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Nonlocal corrections to the free energy of a system of noninteracting fermions are considered
within the framework of extended Thomas-Fermi theory. The density and temperature dependence
of gradient corrections is given through fourth order in powers of the density gradient. The calcula-
tion is based on- long-wavelength expansions of linear and nonlinear response functions of a nearly
uniform system. Results are given in terms of Fermi-Dirac integrals and convenient forms are given
which span the full density and temperature range from the degenerate limit to the classical limit.

I. INTRODUCTION

There have been many studies of the Thomas-Fermi or
statistical theory, and of its various extensions, of matter
under various conditions of temperature and pressure. In
addition to atomic, molecular, and conventional
condensed-matter problems, important applications have
been made in nuclear physics and astrophysics. Discus-
sions of this approach to inhomogeneous many-particle
systems and extensive references to the original literature
are given in recent review articles and conference proceed-
ings. ' The original form of Thomas-Fermi theory is
purely local and, consequently, local physical quantities
are determined only in terms of local particle densities. '

A number of suggestions can be made to improve upon
this local-density approximation (LDA) by including non-
local corrections which are inevitable in inhomogeneous
systems. Perhaps the simplest way to include nonlocality
is by means of gradient expansions. [Many other pro-
cedures, often with specific objectives within the universal
framework of density-functional theory (DFT) can also be
devised. ' ) The general objective is the representation of
both local and nonlocal contributions to the total energy,
including the kinetic energy plus one-body and two-body
interaction energies, as a reasonably convenient approxi-
mate functional of the particle density (or densities for
multicomponent systems). The relevant energy functional
is the ground-state energy E[n ] for zero-temperature sys-
tems or the thermodynamic free energy F[n] for systems
at finite temperature (T&0).' The particular version of
DFT which is based on the Thomas-Fermi theory plus
gradient corrections is known as the extended Thomas-
Fermi (ETF) theory.

One major attractive feature of the ETF, as compared
to methods based on self-consistent determination of
single-particle orbitals, is its extreme simplicity. Conse-
quently, ETF is well suited to exploratory work on sys-
tems having low symmetry particularly when finite-
temperature effects are of interest. Thus, while ETF is
typically less precise than self-consistency schemes such
as that of Kohn and Sham" (KS), its accuracy may
nevertheless be adequate in many situations of interest.

For example, although a truncated gradient expansion
does not reproduce specific quantum effects such as shell
structure or quantum density oscillations, these effects are
smeared out at finite temperature in any case, eventually
becoming unimportant, and there are situations. where
highly accurate and simple procedures based on ETF can
be devised for the treatment of finite-temperature proper-
ties such as equations of state and related quantities. ' In
this context, we note that since ETF involves an expan-
sion in powers of gradients (and higher derivatives) of the
density and since quantum density oscillations are
smeared out at finite temperature, we may well expect the
convergence of finite-temperature gradient expansions to
be superior in some respects to those at zero temperature.
The question of convergence properties of gradient expan-
sions in general and of their presumed asymptotic charac-
ter (at least at T&0) is still unsettled to some degree and
further information is desirable.

There are at least two distinct ways to view the free-
energy functional E[n] when considering this question.
The variational principle for the free energy leads to the
Euler-Lagrange equation 5F/5n(r)=0 which is a dif-
ferential equation to be solved for n(r) thus yielding the
required E[n]. This differential equation is nonlinear and
potentially of high order, depending on the number of
gradient corrections under consideration, but is generally
numerically tractable. However, it may be that physical
considerations suggest a particular form for the density
which is not fully compatible with the Euler-Lagrange
equation of the approximate free-energy functional. It is
then often convenient to constrain the form of the density
n(r; IA, I ) and to introduce parameters IA, ] which are
chosen by the variational principle to optimize the energy.

The form of the various nonlocal corrections to the
LDA for the universal free energy can be determined,
within ETF, by simple arguments. By symmetry the
lowest-order nonlocal contribution to the ETF form of the
free energy is

f dr B(n (r) }[V'n(r) ]

with an obvious extension to multicomponent systems.
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Higher-order terms involve (Vn ),(V n )(Vn ),(V n ),
(Vn), . . . , each with an appropriate coefficient, to be
determined, which is implicitly temperature dependent.
Each such coefficient has contributions arising from ki-
netic energy and both one-body and two-body interac-
tions. For many-electron systems in their ground state
(T=O), the kinetic-energy contributions to these coeffi-
cients are known up to sixth order in gradients, ' ' while
the interaction contributions are known only to second or-
der in powers of gradients both in the high-density lim-
it' ' and at metallic densities. ' At finite tempera-
ture, the contribution of the kinetic energy to the second-
order gradient coefficient has previously been known
and we give here details of a calculation of kinetic-energy
contributions to the three fourth-order gradient contribu-
tions. We consider the free-energy functional of a sys-
tem of electrons (fermions) of density n(r) at temperature
T in an external potential V(r) in the form

F[n]=Fk[n]+ J dr n(r) V(r)+FH[n]+F„,[n] (1)

and our present objective is to give the full fourth-order
gradient expansion (at T&0) of Fk [n ]. In this work, we
shall refer to Fk[n] as the kinetic free energy, for brevity,
and we note that Fk[n] contains the usual entropy contri-
bution, —TS. The last two terms in Eq. (1) are the Har-
tree and the exchange-correlation free-energy contribu-
tions, respectively. The Hartree contribution is

—,
' J dr J dr'n(r)u(r r')n(—r'),

where v(r —r') is the interparticle interaction, of course.
To date, no results have been reported for the temperature
dependence of gradient contributions to F„,[n] although
work is in progress.

It may be noted that in many nuclear-physics applica-
tions it is possible to exploit the short range of the
(Skyrme-like) internucleon interactions in such a way that
two-body interactions, including their dependence on
linear and angular momentum, are incorporated into the
free-energy functional by nonlocal one-body interactions
with a suitable choice of effective mass and spin-orbit cou-
pling. (This inclusion of two-body interaction effects in a
one-body form is in sharp contrast to the many-electron
problem where explicit detailed treatment of F„, is man-
datory. ) The contributions to the free energy due to this
effective nuclear one-body Hamiltonian have been given
by Jennings, Bhaduri, and Brack ' ' and by Grammaticos
and Voros to second and fourth order in gradients,
respectively, at T=O. Finally, we note that there is no
immediate need for the temperature dependence of sixth-
and higher-order gradient coefficients for the kinetic or
noninteracting part of the free energy, at least when
parametrized densities are used to characterize the free en-
ergy (see above). Best results are obtained in practice
when the gradient expansion for the kinetic-energy contri-
butions is truncated after the fourth-order terms. This
applies to both many-electron problems ' and nuclear
problems.

The outline of the remainder of this paper is as follows.
In Sec. II we derive a consistent perturbation expansion in
powers of the induced density variation for the free energy

of a system of noninteracting fermions in the presence of
an external local potential. The expansion is valid
through fourth order in powers of the potential. The re-
quired nonlinear response functions are then approximat-
ed by their long-wavelength forms and an expansion in
powers of gradients of the density variation is obtained.
In Sec. III, a partial resummation is carried out and the
coefficients of the second- and four-order gradient correc-
tions are exhibited in a compact form in terms of Fermi-
Dirac integrals. Limiting cases of the strongly degenerate
limit ( T« TJ; ) and the classical limit ( T» Tz ) are dis-
cussed. Convenient dimensionless forms and parametriza-
tions useful for numerical applications are given. Details
of this work are provided in three appendixes. Finally,
Sec. IV consists of a summary and discussion.

II. DERIVATION OF GRADIENT EXPANSION
OF KINETIC FREE ENERGY

To generate a density-functional description of an inho-
mogeneous system of electrons in the presence of an exter-
nal potential V, it is convenient to express the partition
function Z(p, , T), which is a function of the chemical po-
tential and temperature, as an explicit series expansion in
powers of V by standard methods of finite-temperature
perturbation theory. The expansion for the grand poten-
tial, Q„= k~ T lnZ, —then follows as

Q„=Q' '(p, T)+ y Q' '()(l, T),
a=1

where Q' ' is the grand potential of a uniform system at
the same p and T and the perturbative corrections can be
expressed in the form

Q( )(+ Z) g C(a)(q q )

q] r ~ ~

X V(qi), . . . , V(q ) (3)

with the coefficients C' ' given by various (linear and
nonlinear) response functions evaluated for the uniform
system (see Appendix A). As usual, Q„=F pN—

k~ T lnZ and t—he well-known procedure of discarding
all disconnected or unlinked clusters when evaluating the
coefficients C' '( (q] ) by Wick's theorem corresponds to
taking the logarithm of Z(p, T) so that the free energy re-
sults directly. It is easy to verify that the appropriate
zero-temperature limit of this result is consistent with re-
sults from the theory of the structure of simple metals
where the electron energy is expanded in powers of the
electron-ion potential (or pseudopotential).

In order to convert F„ from the above to a functional of
the density, or more precisely to a functional of the
nonuniform part of the density n(r)=n(r) —n0 where
na ——n0(p, T), we proceed by expanding the Fourier com-
ponents n(q) as a perturbation expansion in powers of the
potential. This yields n(q)= g n (q), where n ~(q) has
the same general form as Eq. (3). By a straightforward
iteration procedure precisely analogous to the Lagrange
inversion of an ordinary power series, the series for n(q)
in powers of V can be inverted. to give V(q) as a series in
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powers of n, V(q)= g V' '(q) where V' '(q) has a fac-
tors of n and a known coefficient determined from those
of the n series (note that the q=0 point requires special
treatment). This functional series for V(q) in powers of n
is now inserted into Eq. (3). Finally, we must remember
that p is dependent on the external potential so that fixing
the chemical potential by the usual particle number con-
servation, N(p, T)=No(pp, T) causes p pp=—5p to be-
come expressed as a functional of n P.utting together all
of these sources of n dependence yields, after lengthy but
straightforward algebra, the desired form for the kinetic-
free-energy functional (which we truncate at fourth order
in n) as

4
Fk[n J=Fk (np)+ g Fk '[nl . (4)

a=2
The kinetic free energy of the noninteracting unperturbed
(uniform) electron gas is Fk '(np). A term of first order in
n is absent from Eq. (4) as it and appropriate higher-order
terms already have been extracted to form the contribu-
tion drn r V r to Eq. 1. The second-order in n
contribution to the kinetic free energy is well known:

FI', '[n]=(2v) 'g'n(q)n( —q)[~'o '(q)]
q

where U is the volume and pro
' is the Lindhart function.

The third-order term is

Fk"[n]=(»') ' g 'n(q2)n(q2) ( —ql q2)~0 (ql+q2 q2)[~0 (ql)~0 (q2)~0 ( ql 'q2)]
q), q2

and the fourth-order term is

Fk '[n]= —(4U )
' g 'n(q))n(q2)n(q3)n( q] qp q3)[7To (qf+q2+q3 qg+q3 'q3)

q), q2, q3

2~0 ( ql q2 q3)~p (ql+q2 q2)~~o ( —qi —q2)](3) (3) (2)

(6)

&&[~0 (ql)~o (qz)~o (q3)~o ( —ql —q2 —q3)]
(2) (2) (2) (2) —1

The primes on the sums denote the following restrictions:
q&0 in Eq. (5); q)&0, qg&0, and q(+q2&0 in Eq. (6);
q~&0, qq&0, q3&0, and q~+q2+q3&0, in Eq. (7). The
various linear (a=2) and nonlinear (a=3,4) response
functions, m.[, are specified in Appendix A. Thus far,
Eqs. (4)—(7) are valid for either slowly or rapidly varying
densities, n(r), but are valid only to fourth order in
powers of the perturbation. This fourth-order expansion
in n is sufficient to yield all terms in the gradient expan-
sion up to and including fourth order in gradients.

To generate a gradient expansion, we assume that the
spatial variation of the density is slow so that only the

I

very-low-wave-number Fourier components n(q) are ap-
preciable. The structure of the restricted wave-number
sums in Eqs. (5)—(7) then implies that all of the response
functions can be expanded in powers of all of their wave-
number arguments (k~ is small, for all a, and so are the
appropriate linear combinations). After a further consid-
erable amount of algebra, the small wave-number expan-
sions can be put into standard forms which are then easily
transformed from wave number to configuration space, as
described in Appendix B.

The resulting expansion in powers of the density gra-
dients of the kinetic free energy is

ga
Fk[n]= I dr /k(np)+ g (a!) ' I dr [n(r)]~+

a=2 np

+[Vn(r)] B(no)+ g (a!) ' [n(r)] +8 8
Bn0

+(V'n(r)) C(no)+ g (a!) ' [n(r)] + .8 C

a=1 ~n0

2- — 2 '+[V' n(r)][Vn(r)] D(np)+ n(r)+ +[Vn(r)] [E(np)+ ]+BD 4

np
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In Eq. (8), /k(np) is the kinetic-free-energy density of a
uniform system and

B(np)= [Xp /12xf] (9)
2&l

is the lowest-order expansion coefficient given by Perrot,
and also by Brack. ' The new coefficients in the expan-
sion are

for a system of electrons having a density n(r) =np+n(r)
which is almost constant and slowly varying everywhere.
The result, Eq. (8), is asymptotically valid to fourth order
in the inhomogeneity n(r), and is thus guaranteed to be
accurate in practice only when higher-order terms are
negligible. However, in such a case, Eq. (8) can equally
well be replaced by

C(np) =

D(np)=

and

&[np]=

g2
[Xq /72Xi —X3 /120Xi],

2Pl

I
—X4 /180Xi

2m

(10)

Q2
[X5 /1440X )2m

+ 1 lxpx3 /360X) —Xp /36X)], (11)

Fk[n]= f drI//'k{n(r))+B(n(r))[Vn(r)]

+C{n(r))[V~n(r)]

+D{n(r))[V n(r)][Un(r)]

+&{n(r))[V'n(r)]'+ j (14)

XQX3 /45X( +Xp /72Xt

+Xqx4/180xi+X3 /288xi] .

The quantities Xk are

Xk =(8/Bpp) np(pp T)

(12)

(13)

III. NUMERICAL RESULTS FOR
GRADIENT-EXPANSION COEFFICIENTS

In the preceding section, we derived perturbatively the
fourth-order gradient expansion for the kinetic free energy

and can be expressed in terms of standard integrals over
Fermi functions. Such integrals are readily calculable (see
below), so we conclude that B, C, D, and E and their
derivatives with respect to po may be regarded as known.
This completes the formal derivation of the fourth-order
gradient expansion for the kinetic free energy. Numerical
results and further discussion are given in the following
sections.

which is clearly seen to be equivalent to Eq. (8), through
fourth order, on making a Taylor expansion in powers of
n(r) of all n(r) dependent functions. Further discussion
of Eq. (14) will be given in Sec. IV, but for the present we
note that in practice we will require only the quantities B,
C, D, and E as functions of n p and do not explicitly need
their derivatives with respect np [see Eq. (8)] since Eq.
(14) has taken such terms into account implicitly by
evaluating these coefficients at the exact local density
[np~n(r)]. The basic elements in the specification of
these coefficients, from Eqs. (9)—(13) are the quantities
&k

For numerical work it is convenient to introduce di-
mensionless forms by measuring lengths in units of bohrs,
aH ——A' /mpe, where mp is the electron mass, and ener-
gies in units of hartrees, e~ ——e /a~. The dimensionless
mass, density, and "inverse temperature" are then
m'=m/mp, n =naH, and p'=peH. The dimensionless
gradient coefficients are B'=B/(@~a~), C"=C/eHaH,
D =D/a~a~, and E =E/eHaH The dim. ensionless
form of Eqs. (9)—(12) are then

)
—5/2(pe )3/2X+ /(x+ )

24 2
(15)

C'= (m*) / (P*) / [(Xp ) /36(x( ) —X'/60{X*) ]
8 2

(16)

D'= (m*) (P*) [—Xq /5(x) ) + 1lxgx3/10(x) ) —(Xq ) /(Xf ) ],288

6E'= (m )
' (P')" [—X5 /1440(X) ) —(Xp ) X* /45(X')

8v2

+(Xz ) /72(xi ) +Xpxg /180(xf ) +(X3 ) /288(xi ) ] . (18)
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TABLE I. Correspondence between long-wavelength terms
of the gradient expansion and their corresponding forms in con-
figuration space. See Appendix B.

qi q2

qiqz

qi(q2 q3)
4

q &(q &'q2)

(ql q2)(q1 'q3)

(q&.q2)'

d r n(r)
3 f d r[n(r)] [V'n(r)]
—I2 /3

d3& n(r) a—2 q2n(r) 2

d r n(r) V' n(r) Vn(r)

3I4+6I5
—I4 —2I5
—[I,+. f d r[n(r)] [Vn{r)] ]/2
I4+3I5+ f d'r[n{r)] [Vn{r)]

between the two calculations is excellent. (However, note
that Fig. 1 of Ref. 24 appears to be different from our
Fig. 1.) Finally, our numerical results for C(y), D(y),
and E(y ) are plotted in Fig. 2 as a function of y. For ap-
plications it is useful to have simple analytical representa-
tions of these normalized gradient coefficients. These are
given in Appendix C.

IV. SUMMARY AND DISCUSSION

The Kirzhnits-Hodges' ' calculation of the gradient
expansion for the ground-state kinetic energy of a many-
electron system has been generalized to the kinetic free en-
ergy at finite temperature. The density and temperature
dependence of the resulting gradient-expansion coeffi-
cients, through fourth order, has been determined. The
second-order coefficient agrees with the work of Perrot
and Brack, ' while our results for the third- and
fourth-order gradient coefficients, which are required in
many applications, are new. Numeri. cal results are con-
veniently expressed as ratios of dimensionless forms (see
Figs. 1 and 2) of a single dimensionless variable
y =I~~2(g) for the full range of parameters from the ex-
treme quantum limit to the classical limit.

Our derivation is based on a perturbation expansion,

TABLE III. - Coefficients in polynomial fits to C, L =2.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

f(2)

. 1.216 184735 933
—0.142076 565 889 6
—0.114374 453 830 9

0.228 998 646 866 9
—0.235 112 1799127

0.191 564 636 661 9
—0.139244 249 037

0.094 591 117826 34
—0.062 342 127 825 19

0.040 272 499 403 08
—0.026 662 787 681 7

0.017443 766 868 93
—0.012468 047 497 73

0.008 696 315401 424
—0.007 145 677 149 003

0.005 333 123 417 838
—0.004 361 494 971 388

0.003 817 140 705 672
—0.002 400 734 847 834

0.003 044 589 976 579

(2)

0.086 577 453 348 53
3.589 838 044 117

—4.432 563 748 938
4.113082 15942

—2.753 803 521 821
1.299 045 800 856

—0.438 845 675 233 8
0.108 811033 939 6

—0.020 236 407 952 15
0.002 869 825 583 346

—0.000 313 843 483 309
0.000 026 632 085 756 04

—0.000001 755 774 312411
8.955 589 538 879 X 10

—3.496 498 321 287 X 10
1.024 642 717 325 X 10

—2.179 839 165 022 X 10
3.176919706 681 X 10

—2.835 832 367 703 X 10
1.168 814 995 943 X 10

about a uniform electron gas, in powers of the density in-
homogeneity (

~

n(r)
~
/no&&1) and on the assumption

that only long-wavelength components of the (slowly
varying) density are significant. The form of Eq. (8) is
consistent with, and suggests the hypothesis of, a partial
resummation of higher-order terms in the n(r) expansion
which leads to Eq. (14) in which all functions are to be
evaluated at the local density no+ n(r) =n(r) and there is
no longer explicit reference to no. Note that this partially
resummed form of a local-density approximation plus
gradient corrections is precisely what would have resulted
had we done this calculation using the Kirzhnits'
method-. Calculations of gradient coefficients by means of
the Wigner-Kirkwood partition function and its semiclas-
sical expansion also yield the "resummed" form, Eq. (14),
directly whether at T=O or at finite temperature. The
present results show that there is no fundamental differ-
ence between any of these methods, within their domain
of validity.

Finally, as indicated in the Introduction, work is

TABLE II. Coefficients in polynomial fits to 8, L = 1.
TABLE IV. Coefficients in polynomial fits to D, L =3.

1

2
3
4
5
6
7
8,
9
10

1.377 014990 521
—0.597 830 142 1158

0.409 039 674 1
—0.254 345 028 296 6

0.149264 271 152 7
—0.084006 731 008 36

0.046 612 624 721 19
—0.025 740 157 575 1

0.013 848 461 132 5
—0.008 847 166979 988

2.989 610661 57
—1.100736 924 804

0.370 362 490 267 7
—0.804 944 000 891 2

0.011 224 085 473 65
—0.001 001 521 905 861

0.000056 589 648 206 29
—0.000 001 952 787 048 821

3.748 250 926 887 X 10—'
—3.063 051 975 404 X 10

1

2
3
4.
5
6
7
8
9

f(3)

1.279 905 380 539
—0.056 553 182 11731
—0.293 332 593 736 5

0.363 295 689 5199
—0.282 834 868 478 4

0.175 536 801 221 2
—0.092 705 985 751 67

0.041 500 712 596 4
—0.015 473 013091 52

(3)
gk

0.038 333 363 040 31
1.595 987 411 028

—0.517979 236 153 1

0.086 447 816970 45
—0.008 594473 401 309

0.000 525 264 350052 7
—0.000019 305 382 627 02

3.908 463 846 586 X 10
—3.345 325 284 891 X 10
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currently in progress to extend the calculations of the
lowest-order exchange and correlation ground-state-energy
gradient corrections so as to obtain a representation of
F„,[n] of Eq. (1) at finite temperature in the form of a
local-density approximation plus second-order gradient
expansions. We plan to report these results as well as ap-
plications in the near future.¹teadded. In a recent as yet unpublished manuscript,
Bartel, Brack, and Durand report that they have also
evaluated the temperature-dependent fourth-order gra-
dient coefficients. We have verified that their results,
which were obtained by a different method, agree with
ours. The work of Bartel et al. also contains interesting
discussions of applications to inhomogeneous nuclear
matter.

APPENDIX A

1

2
3
4

6
7
8
9
10
11
12
13
14

f(4)

1.275 554 253 356
0.174 347 887 805 1

—0.514780082 319 1

0.431 767 201 479 3
—0.226 934917933

0.071 366 892 030 07
0.007 763 819 853 599

—0.034 513441 61498
0.035 712 355 785 06

—0.027 659 202 946 Q7

0.018 510242 584 87
—0.010888 174 830 25

0.005 594 395 462 207
—0.002 484 382 717 864

(4)

—0.000 516712415 289
0.051 513 169 320 95
0.860497 975 362 5

—0.503 773 796 106 5
0.151429 450 375 5

—0.029 123 13921345
0.003 845 219639 374
0.000 358 661 214 284 2
0.000023 840 118954 43

—O.OOQ 001 121 998 780 923
3.651 242 790 938 && 10

—7.810790 733 214)& 10
9.878 13154568 X10-"

—5.594 332 541 208)& 10

TABLE V. Coefficients in polynomial fits to E, L =4.

The coefficients C' ' entering Eq. (3) are essentially the
various response functions of a noninteracting gas of fer-
rnions of uniform density no and temperature land have
the general structure

(a)
IIO (q( q2~

are the usual propagators for free particles, ek ——A'2k /2m,
and U denotes the volume. The Matsubara sum is easily
performed.

(L)IIp ——np

2 y ygk(i'll)gk+q(~~n) ' ' ' gk+q, '(i~n)
n

(Al)

with the appropriate limiting procedure and

2 Y(ek )(() (ek+q P )II("(q)= ——g
U k ~k —~k+q

(A2)

where co„=(2n+1)n./P are Matsubara energies,

gk(i co„)= (i co„+p ek)— is the Lindhard function or linear-response function. The
higher-order terms correspond to nonlinear-response func-
tions. These are given by

I

(3) 2 X(ek P ) g ek+q, PII' '(q(, q2) =——
U k 6k —Ek+ q 6k —Gk+ q2 ~k+ q 1

6k 6k+ q& 6k+ q2

Y«k+q, —V)
+

«k+q, —ek)«k+q, —ek+q, )

(4) Y ek+q,
(q(,q2 q3) =—— +

k &k &k+q, &k &k+q2 &k &k+q3 &k+qi &k &k+qi ~k+qz &k+qi ~k+q3

g(ek+ „—)(( ) /(ek+„—p)
+ +

(ek+q& &k)(ek+q& ek+q()(ek+q2 ek+q3) (ek+q3 ek)(ek+q3 ek+q&)(ek+q3 ek+q2)
(A4)

and the nonlinear-response functions of higher order are not required. Various transformations of these sums can be car-
ried out to facilitate long-wavelength expansions or other objectives. These response functions also enter the perturbation
expansion of n(q) in powers of V and the relevant inversion which expresses V(q) in powers of n Keeping tr.ack of
these expansions as well as that for the chemical potential in the presence of the external potential yields Eqs. (5)—(7) of
the text.

APPENDIX 8

In order to convert Eqs. (5), (6), and (7) to gradient expansions in configuration space, we first require the long-
wavelength expansions of the response functions in Appendix A. The expansions of Eqs. (A2)—(A4) for small q are
obtained in a straightforward way and the particular combinations of long-wavelength response functions required in the
text can be generated. Their forms are
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Fk [n]=—g'n(q)n( —q)(ai+a, q +a3q + )
U

(B1)

and

and

Pk '[n]=, g'n(qi)n(q2)n( —qi —q3)[~1+br(qi+q2)+b3(qi. q2)
q, ,q2

+b4(ql+q2)+b5(qlq2)+b6(ql+q2)(qi q2)+b7(ql q2) + (B2)

(qi) (q2) (q3)n( 'ql 'q2 'q3)

q, ,q2, q,

X I C 1 +C2( qi+ q2+ q3) + C3 ( qi q2+ qi q3+ qz q3) +C4( qi+ qz+ q3) +C& ( qiqq+ permutations)

+C6 [(q'1 (q2 q3) + permutations] + C7 [ (qi + q2)(qi q2) + permutations]

+Cs[(qi q2) +(qi qp)(qi q3)+ permutations]] . (B3)

The primes on the summations indicate, as in the text,
that q~, q2, q3, q&+ qz, and q~+ q3+ q3 are not zero.

The various coefficients a;, b;, and c; are all known
from the corresponding expansions of the response func-
tions and are explicitly density, temperature, and mass
dependent. The above are converted into configuration
space by inverse Fourier transformation of n(q ). The
general structure is

n n

g [G( (y;) PPr)(y )] &q g [G( )(y;)] (Cl)

dient coefficients where I.=1, 2, 3, and 4 for B, C, D,
and E, respectively. A polynomial least-squares fit is
made to the given discrete data sets for y in the range
0.02=yl. &y &yz ——25. The best-fitting polynomial
PP)(y) is computed in terms of Chebyshev polynomials
on the basis of the requirement

I;= 1

U
n(qi) n(q 1)

Xn( —qi — —q 1)
/

X4;(qi, . . . , q 1), PP (y) = g /[ 'Tk 1(t(y) ) (C2)

where g = 10 was chosen to set the error limits on the
fits. The resulting PP)(y) can be expressed either in
terms of the Chebyshev polynomials

and a list of (I;,@;) pairs is given in Table I. Note that
the various functions in this table can be symmetrized as
required.

APPENDIX C

k=1

or as the rearranged polynomial
N

PJv"(y)= & gV'y" '
k=1

(C3)

For convenience in applications we give approximate
analytical representations of the normalized gradient coef-
ficients B(y), C(y), D(y), and E(y) introduced in Sec.
III. These coefficients are computed for a discrete set of
points [y;: i =1, . . . , n I. Denote by IG( l(y;):
i = 1, . . . , n I the corresponding sets of values for the gra-

In Eq. (C2), Tt(t) is a Chebyshev polynomial of degree l
and t(y)=ay+& lies in the interval —1&t &1 due to
a =2/(yet —

L ) and b = —(y~+yL, )/(yz —yL ). The coef-
ficients /I„. and gP) are given in Tables II—V. Results
for B(y), C(y), D(y), and E(y) for values of y outside
the range yL &y &yz are conveniently obtained using the
series expansions given in Sec. III.
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