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Macroscopic quantum tunneling of ferromagnetic domain walls
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Quantum tunneling of domain walls out of an impurity potential in a mesoscopic ferromagnetic sample is
investigated. Using improved expressions for the domain-wall mass and for the pinning potential, we find that
the crossover temperature between thermal activation and quantum tunneling is of a different functional form
than found previously. In materials such as Ni or yttrium iron garnet, the crossover temperatures are around 5
mK. We also find that the WKB exponent is typically two orders of magnitude larger than current estimates.
The sources for these discrepancies are discussed, and precise estimates for the transition from three-
dimensional-to-one-dimensional magnetic behavior of a wire are given. The crossover temperatures from
thermal-to-quantum transitions and tunneling rates are calculated for various materials and sample sizes.
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I. INTRODUCTION

The possibility of observing quantum mechanical beh
ior at a mesoscopic scale has recently attracted much ex
mental and theoretical interest. First, there is the fundame
issue of identifying physical systems possessing many
grees of freedom which support a collective mode that f
tures typical quantum properties such as superposition
havior, interference effects, or tunneling through poten
barriers. Well-known examples of such systems are Jos
son junctions which have been extensively studied in the
~for a review see, e.g., Leggett1!. Recently the focus ha
shifted towards low-dimensional magnetic systems2 such as
single-domain ferromagnets and antiferromagnets, but
towards nonuniform magnetic structures exhibiting dom
~or Bloch! walls. In the latter case, one envisages a dom
wall trapped by a magnetic pinning center—as provided,
example, by an impurity lowering the anisotropy energy
cally. The domain wall can then escape from this poten
well by tunneling through the energy barrier. The observa
ity of such tunneling events basically depends on three c
ditions which can be stated qualitatively as follows. First,
tunneling barrier should be neither too high nor too wid
Second, the effective mass associated with the tunneling
namics of the Bloch wall, and hence the number of spins
the wall, should not be too large. These two conditions
required in order to have a tunneling rate not too small,
that one can expect a tunneling event to take place with
reasonable amount of time~typically on the scale of hours o
less!. And third, the crossover temperature which separa
the classical regime of barrier crossing due to thermal a
vations from the quantum regime of tunneling should rea
tically be in the milli-Kelvin range or above. Clearly, a mo
precise formulation of these conditions is essential since t
are of fundamental importance for the interpretation of rec
and future experiments in terms of macroscopic quan
tunneling. With this motivation, it is our goal to provide suc
quantitative estimates in the following.
560163-1829/97/56~13!/8129~9!/$10.00
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Although the idea of domain wall tunneling has first be
described for bulk samples in the 1970’s,3–5 it was not until
the work by Stamp and collaborators6,7 that this idea has
received wider attention. The past few years have seen
siderable progress in sample preparation and has made
tailed experimental study of the relaxation properties
nanowires possible.8 In such experiments, the observation
a temperature independent relaxation~or resistance! below a
critical temperature is taken as a strong indication for qu
tum tunneling. Such observed crossover temperatures li
the range of 2 to 5 K. Resistivity measurements at low te
peratures require metallic samples. The presence of con
tion electrons, however, may interfere with the tunneli
process by providing a channel for dissipation~although
large domain walls or low conductivities reduce this und
sirable effect!. Insulating samples overcome this proble
but then experiments more difficult than resistance meas
ments are necessary. Rather than resistivity, magnetiza
can be measured; a depinned wall which propagates d
the sample will be accompanied by a sudden change in
magnetization.

Theoretical estimates, based on the same model con
ered here, have been given before,7 but as we shall see th
conclusions reached have been too optimistic. In particu
we find the functional dependence of the crossover temp
ture on experimentally important quantities such as the co
civity and domain wall mass are quite different from earl
calculations. This result has already been stated in Re
Sec. VII, but without any details given. Below we provid
these details, thus supporting earlier claims. The value of
crossover temperature is of considerable interest for the
terpretation of experimental observations since it is usu
taken as a strong indication for the existence of quant
tunneling if the magnetization switching becomes tempe
ture independent below this crossover temperature. A
earlier estimates7 predict reasonable tunneling rates for d
main walls containing up to 106 spins, whereas we find tha
the number of spins in a flat wall should not exceed 104.
8129 © 1997 The American Physical Society
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8130 56BRAUN, KYRIAKIDIS, AND LOSS
The paper is organized as follows. In Sec. II we pres
the model for a ferromagnet. We then discuss the conditi
under which transverse spin waves freeze out and the sa
can be considered one dimensional. The domain wall ma
derived from the well-known classical soliton solutions, a
the origin of the impurity potential is discussed. In Sec.
we evaluate the tunneling rates and crossover tempera
for a domain wall out of a pinning potential. Explicit numer
cal examples are given for various materials such as yttr
iron garnet~YIG!, Ni, and in particular the very promisin
perovskite and~badly! itinerant ferromagnet SrRuO3.20,21

These results are summarized in Tables I–III. Finally,
compare these results in Sec. IV with values given pre
ously in Ref. 7.

II. MODEL

We consider an elongated ferromagnetic sample~or
‘‘nanowire’’ ! as depicted in Fig. 1. We assume that the tra
verse dimensionsw of the sample are small enough to ensu
that the system behaves effectively one dimensional~1D! at
the typical temperaturesT of an experiment. Quantitative
estimates forw andT will be given below. Now the energy
of an effectively 1D ferromagnet extending along thex axis
is given by

E@u,f#5AE
2L/2

L/2

dx$A@~]xu!21sin2u~]xf!2#

1Kesin2u1Khsin2u sin2f%, ~2.1!

whereA is the cross sectional area of the sample and
sample lengthL is assumed to be much larger than the wid
of a domain wall. The magnetization has been expresse
polar coordinates,M5M0(sinu cosf,sinu sinf,cosu) with
M05gmBs/a3 the saturation magnetization anda the lattice
constant. The three terms in the energy density of Eq.~2.1!
respectively describe isotropic exchange, easy-axis an
ropy ~along ẑ), and hard-axis anisotropy~along ŷ). The an-
isotropy terms are of an effective nature and can contain b
crystalline and demagnetizing~shape-induced! contributions.
A typical example of an elongated sample is shown in Fig
whereKe5Ke,cryst andKh5Kh,cryst12pM0

2.10

In the absence of dissipation, the dynamics of the mag
tization is governed by the familiar Landau-Lifshitz equ
tions

] tf52
g

M0

d~E/A!

d cosu
,

] tcosu5
g

M0

d~E/A!

df
. ~2.2!

FIG. 1. Shown is a Bloch wall configuration in a thin long sla
i.e., u0(x2X), andf05p.
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Here bothf and cosu depend onx,t, the energyE is given
by Eq.~2.1!, andg5gmB /\ denotes the gyromagnetic ratio

A. 1D regime

The system exhibits quasi-1D behavior when all tra
verse degrees of freedom are frozen out. In order to obta
quantitative estimate of this 1D regime and thus of the
lidity of the model ~2.1!, ~2.2!, we start from the three-
dimensional~3D! spectrum of excitations around a Bloc
wall, which is given by11

en,k5
2a3

s
AAk'

2 1n~Akx
21Ke!AKh1Ak'

2 1n~Akx
21Ke!,

~2.3!

and evaluate the corresponding finite size gaps. H
k'5(ky ,kz) is the wave vector of spin waves running tran
verse to the sample, andkx is the wave vector along the
sample. The parametern50,1 characterizes the type of ex
citations. Forn51 one obtains the spectrum of the trad
tional spin waves, whereasn50 leads to the spectrum o
Winter ~or flexural! wall modes which describe a curving o
the Bloch wall. In the limit of an infinite sample the spi
waves have an anisotropy gap 2a3Ke /s, while the flexural
modes are gapless. For thefinite sample widths considere
here, however, the transverse spin waves and in partic
the flexural modes acquire an additional finite size gap. T
gap arises since the first excitation in transverse direc
involves the finite wave vectorkmin5p/w, wherew denotes
the maximal transverse dimension of the sample. As a c
sequence of these finite size gaps, all transverse excita
of typen around the Bloch wall get frozen out below a give
temperatureT for sample widthsw,wn , wherewn follows
from Eq. ~2.3!:

wn~T!5pF 2A/~Kh1nKe!

A11~rT!224@nKe /~Kh1nKe!#21
G 1/2

.

~2.4!

Here we have setr5skB /(Kh1nKe)a
3. Note thatwn di-

verges whenkBT approachesn(2a3/s)AKe(Ke1Kh) ~from
above!.

Since the minimal energyen50,k of the flexural wall
modes is always smaller than that of the spin wave modes~at
the same wavevectors!, quasi-1D behavior at temperature T
is established for sample widths w,wn50(T). For instance,
we find wn505pAA/Kh at a ‘‘freezing’’ temperature
kBT52A2Kha3/s, whereKh52pM0

2 for a slab as shown in
Fig. 1. Typical numbers for Ni~see Table II! arewn50'250
Å and T'1 K. We note that these flexural wall modes a
frozen out well above the typical crossover temperatureTc
below which one expects to see quantum tunneling. T
crossover temperature will be calculated below and is fou
to be of the order of 5 mK. For a given sample widthw, the
transverse spin waves (n51) with kx50,k'Þ0 are frozen
out at even higher temperatures.

B. Soliton solutions and soliton mass

In the literature, various differing values for the wall ma
have been used. Therefore we give now a derivation of
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56 8131MACROSCOPIC QUANTUM TUNNELING OF . . .
wall mass from theexactsoliton solutions12 of the equations
of motion ~2.2!. These soliton solutions describe Bloch wa
traveling at a constant velocityv, and are given by13

u0~x2vt !52arc tane~x2vt !/ d̃ . ~2.5!

The soliton velocityv is related to the~constant! azimuthal
anglef0 by the expression

v5A A

Ke

gKh

M0

sin 2f0

A11k sin2f0

, ~2.6!

where

k5Kh /Ke . ~2.7!

We see that at finite velocities the magnetization is tilted
of the easyxz plane (f050,p) and also that the Bloch wal
has a limiting velocity~the ‘‘Walker limit’’ !

vw5v0@A11k21#, ~2.8!

wherev052gAAKe/M0.
The width of the moving Bloch wall

d̃ 5d@11ksin2f0#21/2, ~2.9!

is contracted relative to the widthd5AA/Ke of a Bloch wall
at rest. Inserting Eqs.~2.5! and~2.6! into ~2.1! we obtain the
total energy of a moving Bloch wall

E~u0 ,f0!5E0A11k sin2f0, ~2.10!

whereE054AAAKe is the energy of a static Bloch wall.
If the hard-axis anisotropy energy induced by the soli

motion is much smaller than the easy-axis anisotropy,
ksin2f0!1, then v!v0Ak, and the energy in Eq.~2.10!
takes the form

E~u0 ,f0!5E01
M

2
v2, ~2.11!

with the wall mass

M5A
M0

2

g2Kh
AKe

A
~2.12!

~provided, of course, thatv,vw). For a hard axis of demag
netizing origin of the formKh52pM0

2, Eq.~2.12! reduces to
the Döring expression of the wall mas
MD5(A/2pg2)AKe /A.14 We emphasize that in the pre
ence of an additional strong crystalline hard-axis anisotro
Kh52pM0

21Kh,cryst, with Kh,cryst@2pM0
2, the wall mass

~2.12! is substantially smaller than the Do¨ring value~smaller
masses lead to higher tunneling rates!. Wall masses that are
up to 103 smaller than the Do¨ring value are found in the
orthoferrites.15

Equation ~2.11! shows that a moving domain wall be
haves as a particle of massM . The dynamics of the domain
wall u0(x2X) with X5X(t) can therefore be described b
the action of a free particle of massM

S~0!5E dt
M

2
Ẋ2. ~2.13!
t

n
.,

y,

For a microscopic derivation of Eq.~2.13! from the quantum
spin action within a coherent spin state path integral form
ism and a collective coordinate technique~and also including
the effects of dissipation via spin waves! we refer the reader
to Refs. 16,17,9.

C. Impurities and pinning potentials

So far we have focused on an ideal sample with perf
translational invariance. In realistic samples this invarian
is broken by impurities or modulations of the sample cro
section. We extend now the above considerations to this s
ation and discuss the effects of an external magnetic fi
For simplicity we treat first a pointlike impurity, consistin
of a single atom atx50 with easy-axis anisotropyKp
ÞKe . Such an impurity can be described by changing
anisotropy constant in Eq.~2.1! in the following way:

Ke→Ke1Kp~x!, Kp~x!52V0d~x!, ~2.14!

whereV05(Ke2Kp)a3, for n such impurities we evidently
haveV05n(Ke2Kp)a3. Without loss of generality, we con
sider in the sequel the case of attractive impurities, i
V0.0.

A uniform external field along theẑ ~easy! axis is de-
scribed by a Zeeman term2HM0cosu in the energy density
~2.1!. Both pinning and external field thus lead to the ad
tional energy

E85E d3x$Kp~x!sin2u2HM0cosu%. ~2.15!

The impurity now breaks the translational symmetry tra
verse to the sample. We consider here the situation of w
pinning where the pinning energy is much smaller than
static wall energyV0 /E0!1. In this case deviations from th
flat Bloch wall configuration (u0 ,f0) can be neglected. Note
thatE052NKea

3, whereN52Ad/a3 is the number of spins
in the static wall. Therefore the weak pinning assumpt
can be satisfied even in the case of many impurities as l
as the concentration of impurities within the wall volume
small.

To lowest order inV0 /E0, we can then insert the stati
soliton solutionu0(x2X) into Eq. ~2.15! and obtain the ad-
ditional energy13

E85Vp~X!2hX, ~2.16!

with the pinning potential

Vp~X!52V0sech2S X

d D , ~2.17!

and the force due to the external field

h52AM0H. ~2.18!

In Eq. ~2.17! we have used thatd̃ 5d@11O(v/v0Ak)2#.
Note that even a pointlike pinning center of the form~2.14!
creates a shallow potential~2.17! varying on the length scale
of the Bloch wall widthd5AA/Ke.

The pinning potential~2.17! not only holds for pointlike
impurities but also describes pinning due tovariations in the
cross sectionif they extend over length scalesl shorter than
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8132 56BRAUN, KYRIAKIDIS, AND LOSS
the domain wall widthd. To be specific, let us consider
constriction where the cross sectional ar
A(x)5A2DA(x) is locally reduced, i.e.,DA(x) vanishes
for uxu. l . Let Dv5*dxDA(x) denote the missing sampl
volume of the constriction. The total wall energy is then

E85E dxA~x!$2Kesin2u2HM0cosu%

522KeDvsech2
X

d
2hX1const, ~2.19!

where u5u0(x2X). Thus the effect of the constriction i
again described by Eqs.~2.16!, ~2.17! but now with
V052KeDv5E0Dv/2Ad. The weak-pinning limit is thus
justified as long as the volumeDv is small compared to the
volume 2Ad occupied by the domain wall. In the second lin
of Eq. ~2.19!, we have suppressed a small additional Zeem
term (hDv/2A)tanh(X/d) which is an irrelevant constant fo
large X, while for small X it renormalizesh by a factor
12Dv/2Ad. However, this renormalization is small in th
weak pinning limit considered here and thus experiment
not relevant.

In conclusion, we find that the dynamics of a domain w
in an external field, and in the presence of a pointlike imp
rity ~or a constricted cross section! is described by the action
S5S(0)2*dtE8. Explicitly we have

S5E dtH M

2
Ẋ22Vp~X!1hXJ , ~2.20!

with Vp as in Eq. ~2.17!. V0 depends on the impurity o
constriction parameters as defined above. The dynamic
the Bloch wall is thus seen to be equivalent to that o
particle of massM in a potentialVp under a forceh.

III. DEPINNING VIA QUANTUM TUNNELING

In this section we calculate the tunneling probability o
Bloch wall out of a pinning potentialV(X). For the moment,
let us consider a pinning potential of arbitrary shape,
might arise, e.g., from the presence of many randomly
cated impurities. We shall return below to the specific c
of the generic sech2 potential.

Interested in tunneling phenomena, we consider the
clidean version of the action~2.20!

SE5E
0

b

dtH M

2 S dX

dt D 2

1U~X!J , ~3.1!

where units have been chosen such that\51. The potential
energy for the wall is given by

U~X!5V~X!2hX. ~3.2!

In Eq. ~3.1!, b51/kBT, the wall massM is given by Eq.
~2.12!, and V(X) is some smooth pinning potential which
for the present, we keep arbitrary. It is only assumed t
V(X),0 and that it tends to zero foruXu→`. It then follows
that V(X) has at least two inflection pointsXi , defined by
V9(Xi)50.

Let us consider the situation of a vanishing external fi
where the wall is pinned at a local minimumXmin of V(X).
n

y

l
-

of
a

s
-
e

u-

t

d

Let Xi be the inflection point closest to the right ofXmin .
ThusV8(Xi).0 andV(3)(Xi),0. At small~positive! values
of the external field, the wall is still trapped atXmin , but as
the field is increased, the potential becomes increasin
tilted and finally, the metastable state ceases to exist at
coercive force

hc5V8~Xi !, ~3.3!

where hc52AM0Hc.0, with Hc the classical~zero tem-
perature! coercivity. In Fig. 2 we plot the potential energ
U(X) with the sech2 pinning potential of Eq.~2.17!. The
three curves shown are for external fields near the class
coercivity. It should be kept in mind, however, that the fo
lowing analysis is valid forarbitrary pinning potentials~sub-
ject to the conditions expounded in the preceding paragra!.

The possibility of quantum tunneling arises when the e
ternal field is close to the classical coercivity, i.e.,

0,e512H/Hc!1. ~3.4!

The potential~3.2! can then be expanded around the infle
tion point Xi of U(X) to yield

U~x!5
1

6
V~3!~Xi !x

31S 2
1

2
ehcV

~3!~Xi ! D 1/2

x2

5
27

4
VmaxS x

dD 2S 12
x

dD . ~3.5!

Several comments are in order regarding these express
First, the third derivativeV(3)(Xi),0 in general depends o
the coercivity. Also, we have shifted coordinates so that
minimum is nowU(0)50. In the second line, we have in
troduced the tunneling distanced.0, defined byU(d)50,
and the barrier heightVmax. These are explicitly given by18

FIG. 2. We plot the potential energyU(X) of Eq. ~ 3.2! for the
sech2 pinning potential of Eq.~ 2.17!. For this pinning potential, the
coercivity hc equals (4/A27)V0 /d. The three curves show the po
tential energy for the external fieldh slightly above, right at, and
slightly below the coercivity fieldhc . By expanding about the in-
flection point~shown by small circles in the figure!, these curves are
very well approximated by a cubic potential, as discussed in
text.
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Vmax5
25/2

3

~hce!3/2

@2V~3!~Xi !#
1/2

, ~3.6!

d53A2
~hce!1/2

@2V~3!~Xi !#
1/2

. ~3.7!

For external fields close to the coercivity, the Euclide
action associated with the tunneling of the domain wall
thus given by

SE@x#5E
0

b

dtH M

2 S dx

dt D 2

1U~x!J , ~3.8!

with U(x) as in Eq.~3.5!. This action is rendered stationar
by the ‘‘bounce’’ trajectory

xb~t!5dsech2vbt ~3.9!

which runs fromx50 to x5d and back to x50 for t in-
creasing from2b/2 to b/2 with b→`. The characteristic
tunnel frequency is given by

vb5~3/2!3/2AVmax/Md2. ~3.10!

Note thatvb is half the harmonic oscillation frequency in th
potential minimum ofU. The tunneling actionS05S@xb#
can be calculated without explicit knowledge of the abo
bounce trajectory, i.e.,

S052A2M E
0

d

dxAU~x!, ~3.11!

54A6

5
dAMVmax5

18

5

Vmax

vb
. ~3.12!

Note that the factor of 2 in the first equation arises beca
the escape rate is determined by the action over the wh
bounce which leads fromx50 to x5d and back tox50.

The escape tunneling rateP for the potentialU in Eq.
~3.2! has been calculated before in a different context@see,
e.g., Weiss,19 p. 109, Eqs.~8.12! and ~8.16!#. It is explicitly
given by the standard WKB expression
n
s

e

e
le

P54vbA15S0 /2pe2S0. ~3.13!

Typically, quantum tunneling will be observable if the tim
between tunneling events, i.e., the inverse escape rateP21,
does not exceed a few hours. For a typical attempt freque
vb ~given approximately by the exponential prefactor inP)
of the order of 109 s21 this requires that the exponentS0 /\
be less than about 30.

For the observation of quantum tunneling it is also imp
tant to ensure that the thermally activated transition rateover
the barrier PT5v0exp@2Vmax/kBT#, does not exceed the
tunneling rateP through the barrier. This is the case if th
sample temperatureT is less than the crossover temperatu
Tc , which can be estimated by equating the correspond
transition rates. By assuming that the prefactors are appr
mately equal we have~after reinstating\) the relation
kBTc5Vmax\/S0, which yields

kBTc5
5

8d
A2Vmax

3M
5

5

18
\vb . ~3.14!

In order to obtain further quantitative understanding,
now apply the above results to the specific case of the
neric pinning potentialVp(X)52V0sech2(X/d). With Eqs.
~3.3!, ~3.6!, and~3.7! we immediately find that

hc5
4

33/2

V0

d
, Vmax5

2A2

3
hcde3/2, d53dAe

2
. ~3.15!

The coercive force is thus linked to intrinsic properties of t
pinning potential—the ratio of potential strengthV0 and
characteristic length scaled. Comparison of these expres
sions with Eqs.~3.7! and ~3.6! shows now explicitly that
V(3)(Xi)524hc /d2 indeed depends on the coercive force

The tunneling exponent, crossover temperature, and
neling frequency follow from Eqs.~3.12!, ~3.14!, and~3.10!
and are given by

S05~6/5!\NsAHc /2pM0~2e!5/4, ~3.16!

kBTc5~5/18!gmBA2pM0Hc~2e!1/4, ~3.17!

vb5~gmB /\!A2pM0Hc~2e!1/4, ~3.18!
een
d-axis
TABLE I. Summary of equivalent expressions for bounce frequencyvb , WKB exponentS0 /\, and
crossover temperatureTc . N52dA/a3 denotes the number of spins in the wall. In the last column it has b
assumed thatKh52pM0

2, i.e., the sample has the slab geometry of Fig. 1 and there is no crystalline har
anisotropy,Kh,cryst50.

vb S32D
3/21

d
AVmax

M
A hc

Md S e

2D 1/4

gA2HcKh

M0
S e

2D 1/4

23/4gmB

\
AHcM0pe1/4

S0 A3

2

8

5
dAMVmax 23/4

12

5
AMhcd

3/2e5/4 23/4
6

5
\NsA2HcM0

Kh
e5/4 23/4

6

5
\NsA Hc

pM0
e5/4

Tc A2

3

5

8

\

kB

1

d
AVmax

M
23/4

5

36

\

kB
A hc

Md
e1/4

5

18

gmB

kB
AKhHc

M0
~2e!1/4 23/4

5

18

gmB

kB
ApHcM0e1/4
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TABLE II. Saturation magnetizationM0, shape anisotropyKh52pM0
2 for a thin film, easy-axis anisot-

ropy constantKe , exchangeA, wall width d5AA/Ke, wall massM , and coercivityHc for various materials.

M0 Kh Ke A d M /area Hc

@Oe# @105 erg /cm3] @105 erg/cm3] @1026 erg/cm# @Å# @10210 g/cm2] @Oe#

YIG 196 a 2.4 0.25b 0.43a 414 1.2 10
Ni 508 c 16 8d 1 112 4.6 100
large 200 2.5 100 1 32 16 10
Ke

e

SrRuO3
f 159 1.6 20 0.023 11 48 104

aRef. 23, p. 65.
bRef. 24, p. 313.
cRef. 25, p. 270.
dRef. 25, p. 569.
eExample given in Ref. 7, parameters taken from there except forA which has been replaced by the mo
common value.

fRef. 20.
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whereN52Ad/a3 is the total number of spins in the wa
and we have assumed a purely shape-induced hard-axi
isotropy, i.e.,Kh52pM0

2 for a slab geometry. Alternative
but equivalent expressions for the bounce frequencyvb , the
WKB exponentS0 /\, and the crossover temperatureTc are
listed in Table I.

To illustrate the above analytical results with concre
numbers we have collected in Tables II and III various v
ues for several ferromagnetic samples of the shape show
Fig. 1, namely yttrium iron garnet~YIG!, nickel, the perov-
skite SrRuO3,20,21 and ‘‘large easy-axis’’ materials consid
ered in Ref. 7. From Table III it becomes clear that the ty
an-

-
in

-

cal numberN of spins one can expect to tunnel coheren
out of a pinning potential within reasonable time~a few
hours or less! is of the order of 104 or less, and that the
associated crossover temperatureTc is typically less than 10
mK. A stark exception to this is SrRuO3, in which our
theory predicts 103 spins can coherently tunnel approx
mately once every millisecond with a crossover temperat
of 37 mK. It would therefore be very interesting to look fo
domain wall tunneling in this material.

From Eqs.~3.16!–~3.18! we see that in order to optimiz
the observability of quantum tunneling it would be desirab
to have materials that possess both a large coercivityHc and
TABLE III. Cross-sectional areaA, number of spinsN in the wall, e, tunneling distanced, crossover
temperatureTc , WKB exponentS0 /\, oscillation frequencyv, and inverse tunneling rateP21 for various
materials.

A e d Tc S0 /\ v P21

@Å 2# @Å# @mK# @109 s21# @s#

YIG 503200 1021 280 3 1268 2.6 `

@N53.43104# 1022 88 1.6 71 1.5 231020

5.731023 66 1.4 31.1 1.3 1433
1024 8.8 0.5 0.2 0.47 231029

Ni 503200 1021 75 14 1740 13 `

@N52.43104# 1022 23 8 98 7.6 1031

3.931023 15 6.3 31.1 6 310
1024 2.4 2.5 0.3 2.4 3310210

largeKe 503200 1021 21 3 98 2.6 531031

@N58.03104# 3.631022 13 2.1 31.1 2 931
1022 7 1.6 5.5 1.5 231028

1024 0.7 0.5 231022 0.47 531029

SrRuO3 503200 1021 7.4 79 873 37 `

@N53.43103# 1022 2.3 44 49 21 109

531023 1.7 37 21 18 1023

1023 0.74 25 2.8 12 10210



o
-
ul

ty
an

IS
ta
r
ly
m

th
in
s

xi
-

th

th

ity

-

e

x-

y
th
eing

our

o
ti-

-

n
he

tor

res
re-

Fe,
at
ble
s
her

ere
at

wall
ng.
m-
pera-
n
ri-
ich

re-
us,

ia-
ng
-

h a

s of
us

y

-

56 8135MACROSCOPIC QUANTUM TUNNELING OF . . .
a large hard axis anisotropyKh but with the ratioHc /AKh
being small. Such materials would have a small WKB exp
nent ~i.e., a high tunneling rate! and a high crossover tem
perature. There is, however, some leeway by caref
choosing the experimentally tunable parametersN and e
~see, e.g., SrRuO3 in Tables II and III!.

IV. DISCUSSION

A. Comparison with earlier results

A discussion of domain walls tunneling out of impuri
potentials has been given by Chudnovsky, Iglesias,
Stamp7 which we shall henceforth refer to as CIS~for earlier
work in this field see also the references contained in C!.
Our results presented in Table III for experimentally vi
quantities such as the WKB exponentS0 and the crossove
temperatureTc to the quantum regime differ substantial
from the results given in Sec. VII of CIS. Therefore a co
parison of the two approaches appears necessary.

Before turning to the most crucial difference between
two approaches—the functional dependence of the pinn
potential on the coercivity—let us first remark that the ma
MCIS used in CIS differs from the soliton massM given in
Eq. ~2.12!. In fact,

MCIS5M
k

~A11k21!2
. ~4.1!

The two masses agree only in the limit of large hard-a
anisotropy, i.e.,k[Kh /Ke@1. However, in the experimen
tally important limit of k!1 we haveMCIS/M54/k@1.
Thus, we would expect our action to be smaller and
crossover temperature larger than the CIS results.

However, this tendency is more than compensated by
CIS assumption that the pinning potential widthw̄ is inde-
pendent of the coercivity. For a field close to the coerciv
CIS find @their Eq. ~25!# for the total pinning potential of
arbitrary shape

AwU~Z!5s0AwHA2hc
CISe

2w̄
S Z

d D 2

2
1

6w̄2S Z

d D 3J , ~4.2!

where hc
CIS5dhc /E0, s0Aw5E0, and Aw5A. w̄ is a

parameter which is assumed to be independent ofhc and
is set equal to unity in Sec. VII of CIS. However, com
parison with our Eq.~3.5! reveals that the parameterw̄2

52s0Aw /V(3)(Xi)d
3 is not arbitrary but depends on th

details of the pinning potential.
In particular, for the generic sech2 pinning potential~2.17!

it follows that w̄ is coercivity dependent:

w̄5
1

2Ahc
CIS

. ~4.3!

Since experimentallyhc
CIS5Hc /Ha ~where Ha52Ke /M0)

lies typically in the range 1022–1025, this implies a value of
w̄ in the range 5–100.

By assumingw̄.1 in their final section, CIS have thusa
priori fixed the depth of the pinning potential to the e
-

ly

d

l

-

e
g
s

s

e

e

,

tremely large value of a third of the total wall energ
V05E0/3. This situation corresponds to a region of leng
4d/3 extending across the entire cross sectional area b
replaced with magnetic ions of vanishing anisotropy.

If we insert our expressions forM andw̄ into Eq. ~27! of
CIS, then their tunneling action agrees with ours@up to a
minor error of a missing factor of 21/4 in Eq. ~27! of CIS#.
With these substitutions we also find agreement between
Tc and Eq.~44! of CIS ~where again a factor 221/4 is miss-
ing!.

Our results strikingly differ from CIS when it comes t
the explicit computation of experimentally important quan
ties. In Eqs. ~88! and ~87! of CIS, numerical factors
21/448/5.11 and 5A2/21/436.1/6 respectively are sup
pressed compared to CIS Eqs.~27! and ~44! for S0 andTc .
Together with their assumption thatw̄.1, this leads~for a
material with hc

CIS51023) to an underestimation of the
WKB exponentS0 by a factor of 700 for a planar domai
wall tunneling through the potential of a single defect. At t
same time the crossover temperatureTc between quantum
tunneling and thermal depinning is overestimated by a fac
of 24.

Finally, we mention that while our crossover temperatu
and WKB exponents differ substantially from the values p
sented in CIS, we find the same scaling ofTc andS0 with
respect to the reduced fielde.

B. A mechanism for increasingTc

Explicit expressions for various materials such as Ni,
YIG, and SrRuO3 are presented in Table III. It is seen th
the transition temperatures are in the mK range. A nota
exception is SrRuO3, whose small domain wall width lead
to a narrow potential well and thus to a considerably hig
transition temperature—around 40 mK.

We must mention, however, that our simple analysis h
does not rule out discernible tunneling of larger walls
higher temperatures. Recent experiments on domain
dynamics8 have been interpreted as evidence of tunneli
This evidence primarily stems from the occurrence of te
perature independent phenomena below a crossover tem
ture of a few Kelvin—three orders of magnitude larger tha
our estimates here. Rather than comment on these expe
ments, we will instead discuss a plausible mechanism wh
may raiseTc and/or decreaseS0.

Table III shows that the tunneling rate becomes app
ciable if the tunneling distance is smaller than 10 Å. Th
variations of the pinning potentialV(X) on this length scale
could dramatically affect the tunneling behavior. Such var
tions do not occur for a random superposition of pinni
potentials of the sech2 type. However, under certain circum
stances the underlying crystal lattice can provide suc
modulation, in particular if the wall width is only a few
lattice constants.

To get some quantitative ideas about the consequence
a modulation with the period of the lattice constant, let
add the termVper(X)5V1sin(2pX/a1z) to the pinning po-
tential in Eq.~3.2!. Here,z is a phase which we convenientl
choose asz522pXi /a, whereXi is the inflection point of
the sech2 potential, i.e., sech2Xi /d52/3. ThusXi remains
the inflection point ofV1Vper. This new potential has asso
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ciated with it a coercivity which is a factor of (11m) larger
than the coercivity in Eq.~3.15!, i.e.,hc5hc

old(11m), where

m5
A27p

2

V1d

V0a
. ~4.4!

In the vicinity of Xi , we can carry out the same expansion
outlined above to again obtain the cubic potential given

V~x!5A2e
hc

d
lx22

2hc

3d2
l2x3. ~4.5!

The new parameterl, which equals unity forV150, is given
by

l5S 11r 2m

11m D 1/2

, ~4.6!

wherer 5pd/a. In Eq. ~4.5! we have also redefined the re
duced fielde to reflect the increased coercivity, i.e.,

e512
h

hc
5

eold1m

11m
. ~4.7!

Note that we now remain in the tunneling regime~i.e.,e.0)
even if eold becomes negative. Equation~4.5! gives rise to a
new tunneling distanced and also a new barrier heightVmax,
which results in a larger crossover temperatureTc and a re-
duced WKB exponentS0. These new expressions are expl
itly given by

Tc5Tc
oldA~11m!l, ~4.8!

S05S0
oldA~11m!/l3, ~4.9!

whereTc
old andS0

old contain thenewdefinition ofe, Eq.~4.7!,
since it is nowe ~and noteold) which is the experimentally
tunable parameter controlling the barrier height for tunn
ing. To obtain a numerical estimate of this effect, we need
estimate the magnitudeV1 of the periodic piece relative to
the impurity strength V0. Let us take, for example
V151021V0 and a domain wall of ten lattice constant
d510a. In this case,Tc'10Tc

old andS0'1022S0
old . The es-

timates here for the WKB exponent must be taken with c
tion because these are estimates for the tunneling thro
only oneof the ~periodic! barriers. Due to the shape of th
impurity potential, one should expect that there are;d/a
such barriers to tunnel through before the wall is free. A
suming incoherent sequential tunneling,S0 will effectively
increase by a factor of about 10 for the estimates just giv
i.e., S0

eff'10S0. Nevertheless, this very simple argume
shows that observation of tunneling of larger walls at hig
temperatures is not necessarily ruled out.

The case of a periodic potential superimposed on the
purity potential is interesting from another perspective. F
eold50 ~but e.0), the soliton originally pinned at the impu
rity now sees an effectively flat periodic potential throu
which it may tunnelcoherently. Since the soliton is a par
ticlelike excitation, we basically have here the physics o
particle in a periodic potential, and thus the soliton can fo
Bloch-like states of definite momentum.9 Increasing the field
still further induces a force on the soliton and the possibi
s

l-
o

-
gh

-

n,
t
r

-
r

a

arises of Bloch oscillationsof a magnetic soliton. This idea
was first laid out semiclassically in Ref. 16 and essentia
the same physics holds down to the extreme quantum cas
spin-1/2.22

Finally, we briefly mention that thermally assisted tunn
ing may also raise the effectiveTc . If the pinning potential
contains some internal level structure, then the wall may
thermally excited to some higher level, and only then tun
out of the pinning site. A more detailed analysis of this pro
lem ~e.g., along the lines discussed in the context of mac
scopic quantum tunneling in superconducting quantum in
ference devices, see Weiss19! is required, however, before
concrete statements concerningTc can be made.

V. CONCLUSIONS

We have given in this paper a detailed derivation of t
tunneling problem of a planar Bloch wall out of a pinnin
potential. We have focused exclusively on a quasi-o
dimensional ferromagnet with biaxial anisotropy, and ha
given estimates on when a system can be considered q
one dimensional. In particular, the flexural spin-wave mod
while gapless in infinite systems, acquire a gap for the fin
geometries shown in Fig. 1. If the sample temperature
below this energy gap, then the flexural modes cannot
excited and can hence be neglected. For cross-sectional
on the order of 104 Å 2, this energy gap is much larger tha
the crossover temperature at which quantum and ther
transitions are equal.

We have modeled the pinning center as an impurity wh
decreases the easy-axis anisotropy at a single point in sp
Even such a pointlike impurity produces a shallow pinni
potential which varies on the length scale of the Bloch w
width. We have related both the height and width of th
potential to a coercivity. Detectable tunneling can only occ
if the external field is very close to this coercivity, i.e., w
must havee512H/Hc on the order of 1022 or 1023. This
is an important number to determine experimentally. For
ample, if an experiment hase<0, then one would also ob
serve temperature independent depinning, but of course
cannot be ascribed to quantum tunneling—it is trivially d
to the vanishing of the barrier height.

Within an instanton approach, the WKB expone
bounce frequency, tunneling rate, and crossover tempera
have been calculated and different analytical forms for th
quantities can be found in Table I. We have also given e
mates of these quantities for specific materials. The mate
parameters can be found in Table II, and the estimate
Table III. In particular, the perovskite SrRuO3 seems a
promising candidate and we hope this work can motiv
some experimental studies into this material.

We have compared our results with previous work7 and
have found our calculations to predict lower crossover te
peratures and a lower maximum number of spins which
coherently tunnel out of a pinning potential. Finally, we ha
briefly discussed how the effects of a periodic potential, m
lead to a larger crossover temperature and a smaller W
exponent.
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