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Critical exponents and amplitude ratios for corrections to the scaling limit are calculated for a randomly
diluted, weakly inhomogeneousO(m) Heisenberg model in an expansion ine542d. Calculations for the
exponents and amplitude ratios are given correct toO(e2) andO(e), respectively, for the heat capacity~both
above and belowTC) and for the susceptibility~aboveTC). The new amplitude ratios associated with dilution
effects are calculated for both the first-order~associated with critical exponentsD152a,D25vn) and the
second-order~associated with critical exponentsD3522a,D452a1vn,D552vn) corrections to scaling.
The dilutedO(m) model has the feature that the correction to scaling associated withutuD2, which is formally
of first order with respect to the perturbative coupling constants, becomes negligible for sufficiently small
utu relative to utuD3, which is formally of higher order in the perturbative coupling constant expansion. The
implications of these results for the analysis of experimental data are discussed.

I. INTRODUCTION

The critical properties of inhomogeneous magnetic sys-
tems have received a great deal of attention over the past
several years. Extensive theoretical studies have been carried
out both analytically and numerically on a variety of sys-
tems. Such investigations are important because diluted sys-
tems probably resemble real physical magnets more accu-
rately than do models of pure systems.

Theoretical work based on renormalization-group1,2

analysis often begins by considering an effective Ginzburg-
Landau-Wilson Hamiltonian where only terms up to quartic
coupling in them-component order parameterfW are explic-
itly included. In the much studied pure and isotropicO(m)
ferromagnet, for example, the starting point would be the
effective Hamiltonian

H5E ddxH 12 @~¹fW ~x!!21m2fW 2~x!#1
l

4!
~fW 2~x!!2J ,

~1.1!

where (¹fW (x))2[( i(¹fW i(x))
2. This model has been stud-

ied for quite some time and its properties are well under-
stood. For example, the leading critical exponents,2 universal
amplitude ratios,3 as well as the correction to scaling
exponents4 and several of the universal correction to scaling
amplitude ratios5–7 are all known to at least second order in
e542d.

Real physical systems are usually described by somewhat
more complicated Hamiltonians than that in Eq.~1.1!.
Hence, terms of a lower symmetry group are often added to
describe spin or spatial anisotropy present in crystalline
samples, and dilution by nonmagnetic impurities is often
taken into account by puttingm2→m2(x). This essentially
exploits the fact, pointed out by Harris,8 that the crucial ef-
fect of introducing weak disorder is to cause variations in the
local critical temperature.

The dilute Ising model (m51) has received particular
attention since it is known that dilution changes the univer-

sality class of this model.9–11 References 12 and 13 contain
field-theoretic renormalization-group calculations on the
leading universal amplitude ratios, and also survey and pro-
vide references to earlier work on this model.

There are, however, many magnets withm.1 which are
also of interest. For example, the three-dimensional~3D! di-
luted Heisenberg model hasm53. For present purposes
m53 disordered ferromagnets can be loosely classified into
three groups. In the case of very weakly diluted systems,
only a small number of the magnetic lattice ions are ran-
domly replaced by nonmagnetic impurities. More strongly
disordered ferromagnetically ordered binary alloys, espe-
cially near their percolation threshold, may be considered to
be an extreme case of dilution. In the case of amorphous
ferromagnets, a regular lattice does not exist. In some re-
spects, this actually simplifies matters insofar as a number of
otherwise strong perturbations on theO(m) symmetry are
supressed by the lack of long-range structural order and crys-
talline anisotropy. Thus, certain amorphous ferromagnets
may well be in theO(m) universality class, provided their
coarse-grained average inhomogeneity is describable in
terms of a local critical temperature which varies slowly in
space and has suitably short-ranged autocorrelations.

The present work concerns randomly and weakly diluted,
or related types of weakly inhomogeneous, ferromagnets.
Our particular objective has been to carry out a theoretical
study of the weakly diluted Heisenberg model using
renormalization-group methods to determine critical expo-
nents and amplitude ratios for the corrections to scaling for
the specific heat~above and belowTC), and for the zero-field
susceptibility ~aboveTC). It is hoped that this additional
theoretical information may assist in the determination of
reliable critical exponents and amplitude ratios from the
analysis of high-quality experimental data.

To be specific, consider the zero-field susceptibility
x(t), for t.0

x~ t !5Gt2g~11ax1t
2a1ax2t

vn!, ~1.2!

wheret is the reduced temperaturet5(T2TC)/TC . The cor-
rection to scaling term involvingtvn is the usual thermal

PHYSICAL REVIEW B 1 MAY 1996-IVOLUME 53, NUMBER 17

530163-1829/96/53~17!/11572~10!/$10.00 11 572 © 1996 The American Physical Society



correction due to the fact thattÞ0.4 This thermal correction
term is independent of inhomogeneity effects, and has pre-
cisely the same value regardless of whether dilution is
present or not. The other correction to scaling term involving
t2a, where a is the specific-heat exponent of the pure
Heisenberg model, arises from the inhomogeneity and is not
present in discussions of pureO(m) ferromagnets.14,15How-
ever, Eq.~1.2! contains only the corrections to scaling due to
the first-order terms in the power-series expansions of the
coupling constants about the fixed point. We must expect, in
general, an infinite series of such correction terms. The
second-order correction to scaling exponents, for example,
are expected to be22a,2a1vn, and 2vn. This is veri-
fied below. We also calculate the associated amplitudes and
several amplitude ratios associated with these new correc-
tions. In particular, we find the amplitudes associated with
utu22a to be nonzero. Since22a'0.24 andvn'0.55 for
the 3D Heisenberg system,16–18 this means that part of the
second-orderutu22a corrections to scaling will be dominant
over part of thefirst-order utuvn contribution to the correc-
tions to scaling, forutu sufficiently small. This effect clearly
generalizes to higher-order terms in the expansion of the
coupling constants.

The conclusion can thus be drawn that the analysis of data
on the diluted Heisenberg model~and certain other models as
well! is somewhat delicate in that special procedures are
needed to account for theutu2pa and utu2qa1vn terms ~for
p, q positive integers!. Of course, these procedures are re-
quired in the analysis of data on amorphous ferromagnets in
order to establish their universality class. The possible pres-
ence of other relevant perturbations~e.g., dipole-dipole inter-
actions, magnetoelastic couplings! may place further restric-
tions on the interpretation of measurements on the correction
to scaling amplitudes and exponents. It is hoped that the
results derived below help in such future analyses and will
also motivate further theoretical work aimed at extending the
present low-ordere-expansion results.

The rest of the paper is organized as follows. Section II
outlines the renormalization procedure used and the
renormalization-group equations for the particular vertex
functions of interest are derived and solved. Section III con-
tains calculations on the correction to scaling amplitude ra-
tios and exponents. For the most part, details of the calcula-
tions are avoided. Outlines and a few intermediate results are
given, along with some general references to background
material. Finally, Sec. IV concludes with a summary and
some pertinent discussion. A limited comparison of theory
and experiment is given in this final section.

II. RENORMALIZED PERTURBATION THEORY

The starting point of the investigation is the effective
Hamiltonian

H5E ddxH 12 @~¹fW ~x!!21m̃2~x!fW 2~x!#1
l

4!
~fW 2~x!!2J ,

~2.1!

wherem̃2(x) is a random function characterizing the disor-
der. At each pointx, the probability distribution ofm̃2(x) is
assumed to be a Gaussian centered about a mean valuem2.
For quenched randomness, the logarithm of the partition
function should be averaged over the impurities.19,20 These
two facts enable the use of the replica procedure21 to gener-
ate a new translationally invariant Hamiltonian:

Hmn5E ddxH 12(i51

n

@~¹fW i~x!!21m2fW i
2~x!#

1
l1

4! (i , j51

n

fW i
2~x!fW j

2~x!1
l2

4!(i51

n

~fW i
2~x!!2J .

~2.2!

Studying this Hamiltonian is equivalent to studying Eq.~2.1!
provided the limitn→0 is taken.Hmn contains two quartic
couplings, each with different symmetry with respect to the
replica indices@we still haveO(m) symmetry with respect to
the Cartesian components ofeachreplica vector#. The cou-
pling l2 is the original from Eq.~2.1!, and the new coupling
l1 characterizes the strength of the disorder.10,15 In this no-
tation,l1,0 andl2.0. From Eq.~2.2!, the partition func-
tion is formed in the usual way. After including the effect of
an external magnetic field,

Zmn@B#5E )
i51

n

DfW i~x!expF2Hmn1E ddxBW i•fW i G ,
~2.3!

and the solution proceeds by way of the loop expansion.22

The Legendre transform of the free energy, which is also
the generating functional of the one-particle irreducible
Green’s functions23 ~also known as the vertex functions!, can
be found via the definition

G@f̄#[E ddxBi
af̄ i

a2 lnZmn@B#, ~2.4!

where repeated indices imply summation. Here,f̄ is the field
conjugate to the external fieldB and is thus proportional to
the magnetizationM . In the above, and in all that follows,
Latin indices will always denote replica fields and Greek
indices will always denote Cartesian components. Perform-
ing the loop expansion to first order, the free-energy density
is expressed as

1

nV
G~f̄,m2,l1 ,l2!5

1

2
m2f̄21

1

4!
~nl11l2!~f̄2!21

m21

2 E ddkW

~2p!d
lnS k21m21

nl1f̄
2

6
1

l2f̄
2

6 D
1
n21

2n E ddkW

~2p!d
lnS k21m21

nl1f̄
2

6
1

l2f̄
2

2 D 1
1

2nE ddkW

~2p!d
lnS k21m21

nl1f̄
2

2
1

l2f̄
2

2 D . ~2.5!
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It is important to note thatf̄2 is the magnitude squared of
each bare magnetization replica vector. Replica symmetry is
not broken. We have taken all thermally averaged replica
vectorsf̄ i to have equal magnitude and to also point in the
same direction. From Eq.~2.5!, previous calculations done
on the pure isotropicO(m) model5 (n51, l150), and on
the dilute Ising model24 (m51) can be reproduced.

After renormalizing the free energyG, expressions for the
specific heat and susceptibility in the perturbative
regime—in contrast to the critical regime—can be found by
simple differentiation.

The theory was renormalized by minimal subtraction with
all integrals being dimensionally regularized.25,26,23Explicit
e expansions for most diagrams needed can be found in Ref.
27.

The basic statement is that apart from a small subset~see
below!, all vertex functionsG (N,L), containingN f̄ fields
andL f̄2 fields, can be multiplicatively renormalized:

GR
~N,L !~ki ,pi ;t,M ,ui ,k!5Zf

N/2Zf2
L G~N,L !~ki ,pi ;m

2,f̄,l i !.
~2.6!

Renormalizing atTC is sufficient to renormalize these func-
tions away fromTC as well, since the vertex functions are
essentially expansion coefficients23 and can be written as

G~N,L !~ki ,pi ;m
2,f̄,l i !

5(
I ,J

~f̄ ! I~m2!J

I !J!
G~N1I ,L1J!~ki ,l i50,pi ,qi50;0,0,l i !.

~2.7!

The connection between the bare and renormalized param-
eters is

l i5keZiui ~ i51,2!, ~2.8a!

m25Zf2t, ~2.8b!

f̄5Zf
1/2M . ~2.8c!

Here,e542d, t is the reduced temperature,M is the mag-
netization,ui are the~dimensionless! renormalized coupling
constants, andk is an arbitrary wave vector useful for car-
rying the dimensions of the bare coupling constants. The
renormalization constantsZ1 , Z2 , Zf , and Zf2 are all
found by minimally subtracting the poles of the primitively
divergent vertex functionsG (4,0), G (2,0), andG (2,1). The ver-
tex functions themselves are evaluated using the standard
Feynman rules and procedures.22,23 The results are

Z1511
mn18

6e
u11

m12

3e
u21F ~mn18!2

36e2
2
3mn114

24e Gu12
1F ~mn112!~m12!

12e2
2
11~m12!

36e Gu1u2
1F ~m14!~m12!

12e2
2
5~m12!

72e Gu221O~u3!, ~2.9a!

Z2511
2

e
u11

m18

6e
u21Fmn120

6e2
2
5mn182

72e Gu12
1F5m128

6e2
2
11m158

36e Gu1u2
1F ~m18!2

36e2
2
3m114

24e Gu221O~u3!, ~2.9b!

Zf512
mn12

144e
u1
22

m12

72e
u1u22

m12

144e
u2
21O~u3!,

~2.9c!

Zf2511
mn12

6e
u11

m12

6e
u2

1F ~mn15!~mn12!

36e2
2
5~mn12!

144e Gu12
1F ~mn15!~m12!

18e2
2
5~m12!

72e Gu1u2
1F ~m15!~m12!

36e2
2
5~m12!

144e Gu221O~u3!.

~2.9d!

A small subset22,23 of the vertex functions diverge at ze-
roth order in the coupling constants for an infinite cutoff.
These cannot be multiplicatively renormalized but require
instead a further additive renormalization. The one of interest
here isG (0,2), related to the specific heat. This vertex func-
tion is renormalized as

GR
~0,2!~p;0,0,ui ,k!

5Zf2
2 [G~0,2!~p;0,0,l i ! 2G~0,2!~p;0,0,l i !up25k2].

~2.10!

The nonperturbative character of the renormalization
group can be thought of as a mapping28,29 from the critical
regime—where naive perturbation theory breaks down—to
the perturbative regime. Thus, it is necessary to derive some
perturbative results for the noncritical regime. The specific
heat and the susceptibility are of particular importance at
present. These are of course obtained by differentiating the
free energy, which must first be renormalized. This is accom-
plished by inserting the definitions of Eq.~28! into Eq.~2.5!.
The additive piece fromG (0,2) must also be included. Per-
forming these substitutions, the renormalized free energy
density is given by
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1

nV
GR~ t,M ,u1 ,u2 ,k!5

1

2
tM21

1

4!
~nu11u2!M

41
m21

2 E ddkW

~2p!d
lnFk21t1

1

6
~nu11u2!M

2G
1
n21

2n E ddkW

~2p!d
lnFk21t1

1

6
~nu113u2!M

2G1
1

2nE ddkW

~2p!d
lnFk21t1

1

2
~nu11u2!M

2G
1
m

4
t2k2eS 1e 1

1

2
1O~e! D1

1

2 Smn12

6e
u11

m12

6e
u2D tM21

n

4! Smn18

6e
u11

m12

3e
u2Du1M4

1
1

4! S 2e u11 m18

6e
u2Du2M41O~u!. ~2.11!

AboveTC and in zero external field~henceM50), the above expression can be immediately differentiated to yield both the
specific heat and the susceptibility. The specific heat is given by

CB~ t,0,u1 ,u2!5 lim
n→0

S 2
1

nV

]2GR

]t2 D ~ t.0!

52
m

4
~21 lnt !1O~u!. ~2.12!

In the above, we have setk51. The inverse isothermal susceptibility tensor is similarly given by

xab
215 lim

n→0
S 1

nV

]2GR

]Ma]Mb
U
M50

D ~ t.0!

5dabH t1 1

12
@2u11~m12!u2#t lnt1O~u2!J . ~2.13!

BelowTC , the presence of Goldstone modes manifests itself in a divergent susceptibility. Hence, only the specific heat will
be calculated belowTC . To obtain the specific heat, the~spontaneous! magnetization must now also be differentiated with
respect to the reduced temperature. The calculation is simplified if the equation of state

B~ t,M ,u1 ,u2!5
1

nV

]GR

]M
~2.14!

is first solved on the coexistence curve (B50) in order to obtainM as a function oft. This expression can then be inserted
into the renormalized free energy, Eq.~2.11!, yielding an expression with no explicitM dependence. The result of these steps
is

1

nV
GR„t,0,M ~ t !,u1 ,u2…52

3

2
~nu11u2!

21t21
n21

2n E ddkW

~2p!d
ln@k222u2~nu11u2!

21t#1
1

2nE ddkW

~2p!d
ln@k222t#

1
m

4
t2S 1e 1

1

2D23~nu11u2!
21Smn12

6e
u11

m12

6e
u2D t21 3n

2
u1~nu11u2!

22Smn18

6e
u11

m12

3e
u2D t2

1
3

2
u2~nu11u2!

22S 2e u11 m18

6e
u2D t21O~u!. ~2.15!

Using Eq.~2.15! for the free energy, the specific heat is given by

CB„t,M ~ t !,u1 ,u2…5 lim
n→0

S 2
1

nV

]2GR

]t2 D ~ t,0!

5
3

u2
2H 2u11u2

u2
@11 ln~22t !#1

u1
u2

1
m

4 J 1O~u!. ~2.16!

Equations~2.16!, ~2.12!, and~2.13! can be expected to yield valid results only outside the critical regime. Near the critical
point, reliable results are obtained from the solution to the renormalization-group equations, which can be derived by differ-
entiating the (k independent! bare vertex functionsG (N,L) with respect tok. Using the notation of Ref. 23, the
renormalization-group equations can be written as
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Fk ]

]k
1b1~u1 ,u2!

]

]u1
1b2~u1 ,u2!

]

]u2
2
1

2
gf~u1 ,u2!SN1M

]

]M D 1gf2~u1 ,u2!S L1t
]

]t D GGR
~N,L !~ t,M ,u1 ,u2 ,k!

5dN0dL2k
2eB~u1 ,u2!, ~2.17!

where

k2eB~u1 ,u2!52Zf2
2 k

]

]k
G~0,2!~pW ;l1 ,l2!up25k2.

~2.18!

The twob functions are found by the simultaneous solution
to the two equations

2e5b1

] ln~uiZi !

]u1
1b2

] ln~uiZi !

]u2
~ i51,2!.

~2.19!

The results are

b1~u1 ,u2!5u1F2e1
mn18

6
u11

m12

3
u22

3mn114

12
u1
2

2
11~m12!

18
u1u2 2

5~m12!

36
u2
21O~u3!G ,

~2.20a!

b2~u1 ,u2!5u2F2e12u11
m18

6
u22

5mn182

36
u1
2

2
11m158

18
u1u2 2

3m114

12
u2
21O~u3!G .

~2.20b!

The Wilson functions are similarly found:

gf~u1 ,u2!5
] lnZf

]u1
b11

] lnZf

]u2
b2

5
mn12

72
u1
21

m12

36
u1u21

m12

72
u2
21O~u3!,

~2.21a!

gf2~u1 ,u2!52S ] lnZf2

]u1
b11

] lnZf2

]u2
b2D

5
mn12

6
u11

m12

6
u22

5~mn12!

72
u1
2

2
5~m12!

36
u1u2 2

5~m12!

72
u2
21O~u3!.

~2.21b!

Using the standard method of characteristics, the solution
to Eq. ~2.17! is given by

GR
~N,L !~ t,M ,ui ,k!

5~kl!CN,LSM ~l!

M D NS t~l!

t D LGR
~N,L !

3„t̃~l!,M̃ ~l!,ui~l!,1…

2dN0dL2k
2eE

1

ldl8

l8 S t~l8!

t D 2~l8!2eB„ui~l8!…,

~2.22!

where

CN,L5d22L2
N~d22!

2
, ~2.23a!

M ~l!

M
5expF2

1

2E1
ldl8

l8
gf„u1~l8!,u2~l8!…G ,

~2.23b!

t~l!

t
5expF E

1

ldl8

l8
gf2„u1~l8!,u2~l8!…G , ~2.23c!

t̃ ~l!5
t~l!

~kl!2
, ~2.23d!

M̃ ~l!5
M ~l!

~kl!~d22!/2 , ~2.23e!

l
]ui~l!

]l
5b i„u1~l!,u2~l!… ~ i51,2!

„u1~1!,u2~1!…5~u1 ,u2!. ~2.23f!

Judiciously fixing the value of the~as yet! arbitrary param-
eter l allows the vertex function on the right-hand side of
Eq. ~2.22! to be evaluated in the perturbative regime. This
was the purpose of evaluating the specific heat and suscep-
tibility outside the critical regime. The usual choice of fixing
l is

t̃ ~l!5
t~l!

k2l2 561, ~2.24!

where the1(2) is used when working above~below! TC .

III. CORRECTIONS TO SCALING

This section deals with the calculation of the various
quantities appearing in Eq.~2.22!. The correction to scaling
amplitudes will naturally appear. It can easily be shown from
the results in Sec. II that the critical domain corresponds to
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l→0. If the initial coupling constants„u1(1),u2(1)… lie
within the domain of attraction of an infrared stable fixed
point (u1* ,u2* ), then the critical regime also corresponds to
„u1(l),u2(l)…→(u1* ,u2* ). The fixed point is a zero of both
b functions in Eqs.~2.20!. It is infrared stable if the real part
of the eigenvalues of the matrix

S ]b1 /]u1 ]b1 /]u2

]b2 /]u1 ]b2 /]u2
D U

u
1* ,u2*

~3.1!

are positive. To the order theb functions are currently
known, there does exist such a fixed point.30 The running
coupling constants will flow to the pure~i.e., impurity free!
fixed point

u1*50, ~3.2a!

u2*5
6

m18
e1

18~3m114!

~m18!3
e21O~e3! ~3.2b!

provideduu1u is sufficiently small relative tou2 , correspond-
ing to a low level of inhomogeneity in the physical system.
The flow diagram for the diluted Heisenberg model can be
found in Ref. 15. In all that follows, we assume the fixed
point in Eqs.~3.2! is the one to which the running coupling
constants flow.

The explicit solution to Eq.~2.22! is mainly a matter of
expanding all quantities about the fixed point (u1* ,u2* ). For
example,ui(l) is found by expanding the right-hand side of
Eq. ~2.23f! as

l
]

]l
@ui~l!2ui* #5@u1~l!2u1* #]1b i*1@u2~l!2u2* #]2b i*1

1

2
@u1~l!2u1* #2]11

2 b i*1@u1~l!2u1* #@u2~l!2u2* #]12
2 b i*

1
1

2
@u2~l!2u2* #2]22

2 b i*1O~@u~l!2u* #3! ~ i51,2!, ~3.3!

where

] ib j*[S ]b j

]ui
D U

u
1* ,u

2*
; ] i j

2bk*[S ]bk
2

]ui]uj
D U

u
1* ,u

2*
.

~3.4!

The solution to this set of coupled differential equations will
be of the form

@ui~l!2ui* #5v i1l
p11v i2l

p21v i3l
p3

1v i4l
p41v i5l

p51•••, ~3.5!

where p352p1 , p45p11p2 , and p552p2 . The coeffi-
cientsv i j and the powerspi are constants to be determined.
The solution now proceeds by substituting Eq.~3.5! into Eq.
~3.3! and equating coefficients of equal powers ofl on either
side of the equation. In this way explicit expressions can be
found for all coefficients and powers in Eq.~3.5! except for
two. This is expected since, although Eq.~2.23f! has the
initial conditionsui(1)5ui , they cannot be used here since
the solution Eq.~3.5! is only valid nearl50 ~i.e., near the
fixed point!. Hence, the solutions to the differential equations
must contain two constants of integration.v11 andv22 were
chosen for this purpose and contain nonuniversal information
on the initial coupling constants.

M (l) and t(l) are similarly found. Equations~2.23b!
and ~2.23c! can be rewritten as5

SM ~l!

M D N5l2Ngf* /2YNexpH 2N

2 E
0

ldl8

l8

3@gf„ui~l8!…2gf* #J , ~3.6a!

S t~l!

t D L5lLg
f2* XLexpH LE

0

ldl8

l8
@gf2„ui~l8!…2gf2* #J ,

~3.6b!

where31

X[expH E
1

0dl8

l8
@gf2„ui~l8!…2gf2* #J , ~3.7a!

Y[expH 21

2 E
1

0dl8

l8
@gf„ui~l8!…2gf* #J . ~3.7b!

The Wilson functions in the integrands of Eq.~3.6! are in a
form which permits an expansion about the fixed point. The
integrals can then be explicitly performed and the exponen-
tials expanded resulting in series in powers ofl. In a similar
way, GR

(N,L) as well as the final additive term in Eq.~2.22!
can be expanded about the fixed point (u1* ,u2* ), which also
results in series in powers ofl.32

Once everything is expressed in terms ofl, Eq. ~2.24!
can be used to convert to the reduced temperaturet. This can
be seen by writing~for t.0)

t~l!

t
5

k2l2

t
. ~3.8!

Assuming the left-hand side of this equation has been ex-
pressed as a power series inl using the prescription outlined
above, the series can then be inverted to obtainl as a series
in powers oft. The form of the series is

l5L0t
D0@11~L1t

D11L2t
D2!

1~L3t
D31L4t

D41L5t
D5!1•••#, ~3.9!
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where D05n,D15p1n,D25p2n,D352D1 ,D45D11D2 ,
D552D2 . The further identification ofD152a and
D25vn, wherea is the specific-heat exponent andvn the
correction to scaling exponent of the pure Heisenberg model,
is made on the basis of comparing the publishede expan-
sions of the exponents.22,17 In the case ofD152a, general
arguments also apply.14,15

In this way, the right-hand side of Eq.~2.22! can be cal-
culated explicitly as a series in powers of the reduced tem-
peraturet.32 The two quantities of interest here are the spe-
cific heat and the isothermal susceptibility given by23

CB52GR
~0,2! , ~3.10a!

xab5~GR
~2,0!!ab

215x~ t !dab ~B50,T.TC!.
~3.10b!

Performing the steps outlined above, these quantities are ex-
pressed as

CB
6~ t !5AC

6t2a@11~ac1
6 t2a1ac2

6 tvn!

1~ac3
6 t22a1ac4

6 t2a1vn1ac5
6 t2vn!1•••#,

~3.11a!

x~ t !5Ax
1t2g@11~ax1

1 t2a1ax2
1 tvn!

1~ax3
1 t22a1ax4

1 t2a1vn1ax5
1 t2vn!1•••#,

~3.11b!

where1(2) denotest.(,)0. The exponents

a5
42m

2~m18!
e2

~m12!2~m128!

4~m18!3
e21O~e3!, ~3.12a!

vn5
1

2
e1

m228m268

4~m18!2
e21O~e3!, ~3.12b!

have been given elsewhere.22,17The correction to scaling am-
plitudes are

ac1
1 52v11X

2aFm~m18!

6~m24!

1

e
1
m~m3213m22118m140!

6m32288m1768
1O~e!G , ~3.13a!

ac2
1 5v22X

vnFm24

6

1

e
1
m4126m31126m2144m2656

6~m12!~m18!2
1O~e!G , ~3.13b!

ac3
1 5v11

2 X22aFm~m18!2~m2222m124!

36~m216!~m24!2
1

e2

1
m~5m62202m512940m421248m32153152m21193536m2137216!

72~m216!2~m24!3
1

e
1O~e0!G , ~3.13c!

ac4
1 52v11v22X

2a1vnFm~m18!

18

1

e2
1
m~5m2121m146!

36~m12!

1

e
1O~e0!G , ~3.13d!

ac5
1 5v22

2 X2vnF ~m24!~m12!

36

1

e2
1
5m4184m31180m22416m2960

72~m18!2
1

e
1O~e0!G , ~3.13e!

ac1
2 5v11X

2aH 2
2

3 Sm18

m24D 1e 1
2

3 F25m21118m2296

~m24!2~m18!
2
1

2
ln2G1 O~e!J , ~3.14a!

ac2
2 5v22X

vnH m24

6

1

e
1Fm4132m31156m21344m1736

12~m12!~m18!2
1
m24

12
ln2G1O~e!J , ~3.14b!

ac3
2 52v11

2 X22aH m~m18!2~m2218m1104!

36~m216!~m24!2
1

e2

1Fm7271m611098m526352m4223520m31397824m22291840m2262144

36~m24!3~m216!2
1
m~m18!~m2218m1104!

36~m24!~m216!
ln2G1e

1O~e0!J , ~3.14c!
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ac4
2 52v11v22X

2a1vnH 2~m18!

9

1

e2
1Fm3116m22132m2416

72~m12!
1
2~m12!

9
ln2G1e 1 O~e0!J , ~3.14d!

ac5
2 5v22X

2vnH ~m24!~m12!

36

1

e2
1F3m4144m3212m2196m13136

72~m18!2
1

~m24!~m12!

36
ln2G1e 1O~e0!J , ~3.14e!

ax1
1 5v11X

2aFm~m18!

6~m24!

1

e
1
2m~m3220m22164m2240!

24m321152m13072
1O~e!G , ~3.15a!

ax2
1 52v22X

vnFm12

6

1

e
1
m3118m2136m18

12~m18!2
1O~e!G , ~3.15b!

ax3
1 52v11

2 X22aFm~m18!2~m2225m136!

36~m216!~m24!2
1

e2
1
m~2m6271m511872m426848m3268416m2277568m1101376!

72~m24!3~m216!2
1

e

1O~e0!G , ~3.15c!

ax4
1 5v11v22X

2a1vnFm~m217m28!

18~m24!

1

e2
1
m~m423m3236m22112m196!

18m32108m21576

1

e
1O~e0!G , ~3.15d!

ax5
1 52v22

2 X2vnFm217m110

36

1

e2
1
2m4127m3230m22848m21392

72~m18!2
1

e
1 O~e0!G . ~3.15e!

Finally, the dimensionless correction to scaling amplitude
ratios, which are independant ofv11, v22, X, as well as the
renormalization scheme, and are therefore universal, are
given form53 by

ac1
1

ac1
2 5

3

4
1S 341

3ln2

88 D e1O~e2!'0.7510.77e1O~e2!,

~3.16a!

ac2
1

ac2
2 511S 11102

ln2

2 D e1O~e2!'110.75e1O~e2!,

~3.16b!

ac3
1

ac3
2 5

33

59
1S 8778176582

1
3ln2

59 D e1O~e2!

'0.5611.18e1O~e2!, ~3.16c!

ac4
1

ac4
2 5

3

4
1S 56193520

2
15 ln2

44 D e1O~e2!

'0.7511.36e1O~e2!, ~3.16d!

ac5
1

ac5
2 511S 115 2 ln2D e1O~e2!'111.51e1O~e2!,

~3.16e!

ac1
1

ax1
1 5211

7

22
e1O~e2!'2110.32e1O~e2!,

~3.17a!

ac2
1

ax2
1 5

1

5
2
281

550
e1O~e2!'0.2020.51e1O~e2!,

~3.17b!

ac3
1

ax3
1 52

11

10
1
6977

6600
e1O~e2!'21.111.06e1O~e2!,

~3.17c!

ac4
1

ax4
1 5

1

2
2
41

22
e1O~e2!'0.521.86e1O~e2!,

~3.17d!

ac5
1

ax5
1 5

1

8
2

243

1408
e1O~e2!'0.12520.17e1O~e2!.

~3.17e!

Equations ~3.16b! and ~3.17b! have been previously
published.5,6 To our knowledge, the remaining eight are pre-
sented here for the first time.

IV. SUMMARY AND DISCUSSION

The main objective of this work has been the determina-
tion by renormalization-group methods of thehigher-order
corrections to scaling associated with inhomogeneity such as
dilution by nonmagnetic impurities. We have explicitly cal-
culated critical exponents and universal amplitude ratios for
both first-order and second-order corrections to scaling. By
‘‘first order’’ and ‘‘second order,’’ we refer to the corre-
sponding terms which occur in the formal expansion of
renormalized vertex functions in powers of the deviations of
the renormalized coupling constants from their values at the
fixed point. The critical exponentsD152a and D25vn
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were known previously. The relationshipsD352D1 ,
D45D11D2 , andD552D2 have not previously been given
explicitly, but they are as expected on general grounds. Cor-
responding to these higher-order corrections to scaling, eight
universal amplitude ratios have been calculated, six of which
are absent in pure systems and arise only in the presence of
inhomogeneity.

The calculations have been carried out using renormalized
perturbation theory, minimal subtraction, ande expansions.
The critical exponents were evaluated toO(e2) while the
amplitude ratios were calculated toO(e). Although low-
ordere expansions generally provide reasonable semiquanti-
tative estimates for critical exponents, thee expansions for
amplitude ratios are sometimes more delicate.7 Conse-
quently, we regard theO(e) estimates of amplitude ratios to
be indicative only of the magnitudes to be expected, but not
to be quantitatively accurate. Specifically, to achieve accu-
racy at the 10% level, it will be necessary to add at least one
more term in thee expansion. Alternatively, coupling con-
stant expansions at fixed dimension would also be useful.
However, irrespective of the precise numerical values of
these amplitude ratios, it is important to be able to conclude
that the corresponding amplitudes are indeed present~and
are nonzero in general!.

The major point which must be emphasized is that these
new correction to scaling amplitudes associated with the
dilution-induced inhomogeneity now determine not only the
leading, butalso the next-to-leading corrections to scaling.
For a dilutedO(m) ferromagnet, the usual~first order!
purely thermal correction to scaling, determined byutuD2,
becomes negligible for sufficiently smallutu relative to the
formally second-order correction given byutuD3. This also
extends to even higher order corrections to scaling. Although
the leadingcorrection to scaling forpure systems (utuD2) is
certainly present for inhomogeneous systems, this correction
is insignificant sufficiently close toTC . It is dominated by
utupD1, (p51,2,3,4), since D152a'0.12 and
D25vn'0.55 in the case ofm53.16–18 These results
clearly have significance for the analysis of experimental
data. Even if the amplitudes associated with these corrections
to scaling should be small in a specific range of temperature
for a given system, it is necessary to consider~at the very
least! the possibility of a crossover to a dilution-dominated
regime asutu is reduced.

A very brief account of the experimental situation will
now be given. We have previously indicated that the lack of
crystalline long-range order and the possibility of a conse-
quent suppression of strong anisotropic perturbations makes
appropriate amorphous ferromagnets good candidates for the
universality class of weakly inhomogeneousO(m) Heisen-
berg systems. The same considerations apply to polycrystal-
line systems. Extensive studies of the influence of impurities
on the critical behavior of the magnetization have been car-
ried out by Hohenemser and co-workers using Mo¨ssbauer
techniques. For example, from an analysis of their data on

polycrystalline Fe12x Al x over the range 0<x<0.04, Col-
lins et al.33 determinedb50.366(2) to be the mean value of
five measurements. The influence of the first-order correc-
tions to scaling was considered. Hargraves and Dunlap34

studied the ac susceptibility of the quaternary transition-
metal-based amorphous alloys Ni802xFexB12Si8 and inter-
preted their results in terms of an effective exponentgeff .
The results of both of these experiments were consistent with
the values of critical exponents predicted for three-
dimensional isotropic Heisenberg systems. Critical ampli-
tude ratios were not obtained.

Kaul and Rao35 studied the electrical resistivity,
magnetization, and ac susceptibility of a series of
Ni 802xFex~B,Si!20 with (x510,13,16,20) alloys and ana-
lyzed data in terms of a leading critical exponent, which was
found to be independent of concentration and consistent with
the O(3) Heisenberg universality class, together with the
first-order correction to scaling terms. In addition, estimates
for several amplitude ratios for the corrections to
scaling were obtained. Their results for the correction to
scaling amplitude ratios for thex510 case were;
ac1

1 /ac1
2 50.08(4), ac2

1 /ac2
2 51.04(50),ac1

1 /ax1
1 57.7(20),

ac2
1 /ax2

1 54.5(10). These bear little resemblance to the
values obtained by simply putting e51
into Eqs. ~3.16a,b! and ~3.17a,b!, which yields; ac1

1 /ac1
2

'1.52, ac2
1 /ac2

2 '1.75, ac1
1 /ax1

1 '20.68, ac2
1 /ax2

1 '20.31.
There does not seem to exist at present any analysis of ex-
perimental data which takes into account the strongly
temperature-dependent second- and higher-order corrections
to scaling. It is possible that the strong disagreement between
the available theoretical and experimental estimates for cor-
rection to scaling amplitude ratios will be reduced when
these additional corrections to scaling are taken into account
close to the critical point. It is also possible that the effects of
other perturbations will need to be taken into account.

In summary, the absence of crystalline anisotropies sug-
gests that suitable amorphous ferromagnets may be good
candidates for weakly inhomogenous, isotropic Heisenberg
systems. The results available at present for theleadingcriti-
cal behavior support this suggestion. However, the correc-
tions to scaling~particularly the amplitude ratios! are much
more sensitive. Further theoretical development as well as
improved procedures for the analysis of experimental data
sufficiently close to the critical temperature will be useful in
probing these corrections.
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