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ABSTRACT

Numerical models are powerful and widely used tools for environmental prediction; how-

ever, any model prediction contains errors due to imperfect model parameterizations,

insufficient model resolution, numerical errors, imperfect initial and boundary conditions

etc. A variety of approaches is applied to quantify, correct and minimize these errors in-

cluding skill assessments, bias correction and formal data assimilation. All of these require

observations and benefit from comprehensive data sets. In this thesis, two aspects related

to the quantification and correction of errors in biological ocean models are addressed:

(i) A new bias correction method for a biological ocean model is evaluated, and (ii) a

novel approach for expanding the set of typically available phytoplankton observations is

assessed.

The bias correction method, referred to as frequency-dependent nudging, was proposed

by Thompson et al. (Ocean Modelling, 2006, 13:109-125) and is used to nudge a model

only in prescribed frequencies. A desirable feature of this method is that it can preserve

high frequency variability that would be dampened with conventional nudging. The method

is first applied to an idealized signal consisting of a seasonal cycle and high frequency

variability. In this example, frequency-dependent nudging corrected for the imposed

seasonal bias without affecting the high-frequency variability. The method is then applied

to a non-linear, 1 dimensional (1D) biogeochemical ocean model. Results showed that

application of frequency-dependent nudging leads to better biogeochemical estimates than

conventional nudging.

In order to expand the set of available phytoplankton observations, light measurements

from sensors attached on grey seals where assessed to determine if they provide a useful

proxy of phytoplankton biomass. A controlled experiment at Bedford Basin showed

that attenuation coefficient estimates from light attenuation measurements from seal tags

were found to correlate significantly with chlorophyll. On the Scotian Shelf, results of

the assessment indicate that seal tags can uncover spatio-temporal patterns related to

phytoplankton biomass; however, more research is needed to derive absolute biomass

estimates in the region.
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CHAPTER 1

INTRODUCTION

Many important biological processes in the ocean are driven by microscopic photosynthetic

organisms called phytoplankton. Phytoplankton, which are responsible for nearly half of

the planetary primary production (Field et al., 1998), play an essential role in marine food

webs and biogeochemical cycles (Falkowski et al., 1998). Over recent years, different

phytoplankton species and their habitat are being subjected to constant stress as a result

of human impact to Earth’s natural cycle. Unprecedented rise in anthropogenic CO2 in

the last 200 years has contributed to warming (Crowley, 2000) and acidification (Doney

et al., 2009) of the ocean, and anthropogenic contamination of coastal ecosystems through

terrestrial and riverine sources have contributed significantly to increased occurrence of

excessive production of algae, a process known as eutrophication (Turner and Rabalais,

1994; Andersen et al., 2006; Rabalais et al., 2009). All these have driven changes in

phytoplankton productivity (Behrenfeld et al., 2006; Shi et al., 2010), population size (Irwin

and Oliver, 2009; Boyce et al., 2010; Guinotte and Fabry, 2010), phenology (Edwards and

Richardson, 2004) and community composition (Moran et al., 2010; Hallegraeff , 2010)

which impact marine food web dynamics and ocean biogeochemical cycling. Knowledge

of how these phenomena affect the phytoplankton community- in its important position at

the base of the aquatic food chain- is vital.

Biogeochemical models are important tools to study phytoplankton processes and their

role in food web dynamics and biogeochemical cycling. They help us build mechanistic

understanding of important biogeochemical processes, particularly carbon, nitrogen and

phosphorus cycles. Some examples of the application of biogeochemical models include

the study of the role of nitrogen cycling on the nitrogen budget on continental shelf (Fennel

1
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et al., 2006), the effect of phosphorus limitation on primary productivity (Laurent et al.,

2012), and the role of dynamics of carbon fluxes in fueling hypoxia in bottom waters

(Justic et al., 2002). Biogeochemical models are also used to reconstruct past and predict

future scenarios including changes that impact marine organisms, particularly marine

species associated with variability in phytoplankton’s response to changing environment.

For example, the biogeochemical model developed by Thomas et al. (2012) was used

to predict that future warming is expected to cause poleward shifts in phytoplankton’s

thermal niche accompanied by a decline in their tropical diversity. A gradual shift toward

smaller primary producers in a warmer ocean is predicted as smaller organisms are more

able to tolerate increased temperature (Daufresne et al., 2009; Moran et al., 2010). Future

changes in ocean carbonate chemistry are also predicted to affect phytoplankton’s ability

for photosynthesis, calcifications, and nitrogen fixation (Rost et al., 2008). All these

are likely to alter spatial and temporal distribution of primary and secondary pelagic

production, affecting interaction between trophic levels.

The current generation of ocean biogeochemical models combine information about

physical forcing, chemical cycling, phytoplankton physiology, and ecological structure to

simulate the response of lower trophic levels to variable external forcing (Gnanadesikan

et al., 2011, and references therein). But since physical and biogeochemical processes

in the ocean can be highly variable and involve interactions on multiple scales, baseline

models often experience drifts and biases (Gregg, 2007; While et al., 2010, reported biases

in their prognostic runs). Many factors contribute to drift and bias in biogeochemical

models including inadequate model resolutions, poor parameterizations of physical and

biological processes and inaccurate boundary conditions. But since biogeochemical

models are built around established ocean circulation models (e.g. Haidvogel et al., 2008),

the focus of improvement is usually on the biogeochemical aspects of the model. An

example of increased biogeochemical resolution is the study of Lehmann et al. (2009) who

considered two functional phytoplankton groups to represent different ecological regimes

(diatoms and picoplankton) since a wide range of conditions is less likely to be captured

by a single phytoplankton parameterization. Their model yields considerable improvement

over other models with a single phytoplankton parameter (e.g. Fennel et al., 2006). The

use of multiple functional groups of planktons can allow further be used to examination

complex ecological questions such as the competition patterns and structural shifts in
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planktonic community (e.g. Ramin et al., 2008). It is however a daunting task to capture

the contribution of all the relevant species in a model. Simpler models are still favored

because they are easier to interpret and less computationally expensive. Using only one

functional phytoplankton and zooplankton variable, Mattern et al. (2012) incorporated the

effect of variation in species abundance in time and space by considering parameters that

vary in time. Significant improvement over a single parameter model is reported since their

parameterization possibly captures the different physiological characteristics of plankton

species that dominate at different times of the year.

Biogeochemical models are only useful however if they properly represent the system of

interest and results can be validated. It is for this reason that observations are inseparable

from modelling. Validating a model with observations serves as the ultimate end that

decides the fate of a model. In oceanography, observations usually come from cruises,

stations, floats and satellite measurements. Cruises, stations and floats measurements are

good sources of in situ data. They resolve the vertical dimension well but they suffer from

limited spatial coverage. Satellite measurements on the other hand are excellent sources of

spatial and temporal data, however can only measure the ocean surface.

Getting good agreement between model and observation is challenging. Due to the wide

range and complexity of potential contributors to errors (e.g. physical, biogeochemical),

general solutions to the problem are not available. Recently, there has been a growing

number of studies that make use of observations to produce better models (another use

of observations in ocean modelling). The strategy is to blend model dynamics with

observations (hence called data assimilation) to improve a model’s hindcast, nowcast and

forecast abilities. Observations contain information about the true state of the ocean while

models have no time and space limitation, thus when combined are thought to produce

better estimates of the ocean state than using model or observations alone. Examples of

such methods are illustrated by biogeochemical assimilation studies with models ranging

from one-dimensional (Allen et al., 2003; Eknes and Evensen, 2002) to three-dimensional

(Hu et al., 2012; Natvik and Evensen, 2003). Data assimilation (DA) opens up the

possibility of examining incremental model improvements as well as to help identify, and

ultimately reduce, model errors (e.g. Nerger and Gregg, 2008). DA can thus be viewed as

an integral part of the model building process.

The process of combining model and data to produce better model estimates can be
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The Kalman filter, which is of the form xt = xf
t + Kt(yt − ht(x

f
t )), can provide an

elegant way of updating the conditional mean and variance of xt given yt. In the above

equation, Kt represents the nudging coefficients organized in the so-called Kalman gain

matrix. The vector of observations, yt, can be modelled as yt = ht(xt, vt) where ht is

the observations operator which maps the model state, xt, to yt and vt is the observation

error. The one-step-ahead-forecast, xf
t = φ(xt, wt) represents the dynamics of the model

where wt captures the uncertainty in the forecast. For problems of varying degree of

complexity, different variants of Kalman filters are used, where the differences only affect

the calculation of Kt. For example, a number of solutions to non-linear problems has

been proposed which include the extended Kalman filter (e.g. Grewal and Andrews, 1993),

the singular evolutive Kalman filter (Pham et al., 1998) and the ensemble Kalman filter

(Evensen, 1994).

Biogeochemical models oftentimes suffer from bias and drift. Although the Kalman

filter can be used to nudge the biased models, this will be achieved in a suboptimal

way since an important underlying assumption of Kalman filtering is that the prognostic

model is unbiased. Thompson et al. (2006) proposed to suppress the bias and drift before

observations are assimilated to ensure that the model’s climatology doesn’t deviate from

the observed climatology. The model forecast will be nudged first with the observation

climatology, xc
t , to suppress the bias before point observations, yt, are assimilated. This

strategy is summarized in Figure 1.1.

A simplified approach to the Kalman filter is to simply prescribe Kt. If Kt is assumed

to be diagonal then the nudging terms take the conventional form γ(xc
t − ht(x

f
t )) at

observation points where γ−1 corresponds to a scalar relaxation time in model time steps.

The main advantage of this simplified form is that it is easy to implement, robust and

can keep the model arbitrarily close to the observations. A serious limitation however is

the suppression of variability when nudging toward climatological observations, and the

introduction of artificial phase lags in the model response (e.g. Thompson et al., 2006, and

references therein).

A gain and phase preserving scheme for combining models and observations has recently

been introduced by Thompson et al. (2006) in an application for suppressing the bias and

drift of basin-scale ocean circulation and has subsequently been applied to a number of

atmospheric (Meinke et al., 2006; Radu et al., 2008) and ocean models (Stacey et al.,
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2006; Thompson et al., 2007). The basic idea behind this scheme is to nudge the model

toward climatology in prescribed frequency bands. Outside of these bands the model’s

dynamics are unaffected by the nudging and the model can evolve uninhibited. Given

this restriction of nudging to certain frequency bands, the method can be referred to as

frequency-dependent nudging. In ocean models, the chosen frequencies that nudging is

applied to are often the mean and annual cycle of a variable, which are typically well

characterized in climatologies. The main advantage of this method compared to traditional

nudging is that it allows high frequency variability to evolve freely even if nudging is

strong.

To my knowledge, frequency-dependent nudging has not yet been applied to ocean

biogeochemical models. The first goal of this thesis is to evaluate frequency-dependent

nudging as one possible approach for bias correction in biogeochemical models (discussed

in chapter 2, see Figure 1.1). Its utility in combining a biogeochemical model with

an observation-based climatology without suppressing possibly important information

contained in the high frequency variations present in biogeochemical models (e.g. blooms

with typical scales of 1 week) will be assessed.

A critical part of data assimilation is the availability of high-resolution data (third step in

Figure 1.1). Oceanographic data are usually obtained from satellites, ship-based sampling

and, more recently, from in situ sensors on autonomous platforms and moorings. Recent

technological progress in sensor development may even allow us to use pelagic animals

as agents of data collection. Many electronic sensors on animals (henceforth referred to

as tags) were not primarily intended for quantitative oceanographic measurements, but

are capable of collecting high frequency data (up to every second). Considering the high

mobility of pelagic animals and their need for frequent nutrition, biologically active regions

could be represented better both temporally and spatially than through traditional in situ

methods. Recent studies indeed show that electronic tags attached to pelagic animals can

be reliable data sources (Teo et al., 2009; Boehlert et al., 2001). The second goal of this

thesis is to assess data from electronic tags attached to grey seals, Halichoerus grypus, and

their potential for ocean observations (discussed in chapter 3, see Figure 1.1).

The outline of this thesis is as follows. To address the first goal of this thesis, the bias

correction step is discussed in chapter 2. Frequency-dependent nudging is first applied

to an idealized signal with annual cycle and high-frequency variability. The application
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of frequency-dependent nudging to a 1D biogeochemical model is also described and

discussed as well in this chapter. Generation of synthetic observations, climatology and

prognostic runs are discussed, and results from conventional and frequency-dependent

nudging are compared. The second goal of the thesis is addressed in chapter 3. Chapter

3 describes the methods implemented to validate and assess data from electronic tags

for ocean observations. A baseline experiment at Bedford basin is described including

comparison of estimates of physical and biogeochemical variables from electronic tags

to the measured (using specialized sensors) values in the region. Results of estimation

of the attenuation coefficient, Kd(550), in Scotian Shelf waters are discussed as well.

Results from both chapters are discussed and summarized in chapter 4, including overall

conclusions of the whole thesis and suggestions for future work.



CHAPTER 2

APPLICATION OF

FREQUENCY-DEPENDENT NUDGING

TO BIOGEOCHEMICAL MODELS

In this chapter, the use of frequency-dependent nudging as one possible approach to

bias correction for improving model state estimate is discussed. The strategy to assess

its application to non-linear systems is summarized in Figure 2.1. A simulated reality

is constructed using a complex realistic model (green box, Figure 2.1). The realistic

model is used to generate the synthetic observations. The synthetic observations are the

“measurable” quantities that represent the simulated reality. The goal is to match the

prediction of the simple model with the synthetic observations.

In downscaling from a complex to a simple model, a lot of important information might

be suppressed. This can result in biases and errors in the simple model’s representation of

simulated reality. To address this, the simple model will be nudged with the climatology

calculated from the synthetic observations. This step makes sure that the prediction

doesn’t deviate from the observation climatology. A quantitative assessment between

the simple model and potential improvements to be gained in using conventional and

frequency-dependent nudging (red box, Figure 2.1) is discussed in this chapter.

To illustrate frequency-dependent nudging, details of the equations are discussed in

section 2.1. Section 2.2 then discusses its application to an idealized signal consisting

of a seasonal cycle and a high frequency variability. In section 2.3, its application to

biogeochemical models is described. Finally, summary and conclusions for the chapter is

given in section 2.4.

8
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2.1 Frequency-dependent nudging

Thompson et al. (2006) proposed a nudging method that suppresses bias and drift while

leaving the phase and the amplitude of the model response unaffected. The main innovation

of their method over conventional nudging is that the model is nudged in frequencies that

are well resolved in climatology, thus called frequency-dependent nudging. Frequency-

dependent nudging is implemented as follows:

xt = xf
t + γ〈xc

t − xf
t 〉 (2.1)

The only difference between frequency-dependent nudging and conventional nudging

is the presence of the angle brackets, 〈·〉, which denotes nudging in specific frequency

bands (0 and 1 cycle per year). A main advantage of frequency-dependent nudging over

conventional nudging is that it allows high frequency variability to evolve prognostically

while nudging to the climatology. This method is implemented sequentially, and thus

observations can be assimilated after the suppression of bias and drift by the frequency-

dependent nudging. The reader is referred to Thompson et al. (2006) for the details of the

implementation of equation 2.1.

2.2 Application of frequency-dependent nudging to an

idealized signal

To motivate the discussion about the application of frequency-dependent nudging, assume

a system with a response described by a combination of an annual cycle and high frequency

variability centred at 32 days (black line in Figure 2.2). This is a simulated reality (as in

Figure 2.1) from which synthetic observations, yt, can be “measured”. In this example,

further assume that all features of the simulated reality are captured by the synthetic

observations. Now assume a simple model

xf
t = φ1x

f
t−1 + φ2x

f
t−2 + wt (2.2)

to describe the synthetic observations. In the equation above, φ1=-1.9, φ2=0.94 and

wt ∽ N (0, σ2
w). Figure 2.2 (green line, above panel) shows that the simple model captures

only the high-frequency component of the synthetic observations, but that it is biased. In
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oceanography, models often suffer from biases due to the complex nature of interaction

between components of different time scales (e.g. physical vs biogeochemical components).

Thus the seasonal bias observed in the simple model can be thought of as some processes

that are missing or misrepresented and can be corrected accordingly. To correct for

the observed seasonal bias, data and model will be combined to improve model state

estimation. In particular, the climatology (taken from synthetic observations, Figure 2.2)

will be used to nudge the simple model to be able to recover the seasonal cycle present in

the synthetic observations. Figure 2.2 (lower panel) shows the results of conventional and

frequency-dependent nudging (γ = 0.25) when applied to the simple model. Results show

that both nudging methods recover the seasonal cycle however high frequency variability

is dampened in conventional nudging. On the other hand, the use of frequency-dependent

nudging allows for the recovery of the seasonal cycle while preserving the high-frequency

variability, resulting in a closer prediction of the synthetic observations.

Figure 2.3 shows the effect of the nudging strength, γ, on the nudging results. Stronger

dampening of the high frequency variability is observed with conventional nudging for

increasing γ. For γ = 1, a method known as direct insertion, the climatology simply

replaces the model estimate. The phase of the signal from the simple model is altered as

well. In frequency-dependent nudging, increasing γ has no effect on the the amplitude

of the high frequency variability. Even at γ = 1, the high frequency variability is still

persistent. The phase is preserved as well as γ increases. Furthermore, the seasonal cycle

becomes more prominent as the γ increases.

2.3 Application to a vertically resolved biogeochemical

model

In this section, the frequency-dependent nudging is applied to a one-dimensional (1D)

biogeochemical model. A similar set-up as in Figure 2.1 is followed. A simulated

reality from a three-dimensional (3D) biogeochemical model of Bianucci et al. (in prep)

was generated using the Regional Ocean Modeling System (ROMS, http://myroms.org

Haidvogel et al., 2008). Synthetic observations were generated from “measurements”

from 3 different stations shown in Figure 2.4 and were used to calculate a climatology

for each station. A simple 1D model is developed to simulate the “measured” synthetic

observations. Bias was observed in the simple 1D model since it cannot capture some of
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Figure 2.2: Comparison of the synthetic observations to the simple model and results

from nudging. (a) The synthetic observations (black line) are generated as a sum of a

realization from an AR2 process (φ1=-1.9 and φ2=0.94) with a sampled resonance centred

on period of 32 days and a sine function with an amplitude of 30 units and a period of 1

year. The climatology (grey line) is generated using only the sinusoidal component of the

synthetic observations. The simple model (green line) is generated using only the AR2

component of the synthetic observations. (b) A nudging strength of γ = 0.25 is used to

generate results from nudging.
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Figure 2.3: Sensitivity analysis of the effect of the nudging strength, γ, on conventional

(upper panel) and frequency-dependent nudging (lower panel).
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the physical process in present only in 3D systems (e.g. horizontal dynamics). The bias

was corrected by nudging the climatology to the simple model. A more detailed description

of the 3D and 1D model, and quantitative comparison of the results from conventional and

frequency-dependent nudging, are described in the subsequent sections.

2.3.1 The 3D ROMS model

The 3D model is an implementation of the Regional Ocean Modeling System (ROMS,

http://myroms.org Haidvogel et al., 2008) coupled to the biogeochemical model of Fennel

et al. (2006, 2008), forced by atmospheric reanalysis fields of Large and Yeager (2004) and

is described in detail in Bianucci et al. (in prep). The model domain includes the Grand

Banks, the Gulf of St. Lawrence, the Scotian Shelf and the Gulf of Maine (Figure 2.4) and

is nested within the larger-scale physical model of Blanco and Sheng (2012). The model’s

horizontal resolution is ∽10 km with 30 sigma-layers that are stretched to allow for higher

resolution near the surface; it was run for 5 years from 1 January 1999 to 31 December

2004 and the model state was saved every 5 days.

The biogeochemical component of the model is a relatively simple representation of the

marine nitrogen cycle and includes two species of dissolved inorganic nitrogen (nitrate,

NO3, and ammonium, NH4), one functional phytoplankton group, Phy, chlorophyll, Chl,

as a separate state variable to allow for photoacclimation, one functional zooplankton

group, Zoo, and two pools of detritus representing large, fast-sinking particles, LDet,

and suspended, small particles, SDet. The main processes described in the model are

1) temperature, light- and nutrient-dependent phytoplankton growth with ammonium

inhibition of nitrate uptake, 2) zooplankton grazing represented by a Holling-type III

parameterization, 3) aggregation of phytoplankton and small detritus to fast sinking large

detritus, 4) photoacclimation (i.e. a variable ratio between phytoplankton and chlorophyll),

5) linear rates of phytoplankton mortality, zooplankton basal metabolism, and detritus

remineralization, 6) a second order zooplankton mortality, 7) light-dependent nitrification

(i.e. oxidation of ammonium to nitrate), and 8) vertical sinking of phytoplankton and

detritus. In the implementation of the model, sinking organic matter instantaneously

remineralizes once it reaches the bottom. For further details on model justification,

equations and parameters the reader is referred to Fennel et al. (2006, 2008).

The ROMS model was used to generate the synthetic observations and climatology. The

biogeochemical state variables were extracted from the 5-year simulation for the stations
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shown in Figure 2.4. The first year was discarded as spin-up, the following 4 years were

interpolated onto the equidistant vertical layers of the simple 1D model (details of the

model are discussed in the next section) and a synthetic observation was produced by

harmonic regression using the first 15 harmonics. The resulting synthetic observation

is shown in Figure 2.6 (left panels) for station 1 and Figures A.1 and A.6 for stations 2

and 3. Similarly, a climatology is extracted as well from the ROMS model by harmonic

regression using only the first harmonic. The resulting climatology is shown in Figure 2.6

(middle panels) for station 1 and Figures A.1 and A.6 for stations 2 and 3.
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Figure 2.4: Model domain of the ROMS implementation of Bianucci et al. (in prep). The

colormap shows the bathymetry of the domain. The white dots show the locations where

model data were extracted.

2.3.2 The simple 1D model

The simple model has H/∆z equidistant layers (H is the water depth, ∆z is the layer

thickness) and uses a highly simplified physical framework with an imposed, time-varying

mixed layer coupled with the biogeochemical model of Fennel et al. (2006) (Figure 2.5).

Vertical mixing is prescribed with the help of two mixing coefficients, one for the mixed

layer (η1) and one below the mixed layer (η2), which vary seasonally as described further

below.
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radiation was produced by harmonic regression.

Starting from defined initial conditions for the biogeochemical variables (taken from

the ROMS model) the simple 1D model is integrated forward in time by consecutively

applying a vertical mixing step and a biological update step. Vertical mixing is calculated

using the Crank-Nicolson scheme. Biological sources and sinks are calculated implicitly

to prevent the model from overshooting into physically unrealistic negative concentrations

during biological updates.

Here the model is run with a vertical resolution of 5 m and a time step of 6 hours, which

makes it computationally efficient, and applied to three locations that lie within the domain

of a 3D, physical-biological model for the northwestern North Atlantic shelves (Figure 2.4).

This allows the use of the simulated physical and biological fields from the 3D model to

drive the simple 1D model described above (using simulated mixed layer depths and water

temperatures).

In initial 1D simulations, it became clear that the choice of vertical diffusivities critically

determines the vertical structure of the biogeochemical variables. A range of diffusivities

was tested by applying the physical model component to a temperature variable, which was

initialized with the ROMS profile and clamped to the ROMS climatology at the surface and

bottom. These tests indicated that vertical diffusivities should vary seasonally, presumably

because of changes in stratification and wind mixing. A simple way to parameterize this

effect is to allow the diffusivity in each layer to vary with mixed layer depth (mld) as

follows:

η = (1− q)ηwinter + qηsummer (2.3)

where q is the normalized mixed layer depth: q = (mldmax −mld)/(mldmax −mldmin)

and mldmin and mldmax are the minimum and maximum values of the climatological

mixed layer, respectively. Values of ηwinter=70 and ηsummer=10 m2 day−1 were chosen

for the upper layer and were reduced by a factor of 10 for the lower layer, because they

resulted in simulated temperature evolutions that matched the ROMS temperature closest.

The 1D models were initialized on 1 January from the synthetic observations, forced

with the climatological mixed layer depths and solar radiation and integrated for 15

years until a cyclic steady state was achieved. The final year of simulation is shown in

Figures 2.6, A.1 and A.6 (right panels). Important features of a North Atlantic bloom

cycle are captured by the model. For example, depletion of nutrients is observed around
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early April. This is followed by the peaking of the concentration of phytoplankton by

mid-April. Sufficient sunlight at this time coupled with sufficient nutrients provide an

ideal condition that accelerates the growth of phytoplankton. Similarly, the presence of

phytoplankton supports zooplankton growth. The phytoplankton bloom depletes because

most of the nutrients are already used and because of zooplankton grazing. Starting at the

time of the phytoplankton bloom, an increase in concentration of detritus can be observed

as well. This is because of the contributions from the loss terms in phytoplankton and

zooplankton i.e. mortality and aggregation in phytoplankton, and mortality and sloppy

feeding in zooplankton. The simple model is however limited in describing the synthetic

observations because 3D physical processes cannot be represented with the use of a 1D

model (Figure 2.6a versus 2.6c). These leads to drifts and biases in the concentration of

the biogeochemical variables.

There are significant systematic differences between the synthetic observations from

ROMS and the evolution simulated by the simple 1D model (Figure 2.6a versus 2.6c).

Most notably, simulated nitrate concentrations are much higher at depth compared to the

synthetic observations, and zooplankton concentrations are much lower compared to the

synthetic observations. Furthermore, the peak concentration of the phytoplankton spring

bloom is much lower in the simulation and the concentrations of detritus are smaller as

well. This simple 1D model is thus a good test case for a model that could be improved by

nudging.

2.3.3 Hybrid frequency-dependent nudging of the 1D model

The simple 1D model is nudged to the climatology (Figure 2.6b) to correct for the biases

observed in Figure 2.6c. The climatology is obtained using a similar procedure used to

calculate the synthetic observation, however only the mean and annual cycle are used in

the reconstruction. In this study, the 7 biogeochemical variables were used to nudge the

simple 1D model.

Initial simulations reveal that use of equation 2.2 in nudging introduces unrealistic

variabilities which cause the model to eventually blow up. To get around this problem, a

hybrid of conventional and frequency-dependent nudging is introduced as follows:

xt = xf
t + γ[(1− δ)〈xc

t − xf
t 〉+ δ(xc

t − xf
t )] (2.4)

where 〈·〉 means that the nudges are filtered in time and are only applied at climatological
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Figure 2.6: Seasonal cycle of the biogeochemical variables for the synthetic observations

and climatology, and the result from the simple 1D model for station 1. a) Output from

the ROMS simulation of Bianucci et.al. (in prep) is regressed using 15 harmonics. This is

the benchmark against which all other runs will be compared. b) Similar to (a) however

only the mean and 1 harmonic (annual cycle) are used in the regression. c) Output from

the simple 1D-model. The biogeochemical component is similar to the 3D ROMS model,

the physical processes are kept simple however. The physics in the model is governed only

by a difference in vertical diffusivity coefficient below and above the mixed layer.
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frequencies (mean and annual cycle). In the hybrid form, weak conventional nudging is

applied in the background to suppress the noise that are otherwise amplified due to the

nonlinear interaction between the model and frequency-dependent filter. The strength of

the additional conventional nudge is controlled by the stability parameter, δ, which I took

to be 0.1. A main advantage of the hybrid nudging over conventional nudging is that it

allows high frequency variability to evolve almost prognostically while nudging to the

observed climatology. The hybrid is implemented sequentially, and thus observations can

be assimilated after the suppression of bias and drift (refer to Figure 1.1).

In the present implementation, the bandwidth of the filter is chosen by setting dt/(4×365).

This is equivalent to a spin up time of 4 years. Details of how the nudging parameters are

chosen are discussed later.

2.3.3.1 Measuring model fit

To quantify the error in the predictions of the synthetic observations, let oij denote the

synthetic observations for a given variable at depth i and time j, and let pij denote the

corresponding prediction. The following scalar quantity is used to measure the difference

between the observed and predicted seasonal cycles:

MSE =

nd
∑

i=1

nt
∑

j=1

(oij − pij)
2 / (ndnt) (2.5)

where nd is the number of depth levels and nt is the number of time steps in a year. Thus,

MSE is a scalar, defined for each of the seven variables, that measures how well the

synthetic observations of a given variable can be predicted.

2.3.3.2 Choice of the nudging parameter

Specifying the correct value of the nudging strength is critical in obtaining a good model

state estimate (as seen in Figure 2.3) . Both model and observations contain errors and must

be weighted accordingly in the assimilation step. In Kalman filters, this is captured in Kt

that dynamically takes into account the changes in covariances between variables at each

time step. The method is less clear however for a static, single valued nudging parameter.

The approach taken in this thesis is to determine the nudging parameter that gives the best

agreement between the synthetic observations and the nudged runs. A sensitivity analysis

of the model state to the nudging parameter is carried out to find optimal values of the

nudging parameter.
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The impact of the conventional and hybrid frequency-dependent nudging is shown in

Figure 2.7 which shows the MSE for each variable as a function of the nudging coefficient,

γ. The MSEs for each variable have been normalized by the MSE calculated from the

climatology (i.e., by the MSE of the conventionally nudged run with γ=1). The fit of the

simple model improves with nudging for all variables with increasing γ but the outcome

slightly degrades again once γ increases from the optimum values toward 1. Results

from the hybrid are generally better (lower values of MSE) at estimating the synthetic

observations than results from conventional nudging.

No single optimal nudging strength however is found across all seven variables but rather

a range of qualified values that will give the nudged results a significant improvement

over the simple model. Figure 2.7 suggests further that a larger range of the nudging

parameter is available to the hybrid than to conventional nudging. Values of γcon=0.02

and γspec=0.025 were used for conventional and hybrid frequency-dependent nudging,

respectively.

2.3.3.3 Nudged runs

Nudging results in Figure 2.8b and 2.8c show considerable improvement over the simple

1D model (Figure 2.6c) (see table 2.1 as well). The concentration of NO3 through out

the water column as well as other variables now closely resembles that of the synthetic

observations. Nudging improved the supply of nutrients throughout the whole water

column, corrected the concentration of phytoplankton and zooplankton, and improved the

vertical distribution of detrital deposits. Nudging permitted the model to overcome the

shortcomings of using simple physics and diurnal cycle. Results from the hybrid frequency-

dependent nudging, however predict the synthetic observations better than conventionally

nudged results. Results from Figure 2.8 show that concentrations of the 7 biogeochemical

variables are in closer agreement to the synthetic observations than the conventionally

nudged results. Table 2.1 shows that for most of the variables (except NH4 for station

1 and 2), the calculated mean squared error (MSE) for the hybrid frequency-dependent

nudging is lower than those from conventional nudging. This is not surprising since

more frequency is allowed to pass through in hybrid frequency-dependent nudging, thus

approximating the synthetic observations better. This can be seen well in Figures 2.9 and

2.10 where time series of the surface concentration and at 30 m for different runs are

compared. Conventionally nudged results generally follow the shape of the climatology
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Figure 2.7: MSE as a function of the nudging coefficient γ for the conventional and hybrid

frequency-dependent nudging for station 1. The values have been normalized (nMSE)

by the MSE values for climatology (MSESC). Each of the seven lines corresponds to a

specific biogeochemical variable. The x-plotting positions were stretched to vary as γ3 in

order to expand the plot near γ=0.
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Table 2.1: Mean squared errors (MSE) from the difference of the synthetic observation

and the different runs considered. MSE is calculated for the whole water column and each

biogeochemical variables for the three stations. Cases where MSE from conventional

nudging is higher than hybrid frequency-dependent nudging is highlighted in grey.

Runs NO3 NH4 Chl Phy Zoo SDet LDet
Prognostic 24.48 4.3 1.60 1.42 3.29 2.26 1.61

Station 1 Conventional 0.74 0.65 0.45 0.49 0.82 0.62 0.78

Hybrid frequency-dependent 0.62 0.70 0.24 0.25 0.58 0.27 0.41

Prognostic 25.45 5.80 1.76 1.63 3.31 2.55 1.92

Station 2 Conventional 0.98 0.79 0.60 0.63 0.78 0.70 0.76

Hybrid frequency-dependent 0.75 0.90 0.17 0.16 0.37 0.22 0.33

Prognostic 3.31 2.16 0.56 0.66 1.40 0.86 0.33

Station 3 Conventional 0.71 0.93 0.50 0.51 0.33 0.70 0.73

Hybrid frequency-dependent 0.38 0.51 0.22 0.20 0.11 0.24 0.18

Units: NO3 [mmol N m−3], NH4 [mmol N m−3], Chl [mg Chl m−3], Phy [mmol N m−3], Zoo [mmol N

m−3], SDet [mmol N m−3] and LDet [mmol N m−3]

(thus, suppressing other frequencies). Consider for example the phytoplankton; although

both nudging methods correctly predict the timing of the peak, the seasonal cycle from

conventional nudging is much wider and centered at May. In contrast, the seasonal cycle

of phytoplankton from hybrid captures the correct shape of the synthetic observation

indicating more frequency was used for its prediction. The extra frequencies allowed in the

hybrid resulted in prediction of the correct timing of nutrient depletion and consequently

plankton blooms and detrital deposits. Similar results are also obtained for stations 2 and 3

(see Figure A.1-A.10).

2.4 Summary and Conclusions

A computationally efficient and effective scheme for suppressing bias and drift in a 1D

biogeochemical model was evaluated. The basic idea behind this scheme is to nudge the

model toward climatology in prescribed frequency bands. Outside of these bands the

models dynamics are unaffected by the nudging and the model can evolve prognostically.

To assess the scheme, results from hybrid frequency-dependent nudging are compared

against data taken from 3 locations within a 3D physical-biogeochemical model for the
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Figure 2.8: Seasonal cycle of the biogeochemical variables for the synthetic observations,

and the result from conventional and hybrid frequency-dependent nudging for station 1. a)

Similar to Figure 2.6a. b) Output from conventional nudging using γ=0.020 (equivalent

to a nudging strength of 12.5 days). c) Output from hybrid frequency-dependent nudging

using γ=0.025 (equivalent to a nudging strength of 10 days).
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Figure 2.9: Comparison of the seasonal cycle of the different runs at the surface. The

lines show the daily average of the concentration the biological variables. Comparison

of the synthetic observation (black line) with climatology (magenta line) and simple 1D

model (green line) are shown on the left. Comparison of the synthetic observation with

results from conventional (blue line) and hybrid frequency-dependent nudging (red line)

are shown on the right.
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Figure 2.10: Similar to Figure 2.9 but time series taken at a depth of 30 m.
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Northwestern North Atlantic, and compared with results from conventional nudging. Over-

all results are encouraging: although both nudging schemes improve biogeochemical esti-

mation as compared to the simple 1D model, results from the hybrid frequency-dependent

nudging perform better since they can capture the main features of biogeochemical dynam-

ics. Specifically, the timing of NO3 depletion, and phytoplankton and zooplankton blooms

are well represented as compared to results from conventional nudging. The duration of

the bloom is reasonable as well (∽ 2 weeks); the better fit is due to more harmonics being

allowed in hybrid frequency-dependent nudging. In contrast, conventionally nudged runs

overestimate the early NO3 depletion, and phytoplankton and zooplankton blooms. This

affects the timing of the dynamics of other variables as well. The overestimation is caused

by the strong nudging (∽12.5 days) which suppresses higher frequency (more than 1 cycle

per year) in the model dynamics; conventional nudging “forces” the model to follow the

shape of the climatology.

Although overall results from hybrid frequency-dependent nudging are better, it is worth

noting that there are some discrepancies when compared to the synthetic observations.

Figures 2.9 and 2.10 show that concentrations of phytoplankton and zooplankton blooms

are not as peaked as the synthetic observations. The dampening effect of conventional

nudging in the background might have contributed to this result. There is a slight delay

in the timing of the blooms as well (∽ 1 day). This suggests that the model might

benefit from increased nudging strength, γ. This is subtle however as no optimum γ

exist for all the variables. Increase in γ increases the effect of conventional nudging to

hybrid frequency-dependent nudging as well, which can affect how the hybrid method

handles high frequencies. Another possible reason for the discrepancies observed could

be due to the handling of allowed frequencies in a discretized model. Although in theory,

frequency-dependent nudging allows all frequencies (other than mean and annual cycle) to

evolve uninhibited, limitations in numerical resolution (finite time duration) might cap the

maximum number of frequencies allowed (this exist in other frequency based methods as

well e.g. discrete fourier transform). This can cause a slight underestimation of the system

being approximated.

Thompson et al. (2006) pointed out an important caveat when using the scheme. Al-

though hybrid frequency-dependent nudging can eliminate bias and drifts, it does so at the

expense of adding artificial sources and sinks of biogeochemical variables. This suggests
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that the model and its forcing are incorrect in some fundamental ways, especially in a 1D

model where physical dynamics are clearly lacking. It was suggested that nudges may be

useful instead in diagnosing problems with the model, which when fixed is likely to lead

to a more realistic biogeochemical model. This is in agreement with the idea expressed by

Nerger and Gregg (2008) who estimated their model bias by the assimilation of satellite

ocean chlorophyll data into a global model.



CHAPTER 3

DEVELOPMENT OF A BIOMASS PROXY

FROM ELECTRONIC TAG DATA

As described in Figure 1.1, observations can be assimilated after the bias correction step.

Observations can either come from satellite measurements, ship-based sampling and in situ

autonomous platforms and moorings. In this chapter, the potential of using observations

(with focus on estimation of phytoplankton biomass) from electronic tags attached to

marine animals will be assessed. These are potentially very good sources of oceanographic

data due to their wide spatial coverage and high temporal resolution.

Assessment of physical quantities measured like temperature, depth and irradiance are

straightforward since these variable are directly measured by the electronic tags. This is

not the case for biogeochemical variables however since these quantities are not measured.

An indirect relationship between phytoplankton biomass and changes in physical quantities

like light attenuation needs to be established first to be able to assess biogeochemical

quantities.

To cover the important concepts that are needed for this chapter, the next sections will

be presented as follows: In section 3.1, the behaviour of light under seawater and its

relation to other materials present in seawater is discussed. The relationship between

light attenuation and phytoplankton biomass, which is the central theory that is important

for this chapter, is discussed as well. Furthermore, the use of attenuation coefficient of

downwelling irradiance, Kd, to derive bio-optical relationship in different water bodies

is described and justified. In section 3.2, the pattern of the Grey seals’ (Halichoerus

grypus) movement is described. This is important as it provides insights to the spatio-

temporal pattern uncovered in electronic tags data along Scotian Shelf. The data obtained

29
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from electronic tags are also described in this section. Since the electronic tags are not

originally intended for quantitative measurement of irradiance but rather to geo-locate

seals by determining dawn and dusk (personal communication with Heather Baer, support

coordinator Wildlife Computer), a calibration experiment at Bedford Basin is discussed

in section 3.3, including comparison of the estimated Kd(550) to potential indicators of

phytoplankton biomass (i.e. chl, fluorescence, absorption, attenuation). In section 3.4, the

results of estimation of attenuation coefficient, Kd(550), and the bio-optical relationship

along Scotian Shelf is presented. Finally, a summary and conclusion for the chapter is

given in section 3.5.

3.1 Light in sea water

Incident light from the sun progressively attenuates in seawater. It is influenced by the

scattering and absorption properties of seawater itself and the various substances present

in it. The properties only depend on the content of the water, and thus are referred to as

inherent optical properties (IOPs; Kirk, 1994).

The reduction of light energy entering the ocean is mostly due to absorption by water

molecules. This is not surprising since for every 100 H2O molecules, there are only 3-4

molecules of other substances (Wozniak and Dera, 2007). Water itself is highly absorbing

at wavelengths below 250 nm and above 700 nm (Mobley, 2010), where the absorbed

energy is converted to non-radiant form and given off as heat. As more photons are

absorbed with depth, less light penetrates deeper down the water column.

Scattering is associated with the particles present in water. Scattering causes light to

change its direction of propagation when it encounters an obstacle. Incident light coming

from the sun is reduced before it enters the seawater because part of it is reflected back to

the atmosphere. Once light enters the water column, particles scatter it in all directions

with the majority being scattered in the forward direction. Light can either be reflected or

refracted at the interface of two media. Light can also be diffracted. The mere proximity

of the particle to a light beam’s path can cause the light to change direction because light

waves bend around corners (Davies-Colley et al., 1993). Furthermore, scattering also

contributes to further absorption of the light because changing directions increases the

path length that the light must travel, thus the probability of being absorbed increases as

well (Gallegos, 2001).
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IOPs give us information about the type and concentration of water constituents. Most

of the bulk properties of a water body can be deduced from measurements of absorption

coefficients and volume scattering functions. However, the difficulty associated with

measurement of IOPs in the early days of optical oceanography led to the use of apparent

optical properties (AOPs, Mobley (2010)). Mobley (2010) defines AOPs as (i) properties

that depend both on the medium (IOPs) and on the directional structure (spatial distribution)

of the radiance distribution, and that (ii) display enough regular features and stability to

be useful descriptors of a water body. Radiometric variables such as upwelling, Eu, and

downwelling irradiances, Ed, are commonly used measurements to derive AOPs such as

irradiance reflectance and various irradiance attenuation functions.

The diffuse attenuation coefficient (Kd) is one of the most common AOPs being used.

It provides a direct measure of the penetration of light in the ocean since absorption and

scattering effects are assumed to be captured by light attenuation with depth. Kd depends

on both the IOPs and spatial distribution of the radiance distribution which satisfies the

definition of AOP, and it remains the same under similar water conditions (i.e. displays

enough regular features and stability) despite the sensitivity of the measured Ed to varying

environmental conditions. This can be seen in the equation below:

Kd = −
1

z2 − z1
ln

(

Ed2

Ed1

)

(3.1)

where Ed1 and Ed2 are irradiances measured at depths z1 and z2, respectively (Kirk, 1994).

In the equation above, if Ed1 suddenly changes because of a changing angle of the incident

light, presence of clouds in the sky or surface waves, the effect will be cancelled out since

Ed2 will experience a proportional change thus leaving Kd unchanged.

Estimates of Kd alone can give enough information for water mass classifications. High

Kd means that there are abundant attenuating agents present in the water, and thus the

water is more turbid. Coastal regions are usually associated with higher Kd as compared

to open ocean waters (Mobley, 2010).

Classification of water masses into two types were first introduced by Morel and Prieur

(1977). Spectral reflectance and attenuation functions were used to group water bodies

as case I and case II. Water bodies where contributions from phytoplankton control

the optical properties are classified as case I waters. In this scenario, the measured

absorption and scattering due to phytoplankton is high compared to other substances.
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Case I waters can range from very clear (oligotrophic) to very productive (eutrophic)

water, depending on the phytoplankton concentration. Case II waters are those where

contributions from phytoplankton and other substances influence the optical property of

water. These substances include coloured dissolved organic matter (CDOM), dissolved

organics, and various suspended sediments. Case II waters are generally found in coastal

zones influenced by land (Mobley, 2010).

To relate the estimated AOP (Kd) to the biological constituents present, Morel (1988)

proposed a bio-optical model, which allows the optical properties and the solar radiation

propagation within the ocean to be predicted from the phytoplanktonic pigment content.

Case I waters were considered since chlorophyll (chl) retrieval is relatively straightforward

because only phytoplankton influence the optical properties. chl concentrations range

from very low values (∽ 10−1 mg m−3) in oligotrophic waters to high values in coastal

upwelling areas (∽ 101 mg m−3). Regions with high chl concentrations are associated

with high Kd estimates while measurements from oligotrophic waters are associated with

low Kd estimates. Higher phytoplankton concentration means that more phytoplankton-

associated materials (i.e. debris and excreted organic matter) are present as well, which

contribute further to absorption and scattering of light particles. A relationship between

phytoplankton biomass (and its associated materials) and attenuation coefficient for case

I waters, first deduced by Morel (1988) and confirmed again by Morel and Maritorena

(2001), was shown to follow the general power law form

Kd(λ) = Kw(λ) + χe(λ) · chl
e(λ) (3.2)

where Kw is the wavelength-specific diffuse attenuation of downward irradiance due to

pure sea water, and χe and e are wavelength-specific fitted constants.

Bio-optical relations for case II waters are more complicated because of the presence of

other substances whose optical signatures are independent from those of chl. Morel and

Maritorena (2001) point out that bio-optical models based on chl for case II waters are

insufficient and must be supplemented by accounting for the presence of suspended solids

and colored dissolved organic matter (CDOM), not co-varying with the algal biomass.

This is necessary since CDOM contributes to absorption of light while suspended solids

contribute to scattering and further absorption of light (Lewis, 2011).

In case I water, chl is commonly used as an index to quantify algal content, and more
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generally the bio-optical state of the region. The relationship between Kd and chl given by

Morel (1988) in equation 3.2 captures the bio-optical dynamics in bodies of water that are

far from land influence. Results using Kd as proxy for phytoplankton biomass for case I

waters yield generally robust results in estimating chl concentration (Antoine et al., 2005;

Teo et al., 2009). Bio-optical models for case II waters are different as they often involve

complex relations that give considerable weight to other substances.

In coastal regions like the Gulf of Maine, the New England continental shelf and the

Scotian Shelf, optical conditions generally resemble that of case II waters. Surface water in

these regions is case II due to particles, CDOM and dissolved and detrital materials (Balch

et al., 2004; Green et al., 2003). These substances have significant absorption and scattering

properties. During fall and spring however (possible bloom periods), pigment material

dominates the optical environment and hence permits the use of pigment algorithms

(Topliss et al., 1991). In addition, Topliss et al. (1991) point out that the long-term trend

in turbidity in Scotian Shelf waters is related to the general level of biological material

present.

3.2 Seal tag data

3.2.1 Spatio-temporal pattern of the grey seals’ movement

Considerable interest has been given to understanding the spatial and temporal pattern of

grey seals’ (Halichoerus grypus) foraging behaviour because of increasing evidence that

marine mammals can have significant top-down effect on ecosystem functioning (Bowen,

1997). Breed et al. (2009) suggested that patterns in foraging behavior of grey seals could

be explained by contributions from demographic, environmental, and seasonal factors.

Depth (likely related to abundance of food source) is the number one factor that seals

consider in foraging. Grey seals are shelf animals that forage on shallow banks to conserve

energy, and acquire food (Harvey et al., 2012).

Effects of sex differences were observed to be important in determining the diving

behaviour with males diving 5-15 m deeper than females. Males dive consistently through-

out the day, whereas females showed strong diurnal patterns in dive depth, duration and

frequency. Females however had longer dives and spent more time at depth. The pattern

of foraging of female grey seals is consistent with early accumulation of body energy to

support pregnancy and the subsequent lactation period during which females fast, while
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males suggest a gradual accumulation of body energy (Beck et al., 2003).

Diving patterns differ as well seasonally with both sexes foraging in deeper waters in

the winter and shallower water in summer. Deeper dives require more energy and leave

less stored body oxygen and are therefore less efficient (Thompson and Fedak, 2001);

moving to deeper waters in winter suggests that prey are to be found in deeper waters.

The scattered nature of foraging locations were also observed in winter suggesting that

prey are less predictable in winter as well. On the contrary, shallower water in the summer

and fall is more accessible to prey and more focused patterns of foraging are observed

(Breed et al., 2009). Several studies support this observation and points out that in the

western Atlantic, many fish species migrate to deeper water during winter and to shallow

banks during summer and fall to remain in warmer water (Perry and Smith, 1994; Swain

et al., 1998). In summer and fall, spatial patterns of foraging are observed to be focused in

the Middle Banks (see Figure 3.1). Both sexes remain inshore near haulout sites in Sable

Island and spend a larger proportion of their time ashore. Few foraging trips were observed

as well. Despite the reduction in foraging effort, increased body mass were observed in

both sexes (Beck et al., 2003). This, and the intense use of Middle Banks and surrounding

areas, suggest a highly predictable prey resource over this bank in the summer and fall

(Breed et al., 2009). The spatio-temporal patterns associated with grey seals movement are

strongly influenced by bathymetry and foraging effort focused in shallower areas of the

shelf that changes dynamically through the year and between sexes.

3.2.2 Data from electronic tags attached to grey seals

Electronic tags (MK10 loggers from Wildlife Computer, USA) were deployed by the group

of S. Iverson (http://fatlab.biology.dal.ca/) and D. Bowen (http://bowenlab.biology.dal.ca/)

in three different months in the post-moulting (moulting ends around May) periods for 3

different years; October 2009, September 2010 and June 2011. The seals were captured on

Sable Island using hand-held nets and anaesthetized (see Bowen et al. (1992, 1999) for

details). Once immobilized, electronic tags were glued to the pelage at the back of the

animal using epoxy resin. In October 2009, 15 electronic tags were attached to Grey seals

(7 males, 8 females) and only 13 were recovered (5 males, 8 females) in the pre-breeding

periods December 2009-February 2010. Deployment and recovery of electronic tags were

all done on Sable Island. In September 2010, 20 electronic tags were attached to Grey

seals (6 males, 14 females) and were all recovered between December 2010-January 2011.
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Data from sealID 5954 (male seal, see table 1 in appendix) is dropped however because

the GPS file is inaccessible and might be corrupted. In June 2011, 20 electronic tags were

attached to Grey seals (20 females) and only 16 were recovered in December 2011-January

2012. Only 13 data sources were used however since the file from sealID 6120 is not

available and GPS data from sealID 137 and 10331 are corrupted (see table 1 in appendix).

The electronic tags record depth, temperature, light level and GPS locations. The depth

and temperature sensors were calibrated to provide an accuracy of 1%. Depth and light

level are temperature-compensated to provide consistent readings through temperature

variations (Wildlife Computer USA, 2012). The electronic tags were set to sample depth

(0 to 1000 m ± 0.5 m), water temperature (-40◦C to +60◦C ± 0.05◦C), and light level

every 10 seconds. Light level is measured as irradiance at a wavelength of 550 nm with

a logarithmic range from 5×10−12 W· cm−2 to 5×10−2 W· cm−2. Sensor measured

light level are converted to irradiance (W· m−2) using the relation provided by Wildlife

Computer (see Figure B.1 in the appendix). The electronic tags are not intended for

quantitative measurement of irradiance but rather to geo-locate seals by determining

dawn and dusk (personal communication with Heather Baer, support coordinator Wildlife

Computer). Calibration experiments will however be discussed in section 3.3 to show

that measured irradiance from electronic tags are comparable with measurements from

specialized irradiance sensors.

Figure 3.2 shows a time series of dive and temperature profiles, and irradiance (W·

m−2) for one seal for one day. In this example the seal dove approximately 180 times per

day (top). Because of the seals’ diving pattern and frequency, and the sensors’ sampling

rate the temperature profile (middle) of the seal’s dive cycles can be reconstructed. The

time series of the temperature profile suggests that the well-mixed layer is about 40-50

meters deep, the region where the attenuation coefficient, Kd(550), is calculated. The time

series of irradiance (bottom) shows a clear distinction between day and night (dawn and

dusk). The fluctuations that are observed in the time series correspond to the seals’ diving

behaviour.

Pre-processing of the irradiance data reveals that there is a difference between the ascent

(blue circles) and descent (green circles) phase of the seal dives in terms of the irradiance

measured (Figure 3.3). To calculate the attenuation coefficient from the irradiance profile,

the following data were used: (i) from the ascent phase, (ii) between 10:00 to 14:00 hours,
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(iii) when seal is in vertical motion, and (iv) deeper than 5 meters. Condition (i) assures that

the light sensor is facing upwards, the choice of time in (ii) allows for enough data points

to use when sunlight is near normal to the surface, (iii) guarantees that changes in light

condition with depth are being captured and (iv) since unrealistic noise are observed near

the surface which might be due to surface waves or seal behaviour near the surface (e.g.

rolling). From the processed data, the attenuation coefficient is calculated by regression

(black line) of the data points in the mixed layer. The temperature profile (red circles) is

plotted as well, which sets the limit for regression since the attenuation coefficient is only

estimated in the mixed layer (reasons are discussed in section 3.4).

Considering the high frequency capability of tags to collect data, coupled with the high

mobility of grey seals and their need for frequent nutrition, biologically active regions could

be sampled better both temporally and spatially than through traditional in situ methods.

Oceanographic variables in these regions can be sampled directly like temperature, salinity

and density. Other variables such as chl and phytoplankton concentration can be sampled

indirectly by using a bio-optical relation between light attenuation and water constituents.

Recent studies indeed show that electronic tags attached to pelagic animals can be an

excellent and reliable oceanographic data sources (Teo et al., 2009; Boehlert et al., 2001).

The data that can be inferred from electronic tags can vary in consistency however.

There are days when seals go out to the sea, but do not dive deeper than 10 m (set diving

threshold) and thus no useful data can be generated. In some cases, seals move back and

forth around Sable Island. All these can contribute to temporal patchiness that can affect

the quality of the time series data generated. In October 2009-January 2010, a total of

60% useful data were generated from 13 seals. This increased to 62% from 19 seals from

September 2010-February 2011. Data collection from June 2011-January 2012 generated

the least useable data set- a total of 43% from 15 seals. Despite having only 55% (from

2009-2012) of the seals’ itinerary convert to useful data, the regions sampled are well

represented.



40

3.3 Calibration of electronic tags in Bedford Basin

3.3.1 Comparison of electronic tag data with CTD and the hyper-pro

measurements

Absorption of light by different phytoplankton species has been well documented (Kirk-

patrick et al., 2000; Barlow et al., 2002; Ciotti et al., 2002). Regardless of the phyto-

plankton species, absorption spectra are dominated by blue (∽440 nm) and red (∽675

nm) wavelengths wherein absorption in the blue region is around 60% greater than at

red. Presence of pigments other than chl will cause broadening peaks and appearance

of additional absorption spectra. Absorption at 550 nm however remains very low. This

apparently is a source of concern (will be referred to as C1) for this study since the light

level sensor operates at 550 nm. Hence, the calculated Kd might not represent the actual

biomass present along the Scotian Shelf because of limited information that can be deduced

in using 550 nm.

The next concern (will be referred to as C2) in using electronic tags is the reliability of

the data collected. According to Wildlife Computer USA (2012), the manufacturers of the

tag, the light sensors are not designed for quantitative measurement of irradiance. The light

sensors are used only to determine dawn and dusk to aid in estimating the geolocation of

the seals. This explains why 550 nm is the wavelength of choice since green wavelengths

are least absorbed and thus can penetrate the deepest in coastal waters (Jerlov, 1976).

The Bedford Basin experiment was designed to learn more about the potential problems

described above and to allow for proper calibration of the seal tags. In C1, the chl estimates

derived from Kd(550) from electronic tags are compared to actual chl measurements in the

region. The direct comparison should address whether irradiance estimates from electronic

tags can be used to estimate phytoplankton biomass. A caveat to this experiment however is

that the relationship between Kd(550) and chl that will be derived for Bedford Basin might

not necessarily hold true for the Scotian Shelf. Although both waters can be categorized as

case II, Bedford Basin is surrounded by land mass and receives abundant contribution of

CDOM and suspended particles from the surrounding industrial activities. For C2, direct

comparison of the irradiance profiles should suffice to assess the reliability of irradiance

sensors. It is also the goal of this experiment to determine if measurements between seal

tags are comparable.

In this experiment, the electronic tags along with the conductivity-temperature-depth



41

sensor (CTD) and the hyper-spectral profiler (hyper-pro) were deployed to measure irra-

diance, depth and temperature in Bedford Basin (Figure 3.4). The electronic tags were

mounted on the CTD (Figure 3.4a) and lowered at a station in Bedford Basin every week

starting February 29, 2012 by J. Cullen’s lab (www.ceotr.ca, I participated twice in the

deployment and helped design the calibration experiment). Data were collected at a one

second interval and lowered at a speed of 1 ms−1. The hyper-pro was lowered into the

water 5-10 minutes after the seal tag-CTD measurements.

Deviations in the measured depth occur among the seal tags and when compared to

the CTD (baseline measurement). To calculate this deviation, the temperature profiles

from electronic tags and CTD were interpolated first to a vertical resolution of 5 cm. The

temperature profiles from electronic tags were then decremented or incremented by 5 cm

and compared to the temperature profiles from the CTD. The depth adjustment that gave

the minimum squared difference between the temperature profiles from electronic tags and

CTD were reported as depth deviations. Visual comparison of the corrected temperature

profiles in Figure 3.6 shows that the calculated depth deviations are reasonable.

To calculate the depth deviation between hyper-pro measurements and electronic tags

data, a similar method to the previous paragraph was used with two important modifications:

i) log-irradiance profiles were minimized in place of temperature profiles and ii) a mean of

the depth adjusted irradiance profiles from electronic tags was compared to the hyper-pro

measurements. The mean of the depth adjusted irradiance profiles from electronic tags

was used since the only interest in this calculation is to determine how much the deviation

there is to the depth measurements of the hyper-pro. Visual comparison of the corrected

irradiance profiles in Figure 3.7 shows that the calculated depth deviations are reasonable.

Figure 3.5 shows the evolution of depth offsets for several sampling days. There appears

to be no systematic drift in depth offsets, suggesting a constant systematic error (that can

be corrected). Differences in the capability of the pressure transducer (which is used to

measure depth) might account for this (a similar problem was also experienced by Beck

et al. (2003) who pointed out this possible reason). The deviation in depth was removed

by adding the calculated differences to measurements from seal tags. There appears to be

a drift in the temporal offsets as well calculated by adjusting the clocks of the tags to agree

with CTD. The temporal drift ranges from 10-120 seconds, but this error is of less concern

for the purpose of estimating attenuation coefficients.
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Figure 3.5: Deviation of measured depth of the electronic tags (coloured lines) and the

hyper-pro (black line) from CTD measurements. The plotted lines represents the difference

between values from electronic tags and the hyper-pro to CTD measurements for each

collection day from February 20, 2012 to May 16, 2012.
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Figure 3.6: Comparison of temperature profiles from CTD (black line) and seal tags

(multi-coloured lines) after adjusting for depth differences. Different Figures correspond

to different dates.
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Figure 3.7: Comparison of log-irradiance profiles at 550 nm from the hyper-pro (black

line) and seal tags (multi-coloured lines) after adjusting for depth differences. Different

Figures correspond to different dates.
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Figures 3.6 and 3.7 show that profiles of temperature and log-irradiance (at 550 nm)

obtained from seal tags are comparable to the temperature and irradiance profiles from the

CTD and the hyper-pro after adjusting for depth differences. The hyper-pro’s light sensor

capability however is limited at low ambient light corresponding to log-irradiances of -6

and below (John Cullen, personal communication) which causes unreliable comparisons at

depths deeper than 30-40 m.

3.3.2 Estimation of chl in Bedford Basin

Calculation of measured chl-a in the upper 10 m. Chlorophyll-a (will be referred as

chl-ai, where i is the sample number) was measured from bottle samples taken on the same

date as CTD and the hyper-pro were deployed in Bedford Basin. Three bottle samples

were taken at 1, 5, 10 and 60 m. Since only Kd(550) in the upper 10 m is considered in

the analysis in this thesis (details are given below), measurements at 60 m were not used.

To get a single value of measured chl-a to represent the upper 10 meters, the following

procedures was used.

i) The mean, chlzk , and standard deviation, σchlzk
, of 3 measurements, j, of chl-ajk at

each level k were calculated. ii) A representative value of chl-a in the upper 10 meters

was then calculated using a weighted mean as follows:

chl-a =
3

∑

k=1

wzk chlzk (3.3)

where chl-a is the weighted mean of chlzk in the upper 10 meters and wzk =
2

9
,
1

2
, and

5

18
are the weights for depths zk=1, 5 and 10 m, respectively. The weights, wzk , were

calculated by vertically integrating chlzk values in the top 10 m, and dividing it by the total

depth where measurements were made. Standard deviations for chl-a were calculated by

assuming the errors at the three depths are independent, σchl-a =

√

√

√

√

3
∑

k=1

w2
zk
σ2
chlzk

.

Estimation of chl from Kd(550) estimates. Attenuation coefficients, Kd(550), were

calculated from regression (type-I) of log-irradiance profiles that were corrected for depth

differences. Figure 3.8 shows the time series of the calculated Kd(550) at each 10 m

interval at 5 m increments up to a depth of 35 m (see table 3.1 for values in the upper 10 m).

In general, there is good agreement for Kd(550) estimates from the hyper-pro and different



47

seal tags. The RMSEs (difference between seal tags and the hyper-pro estimates in a least

square sense) from 0-30 m have values around 0.04 m−1 which is around 20% of the values

of the Kd(550) estimates in the depth range (see table 3.2). This small RMSE:Kd(550)

ratio can be seen as well in Figure 3.8 where estimates at depth from 0-30 m have better fit

as compared to estimates at below 30 m. The ratios of RMSE:Kd(550) begin to increase

for depths deeper than 30 m. Values of RMSE around 0.11 m−1 are calculated for depths

deeper than 30 m, which is around 66% of the value of the estimated Kd(550) at this

depth range. This is not surprising since ambient noise dominates the log-irradiance data

measured from the hyper-pro (see log-irradiance profiles in Figure 3.7).

The time series reveals strong temporal patterns especially in the upper 10 m. Figure 3.9

shows that Kd(550) in this region is higher as compared to other levels indicating that

bio-optical conditions at Bedford Basin are strongly influenced by attenuating constituents

in the upper 10 m. This observation is consistent with findings of Roy (1989) who reports

higher concentrations of measured chl near the surface (< 15 m) from February to April in

Bedford Basin. Increasing Kd(550) is observed from February 29-April 2, 2012 suggesting

that there is a gradual build up of light attenuants. This is followed by a decrease in Kd(550)

up to April 17 and then a subsequent increase in Kd(550) up to May 16, 2012. Figure 3.10

shows that the pattern observed from February 29-April 17, 2012 is closely related to the

observed pattern in measured fluorescence (F ), absorption (a(550)) from all constituents

except water, beam attenuation (α(550)) and chl a (see appendix B.1 for calculation)

suggesting that estimated Kd(550) in this period is due to phytoplankton bloom. From

April 17-May 16, 2012, Kd(550), fluorescence and beam attenuation have increasing

trends. At the same period, the measured chl-a and absorption increases initially however

they eventually tapers off suggesting that light attenuation at 550 nm in this period is

mostly due attenuating agents other than phytoplankton.
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Seal tags
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(a) 0− 10m (b) 5− 15 m

(c) 10− 20m (d) 15− 25m

(e) 20− 30m (f) 25− 35m

Figure 3.8: Time series of the estimated Kd(550) from the hyper-pro (black line) and seal

tags (multicolor) in Bedford Basin. Data points were obtained from February 29 - May

16, 2012. (a)-(f) Estimates at different depths. The light shade for each line represents the

standard deviation calculated from the slope (Kd(550)) of the regression.
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Table 3.1: Calculated values of depth deviations (d [m]), Kd(550) [m−1] estimates and their standard deviation (σKd(550) [m−1] ) for

the duration of Bedford Basin experiment for seal tags and the hyper-pro. Depth deviations were calculated using equations ?? and ??,

Kd(550) and σKd(550) were obtained using type-I regression. Multicolored texts represent estimates from seal tags (see Figure 3.8 for the

corresponding plots).

Sensor variable Feb29 Mar07 Mar14 Mar21 Mar28 Apr02 Apr11 Apr17 Apr25 May09 May16
d −3.05 −4.05 −3.35 −4.85 −5.00 −5.00 −5.00 −4.55 −4.50 −1.30 −3.15

11A0091 Kd(550) 0.20 0.20 0.26 0.26 0.25 0.39 0.16 0.15 0.23 0.28 0.48
σKd(550) 0.0034 0.0057 0.0077 0.0056 0.011 0.0082 0.011 0.0035 0.0073 0.0081 0.017

d −1.35 −2.55 −3.75 −4.45 −4.45 −4.50 −4.65 −3.75 −5.00 −4.05 −4.90
11A0214 Kd(550) 0.20 0.21 0.26 0.28 0.24 0.41 0.13 0.16 0.25 0.30 0.45

σKd(550) 0.0048 0.0073 0.0087 0.0086 0.013 0.014 0.012 0.0031 0.0081 0.0073 0.020
d −0.35 −1.95 −1.95 −2.00 −2.80 −2.50 −2.35 −1.15 −4.90 −1.8 −2.35

11A0254 Kd(550) 0.20 0.20 0.26 0.29 0.23 0.40 0.18 0.16 0.19 0.29 0.46
σKd(550) 0.0045 0.0052 0.0090 0.0057 0.079 0.011 0.0090 0.0045 0.0049 0.0098 0.016

d −0.7 −2.75 −2.75 −2.05 −3.35 −3.45 −2.75 −1.80 −5.00 −2.00 −3.50
11A0256 Kd(550) 0.20 0.19 0.25 0.30 0.25 0.39 0.17 0.16 0.21 0.29 0.41

σKd(550) 0.0038 0.0050 0.0076 0.0068 0.010 0.011 0.0081 0.0061 0.0062 0.0067 0.018
d 1.80 −2.05 −1.10 −1.15 −2.15 −2.25 −3.00 −0.90 −4.75 −2.55 −3.85

11A0257 Kd(550) 0.21 0.20 0.28 0.32 0.23 0.40 0.19 0.15 0.20 0.29 0.40
σKd(550) 0.0053 0.0083 0.012 0.011 0.0078 0.0085 0.011 0.0036 0.0062 0.0077 0.024

d −0.65 −4.00 −4.15 −4.45 −2.65 −2.60 −2.95 −3.35 −3.15 −2.85 −3.60
hyper-pro Kd(550) 0.22 0.20 0.24 0.32 0.30 0.32 0.26 0.17 0.24 0.28 0.36

σKd(550) 0.0016 0.0007 0.0036 0.0053 0.0077 0.0039 0.0009 0.0010 0.0028 0.0026 0.0079
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Table 3.2: Root mean square error (RMSE) of Kd(550) estimates from seal tags and the

hyper-pro for different 10 m levels. Different colours of tagID refer to the corresponding

time series of Kd(550) in Figure 3.8. The values in gray measure the magnitude of

RMSEs when compared to mean Kd(550) estimates for each tag and are calculated using

%ErrorFraction = 100×RMSE/Kd(550).

TagID 0− 10 m 5− 15 m 10− 20 m 15− 25 m 20− 30 m 25− 35 m
11A0091 0.0551 0.0375 0.0346 0.0321 0.0437 0.1174

(21%) (17%) (18%) (18%) (26%) (70%)
11A0214 0.0599 0.0367 0.0332 0.0346 0.0407 0.1162

(23%) (18%) (17%) (19%) (23%) (70%)
11A0254 0.0539 0.0415 0.0308 0.0351 0.0423 0.1111

(21%) (20%) (16%) (20%) (24%) (64%)
11A0256 0.0412 0.0460 0.0315 0.0412 0.0542 0.1100

(16%) (23%) (16%) (22%) (33%) (62%)
11A0257 0.0437 0.0379 0.0275 0.0379 0.0402 0.1124

(17%) (18%) (14%) (22%) (23%) (65%)
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(a) MK10 Serial # 11A0091 (b) MK10 Serial # 11A0214

(c) MK10 Serial # 11A0254 (d) MK10 Serial # 11A0256

(e) MK10 Serial # 11A0257 (f) the hyper-pro

Figure 3.9: Comparison of the estimated Kd(550) per 10 m level (from 0-35 m) at

Bedford Basin. Data points were obtained from February 29 - May 16, 2012. (a)-(e)

Kd(500) estimates from seal tags. Seal tags are determined by their serial numbers. (f)

Kd(550) estimates from the hyper-pro. The light shade for each line represents the standard

deviation calculated from the slope (Kd(550)) of the regression.
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Table 3.3: Correlation matrix showing relationships among possible indicators of phytoplankton biomass in the upper 10 m.

Kd(550)
11A0091 11A0214 11A0254 11A0256 11A0257 the hyper-pro F a(550) α(550) chl

Kd(550)

11A0091 1 - - - - - - - - -

11A0214 0.9579 1 - - - - - - - -

11A0254 0.9095 0.8423 1 - - - - - - -

11A0256 0.9533 0.8919 0.9637 1 - - - - - -

11A0257 0.8779 0.8135 0.9756 0.9441 1 - - - - -

hyper-pro 0.6655 0.5479 0.5309 0.6842 0.5164 1 - - - -

F 0.4449 0.3079 0.3770 0.5537 0.3877 0.8443 1 - - -

a(550) 0.7147 0.5725 0.7136 0.7877 0.7837 0.8222 0.7800 1 - -

α(550) 0.6999 0.6763 0.5646 0.6952 0.6373 0.7516 0.7213 0.8610 1 -

chl 0.7204 0.5883 0.7343 0.8094 0.7580 0.8334 0.8446 0.9542 0.8604 1

Units: Kd(550) [m−1], F [µg L−1], a(550) [m−1], α(550) [m−1] and chl-a [mg m−3]
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Figure 3.11: The relationship between estimated Kd(550) from the hyper-pro and the

mean measured chl-a concentration from bottle samples in the upper 10 m at Bedford

Basin for the years 2008-2012. The error bars associated with Kd(550) are from regression

errors. The error bars associated with measured chl a concentration are mean standard

deviation of chl a measurements in the upper 10 m. The regression line (R2 = 0.53) is

generated using type-II regression (York et al., 2004) for 88 data points.

Table 3.3 presents the correlation matrix showing relationships among possible indicators

of phytoplankton biomass. There is high correlation (ρ > 0.8) among estimates from

electronic tags, this is not surprising since high precision is observed in the upper 10

m of Kd(550) estimates (Figure 3.8a). Correlation of the electronic tags to estimates

from the hyper-pro is lower (0.51 < ρ < 0.67 ) suggesting significant differences in

measured light attenuation. Correlation between Kd(550) estimates from electronic tags

and other potential indicators of phytoplankton biomass like fluorescence, absorption,

beam attenuation, chl-a are calculated as well. High correlations (0.55 < ρ < 0.94) are

calculated with the exception of fluorescence (0.3 < ρ < 0.55). Among the biomass

indicators, Kd(550) from electronic tags correlates very well with measured chl-a (0.59 <

ρ < 0.81) suggesting that temporal changes in phytoplankton biomass in Bedford Basin is
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captured in the Kd(550) estimates.

Figure 3.11 shows a bio-optical relationship relating Kd(550) to chl-a measurements

from 2008-2012 at Bedford Basin for the upper 10 m. The linear relationship Kd(550) =

0.01 chl+0.21 is found to explain 53% of the variability in the dataset. The presence of

large and varying quantities of absorbing materials can affect the Kd(λ) estimates. In an

enclosed bay such as Bedford Basin, high concentration of CDOM and suspended particles

are expected to be high because of contribution from the surrounding human activities.

Estimates of Kd(λ) are therefore expected to be higher than in more dilute environments

(e.g. the Scotian Shelf). The use of light sensors sensitive to 550 nm is also another

point worth mentioning. Phytoplankton absorption is dominated by blue and near-infrared

spectra (Brewin et al., 2011) while CDOM absorption is dominated by the blue spectra

(Retamal et al., 2007). Little information about phytoplankton and CDOM is therefore

contained in the collected irradiance data which can cause incorrect chl estimates when

using the derived bio-optical model.

3.4 Estimation of phytoplankton biomass on the Scotian

Shelf

3.4.1 Estimation of attenuation coefficient

Seasonal changes in temperature and salinity affects density which creates stratification

that breaks a water column into distinct strata. This results in non-uniform mixing, often a

well-mixed layer on top of a poorly mixed deep layer (Wuest et al., 2000). Phytoplankton

may be found in abundance at the surface, right above the boundary, or directly below

the mixed layer; wherever adequate supply of nutrients and sufficient sunlight intersects

(Mellard et al., 2010). Furthermore, turbulent motions in water caused by storm events can

also influence the vertical distribution of phytoplankton (Lewis et al., 1984) (e.g. advection

of nutrient-rich deep waters to the surface, triggering primary production).

Numerous studies have shown that in the Scotian Shelf waters, phytoplankton is found in

abundance within the mixed layer (Dauchez et al., 1996; Mousseau et al., 1996; Greenan

et al., 2004; DFO, 2005). Light attenuation in the upper mixed layer therefore contains

enough information to infer phytoplankton biomass surrounding the shelf. The Scotian

Shelf is categorized as case II however and is thus optically complex. Parameterizations of

bio-optical models need to be locally tuned as algal and non-algal optical signals can vary



56

regionally (Craig et al., 2006; Darecki and Stramski, 2004).

The estimation of Kd(550) in this section follows a similar procedure as in section 3.4.1,

with the exception that regression of light attenuation profiles is done only for the mixed

layer. Figure 3.3 shows that the slope of the light attenuation profile is steeper in the mixed

layer than compared to the profile below it. This suggests that stronger light attenuation is

associated in the upper mixed layer possibly because of the presence of phytoplankton and

other light attenuants such as CDOM and suspended particles.

The mixed layer depth (MLD) was estimated from the temperature profiles collected

by electronic tags. The temperature profiles were smoothed first using loess smoother

in Matlab to remove the effect of temperature fluctuations and noise near the surface. A

first difference criterion (difference of surface temperature to temperature values at each

depth) was then used to determine the mixed layer depth. A threshold of ∆T = 0.4◦C

was chosen since it corresponds to the proper prediction of MLDs for most profiles. The

criterion usually fails when seals are in shallow regions around Sable Island. In certain

cases, there is strong fluctuation in temperature that exceeds ∆T = 0.4◦C, however if

checked visually the reported MLD is incorrectly estimated. Hence, to ensure reliable

estimation all calculated MLDs were visually inspected and were corrected to agree with

visual MLD. Even visual inspection can fail at times however in cases where the seals

didn’t dive deep enough to reach the thermocline. In these cases, no MLD is reported.

The use of criteria based on temperature works in most cases since daily and seasonal

cycles in surface forcing have large heat fluxes, and weak salt fluxes (Brainerd and Gregg,

1995). However, in the event of intense rainfall strongly stratified pools of fresh water

might necessitate the accounting for salinity in calculating MLD.

The spatial distribution of the estimated Kd(550) values is shown in Figure 3.12 for 2009-

2012. There seems to be a consistent spatial pattern that is independent of time. A closer

look at Figures 3.12a-3.12c reveals that there is a higher probability of finding Kd(550)

estimates higher than 0.15 m−1 at the west of Sable Island (see box 1 in Figure 3.12) than

at any region in the Scotian Shelf for all years. Similarly, values of Kd(550) over the

Middle Banks (north of Sable Island) remains below 0.15 m−1 for most estimates for all

years (see box 2 in Figure 3.12). Seals however frequent the Middle Banks more often

than West Bank despite low Kd(550) estimates in the region (Figure 3.12d). This possibly

suggests biological activities are minimally responsible for the high Kd(550) near West
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Bank.

Figures 3.13, 3.14 and 3.15 show the corresponding time series for seals tracks in

Figures 3.12a-3.12c, respectively (see Figures B.2-B.22 in the appendix for all seals). These

Figures further support the assertion made in Figure 3.12 regarding the time-independence

of the observed Kd(550) on the Scotian Shelf from June to February. Figure 3.13 (see also

B.2-B.7) shows that Kd(550) estimates from October 2009-January 2010 fluctuate between

to 0.1-0.15 m−1, except when seals cross the West Bank and in regions immediately

adjacent to Sable Island. A similar trend is observed in Figures 3.14 and 3.15 (see also B.8-

B.22) from September 2010-February 2011 and June 2011-January 2012, respectively.

The estimated Kd(550) values seem to remain independent of the temperature and the

estimated MLD in the region.

The relatively flat temporal trend in Kd(550) is however not surprising. chl concen-

tration in the Scotian Shelf remains fairly low from summer to fall. In the summer, chl

concentration is generally less than 1 mg m−3 due to stratification and weak winds that

limits the diffusion of the nutrients to the euphotic zone from nutrient-rich waters below.

Increased wind mixing in the fall permits infusion of nutrients in the upper mixed layer

which triggers a fall bloom with peak concentrations of ∽2 mg chl m−3 (Greenan et al.,

2004). Estimated Kd(550) might change however in the spring as primary production on

the Scotian Shelf has a peak chl concentration of ∽8 mg chl m−3.

The consistency of measurements from electronic tags can also be seen in the data.

Figures 3.16-3.18 shows time series of the regions (∼676 km2) visited by at least 5 grey

seals for each deployment year. The time series show estimates from different electronic

tags in the same region are comparable except for data points near the coast and west of

Sable Island. Regions that are visited more frequently can be found over the Middle Bank

as compared to any other area in the Scotian Shelf. Table 3.4 shows the break down of

the number of unique seal visits in each box and the number of Kd(550) estimates that

the trips generated. Varying seal dive frequency can be observed from month to month

(varying number of Kd(550) estimates). It can be seen as well that seals are likely to stay

around longer in one region consistent with findings of Harvey et al. (2012) that seals

concentrate on foraging zones to conserve energy. Hence, biologically active regions are

sampled better.
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(a) October 2009-January 2010 (b) September 2010-February 2011

(c) June 2011-January 2012
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Figure 3.12: Spatial distribution of the estimated of Kd(550) from October 2009-January 2012. Location of Kd(550) are mean daily

positions calculated from 10:00-14:00. The bathymetry is shown in grey contours. (a) Kd(550) estimates for 13 grey seals from October

2009-January 2010, (b) for 19 grey seals from September 2010-February 2011, and (c) for 13 grey seals from June 2011-January 2012.

(d) Time series of the Kd(550) estimates (asterisk) in boxes 1 and 2. The solid lines are the mean values of the estimates. The boxes are

at the same location for all years and covers an area of 676 km2.
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Figure 3.13: Spatio-temporal distribution of the estimated Kd(550) (top row) for two seals

[sealID 9935 (left) and 78 (right)] from Figure 3.12a. The corresponding time series (black

line), calculated mixed layer depth (mld, green line) and mean temperature (calculated up

to mld, red line) are shown below. See Figures B.2 to B.7 for plots for other seals in the

region.
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Figure 3.14: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 125 (left) and 9411 (right)] from Figure 3.12b. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below. See Figures B.8 to B.16 for plots for

other seals in the region.
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Figure 3.15: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 6630 (left) and 2718 (right)] from Figure 3.12c. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below. See Figures B.17 to B.22 for plots for

other seals in the region.
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(a)

(b)

Figure 3.16: Time series of the estimated Kd(550) from selected regions along the Scotian

Shelf. (a) Similar to Figure 3.12a with added emphasis on region of interest (boxes). Each

box represents an area of approximately ∽676 km2. (b) The corresponding time series

of Kd(550) estimates inside each box in (a). The location of the boxes were chosen such

that there are at least 30 day Kd(550) estimates and there are interaction for at least 5 grey

seals for the duration of the experiment.
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(a)

(b) (c)

Figure 3.17: Time series of the estimated Kd(550) from selected regions along the Scotian Shelf. (a) Similar to Figure 3.12b with

added emphasis on region of interest (boxes). Each box represents an area of approximately 676 km2. (b) The corresponding time series

of Kd(550) estimates inside each box in (a). The location of the boxes were chosen such that there are at least 30 day Kd(550) estimates

and there are interaction for at least 5 grey seals for the duration of the experiment.
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(a)

(b) (c)

Figure 3.18: Time series of the estimated Kd(550) from selected regions along the Scotian Shelf. (a) Similar to Figure 3.12c with

added emphasis on region of interest (boxes). Each box represents an area of approximately 676 km2. (b) The corresponding time series

of Kd(550) estimates inside each box in (a). The location of the boxes were chosen such that there are at least 30 day Kd(550) estimates

and there are interaction for at least 5 grey seals for the duration of the experiment.
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3.4.2 Bio-optical relationship in Scotian Shelf

In this section, chl observations from MODIS satellite were used to derive a bio-optical

relationship on the Scotian Shelf. The chl data have temporal resolution of 1 day and

were defined on a ∼ 4 km spatial grid. The chl data were matched in time and in space to

the Kd(550) estimates. Matching in time is straightforward since chl data and Kd(550)

estimates both have a similar temporal resolution (daily). To match the data points spatially

however, Kd(550) values were mapped first onto a spatial grid that matches the resolution

of the chl data. Kd(550) estimates were then assigned to the coordinates of the closest grid

point if chl data is present, otherwise Kd(550) estimates are discarded. Due to this nature

of matching, it is possible then that multiple Kd(550) estimates are matched with a single

chl value. Figure 3.19 show the spatial distribution of satellite-based chl concentration

from 2009-2012 that are nearest to location of Kd(550) estimates.

Figure 3.20 shows the relationship between estimated Kd(550) and satellite measured

chl at Scotian Shelf. The Figure shows no noticeable pattern between satellite-measured

chl and Kd(550), and a R2 = 0.006 was obtained when linearly regressed. The loss of

important bio-optical information by using a sensor sensitive only to green light coupled

with the large errors associated with satellite-measured chl in case II waters might have

caused the insignificant relationship observed between Kd(550) and satellite-measured

chl along the Scotian Shelf.

3.5 Summary and Conclusions

Determining the appropriate bio-optical relationship is complicated in coastal waters such

as Bedford Basin and on the Scotian Shelf. The large and varying quantities of absorbing

and scattering materials can be introduced to surface waters from sediments and terrestrial

sources (K.Carder et al., 1989; E.D’Sa and Miller, 2003) in a short span of time which

affect the bio-optical condition significantly. In spite of these, phytoplankton are more

abundant and variable near the coast (Y.Kang et al., 2006; Moore et al., 2007; O’Boyle and

Silke, 2010; Song et al., 2011), and most of the times their optical properties are distinct

from other absorbing and scattering materials (Yentsch and Phinney, 1985; Hunter et al.,

2008; Moisan et al., 2012). Thus, with the right approach it is possible to use optical

methods for detecting biological variability in coastal waters.

In this thesis, a simple approach was taken to derive a bio-optical relationship between
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Table 3.4: Number of grey seal (Nseals) and Kd(550) estimates (NKd
, in grey) per month

in specified regions (boxes) in Figures 3.16-3.18. Ntotseals is the total number of seals that

visited each box and NtotKd
(in grey) is the total number of Kd(550) estimates in each box.

The hyphen in the table means that no tags are attached to the seals for a particular month.

Nseals Ntotseals

NKd
NtotKd

Year range location Jun Jul Aug Sep Oct Nov Dec Jan Feb

box 1 - - - - 5 5 4 0 0 7

- - - - 9 43 28 0 0 80

2009-2010 box 2 - - - - 2 5 2 0 0 6

- - - - 10 28 12 0 0 50

box 3 - - - - 3 6 3 0 0 6

- - - - 7 30 5 0 0 42

box 1 - - - 1 5 4 3 0 - 9

- - - 2 17 17 16 0 - 52

box 2 - - - 0 2 7 3 0 - 10

- - - 0 2 43 6 0 - 51

box 3 - - - 2 5 11 6 0 - 12

- - - 9 61 88 22 0 - 180

2010-2011 box 4 - - - 2 5 1 1 0 - 8

- - - 5 20 3 5 0 - 33

box 5 - - - 3 4 7 9 1 - 19

- - - 3 4 15 16 1 - 39

box 6 - - - 7 7 4 7 0 - 14

- - - 13 16 7 9 0 - 45

box 7 - - - 4 7 6 8 0 - 11

- - - 8 20 12 20 0 - 60

box 8 - - - 3 9 4 3 0 - 10

- - - 3 12 23 3 0 - 41

box 1 1 0 0 0 2 4 2 0 - 6

1 0 0 0 5 31 13 0 - 50

box 2 2 0 0 2 4 5 2 0 - 7

2 0 0 16 27 35 5 0 - 85

box 3 2 1 2 2 2 1 1 0 - 8

5 2 9 3 8 4 3 0 - 34

2011-2012 box 4 7 3 2 5 7 5 4 0 - 11

19 4 2 19 42 26 21 0 - 133

box 5 4 3 2 2 2 2 2 2 - 6

5 9 4 13 16 10 7 2 - 66

box 6 10 10 4 2 3 1 2 0 - 13

10 18 6 4 3 2 6 0 - 49

box 7 4 3 3 3 2 1 2 0 - 8

7 11 12 9 4 2 2 0 - 47

box 8 3 1 1 3 2 1 1 0 - 6

5 2 1 4 25 24 17 0 - 78
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Figure 3.19: Spatial distribution of satellite-measured chl concentration matched on to

locations of Kd(550) estimates from 2009-2012. A mean distance of 1.57±0.32 km is

calculated between chl grid and location of estimated Kd(550). A total number of 407

data points were matched from 2009-2012.

Kd(550) estimates to chl concentration at Bedford Basin and Scotian Shelf. Kd(550)

were estimated from light attenuation profiles measured using sensors sensitive only to

550 nm. The Kd(550) estimates were able to uncover temporal and spatial patterns. In

Bedford Basin, the temporal evolution of the Kd(550) estimates from electronic tags (up

until the end of spring bloom) match that of the measured chl, including other indicators

of biomass such as fluorescence, absorption and attenuation. It can fail however to predict

presence (or absence) of biomass at times when the contribution from other attenuating

agents like CDOM and suspended particles dominates the basin. In Scotian Shelf, it was

discovered through Kd(550) estimates that bio-optical conditions in the region do not

change much from June to February. It was also discovered spatial patterns in abundance

of light attenuants, with the West Bank having higher concentration than in other parts of

the Scotian Shelf.

The use of a sensor sensitive only to 550 nm poses a difficult challenge to overcome

since a lot of important bio-optical information is lost because absorption of light in

phytoplankton is dominated by blue and near infrared wavelengths. In addition, satellite-

measured chl may itself not be particularly reliable in case II waters like on the Scotian
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Figure 3.20: Relationship between estimated Kd(550) and chl concentration from satellite

along the Scotian Shelf. The error bars were calculated from estimation of Kd(550) using

type-I regression. Kd(550) is plotted as a function of log x − axis to expand points at

small values of chl concentration.
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Shelf. The approach of comparing actual values of chl, and thus estimation of phyto-

plankton biomass, might not be appropriate yet at this point as seen from the results from

Scotian Shelf. Kd(550) estimates can however reliably predict instances where there is

overwhelming presence of phytoplankton like in the spring bloom and spatial distributions

of light attenuants and may thus be considered for qualitative analysis.



CHAPTER 4

SUMMARY AND DISCUSSION

Two important topics to the the marine biogeochemical community have been explored:

i) improving models for biogeochemical state estimation and ii) assessing possible new

biogeochemical data sources. There is urgency in developing better biogeochemical

models to study how marine food webs and marine biogeochemical cycle will be affected

by the changes that the Earth is experiencing including global warming, ocean acidification

and increased occurrence of eutrophication. This is accompanied by a greater need for

biogeochemical data, both for model validation and data assimilation.

The first part of this thesis (chapter 2) described a simple method for suppressing bias and

drift in biogeochemical models. The basic idea behind this scheme is to nudge the model

toward climatology in prescribed frequency bands (hence called frequency-dependent

nudging) while allowing high-frequency variability (sub-seasonal variations) to evolve

freely. Frequency-dependent nudging was applied to a 1D biogeochemical model with

7 variables. The model’s physical dynamics is described by a simple vertical diffusion

equation with different diffusivity coefficients (η1 and η2) within and below the prescribed

mixed layer. This is coupled to the biogeochemical model of Fennel et al. (2006). Three

sets of experiment were done to test the performance of frequency-dependent nudging

under varying biogeochemical conditions. Values from 3 different stations from a full 3D

model of Bianucci et al. (in prep) were used to initialize the experiments. The same values

were used as well as a benchmark of improvement gained through nudging (referred in the

thesis as synthetic observations).

Improvements gained from frequency-dependent nudging were compared to conven-

tional nudging. In general, both nudging methods gave considerable improvement when

70
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compared to results from the simple model. A closer look at the results however reveals

that frequency-dependent nudging gave better results than conventional nudging. The

model benefited from the extra frequencies allowed (greater than 1 cycle per year), which

resulted in better state estimate for the frequency-dependent nudging case. Results of the

experiments also reveal that no optimum nudging parameter, γ, exist for all variables. A

wide range of γ values will give frequency-dependent nudging a considerable advantage

over conventional nudging.

The second part of this thesis (chapter 3) assesses the feasibility of using data from

electronic tags for ocean observations. In particular, the focus is on estimating biomass

from light attenuation data. This is also consistent with the general goal of chapter 2 to

improve biogeochemical estimates since observations are important component of data

assimilation. There is value in using data from electronic tags because the data collected

are of high temporal resolution (up to 1 data point per second) and can cover wide spatial

domains when aggregated. Biologically active regions are naturally sampled as well

because the frequent need for nutrition of the agents of data collections (marines animals).

A calibration experiment was carried out in Bedford Basin from February 29-May

16, 2012. Calibration is necessary since electronic tags were not originally intended for

quantitative measurement of irradiance. Measured temperatures were calibrated as well

against measurements using CTD. The experiment revealed that there are differences in

depth measured by the tags, CTD and hyper-pro. Beck et al. (2003) (who used similar

tags) pointed out that this might be due to the differences of the capability of the pressure

sensor. Correction of the depth difference is necessary since it can affect the magnitude of

the estimated Kd(550). After adjusting for depth differences (calculated depth differences

were added to seal tags measurements, see chapter 3 for complete details), the resulting

temperature and irradiance profiles were found to be comparable to measurements from

CTD and hyper-pro. There is good agreement as well in the temporal trend of the Kd(550)

estimates among tags and the hyper-pro, and when compared to other possible indicators

of phytoplankton biomass (e.g. absorption, attenuation, fluorescence).

Results from analysis of the Scotian Shelf data reveal that electronic tags can be used to

deduce spatial patterns in Kd(550). Consistent spatial pattern of values of Kd(550) over 3

years were observed from the Scotian Shelf i.e. high values of Kd(550) in the west coast

of Sable Island and low Kd(550) in the Middle Bank. The possible reasons for this can’t
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be provided however as, to my knowledge, there are no available biogeochemical data in

these regions at a similar time frame.

The goal of the second part of this thesis is to estimate phytoplankton biomass from light

attenuation coefficients. The results suggest that this is not yet possible; attempts at gener-

ating estimates of phytoplankton biomass did not yield encouraging results. Phytoplankton

dominates absorption in the blue and near infrared region and in using a sensor sensitive

only to 550 nm (green light), a lot of important information about the phytoplankton is

lost. The presence of other attenuating agents in the coastal environment (Bedford Basin

and Scotian Shelf) make biomass estimation more challenging as the right proportion of

attenuating agents can’t be established using only absorption at 550 nm. Despite this,

results suggest that Kd(550) estimates deduced the temporal and spatial patterns that may

be associated with phytoplankton biomass.

4.1 Future work

In the first part of the thesis, it was shown that frequency-based nudging can be used

to improve 1D biogeochemical model estimates. As an extension, frequency-dependent

nudging should be considered for 3-D biogeochemical models since more variability

is involved due to the presence of horizontal physical dynamics. This is particularly

true if strong nudging (< 30 days) is being considered since, as previously seen, higher

frequencies are being suppressed and artificial phase lags are possibly being introduced

which can then affect the timing of biogeochemical cycles. Another possible application

of frequency-dependent nudging is the estimation of model bias (e.g. Nerger and Gregg,

2008) which can lead to better understanding of biogeochemical processes.

Results from the second part of the thesis suggest that physical variables (e.g. temper-

ature and depth measurements) of the electronic tag data can already be used for ocean

observations. More work is still needed however to be able to estimate phytoplankton

biomass. Future work should focus on inclusion of another sensor that is sensitive to a

different wavelength (blue or red). Several studies on satellite algorithms (Gitelson et al.,

2009; Moses et al., 2009; Gurlin et al., 2011) show that at least two wavelengths are

needed to be able to retrieve chl-a concentration in case-II waters with confidence, and

discriminate contributions from CDOM.
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Figure A.1: Same as Figure 2.6 but for station 2.
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Figure A.2: Same as Figure 2.7 but for station 2.
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Figure A.3: Same as Figure 2.8 but for station 2.
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Figure A.4: Same as Figure 2.9 but for station 2.
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Figure A.5: Same as Figure 2.10 but for station 2.
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Figure A.6: Same as Figure 2.6 but for station 3.
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Figure A.7: Same as Figure 2.7 but for station 3.
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Figure A.8: Same as Figure 2.8 but for station 3.
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Figure A.9: Same as Figure 2.9 but for station 3.
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Figure A.10: Same as Figure 2.10 but for station 3.
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Table B.1: Seal tags deployment information for October 2009-January 2010. Tags,

identified by their seal IDs, were attached to seals at Sable Islands in October 2009

and recovered in January 2010. Seals without recovery date means that tags are lost.

MK10Serial is the serial number of the electronic tags and MK10Ptt is the corresponding

archive filename given to the data collected using the software provided by Wildlife

Computers, USA.

SealID Sex Deployment Date MK10Serial MK10Ptt Recovery Date

M 15-Oct-09 9A0794 98432

M 13-Oct-09 9A0782 98426

4057 M 21-Oct-09 9A0804 98437 06-Jan-10

5685 M 22-Oct-09 9A0796 98433 05-Jan-10

6900 M 21-Oct-09 9A0806 98438 04-Jan-10

9022 M 20-Oct-09 9A0807 98439 06-Jan-10

9413 M 13-Oct-09 9A0791 98440 05-Jan-10

104 F 26-Oct-09 9A0792 98431 05-Jan-10

118 F 27-Oct-09 9A0786 98429 02-Jan-10

125 F 28-Oct-09 9A0799 98434 02-Jan-10

4267 F 20-Oct-09 9A0784 98428 31-Dec-09

5682 F 18-Oct-09 9A0783 98427 04-Jan-10

6165 F 30-Oct-09 9A0787 98430 07-Jan-10

9410 F 17-Oct-09 9A0802 98436 04-Jan-10

9411 F 16-Oct-09 9A0800 98435 04-Jan-10
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Table B.2: Seal tags deployment information for September 2010-February 2011

SealID Sex Deployment Date MK10Serial MK10Ptt Recovery Date

9929 F 10-Sep-10 10A549 66487 1-Jan-11

9930 F 10-Sep-10 10A565 66476 1-Jan-11

9937 F 17-Sep-10 10A585 66556 2-Jan-11

9938 F 18-Sep-10 10A582 66541 31-Dec-10

4515 M 11-Sep-10 10A579 66505 15-Dec-10

6122 F 11-Sep-10 10A071 66555 18-Dec-10

9933 F 11-Sep-10 10A577 66501 2-Jan-11

9931 F 10-Sep-10 10A575 66498 1-Jan-11

3648 M 15-Sep-10 10A572 66489 2-Jan-11

9932 F 10-Sep-10 10A578 66504 18-Dec-10

9934 F 11-Sep-10 10A567 66477 1-Jan-11

3271 F 08-Sep-10 10A573 66490 1-Jan-11

5954 M 16-Sep-10 10A559 66494 17-Dec-10

9928 F 09-Sep-10 10A580 66506 2-Jan-11

6195 M 13-Sep-10 10A571 66488 2-Jan-11

9936 M 13-Sep-10 10A576 66499 1-Jan-11

9935 M 12-Sep-10 10A568 66479 3-Jan-11

78 F 18-Sep-10 10A569 66486 17-Jan-11

9414 F 09-Sep-10 10A581 66508 1-Jan-11

9939 F 18-Sep-10 10A583 66548 1-Jan-11
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Table B.3: Seal tags deployment information for June 2011-January 2012

SealID Sex Deployment Date MK10Serial MK10Ptt Recovery Date

10334 F 15-Jun-11 11A090 106705 19-Jan-12

10322 F 11-Jun-11 11A091 106706 20-Dec-11

10332 F 12-Jun-11 11A151 106707

6120 F 15-Jun-11 11A213 106708 23-Dec-11

10330 F 14-Jun-11 11A214 106709 30-Dec-11

3736 F 15-Jun-11 11A215 106710 28-Dec-11

10323 F 11-Jun-11 11A216 106711

10327 F 12-Jun-11 11A217 106712 03-Jan-12

10333 F 15-Jun-11 11A245 106713 01-Jan-12

5846 F 14-Jun-11 11A251 106714 01-Jan-12

137 F 15-Jun-11 11A252 106715 31-Dec-11

10324 F 11-Jun-11 11A253 106716 16-Jan-12

10331 F 14-Jun-11 11A254 106717 27-Dec-11

10328 F 12-Jun-11 11A256 106718 07-Jan-12

2999 F 12-Jun-11 11A257 106719 31-Dec-11

10329 F 13-Jun-11 11A258 106720

6630 F 14-Jun-11 11A260 106721 03-Jan-12

2574 F 12-Jun-11 11A261 106722

10325 F 12-Jun-11 11A262 106723 30-Dec-11

2718 F 14-Jun-11 11A267 106724 10-Jan-12
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Figure B.2: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 5682 (left) and 4267 (right)] from Figure 3.12a. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below.
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Figure B.3: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 118 (left) and 6165 (right)] from Figure 3.12a. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below.
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Figure B.4: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 104 (left) and 5685 (right)] from Figure 3.12a. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below.
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Figure B.5: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 9410 (left) and 4057 (right)] from Figure 3.12a. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below.
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Figure B.6: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 9022 (left) and 6911 (right)] from Figure 3.12a. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below.
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Figure B.7: Spatio-temporal distribution of the estimated Kd(550) (top row) for one seal

(sealID 9413) from Figure 3.12a. The corresponding time series (black line), calculated

mixed layer depth (mld, green line) and mean temperature (calculated up to mld, red line)

are shown below.
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Figure B.8: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 9930 (left) and 9934 (right)] from Figure 3.12b. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below.
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Figure B.9: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 9929 (left) and 6195 (right)] from Figure 3.12b. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below.
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Figure B.10: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 3648 (left) and 3271 (right)] from Figure 3.12b. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below.
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Figure B.11: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 9931 (left) and 9936 (right)] from Figure 3.12b. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below.
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Figure B.12: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 9933 (left) and 9932 (right)] from Figure 3.12b. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below.
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Figure B.13: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 4515 (left) and 9928 (right)] from Figure 3.12b. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below.
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Figure B.14: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 9414 (left) and 9938 (right)] from Figure 3.12b. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below.
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Figure B.15: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 9939 (left) and 6122 (right)] from Figure 3.12b. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below.



102

65
o
W 60

o
W 55

o
W 50

o
W

42
o
N

44
o
N

46
o
N

48
o
N

 

 

time [mmm−dd]

Sep−15 Oct−15 Nov−15 Dec−15 Jan−15

0

5

10

15

−100

−80

−60

−40

−20

0

Sep−15 Oct−15 Nov−15 Dec−15 Jan−15
0

0.05

0.1

0.15

0.2

0.25

time [mmm]

  

temperature [°C]

mixed layer depth [m]

K
d
(550) [m

−1
]

standard deviation of K
d
(550) [m

−1
]

Figure B.16: Spatio-temporal distribution of the estimated Kd(550) (top row) for one seal

(sealID 9937) from Figure 3.12b. The corresponding time series (black line), calculated

mixed layer depth (mld, green line) and mean temperature (calculated up to mld, red line)

are shown below.
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Figure B.17: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 10322 (left) and 10331 (right)] from Figure 3.12c. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below.
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Figure B.18: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 10327 (left) and 5846 (right)] from Figure 3.12c. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below.
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Figure B.19: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 10334 (left) and 10330 (right)] from Figure 3.12c. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below.
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Figure B.20: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 137 (left) and 10331 (right)] from Figure 3.12c. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below.
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Figure B.21: Spatio-temporal distribution of the estimated Kd(550) (top row) for two

seals [sealID 10328 (left) and 2999 (right)] from Figure 3.12c. The corresponding time

series (black line), calculated mixed layer depth (mld, green line) and mean temperature

(calculated up to mld, red line) are shown below.



108

65
o
W 60

o
W 55

o
W 50

o
W

42
o
N

44
o
N

46
o
N

48
o
N

 

 

time [mmm]

Jun−15 Jul−15 Aug−15 Sep−15 Oct−15 Nov−15 Dec−15 Jan−15

0

5

10

15

−100

−80

−60

−40

−20

0

0

0.05

0.1

0.15

0.2

0.25

time [mmm−dd]

Ju
n−

15

Ju
l−

15

Aug
−1

5

Sep
−1

5

O
ct
−1

5

N
ov

−1
5

D
ec

−1
5

Ja
n−

15

  

temperature [°C]

mixed layer depth [m]

K
d
(550) [m

−1
]

standard deviation of K
d
(550) [m

−1
]

Figure B.22: Spatio-temporal distribution of the estimated Kd(550) (top row) for one seal

(sealID 10325) from Figure 3.12c. The corresponding time series (black line), calculated

mixed layer depth (mld, green line) and mean temperature (calculated up to mld, red line)

are shown below.
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