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The symmetries of a function are considered that takes as its argument an arbitrary two- 
dimensional Bravais lattice, represented by a 2 x 2 matrix. Rotating the lattice corresponds to 
multiplying its matrix on the right by an element of SO (2). Matrices related by left 
multiplication of an element of SL( 2,Z) also refer to the same lattice. Functions of matrices 
having these two symmetries possess an expansion known as the Roelcke-Selberg 
decomposition. This decomposition characterizes the function in terms of a set of coefficients 
(the discrete spectrum) and a function defined on a line in the complex plane (the continuous 
spectrum). When the function of the lattice refers to its energy, the continuous spectrum can 
be related to an interatomic potential between the atoms of the lattice. The decomposition can 
be considered a Landau theory of a strained two-dimensional Bravais lattice, valid for 
arbitrarily large strains, expanded about any structure. This type of theory may be useful in 
determining the energies of a material for many different lattice configurations from a 
knowledge of the energy at only a few of them. 

I. INTRODUCTION 

It is often desirable to know how some physical quantity 
associated with a crystal varies as the structure itself is var- 
ied. To analyze a discontinuous structural phase transition, 
for example, one might want to know what the free-energy 
surface between the two structures looked like. The inad- 
equacies of conventional Landau theory for describing such 
surfaces for reconstructive transitions (no group-subgroup 
relation between the two structures) are well known.’ This 
paper considers functions defined on crystalline configura- 
tions that are Bravais lattices. I first discuss the symmetries 
of such functions in terms of matrix groups. The problem of 
their proper parametrization is then solved, in two dimen- 
sions, by using mathematical techniques of harmonic analy- 
sis on the relevant group cosets.’ 

With respect’ to the traditional Landau theory of a 
strained Bravais lattice, this theory has two important ad- 
vantages. First, it is consistent with all Bravais lattice sym- 
metries. Traditional Landau theory handles symmetry cor- 
rectly only in the limit of infinitesimal deviations from a 
particular reference structure. Second, some of the param- 
eters occurring in the expansion can, when the function re- 
fers to the energy of a lattice, be related to microscopic phys- 
ical quantities. Ordinary Landau theory is purely 
phenomenological. 

II. SYMMETRY CONSTRAINTS 
The n Bravais lattice vectors ti of an n-dimensional Bra- 

vais lattice can be defined3 in terms of orthonormal basis 
vectors eJ as, 

t, =gllej, i,j= l,... n. (1) 
This equation gives a correspondence between the Bravais 
lattice generated by the ti and an n X n matrixg. (The simple 
cubic lattice in three dimensions, for example, is just the 
3x3 identity matrix.) The volume of the unit cell of the 
lattice g can be shown to be det g, so that the physically 

meaningful Bravais lattices are those geGL (n,R ), the group 
of real n x n matrices with nonzero determinant. 

Letf(g) be any real-valued function ofg, for example its 
energy or free-energy, which is independent of the lattices’ 
orientation. There are two symmetry constraints such a 
function must obey. The first arises from its invariance un- 
der rotations of the lattice, the second from the fact that 
there are.an infinite number of sets of Bravais lattice vectors, 
and hence matrices g, which generate the same Bravais lat- 
tice, To discuss the first, imagine that the ti are all rotated by 
a common angle, and/or inverted. The new lattice vectors 
are then ti = k ti, where kcO(n), the group of orthogonal 
nXn matrices. The rotated lattice corresponding to the t; 
can then be represented by the matrix gk, since 

tl = k ti = kgi,ei = giikei = gVkjle,. (2) 
This implies that f(g) = f(gk) for all kgO( n) . To find the 
second constraint, suppose that a set t; can be defined in 
terms of the set tj by tf = ygtj, for some matrix ~EGL( n,Z). 
The notation GL( n,Z) refers to the group of n x n matrices 
with integral entries (such y have det y = * 1). The tl are 
then linear combinations of the ti with integral coefficients. 
Therefore, the lattice the t; generate will lie within the lattice 
generated by the tj. But the converse is also true. Since 
GL(n,Z) is a group, y- ‘EGL(n,Z) also, and multiplying 
both sides of t[ = rijti by y,; ’ gives, 

y; ‘t; = y[; ‘yi/tj = s,tj = t,. (3) 

Therefore, the lattice generated by the t, lies within the lat- 
tice generated by the t;. The two sets t; and tj must then refer 
to the same lattice and hence f(g) =f(rg) for all 
FGL(~,Z). 

Functions defined on GL( n,R ) possessing the above 
symmetries are said to be right O(n) and left GL( n,Z) in- 
variant. The harmonic analysis of such functions for the case 
n = 3 is a difficult mathematical problem that appears to be 
not yet fully resolved.4 Therefore, and because two-dimen- 
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sional Bravais lattices are of intrinsic physical interest, I will 
from now on restrict attention to the case n = 2. Further, 
since there are no symmetries to exploit with respect to iso- 
tropic volume changes of a lattice,5 I will consider only 
g= (:~)ESL(~,R). One then has f(g) =f(yg) and 
f(g) =f(gk), where now @L(2,Z) and k&0(2) (all 
groups having unit determinant), and also 

f(tz 3> =f(Cc ,“)). (4) 

This last symmetry comes from multiplying g on both 
the right and left by (A’- , ), which corresponds physically to 
rotating the lattice by 7r and inverting t,. The value f(g) 
assumes at g is the same as the value it assumes when g is 
right multiplied by any member of SO( 2) or left multiplied 
by any member of SL( 2,Z). This can be summarized by 
saying that f(g) is a function of the cosets 
SL(2,Z)\SL(2,R)/S0(2). The right SO(2) invariance of 
f(g) can be dealt with by a transformation that maps 
SL(2,R)/S0(2b+H, where H is the upper half complex 
plane. Define z = gi, where the action of the matrix g on i is 
given by 

(5) 

This transformation has the property that ki = i, so that all 
matrices g differing only by a rotation are mapped to the 
same z. The left SL(2,Z) invariance of f(g) can then be 
shown to imply that 

f(z) =f(z + 1) =fC - l/z), (6) 
while the constraint of Eq. (4) implies thatf(z) is even about 
the imaginary axis. That is, f(z) =f( - ‘i), 7 denoting the 
complex conjugate of z. 

Note that 

X 

(8 1;:) 
i = x + iy. (7) 

The Bravais lattice vectors of the matrix on the right are 
t, = -\/ve, + x/dye, and t, = l/Vye, . This is theconven- 
tion where t, is aligned with the e2 axis. Rotating this struc- 
ture, by multiplying the matrix on the right by an element of 
SO( 2)) will ofcourse change the matrix, but not the complex 
number to which it maps. 

The action of SL (2,Z) on Hand ztt - Z divides H into 
fundamental domains. A domain I) has the property that for 
every z&i there exists a yCSL(2,Z) such that 7/z@ or 
- F@. The resulting subdivision of H is shown in Fig. 1. 

A domain has the physical interpretation that it contains 
within it all inequivalent two-dimensional Bravais lattices 
(of a given cell volume). Note the (local ) twofold and three- 
fold symmetries about the square and triangular lattices. A 
Landau expansion in the strains about the square lattice 
would take into account its twofold symmetry, but not the 
threefold symmetry about the triangular lattice, or any other 
symmetry off(z). Hence, a parametrization off(z) incor- 
porating all of the symmetries discussed above could be con- 
sidered a Landau theory valid for strains of arbitrary magni- 
tude, expanded about any structure. 

-1 -l/2 0 l/2 1 

I 

X 

FIG. 1. A division of the upper half complex plane into domains D. The 
domains become progressively smaller as you approach the real axis, so 
those closest to the axis are not shown. Each domain contains within it all 
possible two-dimensional Bravais lattices of a common value. The square 
and triangular structures are located at the vertices of the domains and are 
labeled accordingly. A particular domain has been shaded and labeled D. 
The boundary of D is made up of Bravais lattices having nontrivial point 
group symmetries, that is, a point group symmetry other than inversion. 
Structures on the imaginary axis are rectangular, those on the unit circle 
rhombohedral, and those with Re z = l/2 face centered rectangular. Struc- 
tures withy-+ CC have It, 1 -+O. Hence, the physically relevant structures in 
D are those near the unit circle. 

Ill. PARAMETRIZATION OF f(z) 
The function&) can be parametrized in terms of basis 

functions of H. This expansion has both a discrete sum and a 
continuous integral. The sum involves cusp forms u,(z) 
while the integral is taken over the Eisenstein series E,(z). 
Both types basis functions have the following two properties. 
They are eigenfunctions of the non-Euclidean Laplacian 

A=y’(s+$) 
on H (x and y are the real and imaginary parts ofz) . That is, 
Au,(z) =s,(s, - l)u,(z) and A&(z) =s(s- l)&(z). 
The real parts of the s, and s are always equal to $, so that 
they can be written s, = 4 + it, and s = ; + it. The first 
three I,, are’ approximately 13.78, 17.74, and 19.42, while t 
is arbitrary. And second, they are both themselves invariant 
under SL(2,Z), so that 0, (z) = u,, (yz) and 
J?& (z) = Es ( ~z). A functionf(z) can be expanded in terms 
of these functions if it belongs to L ‘(SL( 2,Z) \H). This is 
satisfied it, in addition to satisfying Eq. (6) above, its norm 
( f,f ) is finite, where the inner product oftwo functionsf(z) 
and g(z) is defined as, (.,a) = 2 s J(z) g(z)Y- 2 dx dy. (8) 
The integration is over a fundamental domain D,’ Although 
I will return to the physical significance of this later, note 
now that, due to the measure used in Eq. (8), ( J; f ) will be 
finite if, in particular,f(z) is bounded on D. To summarize, 
an important result from harmonic analysis, known as the 
Roelcke-Selberg spectral decomposition of A on 
L ‘(SL (2,Z) \H), is that suchf( z) can be expanded as 

f(z) = c (,hl)u,(z) i--g&l, (.m,)E;.(z). 
n>o es =,,2 

(91 

1966 J. Math. Phys., Vol. 32, No. 7, July 1991 Ian Folkins 1966 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.173.72.237 On: Fri, 30 May 2014 19:33:16



That is, f(z) can be parametrized by a set of coefficients 
( f,v, ) and a function ( J;E, ). 

Functions in L 2(SL( 2,Z) \H) are not required to be 
even about the imaginary axis. Since there are, in general, 
both even and odd cusp forms, the sum in Eq. (9) should be 
considered to be over the even v, (z) only. The Eisenstein 
series are even’ so that no additional restriction is placed on 
the continuous part of the expansion. 

In most physical applications, f(z) will be real. This 
constraint can be shown to imply that (JE,) = (JE?), so 
that this function need only be known on Re s = l/2 for 
Im s > 0 or Im s < 0. The even cusp forms are apparently* 
real, so that one can expect the ( f,v, ) to be real also. 

The n = 0 cusp form is given by v0 = @%. However, 
analytic expressions of the v, (z) for n > 0 do not exist and 
their s, = l/2 + it, are not known exactly. They do how- 
ever possess expansions in terms of K-Bessel functions,’ 

v,(z) = c Cd “‘Kit (27nny) cos(2rmx), (10) 
m,O 

and the first few c, , as well as the I,, for several cusp forms 
have been numerically calculated.” 

For Re s> 1, the Eisenstein series has the series expan- 
sion, ’ ’ 

Es(z) =+y’ c ~mz+ny~. (11) 
L (rn.?Y) = 1 

The notation (m,n) refers to those pairs of integers whose 
greatest common divisor is 1. The Es (z) can be analytically 
continued to Re s < 1 [the region of the complex s-plane rel- 
evant to Eq. (9) 1, and has an expansion in terms of K-Bessel 
functions similar to that given for the v, (z) in Eq. (10). In 
this case however, the c,,, for each s are known exactly. 

IV. RELATION OF ( f&Z,) TO THE ATOMIC PAIR 
POTENTIAL 

An important problem is the relation of the parameters 
(J;v, ) and the function (J;E,) to physical quantities. I 
show that iff(z) refers to the energy of lattice z, then ( J;Es ) 
can be expressed in terms of a pair potential between the 
atoms. Assuming the atoms interact solely by a pair poten- 
tial V(r), r the distance between them, then the energy per 
atom is 

f(z) = + -pm 
r0.l” 

(12) 

The sum runs over all lattice vectors rn,m = nt, + mt,, ex- 
cept for the zero vector, with r = ]rn,m 1. Now write V(r) in 
terms of its Mellin transform, with transform variable 2s, so 
thatf(z) becomes, 

f(z) =f~$.l,,,,;2CJ4w~)~ -2”d2s. (13) 

The integral is taken over a vertical line in the complex s- 
plane intersecting the real axis at some c> 1. I assume that 
V(r) can be written this way, and that MP’( 2s) is analytic in 
the interval 1/2gRe s<c. [This is satisfied, for example, by 
potentials that remain finite as ~--to, and go to zero faster 
than i/r ’ as r--r 00. These sorts of potentials also guarantee 
that f(z) is bounded on D.] Interchanging the sum and the 

integral in Eq. ( 13) gives the sum ;Ci, _r - 2s inside the inte- 
gral. Such sums over lattice sites, of powers of distances of 
the lattice sites from the origin, can be handled using Epstein 
zeta functions Z( Y,,s). For Re s > 1, they are defined12 as 

Z(Y,,s) =+ c Y,[a] --. (14) 
acz2 - 0 

Here, Y, [a] refers to the number a’Y,a, c1 being a two-com- 
ponent column vector, a’its transpose, and Y, the 2 x 2 sym- 
metric matrix related to z = x + iy by13 

y = (x2 +v*vv X/Y .? ( X/Y ) l/y * 
(15) 

Or alternatively, in terms ofg, Y, = gg’. It can be shown that 
when a = (k ), Y, [a] = IF,,, 1’. Hence, Eq. (13) can be re- 
written as, 

f(z) = L 
I 

MV( 2S)Z( Y,,s)ds. (16) 
TTi Res=c 

To relate this expression for f(z) to the expansion given in 
Eq. (9 ), the line of integration must be moved from Re s = c 
to Re s = l/2. The Epstein zeta function can be analytically 
continued to the whole s-plane with a unique pole at s = 1 
with residue 7r/2. l4 The Mellin transform MV( 2s) is analyt- 
ic by assumption in the region 1/2<Re s<c. I will also as- 
sume that IMV(2a + 2it)Z( Y,,a + it) I-0 as t-* co for 
1/2(0(c (Ref. 15), so that the end pieces vanish. After 
moving the integral, substitute the relation 
Z( Y,,s) = g(2s)E,(z) (Ref. 16), f(2s) the Riemann zeta 
function. Comparing the result with Eq. (9) gives 
( f;v, ) = $8?MV( 2), coming from the residue, and 

(~5% 1 = =fWsX(2s). (17) 

V. DISCUSSION 

It is not clear how to relate the ( J;v, ) to physical quan- 
tities. This is made difficult by the absence of analytic expres- 
sions for them. However, it can be hoped that the (J;v, ) 
become negligible for large n. This is because, physically, 
f(z) cannot vary too rapidly with z (similar structures being 
expected to have similar free energies), and because the 
v, (z) with large n oscillate rapidly with z [their eigenvalues 
s,(s, - 1) increasing with n] . 

It may be useful to expand ( JE, ) itself in terms of basis 
functions. The choice of such basis functions would be dic- 
tated by the evenness of ( JE, ) about the real axis, and phys- 
ical considerations motivated by its relation to the atomic 
pair potential, Eq. ( 17). If, for a crystal, such an expansion 
were to converge rapidly, and the ( ftv, ) also became negli- 
gible for sufficiently large n, then one could effectively fully 
characterize f(z) by a finite number of adjustable param- 
eters. These parameters could then be determined by a best 
fit if one knew f(z) at a finite number of structures z. The 
variation of f(z) is represented by an energy landscape in 
Fig. 2. This landscape would be appropriate when the stable 
lattice has no particular symmetry. Note however that the 
symmetries off(z) still enforce the energies of the square and 
triangular lattices to be locally extremal. The atomic dis- 
placements of the domain wall shown will be sensitive to the 
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FIG. 2. The top picture is a ferroelastic domain wall. The two domains A 
and B, and the line between them map to the points A and B and line 
between them in the complex plane. The midpoint of the line in the complex 
plane is the square lattice i. The energy landscape is purely hypothetical but 
is consistent with the symmetry off(z), and the physical requirement that 
the global minima off(z) be located at A and B. Note the “reflection” sym- 
metries about the unit circle and imaginary axis which always force the 
rhombohedral and rectangular structures on these lines to be extremal. For 
short range repulsive forces between the atoms the energy will become pro- 
gressively bigger the further you get from the unit circle. 

details of the energy landscape between the two structures. 
An extension of the theory given here to the inhomogeneous 
case, i.e., allowing z to depend on position, may be able to 
describe such domain walls. Of course, such an extension 
would involve contributions to the energy which arise from 
spatial derivatives of z. Ordinary elasticity theory, even if 
carried to arbitrarily high order, is incapable of describing 
domain walls involving large displacements because it never 
takes into account the full symmetry off(z) . 

Suppose that the Bravais lattice with the lowest free- 
energy of a crystal is square. A rectangular distortion of this 
structure corresponds to moving away from z = i up or 
down the imaginary axis, while moving to the left or right of i 
induces a rhombohedral distortion. The lowest order 
changes in the free-energy associated with these two dis- 
placements are given by the two respective elastic constants 
of the square lattice. These may be determined from f(z) by 
evaluating the second derivative off(z) with respect to de- 
viations in the real and imaginary parts of z from i, evaluated 
at i. In general, any crystal’s elastic constants can be deter- 
mined iff(z) is known. Conversely, knowledge of the elastic 
constants constrains the ( J;v, ) and ( J;E, ). 

The parametrization off(z) discussed here is an exten- 
sion of a Landau theory of the square to triangular lattice by 
Horovitz et ~1.‘~ These authors consider a transition trajec- 
tory in which the angle y between two equal length lattice 
vectors is continuously changed from n/2 in the square lat- 
tice to 7~/3 in the triangular lattice. (This trajectory can be 
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represented in Fig. 1 by going from z = eirr/l to z = eir13 
along the unit circle.) They define an order parameter for 
this transition to be 7/(y) = 1 - 4 cos’ y. The free-energy 
along the trajectory can then presumably be written as 

f(q) =Ay2+Bq3+ -**, (18) 
where A and B are constants. This free-energy obeys two 
constraints on its variation with y. The first is evenness about 
y = n-/2, a consequence of v(y) = T( - y + rr) . The sec- 
ond is af/aql, = o = 0. These constraints guarantee that the 
free-energy be extremal with respect to deviations of y from 
the square and triangular lattices, respectively. In my para- 
metrization, the first constraint follows from the evenness of 
f(z) about the imaginary axis, while the second can be 
shown to arise from the local threefold symmetry off(z) 
about z = eirf3. To summarize, although I consider a 
broader class of structures, and our formalisms are quite 
different, the symmetries of the two free-energies as a func- 
tion of the configurations we both consider are identical. 

The central result of this paper is that the variation of 
any function of a two-dimensional Bravais lattice, under the 
constraint of constant volume, can be fully characterized in 
terms of a (presumably) finite number of coefficients, and a 
function defined on line in the upper half complex planeA 
One application of this characterization may be an attempt 
to find the energy of all Bravais lattice configurations of a 
crystal given knowledge of the energy at only a few of them. 
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