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Monodisperse domains by proteolytic control of the coarsening instability
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The coarsening instability typically disrupts steady-state cluster-size distributions. We show that degradation
coupled to the cluster size, such as arising from biological proteolysis, leads to a fixed-point cluster size.
Stochastic evaporative and condensative fluxes determine the width of the fixed-point size distribution. At the
fixed point, we show how the peak size and width depend on number, interactions, and proteolytic rate. This
proteolytic size-control mechanism is consistent with the phenomenology of pseudopilus length control in the
general secretion pathway of bacteria.
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I. INTRODUCTION

Living cells control the sizes of subcellular structures.
Mechanisms of size control include molecular rulers for
bacterial injectisome length [1], measuring cups for the length
of the bacterial flagellar hook [2], counting for telomere ends
[3], and equilibrium energetics for actin bundle radius [4]. Size
control is also evident in the length of eukaryotic flagella [5]
or the size of lipid rafts [6].

Size control is challenging in bacteria because of the
strong stochastic effects expected in such small cells. It
is especially interesting how bacteria control the size of
extracellular macromolecular assemblies, such as bacterial
secretion systems and pili. In this paper, we investigate a
length-control mechanism that may apply to the pseudopilus
(here “ppilus”) of the type-II secretion system (T2SS) of
Gram-negative bacteria [7]. In the general secretory pathway,
proteins are first secreted across the bacterial inner membrane
by the Sec or Tat systems, then across the outer membrane
by the T2SS. The T2SS pushes folded proteins across the
periplasm, and out a secreton in the outer membrane, using
an assembling and disassembling ppilus that is thought to
function as a piston or plunger [7]. The ppilus assembles from
the energized inner membrane and spans the periplasmic space.
The primary pilin subunit that assembles into the pseudopilus
of the T2SS is variously called PulG in Klebsiella oxytoca,
XcpT in Pseudomonas aeruginosa, or more generally GspG
(here “G”) and is homologous to the PilA pilin of the type-IV
pilus used in twitching motility in, e.g., P. aeruginosa or
Myxococcus xanthus [8].

For a functioning T2SS, the ppilus length should span
the periplasm, which is approximately 21 nm across [9]—or
85 G monomers in the ppilus structure [10]. The ppilus is not
normally seen outside the cell [7], hence the “pseudo” prefix,
indicating an effective length-control mechanism. Overexpres-
sion of G leads to visible extracellular ppili [11–13], which
rules out the (fixed-size) molecular ruler or measuring cup
mechanisms of size regulation.
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Underexpression of a minor pilin (XcpX [11], PulK [13], or
GspK—here “K”) leads to long extracellular ppili. Therefore,
it has been proposed that simple stoichiometric control applies
to T2SS ppilus length control [14]. However, stoichiometric
control faces the inherent challenges of precisely controlled
protein expression [15]. Furthermore, while a single “stoi-
chiometric” ppilus with a fixed size pool of G monomers
can have a narrow length distribution peaked at the pool
size [16], this is not true of multiple ppili sharing a common
pool of G monomers. With multiple ppili stoichiometric
length distributions are exponential, as seen in stochastic
simulations with more than one ppili (see Appendix A). Since
five to ten ppili are present on each individual bacteria [17],
stoichiometric length control of each individual ppilus requires
an additional mechanism to partition G proteins equally
between the ppili.

II. MODEL

The observations of G-G interactions [18] and of G clusters
in individual bacteria [18,19] are consistent with clusters of
G that could be associated with each ppilus, as illustrated
by the dashed regions in Fig. 1. The size of each cluster,
i.e., the number of G monomers, would then determine
the maximal length of the associated ppilus, converting a
ppilus length-control problem into a G-cluster size-control
problem. Nevertheless, thermally driven evaporation, conden-
sation, and diffusion [Fig. 1, (E), (C), and (D), respectively)
will destabilize spontaneous partitioning of G among many
clusters. The subsequent coarsening of the size distribution,
treated by Lifshitz, Slyozov, and Wagner (LSW) [20], would
lead to a single large cluster (condensed phase) of G in
equilibrium with small clusters of G (vapor) in the bacterial
inner membrane. The net growth of large diffusively coupled
2d clusters can be expressed in terms of their radius R by
dR/dt = A (1/Rc − 1/R) /R, where A is a constant. Cluster
growth is the net result of a condensation flux (due to the
supersaturation of G monomers in the inner membrane) and
an evaporative flux (due to the curved boundary of the cluster
within the membrane). Rc is the critical cluster size above
which clusters grow and below which they shrink, and it
typically grows with time due to the decreasing supersaturation
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FIG. 1. (Color online) Cartoon of the bacterial periplasmic space
showing the inner (IM) and outer (OM) membrane, with pilin “G”
proteins (red circles). Two pseudopili are shown, extending from their
inner membrane base toward their outer membrane secretons (green
squares). The IM clusters associated with the ppili are indicated
by the dashed circles. The number of G proteins in the ppilus
together with its associated cluster is unchanged by ppilus assembly or
disassembly (not shown). Numbers change by the physical processes
of condensation (C), evaporation (E), proteolysis or recycling (−),
and insertion (+). Diffusion (D) of monomers couples the clusters.

associated with increasing average cluster radius via the
Gibbs-Thompson effect. Growth of the average cluster size is
also associated with a decreasing number of clusters and with
a broad distribution of cluster sizes [20]. This is qualitatively
unchanged for collections of smaller or irregularly shaped
clusters.

In a biological system, we should add both protein synthesis
and proteolysis. Protein synthesis will simply contribute to
the supersaturation, but proteolysis will add a degradative
term to the LSW dynamics proportional to the number of
monomers in the cluster. Bacterial proteolytic mechanisms
include cytoplasmic proteosomes [21], ubiquitin-like targeting
systems [22], and periplasmic proteases [23]. Nondegradative
recycling of components away from the membrane has an
equivalent effect [24–26]. In terms of the number of monomers
in a large 2d cluster of size N , we will then have

dN

dt
= S − E√

N
− αN, (1)

where S corresponds to condensation due to supersaturation,
E corresponds to evaporation, and α is the proteolytic
rate. Equation (1) is an approximate mean-field equation,
without stochastic effects or higher-order curvature corrections
expected for smaller clusters. However, it illustrates (see inset
of Fig. 2) how intermediate values of the proteolytic term
should generically stabilize coarsening to a steady-state cluster
size (red dot in inset), while for large enough proteolytic rate
no stable fixed point exists (blue curve in inset).

To test these ideas, we model G clustering in the bacterial
membrane with a stochastic Ising lattice gas in two dimensions
(see, e.g., [27]). The dynamics are (conserved) particle
exchange, subject to a Metropolis acceptance criterion with
a reduced interaction energy J̃ ≡ J/(kBT ). We supplement
these dynamics with a dimensionless proteolysis rate α (per
monomer per time step), where (to minimize finite-size effects)
monomers are removed and immediately replaced at random
positions in the system. Using a typical monomer size of �x =
5 nm and diffusivity of D = 70 000 nm2/s = δx2/(4δt), we
have �t ≈ 10−4 s [27], and the proteolytic lifetime is τ =
�t/α. In units of �x, we use a linear lattice size L = 400
and check that finite-size effects are not significant. A typical
bacterium is larger in every direction, with L ≈ 2000 [27].

0

0.01

0.02

0.03

0.04

0 50 100 150 200 250 300

P (N)

N

0

0

d
N
/
d
t

N

FIG. 2. (Color online) Cluster-size probability distribution,
P (N ), vs number of monomers in a cluster, N , for low (α = 10−9,
green, right), medium (α = 5 × 10−8, red, center), and high (α =
10−5, blue, left) proteolytic rates (per protein per time step, where
�t ≈ 10−4 s). Other parameters are J̃ = 1.67 and ρ = 2 × 10−3.
The dotted lines represent the reconstruction of the probability
distribution via Eq. (2). Intermediate proteolytic rates stabilize
a peaked steady-state cluster-size distribution with multiple large
clusters, as illustrated by the corresponding snapshot of the system.
The inset is a stability diagram from Eq. (1), illustrating the effects
of low (green, top curve, with only an unstable fixed point), medium
(red, center curve, with an additional stable fixed point as indicated),
and high (blue, bottom curve, with no fixed points) proteolytic rates
on the domain size dynamics dN/dt vs domain size N .

III. RESULTS

Figure 2 illustrates the steady-state results of the stochastic
simulations. For a high proteolytic rate (α = 10−5 or protein
lifetime τ ≈ 10 s), no large domains are seen. At an inter-
mediate proteolytic rate (α = 5 × 10−8 or τ ≈ 2000 s), stable
domains with a characteristic size are seen. At a low proteolytic
rate (α = 10−9 or τ ≈ 105 s), proteolysis is insufficient to
stabilize the largest domain against coarsening to the limits
of the system size. For the remainder of the paper, and for
intermediate proteolytic rates, we quantify the peak size N0 as
well as the full width at half maximum W of the steady-state
distribution of domain sizes, and explore how they vary with
proteolytic rate, total membrane density of G, and reduced
interaction J̃ .

The growth dynamics of a given cluster of size N is
given by the difference of incoming and outgoing flux,
Ṅ = Ṅ+(N ) − Ṅ−(N ). This gives us the transition proba-
bilities of monomer addition �+(N ) ≡ Ṅ+/(Ṅ− + Ṅ+) and
subtraction �−(N ) ≡ Ṅ−/(Ṅ− + Ṅ+). If P (N ) is the resulting
steady-state probability distribution of clusters of size N ,
then the detailed balance condition of the transition prob-
abilities is �+(N − 1)P (N − 1) = �−(N )P (N ). Approxi-
mating P (N ) as a continuous distribution of cluster sizes
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FIG. 3. (Color online) (a) Dependence of the steady-state most-likely cluster size N0 (red circles) and the full width at half maximum W

(green squares) of the cluster-size distribution vs the proteolytic rate α. Crosses (×) indicate corresponding values derived from fluxes near N0

via Eq. (2). The inset shows the relative width W/N0 (blue squares) and the fraction of G proteins in large domains (purple circles) vs α. Error
bars indicate statistical errors, which are often smaller than point sizes. Other parameters are J̃ = 1.67 and ρ = 2 × 10−3. (b) The top figure
shows size N0 (red circles) and width W (green squares) vs average membrane density ρ ≡ Ng/L

2. The bottom figure shows the dependence
of relative width W/N0 (blue squares) and the cluster fraction f (purple circles). Other parameters: J̃ = 1.67 and α = 5 × 10−8. (c) Size N0

(red circles) and width W (green squares) vs the clustering interaction J̃ ≡ J/(kBT ). The inset shows the relative width W/N0 (blue squares)
and the fraction of G proteins in large domains f (purple circles) vs J̃ . Other parameters: ρ = 2 × 10−3 and α = 5 × 10−8.

[where dP/dN � P (N ) − P (N − 1)], then in steady state we
have

P (N ) � P (1) exp

[∫ N

1

(
1 − �−(n)

�+(n − 1)

)
dn

]
, (2)

where we choose P (1) such that
∑

m P (m) = 1.
We have measured the steady-state evaporation and con-

densation rates N±(N ), and used the resulting transition
probabilities �±(N ) in Eq. (2) to compare with the measured
P (N ). We find reasonable agreement (see, e.g., the dotted lines
in Fig. 2 or the crosses in Fig. 3), showing that the dispersity
of domain sizes around the stable fixed point N0 [where
N+(N0) = N−(N0)] is due to stochastic fluctuations driven
by the finite fluxes. Intuitively, and as proven in Appendix B,
the stochastic width W of the size distribution increases either
with increasing absolute flux at the fixed point (i.e., |N±|) or
with decreasing net (stabilizing) flux (|N+ − N−|) near the
stable fixed point.

Figure 3(a) shows the peak position and the width of
the steady-state cluster-size distribution vs proteolytic rate
α. Increasing α decreases the stable domain size until, for
α � 4 × 10−6, the distribution becomes peaked at N0 = 0.
This is consistent with Eq. (1) and the stability plots in the
inset of Fig. 2. The width decreases with α as the net stabilizing
flux near the stable point increases. As shown by the inset of
Fig. 3(a), the relative width W/N0 nevertheless increases with
α. The fraction f of G monomers that are found in larger
clusters (under the second peak in Fig. 2) slightly decreases
with α but remains a considerable fraction (more than half) of
the total, which indicates that proteolysis can be an efficient
size-control mechanism. Experimentally, it appears that at least
20% of G monomers are in ppili [28].

In contrast, the steady-state peak cluster size N0, the width
W near the peak, and the fraction of G in the peak clusters stay
roughly constant over a large range of average G densities,

ρ ≡ Ng/L
2, as shown in Fig. 3(b). We understand this as

an effective (nonequilibrium) coexistence between a fixed
density of G monomers and excess G in clusters—increasing ρ

simply increases the number of clusters without significantly
changing their size distribution. [When approximately one
cluster is seen in the system, for smaller ρ, finite-size effects
do appear—decreasing both N0 and W . This is beginning to be
apparent at the lowest ρ in Fig. 3(b). Strong finite-size effects
are seen in the condensed-cluster fraction f , but simply arise
from an approximately constant vapor density as ρ varies.]
The lack of strong dependence of the cluster size N0 on
the total membrane density ρ is advantageous in terms of
robust control of cluster size in the face of stochastic protein
expression.

At a fixed proteolytic rate and expression level, the effects
of varying J/(kBT ) (i.e., G-G interactions) are shown in
Fig. 3(c). Thermal evaporation decreases with increasing
J̃—leading both to an increasing f [see inset of Fig. 3(c)],
a decreasing effective supersaturation, and a smaller stable
N0. The fractional width W/N0 of the peak of the cluster-
size distribution is narrower for weaker interactions, but at
the same time a smaller fraction of G monomers are in
clusters.

IV. DISCUSSION

We find that intermediate levels of proteolysis control the
natural coarsening instability of condensed clusters, and leads
to steady-state clusters with a relatively narrow distribution
of sizes. For an intermediate proteolytic rate α = 5 × 10−8

(turnover time τ ∼ 2000 s), we obtain a cluster size N0 ≈
80—remarkably close to the 85 G required to assemble a ppilus
that spans the periplasmic space [9,10]. The fractional width is
then about 30%, consistent with the lack of extracellular ppili
observed under normal conditions. For cluster-size control to
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effectively control ppilus length, we predict that G clusters are
associated with the secreton base of the T2SS. Mutational
variation of G monomers to affect either their proteolytic
susceptibility [α; see, e.g., Fig. 3(a)] or G-G interactions
[J̃ ; see Fig. 3(c)] should also affect the distribution of ppilus
lengths. We believe stoichiometric mechanisms, via GspK
[11–13], control the ppilus length from individual associated
G clusters, while our proteolytic size control mechanism
ensures that multiple G clusters remain approximately equally
sized.

We have shown that a mean-field fixed point in the
cluster-size distribution arises from proteolysis, while the
dispersity of cluster sizes around the fixed point arises
from stochastic growth and shrinkage of clusters. The noise
associated with proteolysis is intrinsically multiplicative, in
that proteolysis only targets existing G proteins. Our lattice-gas
model naturally implements both proteolysis and the thermal
evaporation and condensation of clusters in a membrane.

The result is a monodisperse cluster-size distribution with
a nonzero peak size, which qualitatively differs from some
earlier work on lipid raft sizes in membranes that only found
distributions peaked at N0 ≈ 0 [25,26]. We believe this is
due to the approximate evaporation-condensation dynamics
[25] or the additive noise [26] used in those works. In
contrast, earlier coarse-grained models of ternary mixtures
with recycling [24]—also applied to lipid nanodomains—
did recover a nonzero peak size, though did not include
recycling noise. Our microscopic two-component model is
simpler, and the mean-field flow we present shows how
the results are expected to be generic for proteolysis or
recycling.

Proteolysis is not just for cellular cleanup. Targeted degra-
dation can adjust time scales and levels of transcription or
translation (see, e.g., [15]). We have shown how it can also
be used to control cluster sizes within the cell. Proteolysis
contributes an “evaporative” term that limits coarsening with a
mean-field fixed point for the cluster size (inset of Fig. 2).
The same mechanism will qualitatively apply whether the
proteolysis targets all proteins in a cluster [as in Eq. (1)],
appropriate for cytoplasmic or periplasmic proteases, or
targets the cluster periphery, as might be appropriate for
membrane associated proteases. In both cases, the loss term
in Eq. (1) will grow with N , and so will lead to a stable
fixed point at some N0. Proteolysis provides a size-control
mechanism to cells. We expect that proteolysis or analogous
degradation terms, such as recycling, are widely exploited to
achieve monodisperse steady-state clusters in other biological
systems.
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APPENDIX A: STOICHIOMETRIC LENGTH CONTROL

We present here analytical limits as well as computational
simulations for a stoichiometric model for length control. This
system consists of M polymerized pili sharing a common
pool of Ng = MNp monomers, where Np is the average
number of monomers per pilus. Each pilus has a probability
p+ of growing and p− of terminating growth and completely
disassembling, and these probabilities are dependent only on
the pool of monomers. The total number of monomers is
constant, so that Ng = n + ∑M

i=1 li , where li are the lengths
of the pili and n the number of monomers remaining in the
monomeric pool. Since the growth rate is proportional to n,
while the termination rate t is fixed, then the growth and
termination probabilities are p+(n) = n/(n + t) and p−(n) =
t/(n + t), respectively, where p+ + p− = 1.

For a single pilus, the probability of achieving a maxi-
mum length l can be written as the product of the indi-
vidual probabilities: p1(l) = p+(Ng) × p+(Ng − 1) × · · · ×
p+[Ng − (l − 1)] × p−(Ng − l). This leads to

p1(l) = t�(Ng + 1)�(Ng + t − l)

�(Ng + t + 1)�(Ng − l + 1)
, (A1)

which is peaked around Np for t � 1, as shown with M = 1 in
Fig. 4. A single pilus can achieve length control by assembling
most of the available pool of monomers before disassembly is
triggered.

For the more biologically appropriate case of mul-
tiple pili per cell, we can use a mean-field approxi-
mation. In this case, t becomes Mt and Ng becomes
MNp − Ml̃, where l̃ is the average length of the pili,
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FIG. 4. (Color online) Probability distribution pM (l) of the
maximum length for various number of pili (M = 1,2,3,4,6) sharing
the same common pool of monomers. We use t = 0.3 and Np = 40,
though qualitatively similar results are seen with other parameters.
The continuous lines are the result of the stochastic simulation. The
red dashed lines represent the two exact limiting distributions p1

and p∞, overlaying the M = 1 data and close to the M = 6 data,
respectively.
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FIG. 5. Mean-field fixed-point cluster size N0 that occurs where
the evaporative and condensative fluxes are equal (J− = J+ = J0).
The fixed point is stable when evaporation is stronger than con-
densation (J− > J+) for N > N0, as illustrated. The demonstration
of monotonicities in Appendix B are for N ≈ N0, where a linear
approximation for J± holds.

and then pM (l) = p+(MNp − Ml̃) × p+(MNp − Ml̃ − 1) ×
· · · × p+[MNp − Ml̃ − (l − 1)] × p−(MNp − Ml̃ − l). The
p+ are constant at O(1/M), so that in the limit M � 1, we
recover an exponential distribution

p∞(l) = t + 1

Np + t
e
− t+1

Np+t
l
. (A2)

For the intermediate regime, with finite M > 1, we performed
stochastic computer simulations—as illustrated in Fig. 4.
The exponential limit is quickly approached for M � 4.
However, even for M = 2, the peak around Np seen for M = 1
is lost.

APPENDIX B: ANALYTICAL MONOTONICITIES
OF THE WIDTH

For the proteolytic size-control mechanism described in the
text, we detail here the formal derivations of the variation of
the full width at half maximum (FWHM) W of the nonzero
peak in the size distribution. We consider the evaporative and
condensation fluxes J+ and J−, respectively, close to the stable
fixed point size N = N0, where J+ = J− = J0 (see Fig. 5).
We allow for linear dependence of the fluxes near the fixed

point,

J+ = a(N − N0) + J0, (B1)

J− = b(N − N0) + J0, (B2)

where the stability of the fixed point requires J− > J+ for
N > N0 and J+ > J− for N < N0, corresponding to the
requirement that b < a.

These fluxes give us the transition rates

�+ = an + J0

cn + 2J0
, (B3)

�− = bn + J0

cn + 2J0
, (B4)

where we define n ≡ N − N0 and c ≡ a + b. The detailed
balance condition is p(n) = p(n − 1)�+(n − 1)/�−(n). We
define

A(n) ≡
n∏

m=1

�+(m − 1)

�−(m)

= cn/2 + J0

bn + J0

∏n−1
m=1(ma + J0)∏n−1
m=1(mb + J0)

. (B5)

A monotonically decreases with n, since �+(n − 1)/�−(n) =
[a(n − 1) + J0]/[b(n − 1) + J0] < 1, where b > a. The
FWHM condition, A(W/2) = 1/2, allows us to determine how
W must respond to changes in J0 and � ≡ b − a.

Varying J0 at FWHM, we have

d log A

dJ0
= 1

cW/4 + J0
− 1

bW/2 + J0

+
W/2−1∑

n=1

(
1

na + J0
− 1

nb + J0

)
, (B6)

where c/2 < b and a < b, so that d log A/dJ0 > 0 and
A monotonically increases with J0. We conclude that W

increases with increasing J0.
In the same manner,

d log A

d�
=

(
W

W� + 2aW + 4J0
− W

W� + aW + 2J0

)

−
W/2−1∑

n=1

n

n� + na + J0
(B7)

is negative, so that A monotonically decreases with � ≡ b −
a. We conclude that W decreases with increasing b − a.
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