato)ruthenium(II) hexafluorophosphate 

(6c) 

Complex 6c was synthesized using GP1 and pyrrole 5c was isolated as a microcrystalline dark 

burgundy solid (0.098 g, 70%). δH (500 MHz, CD2Cl2) 9.15 (1H, d, J=5.2), 8.26 (1H, t, J=6.7), 

8.20-8.15 (2H, m), 8.04-8.01 (1H, m), 7.97-7.93 (1H, m), 7.77-7.75 (2H, m), 7.70 (1H, t, J=7.9), 

7.60-7.57 (3H, m), 7.51-7.47 (3H, m), 7.27-7.24 (1H, m), 7.22 (1H, d, J=7.6), 7.17 (1H, ddd, 

J=7.3, 5.8, 1.4), 7.11-7.08 (1H, m), 7.05-7.01 (1H, m), 6.94-6.90 (2H, m), 6.85 (1H, dd, J=3.7, 

1.3), 6.46-6.44 (1H, m), 6.22 (1H, dd, J=3.7, 2.0), 6.05 (1H, t, J=1.6); δC (125 MHz, CD2Cl2) 

159.7, 157.9, 157.9, 153.4, 152.8, 152.7, 150.0, 136.1, 136.0, 135.1, 134.9, 134.7, 134.3, 133.9, 
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132.9, 129.3, 127.9, 127.5, 127.2, 126.6, 126.4, 126.3, 126.2, 126.1, 125.5, 125.2, 125.1, 124.6, 

123.6, 123.0, 122.9, 121.6, 114.1, 112.2; UV/Vis (DCM) λmax (nm): 297 ε 130 000 Lmol-1cm-1, 

341 ε 15 000 Lmol-1cm-1, 530 ε 20 000 Lmol-1cm-1; m/z [M-PF6+H]+: 654.1. 

SUPPORTING INFORMATION 

X-ray crystallographic data in CIF format and experimental and characterization details for all 

compounds. 
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