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Convergence properties as a function of spatial dimensionality of gradient expansions
for the ground-state energy of an inhomogeneous electron gas
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The extended Thomas-Fermi approximation for the ground-state energy of a many-fermion system is

generalized to arbitrary spatial dimension. Our objective is a better understanding of convergence proper-
ties of such gradient expansions with a vie~ to applications to systems of reduced dimensionality or esoteric
geometry. The convergence is tested and found to be adequate by comparing to an exact result for the sur-

face kinetic energy of a semi-infinite system. Both local and nonlocal contributions to the exchange energy
are also given for arbitrary dimension. The extension to the thermodynamic free energy at finite tempera-
ture for arbitrary dimension is also discussed.

There have been several interesting studies recently of
intrinsically inhomogeneous many-fermion systems which
exhibit novel ground states (and presumably complete phase
diagrams) which are related to the fact that their effective
spatial dimensionality is less than three. Typically, this
reduction in dimensionality is a consequence of strong
externally applied fields of competing internal interactions
or geometrical constraints. Examples would include an elec-
tron gas in very intense magnetic fields (which exhibits a
filamentary crystalline structure with implications for the
crust of neutron stars'), dense nuclear matter just below the
nuclear saturation density2 s (which exhibits a bubble phase
as well as phases of different geometry'), various quasi-
two-dimensional electronic devices with micr ostructures
(which exhibit a wide variety of new effects and have rich
applications), and many others.

For the most part, these systems have been studied
theoretically by rather simple approximations which served
to expose the esoteric features. There is a need for a sys-
tematic and more accurate treatment which, at the same
time, is sufficiently simple for further exploratory work.
For three-dimensional systems, it is well known that a very
useful tool has been provided by the Thomas-Fermi (TF)
approximation or an extended Thomas-Fermi (ETF) theory
in which nonlocality is incorporated in energy functionals by
means of gradient corrections. ' ' It is natural to consider
ETF in systems of reduced dimensionality as well. To our

I

knowledge, this has not previously been available but
should be very useful.

In this paper, we give explicit results for the ETF
ground-state energy functional for a many-fermion system
in which the spatial dimensionality d is an arbitrary continu-
ous parameter. We obtain the difficult nonlocal contribu-
tions through fourth order in powers of density gradients
for the kinetic energy. This is known to be the appropriate
level of approximation for three-dimensional systems, both
for electronic systems" " and for nuclear applications, '

when parametrized density functions are used. We discuss
interparticle two-body-interaction contributions to the local-
density approximation (LDA) and to gradient corrections to
leading order in powers of the interaction and to second or-
der in power of density gradients. We then study the con-
vergence properties of the gradient-expansion series as a
function of spatial dimensionality and find it to be satisfac-
tory. This is an extremely important point.

The starting point in our calculation is the classical parti-
tion function Z(P) for noninteracting fermions in the pres-
ence of an external single-particle potential V(r). The ex-
pansion for Z(P) giving systematic corrections to the TF
results is the signer-Kirkwood expansion. ' The parameter
P is to be treated as a variable in calculating the free energy
E at zero temperature. Expressing E in terms of Z(P) we
obtain to fourth order in gradients,
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Here W„denotes an inverse Laplace transform with respect to the chemical potential p, . A gradient expansion for the elec-
tron number tV in gradients of V may also be obtained with the use of W = 2W„'[Z(P)/P]. From Eq. (1), we obtain an ex-
pansion for the grand canonical potential at zero temperature

0 = E—p, N = ALDA+ 02+ Qg+
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Expressed in terms of the TF density nrF(r) defined by

p, —V(r) =—(t z/2m) [nrF(r)d/2K~]&~,

where Kq= Oq/(2n )~and Ad=2m+'/I'(d/2), we have
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For noninteracting systems, the kinetic energy is given by T= 0+J d"r(p, —V) n(r), where the exact number density is
given by n(r) = nrp+5nt, with 5n =z5&n+54n+, and the subscripts 2, 4, . . . correspond to the order of the gradient
correction Equating terms of the same order in gradients, we obt in a formal expansion for the kinetic energy
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In order to test the convergence of this gradient. expansion for the kinetic-energy functional, exact results are required f'or
a standard reference system. The surface energy of a bounded semi-infinite many-fermion system provides a suitable test
case of physical interest for both electronic"»-i and nuclearis problems. We thus consider a plasma bounded by a
(d —1)-dimensional hyPerPlane perpendicular to the z direction. Equation (4) gives the gradient expansion for the surface
kinetic energy per unit area cr, =a-,0+0-»+ ~,4+ . Assuming that the plasma is constrained to be in the region z ~ p
by a Potential barrier of height Vp-& k$/2m when z «0, the electron density is, for this finite-barrier model (FBM),

fa k~
n(z) = C& dk (k k,')' " '—[sin'(k z) + (k /kp)'cos(2k z) + (k K/kj )sin(2kz) ], z )0, (»)
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where kF is the Fermi wave number, ~=—(kj —kz)'~~ and Cq —=24 'I/[n''~+'y~(d I)1 ((d —1—)/2)]. The contributions to
0-, for the FBM are given in Fig. 1, ~here the exact results for the surface kinetic energy are also given. In a straightfor-
ward way, we obtain the exact surface kinetic energy for the FBM by applying the Euler-Maclaurin series to the kinetic ener-
gy summed over the eigenstates as a, = o,(1)+ o.,(2), where
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~here we have introduced the integral

P (x)=— " "dr(x' —sin'I)'~' .If Qo

o.,(1) is the surface kinetic energy for the infinite-barrier
model and a, (2) gives the correction for the FBM.'5 "

The numerical results in Fig. 1 show that the surface
kinetic energy with fourth-order gradient corrections im-
proves as the dimensionality increases. At the same time,
the LDA a.,o gets increasingly poor in the limit of large
dimensionality. The value of the electron density for
z)) kr ' is ns=(2K&/d)k)I. The kinetic energy at dif-

t

ferent densities scales as r, ~ ', where r, =—[dI'(d/2)/
2nsa)~~~ ]'~~ and ap is the Bohr radius. The gradient ex-
pansion up to fourth order convergcs very well towards o-,
for barrier heights 1 ( p/ Vp ( 2. As the barrier height in-
creases, the convergence gets poorer and for the infinite-
barrier model a,4 diverges. This behavior has been con-
firmed for the range 2 & d & 30 and is assumed to bc a gen-
eral feature of the square-barrier model of arbitrary dimen-
sionality. The d =3 results are given in Ref. 11.

An enlightening model calculation can be based on the
spatial density profile n(z) = ns/[I+ exp( —az) ]. For this
model, the integrals involved are elementary and we obtain
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the model density which yields Eqs. (8).
The conclusions that the gradient expansion converges

well for systems of large dimensionality and that the LDA is

inappropriate in this limit are based on exact calculations
within the FBM. Calculations based on Eqs. (8) also show
that, like the FBM, the gradient corrections become more
significant as d increases. As a consequence, even though
the LDA becomes poorer as d increases, the behavior of the
gradient corrections truncated at fourth order is precisely
what is required to obtain very good agreement with the ex-
act results for all d.

%e now turn to the effects of the interparticle interac-
tion. ' %e give the exchange energy functional for the
Coulomb potential e'r' ~/(d 2). —The LDA for the ex-
change energy and the first-order gradient correction are
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FIG. 1. Plot of the surface kinetic energy for the finite-barrier
model as a function of d. The barrier height is chosen as Vo 2p. .
The exact value 0-„given by Eqs. {6), is compared with the gra-
dient expansion. cr,o is the local-density approximation and
o.,2, o,4 are the gradient corrections to second and fourth order,
respectively, nz is the bulk density and cgs units are used. Note the
improvement in convergence as d increases.
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where Qz

———e'Q~. The factor (d —2) ' in Eq. (9) is due to
the choice of interaction potential and should be contrasted
to the LDA for E„obtained by Glasser and Boersma who
used the l)r potential in all dimensions. Substituting the
model density profile used for obtaining Eqs. (8) into Eqs.
(9) and (10), we obtain the surface exchange energy per
unit area as

the contributions to cr, in the gradient expansion as
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where i[i and yE are the digamma function and Euler's con-
stant, respectively. An interesting aspect of Eqs. (8) is that
the threatened disappearance of the fourth-order gradient
term at d=2 in Eq. (4c) is canceled by an infinite value of
the integral in o.,4, resulting in a finite contribution for a
two-dimensional system. 1t can be verified that this is a
consequence of the exponential decay of the particle density
in the vacuum region. Clearly, this feature is general and is
not limited to the above model density profile. There are
no published results for the gradient corrections in two
dimensions for the kinetic energy. Our results show that
the gradient corrections to the TF result must be handled
delicately. The numerical results based on Eqs. (8) are
qualitatively similar to those given in Fig. l, when n & 2kF.
There are of course no exact results for o-, corresponding to
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FIG. 2. Surface exchange energy given by Eqs. (11) and {12),
based on the model profile n(z) = ns/[i+exp( —az)] described in

the text. cgs units are used.
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In Fig. 2, the surface exchange energy given by Eqs. (11)
and (12) is plotted as a function of d. Note that the gra-

dient corrections to the LDA especially for d near 2 are now

dependent on the precise details of the assumed interaction
as well as on the density profile. '

I

Finally, in order to construct full phase diagrams, we re-
quire the free energy I'= 0+Ij/. N at finite temperature.
The calculations are lengthy and, for brevity, we give only
the LDA and the lowest-order gradient correction as func-
tionals of the exact density.

g/2
2m' T 2F[nl = d"r V(r)n(r)+kttT

h2 rC, g(r) Je(, t(g(r)) ——I,(2(q(r))

t r a/2t' d —2 t' "' ls(2-3(~«)) (~ ( )),
24m d —1 2mktt T K~I)(2 2 {g(r))

The local parameter q(r) = (to(n (r) )/ks T is obtained from

n(r) = (2mkttT/t')e'Eele(2 t{ri(r))

~here the standard Fermi-Dirac integrals are defined by

I

I„(q)= (X+ I) tI'(q), but for the limiting case of X= —l.
Further corrections due to higher-order gradients and to

interparticle interactions as well as applications will be given
else~here.

for A. & —1 and otherwise by the recurrence relation
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