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Macroscopic quantum tunneling of ferromagnetic domain walls
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Quantum tunneling of domain walls out of an impurity potential in a mesoscopic ferromagnetic sample is
investigated. Using improved expressions for the domain-wall mass and for the pinning potential, we find that
the crossover temperature between thermal activation and quantum tunneling is of a different functional form
than found previously. In materials such as Ni or yttrium iron garnet, the crossover temperatures are around 5
mK. We also find that the WKB exponent is typically two orders of magnitude larger than current estimates.
The sources for these discrepancies are discussed, and precise estimates for the transition from three-
dimensional-to-one-dimensional magnetic behavior of a wire are given. The crossover temperatures from
thermal-to-quantum transitions and tunneling rates are calculated for various materials and sample sizes.
[S0163-18207)02638-9

I. INTRODUCTION Although the idea of domain wall tunneling has first been
described for bulk samples in the 1976"S,it was not until

The possibility of observing quantum mechanical behavthe work by Stamp and collaboratbrfsthat this idea has
ior at a mesoscopic scale has recently attracted much expereceived wider attention. The past few years have seen con-
mental and theoretical interest. First, there is the fundamentaiderable progress in sample preparation and has made a de-
issue of identifying physical systems possessing many ddailed experimental study of the relaxation properties in
grees of freedom which support a collective mode that feananowires possibl2In such experiments, the observation of
tures typical quantum properties such as superposition be temperature independent relaxat{on resistancebelow a
havior, interference effects, or tunneling through potentialcritical temperature is taken as a strong indication for quan-
barriers. Well-known examples of such systems are Josepldm tunneling. Such observed crossover temperatures lie in
son junctions which have been extensively studied in the pashe range of 2 to 5 K. Resistivity measurements at low tem-
(for a review see, e.g., Leggbtt Recently the focus has peratures require metallic samples. The presence of conduc-
shifted towards low-dimensional magnetic systémisch as  tion electrons, however, may interfere with the tunneling
single-domain ferromagnets and antiferromagnets, but alsprocess by providing a channel for dissipatiGathough
towards nonuniform magnetic structures exhibiting domairlarge domain walls or low conductivities reduce this unde-
(or Bloch) walls. In the latter case, one envisages a domairsirable effect Insulating samples overcome this problem,
wall trapped by a magnetic pinning center—as provided, folbut then experiments more difficult than resistance measure-
example, by an impurity lowering the anisotropy energy lo-ments are necessary. Rather than resistivity, magnetization
cally. The domain wall can then escape from this potentiacan be measured; a depinned wall which propagates down
well by tunneling through the energy barrier. The observabilthe sample will be accompanied by a sudden change in the
ity of such tunneling events basically depends on three conmagnetization.
ditions which can be stated qualitatively as follows. First, the Theoretical estimates, based on the same model consid-
tunneling barrier should be neither too high nor too wide.ered here, have been given beféreut as we shall see the
Second, the effective mass associated with the tunneling dygonclusions reached have been too optimistic. In particular,
namics of the Bloch wall, and hence the number of spins irwe find the functional dependence of the crossover tempera-
the wall, should not be too large. These two conditions ardéure on experimentally important quantities such as the coer-
required in order to have a tunneling rate not too small, seivity and domain wall mass are quite different from earlier
that one can expect a tunneling event to take place within aalculations. This result has already been stated in Ref. 9,
reasonable amount of tin{gypically on the scale of hours or Sec. VII, but without any details given. Below we provide
les. And third, the crossover temperature which separatethese details, thus supporting earlier claims. The value of the
the classical regime of barrier crossing due to thermal actierossover temperature is of considerable interest for the in-
vations from the quantum regime of tunneling should realisterpretation of experimental observations since it is usually
tically be in the milli-Kelvin range or above. Clearly, a more taken as a strong indication for the existence of guantum
precise formulation of these conditions is essential since thefunneling if the magnetization switching becomes tempera-
are of fundamental importance for the interpretation of recenture independent below this crossover temperature. Also,
and future experiments in terms of macroscopic quantunearlier estimateéspredict reasonable tunneling rates for do-
tunneling. With this motivation, it is our goal to provide such main walls containing up to £Gspins, whereas we find that
guantitative estimates in the following. the number of spins in a flat wall should not exceed. 10
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Here both¢ and co® depend orx,t, the energyE is given
by Eqg.(2.1), andy=gug/# denotes the gyromagnetic ratio.

I,r;/m/z/f%\\\rf; Yo

A. 1D regime

x=X # The system exhibits quasi-1D behavior when all trans-
verse degrees of freedom are frozen out. In order to obtain a
FIG. 1. Shown is a Bloch wall configuration in a thin long slab, quantitative estimate of this 1D regime and thus of the va-
i.e., 6o(x—X), and o= 7. lidity of the model (2.1), (2.2, we start from the three-

) . dimensional(3D) spectrum of excitations around a Bloch
The paper is organized as follows. In Sec. Il we presen{ya|l, which is given by"

the model for a ferromagnet. We then discuss the conditions
under which transverse spin waves freeze out and the sample 2a’ 5 . 5 .

can be considered one dimensional. The domain wall mass iSen,k:T\/AkJ_ +n(AK+Ke) VK +AKZ +n(AKL+K),
derived from the well-known classical soliton solutions, and 2.3

the origin of the impurity potential is discussed. In Sec. Il

we evaluate the tunneling rates and crossover temperaturégd evaluate the corresponding finite size gaps. Here
for a domain wall out of a pinning potential. Explicit numeri- K. = (ky,k;) is the wave vector of spin waves running trans-
cal examples are given for various materials such as yttriunyerse to the sample, arid is the wave vector along the
iron garnet(YIG), Ni, and in particular the very promising sample. The parameter=0,1 characterizes the type of ex-
perovskite and(badly itinerant ferromagnet SrRug®?!  citations. Forn=1 one obtains the spectrum of the tradi-

These results are summarized in Tables I-lIl. Finally, wetional spin waves, whereas=0 leads to the spectrum of

compare these results in Sec. IV with values given previ\Winter (or flexura) wall modes which describe a curving of

ously in Ref. 7. the Bloch wall. In the limit of an infinite sample the spin
waves have an anisotropy gap®K,/s, while the flexural

Il. MODEL modes are gapless. For tfinite sample widths considered

here, however, the transverse spin waves and in particular

We consider an elongated ferromagnetic samfde the flexural modes acquire an additional finite size gap. This
“nanowire”) as depicted in Fig. 1. We assume that the transgap arises since the first excitation in transverse direction
verse dimensiong of the sample are small enough to ensureinvolves the finite wave vectdt,,i,= m/w, wherew denotes
that the system behaves effectively one dimensi¢h@) at  the maximal transverse dimension of the sample. As a con-
the typical temperature$ of an experiment. Quantitative sequence of these finite size gaps, all transverse excitations
estimates fow and T will be given below. Now the energy of typen around the Bloch wall get frozen out below a given
of an effectively 1D ferromagnet extending along thexis  temperaturel for sample widthsv<w,,, wherew,, follows
is given by from Eq.(2.3):

E[0.4]=A Li2 dX{A[ (9,0)%+ SirR6( 9, b)?] Wo(T)= 2A/(Kh+nKy) 12
-L2 " VI+(pT)2—4[nKo/(Kp+nKg)]—1
+ K SirP 6+ K,sirf 6 sirf ¢}, (2.2 2.4

where A is the cross sectional area of the sample and th&lere we have sep=skg/(Ky+nKc)a®. Note thatw, di-
sample length. is assumed to be much larger than the widthVerges wherkgT approaches (2a%s) JK¢(Ke+Kp) (from
of a domain wall. The magnetization has been expressed iAPOV®- o

polar coordinates M =M y(siné cosg,sind sing,cos) with Since the minimal energyn—ox of the flexural wall
Mo=gugs/a® the saturation magnetization aadhe lattice ~Modes is always smaller than that of the spin wave méates
constant. The three terms in the energy density of@q) the same wavevectgrgjuasi-1D behavior at temperature T
respectively describe isotropic exchange, easy-axis aniso established for sample widths<wv,_o(T). For instance,

ropy (along?), and hard-axis anisotropialongy). The an-  We_find Wn=g= T A/Kn at a “;reezmg” temperature
isotropy terms are of an effective nature and can contain botksT =2 \/EK_ha /s, whereK,=27Mj for a slab as shown in
crystaliine and demagnetizirighape-inducedcontributions.  Fig- 1. Typical numbers for Nisee Table Il arew,,~250

A typical example of an elongated sample is shown in Fig. 1A and T=1 K. We note that these flexural wall modes are
whereK o= K gyt and K=Ky, crysit 2rM 5.1 frozen out well above the typical crossover temperafye

In the absence of dissipation, the dynamics of the magne2€/ow which one expects to see quantum tunneling. This
tization is governed by the familiar Landau-Lifshitz equa- CTOSSOVer temperature will be calculated below and is found

tions to be of the order of 5 mK. For a given sample widihthe
transverse spin waves€ 1) with k,=0k, #0 are frozen
v S8(ElA) out at even higher temperatures.
%= M, b cos”

B. Soliton solutions and soliton mass

e S(E/A) 2.2 In the literature, various differing values for the wall mass
Mo ¢ ' have been used. Therefore we give now a derivation of the

d;,co9=
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wall mass from thexactsoliton solution¥’ of the equations  For a microscopic derivation of E€2.13 from the quantum
of motion (2.2). These soliton solutions describe Bloch walls spin action within a coherent spin state path integral formal-

traveling at a constant velocity, and are given by ism and a collective coordinate technigaed also including
_ the effects of dissipation via spin wayese refer the reader
Oo(x—vt)=2arc tam* vV/?, (2.5  to Refs. 16,17,9.

The soliton velocityv is related to the€constant azimuthal

angle ¢, by the expression C. Impurities and pinning potentials

So far we have focused on an ideal sample with perfect

\/KyKh sin 2¢, translational invariance. In realistic samples this invariance
v= K_e M, \/m (2.6) is broken by impurities or modulations of the sample cross
0 section. We extend now the above considerations to this situ-
where ation and discuss the effects of an external magnetic field.
For simplicity we treat first a pointlike impurity, consisting
k=Kp/Ke. (27 of a single atom ax=0 with easy-axis anisotropK,

We see that at finite velocities the magnetization is tilted ouf” Ke- Such an impurity can be described by changing the
of the easyz plane (¢,=0,7) and also that the Bloch wall anisotropy constant in Eq2.1) in the following way:
has a limiting velocity(the “Walker limit”) Ko Kot Kp(X),  Kp(X)=—Vo(x), (2.14
vw=vol V1+Kk—1], (2.8)  whereV,=(K.—Kp)a®, for v such impurities we evidently

_ o haveVy=v(Ke— Kp)a3. Without loss of generality, we con-
Wh?[]eev\(l)vi_cifhyof\tﬁglﬂgving Bloch wall sider in the sequel the case of attractive impurities, i.e.,
VO>O.

F=o[1+ ksirfdo] Y2 (2.9 A uniform external field along the (easy axis is de-

_ _ _ scribed by a Zeeman termHM gcos in the energy density
is contracted relative to the widi#—= A/K, of a Bloch wall  (2.1). Both pinning and external field thus lead to the addi-
at rest. Inserting Eq$2.5 and(2.6) into (2.1) we obtain the  tional energy
total energy of a moving Bloch wall

E(0y, o) =EoVI1T x Sifebo, 2.10 E'=f d*{Kp(x)sirPd—HMqcoss}.  (2.15
whereEq,=4.A4\AK, is the energy of a static Bloch wall. ~ The impurity now breaks the translational symmetry trans-

If the hard-axis anisotropy energy induced by the solitonverse to the sample. We consider here the situation of weak
motion is much smaller than the easy-axis anisotropy, i.e.pinning where the pinning energy is much smaller than the
kSirP¢y<l, thenv<vgk, and the energy in Eq(2.10 static wall energyw,/Ey<<1. In this case deviations from the
takes the form flat Bloch wall configuration §q, ¢o) can be neglected. Note

" thatEy=2NK.a3, whereN=2A445/a® is the number of spins
_ M5 in the static wall. Therefore the weak pinning assumption
E(o,d0)=Eot 707, (219 can be satisfied even in the case of many impurities as long

. as the concentration of impurities within the wall volume is
with the wall mass

small.
M2 K To lowest order inVy/Ep, we can then insert the static
M =,4_r° ¢ (2.12  soliton solutiondy(x— X) into Eq.(2.15 and obtain the ad-
YKy VA ditional energy®

(provided, of course, that<wv,,). For a hard axis of demag- .,
netizing origin of the forrrKh=27rM§, Eq.(2.12 reduces to E'=Vp(X)=hX, (2.18
the Daing expression of the wall mass with the pinning potential
Mp=(A27y?) VK. /A We emphasize that in the pres-
ence of an additional strong crystalline hard-axis anisotropy,
Kn=27M§+Kp crysty With Ky, cys>27M3, the wall mass
(2.12 is substantially smaller than the Bog value(smaller
masses lead to higher tunneling raté&/all masses that are
up to 1¢ smaller than the Dring value are found in the h=2AMH. (2.18
orthoferritest®

Equation (2.11) shows that a moving domain wall be- In Eq. (2.17) we have used thab=[1+O(v/vyVk)2].
haves as a particle of mabs. The dynamics of the domain Note that even a pointlike pinning center of the fo(14)
wall 6y(x—X) with X=2X(t) can therefore be described by creates a shallow potentié2.17) varying on the length scale

P X
Vp(X)=—=Vysec (3) (2.17

and the force due to the external field

the action of a free particle of mass of the Bloch wall widthé= A/K,.
The pinning potential2.17) not only holds for pointlike
SO— J' dtMXZ 2.13 impurities but also describes pinning dueveriations in the
27 ' cross sectionf they extend over length scaléshorter than
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the domain wall widths. To be specific, let us consider a 13
constriction  where  the cross  sectional area
A(xX)=A—AA(X) is locally reduced, i.e.AA(x) vanishes
for |x|>I. Let Av=[dxA.A(x) denote the missing sample

volume of the constriction. The total wall energy is then 147
U h=0.9h,
hes
E’=f dXA(X){2Ksir? §— HM qcosh} 15
h=nh
X
=—2KeAvsecﬁ5—hX+const, (2.19 e
. h=1.1h,

where 6= 65(x—X). Thus the effect of the constriction is
again described by EQs(2.16), (2.17 but now with
Vo=2K.Av=EyAv/2A68. The weak-pinning limit is thus 170 02 04 06 08 i 12 1.4
justified as long as the volumgyv is small compared to the X/s
volume 246 occupied by the domain wall. In the second line _
of Eq. (2.19, we have suppressed a small additional Zeeman F!G. 2. We plot the potential enerdy(X) of Eq. (3.2 for the
term (hAv/2.4)tanh(X/8) which is an irrelevant constant for sech pinning potential of Eq( 2.17). For this pinning potential, the
large X, while for small X it renormalizesh by a factor ~ CO€rcivity hc equals (4427)Vo/8. The three curves show the po-
1-Av/2A6. However, this renormalization is small in the te.ntlal energy for the ex.t?”‘?' field slightly aboye, right at, af‘d
weak pinning limit considered here and thus experimentally? 9Nty below the coercivity fieldh, . By expanding about the in-
not relevant. flection pomt(shoyvn by small mrcle_s in the fl_gu)r,ethes_e curves are

In conclusion, we find that the dynamics of a domain Wa”very well approximated by a cubic potential, as discussed in the
in an external field, and in the presence of a pointlike impu-

rity (or a constricted cross sectjois described by the action . . . .
S=S8O— [dtE’. Explicitly we have Let X; be the inflection point closest to the right ¥f,i,.

ThusV'(X;)>0 andV(®)(X;)<0. At small(positive) values
M., of the external field, the wall is still trapped At,,, but as
S:f dt EX —Vp(X)+hXy, (220 the field is increased, the potential becomes increasingly
tited and finally, the metastable state ceases to exist at the
with V, as in Eq.(2.17). V, depends on the impurity or coercive force
constriction parameters as defined above. The dynamics of
the Bloch wall is thus seen to be equivalent to that of a he=V'(X;), (3.3
particle of massvl in a potentialV,, under a forceh.

where h,=2AMyH.>0, with H, the classical(zero tem-
l1l. DEPINNING VIA QUANTUM TUNNELING peraturg coercivity. In Fig. 2 we plot the potential energy
) i ] - U(X) with the sech pinning potential of Eq(2.17). The
In this section we calculate the tunneling probability of athree curves shown are for external fields near the classical
Bloch wall out of a pinning potential (X). For the moment,  coercivity. It should be kept in mind, however, that the fol-
let us consider a pinning potential of arbitrary shape, asowing analysis is valid foarbitrary pinning potential§sub-
might arise, e.g., from the presence of many randomly 0ject to the conditions expounded in the preceding paragraph
cated impurities. We shall return below to the specific case The possibility of quantum tunneling arises when the ex-

of the generic sechpotential. . ternal field is close to the classical coercivity, i.e.,
Interested in tunneling phenomena, we consider the Eu-
clidean version of the actiof2.20 0<e=1-H/H.<1. (3.4)

S—fﬁd M [dX)?
- ), 97 2 \d7

where units have been chosen such thatl. The potential

The potential(3.2) can then be expanded around the inflec-
+ . _ : ;
U(X)], 39 tion pointX; of U(X) to yield

1 1 1/2
energy for the wall is given by U(x)= g\/(3>()(i)x3+ — thcV(S)(Xi)> X2
U(X)=V(X)—hX. (3.2 27 x| 2 x
In Eqg. (3.1), B=1/kgT, the wall massM is given by Eq. 4 ma»(a) T d/) 3.9

(2.12, andV(X) is some smooth pinning potential which,

for the present, we keep arbitrary. It is only assumed thaSeveral comments are in order regarding these expressions.

V(X)<0 and that it tends to zero f¢X|—o. It then follows  First, the third derivative/(®)(X;)<0 in general depends on

that V(X) has at least two inflection point$;, defined by the coercivity. Also, we have shifted coordinates so that the

V"(X;)=0. minimum is nowU(0)=0. In the second line, we have in-
Let us consider the situation of a vanishing external fieldiroduced the tunneling distance>0, defined byU(d)=0,

where the wall is pinned at a local minimu¥,,, of V(X).  and the barrier height .. These are explicitly given B§
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252 (hee)®? 59 P=4wy,\155,/2me" %, 313
3 [_V(S)(Xi)]lIZ' )

max
Typically, quantum tunneling will be observable if the time

between tunneling events, i.e., the inverse escapePrate

d=32 (hee)'? 3.7 does not exceed a few hours. For a typical attempt frequency
[—VO(X)]H2 : wy, (given approximately by the exponential prefactorPijp
of the order of 18 s~ this requires that the exponeS§/#
For external fields close to the coercivity, the EuclideanP® !€ss than about 30.

action associated with the tunneling of the domain wall is FOr the observation of quantum tunneling it is also impor-

thus given by tant to ensure that the thermally activated transition oarter

the barrier Pt=wgexd —Vma/KgT], does not exceed the
8 (M/dx)\2 tunneling rateP throughthe barrier. This is the case if the
SE[x]=J dri = +—| tUX)¢, (3.8 sample temperatur€ is less than the crossover temperature
0 2 dT . . . .
T., which can be estimated by equating the corresponding

transition rates. By assuming that the prefactors are approxi-

with U(x) as in Eq.(3.5). This action is rendered stationary

by the “b " traiect mately equal we havdafter reinstatings) the relation
y the “bounce™ frajectory KeT.=V,fi/S,, Which yields
Xb(T):dseCﬁwa (39) ’ 5 \/mx 5 .
which runs fromx=0 to x=d andbackto x=0 for 7 in- Blc= 8d 18" ¥ (314
creasing from— B/2 to B/2 with B—o. The characteristic
tunnel frequency is given by In order to obtain further quantitative understanding, we
now apply the above results to the specific case of the ge-
wp=(312)¥2V 0 M d2. (3.10 neric pinning potentiaV/,(X) = —Vosech(X/8). With Egs.

(3.3, (3.6), and(3.7) we immediately find that
Note thatwy, is half the harmonic oscillation frequency in the

potential minimum ofU. The tunneling actionSy=S[X;] 4 V, 2.2 oo €
can be calculated without explicit knowledge of the abovehCZST,zg, Viax=—3—Ncde™,  d=354/5. (.19
bounce trajectory, i.e.,

. The coercive force is thus linked to intrinsic properties of the
_ T2y pinning potential—the ratio of potential strengiy, and
5o 22M fo VU0, .13 characteristic length scal8. Comparison of these expres-
sions with Egs.(3.7) and (3.6) shows now explicitly that
18V VEB)(X,)=—4h./ 5% indeed depends on the coercive force.
\[d VMV e = oy (3.12 The tunneling exponent, crossover temperature, and tun-
neling frequency follow from Eq93.12), (3.14), and(3.10

Note that the factor of 2 in the first equation arises becaus@nd are given by
the escape rate is determined by the action over the whole

- 3 oM (D )54
bounce which leads frorm=0 to x=d and back tax=0. So=(6/9)ANSVH/2mMo(2€)™", (3.18
The escape tunneling rate for the potentialU in Eq.
(3.2) has been calculated before in a different confeee, keTc=(5/18)gugV2mMoH(2€)", (3.17
e.g., Weiss? p. 109, Eqs(8.12 and(8.16)]. It is explicitly
given by the standard WKB expression wp=(gug/h)V27MoH(2€)Y4, (3.18

TABLE |. Summary of equivalent expressions for bounce frequesagy WKB exponentS,/#, and
crossover temperatufie. . N=26.4/a° denotes the number of spins in the wall. In the last column it has been
assumed tha{h=27rM§, i.e., the sample has the slab geometry of Fig. 1 and there is no crystalline hard-axis
anisotropy Kp, crys=0.

3121 Vpax he [e\¥ [2H K, (6)1/4 9
® -] 4 R — 1= 342MB o — 1

0

38 12 6 [2HM 6 [ H,
S, \/: e 3/4 /2_5/4 3/4_ £5/4 3/4_ 5/4
0 25d\/MVmaX 2 Mh,8%%¢ 2 Sth K 2 SﬁNs €

0

5
251 1 Now 405 1 hc e 5 ore [KiHc (2 1 23’418958\/77H Mge!
38k d 36k VM3© 18 kg
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TABLE Il. Saturation magnetizatioM ,, shape anisotropKh=2wM§ for a thin film, easy-axis anisot-
ropy constank,, exchangé\, wall width 6= \A/K,, wall massM, and coercivityH . for various materials.

My Kh Ke A 1) M/area Hc

[OCe] [10°erg/cn?] [10° erg/en?]  [10 ®ergleml [A] [10 Pglem?] [O€]
YIG 1962 2.4 0.25° 0.43% 414 1.2 10
Ni 508°¢ 16 8¢ 1 112 4.6 100
large 200 2.5 100 1 32 16 10
K€
SrRug;f 159 1.6 20 0.023 11 48 i {0)
8Ref. 23, p. 65.

bRef. 24, p. 313.

‘Ref. 25, p. 270.

9Ref. 25, p. 569.

®Example given in Ref. 7, parameters taken from there exceph fathich has been replaced by the most
common value.

'Ref. 20.

whereN=2.465/a® is the total number of spins in the wall cal numberN of spins one can expect to tunnel coherently
and we have assumed a purely shape-induced hard-axis amdt of a pinning potential within reasonable tinfe few
isotropy, i.e.,Kh=27rMS for a slab geometry. Alternative hours or lessis of the order of 10 or less, and that the
but equivalent expressions for the bounce frequangythe  associated crossover temperatlites typically less than 10
WKB exponentSy /%, and the crossover temperatifgare  mK. A stark exception to this is SrRuQ in which our
listed in Table I. theory predicts 19 spins can coherently tunnel approxi-
To illustrate the above analytical results with concretemately once every millisecond with a crossover temperature
numbers we have collected in Tables Il and Il various val-of 37 mK. It would therefore be very interesting to look for
ues for several ferromagnetic samples of the shape shown @fomain wall tunneling in this material.
Fig. 1, namely yttrium iron garnelYlG), nickel, the perov- From Egs.(3.16—(3.18 we see that in order to optimize
skite SrRuQ,?>?! and “large easy-axis” materials consid- the observability of quantum tunneling it would be desirable
ered in Ref. 7. From Table Il it becomes clear that the typi-to have materials that possess both a large coerdijitand

TABLE Ill. Cross-sectional aread, number of spindN in the wall, €, tunneling distancel, crossover
temperaturel ., WKB exponentS, /%, oscillation frequency, and inverse tunneling rafe™! for various

materials.
A € d T, Solh » p1
[A?] [A] [mK] [10°s™1] [s]
YIG 50 200 101 280 3 1268 2.6 o0
[N=3.4x10] 1072 88 1.6 71 1.5 X107
5.7x10°3 66 1.4 31.1 1.3 1433
1074 8.8 0.5 0.2 0.47 x10°°
Ni 50 200 10! 75 14 1740 13 o0
[N=2.4x10%] 1072 23 8 98 7.6 18
3.9x10°83 15 6.3 31.1 6 310
1074 2.4 2.5 0.3 2.4 X100
largeK, 50% 200 10! 21 3 98 2.6 510
[N=8.0x10"] 3.6x10°2 13 2.1 31.1 2 931
102 7 1.6 5.5 1.5 %1078
1074 0.7 0.5 2< 1072 0.47 5x107°
SrRuG, 50% 200 10! 7.4 79 873 37 o0
[N=3.4x10°] 102 2.3 44 49 21 19
5x10°3 1.7 37 21 18 103

1073 0.74 25 2.8 12 10%°
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a large hard axis anisotrogy,, but with the ratioH./\K,  tremely large value of a third of the total wall energy
being small. Such materials would have a small WKB expo-Vo=Eg/3. This situation corresponds to a region of length
nent(i.e., a high tunneling rajeand a high crossover tem- 44/3 extending across the entire cross sectional area being
perature. There is, however, some leeway by carefullyeplaced with magnetic ions of vanishing anisotropy.

choosing the experimentally tunable parametidrsand e If we insert our expressions fdi andw into Eq. (27) of
(see, e.g., SrRu@in Tables Il and 11). CIS, then their tunneling action agrees with o{p to a
minor error of a missing factor of*# in Eq. (27) of CIS].

IV. DISCUSSION With these substitutions we also find agreement between our
T. and Eq.(44) of CIS (where again a factor 2/* is miss-

A. Comparison with earlier results ing)
A discussion of domain walls tunneling out of impurity ~ Our results strikingly differ from CIS when it comes to
potentials has been given by Chudnovsky, Iglesias, anthe explicit computation of experimentally important quanti-
Stamp which we shall henceforth refer to as Qifér earlier  ties. In Egs. (88) and (87) of CIS, numerical factors
work in this field see also the references contained in)CIS 21448/5~11 and 5/2/2Y“36=1/6 respectively are sup-
Our results presented in Table Il for experimentally vital pressed compared to CIS Eq27) and(44) for S, and T,.
quantities such as the WKB exponesy and the crossover Together with their assumption that=1, this leads(for a
temperatureT; to the quantum regime differ substantially aterial with hS'S=10"3) to an underestimation of the

from the results given in Sec. VIl of CIS. Therefore a com-\ykpg exponentS, by a factor of 700 for a planar domain
parison of the two approaches appears necessary. wall tunneling through the potential of a single defect. At the
Before turning to the most crucial difference between theg, e time the crossover temperatdie between quantum

two approaches—the functional dependence of the pinning,,ejing and thermal depinning is overestimated by a factor
potential on the coercivity—let us first remark that the mass;; o4

MC'S used in CIS differs from the soliton mas4 given in

Finally, we mention that while our crossover temperatures
Eqg. (2.12. In fact,

and WKB exponents differ substantially from the values pre-
sented in CIS, we find the same scalingTqf and Sy with
M CIS= (4.1) respect to the reduced field

K
M—s.
(V1+k—1)?

The two masses agree only in the limit of large hard-axis . ) ) ) )
anisotropy, i.e.x=K;/K.>1. However, in the experimen- Explicit expressions for various materials su_ch as Ni, Fe,
tally important limit of k<1 we haveM®SM=4/x>1. YIG, and SrRuQ are presented in Table lIl. It is seen that
Thus, we would expect our action to be smaller and théhe transition temperatures are in the mK range. A notable
crossover temperature larger than the CIS results. exception is SrRug whose small domain wall width leads
However, this tendency is more than compensated by th& a narrow potential well and thus to a considerably higher

CIS assumption that the pinning potential widthis inde- trac\?mon t?mper?turerraroundt:]loth. . vsis h
pendent of the coercivity. For a field close to the coercivity, € must mention, however, that our simple analysis here

CIS find [their Eq. (25)] for the total pinning potential of does not rule out discernible tunneling of larger walls at
arbitrary shape higher temperatures. Recent experiments on domain wall

dynamicé€ have been interpreted as evidence of tunneling.
)2 1 ( )3} This evidence primarily stems from the occurrence of tem-
-\ | @2

B. A mechanism for increasingT,

perature independent phenomena below a crossover tempera-
ture of a few Kelvin—three orders of magnitude larger than

_ our estimates hereRather than comment on these experi-
where hg'S=sh./Ey, 00Ay=E,, and A,=A. W is a  ments, we will instead discuss a plausible mechanism which
parameter which is assumed to be independemt.obnd  may raiseT, and/or decreass,.

is set equal to unity in Sec. VIl of CIS. However, com-  Table Il shows that the tunneling rate becomes appre-
parison with our Eq.(3.5) reveals that the parameter’>  ciable if the tunneling distance is smaller than 10 A. Thus,

= —0pA,/VE)(X,)8° is not arbitrary but depends on the variations of the pinning potentidl(X) on this length scale

J2hT( z
AWU(Z)=O'0AW e E

6w\ &

details of the pinning potential. could dramatically affect the tunneling behavior. Such varia-
In particular, for the generic setpinning potential2.17  tions do not occur for a random superposition of pinning
it follows thatw is coercivity dependent: potentials of the seértype. However, under certain circum-
stances the underlying crystal lattice can provide such a
o 1 modulation, in particular if the wall width is only a few
W= ———. 4.3 lattice constants.
2\/FIS “9 To get some quantitative ideas about the consequences of

. . a modulation with the period of the lattice constant, let us
Since ?Xpe”_mema“)hglszHc/HaS(Wher_e Ha=2Ke/Mo)  a4d the termV e X) = Vysin(2mX/a+¢) to the pinning po-
lies typically in the range 10°~10"°, this implies a value of o pia) in Eq.(3.2. Here,{ is a phase which we conveniently
w in the range 5-100. choose ag = —2X;/a, whereX; is the inflection point of
By assumingv=1 in their final section, CIS have thas the sech potential, i.e., sedX;/5=2/3. ThusX; remains
priori fixed the depth of the pinning potential to the ex- the inflection point o+ V. This new potential has asso-
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ciated with it a coercivity which is a factor of () larger  arises of Bloch oscillationsf a magnetic solitonThis idea

than the coercivity in Eq(3.15), i.e.,h,=h%%1+ 1), where  was first laid out semiclassically in Ref. 16 and essentially
the same physics holds down to the extreme quantum case of

2778 g SPIN127
m=2 Voa' ' Finally, we briefly mention that thermally assisted tunnel-

- . ing may also raise the effectivE; . If the pinning potential
In the vicinity of X; , we can carry out the same expansion as g may E; p gp

. . : ; o contains some internal level structure, then the wall may be
outlined above to again obtain the cubic potential given by thermally excited to some higher level, and only then tunnel

h oh out of the pinning site. A more detailed analysis of this prob-
V(X)= \/ZEC)\XL_;)\ZXQ (4.5 lem (e.g., along the lines discussed in the context of macro-
scopic quantum tunneling in superconducting quantum inter-

The new parameter, which equals unity fo/; =0, is given ference devices, see Welidsis required, however, before
by concrete statements concernifigcan be made.

1+r2M 1/2
( 1+u) ’

(4.6) V. CONCLUSIONS

wherer=méla. In Eq. (4.5 we have also redefined the re-

! . N We have given in this paper a detailed derivation of the
duced fielde to reflect the increased coercivity, i.e., g pap

tunneling problem of a planar Bloch wall out of a pinning
h €ty potential. We have focused exclusively on a quasi-one-
e=1-—=——. (4.77  dimensional ferromagnet with biaxial anisotropy, and have
he 1+u given estimates on when a system can be considered quasi-
Note that we now remain in the tunneling regifie., e>0) one dimensional. In particular, the flexural spin-wave modes,
even if €29 becomes negative. Equatiéh.5) gives rise to a  While gapless in infinite systems, acquire a gap for the finite
new tunneling distance and also a new barrier heighit,.,, =~ geometries shown in Fig. 1. If the sample temperature is
which results in a larger crossover temperatligeand a re- below this energy gap, then the flexural modes cannot be
duced WKB exponens§,. These new expressions are explic- excited and can hence be neglected. For cross-sectional areas

itly given by on the order of 10 A2, this energy gap is much larger than
the crossover temperature at which quantum and thermal
T=ToN(L+ )\, (4.8 transitions are equal.
’ We have modeled the pinning center as an impurity which
So=83N(L+m)/\°, (4.9  decreases the easy-axis anisotropy at a single point in space.

old Id . - Even such a pointlike impurity produces a shallow pinning
whereT;" ands; ™ contain thenewdefinition ofe, Eq.(4.7), potential which varies on the length scale of the Bloch wall

since it is nowe (and note®®) which is the experimentally " . . \
tunable parameter controlling the barrier height for tunneI-W'dth' We have re_Ia_ted both the height _and width of this
otential to a coercivity. Detectable tunneling can only occur

ing. To obtain a numerical estimate of this effect, we need td

estimate the magnitudé, of the periodic piece relative to if the external field is very close to this czoercivit)é, i.e._, we
the impurity strengthV,. Let us take, for example, Musthavee=1—H/H. on the order of 10 or 10°" This

V;=10%V, and a domain wall of ten lattice constants, is an im_portant number to determine experimentally. For ex-
5=10a. In this caseT,~10T°" andSy~10"2899. The es- ample, if an experiment has<0, then one would also ob-
timates here for the WKB exponent must be taken with cauS€"ve temperature independent depinning, but of course this
tion because these are estimates for the tunneling througfnnot be ascribed to quantum tunneling—it is trivially due
only oneof the (periodid barriers. Due to the shape of the 0 the vanishing of the barrier height.
impurity potential, one should expect that there aré/a Within an instanton approach, the WKB exponent,
such barriers to tunnel through before the wall is free. Asbounce frequency, tunneling rate, and crossover temperature
suming incoherent sequential tunnelingy, will effectively  have been calculated and different analytical forms for these
increase by a factor of about 10 for the estimates just giverguantities can be found in Table I. We have also given esti-
i.e., Sf~10S,. Nevertheless, this very simple argumentmates of these quantities for specific materials. The material
shows that observation of tunneling of larger walls at higheparameters can be found in Table I, and the estimates in
temperatures is not necessarily ruled out. Table Ill. In particular, the perovskite SrRuOseems a
The case of a periodic potential superimposed on the impromising candidate and we hope this work can motivate
purity potential is interesting from another perspective. Forsome experimental studies into this material.
€°9=0 (but e>0), the soliton originally pinned at the impu- We have compared our results with previous wWoakd
rity now sees an effectively flat periodic potential throughhave found our calculations to predict lower crossover tem-
which it may tunnelcoherently Since the soliton is a par- peratures and a lower maximum number of spins which can
ticlelike excitation, we basically have here the physics of acoherently tunnel out of a pinning potential. Finally, we have
particle in a periodic potential, and thus the soliton can formbriefly discussed how the effects of a periodic potential, may
Bloch-like states of definite momentutincreasing the field lead to a larger crossover temperature and a smaller WKB
still further induces a force on the soliton and the possibilityexponent.
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